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Preface

Magnetic resonance imaging (MRI) is one of the most widely employed technologies 
for the clinical imaging of soft tissues due to its high contrast and spatial resolution, 
absence of ionizing radiation, and the current breadth of methodological applications. 
Much of the present diagnostic power of MRI is due to the technology’s reliance on 
the nuclear magnetic moment of hydrogen and its manner of detection. Hydrogen is 
abundant in soft tissues and possesses a readily detectable magnetic moment in the 
presence of an externally applied magnetic field. Technical details for generating the 
field trace their origin to Bloch and Purcell’s original method of demonstrating the 
nuclear magnetic phenomenon. In their technique, the interaction between the nuclear 
magnetic moment and the magnetic field generated a resonance frequency that was 
electronically detected by an inducting coil. In its clinical usage, a linear gradient was 
introduced in the magnetic field, enabling the resonance frequency to be varied as a 
function of its position along the gradient. This permitted the sampling of biological 
tissue via a Fourier space along a single axis one point at a time. Measurement of the 
signal with respect to phase differences along a second axis provided a unique set of 
values corresponding to each xy set of coordinates on the tissue plane. 

This basic technological approach has since provided sufficient latitude to permit the 
wide-ranging evolution that has led to today’s generation of MRI applications. A small 
sampling includes such well-established procedures as parallel imaging, which has 
substantially lessened the long acquisition intervals plaguing early clinical use; computa-
tional algorithms for preprocessing steps of co-registration and denoising, which are now 
routine; and functional MRI for brain activity, currently used widely in clinical research. 

New advances are benefiting from a synergy of the current procedures together with 
the parallel evolution now occurring in the computational disciplines. Among the 
factors propelling the development of functional approaches, for example, are the 
currently evolved capabilities for rapid data acquisition, enhanced detection, and 
improved physiological models of function, which together underpin the growing 
trend toward monitoring dynamic properties in an increasingly data-driven, large-
scale computational environment. Structural analyses are also undergoing a signifi-
cant evolution. While MRI has traditionally been used chiefly for structural tissue 
determinations, the difficulties in managing the burgeoning wealth of imagery data 
are increasingly requiring computational processing prior to examination by clini-
cians. Upcoming trends to address this need include new algorithms with enhanced 
computational power for feature extraction and pattern recognition. Computational 
developments also include specialized procedures that handle big data analyses, such 
as MRI fingerprinting and whole brain dynamics. 

The current text presents select cases of how these trends are being incorporated into 
a new generation of MRI applications. The introductory chapter, Chapter 1, cov-
ers the current capabilities, providing a foundation for how the next generation of 
applications will benefit from knowledge previously gained in these standard areas. 



The book’s focus then shifts to how the current capabilities are incorporated in three 
domains that are experiencing especially rapid growth: functional and dynamic imag-
ing in cardiac health and disease, advances in computational machine learning and its 
application to brain networks, and multiparametric, tissue-specific procedures. 

Dynamic MRI in Cardiovascular Diagnosis

Cardiac MRI (CMR) currently offers precise visualization of myocardial tissue structure 
and function that has proven to be critical for assessing cardiovascular disease. Chapter 2 
describes the current broad range of CMR techniques and discusses how a similar range 
of next-generation applications are building on these abilities. The latter include, for 
example, updated structural mapping techniques that provide a comprehensive analysis 
and image of the entire heart with single scans for improved detection of fibrosis and 
edema that are often missed on older scanning procedures. Novel cardiac methods also 
include procedures for estimating cardiac tissue strain, obtained using the procedures of 
displacement encoding with stimulated echocardiography (DENSE) and feature track-
ing (FT), a post-processing algorithm that calculates myocardial deformation. 

Improvements in the management of patients with congenital heart disease have sig-
nificantly increased the number of patients surviving well into adulthood. Long-term 
care for such patients requires ongoing follow-up to detect and treat long-term com-
plications. Chapter 3 describes an MRI procedure that measures four-dimensional 
heart flow in congenital patients. Four-dimensional flow allows a velocity assessment 
of the whole heart and major vessels with electrocardiogram gating and can be taken 
in a single acquisition. This is especially relevant for complex heart diagnoses. As one 
of multiple examples, it can assess the kinetic energy of blood flow, which provides a 
diagnostic measure for determining ventricular efficiency.

Machine Learning and Brain Network Analysis Methods for MRI

The rapidly increasing volume of MRI data generated by new MRI procedures under-
scores the imperative for computational resources and serves to drive the development 
of computational capabilities in virtually all stages of MRI analysis, from acquisition 
and preprocessing to image reconstruction and feature extraction, and to big data 
issues. This has resulted in the current proliferation of machine learning methods that 
have enhanced image acquisition, analysis, and clinical decision-making. Chapter 4 
provides a theoretical background for these methods and reviews how various appli-
cations are used in specific MRI stages. The chapter discusses, for example, convolu-
tional neural networks, which have proven highly effective for image classification. 
Advanced computational analysis is of particular benefit for complex functional 
analyses, such as those employed in analyzing brain networks. Such computational 
procedures are increasingly applied to functional studies of brain activity. 

Functional MRI (fMRI) of the quiescent brain, notably, has revealed that brain activity 
is highly organized into a group of brain networks (RSNs). Designated resting state, 
functional, magnetic resonance imaging (RS-fMRI), the method is currently the most 
powerful tool available for assessing the functional connectivity properties of brain 
networks. Chapter 5 discusses recent developments in RS-fMRI that seek to build on 
such functional connectivity determinations by relating causal sources of connectivity 
changes to brain states and behavior. Coupled with new modeling procedures, these 
IV V

determinations provide insight into dynamic brain topology and its relationship to brain 
states. Because of the large amounts of data generated by these studies, traditional data-
driven methods for handling RS-fMRI data, such as independent components analysis 
and graph theoretic approaches, become unwieldy and lose descriptive power at elevated 
data levels. The chapter describes, among several other topics, current efforts to address 
big data handling that can be used to accurately gauge network structure and dynamics.

Multiparametric, Tissue-Specific MRI Procedures

Among MRI’s imaging capabilities is a capacity for distinguishing compositional 
differences and anomalies in different tissues. This is increasingly used to advantage 
in the determination of the many diseases affecting bone tissue. Normal bone always 
contains both fat and red marrow, and these undergo variations in fatty composition/
hematopoietic cellularity as part of a transformation phenomenon associated with 
these diseases. Marrow fat is distinguished by an elevated signal intensity due to its 
high proton content, whereas hematopoietic marrow has a much smaller signal. Using 
magnetic resonance spectroscopy, it is possible to quantify these differences, which 
enables a precise determination of changes occurring within the bone cavity.

Chapter 6 describes these advanced MRI procedures and their use in a wide range 
of major bone diseases and other clinical entities. New advances in magnetic field 
strength, gradient strength, and coils have enabled the development of novel pulse 
sequences, which have transformed knee MRI from a routine procedure of tissue 
structure to one of ultrastructure and even postoperative ligament reconstructions, 
which has previously constituted a challenge. Chapter 7 discusses these advanced 
procedures for finely delineating knee tissue structure. For example, isotropic three-
dimensional MRI permits thin-slice MRI with a spatial resolution of less than 1 mm 
and is seen in oblique planes, which help analyze complex structures like static and 
dynamic knee stabilizers. Enhanced three-dimensional visualization from various 
angles is expected to assist preoperative planning and achieve better clinical outcomes 
in patients with difficult-to-treat ligament and meniscal injuries.  

Diagnostic analyses have traditionally benefitted from studies exploring pulse 
sequences that optimize image features while minimizing artifact contributions and 
scanning time. The introduction of non-linear gradients, for example, was under-
taken to improve image quality in highly undersampled MRI. Protocols for assessing 
pulse sequences are of interest for their utility in determining preferred sequences. 
Chapter 8 presents a pre-diagnostic protocol for assessing sequences that optimize 
these basic relationships. As a proof-of-principle demonstration, the procedure 
examines three frequently used pulse sequences: Fast Spin Echo (FSE), Fast Fluid 
Attenuated Inversion Recovery (FLAIR), and Conventional Spin Echo (CSE).

Denis Larrivee 
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Chapter 1

Introductory Chapter: New 
Advances in MRI Clinical Analysis
Denis Larrivee

1. Introduction

1.1 Detecting the nuclear magnetic moment

While magnetic resonance imaging has been used clinically since the early 1980s 
[1], the development of the technique traces its origin to Bloch and Purcell’s demon-
stration of the nuclear magnetic phenomenon several decades earlier [2, 3]. Their 
work showed that in the presence of a constant magnetic field, nuclear magnetic 
moments generated a resonance frequency that could be electronically detected by 
means of an inducting coil. The ability to detect an electrical signal induced by the 
magnetic moment made possible the development of adjunct procedures for spatially 
profiling analytical specimens. Advances in MRI that have since propelled its clinical 
application have built on the physical principles underlying the magnetic moment 
and its detection used in the Bloch and Purcell demonstrations.

A key factor in the clinical use of the nuclear magnetic moment is the quantum 
mechanical effect present in hydrogen protons, which are abundant in soft tissue 
and confer the equivalent of an angular “spin” on the nucleus [4]. In the presence of 
an externally applied magnetic field, the magnetic moment generated by the spin 
processes about the axis of the applied field at a rate proportional to the external field 
and at a fixed angle to the field’s axis, which defines the Larmor frequency. Within 
the static field, a second, perpendicular magnetic field applied by radiofrequency can 
excite the processing nuclear moment, changing the energy level and frequency of 
the magnetic moment with respect to the static field. In practice, this second field is 
applied in pulses typically lasting on the order of microseconds. Energy input from 
the pulses is then re-emitted between pulses as the magnetic moment returns to equi-
librium, a process termed free induction decay. Relaxation to thermal equilibrium can 
occur either longitudinally, with loss of energy to the surrounding environment (a 
reduction in signal intensity, termed T1), or transversely, with energy exchange (but 
not loss) with neighboring nuclei (seen in a broadening of signal phase, termed T2). 
T1 and T2 values are defined as the lengths of time taken for their respective signals 
to decline by 63% (or to 37% from the equilibrium value), which adopt first order, 
exponential decay.

1.2 Spatial resolution and localization

Although the measured signal has its origin in the physical features inherent to the 
tissue, its detection and subsequent conversion to an anatomical image relies on tech-
nical features that amplify, resolve, and reconstruct the unique spatial and physical 
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properties of the image [5]. Localization of the tissue signal, notably, requires the use 
of magnetic field gradients, which is achieved by varying the static field strength dur-
ing signal retrieval. In a typical application, the gradient introduces a linear variation 
in the static field strength along a tissue axis. Because spin precession frequency is 
directly proportional to field strength, there is a one-to-one correspondence between 
frequency and position. Gradients can assume any orthogonal direction and, in 
principle, can be used to reconstruct 3-dimensional images.

Faster or slower precession, and so higher and lower frequency, is detected as a 
higher or lower signal. Accordingly, manipulating the magnitude of the field strength 
range modulates the range of frequencies emitted for signal retrieval along a single 
axis. Imaging data acquired with small gradients has a small frequency range, limit-
ing the frequency differential that can cover a pixel and so also limiting resolution. 
Larger gradients expand the frequency range, increasing resolution. When plotted, 
low frequencies are thus distributed centrally and high frequencies peripherally in a 
mathematical domain termed K-space [6, 7]; all image points thereby contain infor-
mation from all frequencies. Planar localization requires encoding information along 
a second axis, a process also achieved by means of a static field gradient, but in which 
the phase difference along the second axis is monitored. Because phase differences 
can only be detected with respect to a reference value, a single scan is required for 
each phase encoded value. Information from both axes must then be mathematically 
transformed (by Fourier transform) to yield an x-y, planar image.

Because the typical and early use of the method—termed spin echo—sequentially 
varied the strength of the static field gradient, an important limitation in the use of 
MRI imaging has been the scanning time required to produce an adequately resolved 
image. Scanning time is a function of two factors: the interval between radiofre-
quency pulses, termed repetition time (TR), and the number of scans required 
for phase encoding and detection. The product of these yields the total scan time. 
Employing this protocol, typical scanning times could take on the order of minutes to 
hours, with higher resolution images needing longer intervals and so corresponding 
corrections for time related artifacts such as patient movement. Because of such arti-
facts, scanning time has posed a significant obstacle to image acquisition and quality.

1.3 Evolution in MRI procedures

Much of the early evolution in MRI methods thus sought to achieve a balance 
between data acquisition procedures that provided for sufficient spatial and temporal 
resolution and contrast and the time required to achieve a desired image. An example 
of this balancing is seen in the line reductions first introduced to the basic spin echo 
protocol [6]. A drawback to this approach, however, was the attendant loss in either 
resolution or image size due to the loss of frequency information. In the fast spin, 
echo planar or multi echo approach, for example, scanning time was reduced by 
taking multiple lines after the radio frequency pulse. A chief disadvantage of this 
latter approach, however, was the rapid loss in signal strength due to energy trans-
feral during T2 acquisition, permitting only 3–4 lines per RF pulse, with significant 
deterioration in image quality.

While the objectives of reducing acquisition time and achieving enhanced spatial 
and temporal resolution have been of perennial interest in MRI development, new 
developments for addressing these and other objectives have in turn revealed new 
needs that invited corresponding solutions. The widespread use of parallel imaging 
[8], for example, was due to its ability to accelerate data acquisition while maintaining 
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high resolution through reductions in phase encoding lines and the use of algorithms 
that corrected subsampling aliasing. Such rapid acquisition methods led to the 
proliferation of multi-parametric approaches, which then facilitated quantification 
studies for MR fingerprinting [9]. These, and extended MR functional analyses, for 
instance, whole brain resting state fMRI [10], have engendered the further develop-
ment of big data methods for the accompanying computational requirements, while 
data processing needs for processes such as feature extraction [11] propelled the use 
of machine learning to reduce diagnostic load. Indeed, the range of new techniques 
extends from advances in image acquisition to data processing and inference to 
computation and data handling, enhanced spatial resolution, and functional analyses. 
To illustrate the current proliferation, this introductory chapter to New Advances in 
Magnetic Resonance Imaging presents a select representation of techniques that trace 
their evolution from the physical and detection principles first identified by Bloch and 
Purcell. Chapters that follow each present a single, recently evolved MRI technique in 
greater detail. It is hoped that the novelty of these advances will be a source of inspira-
tion for the engaged professional and interested scientist alike.

2. Acquisition procedures: advances in parallel imaging

Parallel imaging is now used in nearly every clinical MRI scan for rapid data acqui-
sition, for numerous reasons [8]. Many abdominal and cardiac scans, for example, 
are taken with patients holding their breath, with its obvious need for short scanning 
times. In other cases, for instance, multiline sequences following excitation pulses 
(e.g., in turbo spin echo), blurring artifacts are introduced due to the substantial T2 
decay occurring during line retrieval. In still other applications, rapid data acquisition 
is essential because of the need to acquire large data sets [12, 13].

In parallel imaging, scanning time is reduced because the phased array coils yield 
unique views of the tissue objective, eliminating the scanning time for a significant 
portion of the region subject to gradient encoding [8, 14]. Due to the rapid decline 
in sensitivity of each coil element with increasing distance from the coil, this limits 
data acquisition to a clearly delineated, tissue profile. Individual images are combined 
to yield a comprehensive image. As a matter of principle, the maximum acceleration 
factor is related to the number of coils. Since most parallel imaging often employs 4–8 
coil arrays and arrays containing 32, or even 128, channels are known (e.g., cardiac 
imaging), the reduction in scan time can be substantial.

Protocols for parallel imaging are currently classed according to whether aliased 
pixels are segregated in the imaging domain (SENSitivity Encoding or SENSE) or in 
K-space (Generalized Autocalibrating Partial Parallel Acquisition or GRAPPA) [14]. 
Techniques that act on the image domain first reconstruct and then correct, while 
those that act on the frequency domain first correct and then reconstruct. For those 
segregating in the imaging domain, prior knowledge of the coil sensitivity profiles 
enables separation of folded pixels from the undersampled image to recover the full 
image. Recent improvements have included phase-constrained SENSE. Whereas in 
conventional SENSE unknown variables are complex value, in phase-constrained 
SENSE, values are real, reducing the variable number by half. In contrast to the 
SENSE techniques, the GRAPPA algorithm is a K-space technique, which operates on 
acquired frequency information that is embedded in K-space. The technique is based 
on the principle that K-space information is shared between points in K-space due 
to the variation in multiple static field gradients; hence, missing information can be 
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computationally reconstructed from acquired K-space data. In order to reconstruct 
information from the missing points, acquired data points must be adjusted by 
weighting using an autocalibration signal obtained from another region of K-space.

Two recent modifications of the GRAPPA technique have included the 2D 
CAIPIRINHA and Wave-CAIPI techniques [15]. In 2D CAIPIRINHA, acceleration 
in the Ky and Kz directions is accompanied by a phase offset along Kz. This generates 
unique frequency patterns that require less computational resources for resolving 
aliasing. The Wave-CAIPI technique builds on 2D CAIPIRINHA by adding sinusoidal 
gradients along the Ky and Kz axes with a 180° shift. These additions amplify the accel-
eration by a factor of 9 over the 2D CAIPIRINHA technique. Unlike other very fast 
acquisitions, Wave-CAIPI is not subject to blurring from data gridding or artifacts 
from distortion due to uneven static magnetic fields.

3. Reconstruction procedures for image analysis

The initial stages of image acquisition, preprocessing, and segmentation prepare 
the data for extraction of meaningful information. By definition, these steps involve 
removal of nonmeaningful or noise-based signals. One common source of noise, for 
example, is due to patient movement. Motion artifacts are corrected by registering 
sequential images, which can be carried out using available algorithms suited for 
medical imaging. A current standard for MRI image registration is the InsightToolKit 
(ITK), which contains a suite of algorithms including such processes as transforma-
tions, similarity metrics, and contrast normalization [11].

Recent trends in preprocessing and segmentation (e.g., denoising) have employed 
machine-based learning applications. Due to the labor involved, another major 
trend in machine-based learning procedures has been that of feature recognition 
and classification [16]. The high quantity of imaging data acquired from exist-
ing MRI scanning, especially, has made clinical diagnoses based on MRI images 
increasingly laborious, driving efforts for automated data abstraction and analysis. 
Computationally, machine learning relies on algorithms derived from neural network 
structures, which are composed of nodes joined by weighted edges. Inputs to nodes 
are weighted by a set of parameters and multiplied by transfer functions, for example, 
sigmoid and hyperbolic tangent functions, which transform weighted inputs. Among 
the most widely used of these deep neural networks (DNN) are the convolutional 
neural network (CNN), ResNet, the generative adversarial neural networks (GANs), 
and the U-nets.

Deep network models used for processing whole images are highly complicated, 
which significantly amplifies the processing time. For example, a CNN training 
model can often create millions of parameters in searches for feature classifica-
tion. This drawback has been addressed by the use of image representations of 
smaller size that increases the processing efficiency. Most current feature extrac-
tion applications utilize wavelet transformation techniques in conjunction with 
neural network processing for MRI images [17]. The wavelet transform is used to 
remove extraneous detail and make the image more efficient for network process-
ing; hence, approximated images have denser information content than original 
images. Convolutional layers then apply an initial filtering to produce an initial 
feature map, that is, what the network deems as unique features, which is refined 
by further network processing.
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4. Multi-information sourcing

Compared to methods for single parameter data analysis, models using multi-
parametric techniques offer the chief advantage of assessing correlations between 
multiple quantitative parameters of interest [9], with the potential for significantly 
greater accuracy. Various relevant MRI quantities include, but are not limited to, 
longitudinal (T1) and transverse (T2) relaxation times as well as retrospective syn-
thesis of conventional MR contrasts, which are monitored in conjunction with novel 
techniques for rapid data acquisition and computational analysis.

Multi-parametric, analytical techniques currently employ similar strategies [18] 
with simultaneous sampling of the parameter and K-spaces, in which transient-state 
data are obtained by varying the acquisition parameters and undersampled K-space 
snapshots are taken after each excitation. Parametric maps are then computed using 
a physical model via the Bloch equations. Several procedures that have evolved from 
this approach include magnetic resonance fingerprinting (MRF) [18] and quantitative 
transient-state imaging (QTI).

In MRF, modulating the MRI sequence parameters across the time domain yields 
a time series of weighted MRI images, with each tissue having a unique MRI signal 
fingerprint. Such fingerprints can be computationally simulated and a dictionary 
of tissue specific fingerprints built from the simulations. During image reconstruc-
tion, putative fingerprints are matched to this dictionary. The fingerprint with the 
greatest correlation in the dictionary provides the MRI parameters for a given voxel. 
After all voxels are analyzed, parametric maps are then constructed. Due to its ability 
to recognize very specific structural elements, MRF has the potential for diagnosis 
of a wide variety of clinical conditions [19–22]. Novel techniques like quantitative 
sequencing enable clinical approaches capable of accelerated quantitative mapping 
of dynamic physiological processes. For example, such techniques have been used to 
examine blood flow, with computation made of velocity scalars or vectors that could 
be employed in cardiac assessments. In one study, computations of scalar velocities 
were computed in a direction perpendicular to a vessel slice based on multi-paramet-
ric T1, T2, and proton density recordings [23]. A drawback to such methods is that of 
their reliance on physical models of the physiological events the quantitative mapping 
is intended to simulate, with the potential for loss of valuable data. Moreover, the 
complexity of such models can demand increasing computational resources, signifi-
cantly extending the data acquisition period.

5. Functional approaches using MRI

Blood oxygenation-dependent contrast, termed BOLD or fMRI imaging [24], was 
developed to indirectly assess neural activity in the brain by monitoring activity-
induced changes in blood oxygenation. BOLD exploits the neurovascular mechanism 
of hyperemia, whereby localized brain activity recruits increased blood oxygenation 
within the region of activation. In typically used protocols, the image sequence relies 
on T2* weighting with scan times under 5 seconds to measure the hemodynamic 
response function. Since its discovery, use of this procedure has undergone extraordi-
nary growth [13, 24].

The dependence of the BOLD signal on neurovascular mechanisms, however, 
has meant that fMRI is also constrained by limitations inherent in the hemodynamic 
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response. Chief among these is the much slower response time than the underlying 
neural processes being measured. Temporal information of spiking events is therefore 
heavily blurred, requiring the use of mathematical processing, like that of the general 
linear model or experimental block protocols, to infer event related, signal activity 
[24]. With processing, temporal resolution in the 100 ms range can be achieved, 
which is roughly tenfold slower than the neural events being monitored.

5.1 High-strength imaging

Another challenge to fMRI is that of the low signal to noise ratio (SNR), a con-
sequence of data acquisition, and constraints limiting the extent of preprocessing 
that can be performed. One of the technical improvements now being attempted to 
improve the SNR is the use of high-strength magnetic fields, which enhances the 
anatomical specificity of imaging. Whereas most scanning is done using 3 T fields, 
equipment using 7 T fields is becoming increasingly prevalent. At these higher field 
strengths, it has been shown that less spatial smoothing is required and neural activity 
in cases of resting state networks displays higher correlation coefficients, indicating 
greater spatial resolution [25–27]. On the other hand, use of higher field strengths has 
several drawbacks, including longer sampling intervals, inhomogeneous magnetic 
field properties, and the logarithmic growth in specific absorption rate (SAR) with 
increasing field strength [28, 29].

5.2 Multimodal studies (w EEG/MEG)

Among the techniques used to overcome the temporal limitations of fMRI have 
been multimodal approaches, which combine fMRI with such methods as the EEG or 
MEG. Both EEG and MEG display rapid temporal responses, with the capability for 
resolving neural events at millisecond scales. Use of these approaches in conjunction 
with fMRI is thus premised on the greatly improved temporal resolution offered by 
these procedures. Advanced technologies have now been developed to simultaneously 
record EEG and fMRI signal, which help to understand the relationship between the 
spatial and temporal characteristics of physiological signals [30]. Nonetheless, in 
comparison to fMRI alone, combined approaches have seen limited use. In the case of 
EEG, spatial resolution is greatly inferior to that of fMRI and MEG approaches that 
suffer from source localization issues. This means that the experimental design or 
clinical assessment must clearly attribute the signal sources prior to drawing experi-
mental and/or clinical conclusions in such combined approaches.

5.3 DIANA fMRI

The persistence of interpretive difficulties with multimodal approaches has 
generated a long-standing interest in the development of alternative methods capable 
of both high spatial and temporal resolution. One recently developed method has 
merged the detection of ultra-weak magnetic fields generated by neural electrical 
activity with the fMRI detection of the hemodynamic response [31]. This approach, 
termed Direct Imaging of Neuronal Activity for functional MRI (DIANA-fMRI), 
interleaves K-space lines used for imaging the hemodynamic response with a K-space 
line that directly measures the ultra-weak magnetic field. Millisecond resolution 
is achieved using fast, low-angle shot (FLASH); gradient-echo imaging; and short 
repetition intervals (e.g., 5 ms). When carried out at high field strengths (9.4 Tesla), 
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signal to noise ratios are reported to be in the range of 20 to 1. To date, the technique 
has been used only on animal models.

While promising, the technique suffers from its own unique set of interpretive 
uncertainties. For example, electromagnetic effects based on neuronal current models 
appear to be ruled out as these oppose the direction of the observed DIANA response. 
Moreover, in humans, increasing the stimulus duration does not lead to correlative 
signal changes, suggesting that the signal may be confounded by other interactions 
such as inflow effects and subject motion. These uncertainties suggest that further 
development of the approach will require improved understanding of the biophysical 
factors contributing to the DIANA signal.

5.4 Resting state fMRI

One of the most significant fMRI developments is the use of fMRI during rest, 
coined resting state-fMRI (RS-fMRI). RS-fMRI focuses on spontaneous low-
frequency fluctuations (< 0.1 Hz) in the BOLD signal that occur in the absence of 
task-related activities. The functional significance of these fluctuations was first 
recognized by Biswal et al. [32] in a study in which subjects were told not to perform 
any cognitive, language, or motor tasks. After determining the correlation between 
the BOLD time course of a seed region identified by bilateral finger tapping and that 
of all other areas in the brain, the authors found that fluctuations in the left somato-
sensory cortex were highly correlated with homologous areas in the contralateral 
hemisphere. This observed correlation led to their conclusion that such “resting 
networks” manifested the functional connectivity of the brain. The observation of 
spontaneous, synchronous fluctuations occurring between brain regions has since 
led to studies that have identified as many as 7 to 17 other stable networks [33], with 7 
consistently agreed upon.

Because characterization of resting state networks (RSNs) in the human brain 
relies on the analysis of temporal fluctuations in the blood oxygenation level-
dependent (BOLD) signal, the delineation of RSNs has been directly dependent on 
the ability of fMRI to detect neural activity [6]. The dependence on the BOLD signal 
means that RS-fMRI shares advantages that accrue to fMRI—the ability to monitor 
neural activity, albeit indirectly—as well as disadvantages that characterize its use. 
Chief among these limitations is fMRI’s temporal resolution, which is dependent on 
the hemodynamic response time [34]. Accordingly, a key factor in the use of RS-fMRI 
is the measurement of neural activity fluctuations rather than spiking events per se.

Early studies of RSN functional connectivities, like that of Biswal et al. [32, 35], 
relied on the selection of regions of interest based on investigator preferences. 
However, while the simplicity and interpretability of the ROI technique make it 
procedurally facile and a frequently adopted approach, the method relies entirely on 
user-defined ROIs and so is limited for network discovery by its a priori, selected cri-
teria. Due to this caveat and coupled with the evolution of mathematical models and 
improved computational capabilities, there has been a paradigm shift from that of 
imposing initial conditions on the data to that of extracting patterns of brain activity 
directly from the raw time series. The main example of this approach is independent 
component analysis [36]. In this approach, the time series signal is assumed to be due 
to multiple spatiotemporal processes that are statistically independent of each other. 
By extracting the independent signals, various time courses of specific brain regions 
can be constructed and grouped into maps representative of their spatial distribution. 
Another approach to the interpretation of RS-fMRI datasets employs graph theory, 
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where activity sources comprise nodes and connectivity defines the edges that link 
these nodes [10, 36]. Unlike ICA, which focuses chiefly on the strength of correla-
tion between different domains, graph theory characterizes the features of network 
topology. The graph theory approach describes the interaction between nodes by 
means of such graph parameters as average path length, clustering coefficients, node 
degree, centrality measures, and level of modularity. Graph theory is thus a promis-
ing technique for exploring the integration and segregation of networks in the brain. 
Among the topological features studied, modularity, the assessment of the presence 
of functionally independent units or modules that compose resting state networks, 
has increasingly been used to characterize functional adjustments occurring dur-
ing behavior, network perturbations, or pathologies that affect network function, 
 revealing significant alterations in such pathologies as stroke [37] and psychiatric 
disease [38, 39].

In principle, inferences of causality from directed functional connectivity deter-
minations can be extended to brain-wide neuronal dynamics. Empirical studies 
from RS-fMRI, for example, show that RSNs are differentiated on the basis of their 
metastability and synchrony [40]. These and similar observations have led to models 
of brain function and behavior that predict that the human brain at rest operates at 
maximum metastability, that is, in a state of maximal network switching. The demon-
stration of RSN properties like metastability thus suggests that directed connectivity 
changes may be used to assess the construction of brain states. The methodological 
question that arises is that of generating a descriptive approach relating functional 
neuroimaging data to whole brain dynamics. Recent attempts to address this question 
have adopted two approaches. The first employs a BOLD, data-driven, computational 
method that leverages the method of recurrence structure analysis (RSA), a mathemati-
cal procedure derived from Poincare’s recurrence theorem [41]. This “recurrent” 
behavior can be described by a recurrence plot method (RP), which allows a matrix-
based visualization of recurrent states. The second approach posits the governance 
of RSN dynamics by a ground state global attractor. This global ground state is 
mathematically described as a stable stationary solution representing a point of 
maximal stability in a landscape of stationary points (nodes) that information flows 
toward or away from [42]. This theoretical framework has been shown to successfully 
account for the highly structured dynamics arising from spontaneous brain activity 
in RSNs [43].

6. Conclusion and future directions

Building on Bloch and Purcell’s method for detecting the nuclear magnetic reso-
nance phenomenon, clinical applications have evolved at virtually all stages along 
the MRI procedural pipeline. Long intervals for data acquisition that plagued early 
clinical use have been substantially lessened; algorithms for preprocessing with co-
registration and denoising have become routine; machine learning for tissue-specific 
fingerprinting and feature extraction has been introduced, and functional methods 
for cardiac and brain diagnosis are reliably and regularly used. Future directions will 
see the roles of adjunct computational resources continue to grow. MRI has tradi-
tionally been a procedure for structural tissue determinations, and the assessing of 
structural differences between normal and trauma or disease states has typically been 
performed by clinicians. Aiding them will be new algorithms and enhanced compu-
tational power for improved feature extraction and pattern recognition capabilities. 
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Clinical diagnoses will increasingly rely on dynamic and physiological parameters 
associated with functional performance.

