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Preface

As a member of the neurotrophin family of proteins, brain-derived neurotrophic factor 
(BDNF) plays a vital role in maintaining optimal brain function, encompassing func-
tions such as synaptic plasticity, cellular differentiation, learning processes, and the 
preservation of nerve cells. Neural plasticity, the nervous system’s capability to adapt to 
varying environmental conditions, involves a diverse array of structural and functional 
mechanisms. Due to its robust neuroprotective properties and recently uncovered anti-
inflammatory and anti-apoptotic attributes observed both in laboratory settings and in 
living organisms, BDNF has long been suggested as a potential preventative measure 
against neurodegeneration.

BDNF has emerged as a significant player in the pathophysiology of numerous psychiatric 
disorders, including depression, anxiety, schizophrenia, and bipolar disorder. Empirical 
evidence has consistently indicated that individuals afflicted with these conditions 
frequently exhibit lower BDNF levels in both their blood and brains. 

The precise role of BDNF in psychiatric disorders remains an active area of research. 
However, scientists hypothesize that BDNF may contribute to several fundamental 
symptoms observed in these disorders, such as mood fluctuations, cognitive impairments, 
and social withdrawal. In addition to these considerations, BDNF has some potential 
additional benefits in addressing psychiatric disorders. Enhancing mood: BDNF can 
stimulate the release of mood-regulating neurotransmitters, such as serotonin and dopa-
mine. Reducing anxiety and stress: BDNF has the capacity to modulate the stress response, 
contributing to a reduction in anxiety symptoms. Enhancing cognitive function: BDNF may 
enhance memory, attention, and executive function, functions that can be compromised 
in individuals with psychiatric disorders. Facilitating social interaction: BDNF can bolster 
the development and operation of brain circuits associated with social interaction.

BDNF has emerged as a significant factor in the understanding of autism spectrum disorder 
(ASD) pathophysiology. Studies have consistently indicated that individuals with ASD often 
exhibit lower levels of BDNF in both their blood and brains. Moreover, there is evidence of 
BDNF gene variants being linked to an increased risk of ASD.

The precise role of BDNF in ASD remains a subject of ongoing research. Nonetheless, scien-
tists posit that BDNF may contribute to some of the central symptoms associated with ASD, 
including challenges in social communication and the presence of narrow interests.

BDNF stands as a promising target for therapeutic interventions in ASD. Current efforts 
by researchers are focused on the development of novel drugs and therapies designed 
to elevate BDNF levels or enhance BDNF signaling. It is crucial to pinpoint the specific 
BDNF pathways that play a role in ASD and create biomarkers capable of predicting 
 treatment responses.

Beyond these considerations, BDNF has additional benefits for individuals with ASD. 
Enhancing social communication skills: BDNF can support the development and function-
ing of brain circuits crucial for social communication. Mitigating restricted interests and 
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repetitive behaviors: BDNF may assist in diversifying interests and behaviors. Improving 
cognitive function: BDNF has the potential to enhance memory, attention, and executive 
function. Alleviating anxiety and depression: BDNF exhibits mood-boosting effects and 
may help reduce symptoms of anxiety and depression. BDNF represents a promising focal 
point for therapeutic endeavors in the context of ASD. 

Ketamine is a dissociative anesthetic renowned for its rapid and enduring antidepressant 
effects. Researchers are also exploring its potential as a treatment for a range of psychiatric 
and neurological conditions, including anxiety, bipolar disorder, post-traumatic stress 
disorder (PTSD), and chronic pain. The therapeutic impact of ketamine is believed to 
be orchestrated through various mechanisms, including its influence on the N-methyl-
D-aspartate receptor, modulation of glutamate signaling, and the promotion of BDNF 
production.

BDNF is believed to be instrumental in the formation of new synapses, vital for learning 
and memory. This might elucidate why ketamine displays efficacy in treating depression, 
a condition often accompanied by a reduction in synaptic connections. Furthermore, 
BDNF is thought to participate in neurogenesis, the process of generating new neurons. 
Neurogenesis is compromised in several psychiatric disorders, including depression, 
anxiety, and PTSD. Ketamine has demonstrated the potential to stimulate neurogenesis in 
animal models of these disorders, hinting at its potential utility in human treatments.

Collectively, evidence points to BDNF as a crucial mediator of ketamine’s therapeutic 
effects. Ketamine-induced elevations in BDNF levels may underlie many of its therapeutic 
benefits, encompassing its antidepressant, anxiolytic, and analgesic properties.

The significance of BDNF extends to the realm of spinal cord injury (SCI), where it is 
intricately involved in the pathophysiological processes. BDNF exhibits a diverse range 
of neuromodulatory effects within the spinal cord. Enhancing synaptic plasticity: BDNF 
actively fosters the formation and maintenance of synapses, crucial for the preservation of 
learning and memory functions. Promoting axonal regeneration: BDNF acts as a stimulant 
for axonal growth, a vital process in the repair of nervous system damage. Safeguarding 
neurons from demise: BDNF provides vital support for neuronal survival and shields them 
from potential injury.

In preclinical models of SCI, the administration of BDNF has consistently demonstrated 
improvements in locomotor function, sensory perception, as well as bladder and bowel 
function. Moreover, BDNF has showcased its capacity to encourage axonal regeneration 
and protect neurons from degeneration. 

Sepsis is a life-threatening condition that arises when the body’s response to an infection 
inadvertently damages its own tissues and organs, often resulting in organ dysfunction 
and mortality. It stands as a leading cause of death among critically ill patients.

BDNF is a pivotal protein involved in the development and maintenance of the nervous 
system, with additional roles in immune system regulation. In sepsis, BDNF levels in both 
the blood and brain frequently experience a decline. This reduction is associated with 
several adverse consequences, including organ dysfunction, cognitive impairment, and 
fatal outcomes.

XVI
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BDNF holds substantial promise as a therapeutic target for sepsis. Ongoing research 
endeavors are focused on the development of novel drugs and therapies designed to 
elevate BDNF levels or enhance BDNF signaling. 

In addition to these considerations, BDNF confers additional benefits in addressing sepsis. 
Mitigating inflammation: BDNF’s anti-inflammatory properties could potentially help 
alleviate the organ damage characteristic of sepsis. Shielding neurons from demise: BDNF 
has demonstrated the ability to safeguard neurons from the harm associated with sepsis-
induced encephalopathy. Enhancing cognitive function: BDNF may aid in the improvement 
of cognitive function, a facet often impaired in survivors of sepsis. Facilitating immune 
recovery: BDNF may contribute to the restoration of immune system functionality, which 
is frequently dysregulated in sepsis.

Both exercise and vitamin D have demonstrated the ability to elevate BDNF levels within 
the brain. Exercise is believed to achieve this by boosting the production of insulin-like 
growth factor 1, a hormone known to stimulate BDNF production. On the other hand, 
vitamin D is thought to enhance BDNF levels by binding to the vitamin D receptor in the 
brain and activating genes associated with BDNF production.

Emerging evidence suggests that the combination of exercise and vitamin D may exert a 
synergistic influence on BDNF levels.

The combined impact of exercise and vitamin D on BDNF levels holds the potential for 
numerous advantages in maintaining brain health. Additionally, BDNF plays a vital role 
in shielding neurons from damage, potentially reducing the risk of developing neurode-
generative conditions such as Alzheimer’s disease and Parkinson’s disease. The current 
evidence points to the combination of exercise and vitamin D as a promising strategy for 
heightening BDNF levels and enhancing brain health.

This book is a comprehensive source of knowledge on BDNF and its neuroprotective func-
tions. The chapters within offer insights into recent advancements, molecular principles, 
and innovative therapeutic strategies targeting neurodegenerative disorders and brain 
health.

Oytun Erbaş
ERBAS Institute of Experimental Medicine,

 Gebze-Kocaeli, Türkiye

ERBAS Institute of Experimental Medicine, 
Illinois, USA

 İlknur Altuntaş
ERBAS Institute of Experimental Medicine,

 Gebze-Kocaeli, Türkiye
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Chapter 1

The Role of Brain-Derived 
Neurotrophic Factor in Psychiatric 
Disorders
Sudhiranjan Gupta and Rakeshwar S. Guleria

Abstract

Brain derived neurotrophic factor (BDNF) is one of the most extensively studied 
and widespread growth factors in the brain. BDNF and its receptors are the critical 
factors having multipotent impact on the central nervous system (CNS). The biologi-
cal function of BDNF primarily mediated by two receptors, tropomyosin receptor 
kinase B (TrkB) receptor and p75 neurotrophin receptor. BDNF contributes a pivotal 
role in neuronal and glial development, modulation and maintaining overall synaptic 
plasticity of the brain; therefore, widely involved in psychiatric diseases. Current 
hypotheses indicates that abnormal BDNF level, a vital condition for psychiatric and 
neurodegeneration diseases are mainly due to the disruption of the BDNF-associated 
signaling cascades. It is, therefore, crucial to understand how BDNF coordinate the 
psychiatric diseases in the brain. This review begins with the history of BDNF and 
its biology in brain homeostasis and focuses on several aspects of BDNF signaling. In 
addition, the review addresses the impact of BDNF level in diverse neuropsychiatric 
disorders including major depressive disorder, schizophrenia, bipolar disorder, post-
traumatic stress disorder and, possible biological mechanisms of BDNF that may shed 
new insight for future therapeutic use and drug development.

Keywords: BDNF, inflammation, brain homeostasis, brain plasticity, psychiatric 
disorders

1. Introduction

Brain-derived neurotrophic factor (BDNF) is a neurotrophin classified as dimeric 
polypeptide regulating a wide array of neuronal activities including but not limited 
to neurogenesis, neuronal growth, differentiation, excitability, and plasticity. BDNF 
was originally identified by Barde et al. [1] as a factor from cultured embryonic 
chick which showed survival of sensory neurons. Soon after its discovery, BDNF 
was recognized and laid a foundation for neuronal plasticity in the adult brain and 
further observed its’ pivotal role in neuronal activity [2–4]. Subsequently, BDNF was 
considered for antidepressant treatments therapy as it was shown that neurotrophins 
promoted the growth and helped in maturation of neurons [5–7]. Interestingly, 
injection of BDNF in the hippocampus elicited antidepressant-like effects in rodents 
led to advocate a critical role for BDNF in the setting formulating antidepressant 
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drugs [8–10]. The line of research identified BDNF and its cognate receptor tropo-
myosin receptor kinase (TrkB, neurotrophic tyrosine kinase receptor, NTRK2) in 
the  hippocampus and cortex suggested antidepressant drug action into neuronal 
 plasticity [11].

BDNF contributed a key role in the development of the nervous system by regulat-
ing neuronal development, growth, differentiation, neurogenesis, synaptogenesis, 
and synaptic plasticity [12–14]. Moreover, neurodegenerative, and neuropsychiatric 
diseases appear to be linked with insufficient BDNF level leading to the defects 
in synaptic plasticity [15, 16]. As a result, strategies to increase the BDNF level in 
circulation was advocated for therapy in neurological diseases.

This article reviews the current understanding and future directions in BDNF-
related research in the central nervous system, with an emphasis on the possible 
therapeutic application of BDNF in modifying fundamental processes underlying 
neural disease.

2.  BDNF, a neurotrophin family member: synthesis, secretion  
and function

Nearly three decades earlier discovery of nerve growth factor (NGF) by Rita 
 Levy-Montalcini [17], prompted Yves-Alain Barde searched for a growth factor with 
similar properties and function like NGF in neurons. The study culminated into a 
purified protein from pig brain named BDNF [1]. Later, amino acid sequence revealed 
that BDNF shared a significant homology with NGF along with other members like 
neurotrophin 3 and neurotrophin 4, together constitute a conserved neurotrophin 
family [18].

Synthesis and maturation of BDNF is a multistage process, involving formation of 
several precursor isoforms. BDNF is initially synthesized in the Golgi after cleaving 
the signal sequence from pre region as a precursor form (pro-BDNF) containing 129 
amino acids N-terminal prodomain and a 118 amino acids C-terminal mature domain 
[19]. The mature domain forms a cysteine knot structure, leading to non-covalent 
dimerization of the mature domains [20]. When the prodomain is cleaved from intact 
pro-BDNF, through the actions of proconvertase at a conserved RVRR sequence, the 
dimeric mature domains are released, and are called mature BDNF, or simply BDNF 
[21]. Secretion of m-BDNF and pro-BDNF into the extracellular space enables their 
physiological action (see the diagram, Figure 1).

In neuronal cells, both pro-BDNF and m-BDNF are released following cellular 
membrane depolarization and maintained a dynamic balance [22–24]. Both isoforms 
are important in neuronal function in the brain, but mature-BDNF (m-BDNF) 
appeared to offer neurogenesis, neuroprotection, synaptic plasticity, and synaptic 
function in neurons [25, 26]. The m-BDNF is axonally delivered into axon vesical 
terminals followed by the secretion into axonal cleft [22]. Mechanistically, BDNF 
requires to bind its’ partner/receptor, Tr, located both pre- and post-synaptic mem-
brane, to complete its function. BDNF is highly conservative and is expressed as a 
single gene, Bdnf transcript and is dynamically regulated and showed cell-specific 
neural activity. The human Bdnf gene, a ~ 70 kb, is in the chromosome 11 consisting 
of 11 exons (I-IX along with Vh and VIIIh) in the 5′ end and 9 promoters in tissues 
and brain regions [27, 28]. Apart from the above-mentioned BDNF isoforms, the 
function of BDNF is potentially affected by single nucleotide polymorphism of 
methionine (Met) to valine (Val) substitution at 66th position of Bdnf gene.
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Considering BDNF neuronal function, it is more appreciated as differentiation 
factor than survival neurotrophin [29, 30]. In addition to synaptic transmission, 
BDNF elicits long-term potentiation in hippocampus and modulate neuronal circuit 
function [31]. Moreover, changes in BDNF level in rodent models demonstrated aber-
rant function in hippocampal regions, including impaired memory, aggression, and 
hyperphagia [32].

3. BDNF receptors and intracellular signaling

BDNF signals are mediated by TrkB receptor and p75 neurotrophin receptor. 
BDNF binds with high affinity with TrkB, a tyrosine kinase receptor family, and the 
p75 neurotrophin receptor (p75 NTR), a member of the tumor necrosis factor (TNF) 
receptor family and low with p75 receptor. The TrkB is widely expressed in brain 
including cortex, hippocampus and in spinal cord nuclei [33]. It is noted that the 

Figure 1. 
Schematic presentation of synthesis and maturation of BDNF. In the intracellular pathway, the pre-pro-BDNF 
precursor molecule is produced in the endoplasmic reticulum and transported to the Golgi apparatus. During 
intracellular cleavage, the pre-region is removed, resulting in formation of immature isoform of BDNF called pro-
BDNF. Finally, the pro-domain is removed and the mature isoform of BDNF, m-BDNF is produced. The cleavage 
process is mediated by intracellular proteases, convertases, and furin resulting the release of both pro-BDNF and 
m-BDNF isoforms into the extracellular space. Here, it is further processed by metalloproteinases 2 and 9 (MMP2 
and MMP9), and plasmin.
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mature BDNF binds to TrkB whereas pro-BDNF binds to p75NTR. The pro-BDNF/
p75NTR signaling primarily promoting synaptic elimination by activating c-Jun 
N-terminal Kinase (JNK) pathway and triggers apoptosis. Other family members of 
Trk are TrkA which is specific to NGF [34] and TrkC which binds other neurotroph-
ins [35]. This review will focus TrkB and its’ signaling.

Activation of BDNF begins by binding to TrkB, and dimerizing and activating 
intrinsic kinase cascade before going to autophosphorylation. The BDNF/TrkB 
 complex gets internalized into the neuron and serves as a docking site for diverse 
signaling platforms, protein phosphorylation and secondary signaling events 
[36, 37]. Next, the binding of BDNF to TrkB receptor, BDNF/TrkB in complex, 
leads to phosphorylation and translocation of TrkB into cellular membrane lipid 
rafts, and activating diverse important intracellular signaling cascades for perform-
ing cellular functions that include mitogen-activated protein kinase/extracellular 
signal-related kinase (MAPK/ERK), guanosine triphosphate hydrolases (GTP-ases) 
of the Ras homolog (Rho) gene and phospholipase C-γ (PLC-γ), phosphatidylinositol 
3-kinase/protein kinase B (PI3K/AKT) pathways [38–41]. It is evidenced that PI3K/
AKT pathway contributed to synaptic plasticity and cell survival or antiapoptotic 
activity response by modulating N-methyl-D-aspartate receptor (NMDAR) [40, 42]. 
Furthermore, BDNF-dependent neuroprotection is mediated via NMDAR/Ca2+ 
synaptic signaling resulting eliminating glutamatergic toxicity and preventing mito-
chondrial dysfunction and cellular apoptosis [43, 44]. The PLC g-dependent signaling 
triggers Ca2+-calmodulin-dependent protein kinase (CAMK) and protein kinase C 
(PKC) to stimulate actin/microtubule synthesis and enhance synaptic plasticity and 
neuronal fiber growth [40, 45, 46]. The MAPK/Ras signaling regulates neural dif-
ferentiation [45]. The ERK ½ and cAMP response element-binding protein (CREB) 
activation are necessary for cytoskeleton protein synthesis for dendritic growth and 
branching [40, 47]. In summary, the participation of BDNF in several physiological 
roles in the brain involves different signaling and is pivotal in maintaining a dynamic 
balance between the stimulus and its’ function. A diagrammatic presentation of 
BDNF receptor and signaling is shown in Figure 2.

4. BDNF and brain homeostasis

Homeostasis is a fundamental process and equates to a dynamic balance between 
interdependent element and the physiological function in the organ of a living sys-
tem. BDNF plays a significant role in neuronal plasticity in the central and peripheral 
nervous system [48]. BDNF is expressed throughout the development and adult-
hood in neurons of the brain and contributing a critical role in many physiological 
functions. One of the functions is energy homeostasis in the hypothalamus. Energy 
homeostasis is a complex gets interaction between the brain and peripheral tissues. 
Neuronal circuitry in the hypothalamus and hindbrain contributes a critical role in 
orchestrating the peripheral signals associated with energy storage by regulating 
nutrient intake and energy expenditure. BDNF is synthesized in several regions of 
hypothalamus including ventromedial hypothalamic nucleus (VMH), the dorso-
medial hypothalamic nucleus (DMH), the paraventricular nucleus (PVH) and the 
lateral hypothalamic area (LH) [49, 50]. In particular, the energy balance is reported 
to be in the PVH region as evidenced by loss of body weight by injecting BDNF in 
this region [51]. The report showed that decrease in food intake resulted in increased 
resting metabolic rate, partly due to upregulation of uncoupling protein 1 (UPC1) 
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in the brown adipose tissue [51]. Hypothalamic injection of BDNF promotes switch-
ing white adipose tissue to brown adipose tissue via sympathetic neuron activation 
and accelerates UCP-1 expression [52, 53]. This is an example of the role of BDNF in 
increasing energy expenditure by modulating metabolic rate and temperature. The 
data indicated that BDNF enhanced energy expenditure suggesting an anorexigenic 
function [52]. Another finding attested the role of BDNF in thermogenic regulation in 
lateral hypothalamus [54]. On the contrary, deletion of Bdnf gene caused hyperpha-
gia, decreased locomotor activity and impaired thermoregulation [54]. Moreover, it is 
evident that mutation in the Bdnf gene or its receptor (TrkB) leads to obesity in mice 
[55, 56]. The Bdnf gene mutation data is corroborated with hyperphagia and impaired 
cognitive functions in humans [57–62]. Together, it is suggested that PVH region is 
critical in energy balance in the brain.

