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Preface

Since the times of the earliest humans to populate the earth, we have gradually tried 
to understand and control the world around us. In an attempt to understand such 
phenomena, humans started to make predictions to various degrees. For instance, 
humans started to make predictions about the planets’ motions, eclipses, rainfall 
cycles, or the periodicity of certain diseases. However, in the last few decades, the 
complexity of carrying out predictions has exceeded our abilities to predict.

Fortunately, the dawn of electronic computers is profoundly increasing our abilities to 
predict nature. However, the problems we are facing now are far more complex than 
the problems we faced a century ago.

The ability of these machines to demonstrate advanced cognitive skills in making 
decisions, learning, perceiving the environment, predicting certain behaviors, or 
processing written or spoken languages, among other skills, makes this discipline of 
paramount importance in today’s world.

I hope that this work is of interest to students and researchers alike, as I did my best to 
comprise quality research contributions with several different applications.

Marco Antonio Aceves Fernandez
Universidad Autonoma de Queretaro,

Queretaro, Mexico
Topic Editor: Machine Learning and Data Mining 

Artificial Intelligence has been a very important topic over the last period due to its use in 
companies, business, and real life because more and more data is generated each time. The 
automatic interpretation of big data is based on the extraction of patterns, and the field of 
Artificial Intelligence has a great role in extracting information and making decisions.

In particular, this book presents some of the contemporary and relevant topics in 
Artificial Intelligence, providing machine learning approaches, deep learning approaches, 
knowledge-based recognition, case studies and emerging technologies, and applications 
using Artificial Intelligence. Innovative advances from this field have been included 
in order to show the reader the newly researched and developed approaches.

Carlos M. Travieso-Gonzalez
University of Las Palmas de Gran Canaria,

Gran Canaria, Spain
Topic Editor: Applied Intelligence 
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Chapter 1

Machine Learning Algorithm-Based
Contraceptive Practice among
Ever-Married Women in
Bangladesh: A Hierarchical
Machine Learning Classification
Approach
Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman,
Md. Injamul Haq Methun, Ashis Talukder,
Md. Jakaria Habib and Md. Sanwar Hossain

Abstract

Contraception enables women to exercise their human right to choose the number
and spacing of their children. The present study identified the best model selection
procedure and predicted contraceptive practice among women aged 15–49 years in
the context of Bangladesh. The required information was collected through a well-
known nationally representative secondary dataset, the Bangladesh Demographic and
Health Survey (BDHS), 2014. To identify the best model, we applied a hierarchical
logistic regression classifier in the machine learning process. Seven well-known ML
algorithms, such as logistic regression (LR), random forest (RF), naïve Bayes (NB),
least absolute shrinkage and selection operation (LASSO), classification trees (CT),
AdaBoost, and neural network (NN) were applied to predict contraceptive practice.
The validity computation findings showed that the highest accuracy of 79.34% was
achieved by the NN method. According to the values obtained from the ROC, NN
(AUC = 86.90%) is considered the best method for this study. Moreover, NN (Cohen’s
kappa statistic = 0.5626) shows the most extreme discriminative ability. From our
research, we suggest using the artificial neural network technique to predict contra-
ceptive use among Bangladeshi women. Our results can help researchers when trying
to predict contraceptive practice.

Keywords: contraceptive, machine learning algorithms, LASSO, NN, hierarchical
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1. Introduction

Family planning is indispensable in facilitating the prosperity and autonomy of
women, their families, and their communities. Contraceptive choices, maternal and
newborn health care, sexually transmitted infections, and sexual health are the main
concepts of reproductive health [1]. The states agreed in 2001 that among the Millen-
nium Development Goals (MDGs), target 5b was called for by 2015 for universal
access to reproductive health. Global contraceptive prevalence is 64% (41% in low-
income countries) and the global unmet need for family planning is 12% (22% in low-
income countries) as reported at the end of the MDGs period. Sustainable Develop-
ment Goals (SDGs) targets 3.7 and 5.6 call for universal access to sexual and repro-
ductive health care services and sexual and sexual and reproductive health and
reproductive rights, respectively [2, 3].

It has been calculated that maternal mortality has been reduced globally by 30% by
the increase in contraceptive use [4]. Unintended pregnancies, pregnancy spacing, and
reducing high-risk pregnancies are the consequences of contraceptive use [5–7]. Current
studies show that every year, contraceptive use could reduce nearly 230 million births
by stopping unwanted pregnancies [8]. As a result, the use of contraception improves
the health of women and their children [6, 9]. However, the prevalence of contraceptive
practice varied between 11.3% and 72.1% in different countries, namely Mozambique,
11.3%, Ghana, 21.5%, Bangladesh (modern method), 54.0%, and Sweden, 72.1% [9–12].

Previous research has shown that various variables are significantly associated with
contraceptive use, such as maternal age, maternal and husband’s educational level,
wealth status, maternal age at first marriage, and so on [11, 13]. Through the promo-
tion of family planning, appropriate diagnostics, and interventions, the prevalence of
contraceptive use is increasing. Popular statistical methods (binary logistic regression)
have been applied to determine important indicators of contraceptive use among
women. But the main goal is to predict contraceptive practice among women aged
between 15 and 49 in Bangladesh. Machine learning is a scientific method that can
build models for prediction purposes. According to the research, traditional statistical
procedures were shown to be ineffective in this form of modeling. Machine learning
approaches have long been shown to be more successful and promising in handling a
variety of complicated and nonlinear issues [14–16].

However, not many studies have explored machine learning methods to develop
predictive models for studying contraceptive methods. Therefore, various well-known
machine learning algorithms were applied to predict contraceptive practices among 15–
49-year-old women in Bangladesh in this study. Before prediction, we applied a Hier-
archical Logistic Regression classifier in machine learning approaches that were used to
select potential risk factors associated with the contraceptive practice of women. To our
best knowledge, the originality of the study is that it is almost new in the field of
machine learning classifier approach in the contraceptive practice of Bangladesh con-
text, for the first time using such methods, which will assist future data scientists.

2. Methods

2.1 Data source

In this study, the necessary information has been extracted from a representative
secondary national data set, the Bangladesh Demographic and Health Survey (BDHS),
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2014. This survey was carried out through a joint effort of the National Institute of
Population Research and Training (Bangladesh), Mitra Associates (Bangladesh), and
ICF International (USA).

The entire list of enumeration areas (EAs) that encompasses the entire country,
provided by the Bangladesh Bureau of Statistics (BBS) for the 2011 population and
housing census of the People’s Republic of Bangladesh, served as the sampling frame
for the 2014 BDHS. An EA was a geographical zone with an average of 120 house-
holds. The survey uses a two-stage stratified sampling process that includes informa-
tion on the EA region, residence (urban or rural), and the number of residential
households counted. Viable interviews were conducted in 98% of the selected
households (out of 17,989 total). For this study, 17,863 ever-married women aged
15–49 years were included in the final analysis. Note that to learn more about the
detailed sampling procedure of the 2014 BDHS, see the final published report of the
survey [17].

2.2 Dependent variable

Since the main purpose of this study was to predict contraception practice among
women aged 15–49 years, the response variable was “current contraception use”,
which was classified as “Yes or No”. If the respondent currently utilizes a contracep-
tive method, she falls into the “Yes” group, otherwise, she falls into the “No” group.

2.3 Independent variables

Besides the response variable, a set of 21 demographic and socioeconomic risk
factors were included in the analysis, which was associated with contraceptive prac-
tice and considered predictor variables. Several studies found that demographic and
socioeconomic characteristics such as current age, division, religion, residence,
respondent’s working status, FP media exposure, age at first marriage, currently
breastfeeding, wealth status, women’s education, husband’s education, child ever
born, number of living children, ideal number of children, fertility preference, marital
status, and decision making for using contraception are potential risk factors that
determine contraception practice among women [10, 11, 18–24]. The list of indepen-
dent variables and their measures are presented in Table 1.

No. Variables Measures

1 Women current age (years) 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49

2 Division Barisal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur,
Sylhet

3 Religion Islam, other

4 Sex of household head Male, female

5 Residence Urban, rural

6 Respondent working status No, yes

7 Family planning (FP) media exposure No, yes

8 Age at first marriage <18, 18+

5
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2.4 Statistical analysis

The frequency distribution was used to describe the background characteristics of
the respondents. In this study, we developed a Hierarchical Logistic Regression clas-
sifier in machine learning approaches that were used to select potential risk factors
related to the contraceptive practice of women in Bangladesh by using the largest
value of AUC (p < 0.05). One of the procedures for enhancing the performance of
machine learning is hierarchical learning, which is inspired by human learning [25].
The DeLong test is an extensively used test to compare the difference between two
AUCs [26]. That model was significant, with the largest AUC value, and was
considered the final model in this analysis. The steps are depicted in Figure 1.

To meet the objective of the study, we fitted numerous numbers of model where
the full model is denoted by Mi (where i ¼ 21) using Hierarchical Logistic Regression
classifier in the Machine Learning Process. The steps are described below:

Step 1: Consider jth model defined as Mj j ¼ 1, 2, 3, … , ið Þ which is consist of j
predictors. Thus, the initial model was named Model1 and defined as M1 where
j ¼ 1ð Þ, then fit the model M1 by using machine learning logistic classifier (MLLC).
Step 2: Adding a variable in the previous model and defined asMjþ1 and again also

fit model Mjþ1 by using MLLC approach.
Step 3: Identify the best model by using Delong’s Test, which is considered the

largest area under the curve at a 5% level of significance.
Step 4: If Mjþ1 >Mj based on AUC at 5% level of significance, then Model Mjþ1

has a significantly different AUC from Model Mj with p < 0.05. In this case, the best
model was considered as Mjþ1, otherwise the model was Mj.

Step 5: The process is repeated successively until the desired number of risk
factors/features are identified.

No. Variables Measures

9 Currently breastfeeding No, yes

10 Currently amenorrhoeic No, yes

11 Currently abstaining No, yes

12 Wealth status Poor, middle, rich

13 Women education No education, primary education, secondary+

14 Husband education No education, primary education, secondary+

15 Sexually transmitted infection (STI) No, yes

16 Children ever born 0–1, 2–3, 4+

17 Number of living children None, 1–2, 3+

18 Ideal number of children 0–1, 2–3, 4+

19 Fertility preference No more, have another, undecided, declared infecund,
sterilized

20 Marital Status Married, others

21 Decision making for using
contraception

Respondent, others

Table 1.
Description of independent variables.

6

Artificial Intelligence Annual Volume 2022



After selecting the final model, we applied the 7 most popular machine learning
classifiers to predict contraceptive practice among ever-married women aged 15–49 in
Bangladesh. In this study, we used seven different popular ML algorithms (Logistic
Regression (LR), Random Forest (RF), Naïve Bayes (NB), Least Absolute Shrinkage
and Selection Operation (LASSO), Classification Trees (CT), AdaBoost, and Neural
Network (NN)). A detailed description of the algorithms used is available in the
literature [27–32].

The Statistical Package for Social Science (SPSS) version 25 and R version 4.0.0
software were used for data management and analysis.

2.5 Proposed approach

Data from ever-married women aged 15–49 was used in this study. Only ever-
married women aged 15–49 was considered for the final analysis based on this criterion.
Then, apply data preparation methods; for example, first find out missing data from the

Figure 1.
Flow diagram for hierarchical logistic regression classifier in the machine learning process.
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overall dataset. It is well known that the main drawbacks of missing information in a
dataset are the reduced statistical power (because it reduces the number of samples n,
the estimates will have larger standard errors). The main disadvantages of missing data
in a dataset are statistical power reductions, which are well-known (because it reduces
the number of samples n, the estimates will have larger standard errors). There are
numerous imputation methods for imputing missing values nowadays, including direct
deletion, mode imputation, hot-deck imputation, and so on [33]. A lower threshold of
5%missingness has been suggested in the literature [34]. We utilized the direct deletion
method because this study had a low rate of missing values, which means we removed
all missing values from the data set and conducted the analysis using the entire data set.
The next step after missing value processing is to normalize/standardize the variables,
which is useful when the data distribution is unknown. As a result, normalization is not
required for any machine learning approach, especially in categorical data. Finally, all
machine learning classifiers included in this study were performed on 70% of the
respondents in each group (training data set, n = 12,504) and acquired by the remaining
30% (test data set, n = 5358). All models were trained to support 10-fold cross-
validation. On the training set, we performed 10-fold cross-validation, and on the
testing set, we estimated performance. The results of the development of the seven
machine learning classifiers are depicted in Figure 2.

2.6 Model evaluation

We used the following criteria to evaluate the ML algorithms’ performance: con-
fusion matrix, receiver operating characteristic (ROC), and the area under that curve
(AUC). Generally, a confusion matrix has four possible prediction outcomes, such as
TR = true positives, TN = true negatives, FP = false positives, and FN = false negatives.
Several performance measures, including accuracy, precision, recall, and the F1 score,
are usually calculated using these four potential outcomes to assess the classifier. The
ROC curves have been calculated by utilizing the predicted outcomes as well as the
true outcomes. To examine the ML algorithms’ discriminating powers, the AUC of the
ROC has been averaged for the test data sets [35]. Theoretically, the AUC should be
between 0 and 1, with 1 being the most extreme value for an ideal classifier. Since the
usual lower bound for random classification is 0.5, an AUC greater than 0.5 has at least
some capacity to separate between cases and non-cases [36]. In addition to these
measures, we also used Cohen’s kappa statistic, which is a better measure to examine
the agreement between two raters. It is calculated by utilizing the predicted and the
actual classifications in a data set. The value of Cohen’s kappa statistic is 1:

3. Results

3.1 Sociodemographic characteristics of women

Table 2 shows the percentage distribution of women according to the selected
socio-demographic characteristics of Bangladesh. The majority of women (19%) are
between the ages of 25 and 29. The majority of them (35%) are from the Dhaka
division, Muslims (90%), living in male-headed households (89%), and in the rural
areas (72%). In terms of working status, slightly more than two-thirds (67%) of
women are not currently involved in any kind of income-generating activities, and
80% of them do not have any media exposure. The majority of women (77% of them)
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Figure 2.
Flow chart of the development of the seven machine learning classifiers.

Characteristics Sample women

No. %

Women current age (years)

15–19 2029 11.4

20–24 3224 18.0

25–29 3390 19.0

30–34 3047 17.1

35–39 2315 13.0

40–44 2092 11.7

45–49 1766 9.9

Division

Barisal 1111 6.2

9
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Characteristics Sample women

No. %

Chittagong 3301 18.5

Dhaka 6223 34.8

Khulna 1838 10.3

Rajshahi 2103 11.8

Rangpur 2056 11.5

Sylhet 1232 6.9

Religion

Islam 16,096 90.1

Other 1767 9.9

Sex of household head

Male 15,854 88.8

Female 2009 11.2

Residence

Urban 5047 28.3

Rural 12,816 71.7

Respondent working status

No 11,947 66.9

Yes 5912 33.1

Family planning (FP) media exposure

No 14,316 80.1

Yes 3547 19.9

Age at first marriage

<18 13,657 76.5

18+ 4206 23.5

Currently breastfeeding

No 14,033 78.6

Yes 3830 21.4

Currently amenorrhoeic

No 17,054 95.5

Yes 809 4.5

Currently abstaining

No 17,341 97.1

Yes 522 2.9

Wealth status

Poor 6767 37.9

Middle 3560 19.9

10
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Characteristics Sample women

No. %

Rich 7536 42.2

Women education

No education 4455 24.9

Primary 5209 29.2

Secondary + 8199 45.9

Husband education

No education 5189 29.0

Primary 4289 27.3

Secondary+ 7795 43.6

Sexually transmitted infection (STI)

No 11,947 66.9

Yes 5912 33.1

Children ever born

0–1 5670 31.7

2–3 8139 45.6

4+ 4054 22.7

Number of living children

None 1814 10.2

1–2 9478 53.1

3+ 6571 36.8

Ideal number of children

0–1 1127 6.3

2–3 15,308 85.7

4+ 1429 8.0

Fertility preference

No more 9555 56.7

Have another 5293 31.4

Undecided 462 2.7

Declared infecund 561 3.3

Sterilized 986 5.8

Marital Status

Married 16,858 94.4

Others 1005 5.6

Decision making for using contraception

Respondent 1515 8.5

Others 16,348 91.5.5
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married before their 18th birthday, and 79% of them were not breastfeeding their
children at the time of the survey. The findings also show that around 96 to 97% of
women are not amenorrheic (96%) or abstaining (97%). In terms of wealth status,
42% of the women were from rich families. Approximately half of the women
(46%) had secondary or higher education. The majority of the husbands (44%) had a
secondary or higher level of education. The number of women who knew about
sexually transmitted infections (STIs) was found to be 67%. The majority of
women (46%) have had 2–3 children, while 53% have 1–2 living children. The ideal
number of children was 2–3 (86%) and more than half (57%) of the women were
not interested in having another child. The vast majority of women are currently
married (94%), and only 9% can make the decision to use a contraception method on
their own. Regarding contraception use, according to the 2014 BDHS, 58.9% of
women used it.

3.2 Create model

In the initial step of the analysis, we applied hierarchal logistic regression to
select the final model. Here, each variable was considered as one model. We added
a potential risk factor (variable) to the previous model that was considered a
new model in this analysis (Table 3). For example, in the initial model M1 we
considered (arbitrary) respondent age, M1+Division was considered as M2. Similarly,
we consider another model by adding a variable to the previous model until the
desired number of models is reached in this analysis. The details are presented in
Table 3.

3.3 Best model selection

All models were statistically significant (p < 0.001) except models M7 and M12.
Based on the Delong test, we excluded two variables (FP media exposure and wealth
status) from our final analysis. The remaining significant variables were considered
risk factors for predicting contraceptive practice among women aged 15–49 years in
Bangladesh. From Table 4, Model M21 was the final model for analysis, and selected
risk factors were also used for the final analysis. The details of the best model selection
procedure are given in Table 4.

3.4 Performance parameter of machine learning algorithms

This study used seven different machine algorithms to classify contraceptive prac-
tices among married women both training and an experimental/test dataset.

Characteristics Sample women

No. %

Contraception use status

Using 10,527 58.9

Not Using 7336 41.1

Table 2.
Percentage distribution of ever- married women age between 15 and 49 by selected socio-demographic
characteristics.
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Model Model

M1 = respondent age M12 = M11 + wealth status

M2 = M1 + division M13 = M12 + women education

M3 = M2 + religion M14 = M13 + husband education

M4 = M3 + Sex of household head M15 = M14 + sexually transmitted infection (STI)

M5 = M4 + residence M16 = M15 + children ever born

M6 = M5 + respondent working status M17 = M16 + number of living children

M7 = M6 + FP media exposure M18 = M17 + ideal number of children

M8 = M7 + age at first marriage M19 = M18 + fertility preference

M9 = M8 + currently breastfeeding M20 = M19 + marital status

M10 = M9 + currently amenorrhoeic M21 = M20 + decision making for using contraception

M11 = M10 + currently abstaining

Table 3.
Create a model-based hierarchical approach.

Model AUC DeLong’s test for AUC
(p-value)

Decision Model selection

M1 0.629 �9.26 (0.000) M2 has a significantly different AUC from M1 M2 is selected

M2 0.660

M3 0.662 �2.16 (0.031) M3 significantly different AUC from M2 M3 is selected

M4 0.713 �16.21 (0.000) M4 significantly different AUC from M3 M4 is selected

M5 0.714 �2.03 (0.041) M5 had significantly different AUC from M4 M5 is selected

M6 0.715 �2.24 (0.025) M6 had significantly different AUC from M5 M6 is selected

M7 0.716 �0.61 (0.545) M7 had not significantly different AUC from M6 M7 is not selected

M8 0.716 �2.63 (0.008) M8 had a significantly different AUC from M6 M8 is selected

M9 0.723 �4.34 (0.000) M9 had a significantly different AUC from M8 M9 is selected

M10 0.762 �14.38 (0.000) M10 had a significantly different AUC from M9 M10 is selected

M11 0.773 �8.05 (0.000) M11 had a significantly different AUC from M10 M11 is selected

M12 0.773 �0.72 (0.472) M12 had not a significantly different AUC
from M11

M12 is not
selected

M13 0.774 �2.22 (0.029) M13 had a significantly different AUC from M11 M13 is selected

M14 0.775 �2.17 (0.030) M14 had a significantly different AUC from M13 M14 is selected

M15 0.776 �2.13 (0.033) M15 had a significantly different AUC from M14 M15 is selected

M16 0.799 �11.81 (0.000) M16 had a significantly different AUC from M15 M16 is selected

M17 0.813 �9.26 (0.000) M17 had a significantly different AUC from M16 M17 is selected

M18 0.816 �4.74 (0.000) M18 had a significantly different AUC from M17 M18 is selected

M19 0.828 �11.45 (0.000) M19 had a significantly different AUC from M18 M19 is selected

M20 0.847 �14.69 (0.000) M20 had a significantly different AUC from M19 M20 is selected

M21 0.866 �21.75 (0.000) M21 had a significantly different AUC from M20 M21 is selected

Table 4.
Best model selection based on Delong’s test.
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Performance parameters (such as accuracy, precision, recall, F1, specificity, and AUC
value) were used to compare the predictive performance of these algorithms. In
addition, Cohen Kappa’s statistical information was used to determine the discrimi-
nant accuracy of the algorithm. The prediction results with performance parameters
for each algorithm are shown in Table 5 and Figure 3.

Table 5 shows that the logistic regression classifier has an accuracy of 78.52%. The
precision and recall of the fitted model were 81.23% and 82.39%, respectively, while
the F1 score was 81.81%. The area under the curve (AUC) was calculated to be 86.57%.
The prediction performance result of a random forest was displayed with an accuracy
of 77.57%. Here, the precision, recall, and F1 score of the random forest classifier were
73.82%, 85.35%, and 81.99%, respectively. The AUC, in this case, was 84.07%. The
final accuracy of the naïve Bayes classifier was 76.56%, with a precision of 75.73% and
a recall of 88.32%. The F1 score and the AUC value, in this case, were 81.54% and
84.17%, respectively. Using Least Absolute Shrinkage and Selection Operator
(LASSO) analysis, the accuracy in the test data set was seen as 79.08% with precession
and recall of 79.39% and 86.85% respectively, and the F1 score was 82.96%. According

Model name Accuracy (95% CI) Cohen’s kappa Precession Recall F1 AUC Specificity

LR 78.52 (77.39, 79.61) 0.5559 81.23 82.39 81.81 86.57 73.03

RF 77.57 (76.43, 78.68) 0.5288 78.32 85.35 81.69 84.07 66.53

NB 76.56 (75.40, 77.69) 0.4995 75.73 88.32 81.54 84.17 59.90

LASSO 79.08 (77.96, 80.16) 0.5601 79.39 86.85 82.96 86.59 68.06

CT 78.57 (77.45, 79.67) 0.5464 78.16 88.06 82.81 85.59 65.13

AdaBoost 78.50 (77.37, 79.59) 0.5523 80.20 84.08 82.10 86.15 70.59

NN 79.34 (78.23, 80.42) 0.5626 78.71 88.76 83.44 86.90 65.99

Table 5.
Performance evaluation for seven ML algorithms (test data set).

Figure 3.
Area under curve of all seven machine learning classifiers.
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to the test observation results, the classification tree method showed 78.57% accuracy
in predicting contraceptive practice among married women, with a precession of
78.16%, a recall of 88.06%, an F1 score of 82.81%, and an AUC value of 85.59%. For
AdaBoost, these values are 78.05% (accuracy), 80.20% (precession), 84.88% (recall),
82.10% (F1 score) and 86.15% (AUC). Finally, we used an artificial neural network
and obtained an accuracy of 79.34%. Here, other parameters such as precession, recall,
F1 score, and AUC are 78.71%, 88.76%, 83.44%, and 86.90% respectively. Among the
seven classifiers, we obtained the best performance from NN in terms of both accu-
racy and AUC. Cohen’s kappa value is 0.5626.

This violin plot shows the relationship of seven classifiers to accuracy. The shaded
areas detail the distribution of the data in each classifier. Figure 4 shows that NN
provided the highest mean accuracy, followed by LASSO and AdaBoost. Unlike the
boxplot, the entire distribution of the 10-fold accuracy can be visualized in this violin
plot (Figure 4).

4. Discussion

This is the very first study that uses a hierarchical logistic classifier in a machine
learning approach. Then the predictive performance of the hierarchical logistic classi-
fier was compared with the other six machine learning algorithms’ predictive power.
In this study, the use of contraception among ever-married women in Bangladesh has
been predicted using sociodemographic factors. This study can provide policymakers
and academics with a starting point to examine key outlines in a larger framework and
raise noteworthy interventions.

The study found that the prevalence of contraception was almost 59% in
Bangladesh. The prevalence rate of contraceptives in India is 54%, while the rates
were 47%, 34%, and 65%, respectively, for Nepal, Pakistan, and Sri Lanka [37, 38].

Figure 4.
Violin plots of the 10-fold cross-validation.
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As the government of Bangladesh is committed to the London Summit on Family
Planning to improve contraceptive access and use among impoverished people in both
urban and rural areas [39], the findings of this study will provide grounding direction
for the increase in the prevalence of contraception.

In this study, we used hierarchical LR, RF, NB, LASSO, CT, AdaBoost, and NN
machine learning techniques to predict contraceptive practice among ever-married
women in Bangladesh. The current analysis was to evaluate which performed better
based on the accurate prediction rate of contraceptive use for 2014, BDHS data sets.
Moreover, there was no evidence of scientific study that used a hierarchical logistic
classifier and several supervised learning. In this study, 70% of the respondents
were used for model tuning purposes, and the remaining 30% were used to check
model performance, for the model tuning was performed using 10-fold cross-
validation on the training dataset. The researcher observed that cross-validation is
most commonly used to evaluate model performance [40]. The prediction of
contraceptive use was measured by performance parameters (such as accuracy,
precision, recall, F1, and AUC value) compared to the performance of seven different
machine learning classifiers in this analysis. Cohen’s kappa, the proportion of
predicted to actual classification in the dataset, is used to assimilate model perfection.
Among the used models, the Neural Network outperformed other models with an
accuracy of 79.34%. Additionally, in terms of Cohen kappa, the result of this analysis
also highlighted that the Neural Network provides the best predictive performance
(Cohen’s κ = 0.5626). This indicates Neural Networks have achieved better perfor-
mance than other LR, RF, Lasso Regression, NB, CT, and AdaBoost. Hailemariam et al.
proposed a J48 decision tree that performed better than Naïve Bayes to predict
contraceptive practice in Ethiopian women [41]. However, Hailemariam et al. have
not used the neural network in their study [41]. In a data mining study in India, the
CART model produces pretty satisfactory results for finding the predictors of
contraception use among married women [42]. However, Vaz and his team
member also found that the Random Forest model was the most accurate model
for predicting women’s fertile periods [43]. Machine learning algorithms can be
quite helpful in predicting infertility in women, according to a study conducted in
Nigeria [44].

5. Conclusions

In this paper, we investigate the hierarchical logistic regression classifier in
machine learning approaches to identify potential risk factors related to contraceptive
practices of women in Bangladesh. In summary, we conclude that all of the selected
covariates were significant determinants for contraceptive practice except FP Mass
media exposure and wealth status according to the hierarchical logistic regression
classifier in machine learning approaches based on the Delong test. Here, we com-
pared seven supervised machine learning algorithms to predict contraceptive practice
among ever-married women aged between 15 and 49 years in Bangladesh. The NN
model has exhibited the best results based on the performance parameters, having
demonstrated an accuracy of 79.34%, a precision of 78.71%, a recall of 88.76%, an F1
score of 83.44%, and an AUC value of 86.90. Among the seven algorithms, the NN
model performs the best in terms of accuracy, Cohen’s kappa statistic, and area under
the curve (AUC). This study recommends the use of the NN model and policymakers
should pay attention to continuing this study in the future.

16

Artificial Intelligence Annual Volume 2022



Acknowledgements

A special thank goes to the Demographic Health Surveys for enabling us to use
Bangladesh Demographic Health Survey data for our study from https://dhsprogram.
com/data/.

Funding

This study did not receive funding.

Conflicts of interest

The authors declare that they are not competing of interest.

Data availability

This study was analyzed using secondary data, which were available at
“https://dhsprogram.com/data/”.