In the nervous system, the drive to consolidate improved temporal resolution with 
the current abilities for high spatial resolution, for instance, will seek to enlist meth-
ods successfully used for high spatial resolution in novel ways that match neuronal 
activity timescales, such as the interleaving of K-space data coupled with theoretical 
models that enable direct neural activity monitoring. Noninvasive techniques will 
also introduce perturbation studies to monitor how these influence brain dynamics. 
Together, these and other innovations will amplify the already leading clinical role of 
MRI-based applications.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



New Advances in Magnetic Resonance Imaging

12

References

[1] Smith FW, Hutchison JM, Mallard JR, 
et al. Oesophageal carcinoma 
demonstrated by whole-body nuclear 
magnetic resonance imaging. British 
Medical Journal (Clinical Research 
Edition). 1981;282(6263):510-512

[2] Bloch F, Hansen WW, Packard ME. 
Nuclear induction. Physics Review. 
1946;69:127

[3] Purcell EM, Torrey HC, 
Pound RV. Resonance absorption by 
nuclear magnetic moments in a solid. 
Physics Review. 1946;69:37-38

[4] Grover VPB, Tognarelli JM, 
Crossey MME, et al. Magnetic resonance 
imaging: Principles and techniques: 
Lessons for clinicians. Journal of 
Clinical and Experimental Hepatology. 
2015;5(3):246-255

[5] Moratal D, Vallés-Luch A, 
Martí-Bonmatí L, Brummer M. k-space 
tutorial: An MRI educational tool for 
a better understanding of k-space. 
Biomedical Imaging Intervention Journal. 
2008;4(1):e15. DOI: 10.2349/biij.4.1.e15

[6] Mezrich R. A perspective on K space. 
Radiology. 1995;195(2):297-315

[7] Sýkora S. K space formulation of 
MRI. In: Sykora S, editor. Stan’s Library. 
Vol. Volume I. Castano Primo, Italy: 
Permalink; 2005

[8] Deshmane A, Eng M, Gulani V, et al. 
Parallel MR imaging. Journal of Magnetic 
Resonance Imaging. 2012;36(1):55-72. 
DOI: 10.1002/jmri.23639

[9] Gomez A, Molina-Romera M, 
Buonincontri G, et al. Designing 
contrasts for rapid, simultaneous 
parameter quantification and flow 

visualization with quantitative 
transient-state imaging. Journal of 
Clinical and Experimental Hepatology. 
2015;5(3):246-255

[10] Yang J, Gohel S, Vachha B. Current 
methods and new directions in resting 
state fMRI. Clinical Imaging. 2020;65:47-
53. DOI: 10.1016/j.clinimag.2020.04.004

[11] Vadmal V, Junno G, Badye C, et al. 
MRI image analysis methods and 
applications. Neuro-Oncology Advances. 
2020;2(1):1-13

[12] Gordon Y, Partovi S, 
Müller-Eschner M, et al. Dynamic 
contrast-enhanced magnetic 
resonance imaging: Fundamentals 
and application to the evaluation 
of the peripheral perfusion. 
Cardiovascular Diagnostic Therapy. 
2014;4(2):147-164. DOI: 10.3978/j.
issn.2223-3652.2014.03.01

[13] Bandettini P. The spatial, 
temporal, and interpretive limits 
of functional MRI. In: Davis K, 
Charney D, Coyle JT, Nemeroff C, editors. 
Neuropsychopharmacology: The Fifth 
Generation of Progress. Philadelphia: 
Lippincott, Williams, and Wilkins; 2002

[14] Hamilton J, Franson D, Seiberlich N. 
Recent advances in parallel imaging 
for MRI. Progress in Nuclear Magnetic 
Resonance Spectroscopy. 2017;101:71-95. 
DOI: 10.1016/j.pnmrs.2017.04.002

[15] Calogero C. Recent advances in 
parallel imaging for MRI: WAVE-CAIPI 
technique. Journal of Advanced Health 
Care. 2022;4(1):23-26

[16] Khalila M, Ayada H, Adiba A. 
Performance evaluation of feature 
extraction techniques in MR-brain image 



Introductory Chapter: New Advances in MRI Clinical Analysis
DOI: http://dx.doi.org/10.5772/intechopen.113850

13

classification system. Procedia Computer 
Science. 2018;127:218-225

[17] Fayaz M, Torokeldiev N,  
Turdumamatov S, et al. An 
efficient methodology for brain 
MRI classification based on DWT 
and convolutional neural network. 
Sensors. 2021;21:7480. DOI: 10.3390/
s21227480

[18] Ma D, Gulani V, Seiberlich N, et al. 
Magnetic resonance fingerprinting. 
Nature. 2013;495:187-192

[19] Zhao B, Haldar JP, Setsompop K, 
Wald LL. Optimal experiment design 
for magnetic resonance fingerprinting. 
In: 2016 38th Annual International 
Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC). 
Lake Buena Vista, FL. pp. 453-456. 
DOI: 10.1109

[20] Liao C, Bilzic B, Manhard MK, et al. 
3D MR fingerprinting with accelerated 
stack-of-spirals and hybrid sliding-
window and GRAPPA reconstruction. 
NeuroImage. 2017;162:13-22. 
DOI: 10.1016/j.neuroimage.2017.08.030

[21] Marty B, Carlier PG.  
Physiological and pathological skeletal 
muscle T1 changes quantified using a  
fast inversion-recovery radial 
NMR imaging sequence. Science 
Reports. 2019;9:6852. DOI: 10.1038/
s41598-019-43398-x

[22] Buonincontri G, Sawiak S.  
Three-dimensional MR fingerprinting 
with simultaneous B1 estimation. 
Magnetic Resonance Medicine. 
2015;2015:1-9

[23] Cao X et al. A model-based velocity 
mapping of blood flow using MR 
fingerprinting. Proceedings of the 
International Society for Magnetic 
Resonance in Medicine. 2017;25:0941

[24] Loued-Khenissi L, Doll O, 
Preuschoff K. An overview of functional 
magnetic resonance imaging 
techniques for organizational research. 
Organizational Research Methods. 
2019;22(1):17-45

[25] Yacoub E, Van De Moortele PF,  
Shmuel A, et al. Signal and noise 
characteristics of Hahn SE and GE BOLD 
fMRI at 7 T in humans. NeuroImage. 
2005;2005(24):738-750. DOI: 10.1016/j.
neuroimage

[26] Pohmann R, Speck O, Scheffler K. 
2016. Signal-to-noise ratio and MR 
tissue parameters in human brain 
imaging at 3, 7, and 9.4 Tesla using 
current receive coil arrays. Magnetic 
Resonance Medicine. 2016;75:801-809. 
DOI: 10.1002/mrm.25677

[27] Branco P, Seixas D, Castro SL. 
Temporal reliability of ultra-high field 
resting- state MRI for single-subject 
sensorimotor and language mapping. 
NeuroImage. 2018;168:499-508. 
DOI: 10.1016/j.neuroimage.2016.11.029

[28] Raimondo L, Icaro AF, 
Jurjen HO, et al. Advances in resting 
state fMRI acquisitions for functional 
connectomics. NeuroImage. 
2021;243:118503

[29] Van de Moortele PF, Auerbach EJ, 
Olman C, et al. T1 weighted brain images 
at 7 Tesla unbiased for proton density, 
T2∗ contrast and RF coil receive 
B1 sensitivity with simultaneous 
vessel visualization. NeuroImage. 
2009;46:432-446. DOI: 10.1016/j.
neuroimage.2009.02.009

[30] Fleury M, Figueiredo P, 
Vourvopoulos A, and Lécuyer A. Two 
is better? Combining EEG and fMRI for 
BCI and Neurofeedback: A systematic 
review. 2023. hal-04038069



New Advances in Magnetic Resonance Imaging

14

[31] Toi PT, Jang JH, Kyeong SM, et al. 
In vivo direct imaging of neuronal 
activity at high temporospatial 
resolution. Science. 2022;378(6616): 
160-168. DOI: 10.1126/science.abh43

[32] Biswal B, Yetkin FZ, Haughton VM, 
Hyde JS. Functional connectivity in 
the motor cortex of resting human 
brain using echo-planar MRI. Magnetic 
Resonance Medicine. 1995;34(4): 
537-541. DOI: 10.1002/mrm.1910340409

[33] Damoiseaux SA, Rombouts RB, 
Barkhof F, Beckman CF. Consistent 
resting-state networks across 
healthy subjects. Proceedings of 
the National Academy of Sciences. 
2006;103(37):13848-13853. 
DOI: 10.1073

[34] Ogawa S, Tank DW, Menon R, et al. 
Intrinsic signal changes accompanying 
sensory stimulation: Functional 
brain mapping with magnetic 
resonance imaging. Proceedings of the 
National Academy of Science USA. 
1992;89:5951-5955

[35] Yeo BTT, Krienen FM, Sepulcre J, 
et al. The organization of the human 
cerebral cortex estimated by intrinsic 
functional connectivity. Journal of 
Neurophysiology. 2011;106:1125-1165. 
DOI: 10.1152/jn.00338.2011

[36] Smitha KA, Akhil RK,  
Arun KM, et al. Resting state fMRI: 
A review on methods in resting state 
connectivity analysis and resting 
state networks. The Neuroradiology 
Journal. 2017;30(4):305-317. 
DOI: 10.1177/1971400917697342

[37] Corbetta M, Siegel JS, Schulman GL. 
On the low dimensionality of behavioral 
deficits and alterations of brain network 
connectivity after focal injury. Cortex. 
2018;107:229-237

[38] Lerman-Sinkoff DB, 
Barch DM. Network community 
structure alterations in adult 
schizophrenia: Identification and 
localization of alterations. Neuroimage 
Clinic. 2016;10:96-106. DOI: 10.1016/j.
nicl.2015.11.011

[39] Bullmore ET, Sporns O. Complex 
brain networks: Graph theoretical 
analysis of structural and functional 
systems. Nature Review Neuroscience. 
2009;10:186-198. DOI: 10.1038/nrn2575

[40] Lee WH, Frangou S. Linking 
functional connectivity and dynamic 
properties of resting-state networks. 
Scientific Reports. 2017;7:16610. 
DOI: 10.1038/s41598-017-16789-1

[41] Beim Graben P, Jimenez-Marin A, 
Diez I, Cortes JM, et al. Metastable 
resting state brain dynamics. Frontiers in 
Computational Neuroscience. 2019;13:62. 
DOI: 10.3389/fncom.2019.00062

[42] Carvalho A, Langa J, Robinson J. 
Attractors for Infinite-Dimensional Non-
autonomous Dynamical Systems. 
New York: Springer; 2012

[43] Gonzalez L, Panda R, 
Ponce-Alvarez A, et al. Loss of 
consciousness reduces the stability of 
brain hubs and the heterogeneity of brain 
dynamics. Communications Biology. 
2021;4(1):34489535



15

Section 2

Dynamic MRI in 
Cardiovascular Diagnosis 





17

Chapter 2

State of the Art and New Advances: 
Cardiac MRI
Hunter Frederiksen, Corina Iorgoveanu and Mahi L. Ashwath

Abstract

Cardiac Magnetic Resonance Imaging (CMR) is an advanced imaging modality 
for better assessment of cardiac structure, function and tissue characterization. 
This is an essential imaging modality when indicated for assessment of a variety 
of cardiomyopathies, cardiac ischemia, myocardial viability, arrhythmias, cardiac 
masses, congenital heart disease, shunts, acute and constrictive pericardial diseases 
among others. CMR is sometimes referred to as the non-invasive biopsy given the 
significant information it provides. This chapter discusses the current state of the art 
of CMR with discussion about the indications, common sequences used, and the role 
of CMR in evaluation of ischemic and non-ischemic cardiac disease. This chapter also 
discusses new advances and the future of the field of CMR.

Keywords: CMR, ischemic cardiomyopathy, non-ischemic cardiomyopathy, cardiac 
masses, pericardial disease, arrhythmias, advances in CMR

1. Introduction

Imaging the heart using magnetic resonance imaging (MRI) started for diagnostic 
utilization in the 1980s and has since contributed to significant advances in the fields 
of adult and pediatric cardiology and cardiothoracic surgery. Cardiac MRI (CMR) 
provides precise visualization of myocardial structure, function, perfusion, viabil-
ity, and tissue characterization offering a comprehensive evaluation that remains 
unparalleled by any other imaging technique. Compared to other cardiac imaging 
modalities such as transthoracic echocardiogram (TTE), transesophageal echocardio-
gram (TEE), cardiac catheterization, or cardiac computed tomographic angiography 
(CTA), CMR has the advantages of reliable, high quality imaging with advanced 
tissue characterization which is not limited by body habitus, does not have radiation, 
is noninvasive, and has been shown to be sufficient for disease characterization and 
subsequent treatment strategies [1] aiding in tailoring specific treatment options 
and enhancing patient outcomes. Over the years, CMR with a continuing addition 
of several new techniques, has proven to be critically important for cardiovascular 
disease characterization and subsequent management and outcomes. We discuss the 
indications for CMR, common CMR scanning sequences, current state of the art of 
CMR followed by advances in CMR.
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2. Indications for CMR

CMR should be considered as part of the diagnostic imaging in patients with

• Acute and chronic coronary artery disease

• Evaluation of ischemia in patients with chest pain

• Non ischemic cardiomyopathy, especially when the etiology of non-ischemic 
cardiomyopathy is unclear, or for prognosis in patients after etiology of non-
ischemic cardiomyopathy is identified

• Valvular heart disease

• Cardiac masses

• Pericardial disease

• Cardiac arrhythmias including brady arrhythmias, complete heart block, 
ventricular arrhythmias, and sudden cardiac death

• Congenital heart disease (CHD)—simple CHD like atrial septal defects or 
ventricular septal defects or complex CHD like Tetralogy of Fallot, transposition 
of great arteries, truncus arteriosus and single ventricle physiology for diagnosis 
and for serial follow up

• Aortic diseases including coarctation, aneurysm, dissection, and vasculitis

• Anomalous coronaries or anomalous pulmonary veins

3. Scanning protocol and sequences

A regular CMR uses cine images for function and morphology followed by delayed 
enhancement (DE) images after administration of contrast for scar evaluation. While 
the scan as described provides significant information, additional information can 
be obtained, using additional sequences as desired. The study and the sequences are 
usually tailored for the indication to meet the needs appropriately. Commonly used 
sequences in CMR scanning include:

1. Steady state Free Precession (SSFP) or cine imaging provides high quality still or 
moving images for evaluation of structure and function. Image acquisition must 
be coupled to an EKG to gather adequate data over successive heartbeats. The 
lack of limitations of body habitus along with the superior contrast resolution 
and improved differentiation between blood pool and muscle are the advantages 
with CMR (Video 1).

2. DE imaging for late gadolinium enhancement (LGE) is performed a few minutes 
after injecting Gadolinium for evaluation of scar or infiltration using phase con-
trast inversion recovery or PSIR sequences (Figure 1). DE Images are obtained at 
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a set time point post-contrast injection to evaluate how the contrast distributes 
into the extracellular space. LGE patterns on delayed enhancement imaging assist 
in the differentiation of ischemic and nonischemic cardiomyopathies. LGE in 
nonischemic cardiomyopathy is present in a noncoronary distribution and can 
have diffuse myocardial, mid myocardial or epicardial enhancement. Ischemic 
cardiomyopathy always has subendocardial involvement due to coronary blood 
flow pattern. Quantifying LGE and thereby assessing scar burden can provide 
prognostic and outcomes information. Studies have showed that presence of LGE 
in cardiomyopathy patients was associated with an increased risk of all-cause 
mortality, hospitalization for heart failure, and sudden cardiac death (SCD) [2].

3. Real time cine sequences are used in patients with arrhythmias for structure and 
function or routinely in patients being evaluated for constrictive pericarditis and 
ventricular interdependence and have a more continuous acquisition (Video 2)

4. T1 and T2 mapping and parametric imaging sequences for tissue characteriza-
tion are excellent for assessing diffuse and localized myocardial inflamma-
tion, infiltration, edema, intracellular and extracellular volume, and fibrosis 
(Figure 2). Extracellular volume (ECV) is measured by analyzing T1 values pre- 
and post-contrast and has been found useful in identifying edema or fibrosis 
specific to cardiac diseases [3]. T1, T2 and ECV evaluation provides prognostic 
information in addition to aiding in the diagnosis.

5. T2* sequences for myocardial iron content can assist in the evaluation of myocar-
dial iron content in diseases characterized by iron deposition.

Figure 1. 
Normal DE imaging with myocardium appearing uniformly black.



New Advances in Magnetic Resonance Imaging

20

6. Perfusion CMR is a technique that uses contrast dynamics to visualize satura-
tions of blood flow into the myocardium. Perfusion imaging is used for assess-
ment of perfusion of myocardium and cardiac masses when present (Video 3).

7. Phase contrast velocity encoded sequences or flow sequences for hemodynamic 
assessment for assessment of flows, peak velocity, gradients and volumes.

8. Contrast-enhanced CMR angiography (MRA) for assessment of vascular struc-
tures. 3-Dimensional (3D) visualization and accurate assessment can be performed 
for aneurysms, dissections, vasculitis, or congenital heart disease (Video 4).

4. Current state of the art of CMR

CMR has extensive role in the evaluation of various ischemic and non-ischemic 
etiologies. A few of the common pathologies are discussed below.

4.1 Evaluation of ischemic heart disease

Coronary artery disease (CAD) is the leading cause of death in the United States. 
One person dies every 33 seconds from cardiovascular disease in the United States [4]. 
CMR has unique value in the evaluation of acute and chronic ischemic heart disease 
and in patients presenting with chest pain for the evaluation of ischemia.

4.1.1 Acute ischemic heart disease and CMR

CMR provides many insights in the evaluation of patients presenting with acute 
MI. While TTE is easily accessible, CMR is superior to TTE in the evaluation wall 

Figure 2. 
T1 mapping sequence.
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motion abnormalities and LV ejection fraction (EF) with high quality imaging in 
cine sequences. CMR provides additional information about edema and the area at 
risk of infarction which can be evaluated by T1, T2 mapping and assessment of ECV. 
Resting myocardial perfusion imaging in patients presenting with chest pain can 
show areas of decreased resting myocardial perfusion, denoting significant coronary 
stenosis (greater than 80% stenosis) in the coronary arteries supplying those ter-
ritories [5] (Video 5). Early gadolinium imaging shows areas of thrombus (Figure 3) 
and microvascular obstruction (Figure 4). Microvascular obstruction signifies areas 
with extensive ischemia with associated capillary cell death in addition to myocardial 
cell death. Presence of microvascular ischemia portends a worse prognosis com-
pared to patients who do not have microvascular ischemia [6] LGE on DE imaging 

Figure 3. 
Early gadolinium imaging with a right atrial thrombus as hypointense lesion.

Figure 4. 
Cine image (a) and DE imaging (b) in acute MI showing a significant dark zone of microvascular obstruction 
embedded within the infarcted area in the mid to apical inferolateral wall.
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shows areas of myocardial scar [7] (Figure 5). Ischemic scar always involves the sub 
endocardium as shown on pathology studies. Studies have shown that myocardium 
with less than 50% involvement of the myocardial thickness with scar have improve-
ment in function with revascularization, suggestive of viable myocardium, while 
segments with more than 50% wall thickness involvement with scar do not have 
functional recovery [7]. Assessment of viable myocardium can have value in decid-
ing revascularization strategies. CMR also plays an important role in the evaluation 
of complications of acute MI such as pseudoaneurysm (Video 6), thrombus, rupture 
of the septum, myocardial free wall rupture or papillary muscle rupture. Above 
findings, especially LV EF, microvascular obstruction and degree of scar have been 
shown to have prognostic valve.

4.1.2 Chronic ischemic heart disease and CMR

In patients with chronic CAD, CMR provides information about EF with cine 
imaging, thrombus evaluation with cine, early gadolinium enhancement, LGE 
imaging as described in the above section along with the detection and quantifica-
tion of scar. Despite its widespread availability, TTE can be diagnostically limited 
in evaluation of intracardiac thrombus. Studies comparing TTE, TEE and CMR 
have clearly demonstrated the superiority of CMR in diagnosing thrombi [8]. CMR 
imaging provides tissue characterization of thrombus and can identify structural risk 
factors for LV thrombus such as infarct size/distribution and contractile dysfunction 
[9]. Presence of scar in myocardial infarcts can be most accurately detected by CMR 
compared to any other imaging study [10]. Transmural scar shows non-viable myo-
cardium and identifies patients who are less likely to improve function [11]. Studies 
in patients with non-Q wave MI and unstable angina demonstrated the importance of 
subendocardial scar detected in CMR and its prognostic value [12]. Other studies have 
shown how these subendocardial scars can be easily missed on single-photon emis-
sion computed tomography (SPECT) imaging. Above findings, especially LV EF, and 
degree of scar have been shown to have prognostic valve.

4.1.3 Evaluation of ischemia in patients with chest pain and CMR

CMR provides valuable information in the evaluation of chest pain or ischemia 
with stress testing. Perfusion CMR, a technique that uses contrast dynamics to 

Figure 5. 
Cine image (a) and DE imaging (b) in MI showing bright scar tissue in LAD territory, signifying lack of viable 
myocardium with superimposed thrombus in black.
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visualize saturations of blood flow into the myocardium is used in stress perfusion 
CMR. In stress CMR, Gadolinium based contrast agent is paired with a vasodilator 
such as adenosine or Regadenoson and images are obtained continuously over several 
cardiac cycles to visualize the myocardial uptake and fade-out of contrast. In healthy 
myocardium, the contrast distributes homogenously. Defects in perfusion are 
typically detected as areas of low contrast resulting in minimal signal and therefore 
representing hypoperfusion and must last for four or more consecutive cardiac 
cycles [13]. Studies such as CE MARC showed the non-inferiority of Stress CMR 
compared to SPECT [14]. The GadaCad trial which compared Stress CMR to invasive 
coronary angiography or coronary CTA as the reference standard showed that stress 
CMR had sensitivities of 79% and 87% and specificities of 87% and 73% for single- 
and multi-vessel CAD, respectively. Studies such as SPINS showed the prognostic 
value of Stress CMR with patients with normal Stress CMR—patients with normal 
myocardial perfusion and normal LGE have 99.3% event free survival for a median 
5.5 years [15].

When compared to SPECT, stress CMR has several technical advantages. CMR has 
a larger field of view, superior spatial resolution, and better tissue differentiation. It 
is not limited by attenuation artifacts or contamination of the myocardium by other 
signal sources such as gut uptake as can be the case with SPECT. Stress CMR can also 
identify subendocardial ischemia, making it less susceptible to balanced ischemia 
than SPECT, where multivessel ischemia may be present but falsely appear normal on 
perfusion images [16]. Additionally, stress CMR does not expose patients to ion-
izing radiation, making it advantageous for younger patients and those who require 
multiple scans over time.

4.2 Evaluation of non-ischemic heart disease (NICM)

The present classification system for cardiomyopathies, established by the American 
Heart Association distinguishes between primary ones that solely impact the heart and 
secondary ones that are part of a larger systemic disease affecting multiple organs. CMR 
has a distinct advantage in evaluation of these cardiomyopathies by providing insights 
into tissue composition and characteristics beyond structural imaging.

4.2.1 Primary cardiomyopathies

4.2.1.1 Hypertrophic cardiomyopathy (HCM)

HCM is a genetic cardiomyopathy, characterized by myocardial hypertrophy and 
disarray with an estimated prevalence of 1 in 500. CMR excels in identifying location 
and degree of hypertrophy, accurate maximal wall thickness, systolic anterior motion 
of the mitral valve and LV outflow tract obstruction, LV crypts, aneurysms and 
morphological variations involving the mitral valve apparatus and papillary muscles 
(Video 7). The classic scar pattern in HCM involves LGE at right ventricular (RV) 
insertion points [17] (Figure 6). A comprehensive multicenter study involving nearly 
1300 patients diagnosed with HCM revealed that the extent of LGE can effectively 
identify individuals who are at an elevated risk of sudden death who would need to 
be considered for implantable cardioverter-defibrillator (ICD) placement. Extensive 
LGE, encompassing 15% or more of the LV mass, indicates a twofold higher risk of 
sudden death compared to the absence of LGE [18].
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4.2.1.2 Arrhythmogenic right ventricular cardiomyopathy (ARVC)

ARVC, the most prominent form of heritable arrhythmogenic cardiomyopathy 
(ACM), is a genetic disorder that is characterized by the loss of myocytes and the 
replacement of myocardial tissue with fibrofatty deposits, primarily affecting the 
RV. ARVC is associated with the occurrence of ventricular arrhythmias and an 
elevated risk of SCD and heart failure. Given the limitations of TTE in the visualiza-
tion of the RV, CMR is the preferred diagnostic test for this lethal cardiomyopathy. 
CMR offers a comprehensive assessment of RV for enlargement of the RV outflow 
tract, dilation of the RV, fibrofatty replacement of the myocardium, as well as global 
or regional systolic dysfunction (Video 8). According to the 2010 Task Force Criteria, 
qualitative CMR identification of increased RV end-diastolic volumes, RV akinesia, 
dyskinesia, or dyssynchronous RV contraction is necessary to fulfill major or minor 
diagnostic criteria.

In the coming years, the analysis of tissue deformation and strain using CMR 
holds the potential to offer valuable diagnostic and prognostic insights. Strain 
imaging has shown promise in distinguishing individuals with ARVC and borderline 
ARVC from healthy volunteers, as well as differentiating it from other conditions 
like right ventricular outflow-tract ventricular tachycardia (RVOT-ventricular 
tachycardia) and Brugada syndrome. Impaired strain in both the LV and RV is 
indicative of ARVC. Emerging techniques, such as water and fat separation and 
high-resolution 3D LGE imaging hold potential for enhancing the identification of 
ARVC [19].

4.2.1.3 Left ventricular non-compaction (LVNC)

LVNC refers to a structural configuration of the LV wall that is distinguished 
by prominent trabeculae within the LV, a thin layer of compacted myocardium, 
and deep recesses between the trabeculae. CMR cine images offer superior contrast 
resolution and improved differentiation between blood and muscle, enabling clearer 
visualization of ventricular trabeculation (Figure 7). Various CMR criteria have been 
proposed, with the criterion introduced by Petersen et al. being the most utilized. 
According to this criterion, a ratio of trabecular to compact myocardial thicknesses 
greater than 2.3 at end-diastole in long-axis views is consistent with noncompac-
tion cardiomyopathy [20]. With the help of LGE in LVNC, regions of LGE in the 

Figure 6. 
Short axis cine (a) and DE (b) showing septal hypertrophy with LGE at RV insertion points in HCM.
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trabecular and subendocardial layers can be observed, indicating the presence of 
subendocardial and trabecular fibrosis as well as fibroelastosis. These fibrotic areas 
serve as the substrate for potentially life-threatening arrhythmias, which are the 
primary cause of sudden death in affected patients [21].

4.2.1.4 Myocarditis

Myocarditis is an inflammatory condition of the myocardium, which can arise due 
to various causes, including a broad spectrum of infectious and noninfectious etiolo-
gies [22]. CMR detects several cardinal features of myocarditis such as inflammation, 
edema, necrosis, and contractile dysfunction (Figure 6) [23]. Cine images assist with 
assessment of wall motion abnormalities, T1 and T2 mapping with assessment for 
ECV and myocardial edema and DE imaging with assessment for focal scars. DE is 
typically observed in a mid-myocardial or sub-epicardial pattern primarily affecting 

Figure 7. 
Four chamber cine images with non-compacted myocardium in the mid to apical segments.

Figure 8. 
Short axis cine (a) and DE (b) imaging showing the inferolateral epicardial scar in myocarditis.
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the basal to mid inferolateral and inferior segments [24] (Figure 8). The Lake Louise 
Criteria aid in the decision making by using CMR to detect myocarditis with high 
specificity and positive predictive value [3].

4.2.2 Secondary cardiomyopathies

4.2.2.1 Cardiac amyloidosis

Amyloidosis is a rare medical condition that arises due to the accumulation of 
insoluble proteinaceous material in the extracellular matrix. The likelihood of amyloi-
dosis affecting the heart varies depending on the specific type, with primary/AL type 
having the highest incidence of cardiac involvement, affecting up to 50% of patients, 
followed by familial/ATTR type affecting 10–50% of patients, while the incidence 
is less than 5% for secondary/AA type [25]. CMR can detect key features of cardiac 
amyloid and can serve to rule in or rule out a diagnosis of cardiac amyloidosis [26]. 
The presence of the abnormal protein in the myocardium affects its T1 relaxation, 
making it challenging to null the myocardium and resulting in increased T1 values, 
which can be quantified using mapping techniques. ECV calculates the extracellular 
expansion due to amyloid and represents the closest, non-invasive quantification of 
cardiac amyloid burden. DE imaging shows a global subendocardial or transmural 
patchy enhancement (Figure 9). The presence and the degree of enhancement have 
been shown to have prognostic value in addition to the prognostic value provided by 
T1 and ECV values [27–29].

4.2.2.2 Sarcoidosis

Sarcoidosis is a destructive granulomatous disease of the myocardium, which can 
lead to several cardiac pathologies including heart failure, heart blocks, ventricular 
arrythmias, and SCD. Diagnosing cardiac sarcoidosis is a challenge as symptoms 
often mimic other cardiac conditions. Autopsy studies have shown that isolated 
cardiac sarcoidosis can occur, and cardiac arrhythmias can be the first presentation 
[29]. Currently, the best imaging modalities for detecting sarcoid inflammation are 
cardiac positron emission tomography (CPET) and CMR [30]. CPET is useful for 
detecting active areas of inflammation and can provide good insight into disease 
burden. CMR on the other hand can show active areas of inflammation using T1 and 

Figure 9. 
Global subendocardial (a) and diffuse (b) enhancement in amyloidosis.
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T2 mapping in addition to detecting areas of involved myocardium and scar tissue left 
over from active disease with DE imaging (Figure 10). The societal recommendation 
for imaging cardiac sarcoidosis involves obtaining cine, LGE, resting perfusion and 
T2-weighted sequences [31]. Regional wall motion abnormalities with cine imaging, 
focal perfusion abnormalities during perfusion imaging, signs of inflammation and 
edema during the acute phase of the disease on T1-weighted images [25], epicardial, 
midmyocardial DE and RV involvement with wall motion abnormalities and scarring 
have all been reported. Scar tissue serves as the epicenter for developing arrythmias. 
CMR locates and quantifies scar tissue burden and can aid in predicting risk for fatal 
arrythmias and patients that need treatment with an ICD [32].

4.2.2.3 Fabry cardiomyopathy

Fabry disease (FD) is a lysosomal storage disorder that presents with a range of 
cardiac manifestations such as ventricular hypertrophy and fibrosis, valve thickening 
or regurgitation, heart failure, angina, dysrhythmias, cardiac conduction abnormali-
ties, and SCD [33]. CMR has contributed significantly to our understanding of the 
underlying processes that lead to inflammation and fibrosis as a response to the 
accumulation of glycosphingolipids [34]. Earlier in the disease when the character-
istic feature is fatty changes, decrease in native T1 time occurs [35]. This finding has 
the potential to identify individuals with early cardiac involvement and has been 
demonstrated to be predictive of disease progression [34]. As the disease progresses, 
the fatty changes are replaced with fibrosis, which leads to increase in T1 values along 
with patchy enhancement which is typically seen in the basal inferolateral wall [33] 
(Figure 11). These changes can occur concurrently with fatty changes in the septum 
and fibrosis in the inferolateral wall with rate of disease progression varying in differ-
ent segments. These changes can also happen prior to the detection of LV hypertro-
phy, leading to early diagnosis.

4.2.2.4 Endomyocardial fibrosis (EMF)

EMF is a type of restrictive cardiomyopathy, and although no exact cause has 
been fully understood, various factors have been described that contribute to 
an inflammatory response, leading to damage in the endomyocardial layers and 
the subsequent formation of fibrosis [36]. On CMR cine images shows apical 

Figure 10. 
Short axis cine (a) and DE (b) imaging showing epicardial and septal scar in sarcoidosis.
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hypertrophic pattern, (Figure 12) however LGE serves as a dependable noninvasive 
approach for diagnosing EMF. The characteristic DE pattern observed in EMF 
is subendocardial, not limited to a specific coronary distribution with overlying 
thrombus. It primarily affects the apical walls of the LV and may extend continu-
ously to the inflow tract. At the ventricular apex, a distinct imaging feature known 
as a “double V” sign can be observed. This sign exhibits a three-layered appearance 
comprising normal myocardium, enhanced endomyocardium and a layer of throm-
bus (Figure 13). CMR findings also have prognostic value. An increased deposition 
of apical fibrous tissue, indexed to body surface area (BSA) (>19 mL/m2), has been 
directly associated with worse New York Heart Association (NYHA) functional class 
and elevated mortality rates [37].

Figure 12. 
Cine imaging in endomyocardial fibrosis showing apical hypertrophy.

Figure 11. 
Short axis basal (a) and mid-level (b) DE imaging showing inferolateral patchy enhancement in Fabry 
cardiomyopathy.
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4.3 Valvular heart disease

Over the last two decades CMR has emerged as a non-invasive and radiation-free 
alternative that can be used in individuals with valvular heart disease. CMR can 
provide images of valve anatomy and enables the quantitative evaluation of stenosis 
and regurgitation. Cine imaging assists with assessment the valvular structures in 
motion along with visualization of flows. Phase-contrast velocity encoded sequences 
help with quantification of peak velocities and regurgitant fractions. CMR can also 
detect the consequences of valvular lesions, such as changes in systolic function and 
the effects of ventricular volume or pressure overload [38]. Time-resolved 3D phase-
contrast MRI, also known as 4D flow MRI, is a newer sequence, that possesses impres-
sive capabilities in measuring blood flow velocities within a volume, noninvasively 
and in vivo, across the three primary directions, enabling the dynamic assessment of 
blood flow in both the heart and major vessels [38].

