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Preface

This book provides a comprehensive overview of hybrid and electric vehicles. It 
explores various aspects of current research in the field, such as design, modeling of 
Li-ion battery management systems, state-of-charge (SOC) estimation algorithms, 
and the most used electric motors. It also discusses new trends in electric vehicle 
 automation as well as different control strategies. Almost all simulations presented 
were performed in the MATLAB and Simulink environment or other specialized 
software.

The book begins with Chapter 1, which presents a case study of investigations of dif-
ferent approaches to nonlinear speed control methods and SOC estimation techniques 
applied to a rechargeable Li-ion battery adapted to power the electrical motor of an 
electric vehicle. The investigations use the most suitable design approaches for the 
real-time implementation of the most advanced state estimators based on intelligent 
neural networks and neural control strategies.

Chapter 2 proposes an intelligent controller for a hydrogen-powered, plug-in fuel 
cell hybrid electric vehicle that integrates a fuel cell with two energy storage systems 
(ultracapacitor and battery), resulting in a high dynamic response while maintaining 
efficient use of resources for energy storage.

Chapter 3 introduces a battery SOC management technique designed for an electric 
vehicle traction system that incorporates an indirect field-oriented induction motor 
drive. The primary goal of this technique is to restrict the change in battery SOC from 
exceeding a maximum limit by compensating the motor speed tracking performance, 
dealing with a fuzzy-tuned model predictive controller.

Chapter 4 proposes a nonlinear robust H-infinity control approach to enhance the 
trajectory-following capabilities of autonomous ground electric vehicles. Given the 
inherent influence of driving maneuvers and road conditions on vehicle trajectory 
dynamics, the primary objective is to address the control challenges associated with 
trajectory following, including parametric uncertainties, system nonlinearities, 
and external disturbance.

Chapter 5 discusses vehicle system dynamics, torque vector control, and stability 
performance analysis.

Finally, Chapter 6 presents the main typical topologies of hybrid energy storage systems 
for electric vehicles and reviews different electrochemical energy storage technologies 
by highlighting their pros and cons.

It is my great pleasure to acknowledge the contributing authors and the staff at 
IntechOpen, especially Publishing Process Manager Mr. Dominik Samardzija, for 
their tremendous efforts, excellent collaboration, support, and guidance. I would 
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Chapter 1

Investigations of Different
Approaches for Controlling the
Speed of an Electric Motor with
Nonlinear Dynamics Powered by a
Li-ion Battery – Case Study
Roxana-Elena Tudoroiu, Mohammed Zaheeruddin,
Nicolae Tudoroiu, Sorin Mihai Radu and Hana Chammas

Abstract

This research investigated different nonlinear models, state estimation techniques and
control strategies applied to rechargeable Li-ion batteries and electric motors powered and
adapted to these batteries. The finality of these investigations was achieved by finding the
most suitable design approach for the real-time implementation of the most advanced
state estimators based on intelligent neural networks and neural control strategies. For
performance comparison purposes, was chosen as case study an accurate and robust EKF
state of charge (SOC) estimator built on a simple second-order RC equivalent circuit
model (2RC ECM) accurate enough to accomplish the main goal. An intelligent nonlinear
autoregressive with exogenous input (NARX) Shallow Neural Network (SSN) estimator
was developed to estimate the battery SOC, predict the terminal voltage, and map the
nonlinear open circuit voltage (OCV) battery characteristic curve as a function of SOC.
Focusing on nonlinear modeling and linearization techniques, such as partial state feed-
back linearization, for “proof concept” and simulations purposes in the case study, a third
order nonlinear model for a DCmotor (DCM) drive was selected. It is a valuable research
support suitable to analyze the performance of state feedback linearization, system sin-
gularities, internal and zero dynamics, and solving reference tracking problems.

Keywords: Li-ion battery, SOC, Simscape generic model, PID control, state feedback
linearization, NARX shallow neural network, NARMA-L2 neuro controller

1. Introduction

Clean and efficient transportation across the planet is only possible if governments
and scientists focus on stimulating and sustaining the automotive industry of electric
vehicles (EVs) by developing and deploying the most advanced battery technologies.
Nowadays, Li-ion battery technologies have made significant progress and have
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undoubtedly proven to have a promising future and great potential for development.
These are recommended for their excellent features, such as lightweight, high-energy
density, low memory effect and relatively low self-discharge, outperforming almost
all other competing batteries of different chemistries on the market [1, 2]. Thanks to
several improvements in Li-ion battery technologies recently, they have become safer,
eliminating explosion hazards as much as possible and their chemistry is less toxic,
both to nature and to humans. Battery state of charge (SOC) is an essential internal
parameter that plays a vital role in utilizing battery energy efficiency, operating safely
under various realistic conditions and environments, and extending battery life [3, 4].
The SOC is a piece of valuable information on the remaining capacity available during
the operation of EV car. As the central internal state of the battery, the SOC is
continuously supervised by a battery management system (BMS), which is integrated
into the EV energy storage system (ESS) structure to power the traction powertrain
[1–6]. The SOC can be calculated directly by a simple open-loop integration operation,
known as the coulomb counting method or the ampere method since it accumulates
the charge transferred between the battery and the environment over time. However,
this measurement method is prone to the initial value of SOC and accuracy of the
current profile data set measurement. The ampere method accumulates significant
errors caused by the integration operation that accumulates errors over time [7]. The
battery SOC estimation is one of the main tasks of a BMS. An extensive critical review
of Lithium-ion battery SOC, and a smarter BMS description for EV applications are
made in [8]. Being interpreted as a remaining capacity of the battery, the SOC is also
an important support for energy management (EM) and control strategies. An inter-
esting comprehensive review on Energy Management Strategies (EMS) for EVs taking
into consideration the realistic conditions of Li-ion battery degradation based on aging
models is found in HAL Open Science that includes the most representatives research
papers from 2021 IEEE Access, with a new release version in 2023 [9]. The accuracy of
Li-ion battery SOC estimation has a significant impact on the efficient operation and
EMS of the battery. Many of studies are dedicated to advancing the BMS functions,
such as intelligent cell balancing and charging control strategies for lithium-ion bat-
tery packs [10], SOC and state of health (SOH) monitoring [11–13], and thermal
battery control temperature [14].

Nowadays, an impressive amount of work has been done in the research field to
investigate and study large-scale new developments and implementations of SOC
estimation algorithms to be applied to an extensive range of applications in the EV
automotive industry. The main flaw of coulomb counting method is that it is not
suitable in real time online SOC estimation. Also, it is noteworthy to know that the
battery model accuracy significantly impacts SOC estimation. The well-known equiv-
alent circuit model (ECM) is suitable for online estimation due to its simplicity and
mastering well the relationship between parameters [1], [3–6]. The traditional
methods include the most popular Kalman filter (KF) algorithms, among them linear
KF and linearized extended KF (EKF) [5, 6, 15, 16], and nonlinear unscented KF
(UKF) [7], ensemble KF (EnKF) [17], particles filter (PF) [18], which are commonly
used as a nonlinear filter estimation methods. Only the linear KF is an optimal state
estimator compared to the EKF, a suboptimal estimation algorithm. Still, it is an
appropriate state estimator for complex working conditions with severe current fluc-
tuations [7]. Compared to EKF, the UKF method uses an unscented transform to
obtain the statistics of the process noise covariance and reaches a fast convergence
speed and high estimation accuracy [7]. Also, its robustness is better when estimating
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the SOC of different chemistry batteries. To achieve higher accuracy of state estima-
tion, various intelligent algorithms based on Machine Learning (ML) and Deep
Learning (DL) Artificial Intelligence (AI) models are applied to the SOC estimation
and terminal voltage prediction, as those developed in [7, 12, 13, 17, 19–38] easily to be
adapted to all types of batteries and chemistries. The neural networks (NNs) learning
techniques have a wide range of applications and are suitable for all types of batteries
chemistry. Well, these learning techniques such as machine learning (ML) and deep
learning (DL) models require large amounts of accurate training data [27–30]. The
estimation accuracy and the convergence speed of the Li-ion battery SOC depend on
the chosen training method, architecture structures, number of hidden layers and
hidden neurons, learning rate, gradient value and on number of samples and epochs
[29, 30]. The flow of this research paper is organized into four sections, as follows. For
“proof concept” and simulation purposes, in Section 2 a generic Simulink Simscape
model, simple and accurate is adopted to power a particular small EV car. The model
parameters are extracted from a Simulink Simscape battery block set up for a preset
model of the Li-ion battery. Additionally, the battery Simscape model is used for
performance comparison with the adopted second-order ECM battery model (2RC
ECM) used as support in Section 3 to build an accurate and robust EKF SOC estimator.
In Section 3 is developed and implemented a NARX SNN intelligent SOC estimator.
Section 4 is chosen as a case study of a DCM Drive nonlinear model of the high
complexity of applying the state feedback linearization as a powerful tool for
nonlinear control systems in a closed loop. Also, the model singularities, internal
and zero dynamics stabilizability and reference tracking problems to solve
represent some issues /challenges that merit being studied. Additionally, the tradi-
tional PID control strategy is a valuable tool used in this last section for performance
comparison. At the end of Section 4, a learning NARMA-L2 controller intelligent
strategy is applied to learn and linearize the DCM Drive nonlinear model. Therefore,
this research work opens other directions of research to explore the application of
clever neuro-control strategies on a large scale in future developments in the EV
automotive industry.

2. Li-ion battery: model selection, accuracy, robustness, SOC estimation
and terminal voltage prediction

In this research, we try to develop new approaches for identification, modeling,
state estimation, and linear and nonlinear speed control strategies for a typical choice
of DC or AC electric motor powered by a Li-ion battery and suitable for possible cars’
mid-size EVs applications. Nowadays, we have a great opportunity to take advantage
of the significant advances in modeling, identification and control systems inspired by
the latest achievements in artificial intelligence, statistics and machine learning, deep
learning, signal process analysis. Therefore, our research objectives are expanded with
new approaches.

2.1 Li-ion battery model selection

In the case study, for “proof-of-concept” and simulation reasons, our selection
strategy is to adopt a Li-ion battery model that meets the following requirements:

3

Investigations of Different Approaches for Controlling the Speed of an Electric Motor…
DOI: http://dx.doi.org/10.5772/intechopen.112383



simple, accurate, easy to implement and suitable for online real-time simulations for a
wide range of applications in the automotive industry of EVs.

The experience gained so far in process identification, modeling, design, and
implementation confirms the existence of such a Li-ion battery model; depending on
the complexity of the proposed research objectives, this could be an ECM, i.e., an
electrical circuit consisting of a Thevenin-type voltage source OCV connected to the
internal resistance Rint of the battery in series with one, two or three RC polarization
cells. The number of RC cells substantially increases the accuracy of the model, which
undoubtedly fulfills the above-mentioned characteristics, thus becoming valuable
support for achieving research goals [3]. In our research, a second order ECM Li-ion
battery model (abbreviated 2RC ECM) with a nominal voltage of 3.7 V and a rated
capacity of 7.5 Ah was adopted, and the model was validated for different operating
conditions in [3]. The electrical circuit diagram is shown in Figure 1, where the first
polarization cell R1C1 captures the fast dynamics of the battery. In contrast, the
second R2C2 polarization cell captures the slow dynamics of the Li-Ion battery. From
the systemic perspective, it is a single-input, single-output (SISO) system with the
input u = i indicating the charge (i < 0) or discharge (i > 0) current, and y = Vbat
denoting the voltage at the output terminal of the battery. The voltages across the bias
cells, Vc1 and Vc2, and the internal SOC state of the battery represent the internal
states of the system. In addition, the proposed Li-ion battery SOC estimator based on
the adopted model is expected to perform much better in terms of accuracy and
robustness of battery SOC estimates for different operating conditions [3, 5, 7].

The adopted Li-ion battery (LIB) ECM model plays an important role in our
research since it is valuable to support building a model-based EKF SOC and terminal
voltage estimator, whose accuracy and robustness depended on the accuracy and
robustness of the battery model. In addition, the ECM battery model is used for
training data set generation to develop a data-driven intelligent neural network learn-
ing technique for SOC estimation and terminal voltage prediction, as a viable alterna-
tive to the traditional EKF estimator. The new modeling and estimation approach has
proven its use for all battery types and different chemistries, outperforming tradi-
tional model-based state estimators. Their convergence does not depend on the com-
plexity of model nonlinearity, unmodelled parts or model uncertainties. Also,
intelligent learning techniques are much more suitable for real time online applica-
tions in the EVs industry. Model selection is also suggested due to its simplicity and
ability to accurately describe the static and dynamic behavior of Li-ion battery.

The new modeling approaches use a specialized Simulink Simscape battery block
to preset a specific Li-ion battery operating for different temperature ranges that

Figure 1.
2RC ECM wiring diagram.
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significantly affect battery internal resistance RÐ , SOC, and RC components of the

bias cells. Therefore, depending on user settings, Simscape multi-object models, built
by a kind of specific object-oriented programming language, become valuable tools
for generating different measurement input-output data sets for physical systems or
subsystems. Then, these data sets are trained to develop and implement in MATLAB
Simulink intelligent neural networks (NNs) learning techniques or to extract the
model parameter values of a particular Li-ion battery, as well as to adjust and obtain
the optimal values of them. For interested readers, such a Simscape block is shown in
Figure 2.

Figure 3a and b show the discharge characteristics curves of rated current at 0.9,
5.4, 10.8, and 27 A versus battery capacity (Ah) as in Figure 3a, and time (h) in
Figure 3b. The parameter values of a generic preset Li-ion battery model are also
disclosed.

2.2 Li-ion 2RC ECM analytical model state space representation and continuous
time domain

The analytical model of the Li-Ion battery is described in the continuous time
domain by three first-order linear differential state equations and a highly nonlinear
static output-state-input equation:

dx1
dt

¼ �η

Qnom
u tð Þ (1)

dx2
dt

¼ �1
R1C1

x2 þ 1
C1

¼ �1
T1

x2 þ 1
C1

,T1 ¼ R1C1 s½ � (2)

dx3
dt

¼ �1
R2C2

x3 þ 1
C2

¼ �1
T2

x3 þ 1
C2

,T2 ¼ R2C2 s½ � (3)

Figure 2.
Simulink Simscape block configured for Li-ion battery and NEDC driving cycle current profile test.
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y ¼ h x1ð Þ � x2 � x3 � Rð
u tð Þ

(4)

where,

h x1ð Þ ¼ OCV x1ð Þ ¼ k0 � k1
1
x1

� k2x1 þ k3 ln x1ð Þ þ k4 ln 1� x1ð Þ (5)

is a nonlinear static function that represents the dependence of OCV on SOC, that
is, OCV(SOC), and SOC = x1, the first component of the state vector x, given by

x ¼
x1
x2
x3

2
64

3
75
� �

(6)

Both, T1 and T2, denote the time constant of the first and second polarization cells,
respectively. Also, the constants η, and Qnom designate the coulombic efficiency (η)
for both, charging and discharging cycles, and the nominal capacity of the battery
(Qnom) respectively.

It is worth noting that, Eqs. (5) and (6) represent a combination of three separate
models, namely Shepherd, Unnewehr and Nernst, reported in [3, 5] to predict termi-
nal voltage based on SOC measurements. The combined model performs better than
using either model separately. The constants k0, k1, k2, k3,, k4 can be estimated using a
least square estimation (LSE) procedure provided in the MATLAB System Identifica-
tion Toolbox. To understand how LSE technique works, a simple offline (batch)
processing method that calculates all these unknown parameters is well described in
[3, 5]. For tuning these parameters and finding their optimal values, a Global Pattern
Search (GPS) genetic algorithm from MATLAB Optimization Toolbox is a valuable
tool to use [3].

Figure 3.
Li-ion battery-rated current discharge characteristics and battery terminal voltage curves: (a) battery voltage-
rated capacity curve (V-Ah); (b) battery voltage-time curve (V-h).
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2.3 Analytical model of Li-ion 2RC ECM in state space and discrete time domain
representation

The Li-ion battery model described in the continuous-time state space representa-
tion can be discretized using a Taylor series expansion and then keeping only the first
linear term, obtained by using the following approximation

dxi
dt

¼ xi (7)

where,
Ts is the sampling time, tk ¼ k� Ts, k ∈Zþ denotes the time instance, and k is a

sample index
A matrix representation describes a compact Li-ion battery model of the following

form:

x kþ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ, y kð Þ ¼ Cx kð Þ þDu kð Þ þ h1 x kð Þð Þ (8)

where

A ¼

1 0 0

0 1� Ts

T1
0

0 0 1� Ts

T2

2
66664

3
77775
,B ¼

�ηTs

Qnom

Ts

C1

Ts

C2

2
6666664

3
7777775
,C ¼ �k2 � 1 � 1½ �,D ¼ (9)

and,

h1 x kð Þð Þ ¼ k0 � k1
1
x1

þ k3 ln x1ð Þ þ k4 ln 1� x1ð Þ (10)

The MATLAB simulation results obtained by iteratively solving the discrete-time
Eqs. (8)–(10) describing the dynamics of the battery model over a finite time horizon
defined by the number of samples are shown in Figure 4a–c. Figure 4a shows the
SOC evolution of the battery over a full one-hour discharge cycle for a discharge
current of 1C (7.5A), decreasing from 100% (fully charged battery) to 0% (fully
discharged battery). Figure 4b reveals one of the main characteristics of the proposed
Li-ion battery, which can be found in any catalog specifications of battery manufac-
turers. This well-known non-linear OCV-SOC curve differs from battery to battery.
The time evolution of the battery terminal voltage and its OCV are illustrated in
Figure 4c (Vbat) and 4d (OCV), respectively. The development of OCV and the
terminal voltage of the Li-Ion battery is studied over the same full discharge cycle of
1h @7.5A (1C rate) discharge current.

3. SOC estimation and terminal voltage prediction of Li-ion battery

Section 1 details the vital role of the SOC battery in energy efficiency, safe opera-
tion and life extension. Also, information on the best-known state estimators and
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parameters reported in the literature is provided to interested readers and implemen-
ters. Among these estimators, the most popular is the Kalman filter estimator in
various versions, such as KF, EKF, UKF, and EnKF, as mentioned in the Introduction
section. This section briefly introduces the EKF state estimator, which is easily
adapted to estimate the SOC of the Li-ion battery proposed in the case study.

3.1 EKF state estimator design and MATLAB implementation

The Kalman Filter is reported in the literature field since 1960. It is “an optimal
recursive model-based data processing algorithm for linear filtering purposes” [3].

A new modified form of KF, abbreviated EKF, was adopted for nonlinear
process dynamics, a non-optimal filter estimator based on the linearization of
process dynamics. Only KF is the optimal filter that addresses Gaussian linear
processes whose measurement and process noises are zero-mean and uncorrelated
of covariance matrices, e.g., Q for process noise and R for measurement noise,
respectively. The state estimation of a process minimizes the minimum mean
squared error, abbreviated MMSE, between state estimate values and true state

Figure 4.
MATLAB simulation results @ constant current = 7.5 A: (a) discharged battery SOC during one-hour discharge
cycle; (b) OCV characteristics of the Li-ion battery; (c) Li-ion battery terminal voltage during one-hour discharge
cycle; (d) OCV battery during a one-hour discharge cycle.
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model values given the measured input data set and the observed output data
set [3, 5].

The EKF is a discrete-time recursive algorithm based on the LIB model whose
states need to be estimated. For simplicity, the steps of the general iterative KF
procedure when applied to linear systems are shown; it consists of the following two
update phases [3–6, 15, 16]:

1.Prediction (forecasting) phase (time update) steps

1.1 Predict the LIB state given in Eq. (8) one step ahead

x̂kþ1,k ¼ Ax̂k,k þ Bu kð Þ (11)

1.2 Predict one step ahead the error state covariance

P̂kþ1,k ¼ AP̂k,kAT þ Qk (12)

2.Correction phase (measurement update)

2.1 Kalman gain computation

Kkþ1 ¼ P̂kþ1,kCT CP̂kþ1,kCT þ Rkþ1
� ��1

(13)

2.2 Update the state estimate with a new available measurement

x̂kþ1,kþ1 ¼ x̂kþ1,k þ Kkþ1 ykþ1 � Cx̂kþ1,k
� �

(14)

2.3 Update error state covariance

P̂kþ1,kþ1 ¼ I � Kkþ1Cð ÞP̂kþ1,k (15)

Summarizing, in the prediction/forecast phase are predicted the LIB states x̂kþ1,k

and the covariance of the states P̂kþ1,k. The second is a correction phase that occurs
only if a new output measurement ykþ1 (terminal voltage) is available, as it must
calculate the Kalman gain Kkþ1 and, based on it, are updated the estimated state
x̂kþ1,kþ1 and its estimated covariance P̂kþ1,kþ1 [3, 5, 15, 16].

For general recursive EKF procedure, the matrices A,B,C∧D are obtained by
linearizing the following nonlinear functions around the last predicted estimate in
each iteration:

xkþ1 ¼ f xk, ukð Þ þ wk (16)

yk ¼ g xk, ukð Þ þ vk (17)

where
f , g are nonlinear time-varying functions, wk and are both zero-mean and

uncorrelated Gaussian process and measurement noises, respectively, with the
statistics represented by the covariance matrices Qk∧Rk given or calculated at itera-
tively at the time instance zero mean and uncorrelated, of covariance matrix The

9

Investigations of Different Approaches for Controlling the Speed of an Electric Motor…
DOI: http://dx.doi.org/10.5772/intechopen.112383



matrices represent the so-called Jacobian matrices required in the Eqs. (11)–(15),
defined as

Ak ¼ ∂f
∂x

� �
x̂k,k,Ck ¼ ∂f

∂x

� �
x̂k,k (18)

This is just the unique difference between KF and EKF steps; the latter requires the
calculation of the Jacobian matrices Ak,∧Ck first and then the steps remain the same.
It is worth noting that the matrices Ak∧Ck are time-varying, compared to matrices
A,Cð Þ which have constant elements.

For a rigorous SOC performance analysis of the EKF algorithm in terms of accu-
racy and robustness, some of the MATLAB simulation results for the adopted 2RC
ECM Li-Ion model, are shown below in Figures 5–7 some of the MATLAB
simulation results for the adopted 2RC ECM Li-Ion model. In Figure 5, the adopted Li-
Ion model is tested with a New European Driving Cycle (NEDC) input current profile
test, and the SOC of the battery is estimated following the steps of the EKF state
estimation algorithm. For more details on the EKF state estimator, the reader can refer
to [3–6, 29, 30]. Figure 5a shows the NEDC driving cycle current profile test, and
Figure 5b show the SOC values generated by the 2RC ECMmodel versus the SOC EKF
estimated values. Figure 5b reveals excellent SOC steady-state accuracy and robust-
ness to changes in SOC initial value from 80% (in the model) to 30% in the initial SOC
estimate value. Therefore, the EKF estimator performs very well with high SOC
accuracy and robustness.

Instead, in Figure 6a–d, the EKF SOC estimator starts from the same initial SOC
value that initializes the Li-Ion battery model; the MATLAB simulation results show
now the battery model SOC versus its predicted EKF value, such as in Figure 6a, the
model terminal voltage versus its predicted EKF value in Figure 6b, and, newly, both
SOC and terminal voltage error residuals in Figure 6c and d, which provide valuable
information on SOC accuracy and terminal voltage prediction. The lower values of
both residuals (close to zero) indicate an excellent performance of the EKF SOC
estimator and prove that the assumption regarding the accuracy of the proposed
Li-ion battery model is correct; thus there is an accuracy transfer from the model to
the EKF estimator.

Figure 5.
MATLAB simulation results: (a) NEDC driving cycle current profile test; (b) Li-ion battery SOC ECM model
versus EKF SOC estimator.
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Similarly, the MATLAB simulation results depicted in Figure 7a–e by
changing the driving style, switching from a European NEDC cycle drive current
profile test to an American Federative Transport Procedure FTP-75, shown in
Figure 7a, and the response of the EV car is reflected in the high accuracy of the
battery SOC shown in Figure 7b, an excellent prediction of the terminal voltage, as in
Figure 7c. Again, the driving style is changed by moving from the American FTP-
75 cycle drive current profile test to the latest European World Harmonized Light
Transport Procedure (WLTP) with a more aggressive behavior, very close to the
operating conditions of an environment realistic, shown in Figure 7d, and the
impact reflected in Figure 7e by high SOC accuracy and excellent terminal voltage
prediction is revealed in Figure 7e.

Summarizing this subsection, the EKF SOC estimator performs excellently in
high SOC accuracy and terminal voltage prediction and with excellent robustness
revealed by the MATLAB simulation results depicted in Figures 5–7. All these
results are obtained for different operating conditions, mainly some changes in the
initial battery SOC values and driving style by switching three driving cycles cur-
rent profile tests, NEDC, FTP-75, and WLTP. In any of these scenarios the EKF
SOC estimator performs excellently, with no significant impact from one driving
scenario to another.

Figure 6.
MATLAB Simulation results: (a) Battery SOC ECM model vs. EKF SOC estimate (same initial conditions); (b)
ECM terminal voltage vs. EKF predicted terminal voltage; (c) Battery SOC residual; (d) Battery terminal voltage
residual.
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3.2 Li-ion battery neural network learning techniques for nonlinear OCV
characteristic estimation, SOC and terminal voltage estimation

This subsection explores a new approach to designing and implementing data-
driven intelligent learning structures using neural networks (NNs). The intention is to

Figure 7.
MATLAB simulation results – Robustness of EKF estimator to change the driving style and initial SOC value from
80 to 30%. (a) FTP-75 driving cycle current profile test; (b) ECM SOC vs. ECM EKF SOC estimate for FTP-75;
(c) ECM terminal voltage vs. ECM EKF prediction terminal voltage; (d) WLTP driving cycle current profile test;
(e) ECM SOC vs. ECM EKF SOC estimate for WLTP; (f) ECM terminal voltage vs. ECM EKF prediction
terminal voltage.
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use these smart structures for possible applications as state estimators. All these
investigations aim to find a viable alternative to traditional model-based state
estimators, such as the EKF used in the case study. This is why it is necessary to
evaluate the capability and accuracy of their performance in a state estimation to
see if they are suitable for mapping the non-linear characteristic OCV = f(SOC)
characteristic of the battery and for estimating the battery SOC and terminal
voltage. Therefore, three intelligent structures of nonlinear autoregressive neural net-
works with external input (NARX) are investigated. They are easily accessible from
MATLAB Simulink Deep Learning Toolbox. Since they are data-driven structures,
performance accuracy does not depend on battery model accuracy, modeling uncer-
tainties, and the unmodeled part. In addition, they are suitable for real-time online
applications and can be easily updated for all types of batteries and chemistries. NARX
is a learning regression shallow neural network (SNN) estimator that consists of a
single hidden layer with a certain number of hidden neurons, having a significant
impact on the performance of neural structure. The input-output measurement data
set is collected under the signals from the battery sensors using appropriate instru-
ments provided by a specialized data acquisition (DAQ) system. Then the data set is
processed for denoising, outliers removal, and data sharpness that significantly affect
the performance accuracy. Essentially, these intelligent regressive neural network
structures solve nonlinear time series problems using dynamic neural networks,
including feedback networks [27–30]. They can be applied in open-loop, closed-loop,
and open/closed-loop multistep prediction [27, 28]. Dynamic feedback networks can
switch from open-loop to closed-loop to make multistep predictions, i.e. continue to
predict when external feedback is missing using internal feedback [27, 30].

The design and implementation in MATLAB Simulink follow the steps inspired by
[27–30] and are summarized in this subsection as follows:

1.Load the input (Predictors)-output (Target) data in the format required by
the algorithm (e.g., sequences of cells, row or column vectors, matrices,
tables, etc.)

2.Partition the data into training data XTrain and TTrain (in the case study the
format is a sequence of cells), and data for prediction XPredict

3.Create a NARX network. Define the input delays, feedback delays, and size of
the hidden layers, using the MATLAB

net ¼ narxnet 1 : 5, 1 : 5, 65ð Þ

i.e., 0.5 samples delay for input and output, and 65 hidden neurons.

Prepare the time series data using a MATLAB-specific function ‘preparets’
and the MATLAB code line (the interpretation of the arguments Xs, Xi, Ai is
given in step 6):

Xs, Xi, Ai, Ts½ � ¼ preparets net, XTrain, fg, TTrainð Þ

4.Train the NARX network, using the MATLAB-specific functions ‘net’ and
‘train’, writing the following code line (in open-loop)
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net ¼ train net, Xs, Ts, Xi, Aið Þ

5.Display the trained network diagram, using the MATLAB code line

view netð Þ

6.Calculate the network output Y, final input states Xf and final layer states Af of
the open-loop network from the network input Xs, initial input states Xi, and
initial layer states Ai.

Y, Xf, Af½ � ¼ net Xs, Xi, Aið Þ

7.Calculate the network performance using the specific MATLAB function
‘perform’ and the MATLAB code line:

perf ¼ perform net, Ts, Yð Þ

8.Setup the closed-loop form of the NN architecture using the following MATLAB
code line

netc, Xic, Aic½ � ¼ closeloop net, Xf, Afð Þ

Remark 1. The final input states Xf and layer states Af of the open-loop network
net become the initial information states Xic and layer states Aic of the closed-loop
network netc.

9.Display the closed-loop network diagram, using following MATLAB
code line

netc, Xic, Aic½ � ¼ closeloop net, Xf, Afð Þ

10.Run the prediction for Ts-time steps ahead desired in closed-loop mode, using
MATLAB code line

Yc ¼ netc XPredict, Xic, Aicð Þ

Ycmatrix ¼ cell2mat Ycð Þ

11.Plot Yc to visualize the simulation results

Following these steps, the MATLAB simulation results are presented below,
followed by a performance analysis for all three NARX Shallow NN learning estimators.

