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Preface

The 20th century bore witness to two monumental scientific revolutions that 
forever altered the landscape of our understanding of the universe. First came the 
theory of relativity, which fundamentally transformed our conceptions of space 
and time, weaving a tapestry of spacetime that reshaped the way we perceive the 
fabric of the cosmos. Concurrently, quantum mechanics emerged, a groundbreak-
ing framework that revolutionized our comprehension of the states of matter and 
energy, delving into the depths of the microcosmic world. Quantum mechanics, 
with its enigmatic principles and mathematical intricacies, has emerged as a capti-
vating and challenging subject in the realms of science, engineering, and technol-
ogy. It serves as the key to unlocking a wide array of phenomena, unveiling the 
beauty of mathematical techniques, Schrödinger’s equation, and the ethereal realm 
of wave functions. It has enabled us to probe the mysteries of matter and energy at 
their most fundamental levels.

It is with great enthusiasm that we present this book, Schrödinger Equation – 
Fundamental Aspects and Potential Applications. Within its pages, we explore a myriad 
of topics encompassing the essence of quantum mechanics. Our journey commences 
with an introduction to the spectral theory of the one and multi-dimensional 
Schrödinger equation, offering a foundation for understanding its mathematical 
underpinnings. As we delve deeper, we venture into the realm of scattering theory 
for the multi-dimensional non-relativistic Schrödinger equation, shedding light on 
the intricacies of quantum interactions. The quantization process and the profound 
concept of Feynman path integrals also find their place within our exploration 
as we provide insight into the mechanics of quantum systems and their behavior. 
Moreover, we examine the innovative application of relative entropy methods and 
transformation theory, unveiling their significance in constructing singular diffu-
sion processes that bear an astonishing resemblance to Schrödinger equations. These 
methodologies provide fresh perspectives on the underlying principles governing 
quantum dynamics. 

We have endeavored to make this book accessible, well-organized, and self-contained, 
ensuring that it caters to a broad audience, including undergraduates, graduates, 
researchers, and professionals in the fields of functional analysis, probability theory, 
and quantum dynamics. Our aim is to facilitate a comprehensive understanding of 
the Schrödinger equation and its multifaceted applications. We trust that readers will 
find this book to be a valuable resource, brimming with profound insights into the 
Schrödinger equation and its far-reaching implications. This book is a comprehensive 
guide that both educates and inspires, fostering a deeper appreciation for the pro-
found wonders of quantum mechanics.
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Chapter 1

Schrödinger Wave Equation for
Simple Harmonic Oscillator
Noor-ul-ain, Sadaf Fatima, Mushtaq Ahmad,
Muhammad Rizwan Khan and Muhammad Aslam

Abstract

In physics, harmonic motion is among the most representative types of motion.
A simple harmonic oscillator is often the source of any vibration with a restoring force
proportional to Hooke’s law. Every minimum potential has a solution in the form of
the harmonic oscillator potential. Little oscillations at the minimum are characteristic
of almost all natural potentials and of many quanta mechanical systems. Harmonic
motion is an essential building block for these more complex uses. The Schrödinger
equation is a defining feature of the harmonic oscillator. Here, we demonstrate that
the time-frequency plane is a useful tool for analyzing their dynamics. We numeri-
cally integrate several examples involving different input forces and demonstrate that
the oscillations are clearly displayed and easily interpretable in the time-frequency
plane.

Keywords: harmonic motion, frequency, pendulum, displacement, amplitude

1. Introduction

A system that uses simple harmonic motion (SHM) is known as a harmonic
oscillator.

A physical system called a harmonic oscillator experiences a restoring
force proportionate to the displacement when it is moved away from its mean
position.

A wave equation that describes the behavior of quantum particles is the
Schrödinger equation. A harmonic oscillator’s energy levels can be demonstrated by
the Schrödinger equation to be quantized, which means that they can only take on
specific discrete values. The Schrödinger equation has the effect of restricting the
possible energies that an oscillator that is harmonic can have [1, 2].

A physical system known as harmonic oscillator oscillates at a frequency propor-
tional to the displacement from its equilibrium position and is governed by a restoring
force Fr. The Fr is proportional to the displacement from its mean position. This means
that the system tends to return to its equilibrium position when disturbed from it, and
the rate at which it oscillates is determined by the strength of the restoring force and
the mass of the system. An equation of simple harmonic motion which is sinusoidal
function of time with constant amplitude and frequency can be used to describe the
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motion of harmonic oscillator [1, 3]. The two examples of harmonic oscillator are mass
connected to the spring and a simple pendulum. Harmonic oscillators are important in
physics and engineering because they provide a useful model for many physical
systems and can be used to analyze and predict the behavior of those systems [3, 4].

2. Classical behavior of simple harmonic oscillator

The simple example of linear harmonic oscillator is a mass attached to a wall by
means of a spring as illustrated in the following Figure 1.

2.1 Expression for potential energy of simple harmonic oscillator

Hooke’s law states that the force required to stretch or compress a spring is pro-
portionate to the distance extended or compressed from its original length.
Mathematically, this relation can be expressed as:

F∝ x

F∝ � x

Fr ¼ �kx (1)

Where, Fr is the force applied to the spring, x is the displacement of the spring
from the original length, and k is a constant which is known as spring constant and
represents the stiffness of spring [5].

Hooke’s law applies to all elastic materials, not just springs. It is an important
concept in physics and engineering because it helps to understand and predict the
behavior of systems that involve elastic materials, such as springs, rubber bands, and
other materials. Hooke’s law is also the basis for the design of many mechanical
systems, such as shock absorbers, suspension systems, and other devices that rely on
the properties of elastic materials [6, 7].

When an object is displaced from its equilibrium position, a restoring force acts on
it to push or pull it back toward that position. The Fr is directly proportional to the
displacement from the equilibrium position and also acts in opposite direction [5].
This force is present in many physical systems, such as springs, pendulums, and mass-
spring systems, and it plays a vital role in the behavior of these systems [3, 4].

Figure 1.
Shows the experimental device for the study of the spring-mass system [1].
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F ¼ � dv
dx

(2)

∵Force F can be expressed as negative derivative of potential energy V.
The work done in stretching spring to distance dx

W ¼ F � distance

P:E ¼ F � dx

�dv ¼ F � dx

dv ¼ �F � dx

dv ¼ �F � dx

From Eq. (1)

F ¼ �kx

dv ¼ kx� dx (3)

Integrate Eq. (3) within limits 0 ! x

ð
dv ¼ þ

ðx

0

kxdx

V ¼ k
ðx

0

xdx

V ¼ k lim
0!x

x2

2

V ¼ k
x2

2
� 0

2

� �

V ¼ k
x2

2

V ¼ 1
2
kx2 (4)

Where x is the distance from equilibrium position [8, 9].
The plot of potential energy (V) of a particle executing simple harmonic motion

against displacement from its equilibrium length is a parabola as illustrated in the
following Figure 2.

2.2 Expression for frequency of linear harmonic oscillator

The frequency of a harmonic oscillator is the number of complete oscillations or
cycles it completes per unit time. The frequency of a harmonic oscillator depends on
the physical characteristics of the system, such as its mass and stiffness.

According to second law of motion
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F ¼ ma (5)

Comparing Eqs. (1) and (5)

ma ¼ �kx

m
d2x
dt2

¼ �kx ∵ a ¼ d2x
dt2

d2x
dt2

þ k
m
x ¼ 0 (6)

Eq. (6) is a second-order differential equation. The general solution of this Eq. (6)

x ¼ A sinωt (7)

We know ω ¼
ffiffiffi
k
m

q

x ¼ A sin

ffiffiffiffi
k
m

r
t (8)

We know that

ω ¼ 2πϑt

x ¼ A sin 2πϑ (9)

Comparing Eqs. (8) and (9)

A sin

ffiffiffiffi
k
m

r
t ¼ A sin 2πϑt

sin

ffiffiffiffi
k
m

r
¼ sin 2πϑ

sin �1 sin

ffiffiffiffi
k
m

r
¼ sin �1 sin 2πϑ

∵
ffiffiffiffi
k
m

r
¼ 2πϑ

ϑ ¼ 1
2π

ffiffiffiffi
k
m

r
(10)

Figure 2.
The potential energy for a simple harmonic oscillator [6].
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Eq. (10) gives the frequency of the simple harmonic oscillator, where ϑ the
frequency, k is the spring constant, and m is the mass of a linear harmonic
oscillator. The above equation determines that the frequency of a harmonic
oscillator is directly proportional to spring constant’s square root and inversely
proportional to mass’s square root. This means that by increasing the stiffness of the
spring or by decreasing the mass of the oscillator, the frequency of an oscillator will
increase [8].