4.4 Cardiac masses

Either of primary or secondary origin, cardiac masses can have various tissue 
 compositions such as myxomas, rhabdomyomas, fibromas, angiosarcomas, and 
metastasis from extra-cardiac cancers. The characterization of cardiac masses 
is based on size, location, interaction with surrounding structures and mobility 
[39]. The first level of diagnostics remains to be an TTE as it is widely available, 
convenient, and of relatively minimal cost but has its own limitations. CMR can 
provide a multiplanar approach to assess the mass relative to surrounding intra- and 
extra-cardiac structures, tissue characterization, perfusion to assess for vascularity 

Figure 13. 
DE imaging in endomyocardial fibrosis showing apical to mid ventricular scar with superimposed thrombus.
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and enhancement. CMR enables the evaluation of various characteristics including 
morphology, dimensions, location, extension, homogeneity, presence of infiltration 
in the surrounding tissues, and signal characteristics that aid in histopathological 
characterization. These signal characteristics encompass fatty infiltration, necrosis, 
hemorrhage, calcification, vascularity, among others. To achieve a comprehensive 
assessment, several imaging sequences are employed, such as double-inversion 
recovery fast spin-echo with triple inversion recovery to assess the amount of fat 
within the mass, (Figure 14) pre-contrast T2-weighted imaging, resting first-pass 
perfusion sequences, early gadolinium imaging, and late gadolinium DE imaging 
(Figure 15) [40]. CMR is considered a non-invasive biopsy in the assessment of 
cardiac masses.

4.5 Pericardial evaluation

CMR is a highly beneficial tool for evaluating and tracking various pericardial 
conditions, such as pericarditis, pericardial effusion, and constrictive pericarditis. 
Cine sequences evaluate function and effusion, free-breathing real time sequence 
assess ventricular interdependence in constriction, T2-STIR identifies edema, DE 
sequence detects LGE that indicates inflammation or fibrosis (Figure 16), and other 
T1- and T2-weighted and perfusion imaging techniques are used for tissue charac-
terization of pericardial effusion and masses [41]. DE sequence plays a crucial role 

Figure 14. 
T2 Stir image without (a) and with (b) fat saturation, showing a fatty mass in the right ventricular apex, likely 
lipoma.

Figure 15. 
Four-chamber cine (a), perfusion (b) and DE (c) imaging in a large RV mass showing a large mass, which 
has partial perfusion, and a partial “etched appearance” on DE imaging consistent with a tumor with a large 
thrombus burden.
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in diagnosing pericardial inflammation and monitoring the effectiveness of anti-
inflammatory treatments [42]. The degree of pericardial LGE observed in the initial 
MRI is significantly linked to recurring episodes of pericarditis and the need for 
intensified therapy. Recent research has introduced quantitative methods for mea-
suring pericardial LGE, which may have potential clinical applications in the future 
[43]. Differentiating between active pericarditis and chronic inflammation leading 
to constrictive pericarditis is of utmost importance, as the treatment modalities are 
completely different (anti-inflammatory drugs vs. pericardiectomy).

4.6 Arrhythmias and application in electrophysiology

CMR is widely used in electrophysiology (EP) for primary prevention of SCD 
and for secondary prevention in both brady and tachy arrhythmias. ICDs are used 
for primary prevention of SCD in patients with ischemic and NICM. A proportion of 
these patients do not have any lethal arrhythmias after implantation, prompting the 
need for better risk stratification of these patients. Scar quantification by DE imaging 
has been shown to have prognostic value in identifying patients more likely to benefit 
from ICD implantation for primary prevention. Further studies are underway to 
identify percent of scar and features of scar which denote increased arrhythmogenic 
substrate. CMR adds significantly to the management of patients presenting with 
bradyarrhythmia and heart block. Identification of scar involving the myocardium, 
predominantly the basal septum has been seen with cardiac sarcoidosis in addition to 
other etiologies.

Patients presenting with arrhythmias causing SCD from a variety of etiologies 
benefit from a CMR to identify and understand myocardial characteristics and 
abnormalities. In patients with arrhythmias, mapping techniques, such as T1/T2, 

Figure 16. 
Short axis DE imaging showing diffuse circumferential pericardial enhancement, consistent with acute 
pericarditis.
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can identify edema, necrosis, and scarring contributing to arrhythmias [44] which is 
further enhanced by identification of LGE in DE imaging. Further characterization of 
these lesions and anatomical geometry with CMR also allows for stratifying patients 
most suitable for ablation [45], along with identifying focus of arrhythmia to assist 
with ablation procedures. These maps can be used alone or integrated with electro-
anatomic mapping to identify potential arrhythmogenic targets for ablation [46]. 
Post-ablation CMR images can also be used to determine prognostic factors contribut-
ing to the recurrence of arrhythmia.

Real-time CMR ablations have also been studied as an alternative to current 
ablation procedures utilizing radiation and iodinated contrast [47]; however, clini-
cal implementation is limited by a lack of CMR-compatible devices and catheters 
required for these procedures.

4.7 Congenital heart disease (CHD)

In CHD, CMR can aid in diagnostics as well as post-intervention follow up. CMR 
provides unrestricted evaluation of intracardiac and vascular structures pertinent to 
the altered anatomy present in CHD to assist with diagnosis. Assessment of LV and 
RV size and function by cine, shunt quantification and Qp/Qs calculations by flow 
hemodynamics assist in assessing the severity of congenital heart defect guiding 
medical and surgical management accordingly (Figure 17). The utilization of contrast 
enhanced MRA is highly advantageous in visualizing and defining vascular struc-
tures, which often exhibit abnormalities in cases of CHD [48]. CMR is considered the 
imaging modality of choice in the serial follow in CHD.

Figure 17. 
Four chamber cine showing defect in the atrial septum with dilated right atrium and ventricle in a patient with 
atrial septal defect.
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5. Advances in CMR

Advances are being made in CMR in the scanning part and in post processing. 
This section discusses technologic developments and advances in CMR with a focus 
on improvements in data acquisition, and reconstruction, new technologies and new 
clinical applications of CMR, MR guided cardiac procedures, and the role of artificial 
intelligence and machine learning in further advancing the field.

5.1 Advances in data acquisition techniques

5.1.1 Faster scanning

One of the limitations for the widespread use of CMR has been the time needed 
for scanning and for post processing. Considerable efforts are underway to decrease 
these times with a focus on improving the speed and efficiency of image acquisition, 
resolution, and reconstruction. Parallel imaging (PI) is used currently to decrease 
acquisition times. PI reduces redundant phase coiling data and processing steps 
[49]. PI, however, has known limitations due to under-sampling, such as lowering 
the signal-to-noise ratio and thus contributing to image degradation [50]. A novel 
method has since been developed called compressed sensing (CS) that utilizes similar 
under-sampling from PI with the addition of a noise-reduction algorithm [51]. CS 
results in faster data acquisition times without compromising image quality [51]. 
Current research is directed at further optimizing these systems to improve image 
quality and reduce artifacts, such as combing CS and PI [52] and designing algorithms 
to separate cardiac and respiration motion artifacts [53]. In addition to developments 
with CS, there is an interest in implementing artificial intelligence (AI) to improve 
data acquisition and processing performance further. The use of deep learning (DL) 
has been shown to accurately reconstruct cardiac MRI images at a faster rate com-
pared to the methods described previously [54].

5.1.2 Respiratory and cardiac gating

Respiratory and cardiac gating techniques are well-established with CMR to 
reduce the physiologic motion of both systems and synchronize data acquisition 
throughout the cardiorespiratory cycle. These gating methods rely on ECGs, and 
image accuracy can be affected by arrhythmia and fluctuations in cardiac rhythm 
even in healthy subjects [55]. Novel techniques have been developed, such as non-
ECG gated protocols, and have been found to improve spatial resolution and reduce 
cardiac motion artifacts without relying on ECG synchronization [56]. The same 
techniques have been implemented to reduce respiratory motion artifacts [57].

5.1.3 Whole heart spatial coverage

One of the limitations of current CMR imaging protocols is the use of 2D map-
ping slices. This method limits image acquisition to focal areas of tissue due to the 
thicker slices that can only cover a portion of the heart and require multiple breath 
holds impractical for certain patient populations. Newer mapping techniques have 
now emerged that provide a comprehensive analysis and image of the entire heart 
to better detect fibrosis and edema that may have been missed on older scanning 
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modalities. This developing image acquisition technique provides whole heart spatial 
coverage with 3-dimensional (3D) data from one scan. The quicker scan times and 
improvements in motion artifacts have allowed for whole heart spatial coverage with 
3D analysis to emerge as an effective alternative to more invasive diagnostic imaging 
techniques. While the image quality is currently a limitation, further efforts are in 
progress with potential in this area.

5.1.4 Cardiac mapping

Myocardial mapping and CMR fingerprinting continue to expand. Data 
 acquisition speed and accuracy improvements have expanded the clinical utility of 
T1 and T2 mapping. CMR fingerprinting has recently been developed to efficiently 
produce T1 and T2 maps from a single scan and single breath hold [58]. Additional 
uses have included measuring fat fraction to further characterize ischemic scars to 
better prognosticate cardiomyopathies [59]. Future progression is focused on apply-
ing fingerprinting to more advanced imaging sequences in 3-dimensional (3D) and 
4-dimensional (4D) data sets.

5.2 Stress testing

While stress testing is commonly used, the predominant form of stress is  chemical. 
The difficulty with treadmill stress is the expense involved with MRI compatible 
treadmills along with the need to lay the patient down quickly on the MRI scanning 
table in the same position as images obtained prior to stress. Another limitation is 
excess motion whether whole body or during respiration with exercise. A novel stress 
testing technique is supine MRI-compatible exercise ergometer. With a better safety 
profile than pharmacological stressors, physical stress on the heart visualized via 
CMR can provide insight into tissue function and characteristics specific to ischemia 
[60]. For post processing of stress perfusion sequences, currently most centers use 
visual estimation for stress perfusion. Current quantitative perfusion post processing 
software is tedious and time consuming. Advances are being made in stress testing 
with faster post processing software for quantitative perfusion.

5.3 Artifact reduction

Artifact reduction has become important to obtain CMR images in patients 
with pacemakers (PM) and ICDs. Despite developments in manufacturing MRI-
compatible PM and ICDs, there remains difficulty in acquiring accurate CMR images 
of the myocardium due to the obscuring metal artifacts from these devices [61]. 
Inversion recovery sequences in LGE imaging have since been modified by adjusting 
the bandwidth and rate of pulsed radio frequencies to eliminate hyperintense artifacts 
[62]. These efforts have further expanded compatible patient populations who may 
benefit from CMR.

5.4 4-dimensional (4D) acquisition

Four-dimensional (4D) data acquisition especially for flow analysis is an emerging 
advanced imaging sequence in CMR. The data from 4D image reconstruction provides 
3D dynamic values over time, which can be useful in patients with complex anatomy 
and differing flow gradients [57]. While clinical application of 4D image acquisition 
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is limited by a lack of ubiquitous hardware and software, there is vast potential in 
developing imaging protocols to better diagnose and monitor valvular pathologies 
and CHD.

5.5 Myocardial strain

While myocardial strain is being done by TTE currently, the use of CMR strain 
has significant potential (Figure 18). Myocardial strain assesses myocardial deforma-
tion and can serve as a precursor to myocardial dysfunction and cardiomyopathy 
[64] and has also been shown to predict cardiac mortality [65]. CMR is emerging as 
a diagnostic modality in determining myocardial strain due to several developing 
techniques. Displacement encoding with stimulated echocardiography (DENSE) is an 
acquisition method that measures myocardial tissue displacement to estimate strain. 
Feature tracking (FT) is another post-processing algorithm that calculates myocardial 
deformation [66]. Both DENSE and FT have been utilized to measure cardiac strain. 
However, a lack of inter-vendor standardization and clinical validity for cardiac strain 
remain salient limitations [66]. A new and developing technique called fast strain-
encoded CMR (fast-SENC) is another imaging technique that can determine cardiac 
contractility with comparable results to FT and DENSE [67]. The clinical implication 

Figure 18. 
Example of colored strain analysis with a feature-tracking software (Circle CVI42®). From long-axis four-
chamber SSFP cine image (a), longitudinal strain curve is derived (b) and short-axis SSFP image (c) is used 
for calculation of circumferential (d) and radial strain curves (e). Reproduced with permission from Scatteia 
et al. [63].
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is evaluating subclinical cardiomyopathies and adjusting treatment plans to prevent 
or monitor disease progression.

5.6 Diffusion-weighted CMR

Clinical utility and advances in diffusion-weighted imaging (DWI) of the heart 
is evolving. A subcategory of cardiac DWI with clinical potential is diffusion tensor 
imaging (DTI). DTI allows for 3-dimensional visualization and diffusion parameters 
of the cardiomyocyte microstructure without the need for exogenous contrast [68]. 
This modality measures water diffusion gradients within myocytes that are recon-
structed to provide information about myofibers’ orientation, rotation, and torsion 
[32]. One limitation of DWI and DTI in the heart is the signal loss inherent with 
cardiac motion which prevents the identification of true signal loss due to diffusion 
compared to signal loss due to cardiac motion. Recent advances have augmented pre-
existing algorithms to account for this motion discrepancy [69] and improvements in 
the DTI data acquisition process reduce the total imaging time [70]. While the clinical 
utility of DTI information continues to expand, multiple studies have investigated 
how the cardiac microstructure data is affected by various pathologies. Parameters 
such as myocyte fiber orientation, fractional anisotropy, mean diffusivity gradients, 
tractographic propagation angle, and helical angle are all novel approaches to better 
characterizing infarcted tissue [71].

5.7 CMR guided interventions

CMR-guided interventions are continuously developing. Procedures like 
 percutaneous coronary intervention used for obstructive CAD can cause acute kidney 
injury from the iodinated contrast used, leading to an increase in all-cause mortal-
ity [72]. Additionally, fluoroscopy exposes patients and staff to ionized radiation, 
increasing the risk of future malignancy [73]. While fluoroscopic X-ray remains the 
gold standard for these procedures, there is growing interest in using cardiac MRI as 
a procedural aid to reduce the need for fluoroscopy. Transarterial valve replacements 
and stenting procedures using CMR have been utilized in animal studies, however, 
the feasibility of implementing these techniques in human subjects remains a chal-
lenge and is still experimental at this stage. Other interventional cardiac procedures 
have also utilized CMR to reduce their fluoroscopic footprint such as EP.

5.8 Artificial intelligence and machine learning

Artificial intelligence (AI) is quickly becoming one of the fastest-growing fields 
within CMR. Briefly, AI is the method of developing intelligent algorithms that can 
perform tasks and solve complex problems [74]. Machine learning (ML) is a subset of 
AI that continually improves pattern recognition and makes data inferences with the 
more data it processes [75]. Although the clinical applications of AI and ML are still 
being developed and validated, implementing these resources will drastically change 
the future of CMR. Most notably, AI will significantly contribute to data acquisi-
tion and reconstruction acceleration, expand CMR metrics for further diagnostic 
and therapeutic effects, and increase the accessibility of CMR [75]. The current ML 
systems that have been developed expand on CS data acquisition models to further 
reconstruct under-sampled data. These models learn from CMR data sets by further 
exploiting redundancies of the temporospatial relationships of tissue, thus resulting 
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in quicker processing times and equivocal imaging resolution [75]. There have been 
numerous examples of ML-generated systems significantly accelerating processing 
times in CMR angiography [75], whole heart 3D LGE reconstruction [76], reduction 
of respiratory motion artifact [77], and T1 and T2 mapping [78]. Intracardiac volume 
measurements have also been generated from ML systems and have been used to risk 
stratify patients with severe AS [79]. There are instances where ML has been found to 
be more accurate in measuring certain parameters, such as ventricular volume, com-
pared to human analyses [80]. Newer approaches are using ML to identify ischemic 
scars without utilizing LGE CMR and subjecting patients to contrast [81]. The clinical 
use of ML continues to expand within all fields of CMR in identifying fibrosis and 
scar with and without LGE, 3D and 4D flow reconstruction, and mapping techniques.

Several limitations exist regarding ML in CMR, given the field’s novelty. For one, 
ML requires a fully sampled learning database to make inferences on testing samples, 
which is not widely available. Evidence suggests variations in image reconstruction 
based on certain parameters from the learning database, such as signal-to-noise ratios 
[82]. Additional improvements in central and graphical processing units are required 
to run these systems and models. Despite these restrictions, the use of AI and ML in 
CMR continues to improve and may have significant implications in imaging acces-
sibility by providing automated analyses of cardiac disease.

6. Conclusion

CMR is an excellent and comprehensive imaging modality, providing information 
about myocardial structure, function, tissue characterization, edema, infiltration, 
inflammation, scar, myocardial perfusion, congenital heart disease, shunts, flow 
quantification in addition to viability and any other cardiac abnormalities like masses. 
Currently being limited by the time involved in acquiring the scan and in the post 
processing of these scans, as seen above, there are a lot of advances and research 
happening in all areas. The clinical and research uses of CMR continue to grow and it 
continues to offer valuable insight into a variety of cardiac pathologies.
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Chapter 3

New Advances in Cardiac Magnetic 
Resonance Imaging of Congenital 
Heart Disease
Karima Hami

Abstract

Cardiac magnetic resonance (CMR) is an indispensable second-line tool, next 
to CT (computed tomography), in the evaluation and follow-up of congenital heart 
disease in adults and children, as a complement to echocardiography, without the 
inconvenience of X-rays. This imaging requires a long examination time and good 
cooperation from the patient to achieve good apnea, or the use of general anesthesia 
in children under 8 years of age. In this chapter, we summarize the recent advances in 
CMR sequences, notably the four-dimensional (4D) flow, in software and hardware 
technologies that allow a wider use, thanks to the simplification of the examination 
protocols and the decrease of the acquisition time.

Keywords: 4D flow, cardiovascular magnetic resonance, cardiac heart diseases,  
3D printing, invasive CMR

1. Introduction

Significant improvements in the diagnosis and management of patients with 
congenital heart disease (CHD) have led to increased number of patients surviving to 
adulthood [1]. These patients require lifelong noninvasive follow-up to detect long-
term complications [2, 3].

Since 2020, the ACC/AH and the ESC published [4] the new guidelines for the 
management of adult CHD [5].

CMR is the only imaging modality offering in a single time an excellent anatomical 
and functional information of the heart [6, 7]. Long follow-up with repetitive CMR 
imaging is reasonable for its high reproducibility and safety compared to CT and 
catheterization, in the young population.

This imaging requires a long examination time and good cooperation from the 
patient to achieve good apnea, or the use of general anesthesia in young children. The 
use of advanced CMR sequences as such a 4D flow is a good option for improving this 
limitation.

Novel emerging techniques especially advanced flow evaluation and reduced 
acquisition and post-processing times [8] are a major step forward in the evaluation 
of CHD with flow perturbations [9].
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2. 4D flow

4D flow CMR refers to phase-contrast CMR with flow-encoding in all three spatial 
directions, in typical transverse, sagittal, and coronal planes and resolved to the three 
dimensions of space and the dimension of time along the cardiac cycle. It allows a 
velocity assessment in the whole heart and great vessels [10] with prospective or 
retrospective electrocardiogram (ECG) gating. The images obtained are displayed in a 
colored representation of the flow patterns.

The 4D flow enables a flow analysis in any vessel section in a single acquisition, 
which is especially relevant in complex CHD.

4D flow CMR requires a reliable ECG with detectable R-wave. To cover the entire 
aorta, it is important that the coils are positioned high enough to explore certain 
aortic pathologies. The scans can be relatively long and it is important to inform the 
patient before.

4D flow CMR employs spoiled gradient echo sequences with short TR for rapid 
imaging with the generation of PC angiograms without the need for an external 
contrast agent. According to the 4D flow cardiovascular magnetic resonance consen-
sus statement 2023, the recommended spatial resolution in adult vessels is 2.5–3 mm3, 
2–2.5 mm3 in pediatric vessels, and 30–50 ms for temporal resolution. A flip angle of 
7° is advised if non-contrast acquisition [11].

The advantage of 4D flow CMR is the retrospective analysis of the blood flow 
through any planes of interest across the 3D volume.

Moreover, the analysis of advanced hemodynamic parameters as kinetic energy 
(KE) and wall shear stress (WSS) has become possible [12, 13].

4d flow allows precise assessment in a variety of clinical situations, including 
evaluation of the QP/QS ratio, collateral flow, and valve regurgitation.

Retrospective cardiac gating is preferred, to analyze the flow in systole and diastole.
Respiratory gating is used to avoid motion artifacts; respiratory motion compensa-

tion is a good alternative if it is available.
As with 2D, 4D flow requires a close value of real peak velocity to avoid aliasing. A 

VENC of 120–150 cm/s is sufficient in the absence of stenosis; otherwise it should be 
increased to the peak velocity expected by other methods, such as echocardiography, 
and using post-processing tools with anti-aliasing correction should be considered.

• Resolution: Acquired voxel size according to JCMR consensus document [11] for 
intracardiac flow is 3 mm or less. In small children, higher spatial resolution is 
recommended, because of the smaller FOV (field of view).

3. Application

3.1 Fontan repair

The Fontan operation is the last stage in the palliative treatment in univentricular 
heart [14].

The main goal of CMR is the assessment of the ventricle function, possible valvu-
lar regurgitation, the patency of the Fontan pathway, and the presence of collateral 
flow [15].

Various manifestations can occur such as protein-losing enteropathy, plastic  
bronchitis, interstitial pulmonary edema, pleuro-pericardial effusion, and ascites. 



49

New Advances in Cardiac Magnetic Resonance Imaging of Congenital Heart Disease
DOI: http://dx.doi.org/10.5772/intechopen.113148

MR is able to characterize lymphatic perfusion abnormalities using static and 
dynamic sequences, which will not be detailed in this chapter.

Aortic forward flow should be equal to total systemic venous return and to total 
pulmonary venous return. The divergence in flows indicates the presence of regurgi-
tant lesions, patent fenestration, or significant systemic-to-collateral [16].

Late gadolinium enhancement (LGE) imaging is indicated in cases of recent 
degradation in cardiac function, suspicion of thrombus formation, or new onset of 
complex arrhythmias to detect the presence and extension of myocardial fibrosis. 
Contrast-enhanced (CE-MRA) in the venous phase allows the assessment of the 
permeability of the Fontan circuit. Moreover, 4D flow imaging allows the quantifica-
tion of any obstruction based on distribution patterns of caval or pulmonary artery 
flows (Figure 1) [16].

4. Tetralogy of Fallot (TOF)

An accurate assessment of pulmonary valve regurgitation (PVR) is essential prior 
to pulmonary revalvulation (PR). This assessment is better performed using 4D 
flow CMR because of the possibility to correct for through-plane motion of the valve 
and flow angulation. Advanced flow parameters such as ventricular kinetic energy 

Figure 1. 
4D flow MRI in a total cavo-pulmonary connection with flow distribution 70% into the RPA and 30% in LPA. 
RPA: Right pulmonary artery, LPA: Left pulmonary artery.
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(KE) represent a novel tool to assess cardiac function; KE represents the amount of 
energy present in the blood flow due to movement and is considered a good marker of 
ventricular efficiency; it is calculated using the following equation: KE = ½mv2 where 
m represents the mass (the voxel volume multiplied by the density of blood) and v 
represents the velocity of each voxel, determined from the 4D flow. Jeong found that 
the KE was abnormal in TOF patients compared to in healthy controls [17].

According to the current CMR criteria, a large percentage of patients continue to 
experience symptoms of the classic complications observed in patients not undergo-
ing PR, such us ventricular arrhythmias and heart failure [18].

4D flow provides a more accurate assessment of PV regurgitant flow, which may 
lead to better timing of revalvulation.

Several studies show that turbulent kinetic energy in the right ventricle was higher 
in patients with TOF than in healthy controls, mainly in the RVOT [17, 19, 20].

Jeong demonstrated that KE is an earlier indicator of cardiac dysfunction than 
classic parameters such us EDVI, ESVI, and EF.

Furthermore, patients with TOF may have pulmonary valve or branch stenosis. 
Consequently, analysis of PA flow based on 2D PC CMR plane is prone to error. 
Geiger and Francois [21] found that TOF patients present helical flow patterns in the 
pulmonary arteries [22].

These findings have been reported by Hu et al. [23]. They found that vortices were 
predominantly present in the main PA and helical flow patterns were predominantly 
present in the right PA, which was associated with systolic energy loss in the right PA 
and increased RV dimensions, suggesting impaired ventricular–arterial coupling.

5. Aortic diseases

In the aorta, aortic flow was assessed in all three segments, on the ascending, 
transverse, and descending aorta, in a plane perpendicular to the aortic axis.

The advantage of the 4D flow is that the plans can be placed after the acquisition.
Vorticity and helicity are two parameters that provide information about the 

rotational movement of blood flow.
Vorticity describes the rotation of a fluid particle around the same axis as well as 

around its own axis, which describes a curved movement.
Helicity is determined from vorticity and the principal component of flow veloc-

ity, which determines the direction of flow.
In aorta, the flow has a helical pattern at the end of systole, in the upper aortic arch 

as has been described by Kilner [24]; (Figure 2) it allows the preservation of laminar 
flow in the aortic arch. In aortic pathological conditions such as aneurysms, aortic 
bicuspidi, coarctation, or dissection, rotational flow is abnormal.

6. Three-dimensional printing and virtual reality

Three-dimensional (3D) printing technology has become an attractive tool for 
creating patient-specific anatomical models (Figure 3). Its role in clinical decision 
and patient management in complex CHD is increasing.

Numerous studies have demonstrated superior advantages of 3D-printed models 
over the traditional 2D and 3D image reconstructions, enhancing the perception of 
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distances and spatial configuration of the complex cardiac morphology and therefore 
facilitating the surgical planning [25–27].

A multicenter study [28] showed that the use of 3D-printed heart CHD models 
enabled surgical decisions to be modified in around 50% of cases.

In a similar way, other studies have confirmed the usefulness of 3D-printed cardiac 
models to guide surgical procedures in patients with CHD [20, 29–31].

Figure 2. 
4D flow CMR of the normal aorta showing the direction of flow in all three phases of systole (early, peak, and 
end systole).

Figure 3. 
3D-printed models of transposition of the great arteries and arterial switch operation. Ao, aorta; SVC, superior 
vena cava; PT, pulmonary trunk; LV, left ventricle; RA, right atrium; RV, right ventricle.
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Gomez-Ciriza et al. [32] reported their experience of 7 years in which 3D-printed 
heart models were able tomodify the surgical decision in 48% of cases.

However, the large application of 3D printing technology in pediatric cardiology 
practice is still limited by some barriers.

Geographic location: A recent international survey [33] has found that the ability 
to access 3D printing technology differs from region to region.

The cost of printing materials is another factor that limits its application in many 
practices, especially soft and elastic materials (high-cost 3D-printed models) with 
tissue properties similar to normal cardiovascular tissues.

Another limitation of this model is the long time required from image reconstruc-
tion to printing and cleaning of the models.

If 3D printing is unavailable, virtual reality (VR) could be a promising tech-
nique in clinical application and medical education for CHD. Raimondil and col-
leagues [34] noticed that the median time to elaborate VR models was only 5 min, 
which is interesting compared to 3D printing models, which required a long time 
(8 hours).

7. Interventional CMR

Invasive cardiovascular magnetic resonance imaging (CMR) of cardiac 
 catheterization is a better alternative to fluoroscopy, which has been the gold stan-
dard in the assessment of patients with congenital heart disease (CHD). It provides 
real-time anatomical visualization of the cardiovascular structures [35–37] and 
the guidance for hemodynamic data without the radiation exposure. The harmful 
effects of repeated use of X-rays in this population have been increasingly debated 
in recent years. Prolonged exposure to radiation would be associated with increased 
risk of cancer in adult patients followed for congenital heart disease [38, 39]. Then, 
interventional CMR catheterization is a good alternative without ionizing radiation in 
children, in whom a repetitive hemodynamic assessment would be necessary.

Conditioned catheters and guidewires with gadolinium-filled balloon have been 
used in CMR-guided cardiac catheterization [40–42].

A few centers reported their experiences with invasive CMR [35, 43–48] for diag-
nostic and interventional procedures under CMR guidance such as CoA, and Fontan 
fenestration test occlusion, and pulmonary vein access [49].

ICMR is currently performed in several centers [50], in patients with CHD 
patients before surgery or in the postoperative follow-up, for diagnostic purposes, in 
particular catheterization of the right heart in cases of pulmonary hypertension or a 
more detailed hemodynamic study in complex congenital heart disease (pre-Fontan 
study, or Fontan fenestration test occlusion, for example,) or for therapeutic purposes 
(closure of an intercavitary shunt).

The advantage of ICMR is its ability to measure cardiac output and the QP/QS 
ratio by phase contrast, which have proved to be more reliable than thermodilution, 
which can be distorted by the presence of a valve leak, or Fick’s principle, which gives 
an estimated rather than measured VO2 value, and at rest rather than during exercise 
or stress.

In addition, MRI allows ventricular and atrial volumes, EF and functional analysis, 
and tissue characterization.

Reddy [49] demonstrates the potential of iCMR in diagnostic right and left heart 
catheterization, CoA diagnosis, and Fontan fenestration occlusion hemodynamic testing.
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The balloon attached to the tip of the catheter was filled with diluted gadolinium 
and guided using a conditioned guide toward the structures to be evaluated hemody-
namically, using the real-time sequence (Figure 4).

Recently, use of fully insulated nitinol guidewires is feasible in low-SAR and low-
field imaging [51, 52].

In the electrophysiology field, CMR allows complete delineation of the atrial 
anatomy and detection of fibrosis of the left atrium and intra-atrial thrombosis. 
CMR-guided ablations in particular, cavotricuspid isthmus (CTI) ablation by real-
time iCMR guidance is increasingly performed in different centers with similar results 
to conventional fluoroscopy-guided ablation [53].

8. Conclusion

The new techniques developed over the last decade in cardiac MRI of CHD are 
promising, offering reduced acquisition and post-processing times while exploring 
multiple flows in the same examination, thanks to 4D flow, radiation-free diagnostic 
and therapeutic procedures with ICMR, and accurate anatomical description elabo-
rated by 3D printing in complex CHD. These new tools are currently used in only 
a few centers and should be accessible in the coming years to the various magnetic 
resonance imaging centers.

Figure 4. 
Series showing a MR-conditional guidewire (a–b solid white arrow) used to guide the gadolinium-filled balloon 
(dashed white arrow) for a RHC and LHC (c), Fontan fenestration test occlusion, and measure (D–G) of the 
pulmonary venous saturation in the LA. F: Gadolinium-filled balloon crossing a severe CoA with the assistance 
of an MR-conditional guidewire. Image courtesy of Surendranath R. Veeram Reddy and Yousef Arar, pediatric 
cardiology, Children’s medical center Dallas, 1935 Medical District Dr., Dallas, TX, 75235, USA.
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Abstract

This chapter examines the advances and perspectives of the applications of 
artificial intelligence (AI) in the classification of magnetic resonance (MR) images. 
It focuses on the development of AI-based automatic classification models that have 
achieved competitive results compared to the state-of-the-art. Accurate and efficient 
classification of MR images is essential for medical diagnosis but can be challenging 
due to the complexity and variability of the data. AI offers tools and techniques that 
can effectively address these challenges. The chapter first addresses the fundamentals 
of artificial intelligence applied to the classification of medical images, includ-
ing machine learning techniques and convolutional neural networks. Here, recent 
advances in the use of AI to classify MRI images in various clinical applications, such 
as brain tumor detection, are explored. Additionally, advantages and challenges 
associated with implementing AI models in clinical settings are discussed, such as the 
interpretability of results and integration with existing radiology systems. Prospects 
for AI in MR image classification are also highlighted, including the combination of 
multiple imaging modalities and the use of more advanced AI approaches such as 
reinforcement learning and model generation.

Keywords: artificial intelligence, deep learning, medical imaging, convolutional neural 
networks, computer-aided diagnosis, automatic classification models

1. Introduction

Medical imaging plays a pivotal role in the diagnosis and treatment of diseases, 
offering intricate visual insights into the human body [1]. Among the array of 
available imaging techniques, magnetic resonance imaging (MRI) has witnessed 
substantial growth in adoption due to its capacity for capturing high-resolution 
images that exhibit exceptional contrast between soft tissues [2]. The accessibility 
of magnetic resonance imaging has surged, thanks to advancements in technology 
and heightened recognition of its clinical value. These images, obtained from various 
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anatomical regions and under diverse protocols, furnish indispensable information 
about anatomical structures, functions, and potential abnormalities [3]. Nevertheless, 
the interpretation of these MR images presents formidable challenges. Manual 
analysis by radiologists can be labor-intensive, reliant on expertise, and vulnerable 
to interobserver variations. Furthermore, the burgeoning volume of images for each 
patient underscores the imperative for precise and efficient analysis to bolster clinical 
decision-making [4].