3.2.1 The innovative NARX shallow neural network learning SOC estimator

The input-output data set is given by following sequence of cells, converted from a
row vector format to a sequence of cells using the MATLAB line of code:
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X = num2cell (u), u is the battery input sequence of current profile as Predictor.
T = num2cell (y), y is the battery terminal voltage output sequence as target.
XP = num2cell ([(u*]), u* is the Predicted input sequence proposed for test.

The MATLAB simulation results are depicted in Figure 8a–d with following inter-
pretations:

a. Training phase progress;

b. NARX NN structure;

c. Battery SOC estimate versus the SOC ECM 2RC model (Target);

d. The best performance validation reached at epoch 242;

Performance analysis: The NN structure consists of a hidden layer with 60 hidden
neurons and a ‘sigmoid’ activation function, an input layer with two input sequences,
an output layer with one output sequence, and a linear ‘pureline’ activation function.
The best validation performance is obtained at epoch 242. The learning rate is
lr = 0.01, and a mean square error (MSE) accuracy performance of
2:79� 10�11isrevealed in the Figure 8a,c and d.

In conclusion, with an MSE accuracy performance of 2:79� 10�11 the NARX SOC
estimator undoubtedly outperforms the EKF SOC estimator.

3.2.2 The innovative NARX shallow neural network learning OCV = f(SOC) estimation

X = num2cell (SOC), u is the input battery SOC as Predictor
T = num2cell (OCV), OCV is the battery OCV as Target
XP = num2cell ([(SOC*]), SOC* is the SOC Predicted input sequence for test
purpose

The MATLAB simulation results are shown in Figure 9a–c, with the following
interpretation for each subfigure

a. Li-Ion battery OCV estimate versus the OCV ECM 2RC model;

b. The best validation performance reached at epoch 45;

c. Training phase progress;

Performance analysis: The structure of the NN is identical to the first NN NARX.
The best validation performance is achieved much faster than the first NARX estima-
tor, i.e., at epoch 45. The learning rate is lr = 0.01, and a better mean square error
(MSE) accuracy performance than the first NARX SOC estimator of 1:14� 10�11

revealed in the Figure 9a–c.
In conclusion, with an MSE accuracy performance of 1:14� 10�12, the NARX OCV

estimator also outperforms the EKF OCV estimator.
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Figure 8.
NN NARX SOC estimator of Li-ion battery: (a) training phase progress; (b) NARX NN structure; (c)
battery SOC estimate versus ECM 2RC SOC model (Target); (d) best performance validation achieved in
epoch 242.
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3.2.3 NN NARX Li-ion battery terminal voltage predictor

The input-output data set is given by following sequence of cells, converted from a
row vector format to a sequence of cells using the MATLAB line of code:

Figure 9.
NN NARX estimator of Li-ion battery OCV as a function of SOC: (a) Li-ion battery OCV estimate versus the
ECM 2RC OCV model; (b) best validation performance achieved in epoch 45; (c) training phase progress.
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X = num2cell ([SOC; u]), u denotes the input current profile and SOC the input
battery (Predictors)

T = num2cell (y), y signifies the output terminal voltage (Target)
XP = num2cell ([SOC*; u]), is the Predicted input sequence proposed for the test

The MATLAB simulation results are revealed in Figure 10a–d, each capture of the
figure with following interpretations:

a. Li-Ion battery terminal voltage predicted versus ECM 2RC terminal voltage
model;

Figure 10.
NNNARX terminal voltage predictor: (a) Li-ion battery terminal voltage predicted versus ECM 2RC terminal voltage
model; (b) training phase progress; (d) histogram error; (c) best validation performance achieved after 19 epochs.
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b. Training phase progress;

c. The best validation performance reached at 19 epochs;

d. Histogram error;

Performance analysis: The NN structure consists of one hidden layer with 60 hidden
neurons and a ‘sigmoid’ activation function, an input layer with two input sequences, an
output layer with one output sequence, and a ‘pureline’ linear activation function. The
best validation performance is achieved at epoch 19. The learning rate is lr = 0.01, and a
mean square error (MSE) accuracy performance of 1:03� 4 shown in Figure 8a–c.

In conclusion, for an MSE accuracy performance of 1:03� 10�4, it can say that the
NARX SOC estimator outperforms the EKF SOC estimator.

Summarizing all the investigations made in subsection 3.2, the valuable information
provided by MATLAB simulation results depicted in Figures 8–10 demonstrate that all
three NN NARX estimators perform better than the traditional model-based EKF, and
are indeed a viable alternative to conventional estimators using an EKF algorithm.

4. Electrical drives: nonlinear DC model with singularities, feedback
linearization and closed-loop speed control strategies

Electric propulsion is a central system integrated into the architectural structure of
an EV. It consists of three main subsystems: an AC or DC electric motor, power
converters, and electronic controllers. A Li-ion battery powers the electric motor,
like the one proposed in the case study. It converts the electric energy received from
the battery into mechanical energy to propel the vehicle or to generate electricity
during regenerative braking periods for recharging the same battery [33].

The power converter is controlled by an electronic controller to supply a
regulated voltage and current to the electric motor. The main task of the controller is to
generate a suitable control law (PID, fuzzy, neuro, sliding mode, state feedback linear-
ization, etc.) such that the electric motor can produce the appropriate torque and speed
converted by sensors (transducers) into electric signals through an interface circuitry
[33]. These signals are then conditioned to the appropriate level and fed to be processed
by a processor. For a good insight into the electric propulsion system the reader can find
details in [33]. Choosing an electric drive system for a particular EV depends on the
driver’s expectations, the vehicle’s constraints, and the power source. About driver’s
expectations (driving style) were mentioned in the previous section, three driving
cycles, FTP-75, NEDC andWLTP, for analyzing robustness performance analysis of the
EKF SOC estimator. Vehicle constraints, including “volume and weight, depend on
vehicle type, weight, and payload” [33]. In the case study, the power source refers to the
selection of a Li-ion battery such that its terminal voltage, rated capacity, and rated
power are adapted to the electric motor of certain EVs. A traditional DC motor drive
typically needs a commutator and brushes to “feed current into the armature, making it
less reliable and unsuitable for maintenance-free operation and high speed” [33]. Also,
the “wound-excited DC motors have a low specific power density”; however, “because
of their mature technology and simple control, DC motor drives have been prominent
in electric propulsion systems” [33]. Five constructive configurations of DC motors are
manufactured: series excited, shunt excited, and compound excited, separately excited
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and permanent magnet (PM) excited motors, as mentioned in [33]. For “proof of
concept” and simulation purposes, this section is limited to a specific nonlinear DC
motor drive model, focusing on the main aspects, such as nonlinearities, feedback
linearization, challenges/issues when faced with the presence of singularities, the design
and implementation in MATLAB Simulink of suitable nonlinear control strategies to be
applied in realistic environments for a large range of EVs. If the results obtained will
satisfy the expectations, an extension of them to AC motor drives will be a big chal-
lenge. A nonlinear third-order separately excited DC motor drive model (i.e., three
internal states: armature current, field current and rotor speed) is adopted for the case
study.

4.1 Field controlled DC motor drive-nonlinear model

4.1.1 DC motor drive – physical model

Applying Kirchhoff’s voltage law (KVL) for both armature circuit and the field
circuit, the DC motor drive model is described in continuous time by the following
equations [35]:

For the field circuit: if is the field current, vf is the field voltage:

Lf
dif
dt

¼ vf � Rf if (19)

For the armature circuit: ia is the armature current, va means the armature voltage,
and ef ¼ c1ωif represents the back electromotive force (emf) induced in the armature
circuit:

La
dia
dt

¼ va � Raia � c1ωif (20)

For shaft motion: T ¼ c2iaif is the torque due to the interaction of armature current
with the field circuit flux:

J
dω
dt

¼ c2iaif (21)

State-output equation:

y ¼ ω (22)

4.1.2 DC motor drive: State space representation

After some mathematical manipulations the DC motor drive is described in a
simple form of state space representation [32, 33]:

dx1
dt

¼ �ax1 þ u (23)

dx2
dt

¼ �bx2 � cx1x3 þ q (24)
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dx3
dt

¼ θx1x2, (25)

y ¼ x3 (26)

where

x1 ¼ if , x2 ¼ ia, x3 ¼ ω (27)

and, the numerical values are set to the same values as in [35]:

a ¼ Rf

Lf
¼ 103:995, b ¼ Ra

La
¼ 35:4034, c ¼ c1

La
¼ 1:45, q ¼ va

La
¼ 52:7588 (28)

θ ¼ c2
J
¼ 230:769,ω0 ¼ 10

rad
s

� �
(29)

The DC motor drive model given by Eqs. (23)–(26) is nonlinear since the
product x1x3 appears in the second equation, and the product x1x2 appears in the third
equation.

4.1.3 DC motor drive: State feedback linearization

The DC motor drive model can be writing in a general vectorial field form:

dx
dt

¼ f xð Þ þ g xð Þu (30)

y ¼ h xð Þ (31)

where the field vectors f(x), g(x) and h(x) have the vectorial form:

f xð Þ ¼
f 1 xð Þ
f 2 xð Þ
f 3 xð Þ

2
64

3
75 ¼

�ax1
�bx2 � cx1x3 þ q

θx1x2

2
64

3
75, g xð Þ ¼

1

0

0

2
64

3
75, h xð Þ ¼ 0 0 1½ � (32)

Preliminaries: Feedback Linearization, Lie derivative definition, Diffeomorphism –

Definitions.
Definition 1. A nonlinear system described in a state space representation (30)

and (31), where the nonlinear functions f: D0↦Rn, g : D0↦Rn are sufficiently smooth
on a domain D0 ⊂Rn is said to be feedback linearizable (or input-state linearizable) if
there exists a diffeomorphism, T : D0↦Rn such that Dz ¼ T D0ð Þ contains the origine
and the change of variable z ¼ T xð Þ transforms the system given by Eqs. (30) and (31)
into a linear system of the form

dz
dt

¼ Azþ Bγ xð Þ u� α xð Þ½ � (33)

that has the pair of the matrices (A, B) controllable and γ xð Þ inversible (or
nonsingular) for all x∈D0,as is also mentioned in [34].
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Remark 2. If linearizing the state equation does mean that at a same time is also
linearized the output equation [34].

Remark 3. The state feedback control or partially feedback linearizable systems is
an excellent control tool that can solve both system stabilization and reference track-
ing control [34].

Definition 2. If the DC motor drive described by Eqs. (30) and (31) can be put in
the form given by Eq. (33) then it can be linearized via the state feedback, choosing
for the input u the following control law [34]

u ¼ α xð Þ þ β xð Þv (34)

and

β xð Þ ¼ γ xð Þ�1 (35)

To stabilize the DC motor drive model, the new control law v introduced in
Eq. (34) is designed as

v ¼ �Kx (36)

such that the matrix (A – BK) is Hurwitz, equivalent to say that the pair (A, B) is
controllable (stabilizable).

The original nonlinear stabilizing state feedback control in closed-loop is given by

u ¼ α xð Þ � β xð ÞKx (37)

Remark 4. The DC motor drive state feedback linearized (FL) model is not unique
and depends on the choice of the state variables.

Definition 3. (Lie derivative operator). Assuming that the vector field functions
f(x), g(x) and h(x) are sufficiently smooth in a domain D0 ⊂Rn, then the mapping
functions f and g on D0 ⊂Rn and the first derivative of the output variable dy

dt can be
put in the following form [34–36]

dy
dt

¼ dy
dx

dx
dt

¼ ∂h
∂x

f xð Þ þ g xð Þu½ �≜Lf h xð Þ þ Lgh xð Þu (38)

were the Lie derivative operators Lf h and Lgh defined as

Lf h xð Þ ¼ ∂h
∂x

f xð Þ,Lgh xð Þ ¼ ∂h
∂x

g xð Þ (39)

are called the Lie derivatives of h to respect to f (or equivalent, along f), and of h to
respect to g (along g), respectively.

In fact, the notation Lf h xð Þ ¼ ∂h
∂x f xð Þ is an adapted concept of the derivative of h

along the trajectories of the system dx
dt ¼ f xð Þ. It is an appropriate formal procedure for

repeating the calculation of the derivative with respect to the same vector field or a
new one [34], such as

LgLf h xð Þ ¼ ∂ Lf h
� �

∂x
g xð Þ,L0

f h xð Þ ¼ h xð Þ,L2
f h xð Þ ¼ LfLf h xð Þ (40)

Or, in a general repetitive form given by
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Lk
f h xð Þ ¼ LfLk�1

f h xð Þ ¼
∂ Lk�1

f h
� �

∂x
f xð Þ (41)

Remark 5. The repetitive notation (41) applied on DC motor drive output y, leads
to the following main result of using the full state feedback linearization (FSFL):

If Lgh xð Þ ¼ 0, it means that

dy
dt

¼ Lf h xð Þ, (42)

and can be interpreted as independence of function dy
dt with respect to the input u.

If LgLf h xð Þ=0, then

y 2ð Þ ¼ d
dt

dy
dt

� �
¼ d

dt
Lf h xð Þ� � ¼ ∂ Lf h

� �

∂x
dx
dx

¼ ∂
Ljjfhð Þ
∂x

f xð Þ þ g xð Þu½ � (43)

Then, the final result is

y 2ð Þ ¼ L2
f h xð Þ þ LgLf h xð Þu ¼ L2

f h xð Þ (44)

and it means that the second derivative of the outputy 2ð Þ, is also independent of
input u.

Iteratively, by repeating the procedure, and
If LgLk�1

f h xð Þ= 0, for k ¼ �1, ρ� 1, and LgL
ρ�1
f h xð Þ 6¼ 0, therefore in the first ρ� 1ð Þ

derivatives of the output y the input u does not appear, it only occurs in the last
derivative y ρð Þ [34]

y ρð Þ ¼ Lρ
f h xð Þ þ LgL

ρ�1
f h xð Þu (45)

The last equation (45) is showing without doubt that the model is input-output
linearizable, of ρ the relative degree, and is in the required form given in Eqs. (30) and
(31). The control law u, can be written in the following form

u ¼
Lρ
f h xð Þ

LgL
ρ�1
f h xð Þ �Lρ

f h xð Þ þ v
h i

(46)

that leads to a following form for the input-output map [34]

y ρð Þ ¼ v (47)

as the result of a chain of ρ integrators applied to the output y.
For the normal canonical form, the new control law v from Eq. (46) is chosen as

v ¼ �Kx (48)

where, the feedback gain K is calculated using a pole placement procedure, using
the following MATLAB code line:

K ¼ place A,B, p1, p2, … , pρ
h i� �

(49)
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where p1, p2, … , pρ represent the poles’ locations in the left-half plane of the
complex domain, such as the matrix A� BKð Þ is Hurwitz (the system in closed-loop
and canonical form is stable).

If the relative degree ρ ¼ n ¼ dim x∈Rxð Þ, the state-space dimension, then the sys-
tem is full-state linearizable (FSL) and stabilizable. Also, the transformation T : D0↦Rn

with z ¼ T xð Þ that convert the system given by Eqs. (30)–(31) into the form defined in
Eq. (33) is a diffeomorphism. The new variables z are defined as follows [34]:

z ¼ T xð Þ ¼

h xð Þ
Lf h xð Þ

:
:

Ln�1
f h xð Þ

2
6666664

3
7777775

(50)

that converts the system into normal minimal form defined by [34]

dz
dt

¼ Aczþ Bcγ xð Þ u� α xð Þ½ � (51)

y ¼ Ccz (52)

The following choice of the input u [21, 22]

u ¼ α xð Þ þ γ xð Þ�1v (53)

brings the system in a canonical form [34–36]

dz
dt

¼ Aczþ Bcv, y ¼ Ccz (54)

Therefore, the state transformation defined in Eq. (50) is a full-state linearization,
and in the same time also, is an input-output linearization [34].

In the case when the relative degree ρ< n then the state feedback linearization
problem is brining some complications (issues) such singularities and instability. In this
case the transformation z ¼ T xð Þ converts the original system into following form [34]

z ¼ T xð Þ ¼
η

… ::

ξ

2
64

3
75 ¼

ϕ1 xð Þ
:

:

ϕn�ρ xð Þ
… … … ::

h xð Þ
Lf h xð Þ

:

:

Lρ�1
f h xð Þ

2
666666666666666666664

3
777777777777777777775

¼
Φ xð Þ
… … …

Ψ xð Þ

2
64

3
75 (55)

where the functions ϕ1 xð Þ, ϕ2 xð Þ, … … ,ϕn�ρ xð Þ are selected such that the trans-
formation T xð Þ still to remains a diffeomorphism. Additionally, in [34] is stated that
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such of functions ϕi xð Þ, i ¼ �1, n� ρ, do exist at least locally, satisfying the following
conditions:

∂ϕi xð Þ
∂x

g xð Þ ¼ 0, ∀i ¼ �1, n� ρ (56)

The transformation given by Eq. (55) converts the system into the following
canonical form

dη
dt

¼ f 0 η, ξð Þ (57)

dξ
dt

¼ Acξþ Bcγ xð Þ u� α xð Þ½ � (58)

y ¼ Ccξ (59)

u ¼ α xð Þ þ γ xð Þ�1v (60)

and,

f 0 η, ξð Þ ¼ dΦ xð Þ
dx

¼ ∂Φ xð Þ
∂x

f xð Þx¼T xð Þ�1 , γ xð Þ ¼ LgLf h xð Þ, α xð Þ ¼
�Lρ

f h xð Þ
LgL

ρ�1
f h xð Þ (61)

The following main valuable results can be extracted from this general modeling
approach:

1.Internal dynamics of the system, described by the Eq. (57)

dη
dt

¼ f 0 η, ξð Þ

It is noticeable that this dynamic is unobservable for the system output y,
therefore it does not directly affect the other states ξ or the system output y since it
does not appear in Eq. (58) or Eq. (59).

For the internal dynamics of the system is required to solve the stabilization
problem around the origin of its zero dynamics

2.Zero dynamics of the internal dynamics of the system

It is obtained for ξ ¼ 0, and first equation of the system dynamics in normal form
becomes

f 0 η, 0ð Þ ¼ 0

3.Input-output linearization of the system

The system defined by Eqs. (58) and (59) is a linear system for which two critical
closed-loop problems can be solved:

a. Stabilization problem
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b. Tracking problem to an input reference, constant or time varying, with
zero steady-state error.

Interestingly, by solving the tracking problem for the linear part of the system
dynamics described by Eqs. (58) and (59), the general tracking problem for the nonlinear
system is also solved, but only if the internal dynamics of the same system is stable at the
origin of zero dynamics of the internal dynamics of the system given by f 0 η, 0ð Þ ¼ 0:

Repeating the Lie derivative operator in the Eq. (45) three times on DC motor
drive output y, the following results are obtained

dy
dt

¼ dx3
dt

¼ θx1x2,
d2y
dt2

¼ θ
dx1
dt

x2 þ θx1
dx2
dt

¼ M x1, x2, uð Þ þN x1, x2, x3ð Þ (62)

where
M x1, uð Þ ¼ θ �ax1 þ uð Þx2, depends on u, instead.
N x1, x2, x3ð Þ ¼ θx1 �bx2 þ q� cx1x3ð Þ it is not dependent on u.
therefore,

if x2 6¼ 0, then d2y
dt2 6¼ 0, and since u appears in the second derivative the relative

degree of the DCmotor drive model is ρ ¼ 2. In conclusion, the DC motor drive model
has ρ ¼ 2 on the set D ¼ x∈R3jx2 6¼ 0

� �
, so it is worth to notice a singularity of the

DC motor drive model when the state x2 ¼ 0.
A transformation of state variables z ¼ T xð Þ such is defined in Eq. (55) has the form

z ¼ T xð Þ ¼
ϕ1 xð Þ
h xð Þ
Lf h xð Þ

2
64

3
75 (63)

By calculation,

Lf h xð Þ ¼ ∂h
∂x

f xð Þ ¼ 001½ �
�ax1

�bx2 � cx1x3 þ q
θx1x2

2
64

3
75 ¼ θx1x2

∂ϕ1
∂x g xð Þ ¼ ∂ϕ1

∂x1
∂ϕ1
∂x2

∂ϕ1
∂x3

h i 1

0

0

2
64

3
75 ¼ ∂ϕ1

∂x1
¼ 0, according to the constraint given in Eq. (56)

to exist the function ϕ1 xð Þ and the transformation z ¼ T xð Þ to be diffeomorphism on
the set D ¼ x∈R3jx2 6¼ 0

� �
.

The equation ∂ϕ1
∂x1

¼ 0 shows an independence of function ϕ1 xð Þ on x1: A simpler
solution for this equation is only ϕ1 xð Þ ¼ x2,∨ϕ1 xð Þ ¼ x3, but the second solution is
not good since the transformation z ¼ T xð Þ is not more a diffeomorphism.

One of the possible solutions can be chosen ϕ1 xð Þ ¼ x2, even if exist other choices,
but not simple than this last selection [34].

So, we can write that z ¼ T xð Þ ¼
x2
x3

θx1x2

2
64

3
75 ¼

η

ξ1
ξ2

2
64

3
75 and after some math manipu-

lations the dynamics in the new variables can be written as
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a. The internal dynamics is given by:

dη
dt

¼ �bηþ q� c
ξ1ξ2
θη

¼ f 0 η, ξð Þ, ξ ¼ ξ1, ξ2ð Þ (64)

b. The normal form of the DC motor drive dynamics is given by:

dξ1
dt

¼ ξ2 (65)

dξ2
dt

¼ θx2 u� aþ bð Þx1 þ q
x1
x2

� c
x21x3
x2

� �
(66)

y ¼ ξ1 (67)

For a simple choice of the input u to cancel all the nonlinearities in Eq. (66) such as

u ¼ aþ bð Þx1 � q
x1
x2

þ c
x21x3
x2

þ 1
θx2

v (68)

For this selection of the input u, the normal form of the DC motor drive dynamics
is linear and described by two linear first order differential equations and a linear state
output equation

dξ1
dt

¼ ξ2,
dξ2
dt

¼ v, y ¼ ξ1 (69)

Since the DC motor drive model is linearized, both stabilization and
tracking problems will be easily solved, but only if the stability of internal dynamics
must be ensured, required to ensure the existence of the function ϕ1 xð Þ ¼ x2, and the
transformation z ¼ T xð Þ to be diffeomorphism [34]. The analysis of the internal
stabilization of the DC motor drive model dynamics is performed by checking if the
equation

dη
dt

¼ �bηþ q� c
ξ1ξ2
θη

¼ f 0 η, ξð Þ (70)

is asymptotic stable around the origin ξ ¼ ξ1, ξ2ð Þ ¼ 0, 0ð Þ, known also as zero
dynamics, given by the following equation.

f 0 η, 0ð Þ ¼ 0, so equivalent for asking that the equation given below is stable
around an equilibrium point η, ξð Þ ¼ ηss ¼ q

b , ξ ¼ 0
� �

.

dη
dt

¼ �bηþ q (71)

Lemma 1. “The origin of the closed loop system is asymptotic stable if the origin of
zero dynamics is asymptotic stable”, as is stated in [34].

According to this Lemma, the DC motor drive connected in closed-loop is asymp-
totic stable only if the origin of its zero dynamics model is asymptotic stable. In other
words, the asymptotic stability of zero dynamics guarantees the asymptotic stability
of closed loop linearized system.
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4.2 Zero dynamics interpretation

As long as b>0, the origin of zero dynamics (71) of the DC motor drive model is
exponentially asymptotic stable since the solution of the homogeneous equation (71)
is given by:

η0 tð Þ ¼ e�btη 0ð Þ (72)

since η0 tð Þ ! 0,whent ! ∞, then the origin of zero dynamics is exponentially
asymptotic stable, and according to Lemma 1, the origin of the closed-loop system is
also asymptotic stable.

Conclusion: If zero dynamics of the system is not asymptotically stable then the
linearization of the nonlinear system is not possible to be realized.

In closed loop, the input u (DC motor armature voltage) is defined in the original
state variables x1, x2, x3 as

u ¼ aþ bð Þx1 � q
x1
x2

þ c
x21x3
x2

� 1
θx2

v,∧v ¼ � k1ξ1 þ k2ξ2ð Þ (73)

and replacing ξ1, ξ2 by ξ1 ¼ x3, ξ2 ¼ θx1x2, u becomes:

u ¼ aþ bð Þx1 � q
x1
x2

þ c
x21x3
x2

� 1
θx2

k1x3 þ k2θx1x2ð Þ (74)

The Simulink model of the open loop and closed loop of the DC motor drive is
shown in Figure 11.

The MATLAB Simulink simulations results for the nonlinear DC motor drive
(DCMD) connected in open loop are shown in Figure 12a and b for field current
if ¼ x1, armature current ia ¼ x2, and DCMD speed ω=x3 [rad/s] for a step input
voltage test, u = 12 [V].

Figure 11.
DCM drive – Simulink nonlinear model, closed-loop control loop and PID control law for reference tracking.
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In Figure 12a are presented the DCMD field and armature currents and in
Figure 12b is depictured the DCM speed in rad/s. It is noticeable that the current field
remains constant when the DCMD is running and the armature current increases from
initial condition value at approximative 1.5 A and then during the steady-state
decreases to zero when RPM speed of DCMD is stabilized in steady state to approxi-
mate 314 rad/s.

In closed loop for DCMD state feedback linearized whose dynamics is described in
Eq. (69) and the new input v is given by

v ¼ �Kξ ¼ �k1ξ1 � k2ξ2 (75)

and the values of the coefficients k1, k2are obtained through a pole placement
technique that stabilizes the linearized system (69)

k1
k2

� �
¼ place Ac,Bc, �2;�5½ �ð Þ,Ac ¼

0 1

0 0

� �
,Bc ¼

0

1

� �
, k1 ¼ 10, k2 ¼ 7 (76)

The MATLAB simulation results of the DCMD in closed loop canonical form (69)
in the new state variables η, ξ1, ξ2ð Þ are shown for the evolution of each variable
and for actuator effort (v to stabilize these state variables are shown in the
Figure 13a and b.

Figure 13a reveals the evolution of the states during the transient and in steady
state, where zeta1 and zeta2 are stabilized to zero, and eta is stabilized to the equilib-
rium point (close to 1.49, that is ηss ¼ q

b, thus it validates the zero dynamics result). In
Figure 13b is presented the actuator effort to stabilize all three variables around the
equilibrium point of zero dynamics (ηss ¼ q

b ¼ 1:49, ξ1 ¼ 0, ξ2 ¼ 0Þ:
The MATLAB simulation results for closed loop partial state feedback linearization

and state feedback input u given by Eq. (74) are shown in Figure 14a–c.
In Figure 14a is depicted the DCMD speed stabilized in steady state at equilibrium

point of the closed system, similar as for zero dynamics. Figure 14b reveals the field
and armature currents stabilized at same equilibrium point as for zero dynamics. In
Figure 14c is visualized the effort of the actuator to keep stabilized the nonlinear

Figure 12.
MATLAB Simulink simulations results: (a) field and armature currents; (b) DCMD speed [rad/s].
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Figure 13.
MATLAB closed-loop simulations for DCMD model in canonical form: (a) the evolution of the new states (eta,
zeta1, zeta2); (b) the actuator effort for stabilization.

Figure 14.
MATLAB simulation results in closed-loop by feedback linearization; (a) the DCMD speed stabilization; (b) field
and armature currents stabilization at equilibrium point; (c) the actuator effort to stabilize the DCMD in steady-
state at equilibrium point.
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system at an equilibrium point, same as for zero dynamics, therefore the result of
Lemma 1 is now validated.

Tracking problem can be solved similar as stabilization but we need to substract
from the output the reference input r, such that the error:

e tð Þ ¼ y tð Þ � r tð Þ ! 0, when t ! ∞ (77)

In Figure 11 it can be seen both options for reference tracking of the DCM drive
speed r = 100 rad/s. First option is an integration of the DCM nonlinear model in a
unit output feedback closed loop that compares the output measured value to the
desired track reference value r = 100 rad/s. The MATLAB Simulink simulations results
are depictured in Figure 15a and c, as follows, field and armature currents in
Figure 15a, the DCM Driver speed in rad/s revealed in Figure 15b, and the actuator
effort is visualized in Figure 15c.

The second control law is a PID traditional law for which the MATLAB Simulink
simulation results are presented in Figure 16a and d, with same significance as in

Figure 15.
DCM driver closed-loop control speed – MATLAB Simulink simulation results: (a) field and armature currents;
(b) DCM driver tracking speed in rad/s; (c) actuator control effort.
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Figures 15a and c, and the tuning settings values of PID controller parameters KP, KI

and KD are shown in Figure 16d. Comparing the results obtained by using both
closed-loop controls it is worth to notice that for first option the DCM speed is an
aperiodic fast response (sharply) but with a big actuator effort, instead the PID
controller response is slightly slower and smooth with a smaller actuator effort.

The feedback linearization can be performed also by taking advantage of deep
training learning techniques to build intelligent neuro controllers. In MATLAB
Simulink the Deep Learning Toolbox includes three interesting block sets to develop
intelligent neuro controllers, namely NARMA-L2, Model Predictive and Reference
Model. The end of this section is an introduction to nonlinear autoregressive moving
average (ARMA), similar to SOC and battery terminal voltage, for which an intelli-
gent NARX neural network estimator was developed in the Section 3. The NARMA-L2
smart controller is a brilliant tool for feedback linearization of nonlinear systems, such
as the DCM drive described in this section, designed for use in possible EV applica-
tions. This intelligent neuro controller is data-driven, so does not require an accurate

Figure 16.
MATLAB Simulink simulation results for DCM driver tracking problem using a PID control law: (a) field and
armature currents; (b) DCM driver speed (rad/s); (c) PID actuator control law effort; (d) PID parameters
tuning values settings.
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Figure 17.
MATLAB Simulink simulation results during learning step of DCM drive nonlinear model (feedback
linearization): (a) process training results; (b) the best validation performance reached at epoch 5; (c) training
phase process; (d) regression performance; (e) validation phase process; (f) testing phase process.
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model to perform well, and therefore the impact of some modeling imperfections
will be significantly attenuated. To design such a controller, two steps must be
followed. In the first step, the Deep learning Simulink block is trained separately to
learn the nonlinear model, which is to be feedback linearized. In the second step, the
trained neural network will be connected to the NARMA-L2 neuro controller to
perform a reference tracking problem, similar to nonlinear feedback linearization.
So, all the nonlinearities will be canceled in the first step, and in the second step, the
controller solve a reference tracking problem. The main reason for finishing this
research is to open some exciting research directions in developing intelligent neuro
controllers that deal with all types of nonlinearities. Only the first step is solved in
this research, i.e., the Simulink neuro controller block learns the nonlinear model of
the DCM drive to be connected to the neuro controller for performing the reference
tracking problem. The MATLAB Simulink simulation results are presented in
Figure 17a–f, with the following meaning, training process results in Figure 17a, the
best validation performance during the training process in Figure 17b, training data
phase in Figure 17c, regression performance in all the stages (training, validation and
test), is shown the in Figure 17d, validation data phase in Figure 17e, and test data
phase in Figure 17f.