Generally, the frequency of harmonic oscillator is an important characteristic that
determines its behavior and can be used to analyze and predict its motion. The
frequency of a harmonic oscillator can be measured experimentally using various
methods, such as by measuring the time period of its oscillations or by analyzing its
response to external forces.

∵ϑ ¼ c
λ
⊽ ¼ 1

λ
ϑ ¼ c⊽

2πc⊽ ¼
ffiffiffiffi
k
m

r

⊽ ¼ 1
2πc

ffiffiffiffi
k
m

r

⊽ is wave number
For two particles connected to each other through a spring as in diatomic molecule,

we use term reduced mass μ [10].

⊽ ¼ 1
2πc

ffiffiffi
k
μ

s
(11)

3. Quantum mechanical treatment of simple harmonic oscillator

The wave function is a mathematical representation of a quantum system’s state in
quantum mechanics. All of the information about a particle or a group of particles,
including their position, momentum, and energy, is contained in the wave function. It
is a complex-valued function depends on position and time of particle. It is denoted by
symbol Ψ [11].

Probability of finding the particle at a certain position is proportional to absolute
square of wave function. It is also used to determine the probability density of finding
a particle within a certain volume of space.

In quantum mechanics, wave function is a fundamental concept used to calculate
many properties of quantum systems, such as energy levels, transition probabilities,
and scattering cross-sections. The wave function is also used to describe the behavior
of systems that exhibit wave-like properties, such as electrons, atoms, and molecules
[12, 13].

The wave function follows the Schrödinger equation, which is a differential equa-
tion that determines how the wave function evolves over time. The Schrödinger
equation is used to determine the temporal evolution of quantum systems and to
predict particle and system behavior under different conditions [14].
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3.1 Representation of wave function

In quantum mechanics, the wave function can be represented in several ways,
depending on the context and the physical system being described. Here are three
common representations [15]:

3.1.1 Position representation

In this position representation, Ψ(x,t) gives the probability amplitude of finding a
particle at position x at time t. The position representation is used for systems with
definite position, such as single particle in a box or a molecule. In this representation, a
wave function is typically denoted as Ψ(x,t) i.e., function of position and time. Its
mathematical form can be written as: Ψ(x,t) = A(x,t) * exp(iφ(x,t)) where A(x,t) is
the amplitude of the wave function and φ(x,t) is its phase. The amplitude is a real-
valued function that describes the intensity of the wave, while the phase is a real-
valued function that describes the position of the wave in space and time [16, 17].

3.1.2 Momentum representation

In this representation, the wave function is function of momentum rather than the
position. The wave function Ψ(p,t) gives the probability amplitude of finding a parti-
cle with momentum p at time t. The momentum representation is useful for systems
with definite momentum, like a free particle. In this representation, wave function is
typically denoted as Ψ(p,t) and is function of momentum and time. Its mathematical
form can be written as: Ψ(p,t) = B(p,t) * exp(iχ(p,t)) where B(p,t) is the amplitude of
the wave function in momentum space and χ(p,t) is its phase. This amplitude is real-
valued function that determines the intensity of the wave in momentum space, while
the phase is a real-valued function that describes the position of wave in momentum
space [16–18].

3.1.3 Energy representation

In this representation, the wave function is a function of energy. The wave func-
tion Ψ(E) gives the probability amplitude of finding a system with energy E. The
energy representation is useful for systems with definite energy, like a particle in the
potential well. In the energy representation, wave function is typically denoted as
Ψ(E) and is a function of energy. Mathematically, it can be written as

Ψ Eð Þ ¼ C Eð Þ ∗ exp iψ Eð Þð Þ (12)

where C(E) is the amplitude of the wave function in energy space and ψ(E) is its
phase. This amplitude is real-valued function that determines the intensity of wave in
energy space, while the phase is a real-valued function that describes the position of
the wave in energy space.

In each representation, Ψ is a complex-valued function satisfies the Schrödinger
equation. It can be normalized, which means that the integral of the absolute square of
the wave function over all space or momentum or energy is equal to one, ensuring that
the probability of locating a particle in the system is one.
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The mathematical form of wave function can be used to calculate various proper-
ties of the system, such as probabilities of finding the particle in a certain position,
momentum, or energy state [19].

3.2 Boundaries conditions

For the harmonic oscillator, the two common boundary conditions are described as
follows [20].

3.2.1 Normalizability condition

The wave function must be normalizable, which means that the integral of the
absolute square of the wave function over all space must be finite. This assures that
probability of locating a particle in the system is one [19].

3.2.2 Continuity condition

The wave function must be continuous and differentiable at the ends of the range.
This ensures that the probability density and its first derivative are continuous and
smooth throughout the range of motion.

For the harmonic oscillator, the boundary conditions are typically satisfied by
using a particular type of wave function, called the Hermite polynomials. The Hermite
polynomials are a set of orthogonal polynomials that satisfy both the normalizability
and continuity conditions. They form a complete basis set for the wave function of the
harmonic oscillator, allowing the solution to be expressed as a linear combination of
these polynomials [6].

3.3 Schrödinger wave equation for harmonic oscillator

The mathematical form of the wave function in quantum mechanics depends on
the physical system being described and the representation being used. However, in
general, it is a complex-valued function that satisfies Schrödinger equation [8, 21].

In Quantum mechanics, the one-dimensional time-independent Schrödinger wave
equation for harmonic oscillator follows as [22]:

∂
2ψ

∂x2
þ 2m

ℏ2 E� Vð Þψ ¼ 0 (13)

But the potential energy of the simple harmonic oscillator is V=1
2Kx

2, therefore

∂
2ψ

∂x2
þ 2m

ℏ2 E� 1
2
Kx2

� �
ψ ¼ 0 (14)

Or

∂
2ψ

∂x2
þ�mKx2

ℏ2
ψ ¼ �2mE

ℏ2
ψ

mK
ℏ2 ¼ α2

2mE
ℏ2 ¼ ε
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Them

∂
2ψ

∂x2
� α2x2 ψ ¼ �εψ (15)

This is Schrödinger’s equation for harmonic oscillator [23–25]. Here x2 is the coef-
ficient of ψ , so it is difficult to obtain its solution. Hence we will find its asymptotic
solution

When x ! ∞ α2x2 > > ε
So we can write:

∂
2ψ

∂x2
� α2x2 ψ ¼ 0 (16)

Its solution is ψ ¼ e�αx2=2

∂ψ

σx
¼ �αxe�αx2=2

∂
2ψ

∂x2
¼ ∂

σx
�αxe�αx2=2
� �

¼ α2x2e�αx2=2 � αe�αx2=2 ¼ �αð Þe�αx2=2α2x2

Value of αx is larger hence we take α2x2 � αð Þ≈ α2x2

∂
2ψ

∂x2
¼ α2x2e�αx2=2

Or ∂
2ψ
∂x2 ¼ α2x2 ψ or ∂

2ψ
∂x2 � α2x2 ψ ¼ 0

Now we take ψ ¼ e�αx2=2

Because it obeys the condition that ∣ψ ∣2 decreases with increasing x
General solution:

ψ xð Þ¼f xð Þ
e�αx2=2

Differentiating w.r.t x

∂ψ

σx
¼ f xð Þe

�αx2=2 �αxð Þ þ e�αx2=2 ∂f
∂x

Again differentiating w.r.t x

∂
2ψ

∂x2
¼ f xð Þ e�αx2=2 �αð Þ þ �αxð Þ �αxð Þe�αx2=2

h i

þ �αxð Þ e�αx2=2 ∂f
∂x

þ ∂f
∂x

e�αx2=2 �αxþ e�αx2=2 ∂
2f

∂x2

�

∂
2ψ

∂x2
¼ e�αx2=2f xð Þ �αþ α2x2

� �þ ∂f
∂x

e�αx2=2 �2αxð Þ þ e�αx2=2 ∂
2f

∂x2

∂
2ψ

∂x2
¼ e�αx2=2 ∂

2f
∂x2

� 2αx
∂f
∂x

þ α2x2 � α
� �

f
� �
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Substituting values of ψ and ∂
2ψ
∂x2 in Eq. (15)

e�αx2=2
∂
2f

∂x2
� 2αx

∂f
∂x

þ α2x2 � α
� �

f
� �

� α2x2f e�αx2=2 ¼ �εf e�αx2=2

Or
∂
2f

∂x2
� 2αx

∂f
∂x

þ ε� αð Þf ¼ 0 (17)