In this context, the application of artificial intelligence (AI) in the classification of 
magnetic resonance images has emerged as a promising solution [5]. AI holds the poten-
tial to process large volumes of images swiftly and accurately, thereby bolstering clini-
cians in the early detection, characterization, and ongoing monitoring of diseases [6]. 
Leveraging machine learning techniques and convolutional neural networks, the devel-
opment of automatic classification models for medical images has demonstrated their 
competitiveness in comparison to traditional methods [7]. These models excel in discern-
ing subtle patterns and features within MR images, thus facilitating precise diagnoses and 
prognoses for a myriad of conditions. Figure 1 illustrates the organization of this chapter.

In summation, given the current landscape of medical imaging with the expand-
ing availability of magnetic resonance images and the compelling need for precise 
and efficient analysis to underpin clinical decisions, the application of artificial 
intelligence in image classification is a field of research and development of profound 
significance [8]. By uniting the computational prowess of AI with the rich, intricate 
information offered by MR imaging, the potential exists to elevate the accuracy and 
efficiency of medical diagnosis, ushering in fresh possibilities for patient care.

2. Overview of MRI images

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique 
that plays a pivotal role in modern healthcare by providing detailed cross-sectional 
images of the body’s internal structures [9]. It operates on the principle of using 

Figure 1. 
Organization. We first review MRI images. Next, we introduce common AI models that have been applied to 
learn those MRI images. Then, we investigate MRI applications that employ AI models. Finally, we discuss the 
evaluation metrics that are proposed to evaluate how well these AI models are.
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strong magnetic fields and radio waves to interact with the hydrogen nuclei (protons) 
in the body. As these protons align and then return to their natural state within the 
magnetic field, they emit signals that are captured and processed to generate images. 
MRI offers various types of images, each with unique applications. T1-weighted 
images provide excellent anatomical detail, while T2-weighted images are adept at 
detecting abnormalities like edema and lesions [10]. Proton density (PD)-weighted 
images emphasize proton concentration, and Diffusion-weighted images (DWI) 
reveal water molecule movement. Functional MRI (fMRI) maps brain activity, mag-
netic resonance angiography (MRA) visualizes blood vessels, and magnetic resonance 
spectroscopy (MRS) assesses tissue chemistry [11]. These images find extensive use 
in clinical applications, from neuroimaging for brain and spinal conditions to muscu-
loskeletal assessments and cardiovascular evaluations. MRI’s advantages include the 
absence of ionizing radiation, superb soft tissue contrast, and multi-planar imaging 
capability [12]. However, it can be sensitive to motion artifacts, contraindicated for 
certain metal implants, and sometimes time-consuming for patients. Nonetheless, 
MRI remains an invaluable tool, offering detailed insights into the human body’s 
internal structures and functions, thus shaping modern healthcare practices [13]. 
Figure 2 illustrates a few examples using different MRI techniques from various 
human organs.

2.1 Anatomical MRI

One of the fundamental applications of magnetic resonance imaging (MRI) in the 
realm of medical diagnosis is the visualization of anatomical structures within the 
human body. Anatomical MRI, often referred to as structural MRI, is a cornerstone of 
clinical imaging. It provides detailed, high-resolution images of various body parts, 
offering essential insights into the morphology and integrity of tissues and organs [15].

Figure 2. 
Illustration of common MRI images. (a) T1-weighted MRI; left: Liver; right: Brain [neonate], (b) T2-weighted 
MRI; left: Prostate; middle: Brain [neonate]; right: Liver, (c) functional MRI, (d) diffusion tensor imaging, and 
(e) MR angiography [14].
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Anatomical MRI sequences, such as T1-weighted and T2-weighted images, play 
a crucial role in depicting different tissues based on their inherent physical proper-
ties. T1-weighted images offer excellent contrast between fat and water-rich tissues, 
making them ideal for visualizing anatomical boundaries and structures. In contrast, 
T2-weighted images highlight variations in water content, effectively revealing 
abnormalities such as edema, inflammation, or lesions [16].

These MRI sequences are instrumental in diagnosing a wide range of medical con-
ditions. In neuroimaging, they aid in detecting brain abnormalities, such as tumors, 
vascular malformations, or degenerative diseases like multiple sclerosis. In musculo-
skeletal imaging, anatomical MRI helps identify soft tissue injuries, joint disorders, 
and assess the integrity of ligaments and tendons. Additionally, in abdominal imag-
ing, it facilitates the evaluation of organs like the liver, kidneys, and gastrointestinal 
tract, allowing the detection of tumors, cysts, or structural anomalies.

2.2 Diffusion MRI

Diffusion Magnetic Resonance Imaging (dMRI or diffusion MRI) is a specialized 
MRI technique that offers a unique window into the microscopic structures and tissue 
properties within the human body. Unlike traditional anatomical MRI, diffusion 
MRI focuses on the movement of water molecules within tissues, providing critical 
information about cellular structures and tissue microarchitecture [17].

At its core, diffusion MRI capitalizes on the inherent Brownian motion of water 
molecules. In biological tissues, water molecules are not stationary; instead, they 
exhibit random motion influenced by obstacles such as cell membranes, fibers, and 
other cellular structures. This random motion, known as diffusion, can be measured, 
and quantified using diffusion MRI [18].

One of the primary measures derived from diffusion MRI is the apparent diffu-
sion coefficient (ADC), which characterizes the rate and direction of water molecule 
diffusion within tissues [19]. High ADC values typically indicate free and unrestricted 
diffusion, often seen in areas with fluid or cystic structures. Conversely, low ADC 
values suggest restricted diffusion, often associated with dense cellular structures or 
pathologies that hinder water molecule movement.

Diffusion MRI is particularly valuable in neuroimaging, where it enables the map-
ping of white matter tracts in the brain. By tracking the diffusion of water molecules 
along nerve fibers, this technique offers insights into brain connectivity and can 
identify abnormalities such as white matter lesions, which are common in conditions 
like multiple sclerosis [20].

2.3 Functional MRI

Functional magnetic resonance imaging (fMRI) is a groundbreaking applica-
tion of MRI technology that provides real-time insights into the functioning of the 
human brain. Unlike traditional MRI, which primarily captures structural informa-
tion, fMRI focuses on the brain’s dynamic activity by measuring changes in blood 
flow and oxygenation levels [21]. At the heart of fMRI lies the concept of neurovas-
cular coupling. When a specific region of the brain becomes active, it requires an 
increased supply of oxygen and glucose. To meet this demand, blood vessels in the 
activated area dilate and blood flow surges, leading to an increase in oxygenated 
hemoglobin levels. This change in blood oxygenation can be detected and visual-
ized by fMRI [22].
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Functional MRI is a non-invasive tool that has revolutionized our understand-
ing of brain function and has numerous applications in both clinical and research 
settings. It enables researchers and clinicians to observe how different brain regions 
respond to specific tasks, stimuli, or cognitive processes [23]. One of the most preva-
lent applications of fMRI is functional localization. This technique helps identify 
critical brain areas responsible for specific functions, such as language processing, 
motor control, and memory formation. For instance, by instructing a subject to 
perform language-related tasks during an fMRI scan, researchers can pinpoint the 
brain regions associated with speech and language functions [24].

In the realm of cognitive neuroscience, fMRI is instrumental in studying complex 
cognitive processes like decision-making, emotion regulation, and working memory. By 
examining patterns of brain activation, researchers gain insights into the neural under-
pinnings of these cognitive functions, paving the way for breakthroughs in fields like 
psychology and psychiatry [25]. The clinical applications of fMRI are equally profound. 
It is extensively used in presurgical planning, particularly in cases where brain lesions or 
tumors are present. fMRI helps surgeons map out functional brain areas, ensuring that 
critical regions are preserved during surgery to minimize postoperative deficits [26].

2.4 Magnetic resonance angiography (MRA)

Magnetic Resonance Angiography (MRA) is a specialized branch of MRI that 
focuses on imaging blood vessels, providing detailed visualizations of the vascular 
system without the need for invasive procedures or contrast agents commonly used 
in traditional angiography [27]. MRA has evolved as a valuable diagnostic tool in 
vascular medicine, offering high-resolution images of arteries and veins throughout 
the body. One of the key advantages of MRA is its non-invasive nature. Unlike conven-
tional angiography, which requires the insertion of catheters and injection of contrast 
agents, MRA relies solely on the principles of magnetic resonance [28]. Patients under-
going MRA experience no exposure to ionizing radiation or contrast-related risks, 
making it a safer option, especially for individuals with underlying health conditions.

MRA techniques vary depending on the vascular region of interest, each opti-
mized to provide optimal imaging for specific anatomical areas. Some common MRA 
techniques include [29]:

• Time-of-flight (TOF) MRA [30]: This technique relies on the flow-related 
enhancement of blood vessels. By utilizing differences in the flow speed of 
blood, TOF MRA generates high-contrast images of arteries. It is often used for 
imaging larger vessels, such as the carotid or cerebral arteries.

• Phase-contrast MRA [31]: Phase-contrast MRA measures the velocity of blood 
flow in vessels. By quantifying the phase shifts of moving protons in blood, it 
produces images that not only visualize vessel anatomy but also provide infor-
mation about blood flow velocity and direction. This is particularly useful in 
assessing blood flow dynamics in conditions like stenosis or aneurysms.

• Contrast-enhanced MRA (CE-MRA): In some cases, the use of contrast agents is 
necessary to enhance the visibility of blood vessels, especially in smaller ves-
sels or when assessing venous structures. CE-MRA involves the injection of a 
gadolinium-based contrast agent, which shortens the relaxation time of nearby 
protons, leading to improved vessel visualization.
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• Magnetic resonance venography (MRV) [32]: MRV is a specific application of MRA 
tailored to visualize veins. It is commonly used to assess deep vein thrombosis 
(DVT) in the extremities or to evaluate the venous system in the brain.

The clinical applications of MRA are extensive. It is routinely employed for the 
diagnosis and evaluation of vascular conditions, including [33]:

• Atherosclerosis: MRA can identify narrowing or blockages in arteries caused by 
atherosclerotic plaques, aiding in the diagnosis of conditions like coronary artery 
disease and peripheral artery disease.

• Cerebrovascular disease: MRA of the brain helps in detecting aneurysms, arte-
riovenous malformations (AVMs), and other vascular abnormalities that may 
contribute to strokes or other neurological disorders.

• Renal artery stenosis: MRA is a valuable tool for assessing the renal arteries, aiding 
in the diagnosis of conditions such as renal artery stenosis, which can lead to 
hypertension and kidney dysfunction.

• Peripheral vascular disease: MRA is used to evaluate blood flow in the extremities, 
assisting in the diagnosis and treatment planning for conditions like deep vein 
thrombosis (DVT) and peripheral artery disease (PAD).

The integration of artificial intelligence (AI) into MRA analysis holds significant 
promise. AI algorithms can assist in automating the detection and quantification 
of vascular abnormalities, improving the efficiency and accuracy of diagnoses. 
Furthermore, AI-driven predictive models can provide insights into the risk of vascu-
lar events and guide personalized treatment strategies [34].

3. Brief introduction of AI models

Artificial Intelligence (AI) has emerged as a transformative force in the field of 
medical imaging, revolutionizing the way we interpret and utilize various imaging 
modalities, including Magnetic Resonance Imaging (MRI) [35]. AI models, often 
powered by deep learning techniques, have demonstrated remarkable capabilities in 
extracting meaningful information from medical images, thereby aiding in disease 
diagnosis, treatment planning, and prognosis assessment.

At the heart of AI’s impact on medical imaging are neural networks, specifically 
Convolutional Neural Networks (CNNs) [36]. CNNs have proven highly effective in 
learning complex patterns and features from images, making them well-suited for 
tasks such as image classification, segmentation, and object detection. These models 
mimic the hierarchical organization of neurons in the human brain, enabling them 
to recognize intricate details within medical images [37]. Two prominent AI models 
frequently employed in medical imaging are:

• Convolutional neural networks (CNNs) [38]: CNNs have become the work-
horse of deep learning in medical imaging. They consist of multiple layers of 
convolutional and pooling operations that systematically extract hierarchical 
features from images. CNNs excel in tasks like image classification, where they 
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can distinguish between normal and abnormal findings within medical images. 
Variants of CNNs, such as VGG16, ResNet50, and Inception, have been adapted 
and fine-tuned for specific medical imaging applications.

• Recurrent neural networks (RNNs) [39]: While CNNs dominate image-related 
tasks, RNNs are specialized for sequential data, making them invaluable for 
tasks that involve temporal information. In medical imaging, RNNs are particu-
larly useful for processing time-series data, such as functional MRI (fMRI) or 
dynamic contrast-enhanced MRI (DCE-MRI). They can track changes in image 
sequences over time, aiding in the assessment of conditions like epilepsy or 
tumor response to treatment.

AI models in medical imaging go beyond image classification. They are instru-
mental in tasks like image segmentation, where they identify and outline specific 
structures or regions of interest within an image. For instance, in MRI, AI can be used 
to segment tumors, blood vessels, or organs, enabling precise measurements and 
volumetric assessments [40]. Furthermore, AI models facilitate image registration, 
aligning images from different modalities or time points, which is crucial for moni-
toring disease progression or treatment response. They also contribute to generative 
models, like Generative Adversarial Networks (GANs), which create synthetic 
medical images for training and augmenting datasets, a particularly useful capability 
in situations where data is limited [41].

In the realm of AI models for MRI image analysis, a rich tapestry of architectures 
has emerged, each tailored to specific tasks and challenges. The U-Net architecture, 
with its intricate encoding and decoding pathways, stands as a stalwart for semantic 
segmentation tasks, particularly in medical image segmentation [42]. Its ability to 
capture fine-grained features and preserve spatial information has made it indispens-
able in delineating anatomical structures. On the other hand, the Multiple Layer 
Perceptron (MLP) showcases its prowess in handling structured data extracted from 
MRI images [43]. MLPs are versatile, leveraging dense layers to process information 
and make predictions, making them suitable for various classification and regres-
sion tasks. Meanwhile, Graph Neural Networks (GNNs) have gained traction in MRI 
analysis by modeling complex relationships within medical data [44]. GNNs excel in 
tasks requiring the understanding of intricate connections, such as mapping neural 
pathways or identifying brain regions with functional significance. The adaptability 
of these architectures further underscores the dynamism of AI models in MRI image 
analysis, catering to the diverse needs of medical professionals and researchers.

As we delve deeper into this chapter, we will explore the various applications of AI 
models in the realm of MRI, shedding light on how these models are advancing our 
ability to extract meaningful insights from medical images. We will discuss their role 
in image analysis, disease detection, and prognosis assessment, emphasizing their 
potential to enhance clinical decision-making and patient care. Additionally, we will 
delve into the latest advancements and future perspectives in AI-driven MRI analysis, 
highlighting the ongoing research and development in this rapidly evolving field.

4. Deep learning techniques

Deep learning techniques have catalyzed a transformative shift in medical image 
analysis, propelling the field to new heights in accuracy and efficiency [45]. In the 
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context of Magnetic Resonance Imaging (MRI), these techniques have proven par-
ticularly invaluable, enabling the extraction of intricate information from complex 
images [46]. This section explores the key deep learning techniques employed in MRI 
analysis, shedding light on their applications and advantages.

4.1 Convolutional neural networks (CNNs)

• Image classification: CNNs are the cornerstone of medical image analysis, includ-
ing MRI. They excel in classifying images into distinct categories, such as normal 
and abnormal findings or specific disease types. For instance, in brain MRI, 
CNNs can distinguish between healthy and tumor-affected regions.

• Segmentation: CNNs are employed for precise image segmentation, outlining 
regions of interest within MRI scans. This is crucial for identifying tumors, blood 
vessels, or anatomical structures. Semantic segmentation, which assigns each 
pixel in an image to a specific class, is particularly useful in MRI.

4.2 Recurrent neural networks (RNNs)

• Time-series analysis: MRI sequences, like functional MRI (fMRI) or diffusion 
MRI, capture changes over time. RNNs are adept at processing such sequences, 
enabling the assessment of dynamic processes in the body. For example, fMRI 
data analysis using RNNs can reveal brain activity patterns related to specific 
tasks or conditions.

• Longitudinal studies: RNNs are indispensable in tracking disease progression 
or treatment response over multiple MRI scans taken at different time  
points. They help identify subtle changes that may not be apparent in  
individual scans.

4.3 Generative adversarial networks (GANs)

• Data augmentation: GANs are used to generate synthetic MRI images that closely 
mimic real data. This aids in data augmentation, increasing the diversity of the 
training dataset. In MRI, where obtaining labeled data can be challenging, GANs 
prove invaluable for training robust models.

• Super-resolution: GANs are leveraged to enhance MRI image resolution. This is 
particularly useful in obtaining high-quality images from low-resolution acquisi-
tions, improving the overall diagnostic value.

4.4 Transfer learning

• Pretrained models: Transfer learning involves using pretrained deep learning 
models on large datasets, such as ImageNet, and fine-tuning them for specific 
MRI analysis tasks [47]. This approach saves computational resources and 
training time while benefiting from the generalization power of pretrained 
models.
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4.5 Autoencoders

• Feature extraction: Autoencoders are utilized for unsupervised feature learn-
ing [48]. They compress MRI images into lower-dimensional representations, 
capturing salient features. These learned features can then be used for various 
tasks, including classification and segmentation.

4.6 Attention mechanisms

• Region of Interest (ROI) Attention: Attention mechanisms enable models to focus on 
specific regions within an MRI scan [49]. This is particularly useful in cases where 
only a small part of the image contains diagnostically relevant information. Attention 
mechanisms help improve model accuracy by emphasizing the important areas.

4.7 3D CNNs

• Volumetric analysis: For 3D MRI data, such as volumetric MRI or MRI video 
sequences, 3D CNNs are employed [50]. These models consider the spatial rela-
tionships between image slices, providing a more comprehensive understanding 
of the 3D structure of anatomical or pathological regions.

4.8 Ensemble models

• Improved accuracy: Ensemble models combine predictions from multiple deep 
learning models, boosting overall accuracy and reducing model variability [51]. 
In MRI analysis, they are employed to enhance diagnostic reliability and mini-
mize false positives.

4.9 Explainable AI (XAI) techniques

• Interpretability: As AI models in MRI analysis become more sophisticated, the 
need for interpretability grows [52]. XAI techniques, including Grad-CAM and 
LIME, are applied to elucidate model decisions and provide insights into the 
features that influence diagnoses.

Deep learning techniques are not only transforming MRI analysis but also pushing 
the boundaries of what is possible in medical imaging. Their ability to handle complex 
data, adapt to various modalities, and continuously improve through data-driven 
learning positions them at the forefront of medical research and clinical applica-
tions. In the subsequent sections, we will delve into the specific applications of these 
techniques in MRI analysis, illustrating their impact on disease detection, prognosis 
assessment, and treatment planning.

5. AI role in realignment, normalization and registration stages in MRI

The realignment stage in MRI is essential to ensure that the images obtained are 
of the highest quality possible, especially in clinical applications where patients may 
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move during image acquisition [53]. Here, artificial intelligence has proven to be 
an invaluable tool in enabling accurate and efficient automation of this process. AI 
techniques at this stage include:

1. Landmark tracking: AI algorithms can identify anatomical landmarks on MRI im-
ages, such as prominent bone structures or tissue features. These landmarks are 
used to track the patient’s movements during image acquisition.

2. Deformation correction: AI can detect and correct deformations in images caused 
by patient movement or even magnetic distortions. These corrections are essen-
tial to ensure accuracy in applications such as surgical navigation or longitudinal 
disease assessment.

3. Real-time image reconstruction: In situations where real-time motion correction is 
required, AI can be used to reconstruct images in real-time as they are acquired, 
correcting any motion instantly.

The use of artificial intelligence in motion realignment and correction not only 
improves the quality of MRI images, but also reduces the need for repeat studies due 
to inadvertent patient movements, saving time and resources. Intensity and contrast 
normalization is crucial to ensure that MRI images are comparable between patients 
and scanning sessions [54]. Here, artificial intelligence plays an essential role by 
adjusting image characteristics to facilitate accurate and objective analysis. AI tech-
niques at this stage include:

1. Normalization standards: AI algorithms can apply normalization standards to 
ensure that intensity and contrast in images are consistent across MRI studies. 
This is especially important when comparing images from different patients or in 
longitudinal follow-up of the same patient.

2. Artifact suppression: AI can identify and suppress artifacts from MRI images, 
such as those caused by respiratory or metal movements. This significantly 
improves image quality and diagnostic accuracy.

3. Improved homogeneity: AI algorithms can adjust the homogeneity of intensity in 
images, making it easier to identify subtle structures and pathologies.

Intensity and contrast normalization using artificial intelligence ensures that 
images are consistent and suitable for clinical interpretation and application of analy-
sis algorithms. Image co-registration in MRI involves aligning multiple sets of images 
acquired in different sequences or modalities for better comparison and analysis [55]. 
Artificial intelligence has proven to be highly effective in automating this process. AI 
techniques at this stage include:

1. Landmark matching: AI algorithms can automatically identify anatomical land-
marks in different image sets and use them to perform co-registration.

2. Spatial transformations: AI can calculate spatial transformations that optimally 
align images, even when warps or distortions exist.
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3. Multimodal data fusion: When multiple MRI modalities are used, artificial intel-
ligence can fuse data from different sequences or modalities to provide a more 
complete and accurate view of anatomy and pathologies.

Image co-registration and data fusion with the help of artificial intelligence are 
critical for more accurate interpretation and better-informed clinical decision-making 
in applications involving multiple sets of MRI images.

6. AI applications in MRI

Artificial Intelligence (AI) has revolutionized the field of MRI, offering a plethora 
of applications that enhance image acquisition, analysis, and clinical decision-
making. The fusion of AI and MRI has ushered in a new era of medical imaging, with 
a wide range of applications that benefit patients and healthcare providers alike [56]. 
Table 1 provides a concise overview of how AI enhances various aspects of MRI, from 
image quality to disease diagnosis and treatment planning.

Application Description

Image enhancement Noise reduction: AI reduces noise and artifacts in MRI images.
Super-Resolution: AI enhances image resolution for finer anatomical details.

Image reconstruction Accelerated Imaging: AI-based reconstruction enables faster MRI scans.
Sparse Sampling: AI reconstructs high-quality images from sparsely sampled data.

Disease detection and 
diagnosis

Tumor detection: AI identifies and characterizes tumors in MRI scans.
Neurological Disorders: AI aids in diagnosing conditions like Alzheimer’s using brain 
MRI.
Cardiovascular diseases: AI assists in detecting heart diseases via cardiac MRI.

Lesion segmentation AI accurately segments lesions (e.g., tumors) in MRI scans, aiding in treatment 
planning.

Functional MRI 
(fMRI) analysis

AI maps brain regions activated during tasks or conditions, facilitating cognitive 
research.

Diffusion MRI 
(dMRI) analysis

AI reconstructs white matter tracts in the brain, valuable for neurosurgical planning.

Quantitative imaging AI quantifies tissue properties (T1, T2, diffusion) for disease characterization.
AI analyzes tissue perfusion in MRI, important for diagnosing conditions like stroke.

Automated reporting AI generates automated radiology reports by extracting findings from MRI scans.

Treatment planning AI assists in radiotherapy planning by delineating target volumes on MRI.

Monitoring disease 
progression

AI tracks disease progression by analyzing changes in MRI scans over time.

Predictive modeling AI predicts disease outcomes and treatment responses based on MRI data.

Quality control AI performs quality checks on MRI scans, flagging artifacts and anomalies.

Population studies AI analyzes large MRI datasets for trends, risk factors, and early disease indicators.

Customization and 
personalization

AI tailors MRI protocols to individual patients for optimized imaging.

Table 1. 
Applications of AI in magnetic resonance imaging.
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7. AI evaluations in MRI

The evaluation of AI models in the context of MRI images is crucial to assess their 
performance, accuracy, and clinical utility. One of the fundamental tools for this 
evaluation is the confusion matrix [57]. The confusion matrix is a table that allows us 
to visualize the performance of a classification model, particularly in binary clas-
sification scenarios, where we are concerned with distinguishing between two classes: 
positive (disease presence) and negative (disease absence).

7.1 Confusion matrix

The confusion matrix is organized in Table 2 as follows [58]:
In this confusion matrix:

• True positives (TP): Cases where the AI correctly predicted the presence of a 
condition.

• True negatives (TN): Cases where the AI correctly predicted the absence of 
a condition.

• False positives (FP): Cases where the AI incorrectly predicted the presence of a 
condition when it wasn’t there.

• False negatives (FN): Cases where the AI incorrectly predicted the absence of 
a condition when it was present.

7.2 Key metrics derived from the confusion matrix

Several key metrics can be calculated based on the values in the confusion 
matrix [59]:

• Accuracy: This metric measures the overall correctness of predictions and is 
calculated as (TP + TN)/(TP + TN + FP + FN). It provides a high-level view of 
the model’s performance but may not be sufficient when dealing with imbal-
anced datasets.

• Precision (positive predictive value): Precision quantifies the proportion of true 
positive predictions relative to all positive predictions and is calculated as TP/
(TP + FP). It is valuable when minimizing false positives is critical.

• Recall (sensitivity or true positive rate): Recall assesses the model’s ability to 
correctly identify all positive instances and is calculated as TP/(TP + FN). It is 
crucial when minimizing false negatives is a priority.

Predicted negative (non-disease) Predicted positive (disease)

Actual negative True negative (TN) False positive (FP)

Actual positive False negative (FN) True positive (TP)

Table 2. 
Confusion matrix for AI model evaluation in MRI images.
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• F1 score: The F1 score is the harmonic mean of precision and recall and is cal-
culated as 2 * (Precision * Recall)/(Precision + Recall). It provides a balanced 
evaluation of a model’s performance, especially when dealing with imbalanced 
datasets.

• Specificity (true negative rate): Specificity measures the model’s ability to correctly 
identify all negative instances and is calculated as TN/(TN + FP). It is particu-
larly relevant when the cost of false positives is high.

• False positive rate (FPR): FPR quantifies the proportion of false positives relative 
to all actual negatives and is calculated as FP/(TN + FP). It is complementary to 
specificity.

A well-interpreted confusion matrix can provide insights into the strengths and 
weaknesses of an AI model applied to MRI images. It helps in understanding where 
the model excels (e.g., high TP and TN) and where it needs improvement (e.g., high 
FP or FN). Depending on the specific medical application, the choice of evaluation 
metric may vary. For instance, in cancer detection, high sensitivity (recall) is often 
prioritized to minimize false negatives, ensuring early disease detection. In contrast, 
for certain rare conditions, high specificity may be crucial to avoid unnecessary 
interventions [60].

In addition to traditional evaluation metrics like accuracy, precision, recall, and F1 
score, assessing the performance of AI models in MRI image analysis often involves 
considering other factors such as stability [61]. Stability examines how slight pertur-
bations in the input affect the explanation provided by the model. The stability metric 
is calculated by dividing the number of stable explanations (those that remain con-
sistent when the input is perturbed) by the total number of explanations generated 
by the model. A higher stability metric signifies that the AI model’s explanations are 
robust and unaffected by minor variations in the input data. This metric is particu-
larly relevant in medical imaging, where consistency and reliability of model inter-
pretations are paramount. While metrics like stability focus on the model’s response to 
perturbations in the input data, it’s important to note that there are various evaluation 
metrics that do not rely on the confusion matrix but provide valuable insights into the 
model’s performance and behavior [62].

8. Limitations of algorithms in magnetic resonance applications

8.1 Data size and sample requirements

The size of data sets in magnetic resonance imaging (MRI) applications is a critical 
factor that can influence the effectiveness of machine learning algorithms. Large 
and diversified data sets are often needed to train high-precision models. However, 
in practice, it can be difficult to obtain large data sets, which can limit the ability 
of models to generalize and make accurate diagnoses [63]. In MRI applications, the 
availability of large data sets may be limited due to various reasons, such as patient 
privacy or costly and time-consuming data collection. To address these restrictions, 
data augmentation techniques are used. These strategies involve generating new 
training samples from existing samples, by applying controlled transformations. 
Some common forms of data augmentation in MRI include Rotation and Mirroring, 
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Panning and Zooming, Elastic Distortions, and Noise Aggregation [64]. Transfer 
learning is another powerful strategy to overcome sample size restrictions in MRI 
applications. This technique involves leveraging machine learning models pretrained 
on larger, generic data sets (e.g., models trained on large-scale medical images or even 
non-medical images) and tailoring them for specific MRI tasks.

8.2 Label quality and annotation challenges

The quality of labels in MRI data sets is essential for training accurate machine 
learning models. Without accurate and consistent labels, algorithms can produce 
incorrect or biased results. Data annotation in MRI applications presents several 
unique challenges due to the detailed and medical nature of the images [65]. Some 
of these challenges include Expert Requirements, Ambiguity and Variability, 
Multimodal Data, and Privacy and Security. To address these challenges and improve 
label quality in MRI applications, several strategies can be employed:

• Formation of scorers

• Consistency and expert agreements

• Cross validation

• Computer aided annotation (CAA) tools

• Quality audit

• Establish a feedback flow

• Active learning

By implementing these strategies, the quality of labels in MRI data sets can be 
improved, which in turn contributes to training more accurate and reliable machine 
learning models for medical applications. Furthermore, documentation and monitor-
ing of annotation processes are essential to ensure traceability and data quality.

8.3 Training time and computational resources

The time required to train machine learning models in MRI applications can be 
significant, especially when complex models are used. This can affect the efficiency 
of clinical implementation and the ability to respond in critical situations. Training 
time for AI models in MRI applications can be significant and can vary depending on 
the complexity of the task and the size of the data set. Some factors that contribute 
to training time include model architecture, data set size, computational resources, 
hyperparameters and regularization [66]. Computational resources are critical to 
accelerate training time and enable efficient deployment of AI models in MRI applica-
tions. Some key considerations include graphics processing units (GPU) or tensor 
processing units (TPU), compute clusters, cloud services, code optimization and 
transfer learning [67].

Training time and computational resources are critical considerations in AI appli-
cations in MRI. Choosing efficient model architectures, optimizing hyperparameters, 
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and accessing high-performance resources are key strategies to reduce training times 
and improve efficiency in deploying AI models in medical MRI applications.

9. Conclusions

In this chapter, we embarked on a journey through the dynamic intersection of 
magnetic resonance imaging (MRI) and artificial intelligence (AI). We began by delv-
ing into the diverse world of MRI imaging, exploring its various modalities, including 
anatomical MRI, diffusion MRI, functional MRI (fMRI), and magnetic resonance 
angiography (MRA). Each modality provided a unique window into the human body, 
offering invaluable insights for diagnosis and treatment. As we ventured further, 
we unraveled the power of AI models in revolutionizing MRI image analysis. Deep 
Learning techniques took center stage, with convolutional neural networks (CNNs) 
emerging as formidable tools for feature extraction and classification. We explored 
their versatility across datasets, showcasing their ability to accurately detect a spec-
trum of medical pathologies.

Applications of AI in MRI proved boundless, from detecting brain tumors in 
Anatomical MRI to mapping brain activity in fMRI, and even pinpointing vascular 
anomalies in MRA. Each application underscored the potential to enhance clinical 
decision-making, optimize resource utilization, and ultimately improve patient out-
comes. The evaluation of AI models extended beyond traditional metrics, introducing 
stability as a crucial factor. We emphasized the importance of robust, consistent 
model interpretations, especially in the context of medical imaging, where precision 
is paramount.

In conclusion, the amalgamation of MRI imaging and AI has ushered in a new era 
of medical diagnostics and patient care. These transformative technologies are poised 
to reshape the healthcare landscape, offering more accurate, efficient, and reliable 
tools for medical professionals. With ongoing research, collaboration, and refine-
ment, the future holds the promise of even greater advancements, ultimately benefit-
ing individuals worldwide.

This chapter serves as an overview to the potential of AI in MRI imaging, offering 
a glimpse into a future where cutting-edge technology and medical expertise converge 
to improve lives and redefine healthcare standards.
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Chapter 5

Resting-State f MRI Advances for 
Functional Brain Dynamics
Denis Larrivee

Abstract

The development of functional magnetic resonance imaging (fMRI) in quiescent 
brain imaging has revealed that even at rest, brain activity is highly structured, 
with voxel-to-voxel comparisons consistently demonstrating a suite of resting-state 
networks (RSNs). Since its initial use, resting-state fMRI (RS-fMRI) has undergone 
a renaissance in methodological and interpretive advances that have expanded this 
functional connectivity understanding of brain RSNs. RS-fMRI has benefitted from 
the technical developments in MRI such as parallel imaging, high-strength magnetic 
fields, and big data handling capacity, which have enhanced data acquisition speed, 
spatial resolution, and whole-brain data retrieval, respectively. It has also benefitted 
from analytical approaches that have yielded insight into RSN causal connectivity and 
topological features, now being applied to normal and disease states. Increasingly, 
these new interpretive methods seek to advance understanding of dynamic network 
changes that give rise to whole brain states and behavior. This review explores the 
technical outgrowth of RS-fMRI from fMRI and the use of these technical advances to 
underwrite the current analytical evolution directed toward understanding the role of 
RSN dynamics in brain functioning.