Author details

Iqramul Haq1*, Md. Ismail Hossain2, Md. Moshiur Rahman3,
Md. Injamul Haq Methun4, Ashis Talukder5, Md. Jakaria Habib2

and Md. Sanwar Hossain2

1 Department of Agricultural Statistics, Sher-e-Bangla Agricultural University,
Dhaka, Bangladesh

2 Department of Statistics, Jagannath University, Dhaka, Bangladesh,

3 Department of Pharmacology and Toxicology, Sher-e-Bangla Agricultural
University, Dhaka, Bangladesh

4 Department of Statistics, Tejgaon College, Dhaka, Bangladesh

5 Statistics Discipline, Khulna University, Khulna, Bangladesh

*Address all correspondence to: iqramul.haq@sau.edu.bd

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

17

Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women…
DOI: http://dx.doi.org/10.5772/intechopen.103187



References

[1] United Nations Population Fund.
Sexual and Reproductive Health for all:
Reducing Poverty, Advancing
Development and Protecting Human
Rights. New York, New York, United
States: United Nations Population Fund;
2010

[2] United Nations. Transforming our
World: The 2030 Agenda for Sustainable
Development United Nations. 2015.
Available from: https://sustainabledeve
lopment.un.org/content/documents/
21252030%20Agenda%20for%20Susta
inable%20Development%20web.pdf

[3] World Health Organization. Health-
Related Millennium Development Goals.
2015 . Available from: https://www.who.
int/gho/publications/world_health_
statistics/EN_WHS2015_Part1.pdf?ua=1

[4] Cleland J, Conde-Agudelo A,
Peterson H, Ross J, Tsui A.
Contraception and health. The Lancet.
2012;380(9837):149-156. DOI: 10.1016/
s0140-6736(12)60609-6

[5] Ahmed S, Li Q, Liu L, Tsui AO.
Maternal deaths averted by
contraceptive use: An analysis of 172
countries. The Lancet. 2012;80(9837):
111-125. DOI: 10.1016/S0140-6736(12)
60478-4

[6] Brunner Huber LR, Smith K, Sha W,
Vick T. Interbirth interval and
pregnancy complications and outcomes:
Findings from the pregnancy risk
assessment monitoring system. Journal
of Midwifery &Women’s Health. 2018;
63(4):436-445. DOI: 10.1111/jmwh.
12745

[7] Darroch J. Singh S. Estimating
Unintended Pregnancies Averted from
Couple-Years of Protection (CYP). 2011.
Available from: https://www.guttmacher.

org/sites/default/files/page_files/
guttmacher-cyp-memo.pdf

[8] Liu L, Becker S, Tsui A, Ahmed S.
Three methods of estimating births
averted nationally by contraception.
Population Studies. 2008;62(2):191-210.
DOI: 10.1080/00324720801897796

[9] Yazdkhasti M, Pourreza A, Pirak A,
Abdi F. Unintended pregnancy and its
adverse social and economic
consequences on health system: A
narrative review article. Iranian Journal
of Public Health. 2015;44(1):12-21

[10] Aviisah PA, Dery S, Atsu BK,
Yawson A, Alotaibi RM, Rezk HR, et al.
Modern contraceptive use among
women of reproductive age in Ghana:
Analysis of the 2003–2014 Ghana
demographic and health surveys. BMC
Women’s Health. 2018;18(1):1-10.
DOI: 10.1186/s12905-018-0634-9

[11] Haq I, Sakib S, Talukder A.
Sociodemographic factors on
contraceptive use among ever-married
women of reproductive age: Evidence
from three demographic and health
surveys in Bangladesh. Medical Science.
2017;5(4):31. DOI: 10.3390/medsci
5040031

[12] Kopp Kallner H, Thunell L,
Brynhildsen J, Lindeberg M, Gemzell
Danielsson K. Use of contraception and
attitudes towards contraceptive use in
Swedish women—A Nationwide survey.
PLoS One. 2015;10(5):e0125990.
DOI: 10.1371/journal.pone.0125990

[13] Mandiwa C, Namondwe B,
Makwinja A, Zamawe C. Factors
associated with contraceptive use among
young women in Malawi: Analysis of the
2015–16 Malawi demographic and health
survey data. Contraception and

18

Artificial Intelligence Annual Volume 2022



Reproductive Medicine. 2018;3(1):12-19.
DOI: 10.1186/s40834-018-0065-x

[14] Moazenzadeh R, Mohammadi B,
Shamshirband S, Chau K. Coupling a
firefly algorithm with support vector
regression to predict evaporation in
northern Iran. Engineering Applications
of Computational Fluid Mechanics.
2018;12(1):584-597. DOI: 10.1080/
19942060.2018.1482476

[15] Mousa SR, Bakhit PR, Osman OA,
Ishak S. A comparative analysis of tree-
based ensemble methods for detecting
imminent lane change maneuvers in
connected vehicle environments.
Transportation Research Record: Journal
of the Transportation Research Board.
2018;2672(42):268-279. DOI: 10.1177/
0361198118780204

[16] Zhang Y, Haghani A. A gradient
boosting method to improve travel time
prediction. Transportation Research Part
C: Emerging Technologies. 2015;58:
308-324. DOI: 10.1016/j.trc.2015.02.019

[17] NIPORT, Mitra and Associates, &
ICF International. Bangladesh
Demographic and Health Survey 2014.
Bangladesh: NIPORT, Mitra and
Associates, and ICF International; 2016

[18] Johnson EO. Determinants of
modern contraceptive uptake among
Nigerian women: Evidence from the
National Demographic and health
survey. African Journal of Reproductive
Health. 2017;21(3):89-95.
DOI: 10.29063/ajrh2017/v21i3.8

[19] Gebre MN, Edossa ZK. Modern
contraceptive utilization and associated
factors among reproductive-age women
in Ethiopia: Evidence from 2016 Ethiopia
demographic and health survey. BMC
Women’s Health. 2020;20(1):1-14.
DOI: 10.1186/s12905-020-00923-9

[20] Islam AZ, Mondal MNI, Khatun ML,
Rahman MM, Islam MR, Mostofa MG,
et al. Prevalence and determinants of
contraceptive use among employed and
unemployed women in Bangladesh.
International Journal of MCH and AIDS.
2016;5(2):92-102. DOI: 10.21106/ijma.83

[21] Kidayi PL, Msuya S, Todd J,
Mtuya CC, Mtuy T, Mahande MJ.
Determinants of modern contraceptive
use among women of reproductive age in
Tanzania: Evidence from Tanzania
demographic and health survey data.
Advances in Sexual Medicine. 2015;
05(03):43-52. DOI: 10.4236/asm.2015.
53006

[22] Solanke BL. Factors influencing
contraceptive use and non-use among
women of advanced reproductive age in
Nigeria. Journal of Health, Population
and Nutrition. 2017;36(1):1-14.
DOI: 10.1186/s41043-016-0077-6

[23] Sridhar A, Salcedo J. Optimizing
maternal and neonatal outcomes with
postpartum contraception: Impact on
breastfeeding and birth spacing.
Maternal Health, Neonatology and
Perinatology. 2017;3(1):1-10.
DOI: 10.1186/s40748-016-0040-y

[24] Vu LTH, Oh J, Bui QT-T, Le AT-K.
Use of modern contraceptives among
married women in Vietnam: A multilevel
analysis using the multiple indicator
cluster survey (2011) and the Vietnam
population and housing census (2009).
Global Health Action. 2016;9(1):29574.
DOI: 10.3402/gha.v9.29574

[25] Zhang L, Zhang B. Hierarchical
machine learning–a learning
methodology inspired by human
intelligence. In: International Conference
on Rough Sets and Knowledge
Technology. Berlin, Heidelberg:
Springer; 2006. pp. 28-30. DOI: 10.1007/
11795131_3

19

Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women…
DOI: http://dx.doi.org/10.5772/intechopen.103187



[26] DeLong ER, DeLong DM, Clarke-
Pearson DL. Comparing the areas under
two or more correlated receiver
operating characteristic curves: A
nonparametric approach. Biometrics.
1988;44(3):837. DOI: 10.2307/2531595

[27] Anuse A, Vyas V. A novel training
algorithm for convolutional neural
network. Complex & Intelligent
Systems. 2016;2(3):221-234.
DOI: 10.1007/s40747-016-0024-6

[28] Buntine W. Learning classification
trees. Statistics and Computing. 1992;
2(2):63-73. DOI: 10.1007/bf01889584

[29] JangW, Lee JK, Lee J, Han SH. Naïve
Bayesian classifier for selecting good/bad
projects during the early stage of
international construction bidding
decisions. Mathematical Problems in
Engineering. 2015;2015:1-12.
DOI: 10.1155/2015/830781

[30] Talukder A, Ahammed B. Machine
learning algorithms for predicting
malnutrition among under-five children
in Bangladesh. Nutrition. 2020;78:
110861. DOI: 10.1016/j.nut.2020.110861

[31] Vasquez MM, Hu C, Roe DJ, Chen Z,
Halonen M, Guerra S. Least absolute
shrinkage and selection operator type
methods for the identification of serum
biomarkers of overweight and obesity:
Simulation and application. BMCMedical
Research Methodology. 2016;16(1):
154-172. DOI: 10.1186/s12874-016-0254-8

[32] Wu P, Zhao H. Some analysis and
research of the AdaBoost algorithm. In:
International Conference on Intelligent
Computing and Information Science.
Berlin, Heidelberg: Springer; 2011.
pp. 1-5

[33] Xu X, Xia L, Zhang Q, Wu S, Wu M,
Liu H. The ability of different
imputation methods for missing values

in mental measurement questionnaires.
BMC Medical Research Methodology.
2020;20(1):1-9. DOI: 10.1186/s12874-
020-00932-0

[34] Madley-Dowd P, Hughes R,
Tilling K, Heron J. The proportion of
missing data should not be used to guide
decisions on multiple imputation.
Journal of Clinical Epidemiology. 2019;
110:63-73. DOI: 10.1016/j.jclinepi.2019.
02.016

[35] Liu B, Fang L, Liu F, Wang X,
Chou K-C. iMiRNA-PseDPC: microRNA
precursor identification with a pseudo
distance-pair composition approach.
Journal of Biomolecular Structure &
Dynamics. 2016;34(1):223-235.
DOI: 10.1080/07391102.2015.1014422

[36] Liaw A, Wiener M. Classification
and regression by random Forest. R
News. 2002;2(3):18-22. Available from:
https://cogns.northwestern.edu/cbmg/
LiawAndWiener2002.pdf

[37] Family Planning. India:
Commitment Maker since 2012. 2018.
Available from: https://www.familypla
nning2020.org/india

[38] The World Bank. Contraceptive
Prevalence, Any Methods (% of Women
Ages 15–49) Data. 2019. Available from:
https://data.worldbank.org/indicator/SP.
DYN.CONU.ZS%20(2019)

[39] Huda FA, Robertson Y,
Chowdhuri S, Sarker BK, Reichenbach L,
Somrongthong R. Contraceptive
practices among married women of
reproductive age in Bangladesh: A
review of the evidence. Reproductive
Health. 2017;14(1):69-77. DOI: 10.1186/
s12978-017-0333-2

[40] Cawley GC, Talbot NLC. Gene
selection in cancer classification using
sparse logistic regression with Bayesian

20

Artificial Intelligence Annual Volume 2022



regularization. Bioinformatics. 2006;
22(19):2348-2355. DOI: 10.1093/
bioinformatics/btl386

[41] Hailemariam T, Gebregiorgis A,
Meshesha M, Mekonnen W. Application
of data mining to predict the likelihood
of contraceptive method use among
women aged 15-49 case of 2005
demographic health survey data
collected by central statistics agency,
Addis Ababa, Ethiopia. Journal of Health
& Medical Informatics. 2017;8(3):
274-279. DOI: 10.4172/2157-7420.
1000274

[42] Chaurasia AR. Contraceptive use in
India: A data mining approach.
International Journal of Population
Research. 2014;2014:1-11. DOI: 10.1155/
2014/821436

[43] Vaz F, Silva RR, Bernardino J. Using
data mining in a mobile application for
the calculation of the female fertile
period. In: Proceedings of the 10th
International Joint Conference on
Knowledge Discovery, Knowledge
Engineering and Knowledge
Management. Setúbal, Portugal:
SciTePress; 2018. DOI: 10.5220/
0007228603590366

[44] Balogun JA, Egejuru N, Idowu P.
Comparative analysis of predictive
models for the likelihood of infertility in
women using supervised machine
learning techniques. Computer Reviews
Journal. 2018;2(1):313-330

21

Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women…
DOI: http://dx.doi.org/10.5772/intechopen.103187





23

Chapter 2

Evaluating Similarities and 
Differences between Machine 
Learning and Traditional Statistical 
Modeling in Healthcare Analytics
Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta

Abstract

Data scientists and statisticians are often at odds when determining the best 
approaches and choosing between machine learning and statistical modeling to 
solve their analytical challenges and problem statements across industries. However, 
machine learning and statistical modeling are actually more closely related to each 
other rather than being on different sides of an analysis battleground. The deci-
sion on which approach to choose is often based on the problem at hand, expected 
outcome(s), real world application of the results and insights, as well as the availabil-
ity and granularity of data for the analysis. Overall machine learning and statistical 
modeling are complementary techniques that are guided on similar mathematical 
principles, but leverage different tools to arrive at insights. Determining the best 
approach should consider the problem to be solved, empirical evidence and resulting 
hypothesis, data sources and their completeness, number of variables/data elements, 
assumptions, and expected outcomes such as the need for predictions or causality and 
reasoning. Experienced analysts and data scientists are often well versed in both types 
of approaches and their applications, hence use best suited tools for their analytical 
challenges. Due to the importance and relevance of the subject in the current analytics 
environment, this chapter will present an overview of each approach as well as outline 
their similarities and differences to provide the needed understanding when select-
ing the proper technique for problems at hand. Furthermore, the chapter will also 
provide examples of applications in the healthcare industry and outline how to decide 
which approach is best when analyzing healthcare data. Understanding of the best 
suited methodologies can help the healthcare industry to develop and apply advanced 
analytical tools to speed up the diagnostic and treatment processes as well as improve 
the quality of life for their patients.

Keywords: machine learning, statistical modeling, data science, healthcare analytics, 
research design
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1. Introduction

In the recent years, machine learning techniques have been utilized to solve problems 
at hand across multitudes of industries and topics. In the healthcare industry, these 
techniques are often applied to a variety of healthcare claims and electronic health 
records data to garner valuable insights into diagnostic and treatment pathways in order 
to help optimize patient healthcare access and treatment process [1]. Unfortunately, 
many of these applications resulted in inaccurate or irrelevant research results, as proper 
research protocols were not fully followed [2]. On the other hand, statistics has been the 
basis of analysis in healthcare research for decades, especially, in the areas of clinical 
trials and health economics and outcomes research (HEOR), where the precision and 
accuracy of analyses have been the primary objectives [3]. Furthermore, the classical 
statistics methodologies are often preferred in those research areas to ensure the ability to 
replicate and defend the results and ultimately, the ability to publish the research content 
in peer-reviewed medical journals [3]. The increased availability of data, including data 
from wearables, provided the opportunity to apply a variety of analytical techniques and 
methodologies to identify patterns, often hidden, that could help with optimization of 
healthcare access as well as diagnostic and treatment process [4].

With the rapid increase in data from the healthcare and many other industries, it 
is important to consider how to select well - suited statistical and machine learning 
methodologies that would be best for the problem at hand, the available data type, 
and the overall research objectives [5]. Machine learning alone or complemented 
by statistical modeling is becoming, not just a more common, but a desired con-
vergence to take advantage of the best of both approaches for advancing healthcare 
outcomes [1]. Please note that this book chapter was originally posted on the Cornell 
University’s research working article website: https://arxiv.org. The book chapter 
content is mostly the same between the two versions [6].

2. Machine learning foundation is in statistical learning theory

Machine learning (ML) is considered a branch of artificial intelligence and com-
puter science that focuses on mimicking human behaviors through a set of algorithms 
and methods that use historical values to predict new values [7], without specifically 
being coded to do so and thereby learning over time [8, 9]. ML is grounded in statisti-
cal learning theory (SLT), which provides the constructs used to create prediction 
functions from data. One of the first examples of SLT was the creation of the support 
vector machine (SVM), the supervised learning method that can be used as for both 
classification and regression and has become a standard in modeling how to recognize 
visual objects [7]. SLT formalizes the model that makes a prediction based on obser-
vations (i.e., data) and ML automates the modeling [7].

SLT sets the mathematical and theoretical framework for ML as well as the proper-
ties of learning algorithms [7] with the goals of providing mechanisms for studying 
inference and creating algorithms that become more precise and improved over 
time [8]. SLT is based multivariate statistics and functional analysis [8]. Functional 
analysis is the branch of statistics that measures shapes, curves, and surfaces, extend-
ing multivariate vector statistics to continuous functions and finding functions that 
describe data patterns [8]. Inductive inference is the process of generalizing and 
modeling past observations to make predictions for the future; SLT formalizes the 
modeling concepts of inductive inference, while ML automates them [8].
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For example, pattern recognition is considered a problem of inductive inference 
and SLT, as it is a curving-fitting problem, and one of the most common applications 
of ML [7–9]. Pattern recognition is not suited for traditional computer programming 
as the inferences needed are not free of assumptions and the patterns are not easily 
described or labeled programmatically with deterministic functions. The standard 
mathematics behind SLT makes no assumptions on distributions, uses stochastic 
functions that can include humans labeling the “right” classification, i.e., training 
data, and can assume that the probability of the occurrence of one observation is 
independent of another thereby including the concept of randomness [7–9]. These 
tenets are therefore those of ML as well.

SLT also provides the definition of terms often using in ML such as overfitting, 
underfitting and generalization. Overfitting is when the presence of noise in the data 
negatively affects training and the ultimate model performance because the noise is 
being incorporated into the learning process, thereby giving error when the model sees 
new data [8, 9]. Underfitting is when the noise impacts both performance on training 
data as well as new and unseen data [9]. In ML, discussion about underfitting and 
overfitting are often used to describe models that do not generalize the data effectively 
and might not present the right set of data elements to explain the data patterns and 
posited hypotheses [9]. Underfitting is often defined when model which is missing 
features that would be present in the most optimized model, akin to a regression model 
not fully explaining all of the variance of the dependent variable [9]. In a similar vein, 
overfitting is when the model contains more features or different features than is 
optimal, like a regression model with autocorrelation or multicollinearity [9].

The general goal of learning algorithms and therefore ML model optimization is to 
reduce the dimensions, features, or data variables to the fewest number needed as that 
reduces noise or the impact of trivial variables that can overfit or unfit [8, 9]. A regular-
ization model can then become generalized to perform not just on the past or the training 
data, but also on future and yet unseen data [8, 9]. Although true generalization needs 
both the right modeling criteria as well as strong subject matter knowledge [8].

Often dimension reduction approaches like Principal Component Analysis (PCA) 
or boot strapping techniques used along with subject matter expertise can help 
resolve how to refine models, combat fit challenges, as well as improve generaliza-
tion potential [9, 10]. Furthermore, understanding the studied population and data 
characteristics can further help define the data to be used, variable selection, and 
proper model set up [10].

3. Similarities between machine learning and statistical modeling

Statistical modeling is based on SLT and use of mathematical models and 
statistical assumptions to generate sample data and make predictions about the 
real world occurrences. A statistical model is often represented as a collection of 
probability distributions on a set of all possible outcomes. Furthermore, statistical 
modeling has evolved in the last few decades and shaped the future of business 
analytics and data science, including the current use and applications of ML algo-
rithms. On the other hand, machine learning does not require many assumptions 
and interventions when running algorithms in order to accurately predict studied 
outcomes [7].

There are similarities between ML and statistical modeling that are prevalent 
across most analytical efforts. Both techniques use historical data as input to predict 
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new output values, but they vary as noted above on the underlying assumptions and 
the level of analyst intervention and data preparation.

Overall, machine learning foundations are based from statistical learning theory, 
and it is recommended for the data scientists to apply SLT’s guiding rules during anal-
ysis. While it may seem as a statistical background and understanding is not required 
when analyzing the underlying data, this misconception often leads to data scientist’s 
inability to set up proper research hypothesis and analysis due to a lack of understand-
ing of the problem and the underlying data assumptions as well as caveats. This issue 
can in turn result in biased and irrelevant results as well as unfounded conclusions 
and insights. With that in mind, it is important to evaluate the problem at hand, 
and consider both statistical modeling and ML as possible methods to be applied. 
Understanding the underlying assumptions of the data and statistical inference can 
help support proper technique selection and guide the pathway to solution [11]. In the 
later sections of the chapter, application of both techniques will be provided and the 
reasoning for selecting the methods presented to guide future research.

As mentioned above, the similarities between ML and statistical modeling start 
with the underlying assumption that data or observations from the past can be used to 
predict the future [7]. The variables included in the analysis generally represent two 
types: dependent variables, that in ML are called targets, and independent variables, 
that in ML are called features. The definition of the variables is the same across both 
techniques [8]. Furthermore, both ML and statistical modeling leverage the avail-
able data in a way that allow for generalization of results to larger population [7]. 
The loss and risk associated with the models accuracy and representation of the real 
world occurrence is described frequently in terms of mean squared error (MSE). In 
statistical modeling, MSE is the difference between the predicted value and the actual 
value and is used to measure loss of the performance of predictions. In the ML, the 
same MSE concept is presented via a confusion matrix that evaluates a classification 
problem's accuracy [9].

4. Differences between machine learning and statistical modeling

Differences between machine learning and statistical modeling are distinct and 
based on purposes and needs for the analysis as well as the outcomes. Assumptions 
and purposes for the analysis and approach can vastly differ. For example, statistics 
typically assumes that predictors or features are known and additive, models are para-
metric, and testing of hypotheses and uncertainty are forefront. On the other hand, 
ML does not make these assumptions [12]. In ML, many models are based on non-
parametric approaches where the structure of model is not specified or unknown, 
additivity is not expected, and assumptions about normal distributions, linearity or 
residuals, for example, are not needed for modeling [10].

The purpose of ML is predictive performance using general purpose learning 
algorithms to find patterns that are less known, unrelated, and in complex data 
without a priori view of underlying structures [10]. Whereas in statistical model-
ing, consideration for inferences, correlations, and the effects of a small number of 
variables are drivers [12].

Due to the differences in the methods’ characteristics, it is important to under-
stand the variations in application of the techniques when solving healthcare 
problems. For example, one typical application of statistics is to analyze whether a 
population has a particular medical condition. For some diseases such as diabetes, 
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the condition is easily screened for and diagnosed using distinct lab values, such as 
elevated and increasing HbA1C over time, high glucose levels and low insulin levels, 
often due to insulin depletion occurring from unmanaged diabetes. Also conditions 
such as hypertension can easily be detected at home or in the healthcare provider’s 
office using simple blood pressure measurement and monitoring, and wearables can 
identify when patients are experiencing atrial fibrillation, abnormal heart rhythms 
and even increased patient falls (possible syncope). Therefore, analyses of patients 
with these easily measurable conditions can be done simply by qualifying patients 
based on lab values or biomarkers falling within or outside of certain ranges. One 
of the simplest examples is identifying patients with diabetes [13]. This can be 
accomplished by using A1C levels to group patients as having no diabetes (A1C < 5.7), 
pre-diabetes (AIC of 5.7–6.4), or diabetes (A1C > 6.4). These ranges are based on 
American Diabetes Association Diagnosis Guidelines and a very high, medically 
accepted correlation between AIC levels and the diagnosis of diabetes [14].

On the other hand, if the objective of the research is to predict which pre-diabetic 
patients are most likely to progress to diabetes, a myriad of factors influence diabetes 
progression including extent of chronic kidney disease, high blood pressure, insulin 
levels over time, body mass index/obesity, age, years with diabetes, success of prior 
therapy, number and types of prior therapies, family history, coronary artery disease, 
prior cardiovascular events, infections, etc. A complicated combination of comor-
bidities, risk factors, and patient behavior can lead to differing diabetes complications 
and varying outcomes makes prediction more challenging and thus it represents a 
good candidate for the use of machine learning techniques. Classification models such 
as gradient boosting tree algorithms have been used to successfully predict diabetes 
progression, especially earlier in the disease. While there any many diabetes risk 
factors and co-morbidities, these disease characteristics are well studied over many 
years, thus enabling stable predictive models which perform well over time [14].

Overall, machine learning is highly effective when the model uses more than a 
handful of independent variables/features [10]. ML is required when the number of 
features (p) is larger than the number of records or observations (n) – this is called 
the curse of dimensionality [15, 16], which increases the risk of overfitting, but can be 
overcome with dimensionality reductive techniques (i.e., PCA), as part of modeling 
[15] and clinical/expert input on the importance or lack thereof of certain features, 
is it relates to the disease or its treatment. Additionally, statistical learning theory 
teaches that learning algorithms increase their ability to translate complex structures 
from data at a greater and faster rate than the increase of sample size capture can 
alone provide [8]. Therefore, statistical learning theory and ML offer methods for 
addressing high-dimensional data or big data (high velocity, volume and variety) and 
smaller sample sizes [17], such as recursive feature elimination and support vector 
machines, boosting, or cross validation which can also minimize prediction error [18].

In the healthcare industry, machine learning models are frequently used in cancer 
prediction, generally in three areas: (1) predicting a patient with a cancer prognosis/
diagnosis, (2) predicting cancer progression, and (3) predicting cancer mortality. 
Of these, predicting whether a patient may have a cancer prognosis/diagnosis can 
be more or less difficult depending on the tumor type. Certain cancers such as lung 
cancer, breast cancer, prostate cancer, and skin cancer are evaluated based on specific 
signs and symptoms, and non-invasive imaging or blood tests. These cancers are 
easier to predict. Conversely, cancers with non-descript symptoms such fatigue, 
dizziness, GI pain and distress, and lack of appetite are much more difficult to predict 
even with machine learning models as these symptoms are associated with multiple 
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tumor types (for example esophageal, stomach, bladder, liver, and pancreatic cancer) 
and also mimic numerous other conditions [14].

For cancers with vague symptoms, understanding the patient journey is very 
important to cancer prediction. If a prediction period is too long and does not reflect 
the time period before diagnosis when symptoms develop, the model may overfit due 
to spurious variables not related to the condition. If the prediction period is too short, 
key risk factors from the patient record could be missing. Variable pruning is required 
in these situations. A multi-disciplinary team including business and clinical experts 
can help trim unrelated variables and improve model performance [14].

Model validation is an inherent part of the ML process where the data is split into 
training data and test data, with the larger portion of data used to train the model to 
learn outputs based on known inputs. This process allows for rapid structure knowledge 
for primary focus on building the ability to predict future outcomes [15]. Beyond initial 
validation of the model within the test data set, the model should be further tested in 
the real world using a large, representative, and more recent sample of data [19]. This 
can be accomplished by using the model to score the eligible population and using a 
look forward period to assess incidence or prevalence of the desired outcome. If the 
model is performing well, probability scores should be directly correlated to incidence/
prevalence (the higher the probability score, the higher the incidence/prevalence). 
Model accuracy, precision, and recall can also be assessed using this approach [20].

Epidemiology studies and prior published machine learning research in related 
areas of healthcare can help benchmark the performance of the model relative to the 
baseline prevalent or incident population for the condition to be predicted. Machine 
learning models created using a few hundred or thousand patients often do not 
perform as well in the real world. Careful variable pruning, cohort refinement and 
adjustment of modeling periods can often resolve model performance problems. 
Newer software can be used to more quickly build, test, and iterate models, allowing 
users to easily transform and combine features as well as run many models simultane-
ously and visualize model performance, diagnosis and solve model issues [21].

5. How to choose between machine learning and statistical modeling

Machine learning algorithms are a preferred choice of technique vs. a statistical 
modeling approach under specific circumstances, data configurations, and outcomes 
needed.

5.1 Importance of prediction over causal relationships

As noted above, machine learning algorithms are leveraged for prediction of the 
outcome rather than present the inferential and causal relationship between the 
outcome and independent variables/data elements [17, 22]. Once a model has been 
created, statistical analysis can sometime elucidate and validate the importance and 
relationship between independent and dependent variables.

5.2 Application of wide and big dataset(s)

Machine Learning algorithms are learner algorithms and learn on large amount 
of data often presented by a large number of data elements, but not necessarily with 
many observations [23]. Ability of multiple replications of samples, cross validation 
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or application of boot strapping techniques for machine learning allows for wide 
datasets with many data elements and few observations, which is extremely help-
ful in predicting rare disease onset [24] as long as the process is accompanied with 
real world testing to ensure the models are not suffering from overfitting [18, 19]. 
With the advent of less expensive and more powerful computing power and storage, 
multialgorithm, ensembled models using larger cohorts can be more efficiently built. 
Larger modeling samples that are more representative of the overall population can 
help reduce the likelihood of overfitting or underfitting [25]. A large cohort imposes 
various issues and of priority is the ability to identify the set of independent variables 
that are most meaningful and impactful. These significant independent variables 
provide a predictive and/or inferential model that can be readily acceptable in provid-
ing a real-world application. The variables in such instances may also result into more 
realistic magnitude and direction of the causal relationship between the independent 
and outcomes variables of interest.

A recent example for a real-world example in healthcare for machine learning 
algorithm application is to identify the likelihood of hospitalization for high-risk 
patients diagnosed with Covid 19. The dataset leveraged included over 20,000 
independent variables across healthcare claims data for diagnostics and treatment 
variables. The best optimal ML model consisted of approximately 200 important 
predictors variables such as age, diagnosis like Type 2 diabetes/CKD/Hypertension, 
frequency of office visits, Obesity amongst others. None of the variables in this 
example were ‘new’, however, the magnitude and direction as a result of the ML 
exercise may illustrate the ‘true’ impact of each independent variable, a feature that is 
a serious limitation in traditional statistical modeling [26].

Furthermore, as explained above, statistical models tend to not operate well on 
very large datasets and often require manageable datasets with a fewer number of 
pre-defined attributes/data elements for analysis [23]. The recommended number of 
attributes is up to 12 in a statistical model, because these techniques are highly prone 
to overfitting [25]. This limitation creates a challenge when analyzing large healthcare 
datasets and require application of dimension reduction techniques or expert guid-
ance in allowing to eliminate the number of independent variables in the study [23].

5.3 Limited data and model assumptions are required

In machine learning algorithms, there are fewer assumptions that need to be made 
on the dataset and the data elements [5]. However, a good model is usually preceded 
by profiling of the target and control groups and some knowledge of the domain. 
Understanding relationships within the data improve outcomes and interpretability [27].

Machine learning algorithms are comparatively more flexible than statistical 
models, as they do not require making assumptions regarding collinearity, normal 
distribution of residuals, etc. [5]. Thus, they have a high tolerance for uncertainty 
in variable performance (e.g., confidence intervals, hypothesis tests [28]. In statis-
tical modeling emphasis is put in uncertainty estimates, furthermore, a variety of 
assumptions have to be satisfied before the outcome from a statistical model can be 
trusted and applied [28]. As a result, the statistical models have a low uncertainty 
tolerance [25].

Machine learning algorithms tend to be preferred over statistical modeling when 
the outcome to be predicted does not have a strong component of randomness, e.g., in 
visual pattern recognition an object must be an E or not an E [5], and when the learn-
ing algorithm can be trained on an unlimited number of exact replications [29].



Artificial Intelligence Annual Volume 2022

30

ML is also appropriate when the overall prediction is the goal, with less visibility 
to describe the impact of any one independent variable or the relationships between 
variables [30], and when estimating uncertainty in forecasts or in effects of selected 
predictors is not a requirement [28]. However, often data scientists and data analysts 
leverage regression analytics to understand the estimated impact, including direc-
tionality of the relationships between the outcome and data elements, to help with 
model interpretation, relevance, and validity for the studied [27]. ML is also preferred 
when the dataset is wide and very large [23] with underlying variables are not fully 
known and previously described [5].

6. Machine learning extends statistics

Machine learning requires no prior assumptions about the underlying relation-
ships between the data elements. It is generally applied to high dimensional data sets 
and does not require many observations to create a working model [5]. However, 
understanding the underlying data will support building representative modeling 
cohorts, deriving features relevant for the disease state and population of interest, as 
well as understanding how to interpret modeling results [19, 27].

In contrast, statistical model requires a deeper understanding how the data was 
collected, statistical properties of the estimator (p-value, unbiased estimators), the 
underlying distribution of the population, etc. [17]. Statistical modeling techniques 
are usually applied to low dimensional data sets [25].

7. Machine learning can extend the utility of statistical modeling

Robert Tibshirani, a statistician and machine learning expert at Stanford 
University, calls machine learning “glorified statistics,” which presents the depen-
dence of machine learning techniques on statistics in a successful execution that not 
only allows for a high level of prediction, but interpretation of the results to ensure 
validity and applicability of the results in the healthcare [17]. Understanding the 
association and knowing their differences enables data scientists and statisticians 
to expand their knowledge and apply variety of methods outside their domain of 
expertise. This is the notion of “data science,” which aims to bridge the gap between 
the areas as well as bring other important to consider aspects of research [5]. Data 
science is evolving beyond statistics or more simple ML approaches to incorporate 
self-learning and autonomy with the ability to interpret context, assess and fill in 
data gaps, and make modeling adjustment over time [31]. While these modeling 
approaches are not perfect and more difficult to interpret, they provide exciting 
new options for difficult to solve problems, especially where the underlying data or 
environment is rapidly changing [27].

Collaboration and communication between not only data scientists and statisti-
cians but also medical and clinical experts, public policy creators, epidemiologists, 
etc. allows for designing successful research studies that not only provide predic-
tions and insights on relationships between the vast amount of data elements and 
health outcomes [30], but also allow for valid, interpretable and relevant results 
that can be applied with confidence to the project objectives and future deploy-
ment in the real [30, 32].
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Finally, it is important to remember that machine learning foundations are based 
in statistical theory and learning. It may seem machine learning can be done without 
a sound statistical background, but this leads to not really understanding the different 
nuances in the data and presented results [17]. Well written machine learning code 
does not negate the need for an in-depth understanding of the problem, assumptions, 
and the importance of interpretation and validation [29].

8. Specific examples in healthcare

As mentioned earlier in the chapter, machine learning algorithms can be lever-
aged in the healthcare industry to help evaluate a continuum of access, diagnostic 
and treatment outcomes, including prediction of patient diagnoses, treatment, 
adverse events, side effects, and improved quality of life as well as lower mortality 
rates [24].

As shown in Figure 1, often these algorithms can be helpful in predicting a variety 
of disease conditions and shortening the time from awareness to diagnosis and treat-
ment, especially in rare and underdiagnosed conditions, estimate the ‘true’ market 
size, predicting disease progression such as identifying fast vs. slow progressing 
patients as well as determinants of suitable next line change [32]. Finally, the models 
can be leveraged for patient and physician segmentation and clustering to identify 
appropriate targets for in-person and non-personal promotion [30].

There are, however, instances in which machine learning might not be the right 
tool to leverage, including when the condition or the underlying condition have a few 
known variables, when the market is mature and has known predetermined diagnos-
tic and treatment algorithm, and when understanding correlations and inference is 
more important than making prediction [5].

One aspect of the machine learning process is to involve a cross functional team 
of experts in the healthcare area to ensure that the questions and problem statement 
along with hypothesis are properly set up [33, 34]. Many therapeutic areas require 
in-depth understanding of the clinical and medical concepts (i.e., diagnostic 
process, treatment regimens, potential adverse effects, etc.), which can help with 
the research design and selection of the proper analytical techniques. If the expert 
knowledge is not considered or properly captured in the research design, it might 
lead to irrelevant, invalid, and biased results, and ultimately invalidate the entire 
research study [33, 34].

Figure 1. 
Examples of Machine Learning Applications in Healthcare Analytics [22].
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9. A practical guide to the predominant approach

Using a real example of a project with the goal of predicting the risk of hyperten-
sion due to underlying comorbid conditions or induced by medication, the decision 
to lead with machine learning vs. statistical modeling can be based on explicit criteria 
that can be weighed and ranked based on the desired outcome of the work [17, 32]. 
Please see Figure 2 presenting an example of the approach.

As shown in Figure 2, pending the research objectives, machine learning or statis-
tical modeling or both techniques could be the right method(s) to apply. For example, 
shifts in market trends, including shifts in patient volume of diagnosis and treatment 
present a suitable example when a statistical modeling type of analysis should be 
utilized. On the other hand, trying to predict patients with a high risk for hyperten-
sion requires the utilization of ML approaches. Leveraging both methods is best 
suited when predictive power and explanatory reasoning is needed to understand the 
important factors driving the outcome and their relative magnitudes and inferences.

10. Conclusions

Machine learning requires fewer assumptions about the underlying relationships 
between the data elements. It is generally applied to high dimensional data sets and 
require fewer observations to create a working model [5]. In contrast, statistical 
model requires an understanding of how the data was collected, statistical proper-
ties of the estimator (p-value, unbiased estimators), the underlying distribution of 
the population, etc. [17]. Statistical modeling techniques are usually applied to low 
dimensional data sets [25]. Statistical modeling and ML are not at odds but rather 
complementary approaches that offer choice of techniques based on need and desired 
outcomes. Data scientists and analysts should not necessarily have to choose between 
either machine learning or statistical modeling as a mutually exclusive decision tree. 
Instead, selected approaches from both areas should be considered as both types of 
methodologies are based on the same mathematical principles but expressed some-
what differently [5, 10].