Now substituting y =
ffiffiffi
α

p
x and f xð Þ ¼ H yð Þ converting into standard Hermite

polynomial equation
y =

ffiffiffi
α

p
x then dy

dx ¼
ffiffiffi
α

p

∂f
∂x

¼ ∂f
∂y

:
∂y
∂x

¼ ffiffiffi
α

p ∂f
∂y

∂
2f

∂x2
¼ ∂

∂x
∂f
∂x

� �
¼ ∂

∂x
ffiffiffi
α

p ∂f
∂y

� �
¼ ∂

∂y
ffiffiffi
α

p ∂f
∂y

� �
∂y
∂x

¼ α
∂
2f
∂y2

Substituting values of ∂f
∂x and

∂
2f

∂x2 in Eq. (17), we get

α
∂
2f
∂y2

� 2α
yffiffiffi
α

p ffiffiffi
α

p ∂f
∂y

þ ε� αð Þf ¼ 0

α
∂
2f
∂y2

� 2αy
∂f
∂y

þ ε� αð Þf ¼ 0

∂
2f
∂y2

� 2y
∂f
∂y

þ ε

α
� 1

� �
f ¼ 0

Now f(x) = H(y)

∂
2H
∂y2

� 2y
∂H
∂y

þ ε

α
� 1

� �
H ¼ 0 (18)

This is standard Hermite differential equation [22]. It can be expressed as

H y
� � ¼

X∞
p¼0

apyp (19)

∂H
∂y

¼
X

papyp�1

∂
2H
∂y2

¼
X

p p� 1ð Þapyp�2

From Eq. (18)

X
p p� 1ð Þapyp�2–

X
2p� ε

α
� 1

� �h i
apyp ¼ 0

11

Schrödinger Wave Equation for Simple Harmonic Oscillator
DOI: http://dx.doi.org/10.5772/intechopen.112381



This expression is valid only when coefficient of each power of y is zero.
And p = p + 2

X
pþ 2ð Þ pþ 2� 1ð Þapþ2ypþ2�2–

X
2p� ε

α
� 1

� �h i
apyp ¼ 0

apþ2 pþ 2ð Þ pþ 1ð Þ ¼ ap 2p� ε

α

� �
þ 1

h i

apþ2 ¼
2p� ε

α

� �þ 1
� �
pþ 2ð Þ pþ 1ð Þ ap (20)

We can determine values of all the coefficients in terms of two arbitrary constants
a0 and a1

Thus, complete solution of Schrödinger’s equation is [26]

ψ ¼ e�αx2=2H yð Þ

ψ ¼ e�y2=2H yð Þ

3.4 Energy eigen values

ψ ¼ e�y2=2H yð Þ of a simple harmonic oscillator will be physically accepted only
when y! ∞, the increase in the value of Hermite Polynomial H yð Þ is more rapid than

the decrease in the value of e�y2=2 value [27].
Value of e�y2=2H yð Þ can be zero only when power series for H yð Þ is finite series.
Let series be finite for p=n, the Eq. (20) becomes.

2n� ε

α
þ 1 ¼ 0

N ¼ 1
2

ε

α
� 1

� � ε
α
¼ 2nþ 1ε ¼ 2mE

ℏ2 α ¼
ffiffiffiffiffiffiffi
mk
ℏ2

r

2mE
ℏ2=

ffiffiffiffi
mk
ℏ2

p ¼ 2nþ 1
2
ℏ

ffiffiffiffi
m
k

r
E ¼ 2nþ 1

E ¼ 2nþ 1
2

ℏ

ffiffiffiffi
k
m

r

But we know
ffiffiffi
k
m

q
¼ ω (angular frequency)

E ¼ 2nþ 1
2

� �
ℏω ¼ nþ 1

2

� �
ℏν (21)

Where n = 0, 1, 2, 3, …
The above equation gives the energy levels of a harmonic oscillator [28], where n is

a non-negative integer, h̅is reduced Planck constant, ω is an angular frequency of the
oscillator, and E_n is the energy of the oscillator in the nth energy level. In quantum
mechanics, the energy levels of simple harmonic oscillator are quantized, which
means they take on only certain discrete values.
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If n = 0 then E0 ¼ 1
2 ℏν

n = 1 then E1 ¼ 3
2 ℏν

n = 2 then E2 ¼ 5
2 ℏν

The energy levels of a harmonic oscillator are equally spaced, with the energy of
each level separated by an amount h̅ω. The ground state of the oscillator, n=0, has the
lowest energy level and corresponds to the oscillator’s minimum energy state, where
the particle is localized at the center of the potential well. As n increases, the energy
levels increase and the wave function oscillates with more nodes [27].

The energy of the harmonic oscillator is always positive, and the oscillator can
never reach the zero-point energy, which is the minimum possible energy that a
quantum mechanical system can have [29].
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Chapter 2

A Schrödinger Equation for Light
Daniel R.E. Hodgson

Abstract

In this chapter we examine the quantised electromagnetic (EM) field in the con-
text of a Schrödinger equation for single photons. For clarity we consider only a one-
dimensional system. As a universal tool for calculating the time-evolution of quantum
states, a Schrödinger equation must exist that describes the propagation of single
photons. Being inherently relativistic, however, critical aspects of both special rela-
tivity and quantum mechanics must be combined when quantising the EM field. By
taking the approach of a Schrödinger equation for localised photons, we will show
how novel and previously overlooked features of the quantised EM field become a
necessary part of a complete description of photon dynamics. In this chapter, I shall
provide a thorough examination of new features and discuss their significance in
topics such as quantum relativity and photon localisation.

Keywords: photon localisation, photon wave function, causality, negative
frequencies, non-locality

1. Introduction

Thomas Young’s double slit experiment gives a simple but clear demonstration that
light is certainly a wave. The appearance of an alternating pattern of dark fringes is
evidence of the destructive superposition of waves passing through different slits onto
the screen behind. In this classical experiment, the pattern emerging on the screen is
generated by the interference between oscillating electromagnetic (EM) waves that
are predicted by Maxwell’s theory of electromagnetism. The modification from a
classical to a quantum theory, however, reinterprets these waves as oscillations of the
probabilistic wave function for a collection of photons, the indivisible particles of
light. In order to form a complete description of how photons evolve, it is important
that we are able to define a wave function for each photon wave packet describing its
oscillations through both space and time.

By initially postulating that photons are discrete and countable objects, and that each
photon has an energy proportional to its frequency, it is possible to derive complete
expressions for the electric and magnetic field observables up to an overall phase [1].
More conventional quantisation methods, however, take the reverse approach. Here the
field observables, not the photons, are the main focus of the quantisation process, which
are obtained by means of canonical quantisation. See, for example, Ref. [2]. By adopting
a Hamiltonian procedure, correspondence with classical physics can be maintained by
imposing canonical commutation relations. Moreover, working directly with quantised
fields may be viewed as more fundamental than working with particles, which are not
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covariant objects. Providing a wave function for the excitations of the field observables,
however, has proved exceptionally challenging.

It was proven in 1948 by Newton and Wigner that no position-dependent wave
function existed for the photon [3, 4]. More specifically, subject to certain conditions,
there was no photon position operator with which to define a basis of localised
eigenstates for the wave function. Since this time, the localisation of single photons
has been researched extensively [5–12], but there is as yet no unanimous agreement
on whether localisation is possible. In the work of Fleming [13, 14], for example, some
of the relativistic properties of the Newton-Wigner (NW) operator were clarified, but
localisation of the photon was again shown to be impossible. Only more recently, by
considering the longitudinal components of spin, Hawton has been able to show that a
photon position operator with commuting components conjugate to the momentum
operator can be defined [15–17].

It is also unclear how the photon wave function ought to be interpreted. Early wave
functions, such as the Landau-Peierls wave function [18–20], for example, were
criticised for being non-locally related to the electric and magnetic field observables.
Such a relationship emerges due to a disparity between the units for a probabilistic wave
function and the field observables. Wave functions locally related to the field observables
have been studied in both the first and second quantisation regimes [21–25]. In some
schemes, such as those of Knight [26] and Licht [27, 28], a photon is only localised if the
electric and magnetic field expectation values are also localised. In this case, however, a
single photon cannot be localised if the field observables do not commute [29]. To
overcome problems of non-locality, many authors have introduced non-local inner
products, which lead to the use of non-standard and non-Hermitian models [30–33].