Keywords: resting-state networks, resting-state fMRI, big data analysis, high strength 
magnetic imaging, effective connectivity, parallel imaging, independent components 
analysis

1. Introduction

Resting-state, functional, magnetic resonance imaging (RS-fMRI) focuses on 
spontaneous low-frequency fluctuations (< 0.1 Hz) in the BOLD signal that occur in 
the absence of task-related activities. The functional significance of these fluctuations 
was first recognized by Biswal et al. [1] in a study in which subjects were told not to 
perform any cognitive, language, or motor tasks. After determining the correlation 
between the BOLD time course of a seed region identified by bilateral finger tapping 
and that of all other areas in the brain, the authors found that fluctuations in the left 
somatosensory cortex were highly correlated with homologous areas in the contralat-
eral hemisphere. This observed correlation led to their conclusion that such “resting 
networks” manifested the functional connectivity of the brain.
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The observation of spontaneous, synchronous fluctuations occurring between 
brain regions has since stimulated studies that have identified as many as 7 to 17 
other stable networks [2–5], although seven are consistently agreed upon. The visual 
network, for example, is highly consistent across various studies and spans much 
of the occipital cortex. The importance of this network structure is reflected in the 
amount of bodily energy devoted toward brain and, presumably, network mainte-
nance. On a relative basis, the energy consumed by the brain is approximately 20% 
of the total bodily energy consumption, despite a relative mass of only 2%. Of the 
brain’s consumption, some 60 to 80% of the energy is used while “resting,” which is 
for internal communication and support alone. By contrast, elicited activity con-
sumes less than 1% of the brain’s energy resources. Resting networks thus appear to 
constitute a fundamental organizational architecture for the functional properties of 
the brain [5].

Because characterization of resting-state networks (RSNs) in the human brain 
relies on the analysis of temporal fluctuations in the blood oxygenation level-
dependent (BOLD) signal, the delineation of RSNs has been directly linked to the 
ability of fMRI to detect neural activity [6]. Using T2-weighted signal intensity and 
blood oxygenation as the contrast agent [7], fMRI imaging offers a relatively facile 
procedure for the acquisition of brain activity data [8, 9], one that has been exploited 
in numerous studies.

Early investigations [10] confirmed fMRI suitability for RSN determinations. The 
advantages of RS-fMRI in its own right have since become apparent [8], including 
ease of signal acquisition, minimal requisite effort from the patients, and proficiency 
for identifying functional areas in different patient populations. Recent studies have 
demonstrated that imaging of difficult-to-monitor patients, such as pediatric subjects 
and patients with disorders of consciousness, that is, coma, vegetative, and mini-
mally conscious states, are able to undergo RS-fMRI. The procedure also offers the 
capability for functional differentiation, when patients perform specific tasks that are 
designed to target a single network such as motor, language, memory, vision, atten-
tion, and sensory networks.

Despite limitations in use of the BOLD signal, especially the dichotomy between 
the temporal resolution and the temporal scale of the neural activity measured, 
RS-fMRI studies have continued to expand, propelled not only by technical improve-
ments at the level of signal acquisition—e.g., parallel MRI imaging, data acquisition 
[11], and computational advances for preprocessing and feature extraction [12]—but 
also by theoretical and mathematical tools that have amplified the functional inter-
pretations of quiescent and task-based brain activity [13, 14]. One outcome of these 
developments has been a more precise view of how RSNs are functionally organized 
and how this in turn modulates communication within the brain, that is, a more 
dynamic view of information exchange and regulation [15].

The need to address cognitive dysfunction in the light of these more precise and 
advanced models of brain operation has also benefitted from this work. The DMN has 
been an early and continuing focus of study for the exploration of alterations during 
Alzheimer’s and other degenerative diseases, which tend to adapt to the structural 
profile of the network [16]. There is also increasing interest in examining the neuro-
logical changes that occur as a result of traumatic, vascular, or oncological influences, 
which, because of their focal impact, can affect multiple network domains [17, 18]. 
Stroke, especially, is a leading cause of disability and dependency in adults—in 2010, 
there were about 11.6 million incident ischemic stroke events in the United States, and 
by 2030, an additional 3.4 million adults are predicted to have strokes.
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In light of RSN discoveries, the understanding of how these focal effects influence 
brain functioning has also evolved. Stroke lesions are therefore understood not only 
to result in focal, location-dependent neurological symptoms but can also induce 
widespread effects in remote regions in the affected and unaffected hemispheres. 
Consistent with this, while baseline measures of stroke severity represent the cur-
rent level of diagnostic and prognostic capability, patients’ neurological impairment 
sometimes exceeds what would be expected from stroke magnitude; that is, growing 
evidence emphasizes the role of distributed neural networks in the generation of 
brain states and the control of behavior that could account for stroke outcomes affect-
ing behavior [18, 19]. Such possibilities implicate a need for still more comprehensive 
RSN tools that can explore the relationship between whole-scale RSN dynamics and 
behavior in clinical settings.

This review discusses the evolution in the study of brain RSNs as an outgrowth of 
the methodological principles that have advanced fMRI imaging of neural brain activ-
ity. It covers the advances in technical approaches for data retrieval and processing 
that have provided the basis for improved network analysis and that build on concep-
tual insights into functional network associations based on connectivity associations. 
It also considers both the frequently used data-driven approaches and their contribu-
tion to larger-scale explorations of brain dynamics based on causal connectivities and 
topological variation, now being applied in more global models. Improvements in 
these latter are likely to offer the prospect of clinical insights that can relate network 
operation to disease states, such as stroke.

2. Modern resting state network methodology

2.1 Resting-state network detection as an outgrowth fMRI

RS-fMRI relies on spontaneous low-frequency fluctuations (< 0.1 Hz) in the 
BOLD signal, which measures the contrast between the diamagnetic effect of oxy-
hemoglobin and the paramagnetic effect of deoxy-hemoglobin [7]. The dependence 
on the BOLD signal means that RS-fMRI shares advantages that accrue to fMRI—the 
ability to monitor neural activity, albeit indirectly—but also disadvantages that 
characterize its use. Chief among these limitations is fMRI’s temporal resolution, 
which is dependent on the hemodynamic response time. Since the hemodynamic 
response is much slower than the underlying neural processes, temporal information 
of spiking events is heavily blurred and typically requires the use of mathematical 
processing, like that of the general linear model [9], or experimental block protocols, 
to infer event-related, signal activity. With processing, temporal resolution in the 
100 ms range can be achieved, which is roughly tenfold slower than the neural events 
being monitored. By contrast, the spatial resolution of fMRI is considerably better, 
as well as much superior to electrical and magnetic recording techniques, though 
slightly reduced from that of MRI. Due to the need for fast acquisition of time series 
information, the spatial resolution in the case of fMRI is limited somewhat by the 
signal-to-noise ratio (SNR). With single-shot imaging, for example, the acquisition 
time for fMRI is reduced and the pixel size must be increased to obtain a satisfactory 
SNR. With a suitable increase in magnetic strength [20], however, SNR is sufficiently 
enhanced to yield a pixel size slightly under 1 mm.

A key factor in the use of RS-fMRI is the measurement of neural activity fluctua-
tions rather than spiking events per se. Neural activity fluctuations (low-frequency 
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and indirectly measured using the BOLD signal) exhibit substantially different time 
courses from those of neural firing (high-frequency and direct). Accordingly, while 
the representation of individual, high-frequency spiking events is itself heavily 
blurred, the slow neural activity fluctuations detected by the BOLD signal display a 
well-resolved temporal pattern. Measurements of these fluctuations thus provide for 
accurate functional inferences obtained from voxel-to-voxel comparisons. Together 
with the high spatial resolution that is an inherent feature of fMRI, RS-fMRI currently 
constitutes the most powerful tool available for assessing the functional connectivity 
properties of brain networks.

2.2 Technical advances in RS-fMRI

2.2.1 General acquisition

The early detection of RSNs by Biswal et al. [10] used a standard 1.5 T clinical 
scanner equipped with a three-axis head gradient coil and a shielded birdcage radio 
frequency coil. A time course of 512 echo-planar images (EPI) from a 10 mm axial 
slice (flip angle 34O) was obtained every 250 ms and the respective data sets were 
band pass filtered at <0.08 Hz. Using these moderate parameters, the study demon-
strated a high degree of temporal correlation in the sensorimotor cortex and in several 
other regions associated with motor function. Departing from this early protocol, 
most RS-fMRI scanning now employs 3 Tesla (3 T) field strength to obtain clinically 
reliable data and gradient-echo echo-planar imaging (GE-EPI) sequences [21, 22]. 
Because RSN acquisition is T2* weighted, GE sequencing is typically used in prefer-
ence to T2 weighted spin echo sequences [23]. Whole-brain coverage is required, with 
high in-plane resolution (about 2 to 3 mm) and a repeat time (TR) of 2 to 3 s [24] to 
capture the distributed configuration of RSNs.

While most RS-fMRI imaging studies rely on these or comparable protocols, current 
resting-state procedures also have available an arsenal of advances that can supplement 
the current standard conditions. Among other developments, these include procedures 
for increasing data acquisition speed [22], enhancing spatial resolution by improving 
SNR capabilities with high-strength magnetic fields [20], preprocessing corrections for 
motion artifacts [25], and big data acquisition capability [26].

2.2.2 Rapid data acquisition

The advent of parallel imaging has stimulated an increasing number of studies that 
have sought to harness the speed of data acquisition made possible by its development 
[11]. Fast RS-fMRI has been motivated by various objectives. Firstly, increasing data 
acquisition speed can assist multivariate approaches while also retaining a comparable 
level of sensitivity. For clinical groups for whom RS-fMRI is an increasingly used 
diagnostic approach, this affords greater interpretive power [27]. The use of rapid 
data approaches also enables better discretization of dynamical changes associated 
with connectivity changes, which are posited to reflect distinct brain states [28–30]. 
Additionally, rapid RS-fMRI data acquisition can help to identify artifactual contribu-
tions, such as cardiac and respiratory rhythms [31, 32]. With low sampling rates, these 
sources of physiological noise often alias to lower, functionally associated, frequency 
bands [33] making them difficult to resolve since task time series are unavailable in 
the resting state [34].
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Parallel MRI imaging employs multiple receiver coils for fast data acquisition. 
These capture spatially distinct data sets due to the differential spatial profiles of the 
receivers. The most widely used configurations are Multiband (MB) and 3D echo 
planar imaging (EPI) [35]. Multiband pulses excite a set number of slices simultane-
ously, ranging from MB2–4 up to MB8, which are then unfolded. Faster sampling rates 
can be achieved by reducing the overlap between slices with techniques like GRAPPA 
or CAIPIRINHA [36–39]. Both of these techniques operate in the frequency domain 
and are based on the principle that k space information within a given point is par-
tially retained in neighboring points of the k domain, which can be retrieved during 
scanning. The CAIPIRINHA technique is an evolution of the GRAPPA technique, in 
which there is an applied acceleration along the Ky and Kz directions and an additional 
phase offset (slice-shift) along the Kz direction. These modifications yield unique 
frequency patterns and therefore simpler aliasing to solve. In 3D EPI, the slice direc-
tion is embedded with a phase encoding gradient. Each repetition excites the whole 
imaging volume, requiring a smaller flip angle. The use of the encoding gradient also 
accelerates data acquisition, which when used in conjunction with the CAIPIRINHA 
approach, can still achieve faster retrieval [40].

Another approach used for rapid data retrieval is that of Magnetic Resonance 
Electroencephalography (MREG). This approach derives its speed from the ability to 
traverse the k-space with a stack of spiral trajectories [41], which significantly reduces 
sampling recovery, enabling whole data scans in less than 100 ms. A drawback is 
the relatively low spatial resolution of about 3 mm. However, the method offers the 
significant advantage of greatly facilitating dynamic functional connectivity analyses 
[42] that require large data sets.

2.2.3 High strength fields in RS-fMRI

Although most RS-fMRI studies are conducted at 3 T, higher field strengths offer 
advantages not provided by standard 3 T field strength. Higher field strengths yield 
correlation coefficients that are consistently higher for resting networks, due to the 
linear dependency of the SNR on the magnetic field [43, 44]. The higher correlation 
and enhanced signal combine to improve signal detection and lessen the amount of 
mathematical processing needed for signal resolution, which means that the spatial 
characteristics of resting networks can be measured with greater precision than at 
lower field strengths. The chief advantage of higher fields thus is an improved spatial 
resolution, which enables a better spatial delineation of network maps.

Additionally, due to the higher SNR, the temporal reliability of mapping is also 
improved, lending the technique a broader clinical range. For example, RS-fMRI at 
7 T has been shown to enhance the temporal reliability of sensorimotor and language 
network detection in preoperative planning [45] and for mapping habenula resting-
state networks involved in anxiety and addiction disorders [46].

On the other hand, use of higher field strengths has several drawbacks, including 
longer sampling intervals, inhomogenous magnetic field properties, and the loga-
rithmic growth in specific absorption rate (SAR) with increasing field strength [22]. 
In particular, the higher spatial resolution requires long repetition times, due to the 
need to include data acquisition from the whole brain to accommodate the brain-wide 
distribution of major RSNs. Additionally, inhomogeneities in magnetic field affect 
receive and transmit RF coil sensitivity [47], which requires correction for accurate 
connective mapping, while SAR constraints on echo planar imaging affect multiband 
pulses [22].
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2.2.4 Big data

Current increases in study size are generating exceptional amounts of data 
in their attempts to explore ever-larger studies of RSNs in brain operation. The 
Human Connectome Project [48] and the 1000 Functional Connectomes Project 
[49] have released in excess of 1000 RS-fMRI data sets, for example. Traditional 
data-driven methods for handling RS-fMRI data, such as independent components 
analysis and graph theoretic approaches, become unwieldy and lose descriptive 
power at elevated data levels. The need for suitable techniques to address big data 
handling is thus currently stimulating the development of new preprocessing 
methods and analytical adaptions that can accurately reflect network structure and 
dynamics [50].

Large data sets are typically characterized in three ways, the amount of data, 
termed Big Volume, the diversity of information, termed Big Variety, and the reli-
ability of the data as a representation of brain functional architecture, termed Big 
Veracity. Big-volume RSN data sets are characterized by an informational mass 
exceeding that of a single very large computer processing capacity [50], though not 
so large as whole genome data sets. Big variety reflects the diversity of information 
within a single data set but can also extend to comparisons between two data sets, 
such as occurs with two or more imaging data sets or with other information modes 
like behavior, for example, the Open Access Series of Imaging Studies (OASIS) project 
with more than 500 subjects worth of data [51]. Big Veracity considers the various 
data sources that can lessen the ability to extract meaningful network data, including 
noise, resolution artifacts, data inconsistencies, and acquisition errors.

Initial steps involved in big data handling entail preprocessing to remove the 
effects of sources that diminish the ability to assess meaningful data. Several prepro-
cessing steps are becoming more accepted, but these can also greatly increase compu-
tational load. The most widely used is the minimal preprocessing pipeline [50]. Its goal 
is to provide RS-fMRI data for analysis with a minimum level of quality, which also 
minimizes the loss of meaningful data. This can be of substantial benefit to research-
ers lacking access to high-powered preprocessing of Big Volume data sets. Currently, 
preprocessing software tools tend to adopt a parallelization approach with functions 
running in parallel for tools such as statistical parametric mapping (SPM) [50].

Analytical procedures have tended to emphasize graph-theoretic tools that are 
amenable to statistical mechanical methods. One of the most used topological tools is 
Mapper, developed by Singh et al. [52], which adopts a persistent homology approach. 
Mapper lends itself to big data analysis because the global organizational structure 
is divided into a series of overlapping slices. These are reconstructed via the use of 
common points located in the overlapping zones, which serve as a vehicle to orient 
topology.

3. Assessing functional connectivity in RSN data

Several approaches have been developed to analyze imaging data after prepro-
cessing and band-pass filtering. These include approaches driven by research focus 
as well as those dictated by the data itself, the so-called data-driven and model-free 
approaches. Each can be used to delineate the distribution of functional connections 
that characterize major networks of the brain.
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3.1 Regions of interest seed-based analyses

Functional connectivity determinations extend fMRI measurements of brain 
activity by providing likelihood estimates of functional associations between neural 
activity zones [1]. In practice, seed-based analyses identify deviations from indepen-
dence between distributed and often distant sources of neural activity and a region of 
interest; that is, statistically significant deviations from independence reveal depen-
dent relationships that functionally connect activity zones. Extending these relation-
ships to multiple zones enables the construction of connectivity maps that become 
identified with unique networks. Exploiting a seed-based ROI strategy, for instance, 
one comprehensive study of resting-state fMRI sequences from 1000 healthy adults 
[53] revealed seven functionally connected networks at coarse resolution and 17 
at fine resolution. The simplicity and interpretability of the ROI technique make it 
procedurally facile and a frequently adopted approach. However, the method relies 
entirely on user-defined ROIs and so is limited for network discovery by its a priori, 
selected criteria.

3.2 Independent components analysis (ICA)

In light of this caveat, coupled with the evolution of mathematical models and 
improved computational capabilities, there has been a paradigm shift from that of 
imposing initial conditions, that is, seed-based ROIs, on the data to that of extracting 
patterns of brain activity directly from the raw time series. The main example of this 
approach is independent components analysis. In this approach, the time series signal 
is assumed to be due to multiple spatio-temporal processes that are statistically inde-
pendent of each other. By extracting the independent signals, various time courses 
of specific brain regions can be constructed and grouped into maps representative of 
their spatial distribution.

Independent components analysis (ICA) aims at overcoming the selective bias 
toward priors contained in seed-based approaches by relying on direct data-driven 
interrogation for assessment of functional connectivity [54]. To do so, ICA posits an 
inherent representation of independent factors in the captured time series data. Its 
goal is to decompose the vector representation of these factors, Z, as a product of a 
combinatorial matrix and the spatially independent components where:

 ∑ J
j jj=1

Z = NC +E = n c  +E,  (1)

Here, N is a T × J combinatorial matrix with columns nj, and C is the J × Nv matrix 
of independent components with rows cj, where each cj corresponds to component 
j for a cumulative total of J independent components. These components represent 
the networks of various functions. The elements of the matrix E are independent, 
normally distributed noise contributions. It is presumed that the component maps, 
cj, j = 1,. .., J contain overlapping and statistically dependent signals, but that the 
individual component map distributions are independent. Each independent compo-
nent cj is a vector of size Nv and represents the relative amount of a given voxel that 
is modulated by the activation of that component. Due to the retrieval of large data 
during the acquisition stage, various algorithms have been developed to estimate the 
components, for example, the independent components analysis with a reconstruc-
tion cost (RICA) algorithm [55].
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3.3 Graph theory analysis

Another approach to the interpretation of RS-fMRI datasets employs graph theory, 
where activity sources comprise nodes and connectivity defines the edges that link 
these nodes [56]. Unlike ICA, which focuses chiefly on the strength of correlation 
between different domains, graph theory characterizes the features of network 
topology. The graph theory approach describes the interaction between nodes by 
means of such graph parameters as average path length, clustering coefficients, node 
degree, centrality measures, and level of modularity. Graph theory is thus a promis-
ing technique for exploring the integration and segregation of networks in the brain. 
Graph metrics like average path length, for example, reveal the extent of integration 
of brain networks. Centrality, on the other hand, examines whether a particular node 
has a central or leading role in information segregation via its propagation to other 
nodes in a network.

Increasingly, modularity assessments have been used to characterize functional 
adjustments occurring during behavior, network perturbations, or pathologies that 
affect network function and the observed values have been shown to undergo sig-
nificant alteration in such pathologies as stroke [57] and psychiatric disease [58–60]. 
Modularity assesses the presence of functionally independent units or modules that 
compose resting-state networks. These are defined as clusters of nodes displaying 
greater functional connectivity within the group than with the rest of the brain. 
During task-specific activity, such clusters are reallocated, implying that the networks 
themselves are reorganized topologically [61, 62]. Their flexibility suggests that they 
operate as independent functional entities inducing [63–65] specific behaviors via 
their reallocation [66, 67].

In practice, modularity analysis [63] describes the difference between the 
network configuration at rest and the network reconfiguration during behavior-
ally altered conditions by means of a quality function (Q ) [68] that maximizes the 
optimal modular decomposition. As expressed by Q , the modularity index pro-
vides a measure of the degree of modular segregation [69], where Q is close to one 
when there are few edges between modules and high density inside modules—that 
is, module segregation is present—and Q is close to zero when the number of con-
nections between modules is comparable to that of random—indicating an absence 
of segregation.

3.4 RSN functional connectivity maps

The first demonstration of correlated spontaneous fluctuations explored somato-
sensory areas. Since this initial demonstration, multiple other resting networks have 
been discovered. Functional connectivity determinations have shown that these 
networks can be reliably reproduced [53], although much variation in the identifica-
tion of networks is dependent on the degree of resolution achieved during scanning. 
Major resting networks, according to Yeo’s seven network parcellation atlas [4, 53], are 
listed in Table 1 and classed broadly as belonging to either sensorimotor or associa-
tion groups. While numerically greater numbers of networks can be detected at finer 
resolution, e.g., 17 network estimate of Yeo et al. [53], generally, the 17-network 
determination fractionates the lesser member set into smaller network components of 
the seven major networks.
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4. RSN dynamics and brain states

4.1 Assessing sources of connectivity modulation

While methodological advances in RS-fMRI have made significant strides in 
unveiling a macro-scale, network-based architecture for the brain, how brain func-
tions emerge from network connectivity remains uncertain. Brain states like those 
of sleep or altered states of consciousness undergo continually changing dynamics 
involving whole brain networks. These dynamics are regularly modulated by internal 
fluctuations in activity that can affect sensory efferent or motor afferent activity 
[70, 71] and alter spatiotemporal patterning [72]. The ubiquity of these influences 
reveals that brain dynamics involve causal influences affecting network connectivity, 
which can be detected with BOLD fMRI [73]. Accordingly, recent developments in 
RS-fMRI seek to build on functional connectivity determinations by relating causal 
sources of connectivity changes to brain states and behavior. Network descriptions of 
these have been termed effective connectivity.

4.1.1 Effective connectivity

Effective connectivity presumes that efficient causes precede their effects and that 
these are revealed in the time domain. Because the functional coupling among neu-
ronal populations changes as a function of processing demands [74] it is inherently 
context-dependent and dynamic. Accordingly, effective connectivity has been used 

Network Type Description

Default Mode 
Network
a

Association Contains the dorsal prefrontal cortex, posterior cingulate cortex, 
precuneus, and angular gyrus

Dorsal Attention 
Network.
n
s

Association Includes gyri adjacent to the intraparietal sulcus, cortex near the 
MT + complex, and both the frontal and secondary eye-fields

Ventral Attention 
Network
r

Association Includes the temporo-parietal junction and ventral frontal cortex

Fronto-Parietal 
Network
p

Association Includes the dorsolateral prefrontal cortex, the inferior parietal lobule, 
and the middle temporal gyrus,

Limbic Network
m

Association Contains subcortical areas including amygdala, thalamus, basal 
ganglia, and cortical cingulate gyrus

Visual Network Sensory-
motor

Includes the striate and extrastriate cortical regions

Somato-Motor 
Network

Sensory-
motor

Contains the primary motor and somato-sensory cortex

Table 1. 
Major resting state networks of the human brain classified according to association or sensory-motor functions. 
Network identification follows that of Yeo et al., [53].
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to clarify sources of brain activity and the directionality of their influence. Inferences 
of causality are used to interpret the mechanisms that underlie neuronal dynamics 
and assist studies of how neuronal populations are functionally integrated [75]. In 
practice, models of effective connectivity seek to assess whether functional coupling 
is modulated under task-based manipulations and rely on fMRI data. The most com-
mon analytical methods include structural equation modeling (SEM), multivariate 
autoregressive models (MAR), GRANGER, and dynamic causal modeling (DCM).

DCM is perhaps the most widely employed approach for assessing effective con-
nectivity and is based on an input-output model for a system of n interacting brain 
regions [76]. In this method, the activity of a neuronal population from each region 
is represented by a single state variable, which is perturbed by controlled inputs. 
DCM models report the series activity changes vis a vis the system’s resting state 
represented by the system state vector (mathematical approximations of the system 
typically employ a Taylor series approximation that describes non-linear functions). 
Using these models it is possible to explore the dynamic character of brain activity 
under normal and pathological conditions. Unlike other approaches, DCM does not 
utilize time series data directly but combines a proposed model of the unknown 
neuronal dynamics with a forward model that translates neuronal states into output 
measurements. The description of the neuronal population activity employs a bilinear 
differential equation process, which is combined with the forward model.

Since the inception of the DCM, various methodological changes have extended the 
DCM approach [77, 78]. Recent, and more complex, models have included simulations 
from various prominent neuron classes, such as deep pyramidal cells, and spin stel-
late excitatory interneurons that contribute to the neuronal state [79]. Because of the 
complexity of these neuronal models, more general models have attempted to overcome 
their perceived difficulties in data fitting. One approach premises neural activity on 
generalized spiking described by Wilson Cowan spiking equations to satisfy a wider 
range of applications. In this adaptation, the Wilson Cowan equations are used to 
describe the evolution of excitatory and inhibitory activity in a population of neurons, 
instead of the bilinear equations used for both single and two- state DCM [80].

In a novel variant of DCM, effective connectivity analyses are conducted for large-
scale or even whole-brain networks [81, 82]. This approach modifies the original 
DCM procedure in several ways: (i) translation of equations of state from the time 
to frequency domain using Fourier transformation, (ii) application of a mean field 
approximation across regions, and (iii) specification of conjugate priors on neuronal 
input. Choosing appropriate priors yield a generative model that can be used for mak-
ing inferences about changes in directed connection strengths and inputs.

4.1.2 Granger causal analysis

Like DCM, Granger causal analysis provides a statistical tool for assessing directed 
functional connections from time series data, based on the concept that causes 
precede and induce their outcomes [13]. The method includes linear vector autore-
gressive models obtained from time series neural data, where a variable at a specific 
time point is modeled as a linearly weighted sum of its own past and that of a set of 
other variables, each represented by a vector. Minimizing estimation errors yields the 
set of optimal connection weights. Variable Y is said to be caused by variable X if the 
time series of X provides unique information not present in the prior Y series [83] that 
helps to predict the future Y series.
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4.2 Macroscale brain organization and RSN dynamics

In principle, inferences of causality from directional connectivity determina-
tions can be extended to brain-wide neuronal dynamics. Empirical studies from 
RS-fMRI, for example, show that RSNs are differentiated on the basis of their 
metastability and synchrony [84]. These and similar observations have stimulated 
models of brain function and behavior that predict that the human brain at rest 
operates at maximum metastability, that is, in a state of maximal network switch-
ing. Under such conditions, information flow can be said to be guided by temporally 
ordered sequences of metastable states [85, 86]. The existence of RSN properties 
like metastability thus implicates directed connectivity changes in the construction 
of brain states, which emerges from the dynamics of RSNs in whole brain, effective 
connectivity [87] in health, disease, or trauma. The methodological question that 
arises is that of generating a descriptive approach relating functional neuroimag-
ing data to whole brain dynamics. Recent attempts to address this question have 
adopted two approaches.

4.2.1 Recurrence structure analysis

The first employs a BOLD, data-driven, computational method that leverages 
the method of recurrence structure analysis (RSA), a mathematical procedure derived 
from Poincare’s recurrence theorem [15]. The Poincaré theorem states that trajectories 
of a complex dynamical system visit certain regions of their available state space 
more frequently over the course of time than other regions of the state space. This 
“recurrent” behavior can be described by a recurrence plot method (RP), which allows 
a matrix-based visualization of recurrent states. These latter are mapped into state 
space trajectories described by symbolic sequences [88]. Combining the structure-
function modules of a brain hierarchical atlas with the optimized recurrent structures 
yields resting-state networks presumed to reflect time-dependent, recurrent cognitive 
states.

4.2.2 Landscape of informational structures

The second approach posits the governance of RSN dynamics by a ground-state 
global attractor. This global ground state is mathematically described as a stable 
stationary solution representing a point of maximal stability in a landscape of sta-
tionary points (nodes) that information flows toward or away from [89]. Similar 
to whole-brain models, the description of this landscape consists of coupling local 
dynamics with anatomical brain connectivity. The stability and instability direc-
tions of each stationary point are characterized by non-stationary solutions entering 
or leaving these points, respectively. This provides a framework in which coupled 
systems of differential equations describe individual brain regions (nodes) in terms of 
other brain regions and with respect to the global ground state; hence, there exists a 
global structure linking all stationary points. Accordingly, such points can be ordered 
by their level of attraction or stability and characterized by various topological 
measures, for example, number of energy levels (NoEL) or sensitivity to perturba-
tions (criticality) [90], based on connectivity data. This theoretical framework has 
been shown to successfully account for the highly structured dynamics arising from 
spontaneous brain activity in RSNs [91].
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5. Resting state networks in disease

5.1 RS-fMRI studies in clinical diagnosis

Given the utility of RSNs for understanding the brain’s functional organization 
in healthy individuals, RS-fMRI has also been exploited for determining how the 
brain’s organization is modified as the result of trauma, degeneration, or disease 
[92]. A majority of RS-fMRI studies have consisted of comparisons of resting-state 
functional connectivity patterns between groups of normal subjects and those with 
neurological or psychiatric impairments [93], in part due to the relative ease with 
which these studies can be conducted. While changes in the correlation patterns 
of spontaneous activity have been reported in many cases, the consistency of the 
correlations has varied significantly with the disease type. Studies of the default 
mode network in AD, for example, generally yield consistent patterning whereas 
network patterns in other types of diseases, for example, schizophrenia, exhibit 
wide variation.

Underlying mechanisms and even diagnostic markers of these dysfunctions 
are in many cases unknown, moreover, a hindrance to assessing how functional 
network changes modify behavior. This obstacle could be partially surmounted 
by knowing how focal perturbations impact functional and task-based connectiv-
ity. Supporting this, neuroimaging studies show that localized changes in neural 
activity result in distinct activity and functional connectivity changes within and 
between networks [93, 94]. Mapping of whole-brain effects on RSNs due to local 
trauma may therefore reveal how RSNs are globally reorganized following these 
insults. For example, the characterization of large-scale deregulations in functional 
connectivity may emerge from studies of selective trauma in highly interconnected 
core regions [95].

5.2 RS-fMRI tools for stroke-induced changes in brain organization

With this as an objective, RS-fMRI technical and analytical procedures have 
been exploited to interrogate RSN-based changes that occur in stroke. By defini-
tion, stroke is a clinical syndrome characterized as an acute, focal neurological 
deficit that is the result of vascular injury (e.g., infarction, hemorrhage) within 
the central nervous system [96]. It is itself a major cause of death and disability 
across the globe. In adults worldwide, stroke is the chief cause of acquired physical 
disability, and the second leading cause of mortality in middle-to high-income 
countries. Because the disruption is usually sudden, stroke’s effects on neural 
networks can be directly attributed to the focal impairment, rather than to more 
widely extended and long-term processes, such as degeneration. Stroke frequently 
results from ischemia, for instance, which deprives the supply of blood to adjacent 
cerebral tissue [17].

Assessing the spatial locus of a stroke-based lesion requires knowledge of the 
brain vasculature, which assists in co-localizing fiber pathways and structural 
connectivity. Anterior circulation, for example, includes regions supplied by 
the anterior and middle cerebral arteries, which contain the ophthalmic artery. 
Strokes occurring within the opthalmic artery lead to monocular loss of vision. 
Proximal occlusion of the middle cerebral artery, on the other hand, can cause 
contralateral hemiparesis and hemi-sensory loss, visual field defect, and/or 
hemineglect [96].
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5.3 Connectivity determinations in stroke diagnosis

As mentioned, stroke outcomes involve not only focal disturbances at affected 
sites, that is, the set of regions directly damaged or indirectly affected by the stroke, 
but also those more distally located that are embedded within the larger functional 
network that is in dynamic balance with other networks of the brain. Hence, resting-
state measures of connectivity can be expected to reflect a more distributed network 
organization than the lesion site alone and to be correspondingly seen in spatially 
extended, connectivity changes.