The Simulink model block of NARMA-L2 controller is illustrated in Figure 18.

5. Conclusion

The following results are worth highlighting among the authors’ main contribu-
tions to this book chapter.

• 2RC ECM Li-ion battery model selection, design and implementation, a rigorous
performance analysis.

Figure 18.
MATLAB Simulink model of the DCM drive speed control in closed-loop using a NARMA-L2 controller.
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• EKF SOC estimation and terminal voltage prediction design, implementation,
and performance analysis in terms of SOC accuracy and robustness.

• An intelligent advanced NARX neural network deep learning SOC estimator,
terminal voltage predictor, and curve fitting of nonlinear Li-ion battery
characteristics OCV = f(SOC).

• A DCM drive nonlinear model selection with a detailed description of nonlinear
linearization techniques such as full and partial state feedback, input-output
linearization and advanced intelligent NARMA-L2 neuro-controller. The main
issues/challenges problems were revealed, focussing on possible singularities,
internal dynamics, zero dynamics, closed loop stabilization and reference
tracking problems to be solved.

• Closed-loop DCM drive speed control techniques, such as full state feedback
linearization, the closed-loop output unit negative feedback, PID controller, and
performance comparison.

All the algorithms’ implementation and extensive simulations were conducted on
MATLAB Simulink R2023b software platform, a valuable and the strongest imple-
mentation tool from the software engineering market, in a beautiful and user-friendly
environment. The MATLAB Simulink simulation results proved that the advanced
intelligent estimators outperform the traditional ones. For future work, the research
continues in the direction of design and implementation of new advanced intelligent
learning techniques and neuro controllers such as NARMA-L2, Model Predictive and
Model Reference neuro controllers. The energy management performance of the Li-
ion battery connection to the DCM drives will be further investigated.
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Chapter 2

Load-Sharing Management for
Fuel Cell Hybrid Electric Vehicle
(FCHEV) Based on Intelligent
Controllers and Optimization
Algorithms
Mustafa A. Kamoona and Juan Manuel Mauricio

Abstract

This study proposes an intelligent controller for a hydrogen-powered plug-in fuel
cell hybrid electric vehicle (FCHEV) that integrates a fuel cell (FC) with two energy
storage systems, which are ultracapacitor (UC) and battery (BAT), which results in a
high dynamic response along with maintaining efficient use of resources for energy
storage. Moreover, this controller works on effectively managing the system power flow
to reduce the amount of power needed for the FCHEV. An effective energy manage-
ment system (EMS) has been developed that utilizes the fuzzy logic controller (FLC)
and artificial neural networks (ANNs) to achieve the EMS requirements. Also, the
proposed system operates these three power sources at high efficiency with their mech-
anism performance, meets load power demands efficiently, and uses less hydrogen.
Furthermore, the Crow Search Algorithm (CSA) and Particle Swarm Optimization
(PSO) methods are utilized to adjust the parameters of the wavelet neural network that
is connected to the PI controller, called WNN-PI. The DC-DC converters control the
output voltage of the FC and BAT for maintaining the DC-bus voltage constant at 300
volts. The state-of-charge (SOC) for the BAT and UC is also considered in this study.
The proposed system is analyzed and evaluated using the MATLAB/Simulink environ-
ment, and two vehicle driving cycles were implemented using the ADVISOR Simulator.

Keywords: FCHEV, artificial neural networks, CSA, fuzzy logic controller, PSO

1. Introduction

Nowadays, demand for electric vehicles (EV), as well as hybrid electric vehicles
(HEVs), have grown in popularity for environmental reasons. Moreover, there are
also several other benefits, such as a decrease in pollution also a cessation of dangerous
gas emissions. The internal combustion engine (ICE) is regarded as one of the most
widely utilized in transportation services as the primary power for driving automo-
biles. The ICE is a remarkable achievement in contemporary technology since it offers
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a high level of power and has the ability to drive a vehicle over extended distances.
Due to the fact that ICE burns petrol, it emits CO2 and has a number of other
drawbacks, including a high degree of complexity, loud noise operation, and entire
reliance on a single fuel source.

In recent years, scientists and developers have concentrated on enhancing the per-
formance of EVs [1–3]. HEVs especially are more functional and environmentally
friendly than traditional cars [4]. The fuel cell electric vehicle (FCEV) uses hydrogen as
fuel and produces only water as emissions. The FC engine has certain disadvantages as
well, including a sluggish dynamic response, a high hydrogen cost, and a failure to use
the car’s regenerative braking power. To address these deficiencies, an FCHEV should
be developed by integrating the FC engine with energy-storage devices such as UCs and
BATs. The ultracapacitor (UC) has a very rapid dynamic reaction in order to adapt to
the vehicle’s unexpected load fluctuations. Therefore, the FC output power must be
regulated. In addition, throughout the charging and discharging phases, the power flow
between the battery, UC, and the load also must be efficiently managed. In order to
actively optimize the control system, an energy management system (EMS) is neces-
sary; along with the central control system for each converter, power electronics con-
verters are also necessary to connect the power sources with the loads. Consequently, a
lot of publications and investigation papers [5–11], as well as comprehensive review
papers [12–14] for studying the importance of energy management for FCHEV.

The objective of this work is to create an intelligent energy management system
(EMS) for the FCHEV that utilizes less hydrogen while effectively meeting the load
power needs. The main power source of our proposed model plug-in hybrid FCEV is
that the FC is meant to give power for steady-state loads only, whereas the UC is
responsible for providing the transient power and the BAT is responsible for provid-
ing the medium frequency power. Also controlling the DC bus voltage; additionally,
the power of the BAT supports the power output of the fuel cell in feeding the load if
needed. This possibly be accomplished by providing the FC and BAT switching con-
verters with the proper signals to guarantee that the hybrid FC system is working
properly to handle the load dynamics. Also, this work presents two optimization
algorithms, which are PSO and CSA.

2. Fuel cell hybrid electric vehicle configurations

Developing EVs has many factors, the most important one is the energy source cost
sector. Therefore, researchers are being conducted using different designs of storage
energy as well as a control system that aims to reduce the cost of energy storage with
consideration of keeping a high level of improving efficiency. Thus, different config-
urations of EVs have been introduced [15], for example, some classifications of hybrid
electric vehicle (HEV) such as series, parallel, and series–parallel. Meanwhile, the
plug-in hybrid electric vehicle (PHEV) has the same configuration as HEV but with an
extra plug-in port connection to charge from an external source at home or public
charge stations. As shown in Figure 1 the PHEV block diagram.

Overall, electric vehicles can be classified into three basic types, which are battery
electric vehicles (BEVs) that use only batteries, fuel cell electric vehicles (FCEVs) that
use only fuel cells stack, and hybrid electric vehicles (HEVs) that use a hybrid system.
For example, HEVs such as batteries and other energies are called BHEVs or fuel cells
stack and other energies are named FCHEVs. Moreover, all HEV types can be
plug-in or not.
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The working principle of FCHEV can be summarized and simplified in
three steps:

• Two or three powers in FCHEV, which are a fuel cell, battery, and/or
ultracapacitor combined; and controlled by an (ex: intelligent control method)
for the energy management system (EMS). First starting of the vehicle at very
low load driving (low speed) of the FCHEV run by one of the power sources
ultracapacitor or battery if the ultracapacitor/battery has sufficient energy to
ensure soft starting.

• The FCHEV is run by fuel cells stack individually at normal load driving (normal
speed) to drive the vehicle and charge the ultracapacitor/battery; but at

Figure 1.
PHEV block diagram.
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accelerating (high speed), the fuel cells stack and ultracapacitor/battery are
combined together to get powerfully driving.

• When deceleration (Brake), the vehicle recovers the kinetic energy of tire
friction and converts it into electricity, in order to charge the ultracapacitor/
battery.

Generally, there are three main classification topologies of FCHEVs configuration,
which are passive connection, full active connection, and semi-active connection [16].
In the passive configuration, the FC stack, BAT, and UC are directly connected to the
DC bus, without employing any electrical power converters, as illustrated in Figure 2.
The design of the passive connection structure is flexible and simple construction as
well as high efficiency, low power losses, and low costs [16]. Meanwhile, this topology
structure has disadvantages [16, 17] such as the output voltage of FC, BAT, and UC
must be the same. Also, unable to be controlled power sources under the energy
management strategy. Moreover, the vehicle weight is high and requires a large FC
generator to meet the DC bus voltage.

The fully active configuration uses three DC-DC converters where each one is
connected to the DC bus through independent power electronic converters as shown
in Figure 3. The fully active configuration structure can use the FC generator with a

Figure 2.
The fundamental block diagram of the passive connection topology.

Figure 3.
The fundamental block diagram of the fully active connection topology.
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voltage much less than the DC voltage bus due to combined to boost DC-DC con-
verter; then, this is the main advantage of this topology. Also, the weight of the
vehicle in terms of the power sources (FC, BAT, and UC) is smaller than the passive
connection. However, the fully active configuration has some drawbacks such as the
extra weight of adding three converters, high cost, and high power losses [17].

In order to find the most efficient configuration, the semi-active topology is pro-
posed, which combines and uses the features of the active and the passive connec-
tions. Moreover, there are two types of semi-active topology. The first is that the fuel
cell is connected to the DC-bus voltage through a unidirectional DC-DC converter,
whereas the BAT has a direct link to the DC-bus voltage, and the UC is attached to the
DC-bus via a bidirectional DC-DC converter, as illustrated in Figure 4. The FC is
connected to the DC-bus via a unidirectional DC-DC converter, although the UC is
attached straight to the DC-bus, and the BAT is tied to the DC-bus voltage via a
bidirectional DC-DC converter, as illustrated in Figure 5.

This work aimed at improving the topology of the second type of semi-active
topology (see Figure 5) via the proposed EMS that is designed to achieve that the BAT
responds to load power that has low-frequency orders and the UC responds to power

Figure 4.
Semi-active connection topology: BAT links directly to the DC-bus.

Figure 5.
Semi-active connection topology: UC links directly to the DC-bus.
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demand that has high-frequency orders since it is connected directly to DC bus. While
the FC gives steady-state power, its efficiency is increasing.

3. Power unit converters of FCHEV

Regulation of the DC-bus voltage required DC-DC converters to regulate the
voltage as well as adjust the power flow between the power sources of the
developed FCHEV system. This work uses two topologies DC-DC converters, as
shown in Figure 6, for the unidirectional boost converter that is used for the
FC generator, and Figure 7 shows the converter of the BAT, which is a bidirectional
buck-boost type.

The waveforms can be averaged over a period of time that is brief in comparison to
the system’s inherent time constants without appreciably influencing the response
[18]. When the basic condition is met, averaging the single-quadrature converter
waveforms throughout the switching period is a good approximation. The converter’s
low-frequency behavior is predicted by the averaged model, which ignores the high-
frequency switching harmonics. The single-quadrature converter is modeled by using
a conventional transformer-less single-quadrature architecture. Therefore, the pro-
posed work uses the average model converter instead of the electronic circuit model,

Figure 6.
Circuit diagrams of the unidirectional boost converter.

Figure 7.
Circuit diagrams of the bidirectional buck-boost converter.
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which in return speeds up the simulation time and gets the same results. Figure 8
illustrates the proposed single-quadrature averaged converter model.

The relationships between the average of currents for the input and output con-
verter are represented as [18]:

Io ¼ η 1�Dð Þ Ii (1)

Generally, the efficiency of the converter should be constant. Assumed to be 90%
at full load. The relationship between VI and VO can be calculated via the voltage
second balance across the inductor as shown in Ref. [19]:

VO ¼ Vi

1�D
(2)

The two-quadrature converter is directly controlled by the duty cycle signal. The
two-quadrant bidirectional outputs can be utilized in either a buck or boost configu-
ration. Two-quadrature DC-DC converter average switch model can be derived based
on buck (Charging Mode) and boost (Discharging Mode) operations. Figure 9 illus-
trates the proposed two-quadrature averaged converter model.

Figure 9.
Average model of two-quadrature converter in the buck mode.

Figure 8.
Equivalent averaged model of single-quadrature DC-DC converter.
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In the operation of buck mode, the relationships for Vi and Io can be obtained as
shown below:

Vi ¼ DVo (3)

Io ¼ ηDIi (4)

Where D consists of d1 for the boost switch and d2 for the buck switch.

4. Power load driving cycles and power sources parameters

In order to accomplish the design and sizing of the parameters in terms of the
power sources for FC, UC, and BAT of the FCHEV; and evaluate the reliability of FC,
UC, and BAT power sources when utilized by the proposed EMS. Load profiles are
needed; therefore, two driving cycles have been proposed, which are Urban Dyna-
mometer Driving Schedule (UDDS) and Federal Test Procedure (FTP) were acquired
by the ADVISOR analysis program. Since UDDS has the worst peak power consump-
tion variations of any of the driving cycle standards, it serves as the primary example
for analyzing FCHEV performance. Figure 10a and b illustrate the power profile of
UDDS and FTP, respectively.

On the basis of UDDS driving cycle power profile characteristics, the maximum
load power is 11 kW while the average power is 7 kW. As a result, the power require-
ment for this load has been modeled on a hybrid system that integrates FC, BAT, and
UC, which are built by extracting the actual technical specifications of these resources
from their datasheets and incorporating them into the Simulink model environment to
make system performance outcomes as realistic as feasible in the real world. The
following are the power sources:

1.Fuel cell: Hydrogenics 12.5 kW HyPM-HD12 PEMFC; Number of cells is 65; FC
datasheet in [20].

Figure 10.
The power load profile of (a) UDDS and (b) FTP.
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2.Battery: Valence Technology U-Charge U1-12XP lithium-ion BAT. The BAT is
represented by four series-connected cells. The nominal voltage of each string is
12.6 V. BAT datasheet in [21].

3.Ultracapacitor: Maxwell Boostcap®BCAP1200 UC; the Maxwell 1200F, 2.7 V/
cell Boostcap®BCAP1200. 120 cells in series in order to produce 300 volts due to
the DC link voltage of the FCHEV system being 300 V and the UC being directly
connected to the DC link. UC datasheet in [22].

5. Methodology

The proposed controllers (WNN-PI, and the developed (EMS by FLC and ANNs))
supervise the BAT and FC current boundaries to guarantee proper timing for the
charging and discharging of the BAT/UC and no negative current supply to the FC.
The BAT current is supplied to a two-quadrature DC-DC converter, whereas the
current of the FC is sent to a single-quadrature converter and responds to steady-state
load power. Due to the UC capabilities that allow it to react fast to sudden changes in
power load and the UC is directly attached to the DC bus, therefore, it is recharged
before the BAT recharges. BAT converter is bidirectional and thus capable of utilizing
rapid brakes of the vehicle for recharging the BAT. Wavelet methods are used to
regulate the BAT converter with wavelet and PI controller identified as WNN-PI,
which are tuned online using optimization algorithms (PSO or CSA). The boost
converter is used for the FC, which is managed by an EMS with either an FLC or an
ANN. The overall objective of the EMS control procedures is to efficiently deliver the
required power to the vehicle load power, to control hydrogen consumption as effec-
tively as possible, to increase the responsiveness and run efficiency of the FC, to
increase the lifespan of the FC, BAT, and UC, and to minimize the size of the FC stack
system, which in return lowers the FC cost.

5.1 Fuzzy and ANN for EMS of FCHEV

First, the FC reference current is managed by the FLC control system. Given that
the ANN requires input and output data to be trained. As a result, the FLC method has
been used to build the EMS first in order to get the necessary input/output data. Then,
the ANNs have been trained after obtaining the necessary data via FLC. Keeps the fuel
cell power generator output under control and satisfies all the FCHEV requirements
for safe and efficient operation. Therefore, to control and achieve an efficient run of
FC, consider the output power of the fuel cell in three cases; which are the minimum
FC power (Pfc_min) is from zero till reaches 0.49 kW, and the maximum FC power
(Pfc_max) is from 1.59 kW till reaches 11 kW, then the optimal FC power output
(Pfc_opt) is from 0.5 kW till reach 1.6 kW. The fuel cell reference current is calculated
by using a set of Fuzzy If-Then Rules which take into account both the power needed
from the FC and the SOC limits for the battery, as illustrated in Figure 11, the FLC
model in the Simulink environment. Moreover, the developed FLC has been
implemented using a trapezoidal memberships function (trapmf).

The neural control system has two inputs, which are the load power and the SOC
of the battery. The output of ANNs is the FC reference power. The parameters of the
ANNs have been defined as the following:
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1.The network used is “feedforwardnet” training algorithm that used the
“Levenberg–Marquardt” method to train the neural network.

2.The number of epochs is 1000 epoch

3.Three hidden layers have been employed, and each layer’s neurons are 30, 20, 15,
and 10, which are chosen by the trial-and-error theorem.

4.Training goad (MSE) is 10�30

Whereby 15% are used for testing, 15% for validation, and 70% are for
training. The codes used to create this network and the network diagram are shown
in Figure 12.

5.2 Wavelet strategy and optimization algorithm for EMS of FCHEV

The actual DC link voltage is subtracted from the reference DC voltage 300 V to
get the error signal, which is then fed to the WNN-PI controller in order to get the
BAT current reference, which in return controls the BAT DC-DC converter. The feed-
forward wavelet neural network is used in this work (WNN-PI). Figure 13 shows the
Simulink model; the PSO and CSA are used to tune the WNN-PI parameters, which
are WNN variables dilation (a’s), translation (b’s), and weights (w’s); PI controller
parameters are Ki and Kp.

The fitness function for an optimal value is obtained using the “Integral of Squared
Error” (ISE), which is the same function used by both PSO and CSA optimization
methods.

fitness function ¼ min ISEð Þ (5)

ISE ¼
ð
e2 tð Þdt (6)

e jð Þ ¼ D jð Þ � y jð Þ (7)

Where e(j) is the error that is produced when the desired value D(j) is
subtracted from the actual value of the model y(j). Following that, PSO should use

Figure 11.
The EMS model with fuzzy logic control.
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Eq. (6) to continuously update each swarm particle’s current position xj (m) and
velocity vj at (m):

vmþ1
j ¼ w ∗ vmj þ c1 ∗R1 ∗ lbestj � xmj

� �
þ c2 ∗R2 ∗ gbestj � xmj

� �
(8)

Applying Eq. (9) to modify the current position:

Figure 12.
ANNs codes and network diagram.
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xmþ1
j ¼ xmj þ vmþ1

j (9)

A generalized wavelet is created by linearly combining a collection of daughter
wavelets ψa,b:

ψa,b ¼ ψ
x� b
a

� �
(10)

The wavelet’s ultimate output is as follows:

y ¼
XN
n¼1

wNψaN ,bN (11)

For each crow, the CSA creates a new location in the search space. Assume that
crow i follows a crow (for example, crow j) at random to find out where crow j is.
Crow i’s position update is divided into two circumstances. First, crow j is
unaware that crow i is following it. Using Eq. (12), evaluate the fitness function,
and choose a random position. Second, crow j detects crow i and follows it, and
crow j moves crow i to a random position. Based on Eq. (6) results, Eq. (13)
follows [23]:

Xi,itrþ1 ¼ Xi,itr þ ri � fli,itr � mj,itr � Xi,itr� �
rj ≥APj,itr

a random position otherwise
(12)

Then, using Eq. (13) for updating the memory matrix of each crow based on
Eq. (12) [24]:

Figure 13.
Battery controller scheme by wavelet and PI in Simulink model.
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mi,itrþ1 ¼ Xi,itrþ1, f xi,itrþ1� �
is better than f mi,itr� �

xi,itrþ1 otherwise
(13)

The algorithms of PSO and CSA are shown below, respectively:

PSO algorithm: Find optimum values for WNN-PI parameters “

Step 1: Initialization PSO
No. of birds n = 20, No. birds_steps = 10

Dimension of the problem (dim)
WNN-PI = 14

PSO parameters c1 = 1.4 & c2 = 1.6
Inertia w = 0.85
> fitness = 0*ones(n,bird_setp);

Step 2: Initialize the parameter
R1 & R2 = rand(n,dim);
> current_fitness = 0*ones(n,1);

Step 3: Initializing swarm and velocities and position
current_position = abs(10*(rand(n,dim)-.6));

> velocity = .25*randn(n,dim);
local_best_position = current_position;

Step 4: Evaluate initial population
> for i = 1:n

PI = current_position(j,:);
Set all (a’s, b’s, w’s) and (kp & ki)
a1–4 = PI(1–4); and same for b’s, w’s and (kp & ki)

Step 5: Initialize sim options (Simulink)
> Simout = sim(‘WNN_PI.slx’);

Compute the error
e = max(V_Actual)-300;

m = abs(e);
error = sum(m);

Fitness Function is F = error
current_fitness(j) = F;
end

Step 6: Velocity Update
> velocity = w *velocity + c1*(R1.*(local_best_position-

current_position)) + c2*(R2.*(globl_best_position-
current_position));

Step 7: Swarm Update
Step 8: Evaluate anew swarm: Back to Step.5:
Step 9: Choose the optimum values and submit them to the Simulink model.

> a1–4 = globl_best_position(n,1–4);

CSA algorithm: Find optimum values for WNN-PI parameters”

Step 1: “Optimization Initialization and system definition
No. of Variables pd = 14 and No. of Population size N = 30

Awareness Probability AP = 0.6 and Flight Step FI = 2
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Step 2: Initialize Function
[x l u] = init(N,pd); % Function for initialization, l = 0; u = 300; %
Lower and upper bounds

Step 3: Generate Random Position
num = ceil(N*rand(1,N));

Step 4: > Compute the error
function ft = fitness(FI,N,pd) % Function for fitness evaluation
simout = sim(‘WNN_PI.slx’);
m = abs(e); error = sum(m); F = error; ft(i) = F;

Step 5: > for i = 1:N
tmax = 300; % Maximum number of iterations (itermax)
ft = fitness; % fitness evaluation

Step 6: Evaluate Memory Initialization
> fit_mem = ft; % Fitness of memory positions
> if rand > AP
> xnew(i,:) = x(i,:) + FI*rand*(mem(num(i),:)-x(i,:));

% Generation of a new position for crow I (state 2)
else
> for j = 1:pd

> xnew(i,j) = l-(l-u)*rand; % Generation of a new position for crow i
(state 2)
end
end

end
Step 7: Evaluate Fitness Function and Update new error

> F = xnew;
ft = fitness;

Step 8: Update new Position and the Memory
> for i = 1:N % Update position and memory

if xnew(i,:) > =l & xnew(i,:) < =u
ft = fitness; % Function for fitness evaluation
mem = x; % Memory initialization
fit_mem = ft; % Fitness of memory positions
x(i,:) = xnew(i,:); % Update position

if ft(i) < fit_mem(i)
mem(i,:) = xnew(i,:); % Update memory

fit_mem(i) = ft(i);
end

end
end

ffit(t) = min(fit_mem); % Best value until iteration t
min(fit_mem);

end
Step 9: Evaluate fitness function: Back to Step.5:

> ngbest = find(fit_mem== min(fit_mem));
Step 10: Select the optimum values and send them to Simulink.

> g_best = mem(ngbest(1),:);
> a1–4 = g_best_position(1–4);”
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6. Simulation results and discussions

This section summarizes the simulation results for AI EMS, which was evaluated
over two drive cycles (UDDS and FTP) with two alternative control approaches. The
first is FC control by FLC, while the second is FC control by ANNs. WNN-PI controls
the BAT, which is adjusted via PSO and CSA. The results reveal that FC controlling by
ANNs is superior to FLC due to ANNs are a predictable system, resulting in more
efficiency than FLC, particularly when utilized in the FTP drive cycle. Moreover, the
ANNs offered optimal flow of power among power sources and FCHEV load.
Furthermore, WNN-PI has superior tuning by PSO than CSA since CSA has sluggish
speed convergence and readily falls into the local optimum [23–25]. Figure 14
illustrates the DC-bus voltage under UDDS driving cycle load profile.

It is observed that the fluctuation of the DC-Bus voltage by PSO is less than the
voltage fluctuation of CSA due to that PSO tuned the parameters of theWNN-PI more
precisely than CSA. By modifying the duty cycle for the buck and boost converters of
the BAT and for the boost mode of the FC converter, the voltage of the DC-bus was
preserved at an acceptable level. Also, observed that all of the converters’ duty cycle
values by PSO are more stable, where all are below 90% which is an acceptable
percent as illustrated in Figure 15 the duty cycle of the BAT in boost mode, and as per
in Figure 16 the buck mode, while the FC converter as shown in Figure 17.

The duty cycles for the converters were successfully given by PSO and CSA.
However, the findings indicate that PSO is more effective than CSA in terms of the
DC-Bus voltage and duty cycles of the converters for the FC and the BAT during the
UDDS even during the FTP driving cycle. Also, the ANN is more effective than FLC.
Therefore, the remainder results of the proposed model have been carried out based
on PSO and ANN. Whereby, the power of the FC, BAT, and UC during UDDS cycle
are illustrated in Figures 18–20, respectively. Additionally, the power of the FC, BAT,
and UC during FTP cycle are illustrated in Figure 21–23, respectively.

The proposed control approach properly satisfies the AI EMS of FCHEV needs
under the load power profile of UDDS and FTP driving cycles as well as the charging/
recharging requirements of the BAT and UC, as illustrated in Figure 24. The FC
power is also steady-state during the demand of load power and does not react to rapid

Figure 14.
DC-bus voltage during USSD cycle.
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Figure 16.
Duty cycle of BAT converter in buck mode during UDDS cycle.

Figure 15.
Duty cycle BAT converter in boost mode during UDDS cycle.

Figure 17.
Duty cycle of FC during UDDS cycle.
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fluctuations of the power load; whereas the BAT delivers a medium-frequency power
to the power load, then it supports the FC to cover the power for the remaining load
needed; and the UC power delivers high-frequency power to the power load to
overcome abrupt load fluctuations. The power resources (FC, BAT, and UC) accom-
plished the optimal power flow for the FCHEV, which in turn makes the BAT and UC
function safely and extend their lifespans as well as decreasing H2 (Hydrogen) use.

The plug-in FC hybrid electric vehicle analysis and evaluation in this study
were carried out under two vehicle driving cycles using the Advanced Vehicle
Simulator (ADVISOR) and the MATLAB/Simulink 2022b (64bit) environment

Figure 18.
BAT power during UDDS cycle.

Figure 19.
FC power during UDDS cycle.
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Figure 20.
UC power during UDDS cycle.

Figure 21.
BAT power during FTP cycle.

Figure 22.
FC power during FTP cycle.
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based on the proposed AI EMS structure and optimization algorithm. Figure 25
illustrates the proposed Simulink model for a compact car with a maximum load of
11 kW.

7. Conclusion

An energy management system that manages a hybrid plug-in FCEV is presented
by this study as a combined intelligent controller system. The objective of this study
was to develop the next generation of an EMS system employing a combination of fuel
cells, ultracapacitors, and batteries in order to reduce the fuel consumption of the
FCHEV powertrain and improve the system’s efficiency. In the design system, the
created EMS scheme took into account the characteristics of FC, UC, and BAT. Also,

Figure 23.
UC power during FTP cycle.

Figure 24.
BAT and UC state of charge during UDDS cycle.
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the proposed EMS considers the dynamic responsiveness of the power sources. FLC
and ANN have been used withWNN-PI that is tuned via two optimization algorithms,
which are PSO and CSA. The most significant findings of this work are as follows:

• The National Renewable Energy Laboratory’s ADVISOR software was used to
construct acceleration and grading test processes for analyzing hybrid vehicle
dynamic properties and determining their electrical load power profile. The
software was used to extract two varieties of load power profiles (UDDS and
FTP), which were used to simulate FCHEV and evaluate the effectiveness of the
proposed intelligent EMS.

• The FC, BAT, and UC are modeled using datasheets from their respective
manufacturers. As a result, the characteristics of the power sources have been
developed as close to their real-world characteristics.

• The power converters were modeled using the average modeling approach.
Average models use less time to simulate a system than the switching model.

• The proposed model guarantees that the BAT provides specified energy with a
safe run for the BAT, extends its lifespan, as well as not reposed to high load
power variations. Moreover, the FC output power responds only to the steady-
state power load, which in turn ensures that the FC works efficiently. Whereas
UC has the first response to unexpected load fluctuations.

• WNN-PI has superior tuning by PSO than CSA. Whereby, the findings indicate
that PSO is more effective than CSA in terms of the DC-Bus voltage and duty
cycles of the converters for the FC and the BAT

Figure 25.
The proposed Simulink model.
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Chapter 3

Battery State of Charge
Management for an Electric Vehicle
Traction System
Ahmed Sayed Abdelaal Abdelaziz

Abstract

This chapter introduces a battery state of charge (SOC) management technique
designed for an electric vehicle traction system that incorporates an indirect field-
oriented induction motor drive. The primary goal of this technique is to restrict the
change in battery SOC from exceeding a maximum limit, by compensating for the
motor speed tracking performance. It employs a fuzzy-tuned model predictive con-
troller (FMPC), where a fuzzy logic controller (FLC) adjusts the input weight in the
objective function to ensure that the change in battery SOC does not exceed the
maximum permitted value while regulating the motor speed. The various components
of the EV traction system are thoroughly modeled, and simulations are conducted
using MATLAB/Simulink 2018b. The simulation results, carried out using the New
European Drive Cycle (NEDC), verify that the technique limits the change in SOC
while controlling the motor speed. This approach offers the advantage of maintaining
precise control over the battery bank SOC, which distinguishes it from conventional
speed regulators.