In addition, BDNF plays a key role in energy management in non-neuronal cells. 
Selective ablation of BDNF in liver cells in mice showed reduction in hyperglycemia 
and hyperinsulinemia caused by a high fat diet [63]. Compromised BDNF signaling is 
also linked with obesity and the metabolic syndrome in humans [64]. Furthermore, 
BDNF administration reduced serum glucose and insulin in obese db/db mice or 
improvement of glucose tolerance compared to their vehicle treated counterparts 
[65, 66]. The underlying molecular mechanism may be the interaction of BDNF with 
glucagon like peptide 1 (GLP1). Gotoh et al. showed that administration of BDNF 

Figure 2. 
BDNF signaling cascade. The BDNF is primarily transcribed as a precursor (pro-BDNF) which is later cleaved 
intra or extracellularly into mBDNF. The pro-BDNF exhibits affinity to sortilin and p75NTR receptors leading to 
the activation of nuclear factor κB (NF-κB), RhoA and JNK signaling pathways. The functional outcome of theses 
pathways includes neuronal survival, development, and apoptosis. The mBDNF showed highest affinity towards 
TrkB receptors. The mBDNF/TrkB complex triggers signaling pathways linked to phosphatidylinositol 3-kinase 
(PI3K), phospholipase C-γ (PLC-γ) and mitogen activated protein kinase (MAPK) via CREB. The pathways are 
involved in dendritic growth and branching, synaptic plasticity, and cytoskeleton protein activation.
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decreased the portal glucagon level and did not show any effect on insulin [67]. It is 
also observed that the intraportal administration of GLP-1 increases BDNF levels in 
the pancreas and reduces glucagon secretion [67]. Recent study also suggested a role 
on pancreatic-islet-expressed TrkB to promote peripheral insulin secretion [68]. In 
addition to BDNF and TrkB, the pro-BDNF receptor, p75NTR is suggested to play a 
role in glucose homeostasis and insulin sensitivity. Conditional knockout of p75NTR 
showed improvements of glucose and insulin tolerance in adipose and skeletal muscle 
[68, 69]. Regarding signaling context of BDNF and metabolic homeostasis, it is yet to 
be defined which receptor mediated action is more appropriate. The rational lies that 
pro-BDNF exclusively binds to p75NTR and appeared to show an opposite effect to 
BDNF-TrkB activity [70]. It established that a single nucleotide polymorphism (SNP) 
in pro domain of BDNF (Val66Met) is linked with neuropsychiatric disorders in 
humans and seemed to function through p75NTR [71]. The SNP (Val66Met) variant 
indicated increased appetite in mice via p76NTR [72], along with alteration of anxiety 
and anorexic-related behavior [73, 74]. The data may suggest a unique control of 
energy balance in food intake and anxiety. Finally, the downstream signaling between 
pro-BDNF and mature BDNF are quite distinct and may appeared to reflect different 
outcome in neuronal cells. TrkB promotes MAPK/ERK, PI3K, and PLCg1, pathways, 
while p75NTR promotes JNK and Rho pathways [36, 41, 75–77].

5. BDNF and psychiatric diseases and disorders

We often use the term disorder and diseases in psychiatric illness. There is a subtle 
difference exists between them however, they are considered as mental illness. The 
term disease defines an involuntary response of biological, physiological, or patholog-
ical consequences of illness and, the underlying cause can be measured. The disorder 
defines disturbance of normal physical or mental health status and is a collection of 
signs and symptoms closely associated with specific disease. In general speaking, we 
can say that all diseases are disorders but not all disorders are diseases.

BDNF is one of the most widely studied neurotrophin signaling molecules in the 
brain responsible for neurite growth, maturation of synapses during development, 
and synaptic plasticity. We have discussed BDNF’s biology, receptor alignment for 
signaling events in the brain. Essentially, BDNF-TrkB signaling, and its intermediate 
proteins contributed a critical role in different phases of synaptic development and 
neuroplasticity in the brain [78]. Moreover, BDNF regulates learning and memory 
process in young and adult humans [79]. Therefore, aberrant expression or imbalance 
in BDNF level and its cognate TrkB receptor are associated with many psychiatric 
disorders (diseases) and neurodegenerative diseases. In addition, anomaly of BDNF 
level and signaling are linked to diverse cardiovascular, metabolic, and inflamma-
tory diseases [80–85]. This section will discuss the contribution of BDNF in brain 
illness or psychological diseases (disorders) including major depressive disorder 
(MDD), schizophrenia (SZ), bipolar disorder (BD) and post-traumatic stress disorder 
(PTSD).

6. BDNF and MDD

BDNF is well studied molecule in MDD. Eisch et al reported that an increase level 
of BDNF in the ventral tegmental area (VTA)-nucleus accumbens (NAc) region 
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contributed the onset of depression in rats [86]. A following mechanistic study by the 
same group using viral-mediated mesolimbic dopamine-specific BDNF knockdown 
determined the pivotal role of BDNF in depression like behavior [87]. Interestingly, 
reduced BDNF in cornu ammonis (CA3) and dentate gyrus (DG) of the hippocampus 
and prefrontal cortex (PFC), resulting in depression-like behavior in mice [88]. 
Furthermore, targeted deletion of BDNF using NSE-tTA x TetOp-Cre line in the VTA 
area determined that BDNF in the DG was essential for therapeutic intervention as an 
antidepressant [89]. Similarly, reduced BDNF protein levels were observed in patients 
with MDD compared with the healthy control [90, 91]. Taken together, these find-
ings suggest that BDNF acts within the VTA-NAc pathway to induce a depression-like 
phenotype, whereas in the hippocampus and PFC it produces antidepressant-like 
effects [92]. It is further observed that TrkB, the receptor for BDNF played a role 
in MDD. Patient with MDD showed elevated level of TrkB compared to the healthy 
control [93, 94]. However, it is unclear regarding the role of the partners in MDD and 
may be the focus of future investigation.

Epigenetic modification like DNA methylation is frequently studied in Bdnf gene 
and BDNF exon I and IV promoters. A methylation profile in CpG island of exon I 
of BDNF promoter showed differential pattern of methylation that can distinguish 
between major depression vs. and healthy controls and suggested to be a good 
biomarker for MDD [95]. But exon IV did not show any changes. A similar study 
reported higher methylation of BDNF exon I promoter in patients with MDD [96]. 
This study further showed reduced methylation pattern with antidepressants treat-
ment [96]. Interestingly, patient with MDD showed poor treatment response when 
methylation of CpG site −87 of BDNF exon IV promoter was lacking [97].

An association between BDNF Val66Met polymorphism and MDD is extensively 
studied. Meta analyses revealed that there is no association between Val66Met poly-
morphism and MDD (depression) [98–100]. However, few studies have indicated 
that BDNF Val66Met polymorphism moderated the relationship between stress and 
depression [100–103].

7. BDNF and Schizophrenia (SZ)

Schizophrenia is a complex heterogenous disease characterized by multiple symp-
toms such as hallucinations, social avoidance, withdrawal, paranoia, cognitive deficit, 
and disorganized thought [104]. The role of BDNF in SZ is well studied because 
BDNF is involved in neurotransmission. In general, BDNF level is reduced in SZ 
patients [105, 106] and study has shown further that serum BDNF is positively cor-
related with antipsychotic drug (clozapine) [107]. This is an interesting finding for a 
therapeutic purpose. However, recent evidence implicated that BDNF mRNA expres-
sion remained unchanged in SZ patients compared to healthy control in postmortem 
brain samples [108].

Reports are emerging regarding epigenetic mechanism in Bdnf gene and develop-
ment of SZ [109]. Epigenetic mechanism encompasses DNA methylation, histone 
modification, chromatin remodeling and DNA methylation is widely studied in SZ 
[109, 110]. A significant positive correlation was observed in BDNF gene methyla-
tion in patients with SZ compared to healthy controls [111]. Another study showed 
higher methylation level at BDNF promoter compared to controls [112]. Moreover, 
a differentially methylated CpGs has been identified in SZ patients of postmortem 
human brains [113]. Moreover the Val66Met SNP on the Bdnf gene has implicated 
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schizophrenia incidence and a recent meta-analysis provided evidence that there was 
an association between brain volume alterations and variations on the Val66Met SNP 
in patients of SZ [114–116]. While studies have shown a positive correlation between 
reduced level of BDNF and SZ episode, but have not evaluated the role of demo-
graphic characteristics such as age, gender, race, and education. Therefore, adequate 
meta-analysis including demographic factors should be added and warranted further 
investigation.

8. BDNF and bipolar disorder (BD)

Bipolar disorder is a multifactorial psychiatric disorder characterized by mood 
fluctuation or instability, depressive, manic episode, and euthymic states [117, 118]. 
BD makes a distinct category in Diagnostic and Statistical Manual of Mental 
Disorders, 5th edition into BD I, BD II based on severity of manic episodes [119]. 
The thirst for potential biomarker in BP is emerging and BDNF is extensively studied 
in this area. In 2005, Laske et al. first reported reduced BDNF level in the serum 
of manic and major depressed patients compared to healthy control [120]. Since, 
then several studies have been conducted in BD and majority of the studies sug-
gested a decline level of peripheral BDNF and considered it as a marker [121–125], 
however, BDNF levels were not different in euthymia when compared to controls 
[126]. Furthermore, at transcription level, BDNF mRNA showed downregulation in 
postmortem brains of both manic and depressive subjects [127, 128]. Antipsychotic 
drugs like mood stabilizers are frequently prescribed for manic or depressive disorder 
but the study did not show any improvement of BDNF level in four weeks treatment 
[122]. However, another study of sixteen-week follow-up, using extended-release 
quetiapine showed increase in BDNF levels, but decreases with time in a manic/mixed 
episode [129].

A common genetic variation in Bdnf gene, the Val66Met, is established as a com-
mon platform linked with reduced secretion of BDNF and is associated with many 
neuropsychiatric disorders and BD is not an exception. Earlier finding suggested an 
association between BDNF Val66Met polymorphism and BP [130, 131] but recent 
meta-analyses showed opposite results [132, 133]. Therefore, more data are warranted 
to determine the role of Val66Met polymorphism in BD.

Epigenetic modulation is well documented in psychiatric disorders and a posi-
tive correlation is shown in CpG methylation in BDNF promoter and BD subjects 
[134–136]. Alterations in DNA methylation patterns in patients with BD have been 
extensively investigated for the past years, and possibly recognize a potential bio-
marker [137–139]. It may be the case that DNA methylation alters the differences in 
BDNF level and contributed in part in BD, so, targeting BDNF methylation could be 
strategy to treat BD.

9. BDNF and post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder char-
acterized by hyperarousal, re-experiencing, negative emotions, increased anxiety, 
and fearful memories following exposure to severe trauma [119]. The role of BDNF 
in PTSD is emerging. In 2009, a small human study was conducted in University of 
Pisa, Italy where they recruited 18 drug naïve PTSD patients (12 women and 6 men) 
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with no psychiatric comorbidity and 18 healthy controls in outpatients’ facility. The 
finding showed reduced level of BDNF in the plasm compared with healthy control 
[140]. War Veterans have continuously suffered from PTSD and cognitive deficit 
caused by traumatic brain injury. The possible first combat Veteran study aiming 
BDNF as a marker in PTSD was investigated in Croatia, 2022. The results revealed 
a marked reduction in plasma BDNF in Veterans with PTSD and mild cognitive 
impairment compared with healthy controls [141]. The epigenetic influence in BDNF 
played a critical role in psychiatric disorders including PTSD, as few studies were 
conducted to investigate DNA methylation in CpG island and Val66Met polymor-
phisms. A study was conducted using US military service members deployed in the 
Middle east for Operation Iraqi Freedom (OIF)/Operation Enduring Freedom (OEF) 
with PTSD showing a significant association between BDNF Val66 Met genotype 
and traumatic stress in post deployment [142]. Another study of Vietnam war active 
service members from South Korea showed an association between higher DNA 
methylation in BDNF promoter in PTSD subjects suggesting a biomarker of PTSD 
[143]. Interestingly, another study of Vietnam war Veterans by the Australian or New 
Zealand Defense Force showed that PTSD was associated with decreased methylation 
at three BDNF CpG sites [144]. Furthermore, it was observed that BDNF Val66Met 
was linked with differential Bdnf expression in the peripheral tissues [144]. Another 
study supported the finding that methylation of CpG island (CpG1, CpG 7 and CpG 
18) in BDNF promoter was closely related to PTSD and suggested as a biomarker to 
PTSD [145].

Although studies have shown a positive correlation between BDNF level and 
Val66Met polymorphism in PTSD, there were reports that showed the opposite effect. 
There was a report showing no relationship between BDNF Val66Met and PTSD in 
victims of urban violence [146]. In addition, two case studies (small sample size) 
failed to establish the association between Val66Met and PTSD [147, 148]. Moreover, 
an elevated level of BDNF was observed in patients with PTSD suffering from trauma 
[149]. A meta-analysis showed that BDNF level is increased in PTSD patients com-
pared to healthy subjects [150]. A discrepancy was noted in OEF/OIF Veteran study. 
Recently, Wu et al. reported for the first time that a higher serum level of BDNF in 
chronic combat PTSD Veterans independent of symptom severity [151]. These reports 
contradict previous findings.

Together it appeared that genetic variants of Bdnf gene and PTSD did not provide 
any conclusive relationship. The higher and lower value of BDNF were possibly 
observed due to heterogenous population or low percentage of homozygous Met 
alleles. More longitudinal and follow-up studies are necessary to make a definitive 
conclusion.

10. BDNF-miRNAs-psychiatric disorders

The miRNAs are non-coding RNAs, a new class of epigenetic modulators 
 emerging as an attractive molecule for therapeutic intervention. The miRNAs 
are small 21–23 nucleotides that have the capability to inhibit mRNA and protein 
resulting in gene regulation [152]. Literature search showed 2844 articles have been 
published where miRNAs were associated with psychiatric diseases. Interestingly, 
BDNF-miRNA axis in psychiatric diseases showed 131 reports indicating therapeutic 
potential of BDNF. Recent studies indicated that several miRNAs target 3′ UTR of 
Bdnf gene modulated the function associated with psychiatric disorders [153–158]. 
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In rodent model of anxiety disorder and schizophrenia, miR-124a regulated anxiety 
like behavior by targeting Bdnf gene [159] and miR-148b is implicated in regulating 
Bdnf gene in methylazoxymethanol acetate model [160]. In mouse model of PTSD, a 
set of miRNAs, miR-15a-5p, miR-497a-5p, miR-511-5p and let-7d-5p were shown to 
be associated with Bdnf and FKBP5, the two key PTSD-linked genes [157]. Moreover, 
a prolong stress induced rat PTSD model, miR-142-5p is shown to be upregulated in 
amygdala with a target gene, Npas4 which was reduced [161]. The inhibition of miR-
142-5p appeared to reduce the PTSD symptoms by restoring Npas4 and BDNF level 
suggesting a crucial link between them. In BD condition, a human cohort study was 
conducted and revealed an association between miR-206 and BDNF polymorphism 
[162]. Another study showed a panel of miRNAs, miR-7-5p, miR-221-5p and miR-
370-5p that are involved in BD II patients by modulating BDNF level [163].

In summary, the data showed promising direction in miRNA-BDNF-axis modula-
tion in psychiatric disorders. However, a strong clinical correlation regarding miRNA-
BDNF needs to be established for the development of new diagnostic and therapeutic 
application to mitigate the cognitive deficit.

11. Conclusion

BDNF is well studied in major psychiatric disorders or diseases. Modern 
 techniques provided us new insights regarding BDNF’s role in psychiatric disease 
progression and treatment responses. The dysregulation of BDNF/pro-BDNF and its 
receptors TrkBs resulting in a cascade of neuropathophysiological events leading to 
the impairment of synaptic plasticity and cognitive deficit. Several lines of evidence 
support the notion that BDNF is nodal mediator across an array of neuropsychiatric 
disorders. It is further to make a note that many second-generation antipsychotic 
drugs showed some promise in providing neuroprotection by enhancing BDNF level, 
however, a definitive conclusion cannot be made based on few medications. Future 
investigation including using small molecule compound (mimetics or agonists) for 
enhancing BDNF synthesis and gene therapy using nanoparticle mediated encap-
sulation of BDNF, is necessary to extend this efficacy at therapeutic standpoint. 
Peripheral BDNF level is used as a biomarker in many psychiatric disorders, however, 
in some cases like MDD, it showed disagreement. This may be due to heterogenous 
nature and epigenetic modifications that contributed significantly for making a uni-
versal conclusion. Nonetheless, it helped to pave the way for better understanding the 
role of BDNF deep inside human brains. Future studies are warranted to uncover the 
mechanism of methylation and SNPs of Bdnf gene for better therapeutic treatment.
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Chapter 2

The Role of Brain-Derived 
Neurotrophic Factor in Autism 
Spectrum Disorder: Current 
Findings and Future Directions
Mumin Alper Erdogan and Oytun Erbaş

Abstract

Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophic factor that 
plays an essential role in neuroplasticity and neurodevelopment. Autism spectrum 
disorder (ASD) is a neurodevelopmental disorder that affects social interaction, 
communication, and behavior. The relationship between BDNF and ASD has 
been studied extensively, with conflicting results. While some studies suggest that 
decreased BDNF levels may contribute to the development of ASD, others do not 
confirm this finding. The effects of BDNF on synaptic plasticity and cognitive func-
tions have also been investigated, with some studies indicating that BDNF may be 
associated with impairments in learning, memory, and attention in individuals with 
ASD. Additionally, physical exercise and cognitive and behavioral therapies may help 
alleviate ASD symptoms by increasing BDNF levels and enhancing neuroplasticity. 
Further research is needed to better understand the mechanisms underlying the 
relationship between BDNF and ASD and to develop more effective treatment strate-
gies for individuals with ASD.

Keywords: BDNF, autism spectrum disorder, neuroplasticity, cognitive functions, 
therapeutic interventions

1. Introduction

The growth and plasticity of the brain are significantly influenced by the protein 
BDNF. A neurodevelopmental disorder called Autism spectrum disorder (ASD) 
causes social and behavioral difficulties. Numerous experts have conducted consider-
able study on the link between BDNF and ASD.

A neurotrophic factor known as BDNF helps neurons across the central ner-
vous system to survive, develop, differentiate, and function. The nervous system’s 
capacity to adapt to structural and functional changes is known as neuroplasticity. 
Understanding how BDNF affects neuroplasticity is important for learning, memory, 
and cognitive functions as well as for understanding the origins and therapies of 
neurological and neuropsychiatric illnesses.
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2. The effect of BDNF on neuroplasticity

BDNF plays a critical role in regulating synaptic plasticity processes. Synaptic 
plasticity can be defined as the strengthening or weakening of synapses, leading to 
changes in the connections between neurons. BDNF particularly influences the fol-
lowing neuroplasticity processes: [1–3].

1. Synaptogenesis: BDNF promotes the formation of synapses and the development 
of connections between nerve cells.

2. Dendritic growth and arborization: BDNF supports the development and com-
plexity of neurons’ dendritic trees, thereby increasing the number of connec-
tions between nerve cells.

3. Synaptic transmission and modulation: BDNF regulates the effectiveness of 
synaptic transmission and modulation of synapses, which are critical for learn-
ing and memory processes.

4. Structural reorganization and neuronal migration: BDNF plays a significant role 
in the structural organization and reorganization of the brain by regulating the 
migration and settlement of neurons.

5. Neuronal survival and neuroprotection: BDNF provides protection against 
neuronal damage by regulating the expression of factors necessary for neurons’ 
survival, growth, and differentiation.

2.1 BDNF and Learning, Memory, and Cognitive Functions

Neuroplasticity is considered a fundamental mechanism in learning and memory 
processes, and BDNF’s effects on these processes are of great importance. BDNF is 
particularly associated with the following cognitive functions: [2–4].

1. Learning and memory: The hippocampus and prefrontal cortex are particularly 
where BDNF influences learning and memory processes. As BDNF levels rise, 
synaptic connections between nerve cells become stronger and more synapses 
are formed, which enhances the potential for learning and memory. Impaired 
memory and learning might result from BDNF insufficiency.

2. Processing speed and focus: BDNF is also essential in controlling cognitive pro-
cesses including processing speed and attentiveness. Levels of BDNF have been 
demonstrated to be positively correlated with attention and processing speed. 
Additionally, attention-deficit/hyperactivity disorder (ADHD) and other cogni-
tive function abnormalities have been linked to BDNF insufficiency.

3. Executive functions: BDNF is essential for the development and regulation 
of executive functions as well as for controlling the prefrontal cortex’s func-
tioning. High-level cognitive activities including problem-solving, planning, 
adaptability, and thinking organizing are included in executive functions. 
Executive function issues and poor cognitive flexibility may result from BDNF 
insufficiency.
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2.2 BDNF and neurological and neuropsychiatric disorders

The regulation of neuroplasticity and BDNF plays a significant role in the patho-
genesis and treatment of neurological and neuropsychiatric disorders. Decreased 
BDNF levels and impaired neuroplasticity processes have been associated with the 
following diseases: [2–4].

1. Depression and anxiety: Reduced BDNF levels and impaired neuroplasticity pro-
cesses are associated with the pathogenesis of depression and anxiety disorders. 
Antidepressants and other pharmacological treatments are thought to be effec-
tive by increasing BDNF levels and supporting neuroplasticity.

2. Schizophrenia: Schizophrenia has been associated with impairments in synap-
tic function and neuroplasticity processes, and decreased BDNF levels are also 
observed in this disorder. Antipsychotic drugs used in the treatment of schizo-
phrenia are believed to be effective by increasing BDNF levels and supporting 
neuroplasticity.

3. Alzheimer’s disease and other neurodegenerative conditions: The pathophysiol-
ogy of Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative 
conditions is linked to neuronal damage and compromised neuroplasticity pro-
cesses. BDNF levels have been found to be decreased in many disorders, and its 
neuroprotective properties are thought to be a possible target for their therapy.

4. ASD (Autism spectrum disorder): ASD is a neurodevelopmental condition 
marked by challenges with social interaction and communication as well as con-
fined, monotonous, and stereotyped behaviors. Because BDNF levels are low in 
ASD, its effects on neuroplasticity are thought to have a possible involvement in 
the etiology and management of ASD.