Consistent with this, global studies of focal infarcts affecting motor behaviors 
characteristically display a decrease in functional connectivity involving interhemi-
spheric homologous sensory and motor areas, which is correlated with the degree 
of behavioral impairment. Reduced functional connectivity between hemispheres 
is also seen in rodent models of stroke [97], corresponding with decreases in motor 
proficiency [98]. In the first few days after stroke, this involves the connectivity 
between the ipsilesional primary sensorimotor cortex and its contralateral homologs 
[99]. Similarly, RS-fMRI of the sensorimotor network in humans, including the 
M1, SMA, secondary somatosensory cortex, cerebellum, putamen, and thalamus 
regions, reveals a direct correlation between motor performance and the degree of 
M1 interhemispheric connectivity [100]. Structural observations are consistent with 
this and show that the integrity of corticospinal fibers correlates with the reduction 
in interhemispheric M1 resting-state connectivity [99, 101]; RSN studies of effective 
connectivity with DCM further show that post-stroke excitatory, ipsilesional influ-
ences from premotor areas to M1 are also reduced, decreasing M1 output for paretic 
hand movements [17]. Ipsilesional inhibitory influences from M1 to the contralesional 
M1 are also attenuated. Together, these results implicate a reduction in inhibitory 
interhemispheric control of M1 homologs in paretic motor movements and excitatory 
intrahemispheric effects from premotor areas to M1. Importantly, they also reveal 
the interpretive utility of combining RS-fMRI effective and functional connectivity 
determinations in network assessments.

5.4 Assessing topological changes in stroke

Functional determinations assist in the identification of resting networks based 
on characterization of connectivity number, direction, and weight. Changes in such 
parameters help to assess the degree to which the network has retained its functional 
association; that is, the degree to which it is intact. On the other hand, they do not 
assess connectivity topography, which reflects how the organization of the network 
influences information flow, which needs to be assessed with graph theoretical 
parameters like centrality or modularity. Recent evidence in animal models notably 
indicates that network topology is likely to change following stroke [98]. In a mice 
model, total functional connectivity increases in comparison with normal controls. 
Since interhemispheric connectivity is reduced in most stroke subtypes, this suggests 
that intrahemispheric functional connectivity is cumulatively increased, generating 
a new organizational network structure within the affected hemisphere; that is, a 
transference of interhemispheric callosal connections to intrahemispheric targets.

Diagnostic assessments of network reorganization in stroke patients, accordingly, 
have been required, typically employing graph theoretic modular analysis. Modular 
analysis of task-based studies in normal subjects, for example, shows a high level of 
reorganization of nodes in the frontal and temporal cortices from the resting state. 



New Advances in Magnetic Resonance Imaging

96

Moreover, as mentioned, complex dynamics occur between networks during task 
performance, which involves the reallocation of network modules. Graph theoretic 
analysis shows that this entails the switching of network topologies between the fron-
toparietal, ventral attention, and the dorsal attention areas [63–65]. In like manner, 
modularity determinations can be expected to show stroke-induced reorganization.

Existing studies reveal, in fact, a low-dimensional architecture following stroke 
[57]. The significance of this network reorganization is as yet undetermined. One 
possibility is that decreased modularity reflects a default strategy for efficient behav-
ioral responses in a complex environment, which is needed to reduce the degrees of 
freedom in movement [101]. In healthy individuals, a higher modularity provides 
for exploration of varied trajectories, that is, there is a maximizing of degrees of 
freedom, which needs to be reduced to provide stability for tasking. In stroke, this 
exploratory ability is lost, together with a corresponding loss in modularity. The 
reduction in modularity would thus imply a reduced ability to process information 
effectively [57].

Methodologically, assessing this possibility would require RS-fMRI procedures 
capable of whole-brain modeling to determine whether and which topographical 
adjustments occur on a global scale [90]. This is likely to require a synergy of ongoing 
developments that merge enhanced signal recognition and data acquisition, big data 
processing pipelines, and whole brain reconstruction [22, 50, 90], suggesting that 
advanced clinical analysis with RS-fMRI remains at an early, but promising stage.

6. Conclusion

Resting-state fMRI has enabled the identification of brain networks critical to 
affecting how humans interact, perceive, and process environmental and internal 
stimuli. Much of the success of this discovery can be attributed to the synergy 
between the technical capabilities of fMRI and the low-frequency activity character-
izing RSNs. RS-fMRI has benefitted from a spectrum of technical advances in fMRI 
that have occurred since the initial discovery of RSNs, including improved data-gath-
ering capacity, processing, and handling. The enhanced reliability of RSN detection 
made possible by these advances has underwritten increasingly powerful interpretive 
tools that are clarifying the role and structure of brain networks in organizing and 
executing global brain function. These insights into global brain events have in turn 
revealed areas where new technical advances, like big data processing and whole 
brain modeling, are needed, which can interrogate not only resting-state connectivity 
associations but also the dynamic variations in these associations that occur during 
brain behavior. While the use of these tools is currently limited to the research labora-
tory, their future potential for clinical use warrants the current expansion in technical 
development that will make possible the diagnosis of brain states.
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Chapter 6

Advantages of Digital Technology 
in the Assessment of Bone 
Marrow Involvement by Magnetic 
Resonance Images
Pilar Giraldo Castellano and Mercedes Roca Espiau

Abstract

Magnetic resonance imaging (MRI) is the gold standard for evaluating bone 
marrow (BM). The information provided is a useful tool for obtaining a global map of 
the contents of the medullary cavity. The applications of this technique to the study 
of different processes affecting the bone marrow are of great importance to know 
the extension of disease, to distinguish by image different entities, and to evaluate 
response to therapies. Actually, machine learning tools aid in the interpretation of 
images and patterns that are not visible or are unfamiliar to the observer. In addition, 
integrating clinical, biological, and therapeutic data with imaging using artificial 
intelligence methods applied to these studies provides a broad perspective and tool 
that can predict the risk of complications. The systematic inclusion of structured 
bone marrow MRI reporting is useful to standardize the collected data collaborate 
in developed algorithms to learning model, and facilitate clinical management and 
academics collaboration.

Keywords: bone marrow, MRI, infiltration patterns, lysosomal disorders, structured 
reports, machine learning

1. Introduction

This chapter reviews the information provided by magnetic resonance imaging 
(MRI) as a useful tool to obtain a global map of the content of the medullary cavity 
and the applications of the technique to the study of different processes affecting 
bone marrow.

The daily clinical practice involves resolving situations of uncertainty in order to 
obtain the most accurate diagnosis possible and initiate therapeutic measures quickly. 
In this sense, the exchange of information and collaboration between the clinical 
physician and the MRI specialist is essential to answer questions regarding the global 
or focal involvement of the bone marrow in various pathological situations.

MRI, as a useful imaging technique to distinguish differences and anomalies in 
different tissues, bases its resolution on reflecting the balance between the medullary 
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fatty component and the hematopoietic cellular component, providing an image of 
the variations that occur between these components within the bone cavity [1].

Artificial intelligence (AI) models based on deep learning algorithms offer actually 
diagnostic assessment and follow-up assistance for low-frequency entities, with find-
ings to date suggesting that the diagnostic performance of such systems is equivalent 
to that of health-care professionals [2].

2. Rational basis of magnetic resonance imaging

The physical basis of the procedure is due to the property possessed by some 
atomic nuclei of orientation in a magnetic field and the emission of a signal when 
subjected to an electromagnetic wave of an appropriate frequency. The basis is send-
ing a sound signal on a magnetized object, developing macroscopic magnetization 
phases, which disturb the state of equilibrium due to the sound signal and collection 
of the MR signal and the return to the state of equilibrium or relaxation. This signal 
of a return to equilibrium or relaxation is the MR signal [3].

Some notions to keep in mind are the following:

• The relaxation phenomenon characterizes the times T1 and T2.

• The repetition time or TR is the interval that separates 2 impulses/2 successive.

• The echo time or TE is the time interval separating the impulse/2 from the 
measurement of the emitted signal.

• The longitudinal relaxation time or T1 represents the growth of the magnetism 
M (Mz component) to return to its initial value. It is an exponential growth, 
which takes place slowly.

• The transverse relaxation time or T2 represents the decrease of the vector M 
(Mxy component) to return to its initial value. It occurs rapidly and is linked to 
the loss of proton coherence.

• T1-weighted sequences provide information on anatomical landmarks, and T2 
sequences provide a closer approximation to the histological characterization of 
the involvement.

• The STIR sequence adds a fat suppression effect and chemical shift artifact 
elimination. It combines a short T1 with a long TR and shows a contrast between 
healthy and pathologic tissue superior to conventional T2.

• In phase-out-of-phase: Due to its lack of proton content, the trabecular bone does 
not present an MR signal but creates heterogeneities in the magnetic field. This is 
more evident in Gradient echo sequences where this artifact can be contributory. 
Therefore, if the trabeculae have been destroyed, the artifact is smaller, and the 
signal intensity will be higher.

• Diffusion-weighted MR imaging (DWI) is a technique that assesses motion 
of watermolecules in the soft tissues, known as Brownian motion, for tissue 
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characterization. A DWI sequence may be helpful for lesion detection, but its 
utility in evaluating and characterizing focal bone marrow lesions is unknown. 
MR Spectroscopy. MRS is useful for fat quantification, and bone marrow studies 
have primarily focused on its use in the imaging of osteoporosis [4].

3.  Applications of magnetic resonance imaging to the study of bone 
marrow

In general, bone marrow involvement is easy to detect and interpret by MRI 
without requiring sophisticated sequences; it is very useful to obtain a map of hema-
topoietic marrow distribution and infiltration.

3.1 Normal bone marrow distribution

In children, bone marrow occupies 85% of the bone and accounts for 5% of the 
body weight. In the adult, red marrow is located in vertebrae, sternum, ribs, epiphy-
ses of long bones, and iliac crests.

The bone marrow content in adults is 70% water and 30% fat. Hematopoietic 
marrow (red) consists of 40% water, 40% fat, and 20% protein. The fatty marrow 
(yellow) is made up of 15% water, 85% fat, and 5% protein.

Normal bone always contains both fat and red marrow, the percentage depending 
on age and anatomical region (Figure 1). However, it undergoes variations in its fatty 
composition/hematopoietic cellularity as part of a transformation phenomenon and 
in dependence on cellular requirements. Fat tissue is very labile and can be replaced 
by hematopoietic tissue under the influence of appropriate stimuli. Anatomically, 

Figure 1. 
Distribution of red marrow and fat. A in the child. Red bone marrow is distributed in 85% of the bones. B in the 
adult, the red bone marrow is located in vertebrae, sternum, ribs, epiphyses of long bones, and iliac crests.



New Advances in Magnetic Resonance Imaging

110

medullary repopulation occurs in the reverse direction of regression, i.e., from 
proximal to distal areas.

MRI is able to reflect the ratio between the medullary fatty and hematopoietic 
components, through the changes that occur within the bone cavity [5, 6].

Marrow fat has a signal analogous to subcutaneous fat, the signal intensity is high 
due to its high proton content, expressing itself with a short T1 and a long T2 with 
high signal intensity in T1 and T2. As we have said, normal bone marrow contains 
70% water and 30% fat and is hypointense in T1 and T2. T1 is the fundamental 
sequence for the study of bone marrow. The bone cortex has low proton content and 
small signal intensity.

Fat has a high signal in T1 and T2. Red marrow has an intermediate signal lower 
than fat and higher than muscle. The alterations that can occur are reconversion, 
infiltration, depletion, edema, and ischemia [7].

3.2 Patterns of bone marrow infiltration by MRI

The distribution of bone marrow involvement may be diffuse or focal. Several 
distribution patterns have been described according to the images that appear on 
magnetic resonance imaging. Table 1 shows the patterns described by Moulopoulos 
et al. [8] in the study of the bone marrow in patients with bone marrow involvement 
and the one described by our group [9] (Figure 2).

3.3 Hematological entities with preferential involvement of bone marrow

3.3.1 Multiple myeloma (MM)

Eighty percent of patients with multiple myeloma present osteolytic lesions or 
demineralization at the time of diagnosis [10]. When these lesions become evident on 
radiography, more than 50% of the bone is already occupied.

There are three described patterns of infiltration in MM by MRI [11]:

1. Focal lesions, associated with lytic lesions in radiology, are the most frequent 
(Figure 2).

2. Diffuse infiltration appears in 25% of patients and is associated with decreased 
hemoglobin and a high percentage of medullary plasmacytosis. The MR signal is 
hypointense in T1 with diffuse gadolinium uptake (Figure 3).

According to Moulopoulos et al. [8] According to Roca et al. [9]

Focal Homogeneous (H)

Variegated (or variegata) Nonhomogeneous (NH):

Diffuse reticular (NHR)

mottled (NHM)

diffuse (NHD)

Table 1. 
Patterns of bone marrow infiltration by MRI.
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3. Mottled or variegated pattern, with hypointense foci in T1 and generally hyperin-
tense in T2 and STIR with contrast uptake (Figure 4). Libshitz et al. [12] describe 
diffuse involvement as areas where myeloma cells mix with hematopoietic cells, 
producing a displacement of hematopoiesis caused by nodular accumulations 
formed mainly by plasma cells. For this reason, the appearance of MRI is variable.

A strong association between diffuse infiltration and disease progression has been 
described. Diffuse infiltration is an unfavorable prognostic factor in patients with 

Figure 2. 
Bone marrow infiltration. MRI patterns described by Roca-Espiau et al. 2007. Three MRI patterns were defined: 
Normal, homogeneous, and nonhomogeneous infiltration subtypes reticular, mottled, and diffuse.

Figure 3. 
Sagital spin echo (SE) T1 (A) focal pattern in spine in multiple myeloma. It is the most frequent lesions and 
corresponds to lytic images in plain radiology. SE T1 (B) and T2 (C) spine with diffuse infiltration. The MR 
signal is hypointense in T1.
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normal bone radiology [13]. Approximately 15% of patients are asymptomatic at 
the time of diagnosis, but bone marrow infiltration can already be detected in up to 
29–50% of patients [11–14]. Patients with focal and diffuse MR patterns tend to prog-
ress more rapidly than patients with mottled patterns. Following these criteria, MR 
infiltration imaging helps to identify patients who are at higher risk of complications 
and to predict disease progression [15, 16]. However, in the current diagnostic criteria 
for MM, only the focal pattern on MRI (> 1) is considered as a criterion for multiple 
myeloma (previously called symptomatic myeloma) and, therefore, an indication for 
treatment [16, 17].

MRI is probably not the most sensitive imaging procedure in the follow-up of the 
response in MM, since bone lesions will persist over time, and it is not possible to 
delimit whether it is an active lesion. It is, however, useful for comparative assessment 
of lesion progression [18, 19].

In the variety of light chain multiple myeloma, a different MRI pattern of mottled 
appearance with hypointense foci in both T1 and T2 have been described, analogous 
to the pattern that appears in Gaucher disease [20]. The diagnosis of solitary plas-
macytoma requires histologic demonstration of plasma cell infiltration. Although 
radiotherapy can eradicate this lesion, most patients progress to multiple myeloma, 
which has been attributed to occult disease growth [21].

For this reason, MRI is important in the extension study, since it detects unsus-
pected lesions, especially at the vertebral level. Currently, the accepted treatment 
for these lesions is radiotherapy covering at least 2 cm outside the tumor, and for 
this purpose, it is recommended to perform a previous MRI of the plasmacytoma 
area.

Figure 4. 
Sagital spin echo (SE) T1 (A) and T2 (B) mottled or variegated pattern in multiple myeloma, with hypointense 
foci in T1 and hyperintense in T2.
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The consensus panel (International Myeloma Workshop 2011) [22] recommends 
MRI in three situations:

• Asymptomatic myeloma (smoldering myeloma) to detect occult lesions.

• In symptomatic, for visualization of unsuspected focal lesions and soft tissue plas-
macytomas in the spine and pelvis.

• In symptomatic, to predict evolution, according to the MRI pattern.

3.3.2 Non-Hodgkin’s lymphoma and Hodgkin’s lymphoma

Bone marrow infiltration occurs in 5–15% of patients with Hodgkin’s lymphoma 
and in 25–40% of patients diagnosed with non-Hodgkin’s lymphoma. In T1, the 
pattern of involvement is heterogeneous diffuse, with focal infiltration being less 
frequent. In T2, hypersignal is observed, as well as contrast uptake after gadolinium 
injection. This aspect is nonspecific and indistinguishable from other spinal cord 
infiltration of other origins, and there is no difference in the MRI pattern between the 
different histological types of lymphoma [23, 24] (Figure 5).

Due to the permeative nature of lymphomas, tumor extension can be observed in the 
form of a soft tissue mass without rupture of the bone cortex. Although it is not pathog-
nomonic, since it can exist in other malignant lesions, especially in small cell tumors, its 
detection, and evaluation with MRI is highly suggestive of lymphoma [25].

3.3.3 Chronic myeloproliferative neoplasms

3.3.3.1 Polycythemia vera

In polycythemia rubra vera, the bone marrow of the axial skeleton appears 
hypointense in T1 with a diffuse and homogeneous character in MRI studies, being 

Figure 5. 
Coronal pelvis spin echo (SE) T1 (A), T1 Gadolinio (B), and T2 FSat (C) in non-Hodgkin lymphoma. Pattern 
heterogeneous diffuse in T1, hyperintensity of signal in T2, contrast uptake after gadolinium injection.
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indistinguishable from the diffuse involvement observed in other myeloprolifera-
tive neoplasia. When the reconversion is pronounced, the proximal epiphyses of the 
femur and humerus and the greater trochanter, also participate in the reconversion 
showing hyposignal in T1. In T2, the behavior can be variable depending on the 
cellularity, the extent of reticulin fibrosis, and the paramagnetic effect of iron if 
hemosiderosis is present (Figure 6). The assessment in the proximal femur can be 
quantified according to the involvement of the femoral head and greater trochanter. 
The greater trochanter is more resistant to reconversion than the epiphyses. Patients 
with infiltration of both have higher disease activity [26, 27].

3.3.3.2 Myelofibrosis

The fibrotic medulla, typical of primary or secondary myelofibrosis, is visualized 
in MRI as low signal areas in all sequences, but its appearance is nonspecific as in 
the rest of hematologic diseases and does not differentiate primary from secondary 
myelofibrosis. There is usually contrast uptake due to increased capillaries, large 
sinusoids, and increased vascular permeability [28]. Our group has performed a 
comparative study in patients diagnosed with primary or secondary myelofibrosis 
between histological findings and the pattern of bone marrow involvement by MRI. 
The results showed that the bone marrow patterns defined from lesser to a greater 
degree of involvement were: normal patterns according to age (NP), hematopoietic 
hyperplasia (HHP), reticular infiltration pattern (RP), mottled infiltration pattern 
(MP), diffuse heterogeneous infiltration pattern (DHI) and diffuse homogeneous 
infiltration pattern (HP) [29] (Figure 7).

Figure 6. 
Sagital spin echo (SE) T1 (A) and T2 (B) diffuse pattern in chronic myeloproliferative neoplasia (polycythemia 
rubra vera (PRV)). (C) Macroscopic section of spine with red infiltration PRV (right image) versus normal (left 
image).
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3.3.3.3 Systemic mastocytosis

Systemic mastocytosis is also a rare disease (less than 10% of mastocytosis), 
which usually affects adults and presents bone alterations in 70% of patients [26]. It 
has a special tropism for the axial skeleton, and although it can be silent, about 28% 
of patients report pain. The changes observed in simple radiology are small lytic or 
sclerotic lesions of focal or diffuse character (Figure 8). Mast cell proliferation in the 

Figure 7. 
Sagital spin echo (SE) T1 (A) mottled pattern, coronal SET1 (B) reticular pattern in chronic myeloproliferative 
neoplasia (myelofibrosis). (C) Bone marrow histological section (reticulin staining) showed reticular fibers. (D) 
Collagen fibers.

Figure 8. 
Coronal spin echo (SE) T1 (A) fémurs heterogeneous reticular pattern in systemic mastocytosis. (B) Plain radiology of 
the femur (C). Bone marrow histological section (hematoxylin–eosin staining. HE×4).  Showed mast cell nodules.
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bone marrow stimulates fibroblastic activity with granulomatous reaction, resulting 
in trabecular destruction with replacement by neoformed bone. Soft tissue masses 
and deformities secondary to fractures may also be observed. MRI shows hypointense 
lesions in all sequences with diffuse distribution and homogeneous or mottled char-
acter that affect the axial skeleton and may extend to femurs and proximal humerus 
[30]. In any case, the infiltration presents a nonspecific signal, although sometimes it 
is not detectable by other diagnostic means [31].

3.3.4 Bone marrow aplasia and hypoplasia

Acquired aplasia is of unknown cause and may be secondary to chemical agents, 
drugs, or infectious agents. Some cases are irreversible. Biopsy is usually diagnostic, 
demonstrating the absence of cells or marked hypocellularity with the predominance 
of fatty marrow and fibrosis [32]. It should be kept in mind that areas of increased 
hematopoiesis may coexist with hypo- or acellular marrow, so that bone marrow 
biopsy from the iliac crest is a sample that does not always reflect the true state of 
marrow function. The marrow findings in cases of aplasia secondary to chemotherapy 
or irradiation may be diffuse or focal in cases of selective irradiation [33].

Hypocellular or aplastic marrow is characterized by a diffuse or mottled hyperin-
tense pattern in T1, which corresponds to cellular replacement by fatty marrow. This 
signal enhancement is more appreciable in areas that normally contain red marrow 
remnants such as the proximal femur or vertebrae. In the appendicular skeleton, it is 
more difficult to appreciate this variation.

When there is a response to treatment, a heterogeneous pattern is observed in the 
vertebral bodies formed by hypointense foci in T1 and T2 that represent foci of hemato-
poiesis. MRI is a good method for assessing response to treatment [34, 35], taking into 
account that sometimes, these foci appear in vertebrae and are not seen in the pelvis, 
where the biopsy is normally performed if the patient recovers completely from his 
aplasia, the marrow returns to the normal appearance and distribution for his age.

The administration of erythropoiesis-stimulating factors as an adjuvant to che-
motherapy treatment produces a patchy pattern in MRI showing hypointense foci in 
T1, which in T2 present identical or slightly increased signal, similar to hematopoietic 
foci in their behavior but located in areas where fatty marrow is normally present.

The depletion of medullary cellularity also occurs during ionizing irradiation at 
therapeutic doses. In vertebral irradiation, no signal changes are usually observed two 
weeks after treatment. Between the third and sixth week, most of the red marrow ele-
ments disappear, and there is central fatty infiltration in the vertebral body, or even a 
heterogeneous appearance pattern may be seen, resulting from the partial elimination 
of red marrow cellular elements. After six weeks, all patients will show hypersignal in 
T1. During the first year of irradiation with low doses (less than 30 Gy), there is mar-
row regeneration, but above 50 Gy, there is no recovery, with the MRI showing the 
limits between the zone of fatty infiltration and the zone of normal marrow. In case of 
irradiation at low doses, marrow regeneration in MRI could be confused with cellular 
infiltration of another type. Irradiation doses higher than 50 Gy are associated with 
complete replacement by fatty marrow due to irreversible marrow extinction [34].

3.3.5 Hematopoietic stem cell transplant

Knowing the normal MRI appearance of bone marrow repopulation after transplan-
tation (BMT) is essential to be able to distinguish normal marrow repopulation from 
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tumor infiltration. The pretransplant MRI examination may show a normal appearance 
of the bone marrow in the spine and pelvis or an abnormal signal corresponding to 
infiltration, since the examination is performed prior to myeloablative treatment. In 
case of obtaining an MRI in this previous phase, a tendency to decrease signal in T1 and 
increase in STIR is observed, a modification that may be related to cellular necrosis and 
bone marrow edema induced by radiation and/or chemotherapy [35].

Until the third month after allo-TMO, no changes are observed in MRI in relation 
to the pretransplant examination. From the sixth month onwards, the changes are due 
to medullary colonization after induced aplasia, with the appearance of a heteroge-
neous signal alternating areas of hypo- and hyperintensity in T1 or a banded appear-
ance. This characteristic appearance observed in the vertebral bodies corresponds to 
cellular hypointensity in the peripheral areas below the vertebral plats and a central 
zone of hyperintense fatty signal. Histologically, the peripheral zones correspond to 
hypercellular areas of hematopoietic repopulation, while the central zone is poorly 
cellular and rich in fat. The distribution depends on the vascularization system of the 
vertebral body [36].

In addition to assessing cellularity in BMT patients, MRI can be used to study 
metabolic alterations derived from cytotoxic treatment or immunological processes 
using QSCI (chemical shift selective imaging techniques) [37].

3.3.6 Lysosomal storage diseases. Gaucher disease

In metabolic storage diseases, MRI detects the changes produced in the bone mar-
row due to the combination of cellular infiltration, edema, and ischemia phenomena. 
Cellular infiltration causes hypointense areas in T1 and T2, starting at early stages in 
the vertebrae (Table 2) and progressing from the axial to the appendicular skeleton, 
affecting pelvis, hips, and lower extremities [37], with proximal predominance. The 
typical pattern shows homogeneous signal decrease in T1 and T2 in vertebral bodies 
and nonhomogeneous in proximal segments of lower extremities, with preserved 
epiphyses in most cases.

Vascular involvement causes infarcts, avascular necrosis, and pseudosteomyelitis 
or bone crises. Avascular necrosis is due to chronic infarcts produced by arteriolar 
occlusion following progressive cellular infiltration of the marrow and episodes of 
vasospasm and thrombosis. In the initial phase, the marrow is isointense, and the 
transition between normal and necrotic tissue is a low signal band in all sequences. 
Subsequently, the signal of the necrotic bone decreases and fractures appear due to 
cortical collapse [38].

Bone infarcts are visualized as low signal foci in all sequences of intramedullary 
diaphyseal location and sometimes bilateral. The bone crises that appear in 30–40% 
of patients with Gaucher disease are caused by acute intraosseous vascular obstruc-
tion. Due to edema, the marrow appears hypointense on T1 and hyperintense on T2. 
Sometimes subperiosteal hyperintensity is observed on T1 due to subacute phase 
hematoma or hemorrhage. Control studies show recovery of the physiological signal 
after the episode of bone crisis.

Gaucher disease causes alterations in the vertebrae due to increased intramedul-
lary pressure due to cellular accumulation in the form of cortical endosteal resorption 
and vascular occlusive phenomena. Flat vertebrae are due to necrosis and compres-
sion fractures with the widening of the disc space.

Both enzyme replacement therapy and substrate reduction therapy cause a 
decrease in intramedullary lipid storage already visible in some patients after six 
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months, with clearance and recovery of the physiological signal in MRI, as well as the 
disappearance of edema in bone crises [39] (Figure 9). In addition, in the examina-
tion of the bone marrow by MRI, other alterations not related to Gaucher disease are 
detected, such as vertebral hemangiomas, discopathies, etc., which stand out for their 
frequency in these patients [40].

3.4 Posttreatment evaluation in hematological malignancies

The initial applications of MRI in hematology were aimed at defining the presence 
of lesions not detectable by other imaging procedures, the maximum exponent being 
the assessment of intraosseous involvement in multiple myeloma. With the incorpo-
ration of BMT, MRI acquired a new dimension for the clinician, as an instrument to 
define the status of the BM in patients requiring this procedure, particularly in the 
case of bone marrow aplasia.

MRI, due to its sensitivity in the detection of cellular infiltration, is useful in the 
initial phase as an assessment of the extent of the disease. This quantitative extension 
study will also be important, together with the rest of the tests, when considering 

Disease Infiltration pattern Diagnostic utility Evaluation of 
response to 
treatment

Myeloma/plasmacytoma Diffuse or focal +++
Identify masses
Global distribution
Differentiate MM 
from MGUS

+++

Aplasia Diffuse or mottled 
hyperintense in T1

++++
Assessment of residual 
hematopoietic foci

++++
Pattern of medullary 
restocking, especially 
in spine

Lymphoma Diffuse or focal Identify biopsy-
approachable masses

+++

Myeloproliferative 
neoplasms

Diffuse or focal in 
mastocytosis

+
Directed biopsy in foci 
suggestive of mast cell 
accumulation

+

BMT Normal, focal ++
Identify pretransplant 
marrow infiltration

+++
Pattern of normal 
or tumor marrow 
repopulation

Lysosomal storage disease. 
Gaucher disease

Homogeneous or 
heterogeneous 
according to 
localization

++++
Essential to 
determining the 
degree of BM 
involvement

++++
Essential to know the 
response rate in BM

Osteonecrosis Hypointensity in T1 
and hyperintensity in 
T2 due to edema

++++ ++++

Table 2. 
Indications for bone marrow MRI and degree of usefulness in relation to the disease.
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therapy. In the evaluation of the therapeutic response, MRI can show the degree of 
bone marrow involvement, being complementary to the methods that assess the 
progression of bone mineralization.

4. Practical considerations

MRI has proved to be a useful tool for obtaining a global map of the contents of 
the bone marrow cavity and the applications of the technique to the study of differ-
ent processes. Assessment of bone marrow is often complex due to the presence of 
multiple patterns and their evolutionary change with age and disease.

Structured reports are the result of applying a logical structure to the radiological 
report, and the rules of elaboration comprise several criteria: (I) using a uniform 
language. The standardization of terminology avoids ambiguity in reporting and 
makes it easier to compare reports. (II) Accurately describe the radiological findings, 
following a prescribed order with review questions and answers. (III) Drafting using 
diagnostic screening tables. (IV) Respect the radiologists’ workflow by facilitating the 
work and not hindering it [41].

The creation of structured radiological reports for the study of bone marrow is 
of great relevance in order to unify terms and provide the most objective assessment 
possible. Our group has recently published a structured report based on eight items 
(demographic data, diagnostic suspicion, technical data, type of exam initial or 

Figure 9. 
Coronal spin echo (SE) T1 (A) pelvis and femurs nonhomogeneous mottled pattern with infarcts in Gaucher 
disease before and after therapy. The therapy causes a decrease in intramedullary lipid storage with clearance 
and recovery of the physiological signal. Nevertheless, complications such as infarcts or necrosis are irreversible 
and more visible in MRI once the infiltration has been cleared. (B) Coronal spin echo (SE) T1 femurs and tibias 
nonhomogeneous mottled pattern with large infarct-necrosis in Gaucher disease before and after therapy.
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control, patterns and involvement distribution, complications and their location, 
and summarized comments). It has been designed to provide guidance for radiolo-
gists when reporting protocol assessments to unified criteria, allow comparisons and 
decrease inter observers’ variability [42] (Figure 10).

The structured radiological reports provide an answer in daily clinical practice, 
where situations of uncertainty are generated due to the lack of knowledge of the 
radiological semiology of the bone marrow, technical limitations in an extensive 
organ, and variability in the maturation of the bone marrow tissue and its pathologi-
cal affectation. This involves both diagnosis and follow-up in the face of differentiated 
therapeutic approaches.

Nowadays, machine learning is revolutionizing the way data are analyzed in clinics 
and is helping to develop digital tools for diagnosis, disease progression prediction, 
and treatment responses. In our experience, using machine learning in rare diseases 
provides an opportunity to analyze agglomerated and heterogeneous data to create 
quality predictive models and identify risk features [43].

In the case of bone marrow diseases, these tools can be especially useful to speed 
the diagnosis and obtain better prognosis assessments and personalized care in our 
recently published work regarding the application of machine learning tools (random 
forest models) in a homogeneous Gaucher group of patients with different degrees 
of bone marrow infiltration and complications evaluated by MRI in order to identify 
features that can predict the risk of bone complications defined by the presence of 
intraosseous ischemic events (bone crisis, infarcts, avascular necrosis) during the 
follow-up. We have obtained the following information shown in Figure 11, model 
A includes all variables described as significant in a previously published study [43], 

Figure 10. 
Structured report for MRI bone marrow exam. Roca-Espiau et al. 2022.
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model B considered whether a specific treatment was applied or not, and model C 
ignored the degree of infiltration according to the S-MRI punctuation score [44]. The 
results muestran la relevancia del grado de infiltración de medulla ósea y la local-
ización para estimar el riesgo de desarrollar complicaciones [45].

More recently, radiomics has been incorporated, which is the science of non-
invasively studying features of medical images imperceptible to the human eye by 
applying automated algorithms to associate them with specific physiological states. 
Integrating clinical, biological, and therapeutic data with imaging by applying arti-
ficial intelligence methods to these studies provides a broad perspective and models 
that can predict the risk of complications. Today Radiomics is a science Radiomics 
converts medical images into mineable data by extracting quantitative characteris-
tics [46].