Keywords: model predictive control, fuzzy logic control, fuzzy weight tuning, state
of charge management, electric vehicle Modeling, field oriented control, induction
motor

1. Introduction

One of the primary concerns associated with electric vehicles (EVs) pertains to
their limited operational range. Additionally, the shortage of charging infrastructure
and the extended charging duration remain significant challenges. In addressing these
challenges, this chapter aims to shed light on a range of battery energy management
(BEM) strategies outlined in existing literature while also introducing an innovative
technique that holds promise for the EV market.

Regarding EVs, the BEM strategies can be segregated into two categories [1]. The
first category involves the development of rules before initiating the system. Those
rules dictate the behavior of the system during operation. Strategies falling within the
second category are distinguished by their cost function and require an optimization
technique to achieve the system’s objective. In the literature, the first category of
strategies involves the use of a fuzzy logic controller (FLC) for managing multiple
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power sources such as combustion engines, ultra-capacitors, and batteries [2]. An FLC
allocates power demand among these sources to maximize each source’s efficiency. In
an alternative approach, an FLC is designed to consider battery SOC, input reference
speed, and commanded vehicle acceleration to determine the battery’s power output,
albeit with a trade-off of sacrificing a certain degree of motor performance to achieve
battery energy conservation [3]. In the works [4], an advanced energy management
system was developed. This system oversees both the torque signal and the SOC of the
battery, subsequently generating the electric throttle signal to control the motor’s
speed. Additionally, in Suhail et al.’s study [5], a neural FLC was introduced for
efficient management of regenerative braking in a hybrid EV. This controller contin-
uously monitors the engine’s speed and power, while accurately calculating the nec-
essary torque for the given situation [5]. When the delivered power surpasses the
required amount, the regenerative braking system initiates the process of charging the
battery bank using the surplus power generated by the engine [5].

Among the strategies in the second category, dynamic programming (DP) is the
most frequently employed optimization technique due to its ability to settle on the
optimal solution [6]. In order to reduce the computational complexity, alternative
approaches, such as coupling convex programming with a model predictive controller
(MPC), can achieve a sub-optimal solution. Furthermore, the equivalent consumption
and minimization strategy (ECMS) also obtained a sub-optimal solution [6].

The MPC-based BEM techniques primarily focus on solving receding horizon
algorithms, predicting velocity profiles, and generating SOC reference trajectories. An
adaptive ECMS (A-ECMS), and a fuzzy adaptive ECMS (Fuzzy A-ECMS) were com-
pared [6]. They improve upon the original ECMS by dynamically estimating the
optimal equivalent factor online, in contrast to the static value set by the user in
ECMS. They continuously evaluate the current battery SOC against the desired SOC
and adjust the optimal equivalent factor accordingly to minimize errors. The Fuzzy A-
ECMS technique showed more robustness to various driving conditions as compared
to the A-ECMS technique. In Ref. [7], an FLC monitors changes in the battery’s first
and second derivative of SOC and generates an input weight R for the MPC cost
function. When sudden high acceleration occurs, an increase in R prompts the MPC to
restrict the EV’s acceleration to a safe level, minimizing battery energy consumption.
In Ref. [8] a synthesized velocity profile prediction method is utilized to obtain
driving velocity profiles. DP was then used to calculate optimal battery SOC trajectory
and constraints at various set points [9]. These set points are then integrated into an
MPC, which controls the maximum battery power output to track the optimal battery
SOC at each set point. In Ref. [10], the road gradient was used in conjunction with an
MPC, to generate a velocity profile for the vehicle. The MPC accelerated the vehicle
when traveling up the road slope and decelerated the vehicle when traveling down the
road slope. This was done prior to the occurrence of the road slope. Consequently, the
power requirement from the battery was reduced. Furthermore, Zhao et al. [11]
combined the wavelet neural network with the MPC to generate the reference SOC
trajectory over a prediction horizon. This technique utilized particle swarm optimiza-
tion to aid the wavelet neural network in generating the global SOC trajectory, which
was used as a reference in the MPC. Furthermore, Chen et al. [12] adapted a long
short-term memory velocity predictor. It gauged the vehicle’s speed and power
demand of the vehicle. Subsequently, an MPC strategically allocates load power
between an ultra-capacitor and a battery through a DC-DC converter. This was care-
fully structured to guarantee that they operated at their highest efficiency and to
minimize the overall power dissipation.
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Inspired by the techniques discussed in Refs. [6, 7], this chapter introduces a novel
SOC tracking method capable of restricting the maximum change in SOC at the cost of
speed-tracking performance degradation. The chapter’s scope focuses on designing
and testing this technique through simulation and excludes the method for obtaining
the SOC reference trajectory. The test results suggest that the proposed SOC tracking
method successfully regulates the SOC degradation, and maintains it at the desired
SOC reference. The testing was performed on the New European Drive Cycle
(NEDC), and the average of the magnitude of the deviation from the SOC reference
was found to be 0.00095 for the proposed SOC tracking technique compared to the
0.0037 obtained by the A-ECMS and the 0.0019 obtained by the Fuzzy A-ECMS
techniques [6].

This chapter comprises five sections, with the introduction as the first section.
Section 2 introduces the SOC tracking technique. Section 3 describes the EV traction
system components and controllers. Section 4 presents the simulation methodology
and results, and finally, Section 5 concludes the chapter.

2. Description of the state of charge tracking technique

Among the BEM strategies explored in Ref. [7], the fuzzy-tuned model predictive
controller (FMPC) technique stands out as having broader potential applications
within the EV traction system. It offers the possibility of fine-tuning the approach to
achieve a similar outcome to the Fuzzy A-ECMS strategy detailed in Ref. [6], partic-
ularly in terms of SOC tracking. However, before delving into these adjustments, it is
essential to grasp the fundamental workings of the FMPC technique and gain a
comprehensive understanding of the overall system.

2.1 Fuzzy-tuned model predictive controller

Figure 1 illustrates a flowchart detailing the FMPC BEM technique, as discussed in
Ref. [7]. The primary aim of this approach is to mitigate variations in the speed
regulating current signal, denoted as i ∗sq, to address abrupt accelerations. These rapid
speed increases are reflected in sudden surges in battery bank current, leading to a
rapid decline in battery bank SOC over a short period. This not only reduces the
battery’s runtime but also contributes to a shorter battery lifespan [7].

To counteract these issues, the technique monitors the battery bank current and
estimates the SOC. The rate of change of SOC, denoted by the first derivative of SOC,
is obtained by taking the difference between the current sample of SOC and the
preceding SOC sample. Furthermore, the second derivative in SOC is obtained by
taking the difference between the current and preceding sample for the change in
SOC. Those variables are processed by the FLC and GMPC gain. The final result is the
parameter R that impacts the MPC objective function. This parameter is used to
penalize variations in i ∗sq . Additionally, the technique incorporates motor speed and
drive cycle information into the MPC block. The chosen drive cycles are the NEDC
drive cycle, representing a smooth driving behavior, and the US06 drive cycle,
representing an aggressive driving behavior [7]. These drive cycles provide a compre-
hensive assessment of the FMPC BEM technique’s ability to regulate speed across a
range of driving habits. The MPC, equipped with the estimated model of the EV
traction system, solves the cost function, which has been adjusted with the input
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weight R, using a receding horizon algorithm. The resulting i ∗sq signal effectively
regulates motor speed while suppressing abrupt acceleration patterns. This
design assists in preventing abrupt surges in battery current during acceleration
and enables a smoother transition to the steady-state value of the battery bank’s
discharge current.

2.2 Proposed modification for the state of charge tracking

For the SOC tracking to be effective, it is crucial for the input weight R to adapt
based on the error between the battery bank SOC and the reference SOC. Figure 2
presents the flowchart outlining the SOC tracking approach. This method utilizes an
MPC for speed regulation, while an FLC assesses the difference between the SOC
reference trajectory and the actual battery SOC. Subsequently, it generates an input
weight R that constrains the MPC’s speed regulating signal, i ∗sq . This approach pos-
sesses the capability to tightly constrain the motor tracking performance to an exten-
sive degree by closely adhering to the SOC reference trajectory. The effectiveness of
this scheme was evaluated through simulation, with testing conducted using the
NEDC drive cycle. Subsequent sections will detail the design of the EV traction system
components and the Simulink model employed in this study.

Figure 1.
Flowchart for the FMPC BEM technique [7].
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3. Component modeling for an electric vehicle traction system

3.1 Lithium-ion battery bank model

3.1.1 Chen and Mora’s model

The Chen and Mora (CM) circuit model is a comprehensive representation that
captures the dynamic attributes of the battery’s terminal voltage, and variations in
battery parameters concerning SOC, and has undergone extensive experimentation
over the last decade [13]. Figure 3 depicts the CM equivalent circuit battery model

Figure 2.
Flowchart for the proposed SOC tracking technique.

Figure 3.
CM lithium-ion equivalent battery circuit model.
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utilized in this study. The left section of the circuit represents the variation in battery
SOC due to the fluctuations in battery current. On the other hand, the variations in
battery terminal voltage in response to the battery current are shown on the right. In
this model, the state variable x1 represents the battery’s SOC, while x2 corresponds to
the voltage across RtskCts, and x3 corresponds to voltage across RtlkCtl. The parallel
combination RtskCts characterizes the short-term terminal voltage dynamics in
response to fluctuations in discharge current, while the parallel combination RtlkCtl
characterizes the long-term terminal voltage dynamics in response to variations in
discharge current [13]. Eqs. (1)–(4) describe the CM equivalent circuit model [13].

_x1 tð Þ ¼ � 1
CC

i tð Þ, CC ¼ 3600Cf 1 f 2 f 3 (1)

_x2 tð Þ ¼ � x2 tð Þ
Rts x1ð ÞCts x1ð Þ þ

i tð Þ
Cts x1ð Þ (2)

_x3 tð Þ ¼ � x3 tð Þ
Rtl x1ð ÞCtl x1ð Þ þ

i tð Þ
Ctl x1ð Þ (3)

y ¼ Eo x1ð Þ � x2 tð Þ � x3 tð Þ � i tð ÞRs x1ð Þ (4)

In this model, the SOC, denoted as x1, varies within the range of 0, 1½ �. The states x2
and x3 are positive while the battery is discharging, and their sign depends on whether
the battery is charging or discharging. Eq. (1) contains the parameter C which repre-
sents the capacity in ampere-hours (A.h). Furthermore, the impact of temperature on
battery performance, the number of charging and discharging cycles, and the effect of
self-discharging are taken into account through the factors f 1, f 2, and f 3. They are set
to 1 in this work. Eq. (4) depicts the states x2 and x3 and their impact on the terminal
voltage y. In addition, the impact of the battery’s series resistance is taken care of by
multiplying i tð Þ and Rs then subtracting the product from the open-circuit voltage Eo.
Eqs. (5)–(10) define the variables Rs, Ctl, Rtl, Cts, Rts, and Eo [13].

Eo x1ð Þ ¼ �a1e�a2x1 þ a3 þ a4x1 � a5x21 þ a6x31 (5)

Rts x1ð Þ ¼ a7e�a8x1 þ a9 (6)

Rtl x1ð Þ ¼ a10e�a11x1 þ a12 (7)

Cts x1ð Þ ¼ �a13e�a14x1 þ a15 (8)

Ctl x1ð Þ ¼ �a16e�a17x1 þ a18 (9)

Rs x1ð Þ ¼ a19e�a20x1 þ a21 (10)

The lithium battery’s Eo curve was recorded through the technique described in
Ref. [13]. Furthermore, MATLAB was employed to determine the variables a1 through
a6 in Eq. (5). The remaining parameters of the lithium-ion battery model, as specified
in Eqs. (6)–(9), are acquired using the APE technique [13]. The Rs constants a19
through a21 can be obtained by fitting Eq. (10) with curve Rs x1 tð Þð Þ versus x1 tð Þ [13].
The values for parameter a1 through a21 are provided in Table 4 in Ref. [7].

3.1.2 SOC estimation by coulomb counting

The SOC illustrates the available capacity as a percentage of the rated capacity [13]. The
mathematical formulation for the Coulomb counting (CC)method is shown in Eq. (11).
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SOC tð Þ ¼ SOC toð Þ � 1
Cc

ðt
0
i tð Þdt (11)

The starting SOC is denoted by SOC toð Þ, while the parameter Cc stands for the
capacity of the battery, calculated according to Eq. (1). The variable i tð Þ signifies the
discharge current, with positive values indicating discharging and negative values
signifying charging.

3.2 Description of the controllers

3.2.1 Model predictive controller

The model predictive control (MPC) technique utilizes the system’s model to
calculate the desired control signal required which will lead the system toward the
required value. Before formulating the equations for the MPC, we need to select the
prediction horizon, denoted as Np, which signifies how many samples into the future
the controller can forecast. The second variable is the control horizon, represented as
Nc. It indicates the number of control variables that can be manipulated, with the
condition that Np must be greater than or equal to Nc.

Consider a system in which the output at a particular sampling instant, denoted as
k, is not directly influenced by the control signal. This system can be described using
the discrete-time state-space model as shown in Eqs. (12) and (13).

xm kþ 1ð Þ ¼ Amxm kð Þ þ Bmu kð Þ (12)

y kð Þ ¼ Cmxm kð Þ (13)

Eqs. (14) and (15) define the difference between the current and previous values
of the control signal, denoted as Δu, and the state variable Δxm.

Δu kð Þ ¼ u kð Þ � u k� 1ð Þ (14)

Δxm kð Þ ¼ xm kð Þ � xm k� 1ð Þ (15)

We can formulate Eqs. (16) and (17) by merging Eqs. (12)–(15)

Δxm kþ 1ð Þ ¼ AmΔxm kð Þ þ BmΔu kð Þ (16)

y kþ 1ð Þ ¼ y kð Þ þ CmΔxm kþ 1ð Þ
¼ y kð Þ þ CmAmΔxm kð Þ þ CmBmΔu kð Þ

(17)

Eqs. (16) and (17) can be employed to construct the augmented state-space model
of the system as depicted in Eqs. (18) and (19).

x kþ 1ð Þ ¼ Ax kð Þ þ BΔu kð Þ (18)

y kð Þ ¼ Cx kð Þ (19)

where x kð Þ ¼ Δxm kð Þ
y kð Þ

� �
, A ¼ Am 0T

m

CmAm 1

" #
, B ¼ Bm

CmBm

� �
, C ¼ 0m 1½ �:

and the empty spaces in the matrix are filled by the zero matrix 0m ¼ 0, 0,⋯0½ �.
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At instant k, Eq. (20) describes the system states for future samples. This is
obtained by expanding x kþ 1ð Þ in Eq. (18).

x kþ 1jkð Þ ¼ Ax kð Þ þ BΔu kð Þ
⋮

x kþNpjk
� � ¼ ANpx kð Þ þ ANp�1BΔu kð Þ þ⋯þ

ANp�NcBΔu kþNc � 1ð Þ
(20)

Likewise, Eq. (21) can be derived by expanding y kþ 1ð Þ in Eq. (19).

y kþ 1jkð Þ ¼ CAx kð Þ þ CBΔu kð Þ
⋮

y kþNpjk
� � ¼ CANpx kð Þ þ CANp�1BΔu kð Þ þ⋯þ

CANp�NcBΔu kþNc � 1ð Þ
(21)

Eqs. (22) and (23) describe the matrix ΔU, with length Nc, containing the changes
in the control signal starting with instant k. Meanwhile, the matrix Y, with length Np,
describes the predicted output for the system.

ΔU ¼ Δu kð Þ Δu kþ 1ð Þ ⋯Δu kþNc � 1ð Þ½ �T (22)

Y ¼ y kþ 1jkð Þ y kþ 2jkð Þ … y kþNpjk
� �� �T (23)

Merging Eqs. (20)–(23) yields Eq. (24).

Y ¼ Fx kð Þ þΦΔU kð Þ (24)

where F ¼

CA
CA2

⋮
CANp

2
6664

3
7775 and Φ ¼

CB 0 ⋯ 0

CAB CB ⋯ 0

⋮ ⋮ ⋱ ⋮
CANp�1B CANp�2B ⋯ CANp�NcB

2
6666664

3
7777775
.

The vector containing the reference signal of the system has a length of Np and is
defined by Eq. (25).

RT
s ¼ 1 1⋯1 1½ �r kð Þ (25)

Eq. (26) contains the cost function J.

J ¼ Rs � Yð ÞTQ Rs � Yð Þ þ ΔUTRΔU (26)

where R is an Nc �Nc input weight matrix, and Q is an Nc �Nc output weight
matrix. The specific values of these weight matrices can be adjusted depending on the
system’s operational requirements. The ratio of the input weight R to the output
weight Q serves to penalize variations in the control signal during the system’s
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operation. In this work, Q was kept at 1, while the modification was performed on R
while the system was running. Eq. (27) can be obtained by expanding Eq. (26).

J ¼ Rs � Fx kð Þð ÞT Rs � Fx kð Þð Þ (27)

The partial derivative with respect to ΔU is taken and equated to zero yielding
Eqs. (28) and (29).

∂J
∂ΔU

¼ �2ΦT Rs � Fx kð Þð Þ þ 2 ΦTΦþ R
� �

ΔU (28)

∂J
∂ΔU

¼ 0 ! ΔU ¼ ΦTΦþ R
� ��1ΦT Rs � Fx kð Þð Þ (29)

The element Δu kð Þ is obtained from matrix ΔU and is used to update u k� 1ð Þ. This
results in the updated control signal u kð Þ.

3.2.2 Fuzzy logic controller

The architecture of the fuzzy logic controller (FLC) is illustrated in Figure 4. This
FLC generates the change in the input weight at time instant k, denoted by ΔR kð Þ. It
monitors the error e kð Þ and changes in error Δe kð Þ of the battery SOC, denoted by
SOCbattery kð Þ, and the SOC reference, denoted by SOCreference kð Þ. Furthermore,
Figure 4 depicts the three stages that the signal passes through before the controller
issues a command. The fuzzifier generates linguistic variables from the given signal.
Next, the inference mechanism correlates the linguistic variables with the rule base
and then produces a linguistic output. Finally, the defuzzifier creates the control
signal from the linguistic outputs. The change in the weight ΔR kð Þ is produced by the
FLC and is added to the current value R k� 1ð Þ to form R kð Þ.

The surface representing the fuzzy inference system is depicted in Figure 5.
When the values of e kð Þ and Δe kð Þ lie within [0.5, 1], the resultant ΔR kð Þ is positive,
indicating a large increase in the input weight. Conversely, when e kð Þ and Δe kð Þ are
between [�1, �0.5], there is a significant drop in ΔR kð Þ. When e kð Þ and Δe kð Þ fall
between [�0.5, 0.5], the magnitude ΔR kð Þ depends on their point of intersection with
the surface. A minor increase or decrease in ΔR kð Þ is applied until e kð Þ and Δe kð Þ
approach zero.

3.3 Induction motor drive

Eqs. (30)–(35) describe the induction motor (IM) model in the synchronously
rotating dq-coordinate system [7].

Figure 4.
Fuzzy logic controller block diagram.
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Vsd ¼ Rsisd þ dλsd
dt

� ωeλsq (30)

Vsq ¼ Rsisq þ
dλsq
dt

� ωeλsd (31)

Vrd ¼ Rrird þ dλrd
dt

� ωslλrq (32)

Vrq ¼ Rrirq þ
dλrq
dt

� ωslλrd (33)

Tem ¼ 3p
2

Lm

Lr
λrqird � λrdirq
� �

(34)

dωm

dt
¼ 1

J
Tem � TL � Bωmð Þ (35)

The variables V, i, and λ correspond to the voltages, currents, and fluxes, where
the dq coordinate system components for the rotor are denoted by subscript r, and the
stator is denoted by subscript s. The variables TL, Tem, B, and J are the load torque,
motor torque, coefficient of friction, and motor inertia. While Rs is the the stator
resistance and Rr is the rotor resistance. Additionally, ωm, ωe, and ωsl denote the rotor
speed, the speed at which the d-axis is rotating, and the speed at which the rotor axis is
rotating, respectively. Furthermore, ωe was intentionally set equated to ωsync ¼ 2πf
which represents the synchronous speed.

The electrical coupling equations are represented by Eqs. (30)–(34), and Eq. (35)
represents the mechanical coupling equation of the induction machine. Eq. (36) illus-
trates the relationship between the dq-fluxes and the dq-currents in matrix form.

λsd

λsq

λrd

λrq

2
6664

3
7775 ¼

Ls 0 Lm 0

0 Ls 0 Lm

Lm 0 Lr 0

0 Lm 0 Lr

2
6664

3
7775

isd
isq
ird
irq

2
6664

3
7775 (36)

Figure 5.
Fuzzy logic controller surface.

74

Electric Vehicles – Design, Modelling and Simulation



Eqs. (37) and (38) represent the conversion matrices used in the system. The
variables are converted to the dq coordinate system components, manipulated, then
transformed back to abc components.

isd
isq

� �
¼

ffiffiffi
2
3

r cos θeð Þ cos θe � 2π
3

� �
cos θe � 4π

3

� �

� sin θeð Þ � sin θe � 2π
3

� �
� sin θe � 4π

3

� �

2
6664

3
7775

ia
ib
ic

2
64

3
75 (37)

ia
ib
ic

2
64

3
75 ¼

ffiffiffi
2
3

r
cos θeð Þ � sin θeð Þ

cos θe þ 4π
3

� �
� sin θe þ 4π

3

� �

cos θe þ 2π
3

� �
� sin θe þ 2π

3

� �

2
666664

3
777775

isd
isq

� �
(38)

where θe represents the angle that the d-axis makes with the stationary axis [7].

3.3.1 Indirect field-oriented control (IFO)

To perform indirect field-orientation (IFO) we fix λrq to zero. Therefore, we can
obtain Eq. (39) by combining Eqs. (32) and (36). This rotor flux is calculated using
Eq. (39). In addition, Eq. (33) merged with Eq. (36), will result in Eq. (40) [7].
Eq. (40) serves the purpose of calculating the rotor slip.

λrd ¼ Lmisd (39)

ωsl ¼ Lm

τr

isq
λrd

(40)

where τr is the rotor time constant.
The state-space representation of the IFO IM drive can be derived by combining

Eqs. (34) and (36), resulting in

Tem ¼ 3p
2

Lm

Lr
λrdisq
� �

(41)

A relationship governing the speed ωm and the current isq can be obtained by
combining Eqs. (35) and (41).

dωm

dt
¼ 1

J
3p
2

Lm

Lr
λrdisq
� �� TL � Bωm

� �
(42)

Under a specific load TL, differentiating Eq. (42) results in

d2ωm

dt2
¼ �B

J
dωm

dt
þ 3p

2
Lm

Lr

λrd
J

disq
dt

(43)

The state-space representation of the IFO IMdrive is provided inEqs. (44) and (45) [7].

€ωm

_ωm

� �
¼ �B

J
0

1 0

2
4

3
5 _ωm

ωm

� �
þ

3p
2
Lm

Lr

λrd
J

0

2
4

3
5 disq

dt
(44)
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ωm ¼ 0 1½ � _ωm

ωm

� �
(45)

The comprehensive EV traction system, encompassing the IFO IM drive, the battery
bank, and the SOC tracking scheme is illustrated in Figure 6. The battery bank current
is used to estimate the battery SOC, and an FLC compares the battery bank SOC and
reference SOC, then generates an input weight R for the MPC objective function. The
outer controller loop comprising the input weight R, the MPC, and the motor speed ωm
is responsible for generating the reference i ∗sq current. The d-axis current i

∗
sd and q-axis

current i ∗sq are responsible for regulating the flux and torque of the induction motor,
respectively. The “Slip Calc.” block carries out rotor flux estimation using Eq. (39) and
subsequently calculates the slip using Eq. (40). Moreover, PI controllers for the inner
current loops ensure that the stator q and d component currents are tracking the
reference q and d component currents, respectively. The q and d component voltages
are generated from the inner PI controllers and converted to the reference abc
component sinusoidal voltages used to produce the inverter gating signals.

4. Simulation results

4.1 Testing methodology

4.1.1 Drive cycle description

A driving cycle consists of data points that represent the velocity of a real-life
vehicle measured over time. The New European Drive Cycle (NEDC) consists of both

Figure 6.
IFO IM drive with SOC tracking.
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urban and extra-urban driving stages. It is a combination of straight acceleration and
constant speed periods, and it is depicted in Figure 7. The urban driving cycle lasts for
800 seconds, starting at second 11 and ending at second 785. It consists of three
constant speed peaks, and they are repeated four times as shown in the rectangle. The
constant speed peaks are arranged in ascending order with the peaks occurring at 187,
400, 625, and 437 RPM, respectively. The extra-urban driving stage spans 370 sec-
onds, beginning at second 800 and concluding at second 1170. The speed peaks occur
at 625, 875, 1250, and 1500 RPM.

4.1.2 Simulink model description

Figure 8 shows the Simulink model for the EV traction system used in this work. A
580 V lithium-ion battery bank with a capacity of 4000 mAh provides the required
voltage and power for the EV traction system. The inverter produces the required
voltage and frequency to control the speed of the IM. Furthermore, the IM ratings
were 0.5 kW, 415 V, and 50 Hz. The references in the system are the red block
representing the reference motor d-axis current i ∗sd, the drive cycle reference block,
and the SOC reference block. The slip frequency estimation block estimates the rotor
flux and slip using Eqs. (39) and (40), respectively. The battery bank SOC estimation
is performed using Eq. (11), and the SOC is sent to the FLC. The FLC compares the

Figure 7.
NEDC drive cycle.

Figure 8.
MATLAB/Simulink model for the EV traction system with SOC tracking.
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battery SOC with the reference SOC and generates the R for the MPC cost function.
The MPC generates the speed-regulating signal i ∗sq while giving consideration to the
reference SOC. The motor dq currents are regulated by the inner PI controllers. While
the dq voltages are converted to the reference abc sinusoidal voltages V ∗

a , V
∗
b , and V ∗

c
that are used by the inverter to generate the required voltages for the motor. The
simulation sampling time is 10 kHz.

4.1.3 State of charge reference

The scope of this work focused on devising a technique to regulate the SOC of the
EV traction system rather than producing an SOC reference signal. Therefore, the
SOC reference signal used in this work is just a limitation to the maximum change in
SOC. Figure 9a shows the SOC deterioration over the NEDC drive cycle. The rate of
change of SOC, denoted by ΔSOC, is obtained by taking the difference between the
current and previous sample for the SOC signal. Figure 9b illustrates the inverted
version of the ΔSOC over-the-NEDC drive cycle, and is used as the primary evalua-
tion metric for the SOC tracking technique. The inverted ΔSOC will be referred to as
ΔSOC for simplicity.

The ΔSOC graph is divided into five regions as shown in Figure 10. The regions are
classified as follows:

• Region 1: Represents the urban stage of the NEDC drive cycle, and is
characterized by steady acceleration, deceleration, and constant speed. No
limitations are set on the ΔSOC. This region represents the impact of the motor
current on the ΔSOC when the motor performance is unrestricted. It also acts as
the reference point for generating the maximum permitted ΔSOC value for
regions 2 through 4. The peak values for the ΔSOC occur at 0.15, 0.19, and 0.255
Coulombs.

• Region 2: Represents the urban stage of the NEDC drive cycle, and is
characterized by steady acceleration, deceleration, and constant speed. The
ΔSOC is restricted to 90% of its original value. The maximum permitted ΔSOC
value is obtained by multiplying the ΔSOC of region 1 by 90%. The maximum
permitted ΔSOC value is shown by the 3 red bars in region 2.

Figure 9.
Battery bank (a) SOC decay (b) inverted ΔSOC with the SOC tracking technique.
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• Region 3: Represents the urban stage of the NEDC drive cycle, and is
characterized by steady acceleration, deceleration, and constant speed. The
ΔSOC is restricted to 80% of its original value. The maximum permitted ΔSOC
value is obtained by multiplying the ΔSOC of region 1 by 80%. The maximum
permitted ΔSOC value is shown by the 3 red bars in region 3.

• Region 4: Represents the urban stage of the NEDC drive cycle, and is
characterized by steady acceleration, deceleration, and constant speed. The
ΔSOC is restricted to 70% of its original value. The maximum permitted ΔSOC
value is obtained by multiplying the ΔSOC of region 1 by 70%. The maximum
permitted ΔSOC value is shown by the 3 red bars in region 4.

• Region 5: Represents the extra-urban stage of the NEDC drive cycle, and is
distinguished by its high speed. The ΔSOC is restricted to 80% of the ΔSOCwhen
the motor is running at 1500 RPM (0.55 Coulombs). The maximum permitted
ΔSOC value is shown by the red bar in region 5.

4.2 Test results

Figure 11 overlaps the ΔSOC readings with the predefined maximum permitted
values. Region 1 serves as an example of what the ΔSOC values in regions 2 through 4
would have been if the SOC tracking scheme had not enforced maximum permitted
ΔSOC values. Regions 2 through 4 clearly demonstrate that the ΔSOCwas constrained
and prevented from exceeding the established maximum permitted value, confirming
the effectiveness of the SOC tracking method. Additionally, in region 5, we observe
that when the ΔSOC remained below the maximum permitted value, it was allowed to
adapt freely. However, once the ΔSOC began to rise, beyond the 1000-second mark, it
was capped at the maximum permitted value. Moreover, during these capping
periods, the magnitude of the error ΔSOCwas recorded and the average was obtained.
Figure 12 displays the average of the absolute value of the error during the capping
periods. The absolute average error for the capping periods varies between
0:00052, 0:0013½ � and the average for the complete NEDC drive cycle is 0.00095.
This result is comparable to the ECMS, A-ECMS, and Fuzzy A-ECMS techniques
which yielded 0.0003, 0.0037, and 0.0019 deviations off the reference SOC while
testing on the NEDC drive cycle.