2.3 BDNF and neuroplasticity: applications and future research directions

Current research on BDNF and neuroplasticity has provided important insights into 
the understanding and treatment of neurological and neuropsychiatric disorders [1]. 
Some important areas of future research that could be focused on in this field include:

1. Drug development: New treatment strategies that regulate BDNF levels and 
support neuroplasticity processes may be potentially effective in the treatment 
of neurological and neuropsychiatric disorders. Research in this area should aim 
to discover new pharmacological compounds and enhance the effectiveness of 
current treatments [2].

2. Behavioral and lifestyle interventions: Research could investigate the effects of 
physical activity, diet, and other lifestyle factors on increasing BDNF levels and 
neuroplasticity naturally. Such interventions could provide a complementary 
approach for the prevention and treatment of neurological and neuropsychiatric 
disorders [3].

3. Neurodevelopmental processes and aging: Research on BDNF and neuroplasti-
city could contribute to a better understanding of neurodevelopmental processes 
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in early life and cognitive and neurological changes associated with aging. Such 
studies could lead to the development of specific strategies to support neuroplas-
ticity at different stages of life [4].

4. Personalized medicine: Research on BDNF and neuroplasticity could help deter-
mine the impact of individual genetic and environmental factors on disease risk 
and treatment effectiveness. Such information could contribute to the develop-
ment of personalized treatment approaches and more effective management of 
neurological and neuropsychiatric disorders [5, 6].

Future research on BDNF and neuroplasticity has a great potential to provide a 
better understanding of how neuronal and synaptic functions change in different 
disease states and stages of life. Specifically, gaining more knowledge on how BDNF 
and neuroplasticity mechanisms interact and influence each other could lead to the 
development of more effective treatment strategies and better management of neuro-
logical and neuropsychiatric disorders. Progress in this field could play an important 
role in improving patients’ quality of life and contributing to public health.

3. BDNF’s biological and functional properties and effects

3.1 Biological properties of BDNF

BDNF is a protein produced in nerve cells in the brain and plays an important role 
in many biological processes such as neurodevelopment and synaptic plasticity [7]. 
BDNF is converted from proBDNF, a protein synthesized in brain cells and sent to 
neurons, to mature BDNF (mBDNF) by proteolytic cleavage [8]. BDNF is particularly 
expressed in brain regions such as the hippocampus, prefrontal cortex, striatum, and 
amygdala [9, 10].

3.2 Functional properties and effects of BDNF

BDNF is a protein that affects communication between neurons in the brain and 
plays an important role in many biological processes such as neurodevelopment and 
synaptic plasticity [6]. BDNF promotes the growth and healthy development of 
neurons. Moreover, BDNF strengthens synaptic connections between neurons and 
supports the formation of new synaptic connections [7, 8]. BDNF is also important 
for learning and memory and plays a role in memory formation [9]. BDNF also plays 
an important role in regulating stress response and mood [10].

The effects of BDNF are mediated through receptors. BDNF binds to a recep-
tor called TrkB to promote the growth and healthy development of neurons [6]. 
Additionally, TrkB receptor strengthens synaptic connections between neurons and 
supports the formation of new synaptic connections [11]. TrkB receptors are also 
responsible for the effects of BDNF on learning and memory formation [12].

As BDNF plays a significant role in regulating nervous system functions, BDNF 
levels can vary in many diseases associated with processes such as neurodevelop-
ment and synaptic plasticity [13]. Therefore, BDNF levels are also used as a potential 
biomarker for the pathophysiology, diagnosis, and treatment of neuropsychiatric 
disorders [14].
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3.3 BDNF and neurodevelopment

BDNF promotes the growth, migration, and differentiation of nerve cells during 
neurodevelopment. BDNF also assists nerve cells in forming the proper connec-
tions. A deficiency in BDNF can result in errors in neurodevelopment and the 
failure of neurons to make the proper connections [11]. The effects of BDNF on 
neurodevelopment have been studied extensively in relation to neurodevelopmental 
disorders [12].

3.4 BDNF gene expression

BDNF gene expression is necessary for the production of BDNF protein. The 
BDNF gene can be expressed by neurons and other cell types [13]. BDNF gene expres-
sion is influenced by many factors, such as activity, stress, and neurodevelopmental 
processes [14]. BDNF gene expression has been studied extensively in relation to 
neurodevelopmental disorders and other brain diseases [9].

3.5 BDNF’s roles in different brain regions

The roles of BDNF vary in different regions of the brain. In the hippocampus, 
BDNF is involved in learning and the formation of memories [15]. BDNF also plays 
a crucial role in regulating stress response and emotion in the prefrontal cortex [16]. 
Additionally, other brain regions such as the striatum and amygdala also rely on 
BDNF for proper functioning [17].

4. Autism spectrum disorder

Autism spectrum disorder (ASD) is a condition that stems from the interplay of 
both genetic and environmental elements and affects neurodevelopment. ASD is 
defined by symptoms such as challenges with social interactions, communication 
deficits, and repetitive and restricted behavior patterns [18].

1. Pathophysiology of ASD:

The exact cause of autism spectrum disorder (ASD) remains unclear, but it is 
thought to be the result of a complex interplay between genetic, epigenetic, and 
environmental factors affecting the development and function of the brain [19]. 
Many researchers suggest that ASD arises from dysfunctions in brain develop-
ment and function [20]. Brain development is related to the proper migration, 
differentiation, and connection of neurons. In addition, the proper formation 
and function of synaptic connections between nerve cells is also important [21].

2. Relationship between ASD Neurodevelopment and BDNF

The relationship between the neurodevelopmental abnormalities in ASD and 
BDNF has been studied by many researchers. It has been found that BDNF levels 
are decreased in individuals with ASD, especially in those with low functional 
levels on the autism spectrum [22, 23]. In contrast, BDNF receptor levels in indi-
viduals with ASD are normal or increased [24].
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3. BDNF and ASD Symptoms:

BDNF is a key factor in synaptic plasticity and neurodevelopment, and a decrease 
in its levels may be linked to the symptoms of ASD. Specifically, a decrease in 
BDNF levels can result in an increase in social interaction difficulties and repetitive 
behaviors among individuals with ASD [25]. Additionally, the decreased BDNF 
levels observed in individuals with ASD have been linked to emotional disorders 
and increased obsessive-compulsive behaviors [26].

4. BDNF, ASD Treatment, and Medications:

BDNF may be a potential target in the treatment of ASD. The neurodevelopmental 
effects of BDNF can be used to improve brain function in individuals with ASD [27]. 
Increasing BDNF levels may increase synaptic plasticity and reduce ASD symptoms. 
Therefore, drugs that increase BDNF levels are being investigated as a potential strat-
egy in the treatment of ASD [28].

ASD and BDNF Gene Expression: Decreased expression levels of the BDNF gene 
in individuals with ASD may be associated with developmental dysfunctions. Some 
studies have shown that BDNF gene expression levels may be decreased in individuals 
with ASD [29, 30].

BDNF and ASD Medications: Drugs that increase BDNF levels are being evaluated 
as a potential strategy for ASD treatment [31]. For example, antidepressant drugs 
such as selective serotonin reuptake inhibitors (SSRIs) are thought to reduce ASD 
symptoms by increasing BDNF levels [32]. Additionally, BDNF agonists are being 
investigated as a potential treatment strategy for reducing ASD B symptoms [33].

4.1 Clinical features, diagnosis, and treatment of autism spectrum disorder

Early childhood is when autism spectrum disorder (ASD) first appears. ASD is 
characterized by challenges with social interaction and communication as well as limited 
and repetitive behavioral patterns. The three core characteristics of ASD, as defined 
by the DSM-5, include difficulties with social interaction and communication, as well 
as restricted interests and repetitive behaviors. These signs can be mild to severe and 
last a person their entire life [18]. A thorough assessment of a child’s behavioral traits, 
such as social interaction, language and communication abilities, repetitive habits, and 
interests, can lead to the diagnosis of ASD. Specialists frequently utilize standardized 
tests and autism screening instruments to make their diagnoses. However, identifying 
ASD cannot be done with a single test or clear indication. Input from a child’s family, 
teachers, and other healthcare experts may also be included in a thorough review [34]. 
Multidisciplinary therapy is necessary for ASD. A child’s treatment frequently starts 
as early as feasible and lasts their entire lives. Education, speech and language therapy, 
behavior therapy, family counseling, and medication are all possible treatment modali-
ties. Children can have better results with early diagnosis and treatment [35].

5. BDNF and autism spectrum disorder

BDNF is a member of the neurotrophic factor family and is critical for neurological 
functions such as neuroplasticity and neurogenesis. BDNF functions as a protein that 
regulates the growth, maturation, survival, and synaptic plasticity of neurons [36]. 
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Changes in BDNF levels in individuals with autism spectrum disorder (ASD) may 
contribute to the pathophysiology of ASD. Many researchers have found evidence that 
changes in BDNF levels may be associated with ASD. Some studies have shown that 
BDNF levels are lower in individuals with ASD and that these lower levels are associated 
with ASD symptoms [37]. However, other studies suggest that normal BDNF levels 
may be associated with ASD. For example, one study found that individuals with ASD 
had normal BDNF levels compared to a control group, but differences in the regional 
distribution of BDNF in the brain may contribute to ASD symptoms [38]. Additionally, 
genetic variations in the BDNF gene have been investigated in individuals with ASD. One 
study found that certain variations in the BDNF gene were associated with an increased 
risk of ASD [39]. However, another study found that these variations in the BDNF gene 
were not associated with ASD [40]. The relationship between BDNF and ASD is not yet 
fully understood and further research is needed in this area. Taken together, the evidence 
discussed suggests that BDNF may have an important role in the pathophysiology of 
ASD, although the precise nature of this role warrants further research.

The relationship between ASD and BDNF may be important for the pathophysiol-
ogy of ASD, and further research in this area is needed. Many researchers have shown 
that BDNF levels are decreased in individuals with ASD and that these low levels are 
associated with ASD symptoms. However, other studies suggest that normal BDNF 
levels may also be associated with ASD.

BDNF levels may be used as a potential therapeutic target to alleviate ASD symp-
toms. A study has shown that BDNF deficiency in mice leads to ASD-like symptoms 
and that BDNF infusion can reverse these symptoms. This study suggests that BDNF 
may be a potential agent for ASD treatment.

In conclusion, while the relationship between ASD and BDNF is not yet fully 
understood, it is known that BDNF is critical for neurological functions such as 
neuroplasticity and neurogenesis and may play a role in ASD pathophysiology. The 
diagnosis and treatment of ASDB require a multidisciplinary approach, and early 
diagnosis and treatment may help achieve better outcomes. BDNF levels may be used 
as a potential therapeutic target in ASD treatment.

6.  BDNF’s role in the pathophysiology of autism spectrum disorder  
and clinical outcomes

Although the exact role of BDNF in the pathophysiology of ASD is still not fully 
understood, studies in this area have made significant progress. Changes in BDNF 
levels have been shown to be associated with ASD, and BDNF receptors and signaling 
pathways are also thought to play an important role in ASD pathophysiology.

6.1 Changes in BDNF levels

Changes in BDNF levels may be related to ASD pathophysiology. Some studies 
have shown low levels of BDNF in individuals with ASD [41–45]. These low levels 
have also been suggested to be associated with ASD symptoms [42]. Some research 
suggests that changes in BDNF levels are associated with factors that affect BDNF 
production in the brain. For example, one study showed that maternal antibodies 
inhibited BDNF production in fetal mice, resulting in ASD-like symptoms [46]. 
Another study showed that early-life stress in mice resulted in decreased BDNF levels, 
which were associated with ASD-like symptoms [47].
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6.2 BDNF receptors and signaling pathways

BDNF’s effects are mediated by tropomyosin receptor kinase B (TrkB) receptors, 
which are high-affinity receptors on the cell surface [48]. Activation of TrkB recep-
tors by BDNF affects a series of signaling pathways critical for neurological functions 
such as neuroplasticity and neurogenesis [49]. BDNF activates signaling pathways 
that affect many neurological functions, including neurotransmitter release, synaptic 
plasticity, cell proliferation, and cell differentiation, through TrkB receptors [50, 51]. 
Therefore, the role of TrkB receptors and these signaling pathways in the pathophysi-
ology of ASD is also being investigated.

Some studies have shown that TrkB receptor levels are low in individuals with ASD 
[51]. These low levels may contribute to ASD pathophysiology by reducing the effects 
of BDNF. In addition, other components of BDNF signaling pathways may also play a 
role in the pathophysiology of ASD. For example, a study showed that the phosphati-
dylinositol 3-kinase (PI3K)/AKT signaling pathway is involved in BDNF’s neuroprotec-
tive effects and may also play an important role in the pathophysiology of ASD [52].

6.3 Clinical implications of BDNF and ASD

While the exact role of BDNF in ASD pathophysiology is not fully understood, 
research in this area has made significant progress. Changes in BDNF levels have been 
shown to be associated with ASD, and BDNF receptors and signaling pathways may 
also play an important role in ASD pathophysiology.

Several studies have shown that low BDNF levels are associated with ASD symp-
toms [48, 49]. It has also been suggested that an increase in BDNF levels may alleviate 
ASD symptoms [50]. Additionally, BDNF levels could be a potential therapeutic 
target for ASD treatment. Some studies have shown that BDNF agonists, in particular, 
may have a potential role in alleviating ASD symptoms [51, 52].

However, further research is needed to fully understand the potential use of BDNF 
in ASD treatment. The side effects of BDNF, especially with long-term use, are not yet 
fully understood and require careful investigation.

6.4 Relationship between BDNF levels and severity of ASD

Studies on individuals with ASD indicate that BDNF levels are associated with the 
severity of the disorder. Specifically, low levels of BDNF have been linked to more 
severe ASD symptoms [53]. Various studies have reported that plasma and serum 
BDNF levels in individuals with ASD are lower compared to those without ASD 
[54]. However, it is believed that changes in BDNF levels may vary across different 
subtypes of ASD [55]. Furthermore, a positive correlation has been reported between 
BDNF levels and social functioning [56]. This relationship suggests that an increase 
in BDNF levels is paralleled by improvement in social skills. These findings suggest 
that BDNF plays an important role in regulating the neurobiological mechanisms and 
modulating symptom severity in ASD.

6.5 The effect of BDNF on cognitive and social functions in individuals with ASD

BDNF plays an important role in the development and regulation of cognitive and 
social functions. Studies conducted in individuals with ASD have shown that BDNF 
levels affect learning, memory, language skills, and social skills [57]. For example, a 
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study conducted in children with ASD found a positive correlation between BDNF 
levels and language development and social skills [58]. These results indicate that 
BDNF is an important modulator of language and social skill development in individ-
uals with ASD. Increasing BDNF has been associated with improvements in cognitive 
function and social skills [59]. Therefore, increasing BDNF levels is considered a 
potential treatment approach for improving cognitive and social functions in indi-
viduals with ASD [54]. Pharmacological treatments and lifestyle changes targeting 
BDNF, particularly BDNF agonists, are evaluated as promising methods to enhance 
cognitive and social functions in individuals with ASD. These treatments may target 
neurotraumatic factors, synaptic plasticity, and neurogenesis processes to increase 
BDNF levels. However, further research is needed to fully understand the effects 
of BDNF on cognitive and social functions in individuals with ASD. Future studies 
should focus on evaluating the efficacy and safety of treatment strategies targeting 
BDNF and improving our understanding of the complex interactions between BDNF 
and ASD [2, 60].

7.  BDNF genetic and epigenetic regulations: Their association with autism 
spectrum disorder (ASD)

7.1 BDNF genetic regulations and ASD

1. BDNF Polymorphisms: Various polymorphisms in the BDNF gene have been 
associated with the risk of ASD. In particular, the Val66Met (rs6265) poly-
morphism is the most commonly reported BDNF polymorphism in ASD. This 
polymorphism can affect the conversion and release of BDNF from pro-BDNF to 
mature BDNF, leading to disrupted synaptic plasticity and neuronal communi-
cation [61].

2. ASD Severity and BDNF Genetic Variations: BDNF polymorphisms have also 
been linked to the severity and clinical features of ASD. For example, in addition 
to the Val66Met polymorphism, other polymorphisms in the BDNF gene (e.g. 
rs2049046 and rs11030104) have been associated with ASD severity and clinical 
characteristics [62].

7.2 BDNF epigenetic regulations and ASD

1. DNA Methylation: DNA methylation levels in the promoter region of the BDNF 
gene play a crucial role in ASD. Abnormal DNA methylation levels in the BDNF 
promoter region have been reported in individuals with ASD. These abnormal 
methylation levels can cause changes in BDNF gene expression and disrupt syn-
aptic plasticity and neuroplasticity, which are key neurobiological mechanisms 
underlying ASD [63].

2. Histone Modifications: Histone modifications of the BDNF gene can also im-
pact ASD. In particular, histone acetylation and methylation levels can regulate 
BDNF gene expression and influence synaptic plasticity and neuroplasticity 
[64]. Changes in histone modifications of the BDNF gene have been observed in 
individuals with ASD, which can cause disruptions in synaptic function at the 
neurobiological level.
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Genetic and epigenetic regulations in the BDNF gene play an important role in 
the neurobiological basis of autism spectrum disorder (ASD). BDNF gene polymor-
phisms and epigenetic regulations can affect synaptic plasticity and neuroplasticity, 
and therefore have been associated with ASD risk and severity. Understanding the 
role of BDNF’s genetic and epigenetic regulations in the etiology of ASD may contrib-
ute to the development of new intervention and treatment strategies.

8.  The role of BDNF in the neurodevelopment, neuroplasticity, 
and cognitive functions of autism spectrum disorder

BDNF is a crucial neurotrophic factor for the survival, development, and func-
tion of neurons [65]. Additionally, it has a significant impact on neuroplasticity and 
neurodevelopment, and has been linked to neurological disorders such as autism 
spectrum disorder. While some studies suggest a decrease in BDNF levels in individu-
als with ASD, others have not confirmed this finding [32, 66, 67]. Synaptic plasticity 
is an important mechanism for neurons to modify their ability to communicate with 
each other, and is essential for neurodevelopment and learning processes. BDNF’s 
effects on synaptic plasticity have been associated with neurological disorders like 
autism spectrum disorder, with some studies indicating that synaptic plasticity may be 
impaired in individuals with ASD [68, 69]. The effects of BDNF on cognitive func-
tions have also been investigated. A decrease in BDNF levels in individuals with autism 
spectrum disorder may lead to cognitive impairments, with some studies suggesting 
that memory, learning, and attention may be affected in individuals with ASD [61, 70].

Based on the literature findings regarding the role of BDNF in the neurodevelop-
ment, neuroplasticity, and cognitive functions of individuals with autism spectrum 
disorder (ASD), changes in BDNF levels may play a role in the pathophysiology 
of ASD, but the exact mechanism is still not fully understood. BDNF deficiency, 
as suggested by some studies, can affect ASD in several ways. For example, BDNF 
deficiency can affect the maturation and function of synapses in neurons dur-
ing neurodevelopment. However, BDNF deficiency is thought to be particularly 
effective on synaptic plasticity and cognitive functions in brain regions such as the 
hippocampus and amygdala. BDNF deficiency may also be associated with funda-
mental symptoms of ASD, such as social behavior and communication. Some studies 
suggest that BDNF deficiency could help develop various treatments to alleviate ASD 
symptoms. For instance, treatments that increase BDNF levels have been shown to 
support the development of social interaction, language skills, and cognitive func-
tions in children with ASD.

9. BDNF and neuroinflammation in ASD

Neuroinflammation is a factor associated with the pathogenesis of ASD. BDNF’s 
anti-inflammatory properties and neuroprotective effects may play a role in manag-
ing neuroinflammation in ASD.

9.1 Neuroinflammation and ASD

Neuroinflammation is a process involving inflammatory responses and release of 
inflammatory mediators by nervous system cells. In the context of ASD pathogenesis, 
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possible mechanisms of neuroinflammation include immune cell activation, cytokine 
and chemokine production, oxidative stress, and neurotransmitter imbalances.

Neuroinflammation in ASD is associated with activation of immune cells such as 
microglia and astrocytes in the brain. These activated cells produce proinflammatory 
cytokines and chemokines, which contribute to the maintenance of neuroinflamma-
tion and disruption of synaptic function.

9.2 The anti-inflammatory and neuroprotective effects of BDNF

BDNF is one of the neurotrophic factors that are important for the survival, 
growth, and differentiation of nerve cells. The anti-inflammatory and neuroprotec-
tive properties of BDNF may contribute to the management of neuroinflammation 
in ASD by reducing inflammation and protecting nerve cells. BDNF can regulate 
inflammatory processes and decrease the activation of immune cells. As an instance, 
BDNF could decrease neuroinflammation by promoting the generation of anti-
inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth 
factor-beta (TGF-β). Furthermore, BDNF may alleviate the effects of neuroinflam-
mation by reducing oxidative stress and regulating neurotransmitter balance. BDNF 
may contribute to the preservation of synaptic function and maintenance of neuro-
plasticity, thereby affecting the development and severity of ASD [71].