Figure 2. 
Criteria for Choosing the Predominant Approach for a Project.
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Chapter 3

Image-Based Crop Leaf Disease
Identification Using Convolution
Encoder Networks
Indira Bharathi and Veeramani Sonai

Abstract

Nowadays, agriculture plays a major role in the progress of our nation’s economy.
However, the advent of various crop-related infections has a negative impact on
agriculture productivity. Crop leaf disease identification plays a critical role in
addressing this issue and educating farmers on how to prevent the spread of diseases
in crops. Researchers have already used methodologies such as decision trees, random
forests, deep neural networks, and support vector machines. In this chapter, we
proposed a hybrid method using a combination of convolutional neural networks and
an autoencoder for detecting crop leaf diseases. With the help of convolutional
encoder networks, this chapter presents a unique methodology for detecting crop leaf
infections. Using PlantVillage dataset, the model is trained to recognize crop infec-
tions based on leaf images and achieves an accuracy of 99.82%. When compared with
existing work, this chapter achieves better results with a suitable selection of hyper
tuning parameters of convolution neural networks.

Keywords: crop leaf, convolution neural network, autoencoder, ReLU, deep neural
network, hyper tuning

1. Introduction

In agriculture, crop leaf plays an important role in giving information about the
good growth of the plant. Various climatic factors affect the growth of the plant.
Besides natural calamities, crop leaf disease is a major hazard to the growth of agri-
culture yields and economic victims. Once we fail to analyze the infections in the
crops, we may lead to low pesticide usage. Therefore, crop leaf identification is
considered a major issue in the biological features of diseases present in the crop.
When required, expert visual inspections and biological reviews are normally carried
out through plant diagnosis. This strategy, on the other hand, is usually time-
consuming and ineffective. To solve these difficulties, sophisticated and intelligent
systems for detecting plant diseases are required.

To provide an intelligent system to identify the crop leaf diseases, we proposed a
convolution neural network with image processing methodologies such as image
segmentation and filtering. In the existing works, most researchers applied conven-
tional machine learning algorithms to predict or identify the crop diseases present in
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the leaf. However, machine learning algorithms better recognize the plants, weed dis-
crimination, etc. As a result, crop leaf disease identification is critical to maintaining
agricultural productivity. In general, plant leaf disease analysis is also done manually by
using visual inspection. But it is time-consuming and potentially error-prone. As a
result, diagnosing crop disease using automated procedures is beneficial since it reduces
a significant amount of effort associated with crop monitoring on large farms, and it
detects disease symptoms at an early stage, i.e., when the disease first appears. Leaf
plant health monitoring and early detection of symptoms are required to limit disease
transmission, which aids farmers in effective management methods.

To develop an accurate image classifier for crop leaf identification, we need image
samples of damaged and healthy crops. The PlantVillage dataset has thousands of
images of healthy and infected crop leaves. In this dataset, six diseases in three crop
species are labeled. Hence, we use 54,306 image samples with a convolution encoder
network to identify the crop leaf diseases more accurately. The main contribution of
this chapter is summarized as follows:

1.A brief review of convolution neural network has been conducted to identify
diseases in several crops/plants affected by fungi, viruses, etc.

2.Features are extracted by using an encoder, namely variational autoencoder.

3.An effort has been made to improve the performance of CNN for identifying the
crop leaf by using segmentation of the images.

The rest of the chapter is organized as follows: The literature is briefly explained in
Section 2. The techniques used have been elaborated in Section 3. The results were
elaborated in Section 4, and the conclusion and future work are provided in Section 5.

2. Related works in the literature

An existing literature survey categorized the plant diseases by using several
Convolutional Neural Networks (CNN) [1, 2]. In the PlantVillage dataset, another
CNN-based architecture was presented to classify disease, and it outperformed DL
models such as as AlexNet, VGG-16, Inception-v3, and ResNet [3]. CNN model is also
proposed in a study to classify data in tea leaves. A CNN-based approach was devel-
oped for groundnut disease categorization in a recent publication [4]. Similarly, little
literature has looked at sophisticated training strategies; for example, [5] focused at
the performance of AlexNet and GoogLeNet. By comparing state-of-the-art and fine-
tuning techniques, comparison research was undertaken to demonstrate the impor-
tance of the fine-tuning technique.

A random forest-based classifier to identify the healthy and affected leaf is pro-
posed [6]. The author has described the dataset creation, extraction, and training. An
AlexNet classification technique is applied to detect rice leaf diseases, namely bacterial
blight, brown spot as well as leaf smut [7]. In order to monitor regularly and automatic
disease detection for remote sensing images was proposed [8]. Using Canny’s edge
detection and machine learning algorithm, a disease identification system was pro-
posed [9]. A convolutional neural networks-based autoencoder was used to detect
crop leaf diseases. The convolution filter size of 2 � 2 and 3 �3 gives different
accuracy for the different eoches [10].
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A state-of-the-art deep convolutional neural network for image classification is
proposed in [11]. A DenseNet model is proposed to perform better than other models.
The author proposes activation functions that perform better than ReLU on various
scales [12]. For the early detection of European wheat diseases, an automatic plant
disease diagnosis system is proposed [13, 14]. To increase the robustness of crop
detection, a multi-target tracking algorithm is proposed [15].

In order to classify the leaf images, deep learning approaches are studied [16]. For
the leaf segmentation, the images are trained using Mask Regionased Convolutional
Neural Network (Mask R-CNN). The average accuracy obtained for the VGG16
images is 91.5%. Through deep learning methodologies, leaf images are classified as
healthy and affected [17]. A method to dynamically analyze the images of the disease
is proposed in [18]. The output is sent to the farmer, and the feedback is reflected in
the model. Using the deep learning, strawberry fruits and leaves, diseases are diag-
nosed [18]. A convolutional Neural Network (CNN) model and Learning Vector
Quantization (LVQ) algorithm-based method for tomato leaf disease detection and
classification [19, 20].

To categorize the healthy and affected leaf, a deep learning model is applied over
the public images [1]. For the sustainable development of arming, it is essential to use
Artificial intelligence and machine learning approaches [21]. To solve the current
agricultural problems, a computer vision technology is combined with deep learning
model [22]. Using the images of plants, a state-of-the-art deep learning model is
applied to detect disease [5, 23]. To enhance the accuracy, a depthwise separable
convolution is adopted [3]. For the automatic detection of infection in the tomato
leaves, an enhanced deep learning architecture is adopted over the plantVillage datase
[4]. To classify the crop, a novel three-dimensional (3D) convolutional neural net-
work (CNN) is applied over the remote sensing image [24].

3. Proposed hybridized convolution neural network with variational
autoencoders system

In this chapter, a hybridized convolution neural network with variational
autoencoders is proposed to classify the crop leaf diseases, and hence, it is named as V-
Convolution encoder network. To extract the informative features of the leaf, we used
an autoencoder. It is a type of neural network, which is useful for outperforming two
functions, namely encoding and decoding. An encoding part plays a role in extracting
the high-dimensional features of the leaf, and the decoding part reconstructs the
inputs taken. In general, all CNN consists of three important layers, namely encoder
layers, max or min – pooling layers, and fully connected layers, as shown in Figure 1.

3.1 Building blocks of CNN

The convolutional layer is the core part of a convolutional network that contains a
structure of learnable channels. In the forward pass, the width and height information
of the images is passed over each channel, and the product of kernel and image pixels
is calculated. In the backward pass, the gradient of the loss with corresponds to input,
weight, and bias is computed. The various levels of filters are used to extract the
needed features from the matrix of original images taken. As the filter levels go in
deep, we can solve a more specific problem. To hold the important features, zero
padding is added across the image matrix.
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The ReLU activation function is used within the convolution layer, which adds
nonlinearity to the network. It calculates the weighted informative features faster
than the tangent or sigmoidal function. Next is the max pooling layer, which increases
a pooling layer in the midstream of several convolutional layers. Its skill is to vigor-
ously decrease the spatial size of the image to minimize the size of parameters and
calculation and consequently to control overfitting. When the image size is large, the
pooling layer reduces the number of training features. The important significance of
adding pooling layers is to lessen the spatial size of the input image. Here, min-max
pooling is used in our implementation. After the pooling layer, the fully connected
layer is essential to produce an output equivalent to the number of classes that we
want as output. In this, the annihilation of neurons is done, and we gain a vector of all
neurons. In such a layer, all neurons are fully connected with neurons in the previous
layer. At last softmax layer is used to calculate the probabilities should be in the range
0–1, and the summation of all probabilities is 1.

3.2 Variational autoencoder

Variational autoencoder is proposed to extract the features of given input images.
It is a neural organization that is intended for unsupervised learning. It comprises two
sections: encoder and decoder. The encoder means to encode input highlights into
encoding vectors, while the decoder acquires the yield highlights back from the
encoding vector. The encoder is planned so that the result produces a variable, which
is a compressed form of the input. On the other side, the decoder decompresses the
resultant images back to their original size. The difference between autoencoder and
variation autoencoder is that the autoencoder represents the features by applying the
function, whereas the variational autoencoder represents the features by calculating
the probability distribution. This encoder is designed based on the principle of a

Figure 1.
Proposed architeure.
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neural network that gives q of input as p of output. In a probability distribution
model, this network parameterizes the inaccurate features of the input images q and
produces the result as a distribution of x (p | q). This variational decoder then
reconstructs the input samples p such that it produces parameters to the distribution
y (p | q). This model consists of two phases, namely feature learning and classifier.
The learning of features is done in an unsupervised network, whereas the leaf diseases
are classified by training the samples using a CNN classifier. The overall architecture
of the proposed system is shown in Figure 1.

To perform the crop leaf disease identification, we have considered the PlantVillage
dataset. To improve the performance of the proposed system, the segmentation process is
performed on the original data samples before feature learning (Table 1).

PlantVillage Dataset

Classes of Tomato leafs Label_Name Disease type Sample images

Training Validation Testing

Tomato_Target_Spot Tom_target Fungi 994 270 140

Tomato_mosaic_virus Tom_mosaic virus 266 70 37

Tomato_YellowLeaf_Curly_Virus Tom_curly virus 3786 1071 500

Tomato_Bacterial_Spot Tom_bact Bacteria 1494 420 219

Tomato_Early_Blight Tom_EBlight Fungi 250 150 100

Tomato_Healthy Tom_Hlthy — 1128 310 153

Tomato_Late_Blight Tom_LBlight Bacteria 700 200 100

Tomato_Leaf_Mold Tom-mold Fungi 667 195 90

Tomato_Septoria_leaf_spot Tom_septo Fungi 1247 354 170

Tomato_Spider_mites Tom_spider Mite 1181 330 165

Table 2.
Training, test, and validation values used for each category of data sets.

Class Diseases Crop

0 Bacterial_spot Pepper, Tomato

1 Target_Spot Tomato

2 Early_blight Potato, Tomato

3 Late_Blight Potato, Tomato

4 Leaf_Mold Tomato

5 mosaic_virus Tomato

6 Healthy All (Pepper, Potato and Tomato)

Table 1.
Classes of various crop diseases.
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We acquired our results based on the training and testing sample listed in Table 2.
For classification, we considered different types of crop diseases from tomato leaves.
Table 1 describes the various crop and their diseases. It has six different classes, ranging
from 1 to 6. The proposed network has been trained to recognize crop infections based
on leaf images. Different convolution filter levels are used in the proposed work, and to
train the network more efficiently, ReLU activation function is used. It was shown that
the proposed architecture achieved better accuracy for various epochs and convolution
filter sizes. We applied additional convolution layers with 128 filters and filtered size 2
� 2 with ReLU. It is then followed by two additional convolution layers with 256 filters
and filter size 2 � 2 with ReLU. After all this, a flattening layer is used to acquire a
vector of neurons that uses ReLU function. Then two dense layers are used: one uses
ReLU, while the other uses the softmax function and depicts the output class.

4. Results and discussion

The proposed system is implemented by using Python Scikit-learn packages and is
executed using the Intel i5 processor. The proposed approach is evaluated by using the
PlantVillage dataset [25]. The testing and training used for the leaf image dataset are
illustrated in Table 2. The following performance parameters have been considered
for our implementation, namely precision, recall, and F1-score. The results are taken
with different values of epochs, and it is compared with existing approaches. By
varying the epochs, the error in the testing and training sample is plotted in Figure 2.

We achieved 98% of accuracy if the network is iterated for 150 epochs. It is also
observed that as the filter size increases, we get 100% accuracy. Table 2 shows the
training and testing accuracy for the different convolutional filter sizes such as 2 � 2
and 3 � 3. The best training accuracy for the 2 � 2 filter size is 97.21, and the best
testing accuracy is 87.12 for filter size 2 � 2. When compared with existing work, this
paper achieves better results with a suitable selection of hyper tuning parameters of a
convolution neural network (Table 3).

Figure 2.
Comparison of training and testing error with various epoches.
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Epochs Convolution filter Training accuracy Testing accuracy

100 2 *2 95.3 82.71

100 3*3 98.34 85.45

150 2*2 92.21 87.12

150 3*3 97.73 84.78

200 2*2 94.67 80.71

200 3*3 95.18 81.1

Table 3.
Training and testing accuracy for different filters.

Figure 3.
Comparison of various performance parameters.

Figure 4.
Accuracy comparison of various classifier.
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The performance of the resulting implementation is illustrated in the Figure 3.
Figure 4 shows the comparison of the proposed classifier and existing classifier
approaches. The proposed CNN approach shows superior performance in terms of
accuracy compared with other existing approaches (Table 4).

5. Conclusion and future work

Crop leaf diseases have been responsible for reducing production resulting in
economic causes. Recently, the crop leaf has been facing several diseases from various
insects and pests. This chapter proposes a unique methodology for detecting crop leaf
infections. With the PlantVillage dataset, the model is trained to recognize crop
infections based on leaf images and achieves an accuracy of 99.82%. This chapter
presented a feature selection algorithm to identify essential features from crop leaf
images. The chosen features are given to the hybrid method using a combination of
convolutional neural networks and autoencoders. Among all the existing classifiers,
the proposed approach shows an average of 84.54% of execution time improvement in
performing the classification. This work can be enhanced further to give the recom-
mendation to the farmer to apply proper insecticides prior to the spread of such
diseases.
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Chapter 4

Perspective Chapter: Deep
Reinforcement Learning for
Co-Resident Attack Mitigation in
The Cloud
Suxia Cui and Soamar Homsi

Abstract

Cloud computing brings convenience and cost efficiency to users, but multiplexing
virtual machines (VMs) on a single physical machine (PM) results in various
cybersecurity risks. For example, a co-resident attack could occur when malicious
VMs use shared resources on the hosting PM to control or gain unauthorized access to
other benign VMs. Most task schedulers do not contribute to both resource manage-
ment and risk control. This article studies how to minimize the co-resident risks while
optimizing the VM completion time through designing efficient VM allocation poli-
cies. A zero-trust threat model is defined with a set of co-resident risk mitigation
parameters to support this argument and assume that all VMs are malicious. In order
to reduce the chances of co-residency, deep reinforcement learning (DRL) is adopted
to decide the VM allocation strategy. An effective cost function is developed to guide
the reinforcement learning (RL) policy training. Compared with other traditional
scheduling paradigms, the proposed system achieves plausible mitigation of co-
resident attacks with a relatively small VM slowdown ratio.

Keywords: cloud computing, risk mitigation, resource management, co-resident
attack, reinforcement learning

1. Introduction

Cloud Computing, which has its origins in expanding the Internet, aims to provide
remote and scalable computing and storage resources to its customers. Users from
small businesses in a locally resource-limited environment can manipulate and store
large datasets for real-time processing with cloud services. The cloud platform has
gradually reshaped daily lives because it has been recognized as a convenient way to
transmit and store data in the big data era. Organizations can choose from the public,
private, or hybrid cloud that combines the public and private deployment model
features. The term “XaaS” is coined for the service-oriented architecture, emphasizing
that anything can be treated as a service under the cloud computing environment.
Examples of cloud delivery services include infrastructure as a service (IaaS),
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platform as a service (PaaS), and software as a service (SaaS) [1]. Recently, function
as a service (FaaS) further expanded the backend as a service (BaaS) offering. Under
each delivery model, a cloud service provider (CSP) is responsible for allocating
enough resources to maintain quality of service (QoS) to the users and protect their
data from security risks.

Virtualization has been adopted by most cloud computing platforms to profit from
the “pay as you go (PAYG)”model [2]. Virtualization is an idea generated from IBM’s
mainframe platform in the early 1960s. After entering the twenty-first century, it was
successfully utilized in cloud computing that can bring down the cost of maintaining a
large-scale system. It converts a physical server into numerous VMs, rented out to
several occupants [3–7]. This VM-PM relationship is illustrated in Figure 1.

The apparent relationship between PMs running and power consumption places a
high demand on a strategy for energy minimization in this configuration [8]. Security
and data privacy are other concerns for cloud computing platforms. Attackers will
seek to exploit any vulnerability to achieve various malicious goals on the victim’s
network, software, and databases. The co-resident attack is one of the prevalent
cybersecurity risks resulting from virtualization. Ideally, two neighboring VMs are
isolated from each other when running their tasks. However, in reality, each co-
located VM will depend on the same PM where hardware, like CPUs or memory
elements, is shared by all the VMs. Therefore, a VM’s private information may be
accessed by its neighboring VM by launching side-channel attacks [9–12], as shown in
Figure 2. Here, a hypervisor or virtual machine monitor (VMM) creates and runs
VMs on a hosting PM. The arrows illustrate the route of side-channel attacks. A side-
channel attack is a significant security challenge that prevents many organizations
from adopting cloud computing technology. Although recently deep learning algo-
rithms have proven to be effective in cloud resource management [13–16], few paid
attention to side-channel attack avoidance at the same time.

To fill in this gap, we developed a novel deep reinforcement-learning (DRL) based
dynamic VM allocation approach to optimize the trade-offs between the VM completion
and the co-resident risks mitigation. The main contributions of this paper are as follows:

• Threat model design: A time-sensitive zero trust threat model is developed for
co-resident vulnerability analysis. The model enables the tracking of VM
co-existent pairs on the same PM.

Figure 1.
VMs and PMs in a data center via virtualization.
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• DRL adoption to co-resident risk mitigation: This article is the first to investigate
the different states, actions, and rewards of DRL to fit it into cloud computing
side-channel attacks. The rewards guide the VMM decision-making.

• Simulation platform implementation: The proposed system accepts tasks
dynamically at runtime and analyzes cloud co-resident risks at each timestep for
optimized scheduling algorithms.

2. Related works: Secure cloud resource management

Resource management alone without security consideration in a cloud computing
environment is already very challenging. Multi-tenant environments allow attackers
to begin a co-resident infiltration and steal the victim’s information by side channels.
The risks that attackers pose to VMs on the same hypervisor are growing security
concerns and are being addressed differently. This section will discuss established
current resource management approaches with and without security awareness. Three
categories of methodologies are commonly used: Heuristic, game theory, and machine
learning (ML).

The exploration of heuristics and meta-heuristics to solve nondeterministic poly-
nomial time (NP) problems are growing amid the difficulties to solve them using
traditional methods [17]. Gawali and Shinde [18] combined a modified analytic hier-
archy process (MAHP), bandwidth aware divisible scheduling (BATS), and the lon-
gest expected processing time preemption (LEPT) to achieve improved performance.
Qin et al. [20] took the idea of “ant colony optimization” from [19] and proposed a
probabilistic algorithm that can simultaneously maximize the revenue of communi-
cations and minimize the power consumption of PMs. Similarly, Tawfeek et al. also
adopted ant species’ nature and presented a random optimization search approach for
allocating the incoming jobs to the virtual machines [21]. The proposed method
outperformed the popular first come first serve method. Patel introduced a hybrid
algorithm that used a modified honeybee behavior-inspired algorithm for priority-
based tasks and an enhanced weighted round-robin algorithm for non-priority-based
tasks [22] to balance the workload over the cloud dynamically. When using heuristic

Figure 2.
Side-channel attacks in cloud computing.
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methods with the consideration of co-resident attacks, various policies were com-
pared. Jia et al. [23] proposed a VM allocation method to optimize load balancing and
reduce energy consumption and security risks by managing CPU utilization of the
hosting PMs. Miao et al. offered two metrics to outline co-residency and conflict of the
cloud [24]. Both placement and migration algorithms mediate differences between
tenants to alleviate co-resident attacks in the cloud proactively. Han et al. formulated a
set of security metrics and a quantitative model to assign new VMs to the server with
the most VMs [25]. The research uncovered that the server’s configuration, over-
subscription, and background traffic had a substantial impact on the ability to stop
attackers from co-locating with the targets.

Yang et al. [26] explored a simplified algorithm for energy management in cloud
computing. The paper centered around establishing a mathematical model to calculate
computing nodes’ stability, configuring a game-theoretic cooperative model for the
task of scheduling cloud computing, and examining the problem as a multi-stage
sequential game. Patra et al. presented the task as a player and the VM as a strategy in
[27]. A non-cooperative game scheduling and a task balance scheduling algorithm are
compared to collect the node’s average task processing speed. Therefore, it was deter-
mined that the game-theoretic algorithm proposed could improve energy manage-
ment in cloud computing. In [28], the cooperative behavior of multiple cloud servers
was studied. An evolutionary mechanism was presented in the hierarchical coopera-
tive game model for VMs deployment strategy to improve the efficiency in the public
cloud environment. Jia et al. modeled several basic VM allocation policies using game
theory to achieve a quantitative analysis, while also presenting the attack effective-
ness, coverage, power consumption, workload balance, and cost under the VM allo-
cation policies and solving the mathematical solution in CloudSim [23]. Their results
found that to reduce the efficiency rates for the attacker, the cloud provider should
apply a probabilistic VM allocation policy. Narwal et al. proposed a payoff matrix and
a decision tree for any number of users [29, 30]. When a unique user was selected, the
choices of investing in security were assessed until equilibrium was reached. Security
games are a way of blocking the attacker’s ability to locate the VMs they are searching
for. Han et al. proposed a policy pool with multiple VM allocation policies from which
to select the policy that will be used with a certain probability [31].

Difficulties regarding energy efficiency in cloud computing can also be addressed
using machine learning-based techniques [32]. Witanto et al. employed a neural
network-based adaptive selector procedure to arrange the VMs on the physical servers
in data centers [33]. Pahlevan et al. presented a hyper-heuristic algorithm to exploit
both heuristic and ML-based VM allocation methods by selecting the best one during
run-time [32]. Zhang et al. [34] suggested an auction-based resource allocation
scheme to represent a machine learning classification or regression problem. They
outlined machine learning classification and posed two resource allocation prediction
algorithms rooted in linear and logistic regression. Liu et al. presented a reinforcement
learning-based approach to allow complex scenarios to efficiently manage resources
[35]. In order to do so, they used neural networks to grasp the goal of the research
model, RL to enhance the model, and E-greedy methodology to expand the RL pro-
cess. Their approach lowered job delay for hybrid scenarios. ML-based methods have
been proposed to fight against co-resident attacks focusing on different factors, such
as minimizing the time of a malicious VM co-location. Joseph et al. [36] used tradi-
tional ML algorithms, such as support vector machine (SVM), naïve bayes, and ran-
dom forests to detect malware, following a self-healing methodology to power off the
attacked VMs and restore them to healthy conditions. In reality, there is a concern
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with the amount of time it takes to implement a solution to mitigate VMs in the event
of co-resident attacks. To the best of our knowledge, no current ML-based approach
succeeded in mitigating co-resident attacks based on VM mitigation, while minimiz-
ing the VM downtime.

3. Threat model

There are many approaches to fight against co-resident attacks, including hard-
ware modification, intrusion detection, secure VM allocation, and migration. Threat
model building is crucial to guide proper defense. This section goes through the study
of existing models and presents our proposed threat model with detailed variable
selections.

3.1 Modeling co-resident attacks

Many optimization models were proposed to fight against co-resident attacks.
Abazari et al. suggested a multi-objective optimization method to calculate alternative
responses with the least amount of threat through graphics and proper attack coun-
termeasures [37]. Liu et al. considered the three main factors which lead to the
likelihood of malicious VMs co-locating with normal users [38]. Berrima et al. used a
VM placement strategy to reduce the co-location attacks with complete resource
optimization. Their approach presents a trade-off between security and VM startup
delay [39]. Hasan et al. proposed a co-resident attacks mitigation and prevention
(CAMP) model to separate malicious and benign VMs by comparing existing models
over data security, data survivability, and user storage overhead [5]. Other works
focused on a probabilistic co-residence coverage optimization model, while combining
a data partition technique that involves arranging servers randomly [40, 41].

3.2 Proposed threat model with detailed design components

Our proposed approach takes the time-sensitive risk level from co-resident attacks
into account and searches for the solution to the dynamic VM allocation problem
through DRL. Research shows that the co-resident attack will have a total cycle of t3,
consisting of three stages: probe, construct, and launch. Probe and construct generate
a configuration interval. This is illustrated in Figure 3. To avoid the attacks, the
defender must take action before the launching starts. In other words, before the
configuration interval t2 is reached [42].

Our co-resident risk model is developed in a similar scenario to [43]. The choice of
variables is listed in Table 1.

The co-resident risk indicator can be obtained through the following equations:

rcr vi, vj
� � ¼ ts við Þ � CoRes vi, vj

� �� ts vj
� �

(1)

CoResFactor ¼
α0 for CoRes vi, vj

� �
< t1

α1 for CoRes vi, vj
� �

∈ t1, t2½ Þ
α2 for CoRes vi, vj

� �
≥ t2

8>><
>>:

(2)
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The threat score, ts við Þ, reflects the potential risk to VMi. It is a floating number
between 0 and 1, with 0 representing no risk and 1 representing the highest risk. As
illustrated in Eq. (1), the risk is also proportional to the co-resident duration time
recorded in a matrix, CoRes vi, vj

� �
.

The VM’s co-resident rewards factor, CoResFactor, is the crucial parameter in
guiding RL training. It can be determined by where the co-resident attack cycle status
of the VM resides. For example, the time of a co-existing VM pair on the same PM for
a period of less than t1 is considered to be safe. If there is a malicious VM, it means that
it has not passed the probing stage yet. So, the risk of getting a co-resident attack is
low. In this case, α0 ¼ 0 is chosen. If the CoRes vi, vj

� �
is between t1 and t2, the system

needs to be aware that if a malicious VM exists in the pair; it reaches the constructing
stage and moves closer to launching the attack. So, α1 needs to be non-zero. While the
VM pair co-exists on the same PM for more than t2 time period, an attack could be
launched. This is the situation to be avoided, so that α2 is assigned to a more aggressive
number.

3.3 Assumptions

Two assumptions guide the proposed model:

Figure 3.
The timeline of attacks [42].

Variables Descriptions

N No. of PMs

n No. of resource slots in one PM

M No. of VMs

X The mapping between VMs and PMs

t1 End of probing [42]

t2 End of constructing/configuration interval [42]

ts við Þ The threat score of vi [0,1]

CoRes vi, vj
� �

The co-resident duration matrix between vi and vj

rcr vi, vj
� �

Co-resident risk indicator matrix

CoResFactor VM’s co-resident rewards factor

Table 1.
Variable definition.
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1.Co-resident risk is calculated among all the active VM pairs on the same PM, and
each VM is randomly created with 1 to 15-time steps of the length.

2.All the jobs are batch jobs, and all the VMs might be malicious. The goal is to
mitigate co-resident risk by avoiding the VM pairs’ co-resident period from
reaching t2.

The system will be simulated under the above assumptions. The overall co-resident
risk level, the number of co-resident attacks, and the VM slowdown ratio is the
proposed system’s evaluation metrics.

4. DRL-based VM scheduling system design and simulation

4.1 Mathematical background of RL and schematics

RL problems can be modeled as a Markov decision process (MDP) to find a policy
by maximizing the accumulated rewards. An MDP has four tuples (S, A, Pa, Ra),
where S is a set of states called state space, A is a set of actions called action space, Pa
is the probability of state transition from s to s0 under action a, and Ra is the
immediate reward right after action a. There are two major methods to solve the
reinforcement learning iteration problem. One is called value� function, and the
other is policy� gradient. Q-Learning is an example of value� function, which has a
function: Q : S� A! R. Before learning begins, Q is initialized to 0 or a base value.
The core of the algorithm is a Bellman equation, which updates the Q value with new
information:

Qnew st, atð Þ  Q st, atð Þþ
α rt þ γmax

a
Q stþ1, að Þ � Q st, að Þ

h i (3)

Here, α and γ are the learning rate and discount factor, respectively. rt is the
reward at the time step t. We adopt DeepRM [44] framework, which follows policy�
gradient with a deep neural network added into this system to solve large-scale RL
tasks. This portion of the deep RL can be illustrated in Figure 4.

The nature of the policy� gradient is to maximize the expected cumulative dis-
count reward Eπθ

P∞
t¼0γ

trt
� �

, which can be expressed as:

∇θEπθ

X∞
t¼0

γtrt

" #
¼ Eπθ ∇θ log πθ s, að ÞQπθ s, að Þ� �

(4)

Here, γ ∈ 0, 1ð � is a discount factor for future rewards. rt is the reward at the time
step t. The VMM picks actions based on a policy π : π s, að Þ ! 0, 1½ �, which is defined as
the probability of action a taken in the state s. A manageable number of adjustable
parameters, θ, are called the policy parameter. So, the policy can be represented as
πθ s, að Þ, and θ will be updated via gradient descent:

θ  θ þ β
X
t
∇θ log πθ st, atð Þvt (5)
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where β is the step size. The corresponding expected cumulative discounted
reward Qπθ s, að Þ can be estimated by the empirically computed cumulative discounted
reward vt.

4.2 RL components design

Reinforcement learning is a unique type of machine learning paradigm, which has
been successfully applied to task scheduling [45–49]. It contains several detailed
components that need clarification. Here, we first define our state space, action space,
and rewards before introducing the simulation system.

4.2.1 State space

RL is a model-free machine learning method; an agent learns from the trial-and-
error process to interact with the environment. The state of the environment is
defined as a vector of several components as shown in Table 2. They build the data
structure of a VM which can be classified as:

1.Computing resources factors;

2.Security awareness factors (already introduced in Table 1).

The current allocation of the cluster resources can be retrieved by the mapping
between VMs and resource slots available on the PM, which can be expressed as a
matrix X.

4.2.2 Action space

It is assumed that VMs will be assigned to the PM if requested resources are
available at each time step. The action space is defined by {0, 1, ..., n}, where 0 means

Figure 4.
Reinforcement learning with policy represented via DNN [44].
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no action taken, and 1 through nmeans to allocate a new VM on the n0s PM slot. After
each action, the next state space is obtained by updating the recent mapping of X.

4.2.3 Rewards

A reward strategy is designed to guide the VM allocation agent toward our goal:
Sufficiently utilize current resources to complete jobs on time and simultaneously
minimize co-resident attacks. The reward function must be carefully designed to
avoid contradiction. In the proposed system with a total of J active VMs, the rewards
function consists of two terms:

1.VMs’ completion factor, RVMD (VM delay rewards), is defined by the
accumulated VMDelayed from currently running VMs in the system. Here, Tj is the
duration of the jth VM, vj.

2.VMs’ co-resident risk level, RRC (runtime co-resident rewards), is defined by the
co-resident risk indicator matrix rcr vi, vj

� �
.

They can be calculated accordingly as:

RVMD ¼
X
j∈ J

VMDelayed vj
� � ¼

X
j∈ J

�1
Tj

(6)

RRC ¼
X
i, j∈ J

�1ð Þ � rcr vi, vj
� �

=2 (7)

The full rewards are calculated as a weighted sum of the two terms with weights ω1

and ω2. The overall rewards can be obtained by:

Vector component Values Data type

Computing Resources

Hosting PMs 1 Integer

VM ID 1 Integer

Ideal length of finishing 1 Float

Resources requested 2 Integer

Start time 1 Float

Finish time 1 Float

VMDelayed 1 Float

Security

ts 1 Float

CoRes n Integer

rcr n Float

Table 2.
Data structure of a VM.
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TotalRewards ¼ ω1 � RVMD þ ω2 � RRC (8)

This rewards equation implies the objective of this novel VM allocation system is
focused on:

1.Efficiently allocating VMs to minimize the VM delay time as shown in Eq. (6);

2.Aware of co-resident attacks through VM assignment correlations and take
action to avoid the risk as shown in Eq. (7).