Figure 10.
Battery bank maximum permitted ΔSOC values on regions 2 through 5.
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Figure 13 illustrates the response of the motor’s speed during the NEDC drive
cycle. In region 1, it is evident that the unrestricted SOC tracker technique adeptly
regulates the motor’s speed. However, as we move into regions 2 through 4 (where the
maximum permitted ΔSOC values range from 90 to 70%), we observe a noticeable
decline in the motor’s speed tracking performance. The more stringent the ΔSOC
constraint, the larger the drop in the motor’s speed-tracking performance. Conse-
quently, in region 4, we witness a substantial deterioration in motor speed tracking
performance compared to regions 2 and 3. Moving to region 5, we note that before the
1000-second mark, the ΔSOC remained below its maximum permitted value,
allowing for effective regulation of the motor speed. Conversely, after the 1000-
second mark, the ΔSOC reached its maximum permitted value and was held at that
boundary, resulting in a decline in speed tracking performance.

Figure 14 presents the fluctuation in the input weight parameter, denoted as R
throughout the NEDC drive cycle. It is important to note that the input weight R plays
a direct role in determining the generation of the motor speed-regulating current i ∗sq,
which was discussed in the previous section. Specifically, as the value of R increases, it
imposes a more significant constraint on i ∗sq . Since i

∗
sq directly influences the motor

Figure 11.
Battery bank ΔSOC and maximum permitted ΔSOC values with the SOC tracking technique.

Figure 12.
ΔSOC absolute average error at the maximum permitted ΔSOC values with the SOC tracking technique.
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current, a lower i ∗sq results in drawing less current from the battery bank, eventually
leading to a reduced ΔSOC.

From the previous statement, it is apparent that enforcing a stricter limit on ΔSOC
necessitates a higher value for R. This becomes evident when comparing the values of
R in regions 2 through 4, which have the same speed reference. As ΔSOC constraints
become more stringent (from 90 to 70% maximum permitted ΔSOC), the value of R
increases correspondingly.

Furthermore, an increase in the reference speed demands a higher value for i ∗sq,
consequently increasing the ΔSOC value. If there is a maximum permitted ΔSOC
value, then the input weight R must rise in tandem with the increasing reference
speed to restrict i ∗sq further, and thereby maintain the ΔSOC at the maximum permit-
ted value. This phenomenon is observable when examining region 5. Before the 1000-
second mark, the ΔSOC value below the maximum permitted value, R remained at the
minimum level. However, after the 1000-second mark, as the ΔSOC value reached

Figure 13.
Motor speed response with the SOC tracking technique.

Figure 14.
Input weight R with the SOC tracking technique.
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the maximum permitted value, the input weight R increased in line with the reference
speed signal to uphold the ΔSOC at its maximum permitted value.

5. Conclusions

This chapter introduces a method for tracking the state of charge (SOC) using a
fuzzy-tuned model predictive controller. The mathematical models for the compo-
nents of an electric vehicle traction system were developed and tested on Simulink.
The simulation was conducted using the New European Drive Cycle, during which the
motor speed and battery SOC were continuously monitored. The outcomes of the
simulation demonstrate the effectiveness of the SOC tracking technique in regulating
motor speed when there are no SOC restrictions. Furthermore, it successfully main-
tains the battery SOC within the defined maximum permitted value, albeit with
some trade-offs in motor speed tracking performance. The absolute average
deviation from the reference for the SOC tracking technique was lower than the Fuzzy
A-ECMS, and A-ECMS techniques which yielded 0.00095, 0.0019, and 0.0037,
respectively. However, the ECMS technique with a fixed optimal equivalent factor
had the lowest deviation of 0.0003. In other words, there is still room for improve-
ment in the SOC tracking technique. Furthermore, the robustness of the technique on
different driving behaviors is yet to be tested. In summary, the simulation results
provide substantial evidence supporting the effectiveness of the SOC tracking
technique.

Future research directions include:

• Testing the robustness of the technique on an aggressive drive cycle such as
the US06 drive cycle.

• Testing the effectiveness of the technique on a reference SOC instead of a
fixed rate of change of SOC.

• Incorporating the isd current in the MPC objective function, and monitoring
the impact on the absolute average deviation from the reference SOC.

Abbreviations

EV electric vehicle
BEM battery energy management
SOC state of charge
DP dynamic programming
MPC model predictive controller
FLC fuzzy logic controller
FMPC fuzzy model predictive controller
ECMS equivalent consumption minimization strategy
A-ECMS adaptive equivalent consumption minimization strategy
Fuzzy A-ECMS fuzzy adaptive equivalent consumption minimization strategy
CM Chen and Mora
CC Coulomb counting
IM induction motor
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IFO indirect field orientation
PI Proportional-integral controller
NEDC New European drive cycle
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Chapter 4

Nonlinear Robust Control of
Trajectory-Following for
Autonomous Ground Electric
Vehicles
Xianjian Jin and Qikang Wang

Abstract

This chapter proposes a nonlinear robustH-infinity control approach to enhance the
trajectory-following capabilities of autonomous ground electric vehicles (AGEV). Given
the inherent influence of driving maneuvers and road conditions on vehicle trajectory
dynamics, the primary objective is to address the control challenges associated with
trajectory-following, including parametric uncertainties, system nonlinearities, and
external disturbance. Firstly, taking into account parameter uncertainties associated
with the tire’s physical limits, the system dynamics of the AGEV and its uncertain
vehicle trajectory-following system are modeled and constructed. Subsequently, an
augmented system for control-oriented vehicle trajectory-following is developed.
Finally, the design of the nonlinear robust H-infinity controller (NRC) for the vehicle
trajectory-following system is carried out, which is designed based on the H-infinity
performance index and incorporates nonlinear compensation to meet the requirements
of the AGEV system. The controller design involves solving a set of linear matrix
inequalities derived from quadratic H-infinity performance and Lyapunov stability. To
validate the efficacy of the proposed controller, simulations are conducted using a high-
fidelity CarSim® full-vehicle model in scenarios involving double lane change and
serpentine maneuvers. The simulation results demonstrate that the proposed NRC out-
performs both the linear quadratic regulator (LQR) controller and the robustH-infinity
controller (RHC) in terms of vehicle trajectory-following performance.

Keywords: autonomous vehicles, electric vehicles, trajectory-following, robust
control, nonlinear control

1. Introduction

In recent years, the emergence of AGEV has attracted significant attention from
the experts and scholars [1, 2]. AGEV technology offers notable benefits such as
reducing traffic congestion, minimizing air pollution, and enhancing road safety. One
key area of research focus is the application of active front steering (AFS) as a chassis
active control technology for AGEV steering systems. AFS employs adaptive steering
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gear ratio to improve vehicle stability and active safety. The integration of AFS
systems in AGEV provides substantial advantages in terms of driver safety, handling
flexibility, and trajectory-following performance for AGEV [3]. The inherent features
of AFS, including its rapid response and precise execution, contribute to enhanced
active safety and superior trajectory-following performance for AGEV [4, 5].

Extensive researches have been conducted in the literatures on the trajectory-
following control of AGEV with AFS system [6–12]. For achieving trajectory-
following for AGEV with the AFS system, a controller utilizing the Kalman filter with
multi-rate is designed to account for the motor control period and the sampling time
of the camera [6]. To address the challenges of the control distribution between
steering and the control system for AGEV, a model predictive control (MPC) method
is proposed in Ref. [7], which reallocates the braking and steering control based on tire
force to precisely follow the desired trajectory. Aiming to enhance steering stability
for AGEV, a variable steering ratio AFS controller is developed in Ref. [8], it estab-
lishes a mapping between vehicle velocity and steering wheel angle. Based on the
linearization of the vehicle’s model, the vehicle front steering angle is gained by the
AFS system to follow the desired trajectory on slippery roads [9]. Moreover, the
advanced steering capabilities of the AFS system have proven valuable in other
application areas related to trajectory-following control [10–12].

Despite the success achieved in trajectory-following, there remain challenges in
handling system nonlinearity, external disturbances, and uncertain model parameters
[13, 14]. For example, researchers have employed various control strategies.
Nonlinear model predictive control (NMPC) has been utilized to solve the system
nonlinearity and ensure feasibility and convergence [15]. A combination of sliding
mode and observer technique is applied to estimate model errors and disturbances for
enhancing the system’s stability [16]. In the context of Markov jump cyber-physical
systems, an adaptive sliding mode control (SMC) framework is proposed to handle
safety issues arising from actuator failures and external attacks [17]. For uncertain
challenges of robotic arm systems, a switchable neural networks-based SMC frame-
work has been developed to accurately track motion trajectories, which can provide
real time control to enhance the stability of the trajectory-following control system by
adaptive algorithm [18]. An adaptive fuzzy controller (FC) is developed to address the
challenge nonlinear trajectory-following system, and the stability of system is
guaranteed by Lyapunov method [19]. Some extensions of FC can be obtained from
Refs. [20, 21]. Furthermore, active disturbance rejection control is employed to
dynamically estimate and offset unmodeled system dynamics and unpredictable
external disturbances, it enhances the stability of vehicle trajectory-following system
[22]. Speed MPC strategies are proposed to achieve accurate trajectory-following for
AGEV [23]. In the milling system, the optimal control and time delay techniques are
used to suppress chatter by adaptive extreme value algorithm [24]. To handle the
problems of parameter jump in complex nonlinear systems, an adaptive control
method with multi-model switching is presented. The least squares technique and
some lemmas are also utilized to develop an adaptive control law [25]. For dealing
with the system disturbances, a novel optimal control based on iterative techniques is
proposed in [26], and it provides the conditions of system asymptotic stability and the
H-infinity control. An output feedback-based global adaptive control strategy is pro-
posed to handle system nonlinear time-varying parameters [27]. Moreover, robust
control strategies have also been implemented in trajectory-following control,
providing benefits in addressing the challenges of system nonlinearity, parameter
variation, and external disturbance [28].
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Therefore, this chapter develops a novel nonlinear robust control framework for
AGEV to address the challenges associated with trajectory-following control, includ-
ing system nonlinearities, uncertain parameter, and disturbances. Firstly, the dynam-
ics of the AGEV and the trajectory-following system are formulated. Subsequently,
taking into account the H-infinity performance criterion, nonlinear system compen-
sation, and aim of the trajectory-following, a nonlinear robust controller for
trajectory-following is designed. Then, the robustness and effectiveness of the
nonlinear robust controller is validated through MATLAB/Simulink/Carsim Co-
simulation platform under two scenes. The following sections are structured as fol-
lows: Section 2 introduces vehicle trajectory-following modeling. Section 3 outlines
the design of the nonlinear robust controller. Section 4 analyzes and discusses the
simulation outcomes, and Section 5 presents the conclusions.

2. Vehicle trajectory-following model

The primary focus of the chapter revolves the trajectory-following problem for
AGEV. It is assumed that the suspension is a rigid structure, and under normal driving
conditions, the slip angle tends to be small. For facilitating the analysis of vehicle
actual motion, the bicycle model is selected:

m _vx � vy _φ
� � ¼ Ffy sin δf þ Ffx cos δf þ Frx (1)

m €yþ vx _φð Þ ¼ Ffy cos δf þ Ffx sin δf þ Fry (2)

Iz€φ ¼ lf Ffy cos δf þ Ffx sin δf
� �� lrFry (3)

This model incorporates variables such as mass m, yaw angle φ, lateral velocity vx
and longitudinal velocity vy, lateral tire forces Fiy, longitudinal tire forces Fix, moment
of inertia Iz. Specifically, Fy can be expressed:

Fy ¼ f y α, Fz, sr, μð Þ (4)

The computation of α is:

α ¼ tan �1 vwy
vwx

� �
(5)

vwfx ¼ vx cos δf þ vy þ lf _φ
� �

sin δf
vwrx ¼ vx cos δf þ vy � lr _φ

� �
sin δf

(
(6)

vwfy ¼ vx cos δf � vy þ lf _φ
� �

sin δf
vwry ¼ vx cos δf � vy � lr _φ

� �
sin δf

(
(7)

sr is defined as follows:

sr ¼
1� vwx

rww
rww 6¼ 0, rww > vwxð Þ

rww

vwx
� 1 vwx 6¼ 0, rww < vwxð Þ

8><
>:

(8)
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where the tire’s radius and angular velocity are represented by r and ww,
respectively. FZ is given by the following equation:

FZfl,Zfr ¼ lrmg
2 lr þ lf
� �∓ΔF1 þ ΔF2

FZrl,Zrr ¼
lfmg

2 lr þ lf
� �∓ΔF2 þ ΔF1

8>>><
>>>:

(9)

ΔF1 and ΔF2 are calculated using specific equations:

ΔF1 ¼
m _vx � vyw
� �

hcog
2 lr þ lf
� �

ΔF2 ¼
m _vx � vyw
� �

hcog
2Lh

þ gmshs
2Lh

hcogξ
g

� sin ξ
� �

8>>><
>>>:

(10)

Under the assumption that α is small under driving conditions, the tire forces can
be simplified:

Fiy ¼ Nαiαi, i ¼ f , rð Þ (11)

where Nαi is the cornering stiffness. Slip angle αi can be gained:

αf ¼ δf �
vy þ lf _φ

vx
, αr ¼ � vy þ lr _φ

vx
(12)

Taking into account the small front wheel angle, we can approximate cosδf ≈ 1 and
sinδf ≈ 0. Additionally, we assume AGEV only moves in the horizontal plane, and it
neglects the influence of other effects. Consequently, based on Eqs. (11) and (12),
Eqs. (2) and (3) can be rewritten:

€y ¼ �Nαf þNαf

mvx
_y� lfNαf � lrNαf

mvx
þ vx

� �
_φþw2 (13)

€φ ¼ � lfNαf � lrNαf

Izvx
_y� l2f Nαf þ l2rNαf

Izvx
_φþw4 (14)

where w2 and w4 represent the model state error.
During the trajectory-following process of the AGEV, it is crucial to consider

state information of the vehicle. Figure 1 depicts the diagram illustrating the
trajectory-following process of the AGEV. The current and expected yaw angles are
represented by φ and φr, respectively. Furthermore, the derivatives of ye and φe can be
expressed:

_ye ¼ vy � vxφe (15)

_φe ¼ _φ� _φr ¼ _φ� χ_s (16)

The derivative information of s can be expressed as:

_s ¼ vx þ vyφe (17)
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€s ¼ _vx þ _vyφe þ vy _φe (18)

By utilizing Eqs. (15)–(18), the derivatives of ye and φe are transformed into
Eqs. (19) and (20), respectively.

€ye ¼ _vy � _vxφe � vx _φe (19)

€φe ¼ _ζ � _χ_s� χ€s (20)

The vehicle dynamics mentioned can be reformulated into a state space
representation:

_x ¼ Axþ Buþ Bww (21)

x ¼

ye
_ye
φe

_φe

2
6664

3
7775,A ¼

0 1 0 0

0 �Nαf þNαr

mvx

Nαf þNαr

m
� lfNαf � lrNαr

mvx
0 0 0 1

0 � lfNαf � lrNαr

Izvx

lfNαf � lrNαr

Iz
� l2f Nαf þ l2rNαr

Izvx

2
66666664

3
77777775
,Bw ¼

0

1

0

1

2
6664

3
7775

T

B ¼ 0
Nαf

m
0

lfNαf

Iz

� �T

The correlation between front wheel angle δf and steering wheel angle δa can be
represented:

δa ¼ τf δf (22)

where τf is the gear ratio.

Figure 1.
The diagram illustrating the trajectory-following process of the AGEV.
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As AGEV navigate through complex and dynamic road conditions, Ni (i = αf, αr)
vary and remain within certain bounds. This variation can be addressed in the fol-
lowing manner:

Ni ¼ Ni þ ni ~Ni, nij j< 1 i ¼ αf , αrð Þ (23)

Nαz ¼ Nαzmin þNαzmax

2
z ¼ f , rð Þ (24)

~Nαz ¼ Nαzmax �Nαzmin

2
z ¼ f , rð Þ (25)

The maximum and minimum values of Ni (i = αf, αr) are denoted as Nimax and
Nimin, respectively. The time-varying parameters ni of the system satisfy the condition
| ni | ≤ 1(i = αf, αr).

The system model (21) can be modified as follows:

_x ¼ Adxþ Bduþ Bww (26)

The arguments in the equation have the following significance:

Ad ¼ Ad þ ΔA,Bd ¼ Bd þ ΔB, ΔA ΔB½ � ¼ HdFd EA EB½ �, Fdj j≤ 1Ad ¼
0 1 0 0

0 �Nαf þNαr

mvx

Nαf þNαr

m
� lfNαf � lrNαr

Iz
0 0 0 1

0 � lfNαf � lrNαr

Izvx

lfNαf � lrNαr

Iz
� l2f Nαf þ l2rNαr

Izvx

2
666666664

3
777777775
,Bd ¼

0

Nαf

m
0

lfNαf

Iz

2
666666664

3
777777775

EA ¼

0 � 1
mvx

1
m

� lf
mvx

0 � 1
mvx

1
m

lr
mvx

0 � lf
Izvx

lf
Iz

� l2f
Izvx

0
lr
Izvx

� lr
Iz

� l2r
Izvx

2
666666666666664

3
777777777777775

,Hd ¼

0 0 0 0

~Nαf ~Nαr 0 0

0 0 0 0

0 0 ~Nαf ~Nαr

2
666664

3
777775
,EB ¼

1
m
0
lf
Iz
0

2
66666664

3
77777775

3. The design of nonlinear robust controller

3.1 Robust feedback control design

To achieve the desired trajectory tracking, an error function is defined and a robust
linear feedback gain is designed as follows:

Js ¼
ð∞
0
q1y

2
e þ q2 _y

2
e þ q3φ

2
e þ q4 _φ

2
e þ q4δ

2dt (27)
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where the letter symbols in the equation hold the following meanings:

ye ¼ ya � yd, _ye ¼ vy � vxφe,φe ¼ φ� φr, _φe ¼ _φ� χ_s

The equation presented above can be expressed as follows:

J ¼
ð∞
0

C1xþD11w
� �T

U C1xþD11w
� �þ uTVu

h i
dt

¼
ð∞
0

U
1
2C1xþU

1
2D11w

� �T
U

1
2C1xþU

1
2D11w

� �
þ
ð∞
0

V
1
2u

� �T
V

1
2u

� �
dt

� (28)

The arguments in the equation hold the following significance:

C1 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775,D11 ¼ 1,U ¼

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

2
6664

3
77750,V ¼ q5

The control output z can be obtained:

z ¼ C1xþD11wþD12u (29)

where:

C1 ¼ U
1
2C1

0

" #
,D11 ¼ U

1
2D11

0

" #
,D12 ¼

0

V
1
2

� �

The error cost function J is related to the control output z in the following manner:

J ¼ zk k22 (30)

By utilizing the aforementioned system model (26) and the control output of the
system (29), the problem of trajectory-following can be reformulated as a standard H-
infinity control problem.

_x ¼ Adxþ Bwwþ Bdu

z ¼ C1xþD11wþD12u

(
(31)

In accordance with H∞ control theory, the aim of this trajectory-following system
is to devise a controller uL = Kx that satisfy the requirements of trajectory-following
for AGEV.

By utilizing Eq. (31) and the state feedback controller uL = Kx, it can derive the
vehicle trajectory-following system.

_x ¼ Asxþ Bsw

z ¼ CsxþDsw

(
(32)

where:
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As ¼ Ad þ BdK þHdFd EA þ EBKð Þ,Bs ¼ Bw,Cs ¼ C1 þD12K,Ds ¼ D11

Within this investigation, w is regarded as an external disturbance affecting the
system. The representation of the system’s transfer function (32) can be formulated as
follows:

T sð Þ ¼ Cs sI � Asð ÞBs þDs (33)

w(t) and z(t) are presented:

Ξk k22 ¼
ðþ∞

0
ΞT tð ÞΞ tð Þdt,Ξ ¼ w, z (34)

The definition of the H-infinity norm is given by:

T sð Þk k∞ ¼ sup
w6¼0

zk k2
wk k2

(35)

In other words, the H-infinity norm represents system maximum singular value.
The object of the H-infinity is to find K that satisfies the desired following perfor-
mance while constraining the impact of disturbances on the output to a specific level.
Hence, the subsequent H-infinity performance index is chosen:

ð∞
0
zT tð Þz tð Þdt

γ2
<
ð∞
0
wT tð Þw tð Þdt (36)

In order to demonstrate the stability and H∞ performance of the system (33),
several lemmas will be presented.

Lemma 1 [14, 21]: Given matrix P ¼ P11 P12

P21 P22

� �
, where P = PT, the conditions

(37)–(39) are equivalent:

P<0 (37)

P11 <0,P22 � PT
12P11�1P12 <0 (38)

P22 <0,P11 � P12P22�1P
T
12 <0 (39)

Lemma 2 [26, 27]: Let F be an appropriately dimensioned matrix such that P = PT.
Suppose M and N are symmetric real matrices, and FTF ≤ 1. Under these conditions,
the following inequality holds:

PþMFN þNTFTMT <0 (40)

The existence of a positive value α > 0 satisfying the following inequality is both
sufficient and necessary conditions:

Pþ αMMT þ α�1NTN <0 (41)

The H-infinity control gain K for trajectory-following system (33) can be obtained
by applying the developed Theorem 1.
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Theorem 1: In order to ensure both the stability and H∞ performance of the
system, certain conditions need to be satisfied. These conditions involve the existence
of symmetric matrices Y > 0, X > 0, and positive values γ and η, which satisfy the
inequality (42). Furthermore, there should exist a H∞ control gain K for the system
that fulfills the following equation.

syms AdY þ BdX
� �

Bw ϒ1 εHd ϒ2

∗ �γI DT
11 0 0

∗ ∗ �γI 0 0
∗ ∗ ∗ �ηI 0
∗ ∗ ∗ ∗ �ηI

2
6666664

3
7777775
<0 (42)

where:

syms ∗ð Þ ¼ ∗ þ ∗ T,ϒ1 ¼ YCT
1 þ XTDT

12,ϒ2 ¼ YET
A þ XTET

B

Proof: The condition of stability and H∞ performance for system (32) is that there
exists a symmetric matrix U > 0 and value γ that satisfies:

UAs þ AT
s U UBs CT

s
∗ �γI DT

s
∗ ∗ �γI

2
64

3
75<0 (43)

Inequation (43) can be written:

syms U Ad þ BdK
� �þUHdFd EA þ EBKð Þ� �

UBw C1 þD12Kð ÞT
∗ �γI D11T
∗ ∗ �γI

2
64

3
75<0 (44)

Inequation (44) further rewrite:

syms U Ad þ BdK
� �� �

UBw CT
s

∗ �γI DT
11

∗ ∗ �γI

2
64

3
75þ

syms UHdFd EA þ EBKð Þð Þ 0 0
∗ 0 0
∗ ∗ 0

2
64

3
75<0

(45)

Inequation (45) is equivalent to:

syms U Ad þ BdK
� �� �

UBw CT
s

∗ �γI DT
11

∗ ∗ �γI

2
664

3
775þ

UHd

0

0

2
664

3
775Fd EA þ EBKð Þ 0 0½ �

þ
EA þ EBKð ÞT

0

0

2
664

3
775FT

d UHdð ÞT 0 0
� �

<0

(46)
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Assume that:

Hd ¼ UHd 0 0½ �T, Fd ¼ Fd (47)

EAB ¼ EA þ EBKð Þ 0 0½ � (48)

ϖ ¼
syms U Ad þ BdK

� �� �
UBw CT

cl
∗ �γI D11T
∗ ∗ �γI

2
64

3
75 (49)

Inequation (46) can be written as the following conditions:

ϖ þHdFdEAB þ ET
ABF

T
dH

T
d <0 (50)

Based on lemma 2, there exists η > 0 satisfy:

ϖ þ ηHdH
T
d þ η�1EABE

T
AB <0 (51)

Inequation (51) can be gained from Lemma 1.

ϖ Hd E
T
AB

∗ �η�1I 0

∗ ∗ �ηI

2
64

3
75<0 (52)

Expand the inequality (52), according to the property of linear matrix inequality
and diag{U�1, I, I, η, I}. Let Y = U�1, KY = X, Theorem 1 can be obtained.

3.2 Nonlinear robust control design

Subsequently, in order to enhance system’s rapid response and minimize over-
shoot, the design of the nonlinear compensation feedback control part will be formu-
lated as follows:

unla ¼ ρ r, hð ÞBTQx (53)

Here, the nonlinear compensation function ρ(r, h) is introduced, and it depends on
the error state x, the reference value r and actual value h. Q can be obtained:

AT
s Q þ QAs þW ¼ 0 (54)

W ¼ 100l � I (55)

where l is adjustable value.
The nonlinear compensation part is as follows:

ρ r, hð Þ ¼ �β
1

1� e�1 e
�α 1�h�h0

r�h0

���
��� � e�1

 !
(56)

where α and β are positive adjustable parameters.
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By integrating the linear part and the nonlinear part, the actuator’s output is
ultimately derived in the subsequent expression (57). The utilization of linear feed-
back part facilitates swifter system response within the trajectory-following, while
concurrently, the nonlinear compensation part attains stable output and diminishes
system overshoot.

ufinal ¼ Kxþ ρ r, hð ÞBTQx (57)

Based on the aforementioned nonlinear compensation part, and taking into
account the saturation of the system’s actuator output, the nonlinear robust control
system model can be reformulated in the subsequent manner.

_x ¼ Adxþ Bwwþ Bdsat ufinal
� �

z ¼ C1xþD11wþD12sat ufinal
� �

8<
: (58)

sat ufinal
� � ¼

umax, ufinal > umax

Kxþ ρ r, hð ÞBTQx, ufinal
�� ��< umax

�umax, ufinal < � umax

8>>><
>>>:

(59)

Taking into account the saturation of the front wheel angle, the actual expression
for the nonlinear compensation can be represented as follows:

unla ¼ sat uð Þ � Kx (60)

Based on the aforementioned conditions, the expression for unla can be formulated
as follows.

0< unlaj j< ρ r, hð ÞBTQx (61)

Subsequently, the impact of the nonlinear compensation on H-infinity
performance and stability of the system will be demonstrated.

Proof: The Lyapunov functional V is defined as follows:

V ¼ xTSx (62)

_V ¼ _xTSxþ xTS _x ¼ Axþ Rxþ Bww
� �T

Sxþ xTS Axþ Rxþ Bww
� �

¼ xTA
T
Sxþ xTR

T
SxþwTBT

wSxþ xTSAxþ xTSRxþ xTSBww

¼ xT A
T
Sþ SA

� �
xþ xT R

T
Sþ SR

� �
xþwTBT

wSxþ xTSBww

(63)

where:

A ¼ Ad þ BdK,R ¼ Bdunla

When w = 0:

_V ¼ xT A
T
Sþ SA

� �
xþ xT R

T
Sþ SR

� �
x (64)
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Assuming that:

V1 ¼ xT A
T
Sþ SA

� �
x (65)

It can be inferred that V1 > 0.
Assuming that

V2 ¼ xT R
T
Sþ SR

� �
x ¼ 2xTSB sat Kxþ ρBTSx

� �� Kx
� � ¼ 2m sat nþ ρmð Þ � nð Þ

(66)

where:

m ¼ xTSB, n ¼ Kx

When actuator output is not saturated:

sat nþ ρmð Þj j< umax (67)

At this time:

V2 ¼ 2m sat nþ ρmð Þ � nð Þ ¼ 2ρm2 < ¼ 0 (68)

Therefore:

_V ¼ V1 þ V2 ¼ xT A
T
Sþ SA

� �
xþ 2m sat nþ ρmð Þ � nð Þ< ¼ xT A

T
Sþ SA

� �
x<0

(69)

When actuator output is saturated:

sat nþ ρmð Þj j≥ umax (70)

Suppose that j is saturated and ρm = 0, the system is asymptotically stable.
When j is not subjected to saturation, the output can take on the following two

forms:

m<0, sat nþ ρmð Þ � n≥0, When nþ ρm≥ umax and n>0

m>0, sat nþ ρmð Þ � n≤0, When nþ ρm≤ � umax and n<0

(
(71)

It can be observed from the inequality condition (71):V2 ¼ 2m sat nþ ρmð Þ � nð Þ< ¼
0 (72)

Thus:

_V ¼ V1 þ V2 ¼ xT A
T
Sþ SA

� �
xþ 2m sat nþ ρmð Þ � nð Þ< ¼ xT A

T
Sþ SA

� �
x<0

(72)

Thus, the system with a nonlinear compensation function is asymptotically stable
without interference.
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Next, the stability and H-infinity performance of the system with a nonlinear
compensation function under external disturbances will be demonstrated.

Let initially establish a cost function Jf:

Jf ¼ _V þ zTz� γ2wTw (73)

Since the system exhibits asymptotic stability, then if the H-infinity satisfies the
following inequality:

zk k2 < γ2 wk k2 (74)

Then, inequality (76) exists

Jf ¼ _V þ zTz� γ2wTw<0 (75)

The above inequality (76) can be further rewritten:

Jf ¼
x
w

� �T
A

T
Sþ SAþ 2SR SBw

∗ 0

" #
þ CTC CTD

∗ DTD

" #
þ 0 0

∗ γ2

� � !
x
w

� �
(76)

Based on inequality (77) and the characteristics of quadratic form, it can establish
the following inequality:

Ψ ¼ A
T
Sþ SAþ 2SR SBw

∗ 0

" #
þ CTC CTD

∗ DTD

" #
þ 0 0

∗ γ2

� �
(77)

Based on Lemma 1:

Ψ ¼
A

T
Sþ SAþ 2SR SBw CT

∗ γ2I DT

∗ ∗ �I

2
64

3
75 (78)

Let U = S, Eq. (79) is negative from Theorem 1, inequality (66), (68), and (72).
Thus, the stability and H-infinity performance of system with nonlinear
compensation function is proved.