9.3 Modulation of BDNF and neuroinflammation in ASD

Studies investigating the potential role of BDNF in managing neuroinflam-
mation in ASD indicate that this neurotrophic factor may contribute to reducing 
inflammation and protecting nerve cells [72–74]. For example, the effect of BDNF 
on astrocytes, which play an important role in regulating neuroinflammation, may 
affect inflammatory processes in ASD [75]. In addition, interventions targeting 
BDNF may have positive effects on reducing neuroinflammation and protect-
ing nerve cells in individuals with ASD. Pharmacological agents or gene therapy 
methods used to increase BDNF levels may contribute to managing neuroinflam-
mation in ASD and alleviating its symptoms [76]. In conclusion, the role of 
neuroinflammation in the relationship between BDNF and ASD is an important 
area of research for better understanding the potential impact of this neurotrophic 
factor on the pathogenesis and treatment of ASD. Future studies examining the 
modulation of neuroinflammation and the preservation of synaptic function in 
ASD by BDNF may contribute to the development of new and effective treatment 
strategies. These investigations are of great importance for the development of 
methods that may be used for the treatment of ASD and other neurodevelopmental 
disorders by improving the understanding of the anti-inflammatory and neuropro-
tective properties of BDNF.

10. BDNF’s potential effects on treatment of autism spectrum disorder

10.1 BDNF and ASD treatment

The effect of BDNF on neuroplasticity and synaptic function may play an impor-
tant role in alleviating ASD symptoms. Pharmacological and behavioral approaches 
that increase BDNF levels and enhance neuroplasticity can be used in ASD treatment.
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10.2 Pharmacological approaches

1. Antidepressants: Antidepressants such as selective serotonin reuptake inhibitors 
(SSRIs) can enhance neuroplasticity by increasing BDNF levels [75]. Therefore, 
SSRIs and other antidepressants have the potential to modulate BDNF levels in 
ASD treatment.

2. Neurotrophic Factor Modulators: Neurotrophic factor modulators that affect 
BDNF can alleviate ASD symptoms by increasing BDNF levels and supporting 
neuroplasticity [76]. Such drugs can be effective in ASD treatment by promoting 
the survival and growth of nerve cells.

10.3 Behavioral approaches

1. Physical activity: By raising BDNF levels and promoting neuroplasticity, physical 
activity can reduce the symptoms of ASD [77]. Therefore, engaging in regular 
physical exercise can significantly enhance an ASD person’s quality of life and 
ability to adjust to social situations.

2. Cognitive and behavioral therapies: These treatments have the potential to help 
people with ASD become more socially and communicationally adept. These 
treatments can help to reduce ASD symptoms by regulating BDNF levels and 
neuroplasticity [78].

In conclusion, BDNF and ASD treatment is a promising research area for alle-
viating ASD symptoms using a combination of pharmacological and behavioral 
approaches. By increasing BDNF levels and promoting neuroplasticity, these 
approaches can enhance the quality of life and social adaptation of individuals with 
ASD. Furthermore, treatment strategies that increase BDNF levels can provide 
further insights into the pathophysiology and treatment of ASD by elucidating their 
effects on neuroplasticity and synaptic function. BDNF plays a significant role in 
regulating neurodevelopment, synaptic plasticity, and cognitive function. Therefore, 
BDNF-targeted therapies may have potential benefits for the treatment of autism 
spectrum disorder.

10.4 BDNF targeted treatment options

BDNF targeted treatment options include both pharmacological and non-
pharmacological approaches. Pharmacological treatments include medications 
such as antidepressants, antipsychotics, and sodium valproate. Some studies have 
shown that sodium valproate can reduce symptoms of autism spectrum disorder by 
increasing BDNF levels [79]. Antidepressants may be effective in treating comorbid 
symptoms commonly seen in autism spectrum disorder, such as obsessive-compulsive 
disorder and depression. Antipsychotics are used to treat disruptive behaviors in 
autism spectrum disorder. Non-pharmacological treatments include exercise, diet, 
cognitive therapy, and cognitive-behavioral therapy. Exercise, in particular, is thought 
to increase neurodevelopment and synaptic plasticity by leading to an increase in 
BDNF levels [80]. Diet can also be helpful in treating symptoms of autism spec-
trum disorder. For example, one study showed that omega-3 fatty acids can reduce 
hyperactivity symptoms in autism spectrum disorder [81]. Cognitive therapy and 
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cognitive-behavioral therapy are effective treatment options for symptoms such as 
anxiety and depression in autism spectrum disorder.

10.5 Possible side effects of using BDNF

Potential side effects of BDNF-targeted treatments include headaches, sleep distur-
bances, and sexual dysfunction with antidepressants; movement disorders and weight 
gain with antipsychotics; and impaired liver function with sodium valproate [82, 83].

These studies suggest that increasing BDNF levels may help improve symptoms of 
autism spectrum disorder. However, the effectiveness of BDNF-targeted treatments 
is still being investigated, and further research is needed. In this section, BDNF-
targeted treatment options, both pharmacological and non-pharmacological, as well 
as possible side effects of BDNF use will be discussed.

BDNF-targeted treatments include BDNF agonists and BDNF enhancers. BDNF 
agonists increase the effects of BDNF by binding to BDNF receptors, while BDNF 
enhancers increase BDNF production and enhance the response of neurons to BDNF. 
Animal studies have shown that BDNF agonists may be effective in improving symp-
toms of autism spectrum disorder. However, the effectiveness of these treatments in 
humans is still being investigated.

Pharmacological treatments that can increase BDNF levels include antipsychotics, 
antidepressants, and psychostimulants. However, the side effects of these medica-
tions should also be considered. In particular, metabolic side effects of antipsychotics 
are a significant concern for their use in children and adolescents.

Non-pharmacological treatments that can increase BDNF levels include physical 
activity, exercise, meditation, and therapy. For example, physical activity and exer-
cise have been shown to increase BDNF levels and enhance neuroplasticity. Similarly, 
stress management techniques such as meditation and therapy have been shown to 
increase BDNF levels.

Possible side effects of BDNF-targeted treatments may include neurotoxicity due 
to excessive BDNF increases and BDNF’s pro-inflammatory effects. Therefore, these 
treatments should be carefully managed.

In conclusion, BDNF-targeted treatments may have potential benefits for autism 
spectrum disorder. However, the side effects and effectiveness of treatment options 
need to be considered. Further research is needed to ensure the appropriate use of 
BDNF-targeted treatments.

11. Recent research findings and future research directions on BDNF

An essential neurotrophin known as BDNF is involved in the cognitive, neurode-
velopmental, and neuroplastic aspects of autism spectrum disorder. More details on 
the function of BDNF in the pathophysiology of autism spectrum disorder have come 
to light recently. Future study is required since it is yet unknown how BDNF affects 
the therapy of autism spectrum disorder.

11.1 Control of BDNF gene expression

The usage of BDNF in the treatment of autism spectrum disorder can be improved 
by managing the expression of the BDNF gene. More investigation is required, in par-
ticular, on how the BDNF gene-associated SNPs affect the likelihood of developing 
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autism spectrum disorder. A correlation between BDNF polymorphisms and autism 
spectrum disorder was discovered in one study [84], however further investigation is 
required to fully understand this correlation.

The usage of BDNF in the treatment of autism spectrum disorder can be improved 
by managing the expression of the BDNF gene. It is necessary to do additional study 
on the nature of the association between BDNF polymorphisms and autism spectrum 
disorder in order to better understand the processes that enhance or decrease BDNF 
gene expression. According to one study in this field, people with autism spectrum 
disorder have changed gene regulatory regions that boost the expression of the BDNF 
gene [85]. This finding raises the possibility that the pathophysiology of autism 
spectrum disorder may include the control mechanisms of BDNF gene expression.

11.2 Examination of BDNF receptors and signaling pathways

The effects of BDNF are dependent on the activation of BDNF receptors on the 
cell surface. Therefore, examining the BDNF receptors and signaling pathways may 
help to better understand the effects of BDNF in the treatment of autism spectrum 
disorder. One study showed that the effects of BDNF are mediated through the activa-
tion of TrkB receptors [86]. However, the subtypes of these receptors and the exact 
workings of the signaling pathways are still unclear. BDNF affects synaptic plasticity 
and neurodevelopment through the TrkB receptor. Therefore, a better understanding 
of the effects of the TrkB receptor and BDNF signaling pathway on the pathophysiol-
ogy of autism spectrum disorder is needed. One study showed that BDNF increased 
social behavior through activation of the TrkB receptor and restored normal social 
behavior in mice with social behavior deficits, which are also present in autism spec-
trum disorder patients [87]. These results suggest that the TrkB receptor and BDNF 
signaling pathway may have a significant impact on symptoms of autism spectrum 
disorder, such as social behavior.

11.3 Understanding the effects of BDNF on behavioral and social functions

A better understanding of the effects of BDNF on behavioral and social functions 
may assist in the development of BDNF-targeted therapies for autism spectrum dis-
order (ASD) treatment. Specifically, the effects of BDNF on social functions are still 
not clear and further research is needed in this area. One study has shown that BDNF 
treatment improved social learning and increased social memory [88].

These results suggest that BDNF may play a significant role in regulating social 
functions and the effects of BDNF on behavioral and social functions are seen as 
a potentially useful area for ASD treatment. BDNF is considered a potential target 
for treating symptoms of ASD, such as social function impairment, especially social 
function disorder.

Many studies have demonstrated the positive effects of BDNF on social learning 
and social memory. For example, one study showed that BDNF application improved 
social learning and increased social memory [65]. The effects of BDNF are thought 
to be useful for treating symptoms of ASD, such as social function disorder observed 
in ASD.

A better understanding of the effects of BDNF on social functioning is important 
for the development of BDNF-targeted treatments. To do this, more research is 
needed to understand the role of BDNF in regulating social functioning, particularly 
its effects on processes such as social learning, processing, and memory. Such studies 
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can help us better understand how effective BDNF-targeted treatments may be in 
treating symptoms such as social dysfunction in autism spectrum disorder.

11.4 Future perspectives in BDNF and ASD research

In autism spectrum disorder (ASD) and brain-derived neurotrophic factor 
(BDNF) research, future studies are expected to focus on developing more compre-
hensive and effective strategies for understanding and treating the disease. Here are 
some important areas related to these perspectives:

1. Modulation methods for BDNF levels: Future research should focus on discov-
ering ways to modulate BDNF levels. This is considered a potential treatment 
approach for improving cognitive and social functions in individuals with ASD 
[89]. It is important to increase the number of clinical studies evaluating the ef-
ficacy and safety of BDNF-targeted pharmacological treatments, neuromodula-
tion techniques, and lifestyle changes [90].

2. BDNF and subtypes of ASD: Better understanding of changes in BDNF levels 
among different subtypes of ASD is needed [32]. Studies examining BDNF levels 
and mechanisms specific to ASD subtypes can contribute to the development of 
diagnosis and treatment strategies [91].

3. Epigenetic regulation of BDNF: Studies focusing on the role of epigenetic 
mechanisms that affect BDNF gene expression and activity in ASD should be 
increased [70]. Epigenetic regulators such as DNA methylation, histone modi-
fications, and microRNAs can play an important role in the pathophysiology of 
ASD and offer potential therapeutic targets [92].

4. BDNF and neuroinflammation in ASD: The number of studies investigating the in-
teraction between BDNF and neuroinflammation in ASD should be increased [93]. 
Understanding the role of BDNF in regulating neuroinflammation and modulating 
mechanisms related to the immune system in ASD can help us better understand 
the neurobiological basis of ASD and potential treatment approaches [94].

5. BDNF and synaptic plasticity in ASD: Synaptic plasticity plays an important role 
in learning and memory processes. Studies investigating the effects of BDNF on 
synaptic plasticity in ASD should be increased [95]. These studies can shed light 
on treatment strategies for improving cognitive and social skills in individuals 
with ASD [96].

6. BDNF and neurogenesis and gliogenesis in ASD: BDNF is important for the de-
velopment and function of neurons and glial cells. Studies examining the effects 
of BDNF on neurogenesis and gliogenesis in ASD should be increased [97]. These 
studies can provide more information about the role of neuronal and glial cells in 
the pathophysiology of ASD and help develop new treatment approaches [98].

7. Interactive factors with BDNF and ASD: Given the complex nature of ASD, it is 
important to identify other factors that interact with BDNF. Studies investigat-
ing how genetic, environmental, and lifestyle factors affect BDNF levels and the 
pathophysiology of ASD can fill gaps in knowledge in this field [99].
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8. Early diagnosis and prognosis of ASD with BDNF: The number of studies inves-
tigating the use of BDNF levels as a potential biomarker for early diagnosis and 
prognosis of ASD should be increased [100]. Early diagnosis and prognosis are 
important for initiating effective interventions in a timely manner and improv-
ing outcomes [101].

In summary, future perspectives in BDNF and ASD research should focus on com-
prehensive and innovative studies that will fill the gaps in knowledge and contribute 
to the development of more effective diagnosis and treatment methods for individuals 
with ASD. These studies will help us better understand the neurobiological basis of 
ASD and develop effective treatment strategies.

11.5 Personalized ASD treatment and BDNF

Personalized treatment approaches aim to improve the quality of life and func-
tionality of individuals with autism spectrum disorder (ASD) by offering customized 
treatment plans based on each individual’s genetic, biochemical, and environmental 
factors. Brain-derived neurotrophic factor (BDNF) can be considered an important 
target in personalized ASD treatment.

Firstly, identifying BDNF levels and genetic variations can help in selecting appro-
priate treatment methods based on individual differences. Studies examining BDNF 
levels and interactive factors can contribute to optimizing treatment options specific 
to the needs and sensitivities of individuals with ASD.

In addition, pharmacological and lifestyle interventions targeting BDNF can be 
used in personalized ASD treatment. For example, drugs that increase BDNF levels 
and support synaptic plasticity can be evaluated as a potential treatment to improve 
the cognitive and social skills of individuals with ASD, taking into account individual 
differences. Lifestyle interventions, especially regular physical activity and appro-
priate nutrition, can help increase BDNF levels and improve the quality of life and 
functionality of individuals with ASD.

In conclusion, knowing the precise functions of BDNF in ASD and using this 
information to individualized treatment plans will help to create more successful and 
focused therapies for people with ASD. Future studies should investigate the relationship 
between BDNF and the underlying causes of ASD, the variables that control BDNF lev-
els, and the efficacy of BDNF-targeting therapies. Examining BDNF levels and effects in 
various ASD subtypes and individual variations can also help with the creation of more 
sensitive and efficient treatment approaches because of the varied character of ASD.

12. Prevention of neurodevelopmental disorders and policies related to ASD

Understanding the relationship between BDNF and ASD can contribute to 
the prevention of neurodevelopmental disorders and the development of policies 
and strategies for individuals with ASD. In this context, the following steps are 
recommended:

1. Increasing Awareness: Raising awareness about the relationship between ASD 
and BDNF can help the community understand and support the lives of indi-
viduals with ASD. This can be achieved through educational programs, public 
awareness campaigns, and media efforts.
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2. Early Intervention and Education Programs: Given that genetic and epigenetic 
regulations in the BDNF gene may affect the risk and severity of ASD in early 
life, the importance of early intervention and education programs should be 
emphasized. These programs should aim to improve the social, communication, 
and cognitive skills of children with ASD and enhance their quality of life.

3. Control of Environmental Factors: Policies and strategies should be developed 
to reduce the risk of ASD by considering the impact of environmental factors on 
epigenetic regulations in BDNF. This may include measures such as preventing 
exposure to environmental toxins during pregnancy and early life and promot-
ing healthy lifestyle choices.

4. Research and Treatment Development: Further research should be conducted on 
the relationship between BDNF and ASD, and this information should be used 
to develop new and effective treatment strategies. In addition, continuous efforts 
should be made to evaluate and improve the effectiveness of existing treatment 
approaches.

5. Policy and Legal Regulations: Policies and legal regulations should be established 
and implemented to improve the lives of individuals with ASD. This should in-
clude policies that support the rights and opportunities of individuals with ASD 
in areas such as education access, employment opportunities, and social services.

In conclusion, the better understanding of the relationship between BDNF and 
ASD provides important insights into the prevention and management of neurode-
velopmental disorders. Specifically, studies on the genetic and epigenetic regulations 
of BDNF offer new perspectives on the etiology and treatment of ASD. In the future, 
it is important to conduct more detailed research on the relationship between BDNF 
and ASD and apply this knowledge to develop effective policies and strategies. This 
approach can contribute to improving the quality of life of individuals with ASD and 
enhancing the general ability of society to cope with neurodevelopmental disorders.

13. Conclusions

In conclusion, this section discussed the current scientific literature on the 
relationship between BDNF and ASD. BDNF was highlighted as an important protein 
in neuronal functions such as synaptic plasticity, neurogenesis, and gliogenesis, and 
therefore, it has significant importance in the pathophysiology and treatment of ASD. 
The role of BDNF in the specificity of ASD and the relationship between individual-
ized ASD treatment and BDNF were also addressed.

BDNF has emerged as a possible target for the therapy of autism spectrum disor-
der (ASD), as it is a protein that is crucial for neurodevelopment, synaptic plasticity, 
and cognitive skills. According to recent studies, BDNF levels are linked to ASD 
symptoms. To ascertain the efficacy and safety of BDNF-targeted therapies, more 
study is necessary.

BDNF levels have been found to be low in patients with ASD, making BDNF-
targeted treatments a potential target for the treatment of ASD. Pharmacological 
treatment options include antidepressants, antipsychotics, and sodium valproate. 
Some studies have shown that sodium valproate can increase BDNF levels and reduce 
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symptoms of ASD. However, further research is needed to determine the effectiveness 
and safety of these treatments.

Non-pharmacological treatment options include exercise, nutrition, and therapy 
options. Particularly, exercise can increase BDNF production and help reduce symp-
toms in children with autism spectrum disorder. Cognitive therapy and cognitive-
behavioral therapy are also effective treatment options for symptoms such as anxiety 
and depression in autism spectrum disorder. However, further research is needed on 
the effects of these non-pharmacological treatments on BDNF levels.

Controlling BDNF gene expression may help in developing the use of BDNF in 
autism spectrum disorder treatment. Examining BDNF receptor and signaling path-
ways can also play an important role in developing BDNF-targeted treatments. For 
example, it has been shown that activation of BDNF’s TrkB receptors enhances social 
behavior and restores normal social behavior in mice with social behavior deficits 
similar to those seen in autism spectrum disorder patients.

Pharmacological and non-pharmacological options for BDNF-targeted treatments 
include antidepressants, antipsychotics, sodium valproate, exercise, diet, cognitive 
therapy, and cognitive-behavioral therapy. The side effects of these treatment options 
should also be taken into consideration.

The potential effects of BDNF-targeted treatments include increased neurode-
velopment and synaptic plasticity, reduced symptoms, and improved behavioral and 
social functioning in individuals with autism spectrum disorder (ASD). However, the 
relationship between BDNF and ASD is not yet fully understood, and further research 
is needed. Understanding the relationship between BDNF and ASD could have 
significant benefits for clinical and research applications. Specifically, using BDNF 
levels and genetic variations in the diagnosis and prognosis of ASD could provide 
opportunities for early intervention and support. Additionally, BDNF-targeted treat-
ment approaches could contribute to the development of potential therapies aimed 
at improving cognitive and social skills in individuals with ASD. Lastly, evaluating 
BDNF levels and interactive factors in individualized ASD treatment could provide 
optimized treatment options tailored to each individual’s unique needs and sensitivi-
ties. Future research focusing on BDNF gene expression control, BDNF receptors and 
signaling pathways, and better understanding the effects of BDNF on behavioral and 
social functioning could help develop BDNF-targeted treatments for use in ASD.

There are some limitations to consider in BDNF and ASD research, as well as 
suggestions for future studies. Firstly, many current studies may not fully reflect the 
heterogeneous nature of ASD and may overlook the relationships between differ-
ent ASD subtypes and individual differences in BDNF levels and effects. Therefore, 
future research should focus on examining the relationships between the underlying 
mechanisms of ASD and the levels and effects of BDNF. Additionally, the number of 
studies evaluating the factors regulating BDNF levels and the effectiveness of BDNF-
targeting therapies should be increased. These studies can help us better understand 
the fundamental mechanisms underlying the relationship between BDNF and 
ASD and develop more effective treatment strategies for individuals with ASD. The 
diversity of sample sizes and methodologies used in related research may pose some 
difficulties in evaluating the relationship between BDNF and ASD. Therefore, studies 
conducted with larger sample sizes and standardized methods can increase the reli-
ability and generalizability of findings.