4.3 Simulation system design

4.3.1 System model

Similar to the DeepRM [44] framework, the proposed simulation system is illus-
trated in Figure 5. CPU and memory (MEM) are the two resources for limited
constraint consideration. When the VM is assigned to the PM, a time step starts to
count the duration of the VM. If there are other VMs simultaneously assigned to the
same PM, the co-resident counter is also started to accumulate the time steps and
recorded in CoRes vi, vj

� �
. VM requests arrive according to a Bernoulli process. The

backlog queue houses all the incoming VMs waiting for allocation.

4.3.2 Co-resident duration matrix

The time steps will be recorded in the co-resident duration matrix as shown below.
This small-scale example limits each CPU and MEM resource to five slots. Here, five
VMs VM1, … , VM5f g are illustrated with the life cycles marked with a start and end

Figure 5.
Resource, time steps, job slots, and backlog queue in [44].
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time steps as VM1 : 0, 2½ �, VM2 : 0, 4½ �, VM3 : 0, 10½ �, VM4 : 2, 4½ �, VM5 : 4, 11½ �: Their
life cycle lengths can be represented as 2, 4, 10, 2, 7f g, respectively. The overlapped
time steps shown in a co-resident duration matrix are:

CoRes vi, vj
� � ¼

2 2 2 0 0

2 4 4 2 0

2 4 10 2 6

0 2 2 2 0

0 0 6 0 7

2
6666664

3
7777775

The proposed zero-trust strategy means all the VMs could be malicious, so the
threat scores for all VMs are set to 1 (ts við Þ ¼ 1). Thus, the co-resident risk indicator
matrix is:

rcr vi, vj
� � ¼ 1� CoRes vi, vj

� �� 1 ¼ CoRes vi, vj
� �

(9)

4.3.3 Configuration interval

In the simulated system, five-time steps are chosen to represent t1 and ten-time
steps to represent the configuration interval t2. In Figure 5, time is represented in a
vertical direction. In order to mitigate the co-resident attacks, the system is designed
to train the agent to avoid two VMs sharing the same PM for more than t2 time
interval. Based on the timeline of the attacks illustrated in Figure 3, different values
will be assigned to the CoResFactor as shown in Eq. (2).

4.3.4 Risk mitigation strategies

When two VMs have overlapped time steps less than t1, there is a minor risk of co-
resident attacks, so α0 ¼ 0; when two VMs have resided on the same PM for more
than t1 time steps, but less than t2, co-resident attack risks start to accumulate. Thus,
the first risk mitigation function is set to be: α1 ¼ k� t� t1ð Þ, while k has been chosen
from {0, 0.25, 0.5, 1, 2} to explore the efficiency of different choices. When two VMs
have co-residence on the same PM for more than t2 time steps, there is enough
construction time for attacks to take place, so a more aggressive factor in the form of
k2 is added to the reward function. The proposed system applies the second risk
mitigation function: α2 ¼ k� t� t1ð Þ þ k2, where k2 has been tested in the pool of
0, 1, 2, 3, …f g. A portion of the risk mitigation function design can be found in

Figure 6, where all the k values are presented; only k2 ¼ 0, k2 ¼ 1, and k2 ¼ 2 on top
k ¼ 2 are shown on the graph.

4.3.5 Software

The system is programmed in Python with the flowchart illustrated in
Figure 7. First, the arriving VMs are placed in a backlog queue. If the queue is not
empty, the scheduling system operates to find the optimized solution to assign VMs
to PMs. At each time step, the system will update the co-resident duration matrix
which reflects the current risk level and will guide the choice of risk mitigation
strategies.
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Figure 6.
Risk mitigation function design.

Update CoRes Matrix

Potential Attack?

End
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Start

Queue Empty?

N

RL VM Allocation
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N

Figure 7.
The flowchart of the proposed system.
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5. Simulation results analysis

The co-resident simulation program is built upon the Python-based DeepRM [44]
open-source platform. The neural network is constructed by a fully connected hidden
layer with 20 neurons, and a total of 89,451 parameters. Poisson distribution with a
new arriving rate of 0.7 is chosen to simulate the VMs’ dynamic arrival. All the results
are obtained in 2500 iterations.

Our proposed system introduces co-resident risk mitigation to task scheduling by
adding Eq. (7) to the total rewards calculation of Eq. (8). During the investigation, it
was observed that the system performed differently, while manipulating the risk
mitigation function parameters illustrated in Figure 6. The effectiveness of the pro-
posed mitigation scheme can be analyzed by the RL rewards, VM slowdown ratio, and
attack reduction.

5.1 Total rewards affected by risk mitigation factors

As illustrated in Eq. (8), total discounted rewards can be captured by taking
both VM delay and co-resident risks into consideration. Since there is no
preference between the two, ω1and ω2 in Eq. (8) are both set to 1. In the first
experiment, k2 is set to 0, and k is chosen from 0, 1, and 2. The recorded total
accumulated rewards in Figure 8 explain that a smaller k value leads to a larger
reward (Note: the reward is negative). When k ¼ 0there is no risk mitigation. As k
increases, more mitigation influence will be placed in the system, and the total
discounted reward decreases.

DeepRM provides DRL and other heuristics VM allocation methods, such as tetris,
random allocation, and small jobs first (SJF), for comparison. Although those methods
do not have co-resident risk mitigation features, the total discounted rewards can
illustrate how severe the cybersecurity risks they are experiencing. Two user cases are
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Figure 8.
The total rewards accumulated from different k values.
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shown in Table 3. A negative number with a larger absolute value means a worse
situation.

5.2 Slowdown ratio affected by risk mitigation factors

The metric to measure the efficiency of VM scheduling is to calculate the VMDelayed

as defined in Table 2. In programming, the slowdown ratio is utilized. Each VM has
its own expected life cycle shown as the “Ideal length of finishing” in Table 2. It also
has a length marked by time step when generated. When the VM is assigned to a PM,
the “Start time” is marked. At the time of finishing, a “Finish time” is recorded. The
parameter Slowdown is calculated by Eq. (10). Ideally, if there is no delay in the
execution, Slowdown ¼ 1, but in the actual application, many factors can cause the
delay. Thus, Slowdown≥ 1.

Slowdown ¼ FinishTime� StartTimeð Þ=VMLength (10)

With an increment of k value, more rewards are generated to mitigate the potential
co-resident risks through the risk mitigation function. As a matter of fact, it sacrifices
the VM completion time, so the slowdown ratio increases. Experiments show that
“Random” allocation of VMs has the largest average slowdown ratio. If using “Ran-
dom” slowdown ratio as a baseline, the percentage of slowdown ratio reduction from
the baseline data is shown in Table 4.

5.3 Co-resident attacks reduction by risk mitigation factors

Considering the goal of mitigating co-resident attacks, a group of experiments is
conducted to represent the effectiveness of different risk mitigation function param-
eters under RL scenario. Figure 9 illustrates the total counts of co-resident attacks if k
and k2 are set as in Figure 6. If k ¼ 2 and k2 ¼ 1, the count reduces dramatically
compared with k ¼ 0 and k2 ¼ 0, where there is no mitigation applied.

6. Conclusions and future work

This chapter addresses the importance of cybersecurity awareness in cloud com-
puting resource management. The proposed RL-based scheduling method takes both

Methods Tetris Random SJF DRL

Case 1 �644.94 �426.81 �501.40 �320.17
Case 2 �267.88 �167.50 �187.33 �142.69

Table 3.
Total discounted rewards.

Methods Tetris SJF DRL (k ¼ 0) DRL (k ¼ 1) DRL (k ¼ 2)

ASR 63% 60% 72% 71% 68%

Table 4.
VM slowdown ratio over random method.
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VM slowdown time and co-resident attack risks mitigation into consideration. The
co-resident risk model under no-trust conditions is formed. As a result, the problem is
narrowed down to minimizing the co-tenancy on the same PM among all the active
VMs. Finally, a DRL-based task scheduling system is simulated with proposed risk
mitigation factors.

This chapter proves that much can be explored in resource management and risk
mitigation in cloud computing. It is evident that ML obtained much attention
recently, and more applications are being developed in this direction. Although
there is a concern about training costs under a deep learning algorithm, it outper-
forms other methods in adaptation to a more dynamic environment, which makes it
outstanding. If designed properly, the computational burden can be shifted to off-
line. The above experiment results are obtained by using MacBook Air with a 2.2GHz
dual-core Intel i7 processor and 8GB memory. It takes 3 minutes per 2500 iterations
to train the policies. While applying the pre-trained model to take actions during
runtime testing, it will not take longer than 2 seconds for the longest allocation
decision. The results show applying reinforcement learning to co-resident risk
mitigation is plausible. Different mitigation strategies lead to different VM comple-
tion ratios and risk levels. The proposed strategies proved to be helpful in searching
for VM allocation improvement with consideration of both VM completion con-
straints and co-resident risk awareness. In the future, a more in-depth investigation
of the reward equation design will be conducted. A thorough search accompanied by
mathematical models to discuss the convergence will be explored. An advanced cost
function will be developed with resources and security constraints. Multi-agent
reinforcement learning will be applied to extend the model of this research and the
efficiency will be tested and compared.

Figure 9.
The potential co-resident attacks by different k and k2 selection strategies.
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Chapter 5

Velocity Planning via Model-Based
Reinforcement Learning:
Demonstrating Results on PILCO
for One-Dimensional Linear
Motion with Bounded Acceleration
Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu

Abstract

The time-optimal control problem (TOCP) has faced new practical challenges,
such as those from the deployment of agile autonomous vehicles in diverse uncertain
operating conditions without accurate system calibration. In this study to meet a need
to generate feasible speed profiles in the face of uncertainty, we exploit and imple-
ment probabilistic inference for learning control (PILCO), an existing sample-
efficient model-based reinforcement learning (MBRL) framework for policy search,
to a case study of TOCP for a vehicle that was modeled as a constant input-constrained
double integrator with uncertain inertia subject to uncertain viscous friction. Our
approach integrates learning, planning, and control to construct a generalizable
approach that requires minimal assumptions (especially regarding external distur-
bances and the parametric dynamics model of the system) for solving TOCP approx-
imately as the perturbed solutions close to time-optimality. Within PILCO, a Gaussian
Radial basis functions is implemented to generate control-constrained rest-to-rest
near time-optimal vehicle motion on a linear track from scratch with data-efficiency
in a direct way. We briefly introduce the importance of the applications of PILCO and
discuss the learning results that PILCO would actually converge to the analytical
solution in this TOCP. Furthermore, we execute a simulation and a sim2real experi-
ment to validate the suitability of PILCO for TOCP by comparing with the analytical
solution.

Keywords: model-based reinforcement learning (MBRL), applied reinforcement
learning, time-optimal control problem (TOCP), velocity learning, vehicle control

1. Introduction

Optimal control–based approaches have played key roles in trajectory planning or
replanning and in optimization of control inputs with numerous applications, such as
robotics and autonomous driving. These approaches have recently been used in
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autonomous systems. Optimal control formulations typically require accurate knowl-
edge of the dynamics and can account for a more general set of constraints and
objectives (performance measures) [1, 2] relative to other approaches. Many cost
functions, such as those for time and energy, are used to define the desired behavior of
the controlled system. As part of an effort to enhance working efficiency and produc-
tivity by having tasks be completed as fast as possible, especially for tasks involving
repetitive state-to-state transfer in trajectory execution, Time-Optimal Control Prob-
lem (TOCP), for which the objective function is the terminal time, has been exten-
sively studied. For TOCP, control bounds, different boundary conditions or paths
with different curvature profiles and lengths, and various choices of the physical
parameters such as mass, friction, can produce different velocity solutions. As a result,
different maximum velocities and different travel times are produced. It was studied
first on articulated robot manipulators for industrial and aerospace applications [3–7].

In recent years, the deployment of agile autonomous systems such as autonomous
driving vehicles [8, 9], mobile robots [1, 10, 11] and new robot platforms such as
humanoid robots [12] and unmanned aerial vehicles (uavs) have posed new increas-
ingly important challenges to TOCP. Furthermore, a crucial aspect of traditionally
solving TOCP is that analytical or learned time-optimal velocity solution are both
platform and path (task) dependent, therefore, model-based and goal-directed. These
challenges lie in several aspects including nonlinear, nonconvex, multi-dimensional
state and control spaces, as well as various platform dependent constraints, and most
importantly uncertainties of the environment in real world problems and make the
model only able to approximate the reality. Therefore, computational solutions to
TOCP based on an not so accurate model are not reliable and not practical for online
applications. By contrast, learning-based control algorithms for dynamical systems
learn to generate the desired system behavior without any complicated system for-
malism or predefined controller parameters a priori and thereby achieve more gener-
alization and platform independency. One promising approach in the context of
intelligent planning and control involves the use of reinforcement learning (RL)
[13, 14] for learned behaviors, which can be viewed as a class of optimal control
resolutions. The effectiveness and performance of RL is of task instance and platform
specific, i.e. as a function of the transition and reward functions induced by the
evaluated policy and the system dynamics. Therefore, to address the practical chal-
lenges in facilitating RL algorithms for a wide range of real-world decision-making
problems such as the autonomous vehicles in the context of diverse driving scenarios,
it is generally believed that only by proposing specific applications of RL on concrete
cases can better demonstrate related issues and in which algorithm works well for a
specific task instance [15].

With this aim for study, in this paper, the learning goal is to recover a near time-
optimal rest-to-rest one-dimensional linear motion on a double integrator with
embedded uncertainties (frictions of motion) and constant control constraint. We
assume no prior knowledge of any parametric system dynamics model for deriving
the optimality conditions. In addition, the characteristics of the learning task is that
the vehicle mass is uncertain and the environment characteristics such as friction is
unknown, and both parameters affect the maximum speed at each position along the
path. It is worth mentioning that any single-input controllable second-order system is
feedback equivalent to a double integrator. Thus, we use a simplified but still general,
precise enough vehicle model, damped double integrator, as the foundation and
demonstration for TOCP for more complicated, high-dimensional nonlinear vehicle
model. The analytical solution of TOCP to double integrator subject to constant
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acceleration bound is known of a second-order ODE solution with an assumption by
bang-bang control.

In the scope of this paper, our MBRL-based approach to recover the time-optimal
motion of double integrator features a two-stage process for integrating learning,
planning and control. In the first stage, we employ a Model-Based Reinforcement
Learning (MBRL) framework, Probabilistic Inference for Learning Control (PILCO)
[16], to generate a control-constrained rest-to-rest near time-optimal motion from
scratch. The analytical solution is used as a baseline for effectively assessing the
learning results. Because Monte-Carlo updates of the parametrized policy renders it
difficult to incorporate velocity limits within an instance of locomotion, hence, as a
second stage, we apply rescaling to give a speed profile respecting the additional
velocity limit.

The outcome is then a time-optimal velocity profile under both velocity and
control constraints, with no prior required knowledge and replanning. Both simula-
tion and sim-to-real experiments are conducted and confirm our approach applicable.

Our main contributions include:

1.A novel application of a model-based reinforcement learning algorithm, PILCO,
serving as adaptive optimal control, learns from scratch the time-optimal control
of double-integrator vehicle model in the presence of uncertainties. The near
time-optimality and data-efficiency is observed in light of the simulation and
sim2real experimental validation we present.

2.A distinct feature of this work compared to the majority of the related literature
[17–19] is that the learning results are evaluated and verified effectively by the
analytical time-optimal motion, instead of based on a lot of test scenarios. The
results, which are valid for line following of a single input controllable second-
order uncertain system, allow interpretations in terms of integrated learning,
planning, and control.

The remainder of the article is structured as follows. In Section 2, we summarize
the approaches to the TOCP, specifically conventional and RL approaches. In Section
3, we outline the key elements of the PILCO algorithm, which are dynamics modeling,
trajectory prediction, policy evaluation, and policy improvement. In Section 4, we
present our simulation results on time-optimal velocity learning for an autonomous
vehicle with double integrator dynamics whose analytical solution to TOCP is derived
in Appendix A as the verification baseline. A sim2real experimental validation on a
low-cost car along with discussions in Section 5 is provided. Finally, Section 6 provides
conclusions.

2. Related work

The aim of time-optimal vehicle control is to control a vehicle such that it reaches a
target state as quickly as possible (e.g., in racing or emergencies). Minimal-time
velocity profile along a prespecified curve, as a subclass of TOCP subject to hard
control constraints resulting from input saturation, state constraints and external
disturbance, is nowadays applied to a variety of modern autonomous systems such as
autonomous driving, uav and robotics. The existence of time-optimal trajectories is
guaranteed by Pontryagin Maximum Principle (PMP) [20] for a vehicle with explicit
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dynamics model in state-space form [21]. The derivations of the optimal control and
state trajectories are generally computationally expensive; computationally cheaper
yet accurate methods are required, especially considering the need for rapid (even
real-time) computation in most real-world industrial or engineering systems in
response to changes in operating conditions and the environment. In this section, we
briefly present the most common numerical approaches for systems with known
dynamics model developed in robotics and autonomous vehicles; we then discuss RL-
based approaches that handle uncertainty.

2.1 Approaches to the TOCP with known dynamics

Solutions to the TOCP can be categorized as complete or decoupled approaches. In
the complete approach, where the aim is to solve challenging problems with general
vehicle dynamics and constraints in their entirety, the optimal state and input trajec-
tories are simultaneously determined; some direct or indirect transcription methods
have been developed as part of this approach for trajectory optimization [2, 22, 23]
and played an important role in their numerical performance of trajectories. By
contrast, in the decoupled approach (e.g., the path velocity decomposition approach
and path-constrained trajectory generation approach), the trajectory generation is
decomposed into two subproblems for the path geometry to be decoupled from the
velocity along the geometric path. In the decoupled approach, the first step is planning
a geometric path for connecting two states (configurations or poses) in adherence to
geometric constraints, such as obstacle avoidance or smoothness requirements, and
the second step is designing a time-scaling function (that represents either informa-
tion on timing or the velocity and acceleration) along the planned state-to-state-
transfer geometric path. This approach results in a one-parameter family of velocity
profiles, i.e. the parametrization of the vehicle-position-dependent velocity along the
path as a function of the single path parameter of the arc length. The velocity and
acceleration of the vehicle on each position of the path can be altered by the design of
the time-scaling function respecting smoothness requirement (such as small jerk) and
fixed boundary conditions (such as the initial and target positions and velocities are
precisely specified) and the kinodynamic constraints constraints. A fair amount of
literature on maximizing the speeds along the path with the acceleration, torque, jerk
(or torque/acceleration derivative) constraints [3, 8, 10, 11]. In general, a model
predictive control (MPC) framework can be used in the decoupled approach to gen-
erate the safe velocity profile and the input commands for following a given planned
geometric path in terms of known system dynamics [24]. The following three
methods have been commonly used for TOCP.

2.1.1 Hamilton-Jacobi-bellman (HJB) equation

A popular approach to obtain time-optimal motion for a system with known
dynamic model and fixed boundary conditions under the safety and kinodynamic
constraints of a vehicle is via optimal control or model predictive control formula-
tions. This approach requires the derivation of optimality conditions for the state
trajectories and control policies based on PMP or Dynamic Programming Principle
(DPP) [20]. This yields the Two-point Boundary Value Problem of HJB partial differ-
ential equations with initial condition on the state and final condition on the costate
for time-optimization of trajectories. The advantage of generality is that more general
state and input constraints and objective functions can be taken into account at the
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cost of heavy numerical burden. For example, time-optimality can be traded off
against energy to yield less aggressive control to steer the vehicles slower but
smoother. Additionally, HJB equation approach is a practically useful approach in that
many numerical solvers of HJB equations are available.

2.1.2 Convex optimization (CO)

The Hamiltonian of TOCP for robotic manipulator is shown to be convex with
respect to the control input. TOCP is transformed into a convex optimization problem
with a single state through a nonlinear change of variables [4], where the acceleration
and velocity at discretized locations on the path are the optimization variables. Then,
followed by [5] the work is further extended to meet speed dependent requirements.
Such approach is simple and robust thanks to the existing convex optimization librar-
ies, yet only convex objective functions can be concerned. However, the convex
optimization program contains a large number of variables and inequality constraints,
making it slow and less suitable for real-time applications.

2.1.3 Numerical integration (NI)

Since the vehicle velocity highly depends on the path to be followed, the
universally applicable decoupled approach splits the motion planning problems to
two sub-problems of finding a geometric path and planning the velocity at each
position of the vehicle along the path to manage the computational complexity to
generate a suboptimal motion trajectory. This result in a one-parameter family of
velocity profiles, or the velocity (bound) along the path depending on the vehicle
position on the path is parametrized as a function of the single path parameter (or a
scalar curvilinear abscissa coordinate) s, usually the arc length. By description of
the dynamics and constraints along the path to be followed on the s, _sð Þ phase
plane, then this method generates the velocity limit curve on the phase plane from
the velocity and acceleration bounds. The travel time is determined by the path
velocity _s along the path or the time scaling function s tð Þ that is solved by
optimization tools to meet the imposed constraints. The generation of minimum-time
velocity profile along the given path is greatly simplified to the determination of
switching structure in the phase plane [12]. Essentially, NI searches for switching
points on the phase plane and establishes the velocity profile by integrating forward
with the acceleration limits and backward with the deceleration limits pivoting from
those points.

2.2 Reinforcement learning (RL)

RL refers to the learning of a policy, defined as a mapping from state space to
action space, by means of maximizing a reward the agent receives from the environ-
ments it operates and interacts. When the system dynamics is unknown, with the
dynamical system modeled as a reward-maximizing RL agent and the desired behav-
ior expressed as a reward function, the system can be trained to automatically execute
an optimal sequence of actions (trajectories) under the present environmental condi-
tions to complete a given mission. The RL framework reformulates the problem as a
Markov Decision Process for the autonomous agent, which maximizes the long-term
rewards and does not necessarily need the transition dynamics beforehand. RL offers a
diverse set of model-based and model-free algorithms to improve the performance of
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RL agent based on the reward it received. The mission may involve integrated
planning and control with time and computational resource budget in real-time
applications, a system model therefore is a good informative basis for predicting the
behaviors and enhancing performance, instead of tuning the behaviors frequently and
manually in practical situations. However, it is often infeasible to derive a precise,
analytical model that is provably correct for the actual system within regions and time
horizon that the model is valid, since the existence of parametric uncertainties,
unmodelled dynamics, external disturbance in perception and agent-environment
interaction is inevitable. To ameliorate the problems from these interwoven factors
that affect planning and control performance, researchers in the field of modeling and
control have been increasingly interested in model-building or model learning in a
data-driven setting based on nonparametric and probabilistic models [25, 26] as a
means to enhance the performance of the underlying controlled system. Model-based
RL (MBRL), complementary to the control approaches such as robust and adaptive
control, model predictive control and fuzzy control, is an attractive intelligent model-
based control approach that integrates learning, planning and control: it learns a
dynamics model and then the derived characteristics of a learned model is exploited
for generating trajectories and learning the policy. While the model-free RL attracts
the most scientific interest, in MBRL algorithms that employ derived or learned
system dynamic models, during policy evaluation, the state evolution calculated by a
predictive model under a given policy can be used to estimate the impact of the policy
on the reward. Therefore MBRL is more data-efficient in the context of diverse goal-
directed planning tasks since fewer interactions between the agent and the environ-
ment are required to learn a good policy faster, in contrast to some model-free
approaches. A surging number of researches demonstrated that learning, planning and
control of autonomous systems such as robotics and self-driving vehicles can be
cast as MBRL tasks, due to the use of an accurate, reliable learned model of the agent-
environment interactions as an internal simulation in task execution and the basis for
any optimization and real time control for achieving highly effective control
performance [13, 14, 27]. Despite its faster convergence over the model-free
frameworks, MBRL suffers from model bias and accumulated model prediction errors
that greatly affect the control policy learning and rewards by leveraging the model-
generated trajectories characteristics. To improve model learning performance and
thus policy learning performance (the controller parameters are learned in light of
currently learned model), system transition modeling or model fitting techniques
ranging from deterministic methods such as physics-based (first principles based)
formulation, to stochastic methods are developed [15]. Among which,
nonparametric regression models such as Gaussian Process (GP) that extracts the
information from the sampled data with the high data efficiency to make accurate
predictions in PILCO [16]. In contrast to other probabilistic models that maintain a
distribution over random variables, GP builds one over the underlying functions that
generate the data. Therefore, it has no prior assumption on the function mapping
current states and actions to future states. The flexibility and expressiveness GP to
refine the uncertainty estimate offers makes it an effective approximator for modeling
the unknown system dynamics (transition function from input data to output
observation or measurement) that continuously evolves over time (i.e. trajectories),
and is employed in this study. Some popular GP implementations are tabulated in [28]
for practitioners. The most recent open source MBRL-Lib is released to reduce the
coding burden [29].
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3. MBRL for time-optimal vehicle motion

The imperfect modeling of system dynamics and perception of environment with
significant noise makes machine learning a viable approach to the practical, near
minimum-time velocity planning for autonomous systems that do not rely on
heavy dynamic model-based computations using identification techniques. In order
to find the time-optimal control policy for a vehicle dynamics model with uncer-
tainties along a predefined path, in RL setting, it is learned from limited trial driving
experiences the action (sequence) to be applied at each possible state confined on
the path for the uncertain system (i.e. system dynamics along the path) with the
received rewards as feedback, aiming to allocate higher trajectory reward, to
determine the next observed state. There are a number of choices of RL
algorithms. An earlier work [17] used Q-learning for car-like vehicle motion
planning. Another study [18] analyzed transfer learning in obstacle avoidance
behaviors in similar environments with similar obstacle patterns, where the state of
the environment is represented by the obstacle pattern. Recently, a model-free
actor-critic RL algorithm was applied to time-optimal velocity planning along an
arbitrary path in [19]. That study demonstrated that the incorporation of velocity
computation through the exploitation of a vehicle dynamics model is practically
feasible for improving learning outcomes. These studies exemplify the practical
utility of RL in improving a model’s ability to control vehicle driving (encoded as a
set of trajectories). These work, among others, shows that vehicle driving skill
(encoded as a set of trajectories) learning via RL is promising for real autonomous
driving. Along this line of work, in the present study, the learning task for
vehicle control demonstrated is a one-dimensional vehicle maneuvering task. A
data-driven state feedback control approach was designed through the learning
of dynamics model; in such a control scheme, the optimal time-scaling function
(i.e., one that makes the vehicle reach the target as quickly as possible) is
recovered or approximated through a set of sampled trajectories of unknown
vehicle model under the physical constraints imposed by the vehicle. The
simulated vehicle model is represented by a damped double integrator whose
solution to the TOCP is known if no uncertainties exist (see Appendix A) and the
numerical solution for double integrator with given boundary states and bounded
acceleration is solved in e.g. [23] as the trajectory optimization via barrier
function, if the system is completely known. We exploited and implemented PILCO
[16], a data-efficient MBRL, in a simulation and then in a real-world experiment
involving a toy car. PILCO has had high performance in benchmark tasks
involving low-dimensional state spaces, such as in the control of an inverted
pendulum and in cart-pole swing-up; specifically, it has demonstrated unprece-
dented performance in modeling uncertain system dynamics and optimizing a
control policy accordingly. The paper [30] contains an easy introduction of
PILCO, and some of its extensions and modifications. As summarized in Algorithm
1, PILCO employs the nonparametric GP for the learning of the unknown
dynamics and corresponding uncertainty estimates in a probabilistic dynamics
model. PILCO finds the optimal policy parameters which minimizes the
expected episodic trajectory cost based on learned probabilistic model. The core
elements of the PILCO framework, including dynamics modeling, trajectory
prediction, policy evaluation and policy optimization, are briefly described in this
section.
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Algorithm 1: PILCO [16]

1: Define parametrized policy: π : xt � θ! ut
2: Initialize policy parameters θ∈N 0, Ið Þ randomly
3: Execute actual system and record initial data
4: repeat
5: Learn system dynamics model with GP
6: repeat
7: Predict system trajectories
8: Evaluate policy: Jπ θð Þ ¼PT

t¼0γ
tEx cost xtjθð Þ½ �

9: Policy improvement: Update parameter θ by analytic gradient dJπ θð Þ
dθ

until convergence θ ∗ to obtain π ∗ ¼ π θ ∗ð Þ
10: Execute π ∗ on actual system and record data
11: until task completed

3.1 Dynamics modeling

In the real world, model uncertainties and model errors are inevitable in the
process of modeling a dynamic system. Various methods have been formulated for
modeling and learning unknown system dynamics [13, 25, 26]. In a data-driven
setting, system dynamics (instead of representations by differential or difference
equations) or vector fields that contain uncertainties, nonlinearities, and disturbances
are represented in the form of a set of trajectories obtained from the iterated
performace of a mission. Therefore, the model learning algorithmmust be able to cope
with the uncertainty and noise in the collected trajectory data. PILCO adopts GP
probabilistic modeling and inference to learn the transition dynamics of a real-world
agent), as represented by a prediction model of the true system dynamics by a
probability distribution on a space of transition functions for planning (computing the
desired state and control trajectories) and control learning. Therefore, PILCO
effectively handles uncertainties and reduces the effect of model errors or
simplification on the represented system dynamics, as derived through nontrivial
mathematical and physical equations. In this respect, PILCO has eliminated the
common drawback of model-based frameworks to some extent. Consider an unknown
system described by

xtþ1 ¼ f xt, utð Þ with xt ∈RD, ut ∈RF (1)

In PILCO, a GP can be used to model the unknown transition function (1). The
training inputs are data in the form of state–action x, uð Þ pairs generated by the
unknown transition function

~xt ¼
xt
ut

� �
∈RDþF (2)

where ut ¼ π xt, θð Þ with θ as policy parameters depends on a policy π : RD ! RF

mapping the perceived state to an action. The training target for model learning is
chosen as the delta state (the difference between consecutive states) for predicting the
difference between current state and next state given action:
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Δt ¼ xtþ1 � xt ∈RD (3)

In this paper, the mean and variance of the prior multivariate Gaussian distribu-
tion for f modeled as a GP are chosen to be a zero mean function and squared
exponential covariance kernel function, respectively,

k ~xi, ~x j
� � ¼ σ2f exp � 1

2
~xi, ~x j
� �TΛ�1 ~xið , ~x jÞ

� �
(4)

where the variance of the function σ2f and Λ≔diag l21, l
2
2, … , l2DþF

� �� �
depending on

the length scales are the hyperparameters. With n training samples ~X≔ ~x1, … , ~xn½ � and
y≔ Δ1, … ,Δn½ �, the posterior GP hyperparameters are learned through evidence max-
imization and describes a one-step prediction model of xtþ1 for state trajectory gener-
ation from Δt and xt as follows.

posterior state distribution

p xtþ1jxt, utð Þ ¼ N xtþ1jμtþ1,Σtþ1
� �

(5)

mean

μtþ1 ¼ xt þ E f Δt½ � (6)

variance

Σtþ1 ¼ Var f Δtð Þ (7)

where E f Δt½ � and Var f Δtð Þ can be calculated from prior distribution. In practice,
computationally tractable means and variances of GP are used as the most likely
estimate for the training data and the confidence in the prediction, respectively, for
further decision-making.

3.2 Deterministic trajectory prediction

For the subsequent step of policy evaluation, PILCO first predicts long term sys-
tem trajectories with the learned transition dynamics, given a policy. The distribution
of state xt at time t is assumed to be Gaussian with mean μt and covariance Σt where
p xtð Þ � N μt,Σtð Þ. In order to predict next state xtþ1, the distribution p ~xtð Þ and p utð Þ
are needed. This is done by assuming p utð Þ is Gaussian and by approximating state-
control distribution p ~xtð Þ by a Gaussian with correct mean and variance. The mean
and covariance of the predictive control distribution p utð Þ is obtained by integrating
out the state from ut ¼ π xt, θð Þ.

p utð Þ ¼
ð
p ~xtð Þdxt (8)

The distribution of the change in state Δt

p Δtð Þ ¼
ðð

p f ~xtð Þj~xtð Þp ~xtð Þdfd~xt (9)
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is subsequently approximated by a Gaussian distribution with mean μΣ and vari-
ance ΣΔ through calculating of the posterior mean and covariance of p Δtð Þ by moment
matching or linearization [16]. The posterior state distribution in (5–7) can then be
approximated by p xtþ1ð Þ � N μtþ1,Σtþ1

� �
with

μtþ1 ¼ μt þ μΔ (10)

Σtþ1 ¼ Σt þ ΣΔ þ Cov xt,Δtþ1½ � þ Cov Δtþ1, xt½ � (11)

Cov xt,Δtþ1½ � ¼ Cov xt, ut½ �Σ�1u Cov ut,Δtþ1½ � (12)

3.3 Policy evaluation (reward function)

The policy is evaluated with the expected return. To this end, the predictive
trajectories p xtð Þ, t ¼ 0, 1, … ,Nf g are retrieved, given a policy, to compute the
expected cumulative reward (13, 14) for policy evaluation.