4. Simulation and analysis

This section simulates and validates the proposed nonlinear robust H-infinity
state-feedback controller on the MATLAB/Simulink-Carsim®. The simulation
framework is implemented using MATLAB/Simulink, while the high-fidelity
dynamics model for AGEV trajectory-following is provided by CarSim® software.
Figure 2 illustrates the simulation flowchart, and Table 1 defines the key parameters
of AGEV.

The simulation scenarios include double lane change (DLC) road and serpentine
road scenes, with a constant forward speed of 54 km/h. These road scenes are chosen
to evaluate the controller’s robust following ability and steady-state response
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performance. For comparison purposes, the performance of the proposed controller is
also compared with that of the LQR and RHC controllers.

4.1 Double lane change scene

The simulation results for double lane change (DLC) are presented in Figures 3–9,
depicting global trajectories, lateral errors, road curvature, front wheel angle, yaw,
yaw error, linear angle, and nonlinear compensation part. Figures 3 and 4 show the
global trajectories and lateral errors obtained from three controllers during DLC
scenario. All three controllers exhibit satisfactory tracking performance. The maxi-
mum of the lateral error for LQR controller is approximately 0.4 m, while for the RHC
controller it is around 0.24 m. Notably, the NRC controller achieves a smaller maxi-
mum lateral error compared to the other two controllers, indicating its superior
tracking performance. Furthermore, Figure 3 demonstrates that NRC maintains
exceptional system response within the range of 45 to 55 meters, further it highlights
NRC has ability to enhance the transient performance of the system.

Figure 2.
Flowchart of system simulation framework.

Parameter Scale Unit Parameter Scale Unit

m 1413 kg Iz 1536.7 kg�m2

Nαf [97,996,119,772] N/rad Nαr [79,351,96,985] N/rad

lf 1.015 m lz 0.54 m

lr 1.895 m r 0.325 m

Table 1.
The key parameters of the vehicle.
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The road curvature and front wheel angle for AGEV during DLC scene are illus-
trated in Figures 5 and 6. Figure 6 indicates that the front wheel angle of the NRC
controller consistently falls between that of the LQR and RHC controllers. It is attrib-
uted to the fact that a too small front wheel angle would result in a slow system
response, while a too large front wheel angle would lead to significant overshoot. The
NRC controller incorporates a linear feedback part to enhance the system response
and a nonlinear compensation part to mitigate excessive overshoot. As a result, the
NRC controller demonstrates excellent trajectory-following capabilities.

Figure 5.
Curvature of road under DLC scene.

Figure 4.
Lateral errors of three controllers under DLC scene.

Figure 3.
Global trajectories of three controllers under DLC scene.
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Figures 7 and 8 depict the yaw and yaw error of the NRC controller, and the NRC
controller exhibits smaller yaw error and excellent trajectory-following capabilities
compared to the RHC and LQR controllers. The angle of the linear feedback and
nonlinear compensation of the NRC controller are illustrated in Figure 9. Notably,
while the lateral error is smaller, the system nonlinear part of the NRC controller is
significant. Conversely, as the vehicle lateral error increases, the system nonlinear part
gradually decreases. It aligns with the design intention of the NRC controller, wherein
the system exhibits fast response under increasing error scenes and small overshoot
when the error is minimal.

Figure 8.
Yaw error of three controllers under DLC scene.

Figure 7.
Yaw of three controllers under DLC scene.

Figure 6.
Front wheel angle of three controllers under DLC scene.
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4.2 Serpentine scene

Figures 10 and 11 illustrate the global trajectories and lateral errors during serpen-
tine tracking. It can be observed that the NRC controller exhibits smaller maximum
lateral errors compared to the LQR and RHC controllers. Furthermore, the NRC
controller demonstrates higher response speed and superior transient performance in
comparison with the other two controllers. These findings indicate that the NRC
controller outperforms the LQR and RHC controllers in terms of tracking perfor-
mance on serpentine roads.

Figure 9.
Steering angle of NRC under DLC scene.

Figure 10.
Global trajectories of three controllers under serpentine scene.

Figure 11.
Lateral errors of three controllers under serpentine scene.
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Figures 12 and 13 present the road curvature and front wheel angle of the serpen-
tine scene. The maximum of serpentine road curvature is approximately 0.01(1/m).
Similar to the DLC scene, the front wheel angle value of the NRC lies within the range
of the LQR and RHC controllers. The inclusion of nonlinear compensation enables
NRC to demonstrate stable trajectory-following capability.

In Figures 14 and 15, it can be observed that NRC responds quickly with minimal
yaw error when tracking a trajectory with large curvature. This results in low yaw
error and ensures stable tracking performance. Figure 16 illustrates the angle of linear
and nonlinear feedback of NRC under the serpentine scene. The value of the nonlinear

Figure 12.
Curvature of road under serpentine scene.

Figure 13.
Front wheel angle of three controllers under serpentine scene.

Figure 14.
Yaw of three controllers under serpentine scene.
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compensation function aligns with the trend of linear feedback, and it contributes to
enhanced system response speed and trajectory tracking accuracy.

The mean absolute lateral error (MAE), maximum lateral error (ME), and root-
mean-square lateral error (RMSE) are used to quantitatively analyze the trajectory-
following performance of NRC, and the RHC and LQR controllers are utilized as
comparative test.

Table 2 presents the values of ME, MAE, RMSE, RI, and RII for the lateral
displacement in both DLC and serpentine scenes. The data clearly indicate NRC
achieves smaller ME, MAE, and RMSE compared to LQR and RHC in both scenarios.

Figure 15.
Yaw error of three controllers under serpentine scene.

Figure 16.
Steering angle of NRC under serpentine scene.

Scene Index(ye) LQR(m) RHC(m) NRC(m) RI RII

DLC ME 0.395 0.244 0.193 51.30% 20.96%

MAE 0.178 0.102 0.087 51.12% 14.49%

RMSE 0.220 0.131 0.108 50.95% 17.69%

Serpentine ME 0.876 0.413 0.365 58.40% 11.64%

MAE 0.472 0.224 0.196 58.36% 12.42%

RMSE 0.552 0.264 0.232 57.94% 12.08%

Notes: RI = (LQR- NRC)/LQR, RII = (RHC - NRC)/RHC.

Table 2.
Quantitatively analyze of lateral error under two scenes.
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The larger errors observed in the DLC scene can be attributed to the significant lateral
displacement in this scenario, which lead to greater trajectory-following errors. In
terms of performance improvement, NRC demonstrates an overall enhancement of
over 50% compared to LQR in the DLC scene, and over 57% improvement in the
serpentine scene. Additionally, under the DLC scene, NRC exhibits a 20.96% higher
ME than RHC, which indicates its faster system response in trajectory-following with
large model state errors. Furthermore, the MAE of NRC is approximately 14.49% in
the DLC scene, which is higher than RHC, it highlights its smaller errors compared to
RHC. Overall, the proposed controller outperforms RHC and LQR by offering
advantages such as fast response speed and reduced overshoot.

5. Conclusion

To enhance the precision of trajectory-following, speed of system response, and
suppression of overshoot in the control system for AGEV equipped with AFS system,
we propose a novel NRC strategy. Initially, we establish the system dynamics of
AGEV and its vehicle trajectory-following control system with dynamic error. By
applying Lyapunov stability theory, we ultimately design the nonlinear robust H-
infinity controller for the AGEV trajectory-following system. The proposed controller
is solved by using a set of linear matrix inequalities. The efficacy of the proposed
controller is validated by utilizing MATLAB/Simulink and Carsim® software. The
simulation results demonstrate that the proposed controller has efficient trajectory-
following performance compared to RHC and LQR.

Conflict of interest

The authors declare no conflict of interest.

Author details

Xianjian Jin1,2* and Qikang Wang1

1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai,
China

2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai
University, Shanghai, China

*Address all correspondence to: jinxianjian@yeah.net

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

104

Electric Vehicles – Design, Modelling and Simulation



References

[1] Deng H, Zhao Y, Nguyen AT,
Huang C. Fault-tolerant predictive control
with deep-reinforcement-learning-
based torque distribution for four in-
wheel motor drive electric vehicles.
IEEE/ASME Transactions on
Mechatronics. 2023;28(2):668-680.
DOI: 10.1109/TMECH.2022.3233705

[2] Yassine A, Hossain MS,
Muhammad G, Guizani M. Double
auction mechanisms for dynamic
autonomous electric vehicles energy
trading. IEEE Transactions on Vehicular
Technology. 2019;68(8):7466-7476.
DOI: 10.1109/TVT.2019.2920531

[3] Barari A, Saraygord AS, Liang X.
Coordinated control for path-following
of an autonomous four in-wheel motor
drive electric vehicle. Proceedings of the
Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering
Science. 2022;236(11):6335-6346.
DOI: 10.1177/09544062211064797

[4] Gözü M, Ozkan B, Emirler MT.
Disturbance observer based active
independent front steering control for
improving vehicle yaw stability and tire
utilization. International Journal of
Automotive Technology. 2022;23(3):
841-854. DOI: 10.1007/s12239-022-
0075-1

[5] Mousavinejad E, Han QL, Yang F,
Zhu Y, Vlacic L. Integrated control of
ground vehicles dynamics via advanced
terminal sliding mode control. Vehicle
System Dynamics. 2017;55(2):268-294.
DOI: 10.1080/00423114.2016.1256489

[6] Wang Y, Nguyen B, Fujimoto H,
Hori Y. Multirate estimation and control
of body slip angle for electric vehicles
based on onboard vision system. IEEE
Transactions on Industrial Electronics.

2014;61:1133-1143. DOI: 10.1109/
TIE.2013.2271596

[7] Wang G, Liu Y, Li S, Tian Y,
Zhang N, Cui G. New integrated vehicle
stability control of active front steering
and electronic stability control
considering tire force reserve capability.
IEEE Transactions on Vehicular
Technology. 2021;70:2181-2195.
DOI: 10.1109/TVT.2021.3056560

[8] Cho J, Huh K. Active front steering
for driver’s steering comfort and vehicle
driving stability. International Journal of
Automotive Technology. 2019;20:
589-596. DOI: 10.1007/s12239-019-
0056-1

[9] Falcone P, Borrelli F, Asgari J,
Tseng H, Hrovat D. Predictive active
steering control for autonomous vehicle
systems. IEEE Transactions on Control
Systems Technology. 2007;15:566-580.
DOI: 10.1109/TCST.2007.894653

[10] Soltani A, Azadi S, Jazar RN.
Integrated control of braking and
steering systems to improve vehicle
stability based on optimal wheel slip
ratio estimation. Journal of the Brazilian
Society of Mechanical Sciences and
Engineering. 2022;44(3):102.
DOI: 10.1007/s40430-022-03420-2

[11] Hladio A, Nielsen C, Wang D.
Path following for a class of mechanical
systems. IEEE Transactions on Control
Systems Technology. 2012;21(6):
2380-2390. DOI: 10.1109/TCST.2012.
2223470

[12] Ahmadian N, Khosravi A, Sarhadi P.
Driver assistant yaw stability control
via integration of AFS and DYC.
Vehicle system dynamics. 2022;60(5):
1742-1762. DOI: 10.1080/
00423114.2021.1879390

105

Nonlinear Robust Control of Trajectory-Following for Autonomous Ground Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.112049



[13] Ghaffari V. Optimal tuning of
composite nonlinear feedback control in
time-delay nonlinear systems. Journal of
the Franklin Institute. 2020;357(2):
1331-1356. DOI: 10.1016/j.
jfranklin.2019.12.024

[14] Mobayen S. Robust tracking
controller for multivariable delayed
systems with input saturation via
composite nonlinear feedback. Nonlinear
Dynamics. 2014;76(1):827-838.
DOI: 10.1007/s11071-013-1172-5

[15] Yu S, Li X, Chen H, Allgöwer F.
Nonlinear model predictive control for
path following problems. International
Journal of Robust and Nonlinear Control.
2015;25(8):1168-1182. DOI: 10.1002/
rnc.3133

[16] Chen J, Shuai Z, Zhang H, Zhao W.
Path following control of autonomous
four-wheel-independent-drive electric
vehicles via second-order sliding mode
and nonlinear disturbance observer
techniques. IEEE Transactions on
Industrial Electronics. 2020;68(3):
2460-2469. DOI: 10.1109/
TIE.2020.2973879

[17] Liu Z, Chen X, Yu J. Adaptive sliding
mode security control for stochastic
markov jump cyber-physical nonlinear
systems subject to actuator failures and
randomly occurring injection attacks.
IEEE Transactions on Industrial
Informatics. 2022;19(3):3155-3165.
DOI: 10.1109/TII.2022.3181274

[18] Zhao X, Liu Z, Jiang B, Gao C.
Switched controller design for robotic
manipulator via neural network-based
sliding mode approach. IEEE
Transactions on Circuits and Systems II:
Express Briefs. 2023;70(2):561-565.
DOI: 10.1109/TCSII.2022.3169475

[19] Xu B, Sun F, Pan Y, Chen B.
Disturbance observer based composite

learning fuzzy control of nonlinear
systems with unknown dead zone. IEEE
Transactions on Systems, Man, and
Cybernetics: Systems. 2016;47(8):
1854-1862. DOI: 10.1109/
TSMC.2016.2562502

[20] Cao H, Song X, Zhao S, Bao S,
Huang Z. An optimal model-based
trajectory-following architecture
synthesising the lateral adaptive preview
strategy and longitudinal velocity
planning for highly automated vehicle.
Vehicle System Dynamics. 2017;55(8):
1143-1188. DOI: 10.1080/
00423114.2017.1305114

[21] Cervantes J, Yu W, Salazar S,
Chairez I. Takagi–Sugeno dynamic
neuro-fuzzy controller of uncertain
nonlinear systems. IEEE Transactions on
Fuzzy Systems. 2016;25(6):1601-1615.
DOI: 10.1109/TFUZZ.2016.2612697

[22] Wu Y, Wang L, Zhang J, Li F. Path
following control of autonomous ground
vehicle based on nonsingular terminal
sliding mode and active disturbance
rejection control. IEEE Transactions on
Vehicular Technology. 2019;68(7):
6379-6390. DOI: 10.1109/
TVT.2019.2916982

[23] Ding T, Zhang Y, Ma G, Cao Z,
Zhao X, Tao B. Trajectory tracking of
redundantly actuated mobile robot by
MPC velocity control under steering
strategy constraint. Mechatronics. 2022;
84:102779. DOI: 10.1016/j.
mechatronics.2022.102779

[24] Moradi H, Vossoughi G,
MovahhedyMR, Salarieh H. Suppression
of nonlinear regenerative chatter inmilling
process via robust optimal control. Journal
of Process Control. 2013;23(5):631-648.
DOI: 10.1016/j.jprocont.2013.02.006

[25] Fu Y, Li B, Fu J. Multi-model
adaptive switching control of a nonlinear

106

Electric Vehicles – Design, Modelling and Simulation



system and its applications in a smelting
process of fused magnesia. Journal of
Process Control. 2022;115:67-76.
DOI: 10.1016/j.jprocont.2022.04.009

[26] Fahmy SFF, Banks SP. Robust H-
infinity control of uncertain nonlinear
dynamical systems via linear time-
varying approximations. Nonlinear
Analysis: Theory, Methods &
Applications. 2005;63(5–7):2315-2327.
DOI: 10.1016/j.na.2005.03.030

[27] Ju G, Wu Y, SunW. Adaptive output
feedback asymptotic stabilization of
nonholonomic systems with
uncertainties. Nonlinear Analysis:
Theory, Methods and Applications.
2009;71(11):5106-5117. DOI: 10.1016/j.
na.2009.03.088

[28] Li SE, Gao F, Li K, Wang LY, You K,
Cao D. Robust longitudinal control of
multi-vehicle systems-a distributed H-
infinity method. IEEE Transactions on
Intelligent Transportation Systems. 2017;
19(9):2779-2788. DOI: 10.1109/
TITS.2017.2760910

107

Nonlinear Robust Control of Trajectory-Following for Autonomous Ground Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.112049





Chapter 5

Dynamics Modeling and
Characteristics Analysis of
Distributed Drive Electric Vehicles
Jinhao Liang,Tong Shen, Ruiqi Fang and Faan Wang

Abstract

Due to the short transmission chain, compact structure, and the feature of quick
and accurate torque generation, distributed drive electric vehicle (DDEV) has
attracted many researchers from academia and industry. The significantly redundant
execution characteristic of four independently driven in-wheel motors also provides
more potential to guarantee the vehicle dynamics performance. Moreover, the unique
torque vector control of DDEV generates the direct yaw moment control mode. It has
been proven to be effective to modify the vehicle steering characteristics. Through a
reasonable torque vector allocation strategy, the energy-saving can also be realized.
This chapter will introduce the distributed drive electric vehicle from the viewpoint of
the dynamics modeling, stability performance analysis, and energy-saving strategy.

Keywords: distributed drive electric vehicle, vehicle system dynamics, torque vector
control, stability performance analysis, energy-saving

1. Introduction

Electric vehicles (EVs) have been regarded as one of the effective green transpor-
tation in urban traffic due to the zero-emission [1–3]. As a novel chassis structure,
distributed drive electric vehicles (DDEVs) choose in-wheel motors as their actuators
[4], which is believed to be a promising electric vehicle architecture [5]. DDEVs with
multiple powertrains can provide more control schemes through different torque-
vector allocation methods. Such could make full use of the tire force limitation to
enhance the vehicle handling stability while improving energy efficiency. However,
the limited driving range becomes an important factor that restricts the development
of EVs in the industry. Extensive research has focused on how to develop the
advanced battery technologies, such as the higher energy-density [6] and superfast
charging method [7]. Additionally, improving the work efficiency of in-wheel motors
can also be an effective approach to reduce the energy consumption. Thanks to the
independently controllable motors of DDEVs, it can be achieved by reasonable
torque-vector allocation. It should be noted that the yaw motion control generated by
the differential torque inputs between left and right wheels may bring about the
vehicle instability. Therefore, it would be an interesting study on how to design a
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torque-vector allocation framework to realize the energy-saving of DDEVs while
enhancing the vehicle handling stability.

The vehicle stability control during lateral motion has been a topic of interest in
vehicle dynamics control for many years. One of the intuitive approaches to determining
stability is the stability region-based method. This method defines the stability region
using various vehicle states as indexes, and then identifies the areas in phase planes that
correspond to vehicle instability. While several studies have explored the stability regions
of centralized drive vehicles (CDVs), few have explored the same for DDEVs. Wang
et al. [8] investigated the impact of driving modes on vehicle stability, and Liu et al. [9]
studied the effects of driving-steering coupling on lateral stability. However, both studies
failed to consider the effects of DYC on stability. Like steering angle, DYC has the
potential to significantly alter the flow pattern of vehicle lateral dynamics, leading to
changes in the stability regions for different DYC values. Therefore, further research is
needed to better understand the effects of DYC on vehicle stability.

There are several methods available to estimate a vehicle’s stability region, which
can be categorized as either numerical or analytical. Numerical methods use a mesh on
the phase plane to determine the convergence of grid points, and include cell-to-cell
mapping, Lyapunov exponent [10], and ARC length methods [11]. However, these
methods tend to be time-consuming despite their high accuracy. Analytical methods,
on the other hand, aim to find a function to estimate the stability region, with
Lyapunov’s second method being a common approach. Unfortunately, this method is
often too conservative. Although some attempts have been made to address this issue,
the estimation remains conservative. The Sum of Squares Programming (SOSP)
method is a polynomial programming technique that can systematically search for the
Lyapunov function. By setting constraints on the SOSP, the optimization of the
Lyapunov function can be converted into a convex semi-definite program [12], which
ensures both complexity and accuracy. Therefore, this study adopted the SOSP
method to find the maximal Lyapunov function for stability region estimation.

Furthermore, a reasonable torque vector control can also realize the energy-saving.
The in-wheel motors can work in a high-efficiency zone through the torque allocation
and reduce the energy consumption. Related research has been conducted. Reference
[13] proposes an offline optimization procedure to replace the traditional motor-
efficiency mapping method. The simulation results demonstrate that the proposed
controller can reduce the motor power loss under different driving conditions while
improving the computational efficiency in real applications. Chen et al. [14] discuss
and compare the energy-saving results with different energy-efficient control alloca-
tion (EECA) schemes. The simulation and experiment results show that Karush-
Kuhn-Tuckert (KKT)-based EECA method consumes the least energy, which also has
less computational burden [15]. Analytical solutions are derived in [16] for the torque
allocation strategy, which aims to reduce the energy loss on the basis of satisfying the
total torque demands. Compared with another two allocation methods, the proposed
strategy can achieve both energy-saving and computational efficiency.

The vehicle stability control combined with energy-saving is commonly designed
through the hierarchical structure. The upper layer includes the total torque inputs
and yaw-moment according to the control objectives of longitudinal speed and lateral
stability, respectively. The lower layer allocates the torque considering the energy-
efficiency. In [17], the top layer develops a DYC to continuously work and guarantee
the cornering stability in extreme conditions. The bottom layer designs a switch-rule
based on the friction ellipse constraint to judge the control priority for energy-saving
and handling stability during the torque allocation. Hua et al. [18] present a
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hierarchical structure to realize a trade-off between multi-objectives. The higher
motion layer aims to generate the desired total torque and yaw moment based on the
sliding mode controller. The lower allocation layer uses model predictive control to
optimize the motor efficiency. However, the studies in [19–21] show that the vehicle
yaw moment control has the potential for improving energy-efficiency of EVs. The
inappropriate yaw-moment control may lead to extra energy consumption. To this
end, this work introduces a relaxation factor in the lower layer (i.e. yaw-moment
control layer), which aims to reduce the energy consumption of the excessive yaw
motion control when the vehicle has enough safety space. The phase plane [1] is
adopted to bound the vehicle stability space and designed as a constraint in the MPC
controller. The main contributions of this chapter are shown as follows:

1.This study quantifies the stability region of DDEVs using the SOSP technique,
expressing stability regions as analytical Lyapunov functions. The results show
that DDEVs has a broader stability region than CDVs. An LMI-based mode
decision theorem is developed to determine the boundaries of the drive stability
regions. This approach constrains control inputs to a safe region based on the
concept of drive stability region.

2.A dual LTV-MPC-based hierarchical control framework is constructed to ensure
both energy-saving and stability performance of DDEVs. Specifically, it
decouples the torque vector control for the motor efficiency optimization and
vehicle yaw motion stability control in different control layers. To reduce the
energy consumption caused by the excessive direct yaw motion control, a
relaxation factor is introduced to balance different control objectives by
evaluating the vehicle stability performance in the β � γ phase plane.

To further prove the energy-saving performance of the proposed controller (PC),
the conventional linear model predictive control method (LMPC), and the average
torque (AT) allocation method are set as the comparison.

The comparative results with different performance indices are shown in Figure 1.
Specifically, the control indices including the energy consumption
Δ1 ¼

PΓ
η¼1

1
EmaxΓ Eη

�� ��, the vehicle speed tracking performance Δ2 ¼
PΓ

η¼1
1

ev,max Γ ev,η
�� ��,

and the tire slip ratio Δ3 ¼
PΓ

η¼1
1

λt,max Γ λt,η
�� �� are defined, where Eη, ev,η, and λt,η denote

Figure 1.
The performance indices with different control strategies.
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the energy consumption, the speed tracking error, and the sum of absolute value of
tire longitudinal slip ratio at each sampling time, respectively. Γ is the total test time.
Emax, ev,max , and λt,max correspond to the maximum absolute value. From the results,
the proposed controller behaves better to balance different control objectives com-
pared with other methods. On the basis of guaranteeing the driver’s longitudinal speed
control intention, the energy-saving control and longitudinal stability performance
can be significantly enhanced.

2. The lateral stability region of DDEV for state constraint

2.1 DDEV dynamic model

DDEV with wheel-side or hub motor drive have great advantages in energy saving
and emission reduction. Wheel-side or Hub motors operate with low noise, high peak
efficiency and high load capacity, and also attract much research attention because of
their independently controllable torque and fast and accurate torque response, which
can effectively improve the vehicle handling stability and safety. Moreover, the DDEV
can also realize the differential steering of the vehicle by independently controlling
the drive torque difference between the left and right front wheels. It can serve both
as a backup system for steering by wire and as the sole steering system of the vehicle,
and the latter can further simplify the vehicle structure. DDEV offers flexible chassis
layout options, unconstrained by the design limitations of conventional mechanical
transmission, and can leverage the benefits of various drive modes.

A DDEV model with front-wheel steering is established [22, 23]. Ignoring the pitch
and roll motions, the vehicle has three planar degrees of freedom for longitudinal
motion, lateral motion, and yaw motion. A schematic of the vehicle model is shown in
Figure 2. According to the principle of balance of forces and moment, the vehicle
model in the longitudinal, lateral, and yaw directions can be expressed as:

_Vx ¼ Vyγ þ 1
m

Fx1 þ Fx2ð Þ cos δþ Fx3 þ Fx4 � Fy1 þ Fy2
� �

sin δ
� �

_Vy ¼ �Vxγ þ 1
m

Fy1 þ Fy2
� �

cos δf þ Fy3 þ Fy4
� �� �

_γ ¼ 1
Iz

Fy1 þ Fy2
� �

cos δf � lr Fy3 þ Fy4
� �� �þ 1

Iz
Mc

8>>>>>><
>>>>>>:

(1)

Figure 2.
Schematic diagram of a vehicle planar motion model.
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The external yaw moment Mc is generated with the longitudinal tire force differ-
ence between the left and right wheels.

Mc ¼ Fx1cos δf þ Fx3
� �

tw � Fx2cos δf þ Fx4
� �

tw (2)

When the tire slip angles are small, the front and rear lateral forces can be modeled as:

Fy1 þ Fy2 ¼ Cfαf , Fy3 þ Fy4 ¼ Crαr (3)

And then the tire slip angles can be expressed as:

αf ¼ δf �
Vy þ γlf

Vx

αr ¼
γlr � Vy

Vx

8>><
>>:

(4)

The rotational dynamics of each wheel can be represented by

Jwi _wi ¼ �ReFxi þ Twi (5)

And then the longitudinal tire force at each tire can be rewritten as:

Fxi ¼ 1
Re

Twi � Jwi _wið Þ (6)

In summary, the overall vehicle model (1) can be rewritten as:

_Vx ¼ Vyγ þ 1
mRe

u1 þ u2ð Þ þ d1

_Vy ¼ � Cf þ Cr
� �

Vy

mVx
þ Crlr � Cf lf

mVx
� Vx

� �
γ þ Cf

m
u3 þ d2

_γ ¼
Crlr � Cf lf
� �

Vy � Cf l
2
f þ Crl

2
r

� �
γ

IzVx
þ Cf lf

Iz
u3 þ ls

IzReff
u1 � u2ð Þ þ d3

8>>>>>>>><
>>>>>>>>:

(7)

where u1 and u2 represent the total motor torque values in the vehicle longitudinal
direction on the left and right sides of the vehicle, respectively. u3 represents the front
wheel steering angle.

u1 ¼ Tw1 cos δþ Tw3

u2 ¼ Tw2 cos δþ Tw4

u3 ¼ δ

8><
>:

(8)

d1 ¼ 1
m

Fy1 þ Fy2
� �

sin δþ 1
mRe

Jw1 _w1 cos δþ Jw2 _w2 cos δþ Jw3 _w3 þ Jw4 _w4ð Þ

d2 ¼ 1
m

Fy1 þ Fy2
� �

cos δ� 1ð Þ

d3 ¼
lf
Iz

Fy1 þ Fy2
� �

cos δ� 1ð Þ þ ls
IzRe

Jw1 _w1 cos δ� Jw2 _w2 cos δþ Jw3 _w3 � Jw4 _w4ð Þ

8>>>>>><
>>>>>>:

(9)
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2.2 Rational polynomial based DDEV model

To accurately estimate the stability region, a nonlinear tire model is necessary
as the fixed cornering stiffness used in the tire model is insufficient for extreme
conditions. Here, we propose to use a rational polynomial function to fit the tire
force curve. We define the nominal lateral tire force in Eq. (10) without loss of
generality.

f y αið Þ ¼ p1αi
3 þ p2αi

q1α
4
i þ q2α

2
i þ q3

(10)

We choose an odd function for the tire model 10 to cover both positive and
negative tire forces. By incorporating the vertical load Fz and friction coefficient μ into
the model, we derive a rational polynomial tire model expressed as Eq. (11).

Fyi ¼
Fziμi p1 αi=μið Þ3 þ p2 αi=μið Þ

� �

q1 αi=μið Þ4 þ q2 αi=μið Þ2 þ q3
(11)

After conducting experiments with a 6000 N vertical load, Figure 3 was produced
to display the corresponding test data. A least-squares algorithm was then utilized to
fit the polynomial coefficients in Eq. (11). Then, the rational polynomial tire model
(11) will be employed in the dynamic model of DDEV. For the convenience of
deduction, Eq. (11) is recorded as

Fyi ¼ ni αið Þ=di αið Þ, i ¼ f , rð Þ (12)

According to the kinematic characteristic, the tire slip angle α can be represented
by the vehicle state variables.

Figure 3.
Stability region estimation of different degrees.
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αf ¼ δf � β � lf
Vx

γ

αr ¼ lr
Vx

γ � β

8>>><
>>>:
s:t: β ¼ Vy=Vx

(13)

The lateral dynamic model of DDEV can be transformed into the standard state
space form (14). This results in the rational polynomial dynamic model for stability
region estimation.