Future research should look at the precise functions of BDNF in ASD, paying close 
attention to age and gender differences. The quality of life and functional abilities of people 
with ASD may be improved by greater early-life chances for intervention and support.
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Abstract

Depression is one of the major mental illnesses seen worldwide, which in some 
cases can result in suicide. Although different drugs and methods can be used for 
treatment, one-third of the patients show resistance to conventional treatments. 
Treatment-resistant depression (TRD) is defined as a condition where a patient shows 
a response rate of less than 25% to at least two adequate trials of antidepressants with 
distinct mechanisms of action. Research on the use of ketamine in such patients has 
been ongoing for more than 20 years. Ketamine is a dissociative anesthetic mainly 
used for the induction and maintenance of anesthesia for animals and humans. 
Ketamine’s routine clinical usage for depression treatment is limited due to its disso-
ciative effects, alterations in sensory perception, intravenous route of administration, 
and abuse potential. These limitations have prompted researchers to investigate the 
precise mechanisms of action behind ketamine’s antidepressant clinical responses 
in order to better understand its key targets. One of the primary elements behind 
ketamine’s quick and strong antidepressant response is thought to be a brain-derived 
neurotrophic factor (BDNF)-mediated mechanism. Ketamine may help repair the 
neurobiological alterations associated with depression by restoring BDNF levels while 
stimulating neuroplasticity. This chapter aims to provide an overview of the existing 
literature regarding the relationship between antidepressant treatment and BDNF 
levels in depression. Understanding these mechanisms may contribute to the develop-
ment of more targeted and effective treatments for depression and related disorders.

Keywords: treatment-resistant depression, ketamine, brain-derived neurotrophic 
factor, N-methyl-D-aspartate, rat

1. Introduction

Depression is one of the most common mental illnesses in the world, and it can 
lead to suicide in some situations. Depression became more frequent in recent years, 
with prevalence rates climbing from 10.3% in 2015 to 15.5% in 2019 and 17.2% in 2020 
[1]. Abnormal functional activity and changes in neuronal/glial integrity have been 
observed in various brain regions, such as the prefrontal cortex and hippocampus, in 
association with depression [2].

Depressive symptoms were caused by deficits in serotonin, norepinephrine, and 
dopamine. Since then, all antidepressant medicines have targeted this system to 
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provide relief, including selective serotonin reuptake inhibitors, monoamine oxi-
dase inhibitors, and tricyclic antidepressants [3]. After their introduction, antide-
pressant drugs have proven to be beneficial for a wide range of depressed patients. 
These drugs are now considered first-line treatments for moderate to severe depres-
sion. Unfortunately, this treatment was insufficient for around one-third of the 
patients to obtain an effective result (treatment-resistant depression [TRD]) [4, 5]. 
Even more than seven decades after the first antidepressants were introduced in 
clinical practice, TRD remains a difficulty for psychiatrists. According to a recent 
expert consensus, TRD is now defined as a condition where there is less than a 25% 
response to at least two adequate trials of antidepressants with different mecha-
nisms of action [6, 7]. In addition, TRD has been linked to a much higher illness 
burden than severe depression [8].

The prevalence of undesirable side effects caused by currently available anti-
depressants, the apparent delay in reaching meaningful therapeutic benefits, and 
the high proportion of patients who are resistant to therapy are the main causes of 
the treatment difficulties [9, 10]. Furthermore, some medications may require a 
4- to 12-week waiting period before they begin taking effect [11]. In this case, new 
therapeutics and interventional approaches are required [9]. Recent research sup-
ports the significance of glutamate in depression, such as N-methyl-D-aspartate 
(NMDA) receptors and serotonin receptors [9, 11–13]. NMDA is one of the ionotropic 
glutamate receptors [5, 11]. The NMDA is becoming more and more clear as a key 
participant in the pathophysiology of psychopathologies. Medications that inhibit 
NMDA receptor activation have been found to have faster-acting antidepressant 
characteristics in both clinical and preclinical studies [5, 9, 13]. However, during the 
past 10 years, clinical evidence has started to support this idea [10].

Ketamine is a non-competitive high-affinity NMDA receptor antagonist [9, 13]. 
Ketamine is an anesthetic agent that is licensed for use in diagnostic and surgical 
operations in both animals and humans [10]. Ketamine is being researched for its 
immediate antidepressant benefits in people who have not responded to traditional 
therapy [14]. Numerous meta-analyses have been conducted to evaluate the effective-
ness of ketamine, primarily centering on its application in TRD [12]. The remission 
rates of ketamine in depressed patients range from 29 to 44% [14]. Hypotheses about 
how these effects of ketamine occur are still incomplete. Most researchers agree that 
brain-derived neurotrophic factor (BDNF) plays an important role in the mechanism 
of ketamine in depression [6]. Several depression hypotheses have been postulated, 
including the monoamine theory, neuroendocrine mechanisms, neuroimmune 
mechanisms, and cytokine hypothesis. These hypotheses, however, have not been 
sufficient for fully describing the pathophysiology and management of depression. 
Neural plasticity theories of depression have recently gained popularity. According to 
this theory, brain plasticity failure is a key mechanism of depression. Furthermore, 
inadequate signaling by neurotrophic factors is critical in brain plasticity. BDNF is the 
most significant neurotrophin associated with depression [2].

BDNF promotes neuron survival and synaptogenesis in the central nervous system 
(CNS) in humans and animals. Hippocampal, cortical, cholinergic, nigral dopaminergic, 
and serotonergic neurons have all shown these effects. According to studies, individuals 
with major depression have been found to have decreased levels of BDNF, and these 
reductions have been shown to be associated with the severity of depression. In addition, 
pharmacological studies have also determined that antidepressant treatment has an 
impact on BDNF levels. Ketamine has also been shown to boost serum BDNF levels in 
animals and patients with TRD [6]. However, the exact role of BDNF in this mechanism 
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is still being investigated [3]. In this chapter, we aimed to summarize the connection 
between ketamine and BDNF in depression according to the current literature.

2. The pharmacology of ketamine

Ketamine is a phencyclidine derivative and glutamatergic agent that predomi-
nantly works as an antagonist of the N-methyl-D-aspartate (NMDA) receptor. 
Ketamine-free base is a lipid-soluble substance that penetrates the blood–brain 
barrier quickly [9, 15].

Ketamine is a racemic combination of two enantiomers, (S)-ketamine (esket-
amine) and (R)-ketamine (arketamine). Although the majority of commercially 
available pharmacological formulations are a balanced combination of the two, 
the distinct enantiomers have been studied separately to varying degrees [4, 16]. 
Interestingly, when compared to (S)-ketamine, (R)-ketamine had stronger impacts 
on reduced dendritic spine density, BDNF–TrkB signaling, and synaptogenesis [10]. 
According to studies in rodents the (R) isomer is more powerful and has less negative 
effects than the (S) isomer [17].

3. History of ketamine usage

Ketamine was first synthesized at the Parke Davis Laboratory by Calvin Stevens in 
1962, and approved by the US Food and Drug Administration (FDA) in 1970. During 
the years it was introduced, ketamine was mostly used in veterinary medicine [4]. It 
was discovered to be a potent anesthetic and analgesic in the initial clinical studies 
[15, 18]. Due to its quick onset and recovery, ability to maintain or elevate blood pres-
sure in trauma conditions, and little effects on the respiratory system, ketamine was 
used as a battlefield anesthetic in the Vietnam War after receiving FDA approval. Due 
to these characteristics, it is still commonly utilized as an anesthetic in human and 
veterinary medicine [16].

Ketamine usage expands in direct proportion to the number of studies conducted. 
Ketamine is effective as an adjuvant in the multimodal management of acute periop-
erative pain, and it lowers postoperative opioid demand and adverse effects. There 
are also articles on its effectiveness in chronic pain syndrome [15]. While ketamine 
was being researched as an anesthetic, its potential use in the treatment of psychiatric 
and psychological disorders was also being taken into consideration [15]. Ketamine 
is, therefore, used in major depressive disorder (MDD) and bipolar disorder (BD), 
obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), 
treatment-resistant depression (TRD), and addiction [3, 19]. Dr. Edward Domino 
conducted the initial clinical study in 1960 on ketamine usage for depression. Domino 
noticed that patients stated these medications worked far better than the antidepres-
sants they were administered [19]. In Iran, in addition to psychotherapy, ketamine has 
been reported to be an effective abreaction agent in many conditions such as depres-
sion, anxiety, obsessive-compulsive neurosis, conversion reaction, and hypochon-
driasis [20]. It has also been used in Argentina as an antidepressant adjunct for similar 
purposes [19]. Following these findings, the FDA approved the isomer (s)-ketamine 
as the first glutamatergic antidepressant in the form of an intranasal spray named 
Spravato in 2019 [3]. In addition, Kolp et al. [21] studied the use of ketamine as part 
of psychedelic psychotherapy sessions in patients with neurosis and personality 
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disorders in Mexico. In addition to these studies, there are others that demonstrate its 
efficacy in the treatment of alcoholism [16]. First placebo-controlled, double-blinded 
trial to assess the treatment effects of a single dose of Ketamine by Berman et al. in 
2000 [22]. In a comparable randomized, placebo-controlled double-blind crossover 
study of 18 patients with treatment-resistant depression, Zarate et al. [23] validated 
ketamine’s rapid-acting antidepressant effects.

4. Ketamine usage in depression

Ketamine has been administered through a variety of methods for the treatment of 
depression, including intravenous (IV), intramuscular (IM), intranasal, sublingual, 
and oral [15]. When compared to the intramuscular formulation, oral ketamine has a 
lower bioavailability [13]. The approximate numbers for bioavailability are as follows: 
IV (100%), IM (93%), intranasal (45%), sublingual (30%), and oral (20%) [15].

Ketamine has rapid action in depression treatment [16]. The quickest substantial 
antidepressant response was observed within 2 hours, and the slowest after 4 hours 
[11]. (S)-ketamine and (R)-ketamine both appear to have immediate antidepressant 
effects [16]. In studies, the antidepressant effect of ketamine lasted 1–2 weeks after a 
single dose. Recent studies showed that this period is prolonged [3, 4, 11].

5. Ketamine and BDNF

Ketamine’s neuropharmacology is complicated. The particular mechanisms 
underlying ketamine’s antidepressant effects are still unknown. But, synaptic 
plasticity and BDNF signaling are thought to play important roles in ketamine’s 
mechanism of action in depression recovery. BDNF is a central nervous system 
growth factor that is essential for neuronal survival, growth [14, 24, 25]. It is largely 
responsible for neuroplasticity in the brain [3, 26]. Regulation of neurogenesis, 
dendritic length, and spine density in the hippocampus and prefrontal cortex (PFC) 
are only a few structural modifications caused by changes in neurotrophic factor 
production and activity [27]. BDNF helps and supports particular neuronal popula-
tions throughout development as well as mediates synaptic plasticity involved with 
learning and memory. This neurotrophin has been linked to a variety of mental dis-
orders in numerous studies [5, 6, 24, 28]. In a study of people who committed suicide 
as a result of depression, BDNF levels were found to be low in the hippocampus [29]. 
Most clinically effective antidepressants had effect on BDNF induction [26]. Chronic 
administration of traditional antidepressants raises mRNA encoding BDNF and 
BDNF-immunoreactive fibers in the hippocampus of rats [9].

Acute ketamine treatment raised BDNF protein levels in the hippocampus of rats 
was found in a study [30]. In addition, ketamine efficiently restores stress-induced 
reductions in BDNF levels in the mouse hippocampus and ventromedial prefrontal 
cortex [3]. According to Siuciak et al. [25], antidepressant effects were demonstrated 
in animals as a result of BDNF administration in two separate animal models of 
depression.

Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist [5, 9, 13]. 
NMDARs are heterotetrameric glutamatergic ligand-gated ion channel receptors that 
have seven different subunits [5]. Ketamine blocks the NMDA receptors, especially 
the GluN2B subunit, which is involved in the regulation of synaptic plasticity and 
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neurotransmission [5, 9, 13]. It was found in studies that ketamine treatment had no 
effect on behavioral distress in mice lacking NMDARs specific to GluN2B found in 
pyramidal neurons. The intriguing aspect of the event is that, in contrast to ketamine, 
the mechanisms of action of medicines that target this area are developed extremely 
slowly. It is unknown how ketamine, which has no preference for inhibiting GluN2B 
subunits, specifically acts at this location to provide antidepressant effects [5].

The mechanism underneath is thought to be because interneurons fire more 
frequently than pyramidal neurons, which increases the amount of depolarization-
dependent Mg2+ block relief, allowing ketamine to bind to the NMDAR channel pore 
on interneurons with more specificity [5]. By inhibiting these receptors, ketamine 
leads to increased extracellular glutamate release, specifically in the prefrontal 
cortex in rats [9, 13, 31]. The increased glutamate release triggers a cascade of events. 
Ketamine increases glutamate release at postsynaptic locations, which in turn acti-
vates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors 
[19]. Ionotropic transmembrane glutamatergic receptors known as AMPARs are the 
primary receptors for rapid synaptic neurotransmission in the brain. Multiple signal-
ing pathways that control synaptic plasticity use AMPARs as their targets. Synaptic 
plasticity and potentiation both require the activation of AMPARs and NMDARs 
[5, 32]. AMPARs increase tropomyosin receptor kinase B (TrkB) receptor stimula-
tion, which in turn promotes the mammalian target of rapamycin (mTOR) signaling 
[19]. TrkB, a high-affinity BDNF receptor, has been demonstrated to be required for 
the behavioral effects of antidepressants [5, 33]. Blocking extrasynaptic GluN2B-
containing NMDARs would inhibit protein synthesis and cause antidepressant effects 
via a mTOR-dependent mechanism [5]. After the BDNF is produced by mTORC 
activation, it is released to the synapse by the neuron. It then stimulates its recep-
tor on the same postsynaptic neuron, TrkB. As a result, mTOR activation is further 
stimulated, creating a positive feedback loop [3, 10].

mTOR is a serine/threonine protein kinase that regulates protein synthesis, cell 
motility, growth, and proliferation. According to the findings, mTOR may have 
an essential role in the pathophysiology of depression [34]. For this reason, mTOR 
signaling is used in many classic depression medications [5]. mTOR is activated 
by both AMPA receptor activation and the antagonism of NMDA receptors caused 
by ketamine binding [3]. Duman and Li [27] found in their study that, ketamine 
caused a rapid induction of synaptogenesis and spine formation in the PFC through 
stimulation of the mammalian target of the rapamycin signaling pathway and 
increased synthesis of synaptic proteins. In mice, pre-treatment with the selective 
mTOR inhibitor rapamycin through intracerebroventricular administration effec-
tively prevents ketamine-induced synaptic molecular changes. Due to these studies, 
ketamine’s fast antidepressant impact is attributed to the mTOR-induced rapid 
creation of synapses [35].

All of the mTOR results up to this point have a number of limitations. First, there 
are changes in mTOR signaling that appear to be sex-dependent. BDNF mRNA levels 
were elevated by ketamine treatment only in female mice. Additionally, compared 
to male rats, female rats exhibit increased sensitivity to ketamine at lower doses. The 
heightened sensitivity to ketamine was actually absent in female rats who had under-
gone ovariectomies. It was restored after the administration of synthetic progesterone 
and estrogen. According to this information, gonadal hormones may play important 
roles in the action of ketamine [29, 36].

Different rodent models of depression are another limitation of these studies. 
When a resistant model of depression is chosen, despite the behavioral recovery, 
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mTOR levels in the prefrontal cortex are dramatically lowered, implying that an 
increase in these levels does not always reflect a behavioral antidepressant response [3].

In a rat model of depression, administration of a TrkB inhibitor to the hippocam-
pus prevents the behavioral and biochemical effects of ketamine [37]. Future research 
has demonstrated that a TRkB antagonist can prevent both of ketamine’s antidepres-
sant effects in mice [16]. In a study, Rafao-Uliska and Pałucha-Poniewiera [38] found 
that the R- and S-isomers had different effects with the mechanism of ketamine 
needing activation of the TrkB receptor. While S-ketamine had no behavioral effects, 
R-ketamine needed TrkB receptors to work [38]. These data firmly argue that BDNF–
TrkB signaling is involved in the mechanism of ketamine, even though more research 
is necessary [3].

There are several cis-regulatory elements found in BDNF promoters, but the ones 
that mediate promoter IV’s neuronal activation are the best understood. Inhibition 
of promoter IV-driven Bdnf expression results in depression-like behavior in mice, 
while a rat depression model exhibits epigenetic change at the promoter [39]. Histone 
deacetylase 5 (HDAC5) binds to Bdnf promoters I, II, and IV. HDAC5 is abundantly 
expressed in the brain, particularly in forebrain areas such as the hippocampus, 
cortex, and amygdala [40]. Adaptations of behavior to persistent emotional stimuli 
are epigenetically regulated by HDAC5 in the nucleus accumbens. HDAC5 overex-
pression in the hippocampus inhibits the antidepressant effect in stressed mice [41]. 
Choi et al. [39] determined that ketamine regulates BDNF expression in neurons by 
phosphorylating HDAC5, and ketamine’s elevation of BDNF expression may be due to 
the reduction of HDAC5’s repressive activity.

Ketamine’s impact on gene expression is primarily attributed to alterations in 
neural signaling pathways [39]. The influence of the Val66Met (rs6265) single nucleo-
tide polymorphism (SNP) in the BDNF gene on brain plasticity in humans is a topic 
of ongoing debate [5, 29]. Research conducted by Laje et al. suggests that individuals 
with the Met rs6265 allele, who suffer from major depressive disorder, do not typically 
exhibit a positive response to ketamine treatment [42]. In contrast, individuals with 
the Val/Val BDNF allele at rs65 are more likely to respond favorably to intravenous 
ketamine, leading to improvements in depression symptoms and a reduction in 
suicidal tendencies [3]. It is important to note that scientific consensus on this matter 
is still developing, and further investigations are necessary to fully understand the 
relationship between ketamine, gene expression, and treatment outcomes, particu-
larly in individuals with specific genetic variations.

Patients with MDD (major depressive disorder) have lower blood BDNF levels, 
which are increased in individuals who respond to antidepressant medication [28]. 
Blood BDNF levels increased after 2 h and 24 h following the ketamine infusion in 
healthy participants in a study by Woelfer et al. [14]. Additionally, BDNF levels in 
the hippocampus, amygdala, dentate gyrus, and rodent serum are acutely raised by 
ketamine [3].

Eukaryotic elongation factor 2 kinase (eEF2K), also referred to as calmodulin-
dependent protein kinase III, is a member of the atypical alpha-kinase family. The 
activity of eEF2K relies on the levels of calcium and calmodulin within the cell. Its 
primary target, eEF2, plays a crucial role in governing protein synthesis and synaptic 
plasticity, thus impacting cellular functions related to these processes [43]. Through 
the inactivation of eEF2K, decreased eEF2 phosphorylation, and subsequent desup-
pression of BDNF translation, ketamine-mediated antagonistic activity of postsyn-
aptic NMDA receptors also increases BDNF production [13, 16]. The lower eEF2 
phosphorylation caused by ketamine-mediated NMDA receptor inhibition at rest may 
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inhibit CaMKIII kinase and depress BDNF translation [13]. Ketamine administration 
resulted in fast decreases in p-eEF2 in the hippocampus, while artificially inhibiting 
eEF2K resulted in enhanced BDNF protein expression. Additionally, BDNF’s role in 
ketamine’s effects is supported by the fact that decreasing eEF2K in BDNF knockout 
mice exhibited no antidepressant-like effect [3, 5].

BDNF levels in a living human brain cannot be assessed directly so the only 
option is to measure BDNF protein in the blood [28]. In rat experiments, there was 
a positive association between BDNF levels in the blood and the cortex [28, 44]. 
Similar to these studies Klein et al. [45] showed the same correlation in pigs. 
According to this research, BDNF levels in the blood alter in a similar way to those 
in the brain.

It was discovered in a study by Yang et al. [34] that acute ketamine treatment at a 
dose of 10 mg/kg boosted the expression of BDNF, whereas 5 mg/kg did not. This is 
due to dose-dependent signaling proteins in the mTOR pathway [3]. Although acute 
administration of ketamine had lower levels of BDNF [30], Garcia et al. [9] found 
that continuous ketamine treatment had an antidepressant effect in animals without 
changing BDNF levels in the hippocampus. The differences in BDNF expression 
between acute and chronic treatment suggested that alternative signaling pathways 
may also underlie the antidepressant effect of ketamine [9, 33]. Another explanation 
is the adaptive mechanisms or the development of tolerance to ketamine effects on 
hippocampus BDNF levels [9].

Recent neuroimaging studies support the potential anti-depressant effects of 
Ketamine. Ketamine-induced alterations in the brain’s dorsomedial prefrontal cortex 
(dmPFC) have been discovered in various PET and fMRI investigations. The dmPFC 
is the area of the brain associated with emotional expectation and reward that is most 
affected in major depression [14].

However, not all research found that BDNF was involved in the fast antidepres-
sant effects of ketamine [13]. According to Lindholm et al. [45], BDNF signaling 
does not significantly contribute to the antidepressant benefits of glutamate-based 
medicines. Despite providing a typical antidepressant-like response, neither ket-
amine nor the AMPA-potentiator LY 451656 increase BDNF signaling, according to 
researchers [32, 46].