J θð Þ ¼
XT
t¼0

γtEx cost xtð Þjθ½ � (13)

Ex cost xtð Þjθ½ � ¼
ð
cost xtð ÞN xtjμt,Σtð Þdxt (14)

where γ is the future discount factor which determines the importance of future
costs on the reward and quantifies the time after which the costs have less influence
on the rewards. Note that a large γ will cause the accumulated cost (13) calculated at
the end of episode to reduce more slowly in late time as time index t! N. A small γ
means current reward is more important than the future rewards, thus would be good
for uniform convergence. Using the currently learned model for policy evaluation is
the key to data-efficiency of PILCO.

*Remark. Since the learning reward (13, 14) does not include the control regular-
ization term (such as using L1, L2, or mixed L1-L2 norm regularization as additional
sparsity-inducing cost for (13, 14) [9]), it allows gradient computation for model-
based optimization described in the following subsection.

3.4 Cost function design

In general, there are quite a number of cost functions possible for the reward of RL
acting as the control for uncertain system, yet the effectiveness of a specific RL
algorithm depends on the applications indeed. The objective function can be multi-
modal to allow different skills to be learned. For example, a parametric cost function
[31] can be used to switch the cost from one that follows a quadratic cost function to a
time-optimal cost during learning to generate different feedback control schemes in
response to different events. Kabzan et al. [32] used a progress-maximizing cost
function, defined as one that ensured that the learning agent drove as far as possible
within every time step. For TOCP we consider, an appropriate per-step cost at xt ¼
x tð Þ at sampling time t is represented in (15)

cost x tð Þð Þ ¼ 1� exp � 1
2σ2c

∥x tð Þ � xtarget∥22

� �
∈ 0, 1½ � (15)
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where xtarget is the target state and the cost width can be tuned with σc.
It measures how fast the vehicle progresses on the track to reach the target
(subject to tolerance, i.e. the neighborhood of the target state) in terms of expo-
nential function of pairwise Euclidean distance within the episode horizon. The
data-driven control (18, 19) for (15) is to maximize the accumulated trajectory
cost (13, 14). The expected cost depending on the state, thus on the control
parameter θ through the mean and covariance of ut ¼ π xt, θð Þ, allows for analytic
integration [16].

3.5 Policy optimization

With the model uncertainty handled by the GP, PILCO employs model-based
policy search for planning and uses analytic gradient of cost function for
optimization of policy parameter. The policy is improved episodically through the
gradient information of (13): the policy update step is in the gradient directions
toward high reward region of action space to search for optimal policy (best action
sequence) directly. Since the cumulative reward function and transition function are
differentiable with respect to the policy parameter θ, analytic gradient Jπ θð Þ=dθ with
respect to the policy parameter, which depends on the policy parametrization, is
available for many interesting control parametrizations, which involves several
applications of chain rule [16]. Finally, an advantage of PILCO is that through the
analytic expression of the cost function with respect to policy parameter, any standard
gradient-based optimization method can be implemented to search directly in the
policy space for the optimal policy parameter θ of high (say, thousands) dimension,
which minimizes the total cost Jπ θð Þ so as to obtain desired state trajectory with higher
reward.

4. Simulation results and discussions

4.1 Simulation scenario and settings

For the simulation purpose, we consider a simple aggressive driving task
whose action space is one-dimensional acceleration in a given interval, and the
state space is a two-dimensional space of position and velocity with the position
confined on a linear track to constrain the exploration for sample efficiency. The
driving scenario is visualized in Figure 1, in which the autonomous car is
represented by a black box. We used a double integrator with an unknown but
constant point mass to simulate the behavior of a real vehicle traveling along a straight
line on flat ground with unknown but constant viscous friction. Let x tð Þ denote the
distance traveled by a point mass m on a frictional ground with viscous friction
coefficient c controlled by an applied control subject to symmetric constraint
u∈Uad ¼ �umax, umax½ �, where the action space Uad is an admissible control set (a
convex polytope) that overcomes static friction and avoid slipping. Defining x ¼
x, _x½ �T as the state vector of simulated vehicle, the state equations for the vehicle
dynamics can be written as

_x ¼ Axþ bu, x 0ð Þ ¼ 0 (16)
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where

A ¼
0 1

0 � c
m

" #
, b ¼

0
1
m

" #
(17)

Since the vehicle (15) is controllable, the existence of a time-optimal control
input with at most one switching to steer the vehicle from a rest state x 0ð Þ ¼ 0 at
time zero to a neighborhood of another state x tð Þ in a given time t is ensured by
controllability is ensured by PMP. In Appendix A, we provide the analytical
solution of state-to-state transfer TOCP to (15) with explicit parameter
dependence. The insights offered by the analytical solution for learning and its
performance is that given the symmetric control bound, the control trajectory and
switch time are determined by c

m and c (the natural frequency and damping ratio),
while the state (position and velocity) trajectory depends on c

m, m explicitly and c
implicitly via the control.

Settings. For concreteness, the learning scenario is illustrated in Figure 1, in which
the vehicle is represented by a black box. The vehicle had a horizontal length of 30 cm
and a mass of 0:5 kg. In addition, to mimic a real vehicle on the road, we set a
symmetric bound of �4 m=s2 on the acceleration control and a friction coefficient of
0:1. The motion began from rest at the origin and proceeded along a linear track for a
fixed duration Tterminal per an acceleration policy. It is desired that the target state
x Tð Þ ¼ xtarget ¼ 5, 0½ �T for a prescribed distance L ¼ 5 with a T ≤Tterminal value that is
as small as possible (i.e., the policy determines the maximum _x for each point x on the
pre-specified path and a travel time T for task completion), where Tterminal is the
duration of learning. Crucially, the agent itself has no prior knowledge on the mass or
friction coefficient. The simulation is conducted on an Intel Core i7-8700k and 16 GB
RAM using MATLAB.

To facilitate the episodic policy search in PILCO, we set each episode to be
Tterminal ¼ 4 s, and each episode was further discretized into 40 time steps (i.e., Δt ¼
0:1 s for each time step). We ran 16 episodes for the agent to learn the task, and the
first task was randomly initialized. The code is available at https://github.com/brianhc
liao/PILCO_AlphaBot. Our choice of learning time Tterminal ¼ 4 (for one episode) in
the simulations was a trade-off between computational cost (which increases if more

Figure 1.
Setup of one-dimensional state-to-state transfer task. The black box depicts the car, which is modeled using a
point-mass double integrator. The car begins moving from the origin (green star) at rest along a straight line to
reach the target (red star) along a rough plane. The task involved the execution of different acceleration control
policies on the double integrator with embedded uncertainties from the same rest state to reach a target state. The
resulting state–input pair and cost at each sampling time point were recorded.
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data are collected) and performance, where overly small and large scales of Tterminal
result in aggressive and relaxed learning, respectively. When each episode was run,
the agent considered an episode, in which the vehicle was returned to the same initial
state (rest state at t ¼ 0) after a policy in the parametric form of (18, 19) to the
simulated damped double integrator model (15). In this task, both the state and input
could be observed for the data to be collected. In one control cycle and for each
maneuver policy, we collected a batch of trajectory data generated by (15) (the
trajectory did not violate the acceleration limits) at the sampling times points of t ¼
0:1, 0:2, … , 3:9, 4:0 (in seconds) over the time horizon 0, 4½ �. Therefore, a total of 16
episodes (including an initial random-policy round) were executed, each of which had
a total of N ¼ 40 samples of state–control pairs. Subsequently, a constant-size data set
Di, (i ¼ 1, 2, … , 16) was constructed, and each of which is composed of a sequence of
precisely 40 state–action pairs, where the corresponding state was visited by the
vehicle and corresponding control input

Di ¼ x ið Þ
1 , u ið Þ

1

� �
, … , x ið Þ

Ntarget

�
, u ið Þ

Ntarget
Þ, … , x jð Þ

40

�
, u jð Þ

40 Þ
� �

(18)

u ið Þ
1 ¼ π x i�1ð Þ

1 , θ i�1ð Þ
� �

, … , u ið Þ
40 ¼ π x i�1ð Þ

40 , θ i�1ð Þ
� �

(19)

where Ntarget ≤N ¼ 40 denote the first sampling time at which the car passes
through the target region. These 40 state-control pairs collected at different sampling
times are correlated via state transition which maps current state and acceleration to
the next state. The time-discrete system as the state transition function is obtained by
using Euler method to (15) and gets the controllability matrix

x ið Þ
nþ1 ¼ x ið Þ

n þ ΔtAx ið Þ
n þ Δtbu ið Þ

n ¼ Iþ ΔtA½ �x ið Þ
n þ Δtbu ið Þ

t (20)

C ¼ Iþ ΔtA½ � ¼
1 Δt
0 1� Δt

c
m

" #
¼ controllability matrix (21)

where n ¼ 0, 1, 2, … , 39, x ið Þ
0 ¼ x0, u

ið Þ
0

� �
given, u ið Þ

0 is an initial input for arbitrary

initial exploration. Since C is nonsingular for any m and c, the system considered is
ensemble controllable to guarantee the existence of an appropriate input for steering
task, even the system parameters are unknown. The data set Di in each trial recorded
how the vehicle modified its input at each sampled point on the path in accordance
with the stage cost at each sampling time point, which was the only type of feedback
information that the vehicle received during the vehicle–environment interaction
during learning. The i-th episode learning data were to be used for a demonstration in
which the reward in the next (i + 1)th learning cycle was used to revise the policy for
an optimization over action sequences in an effort to minimize the distance between
the predicted future state and the target by large progress; this revision was conducted
through an online estimation of the vehicle model based on the batch of collected data
(for the whole completed episode) during the learning process.

4.2 Data-driven approximate time-optimal control design

We posit the basis functions ϕi, i ¼ 1, 2, … nbf g where nb is the total number of
basis functions that can be used to represent the policy as a linear combination with a
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set of parameters over the basis functions [16]; this linear combination is represented
as follows:

u x, θð Þ ¼
Xnb
t¼0

wiϕi xð Þ (22)

We choose ϕi xð Þ in the form of Gaussian Radial Basis Function (RBF)

ϕi xð Þ ¼ exp � 1
2

x� μið ÞTΔ�1 x� μið Þ
� �

(23)

where μi, i ¼ 1, 2, … , nbf g are support points, and Δ is covariance matrix. Then
θi ¼ wi, μi,Δ½ � represents the policy parameter vector of the weight, mean, and
covariance of each Gaussian RBF. The choice of parametric controller (18, 19) in the
form of linear combination of Gaussian RBFs lies in function approximation property
and good generalization property, where the controller parameters and the number of
basis functions can be optimized using various methods. This implies robustness to
vehicle parametric uncertainties and disturbances in learning. Therefore, the class of
learning-based parametrized control policy for effectively reject external disturbance
and compensate parametric uncertainties we consider is defined with a mapping that
maps weights wi and basis functions ϕi to a full (predicted) state (position and
velocity) feedback control. Since the optimal control is generally unknown, nb is
chosen to be sufficiently large (100 in simulation) to allow an accurate approximation
in model prediction and input-constrained control for the specific state-to-state
transfer task.

4.3 Model learning performance and efficiency

PILCO uses GP that relates the policy learning performance to the double inte-
grator with embedded uncertainties [specifically mass m and friction coefficient c in
(15)] through its interactions with the environment for model learning. GP maps the
policy parameter to the reward, which correlates the policy learning and one-step
predictive model trajectory learning. How accurate the learned model trajectories
can thus be measured by the reduction in travel time or increase in rewards over
episodes, since an accurate dynamic model is required to derive the optimality
conditions. In our case, the maneuver time minimization is not directly involved in
the transformed cost (13, 14, 19). In fact, via maximizing the expected sum of
discounted rewards of progress (or elapsed distance measured along the path) per
step by applying admissible acceleration at each time step over the entire episode
horizon 0,Tterminal½ � of learning, the maneuver or control policy tends to achieve a
maximum progress per sampling time. Since the decrease of distance to target is
directly related to reduction of travel time, it is worth noting that the model learning
performance is gradually improved over episode as validated in the cost v.s. the
number of episodes (time complexity) plot of Figure 2 with reduced cost and
consistently with the reduced motion duration. This is because decaying factor to the
power of t, γt in the time-accumulated trajectory cost sum (13) favors the immediate
distance cost (19) by maximizing the distance traveled in the first few samples using
the discounted factor in the cost function. This promotes the goal-reaching to be
achieved with large progression per step at the beginning of the trajectory subject to
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symmetric acceleration bound of the vehicle, thus faster trajectory so as to fit
trajectories with higher rewards.

We can see two highly different trajectory behaviors in Figure 3a, while Figure 3b
shows the learning curves in the position-velocity phase plane. The initial motion
direction is either aligned with the desired direction toward the target or counterdir-
ectional with it. The first trajectory generated in the first episode was counterintuitive

Figure 2.
Graph of total cost against episode. Cost was reduced until (near) convergence was achieved at the second episode
and was stable after convergence.

Figure 3.
Converged learning outcome of state (position, velocity) and input (acceleration) trajectories of the vehicle. The
velocity profile was triangular and the acceleration input exhibited bang–bang control characteristics. After
reaching the neighborhood of the target, the vehicle attempted to stop and remain at the target. A little steady-state
oscillation around the target was present because the vehicle could not decelerate fast enough to come to rest at the
target. That is, the required fast motion induces overshooting the target if it does not brake in time and then reversed
as hard as possible to be closer to the target.
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in that the vehicle drove away from the destination. This unusual behavior was
associated with a high trajectory cost due to divergence from the target, causing the
rest of the trajectories in the second to last episodes to have their directions of motion
switched when the vehicle was initially traveling toward the target. We observe that
in the second episode, a nearly correct state response is generated to fit the highest
reward. The learning behavior from second episode until the final one is relatively
identical with small steady-state oscillation due to no terminal cost to control the
terminal state at the end of horizon. The task-specific cost (19) is approaching zero as
the final state is only around the target (i.e. x Tð Þ ! xtarget), considering the inaccu-
racy in reaching the target and residual vibration was present after the vehicle reached
the neighborhood of the target. The required fast motion induces overshooting the
target and when overshoot occurs, turn-back to be closer to the target is observed
during learning. The policy is updated and exploration is terminated to maintain the
reward at its highest throughout the remaining learning episodes.

4.4 Policy learning performance-verifying time-optimality

Theoretically, in ideal situations of no external disturbances and no model errors,
by taking into account the input constraints, the analytical solution can be obtained
(see Appendix A) for the damped double integrator when the time-optimal accelera-
tion input is a bang-bang control [20] (i.e., a piecewise constant �umax at all time
points that is on the boundary of the admissible control set Uad) with one sign change
(see also the following interpretation in Section 5.2). Accordingly, the effectiveness of
the learned policy with respect to the time-optimal motion task is measured by
analytical solution. As shown in Figure 4b and Table 1, the learned velocity trajectory
is visually converges to a profile which is very similar the analytical solution. We see
that the characteristics of exact solution are learned: the learned velocity profile
almost coincides with the time-optimal zigzag profile with exactly one switching point
whose height and corresponding time are, respectively, the maximum allowed veloc-
ity and tsw, and optimal acceleration is applied for each possible state on the linear
track under symmetric acceleration constraint. For different c=m and c parameters,
the fastest goal-reaching behavior from the same initial rest state results in different
zigzag velocity profiles with different travel times for given L and fixed umax. Table 1

Figure 4.
Learned response in time and phase plane. Episode 1 features the car reversing. In episode 2, a correct, nearly time-
optimal motion toward the target was produced. (a) Vehicle position at each episode over 40 sampling time steps
spanning a time horizon of 4 s. (b) Predicted position–velocity trajectories in the phase plane through application
of data-driven control on learned model for the goal-reaching task along a linear track. The state trajectories
became more accurate (time-optimal) with respect to the predicted velocity trajectory as the model was updated
during learning. The time-optimal velocity trajectory upon convergence with one instance of switching is shown.
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shows the effect of parameter variations due to approximate dynamics model on
achievable minimum time. Note that T ∗ 6¼ 2tsw when c 6¼ 0. It is because the vehicle
should not only have the highest acceleration to reach a highest speed at tsw and
decelerate sufficiently fast to meet the null boundary conditions, but also, affected by
the viscous frictional force which resists the vehicle’s movement speed to increase.
The acceleration policy that produces this unique zigzag position-velocity profile
corresponding to the bang-bang control with appropriate switching time to meet the
boundary conditions is the goal of the policy learning based on learned model in an
attempt to match.

In conclusion, the success of the simulation of goal-reaching trajectories along the
track (task relevant states in reachable set) rendered the time-optimal trajectories on a
straight road feasible. As the simulation shows, the objective function decreases the
approximation errors introduced by the currently learned GP model and reduces
consistently the travel time very effectively for optimal policy search to fit trajectories
with higher rewards, and the resulting policy encodes the desirable spatial and tem-
poral correlations approximately. However, the GP learning results from the collected
data set are only valid for the given path and task, but the laws governing physical
dynamics apply across paths and tasks. Furthermore, there is discrepancy between the
desired time-optimality and the objective of cumulative maximum progress per step
we implemented, we observed that the algorithm, despite the natural exploitation–
exploration characteristics of the saturating cost function, was sometimes not
guaranteed to be globally optimal; it could get stuck in a local optimum because the
optimization problem was not convex [16, 18], but still yields good results owing to
learning convergence of the generalizable controller as approximate solution to TOCP,
whose sensitivity with respect to parameter variations of m and c is small.

5. Sim2Real policy transfer experiment

In real-world experiments, a relatively general uncertain nonlinear vehicle model
is either not readily available or overly complicated for the design of state-to-state
steering maneuvers. Therefore, to solve this problem, one approach to sim2real

ma cb tswc(s) T ∗ d (s)

0.5 0.0 0.79057 1.58114

0.5 0.1 0.854717 1.58443

0.5 0.096 0.852088 1.58418

0.5 0.104 0.857352 1.5847

0.48 0.1 0.836147 1.55229

0.52 0.1 0.872974 1.61595
am is the mass, a given parameter.
bc is the coefficient of friction, also a given parameter.
ctsw is the switching time under bang-bang control.
dT∗ is the minimum time spent in the whole motion.

Table 1.
This shows tsw and T ∗ of the triangle profile in the presence of ∓4% deviation of both mass and friction coefficient
simultaneously with accurate c ¼ 0:1, m ¼ 0:5 for given L ¼ 5 and umax ¼ 4. For comparison, tsw ¼ 0:79057
and T ∗ ¼ 2tsw ¼ 1:58114 for the case of c ¼ 0. It indicates the friction clearly slows down the fastest motion.
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control is the transfer of skills learned from a simple simulated model to a similar real
system executing a similar task. To test the learned policy in a real-world environment
and as detailed in this section, we conducted a sim2real validation experiment with a
low-cost Raspberry Pi–controlled small car, called AlphaBot, as shown in Figure 5.
The simple car was equipped with photo-interrupters and ultrasonic sensors for state
measurements. It could be controlled to either accelerate or brake. Because the robot
unit was inexpensive, the low pulse-width-modulation duty cycles that were trans-
lated from the control signals might be incapable of driving the car, which also makes
the task more complex. Before we conducted the experiment, we verified that the
robot had sufficient power to travel a distance of L along the linear track to reach the
target. In contrast to the simulation scenario, the experimental setup had an additional
velocity limit for the car, which functioned as a state constraint. The velocity limit
stemmed from the voltage constraints of the board and was therefore not directly
handled by the control signal.

5.1 Setup

A small car was designated to travel from a point 180 cm from the wall to a point
50 cm from the wall. Its heading was fixed at a forward-facing angle of 0∘ for
straight line motion. The task characteristics (system dynamics along a linear track
on a frictional plane) and the environment for learning in the simulation and exper-
iment were very similar. We assumed that the model of the car was similar to that in
the experiment; it was a second-order dynamics model with slightly changed
parameters. This model is universal because it is based on fundamental physical
principles. Thus, we could reuse the same RBF controller (18, 19) that was used in
the simulated double integrator (15) as a time-optimal feedback control of the actual
vehicle. When applied to a real vehicle, the learned policy from simulation runs thus
can be viewed as an optimal demonstration by the simulated system (15). This policy
provides a good understanding of the time-optimal motion of the vehicle motion
with only an input constraint under no disturbance and no state constraint. In the
experiment, the control signal generated from the RL algorithm ranged from �2 to 2
and was translated into the rate of change of the duty cycles of the motor PWM
signal on board.

Figure 5.
Low-cost model car AlphaBot for the experiment (left photo) and the experimental setup involved in driving
AlphaBot along a linear track.
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5.2 Results

As indicated in Figure 6, the sim2real transfer experiment, which applied the same
data-driven control learned from simulation, worked well on the low-cost car. The
vehicle drove at each point on the path at its highest allowable velocity; this observa-
tion was similar to that in the simulation. This validates the slight generalization
capability (robustness and stability) of the MBRL with Gaussian RBF kernel under
similar dynamics and task constraints. The learning curve is illustrated in Figure 6a.
The total cost was 40 at the initial trial of the task for the saturating cost function. The
vehicle attained a lowest cost of approximately 16 and a travel time of approximately
2.2 s at the seventh episode with a total experience time of 28 s. This approach was
deemed to be very efficient because learning was successful after only a small number
of trials. In Figure 6b, immediate cost at every time step (per-step cost) at various
episodes is plotted, showing the learning process and indicating that the arrival time
decreased over episodes. The decrease was, however, not monotonic; thus, the inter-
mediate trajectories prior to the completion of learning may not be acceptable until a
nearly time-optimal control input is finally obtained at convergence, which was the
desired control goal. As indicated in Figure 6c, by following a nearly time-optimal
velocity along the track, the final position of the car, despite not overshooting the
target or fluctuating, was slightly off the target by 50 cm partly because of modeling
uncertainties and localization errors from lateral tracking error and sensor inaccura-
cies. A velocity limit was set because of the electronic voltage constraints on the robot
and was therefore not directly handled by the robot control signal.

5.3 Discrepancies between simulation and experiment

Prior knowledge about a detailed description of the vehicle dynamics that contain
uncertainties is not available or is not required in both simulation and sim2real exper-
iment. Instead, the model is learnt through the Gaussian Processes to reduce the
accumulated cost, thus contributing to decrease the maneuver time. However, the
convergence in the simulation tends to require less learning episodes to converge,
which possibly stems from the following major differences. The first important dif-
ference is that the learning experiment is on the basis of more complicated vehicle
dynamics. In fact, the inherent factors confronted during real world experiment that
cannot be neglected or accounted for in a simple physical model (18). These can affect
the control performance include uncertainties caused by lateral drift and wheel

Figure 6.
Experimental results. (a) Graph of total cost against episodes. Trajectory cost decreased after some transients until
convergence at the seventh episode where a travel time of approximately 2 s was achieved. (b) Intermediate costs in
selected episodes. (c) Outcome with respect to learning state and control trajectories.
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sideslip of the vehicle, physical properties such as inertia and complicated, hard to
model friction characteristics (such as Coulomb friction proportional to sign _xð Þ and
aerodynamic (quadratic) drag force proportional to _x2, in addition to viscous friction
proportional to _x), or unknown external forces inherent in the vehicle-terrain inter-
action as a result of the inaccuracy of sensor measurements, motor characteristics and
torque disturbances and variation of environment interactions such as uneven ground.
These factors make the prediction of the sampled states on the linear track under the
input ambiguous and affect the stability of system to reach the target. Considerations
of vehicle hardware also entail an additional velocity limit (due to a limit to how much
voltage the hardware can take) that ensures that rapid motion causes no harm or
instability on the vehicle at each trial. These factors result in differing state trajectories
in the experiment and simulation under the same control. Due to low sensitivity of
TOCP with respect to system parameters, however, the convergence of learning to the
approximate solution is ensured under these factors. Therefore, a new approximate
optimal solution, if the system deviated from the initially demonstrated trajectory, is
recovered by learning controller.

5.4 Interpretations of learning results

In a scenario of short-distance driving on a linear path, we see that data-driven
control (18, 19) realizing the nearly time-optimal state-to-state steer control in a
simulated model is demonstrated as a good approximated time-optimal control of
actual system with similar dynamics and task characteristics. The error which is in
sim2real experiment between the learned simulated model from the dataset and
learned near time-optimal control performance can be split into two aspects. The first
one is the error between the actual state xa tð Þ and the theoretical time-optimal state
xopt tð Þ. The second one is the error between the theoretical time-optimal state xopt tð Þ
and the learned simulated state xt. Let xopt tð Þ, uopt tð Þ ¼ u xopt tð Þ, θopt tð Þ

� �� �
be the

time-optimal state-input pair of simulation model (15). For a successful sim2real
experiment, we assume that the simulation model (15) can be extended to the actual
system (24) in real experiment

_xa ¼ Axa þ buopt þ δAxa (24)

xa 0ð Þ ¼ 0, u∈Uad ¼ �umax, umax½ �

where xa tð Þ is the actual state, and

δA ¼
0 0

0
δc
m

" #
(25)

is a bounded additive disturbance due to the error δc of actual frictions and
simulated friction settings with other a priori unknown factors that linearly related to
xa, umax is the maximum control limitation (or state constraint) confined by hardware
setting. Note (24) applies the same time-optimal control (18) learned from the simu-
lated system. We assume the error δc is bounded by kc >0. Since xopt satisfies (15), we
then have

_xa � _xopt ¼ A xa � xopt
� �þ δAxa (26)
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Integrating (26) and moving associated terms, we have

xa � xopt ¼ eAt
ðt
0
e�As δAxað Þds (27)

for 0< t<Tterminal. Since Tterminal is finite, xa is bounded in 0,Tterminal½ � (note, (24)
can be solved analytically), the difference ∣xa � xopt∣ is proportional to kc with a
constant C, independent of t. Therefore, the error between the actual state xa tð Þ and
the theoretical time-optimal state xopt tð Þ is arbitrarily small if kc tends to 0.

On the other hand, the dynamics system with transition function is discretized by
Euler method as

xtþ1 ¼ xt þ ΔtAxt þ Δtbut (28)

Since this is the dynamic system learned by PILCO, thus the difference between xt
and xopt is proportional to Δtð Þ2 with constant C, independent of t. Therefore, as
kc,Δt! 0, we have xa ! xopt.

6. Conclusions

A case study of TOCP, whose solution typically requires a known model
with given boundary conditions for applying PMP, is framed as a MBRL task for
rest-to-rest steering along a linear path by a vehicle that was modeled as an uncertain
double integrator subject to constant acceleration bound. An important aspect of this
paper is a novel application of PILCO, an existing data-efficient MBRL, to approxi-
mately solve TOCP for uncertain damped double integrator without accurate
parameters. Feasibility of learning convergence is empirically verified by parametric
sensitivity of exact time-optimal solution. The consistency of learned velocity profile
closer to that obtained by analytical time-optimal control is shown by simulation
first and then implemented on a sim2real experiment. The learned velocity can be
further revised to account for a velocity limit through scaling without the need of
replanning or relearning for performing less aggressive maneuvers. Our case study
expands the scope of problems that can be successfully solved by MBRL (specifi-
cally, PILCO), serving as a robust adaptive optimal control, without prior paramet-
ric model representation, and it demonstrates the capability in compensating for
uncertainties and external disturbances, which can cause the state trajectories to
deviate from the optimal simulated state trajectory. For the challenging problem
of learning a safe velocity for various road topologies and traffic flows, MBRL
suffers from the accumulated compounding error over long horizon. And the
comparison with other learning approaches to solution of optimal control problems
is our future work.
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Appendix A

Instead of data-driven assessment by comparing with state of the art
algorithms, an analytical time-optimal solution is provided to validate the
learned trajectory solution. The system of the TOCP to damped double
integrator can be rewritten as

d2x
dt2
¼ � c

m
dx
dt
þ 1
m
u tð Þ (29)

where

x 0ð Þ ¼ 0, x Tð Þ ¼ L
_x 0ð Þ ¼ 0, _x Tð Þ ¼ 0

∣u tð Þ∣ ≤ umax

(30)

Integrating the Eq. (29), we then get

_x tð Þ � _x 0ð Þ ¼ � c
m

x tð Þ � x 0ð Þð Þ þ 1
m

U tð Þ �U 0ð Þð Þ (31)

where

U tð Þ ¼ U 0ð Þ þ
ðt
0
u sð Þds (32)

Reducing the Eq. (31) by invoking the boundary conditions, we get

_x tð Þ ¼ � c
m
x tð Þ þ 1

m
U tð Þ � U 0ð Þð Þ (33)

Thus,

x tð Þ ¼ x 0ð Þ þ e�
c
mt
ðt
0

e
c
ms

m
U tð Þ � U 0ð Þð Þds (34)

The state trajectory with fixed initial state can be expressed by the control u tð Þ,
thereby removing the system dynamics constraint.

From the terminal condition at T, we get

L ¼ e�
c
mT
ðT
0

e
c
ms

m
U tð Þ �U 0ð Þð Þds (35)

Therefore,

Le
c
mT ¼

ðT
0

e
c
ms

m

ðs
0
u ~sð Þd~s

� �
ds ¼

ðT
0

ðs
0

e
c
ms

m
u ~sð Þd~sds

¼
ðT
0

ðT
s

e
c
ms

m
u ~sð Þdsd~s ¼

ðT
0

u ~sð Þ
ðT
s

e
c
ms

m
ds

� �
d~s ¼ 1

c

ðT
0
u ~sð Þ e c

mT � e
c
ms

� �
d~s

¼ 1
c
e
c
mT
ðT
0
u sð Þds� 1

c

ðT
0
u sð Þe c

msds ¼ 1
c
e
c
mT U Tð Þ �U 0ð Þð Þ � 1

c

ðT
0
u sð Þe c

msds

(36)
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And substituting into (33) with boundary condition of _x Tð Þ ¼ 0, we get

U Tð Þ ¼ Lcþ U 0ð Þ (37)

Therefore,

ðT
0
u sð Þe c

msds ¼ 0 (38)

Thus, the conditions (32), (37) and (38) can be equivalently converted into

ðT
0
u sð Þds ¼ Lc

ðT
0
u sð Þe c

msds ¼ 0

8>>>><
>>>>:

(39)

(39) together with another condition ∣u tð Þ∣ ≤ umax on 0,T½ �, these three are com-
plete constraints on u tð Þ of the problem. Now, according to bang-bang control, the
solution u tð Þ should be �umax for T to achieve the minimum. Since (29) is a linear
second-order system, the bang-bang control has exactly one switching time. Let tsw
denote the switching time and T ∗ the minimum time possible. Based on this pattern
for u tð Þ,

u tð Þ ¼
umax if t∈ 0, tsw½ �

�umax if t∈ tsw,T ∗½ �

(
(40)

we can define

u tð Þ ¼ c1I 0,tsw½ � þ c2I tsw,T ∗½ � (41)

where

I a,b½ � xð Þ ¼
1 if x∈ a, b½ �
0 otherwise

(
(42)

Substituting (41) into (39), it becomes

c1tsw þ c2 T � tswð Þ ¼ Lc

c1
m
c

e
c
mtsw

� �þ c2
m
c

e
c
mT � e

c
mtsw

� � ¼ 0

8<
: (43)

Therefore, the c1 and c2 are

c1 ¼
Lc e

c
mT � e

c
mtsw

� �

tsw e
c
mT � 1ð Þ � T e

c
mtsw � 1ð Þ

c2 ¼
�Lc e

c
mtsw � 1

� �

tsw e c
mT � 1ð Þ � T ec

mtsw � 1ð Þ

8>>>><
>>>>:

(44)
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According to ∣u tð Þ∣ ≤ umax and bang-bang principle, we have

c1 ¼
Lc e

c
mT � e

c
mtsw

� �

tsw e
c
mT � 1ð Þ � T e

c
mtsw � 1ð Þ ¼ umax

c2 ¼
�Lc e

c
mtsw � 1

� �

tsw e
c
mT � 1ð Þ � T e

c
mtsw � 1ð Þ ¼ �umax

8>>><
>>>:

(45)

Thus, e
c
mT � e

c
mtsw

� � ¼ e
c
mtsw � 1

� �
and we get tsw ¼ m

c ln e
c
mTþ1
2

� �
. Now, substituting it

into

c1 ¼
Lc e

c
mT � e

c
mtsw

� �

tsw e
c
mT � 1ð Þ � T e

c
mtsw � 1ð Þ ¼ umax (46)

we get the minimum case of T, i.e. T ¼ T ∗ . (This can be computed by numerical
methods. See results in Table 1).
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Chapter 6

Self-Supervised Contrastive
Representation Learning in
Computer Vision
Yalin Bastanlar and Semih Orhan

Abstract

Although its origins date a few decades back, contrastive learning has recently
gained popularity due to its achievements in self-supervised learning, especially in
computer vision. Supervised learning usually requires a decent amount of labeled
data, which is not easy to obtain for many applications. With self-supervised learning,
we can use inexpensive unlabeled data and achieve a training on a pretext task. Such a
training helps us to learn powerful representations. In most cases, for a downstream
task, self-supervised training is fine-tuned with the available amount of labeled data.
In this study, we review common pretext and downstream tasks in computer vision
and we present the latest self-supervised contrastive learning techniques, which are
implemented as Siamese neural networks. Lastly, we present a case study where self-
supervised contrastive learning was applied to learn representations of semantic
masks of images. Performance was evaluated on an image retrieval task and results
reveal that, in accordance with the findings in the literature, fine-tuning the self-
supervised training showed the best performance.