Localisation in quantum theory is also closely connected to causality. A photon
wave packet that is localised to one region, for instance, cannot reach another until a
time has elapsed no less than the distance between these regions divided by the speed
of light in a vacuum. The theorems of Hegerfeldt [34] and Malament [35] show,
however, that non-zero correlations between the position of a wave packet can be
generated at speeds exceeding the speed of light. The question that this raises about
causality has been a large topic of research [36–40], with a particular interest in
causality in the transmission of radiation between two two-level atoms [41–44].
Whilst many insist that only causality in the sense of no-signalling, rather than of
strict causality, is necessary, a wave function can only be usefully and properly
interpreted if the speed at which it propagates never exceeds the speed of light.

In this chapter we explore a recent quantisation of the one-dimensional free EM
field in the position representation [45]. The main focus of this quantisation will be
the construction of single-photon wave packets in a basis of localised photonic excita-
tions. We determine an equation of motion for these excitations which leads to a
Schrödinger equation for the photon. By focussing on dynamics, new parameters are
introduced that were previously neglected or overlooked. This provides us with a
fuller description of the quantised EM field. For completeness, expressions for the EM
field observables shall be constructed, and a comparison with standard quantisations
shall be given.

2. The classical EM field in one dimension

The equations of motion for light are given by Maxwell’s equations. The solutions
to these equations provide us with the expected dynamics of the quantised particles of

18

Schrödinger Equation – Fundamentals Aspects and Potential Applications



the EM field. The purpose of this section is to review the appropriate equations of
motion and their solutions in one dimension, and to determine an expression for the
energy of the EM field.

2.1 The dynamics of the EM field

2.1.1 Maxwell’s equations

Light consists of two real, mutually propagating vector fields: the electric
field and the magnetic field. In one dimension, the electric and magnetic
fields propagate along a single axis parametrised by a position coordinate x. The
electric and magnetic fields at a position x at a time t are denoted E(x, t) and B(x, t)
respectively.

Although E(x, t) and B(x, t) are parametrised by a position along the x-axis only,
the fields are oriented, or polarised, in the plane orthogonal to the direction of
propagation. By specifying a right-handed Cartesian coordinate system (x, y, z), the
electric and magnetic field have components in the y and z directions only. The
components of the fields oriented along the y (z)-axis shall be referred to as
horizontally (vertically) polarised. The polarisation of the field is specified by a
discrete parameter λ ¼ H,V.

In a dielectric medium of constant permittivity ε and permeability μ, and by
denoting c ¼ εμð Þ�1=2, the horizontally and vertically polarised components of E(x, t)
and B(x, t) satisfy the following simplified forms of Maxwell’s equations:

∂

∂x
E x, tð Þ ¼ � ∂

∂t
B x, tð Þ

c2
∂

∂x
B x, tð Þ ¼ � ∂

∂t
E x, tð Þ

(1)

In both lines of Eq. (1) above, the electric and magnetic fields have alternate
polarisations. The positive (negative) sign applies when the electric and magnetic
fields are vertically (horizontally) and horizontally (vertically) polarised respectively.

2.1.2 The wave equation

Maxwell’s equations, Eq. (1) couple together different components of the electric
and magnetic field vectors. By combining these equations, we can construct a second-
order differential equation for each of the four field components independently. These
equations are

∂
2

∂x
� 1
c2
∂
2

∂t

� �
E x, tð Þ ¼ 0

∂
2

∂x
� 1
c2
∂
2

∂t

� �
B x, tð Þ ¼ 0:

(2)

Here we have four identical equations of motion, one for each of the
four components of the EM field. The solutions to Eq. (2) will be examined in
Section 2.3.
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2.2 The energy and momentum of the EM field

2.2.1 The energy observable

At each point in space and time, the electric and magnetic fields exert a force on
any charged matter present at that point. For this reason, the EM field is able to do
mechanical work on charged matter, and must therefore store a certain amount of
energy. Taking this into account, explicit expressions for the energy and momentum
of light in a dielectric medium can be determined. By considering the work done by
the fields on a charge current density in a dielectric medium, one can show that the
total energy along the x-axis is given by the expression

Henergy tð Þ ¼
ð∞
�∞

dx
A
2

ε E x, tð Þj j2 þ 1
μ
B xð , tÞj j2

� �
: (3)

Here A is the area occupied by the field in the y-z plane.

2.2.2 The Poynting vector

The energy stored in the EM field in a particular region is carried in the direction of
propagation in the form of the Poynting vector S. Since in one dimension light can
only propagate along the x-axis, the only non-zero component of the Poynting vector
is the x component, which is given by the expression

S x, tð Þ ¼ 1
μ
EH x, tð ÞBV x, tð Þ � EV x, tð ÞBH x, tð Þ½ �: (4)

In the above the H and V subscripts refer to the horizontally and vertically
polarised components of the fields respectively. The expressions above, particularly
Eq. (3), will be of importance in Section 4.2.2.

2.3 The solutions to Maxwell’s equations

2.3.1 Left- and right-propagating waves

The wave equation, Eq. (2) describes the propagation of a wave along the x-axis at
a constant speed c. This is the speed of light in the medium. In only one dimension, the
solutions of the wave equation take a simple form. By considering first the compo-
nents of the electric field Eλ x, tð Þ, one can show that the expressions

Eλ x, tð Þ ¼
X
s¼�1

Esλ x, tð Þ (5)

satisfy Eq. (2) when Esλ x, tð Þ ¼ Esλ x� sct, 0ð Þ. In Eq. (5) above, the parameter s ¼
�1 is introduced in order to differentiate between solutions propagating to the left
(decreasing x) or the right (increasing x). In this notation, light characterised by s ¼
�1 þ1ð Þ propagates to the left (right). The exact form of Esλ x, tð Þ is determined from
the initial conditions of the system.
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2.3.2 Complete electric and magnetic field solutions

The corresponding magnetic field solution to Eq. (2) is not independent of the
electric field solution. By using Maxwell’s equation, Eq. (1), the magnetic field can be
determined directly from the electric field solution (5). After taking into account the
sign difference for different polarisations, one may show that

E x, tð Þ ¼
X
s¼�1

c EsH x, tð Þŷþ EsV xð , tÞẑ� �
(6)

and

B x, tð Þ ¼
X
s¼�1

s �EsV x, tð Þŷþ EsH xð , tÞẑ� �
: (7)

Here ŷ and ẑ are unit vectors oriented in the positive y and z directions
respectively.

2.3.3 Energy and momentum

Since E(x, t) and B(x, t) are both characterised by the solutions Esλ x, tð Þ, the energy
and Poynting vector of the field must also be characterised by these solutions.
Substituting Eqs. (6) and (7) into Eqs. (3) and (4) one finds that

Henergy tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dx
A
2

ε Esλ xð , tÞj j2
n o

(8)

and

S x, tð Þ ¼
X
s¼�1

X
λ¼H,V

sc=μð Þ Esλ xð , tÞj j2: (9)

It is clear from Eq. (9) that a positive Poynting vector indicates propagation to the
right whereas a negative Poynting vector indicates propagation to the left.

3. The wave function of the photon

The equations of motion for light in a homogeneous and isotropic dielectric
medium apply the first set of constraints to the particle behaviour of light. For a
correct and natural interpretation of the photon wave function, the probability distri-
bution of particles represented by the wave function must evolve identically to the
classical wave packets of an EM wave. In this section we construct a Fock space of
localised bosonic excitations that provide a basis for constructing single-photon wave
packets. By imposing a constraint on the dynamics of these excitations in 1 + 1-
dimensional space-time, a Schrödinger equation is formulated for the photon.
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3.1 The parameter space of single-photon wave packets

3.1.1 Unitary time evolution

Consider the propagation of a photon wave packet through the dielectric medium
along the x-axis. At an initial time t ¼ 0, we may represent this wave packet in the
Hilbert space by a state vector ∣ψ1 0ð Þi. After a time t has passed, the photon wave
packet is now found in the time-evolved state

∣ψ1 tð Þi ¼ U t, 0ð Þ∣ψ1 0ð Þi (10)

where U(t, 0) is the unitary time-evolution operator from time t ¼ 0 to time t. As
we have determined that light must propagate along the x-axis at a speed c, the unitary
operator U(t, 0) transports the left- and right-moving components of the wave packet
to the left or the right by an exact distance ct.