_x ¼ f x, uð Þ ¼ N x, uð Þ
D x, uð Þ (14)

2.3 Basic principles of SOSP

The Lyapunov method is commonly utilized to estimate the stability region by
seeking the maximal Lyapunov function that approaches the RoA boundary. Although
systematic methods for searching the Lyapunov function are scarce, the stability
region estimation can be converted into a convex optimization problem by SOSP
when dealing with Lyapunov functions in polynomial form. This section introduces
the fundamental principles of SOSP.

2.3.1 Sum of Squares Programming

Definition 1 Consider a polynomial function p xð Þ, p xð Þ with n real variables and m
degrees. p xð Þ is called sum of squares (SOS) if there exist polynomials f i xð Þ such that

p xð Þ ¼
X
i¼1

f 2i xð Þ (15)

Lemma 1 (Quadratic form of polynomial.) For a polynomial p xð Þ, there definitely
exist a symmetric matrix Q such that

p xð Þ ¼ zT xð ÞQz xð Þ (16)

where z xð Þ is a vector of all monomials of degree less than or equal to m
2 . Com-

monly, the matrix Q is not unique. The matrix space of Q could be represented as a
function of λi (17).

Q λð Þ ¼ Q0 þ
XN
i¼1

λiMi (17)

Lemma 2 (Sum of Squares Programming.) For a polynomial pi xð Þ is SOS if and
only if there exist λi, i ¼ 1, … ,N such that

Q λð Þ ¼ Q0 þ
XN
i¼1

λiMi ≥0

s:t:p xð Þ ¼ zT xð ÞQ λð Þz xð Þ
(18)
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It is worth noting that Lemma 2 can be formulated as a linear matrix inequality
(LMI) feasibility problem. Moreover, the sum-of-squares (SOS) property of a poly-
nomial is equivalent to the SDP of the corresponding matrix Q . Therefore, the SDP
approach provides an effective way to solve the SOSP problem.

2.3.2 Generalized S-procedure

The stability region estimation is usually concerned with causality of multiple
inequalities. For the convenience of solving, it should be integrated as a single LMI.

Lemma 3 (Generalized S-procedure.) Consider a series of polynomials p xð Þ,
i ¼ 0, … ,m such that

p0 xð Þ≥0

s:t:x∈D
(19)

where D is domain of x represented as:

p1 xð Þ≥0, … , pm xð Þ≥0 (20)

The inequality (19) hold if there exist qi xð Þ, i ¼ 1, … ,m such that

p0 xð Þ �
Xm
i¼1

qi xð Þpi xð Þ≥0

s:t:x∈Rn

(21)

2.4 Stability region estimation and analysis

Lemma 4 (Invariant subset of RoA.) Consider a function V and γ >0. Region ΩV,γ

is defined as x∈Rn : V xð Þ≤ γf g. If conditions in (22) holds, ΩV,γ is an invariant subset
of RoA.

ΩV,γ is bounded
V 0ð Þ ¼ 0,V xð Þ>0 ∀x∈Rnð Þ
ΩV,γn 0f g⊂ x∈Rn : ∇V xð Þf xð Þ≤0f g

(22)

To construct an SOSP problem, the Lyapunov function V should be restricted as a
polynomial form. Besides, formula ③ can be converted to a SOSP problem according to
generalized S-procedure. Except of this, Lemma 4 is not sufficient to find the maximal
Lyapunov function. Thus, we set a shape function s xð Þ to expand the stability region of
DDEV (23). By maximize β, V tends to approach the maximal Lyapunov function.

max β : x∈Rjs xð Þ< βf g⊂ΩV,γ (23)

Theorem 1 For the nonlinear dynamic system, the stability region ΩV,γ can be
found by finding V, q1, q1 ∈

P
n,m

x½ � and positive γ >0 that maximize β such that

max β
V xð Þ � φ1 xð Þ∈ P x½ �
q1 xð Þ s� βð Þ � V � γð Þ∈ P x½ �
�∇xVN �Dφ2 xð Þ þDq2 xð Þ V � γð Þ∈ P x½ �

8>><
>>:

(24)
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The degree of Lyapunov function V has a huge impact on the estimation of
stability region. To select the appropriate degree of V, we compare the stability
regions with different degrees on the phase plane. Figure 3 shows the stability regions
of different degrees.

Figure 3 illustrates the phase trajectories near the equilibrium point of straight-
running, where the blue lines represent the region of attraction (RoA) and the
remaining area indicates instability. Generally, the stability region expands as the
degree increases. However, the RoA of the two-degree V only approaches the bound-
ary of yaw rate due to the ellipse shape, which cannot accurately describe the margin
of slip angle. In contrast, the six and eight degree V significantly increase the stability
region in all directions and better capture the RoA feature around the equilibrium.
Given the computational complexity, we opt for the six-degree V to estimate the
stability region of DDEV.

2.4.1 Impact of longitudinal velocity and road adhesion

During straight-running conditions, steering angle and DYC control inputs are
both set to zero. Longitudinal velocity Vx and road adhesion coefficient μ are two
primary factors that influence lateral stability. To explore their effects on the stability
region, we varied Vx and μ and plotted the estimated stability regions in phase
portraits, as shown in Figures 4–7. Our results indicate that as Vx increases, the
stability region in the yaw rate direction tends to shrink, which is consistent with the
view that high-speed steering can cause vehicle instability. Similarly, when μ
decreases, not only does the available yaw rate reduce, but the stability region in the
slip angle direction also sharply decreases due to the restriction of tire adhesion
margin from low road friction. As a consequence, the maximum wheel slip angle
decreases, leading to a reduction in body slip angle. However, at higher speeds, the
tire adhesion margin remains constant, and can still supply sufficient tire force for the
vehicle’s lateral motion. These findings suggest that stability control in low road
friction conditions may pose a greater challenge than in high-speed running. With

Figure 4.
Vx ¼ 20m=s μ ¼ 1ð Þ.
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these insights, we can better understand the factors influencing lateral stability, and
design more effective control strategies for safer vehicle operation.

2.4.2 Impact of steering angle and DYC

Compared to straight-running conditions, the estimation of cornering conditions is
more complex due to the non-zero control inputs δf and Mz, which cause the equilib-
rium to shift away from the origin. To apply Theorem 2, we must first solve for the
new equilibrium and then substitute the state variables to transform the equilibrium
to the origin, enabling the estimation of the stability region for cornering conditions.

Figure 5.
Vx ¼ 30m=s μ ¼ 1ð Þ.

Figure 6.
μ ¼ 1 Vx ¼ 20m=sð Þ.
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For the CDV, the only control input is the steering angle. Figures 8 and 9 illustrate the
stability regions for a steering angle of �12°, showing that the stability region in the
yaw rate direction shrinks in the same direction as the steering angle. This suggests
that further increases in steering angle may result in vehicle instability. Furthermore,
the stability region for cornering conditions is much narrower than that for straight-
running, making the vehicle more susceptible to external disturbances. These
findings highlight the importance of understanding the effects of control inputs on
vehicle stability and developing effective control strategies to ensure safe and stable
operation.

Figure 7.
μ ¼ 0:5 Vx ¼ 20m=sð Þ.

Figure 8.
Mz ¼ 0 nm δ ¼ 12°ð Þ.
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To improve lateral stability, DDEV generates DYC by distributing torque unbalance,
affecting the vehicle’s lateral dynamics. However, DYC cannot be arbitrarily imposed.
To investigate the impact of DYC on the stability region, we apply different values ofMz
in the same or opposite directions of the steering angle, as shown in Figures 10 and 11.
For left-turning conditions, a 300NmMz significantly reduces the stability region of the
yaw rate. However, an opposite�800NmMz greatly expands the stability region.
Compared to 0 and 300 NmMz, a much higher available yaw rate is achievable with an
opposite DYC, allowing the vehicle to withstand greater yawmotion. Thus, we conclude
that DDEV can enhance lateral stability by applying an opposite DYC. Simulations in the
next section will confirm this hypothesis (Figures 12 and 13).

Figure 9.
Mz ¼ 0 nm δ ¼ �12°ð Þ.

Figure 10.
Mz ¼ 300 nm δ ¼ 12°ð Þ.
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3. The drive stability region of DDEV for control constraint

3.1 The definition of drive stability region

In a hierarchical DYC control scheme, the lateral stability controller at the high
level calculates the efficient DYC Mzopt, while the driver’s actions provide the total
traction force Fxall. To transform Fxall and Mzopt into four-wheel torques, a rational
distribution algorithm is necessary. A number of approaches consider Fxall and Mzopt

as a strict constraint and employ optimization techniques to solve the problem. How-
ever, the excessive values of Fxopt and Mzopt could surpass the adhesion limit during

Figure 11.
Mz ¼ �300 nm δ ¼ �12°ð Þ.

Figure 12.
Mz ¼ �800 nm δ ¼ 12°ð Þ.

121

Dynamics Modeling and Characteristics Analysis of Distributed Drive Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.111908



handling limit. The difficulty of distribution control lies in whether to satisfy Fxall and
Mzopt or only satisfy one of them. Here we divide them into several situations. By
taking the traction force and DYC as the two axes of a plane, we can divide the plane
into different areas and make reasonable inferences. First, there is a maximum region
Dmax 1 in which both Fxall and Mzopt can be fulfilled without sacrificing stability.
Second, if we disregard the Fx requirement, we can obtain a larger region Dmax 2
where Mzopt can be met without losing stability. For the areas beyond Dmax 2, it is not
possible to fully comply with either Fxall or Mzopt without compromising stability. As
Fxall and Mzopt are linked to the driver’s maneuvers, these feasible regions are referred
to as drive stability regions. Figure 14 provides an intuitive depiction of the drive
stability region. According to the different drive stability regions, we obtain the
definition of three Torque distribution Methods (TDMS).

Figure 13.
Mz ¼ 800 nm δ ¼ �12°ð Þ.

Figure 14.
The schematic diagram of drive stability region.
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3.2 The construction of drive stability region

In order to estimate the drive stability region, a suitable vehicle dynamic model is
required. As the drive stability region is related to the longitudinal and lateral dynam-
ics of the vehicle, a three-degree-of-freedom vehicle plane motion model is developed
for analysis.

m _vx � γVy
� � ¼ Fxfl þ Fxfr þ Fxrl þ Fxrr

m _vy þ γVx
� � ¼ Fyfl þ Fyfr þ Fyrl þ Fyrr

Iz _γ ¼ lf Fyfl þ Fyfr
� �� lr Fyrl þ Fyrr

� �þ tw Fxfr � Fxfl þ Fxrr � Fxrl
� �

=2

8><
>:

(25)

where tw Fxfr � Fxfl þ Fxrr � Fxrl
� �

=2 is the actual DYC Mzc. As the longitudinal
tire force increases, the lateral tire force decreases. The maximum longitudinal and
lateral tire force envelope forms an ellipse known as the tire adhesion ellipse. This
adhesion ellipse is utilized to establish the drive stability region, which is presented in
Eq. (26).

Fxij

μx

� �2

þ Fyij

μy

 !2

≤Fzij
2 (26)

Certainly, the lateral and vertical tire force mentioned in Eq. (25) cannot be
directly obtained and must be estimated using the three-freedom vehicle plane model.
Accounting for load transfer, the vertical tire force can be calculated using Eq. (27),
where hg represents the height of the center of mass and W is the wheelbase.

Fzfl ¼
mglr
2L

�m _vxhg
2L

�m _vyhglr
twL

Fzfr ¼
mglr
2L

�m _vxhg
2L

þm _vyhglr
twL

Fzrl ¼
mglf
2L

þm _vxhg
2L

�m _vyhglf
twL

Fzrr ¼
mglf
2L

þm _vxhg
2L

þm _vyhglf
twL

(27)

The front and rear lateral tire force is represented as:

Fyf ¼ Fyfl þ Fyfr ¼ lrm _vy þ γVx
� �þ Iz _γ þMzc

� �
=L

Fyr ¼ Fyrl þ Fyrr ¼ lfm _vy þ γVx
� �� Iz _γ �Mzc

� �
=L

(
(28)

Here, we assume that the lateral force transfer is similar to the vertical force
transfer, and define the load transfer coefficients as follows.

kfl ¼ Fzfl= Fzfl þ Fzfr
� �

kfr ¼ Fzfr= Fzfl þ Fzfr
� �

krl ¼ Fzrl= Fzrl þ Fzrrð Þ krr ¼ Fzrr= Fzrl þ Fzrrð Þ (29)

Combined with Eq. (28), the lateral tire force of each wheel can be calculated,
which is represented in Eq. (30).

Fyfi ¼ kfi lrm _vy þ γVx
� �þ Iz _γ þMzc

� �
=L

Fyri ¼ kri lfm _vy þ γVx
� �� Iz _γ �Mzc

� �
=L

(
(30)
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The longitudinal and lateral tire forces can be estimated using the state variables of
the DDEV model. With this information, a linear matrix inequality-based mode deci-
sion theorem is formulated below.

Lemma 5 (LMI based conditions of TDM 1) TDM 1 is satisfied for the current
vehicle condition, given the total traction force Fxall and optimal DYC Mzopt, if and
only if the linear matrix inequality (LMI) shown in Eq. (27) is solvable, where

X ¼ Fxall Mzopt
� �T, j ¼ l, r.

Am1X ≥ bm1

s:t:Am1 ¼
� 1
2

1
2

� 1
2

1
2

1 � 1
tw

�1
1
tw

2
664

3
775

T

bm1 ¼ �Afl � Arl �Arl � Afl �Afr � Arr �Arr � Afr
� �T

Afj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μxFzfj
� �2 � kfjμx lrm _vy þ γVx

� �þ Iz _γ þMzc
� �

=μyL
� �2r

Arj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μxFzrj
� �2 � krjμx lfm _vy þ γVx

� �� Iz _γ �Mzc
� �

=μyL
� �2r

(31)

Lemma 6 (LMI based conditions of TDM 2)

Am2X ≥ bm2

s:t: Am2 ¼ � 2
tw

2
tw

� �T

bm2 ¼ �3Afl � 3Afr � Arl � Arr �3Afl � 3Afr � Arl � Arr
� �T

(32)

Lemma 7 (LMI based conditions of TDM 3) For the given total traction force Fxall
and optimal DYC Mzopt, TDM3 is satisfied, if and only if (24) and (25) is unsolvable
(Figures 15–20).

Figure 15.
Static.

124

Electric Vehicles – Design, Modelling and Simulation



Figure 16.
Acceleration.

Figure 17.
Turn left.

Figure 18.
Turn right.
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Thus far, we have developed three TDMs, each with its own set of boundaries
(Figures 17–20). These boundaries can be plotted in a two-dimensional plane with Fx
(total traction force) andMzopt (optimal DYC) as the horizontal and vertical axes, respec-
tively. The drive stability region for each TDM is denoted byDi i ¼ 1,2,3ð Þ. It is important
to note that the shape of these regions varies depending on the specific vehicle and road
parameters. Figure 8 displays the drive stability regions for different conditions.

It can be observed that TDM 1 is characterized by a quadrilateral shape with
curved edges, while TDM 2 is represented by a band shape. Compared to the static
condition, the TDM 2 region under acceleration is slightly narrower, indicating a
reduction in available DYC. During left turns, TDM 1 tends to tilt towards the left
side, and the upper boundary of TDM 2 is significantly reduced due to the saturated
lateral tire force. This suggests the need for DYC in the opposite direction to ensure
vehicle stability. On low-friction roads, both TDM 1 and TDM 2 regions are much
narrower, indicating a decrease in available Mzopt and Fxall.

Figure 19.
High friction.

Figure 20.
Low friction.
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4. Energy-saving oriented torque allocation strategy of distributed drive
electric vehicles

4.1 The overall control framework

The four independently driven in-wheel motors endow more potential to enhance
the multi-performance control requirement of distributed drive electric vehicles. The
hierarchical control scheme can balance the multi-objectives through the layered
control methods while simplifying the system complexity. Hence, this section intro-
duces a dual MPC (model predictive control)-based hierarchical scheme to ensure
energy conservation and stability control. The control framework details in Figure 21.

In the upper layer, the total torque inputs are generated according to the driver’s
speed control requirement. Then using the energy-efficiency map obtained from the
dynamometer, the optimal torque inputs are distributed to the front and rear axles.
Such design can realize the energy saving through guaranteeing the in-wheel motors
work in a high-efficiency zone.

In the lower layer, the additional direct yaw moment control is generated by the
differential torque inputs of left and right in-wheel motors, which aims to ensure
vehicle handling stability. Considering that the additional torque inputs would
degrade the energy-saving performance, a relaxation factor is designed to prevent
excessive control inputs based on guaranteeing the vehicle safety. Note that β � γ
phase plane is used to represent the vehicle stability margins.

4.2 The upper layer torque allocation strategy

This section allocates the torque inputs to the front and rear axles according to the
motor efficiency map as shown in Figure 22. This is a PD18 RAM in-wheel motor. The
design principle is to enable the in-wheel motors to work in a high-efficiency zone.
Meanwhile, the system scheme should also take the vehicle longitudinal stability
performance into account. Here, we build the wheel dynamics model to represent the
rotational motion with the torque control inputs.

Figure 21.
Overall diagram of the proposed control strategy.
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4.2.1 Wheel dynamics model

Through lumping the left and right wheels to the axle, the vehicle longitudinal
motion can be represented as follows considering the tire slip ratio.

Jw _wi ¼ Twi � ReFxi (33)

Fxi ¼ kiλwi, λwi ¼ wiRe � Vxi,w

Vxi,w
, i ¼ f , rð Þ (34)

Combining Eq. (33) and Eq. (34), the tire rotational motion can be expressed by

_λwi ¼ � R2
e

JwiVxi,w
kiλwi þ Re

JwiVxi,w
Twi (35)

where Vxi,w and wi are the longitudinal speed and angular speed of wheel i,
respectively. Re and Jw represent rolling radius and inertia moment around y axis of
the wheel, respectively. ki and λwi donate the tire longitudinal stiffness and slip ratio,
respectively. Twi and Fxi represent the torque input and tire longitudinal force,
respectively. Then the state space equation of the wheel motion is given by

_x ¼ Axþ Bu (36)

where x ¼ λwi, u ¼ Twi, A ¼ � R2
e

JwiVxi,w
ki, B ¼ Re

JwiVxi,w
.

4.2.2 Energy-saving controller design

The LTV-MPC (linear time varying model predictive control) is employed to
handle the uncertain model parameter of longitudinal velocity. The Eq. (36) is
required to be discrete first in the predictive controller. The ΔT is the sampling time.
Then the discrete equation is expressed as

x kþ 1ð Þ ¼ A0x kð Þ þ B0u kð Þ (37)

where A0 ¼ eAΔT, B0 ¼ Ð kþ1ð ÞΔT
kΔT eA kþ1ð ÞΔT�t½ �Bdt. The vehicle state and torque control

input at time k are represented by x kð Þ and u kð Þ, respectively. It should be noted that
in the LTV-MPC design, Vxi,w in the parameter matrices is updating at different
sampling time. The LTV-MPC can guarantee the model accuracy, thereby avoiding
the invalid direct yaw moment control inputs.

In the upper layer of the torque allocation strategy, the driver’s longitudinal veloc-
ity control requirement is satisfied first by the total torque control input. Here, a PI
controller is employed to describe the driver longitudinal speed-tracking intention.
Hence, the total in-wheel motor torque input is calculated by

Twd ¼ KPev þ KI

ð
evdt (38)

where ev denotes the speed-tracking deviation. Ki and Kp represent the integral
and proportional coefficients. Then the following cost function is designed to realize
the total torque control.
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J1 ¼
XNp

t¼1

ρ 2Twf tþ k kjð Þ þ 2Twr tþ k kjð Þ � Twd kð Þ� �2 (39)

where Tw,min ≤Twi ≤Tw,max . Tw,max and Tw,min are the admitted maximal and
minimal torque control inputs, respectively. Twf and Twr represent the torque control
inputs of front and rear in-wheel motors. ρ and Np denote the weight coefficient and
predictive horizon, respectively. Note that the predictive horizon is equal to the
control horizon in this paper. Next, the energy-saving control has a priority in the
upper layer. The specific method is to guarantee a higher efficiency zone for the
motors. Hence, we establish a mapping function between the vehicle speed and
energy efficiency. Based on the motor efficiency map in Figure 22, The most energy-
efficient torque control at the current speed is selected as the reference value
Twi,r i ¼ f , rð Þ to optimize the control inputs. Then the obtained optimal torque inputs
of front and rear axles are evenly distributed to the left and right in-wheel motors.
Moreover, the optimization objective of a smaller tire slip ratio is also added to the
cost function and expressed by

J2 ¼
XNp

t¼1

J12 þ J22
� �

(40)

J12 ¼
XNp

t¼1

ℏ1 Twf kþ t kjð Þ � Twf ,r kð Þ� �2 þ ℏ2 Twr kþ t kjð Þ � Twr,r kð Þð Þ2
h i

(41)

J22 ¼
XNp

t¼1

α1λ
2
wf kþ t kjð Þ þ α2λ

2
wr kþ t kjð Þ

� �
(42)

where α1, α2, ℏ1, and ℏ2 are the weighting coefficients. Considering the vehicle
longitudinal stability, the front axle has a priority to satisfy the high-efficiency zone.
When approaching the tire force limitation, a small slip of the rear wheel would lead

Figure 22.
The upper layer torque allocation strategy.
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to the vehicle instability. Therefore, ℏ1 is endowed with a higher value. Furthermore,
to ensure the driver’s longitudinal control intention, a logical judgment is also added.
If the optimized torque of the rear wheel is not consistent with the driver’s control
intention, the control inputs are set as 0. Through combing Eq. (39)-Eq. (42), the
control objective function is represented by

J ¼ J1 þ J2 (43)

4.3 The lower layer of direct yaw moment control strategy

The lower layer develops the direct yaw moment control (DYC) to enhance the
vehicle handling stability based on the differential torque control inputs of left and
right in-wheel motors. To improve the energy efficiency, the relaxation factor is
introduced to prevent the excessive yaw moment control inputs. Here, the β � γ phase
plane is used to represent the vehicle stability region.

4.3.1 The vehicle dynamics modeling

A two degree-of-freedom (2-DoF) vehicle model is adopted to describe the vehicle
lateral dynamics characteristics. Assuming that the vehicle runs with a small yaw
angle and steering input, the vehicle model is expressed as

mVx _β þ _φ
� � ¼ Fyf þ Fyr

Iz _γ ¼ lf Fyf � lrFyr þMc
(44)

where Iz is the vehicle inertia moment of the yaw motion. lf and lr represent the
distances from the front and rear axles to the vehicle gravity, respectively. β and ϕ
denote the vehicle sideslip angle and yaw angle, respectively. γ ¼ _φ, Fyi ¼ 2Ciαi. γ
represents the vehicle yaw rate. The tire slip angle αi generates the lateral force Fyi.Mc

is the additional direct yaw moment control input.
The tire slip is further written as

αf ¼ δf �
lf γ
Vx

� β

αr ¼ lrγ
Vx

� β

8>><
>>:

(45)

where δf is the driver steering input. Through combing Eq. (44) and Eq. (45), we
can obtain

_ξ ¼ Aξþ Bνþ Cδf (46)

where ξ ¼ β, γ½ �T, A ¼
�Cf þ Cr

mVx

Crlr � Cf lf
mV2

x
� 1

Crlr � Cf lf
Iz

� Cf l
2
f þ Crl

2
r

IzVx

2
6664

3
7775, B ¼ 01=Iz½ �T, C ¼ 2Cf

mVx

2Cf lf
Iz

h iT
,

ν ¼ Mc.
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To facilitate the MPC design, the vehicle lateral dynamics model is discrete as
follows.

ξ kþ 1ð Þ ¼ A
0
ξ kð Þ þ B0

ν kð Þ þ C
0
δf (47)

The system matrices are obtained by

A
0 ¼ eAΔT,B

0 ¼
ð kþ1ð ÞΔT

kΔT
eA kþ1ð ÞΔT�t½ �Bdt,C

0 ¼
ð kþ1ð ÞΔT

kΔT
eA kþ1ð ÞΔT�t½ �Cdt (48)

Due to the uncertain model parameter of vehicle longitudinal velocity, the LTV-
MPC is also adopted in the lower layer.

4.3.2 The vehicle yaw motion control design

For the vehicle yaw motion control, the sideslip angle and yaw rate are treated as
important indices to represent the handling stability performance. In this paper, the
steady yaw rate response and small value of sideslip angle are used as the reference
value. Hence, the reference yaw motion can be represented by

βref ¼ 0

γref ¼
Vx

lf þ lr þ
mV2

x Crlr � Cf lf
� �

2CfCr lf þ lr
� �

δf

8>>><
>>>:

(49)

The cost function for the MPC design can be expressed as

J ¼
XNp

t¼1

λ1 β tþ k kjð Þ � βref kð Þ
� �2

þ λ2 γ tþ k kjð Þ � γref kð Þ
� �2

þ λ3ν
2

� �
(50)

Θ1γ � Θ2βj j≤ σ1 (51)

Φ1γ �Φ2βj j≤ σ2 (52)

where Mmin ≤Mc ≤Mmax. Mmax and Mmin represent the admitted maximal and
minimal yaw moment control input, respectively. λ1, λ2, and λ3 denote the weighting
coefficients.

The Eq. (51) and Eq. (52) is widely used as the envelop control to describe the
vehicle stability margin [1]. However, as shown in Figure 23, the direct yaw moment
control input would also have an effect on the vehicle stability performance. Hence, in
this work, the slack factors Φ1 and Φ2 in Eq. (53) and Eq. (54) are introduced to
permit the vehicle runs out of the traditional stability boundaries to some extent.

Θ1γ � Θ2βj j≤ σ1 þΨ1 (53)

Φ1γ �Φ2βj j≤ σ2 þ Ψ2 (54)

Furthermore, considering that the yaw moment control input would also have an
effect on the energy saving performance, a small DYC control should be given when
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the vehicle has enough stability region. Therefore, a relaxation factor ϑ is adopted to
dynamically adjust the weighting coefficients λ1 and λ2. Here, the relaxation factor ϑ
can be calculated by

ϑ ¼ 1
2

σ1j j
σ1,m

þ σ2j j
σ2,m

� �
� w� wð Þ þw (55)

where w ¼ 0:5, w, σi,m ¼ σi þ Ψi i ¼ 1, 2ð Þ. Then the weighting coefficients are
rewritten as

λ1 ¼ ϑλ1, λ2 ¼ ϑλ2 (56)

Then the optimal direct yaw moment control inputs are evenly allocated to the left
and right in-wheel motors. The total torque inputs for each in-wheel motor are
represented by

Tw,fl ¼ Tw,f �Mc

tw
Re

Tw,fr ¼ Tw,f þMc

tw
Re

Tw,rl ¼ Tw,r

Tw,rr ¼ Tw,r

8>>>>>>><
>>>>>>>:

(57)

4.4 Test results

Here, as shown in Figure 24, the hardware-in-the-loop test is conducted to verify
the control effect. A high-fidelity distributed drive electric vehicle built by the com-
mercial software Carsim is embedded into the PXI, which provides a real-time

Figure 23.
Effect of yaw-moment control on the vehicle stability region.

132

Electric Vehicles – Design, Modelling and Simulation



simulator. The control strategy is downloaded in the calculation platform dSPACE by
the code generation technology. The calculated torque inputs are sent to the PXI
through the CAN bus. The DDEV model will execute the control command. Then the
vehicle states are regarded as the feedback signal and transmitted to the dSPACE to
calculate the optimal control inputs. The driver steering behavior is obtained by the
driving simulator. The U-turn maneuver is selected as the test condition in the HIL
test. In addition, to demonstrate the proposed method (PC), the traditional torque
allocation combined linear quadratic regulator (TLQ) and the proposed controller
without the relaxation factor (WRF) are set as the comparative tests. The traditional
torque allocation method can be represented by

Tw,fl ¼ Tw,fr ¼ lr
lf þ lr

Twd

2
,Tw,rl ¼ Tw,rr ¼

lf
lf þ lr

Twd

2
(58)

Considering the limitation of the tire force, Figure 25 shows the reference
vehicle speed. The proposed method behaves with good performance to track the
desired speed. The vehicle lateral dynamics response is shown in Figures 26 and 27. It
can be seen that the proposed method can significantly guarantee the vehicle refer-
ence yaw rate tracking performance compared with the TLQ method, while
reducing the sideslip angle. Owing to the superiority to handle the uncertain model
parameter, the proposed method is effective to enhance vehicle handling stability
under the large-curvature road driving condition. However, the tracking error of the
TLQ method is a little large. In addition, as observed from the vehicle β � γ phase

Figure 24.
HIL bench test.

133

Dynamics Modeling and Characteristics Analysis of Distributed Drive Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.111908



plane in Figure 28, the proposed method can guarantee a more safe state by the DYC
control. In contrast, the vehicle runs out of the stability margins with the TLQ
method. It also proves the proposed method works to balance the multi-performance
control.

Figure 25.
Vehicle speed tracking performance.

Figure 26.
Vehicle yaw rate.
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Figures 29 and 30 show the efficiency of front and rear in-wheel motors, respec-
tively. It is clear that the efficiency of the front in-wheel motor with the proposed
method is better than that of the rear in-wheel motor. This is because when allocating
the torque inputs, the proposed method is first to guarantee the high-efficiency work
zone for front in-wheel motors. Hence, the efficiency of the rear in-wheel motor with
the proposed method is worse than that of the TLQmethod. However, from the power
consumption in Figure 31, the proposed method still performs better to ensure the
energy-saving performance compared with the TLQ method. However, the test
results also demonstrate the proposed controller can be effective to guarantee the
prescribed performance. Due to the existence of the disturbance during the HIL tests,
there would have some fluctuation in test results. However, the test results also

Figure 27.
Vehicle sideslip angle.

Figure 28.
Vehicle yaw motion phase plane.
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demonstrate the proposed controller can be effective to guarantee the prescribed
performance. From Table 1, the proposed method can reduce energy consumption by
3.18% and 10.02% compared to the WRF method and e TLQ method, respectively.