Keywords: self-supervised learning, contrastive learning, representation learning,
computer vision, deep learning, pattern recognition

1. Introduction

For an effective training, supervised learning requires a decent amount of labeled
data, which is expensive. Unlabeled and inexpensive data (e.g. text and images on the
Internet) is considerably more than the limited size datasets labeled by humans. We
can use unlabeled data and perform a training on a pretext task, which is a self-
supervised approach since we do not use the labels in our real task. Although the
task and the defined loss are not the ones in our actual objective, we can still learn
some representations that are valuable enough to be used for the final task. We
basically learn a parametric mapping from the input data to a feature vector or tensor.
In most cases, a smaller amount of labeled data is used to fine-tune the self-supervised
training.
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Although its origins date as back as 1990s [1, 2], contrastive learning has recently
gained popularity due to its achievements in self-supervised learning, especially in
computer vision. In contrastive learning, a representation is learned by comparing
among the input samples. The comparison can be based on the similarity between
positive pairs or dissimilarity of negative pairs. The goal is to learn such an embedding
space in which similar samples stay close to each other while dissimilar ones are far
apart. Contrastive learning can be applied to both supervised and unsupervised set-
tings. Let us consider image classification problem. In supervised setting, positive
pairs are different instances with the same label and negative samples are selected
from other labels (Figure 1). On the other hand, in unsupervised (or self-supervised)
setting, positive pairs are parts (or augmented versions) of the same instance and
negative samples are other instances with any label. Khosla et al. [3] provide a perfor-
mance comparison between supervised and self-supervised training for image classi-
fication problem. Also, a more comprehensive review of contrastive learning can be
found in [4].

Since a self-supervised model does not know the actual labels corresponding to the
inputs, its success depends on the design of the pretext tasks to generate the pseudo-
labels from part of the input data. With these pseudo-labels, training on pretext task is
performed with a ‘supervised’ loss function. Final performance on the pretext task is
not important, but we hope that the learned intermediate representations can capture
good information and be beneficial to a variety of downstream tasks.

Especially in computer vision and natural language processing (NLP), deep learn-
ing has become the most popular machine learning approach [5]. In parallel, self-
supervised learning studies in computer vision have employed CNNs. Figure 2 shows
the knowledge transfer from a self-supervised training to a supervised one in a deep
learning setting. We save convolutional layers which are assumed to produce learned
representations. We change/add fully connected layers, place a classifier head and
train with the limited amount of labeled data for a downstream task like image
classification or object detection.

The remainder of this chapter is structured as follows. Pretext tasks that are
common in literature are reviewed in Section 2. Section 3 has detailed information
about recent self-supervised learning models that use Siamese architectures. Section 4
provides our own experimental study where self-supervised contrastive learning is
employed to learn representations of semantic segmentation masks, which is followed
by the conclusions in Section 5.

Figure 1.
Self-supervised (left) vs. supervised (right) contrastive learning. Training results in an embedding space such that
similar sample pairs stay close to each other while dissimilar ones are far apart. Figure is reproduced based on [3].
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2. Pretext tasks for self-supervised learning

Image Distortion. We expect that when an image goes through a small amount of
distortion, its semantic meaning does not change. Dosovitskiy et al. [6] used this idea
to create a exemplar-based classification task, where a surrogate class is formed with
each dataset sample by applying a variety of transformations, namely translation,
scaling, rotation, contrast and color (Figure 3). When this approach is applied to
whole image instances, it can be called as ‘instance discrimination’ [7], where aug-
mented versions of the same image (positive pair) should have similar representations
and augmented versions of the different images (negative pair) should have different
representations.

This is not only one of the first pretext tasks but also a very popular one. We will
see in Section 3 that the mentioned type of augmentations have succeeded in learning
useful representations and have achieved state-of-the-art results in transfer learning
for downstream computer vision tasks.

Image Rotation. Each input image is first rotated by a multiple of 90° at random.
A model is trained to predict the amount of rotation applied [8]. In basic setting, it is a
4-class classification problem, but different versions can be conceived. To estimate the
amount of rotation, this pretext task forces the model learn semantic parts of objects,

Figure 2.
A model is first trained with a pretext task with unlabeled data, then fine-tuned on the downstream task with
limited amount of labeled data. Usually convolution layers, which are mostly responsible of learning
representations, are transferred. A few fully-connected layers towards the end are changed or retrained.

Figure 3.
Several random transformations applied to a patch from the unlabeled dataset to be used for self-supervised
learning. Original sample is in top-left. The idea was first used by [6] and the figure is from the original paper with
author’s permission.
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such as arms, legs, eyes. Thus, it would serve well for a downstream task like object
recognition (Figure 4).

Jig-saw Puzzle. Noroozi and Favaro [9] designed a jigsaw puzzle game, where a
CNN model is trained to place 9 shuffled patches back to the original locations. Each
patch is processed independently with shared weights and a probability vector esti-
mated per patch. Then, these estimations were merged to output a permutation.

Image Colorization. The task is to colorize gray-scale images into colorful images
[10]. A CNN is trained to predict the colorized version of the input (Figure 5).
Obtaining a training dataset is inexpensive since training pairs can be easily generated.
Model’s latent variables represent grayscale images and can be useful for a variety of
downstream tasks.

Image Inpainting. The pretext task is filling in a missing piece in the image (e.g.
Pathak et al. [11]). The model is trained with a combination of the reconstruction (L2)
loss and the adversarial loss. It has an encoder-decoder architecture and encoder part
can be considered as representation learning.

Last two pretext tasks (image colorization and inpainting) and some other GANs
(e.g. image super-resolution [12]) are generation-based methods, where a missing info
in the content is generated from available input. Whereas distortion, rotation and
jigsaw are context-based self-supervision methods. For more detailed literature on
pretext tasks, we refer the readers to the review in [13].

In our study, we concentrate on the context-based approach. Taking advantage of
contrastive learning, this approach nowadays achieves state-of-the-art performance

Figure 4.
Self-supervised representation learning by rotating input images, implemented in [8]. The model classifies the
rotation [0°, 90°, 180°, 270°].

Figure 5.
A model is trained to predict the colorized version of grayscale images (obtaining the dataset is inexpensive).
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[14–17]. We will go into details, especially the models with Siamese architecture, in
Section 3. The generation-based and context-based method distinction also exists for
video representation learning. In [18], an encoder network is used to learn video
representations. Then, a decoder uses the representations to predict future frames.
Differently, Qian et al. [19] employ contrastive learning with distortions (augmenta-
tions) to learn representations and to classify video clips.

The rest of our chapter will consider works on image data. Before proceeding, let
us give a few examples where contrastive learning is used for image-text pairs.
Contrastive Language-Image Pre-training (CLIP, [20]) is a pretext task, where a text
encoder and an image encoder are jointly trained to match captions with images.
Training set consists of 400 million (image,text) pairs and an inter-modal
contrastive loss is defined such that image and text embeddings of same objects
will be closer to each other. Then, this pretraining is employed for a downstream
task of zero-shot class prediction from images. Li et al. [21] performed a similar task
for semantic segmentation. An image encoder is trained with a contrastive
objective to match pixel semantic embeddings to the text embeddings. Another
example presents contrastive learning of medical visual representations from paired
images and text [22].

3. Self-supervised contrastive learning models

The goal of contrastive learning is to learn such an embedding space in which
similar sample pairs stay close to each other while dissimilar ones are far apart.
Implemented using Siamese networks, recent approaches create two different aug-
mentations of samples and feed into the networks for contrastive learning. While
SimCLR [14] and MoCo [15] use the negative samples directly along with the positive
ones, BYOL [16] and SimSiam [17] achieved similar performance just with the posi-
tive samples. Differently, SwAV [23] forced consistency between cluster assignments
of augmentations, instead of comparing features directly. Shortly after, vision trans-
formers were included in self-supervised learning architectures [24, 25]. According to
the results, not only image classification, but also object detection and semantic
segmentation as downstream tasks benefit from self-supervised contrastive learning.
Let us briefly explain some of these main approaches.

3.1 SimCLR

Let us describe SimCLR [14] first, then we will describe other methods by com-
paring to previous ones. SimCLR uses both positive and negative samples, but being
positive or negative does not correspond to actual class labels. Augmented versions of
the anchor are taken as positives, whereas samples belong to different instances are
taken as negatives (Figure 6).

• Let T be the set of image transformation operations where t � T and t0 � T are
two different transformation operators independently sampled from x. These
transformations are random cropping and resizing, random Gaussian blur and
random color distortion. A ~xi, ~x j

� �
pair of query and key views is positive when

these two views are created by applying different transformations on the same
image x: ~xi ¼ t xð Þ and ~x j ¼ t0 xð Þ.
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• A base feature encoder f �ð Þ then extracts the representations from all the
augmented data samples hi ¼ f ~xið Þ, h j ¼ f ~x j

� �
. There is no restriction on the

choice of the encoder’s architecture but a ResNet-50 [26] model was preferred for
SimCLR due to its simplicity. The representation h in this case is the output of the
average pooling layer of ResNet-50.

• Each representation h is then fed into a projection head g �ð Þ to map
representations to the embedding space where the contrastive loss is applied.
zi ¼ g hið Þ, z j ¼ g h j

� �
. This projection head can be as simple as a one-layer multi-

layer perceptron (MLP) using a non-linear activation.

• A batch of zi, z j
� �

pairs representing the embeddings from two augmented
versions of the same image, are then fed into the contrastive loss function which
encourages the distance between embeddings from positive pairs to be small and
the distances of embeddings from negative pairs to be large.

SimCLR uses the contrastive loss given in Eq. (1). This is a categorical cross-
entropy loss to identify the positive sample among a set of negative samples (inspired
from InfoNCE [27]).

Lself ¼
X
i∈ I

Lself
i ¼ �

X
i∈ I

log
exp zi � z j=τ

� �
P

a∈A ið Þ exp zi � za=τð Þ (1)

N images are randomly taken from the dataset. Thus, the training batch consists of
2N images to which data augmentations are randomly applied. Let i∈ I � 1:::2Nf g be
the index of an arbitrary augmented sample, then j is the index of the other

Figure 6.
SimCLR framework [14], where two separate data augmentations are sampled from a predefined family of
augmentations (crop, blur color jitter). An encoder network f �ð Þ and a projection head g �ð Þ are trained to
maximize the agreement between the embeddings of these two samples. When the self supervised learning is over,
projection head can be thrown away.
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augmentation of the same original image. τ∈Rþ is a scalar temperature parameter, �
represents the dot product, and A ið Þ � I � if g. We call index i the anchor, index j is
the positive, and the other 2 N � 1ð Þ indices as negatives. The denominator has a total
of 2N � 1 terms (one positive and 2N � 2 negatives).

A common protocol to evaluate self-supervised model efficiency is to place a
linear classifier on top of (frozen) layers learnt by self-supervised training and train it
for the downstream task with the labeled data. If the performance gap between this
self-supervised encoder + linear classifier and a fully-supervised model is small,
then the self-supervised training considered as efficient. An alternative evaluation
protocol uses semi-supervised learning, i.e. pretrained network is re-trained as a whole
with a certain percentage of available labels. Experiments reveal that re-training with
only 10% of the labeled data achieves a performance (92.8%) very close to fully-
supervised training performance on the whole dataset (94.2%) as reported in [14]
(performances are top-5 classification accuracy on ImageNet dataset for ResNet-50).

3.2 Momentum contrast (MoCo)

Contrastive methods based on InfoNCE loss tend to work better with high number
of negative examples since negative examples may represent underlying distribution
more efficiently. SimCLR requires large batches (4096 samples) to ensure that there is
enough negatives which demands high computation power (8 V100 GPUs in their
study). To alleviate this need, MoCo [15] uses a dictionary of negative representations
that is structured as a FIFO queue. This queue-based dictionary enables us to reuse
representations of immediately preceding mini-batches of data. Thus, the main
advantage of MoCo compared to SimCLR is that MoCo decouples the batch size from
the number of negatives. SimCLR requires a large batch size and suffers performance
drops when the batch size is reduced.

Given a query sample xq, we get a query representation through our online encoder
q ¼ f q xqð Þ. A list of key representations {k0,k1,k2,...} coming from the dictionary and

are encoded by a different encoder ki ¼ f k xki
� �

as shown in Figure 7. Naming two

Figure 7.
MoCo framework [15]. The encoder that takes negative samples (from a FIFO queue) is not updated by
backpropagation but with the other encoder’s parameters with a momentum coefficient. That’s why it is called the
momentum encoder.
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compared representations as query and key is new, but one can think of them as the
two augmentations of the same sample in SimCLR (Figure 6).

Let us assume that there is a single positive key, kþ, in the dictionary that
matches q. Then, the contrastive loss with one positive and N � 1 negative samples
becomes:

LMoCo ¼ � log
exp q � kþ=τð ÞPN
1 exp q � ki=τð Þ (2)

From the two encoders defined above, for f k we can not apply backpropagation
since it works on the queue. Copying online encoder’s ( f q) weights to f k could be a
solution, however MoCo proposed to use a momentum-based update with a momen-
tum coefficient:

θk  mθk þ 1�mð Þθq (3)

where m∈ 0, 1½ � is the momentum coefficient and θq and θk are parameters of f q and
f k respectively (Figure 7).

Later on, two design choices in SimCLR, namely MLP projection head and
more stronger data augmentation were integrated into the approach resulting in
MoCo-v2 [28].

3.3 Bootstrap your own latent (BYOL)

Different from the approaches above, BYOL [16] achieves similar representation
performance without using negative samples. It relies on two different neural net-
works (in contrast to SimCLR but similar to MoCo), referred to as online and target
networks that interact. Online network has a predictor head. Target network has the
same network architecture with the online network except for the predictor head
(Figure 8). Parameters of the target network are not updated with back-propagation,
but with a moving average of online network’s weights just as MoCo did for the
momentum encoder.

It is curious that how the model escapes from collapsing (i.e. a trivial solution of
fixed vector for each sample) when no negative samples are used. Authors of BYOL
thought it is due to the momentum update, but later (with SimSiam [17]) it was
discovered that using stop-gradient and predictor head is enough.

Figure 8.
Comparison of some Siamese architectures: SimCLR, BYOL and SimSiam. Dashed lines indicate back-
propagation. Components colored in red are no more needed in SimSiam. Figure is reproduced based on [17].

106

Artificial Intelligence Annual Volume 2022



3.4 Simple Siamese (SimSiam)

BYOL needs to maintain two copies of weights for the two separate networks
which can be resource demanding. SimSiam [17] solves this problem with parameter
sharing between the networks (with and w/o predictor head). The encoder f �ð Þ
shares weights while processing two views. A prediction MLP head, denoted as g �ð Þ
transforms the output of only one view. Thus, two augmented views (x1 and x2)
results in two outputs: p1 ¼ g f x1ð Þð Þ and z2 ¼ f x2ð Þ. Their negative cosine similarity
is denoted as D p1, stopgrad z2ð Þ

� �
, where stopgrad operation is an important

component. It implements that z2 is treated as a constant term and encoder receives
no gradients from z2. Gradient only flows back to the encoder through the
prediction head.

Finally, negative cosine similarity based total loss is computed in a symmetric
fashion:

LSimSiam ¼ 1
2
D p1, stopgrad z2ð Þ
� �þ 1

2
D p2, stopgrad z1ð Þ
� �

(4)

Figure 8 compares SimSiam with SimCLR and BYOL. SimSiam [17] does not use
negative samples as SimCLR and MoCo did. Success with SimSiam also shows that
momentum encoder (or any sort of moving average update of weights) is not needed.
Stop-gradient operation and including predictor head are enough to prevent the
model from collapsing.

SimSiam also presents transfer learning results for object detection and semantic
segmentation downstream tasks. Results reveal that starting with a self-supervised
pre-training on ImageNet outperforms image classification pre-training on ImageNet.

3.5 Self-supervised vision transformers

Caron et al. [24] proposed another Siamese architecture where one of the network’s
parameters are updated with a moving average of other’s parameters. More interest-
ingly, they replaced encoder CNNs with vision transformers and reported increasing
success for various downstream tasks. Shortly after, Li et al. [25] proposed a more
efficient vision transformer architecture together with a new pre-training task which
is based on region matching.

4. Case study: semantic mask representation learning

As a case study, we employ self-supervised contrastive learning to learn represen-
tations of semantically segmented images, i.e. semantic masks. This learning task is
especially useful when two scenes are compared according to their semantic content.
A use case would be image retrieval based localization, where standard approach
extract features from RGB images and compare them to find the most similar image in
the database [29, 30]. Recently, several studies showed that checking semantic
resemblance between query and database images and using this similarity score while
retrieving images improves localization accuracy [31–33]. The reason of improvement
is that there is appearance difference between images taken at different times (query-
database) due to illumination differences, viewpoint variations, seasonal changes.

107

Self-Supervised Contrastive Representation Learning in Computer Vision
DOI: http://dx.doi.org/10.5772/intechopen.104785



Although RGB image features are directly affected by those changes, semantic labels
are stable most of the time (Figure 9).

Given a semantic mask, obtaining the most similar result among the alternatives is
not a trivial task. SIFT-like features do not exist to match. Moreover, two masks of the
same scene are far from being identical not only because of changing content but also
due to camera position and viewpoint variations. Thus, instead of employing a pixel-
by-pixel label comparison score, a trainable semantic feature extractor is preferable.

Measuring semantic similarity to distinguish if two images belong to the same
scene or not is a task especially suitable for self-supervised learning. Because datasets
has to be prepared such that query and database are the same scene but different
images (preferably long-term difference) is not easy. However, large amount of
semantic masks can easily be obtained for a self-supervised training. We do not need
groundtruth masks, since a successful estimation is enough to compute semantic
similarity.

4.1 Dataset and self-supervised contrastive training

Our unsupervised learning dataset composed of 3484 images randomly taken from
UCF dataset [34]. These are perspective images obtained from Google Street View
panoramas which where taken in Pittsburgh, PA before 2014. Our supervised training
and test datasets have query-database image pairs. Query images were also taken from
UCF dataset (not coinciding with the 3484 images mentioned above). Database
images were collected again from Google Street View panoramas at the same locations
of query images but in 2019. This time gap results in seasonal changes and
illumination variances. Also, a wide camera baseline between the database and
query images conforms better to the long-term localization scenario [35]. Top row
in Figure 9 shows an example of query-database image pair with time difference.

Figure 9.
The image on top-left was taken in 2008 and the image on top-right was taken in 2019 (source: Google street view)
which respectively represent query and database for image retrieval. Observe illumination differences, viewpoint
variations and changing objects. Bottom row shows their semantic segmentation results. Semantic similarity can
help to verify/deny the localization result.
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Since our aim to learn representations for semantic masks, we first
automatically generated a semantic mask for each image in our dataset using a well-
performing CNN model [36]. The CNN model we employed trained on Cityscapes
[37], which is an urban scene understanding dataset consists of 30 visual classes.
Examples are in Figure 9 (bottom row). After this point, we only have semantic
masks in our dataset.

We used SimCLR [14] as our contrastive learning model and trained a ResNet-18
as the encoder. Encoder network (Figure 10) produces h ¼ Enc xð Þ∈R512 features,
whereas projection network produces z ¼ Proj hð Þ∈R512 features. We set batch size as
85 and resized semantic mask to 64� 80 resolution (due to GPU memory limitation)
and used two different data augmentation methods during the training: random
resized crop and random rotation. We set maximum rotation parameter as 3°, since
severe rotations are not expected between query and database images. Crop parame-
ter, however, is important to represent the variation in our dataset. Results for varying
crop parameter values will be discussed in Section 4.2. Augmentation of semantic
masks is visualized in Figure 10. Other augmentations (such as color jitter, horizontal
flip, brightness and contrast distortions), which are common for image classification
and object detection downstream tasks are not included since they are not expected
distortions for semantic masks. We used AMSGrad optimizer which is a variant of
Adam.

CNN model, trained as explained above, is now ready to produce a similarity score
when two semantic masks (one query and one database) are given. After self-
supervised training, same network can be fine-tuned with a labeled dataset (query
and database segmentation masks for the same scene). For this purpose, we prepared
a dataset of 368 query images with their corresponding database images and extracted
their semantic masks. Figure 9 shows an example of this preparation. Not surpris-
ingly, this paired dataset is much smaller than the self-supervised training dataset.
Here, common practice in literature is that the projection head (Figure 10) is removed

Figure 10.
Illustration of training a CNN model with self-supervised contrastive loss on a dataset that consists of semantically
segmented masks. A positive pair is created from two randomly augmented views of the same mask, while negative
pairs are created from views of other masks. All masks are encoded by the a shared encoder and projection heads
before the representations are evaluated by the contrastive loss function.
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after pretraining and a classifier head is added and trained with labeled data for the
downstream task. However, our pretext and downstream tasks are the same. We learn
semantic representations by treating each sample as its own class (exemplar-CNN [6],
instance discrimination [7]). Thus, we do not place a classifier head, but we retrain the
network (partially or full).

4.2 Experimental results

To be able to measure the capability of representing semantic masks, we conduct
experiments that compare the retrieval accuracies of three training schemes. First is
the CNN model which is trained with the supervised training set (368 query-database
pairs). This is the baseline model that does not exploit self-supervised training at all.
Second is the CNN model that is trained in a self-supervised fashion with 3484
individual semantic masks (no matching pairs). Lastly, the model with self-supervised
training is retrained with the supervised training set. Two versions exist: i) only
replacing dense layers and training them, ii) retraining all layers.

Trained models are tested on a test set which consists of 120 query-database pairs
(different from 368 pairs used in training). Performances are compared with
Recall@N metric. According to this metric, for a query image, the retrieval is consid-
ered successful if any of top-N retrieved database images is a correct match. In other
words, Recall@1 is the recall when only the top-most retrieval is checked.

We observe in Table 1 that, only supervised training is not very successful. In fact,
for certain N values self-supervised training managed to outperform supervised
training alone. This shows the power of self-supervised learning when a large dataset
is provided. Our unlabeled dataset is much larger than the labeled dataset (3484 ≫
368). Regarding the two fine-tuning schemes, replacing dense layers and training
them from scratch improved self-supervised training but not for all N values. On the
other hand, fine-tuning all layers worked best by a considerable margin. Since our
pretext and downstream tasks are the same (i.e. we do not train a classification head
etc.), it is not surprising that replacing dense layers did not help much. Figure 11
shows several examples where supervised training fails but the proposed self-
supervised approach (after fine-tuning) succeeds.

Table 2 presents the effect of minimum crop ratio parameter used in data aug-
mentation module. Since it is an important parameter to represent the variation in our
semantic masks, we compare the performance for minimum crop ratio from 0.9 to
0.1. Apart from individual Recall@N values, we also compute and plot mean recall
(mean of all N values) in Table 2 last column and in Figure 12. We observe that it is

Training methods Retrieval accuracy (Recall@N)

N = 1 N = 2 N = 3 N = 4 N = 5

Only supervised training 0.500 0.608 0.767 0.808 0.817

Only self-supervised training 0.567 0.692 0.733 0.775 0.800

Dense layers were replaced and trained 0.542 0.675 0.767 0.825 0.850

All layers were fine-tuned 0.633 0.758 0.808 0.858 0.867

Table 1.
Only supervised training is compared with self-supervised training and fine-tuned versions of it.
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Figure 11.
Each row shows a retrieval result for a given query (left column). Examples show the cases where only supervised
training (middle column) fails at Recall@1, but utilizing self-supervised training and then fine-tuning on the
labeled dataset (query-database pairs) correctly retrieves (last column).

Crop ratio Retrieval accuracy (Recall@N)

N = 1 N = 2 N = 3 N = 4 N = 5 mean

0.90 0.608 0.708 0.758 0.817 0.858 0.750

0.80 0.617 0.733 0.800 0.848 0.867 0.773

0.70 0.617 0.742 0.817 0.858 0.875 0.782

0.60 0.633 0.758 0.808 0.858 0.867 0.785

0.50 0.617 0.700 0.767 0.808 0.833 0.745

0.40 0.575 0.692 0.717 0.783 0.825 0.718

0.30 0.567 0.675 0.742 0.767 0.808 0.712

0.20 0.542 0.633 0.717 0.767 0.783 0.688

0.10 0.525 0.608 0.675 0.742 0.783 0.667

Table 2.
Effect of the minimum crop ratio parameter in data augmentation at the stage of retraining of the self-supervised
model.
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highest around 0.6 and 0.7. Performance gradually drops as we increase or decrease
the minimum crop ratio. A minimum random crop parameter of 0.6 means that
cropped mask covers at least 60% area of the original mask. Since query and database
masks in our training and test datasets have a considerable overlap ratio, it is reason-
able that 0.6 or higher overlaps serve best. This result is also in accordance with the
finding in [38] that there is a reverse U-shape relationship between the performance
and the mutual information within augmented views. When crops are close to each
other (high mutual information, e.g. crop ratio = 0.9) the model does not benefit from
them much. On the other hand, for low crop ratios (low mutual information) model
can not learn well since views look quite different from each other. Peak performance
stays somewhere in between.

5. Conclusions

In this chapter, we presented the main concepts in self-supervised contrastive
learning and reviewed the approaches that attracted attention due to their success in
computer vision. Contrastive learning that aims to end up in an embedding space
where similar samples stay close to each other was implemented successfully with
Siamese neural networks. Necessity on huge computation power was also alleviated
with the most recent models. Currently, for common downstream tasks of computer
vision such as object detection and semantic segmentation, self-supervised pre-
training is a better alternative than using a model trained on ImageNet for image
classification.

We also presented a case study where self-supervised contrastive learning is
applied to learn representations of semantic masks of images. Performance was eval-
uated on an image retrieval task where the most similar semantic mask is retrieved
from the database for a given query. In compliance with the results on other vision
tasks in the literature, fine-tuning the self-supervised model with available labeled
data gave better results than the supervised training alone.

Figure 12.
Mean Recall@N values for varying min. Crop ratio parameter. Observe the reverse U-shape with a peak at 0.6.
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Chapter 7

Analysis of Brain Computer
Interface Using Deep and Machine
Learning
Nabil Ajali-Hernández and Carlos M. Travieso-Gonzalez

Abstract

Pattern recognition is becoming increasingly important topic in all sectors of
society. From the optimization of processes in the industry to the detection and
diagnosis of diseases in medicine. Brain-computer interfaces are introduced in this
chapter. Systems capable of analyzing brain signal patterns, processing and
interpreting them through machine and deep learning algorithms. In this chapter, a
hybrid deep/machine learning ensemble system for brain pattern recognition is pro-
posed. It is capable to recognize patterns and translate the decisions to BCI systems.
For this, a public database (Physionet) with data of motor tasks and mental tasks is
used. The development of this chapter consists of a brief summary of the state of the
art, the presentation of the model together with some results and some promising
conclusions.

Keywords: brain-computer interfaces, deep learning, machine learning, pattern
recognition, artificial intelligence, neural network

1. Introduction

The brain is the most important organ in the human body. It processes, integrates
and coordinates the information it receives from the organs and the senses and makes
decisions, sending them to the rest of the body, like a processor in a computer. The
brain works through electrochemical impulses, called synapses, which allow the
transmission of information between neurons [1–3].

These impulses could be classified by their frequency into different types of brain
waves. Delta (1–3 Hz), theta (3–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–100 Hz) waves [4]. These brain waves are the reflection of electrical activity
(in microvolts) and therefore of thoughts and motor intentions. They can be captured
by the electroencephalogram (EEG) and their study can lead to the detection of
pathologies related to the brain (Alzheimer’s, Parkinson’s, epilepsy) [5, 6].

Figure 1 shows the EEG of a normal person, where 64 channels have been placed
throughout the head (10–20 system) and brain waves are monitored over time. It can
be seen how there are an infinity of patterns that provide important information about
what is happening.
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As a result of technological advances in both software and hardware, concepts such
as artificial intelligence, machine learning or deep learning have been developed in last
decades. This has allowed an evolution in many fields of society. In the field of brain
signals, pattern recognition is of vital importance, both for diagnosis and for the devel-
opment of applications that improve quality of life or simply for the development of
mind-controlled tools or games. Thus, the Brain Computer Interfaces were born.

A brain-computer interface (BCI) or Brain-machine Interface is a system based on
the recording or acquisition of the brain signal that is linked by direct communication
(wired or wireless) to a machine or computer capable of interpreting and
transforming thoughts or intentions into actual actions [7]. Figure 2 shows the com-
plete process of a BCI. First the obtaining of brain signals and their processing.
Subsequently, the machine associated with the system is capable of receiving and
interpreting these signals and resulting in a response.

In this way, using a public database, called Physionet, which consists of 109 sub-
jects who perform tests of motor intentions, we are working on a BCI system whose
objective is to be able to recognize the patterns of these thought movements and
transfer them to a robotic arm that moves accordingly. Contributing to the current
state of the art a new method that seeks to take into account the immediate previous
mental state (IPMS) of each subject to improve pattern recognition.

Figure 1.
Excerpt from a normal encephalogram. Channels on the left and brain waves monitored.
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2. Pattern recognition with immediate previous mental state

2.1 State of art

From the last 10–15 years and until 2022, many studies have led to great advances
in pattern recognition, human-computer interaction and in applications that use task
classification or event-related potential (P300). Machine and deep learning algorithms
and techniques have developed as computers and systems have improved over the
years. They use different characteristics extracted from the data obtained from brain
waves to classify or recognize certain patterns, getting better and better success in the
pattern recognition and prediction [8–11]. E.g., in 2018 by Bird et al. made predictions
of mental states of relaxation, neutrality and concentration [12]. Also, in emotional
mental states such as being negative, neutral and positive [13].

In the field of EEG, large amounts of studies have been carried out in those years,
addressing issues such as EEG channel selection, methods for make an optimal feature
extraction or types of classifiers to predict patterns. For example, Feng et al. [14]
published in 2019 an optimized channel selection method based on multi-frequency
CSP-Rank for BCI systems using motor images. Jiménez et al. [15], propose an upper
limb to assist in the rehabilitation of people with cerebrovascular accident or people
with some disability or amputation. There are even lines of research that began to
focus on the creation of brain-machine systems capable of acting under the orders of
thought.

In 2020, philanthropist Elon Musk and his company Neuralink created an
implantable BCI system to control systems with the mind which was successfully
implanted in a pig in 2021. In addition, he announced that a monkey had been
successfully made to play video games using this device [16]. The downside is that
these BCI devices are invasive and still in the early stages of development.

All these advances always depend on the nature of the problem. In many cases
the EEG image is taken directly and by using Common Spatial Patterns (CSP) the

Figure 2.
Brain computer Interface workflow.

119

Analysis of Brain Computer Interface Using Deep and Machine Learning
DOI: http://dx.doi.org/10.5772/intechopen.106964



problem is solved. Other times 3D or 2D matrices are created to evaluate the
problem and applying deep learning methods such as the use of Convolutional Neural
Networks (CNN) together with Long-Short Term Memory (LSTM) the problem is
solved.

The advantage of these techniques is the automation and success of the learning
process. But, on the other hand, the disadvantage is the cost in terms of computation
and the large amount of data that is required.

Normally all systems have work using a common scheme, as shown in Figure 2,
which has the following steps:

1.Signal acquisition. Directly/EEG database.

2.Feature extraction.

3.Method selection for pattern recognition.

4.Train-Validation-Test. Feedback.

Subsequently, the rank of success in brain task classification of many works and
also the most important work to date is shown.

In this chapter, a large number of avant-garde articles have been reviewed to
extract the most important concepts and ideas in this field in order to adequately
explain and expose the work carried out.

2.2 Pattern recognition with immediate previous mental state

As stated above, current works use machine learning and deep learning to recog-
nize brain patterns and classify them. The success rate vary depends on the database
used, the signal processing, the feature extraction or the types of classifiers used.
Many of these works are between 61 and 76% in their success rate [17, 18].