3.1.2 A complete parameter space

If we consider two single-photon wave packets that are entirely distinguishable
from each other, then their corresponding state vectors must be orthogonal. When we
localise two photons to different points along the x-axis, they are distinguishable from
each other. Localised photon states, therefore, are orthogonal to one another, and it is
natural to characterise them by their position along the x-axis. In the same way,
photons with different polarisations are distinguishable and their state vectors
orthogonal. Photon states are therefore also characterised by a polarisation λ. In
addition to this, states describing propagation in opposite directions must be orthog-
onal to one another, and must be characterised by the discrete parameter s ¼ �1.

To see that this last parametrisation must be so, consider the setup illustrated in
Figure 1 showing two identical single-photon wave packets propagating in opposite
directions. We denote the state vectors for the left- and right-hand systems ∣ψ1 x, tð Þi
and ∣ψ2 x, tð Þi respectively where ∣ψ1 x, 0ð Þi ¼ ∣ψ2 xþ 2a, 0ð Þi. At an initial time t ¼ 0,
the photon in the left-hand diagram is localised to a position x ¼ �a whereas the
photon in the right-hand diagram is localised to the position x ¼ a. Since the two wave
packets occupy separate regions of the x-axis, their state vectors must be orthogonal:

ψ 1 x, 0ð Þjψ2 x, 0ð Þh i ¼ ψ1 x, 0ð Þjψ1 x� 2a, 0ð Þh i ¼ 0: (11)

At a later time t ¼ a=c, both photons will have travelled a distance a to the left or
the right of their initial positions. After taking into account the direction of propaga-
tion of each of the photons, at this later time t ¼ a=c, both wave packets will coincide
with each other perfectly at the origin. When parametrised by only a position and

Figure 1.
The diagram illustrates the propagation of two localised wave packets. In the left-hand diagram, a single photon
propagates to the right from an initial position x ¼ �a. In the right-hand diagram, a single photon of identical
shape propagates to the left from an initial position x ¼ a: At a later time both wave packets reach the origin. Here
the two wave packets are completely identical with respect to their position.
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polarisation, therefore, their corresponding state vectors will no longer be orthogonal.
Hence, the inner product

ψ1 x, tð Þjψ2 x, tð Þh i ¼ ψ1 x, tð Þjψ1 x� 2a, tð Þh i (12)

will necessarily be non-zero. Given that the states ∣ψ1 x, tð Þi and ∣ψ2 x, tð Þi evolve
unitarily according to Eq. (10), however, the inner product between the two states at a
time t is given by

ψ1 x, tð Þjψ2 x, tð Þh i ¼ ψ1 x, 0ð ÞjU† t, 0ð ÞU t, 0ð Þjψ2 x, 0ð Þ� �

¼ ψ1 x, 0ð Þjψ2 x, 0ð Þh i (13)

where † denotes hermitian conjugation. This inner product must therefore be
constant with respect to time. The assumption that our two state vectors are initially
orthogonal, therefore, is inconsistent with unitary time evolution and we reach a con-
tradiction. The resolution to this problem is to ensure that wave packets propagating in
different directions remain orthogonal at all times. To properly differentiate between
states propagating in different directions, therefore, single-photon wave packets must
also be parametrised by s ¼ �1 in addition to position and polarisation.

3.2 Local photons

3.2.1 Creation and annihilation operators

During the interactions between light and matter, atoms absorb and emit light on
the level of single photons. The appropriate Hilbert space for the free EM field,
therefore, is a Fock space of identical and non-interacting bosonic particles. From
what we have determined in the previous section, the localised photonic excitations of
the EM field are characterised at any one time by a coordinate x∈ �∞,∞ð Þ, a
polarisation λ ¼ H,V and a direction of propagation s ¼ �1. From now on we shall
refer to such excitations as blips, which is the acronym for bosons localised in position.

As is usual for a system of identical particles we may define a collection of blip
annihilation operators that remove a single blip from the system. The blip annihilation
operator is denoted asλ x, tð Þ in the Heisenberg picture and asλ x, 0ð Þ in the Schrödinger
picture. A state containing only a single blip is defined

∣1sλ x, tð Þi ¼ a†sλ x, tð Þ ∣0i: (14)

The operator a†sλ x, tð Þ is termed the blip creation operator and generates a single
blip characterised by the parameters x, t, λ, sð Þ. In Eq. (14) above, ∣0i is the vacuum
state containing precisely zero blips. The vacuum state satisfies the property

asλ x, tð Þ ∣0i ¼ 0 (15)

for all x, t, s and λ.

3.2.2 Commutation relations

Although the state defined in Eq. (14) contains only one blip, states containing an
arbitrary number of blips can be generated by repeatedly applying the blip creation
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operators to the vacuum state. Since blips are bosons, the resulting state must be
unchanged through any reordering of the blips’ positions. Consequently, the ordering
of these creation operators must be insignificant and they must commute with one
another. Hence

a†sλ x, tð Þ, a†s0λ0 x0, t0ð Þ� � ¼ 0 ¼ asλ x, tð Þ, as0λ0 x0, t0ð Þ½ � (16)

for any x, x0, t, t0, λ, λ0, s and s0.
In Section 3.1.2 it was discussed how blips located at different positions, carrying

different polarisations or propagating in opposite directions must be perfectly distin-
guishable from one another. As a consequence, the states that represent them must
also be orthogonal. Taking this into account, we specify the following inner product
for two single-blip states:

1sλ x, tð Þj1s0λ0 x0, tð Þh i ¼ δs,s0 δλ,λ0 δ x� x0ð Þ: (17)

Using Eqs. (14) and (15), and expressing the inner product (17) in terms of blip
creation and annihilation operators, it can be shown that at any fixed time t

asλ x, tð Þ, a†s0λ0 x'ð , tÞ� � ¼ δs,s0 δλ,λ0 δ x� x0ð Þ: (18)

This is the fundamental commutation relation for blips.

3.2.3 The photon wave function

In the context of linear optics experiments [46, 47], it is usual to talk about single
photons when referring to particles whose state vectors ∣1 tð Þi can be expressed ∣1 tð Þi ¼
a† tð Þ ∣0i where a(t) is an annihilation operator satisfying the commutation relation

a tð Þ, a tð Þ†� � ¼ 1: (19)

The blip states defined in Eq. (14) are not normalisable, but when superposed over
a region of the x-axis can provide a localised basis for normalised single-photon wave
packets. Taking this into account, the annihilation operator for a single-photon wave
packet can be defined in the following way:

a tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dxψ ∗
sλ xð Þasλ x, tð Þ (20)

where ∗ denotes complex conjugation. In Eq. (20), the operator a(t) is properly
normalised and satisfies Eq. (19) when

X
s¼�1

X
λ¼H,V

ð∞
�∞

dx ψ sλ xð Þj j2 ¼ 1: (21)

The function ψ sλ x, tð Þ in Eq. (20) represents the probability amplitude for finding a
photon with polarisation λ propagating in the s direction at a position x. More specif-
ically, the transition probability between the single-photon state ∣1 tð Þi and the state
∣1sλ x, tð Þi is given by the expression
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h0jasλ x, tð Þa† tð Þj0i�� ��2 ¼ ψ sλ xð Þj j2: (22)

Hence ψ sλ x, tð Þ has the correct properties to be correctly interpreted as a single-
photon wave function in the position representation.

3.3 A Schrödinger equation for light

3.3.1 A Hamiltonian constraint

In order to calculate the dynamics of a quantum system, it is usual to first determine
the Hamiltonian for that system. In a closed system, the Hamiltonian would be given
by the energy observable. Once found, the Hamiltonian is used to construct a Schrödinger
equation for state vectors in the Hilbert space. So far, an energy observable has not been
constructed for the blip states. Moreover, there is no immediate choice for this observ-
able, as, having complete uncertainty in their frequency, blips are not the eigenstates of
the energy observable. Fortunately, however, the dynamics of single blips have already
been determined. They are given by the solutions to Maxwell’s equations, Eq. (5).

Blips are characterised by both a coordinate x in space and a coordinate t in time. A
single blip, therefore, may exist at one position at one moment in time, and then at a
different position at another moment in time. The classical dynamics of light in the
medium places a constraint on which positions the blip may take from onemoment to the
next. Being more specific, in order to satisfyMaxwell’s equations, the expectation value of
a localised blip must propagate at a speed c along the x-axis without any dispersion. These
dynamics are imposed by the constraint asλ x, tð Þh i ¼ asλ x� sct, 0ð Þh i. Since this applies
for any time-independent state, we can determine the general constraint

asλ x, tð Þ ¼ asλ x� sct, 0ð Þ: (23)

When allowed to propagate freely, a blip found at x at a time t will be found at a
position x � sct at the time t ¼ 0.