6. Side effects

There is a lot of evidence to support ketamine’s safety profile when used as an 
anesthetic drug, but there is far less information available regarding its safety when 
used repeatedly at subanaesthetic doses [10]. To the best of the author’s knowledge, 
no such safety trials have been conducted with depressed patients. According to 
Zarate et al. [23], adverse effects occurred more frequently in ketamine-used partici-
pants than in placebo. Ketamine has been linked to a number of temporary psycho-
active and hemodynamic side effects, including moderate dissociation emotions, 
blurred vision, dizziness, anxiety, impatience, and headaches [13]. Also, ketamine 
raises blood pressure and heart rate through sympathetic activation while maintain-
ing respiratory activity, making a deadly overdose unlikely [13, 15]. Although the 
long-term safety profile of ketamine is unknown, it can cause bladder and urethral 
inflammation and irritation, and analogous changes in the biliary tract have recently 
been identified, resulting in acute or chronic cholestatic liver damage [4, 10, 15, 17]. 
Stopping the drug’s use may help to reverse these adverse effects [17]. Madal et al. 
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[11] and Naughton et al. [10] found that the side effects were improved one hour after 
using ketamine in depressed patients.

7. Conclusion

Ketamine is a new and effective alternative drug for depression with a rapid begin-
ning of action for the future. Slow intravenous ketamine treatment results in signifi-
cant improvement in people with severe depression. However, there are still a number 
of gaps that remain, both in terms of clinical and research plans. In addition, the exact 
mechanism by which these antidepressant effects occur is still not fully resolved. We 
believe that future studies will shed light on new information on this subject.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

The neuromodulatory effect of brain-derived neurotrophic factor (BDNF) in 
spinal cord injury (SCI) is a topic of significant interest. BDNF, a neurotrophic factor, 
plays a crucial role in promoting neuronal survival, axonal growth, and synaptic 
plasticity in the central nervous system. In SCI, BDNF has been shown to enhance 
the survival of injured neurons and stimulate axonal growth through the activation 
of downstream signaling pathways. Additionally, BDNF exhibits potent anti-inflam-
matory effects, reducing neuroinflammation and secondary damage. The timing and 
duration of BDNF administration are critical, with early intervention showing better 
outcomes. However, the optimal dosage and frequency of BDNF administration 
remain to be determined. Further research is needed to fully understand the potential 
of BDNF as a therapeutic agent for enhancing functional recovery and promoting 
neuroplasticity in individuals with SCI.

Keywords: spinal cord injury, BDNF, neuromodulation, orthopedics, remodeling

1. Introduction

Spinal cord injury (SCI) is a catastrophic condition that impacts millions of people 
globally, causing permanent loss of motor and sensory function below the injury site, 
leading to a diminished quality of life [1]. Despite advancements in medical care and 
rehabilitation, there are no successful treatments available to promote substantial 
functional recovery following SCI.

Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), have 
emerged as promising therapeutic agents for promoting functional recovery after 
SCI [2]. BDNF is a member of the neurotrophin family of growth factors and plays a 
crucial role in promoting neuronal survival, axonal growth, and synaptic plasticity 
in the central nervous system (CNS). In addition to its neurotrophic effects, BDNF 
also has potent anti-inflammatory and neuroprotective effects, making it an attractive 
candidate for promoting functional recovery after SCI [3] (Figure 1).

Several preclinical and clinical studies have demonstrated the potential of BDNF 
for promoting functional recovery after SCI [3–5]. These studies have shown that 
BDNF administration can promote axonal regeneration, improve synaptic plasticity, 
and reduce inflammation in animal models of SCI and in humans [4]. Despite these 
promising results, there are still many questions that remain unanswered regarding 
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the optimal timing, dose, and route of administration of BDNF for SCI, as well as the 
long-term safety and efficacy of BDNF in humans.

In this review, we will explore the neuromodulatory effects of BDNF in SCI, 
including its effects on axonal regeneration, synaptic plasticity, and inflamma-
tion. We will also discuss the challenges and limitations of using BDNF for SCI, as 
well as future directions for research in this area. By examining the current state of 
knowledge on the neuromodulatory effects of BDNF in SCI, we hope to provide a 
comprehensive overview of this promising therapeutic approach and its potential for 
promoting functional recovery after SCI.

2. Axonal regeneration

Axonal regeneration is a critical process for promoting functional recovery 
after SCI. However, the regenerative capacity of the central nervous system (CNS) 
is limited, and axonal regeneration after SCI is typically minimal. BDNF has been 
shown to promote axonal regeneration in animal models of SCI through several 
mechanisms [6].

BDNF initially enhances the survival of damaged neurons and facilitates the 
growth of axons. The protein induces this effect by activating signaling pathways 
downstream, which control the expression of genes linked to axonal growth and 
survival. These signaling pathways involve the mitogen-activated protein kinase 
(MAPK) and phosphoinositide 3-kinase (PI3K) pathways, which regulate the 

Figure 1. 
Relation between BDNF and axonal regeneration (Thank you to Derin Mavi Bora for the illustration).
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production of growth-associated proteins and encourage the growth and survival of 
axons [7].

Second, BDNF promotes the migration of neural stem cells (NSCs) to the site of 
injury, where they can differentiate into neurons and support neuronal survival and 
growth [7]. The protein achieves this effect by activating downstream signaling path-
ways that regulate the migration and differentiation of NSCs, including the MAPK 
pathway and the PI3K pathway [8].

Third, BDNF promotes the formation of new synapses and the reorganization of 
neural circuits. The protein achieves this effect by activating downstream signaling 
pathways that regulate the expression of synaptic proteins and promote the formation 
of new synapses. These pathways include the protein kinase B (AKT) pathway and the 
extracellular signal-regulated kinase (ERK) pathway, which regulate the expression 
of synaptic proteins and promote the formation of new synapses [9].

Axonal regeneration refers to the process by which damaged or severed axons in 
the nervous system grow and reestablish connections with their target tissues. In the 
case of spinal cord injury (SCI), axonal regeneration is a critical step in promoting 
functional recovery as it can help restore communication between the brain and the 
rest of the body [6].

Axonal regeneration is a complex process that involves several steps. First, the 
damaged axon must form a growth cone, which is a specialized structure at the 
tip of the axon that guides its growth toward the target tissue. The growth cone is 
sensitive to guidance cues in the extracellular environment, such as extracellular 
matrix molecules and chemotropic factors, which help direct the axon toward its 
target [8].

Once the growth cone reaches its target tissue, it must form a new synapse, 
which is the site of communication between the axon and the target cell. Synapse 
formation requires the release of neurotransmitters from the axon and the activa-
tion of receptors on the target cell, leading to the transmission of signals between 
the two cells [8].

In the context of SCI, axonal regeneration is hindered by several factors, 
including the presence of inhibitory factors in the extracellular environment, the 
loss of trophic support from target tissues, and the formation of a glial scar, which 
is a dense network of astrocytes that form at the site of injury and inhibit axonal 
regeneration.

BDNF has been shown to promote axonal regeneration after SCI by overcoming 
some of these inhibitory factors and promoting the growth and guidance of dam-
aged axons. BDNF can promote axonal regeneration by increasing the expression of 
growth cone proteins and chemotropic factors, reducing the expression of inhibitory 
factors, and enhancing the survival and growth of damaged axons [9]. By promoting 
axonal regeneration, BDNF can help restore communication between the brain and 
the rest of the body, leading to improved functional recovery after SCI [7].

3. Neuronal excitability

Neuronal excitability is a critical process for promoting functional recovery after 
SCI. After SCI, there is a significant decrease in neuronal excitability, which contrib-
utes to the loss of neurological function. BDNF has been shown to promote neuronal 
excitability in animal models of SCI through several mechanisms [10].
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First, BDNF promotes the expression of ion channels and receptors that regulate 
neuronal excitability [11]. The protein achieves this effect by activating downstream 
signaling pathways that regulate the transcription and translation of ion channels and 
receptors, including the AKT pathway and the ERK pathway [12].

Second, BDNF modulates synaptic transmission by regulating the release of neu-
rotransmitters and the expression of neurotransmitter receptors. The protein achieves 
this effect by activating downstream signaling pathways that regulate the expression 
and trafficking of neurotransmitter receptors [13].

Third, BDNF promotes the generation and propagation of action potentials by 
regulating the expression and activity of voltage-gated ion channels [13].

4. Synaptic plasticity

Synaptic plasticity is a critical process for promoting functional recovery after 
SCI. It is the ability of synapses to change their strength and efficacy in response to 
activity, which is essential for learning, memory, and adaptive behavior. After SCI, 
there is a significant decrease in synaptic plasticity, which contributes to the loss of 
neurological function. BDNF has been shown to promote synaptic plasticity in animal 
models of SCI through several mechanisms [14].

First, BDNF promotes the expression and trafficking of AMPA receptors, which 
are critical for synaptic plasticity. The protein achieves this effect by activating 
downstream signaling pathways that regulate the expression and trafficking of AMPA 
receptors, including the AKT pathway and the ERK pathway [15].

Second, BDNF promotes the formation and stabilization of dendritic spines, 
which are the primary sites of excitatory synaptic transmission. The protein achieves 
this effect by activating downstream signaling pathways that regulate the expression 
of cytoskeletal proteins and promote the formation and stabilization of dendritic 
spines [15].

Third, BDNF promotes the release of neurotransmitters and the activation of 
downstream signaling pathways that regulate synaptic plasticity. The protein achieves 
this effect by activating downstream signaling pathways that regulate the release of 
neurotransmitters, including the MAPK pathway and the PI3K pathway [16].

Synaptic plasticity refers to the ability of synapses, the connections between 
neurons in the nervous system, to change and adapt in response to experience or 
injury. Synaptic plasticity is a fundamental process underlying learning, memory, and 
recovery from injury in the nervous system.

In the context of spinal cord injury (SCI), synaptic plasticity can play a critical role 
in promoting functional recovery by allowing for the formation of new connections 
and the strengthening of existing ones. After SCI, the loss of connections between 
neurons can lead to a reduction in synaptic activity, which can impair motor and 
sensory function [14].

BDNF is a potent modulator of synaptic plasticity in the nervous system and 
has been shown to promote the formation of new synapses, increase the strength of 
existing ones, and enhance synaptic transmission after injury. BDNF can promote 
synaptic plasticity by increasing the release of neurotransmitters, enhancing the 
expression and localization of synaptic proteins, and regulating synaptic pruning and 
remodeling [17].

BDNF’s ability to promote synaptic plasticity after SCI makes it a promising thera-
peutic agent for promoting functional recovery. By enhancing synaptic plasticity, 
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BDNF can help restore connectivity between neurons, leading to improved motor and 
sensory function after SCI [17].

In addition to its effects on synaptic plasticity, BDNF can also promote neuronal 
survival and protect against apoptosis, which can further contribute to functional 
recovery after SCI. By promoting neuronal survival and protecting against cell death, 
BDNF can help maintain the integrity of neural circuits and prevent the loss of con-
nections between neurons.

Overall, synaptic plasticity is a critical process underlying functional recovery 
after SCI, and BDNF’s ability to enhance synaptic plasticity and promote neuronal 
survival makes it a promising therapeutic agent for promoting functional recovery in 
this population.

5. Neuroinflammation

Neuroinflammation is a crucial process that occurs following SCI and is respon-
sible for the decline in neurological function. It involves the activation of microglia 
and astrocytes, the release of proinflammatory cytokines, and the recruitment of 
immune cells to the site of injury. However, BDNF has been demonstrated to possess 
anti-inflammatory effects in animal models of SCI through various mechanisms [18].

First, BDNF reduces the activation of microglia and astrocytes, which are the 
primary cells responsible for neuroinflammation. The protein achieves this effect 
by activating downstream signaling pathways that regulate the expression of anti-
inflammatory cytokines and reduce the activation of microglia and astrocytes.

Second, BDNF reduces the release of proinflammatory cytokines, which con-
tribute to the progression of neuroinflammation. The protein achieves this effect 
by activating downstream signaling pathways that regulate the expression of anti-
inflammatory cytokines and reduce the release of proinflammatory cytokines [14].

Third, BDNF promotes the recruitment of immune cells that have anti-inflamma-
tory effects, such as regulatory T cells and M2 macrophages. The protein achieves this 
effect by activating downstream signaling pathways that regulate the recruitment and 
activation of immune cells.

Neuroinflammation is a multifaceted process that involves the activation of 
immune cells in the CNS as a reaction to injury or illness. In the context of spinal cord 
injury (SCI), neuroinflammation is a significant characteristic and is correlated with 
secondary damage to spinal cord tissue, including neuronal demise, demyelination, 
and axonal harm [19].

After SCI, activated microglia and infiltrating immune cells release proinflamma-
tory cytokines and chemokines, leading to the recruitment of additional immune cells 
to the site of injury. The resulting immune response can exacerbate tissue damage and 
contribute to the development of a glial scar, which inhibits axonal regeneration and 
functional recovery [19].

BDNF has been shown to have potent anti-inflammatory effects in the CNS, which 
can help mitigate the detrimental effects of neuroinflammation after SCI. BDNF 
can reduce the production of proinflammatory cytokines and chemokines, decrease 
microglial activation, and promote the polarization of microglia toward an anti-
inflammatory phenotype. By reducing neuroinflammation, BDNF can help promote 
tissue repair and functional recovery after SCI.

Furthermore, BDNF can also promote the survival of neurons and glial cells in 
the CNS, which can further reduce neuroinflammation by preventing the release of 
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damage-associated molecular patterns (DAMPs) that activate the immune response. 
By promoting cell survival and reducing the release of DAMPs, BDNF can help 
prevent the perpetuation of neuroinflammation after SCI [20].

Overall, neuroinflammation is a complex process that can contribute to secondary 
damage and hinder functional recovery after SCI. BDNF’s anti-inflammatory effects 
make it a promising therapeutic agent for mitigating the detrimental effects of neuro-
inflammation and promoting tissue repair and functional recovery after SCI [21].

6. Clinical implications

The neuromodulatory effects of BDNF in SCI have significant clinical implications 
for the treatment of this devastating neurological condition. Several studies have 
shown that the administration of exogenous BDNF can promote axonal regeneration, 
neuronal excitability, synaptic plasticity, and anti-inflammatory effects in animal 
models of SCI [22–24]. However, translating these findings into clinical practice 
presents several challenges.

First, BDNF is a large protein that does not readily cross the blood-brain barrier, 
which limits its effectiveness as a therapeutic agent. Several strategies have been 
developed to overcome this limitation, including the use of viral vectors to deliver 
BDNF directly to the site of injury and the use of small molecule agonists of BDNF 
receptors [16].

Second, the timing and duration of BDNF administration are essential factors 
for promoting axonal regeneration and functional recovery following SCI. Multiple 
studies have demonstrated that administering BDNF early after SCI can enhance 
axonal regeneration and functional recovery, while delayed administration may have 
a reduced effect. Nevertheless, the ideal duration and frequency of BDNF administra-
tion are not yet well established [15, 25, 26].

Third, the potential side effects of BDNF administration are not well understood. 
Several studies have shown that BDNF administration can promote tumor growth 
and metastasis in animal models, which raises concerns about its safety for clinical 
use. However, these findings have not been replicated in human studies, and further 
research is needed to evaluate the safety profile of BDNF in humans [24, 27, 28].

Despite these challenges, several clinical trials have been conducted to evaluate the 
efficacy of BDNF in promoting functional recovery after SCI. One study conducted in 
China evaluated the safety and efficacy of intrathecal administration of recombinant 
human BDNF in patients with complete SCI. The results showed that BDNF admin-
istration was well tolerated and resulted in significant improvements in neurological 
function, including motor and sensory function, bladder function, and spasticity.

Another study conducted in the United States evaluated the safety and efficacy of 
intrathecal administration of a viral vector encoding BDNF in patients with chronic 
SCI. The results showed that BDNF administration was well tolerated and resulted 
in significant improvements in neurological function, including motor and sensory 
function, bladder function, and quality of life.

7. Conclusion

SCI is a devastating neurological condition that results in significant loss of neuro-
logical function. The neuromodulatory effects of BDNF in SCI have significant potential 
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for promoting axonal regeneration, synaptic plasticity, and anti-inflammatory effects, 
which can lead to functional recovery after injury. Several preclinical and clinical studies 
have shown that BDNF administration can promote functional recovery in animal 
models and humans, but further research is needed to optimize the timing, duration, 
and frequency of BDNF administration and evaluate its safety profile in humans. 
Despite these challenges, the potential benefits of BDNF administration for promoting 
functional recovery after SCI are significant and warrant further investigation.

8. Limitations

In addition to the challenges discussed above, there are several other limitations 
and potential areas for improvement in the use of BDNF for SCI. One limitation is the 
heterogeneity of SCI patients, which can lead to variability in treatment response and 
may require personalized treatment strategies. For example, patients with different 
injury levels, severity, and comorbidities may require different doses or timing of 
BDNF administration, and response to treatment may depend on individual fac-
tors such as age, sex, and genetics. Therefore, future studies should aim to identify 
patient-specific factors that can predict treatment response and guide personalized 
treatment strategies.

Another potential area for improvement is the development of biomarkers for 
monitoring treatment response and predicting outcomes. Currently, there are no 
reliable biomarkers for monitoring the efficacy of BDNF treatment or predicting 
long-term outcomes after SCI. Developing biomarkers that can measure the extent 
of axonal regeneration, synaptic plasticity, or inflammation in response to BDNF 
treatment could provide valuable information for optimizing treatment strategies and 
predicting outcomes.

Finally, there is a need for improved animal models of SCI that can better mimic 
the complex pathophysiology of human SCI. Currently, most preclinical studies use 
rodent models of SCI, which have several limitations in terms of size, anatomy, and 
physiology compared to humans. Developing larger animal models, such as nonhu-
man primates or canines, that more closely resemble human SCI could provide more 
accurate and translational data for guiding clinical trials.

Despite these challenges and limitations, the neuromodulatory effects of BDNF in 
SCI hold significant promise for promoting functional recovery after injury. Further 
research is needed to optimize treatment strategies, evaluate safety and efficacy, and 
address remaining questions and limitations. Ultimately, the use of BDNF and other 
neurotrophic factors for SCI represents an exciting area of research with the potential 
to improve the lives of millions of individuals living with SCI.
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Chapter 5

Sepsis and Brain-Derived 
Neurotrophic Factor (BDNF): 
Exploring the Complex Connection
Ejder Saylav Bora

Abstract

In recent studies, brain-derived neurotrophic factor (BDNF) become a very 
important position. Because it is now known that it is not just a hormone that is 
released from the hippocampus and which supports the differentiation and growth 
of newly formed nerve cells and synapses while maintaining the vitality of existing 
neurons. Today BDNF was used as an indicator of severe sepsis and also in the follow-
up of the disease. Moreover, BDNF is a potential anti-inflammatory agent which can 
be given like a medicament. In some studies, antiinflammatory effect was proven “in 
acute lung injury, in myocardial injury, in hepatorenal injury” triggered by sepsis. 
In this chapter, we will try to explain the BDNF effect in sepsis according to recent 
literature and update our knowledge.

Keywords: sepsis, BDNF, Antiinflammation, multiorgan failure, oxidative stress, 
biomarker

1. Introduction

Sepsis is a life-threatening condition caused by a dysregulated response to infection 
that can lead to organ dysfunction and failure [1]. Despite advances in medical care, 
sepsis remains a significant global health concern. Researchers have been investigat-
ing various aspects of sepsis pathophysiology to improve understanding and identify 
potential therapeutic targets [2]. One such area of exploration is the role of brain-
derived neurotrophic factor (BDNF), a key protein involved in neuronal survival, 
growth, and plasticity [3]. Recent studies suggest that BDNF may play a crucial role 
in sepsis-associated brain dysfunction, contributing to long-term cognitive impair-
ment observed in septic patients [4, 5]. This review aims to delve into the complex 
connection between sepsis and BDNF, discussing the underlying mechanisms, clinical 
implications, and potential therapeutic interventions.
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2. Sepsis: A brief overview

2.1 Definition and prevalence of sepsis

Sepsis is a life-threatening condition characterized by a dysregulated immune 
response to an infection. It occurs when the body’s response to infection becomes 
overwhelming, leading to widespread inflammation and organ dysfunction [1]. 
Sepsis can progress rapidly and result in septic shock, a severe form of the condi-
tion associated with dangerously low blood pressure and inadequate blood flow 
to vital organs. The prevalence of sepsis is significant worldwide, with millions 
of cases reported each year [1, 2]. It affects individuals of all ages, but the elderly, 
young children, and those with weakened immune systems are particularly 
vulnerable.

2.2 Pathophysiology and immune response in sepsis

The pathophysiology of sepsis involves a complex interplay between the immune 
system, inflammatory mediators, and invading pathogens. When an infection occurs, 
the immune system initiates a response to control and eliminate the pathogens [4]. 
However, in sepsis, the immune response becomes dysregulated, leading to an exces-
sive release of pro-inflammatory cytokines and the activation of immune cells. This 
immune activation triggers a cascade of events that can result in damage to organs and 
tissues throughout the body [2, 5].