The best work to date is that provided by Zhang et al. [19] where they claim to
achieve success rates in the classification of at least 93% and up to 98%, using the same
database (Physionet). They do this through cascade deep learning techniques, mixing
a 3-layer CNN with recurrent neural networks (RNN) to take into account spatio-
temporal characteristics of the experiments.

In other hand, we have a previous work, that are pending to be published, where
we achieved experiments with up to 93% success using a mixture of machine learning
classifiers. Taking this into account, we have done a lecture of the state of the art and
concluded that according to several studies, such as that of Roc et al. [9], the success
rate of the classification of mental tasks by in BCI systems is directly related to the
subject in question and also to his mental state at that moment (relaxed, altered,
nervous).

2.2.1 Our proposal

For this reason, our proposal consists of following a generalized scheme where the
signal from the database is acquired, processed, the features are extracted and then a
classification is done. However, we have decided to add the mental state prior to the
moment of decision of the subjects as a variable, see Figure 3. That is, the moment
before making a decision. To do this, after make a signal processing and a feature
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extraction a classification of the mental tasks of various subjects with several classi-
fiers of machine learning is done.

Later this is repeated, but taking into account their IPMS to compare the results. It
seeks to demonstrate that there is a significant improvement in pattern recognition
taking into account the average rank of success in classification and the standard
deviation. We expect that the success rate in classification will increase and the
standard deviation to decrease. This study is focus not in the success rate per se, but in
the difference between taking into account IPMS or not.

2.3 Development of the BCI system

2.3.1 Signal acquisition

To carry out this work, the signal has been acquired by downloading the public
database Physionet.org. A database developed in collaboration with the developers of
the BCI 2000 system [20–22]. The database consists of 109 users who perform differ-
ent types of tests, obtaining more than 1500 EEG records. Using a 10/20 system and
placing a total of 64 electrodes. The tests to be carried out consist of 14 tests of
approximately 2 minutes per test, where the subjects alternate periods of 4.1 s of rest
with different tasks (of between 4.1 and 4.2 s) such as opening and closing their fist or
imagining these movements.

In order to prove the hypothesis, in this chapter, several simplifications have been
done:

• First. A group of 10 subjects is chosen as representative group of the set to
demonstrate if there is evidence of success in having taken the IPMS into
account.

Figure 3.
Proposal workflow scheme.
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• Second. Only experiments involving actual and thought movement of the left
hand and right hand will be dealt with. We believe that if the hypothesis is
proven here, it can be concluded that the same thing happens in the rest of the
experiments.

• Third. According to studies, such as the one presented by Craik, A et al. [23], the
motor activity associated with the hands is reflected in the frontal cortex of the
brain and therefore the channels that contain major information are the 12
channels FC1, FC2, FC4, FC6, FCz, C1, C2 C3, C4, C5, C6 and Cz.

• Finally. The nomenclature that these experiments follow will be T0 for the rest
intervals. T1 for the real or imaginary movement of the left hand and T2 for the
real or imaginary movement of the right hand.

Obtaining in this way labeled data matrices for the experiments having taken into
account the IPMS and without taking it into account. To obtain the IPMS, a difference
between the interaction intervals (T1/T2) and the rest intervals prior to the motor
imagery (T0) is made.

2.3.2 Feature extraction and pattern recognition

After acquiring the signal, the next step when developing a BCI system is to
perform an optimal feature extraction that allows good pattern recognition.

The first thing to do is remove the noise that masks the signal and thus obtain a
better signal-to-noise ratio. This is because when taking biological measurements,
factors such as breathing itself, the heartbeat (low frequencies) or the electricity that
runs through the circuit (high frequencies) are factors that add noise and can mask the
signal. Considering the frequency of brain signals (1–100 Hz), in the EEG a key factor
is to remove these unnecessary frequencies. Therefore, based on multiple studies
[24–26], a bandpass filter is applied between 0.5 Hz and 50 HZ in order to avoid the
electrical 50 Hz band and the low frequencies.

After noise removal, the discrete wavelet transform (DWT) is used. DWT is a
signal processing tool used to perform multi-resolution analysis with variable
time windows. It is a tool capable of decomposing and recomposing signals
according to their time and frequency to facilitate the analysis [27]. Brain
signals have unpredictable frequency and intensity over time, so they are non-
stationary. Using the DWT is capable of breaking a signal with low-pass and
high-pass filters at different levels, see Figure 4. Thus, obtaining a high frequency
component and a low frequency component (with different information) at vari-
ous levels. These levels correspond to different types of brain waves (delta to
beta) that provide different types of information and could facilitate the pattern
recognition.

Mathematically, the equation behind the DWT is given by Eq. (1), [28]:

f tð Þ ¼
X
k

X
j

aj,k φj,k tð Þ (1)

This equation is expressed in terms of two indices, the translation time k and the
scaling index j. These two indices are integers values and the wavelet functions form
an orthogonal set of functions (base) [29].
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Daubechies family of wavelet have a better performance at time of classification as
is shown by Alomari et al. [30] and others [20, 21].

Feature extraction allows at this point to have a better signal-to-noise ratio in the
labeled matrices obtained in Section 2.1.1 and also a separation based on their frequencies.
Thus, allowing pattern recognition when applying machine learning to be less expensive
in terms of computing. This is due motor activities requires an active state of mind, and in
consequence the result are the alpha and beta waves (8–30 Hz) already separated.

2.3.3 Classification

A series of machine learning classifiers are used to recognize the patterns of motor
imagery (MI) and classify them. Each of the users has 3 real experiments and 3 MI
experiments.

To test the hypothesis, the classifiers will be used with the MI experiments. In this
way, it will be observed if there is an improvement in performance when taking into
account the IPMS. The hold-out cross validation method is used to train and test the
success in classification, training each subject with 70% of the set and blindly testing
with 30%. The classifiers used are:

• Decision trees (DT) [31]

• Linear Discriminant Analysis (LDA) [32]

• Logistics Analysis (LA) [33]

• Support Vector Machine (SVM) [34]

• K-Nearest Neighbors (KNN) [35, 36]

• Ensemble methods (EM) [37]

• Neural networks (NN) [38]

We will not go into the mathematical details behind these classifiers as they are
widely referenced and used in the world of pattern recognition and artificial intelli-
gence. Attached is the reference where this information can be found.

Figure 4.
Level 1 of decomposition using DWT. Original signal is separated in low and high frequency.
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3. Results and discussion

As explained in Section 2.2.1 the method to evaluate the success when taking into
account the IPMS is the average success of the results and its standard deviation. In
Table 1, the classify results without taking into account IPMS:

Users DT LDA LA SVM KNN EM NN

S001_exp1_1 33.3 40.0 40.0 60.0 60.0 46.7 60.0

S001_exp1_2 53.3 40.0 40.0 53.3 80.0 66.7 26.7

S001_exp1_3 66.7 53.3 73.3 73.3 73.3 86.7 46.7

S002_exp1_1 66.7 66.7 73.3 80.0 80.0 73.3 60.0

S002_exp1_2 80.0 66.7 46.7 66.7 80.0 80.0 66.7

S002_exp1_3 53.3 33.3 60.0 53.3 86.7 60.0 53.3

S003_exp1_1 20.0 40.0 53.3 60.0 53.3 53.3 26.7

S003_exp1_2 26.0 60.0 40.0 73.3 73.3 66.7 73.3

S003_exp1_3 33.3 60.0 53.3 53.3 66.7 60.0 53.3

S004_exp1_1 26.7 33.3 93.3 53.3 53.3 33.3 53.3

S004_exp1_2 66.7 73.3 66.7 73.3 80.0 73.3 73.3

S004_exp1_3 40.0 53.3 53.3 60.0 73.3 60.0 60.0

S005_exp1_1 73.3 60.0 60.0 93.3 80.0 73.3 26.7

S005_exp1_2 26.7 26.7 46.7 60.0 60.0 53.3 46.7

S005_exp1_3 53.3 60.0 53.3 73.3 73.3 60.0 46.7

S006_exp1_1 26.7 53.3 46.7 53.3 46.7 46.7 53.3

S006_exp1_2 53.3 40.0 86.7 53.3 80.0 66.7 66.7

S006_exp1_3 60.0 46.7 20.0 53.3 66.7 66.7 33.3

S007_exp1_1 40.0 53.3 60.0 60.0 73.3 73.3 73.3

S007_exp1_2 73.3 66.7 60.0 80.0 86.7 73.3 60.0

S007_exp1_3 40.0 33.3 40.0 53.3 60.0 53.3 26.7

S008_exp1_1 80.0 60.0 80.0 73.3 93.3 80.0 46.7

S008_exp1_2 13.3 46.7 86.7 66.7 53.3 53.3 60.0

S008_exp1_3 33.3 46.7 20.0 53.3 73.3 26.7 66.7

S009_exp1_1 66.7 46.7 66.7 53.3 66.7 73.3 53.3

S009_exp1_2 60.0 46.7 53.3 53.3 60.0 66.7 26.7

S009_exp1_3 73.3 46.7 40.0 53.3 73.3 73.3 73.3

S010_exp1_1 86.7 53.3 40.0 73.3 60.0 86.7 33.3

S010_exp1_2 40.0 33.3 46.7 53.3 53.3 53.3 33.3

S010_exp1_3 40.0 26.7 40.0 53.3 53.3 46.7 33.3

Table 1.
Classification without taking into account IPMS hypothesis.
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In Table 2, the classify results taking into account IPMS:
It must be remembered that what is sought is to observe an improvement in

pattern recognition by implementing the IPMS hypothesis and we are not focused on
the search for the best classifier.

After obtaining the results of the classifications with and without IPMS, a com-
parison of the average of both methods is made, which is shown in Table 3. It can be
seen that in 100% of the cases the classification improves significantly, with results of

Users DT LDA LA SVM KNN EM NN

S001_exp1_11 1 40.0 33.3 53.3 66.7 53.3 53.3 60.0

S001_exp1_2 73.3 66.7 80.0 73.3 73.3 86.7 60.0

S001_exp1_3 53.3 33.3 73.3 60.0 66.7 73.3 33.3

S002_exp1_1 33.3 86.7 86.7 53.3 53.3 46.7 33.3

S002_exp1_2 73.3 60.0 46.7 86.7 86.7 73.3 46.7

S002_exp1_3 40.0 40.0 46.7 53.3 66.7 66.7 46.7

S003_exp1_1 46.7 46.7 20.0 53.3 73.3 53.3 60.0

S003_exp1_2 93.3 66.7 73.3 73.3 80.0 93.3 73.3

S003_exp1_3 80.0 46.7 60.0 60.0 60.0 80.0 40.0

S004_exp1_1 86.7 53.3 46.7 53.3 60.0 73.3 60.0

S004_exp1_2 60.0 46.7 53.3 53.3 60.0 60.0 53.3

S004_exp1_3 93.3 66.7 53.3 66.7 80.0 93.3 66.7

S005_exp1_1 60.0 60.0 53.3 66.7 73.3 53.3 46.7

S005_exp1_2 73.3 80.0 73.3 80.0 80.0 73.3 60.0

S005_exp1_3 40.0 40.0 40.0 53.3 53.3 46.7 33.3

S006_exp1_1 73.3 60.0 66.7 66.7 60.0 60.0 46.7

S006_exp1_2 80.0 73.3 80.0 80.0 80.0 86.7 80.0

S006_exp1_3 40.0 53.3 53.3 66.7 66.7 66.7 40.0

S007_exp1_1 60.0 46.7 66.7 53.3 86.7 60.0 46.7

S007_exp1_2 46.7 33.3 53.3 53.3 46.7 60.0 40.0

S007_exp1_3 66.7 40.0 46.7 60.0 86.7 86.7 66.7

S008_exp1_1 80.0 46.7 60.0 60.0 66.7 60.0 46.7

S008_exp1_2 73.3 73.3 93.3 86.7 80.0 93.3 40.0

S008_exp1_3 53.3 53.3 46.7 60.0 86.7 66.7 60.0

S009_exp1_1 73.3 60.0 66.7 73.3 73.3 66.7 53.3

S009_exp1_2 60.0 46.7 40.0 53.3 66.7 60.0 66.7

S009_exp1_3 60.0 33.3 40.0 53.3 66.7 60.0 46.7

S010_exp1_1 53.3 53.3 33.3 53.3 86.7 60.0 46.7

S010_exp1_2 86.7 46.7 53.3 60.0 73.3 73.3 60.0

S010_exp1_3 40.0 26.7 73.3 53.3 53.3 46.7 33.3

Table 2.
Classification taking into account IPMS hypothesis.
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up to 12% of improvement in classification. This leads us to think that for the recog-
nition of brain patterns, taking into account the mental state prior to motor imagery is
essential to obtain a better performance.

4. Conclusions

In this chapter a brief introduction to the field of brain signals has been made. The
pattern recognition for the development of applications in fields such as medicine or

NO_IPMS DT LDA LA SVM KNN EM NN

Avg_S001 51.1 44.4 51.1 62.2 71.1 66.7 44.5

Avg_S002 66.7 55.6 60.0 66.7 82.2 71.1 60.0

Avg_S003 26.4 53.3 48.9 62.2 64.4 60.0 51.1

Avg_S004 44.5 53.3 71.1 62.2 68.9 55.5 62.2

Avg_S005 51.1 48.9 53.3 75.5 71.1 62.2 40.0

Avg_S006 46.7 46.7 51.1 53.3 64.5 60.0 51.1

Avg_S007 51.1 51.1 53.3 64.4 73.3 66.6 53.3

Avg_S008 42.2 51.1 62.2 64.4 73.3 53.3 57.8

Avg_S009 66.7 46.7 53.3 53.3 66.7 71.1 51.1

Avg_S010 55.6 37.8 42.2 60.0 55.5 62.2 33.3

Total_Avg 51.1 48.6 53.8 62.2 68.6 63.9 49.6

STD 11.2 5.0 7.6 6.1 6.7 5.7 8.6

WITH_IPMS DT LDA LA SVM KNN EM NN

Avg_S001 55.5 44.4 68.9 66.7 64.4 71.1 51.1

Avg_S002 48.9 62.2 60.0 64.4 68.9 62.2 42.2

Avg_S003 73.3 53.4 51.1 62.2 71.1 75.5 57.8

Avg_S004 80.0 55.6 51.1 57.8 66.7 75.5 60.0

Avg_S005 57.8 60.0 55.5 66.7 68.9 57.8 46.7

Avg_S006 64.4 62.2 66.7 71.1 68.9 71.1 55.6

Avg_S007 57.8 40.0 55.6 55.5 73.4 68.9 51.1

Avg_S008 68.9 57.8 66.7 68.9 77.8 73.3 48.9

Avg_S009 64.4 46.7 48.9 60.0 68.9 62.2 55.6

Avg_S010 60.0 42.2 53.3 55.5 71.1 60.0 46.7

Total_Avg 63.1 52.4 57.8 62.9 70.0 67.8 51.6

STD 8.7 8.0 7.0 5.3 3.5 6.3 5.3

Success rate with IPMS DT LDA LA SVM KNN EM NN

Avg_Change (%) 12.0 3.8 4.0 0.7 1.4 3.9 2.0

STD_Change (%) 2.5 �3.0 0.6 0.8 3.2 �0.6 3.2

Table 3.
Comparison between NO IPMS and IPMS classification. Avg change and standard deviation changes of both methods.
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industry and how to analyze brain signals for that propose has been explained.
Subsequently, the BCIs have been introduced, explaining their operation and purpose.
The IPMS hypothesis is proposed as an improvement of pattern recognition in BCI
systems.

A public database (Physionet), where EEG records of subjects performing a series
of motor and imaginary tasks are collected, is presented and using this dataset the
steps to develop a BCI system are proposed. The signal is processed, features are
extracted for pattern recognition and finally a series of classifiers are proposed to test
the IPMS theory.

The results show there is evidence that taking into account the mental state prior to
performing mental tasks directly affects the recognition of brain patterns and conse-
quently the success in classifying them, improving them by up to 12%.

Note that research has been focused on testing this hypothesis and not on finding
the best classifier. In future lines, we will try to apply the IPMS hypothesis to the best
state-of-the-art classifiers.
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Appendices and nomenclature

BCI brain computer interface
EEG electroencephalogram
IPMS immediate previous mental state
CSP common spatial patterns
CNN Convolutional Neural Network
LSTM Long-Short Term Memory
RNN Recurrent Neural Network
MI Motor Imagery
DT Decision Trees
LDA Linear Discriminant Analysis
LA Logistic Analysis
SVM Support Vector Machine
KNN K-Nearest Neighbors
EM ensemble methods
NN neural networks
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Chapter 8

Multi-Features Assisted Age
Invariant Face Recognition and
Retrieval Using CNN with Scale
Invariant Heat Kernel Signature
Kishore Kumar Kamarajugadda and Movva Pavani

Abstract

Face recognition across aging emerges as a significant area among researchers due
to its applications such as law enforcement, security. However, matching human
faces with different age gaps is still bottleneck due to face appearance variations
caused by aging process. In regard to mitigate such inconsistency, this chapter offers
five sequential processes that are Image Quality Evaluation (IQE), Preprocessing, Pose
Normalization, Feature Extraction and Fusion, and Feature Recognition and Retrieval.
Primarily, our method performs IQE process in order to evaluate the quality of image
and thus increases the performance of our Age Invariant Face Recognition (AIFR). In
preprocessing, we carried out two processes that are Illumination Normalization and
Noise Removal that have resulted in high accuracy in face recognition. Feature
extraction adopts two descriptors such as Convolutional Neural Network (CNN) and
Scale Invariant Heat Kernel Signature (SIHKS). CNN extracts texture feature, and
SIHKS extracts shape and demographic features. These features plays vital role
in improving accuracy of AIFR and retrieval. Feature fusion is established using
Canonical Correlation Analysis (CCA) algorithm. Our work utilizes Support Vector
Machine (SVM) to recognize and retrieve images. We implement these processes in
FG-NET database using MATLAB2017b tool. At last, we validate performance of our
work using seven performance metrics that are Accuracy, Recall, Rank-1 Score,
Precision, F-Score, Recognition rate and computation time.

Keywords: age-invariant face recognition, image quality evaluation, pose
normalization, multiple feature extraction, recognition and retrieval

1. Introduction

As one of the most significant topics in computer vision and pattern recognition,
face recognition attains much attention from both academic and industries over
recent decades [1, 2]. With the evolution of neural networks, general face recognition
technology emerged as a noteworthy area among researchers [3–5]. However, identi-
fying face images across widespread range of ages is shortcoming due to human face
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appearance changes affected by aging process [6, 7]. In order to achieve human face
recognition under difference ages, Age-Invariant Face Recognition (AIFR) approach
is progressed [8]. AIFR recognizes faces using facial features extracted from human
images. AIFR method uses three different models such as generative, discriminative
[9], and deep learning methods [10]. Generative approaches are based on the age
progression methods in regard to converting the probe image into the same age as that
of gallery image [11]. However, generative schemes have several shortcomings [12].
Optimizing the recognition performance in generative model is not easier task. Esti-
mating the accurate results in generative model is highly difficult since it cannot
handle aging impact. Discriminative approaches [13] are introduced to resolve dis-
crepancy of generative scheme [14]. It develops feature matching using local descrip-
tors [15] in AIFR. Multiple descriptors-based AIFR is introduced to extract features
from periocular region [16]. In this, two descriptors are used to extract features that
are Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Features
(SURF).

In order to achieve better result in AIFR, deep learning method is integrated with
discriminative approach [17]. In deep learning, Convolutional Neural Network (CNN)
algorithm plays vital role in recognizing face with different aging images [18]. Large
age gap verification is performed by injecting features in deep networks [19]. Here,
deep CNN is used to recognize face where texture features are considered. Aging
model-based face recognition with different aging images is introduced under deep
learning method [20]. Here, CNN descriptor is utilized to match image with different
aging images.

From the aforesaid studies, we determine that there are still many issues present in
recognizing face with aging progress. The issues are discussed as follows:

• Preprocessing is not effective in most of the chapter that reduces performance of
the system.

• Pose normalization is not considered in existing AIFR, which is highly significant.
Since, AIFR datasets such as MORPH, FG-NET, etc., contain different pose
images.

• Existing feature extraction procedures lack in extracting features from important
regions that tend to reduce recognition rate.

• Face recognition algorithms are not up to the level to handle large dataset and
thus reduce the result of accuracy.

These problems impose confines on the present AIFR systems and also complicate
the recognition and retrieval task especially under different aging images.

1.1 Research contribution

In order to tackle abovementioned issues, our work contributes the following
processes:

• In order to reduce time wastages in preprocessing, we initially execute novel
Image Quality Evaluation (IQE) method, which estimates Image Quality Metric
(IQM) for each image. If IQM value is below Image Quality Threshold (IQT),
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then only preprocessing is performed for that image or else directly gone into the
pose normalization process.

• Preprocessing is performed to reduce uncertainties in upcoming face recognition
processes such as feature extraction, recognition, and retrieval. For this purpose,
we implement two processes such as illumination normalization and noise
removal. Illumination normalization adopts DGC-CLAHE and noise removal
adopts ASBF algorithm.

• Pose normalization is significant to diminish difficulties present in feature
extraction and thus enhances the recognition and retrieval performance.

• Our work extracts feature from three regions that are periocular, nose, and
mouth in order to increase recognition rate. Here, two descriptors are utilized
that are CNN and SIHKS, which perform better than other existing descriptors
such as LBP, SIFT, etc.

• In order to reduce recognition and retrieval time, we fuse features after
extraction using CCA.

• Recognition and retrieval are performed through SVM algorithm, which
performs well even with unstructured, semistructured data such as text, images,
and trees.

1.2 Research outline

Outline of this chapter is summarized as follows: Section 2 deliberates state-of-the-
art works existing in AIFR with their limitations. Section 3 exemplifies problems
occurring in previous works related to AIFR. Section 4 explains brief study of our
proposed work with our proposed algorithms. Section 5 illustrates numerical results
obtain from our simulation environment and also compares it with existing methods.
Finally, section 6 concludes our contribution and also provides comment on our future
work.

2. Related work

This section discusses the state-of-the-art work related to AIFR along with their
limitations. In this, we discussed works that comprise preprocessing, feature extrac-
tion, recognition, and retrieval processes.

Kishore et al. [21] have suggested Periocular Region-Based AIFR Using Local
Binary Pattern. In this, three sequential processes are executed to recognize faces that
are preprocessing, feature extraction, and classification. In preprocessing, enhance-
ment and denoising processes are employed in each facial image. Local Binary Pattern
(LBP) descriptor [22] was used to extract features from the periocular region [23] of
the given face image. Periocular region contains eyes, eye lashes, and eye brow parts
of the face. Chi-square distance was used as classifier to recognize face after feature
extraction. Chi-square distance doesn’t recognize face accurately since it is highly
sensitive to the sample size.
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Nanni et al. [24] have introduced ensemble of texture descriptor and
preprocessing techniques to recognize image effectually. Four face recognition pro-
cesses are performed that are preprocessing, feature extraction, feature transform,
and classification. Preprocessing executes three techniques that are adaptive single
index retinex (AR) in order to enhance scene detail and color enhancement in darker
area. Anisotropic smoothing and different of Gaussian (DoG) are algorithms executed
to normalize the illumination field. Features are extracted using two descriptors that
are Patterns of the Oriented Edge Magnitudes (POEM) and the Monogenic Binary
Coding (MBC). At last, different distance functions are used to recognize face. Accu-
racy of face recognition was very less due to poor feature extraction mechanism. Chi
et al. [25] have offered temporal nonvolume preserving approach to facial age pro-
gression and AIFR. In preprocessing, face region was detected and aligned based on
the fixed position of the eyes and mouth corners. And then it maps the texture
features of the test image with the trained image in order to verify images. Here, deep
CNN algorithm was utilized to map features. In this, preprocessing step doesn’t
perform effective processes such as normalization, noise removal that tend to reduce
system performance.

Bor et al. [26] have introduced Cross Age Reference Coding (CARC) for AIFR.
Initially, it executes face detection algorithm in order to detect face region in image.
And it extracts features from the detected region for which it utilizes high-dimensional
LBP algorithm. LBP extracts 59 local features from the detection regions. In this,
Principal Component Analysis (PCA) algorithm was used to reduce dimensionality of
extracted feature. After that, CARC recognizes face using local features transformation.
More analysis is required on feature extraction since it plays vital role in AIFR. Yali et al.
[27] have pointed out distance metric optimization driven CNN for AIFR. Here, two
models are integrated that are feature learning and distance metric learning. This
integration is achieved through CNN algorithm with parameters optimized using net-
work propagation algorithm. CNN learns features using the convolution layer and
recognizes face using the distance metric. Finally, recognized images are retrieved
effectually. Herein, recognition rate was very less due to ineffective feature extraction.

Pournami et al. [28] have offered deep learning and multiclass SVM algorithm to
recognize face. Here, preprocessing was performed to increase the accuracy of the
face recognition where image resizing was performed. CNN feature descriptor was
used to extract features from the given image. Here, fully connected layer extracts
features from the image and then features are given as input to the multiclass SVM
classifier. Resizing only performed in preprocessing thus introduced more noise in
extracted feature. Garima et al. [29] have suggested techniques for face verification
across different age progression with large age gap. Initially, image normalization was
performed where RGB image was converted into the grayscale image and the image is
rotate as the eyes are aligned horizontally. In this, face features are extracted
using Center Symmetric Local binary Pattern (CSLBP) algorithm. And also weighted
K-nearest Neighbor (K-NN) algorithm was used to recognize face from extracted
features. K-NN doesn’t perform well for large dataset and thus reduces the accuracy of
face recognition. Saroj et al. [30] have pointed out pyramid binary pattern for age-
invariant face verification. In this, pyramid binary pattern was used to extract texture
feature. Texture features are given as input to the PCA in order to reduce dimension-
ality of the extracted features. And then, classification was performed through SVM
algorithm. Here, texture feature was only extracted to classify the face with age
invariant. Thus it reduces accuracy in face recognition since dataset contains different
images with large age gap.
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Mrudula et al. [31] have offered face recognition across aging using GLBP features.
Preprocessing performs three sequential processes that are image resizing, RGB to
gray, and illumination normalization. Here, combined feature descriptor was used to
extract features from the given image. LBP and Gabor descriptors are combined,
which was known as GLBP descriptor. During classification, PCA was used to reduce
feature dimensionality and K-NN algorithm was used to recognize face across aging.
Herein, GLBP descriptor introduces high false-positive rate in age-invariant face
recognition. Zhen et al. [32] have pointed out local polynomial contrast binary pat-
terns for face recognition. Polynomial filters are used to extract the attributes from the
given image. In this, LBP descriptor was used to extract texture from the given image.
Fisher Linear Discriminant (FLD) algorithm is used to reduce dimension of extracted
features. Here, extracted features are classified using nearest neighbor classifier to
recognize given image in training set. Nearest neighbor classifier consumes more time
to classify image since all the work is performed in testing stages only.

Mohanraj et al. [33] have suggested ensemble of CNN for face recognition in order
to resolve aging, pose variation, and low-resolution problem. Preprocessing was
established to resize the given image. After that, features are extracted using three
different CNN algorithms. Features are concatenated and given to the classifier in order
to predict the person. Here, random forest classifier is used to recognize the face. Noise
removal was not performed in preprocessing and thus reduces the accuracy of face
recognition. Rupali et al. [34] have introduced component-based face recognition. Here,
three face components are considered that are nose, lips, and ears. Preprocessing is
performed to resize the image and features are extracted using CNN algorithm. Features
are extracted from nose and face regions that are given to the FLD algorithm to reduce
the dimensions. These features are given to KNN classifier in order to predict the image.
In KNN, initial K value prediction is complex that leads to ineffective results. Venkata
et al. [35] have pointed out real-time face recognition using deep learning and LBP.
During preprocessing, it resizes the given image. In this, LBP was used to extract
features from the given images. Extracted features are given to the CNN in order to
provide weight to each feature. CNN provides weight in order to estimate the matched
face with the training images. Here, texture feature only extracted to recognize face
across aging that tends to reduce recognition rate.

Mohsen et al. [36] have offered age-based human face image retrieval using
zernike moments. In this, Zernike moment was used to extract features from the
images. Here, Zernike moment utilizes Zernike Basis Function (ZBF), which captures
both local and global featured fro face image. And, Multi-Layer Perceptron (MLP)
algorithm was used to recognize age in training image. Accurate result was not
obtained in MLP classifier, thus reducing the recognition rate. Danbei et al. [37] have
offered face aging synthesis application based on feature fusion. Initially, face detec-
tion was performed and feature points are positioned. For this purpose, triangulation
and affine transformations are used, which position the feature points. Here, facial
texture features are extracted to recognize face across aging. Extracted features are
fused in order to recognize face with the training images effectually. More analysis is
required on facial recognition since it describes up to feature fusion process.

3. Problem statement

Kishore et al. [38] have offered Hybrid Local Descriptor (HLD) and LDA-assisted
K-Nearest Neighbor classification in AIFR. Here, Gaussian filter was used to reduce
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noise that results in information degradation, since it removes fine details of the image
and resultant image is blurred. WLD-based feature extraction loses more information
due to lack of pixel consideration. K-NN-based classification requires more time due to
absence of training phase and finding good similarity measure is also difficult.
Muhammad et al. [39] have introduced Demographic Features (DF)-assisted AIFR and
retrieval. In this, feature extraction takes more time, since each feature was extracted
in three individual CNNs. Position and orientation of the object were ignored in
hidden layer of CNN that result in less accuracy in feature extraction and recognition.
Chenfei et al. [40] have pointed out Coupled Auto Encoder (CAN) algorithm based
feature extraction in AIFR. Herein, feature extraction was not effective due to lack of
texture and shape-oriented features. In CAN, data relationships are not considered
that affect classification results and weight computation is also very difficult. Huiling
et al. [41] have introduced Identity Inference Model (IIM)-based age subspace
learning to recognize image in AIFR. Herein, wLBP-based feature extraction was
used that results in less accuracy, since it contains more noise in extracted features due
to absence of noise removal process. Fahad et al. [42] have introduced Composite
Temporal Spatio (CTS) modeling in order to recognize image in AIFR. Here,
preprocessing was required to improve the accuracy in age-invariant face recognition,
since image database contains illumination, pose variation, etc. Naïve Bayes–based
classification results are always biased one, since it doesn’t rely on class conditional
dependency.

4. Proposed work

This section briefly describes our proposed method in detail along with the
description of utilized algorithm.

4.1 System overview

Our Multi-Feature-assisted AIFR (MF-AIFR) method tackles problems that are
present in the previous AIFR works. For this purpose, MF-AIFR establishes the five
consecutive processes that are IQE, Preprocessing, Pose Normalization, Feature
Extraction and Fusion, Feature Recognition and Retrieval as depicted in Figure 1. Our
work novelty is present in the IQE method, since previous AIFR method doesn’t
concentrate on the quality evaluation. In order to save time, MF-AIFR performs IQE
where images that are not satisfied IQT only given to the preprocessing step or else it
is directly given to the pose normalization process. During preprocessing, MF-AIFR
performs two processes that are illumination normalization using DGC-CLAHE and
noise removal using ASBF algorithm. Pose normalization is executed to enhance
feature extraction performance where EA-AT algorithm is utilized. Multiple features
are extracted from the three different regions of face image that are periocular,
mouth, and nose in regard to enhancing accuracy result. Here, two descriptors are
executed that are CNN for texture feature and SIHKS for demographic and shape
features extraction. Here, demographic features comprise age, gender, and race.
Extracted features are fused using CCA in accord to reduce the complex recognition
process. For recognition and retrieval, MF-AIFR pursues SVM algorithm, which has
high scalability compared with other machine learning algorithm.
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Figure 1 illustrates the architecture for our proposed work. The process depicted in
architecture is described briefly in upcoming sections.

4.1.1 Image quality evaluation (IQE)

Reducing computation time in AIFR and retrieval is noteworthy in order to achieve
efficient performance. For this purpose, MF-AIFR performs novel IQE, which esti-
mates IQM for each image. IQM comprises subsequent metrics that are Brightness
Evaluation, Region Contrast Evaluation, Edge Blur Evaluation, Color Quality Evalua-
tion, and Noise Evaluation.

These metrics are designated as follows:

Figure 1.
Architecture for proposed work.
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Brightness Evaluation: It defines the image darkness degree in order to get easy
viewing. It can be measured as follows:

IBD ¼
PN1

k1¼1
P255

k2¼0hk1k2 � k2ð Þs
n o

N
(1)

Where hk1k2 represents the pixel quantity of the gray value k2 in the histogram of
the kth1 image block. s indicates the parameter where s ¼ 3. N indicates number of
sample blocks.