The constraint on the dynamics, Eq. (23), enables us to define an equation of
motion for the blip operators asλ x, tð Þ. More specifically, by taking the time derivative
of Eq. (23) it can be shown that

∂

∂t
þ sc

∂

∂x

� �
asλ x, tð Þ ¼ 0: (24)

The equation above takes the form of a Wheeler-deWitt equation, and defines a
stationary or “timeless” state of the system [48]. In the system considered here, this
equation confines the trajectories of blips to the boundaries of the light cone. By
relating a change in time to a change in the position of a blip in this way, we obtain a
Schrödinger equation for blips:

iℏ
∂

∂t
∣1sλ x, tð Þi ¼ �iℏsc

∂

∂x
∣1sλ x, tð Þi: (25)

3.3.2 The dynamical Hamiltonian

In the context of a Schrödinger equation, the motion of the blip given by the right-
hand side of Eq. (25) is generated by the Hamiltonian for this system. It is very
convenient to determine this Hamiltonian as it provides a basis for introducing
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interactions in more complex models. To this end, by using the Schrödinger equation
for blips (25), we can determine exactly the Hamiltonian for the free propagation of
light in a one-dimensional dielectric medium. Here we shall denote this operator
Hdyn tð Þ with the subscript “dynamical” to distinguish it as the Hamiltonian operator
present in the Schrödinger equation.

Looking again at the right-hand side of Eq. (25), it can be seen that the number of
blips, their polarisation and their direction of propagation are all preserved as they
evolve in time. It is only their position that changes. Taking this into account, a
suitable ansatz for the dynamical Hamiltonian Hdyn tð Þ would be

Hdyn tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dx
ð∞
�∞

dx iℏsc f sλ x, x0ð Þa†sλ x, tð Þasλ x0, tð Þ (26)

where f sλ x, x0ð Þ is a function to be determined. This operator takes the form of an
exchange operator that annihilates a blip at one position and replaces it with an
identical blip at a different position. To ensure that Hdyn tð Þ is hermitian,
f sλ x, x0ð Þ ¼ �f sλ x0, xð Þ.

In the Heisenberg picture, the dynamics of a blip operator asλ x, tð Þ can be equiva-
lently expressed through Heisenberg’s equation of motion:

∂

∂t
asλ x, tð Þ ¼ � i

ℏ
asλ x, tð Þ,Hdyn tð Þ� �

: (27)

Hence by substituting the Hamiltonian (26) into Heisenberg’s Eq. (27), making use
of the commutation relations (16) and (18), and ensuring equivalence to Eq. (24), it
can be shown that

f sλ x, xð Þ ¼ � ∂

∂x
δ x� xð Þ (28)

and therefore

Hdyn tð Þ ¼ �i
X
s¼�1

X
λ¼H,V

ð∞
�∞

dx ℏsca†sλ x, tð Þ ∂

∂x
asλ x, tð Þ: (29)

This Hamiltonian is hermitian and therefore a generator of unitary dynamics. It
should also be noted that the Hamiltonian for right-propagating blips takes the nega-
tive value of the Hamiltonian for left-propagating blips. This demonstrates that a
right-propagating blip behaves identically to a left-propagating blip when the direc-
tion of time is reversed.

4. Field observables in the position representation

The approach to quantisation taken here differs from usual procedures by focus-
sing on the particle character of the EM field rather than the quantised field observ-
ables. It is by taking this point of view that the field observables do not require a direct
relationship to the wave function of the photon. This view is also held in Ref. [49].
The field observables remain, however, the fundamental observables from which we
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may derive expressions for the energy and momentum of the EM field. The purpose of
this section is to construct the electric and magnetic field observables in the position
representation acting on the extended blip Hilbert space. By insisting that blips are the
localised excitations of the EM field, the field observables obtain unique characteris-
tics that are crucial for a fuller understanding of many quantum effects.

4.1 The EM field observables

4.1.1 An ansatz for the EM field observables

The electric and magnetic field observables E(x, t) and B(x, t) are a linear and
hermitian superposition of the creation and annihilation operators for the photonic
excitations of the system. In the position representation, these are the blip operators
a†sλ x, tð Þ and asλ x, tð Þ: Although this superposition is linear, there is no reason to assume
that this superposition must be local. In other words, the field observables at a position
x do not need to be a superposition of blip operators defined at that same point only.
For this reason, it is useful to introduce the notation

R asλ½ � x, tð Þ ¼
ð∞
�∞

dx0 Rsλ x, x0ð Þasλ x0, tð Þ: (30)

Here R is referred to as the regularisation operator and R x, x0ð Þ is a distribution
over the x axis.

In the following, the operators E(x, t) and B(x, t) shall denote the complex part of
the electric and magnetic field observables respectively. The total real fields are given
by the hermitian superposition OþO†

� �
=2 where O ¼ E,B: Taking this into account,

an appropriate ansatz for the complex field observables is

E x, tð Þ ¼
X
s¼�1

c R asH½ � xð , tÞŷþR asV½ � x, tÞẑð ��
(31)

and

B x, tð Þ ¼
X
s¼�1

s �R asV½ � xð , tÞŷþR asH½ � x, tÞẑð �:�
(32)

It may be noted here that all components of the real electric and magnetic field
observables commute.

4.1.2 The regularisation operator

The regularisation operator R provides a relationship between the field observ-
ables and the blip operators. Whilst in many quantisations photon wave packets must
be locally related to the field observables, for a general choice of R x, x0ð Þ, blips at one
position may contribute to the field observables at another position. In fact, we shall
see later in this chapter that a single blip contributes to the field observables at all
positions along the x-axis. Notwithstanding this, the function R x, x0ð Þ must satisfy
several general conditions.

Like the blip operators, the expectation values of the field observables must
satisfy Maxwell’s equations with respect to any time-independent state. Taking into
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account the orientation of the field components in Eqs. (31) and (32), this condition
implies that the regularised blip operators R asλ½ � x, tð Þ must satisfy Eq. (24). Since this
equation is also satisfied by the blip operators, using Eq. (30) it can be demonstrated
that Rsλ x, x0ð Þ must be position invariant; that is, Rsλ x, x0ð Þ ¼ Rsλ x� x0ð Þ. What is
more, since the medium is homogeneous and isotropic, the regularisation must be
symmetric, Rsλ x� x0ð Þ ¼ Rsλ x0 � xð Þ, and independent of s and λ,Rsλ x� x0ð Þ ¼
R x� x0ð Þ:

4.2 Energy in the position representation

4.2.1 The energy observable

Now that we have a pair of expressions for the electric and magnetic field observ-
ables, it is possible to determine the energy observable for the free field in one-
dimension. To do so we substitute the field observables (31) and (32) into the classical
expression for the energy determined in Eq. (3). In return we find that

Henergy tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dx
Aεc2

4
R asλ½ � xð , tÞ þH:cf g2 (33)

Due to the square in the integrand, this observable is strictly positive as would be
expected for an energy. This result, however, implies that the energy observable
cannot be equal to the dynamical Hamiltonian. Whereas the energy of a single blip is
always positive, the left- and right-moving components of the dynamical Hamiltonian
have opposite signs.

4.2.2 Energy conservation

In a closed system, energy is always conserved. In standard quantisations, when
the dynamical Hamiltonian is equivalent to the energy observable, conservation of
energy is guaranteed automatically as a consequence of Heisenberg’s equation. We
have seen, however, that in this quantisation the dynamical Hamiltonian and the
energy observable are not equal. Energy conservation is only guaranteed, therefore, if
Henergy tð Þ and Hdyn tð Þ commute. Using the expressions for Hdyn tð Þ and Henergy tð Þ given
in Eqs. (26) and (33) respectively, and by taking into account that f sλ x� x0ð Þ is an odd
function and R x� x0ð Þ an even function, it can be shown that the dynamical Hamil-
tonian and the energy observable commute with each other. Hence, the energy of the
free EM field is conserved.