The main goal is to transform imaging into actionable predictions. Programs 
through imaging and address healthcare issues by creating image-based predictive 
AI models. This outcome will allow when evaluating an MRI acquired after treat-
ment, to assess the evolution of the patient’s bone marrow involvement and to predict 
how they are responding to treatment. The integration of clinical, biological and/or 
molecular data in the classification method will be evaluated to optimize and increase 
its performance.

The field in which most studies are being carried out is oncology. Thanks to 
radiomics, diagnostic and prognostic biomarkers have been identified, associated 
with the development of metastases and overall patient survival in different types of 
cancer [47, 48].

In conclusion, in the area of bone marrow diseases, the use of machine learn-
ing provides an opportunity to analyze agglomerated and heterogeneous data to 
create quality predictive models and identify risk features. And it can provide 
important digital solutions to empower physicians to achieve health objectives [49]. 
Nevertheless, validation is required prior to widespread adoption in clinical practice.

Figure 11. 
ROC models. A model includes all variables. ROC B model considers whether any treatment was applied or not 
and features the importance of model B using the mean decrease in accuracy. ROC C model did not contain the 
S-MRI score and had a substantial drop in accuracy of 74.29% and an f1-score of 69.92%. The most important 
features for these models to predict the severity of bone affectation in Gaucher disease were the S-MRI, the age at 
first treatment, and the treatment used.
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Chapter 7

Current Topics on Knee MRI
Jorge Rolando Ortiz, Juliana Gonzalez and Juan Sebastian Herrera

Abstract

Knee pathology is one of the most common complaints worldwide. Among the 
most common complaints is ligamentous and meniscal injuries, for which MRI is 
the main diagnostic tool. Advances in MRI have improved the accuracy of detecting 
Anterior Cruciate Ligament (ACL), posterior cruciate ligament (PCL) and meniscal 
tears, which have helped orthopedic surgeons treat and classify injuries accordingly. 
Understanding the anatomy, different protocols and the advances will help ortho-
pedic surgeons to deliver better patient care. MRI is especially important in ACL 
pathology due to its implication in femoral and tibial tunnel positioning; the more 
anatomically we can reconstruct the ACL, the better the functional outcomes. This is 
true for most of the ligamentous pathology of the knee. This chapter will review the 
current indication and further research areas in knee pathologies.

Keywords: ACL, posteromedial corner, posterolateral corner, postoperative meniscus, 
isotropic three-dimensional MRI 

1. Introduction

Magnetic resonance (MR) is the preferred non-invasive imaging method to 
assess knee musculoskeletal injuries due to its high soft tissue resolution, and 
it is considered the reference standard with the additional benefit of avoiding 
exposition to ionizing radiation [1]. New advances in magnetic field and gradient 
strength allow the development of sequences for ultrastructure imaging and even 
postoperative ligament reconstructions or meniscal repair, which has represented a 
challenge to date.

Isotropic three-dimensional MR imaging has a thin slice of less than 1 mm and 
less partial volume artifacts with the use of thin continuous sections and oblique 
planes that are helpful for complex structure analysis like static and dynamic knee 
stabilizers with their tissue-osseous relationships [2]. These advances will be tools 
for preoperative planning and clinical decisions in patients with ligament and 
meniscal injuries.

2. Current topics in anterior cruciate ligament on MRI

The three-dimensional configuration of the anterior cruciate ligament is impor-
tant to determine different conditions in association with the prognostic of the ante-
rior cruciate ligament reconstruction, as parameters related to the most anatomical 
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possible position. Ortiz et al. described the orientation of the anterior cruciate 
ligament in resonance, proposing a triplane trigonometric method; as a result, they 
found that the mean angle in sagittal, coronal and axial projection were 76.95, 81.65 
and 33.17 degrees, respectively. It is expected that this method may be applicable for 
planning anterior cruciate ligament reconstruction, using the position of the anterior 
cruciate ligament of the uninjured knee as a reference [3].

In the evaluation of an acute lesion of the anterior cruciate ligament in MRI, there 
are different signs that can help with the diagnosis, the most sensitive being the 
discontinuity of the fibers or irregularity, increased signal on T2, bone bruises and 
abnormal orientation of the fibers. Secondary findings include bone lesions mainly 
at the level of the external femoral condyle and external tibial plateau, and it is less 
common to present lesions at the internal femoral condyle and tibial plateau; other 
findings are the anterior translation of the tibia and uncovering of the posterior horn 
of the lateral meniscus greater than 3.5 mm [2].

The normal appearance of the anterior cruciate ligament is characterized by a 
uniform caliber with a course parallel to Blumensaat’s line, a high or intermediate 
signal on T1 and T2, and some signs of fluid between the fibers [4].

2.1 Indirect MRI signs related to anterior cruciate ligament injury

The lateral femoral notch sign is a radiographic phenomenon defined as an impac-
tion greater than 2 mm of the lateral femoral condyle, and it may result from a trau-
matic episode in which the lateral femoral condyle collides with the proximal tibia, 
causing a defect in the lateral femoral condyle with high signal on T1 (Figure 1) [5, 6].

Haluk Yaka validated a posterior base measurement of the medial and lateral 
meniscus, defined as a line passing through the tibial edge of the meniscus and a line 
passing through the capsular edge on the sagittal side of the posterior horn of the 
meniscus based on the previous studies performed by Hohman where the relation of 
the posterior angle of the base of the meniscus and its relationship with the anterior 
cruciate ligament injury was discussed, it was concluded that the medial and lateral 
angles above 84.5 and 93.15, respectively are an indirect finding of anterior cruciate 
ligament injury (Figure 2) [7].

Figure 1. 
Lateral Femoral Condylar Notch, Indirect Sign of Anterior Cruciate Ligament Injury.
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2.2 Location of anterior cruciate ligament injury point in MRI

Within the management protocol for anterior cruciate ligament injuries, there is 
the option of performing primary repair in cases in which the injury is proximal near 
the insertion of the femur and a contained injury with good tissue. In order to validate 
this condition, Sherman classified injuries into five types, been I and II types the 
proximal tears, in which a primary ACL repair can be considered. Now, before per-
forming an arthroscopy, it is important to know if the patient is a candidate for repair 
or not; it could change the treatment and rehabilitation approach. For this purpose, it 
has been described in recent years to resonance as a method that allows us to know the 
location of the rupture of the anterior cruciate ligament [8, 9].

In a study carried out by Guillien et al. at the University of Rennes, they evaluated 
the correlation between the anterior cruciate ligament lesion point determined in 
MRI in comparison with the findings in arthroscopy, and this study was based on the 
Sherman classification (Figure 3). It was identified that the correlation in relation to 
the position of the lesion is approximately 70%; it was not the same for the evaluation 
of the quality of the ligament determined in resonance, in which the correlation was 
50%. In another work carried out by Vanderlist, the predictive capacity of preopera-
tive resonance is evaluated in relation to anterior cruciate ligament repair in Sherman 
type I and II injuries, finding that in 90% of the cases that a lesion was diagnosed 
pre-surgical type I repair of the ACL was performed and in 88% of type II [4].

As mentioned previously, the complex three-dimensional ACL orientation does 
not allow for the complete visualization of the ligament in a single image. ACL runs 
obliquely through the intercondylar notch; this is why various MRI techniques includ-
ing oblique planes have been investigated (Figure 4) [3].

Kwon et al. from the Department of Radiology and Center for Imaging Science 
and Department of Orthopedic Surgery of Samsung Medical Center, Seoul, Korea, 
published a study whose purpose was to evaluate the diagnostic role of additional 
use of oblique coronal and oblique sagittal imaging for an ACL injury [10]. The study 

Figure 2. 
Posterior base meniscus angle, a line through the base of the meniscus and a line through de posterior aspect of the 
meniscus in the sagittal plane.
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population consisted of 101 patients with a mean age of 35 +/− 12.6 years who 
required knee arthroscopy for suspected of having a torn ACL on MRI examina-
tion with both orthogonal and oblique images using 1.5 MRI system conventional 
protocol sequences with section thickness 3 mm, TR/TE 2000–3800/20-30 ms and 
additional oblique coronal/sagittal proton density-weighted imaging. The oblique 
sagittal image was made in the plane parallel to the medial border of the lateral 
femoral condyle on an orthogonal coronal image and the oblique coronal image was 
obtained in plane parallel to course of the femoral intercondylar roof using a sagittal 

  Figure 3.
  Anterior cruciate ligament tear in the proximal third of the ligament.          

  Figure 4.
  A 55-year-old female left knee. Oblique coronal PD FSE MR images, performed using a 1.5 T system with 1.2 mm 
thickness (A) anterior bundles of ACL (arrow) and it is possible evaluate posterior meniscal roots (red open 
arrows). (B) Posterior bundles of ACL (arrow).          
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image. Two musculoskeletal radiologists analyzed the knees MRI retrospectively, 
without knowledge about arthroscopic results, then determined intact, probable 
tear or definite ACL tear. They evaluated sequences by using four methods (M), MA: 
orthogonal images only, MB: orthogonal and oblique coronal, MC: orthogonal and 
oblique sagittal, and MD: orthogonal, oblique coronal and sagittal images.

Diagnostic performance with sensitivities, specificities and accuracies of each 
method respect arthroscopy (partial or complete ACL tear) as a gold standard was 
as follows respectively, MA 95%, 83.6%, 88.1%, MB 97.5%, 95.1%, 96%, MC 97.5%, 
95.1%, 96% and MD 97.5%, 98.4%, 98%, meaning that specificities and accuracies for 
methods B, C D were statistically significantly higher than method A. No difference 
was found between methods B, C and D. This study concludes that some oblique imag-
ing added to standard MRI sequences improves the ability to diagnose ACL tears [10].

2.3 Mucoid degeneration of the anterior cruciate ligament

A topic of interest in recent years has been mucoid degeneration of the anterior 
cruciate ligament as a rare entity, which can be confused with an ACL lesion, being 
difficult to diagnose. Bergins et al. described an incidence of 1.8% in an analysis 
of 4221 patients, in addition to describing different aspects that can help diagnose 
mucoid degeneration of the anterior cruciate ligament, which includes the presence 
of a uniform thickening with a bulging ligament, semiologically described as “celery 
stalk,” increased intermediate intraligamentary signal on T1, and hyperintensity on 
T2, maintaining orientation and continuity of the anterior cruciate ligament fibers. 
More recently, Cilengir et al. described MRI findings that can help differentiate 
mucoid degeneration of the anterior cruciate ligament from injury and found an 
increased prevalence of intraosseous femoral cysts being part of the mucoid degen-
eration. Other authors have described anatomical conditions in resonance that can 
be associated with mucoid degeneration of the anterior cruciate ligament, such as an 
increase in the angle of the tibial slope, a decrease in the width of the intercondylar 
groove, male sex [11–13].

3. MRI accuracy of posterolateral and posteromedial corners injuries

3.1 Normal anatomy of the posterolateral corner

Posterolateral corner (PLC) is currently a diagnostic challenge.
PLC structures are grouped into primary stabilizers, which are statics, and sec-

ondary stabilizers, which are static and dynamic [14]. PLC structures are the main 
mechanism to protect against knee varus stress and posterolateral rotation of the tibia 
with respect to the femur [15–17].

Table 1 shows all the PLC structures with their respective origins and insertions, 
and the graphic scheme of the structures is shown in Figure 5.

The three primary stabilizers are the fibular collateral ligament (FCL), popliteus 
tendon (PLT) and popliteofibular ligament (PFL). FCL is the main stabilizer with 
varus stress, and PLT acts as a stabilizer regarding tibial external rotation.

On magnetic resonance (MR) imaging FCL is visualized on axial and coronal 
plane as low signal-intensity band extending from the lateral epicondyle to the lateral 
aspect of the proximal fibula. The PLT is seen as a low-signal-intensity structure on 
axial or sagittal sequences [18].
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The PFL has an anterior and posterior bundle that embraces the popliteus myoten-
dinous junction, and it is best seen as a low-T2-signal structure on coronal and sagittal 
planes, deep to the inferior lateral genicular vessels. However, the PFL is not currently 
described in conventional MR imaging. Coronal oblique sequences and isotropic 3D 
MR improve visualization of these tissues (Figure 6) [19, 20].

Secondary stabilizers include the mid-third lateral capsular ligament (ALT), 
popliteomeniscal fascicles (PMF), lateral gastrocnemius tendon (LG), fabellofibular 
ligament (FFL), arcuate ligament, biceps femoris tendon and iliotibial band.

The ALT that is a thickening of the lateral capsule of the knee is seen on isotropic 
3D MR axial images [20].

The popliteomeniscal fascicles form the roof and floor of the popliteus hiatus. They 
are visible in 60–94% of patients and can be seen on sagittal images of isotropic 3D MR.

FFL is best seen on sagittal and coronal MR imaging posterior to the lateral infe-
rior genicular artery; however, this ligament is visible in 33–48% of patients.

Arcuate ligament is also inconsistent, but it may be identified as a thin band 
overlying the PLT on axial sequences [20].

Structure Origin Insertion

Fibular collateral 
ligament

Small bony depression proximal 
and posterior to the lateral 
epincondyle

Fibular head distal to the tip of the fibular 
styloid.

Popliteus tendon From popliteus sulcus of the 
lateral femoral condyle

Runs posteromedially deep to the fibular 
collateral ligament, exits the joint capsule 
through the popliteus hiatus and inserts along 
the posteromedial aspect of the proximal tibia.

Popliteofibular 
ligament

From popliteus tendon proximal 
to the myotendinous junction

Inserts onto the medial downslope of the 
fibular styloid.

Midthird lateral 
capsular ligament

Thickening of the lateral capsule 
from the lateral epicondyle of 
the femur

Capsular attachments to the lateral meniscus 
and inserts onto the tibia anterior to popliteal 
hiatus

Popliteomeniscal 
fascicles

Popliteus tendon Posterior horn of the lateral meniscus

Lateral gastrocnemius 
tendon

Posterior lateral femoral condyle Achilles tendon onto calcaneus

Fabellofibular 
ligament

Thickened distal aspect of the 
biceps femoris that extends 
from an osseous fabella 
(sesamoid bone)

Fibular styloid.

Arcuate ligament Y-shaped thickening of the 
posterolateral join capsule

Fibular styloid with the fabellofibular 
ligament

Biceps femoris Ischiatic tuberosity and femoral 
diaphysis

Consists of a long and short head and also has 
numerous insertions arms on fibular styloid 
and tibial lateral condyle

Iliotibial band It is a thick band of fascia 
formed proximally at the hip 
by the fascia of the gluteus 
maximus, gluteus medius and 
tensor fasciae latae muscles.

Gerdy’s tubercle

Table 1. 
Components of the posterolateral corner.
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 Biceps femoris tendon (BFT) is composed of multiple distal insertion arms that 
may not be easily distinguishable but just long and short arms (  Figure 6  ).  

  3.2 Posterolateral corner injuries and MR imaging 

 Injuries to the PLC most commonly occur with varus forces, particularly to a 
hyperextended knee or associated with knee dislocation. Diagnosis may be difficult 
in the setting of acute trauma because of the patient’s joint effusion. However, prompt 
diagnosis and management are important, as unrecognized PLC injuries may result in 
chronic instability and premature osteoarthritis [ 21 ]. Therefore, it would be desirable 

  Figure 5.
  Scheme of the structures of the posterolateral corner.          

  Figure 6.
  MR images of a left knee of a 40-years old female patient. (A) Axial fat-saturated T2 weighted sequence 
demonstrates posterolateral structures. Popliteus tendon (PLT), fibular collateral ligament (FCL), biceps 
femoris tendon (BF), lateral capsular ligament (ALT), iliotibial band (ITB). (B) Sagittal proton density-
weighted image lateral knee with popliteus hiatus formed by popliteomeniscal fascicles (red open arrows) and 
Popliteofibular ligament (PFL) located anterior to lateral inferior genicular artery (LIGA). (C) Coronal T1 
image that shows PFL and its association with respect to LIGA.          
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to predict not only by clinical testing but also by imaging. Figure 7 shows PLC injury 
patterns on MR imaging.

A meta-analysis established that 1.5-T or 3.0-T MRI offers high diagnostic accuracy 
for evaluating injuries involving the meniscus, anterior cruciate and posterior cruci-
ate ligaments. However, in multi-ligament injured knees, MRI had been found to have 
lower accuracy for the detection of PLC ligament tears [22].

A recent retrospective study from the Ottawa Hospital Research Institute and 
Department of Radiology determined the diagnostic performance of preoperative 
MRI for diagnosing PLC injuries of patients with knee dislocations compared to intra-
operative findings [21]. They included 39 patients who required repair/reconstruction 
of the posterolateral corner between May 2005 and April 2020. Preoperative MRI of 
these patients was on 1.5 T or 3.0 T scanners, and all protocols included sequences in 
standard imaging planes.

The fibular collateral ligament, bicep femoris and popliteus tendon were catego-
rized as normal, partial tear or complete tear. The posterolateral ligamento-capsule 
complex (LCC) was evaluated as a single unit that includes popliteofibular and fabel-
lofibular ligaments. This complex and posterolateral capsule was classified as intact or 
torn; the same classification was used for intraoperative findings.

The diagnostic performance of MRI was a sensitivity (Se) of 95% and specific-
ity (Sp) of 100% for detecting fibular collateral ligament (FCL)  tears, Se of 100% 
and Sp of 77% for BFT tears, Se of 88% and Sp of 71% for PLT injuries and Se of 
97% and Sp of 33% for LCC tears. The correlation between surgical findings and 
magnetic resonance of PLC structures was strongest for the BFT and weakest for 
the LCC.

This study reports accuracy ranging from 82 to 95% for detecting PLC injuries 
with MR imaging, even higher than other previous studies [23], probably associated 
with MRI evolution in the last few years.

Longer time between injury and surgery may allow some injuries to heal and can 
be found intact at surgery but still presenting with abnormal signals at MRI, leading 
to higher false positive counts; obtaining MR images closer to the time of injury may 

Figure 7. 
MR images of a 23-year-old man with left knee PLC injury caused in a motorcycle accident. (A) Coronal proton-
density weighted fat-saturated T2 sequence with popliteomeniscal fascicles disruption (red open arrow) and 
complete tear of fibular collateral ligament (FCL) and popliteus tendon (PLT). Lateral inferior genicular artery 
(LIGA), fibular styloid (FS). (B) Sagittal proton-density weighted fat-saturated T2 image with PLT tear and 
disruption of posterolateral ligamento-capsule complex (LCC) and evident disruption of poplitemeniscal fascicles 
(red open arrow). (C) Axial proton-density weighted fat-saturated T2 sequence with posterolateral capsule 
injury, midthird lateral capsular ligament (ALT).
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make their interpretation more challenging due to inflammatory process also affect-
ing the radiologist reading [24].

Finally, this study concludes that despite the challenges of evaluating knee pos-
terolateral corners, MRI has an acceptable accuracy for detecting their injuries.

Statistically, up to 20% of MRIs made in patients with an Anterior Cruciate 
Ligament (ACL) tear may reveal PLC injuries. A Swiss retrospective cohort study 
of The University of Zurich determined the diagnostic performance of different 
MR imaging findings for helping to predict posterolateral instability in patients 
with acute complete ACL tears by performing a decision tree analysis [25]. Their 
sample comprises 162 patients who underwent ACL reconstruction with or 
without concomitant posterolateral corner reconstruction. Clinical diagnosis of 
PLC instability requiring reconstruction served as gold standard, and there were 
obtained conventional MRI of all patients. Results demonstrated a low sensitiv-
ity and high specificity for posterior cruciate ligament, biceps femoris, popliteus 
tendon and lateral collateral ligament. Decision tree analysis results showed that a 
complete tear or fibular avulsion of the FCL was the most statistically significant 
finding to help predict posterolateral instability. These results are shared with 
other studies that affirm it is sufficient to assess the FCL, BFT and PLT to predict 
PLC instability [26].

With respect to small structures, this study confirms variable visibility of pop-
liteofibular ligament, fabellofibular ligament and popliteomeniscal fascicles, which 
are not always observed at conventional two-dimensional MRI.

Limitations of this study are sample of patients limited to ACL reconstruction, 
MRI performed in the acute trauma 10 days or less, and it was different protocol and 
scanners to take images like in many other studies.

In the next years, the use of isotropic three-dimensional high-resolution 
sequences could allow for oblique reconstructions and individual examination 
for each patient. A retrospective study performed at Gachon University of South 
Korea aimed to document the appearance of PLC structures on 3D isotropic and 
routine two-dimensional MR images and to determine the significance of patho-
logic findings in patients with confirmed posterolateral instability. They evaluate 
conventional 3.0 T MRI of 25 patients with surgery indication as the gold standard 
and also of 25 control patients with any radiological or clinical finding, but in 
addition to standard sequences 3D isotropic SPACE (Sampling perfection with 
Application optimized Contrasts using different flip angle Evolution) images were 
obtained until adequate visualization of posterolateral corner. Their findings were 
the following:

• The popliteofibular ligament was best seen with 3D isotropic images. The lateral 
geniculate artery appeared as a landmark.

• 3D images detected normal and partial tears (grade 1 or 3) of PLC, and 2D 
images just when there were complete tears (grade 4).

• The “fibular cap sing” that represents no-osseous avulsion of the distal FCL 
from the tip of the proximal fibula on 3D images was found to be useful for the 
diagnosis of PLC tears.

A disadvantage of 3D isotropic imaging is the lack of fat suppression that may 
underestimate slightly altered ligament signals.
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Despite these limitations, 3D isotropic SPACE MRI could be an interest-
ing  examination method in institutes interested in multiligamentary knee 
reconstruction [26].

3.3 Normal anatomy of the posteromedial corner

The posteromedial corner (PMC) contains the structures lying between the 
posterior margin of the superficial medial collateral ligament (MCL) and the 
medial border of the posterior cruciate ligament (PCL). These structures avoid 
anteromedial rotational instability and provide restraint to valgus stress. Although 
some authors do not consider MCL to be part of posteromedial corner, recently, an 
international expert consensus panel has included it [27, 28]. Figure 8 illustrates 
the borders of the PMC, Table 2 shows PMC structures with their respective 
origins and insertions, and Table 3, Figures 9 and 10 describe normal MR imaging 
of PMC.

3.4 Posteromedial corner injuries and MR imaging

The semimembranosus is the main dynamic stabilizer of the PMC; without its 
dynamic support, the remaining PMC structures fail over time and lead to instability 
that affects the anterior cruciate ligament or posterior cruciate ligament [32].

MR imaging is the modality of choice for PMC injury assessment; however, at 
present, there are no specific studies that have evaluated the sensitivity and specific-
ity of PMC structure injuries on MR imaging, unlike PLC structures.

A retrospective study of patients with symptomatic anteromedial rotational 
instability who were treated with ligament reconstruction and based on surgical 
descriptions found injury of the posterior oblique ligament (POL) in 99% of the 
cases, injury to the semimembranosus in 70% and peripheral meniscal detachment 
in 30% [33].

Tears in these three structures are well defined on MRI with an established clas-
sification system for each one of the ligament structure injuries.

House et al. have proposed the same classification used for the MCL injuries in 
the POL injuries, and it is grade I, intact ligament with edema surrounding it (T2 

Figure 8. 
Axial fat-saturated MR image of a left knee illustrated the borders of the PMC (green outline).
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Structure Origin Insertion

Semimebranosus 
tendon

Ischiatic tuberosity 5 expansions

• Direct arm (principal attachment)

• Capsular arm

• Extension to the OPL

• Anterior arm or reflected arm

• Inferior or popliteal arm

Oblique Popliteal 
Ligament (OPL)

Arises from the capsular 
arm of the POL and 
lateral expansion of the 
semimembranosus

Attaches to fabella, the meniscofemoral portion of the 
posterolateral joint capsule and plantaris muscle.

Posterior oblique 
ligament (POL)

Origin distal and posterior to 
adductor tubercle

3 arms in the posteromedial aspect of medial 
meniscus and the tibia.

• Central or tibial arm

• Superior or capsular arm

• Distal arm

Posteromedial 
capsule

Includes deep MCL with 
its meniscotibial and 
meniscofemoral components

It is reinforced externally by the POL and expansions 
from the semimembranosus

Posterior horn 
of the medial 
meniscus

Posterior horn has a “Brake 
stop” function to anterior 
translation of the tibia

The medial meniscus attaches to the capsule 
posteromedially and the meniscotibial ligament 
anchors the meniscus to the tibia

Table 2. 
Components of the posteromedial corner.

Structure MR Imaging

Semimebranosus tendon
Figure 7,
Figure 8

• Direct arm is seen in sagittal and axial images along the posterome-
dial aspect of the tibia distal to the articular margin

• Anterior arm is seen on coronal plane as an oval structure deep to the 
MCL

• Other expansions are difficult to identify [29, 30]

Oblique Popliteal Ligament (OPL)
Figure 7,
Figure 8

The OPL is a thin structure and is difficult to distinguish from the 
posterior joint capsule.
When is thicker, it is seen on sequential sagittal and axial images as a band 
extending obliquely from the main tendon of semimembranosus laterally 
toward lateral femoral condyle [27].

Posterior oblique ligament (POL)
Figure 7,
Figure 8

POL is best visualized on coronal and axial images at the level of the 
femoral condyle. The three arms run continuously with each other, are 
difficult to distinguish from each other [30, 31].

Posteromedial capsule The attachment of the peripheral surface of the meniscus to the capsule 
and the tibia is best evaluated on sequential coronal and sagittal images 
posterior to the superficial MCL [30].

Medial collateral ligament
Figure 7, Figure 8

Best visualized on coronal and axial images.

Table 3. 
Normal MR imaging of PMC structures.
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high signal). Grade II thickening of the ligament with partial disruption of fibers and 
Grade III with complete disruption of the ligament [34]. The coronal plane allowed 
for visualization of the POL; however, the coronal oblique plane, in combination with 
the axial plane, improved the analysis of the POL. In case of doubt, the addition of 
intraarticular contrast material can optimize the visualization of the POL and cap-
sular layers in the axial plane as these structures are displaced away from the femur 
(Figure 11) [35].

With respect to medial meniscocapsular injuries, a “reverse Segond fracture” 
represents meniscotibial ligament osseous avulsion, also associated with posterior 
cruciate ligament rupture. Meniscocapsular separation is best visualized in the sagittal 
sequences. When there is increased signal intensity and thickening of the capsule, it may 

Figure 9. 
Axial proton density weighted fat-saturated MR images of a normal knee, proximal to distal. (A) At the 
level of the femoral condyles illustrates medial collateral ligament (MCL), posterior oblique ligament (POL) 
and semimembranosus tendon (Sm). (B) At the level of joint space, oblique popliteal ligament (OPL). (C) 
At tibial plateau level, tibial semimembranosus expansion (TSm), inferior arm (ISm) and direct arm 
(DSm).

Figure 10. 
Coronal proton-density weighted fat-saturated images and sagittal proton density images of a normal left 
knee. (A) Posterior oblique ligament (POL), anterior expansion of semimembranosus (ASm). (B) Inferior 
semimembranosus arm (ISm). (C) Oblique popliteal ligament (OPL), (D) Tibial and inferior expansions of 
semimembranosus.
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be associated with capsule sprain, but it could be a ruptured popliteal cyst, too. Hence, it 
is important to interpret according to clinical history and other imaging features.

4. MR imaging of the postoperative meniscus

Meniscal surgery is a frequent orthopedic procedure [36]. Clinical examination 
and MR imaging are both the current way to assess patients who complaint about 
knee pain after meniscectomy or meniscus repair. However, the evaluation after 
surgery can be difficult and represents a challenge to date.

The normal medial and lateral meniscus are hypointense on T1- and T2-weighted 
MR images. On axial plane, they are like C-shape; on sagittal images, they appear as a 
wedge configuration; on coronal plane, they are seen as a right-triangular with a free 
edge oriented to intercondylar notch [37–39].

Sagittal and coronal images of intermediate and/or T1-weightened sequences of 
conventional MRI are the method of choice to assess signal changes in nonoperative 
meniscus, however after meniscal surgical procedure, it is the T2-to-intermediate-
weighted fluid-sensitive images in sagittal and coronal planes to detect synovial fluid 
signal extending into the substance of the meniscus indicating that the articular 
surface has been breached due to a new retear [39].

In regard to magnetic resonance with contrast, direct magnetic resonance arthrog-
raphy (MRA) is useful to evaluate recurrent tears or unhealed repair when there is an 
extension of contrast into a meniscus substance. Disadvantages of this examination 
include other invasive procedures, infection, bleeding and allergic reactions. If there 
is fluoroscopic-guided injection, radiation exposure is another risk and finally entails 
more costs. In some countries, it is considered an off-label use of gadolinium-based 
contrast agents, according to FDA [40].

Indirect MR arthrography involves the intravenous administration of gadolinium-
based contrast; it allows the identification of sites of hyperemic synovitis associated 
with vascular tissue enhancement. Nevertheless, the stable healed granulation tissue, 
as expected after meniscus surgery, may be difficult to differentiate from a residual 
tear, and it may result in potential false positives. Disadvantages are costs, patient 
time and adverse reaction to contrast agents [40].

Figure 11. 
MRI of a 53-year-old man with right knee PMC injury caused in a twisting knee injury. (A) (B) axial proton 
density weighted fat-saturated sequence at the level of joint space and at tibial plateau level respectively illustrate 
OPL partial tear, POL, MCL complete tears and capsular separation (red open arrow). (C) Axial T1 fat-
saturated image shows tibial (TSm) and inferior (ISm) semimembranosus arms injuries. (D) Coronal proton-
density weighted fat-saturated image with POL complete tear.
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4.1 Imaging findings after meniscectomy

Low signal linear fibrotic tissue in Hoffa fat pad is. A sign of precious arthroscopic 
knee surgery [39, 40]. With respect to partial or total meniscectomy, it could be found:

Diminution of meniscal tissue, ranging from a large portion of the meniscus being 
removed to mild blunting of the apical margin [39].

Baker et al. reviewed PubMed published evidence from 1990 to 2017 about 
recurrent tears after partial meniscectomy imaging. They found nine studies that 
reported the accuracy of conventional MRI, direct MRA and indirect MR arthrogra-
phy compared to second-look arthroscopy. Conventional MRI had accuracy ranging 
from 57 to 80%, direct MRA from 85 to 93% and indirect MRA from 81 to 93% [40]. 
However, some other studies, specifically a randomized cohort study made by White 
et al., published in Radiology Journal compare the accuracy of conventional MRI, 
direct MRA and indirect MRA, with inconclusive results that do not find statistical 
differences among the three techniques in the setting of a recurrent meniscal tear, 
although there was a trend toward increased diagnostic performance for both direct 
and indirect MRA [41].

Intermediate-signal intensity extending to the articular surface of the postopera-
tive meniscus on fluid-sensitive sequences has been the most specific sign of retear 
[41], meaning that its absence could be a negative predictive sign of an intact menis-
cus after surgery (Figure 12) [39, 42].

4.2 MRI findings after meniscal repair surgery

In this kind of surgery, intrinsic high signal may be seen on intermediate and T2 
MRI such as the features of preoperative meniscal injury.

A cohort study performed by the Institute of Sports Medicine of Peking University 
evaluated the diagnostic performance of MRI compared with second-look arthros-
copy as the gold standard in 81 patients to evaluate the healing of the repaired menis-
cus. They found T2-weighted sagittal and coronal sequences had higher specificity 
(89.6–98.7%, respectively) and accuracy (85.4–91%), while T1 and proton density had 
higher sensitivity, 91.7% and 75%-83–3%, respectively. The diagnostic value could be 
improved by a combined application of different sequences [43].

Figure 12. 
(A) A 62-year-old man following partial medial meniscectomy, sagittal fat-saturated T2 and sagittal proton 
density images respectively that show diminutive body and posterior horn of medial meniscus (orange arrows) 
and (B) fibrotic stranding in Hoffa fat pad (arrowhead). (C) and (B) same patient. Sagittal fat-saturated 
T2-weighted image illustrates surfacing intermediate signal extending to the apical meniscal articular surface 
characteristic of a new tear.
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The same study by Pekin University also demonstrated that approximately 50% 
of the patients with intact menisci in diagnostic arthroscopy illustrating features of 
surfacing increased intermediate-weighted linear signal at the healed repair site [43].

On MRA, one of the findings that may represent a partially healed repair or a 
partial thickness recurrent tear is the extension of intraarticular contrast through the 
meniscal repair site from one articular surface to another [39].