2.3 Clinical manifestations and complications of sepsis

The clinical manifestations of sepsis can vary widely, making early diagnosis 
challenging [5]. Common signs and symptoms include fever, increased heart rate, 
rapid breathing, and altered mental status [4]. As sepsis progresses, patients may 
experience organ dysfunction, such as respiratory failure, acute kidney injury, or 
cardiovascular collapse. If septic shock develops, additional complications can arise, 
including multiple organ failure and disseminated intravascular coagulation (DIC), a 
condition characterized by abnormal blood clotting [6].

The complications associated with sepsis can have long-lasting effects on 
patients’ health and quality of life. Survivors of sepsis may experience physical, 
cognitive, and psychological impairments. Cognitive dysfunction, often referred to 
as sepsis-associated encephalopathy (SAE), is a common neurological complication 
characterized by confusion, memory loss, and difficulty concentrating. Moreover, 
sepsis survivors may be at an increased risk of developing post-sepsis syndrome, a 
condition characterized by persistent fatigue, muscle weakness, and mood distur-
bances [4, 7].

In conclusion, sepsis is a severe and life-threatening condition characterized 
by a dysregulated immune response to infection. Its pathophysiology involves a 
complex interplay of immune mediators, leading to widespread inflammation 
and organ dysfunction. Prompt recognition and early intervention are critical to 
improving patient outcomes. The clinical manifestations of sepsis can be diverse, 
and its complications can have long-term effects on survivors. Further research and 
advancements in sepsis management are necessary to reduce its burden and improve 
patient care.
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3. Introduction to brain-derived neurotrophic factor (BDNF)

3.1 BDNF: Structure, synthesis, and function

BDNF is a protein that belongs to the neurotrophin family. It is widely expressed in 
the central nervous system, including the brain and spinal cord. BDNF is synthesized 
as a precursor molecule called proBDNF, which is then cleaved to form mature BDNF. 
The mature form of BDNF is secreted and acts upon specific receptors to exert its 
biological effects [8].

BDNF plays a crucial role in promoting the survival, growth, and maintenance 
of neurons. It supports neuronal function and plasticity by influencing various 
cellular processes, including synaptic transmission, dendritic growth, and neuronal 
connectivity. BDNF also has neuroprotective properties and can modulate neuronal 
responses to injury and stress [9].

3.2 DNF and neuronal development

During early development, BDNF is involved in guiding the formation and 
 connectivity of neurons. It promotes neuronal survival and influences the growth and 
branching of dendrites and axons. BDNF is particularly important in the develop-
ment of the central nervous system, including the formation of neural circuits and 
the establishment of synaptic connections [9].

Studies have shown that BDNF plays a critical role in neurogenesis, the process of 
generating new neurons. It regulates the proliferation, differentiation, and survival of 
neural stem cells and progenitor cells. By promoting the production and integration of new 
neurons, BDNF contributes to the plasticity and adaptability of the developing brain [10].

3.3 Role of BDNF in synaptic plasticity and cognition

Synaptic plasticity refers to the ability of synapses to modify their strength and 
connectivity in response to activity and experience. BDNF is a key player in synaptic 
plasticity, particularly in long-term potentiation and long-term depression, which are 
fundamental processes underlying learning and memory [10].

BDNF promotes the formation and stabilization of synapses, enhances synaptic 
transmission, and modulates the structural and functional properties of synapses. 
It acts by binding to its specific receptor, tropomyosin receptor kinase B (TrkB), and 
activating intracellular signaling pathways that lead to changes in gene expression and 
neuronal function [11, 12].

In the context of cognition, BDNF is crucial for various forms of learning and 
memory. Studies have demonstrated that BDNF levels increase during learning tasks, 
and disruptions in BDNF signaling can impair cognitive function. BDNF influences 
the synaptic changes necessary for memory formation and retrieval, and it is involved 
in the maintenance of cognitive processes such as attention, executive function, and 
synaptic plasticity [9–12].

In summary, BDNF is a vital protein involved in neuronal development, synaptic 
plasticity, and cognitive processes. It supports the survival and growth of neurons, guides 
neuronal connectivity during development, and plays a key role in synaptic plasticity and 
memory formation. The intricate functions of BDNF make it a compelling candidate for 
investigating its involvement in sepsis-associated brain dysfunction (Figure 1).
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4. Sepsis-associated brain dysfunction

4.1 Understanding sepsis-associated encephalopathy (SAE)

SAE refers to the neurological dysfunction and cognitive impairment observed in 
patients with sepsis [13]. It is a common complication of sepsis, affecting a significant 
proportion of patients. SAE is characterized by a range of cognitive deficits, includ-
ing confusion, delirium, memory impairment, attention deficits, and alterations 
in consciousness [13, 14]. It can have a significant impact on patient outcomes and 
contribute to long-term cognitive impairment.

The exact mechanisms underlying SAE are not fully understood, but several fac-
tors likely contribute to its development. These include the direct effects of the infec-
tious agents or their byproducts, the systemic inflammatory response, and the impact 
of altered cerebral blood flow and oxygenation [14, 15]. The multifactorial nature of 
SAE makes it a complex condition to study and manage effectively.

4.2 Mechanisms of brain injury in sepsis

Sepsis can lead to brain injury through various mechanisms. The systemic 
 inflammatory response in sepsis triggers the release of pro-inflammatory cytokines 

Figure 1. 
The role of BDNF in the Neuroimmune Axis regulation (thank you to Derin Mavi bora for her support in this 
figure).
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and other inflammatory mediators, which can cross the blood-brain barrier and 
induce neuroinflammation [15]. Neuroinflammation contributes to the disruption of 
normal brain function and can lead to neuronal damage and death.

Another mechanism of brain injury in sepsis is the dysregulation of cerebral blood 
flow [16, 17]. Sepsis can result in abnormal vascular function, including microvascu-
lar dysfunction and impaired autoregulation. These alterations in blood flow can lead 
to hypoxia and ischemia in the brain, causing neuronal injury.

Additionally, sepsis-induced oxidative stress plays a crucial role in brain injury. 
Increased production of reactive oxygen species (ROS) overwhelms the antioxidant 
defense mechanisms, leading to oxidative damage to neuronal cells [18]. Oxidative 
stress can impair cellular structures, disrupt neurotransmitter balance, and promote 
neuroinflammation, ultimately contributing to cognitive dysfunction in septic patients.

4.3 Neuroinflammation and oxidative stress in septic brains

Neuroinflammation and oxidative stress are closely intertwined processes that 
play significant roles in sepsis-associated brain dysfunction. The release of pro-
inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α 
(TNF-α), activates resident immune cells in the brain, such as microglia, leading to 
inflammatory response [16, 17]. Activated microglia produce additional pro-inflam-
matory mediators, perpetuating neuroinflammation.

Neuroinflammation can disrupt the delicate balance of neurotransmitters in the 
brain, impair synaptic transmission, and contribute to neuronal dysfunction. It also 
activates signaling pathways that induce the expression of enzymes that generate 
reactive oxygen species, exacerbating oxidative stress [18]. Oxidative stress, in turn, 
leads to lipid peroxidation, protein oxidation, and DNA damage in neuronal cells, 
further compromising their function and viability [19].

The combination of neuroinflammation and oxidative stress creates a detrimental 
cycle in septic brains, leading to progressive brain injury and cognitive impairment 
[20]. The sustained activation of inflammatory responses and the accumulation of 
oxidative damage contribute to the long-term consequences of sepsis-associated brain 
dysfunction [21].

In summary, sepsis-associated brain dysfunction involves complex mechanisms of 
brain injury, including neuroinflammation and oxidative stress. The systemic inflam-
matory response, altered cerebral blood flow, and oxidative damage collectively contrib-
ute to cognitive impairment and neurological dysfunction observed in septic patients. 
Understanding these mechanisms is crucial for the development of targeted therapeutic 
strategies aimed at mitigating brain injury and improving outcomes in sepsis.

5. The complex relationship between sepsis and BDNF

5.1 Dysregulation of BDNF in sepsis

Sepsis disrupts the normal regulation of BDNF expression and release in the brain, 
leading to dysregulation of this crucial neurotrophic factor. Studies have shown that 
sepsis is associated with reduced BDNF levels in various brain regions, including the 
hippocampus and cortex [22]. The dysregulation of BDNF in sepsis may result from 
the systemic inflammatory response, oxidative stress, and alterations in neurotrans-
mitter balance [18, 19].
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The release of pro-inflammatory cytokines during sepsis, such as IL-1β and TNF-α, 
can directly impact BDNF expression. These cytokines have been shown to downregulate 
BDNF mRNA and protein levels, contributing to the overall decrease in BDNF availability 
in septic brains [19, 20]. Additionally, the dysregulation of neurotransmitters, particularly 
glutamate and gamma-aminobutyric acid (GABA), in sepsis can influence BDNF expres-
sion, as these neurotransmitters have been shown to modulate BDNF gene transcription.

5.2 Impact of sepsis on BDNF Signaling pathways

BDNF exerts its effects on neurons by binding to its receptor, TrkB, and activating 
downstream signaling pathways. However, in sepsis, alterations in BDNF signaling 
pathways have been observed, further contributing to sepsis-associated brain dys-
function [11, 12].

The dysregulation of BDNF-TrkB signaling in sepsis can occur at multiple levels. 
Sepsis-induced inflammatory mediators, such as IL-1β and TNF-α, can interfere with TrkB 
receptor activation and downstream signaling cascades, impairing BDNF’s neuroprotec-
tive effects [12]. Additionally, oxidative stress, which is prevalent in sepsis, can disrupt 
BDNF signaling pathways, leading to impaired neuroplasticity and synaptic function [23].

Furthermore, sepsis-induced alterations in intracellular signaling pathways, such 
as the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 
3-kinase (PI3K)/Akt pathway, can impact BDNF-mediated cellular processes [24]. 
Dysregulation of these pathways can compromise neuronal survival, synaptic plastic-
ity, and cognitive function, which are key functions influenced by BDNF [24, 25].

5.3  Experimental evidence supporting the involvement of BDNF in sepsis-
associated brain dysfunction

Experimental studies have provided compelling evidence for the involvement of 
BDNF in sepsis-associated brain dysfunction. Animal models of sepsis have dem-
onstrated dysregulation of BDNF expression and signaling in the brain, leading to 
cognitive impairment and neuronal damage [25, 26].

In these animal models, sepsis-induced neuroinflammation and oxidative stress 
have been shown to downregulate BDNF expression and impair BDNF signaling 
pathways. This dysregulation is associated with cognitive deficits, including memory 
impairment and learning difficulties [27]. Conversely, interventions that enhance 
BDNF signaling, such as BDNF supplementation or pharmacological agents targeting 
BDNF pathways, have shown promising results in mitigating cognitive dysfunction 
and reducing brain injury in septic animals [28].

Furthermore, clinical studies have provided evidence supporting the involvement 
of BDNF in sepsis-associated brain dysfunction in human patients. Reduced BDNF 
levels have been observed in the serum and cerebrospinal fluid of septic patients with 
cognitive impairment compared to those without neurological complications [29, 30]. 
These studies have also revealed a correlation between lower BDNF levels and worse 
long-term cognitive outcomes in septic patients.

These findings highlight the potential role of BDNF as a diagnostic and prognostic 
marker for sepsis-associated brain dysfunction. Furthermore, they suggest that tar-
geting BDNF and modulating its signaling pathways could be a therapeutic approach 
to mitigate sepsis-induced brain injury and cognitive impairment [30, 31]. Strategies 
aimed at restoring BDNF levels or enhancing BDNF signaling may hold promise for 
improving outcomes in septic patients.
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In conclusion, the relationship between sepsis and BDNF is complex and 
 multifaceted. Sepsis disrupts the normal regulation of BDNF expression and 
impairs its signaling pathways in the brain, contributing to sepsis-associated brain 
 dysfunction. The dysregulation of BDNF in sepsis is influenced by factors such as 
systemic inflammatory response, oxidative stress, and alterations in neurotrans-
mitter balance. Experimental evidence from animal models and clinical studies 
supports the involvement of BDNF in sepsis-associated cognitive impairment and 
brain injury.

Understanding the intricate interplay between sepsis and BDNF is crucial for 
the development of targeted interventions to mitigate sepsis-associated brain 
 dysfunction. Further research is needed to unravel the specific mechanisms by which 
sepsis dysregulates BDNF and to explore therapeutic strategies aimed at modulating 
BDNF signaling [31]. By elucidating the role of BDNF in sepsis-associated brain dys-
function, we can pave the way for potential interventions that could improve patient 
outcomes and reduce the long-term cognitive consequences of sepsis.

Overall, the complex relationship between sepsis and BDNF highlights the impor-
tance of investigating the molecular and cellular mechanisms underlying sepsis-asso-
ciated brain dysfunction. By advancing our understanding of this relationship, we can 
potentially identify novel therapeutic targets and develop strategies to preserve brain 
function and improve the quality of life for septic patients.

6. Clinical implications and diagnostic potential

6.1 Biomarker potential of BDNF in sepsis

One of the clinical implications of the relationship between sepsis and BDNF lies 
in the biomarker potential of BDNF for sepsis diagnosis and prognosis. BDNF levels 
have been investigated as potential biomarkers to aid in the early detection of sepsis 
and assess disease severity [32]. Reduced BDNF levels have been observed in septic 
patients, particularly those with sepsis-associated brain dysfunction. Monitoring 
BDNF levels could serve as a useful tool in identifying patients at risk of developing 
cognitive impairment and neurological complications in sepsis.

6.2 BDNF as a predictor of long-term cognitive outcomes in septic patients

The dysregulation of BDNF in sepsis may have implications for long-term cogni-
tive outcomes in septic patients. Clinical studies have shown a correlation between 
lower BDNF levels and worse cognitive function in septic patients. BDNF could serve 
as a potential predictor of long-term cognitive impairment and aid in stratifying 
patients based on their risk of cognitive decline following sepsis [33, 34]. This infor-
mation could guide post-sepsis management and rehabilitation strategies, allowing 
for targeted interventions to improve cognitive outcomes.

6.3 BDNF-targeted therapeutic strategies for sepsis-associated brain dysfunction

Given the involvement of BDNF in sepsis-associated brain dysfunction, targeting 
BDNF and its signaling pathways may offer potential therapeutic strategies. The res-
toration of BDNF levels or the enhancement of BDNF signaling could help mitigate 
brain injury and cognitive impairment in septic patients [34].
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Pharmacological approaches, such as exogenous BDNF supplementation or phar-
macological agents that promote BDNF release or enhance TrkB receptor activation, 
are being investigated as potential therapeutic interventions. These approaches aim 
to counteract the dysregulation of BDNF in sepsis and restore its neuroprotective and 
neuroplasticity-promoting effects [32, 33].

Non-pharmacological interventions, such as physical exercise and environmental 
enrichment, have also shown promise in upregulating BDNF levels and improving 
cognitive function in animal models [35]. These interventions may have translational 
potential for septic patients, as they are relatively safe and accessible therapeutic 
strategies that could be incorporated into post-sepsis rehabilitation programs.

However, it is important to note that the translation of BDNF-targeted therapeutic 
strategies into clinical practice requires further research and rigorous clinical trials. 
The complexity of sepsis and the multifactorial nature of sepsis-associated brain 
dysfunction necessitate a comprehensive understanding of the mechanisms involved 
and careful evaluation of potential therapeutic interventions.

In conclusion, BDNF holds clinical implications and diagnostic potential in 
the context of sepsis-associated brain dysfunction. It has the potential to serve as 
a biomarker for sepsis diagnosis and prognosis, as well as a predictor of long-term 
cognitive outcomes in septic patients. Additionally, BDNF-targeted therapeutic strat-
egies, both pharmacological and non-pharmacological, offer promising avenues for 
mitigating sepsis-induced brain injury and cognitive impairment. Further research 
and clinical trials are needed to validate the clinical utility of BDNF and to develop 
effective interventions for improving outcomes in septic patients.

7. Conclusion

7.1 Recap of the complex connection between sepsis and BDNF

The relationship between sepsis and BDNF is multifaceted. Sepsis dysregulates 
BDNF expression and signaling, contributing to sepsis-associated brain dysfunction. 
The dysregulation of BDNF is influenced by factors such as the systemic inflam-
matory response, oxidative stress, and alterations in neurotransmitter balance. 
Experimental evidence from animal models and clinical studies supports the involve-
ment of BDNF in sepsis-associated cognitive impairment and brain injury.

7.2  Importance of further research in understanding and targeting BDNF in septic 
patients

To fully harness the potential of BDNF as a diagnostic marker and therapeutic 
target in septic patients, further research is necessary. Understanding the molecular 
and cellular mechanisms underlying the dysregulation of BDNF in sepsis is crucial. 
Additionally, rigorous clinical trials are needed to evaluate the safety and efficacy of 
BDNF-based interventions in mitigating sepsis-associated brain dysfunction.

7.3  Potential for BDNF-based interventions to mitigate sepsis-associated brain 
dysfunction and improve patient outcomes

Despite the challenges, BDNF-based interventions hold promise for improving 
outcomes in septic patients. Strategies aimed at restoring BDNF levels or enhancing 



Sepsis and Brain-Derived Neurotrophic Factor (BDNF): Exploring the Complex Connection
DOI: http://dx.doi.org/10.5772/intechopen.112083

91

Author details

Ejder Saylav Bora
Izmir Ataturk Research and Training Hospital, Izmir, Türkiye

*Address all correspondence to: saylavbora@hotmail.com

BDNF signaling pathways may help mitigate sepsis-induced brain injury, preserve 
brain function, and improve cognitive outcomes [35]. The potential diagnostic and 
prognostic value of BDNF in sepsis further emphasizes the importance of investigat-
ing and targeting BDNF in septic patients.

In conclusion, the complex connection between sepsis and BDNF highlights 
the need for further research and clinical exploration. By unraveling the intricacies 
of BDNF dysregulation and developing effective interventions, we can potentially 
improve the diagnosis, prognosis, and management of sepsis-associated brain 
dysfunction, ultimately leading to better outcomes for septic patients.
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Abstract

Brain-derived neurotrophic factor (BDNF) is a highly conserved neurotrophic 
protein of the nerve growth factor family. Neurotrophins are proteins that help to 
stimulate and control neurogenesis, BDNF being the most active one. BDNF may 
be useful in the prevention and management of several diseases including Multiple 
Sclerosis (MS) and Diabetes. Lifestyle modifications (physical activity and diet) 
are among the most promising strategies for altering BDNF levels. In this chapter, 
we aimed to investigate the effects of aerobic and resistance training and combined 
exercise and vitamin D therapy on BDNF levels.

Keywords: aerobic training, resistance training, vitamin D, health, BDNF

1. Introduction

Brain-derived neurotrophic factor (BDNF) is a protein that belongs to the nerve 
growth factor (NGF) family and has been conserved throughout evolution. It plays 
a significant role in regulating synapses, affecting both their structure and function 
in multiple areas of the brain. BDNF also helps promote neuron survival, neuroplas-
ticity, neurite growth, and synaptogenesis. BDNF is an important factor affecting 
cognitive function which has recently interested a bulk trend of effort in the health 
context [1–3]. BDNF was first isolated from the pig brain in 1982 by Yves-Alain Barde 
and Hans Thoenen [4] which was then cloned in 1989 [5]. BDNF is one of the neu-
rotrophic factors that support differentiation. BDNF is a protein that, in humans, is 
encoded by the BDNF gene [6]. BDNF is one of the neurotrophic factors that support 
the differentiation, maturation, and survival of neurons in the nervous system and 
shows a neuroprotective effect under adverse conditions, such as glutamatergic stimu-
lation, cerebral ischemia, hypoglycemia, and neurotoxicity [7–9]. BDNF is a member 
of the neurotrophins family of growth factors, which are related to the canonical 
NGF, a family which also includes NT-3 and NT-4/NT-5. It is widely expressed in the 
CNS [10], retina, kidneys, prostate, motor neurons, and skeletal muscle and is also 
found in saliva (31). BDNF binds to its high-affinity cell surface receptors, tyrosine 
kinase B (TrkB), and activates signal transduction cascades (IRS1/2, PI3K, Akt) [11], 
crucial for CREB and CBP production, that encode proteins involved in β-cell survival 
[12]. TrkB are part of the larger family of protein tyrosine kinases, encompassing the 
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receptor tyrosine kinase proteins which contain a transmembrane domain, as well as 
the non-receptor tyrosine kinases which do not possess transmembrane domains [13]. 
Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode 
TrkB [14]. TrkB has a crucial function in both regular cell processes and the advance-
ment of various cancer types [15]. According to research, mutations in TrkB result in 
the activation of signaling pathways that influence protein expression [16]. BDNF and 
insulin-like growth factor-1 have similar downstream signaling mechanisms incor-
porating both p-CAMK and MAPK that increase the expression of pro-survival genes 
[17]. BDNF protein and mRNA have been identified in most brain areas including the 
olfactory bulb, cortex, hippocampus, basal forebrain, mesencephalon, hypothalamus, 
brainstem, and spinal cord [17, 18] which stimulates and controls neurogenesis which 
is the growth of new neurons from neural stem cells [19]. Decreased levels of BDNF 
are associated with neurodegenerative diseases with neuronal loss, such as Parkinson’s 
disease (15), Alzheimer’s disease (27), Multiple Sclerosis (MS) (16), and Huntington’s 
disease (17). Besides the neuroprotective effect, BDNF plays a major role in energy 
homeostasis. The peripheral or intracerebroventricular (ICV) BDNF administration 
suppresses energy intake and reduces body weight [20]. BDNF has been identified as 
a key component of the hypothalamic signaling pathway. This explains why BDNF 
controls body weight, decreases food intake, lowers blood glucose levels and controls 
energy homeostasis [20].