4.3 Non-local contributions to the field observables

4.3.1 Monochromatic excitations

It can be seen from Eq. (33) that the regularisation operator plays an important
role in determining the energy of a photon. Since the energy of a photon is determined
by its frequency, it is convenient to express the energy observable (33) in a basis of
monochromatic excitations. Such a set of excitations can be constructed by
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considering the Fourier transform of the localised blip operators. We introduce,
therefore, the operators

asλ k, tð Þ ¼
ð∞
�∞

dkffiffiffiffiffi
2π

p e�ikxasλ x, tð Þ (34)

which, using Eq. (18), can be shown to satisfy the equal-time commutation relation

asλ k, tð Þ, a†s0λ0 k0
�

, tÞ� � ¼ δss0 δλλ0 δ k� k0
� �

: (35)

All annihilation operators commute amongst themselves, as do the creation operators.

4.3.2 The energy of a photon

Expressed in terms of the monochromatic operators asλ k, tð Þ and their hermitian
conjugates, the energy observable (33) takes the alternative form

Henergy tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dk
Aεπc2

2
∥R kð Þasλ k, tð Þ þR ∗ �kð Þ a†sλ �k, tð Þ∥2: (36)

In the expression above, R kð Þ is the Fourier transform of the regularisation func-
tion R x� x0ð Þ defined earlier. By taking into account the commutation relation (35),
we can show that the energy expectation value of a single monochromatic excitation
of angular frequency ω ¼ skc is

1sλ k, tð ÞjHenergy tð Þj1sλ k, tð Þ� � ¼ Aεπc2 R kð Þj j2 δ 0ð Þ: (37)

In the above the state ∣1sλ k, tð Þi is defined analogously to the blip state in Eq. (14).
The delta function appearing in Eq. (37) is due only to the infinite normalisation of the
monochromatic states.

When an atom with transition energy ℏ∣ω∣ emits a photon, exactly one excitation is
generated oscillating with an angular frequency ω. If the total energy is carried away
by the photon, an excitation of frequency ω must have an energy ℏ∣ω∣. Equating the
energy of the monochromatic excitation, therefore, with the expectation value (37),
we can determine, up to an overall phase, an expression for the function R kð Þ. Doing
so we find that

R kð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ∣k∣
Aεπc

r
(38)

4.3.3 A non-local regularisation

Now that we have determined R kð Þ, we can calculate R x� x0ð Þ explicitly, thus
providing us with a relationship between blips and the field observables in the posi-
tion representation. Taking the Fourier transform of Eq. (38), we find that

R x� x0ð Þ ¼
ð∞
�∞

dk
2π

eik x�x0ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2ℏ∣k∣
εAc

r
: (39)

When x 6¼ x0, this expression can be given in the alternative form
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R x� x0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
4πεAc

r
1

x� x0j j3=2
: (40)

The distribution R x� x0ð Þ is non-vanishing everywhere, and decreases away from
the origin with the negative three halves power of distance.

Whilst the blips represent the localised particles of the system, and interact only
locally with their surroundings, they contribute to the measurement of the electric
and magnetic field observables in a highly non-local way. One way to think about this
relationship is that the measurement of the electric and magnetic fields takes into
account the behaviour of blips at all positions in space. An alternative perspective
would be to treat each blip as a “carrier” of a non-local field. This interpretation is
visualised in Figure 2 showing the contribution of a single blip to the electric field. In a
similar manner to as one may think about the gravitational field about the earth, one
may think of a single blip as being surrounded by and carrying with it a non-local
electromagnetic field.

5. Conclusions

In standard treatments of the quantised EM field in one dimension, single photon
wave packets are characterised by a wave vector k and a polarisation λ. By demanding
that photons can be localised, however, and that they must propagate at the speed of
light along the x-axis, we have shown that an additional discrete parameter s ¼ �1
must be introduced, thus doubling the size of the usual Hilbert space. Whilst canonical
quantisation overlooks these degrees of freedom, by taking the viewpoint of a
Schrödinger equation, these additional degrees of freedom arise naturally. What is
more, by maintaining the perspective of a Schrödinger equation, a Hamiltonian oper-
ator Hdyn tð Þ was constructed that generates the time-evolution of state vectors in the
Hilbert space. Unlike other quantisations, however, our Hamiltonian necessarily pos-
sess both positive and negative eigenvalues. This can be most clearly seen by

Figure 2.
The figure illustrates the contribution of a single blip (the blue spot) to the electric field observable. The blip in the
diagram contributes to measurements of the electric field observable at all points along the x axis. The magnitude of
the contribution decreases with the distance of the measurement from the blip.
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expressing the dynamical Hamiltonian in the momentum representation. In terms of
the monochromatic operators defined in Eq. (34), Hdyn tð Þ is given by the expression

Hdyn tð Þ ¼
X
s¼�1

X
λ¼H,V

ð∞
�∞

dk ℏscka†sλ k, tð Þasλ k, tð Þ: (41)

This Hamiltonian is almost identical to the usual Hamiltonian of the free EM field,
but the eigenvalues ℏsck can take both positive and negative values.

In standard quantisations, the Hamiltonian is always positive. The Hamiltonian
above is positive only when the signs of s and k coincide, or equivalently when the sign
of k indicates direction of propagation. Under this condition the dynamical Hamilto-
nian (41) and the energy observable (36) are equivalent. In this quantisation we
therefore go beyond current assumptions by demanding that the Hamiltonian can be
both positive and negative. This idea is not new, however. In the work of Hegerfeldt
and others, it was shown that a wave packet cannot propagate causally when the
Hamiltonian is bounded from below [37]. Mostafazadeh and Zamani [50], therefore,
introduced a new inner product that enabled the use of negative frequency states.
More recently, with similar justifications, Hawton considers real EM field excitations
that necessarily contain both positive and negative frequency contributions [51–53].

By extending the Hilbert space to include both positive- and negative- frequency
photons, it is possible to localise a photon not only in space, but also in time. In
quantum physics, it has been a significant problem to define a time operator [48].
Whereas the position of a particle is associated with a position observable, time is only
a parameter of the system. Since in our quantisation all wave packets propagate
causally, an operator can be defined that determines the time at which a particle will
reach a particular position. In investigations into a “quantum relativity”, where both
space and time are placed on an equal quantum footing, a key concept is that of a
closed and stationary universe [54]. The dynamics of these systems are constrained by
a Wheeler-deWitt equation. As the dynamical constraint for blips (24) is of this form,
and defines a stationary state in the global Hilbert space of excitations in space-time,
the blip quantisation may provide a useful and insightful scheme for the modelling of
quantum clocks and the study of a quantum time.

One of the most significant features of this quantisation is the non-locality between
the blip operators and the field observables. This result is a direct consequence of the
frequency-dependence of energy carried by the EM field. In many schemes,
localisation of a photon is synonymous with localisation of the field observables. To fix
the disparity between a probabilistic wave function and an energy carrying field,
however, non-local or non-hermitian inner products are introduced. Although often
elegant, such inner products can be cumbersome, and may depend upon the boundary
conditions of the system. In the view of this quantisation, however, an excitation of
the field is only localised if it satisfies the orthogonality relation (17), and such non-
local contributions must therefore exist. Whilst this viewpoint may raise questions
regarding instantaneous contributions to the field observables, the non-locality of the
field observable is an important feature of the EM field. For instance, in Ref. [55], it is
shown that these non-local field contributions are responsible for the Casimir effect
between two parallel conducting plates.

The Schrödinger equation for light gives an alternative perspective on the particle
behaviour of the free EM field. By returning to principles of wave-particle duality, the
existing theory of the EM field has been shown to fall short with regard to the
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propagation of localised particles, and as a result new physics has been unearthed. The
new quantisation that has followed provides a major change in our perspective on the
interactions of photons and the way we describe them. For instance, using this
quantisation one can construct a local interaction Hamiltonian for a double-sided
semi-transparent mirror; something that was not previously possible [56]. Moreover,
an investigation of blips in a cavity leads to a new perspective on the origin of the
Casimir effect [55]. In future, this quantisation may contribute towards a fuller
understanding of well-known quantum effects, and may also provide the tools neces-
sary for studying new ones.
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Chapter 3

Path Integral of Schrödinger’s
Equation
Hocine Boukabcha, Salah Eddin Aid and Amina Ghobrini

Abstract

The path integral is a powerful tool for studying quantum mechanics because it has
the merit of establishing the connection between classical mechanics and quantum
mechanics. This formalism quickly gained prominence in various fields of theoretical
physics, including its generalization to quantum field theory, quantum mechanics,
and statistical physics. Using the Feynman propagator, we can calculate the partition
function, the free energy, wave functions, and the energy spectrum of the considered
physical system. Moreover, the Feynman formalism finds broad applications in geo-
physics and in the field of financial sciences.