Furthermore, the feasibility of the proposed energy-saving control method has
been proved in the HIL test. This indicates that the proposed controller has great
potential to improve the comprehensive performance of the vehicle. In the future, we
would concentrate on more efficient ways of energy-saving optimization problems.

Figure 29.
Vehicle speed tracking performance.

Figure 30.
Vehicle yaw rate.
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The proposed strategy can not only be limited to the distributed drive electric vehi-
cles. Meanwhile, the emergency collision avoidance condition would be also consid-
ered. In addition, from Figure 32, the tire longitudinal slip ratio with the proposed
method is significantly smaller than that of the TLQ method. This demonstrates the
proposed method can also improve the vehicle longitudinal stability. The test results

Figure 31.
Vehicle sideslip angle.

TLQ WRF PC

43.1107 40.0642 38.7917

Table 1.
Energy consumption/(kJ).

Figure 32.
Vehicle yaw motion phase plane.
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verify the proposed method can be effective to improve the energy-saving perfor-
mance based on guaranteeing the vehicle stability.

5. Conclusions

This chapter introduces the distributed drive electric vehicle from the viewpoint of
the dynamics modeling, stability performance analysis, and energy-saving strategy.
The conventional modeling method of DDEVs is detailed first. Then, the stability
region of DDEVs is estimated by establishing a rational polynomial-based DDEV
model and adopting the SOSP technique to find the maximal Lyapunov function for
estimation. The resulting stability regions with different parameters are presented,
and comparison shows that the additional DYC has an expanding effect on the stabil-
ity region. This suggests that DDEVs have greater potential in terms of stability and
safety compared to centralized drive vehicles. Finally, a torque vector control frame-
work for DDEVs is proposed in this paper to reduce the energy-consumption on the
basis of maintaining the vehicle stability. The LTV-MPC-based hierarchical strategy is
adopted to realize the parallel control of energy-saving and handling stability. A
relaxation factor is introduced to reduce the energy consumption caused by
additional direct-yaw-moment control input through evaluating the vehicle stability
performance.

The proposed stability analysis method also has some issues to solve, in which the
developed mode decision theorem and division of drive stability regions are mainly
based on the tire adhesion ellipse theorem. However, the nonlinearity of the vehicle
dynamics model also has an influence on the stability performance. In future research,
theorems of body stability including γ � β phase diagram and g � g diagram will be
considered in the torque distribution method design.

Furthermore, the feasibility of the proposed energy-saving control method has
been proved in the HIL test. This indicates that the proposed controller has great
potential to improve the comprehensive performance of the vehicle. In the future, we
would concentrate on more efficient ways of energy-saving optimization problems.
The proposed strategy can not only be limited to the distributed drive electric
vehicles. Meanwhile, the emergency collision avoidance condition would be also
considered.

Abbreviations

DDEV distributed drive electric vehicle
EV electric vehicle
CDV centralized drive vehicle
DYC direct yaw moment control
LTV-MPC linear time varying model predictive control
SOSP Sum of Squares Programming
EECA energy-efficient control allocation
KKT Karush-Kuhn-Tuckert
SOS sum of squares
LMI linear matrix inequality
RoA region of attraction
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TDMS three Torque distribution Methods
MPC model predictive control
2-DoF two degree-of-freedom
TLQ torque allocation combined linear quadratic regulator
WRF without the relaxation factor
PC proposed controller
LMPC linear model predictive control
AT average torque

Author details

Jinhao Liang1†, Tong Shen2†, Ruiqi Fang2† and Faan Wang3*†

1 The Department of Civil and Environmental Engineering, National University of
Singapore, Singapore

2 The School of Mechanical Engineering, Southeast University, Nanjing, China

3 The Faculty of Modern Agricultural Engineering, Kunming University of Science
and Technology, Kunming, China

*Address all correspondence to: wfa@kust.edu.cn

†These authors contributed equally.

© 2023 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

139

Dynamics Modeling and Characteristics Analysis of Distributed Drive Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.111908



References

[1] Liang J, Feng J, Fang Z, Lu Y, Yin G,
Mao X, et al. An energy-oriented torque-
vector control framework for distributed
drive electric vehicles. IEEE
Transactions on Transportation
Electrification. DOI: 10.1109/
TTE.2022.3231933

[2] Hu X, Murgovski N, Johannesson L,
Egardt B. Energy efficiency analysis of a
series plug-in hybrid electric bus with
different energy management strategies
and battery sizes. Applied Energy. 2013;
111:1001-1009. DOI: 10.1016/j.apenergy.
2013.06.056

[3] Spanoudakis P, Tsourveloudis N,
Doitsidis L, Karapidakis E. Experimental
research of transmissions on electric
vehicles energy consumption. Energies.
2019;12(3):388. DOI: 10.3390/
en12030388

[4] Xiong L, Teng GW, Yu ZP,
Zhang WX, Feng Y. Novel stability
control strategy for distributed drive
electric vehicle based on driver operation
intention. The International Journal of
Automotive Technology. 2016;17(4):
651-663. DOI: 10.1007/s12239-016-
0064-3

[5] Jin XJ, Yin G, Chen N. Gain-
scheduled robust control for lateral
stability of four-wheel-independent-
drive electric vehicles via linear
parameter-varying technique.
Mechatronics. 2015;30:286-296.
DOI: 10.1016/j.mechatronics.
2014.12.008

[6] Manzetti S, Mariasiu F. Electric
vehicle battery technologies: From
present state to future systems.
Renewable and Sustainable
Energy Reviews. 2015;51:
1004-1012. DOI: 10.1016/j.rser.
2015.07.010

[7] Elma O. A dynamic charging strategy
with hybrid fast charging station for
electric vehicles. Energy. 2020;202:
117680. DOI: 10.1016/j.energy.2020.
117680

[8] Zhang H, Wang J. Vehicle lateral
dynamics control through AFS/DYC and
robust gain-scheduling approach. IEEE
Transactions on Vehicular Technology.
2016;65(1):489-494. DOI: 10.1109/
TVT.2015.2391184

[9] Qu T, Chen H, Cao D, Guo H, Gao B.
Switching-based stochastic model
predictive control approach for modeling
driver steering skill. IEEE Transactions on
Intelligent Transportation Systems. 2015;
16(1):365-375. DOI: 10.1109/TITS.
2014.2334623

[10] Wang Z, Montanaro U, Fallah S,
Sorniotti A, Lenzo B. A gain scheduled
robust linear quadratic regulator for
vehicle direct yaw moment control.
Mechatronics. 2018;51:31-45.
DOI: 10.1016/j.mechatronics.2018.
01.013

[11] Liang J, Lu Y, Yin G, Fang Z,
Zhuang W, Ren Y, et al. A distributed
integrated control architecture of AFS
and DYC based on MAS for distributed
drive electric vehicles. IEEE
Transactions on Vehicular Technology.
2021;70(6):5565-5577. DOI: 10.1109/
TVT.2021.3076105

[12] Huang Y, Chen Y. Integrated AFS
and ARS control based on estimated
vehicle lateral stability regions. In: 2018
Annual American Control Conference
(ACC). Milwaukee, WI, USA: IEEE;
2018. pp. 5516-5521. DOI: 10.23919/
ACC.2018.8431174

[13] Pennycott A, De Novellis L,
Sabbatini A, Gruber P, Sorniotti A.

140

Electric Vehicles – Design, Modelling and Simulation



Reducing the motor power losses of a
four-wheel drive, fully electric vehicle
via wheel torque allocation. Proceedings
of the Institution of Mechanical
Engineers, Part D: Journal of Automobile
Engineering. 2014;228(7):830-839.
DOI: 10.1177/0954407013516106

[14] Chen Y, Wang J. Design and
experimental evaluations on energy
efficient control allocation methods for
Overactuated electric vehicles:
Longitudinal motion case. IEEE/ASME
Transactions on Mechatronics. 2014;
19(2):538-548. DOI: 10.1109/
TMECH.2013.2249591

[15] Zhang X, Göhlich D, Zheng W.
Karush–Kuhn–Tuckert based global
optimization algorithm design for
solving stability torque allocation of
distributed drive electric vehicles.
Journal of the Franklin Institute. 2017;
354(18):8134-8155. DOI: 10.1016/j.
jfranklin.2017.10.005

[16] Lenzo B, De Filippis G, Dizqah AM,
Sorniotti A, Gruber P, Fallah S, et al.
Torque distribution strategies for
energy-efficient electric vehicles with
multiple drivetrains. Journal of Dynamic
Systems, Measurement, and Control.
2017;139(12):121004. DOI: 10.1115/
1.4037003

[17] Zhai L, Hou R, Sun T, Kavuma S.
Continuous steering stability control
based on an energy-saving torque
distribution algorithm for a four in-
wheel-motor independent-drive electric
vehicle. Energies. 2018;11(2):350.
DOI: 10.3390/en11020350

[18] Hua M, Chen G, Zhang B, Huang Y.
A hierarchical energy efficiency
optimization control strategy for
distributed drive electric vehicles.
Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of
Automobile Engineering. 2019;233(3):

605-621. DOI: 10.1177/095440701
7751788

[19] Kobayashi T, Katsuyama E,
Sugiura H, Ono E, Yamamoto M.
Efficient direct yaw moment control:
Tyre slip power loss minimisation for
four-independent wheel drive vehicle.
Vehicle System Dynamics. 2018;56(5):
719-733. DOI: 10.1080/00423114.2017.
1330483

[20] Kobayashi T, Katsuyama E,
Sugiura H, Ono E, Yamamoto M. Direct
yaw moment control and power
consumption of in-wheel motor vehicle
in steady-state turning. Vehicle System
Dynamics. 2017;55(1):104-120.
DOI: 10.1080/00423114.2016.1246737

[21] Parra A, Tavernini D, Gruber P,
Sorniotti A, Zubizarreta A, Pérez J. On
nonlinear model predictive control for
energy-efficient torque-vectoring. IEEE
Transactions on Vehicular Technology.
2021;70(1):173-188. DOI: 10.1109/
TVT.2020.3022022

[22] Wang R, Zhang H, Wang J. Linear
parameter-varying controller Design for
Four-Wheel Independently Actuated
Electric Ground Vehicles with Active
Steering Systems. IEEE Transactions on
Control Systems Technology. 2014;
22(4):1281-1296. DOI: 10.1109/TCST.
2013.2278237

[23] Wang R, Wang J. Fault-tolerant
control with active fault diagnosis for
four-wheel independently driven electric
ground vehicles. IEEE Transactions on
Vehicular Technology. 2011;60(9):
4276-4287. DOI: 10.1109/TVT.2011.
2172822

141

Dynamics Modeling and Characteristics Analysis of Distributed Drive Electric Vehicles
DOI: http://dx.doi.org/10.5772/intechopen.111908





Chapter 6

Hybrid Energy Storage Systems in
Electric Vehicle Applications
Federico Ibanez

Abstract

This chapter presents hybrid energy storage systems for electric vehicles. It briefly
reviews the different electrochemical energy storage technologies, highlighting their
pros and cons. After that, the reason for hybridization appears: one device can be used
for delivering high power and another one for having high energy density, thus large
autonomy. Different energy storage devices should be interconnected in a way that
guarantees the proper and safe operation of the vehicle and achieves some benefits in
comparison with the single device storage system source. The chapter shows different
topologies for interconnecting electrochemical technologies: passive, semi-active, and
full-active, clarifying their benefits and drawbacks. The chapter concludes with a case
study, an electric motorcycle, which is ridded using an urban profile. There, the
hybridization was performed to extend its cycle life.

Keywords: hybrid energy storage systems, DC/DC power converters, batteries,
supercapacitors, lifecycle, electric vehicles, multiport topologies

1. Introduction

Electrical vehicles require energy and power for achieving large autonomy and
fast reaction. Currently, there are several types of electric cars in the market using
different types of technologies such as Lithium-ion [1], NaS [2] and NiMH (particu-
larly in hybrid vehicles such as Toyota Prius [3]). However, in case of full electric
vehicle, Lithium-ion technology is used widely in automobiles, scooters,
motorcycles, and busses [4]. It is known that the aging of a battery and its capacity is
dependent on the type of use such as the current profile and the depth of discharge
[5]. The deeper the battery is discharged and the higher the currents are, the smaller is
the number of cycles for the battery. Thus, combining batteries with other energy
sources, which can tolerate high currents, deep discharges, and high number of
cycles, can reduce the use of the battery in “non-favorable” conditions. Thus, the
combination of a supercapacitor (SC) with a battery can lead to longer cycle life of the
battery [6].

However, to achieve this goal, a control system needs to select which source of
energy should be used in real time. Thus, high complexity is added in the energy
storage system (ESS). For that purpose, some DC/DC converter topologies are used
with a controller that selects the energy source for each instant [4, 7]. To understand
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the advantages of hybrid energy storage systems (HESS), it is important to review the
available energy sources.

2. Review of energy sources

There are many technologies for storing energy, most of them in an electrochem-
ical way. Different technologies have different characteristics such as available power
density, energy density, number of cycles, temperature range, calendar aging, and
others. One of the most common diagrams for comparing energy storage technologies
is the specific energy versus specific power plot, see Figure 1 [8]. There, different
technologies are presented in a two-axis plot that clearly shows which technology is
more useful for delivering power and which one is better for storing energy.
Therefore, combining a high energy density technology with a high power density
technology, an energy storage system that fits well in an electric vehicle can be
achieved.

In addition to those important indexes, the number of cycles is also important. In
general, we can mention four main groups of storage technologies: electrochemical,
electrostatic, electric double layer technology, and mechanical. There are also other
types of storage technologies such as hydrogen fuel cells [9] and magnetic supercon-
ductors [10], but these are not covered in this chapter.

Figure 1.
Specific energy vs. specific power for different storage techniques [8].
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2.1 Electrostatic technologies

From Figure 1, notice that the devices that can deliver the highest specific power
are the electrostatic devices; their limit is their internal resistances. Electrostatic
devices include electrolytic capacitors, polyester, and polypropylene capacitors [11].
However the energy density is quite low. The number of cycles is very high and the
temperature range as well. Commonly, electrolytic capacitors are used in power elec-
tronics for voltage sags in grid-connected power supplies; thus, the output power is
not compromised during a temporary energy interruption in the milliseconds range.
Polyester and polypropylene capacitors have much smaller internal resistance, so they
can deal with higher powers, but the specific energy is extremely low; their use is in
the micro to milliseconds range, usually inside power electronic converters [12].

2.2 Electrical double layer capacitors

The next solution is a hybrid between a “capacitor” and an electrochemical cell, the
electrical double layer capacitor, supercapacitor, or ultracapacitor. This device has a
notable bigger energy density and can deliver high power; two mechanisms can work
inside the device, electrostatic and electrochemical processes. Depending on the man-
ufacturer and the applications, one or the other process is dominant. Another advan-
tage is that the number of cycles is much bigger than the traditional electrochemical
cells. Manufacturers mention more than 1,000,000 cycles.

Supercapacitors can be understood as an electrochemical cell in which the redox
reactions are not present. The cell has two electrodes, an electrolyte and a separator.
There is not mass transfer between the electrodes and the electrolyte; thus, only a
charge distribution appears. That charge distribution can be considered as a parallel
plate capacitor in which one plate is the electrode and the other is the electrolyte. The
“dielectric” is the distance between the electrolyte and the electrode. It is very small;
this is why it creates a huge capacitance [13]. In addition, the porosity of the elec-
trodes creates a huge specific area, which also maximizes the capacitance effect. The
huge capacitance appears in the interface between one electrode and one electrolyte;
thus, the full device has two huge capacitors in series. The separator allows the flow of
ions and avoids the short circuit between the electrodes.

These devices have impressive capacitances, commercially available around
3500F, but as the distance between plates is very small, the maximum voltage of the
device is small as well. For aqueous electrolyte, it is around 1 V, and for organic
electrolytes, it can reach around 3.5 V. As the mechanism to store energy remains
electrostatic, the number of cycles is still very high.

In addition to the electrostatic effect, there are other supercapacitors that also have
faradic processes (redox reactions and other types of reactions), and due to that, they
can achieve even a higher capacitance. However, by including this process, the num-
ber of cycles is reduced. This type of supercapacitors is sometimes called hybrid
supercapacitors.

2.3 Electrochemical technologies

In this group, we can mention Lithium-ion, NiCd, Lead-acid, NiMH, NaS, and
other electrochemical technologies that store their energy based on redox reactions.
This group has high energy density, moderate number of cycles (a few thousands,
depending on the specific design and use), and moderate temperature range. As an
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example, Table 1 shows some of the general characteristics of the most common
technologies [19].

2.4 Other technologies

Regarding other ways of storing energy, mechanical storage devices were used in
the past for massive storage. The most popular devices are: flywheels [20], which
store energy in a kinetic fashion; compressed air energy storage (CAES); which
storage energy by compressing and releasing the air; and water pumps, which store
potential energy. Another technology is the redox flow batteries [21], which can be
use of long periods of time, but its energy density is much lower than Lithium-ion
batteries. All of these technologies are not suitable for vehicles, and they are mostly
applicable in the electric grid.

Hydrogen fuel cells are also an interesting energy storage system that can fit in the
electric vehicle technology and can be hybridized using an auxiliary energy storage
such as lithium-ion or supercapacitors.

3. Hybrid energy storage systems (HESS)

There are several reasons for using a hybrid energy storage system instead of a
single technology storage system (here, Battery Energy Storage System, BESS). All of
them are related to the power sharing between a device that mainly stores energy and
a device that mainly delivers power. There are several main benefits of power sharing:

• If the energy storage device (battery) delivers less instantaneous power (or
current), the temperature is kept in safe operation area, which extends lifetime.

• If the energy storage device (battery) delivers less power (or current), it is
expected that the extracted energy is larger. The less demanded power, the
higher amount of energy that can be extracted from the battery. The device
behaves more efficiently.

• Using an external device that can deliver more power, a new power limit can be
achieved, higher than the one of the single energy storage device.

Therefore, with the aim of reducing the stress in the main battery, an auxiliary
energy source is added, which creates an hybrid energy storage system (HESS). Thus,

Technology Voltage (V) Energy density (Wh/dm3) Power density (kW/dm3)

Lead-acid 2.0 50–80 [14, 15] 10–400

NiCd 1.2 60–150 [16] 150–300

NiMH 1.2 220–250 [17] �900

Li-ion 4.1 200–500 [18] 500–2000

NaS 2.0 150–250 [14, 18] 150–230

Table 1.
Electrochemical technologies for electric vehicles.
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high currents can be shared, and the battery use is reduced, with the corresponding
increase in life cycle.

3.1 Main topologies

Different topologies exist in order to connect two or more energy sources. They
can be defined in terms of three main groups:

• passive HESS

• semi-active HESS

• full-active HESS.

In the passive HESS topology, SCs and batteries are in parallel and connected
directly to the load. It is a simple and low-cost topology, but the SCs’ contribution is
poor [7]. The SC delivers energy only if its terminal voltage varies. Therefore,
connecting the SC in parallel to the battery limits the voltage variations, thus the
contribution is limited. This topology has been used for transient suppression under
high current pulses [22]. The circuit topology is shown in Figure 2a.

Semi-active HESS topologies allow one of the energy storage devices, the battery
or the SC-stack, to be controlled through a DC/DC converter, while the other storage
device is directly connected to the load without any control [23].

On the one hand, if the SC-stack is the device under control (SC-HESS), the DC/
DC converter should deliver high power and be fast enough to react to power pulses
[24]. Otherwise, the battery would have to respond to the load, and no advantage
would be obtained from the HESS. As a benefit, if the battery is connected directly to
the motor drive, the voltage in the output port of the SC-HESS is almost constant
because the battery voltage profile is quite flat. Lithium-ion batteries in particular
have a very flat profile if the depth of discharge is lower than 70%. The circuit
topology is shown in Figure 2b.

On the other hand, if the battery is the device under control (B-HESS), which is
the topology shown in Figure 2c, the SCs have a direct connection to the motor drive,
so they can react very quickly. The current from the battery can be controlled in order
to keep the SCs charged while the battery has a smooth discharging profile, indepen-
dent of the load profile [25]. Thus, the battery is protected. The main disadvantage is
that the motor drive voltage (or SC-stack voltage) is not constant. This is because the
SCs’ voltage is proportional to the stored electric charge and it changes as the current
flows to the load. In order to allow the SCs to interact with the load and to deliver or
absorb current, a voltage variation in the HESS output port must be allowed. The
bigger the voltage variation, the bigger the current contribution from the SCs.

The full-active HESS solves the drawbacks of both semi-active topologies. Two
main topologies exist: (a) parallel DC/DC converters topology [26] and (b) multiport
DC/DC converters [27, 28] as shown in Figure 2d and e, where both the battery and
the SCs are connected through a DC/DC converter to an output DC link that is
connected to the load [25]. The SC-stack uses its entire operating voltage range; no
high power pulses are demanded from the battery because its current is well con-
trolled, and the DC link voltage can be correctly regulated through the DC/DC con-
verters. However, the system is much more complex and efficiency is expected to be
lower because the power is transferred always through DC/DC converters.
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Semi-active and full-active systems are the most studied HESSs because they
control the power that is delivered to the load and the SCs have a higher impact on the
storage system compared to the passive topology. They are mainly used in photovol-
taic, grid, and electric vehicle applications [24–26]. HESSs have been used for
extending the power transfer capabilities of EV propulsion systems [25].

4. Case study: electro motorcycle

As an example of hybrid energy storage system for electric vehicle applications, a
combination between supercapacitors and batteries is detailed in this section. The aim

Figure 2.
Topologies of hybrid energy storage systems: (a) passive, (b) B-HESS semi-active, (c) SC-HESS semi-active, (d)
full-active using multiple DC/DC converters, (e) full-active using multiport converters.
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is to extend the battery lifetime by delivering high power using supercapacitors while
the main battery is delivering the mean power.

HESSs have been used for extending the power transfer capabilities of EV propul-
sion systems [13, 19]. In [14] a control algorithm for a full-active HESS is proposed in
which either the battery or the SC-stack is selected as energy source according to the
frequency spectrum of the demanding current. A more detailed analysis was
performed in [9], where the control algorithm also considers the extreme cases when
the SCs are out of energy. As a result, these works presented an improvement in the
power response capability of the system and a reduction in the current peaks
demanded from the battery.

4.1 Aging, thermal, and electric model for the battery

For understanding how the battery lifetime can be extended, aging models have
been introduced in the past. Among aging models for batteries, [29] presents a degra-
dation model that considers the depth of discharge in cycles and temperature. The
model is based on crack propagation theory [30]. It predicts the capacity reduction
and proposes an equivalent electric model that is, modified according to the age of the
battery, so it combines the prediction in capacity reduction (Ah) with electric equiv-
alent circuit. The model, without considering the calendar aging, is:

ΔL ¼ kco:Ne:e
σSoC�1
kex

:
TN
Ta :eksoc

SoC�0:5
0:25 :e

kTT�Ta
Ta
TN : 1� L0ð Þ (1)

where L is the capacity reduction starting from 0 to 0.2 C when the battery
capacity (C) is reduced 20%, which is normally considered as the end of the life time,
and L0 is the initial capacity degradation (L0 = 1-C0) during the time interval where
ΔL is been computed. Kco, kex, ksoc, and kT are the parameters of the model and need
to be fitted using data. SoC andσSoC are the average and normalized standard deviation
of the state of charge in the interval. For example, σSoC ¼ 1 and SoC ¼ 0:5 are the
values for a time interval that includes a full charge-discharge cycle. Ne is the number
of equivalent full charge-discharge cycles during the time interval. T, Ta, and TN are
the battery temperature, ambient temperature, and nominal temperature (298 K) in
K. Using (1), the battery capacity degradation, L, can be calculated at any moment: L =
L0 + ΔL.

This model expresses that the aging depends on the number of equal cycles, the
previous aging (1-L0), depth of discharge within a cycle, and temperature. However,
for the hybrid energy storage system, the main control parameter is the battery
current, particularly, how smooth the discharge current is. This means that what the
ratio between RMS and average value is during the cycle. The smaller is the ratio, the
smoother is the current.

Unfortunately, this ratio is not explicitly shown in the model. This ratio affects the
battery temperature, T, and then, the temperature has an impact in the aging. In order
to understand the impact, a relation between the internal temperature of the cell and
the RMS/average ratio is needed. A simple model is used as shown in Figure 3a and b
shows the electric circuit. The thermal model is as simple as possible: a thermal
capacitance, related to the materials and battery size, and a thermal resistance, which
allows the battery to extract the heat. The electric circuit is also simplified as the main
goal is not to accurately predict the output, but to estimate the losses.
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Figure 4 shows two types of discharge-charge cycle and the temperature effect of
it. The constant discharge-discharge cycle has a notable less impact in the temperature
although both of them discharge at 1C rate. The variable discharge-charge cycle has a

Figure 3.
(a) Thermal and (b) electrical equivalent circuits.

Figure 4.
Example of impact of the temperature in battery capacity degradation.

151

Hybrid Energy Storage Systems in Electric Vehicle Applications
DOI: http://dx.doi.org/10.5772/intechopen.113000



higher temperature impact, which is reflected in the aging. The aging plot at the end
of the figure shows the effect of cycling both constant and variable cycles, considering
and neglecting the temperature effect. In both cases, the temperature effect notably
increases the degradation of the battery, and the variable discharge process achieves
the maximum degradation. In addition, the figure also presents the effect of the
degradation only because of the depth of discharge and the current. These parameters
also play an important role in the degradation of the battery.

4.2 Motorcycle description, battery current profile with and without HESS

Figure 5 shows the main diagram of the electric motorcycle traction system. In the
example, the main characteristics are: in-wheel 5 kW brushless motor, a total weight
of 200 kg, a 70 V 50 Ah battery, and a motor drive that can work in the 60 to 100 V
range. The battery consists of 22 Lithium-ion 50 Ah cells (LiFePO4) in series.

In the BESS case (only batteries), the battery is connected directly to the motor
drive and delivers the current demanded by the motor. For this case study, we
propose the use of B-HESS case (Figure 2b); the battery is connected through a DC/
DC converter to a SC-stack, and both then connect to the motor drive. The semi-
active B-HESS was selected because:

1.Passive topologies are robust but cannot take full advantage of the SCs because
the power sharing is controlled based on their own internal impedances, so no
real-time control.

2.Full-active topologies are attractive, but size, cost, and complexity are above a
scooter design and price.

3.Semi-active topologies offer two variants: with SC-HESS, the converter should
tolerate SC currents, which can be much larger than the battery currents, so it
will be more expensive, bulkier, and heavier. On the contrary, B-HESS is a good
trade-off between control, complexity, and cost and allows the full control of the
battery current, which is important for keeping the temperature within the safe
operational area while still delivering high power.

Therefore, B-HESS was selected.
In this configuration, the SC-stack voltage is allowed to fluctuate between 60 and

100 V, in order to transfer energy to the motor drive. The motor drive is a traditional

Figure 5.
Motorcycle traction system.
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voltage source inverter, which can tolerate that voltage variation. However, if a
wider input voltage is needed, other inverters must be used, such as a Z-source
converter [31].

The current that the motor drive demands from the battery is shown in Figure 6.
Notice that the currents peaks achieve 3C for this particular battery 150A and there is
a notable variation in the current from zero to the maximum value. However, by using
the B-HESS (Figure 2b) and using the converter as a low pass filter, the high fre-
quency currents can be delivered by the supercapacitors (SCs) and the average cur-
rent by the Lithium-ion battery. Figure 7 shows the profile of the current in the
battery using B-HESS. B-HESS consisted of the same battery, a bidirectional half-
bridge converter [7], and a set of 33 SC in series as a SC-stack 3 V-3000F. Notice that
the high frequency currents are delivered by the SCs, while the main current is
delivered by the battery. Also, notice that for long pulses, the supercapacitors cannot
deliver the power, so in that case, the battery is the one that is delivering the power.
Therefore, if the SCs are exhausted, the battery still provides the energy. This allows a
robust performance.

4.3 Aging estimation

Finally, both the BESS discharging current profile from Figure 6 and the B-HESS
discharging current profiles from Figure 7 were cycled using a 1C-constant charging
profile for more than 300 cycles. The results are shown in Figure 8 for the only
battery case (BESS) and in Figure 9 for the B-HESS case. The rise in the temperature
is slightly higher in the BESS case, but the main effect is the current variation, which is
much softer in the B-HESS. For both cases, the presented aging model were used with
the same parameters. It predicts that the degradation achieves 10% of capacity loss for
900 cycles in the BESS mode; however, for the B-HESS, the capacity loss is 8%. This
means around 20% of life cycle extension. In addition, the real battery capacity was

Figure 6.
Battery discharging profiles for an urban ride in a scooter using only BESS.
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Figure 7.
Battery and SC discharging profiles for an urban ride in a scooter using B-HESS.

Figure 8.
Degradation test in only battery case, BESS.
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measured in each cycle, and the results of the first 300 cycles are in concordance with
the proposal.

As a future work, a complete analysis reaching the end of the life should be
performed for several cells and several profiles. Unfortunately, these tests are very
time demanding, so the validations are limited but express are big potential in life
cycle increase using HESS technologies.

5. Conclusion

This chapter briefly describes the technologies for storage energy and from that
extracts the idea of combining two different technologies in order to have high power
available and high energy density. It suggests that a good combination for this is an
HESS with supercapacitors and batteries. For that, several topologies are mentioned:
passive, semi-active, and full-active, with their own advantages and disadvantages.
The most attractive topologies are semi-active and full-active, due to the flexibility
that they offer.

Using HESS, combining SC and batteries, current stress and temperature of the
battery can be reduced. These two aspects affect the life cycle of the battery, so the

Figure 9.
Degradation test in B-HESS case.
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chapter also presents an aging model that helps to quantify their effect on the battery
life cycle.

Finally, the chapter shows a practical case study, in which the energy storage
system of an urban scooter is replaced by an HESS. The study clearly shows how the
current in the battery becomes smoother and how this impacts the temperature and
the capacity degradation. This is shown using the aging model and experimental
validation.
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