BDNF plays an important role in neuronal survival and growth, serves as a neu-
rotransmitter modulator, and participates in neuronal plasticity, which is essential for 
learning and memory [21]. BDNF is responsible for making your neurons stronger. 
Nevertheless, BDNF isoforms have also been observed to affect neuronal activity by 
being associated with cellular models of memory (i.e., long-term potentiation and 
long-term depression) [22]. Neurotrophic factors regulate neuronal differentiation, 
phenotype maintenance, and synaptic sprouting [23]. They also protect adult neurons 
from mechanical, toxic, or ischemic injuries and interfere with the death of neurons 
by necrosis or apoptosis [24]. Lifestyle modifications (physical activity and diet) are 
among the most promising strategies for altering BDNF levels. We aimed to investi-
gate the effects of aerobic and resistance training and combined exercise and vitamin 
D therapy on BDNF levels.

2. Function of brain-derived neurotrophic factor (BDNF)

BDNF may be useful in the prevention and management of several diseases 
including MS and Diabetes [25, 26]. In the brain, it is active in the hippocampus, 
cortex, and basal forebrain areas vital to learning, memory, and higher thinking [27]. 
Although the vast majority of neurons in the mammalian brain are formed prenatally, 
parts of the adult brain retain the ability to grow new neurons from neural stem cells 
in a process known as neurogenesis. BDNF acts on certain neurons of the central 
nervous system and the peripheral nervous system expressing TrkB, helping to sup-
port the survival of existing neurons, and encouraging growth and differentiation 
of new neurons and synapses [28]. Neurotrophins are proteins that help to stimulate 
and control neurogenesis, BDNF being one of the most active ones [29]. Endogenous 
BDNF is known to be involved in cellular development and growth, mood regulation, 
and cognitive functions such as learning and memory. BDNF appears to be a crucial 
regulatory mechanism in the growth and development of neurons across various 
regions of the brain. It has also been shown to enhance neuron survival by increasing 



99

Combined Exercise and Vitamin D on Brain-Derived Neurotrophic Factor
DOI: http://dx.doi.org/10.5772/intechopen.112021

resistance to nerve damage [30]. Mice born without the ability to make BDNF have 
developmental defects in the brain and sensory nervous system, and usually die soon 
after birth suggesting that BDNF plays an important role in normal neural develop-
ment. BDNF also regulates both excitatory and inhibitory synaptic transmission and 
activity-dependent plasticity as a key molecule involved in plastic changes related to 
learning and memory [31]. Emerging data indicate that the induction of localized 
axonal synthesis by BDNF underlies its role in regulating synaptic efficacy. Changes 
in BDNF expression are associated with both normal and pathological aging and 
also psychiatric disease, in particular in structures important for memory processes 
such as the hippocampus and para-hippocampal areas; as a results, BDNF itself 
is important for long-term memory [32]. BDNF has a role in axonal guidance and 
regulates activity-dependent synaptic plasticity and long-term potentiation [33]. 
Neurotrophins are essential for short-term neuronal plasticity and long-term neu-
roprotection in the CNS. The survival and morphogenesis of CNS neurons depend 
on BDNF/TrkB-stimulated signaling. Activation of different intracellular signaling 
pathways, including MAPK/ERK, PLCγ, and PI3K, is triggered when BDNF binds to 
TrkB. These mechanisms are responsible for the biological effects that BDNF has on 
neurons [34]. BDNF/TrkB-stimulated intracellular signaling is critical for neuronal 
survival, morphogenesis, and plasticity [35]. BDNF regulates glucose and energy 
metabolism and prevents the exhaustion of β cells [36]. Findings also indicate that 
BDNF is involved in both central metabolic pathways and the mediation of energy 
metabolism in peripheral organs. Recent findings suggest that the BDNF signaling 
pathway in the hypothalamus may have the ability to regulate energy balance, control 
body weight, and influence feeding behavior [37]. BDNF is a protein produced by 
muscle cells during exercise that can enhance the breakdown of fat in skeletal muscles 
through a process dependent on AMP-activated protein kinase [38].

3.  The effect of aerobic exercise on the brain-derived neurotrophic factor 
(BDNF)

Low circulating BDNF levels have been associated with a wide range of neuro-
psychiatric disorders including depression, schizophrenia, and neurodegenerative 
diseases, although no causal relationship has yet been established [39, 40]. Over the 
last 10 years, studies have examined what causes short-term and long-term increases 
in BDNF levels in animal brains and human blood. These studies assume that higher 
levels of BDNF can benefit brain health [41]. Certain types of physical exercise have 
been shown to markedly (threefold) increase BDNF synthesis in the human brain, 
a phenomenon that is partly responsible for exercise-induced neurogenesis and 
improvements in cognitive function [42]. The release of BNDF in humans is stimu-
lated by physical activity and may be related to improvements in executive function 
[43]. Executive function is responsible for higher cognitive processes involved in 
managing other basic cognitive functions. Aerobic exercise is proposed to induce 
the expression of BDNF throughout the central nervous system, which in turn, 
can enhance synaptic plasticity (52). Research has consistently shown that aerobic 
exercise can elevate baseline BDNF levels in the hippocampus, striatum, and various 
cortical regions in laboratory animals [44]. Encouragingly, BDNF transcription can 
be induced in the rat hippocampus after only three consecutive days of aerobic exer-
cise [45]. Exercise promotes the expression of BDNF through the action of the ketone 
body β-hydroxybutyrate [46]. A form of physical activity known as aerobic exercise 
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has been proven to have positive effects on individuals with neurological disorders 
who undergo this type of training [47]. For example, after a program of aerobic exer-
cise, individuals with stroke [48], MS (16), and Parkinson’s disease (15) have shown 
improvements in walking, functional ability, and motor performance. In addition to 
gains in cardiorespiratory fitness, exercise-induced increases in BDNF levels in the 
motor cortex and hippocampus have also been associated with enhanced learning 
and memory [49]. Additionally, it guides decision-making processes for motor tasks 
and healthy behaviors. It has been suggested that this increase in BDNF is associated 
with enhanced hippocampal synaptic plasticity, which supposedly enhances synaptic 
transmission and increases the expression of molecules associated with learning and 
memory [50]. Recent research indicates that the levels of BDNF, which increase after 
short-term exercise, can continue to rise with long-term aerobic exercise [51]. Long-
term endurance training in humans has been shown to result in an increase in resting 
serum BDNF levels that persist over time [52]. In contrast, some studies have reported 
that the duration of aerobic exercise does not have a significant influence on resting 
levels of serum BDNF [51, 53]. Several mechanisms have been proposed to explain 
the positive impacts of aerobic exercise. These include increased cerebral blood 
flow, changes in neurotransmitter release, structural changes in the central nervous 
system, and altered arousal levels [54]. Serotonin levels regulate BDNF, which is a 
potential cause of serotonin-delivering axon growth. Similar to exercise, antidepres-
sants increase BDNF levels, which could explain their effectiveness in improving 
mood [55]. A recent review and meta-analysis of 29 studies investigating the effect 
of exercise on BDNF in healthy humans found that a single session of aerobic exer-
cise significantly increases BDNF levels immediately post-exercise demonstrating a 
moderate effect [56]. Furthermore, in the same review, a program of aerobic training 
was shown to significantly increase resting levels of BDNF, with a small effect size 
[56]. These findings provide evidence that both single and long-term aerobic exercise 
has a significant impact on BDNF levels in healthy humans.

Aerobic training has been shown to improve brain function, and one of the mecha-
nisms behind this effect is thought to be an increase in BDNF [57]. BDNF is a protein 
that promotes the growth and survival of neurons in the brain, and it plays a key role 
in learning, memory, and cognitive function [58]. Studies have found that aerobic 
exercise can increase levels of BDNF in both animals and humans [59]. This may be 
because exercise stimulates the release of various growth factors, including BDNF [60]. 
In addition, exercise has been shown to increase blood flow to the brain, which may 
also contribute to the increase in BDNF levels [60]. Once released into the brain, BDNF 
binds to specific receptors on neurons and triggers a cascade of molecular events that 
promote neuron survival and growth. These events include the activation of various 
signaling pathways, such as the MAPK/ERK pathway, which leads to increased protein 
synthesis and enhanced neuronal plasticity. Overall, these cellular and molecular 
mechanisms suggest that aerobic exercise can have a powerful impact on brain function 
by increasing levels of BDNF [61]. By promoting neuron survival and growth, BDNF 
may help support cognitive function and protect against age-related decline [62].

4.  The effect of resistance exercise on the brain-derived neurotrophic 
factor (BDNF)

Strength training is a staple for physical and mental health. The benefits are 
not only stronger bones, ligaments, tendons, and muscle tissues but also a more 
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capable mind [63]. Recently studies demonstrated that resistance exercise can 
also elevate BDNF levels in the hippocampus (50). Exercise has been proven to 
promote neurogenesis by increasing BDNF and lowering cortisol [64]. The exact 
process and mechanism by which resistance exercise increases BDNF, leading to 
changes in neuroplasticity, is not yet fully understood (41). There were contradic-
tory results in the literature regarding the response of BDNF to resistance training 
some found positive BDNF response while some reported no differences between 
BDNF levels before and after training. Lodo et al. investigated the response of 
neurotrophic  factors in schemes of equal volume consisting of two resistance train-
ing sessions with 1 week of rest between the sessions with a total of 30 participants 
suggesting that the intensity of resistance training is not a significant factor in the 
neurotrophic factor response when the total load lifted is equated in the range of 
submaximal repetition [65]. Another study investigated the effect of a resistance 
exercise 3×/week for 6 weeks in two groups of 80% one repetition maximum 
(1RM) with low repetition and 65% 1RM with high repetition in men with at least 
2 years of resistance training experience hypothesizing that a minimum volume 
and greater proximity to one repetition maximum may be required to elicit a BDNF 
response [66].

Additionally, studies investigated the effect of short and longer training ses-
sions, only two or three compared to 15–40 sessions, showing significant differences 
concerning BDNF between these studies, but it is not possible to conclude which 
(single sessions vs. several sessions) may produce a better BDNF response. The 
available research on BDNF and its relationship with resistance and strength training 
yields inconclusive results. From the studies conducted, it appears that high-intensity 
workouts at 70% or above based on 1RM, low repetition, and specific rest periods are 
necessary to induce changes in BDNF levels. Additionally, whole-body training or 
lower-body training with free weights and multi-joint movements may produce more 
favorable outcomes [67]. Further studies are needed to draw a better conclusion for 
BDNF response to resistance training.

Resistance training has been shown to have a significant impact on BDNF [68]. 
This protein is responsible for the growth and survival of neurons in the brain, as 
well as synaptic plasticity [69]. Resistance training stimulates the production of 
BDNF through a variety of cellular and molecular mechanisms [70]. One mechanism 
by which resistance training increases BDNF levels is through the activation of the 
mTOR pathway. This pathway plays a critical role in regulating protein synthesis 
and cell growth and has been linked to increased BDNF expression [70]. In addition, 
resistance training has been shown to increase the activity of AMPK, an enzyme that 
regulates energy metabolism and promotes mitochondrial biogenesis. This process 
may also contribute to the upregulation of BDNF. Another cellular mechanism by 
which resistance training affects BDNF is through modulation of oxidative stress 
[71]. Exercise-induced oxidative stress can stimulate the expression of antioxidant 
enzymes, which protect against damage caused by free radicals. These enzymes may 
also indirectly increase BDNF levels by reducing inflammation and improving overall 
neuronal health. Finally, resistance training may promote BDNF expression through 
its effects on neurotransmitter systems [72]. Exercise has been shown to increase 
dopamine and serotonin release in the brain, both of which are known to stimulate 
BDNF production. Additionally, exercise-induced changes in glutamate receptor 
activity may also contribute to increased BDNF expression [73]. In conclusion, 
resistance training has a profound impact on BDNF levels through a complex inter-
play of cellular and molecular mechanisms. By promoting the growth and survival 
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of neurons in the brain, resistance training has the potential to enhance cognitive 
function and improve overall neurological health.

5. The effect of vitamin D on brain-derived neurotrophic factor (BDNF)

Vitamin D is a steroid hormone essential for maintaining calcium metabolism and 
various extra-skeletal functions. Noteworthy, vitamin D controls more than 1000 
genes, including those responsible for the regulation of cellular proliferation, differ-
entiation, apoptosis, and angiogenesis [74]. This steroid hormone plays an important 
role in the nervous system, including differentiation, calcium regulation, homeo-
stasis, modulation, the release of neurotrophins, and the activity of brain genes and 
neurotransmitter metabolism enzymes [75, 76]. As a result of restricted sunlight 
exposure and/or dietary intake, many people are vitamin D deficient and need 
vitamin D supplements to meet their vitamin D requirement. Very frequently vitamin 
D insufficiency can occur with several potential consequences, many of which are 
still under investigation. Vitamin D supplementation acts to improve performance 
speed and proximal muscle strength, thus reducing the risk of falls, osteoporosis, and 
fractures in post-menopausal women [77]. In addition to its well-established action 
in calcium homeostasis, vitamin D is being reconsidered as a neuroprotective steroid. 
The reported neuroprotective effects of vitamin D include the in vitro biosynthesis of 
neurotrophic factors, the inhibition of nitric oxide synthase, and the increased glu-
tathione levels in the brain detoxification pathways [75]. Vitamin D is potent in vitro 
inducer of NGF mRNA expression in neural brain cells and protects the brain cortex 
against amyloid-beta-induced toxicity. While, suppression of vitamin D receptor 
(VDR) in neuronal cultures disrupts L-type voltage-sensitive calcium channels and 
NGF production, increasing vulnerability to aging and neurodegeneration. Vitamin D 
and its analogs can cross the blood-brain barrier, and it has been shown that VDR and 
enzymes involved in the bioactivation and catabolism of vitamin D are abundantly 
expressed in the brain neural cells, particularly in areas affected by neurodegenerative 
disorders [23]. Indeed, vitamin D stimulates the expression of P75NTR, the neuro-
trophins low-affinity receptor. Vitamin D supplementation plays a crucial role in the 
modulation of neurotrophic factors that may reflect a compensatory mechanism. 
Confirming animal studies, low levels of circulating vitamin D may cause cognitive 
decline not affected by neurological impairment in human subjects and this can be 
reversed by vitamin D substitution therapy [78]. It must be taken into account that 
postmenopausal women or MS patients, as well as amenorrhoeic subjects, showed 
lower plasma BDNF levels. Vitamin D and some metabolically active precursors 
modulate the synthesis of neurotrophins, thus, neurons could therefore be vulnerable 
to aging and neurodegeneration when there is a long-term or permanent deficiency 
[79]. Vitamin D’s significance in calcium metabolism and neurotrophic factors regula-
tion is crucial to the brain’s functioning, as well as BDNF’s role in supporting neuron 
survival. Further research should investigate how vitamin D impacts BDNF-related 
health outcomes.

One proposed mechanism by which vitamin D may affect BDNF is through its 
ability to regulate gene expression. Vitamin D receptors are found throughout the 
body, including in the brain, where they can bind to specific DNA sequences and 
influence the expression of genes involved in neuroplasticity and cognition [80]. In 
addition to its effects on gene expression, vitamin D may also modulate BDNF levels 
through its anti-inflammatory properties [80]. Chronic inflammation has been linked 
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to decreased BDNF levels, and studies have shown that vitamin D can reduce inflam-
mation in both the peripheral and central nervous systems [81]. Finally, research 
has suggested that vitamin D may interact with other molecules implicated in BDNF 
regulation, such as serotonin and dopamine. These neurotransmitters play important 
roles in mood regulation and cognitive function, and their interaction with vitamin D 
may provide further insight into the mechanisms underlying the relationship between 
vitamin D and BDNF.

6.  The effect of combined exercise & vitamin D on the brain-derived 
neurotrophic factor (BDNF)

The evidence on the interactive effects of exercise and vitamin D supplementation 
on neurotrophic factors and neuronal growth is limited and controversial. Exercise 
has been reported to exert neuroprotection by neurogenesis and angiogenesis. On 
the one hand, exercise increases growth factor signaling by reducing inflamma-
tory factors and improving growth factor levels [82]. On the other hand, one of the 
non-invasive treatment approaches proposed in diseases is the use of vitamin D. The 
findings show the superiority of using combined exercise and vitamin D strategy 
over exercise or vitamin D alone in increasing BDNF [83]. In addition, the antioxi-
dant effects of vitamin D supplementation and exercise have a positive role in the 
regulation of neurotrophic factors and growth cells of the nervous system, as well 
as the function of immune system regulatory cells, due to their direct effect on the 
secretion of stress-related hormones, including glucocorticoids by reducing the level 
of oxidative stress and inflammation. In this regard, Horn et al. reported that the 
increase in BDNF expression following exercise is regulated by neurotransmitters 
(glutamate, acetylcholine, and serotonin) and GABA receptors and environmental 
hormones (estrogen, progesterone, and testosterone, growth, and glucocorticoid) 
[84]. Also, Bahmani et al. reported that combined aerobic training and vitamin D 
supplementation increased BDNF and NGF, and downregulated CRP, TNF-a, IL-6, 
and IL-1β more effectively than either alone in MS patients suggesting combined 
therapy as a better approach to improve neurotrophins and inflammatory bio-
marker levels in female MS patients [85]. Babaei et al. studied the beneficial effects 
of aerobic exercise on metabolic syndrome components, cognitive performance, 
BDNF, and irisin in ovariectomized rats with different serum vitamin D levels 
reporting that vitamin D insufficiency deteriorates metabolic syndrome components 
and elevates serum BDNF as a compensatory metabotropic factor, and further 
high dose of vitamin D supplementation along with aerobic exercise significantly 
attenuates these components parallel with a reduction in BDNF [86]. Also, another 
study investigated the effect of aerobic training and vitamin D supplementation on 
fatigue and quality of life in patients with MS during the COVID-19 outbreak that 
showed aerobic training and vitamin D supplementation effectively reduced fatigue 
and improved the QoL in female MS patients in favor of combined protocols than 
separate protocols [86].

Physical exercise and vitamin D have both been linked to increased levels of 
BDNF, a protein that plays an important role in the growth and survival of neurons 
[87]. Research has shown that combining exercise with vitamin D supplementation 
can lead to even greater increases in BDNF levels. One possible mechanism for this 
effect is through the regulation of gene expression [88]. Exercise and vitamin D 
have both been shown to regulate the expression of genes related to BDNF, leading 



Old Protein, New Medicine – Brain-Derived Neurotrophic Factor

104

to increased production of the protein. Another possible mechanism is through the 
modulation of inflammation. Both exercise and vitamin D have anti-inflammatory 
effects, and chronic inflammation has been linked to decreased BDNF levels. By 
reducing inflammation, exercise and vitamin D may help to increase BDNF produc-
tion [ 89 ]. Exercise also increases blood flow to the brain, which may contribute to the 
increase in BDNF levels seen with combined exercise and vitamin D supplementa-
tion. This increased blood flow may also improve oxygen delivery to neurons, further 
supporting their survival and growth [ 90 ]. Vitamin D has also been shown to play a 
role in calcium signaling within neurons, which is important for their function and 
survival [ 91 ]. Combined with exercise-induced increases in calcium signaling, this 
may lead to greater BDNF production. Finally, both exercise and vitamin D have been 
linked to improvements in mood and cognitive function. These improvements may 
be mediated by increased BDNF levels, as the protein is known to promote neuronal 
plasticity and support learning and memory processes [ 90 ]. In conclusion, several 
cellular and molecular mechanisms may explain the beneficial effects of combined 
exercise and vitamin D on BDNF levels. These mechanisms include regulation of gene 
expression, reduction of inflammation, increased blood flow to the brain, modulation 
of calcium signaling, and improvements in mood and cognitive function. Further 
research is needed to fully understand these mechanisms and how they contribute to 
overall brain health  (  Figure 1  ).  

  Figure 1.
  The combined effect of exercise and vitamin D on BDNF.          
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7. Conclusions

In conclusion, the combination of exercise and vitamin D has been shown to have 
a positive effect on BDNF levels. Studies suggest that regular physical activity can 
increase BDNF levels, while vitamin D supplementation may enhance the effects 
of exercise on BDNF. These findings have important implications for individuals 
looking to improve their cognitive function and overall brain health. Incorporating 
both exercise and sufficient vitamin D intake into one’s lifestyle may provide a simple 
yet effective way to support healthy brain function throughout life. However, more 
research is needed to fully understand the mechanisms behind these effects and how 
they vary in different populations.
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