Region Contrast Evaluation: This metric is used to distinguish difference images
effectually. It can be measured through below expression:

ICD ¼
PN1

k¼1 Imax
k � Imin

k

� �
= Imax

k þ Imin
k

� �n o

N
(2)

Where Imax
k and Imin

k represent the maximum and minimum gray values of the kth

image block.
Edge Blur Evaluation: It defines the clearness of the image for easy analysis. This

metric can be measured as follows:

IEBD ¼ max
I∈⊙

arctan I i1, j1
� �� I i2, j2

� �� �� �
Wid12

(3)

Where ⊙ denotes set of image blocks, I i1, j1
� �

and I i2, j2
� �

represent the gray
values of first and second image blocks. And, Wid12 represents the width of the edge
spread points such as i1, j1

� �
and i2, j2

� �
.

Color Quality Evaluation: This metric defines the image quality in terms of the
color. It can be measured using following expression:

ICQD ¼
Pl

i¼1σ
C
i

l
(4)

Where σCi represents the ith standard deviation of the component intensity in the
HSV color space. l indicates channel number, l ¼ 3.

Noise Evaluation: This metric can be used to measure noise present in the image. It
can be measured using following expression:

IND ¼ σn
IBD

(5)

Where σn represents the standard deviation of the image block. It can be estimated
using below expression,

σn ¼ a� lg b� 255
IBD

� �
� min

I∈⊙
σi (6)

Where a and b are constant values.
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Using above parameters, we estimate IQM for each image. It can be measured as
follows:

IQM ¼
X IBD þ ICQD þ ICD

IND þ IEBD
(7)

After computing IQM, this value is compared with the IQT in order to select
whether next process is preprocessing or pose normalization for given image.

Nep,i ¼
IQMi > IQT ! Pose Normalization
IQMi < IQT ! Preprocessing

�
(8)

Where Nep,i represents the next process for image i. Using the above condition, we
select next process for each given image and thus avoid time wastages in performing
preprocessing for all images. In the meantime, it also reduces the total computation
time for recognition and retrieval.

4.1.2 Preprocessing

MF-AIFR performs preprocessing in order to enhance the recognition rate in
simulation results. For this purpose, we perform two processes in preprocessing that
are illumination normalization and Noise removal.

4.1.2.1 Illumination normalization

Illumination normalization is performed in order to enhance the image quality and
also avoid negative effects of the image. MF-AIFR adopts DGC-CLAHE algorithm for
illumination normalization. Proposed DGC-CLAHE performs better than existing
CLAHE method. It enhances both luminance and contrast of the image adaptively.
Our DGC-CLAHE algorithm performs dual gamma correction, which enhances the
dark areas of the image. This algorithm adaptively sets the clip points of each image,
which depends on the dynamic range of each block of the image. In this, first gamma
correction is executed to boost the entire luminance present in the image block.
Second gamma correction is executed to adjust the contrast in very dark region in
order to avoid overenhancement in bright regions.

Initially, DGC-CLAHE sets clip point adaptively based on the dynamic range,
which can be expressed as follows:

β ¼ p
dr

1þ τ
gmax

R
þ α

100
σ

Av þ c

� �� �
(9)

Where p represents number of the pixels in each block, dr denotes dynamic range
in this block. τ and α represent the constant parameters, which are used to control the
weight of dynamic range and entropies. σ indicates the standard deviation of the
block; Av indicates mean value; and c represents the small value in order to avoid
division by 0. R represents entire dynamic range of the image. gmaxrepresents maxi-
mum pixel value of the image. After completing setting up of clip points, dual gamma
corrections are performed.
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DGC-CLAHE defines enhancement weight for the global gray levels of the blocks
by first gamma correction (γ1), which can be expressed as follows:

We ¼ Grmax

Grref

 !1�γ1
(10)

Where Grmax indicates maximum gray value of the image, and Grref indicates
reference gray value of the image. First (γ1) and second gamma (γ2) corrections are
represented as follows:

γ1 ¼
ln oþ cdfω Grlð Þ� �

8
(11)

γ2 ¼
1þ cdfω Grlð Þ

2
(12)

Where o indicates constant, cdfω indicates cumulative distribution function
weight, and Grl represents gray level of the image. γ1 and γ2 are increased by Grl in
order to avoid under enhancement in darker region of the image. The first and second
gamma correction setting based normalization provides better result in image with
nonuniform illumination. Thus, it enhances the image effectually, which in turn
increases recognition rate.

4.1.2.2 Noise removal

Noise removal is substantial process in face recognition in regard to enhancing
recognition accuracy. For this purpose, our MF-AIFR utilizes ASBF algorithm to
remove noise from given image. Proposed ASBF algorithm preserves fine details of the
image while removing noise and also sharpens the image. ASBF algorithm is used to
remove universal noises such as impulse and Gaussian.

In ASBF algorithm, noisy pixel is detected using Sorted Quadrant Median Vector
(SQMV), which incorporates significant features such as edge or texture information.
Our ASBF algorithm executes three sequential processes as depicted in Figure 2.
Initially, Adaptive Median Filter (AMF) is used to identify the corrupted pixels in the
image. Secondly, the edge of the image is preserved using edge detector, which
accurately predicts the edge existence in the current window. Noise detector is used to
classify the noise into impulse and Gaussian. Switching Bilateral Filter (SBF) contains
ranging filter, which switches the modes between impulse and Gaussian based on
noise detector result.

4.1.2.2.1 AMF

Existing noise filtering algorithm utilizes constant window size such as 3*3,
which may fail to distinguish noisy and noise-free pixel accurately and thus results
in blur output image. In order to avoid this drawback, our AMF adaptively
changes the window size based on the number of noisy pixels present in given
image.
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4.1.2.2.2 Noise detector

Noise detector is used to predict whether pixel is filtered by SBF Gaussian (SBFg)
or SBF impulse (SBFi). Let us consider S1 and S2, which are binary control signals
where S1 is generated by AMF and S2 is generated by noise detector. Then the filtered
image is represented as follows:

f p ¼
SBFg S1 ¼ 1S2 ¼ 1

SBFi S1 ¼ 1S2 ¼ 0

nfp S1 ¼ 0S2 ¼ 0

8><
>:

(13)

At last, pixel with Gaussian and impulse noises are classified based on the above
discussed conditions. These outputs are given as input to the SBF with SQMV.

SBF with SQMV: SBF switches its mode based on the classification results from the
noise detector. Here, SQMV scheme is used to predict the optimummedian effectively
even in the larger window. SMQV detects noisy pixel by estimating difference
between current pixel and reference median pixel. If difference is large, then current
pixel is considered as the noisy pixel. Let us consider ρi,j as the current pixel and ρiþs,jþt
as the pixels in a 2N þ 1ð Þ � 2N þ 1ð Þ window surrounding ρi,j.

The output from the SBF filter is expressed as follows:

Oi,j ¼
Pn

m¼�n
Pn

t¼�nWsr m, tð Þρiþs,jþtPn
m¼�n

Pn
t¼�nWg m, tð ÞWsr m, tð Þ (14)

Where,

Wg ¼ e
�

i�mð Þ2þ j�tð Þ2½ �
2σ2s (15)

Figure 2.
ASBF function blocks.
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Wsr ¼ e
�

I�ρiþs,jþt
2σ2R

(16)

Where I represents the reference median for impulse noise (S1 ¼ 1 and S2 ¼ 1 )
and I ¼ ρi,j for Gaussian noise (S1 ¼ 1 and S2 ¼ 0).

From the above discussions, we conclude that our proposed ASBF removes not only
Gaussian noise but also impulse noise while keeping the image fine details and images.
This way of performing preprocessing increases the accuracy in AIFR.

4.1.2.3 Pose normalization

Pose normalization is substantial process to increase accuracy in face recognition.
Since, our database FG-NET contains different pose images and thus requires pose
normalization before entering into feature extraction and retrieval. Our MF-AIFR
carried out EA-AT algorithm in order to correct the different poses into the frontal
view and thus increases the feature extraction efficiency. EA-AT algorithm initially
estimates pose angle of given image using Euler Angle. Then, estimated angle is
provided to the Affine Transformation to get frontal view of the given image. Euler
angles are three angles in order to describe the orientation of the face with respect to
the fixed coordinate.

Figure 3 illustrates the Euler angle with their coordinates in Z vector. Three angles
are describes as follows: Yaw, Pitch, and Roll. In this, yaw angle (α) is estimated using
below expression:

α ¼ arccos Z3ð Þ (17)

Where Z2 and Z3 represent the Z vectors of the given image.

Figure 3.
Euler angles representation.
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Roll angle (φ) can be estimated using below expression:

φ ¼ arccos � Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z3

2
p

 !
(18)

Pitch angle (τ) can be estimated using below expression:

τ ¼ arccos
Y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Z3
2

p
 !

(19)

These three angles are given as input to the affine transformation algorithm in
order to rotate into the correct view. There exist four basic affine transformations that
are illustrated as follows:

• Translate—It moves a set of point in fixed distance in x and y.

• Scale—It scales the set of points in up or down directions.

• Rotate—It rotates the set of points about the origin.

• Shear—It offsets a set of points in distance proportional to their x and y
coordinates.

In mathematical form, an affine transformation of Nn is a map of F: Nn ! Nn

F sð Þ ¼ Lt sð Þ þ ℚ∀s∈Nn (20)

Where, Lt indicates the linear transformation of Nn, and ℚ defines the
translation vector inNn. A rotation performed in the affine transformation is
illustrated as follows:

Rotation about x axis:

1 0 0 0

0 cos θx � sin θx 0

0 sin θx cos θx 0

0 0 0 1

2
6664

3
7775 (21)

Rotation about y axis:

cos θx 0 sin θy 0

0 0 0 0
� sin θy 0 cos θy 0

0 0 0 1

2
6664

3
7775 (22)

Rotation about z axis:

cos θz

sin θz

� sin θz

cos θz

0

0

0

0

0

0

0

0

1

0

0

1

2
66666664

3
77777775

(23)
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Where θx, θy, and θz represent the rotations about three axes known as Euler
angles. This way of rotation in affine transformation results in frontal view of the
given image. After completing pose normalization, we crop the image in order to
change the size of all images into same one.

4.1.2.4 Feature extraction and fusion

Feature extraction and fusion are a major part of this work in order to produce
optimum results in AIFR. Our MF-AIFR extracts multiple features from three set of
regions. We extract images from three regions that are periocular, nose, and mouth.
Since, these three regions are significant to recognize the image across aging. From
these regions, we extract three type of features that are texture, shape, and demo-
graphic, which are briefed in Table 1. Here, texture feature is extracted using the
CNN descriptor, and SIHKS descriptor is used to extract the shape and demographic-
related features.

4.1.2.4.1 Texture feature extraction

Our MF-AIFR utilizes CNN descriptor for texture feature extraction since it pro-
vides robust performance in learning features layer by layer. CNN applies multiple
filters on the raw input image in order to extract high-level features. Here, we extract
six texture features in given image such as contrast, dissimilarity, entropy, homoge-
neity, correlation, and angular second moment. These features are described as fol-
lows: In CNN, three different types of layers are present that are Convolutional layer,
Polling layer, and Fully connected layer.

4.1.2.4.2 Convolutional layer

It gathers image from the input layer, which is made up of a set of learnable filters.
In our work, convolutional layer comprises six filters in order to generate feature map.
Six filters in the convolutional layer generate six feature maps. The feature map is the
consequence of the every filter that convolved through whole image. Convolution
operation can be described as follows:

xlj ¼ a f

X
i∈Ml

xl�1j ∗ f ij
lþ

 !
(24)

Features Feature description Types of features

Texture Texture feature represents the surface
characteristics of the image

Contrast, Dissimilarity, Entropy,
Homogeneity, Correlation, and Angular
Second Moment

Shape Shape features represents the
physiological identity of given image

Boundary of the periocular, nose, and mouth
regions, Convexity, and Solidity

Demographic Demographic features represent the
individual uniqueness of the given
image.

Race, Age, and gender

Table 1.
Features description.
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Where a f describes the activation function, j represents the specific convolution
feature map, l represents the layer in the CNN, f ij indicates the filter, b j represents the
feature map bias, and Ml is a selection of feature map.

4.1.2.4.3 Pooling layer

It is used to perform downsampling operation in order to reduce the spatial size of
the convolutional layers. Polling operation is implemented on the pixel values cap-
tured by the pooling mask. The pooling operation is described as follows:

plj ¼ a f Cl
jpool pl�1j

� �
þ blj

� �
(25)

Where plj represents the result of the pooling region applied on the jth region in the

input image. pl�1j describes the jth region of interest captured by the pooling mask in

previous layer. Cl
j indicates the trainable coefficient.

4.1.2.4.4 Fully connected layer

Fully connected layer is used to extract the features that are obtained in the
preceding layers. The results obtained in the last convolutional and pooling layer are
given as input to the fully connected layer in order extract features.

4.1.2.4.5 Shape and demographic feature extraction

Shape and demographic features are extracted using SIHKS algorithm. Shape features
are boundary of the eye, nose and mouth, Convexity, and Solidity. Demographic fea-
tures comprise age, race, and gender information. Here, race feature represents the skin
tone of the face image. These features plays key role in recognizing face across aging.

Proposed SIHKS descriptor performs better than HKS algorithm since conven-
tional method has drawback such as sensitivity to scale especially to the global scale.
Hence, we proposed SIHKS algorithm, which performs better in scale invariance, and
it is able perform at any point even at scale selection is impossible. In addition to it, it
also performs well extracting shape and demographic-oriented features compared
with other shape feature descriptor. SIHKS extracts features using three steps that are
listed as follows:

• Logarithmical sampling in time t. It can be expressed using below equation.

ht
0 ¼ h0 x,∝tð Þ (26)

Where ht
0 represents logarithm sampling of heat kernel signature.

• Taking logarithm of heat signature with time variations. It can be described as the
below equation,

ht
0 ¼ htþsWith ht ¼ log htþ1 � ht (27)

Where htþs represent the shift in the heat kernel signature.
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• Taking discrete time Fourier transform of heat signature. It can be expressed as
below equation,

F ht
0� �
w ¼ H0 w½ � ¼ H wð Þe�2πws ¼ F htþs½ � wð Þ (28)

With the above steps, our SIKHS estimates scale-invariant quantity H wð Þj j at each
point x without performing scale selection. Using this quantity, our SIKHS algorithm
estimates the shape and demographic-oriented features effectually.

Figure 4 illustrates the texture feature extraction in CNN with their significant
layers such as convolutional layer, pool layer, and fully connected layer.

4.1.2.4.6 Feature fusion

Feature fusion is estimated to reduce extracted feature dimension of
extracted features such as shape, texture, and demographic features. This
dimensionality reduction will result in better performance in face recognition,
which the process of recognition and retrieval is easier. For this purpose, our MF-AIFR
algorithm utilizes CCA algorithm, which performs effectively in feature fusion.

Figure 4.
Feature extraction in CNN.
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Feature fusion is defined as the combination of multiple feature vectors into
single feature vector. Proposed CCA is a statistical tool for recognizing linear
relationship among sets of features vectors in order to determine the inter subject
covariances. Canonical covariates of the given feature vectors are obtained using
below expression,

A1
T ¼ uXT

1 : A2
T ¼ vXT

2 : A3
T ¼ dXT

3 (29)

Where A1,A2,A3 represent the canonical covariates of the feature vectors
X1,X2,X3, which indicates texture, shape, and demographic features. And, u, v, d
describe the eigen vectors of the features.

4.1.3 Recognition and retrieval

Recognition and retrieval are final process in our MF-AIFR, which is performed by
utilizing SVM algorithm. Here, we select SVM algorithm to correctly recognize the
face cross aging and also retrieve the recognized image for given input image. Figure 5
illustrates the input and output space models of the SVM algorithm.

Figure 5.
SVM input and feature space representation.
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Proposed SVM algorithm performs well in even unstructured and semistructured
data. It addition to it, SVM also scales relatively well to high dimensionality of data-
base. SVM gets input as fused features from previous process obtained using CCA
algorithm. SVM is the binary classification method that discovers the optimal linear
decision surface based on the concept of structural risk minimization. The decision
surface represents the weighted combination of the elements present in the training
set. These elements are illustrated as the support vectors and characterize the bound-
ary between two different classes. The output of the SVM algorithm is a set of support
vectors Si, coefficient weights we, class labels yi of the support vectors, and constant
term z

The linear surface is represented as follows:

k:zþ b ¼ 0 (30)

Where k represents the weight factor and b represents the bias term and z repre-
sents the training or testing data. These two parameters are used separate the hyper-
plane position and orientation. The weight factor k is calculated using below
expression,

k ¼
XNs

i¼1
weiyiSi (31)

Kernel function plays vital role in SVM, which classifies features effectually. In
MF-AIFR, we use Radial Basis Function (RBF) kernel. RBF performs well compared
with other kernel functions. It doesn’t require any prior knowledge about data. It can
be expressed as follows:

r v� við Þ ¼ e�δ v�vik k2 (32)

Here, δ represents the regularization parameter, and v� vi represents the different
between feature vectors. By utilizing RBF kernel function, our MF-AIFR method
recognizes and retrieves the images that are same as given test image. For example, if
we give an input as image of person “A” at the age of 33, then it retrieves of the person
“A” image from the age 2 to 60, since our FG-NET database contains subjects with the
age from 0 to 69.

5. Experimental study

To characterize the performance of the proposed MF-AIFR, this section is divided
into four aspects such as dataset description, simulation setup, application scenario,
results, and discussion.

5.1 Dataset description

This section deliberates dataset information used in this chapter. Here, we utilize
FG-NET database to perform face recognition and retrieval. Face and gesture recog-
nition NETwork (FG-NET) aging database was released in the year of 2004 in an
attempt to support research activities regarding the changes in the facial appearance
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caused by aging. FG-NET database comprises 1002 images from 82 different subjects.
Each subject comprises 6–18 images with the age ranging between the newborns to the
69-year-old subjects. Our FG-NET database contains considerable variations such as
poses and illuminations.

Table 2 illustrates the details of the FG-NET dataset briefly. Dataset contains
34 male subjects and 48 female subjects’ images. Each subject has 1–12 images across
their age progression.

Different age bands present in the FG-NET dataset are represented in Table 3.
FG-NET dataset comprises subjects from the age of 0 to 69 years old.

5.2 Experimental setup

Our proposed MF-AIFR is implemented in MATLAB R2017b tool with C
programming language. Our MATLABR2017b is executed in windows operating
system. MATLAB is a multi-paradigm statistical computing environment developed
by MathWorks. MATLAB permits matrix manipulations, implementation of
algorithms plotting of functions and data, creation of user interfaces, and interfacing
with programs written in other languages, which include C, C++, C#, JAVA, and
Python.

5.3 Performance metrics

To evaluate performance of the MF-AIFR, we consider following metrics that are
described as follows:

• Accuracy: It is defined as the ratio of correct classification with respect to that of
total images. The accuracy is measured based on the succeeding expression:

Accuracy ¼ #of correct classification
Total images

(33)

Parameters Values # Images

# subjects 82 1002

#Males 34 Max (1–12) per subject

#Females 48 Max (1–12) per subject

Table 2.
Dataset description.

Factors Ages

0–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–69

#Subjects 75 70 71 68 46 38 30 24 19 10

#Images 233 178 164 155 81 62 38 31 26 34

Table 3.
Different age bands of FG-NET dataset.
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• Recall: It is defined as the proportions of the cases that are correctly classified by a
class. Recall is also called as True Positive (TP) cases. It can be illustrated as
follows:

Recall ¼ TP

TP þ FN
(34)

Where TP is defined as the positive cases that are correctly labeled as positive. FN is
defined as the noise samples that are incorrectly labeled as negative.

• Precision: It is designated as the ratio of the number correctly classified samples
with all classified samples. Precision is also called as positive predictive value. It
can be designated as follows:

Precision ¼ TP

TP þ Fp
(35)

Where Fp represents the number of noise lesions correctly detected as samples.

• F-Score: It is the combination of precision and recall. It can be calculated as
follows:

F � Score ¼ 2 ∗ Recall ∗Precisionð Þ
Recallþ Precision

(36)

• Recognition Rate: It is evaluated based on the features of the face image. It
describes the face recognition ability in AIFR.

• Rank 1 Score: It represents the Cumulative Matching Result (CMR) for given
image. It can be used to detect the correctly matched score for given FG-NET
database images.

• Computation Time: It is designated as the total time required to retrieve the
images for given input. This metric illustrates the efficacy of the proposed work
in terms of time.

5.4 Comparative analysis

This compares the simulation results of the MF-AIFR with existing methods such
as HLD, DF, and CAN. Here, we compare results using six performance metrics that
are Accuracy, Recall, Precision, Recognition Rate, Rank-1 Score, and F-Score. Table 4
illustrates the comparisons of previous methods with their strength, weakness, and
research statements.

5.4.1 Impact on accuracy

Accuracy metric is one of the significant metrics to evaluate the performance of
the proposed work. This metric defines the how accurate our MF-AIFR in terms of
correct classification of images. The performance of this metric is evaluated by alter-
nating the number of images.
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Figure 6 demonstrates that comparisons on accuracy of the MF-AIFR with respect
to the existing methods such as CAN, DF, and HLD. These comparisons show that our
MF-AIFR achieves better performance compared with the existing methods. Since,
our method utilizes better feature descriptors such as CNN and SIHKS. Both algo-
rithms extract features effectually from three regions that are periocular, nose, and
mouth. This selected region plays a key role in recognizing face across aging. And
CNN and SIHKS provide robust performance even in high-dimensional dataset. As a
result, our method achieves high accuracy as 95%. By contrast, CAN and DF method
attain less accuracy compared with our method due to its poor feature extraction
procedures since it doesn’t concentrate on the vital regions such as periocular, nose,
and mouth. Meanwhile, HLD obtains high accuracy compared with both CAN and DF
method due to its feature extraction from periocular region, which plays significant
role in face recognition across aging. Though, it achieves less accuracy compared with
our method due to its poor descriptor algorithm since it loses large amount of infor-
mation during feature extraction.

Table 5 illustrates the average simulation results comparison of accuracy with the
existing and proposed methods.

From the above comparison, it is noticed that our method achieves better accuracy
percentage as 90.2% compared with the existing methods.

5.4.2 Impact on recall

Recall is used to evaluate the performance of the MF-AIFR in terms of the correct
recognition of face image. Recall performance is evaluated by changing the number of
images.

Figure 6.
Comparisons on accuracy.

Methods Accuracy (%)

HLD 80.2

DF 73.2

CAN 67.6

MF-AIFR 90.2

Table 5.
Accuracy comparisons [average].

154

Artificial Intelligence Annual Volume 2022



Figure 7 shows that our MF-AIFR achieves less recall percentage compared with
other methods.

Since, ourMF-AIFR correctly recognizes the face as per given test image, thus reduces
false detection of face images. Reason for this is that our method executes pose normali-
zation before entering into the feature extraction process. Pose normalization enhances
the feature extraction efficiency. Thus it leads to correct identification and retrieval of the
test image. As a result, our MF-AIFR achieves less recall percentages compared with
existing methods. Whereas existing methods such as DF and CAN achieves high recall
percentages due to lack of pose normalization and complex feature extraction procedures.
In the meantime, HLDmethod reduces recall percentage compared with DF and CAN
methods since it doesn’t follow complex feature extraction procedures. Still, recall of HLD
is high compared with MF-AIFR due to lack of pose normalization and information
degradation in noise removal process. Table 6 designates the average simulation results
comparison of recall with the existing and proposed methods.

From the above comparison results, it is seen that our MF-AIFR method achieves
less recall percentage as 70% compared with the existing methods.

5.4.3 Impact on precision

Precision is used to measure performance of our work in terms of relevance
instances retrieved compared with the total images. Precision performance is mea-
sured via altering the number of image.

Figure 8 depicts that MF-AIFR achieves high precision percentages compared with
existing methods. MF-AIFR performs preprocessing process before entering into the
feature extraction and recognition process. Preprocessing performs illumination

Figure 7.
Comparisons on recall.

Methods Recall (%)

HLD 75.6

DF 87

CAN 80

MF-AIFR 70

Table 6.
Recall comparisons [average].
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normalization and noise filtering since our FG-NET dataset contains illumination and
noises in images. These two processes enhance the quality of the image that tends to
easy the feature extraction and recognition process. CAN and DF methods achieves
less precision due to lack of preprocessing such as noise removal and illumination
normalization. Likewise, HLD also obtains less precision owing to fine detail removal
in Gaussian-based noise filtering. Since Gaussian filter doesn’t concentrate on fine
details of the image, which results in blur image.

Table 7 designates the average simulation results comparison of precision with the
existing and proposed methods. From the above comparison, we conclude that MF-
AIFR achieves better precision percentage as 90.6% compared with existing methods.

5.4.4 Impact on F-score

F-Score metric considers both false positive and false negative values in account to
estimate performance of this work. The performance of this metric is simulated by
varying the number of images.

Figure 9 illustrates that comparison on F-Score result of MF-AIFR with existing
methods such as DF, CAN, and HLD. From this figure, it is noticed that our method
achieves high F-Score compared with existing methods. Our MF-AIFR uses two
descriptors such as CNN and SIHKS to extract texture, shape, and demographic fea-
tures. Here, SIHKS descriptor performs very well in scale invariance and also provides
better extraction results even when scale selection is impossible. It extracts shape and
demographic features effectually, which plays substantial role in face recognition across
aging. At the same time, CAN and DF methods attain less F-Score owing to the absence

Figure 8.
Comparisons on precision.

Methods Precision (%)

HLD 81.6

DF 71.6

CAN 65

MF-AIFR 90.6

Table 7.
Precision comparisons [average].
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of significant feature extraction such as texture and shape features. Meanwhile, HLD
also attains less F-Score since it doesn’t concentrate on shape features extraction and
thus reduces the face recognition and retrieval efficiency.

Table 8 describes the average simulation results comparison of F-Score with the
existing and proposed methods. From the above comparison, we observed that MF-AIFR
method achieves high F-Score percentage as 87.2% compared with existing methods.

5.4.5 Impact on recognition rate

Recognition rate is used to measure the ability of MF-AIFR in terms of the face
recognition. It can be measured through changing the number of features.

Figure 10 designates the comparisons on recognition rate of MF-AIFR with respect
to the existing methods CAN, DF, and HLD methods. From this figure, it is observed
that our MF-AIFR attains high recognition rate compared with existing method. We
propose SVM algorithm for recognition and retrieval. It performs well in recognition
even in high dimensionality of dataset. In addition to it, we also perform feature
fusion before entering into the recognition and retrieval process.

Feature fusion reduces the dimension of feature vectors and thus tends to enhance
the performance of SVM algorithm. Therefore, our method achieves better recogni-
tion rate compared with existing method. Meanwhile, DF method has less recognition
rate compared with other methods due to lack of effective recognition and retrieval
processes since it simply ranks the images. Likewise, CAN also attains less recognition
rate compared with our method since it isn’t able to establish data relationship
between different features. Meantime, HLD method attains less recognition rate due

Figure 9.
Comparisons on F-score.

Methods F-Score (%)

HLD 78.6

DF 71.6

CAN 59.6

MF-AIFR 87.2

Table 8.
F-score comparisons [average].
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to usage of KNN for recognition. KNN takes more time, and discovering similarity
measure is tedious.

Table 9 defines the average simulation results comparison of recognition rate with
the existing and proposed methods. Above comparison illustrates that recognition rate
of MF-AIFR is higher than that of other existing methods.

5.4.6 Impact on rank-1-score

Rank-1 Score considers the performance of cumulative match for given images in
proposed work. It represents the efficacy of our work in terms of recognition and
retrieval.

Figure 11 exhibits comparisons on rank-1 score results with respect to the existing
methods. From this figure, it is seen that our MF-AIFR attains high rank-1 score
compared with the existing methods. Our proposed DGC-CLAHE algorithm based
illumination normalization performs well compared with existing CLAHE; it enhances
the fine details of the image. ASBF-based noise filtering also provides better perfor-
mance in noise removal, which sharpens the image. This way of preprocessing results
in high matching results in face recognition. At the same time, existing methods such
as DF and CAN attain less rank 1 score since it doesn’t use effective algorithm for
preprocessing and thus reduce the quality of given image drastically. Likewise, HLD
also attains less rank 1 score compared with our method. Since, it doesn’t perform
illumination normalization and noise filtering also not effective. From this analysis,
we conclude that our MF-AIFR attains better results in rank 1-score compared with
other methods.

Methods Recognition rate (%)

HLD 87

DF 69.2

CAN 79.2

MF-AIFR 92.2

Table 9.
Recognition rate comparisons [average].

Figure 10.
Comparisons on recognition rate.
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Table 10 signifies average simulation results comparison of rank 1-score with the
existing and proposed methods. From the above comparison, we prove that our MF-
AIFR method achieves higher rank 1 score percentage as 89.8% compared with
existing methods.

5.4.7 Impact on computation time

Performance of the computation time is evaluated by varying the number of
images. This metric must be low in order to attain better performance in image
retrieval across aging.

Figure 12 depicts the comparisons on computation time results with respect to the
existing methods. It is noticed that our MF-AIFR method achieves less computation
time compared with the existing methods such as CAN, DF, and HLD. MF-AIFR
performs IQE process before entering into the preprocessing step. The images that are
not satisfying IQT only undergone preprocessing; otherwise it is directly given to the
pose normalization step. Thus it reduces the time wastages in performing
preprocessing for all input images. In addition to it, our work also reduces time in
feature extraction and classification by using effective algorithms such as CNN,
SIHKS, and SVM. These algorithms require less time to process the given inputs. As a
result, MF-AIFR achieves less computation time. In the meantime, existing methods
such as CAN and DF attain high computation time compared with other methods.
Since it performs preprocessing for all images and also doesn’t utilize effective algo-
rithm to process the given input image and thus leads to increase in computation time.
Likewise, HLD also attains high computation time compared with MF-AIFR since it
performs preprocessing for all images regardless of their quality.

Methods Rank 1 score

HLD 79.6

DF 73

CAN 65

MF-AIFR 89.8

Table 10.
Rank 1 score comparisons [average].

Figure 11.
Comparisons on rank 1-score.
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Table 11 deliberates the comparisons of computation time and thus shows that our
method attains less computation time as 12.4ms compared with other methods
including HLD, DF, and CAN.

5.5 Research highlights

This section signifies highlights of this research regarding face recognition across
aging. In order to achieve better performance in AIFR, our work establishes five
consequent processes. Table 12 describes the benefits of proposed algorithms along

Methods Computation time (ms)

HLD 60

DF 63

CAN 73

MF-AIFR 12.4

Table 11.
Computation time comparisons [average].

Figure 12.
Comparisons on computation time.

Algorithms Main functionality Benefits related to performance

DGC-CLAHE Illumination
Normalization

Enhances the recognition rate and accuracy

ASBF Noise removal Enhances recognition rate and feature extraction efficiency

EA-AT Pose Normalization Easier the feature extraction process and Increases the
precision level

CNN Texture Feature
Extraction

Enhances the accuracy in face recognition across aging and
perform well in large scale data set

SIHKS Shape & Demographic
Feature extraction

Increases the rank 1-score and adapts large scale data set.

SVM Recognition and Interval Simple processing, increases the accuracy and reduces the
recall

Table 12.
Benefits of proposed algorithms.
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with their functionalities. This table illustrates each algorithm with their benefits in
performance metrics such as precision, recall, accuracy, recognition rate, and rank 1
score.

6. Conclusion and future work

Face recognition across aging becomes challenging due to changes in the human
faces with age progressions. In order to address this bottleneck, this chapter proposes
MF-AIFR method where four successive processes performed that are listed as fol-
lows: IQE is performed to reduce time spend in preprocessing and thus enhances
performance of our system drastically. An image that doesn’t satisfy the IQT is given
as input to the preprocessing step. Here, illumination normalization and noise removal
are performed, which enhances the accuracy in face recognition and retrieval. Illumi-
nation normalization adopts DGC-CLAHE, and noise removal adopts ASBF algorithm.
In order to normalize the pose, we adopt EA-AT algorithm, which is performed to
enhance the feature extraction efficacy. Two types of descriptors are utilized for
features extractions that are CNN and SIHKS. Here, we extract multiple features such
as texture, shape, and demographic features. We extract features from three types of
regions that are periocular, nose, and mouth. CNN extracts texture features, and
SIHKS extracts shape and demographic features. This way extracting features
increases our recognition rate. In recognition and retrieval, we execute SVM algo-
rithm, which follows the simple procedure and provides better results. At last, we
evaluate the performance of MF-AIFR system using seven metrics that are Accuracy,
Recall, Precision, Rank-1 Score, F-Score, Recognition rate, and Computation time.
Thus it shows that our work performs better than existing methods such as HLD, DF,
and CAN.
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