As a clinical care point, MRI or direct and indirect MR arthrography is the exami-
nation of choice for patients with suspected meniscus retear. However, those methods 
can be challenging because conventional diagnostic criteria of a meniscal tear may be 
normal findings postoperatively.

5. Three-dimensional isotropic MRI of radial and root tear of meniscus

Almost all meniscal injuries have suggested that the sagittal imaging sequences 
are the most accurate for detecting them; however, the radial and the root tears could 
be missed on conventional 2D images due to thicker slices of axial sequences, which 
is the preferred plane to evaluate both. Several studies describe thin-Section 3D FSE 
sequences such as Volume isotropic turbo spin echo acquisition (VISTA), CUBE and 
SPACE to analyze menisci injuries with better quality image of peripheral and radial 
tears (Figure 13) [44].

Daekeon Lim et al. from Yonsei University College of Medicine, Seoul, Korea, 
assessed the diagnostic value of FS 3D VISTA (Volume isotropic turbo spin echo acquisi-
tion) protocol imaging compared to 2D standard imaging in detecting arthroscopy-
confirmed (gold standard) radial and root tears. Their results reported sensitivity 
and specificity of 96% and 96% with VISTA protocol imaging, respectively, versus 
87% and 91% with 2D imaging. They found higher sensitivity and specificity with 
isotropic 3D imaging and excellent interobserver agreement for detecting meniscal 
radial and root tears. Some limitations and bias were retrospective study design, size 

Figure 13. 
A 45-year-old female left knee. MRI were performed using a 3.0 T system with 2 mm thickness (A) PD FSE FS 
axial 2D image with suspected tear of posterior root of medial meniscus (arrow). (B) Multiplanar reformatted 
axial 3D VISTA (volume isotropic turbo spin echo acquisition) image of 0.5 mm slice thickness with better 
delineation of posterior root tear (arrow).
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of sample, and MRI readers were aware that patients had undergone arthroscopic 
surgery that could overestimate the lesions [44].

6. Conclusions

The advances in magnetic resonance research imaging have made it possible to 
achieve greater detail in the diagnosis of knee joint pathologies. Different protocols 
and MRI sequences have been described, as well as clinical signs for different condi-
tions such as posterolateral corner lesions and mucoid degeneration of the anterior 
cruciate ligament. These tools should be used as part of the clinical approach to 
patients with traumatic knee injuries.
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Chapter 8

Magnetic Resonance Imaging 
Pulse Sequence Selection for 
Optimal Time and Image Quality 
Enhancement
Naima Amin and Muhammad Yousaf

Abstract

This study is a comparison of three commonly used magnetic resonance  imaging 
(MRI) pulse sequences to examine the image quality of the pulse sequences at a 
short acquisition time. Two tissue-equivalent gels were created. While one gel is 
constructed of polysaccharide and agarose, the other is made of ferrous benzoic 
xylenol orange (FBX). FBX gel is exposed to a 25 Grey dosage of 6MV photons from a 
linear accelerator. Repetition time (TR) was used to conduct experimental modifica-
tions in imaging parameters. The quantitative analysis comprises the signal-to-noise 
ratio (SNR) and contrast-to-noise ratio (CNR). Fast Spin Echo (FSE) and Fast Fluid 
Attenuated Inversion Recovery (FLAIR) are most comparable in SNR at 1.5 Tesla for 
various TR values. Conventional Spin Echo (CSE) has a CNR that is 143% and 93% 
higher than FSE and FLAIR, respectively. The time difference between CSE and FSE 
is 6 minutes and 34 seconds, whereas CSE and FLAIR is 6 minutes and 43 seconds. 
FSE and FLAIR provide superior image quality with quicker acquisition, suitable for 
patients sensitive to longer scan durations. Meanwhile, CSE stands out, delivering 
significantly enhanced contrast and SNR in T2-weighted images compared to other 
MRI pulses.

Keywords: acquisition time, pulse sequences, magnetic resonance imaging, repetition 
time, signal to noise ratio, contrast to noise ratio

1. Introduction

1.1 Magnetic resonance imaging

An extremely versatile, noninvasive medical imaging method that produces high-
quality images is magnetic resonance imaging (MRI). It opposed to ionising imaging 
techniques like X-ray CT. For image development, MRI does not use ionising radia-
tion. It is a sophisticated diagnostic tool that offers precise anatomical information, 
good spatial resolution and strong cellular comparison. The sensitivity of MR signals 
to a variety of tissue factors allows for the acquisition of detailed information. MRI 
is the best imaging method for evaluating the cerebrum/skull, and cardiovascular 
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activities, in addition to the digestive organs, blood vessels, skeletal system, and abdo-
men because of its outstanding soft-tissue contrast [1, 2].

1.2 Image quality of MRI

Image quality is a parameter used to assess the diagnostic efficacy and interpreta-
tion of an image. The selection of the pulse sequence in MRI impacts the weighting 
and quality of the image, as well as its ability to respond to disorders. It is critical to 
understand these parameters and their interplay in order to achieve the best image 
quality [3]. Signal-to-noise ratio (SNR), the amount of pixels used to create an image 
in digital form, and difference between living organism tissue are the primary MRI 
picture quality and diagnostic factors for human tissues. All of these elements are 
interconnected and subject to the fundamental principles of NMR physics, it is 
difficult for them to improve at the same time. New developments in the field of MRI 
technology have resulted in increases in contrast and SNR through the modification 
of imaging parameters required. Many factors influence the MRI image quality. It is 
crucial to understand these aspects, how they interact, and how to get the best possible 
image quality. The image quality is primarily affected by four elements, which are

• Signal to noise ratio

• Contrast to noise ratio

• Image Homogeneity

• Scan time

1.3 Signal to noise ratio

The difference between the received signal’s amplitude and the noise’s average 
amplitude is known as the signal to noise ratio. The recipient coil generates a voltage 
that produces a signal as the NMV (nuclear magnetic vector) moves in a circular 
motion within the transverse plane.

Frequencies that randomly arrange themselves in space and time give rise to 
noises. Background electrical noise from the system and the patient’s presence in the 
magnet combined to create unnecessary noise in an MR environment. The presence of 
the patient in the MRI, the area being investigated, and the system’s inherent noise all 
contribute to this noise, which is constant for every patient. SNR increases and better 
images are produced when the signal gets comparatively shorter than the noise.

The SNR plays a key role in determining the clinical MRI quality; hence having the 
maximum SNR is necessary to avoid having a poor image quality.

1.4 Contrast to noise ratio

The comparative difference in signal intensity between two adjacent portions of a 
picture is also defined as contrast of the picture.

CNR quantifies the distinguishability or contrast between these regions, taking 
into account the noise level in the image. Contrast refers to the basic difference or dis-
tinction in the luminescence of each pixel within an image in the framework of MRI, 
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which is determined by the intensity of the signal received from each voxel during the 
NMR experiment.

Variations in the spin relaxation velocities are the primary cause of the differences 
in signal intensity. Additionally, the hydrogen density of the tissues varies and is 
crucial for contrast discrimination.

MRI is a highly valuable technique for assessing oncological conditions because it 
offers exceptional contrast in soft tissues. By utilising a variety of pulse sequences that 
produce different contrasts, detailed evaluations of the disease’s size and extent can 
be conducted.

1.5 Image homogeneity

Image uniformity reflects how evenly the signal intensity is distributed across the 
image. A high level of image homogeneity is desirable as it ensures that the MR system 
is accurately capturing the underlying properties of the imaged object. Homogeneity 
is particularly important in clinical MRI to provide reliable and consistent image 
quality, aiding in accurate diagnosis and interpretation of the images. Factors such as 
magnetic field uniformity, scanner calibration, and appropriate. A common artefact 
in MR imaging, known by various names such as intensity non-uniformity, bias, 
inhomogeneity, or shading artefact, can impact the constancy of MR signal intensity.

To maximise clinical outcomes, it is important to understand the impact of 
changing the imaging parameters of an MR pulse sequence. The quality of an image, 
or MR intensity non-uniformity, is greatly influenced by the repetition time (TR) and 
number of echoes.

1.6 MRI scan time

MRI is a widely utilised technique for obtaining highly detailed images of various 
objects, such as the human body. The total scan time refers to the duration required 
to gather all the necessary data for generating the desired images or to complete the 
K-space filling process.

Longer scan times increase the patient’s likelihood of moving during the acquisi-
tion, which is critical for maintaining image quality. Any patient movement during 
the scan may cause the images to be compromised. However, extended acquisition 
times have the disadvantage of lowering image quality due to a number of artefacts, 
including respiratory artefacts. Reducing scan time in Magnetic Resonance Imaging 
(MRI) continues to be a crucial concern, particularly in clinical settings where diag-
nostic images need to be obtained. Acquiring images of excellent quality in a short 
period of time is crucial for optimising the diagnostic technique.

1.7 Acquisition time issues of MRI

Although MRI is a more accurate and non-invasive medical tool for clinical diag-
nosis, its lengthy acquisition time reduces its patient comfort and significance [4]. 
The duration of the MRI scan is crucial for maintaining image quality. Any patient 
movement during the scan could potentially result in blurry images [5]. However, one 
consequence of a long acquisition period [6] is that image quality reduction due to a 
variety of artefacts, including respiratory artefacts [7, 8].

Every advanced pulse sequence due to fast acquisition time possesses some negative 
aspect. Parallel imaging loses SNR and could result in technique-dependent artefacts, 
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however it is a successful method for reducing scan times [9]. There is an inverse cor-
relation between the speed of image acquisition and total image quality [10].

The available options for pulse sequences and acquisition factors are incred-
ibly extensive and patient compliance is an issue with the selection of acquisition 
parameters [11]. Reducing the duration of MRI scans remains a significant challenge, 
especially when considering the acquisition of diagnostic images within a clinical 
setting [12].

Maintaining the image quality, i.e., contrast to noise ratio, signal to noise ratio and 
image uniformity, is crucial when selecting quick acquisition pulse sequences. Each pulse 
sequence performs differently as a result of its unique properties and attributes [13].

In MRI, increasing the value of TR results in longer acquisition durations for 
T2-weighted images. It is critical to gather high-quality images quickly in order to 
ensure an optimal diagnostic strategy [14]. The scan duration should always be as 
short as possible to minimise the possibility of patient movement.

A variety of approaches can be used to increase the quality of clinical information 
gained from an MR image. To analyse and choose the best technique for a certain 
organ, comparisons between various pulse sequences are always done. In order to 
evaluate the best imaging procedure for an MRI of a very short T2, in 2016, Ali Caglar 
Ozen and colleagues compared MRI of an ancient mummified human hand using 
an ultra-short echo time sequence [15]. To examine the effectiveness of widely used 
soft tissue suppression techniques on a quantitative level, Chang Li in 2012 compared 
optimised soft tissue suppression schemes for ultrashort echo time MRI [16]. Michael 
P. Recht increases the value of MRI by reengineering the MRI workflow to reduce MRI 
acquisition time [17].

1.8 Purpose of the comparison of MRI pulse sequences

The aim of this study is to evaluate and compare the commonly employed pulse 
sequences used at the clinical level. The purpose is to determine their performance 
and select the most appropriate pulse sequence based on factors such as SNR, CNR, 
and collection time, specifically for T2-weighted images. The optimum image qual-
ity at a quick acquisition time would be achieved with a continuous range of TR. 
Additionally; the effectiveness of the traditional spin echo sequence in the presence of 
various quick pulse sequences was examined in the present investigation. Fast Fluid 
Attenuated Inversion Recovery (FLAIR), Conventional Spin Echo (CSE), and Fast 
Spin Echo (FSE) were the three pulse sequences that were used the most frequently in 
the present study.

2. Phantom preparation

2.1 First gel

A polysaccharide gel along with agarose is used in an experiment at Ninewells 
Hospital and Medical School in Dundee, UK, to create a substance that is similar to tissue 
for MRI. For imaging applications, this substance contains gadolinium chloride attached 
to ethylene diamine tetraacetic acid (EDTA). The T1 and T2 values of this substance may 
differ, independently as a result of varying the proportions of each ingredient.

When creating a substance that is an equivalent to biological tissue, the gadolin-
ium ions are chelated to the macromolecule EDTA, which has three distinct benefits. 
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First, the chelation takes away any chance that the ions will engage in any further 
chemical reactions with the gel matrix. Second, chelation may prevent the hydroxyl 
ions from being released by the gadolinium ions. The chelation procedure moderately 
affects the Gd-EDTA solution’s empirical relaxing characteristics. This effect, how-
ever, becomes more pronounced at higher frequencies, notably above 30 MHz [18].

This work employs seven 12 mm diameter phantoms. For those phantoms, the T1/
T2 intervals of relaxation are 608/134, 759/155, 917/135, 986/220, 1050/164, 1180/221, 
and 1296/200 (msec). The 1.5 T unit (Siemens MAGNETOM Avanto, UK) is used for 
MR imaging (Figure 1). A 1.5 mm region of interest (ROI) was cantered in the gel for 
estimating signal intensity and replicating the ROI to measure the signal intensity of 
the background noise. SNRs have been determined with the following equation.

 SNR=SI/N                                                        (1)

Where N is the surrounding standard error of variance and SI is the mean mag-
nitude of the signal of the ROI situated in the middle of the gel. SNR was examined 
using software called Image J. Phantom scanning uses the CP Head Coil of the MRI. 
Certain imaging parameters of CSE, FSE, and FLAIR were constant throughout the 
investigation, comprising the following parameters: the entire amount of acquisitions 
(1), the proportion of sampling (100), the field of view (100 mm x100 mm), the pixel 
per mm resolution (1.280), and the segment width (4 mm). Furthermore, the FSE 
pulse sequence had a consistent inversion time of 860 ms and an echo train length of 
5, whereas the FLAIR pulse sequence had a constant inversion time of 860 ms and an 
echo train length of 5.

The outcomes of our evaluation were assessed using the practical information 
provided by the MHRA (Medicine and Healthcare Products Regulatory Agency) 
Evaluation 04133 for the Siemens Magetom Avanto 1.5 T system [19]. The percentage 
error indicates the discrepancy between the value that was observed and the actual 

Figure 1. 
Polysaccharide, comprise the range of relaxation value for biological tissues at Siemens MAGNETOM 
Avanto 1.5 T.
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value. Using MATLAB 7.7 (R2008b), the curve fitting approach is used to approxi-
mate the optimised value.

Gelatine (from bovine skin, Type B), sulphuric acid (Sigma-Aldrich), Xylenol 
Orange Tetrasodium salt (Sigma-Aldrich), and Benzoic Acid (Sigma-Aldrich) were 
used to make the second gel, Ferrous Benzoic Xylenol Orange (FBX), which was 
developed in 1998 by Kelly RG [20] alongside other researchers [21–23].

2.2 Second gel

A one-litre capacity container was used to combine 5 ml of benzoic acid, 1 ml of 
Xylenol Orange, and 25 ml of sulphuric acid to create the stock solution, which was 
then left to sit at room temperature. The first step in creating gel is to mix 40 g of 
gelatine with 700 ml of distilled water, 25 ml of sulphuric acid, and a hot plate that 
has been prepared to 40°C. After stirring continuously for 30 minutes, the gel’s gela-
tine melted. 0.1 mm of ferrous sulphate was dissolved in 100 ml of Xylenol vibrant 
orange base solution with benzoic acid. The resulting solution was then added to the 
liquid gelatin. By adding 25 ml of the solution, a gel with a final volume of 1 litre was 
created. The preliminary oxygen concentrations in the solution affect how the Fricke 
gel dosimeter responds. During preparation, the gel is exposed to the air, and six test 
containers with a 10 ml capacity are used to pour the gel into for the irradiation of 
different doses. At 5°C, all gel phantoms were kept [24].

2.3 Gel irradiated and MRI scanning

Radiation was applied to the gel using a 6MV photon beam generated by a Varian 
Clinic 600C Linear accelerator. The dose was 25GY delivered at a Source to Surface 
Distance (SSD) of 95.5 cm with a field area of 55 cm2. Siemens MAGNETOM Avanto, 
a 1.5 T machine, is used to perform MR imaging. Phantom scanning uses the CP body 
Coil of the MRI. The CSE, FSE, and FLAIR pulse sequences were used to image the 
phantom (Figure 2).

A 1.5 mm square ROI was set in the gel’s middle to analyse signal intensities for 
quantitative image processing. The same ROI area was used to measure noise within 
the background. This process is performed throughout each pulse sequence. The 
 following formula is used to determine contrast to noise ratios (CNRs):

 A BCNR=SNR –SNR                                                 (2)

The phantom’s contrast to noise ratio of exposed to radiation and non-exposed to 
radiation regions is denoted by SNRA and SNRB, respectively.

For the T2-weighted investigation, imaging parameters for CSE, FSE, and FLAIR 
are kept constant (100 x 100 mm field of view; 4 mm slice thickness). The number of 
acquisitions was 1; for the T2-weighted study, the FLAIR inversion time was 2500 ms; 
the length of the echo train was 21; and for the FSE, the echo train length was 21.

2.4 T1/T2 calculation of FXG gel with variation of deliver dose

The same methods used by Afzal et al. [25, 26], Bartusek et al. [20, 27], and 
MATLAB version (R2008b) are utilised to calculate T1/T2 for FGX Gel (Table 1).
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3.  Analysis of CSE, FSE, and FLAIR responses for SNR and CNR for 
various phantoms and parameters

The T2-weighted images and prolonged acquisition time made CSE less notewor-
thy compared to other pulse sequences. Both CSE and FLAIR generate the necessary 
SNR, but FLAIR has an advantage because to its quick acquisition time, as seen in 
Table 2, T1/T2 time of the phantom is 608/134 (msec). For accurate SNR of the 
image, FLAIR takes 56% less time to acquire than CSE (Figure 3a).

The minimum TR value in Table 3, the phantom’s T1/T2 time is 759/155 (msec), 
CSE is the one that best MRI technique that satisfies the SNR requirement. FSE or 
FLAIR, on the other hand, can be considered better pulse sequences due to their fast 
acquisition times. For achieving an appropriate SNR of the image, the FSE and FLAIR 
pulse sequences were found to take 79% and 80% less time, respectively, compared to 
the CSE sequence (Figure 3b).

As demonstrated in Table 4, only CSE produces SNR for images with a mini-
mal TR. T1/T2 is 917/135 (msec) for the phantom. The significance of other pulse 
sequences is diminished for this particular phantom due to inadequate SNR 
(Figure 3c).

CSE and FSE both are present in the significant domain of SNR, as seen in Table 5; 
T1/T2 time for that phantom is 986/220 (msec) while the faster acquisition time of 

Figure 2. 
FXG phantom (a) after irradiation; deliver dose is 25 Grey with linear accelerator, 600 MV X-ray energy (b) MR 
image of FGX phantom in CSE.

Dose T1 (msec) T2 (msec)

O Grey (No dose) 812 166

25 Grey 628 58

Table 1. 
Calculated values of FGX at 0 gray and 25 gray.
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Figure 3. 
Comparison between the pulse sequences for the appropriate SNR at short acquisition time (a) T1/T2 of the 
phantom is 608/134 msec. (b) T1/T2 of the phantom is 759/155 msec. (c) T1/T2 of the phantom is 917/135 msec. 
(d) T1/T2 of the phantom is 986/220 msec.

Sr. no Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition time 
(min: sec)

1 CSE 608/134 1800 130.23 −11.40 5.9

2000 140.72 −4.27 6.29

2200 146.83 7.08

2400 149.44 8.59

2 FSE 608/134 4000 127.52 −13.24 0.48

4200 133.44 −9.22 1.29

4400 139.02 −5.42 1.5

4600 160.33 2.12 2.18

3 FLAIR 608/134 4000 128.19 −12.79 1.28

4500 133.19 −9.39 1.42

5000 134.43 −8.55 1.5

6000 154.59 2.58

Table 2. 
Time optimization with variation of TR for SNR. T1/T2 608/134 (msec).
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T2-weighted images makes FSE more prevalent. For images with a good SNR, the FSE 
acquires data 79% quicker compared to the CSE (Figure 3d).

As shown in Table 6, the T/T2 time of this phantom is 1050/164 (msec), FSE 
and FLAIR created the image’s SNR in the shortest possible period of time, FLAIR 
and CSE also provided a good image with the least amount of error for given values. 
FLAIR can be a good option for selecting various TR values because it has a quicker 
acquisition time than CSE. FSE and FLAIR have precise SNR of the image and acqui-
sition times that are 63% and 56% faster than CSE, respectively (Figure 4a).

While FSE and FLAIR may be preferable in terms of the time of acquisition, as 
demonstrated in Table 7, the phantom’s T1/T2 time is 1180/221 (msec); CSE, FSE, 
and FLAIR equally generate accurate SNR. To achieve an accurate signal-to-noise 
ratio (SNR) of the image, both the FSE and FLAIR pulse sequences require 76% and 
77% less time, respectively, compared to the CSE sequence (Figure 4b).

Figure 4. 
Comparison between the pulse sequences for appropriate SNR at short acquisition time. (a) T1/T2 of 
the phantom is 1050/164 msec. (b) T1/T2 of the phantom is 1180/220 msec. (c) T1/T2 of the phantom is 
1296/200 msec. (d) Comparison among pulse sequences for good CNR at short acquisition time,T1/T2 of the 
phantoms are 628/58 and 812/166 (msec).
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Sr. no Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition time 
(min: sec)

1 CSE 759/155 1800 153.43 5.9

2000 188.21 19.88 6.29

2200 196.39 25.08 7.08

2400 201.07 28.07 8.59

2 FSE 759/155 4000 141.78 −3.54 0.48

4200 148.05 1.29

4400 154.30 1.5

4600 155.76 2.18

3 FLAIR 759/155 4000 143.99 −2.04 1.28

4500 149.73 1.42

5000 151.26 1.5

6000 153.61 2.58

Table 3. 
Time optimization with variation of TR for SNR. T1/T2 759/155 (msec).

Sr. No Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition 
time (min:sec)

1 CSE 917/135 1800 169.85 8.18 5.9

2000 186.43 18.74 6.29

2200 190.23 21.16 7.08

2400 187.61 19.49 8.59

2 FSE 917/135 4000 89.48 −39.12 0.48

4200 92.97 −36.75 1.29

4400 96.79 −34.15 1.5

4600 105.05 −28.53 2.18

3 FLAIR 917/135 4000 97.37 −33.76 1.28

4500 102.25 −30.43 1.42

5000 103.54 −29.55 1.5

6000 115.05 −21.73 2.58

Table 4. 
Time optimization with variation of TR for SNR. T1/T2 917/135 (msec).
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Sr. No Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition 
time (msec)

1 CSE 986/220 1800 124.39 −15.64 5.9

2000 139.46 −5.124 6.29

2200 145.72 7.08

2400 149.55 8.59

2 FSE 986/220 4000 135.31 −7.951 0.48

4200 141.76 −3.561 1.29

4400 148.07 1.5

4600 155.30 2.18

3 FLAIR 986/220 4000 130.37 −11.311 1.28

4500 134.51 −8.495 1.42

5000 135.06 −8.115 1.5

6000 141.75 −3.565 2.58

Table 5. 
Time optimization with variation of TR for SNR. T1/T2 986/220 (msec).

Sr. no Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition 
time (msec)

1 CSE 1050/164 1800 158.06 5.9

2000 162.18 3.30 6.29

2200 165.16 5.19 7.08

2400 166.33 5.94 8.59

2 FSE 1050/164 4000 120.02 −18.35 0.48

4200 124.97 −14.98 1.29

4400 127.54 −13.23 1.5

4600 146.27 2.18

3 FLAIR 1050/164 4000 133.31 −9.31 1.28

4500 139.82 −4.88 1.42

5000 141.91 −3.45 1.5

6000 159.56 2.58

Table 6. 
Time optimization with variation of TR for SNR. T1/T2 1050/164 (msec).
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Table 8 demonstrates that FLAIR is the only technique that can provide an image’s 
SNR with the smallest errors and the shortest acquisition time (Figure 4c).

According to Table 9, T1/T2 628/58 (msec) & 812/166 (msec), the acquisition 
time of CSE in the T2-weighted study is longer than that of FSE and FLAIR. When 
compared to the FSE and FLAIR pulse sequences, the CSE sequence has a 144% and 
94% superior contrast-to-noise ratio (CNR). CSE must be used for a long time in 
T2-weighted images to create a contrast between tissues (Figure 4d).

Sr. no Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition 
time (msec)

1 CSE 1180/221 1800 140.68 −4.76 5.9

2000 150.88 6.29

2200 156.62 7.08

2400 159.58 1.64 8.59

2 FSE 1180/221 4000 139.54 −5.06 0.48

4200 145.79 1.29

4400 152.29 −0.82 1.5

4600 155.36 2.18

3 FLAIR 1180/221 4000 140.58 −4.36 1.28

4500 146.24 1.42

5000 147.43 1.5

6000 152.34 2.58

Table 7. 
Time optimization with variation of TR for SNR. T1/T2 1180/221(msec).

Sr. No Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

SNR Percentage 
error (%)

Acquisition 
time (min: sec)

1 CSE 1296/200 1800 169.75 8.12 5.9

2000 195.49 24.51 6.29

2200 200.60 27.77 7.08

2400 203.09 29.35 8.59

2 FSE 1296/200 4000 123.82 −15.76 0.48

4200 128.08 −12.86 1.29

4400 133.62 −9.09 1.5

4600 137.85 −6.22 2.18

3 FLAIR 1296/200 4000 133.38 −9.26 1.28

4500 140.73 −4.26 1.42

5000 142.76 −2.87 1.5

6000 147.13 2.58

Table 8. 
Time optimization with variation of TR for SNR. T1/T2 1296/200 (msec).
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4. Importance of acquisition time and comparison of pulse sequences

In clinical practice, the duration of acquisition is crucial in T2-weighted MRI 
imaging. The three most frequently used pulse sequences that are regularly employed 
at the clinical level for diagnostic purposes have been chosen. The idea of selecting 
the right sequence and optimising the experimental parameters to achieve image 
excellence at a quick acquisition time was shown by comparing these pulse sequences. 
Regarding FBX and polysaccharide gels, we assessed the CNR and SNR, respectively. 
We evaluated the performance of different pulse sequences by comparing SNR and 
CNR at the appropriate acquisition time.

Many options for TR in each pulse sequence were tested and researched in order 
to identify the pulse sequence with the most favourable combination for improved 
image quality with a respectably fast acquisition time. Each pulse sequence is usually 
exceptionally effective at selecting the right parameters.

SNR is a measurement of image quality. With an increase in TR, the image’s SNR 
rises. The TR response is determined by the transverse time to the relaxation of a 
phantom object or biological cells [28] because T2 decay is caused by energy transfer 
between spins. To make T2 the dominant factor in the signal decay, a very long TR 
will be required. TR is a component that lengthens the process of acquiring the 
image. For the image’s SNR and acquisition time to be maintained, an appropriate 
TR is essential. Image noise and contrast may become a limiting factor when TR is 
decreased to shorten the time required for image acquisition [29].

According to Tables 2 and 6, by considering the phantoms 608/134 (msec) and 
1050/164 (msec), SNR of the pulse sequences CSE and FLAIR in the T2-weighted 
examinations are comparable. But CSE and FLAIR have quite different acquisition 
times. When compared to CSE, FLAIR’s acquisition time is 63% and 56% faster. While 
other pulse sequences failed to sustain SNR at particular TR values, for the identical 

Sr. No Pulse 
sequences

T1/T2 of 
phantom (msec)

TR 
(msec)

CNR Percentage 
increase in 
CNR (%)

Acquisition 
time (min: sec)

1 CSE 628/58 1800 41.864 13% 5.51

812/166 2000 47.292 7% 6.49

2200 50.687 7% 7.07

2400 54.267 7.48

2 FSE 628/58 3800 18.028 17% 0.45

812/166 4000 21.147 2% 0.47

4200 21.567 3% 0.59

4400 22.283 1.14

3 FLAIR 628/58 3500 17.075 19% 0.43

812/166 4000 20.331 19% 0.46

4500 24.149 16% 0.54

5000 28.002 1.05

Table 9. 
Time optimization with variation of TR on CNR. Deliver dose 25 Grey & 0 Grey. T1/T2 628/58(msec) & 812/166 
(msec).
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phantom, FLAIR covers a range of −33% to −21% while FSE has a percentage error 
between −39% and − 28%., Table 4 shows that CSE is noticeably good for 917/155 
(msec). For large T1/T2 weighting phantoms with an acquisition time of 1180/221 
(msec), Table 7 compares CSE to FLAIR and FSE, despite the fact that CSE has an 
acquisition time that is 372% and 398% as high as FLAIR and FSE, correspondingly.

In T2 weighted study as indicated in Table 9, the provided dosages are 25 grey 
and 0 grey, and T1/T2 values are 628/48 (msec) and 812/166 (msec) respectively, the 
signal intensity variation throughout the tissues is very significant. Table 9 dem-
onstrates the great disparity among tissues generated by the CSE at long TR. At the 
diagnostic stage, this pinnacle of quality in CNR is extremely appreciable and desired.

In MRI study, CSE’s T2-weighted acquisition time is 556% and 612% longer than 
FSE, FLAIR, correspondingly; nevertheless, CSE’s CNR is 144% and 94% better with 
TR selection. As a result, as illustrated in Tables 2 and 9, CSE must be utilised for an 
extended period of time to establish contrast among biological cells, in images that 
are T2-weighted.

As illustrated in Tables 3 and 6, FSE demonstrated very favourable outcomes 
for the phantoms of & 759/155 (msec), 1180/221 (msec). Similar to this, FSE for the 
phantom 608/134 (msec), 986/220 (msec), and 1296/220 (msec) in Tables 2, 5, and 8 
correspondingly show high SNR with low percentage error. As shown in Table 6, 
the FSE cannot be selected for the T1//T2 phantom of 917/135 (msec), the percent-
age inaccuracy is large, and consequently the SNR is very low for the phantom of 
1050/164 (msec). The level of accuracy offered by CSE could never be matched by 
CNR in FSE. Because all the echoes were averaged into one k-space in the T2-weighted 
investigation, the adoption of a long turbo factor reduced the significance of FSE 
[30]. The MT (magnetization transfer), which reduces the contrast between normal 
and pathological tissues, also has an impact on FSE. However, by adjusting the echo 
factor, the contrast of the tissues can be adjusted [31–35]. In a T2-weighted investiga-
tion of FSE, optimal parameters are required to obtain improved CNR.

For a number of tissues, FLAIR and FSE are equivalent to one another in terms 
of SNR, and imagine acquisition time for tissues with T1/T2 time of 608/134 (msec) 
and 1296/200 (msec), respectively, as shown in Tables 8 and 9, FLAIR is an excellent 
substitute. The optimal TR selection improves CNR by 55% in FLAIR, which is often 
comparable to T2-weighted CSE. CNR for FLAIR has increased by 55%, however 
it is still 48% lower than CSE’s. FLAIR has a strong tendency by employing TI (the 
time which relates to the null point of particular tissues), making an image contrast 
between tissues more visible by nullifying the signal for specific cells [36]. Images 
with poor inversion timing lack contrast between adjacent tissues. The inversion 
time and repetition time have a significant impact on the signal intensity differences 
of diseased tissues [13]. To get a strong contrast between tissues, the best inversion 
time is needed. These results underline the need for precision in determining the 
ideal imaging parameters at the diagnostic stage, in addition to the application of 
T2-weighted pulse sequences for certain tissue.

5. Conclusion of the comparison of different pulse sequences

In this study, we analysed factors within a pulse sequence optimally with the goal 
of obtaining image quality with a quick acquisition time. The correct TR value in each 
individual pulse sequence has a substantial impact on the precision of T2 measure-
ment in MRI. It is clear from the results that CSE produced the highest SNR for a 
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variety of tissues and produced a striking contrast in the images that are T2-weighted. 
Studies have demonstrated this, while the greater time required for acquisition seems 
less appealing, it does not reduce its utility in T2-weighted MRI studies. Despite 
the benefits of a quick collecting time and high image quality, FSE pulse sequence 
may be the best option once the obstacles connected with the complex interaction 
between imaging parameters and echo train length have been overcome. Regarding 
SNR, FLAIR is equivalent to FSE for a number of tissues. In a T2-weighted MRI scan, 
FLAIR images can also be advantageous pulse sequences with good SNR and quick 
acquisition times for different tissues. A pulse sequence with exceptional image 
quality in a quick period of acquisition was chosen as a result of comparing pulse 
sequences based on acquisition time. Indeed, a pulse sequence that offers excellent 
image quality and a fast acquisition period would be an ideal choice for clinical MRI. 
By combining high-quality images with efficient acquisition times, healthcare profes-
sionals can enhance patient care and improve workflow efficiency in a clinical setting.
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