Keywords: radial propagator, space–time transformation, modified Pöschl-Teller
potential, energy spectrum, wave functions

1. Introduction

In this chapter, the Schrödinger solutions of potential problem have been evalu-
ated using the Feynman path integral formulation of quantum mechanics; an appro-
priate space-time transformation has been applied to Green’s function associated with
the problem, which made it an integrable function. Also, the energy spectrum in a
non-relativistic regime with normalized wave functions for potential, is obtained
using path integral formalism of quantum mechanics; the results are evaluated for
any state due to the use of an approximation scheme for centrifugal term 1/r2, the
constructed propagator associated with the Schrödinger equation of the problem was
treated by space-time transformation trick that made it integrable, and energy eigen-
values for some exceptional cases of potential were also presented to compare our
solutions with those obtained in previous studies. The organization of this chapter is
as follows: in Section 1, we formulate the radial propagator and its corresponding
Green’s function associated with a nonrelativistic particle in the presence of a poten-
tial where we use an approximation to the centrifugal term. In Section 2, we treat
Green’s function of Generalized inverse quadratic Yukawa potential by performing a
nontrivial space-time transformation to pass from the actual complex problem to
another already solved one, which is a Pöschl-Teller (PT) potential problem. In
Section 3, energy eigenvalues and corresponding eigenfunctions are extracted from
the poles and residues of the aforementioned solved Green’s function. Section 4
discusses special cases of Deng Fun potentiel, Generalized inverse quadratic Yukawa
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potential as Kratzer potential, Yukawa potential, inversely quadratic Yukawa poten-
tial, and Coulomb potential.

2. Propagator and Schrödinger equation

The Schrödinger equation is a fundamental equation in quantum physics that
describes the behavior of quantum systems. It was formulated by Erwin Schrödinger
in 1925. The Schrödinger equation describes the time evolution of the wave function
of a quantum system is governed by the equation:

iℏ
d
dt

∣ψ tð Þi ¼ Ĥ∣ψ tð Þi, (1)

which integrates in the particular case of a time-independent Hamiltonian:

∣ψ t0ð Þi ¼ exp � i
ℏ
Ĥ t0 � tð Þ

� �
∣ψ tð Þi, (2)

where Û t0, tð Þ ¼ exp � i
ℏ Ĥ t0 � tð Þ� �

represents the evolution operator. Let us
consider a particle in a potential, the Hamiltonian is written as:

Ĥ ¼ P̂
2

2m
þ V x̂ð Þ: (3)

In the position representation x, the evolution equation becomes:

x0jψ t0ð Þh i ¼ x0j exp �i
ℏ
Ĥ t0 � tð Þ

� �
jψ tð Þ

� �
: (4)

Let us use the position closure relation x
ð
dx xj i xh j ¼ 1: (5)

Eq. (4) becomes:

x0jψ t0ð Þh i ¼
ð
dx x0j exp �i

ℏ
Ĥ t0 � tð Þ

� �
jψ tð Þ

� �
: (6)

Thus, it can be written as

ψ x0, t0ð Þ ¼
ð
K x0, t0; x, tð Þψ x, tð Þdx: (7)

The propagator K x0, t0; x, tð Þ ¼ x0j exp �i
ℏ Ĥ t0 � tð Þ� �jx� �

allows us to evaluate the
transition amplitude between the two states. Let us consider an initial state localized
at x0

ψ x, t0ð Þ ¼ δ x� x0ð Þ, (8)
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then,

ψ x0, t0ð Þ ¼ K x0, t0; x0, t0ð Þ: (9)

the probability amplitude of finding the particle at position x0 at time t0:

3. Transition from propagator to Green’s function

As we saw earlier, the propagator can be expressed in terms of the time-evolution
operator as follows [1, 2]:

K x00, t00; x0, t0ð Þ ¼ x00jU t00, t0ð Þjx0h i, (10)

where

U t00, t0ð Þ ¼ exp
�i
ℏ
Ĥ t00 � t0ð Þ

� �
, (11)

with T ¼ t00 � t0: Moreover, it is possible to extract the energy spectrum as well
as the wave function corresponding to a given physical system, from Green’s
function, the latter being none other than the Fourier transform of the propagator.
In effect [3],

G x00, x0;Eð Þ ¼ i
ℏ

ð∞
0
dTei Eþiεð ÞT=ℏK x00, x0;Tð Þ, (12)

where ε, is a positive constant

Ĥ � E
� �

G x00, x0;Eð Þ ¼ δ x00 � x0ð Þ: (13)

Formula (10) allows us to write:

G x00, x0;Eð Þ ¼ x00j 1

Ĥ � E� iε
jx0

� �
: (14)

By introducing the closure relation on position ∣n,ℓi, we can express the probabil-
ity amplitude (11) as follows:

G x00, x0;Eð Þ ¼ i
ℏ

ð∞
0

X
n,ℓ

dT x00jn,ℓh i n,ℓjei Eþiεð ÞT
ℏ e�

iHT
ℏ jx0

D E
, (15)

or alternatively,

G x00, x0;Eð Þ ¼
X∞
n,ℓ

χ ∗
n,ℓ x0ð Þχn,ℓ x00ð Þ
En,ℓ � E� iε

: (16)

where χn,ℓ xð Þ is the wave function corresponding to the eigenenergy En,ℓ, and it is
also possible to arrive at χn,l xð Þ and En,ℓ from the relation.
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K x00, t00; x0, t0ð Þ ¼
X∞
n,ℓ

χ ∗
n,ℓ x0ð Þχn,ℓ x00ð Þe�

iEn,ℓT
ℏ : (17)

4. Path integral in spherical coordinates

In quantum mechanics, rotational symmetry is crucial in finding the wave func-
tions and corresponding energies of physical systems. Spherical coordinates transform
from the Schrödinger equation of rotational symmetry. Therefore, we can separate
this equation into an angular part expressed in terms of spherical harmonics, whose
solutions are known, and a radial part that contains specific information about the
dynamical systems.

In the path integral, this coordinate transformation is possible, but initially, things
become complicated. One of these complexities arises when studying the presence of a
centrifugal barrier, which eliminates the possibility of “time slicing.”

The following relation represents the formula for the three-dimensional (3D)
propagator [4, 5]:

K r00
!
, t00; r0

!
, t0

� �
¼

ðr00!

r0
!Dr! tð Þ exp

ð
i
ℏ

m
2

Δ rj!
� �2 � V r!

� �� �
dt

¼ lim
N!∞

Y
j¼1

Nþ1 m
2iπℏε

� �1
2
Y
i¼1

N ð

R3

d r!j

2
64

3
75 exp

i
ℏ
SN

� �
,

(18)

with

t00 ¼ tNþ1; t0 ¼ t0

r00
! ¼ r!Nþ1; r0

! ¼ r!0

and the total action:

SN ¼
XNþ1

j¼1

Sj ¼
XNþ1

j¼1

m
2ε

r2j þ r2j�1 � 2 r!j � r!j�1

� �
� εV rj!

� �� �
: (19)

Using the spherical coordinate system r, θ,φð Þ defined as:

x ¼ r sin θ cosφ
y ¼ r sin θ sinφ,
z ¼ r cos θ

8><
>:

(20)

with r>0; 0≤ θ< π and 0≤φ< 2π:
Where the volume element is expressed in spherical coordinates as:

d rj!¼ r2j sin θjdrjdθjdφj, (21)

the propagator (18) can be rewritten in spherical coordinates as:
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K r00
!
, t00; r0

!
, t0

� �
¼ lim

N!∞

Y
j¼1

Nþ1 m
2iπℏε

� �3
2
YN
j¼1

ð∞
0

ðπ
0

ð2π
0
r2j sin θjdrjdθjdφj

� �

�
Y
j¼1

Nþ1

exp
i
ℏ
Sj

� �� �
,

(22)

The elemental action is:

Sj ¼ m
2ε

r2j þ r2j�1 � 2rjrj�1 cosΘj,j�1

� �
� εV rj

� �
, (23)

where Θj,j�1 ¼ r!j, r
!
j�1

� �
,

with the angle between two vectors in spherical coordinates being:

cosΘj,j�1 ¼ cos θj cos θj�1 þ sin θj sin θj�1 cos φj � φj�1

� �
, (24)

and the measurement takes the form:

YNþ1

j¼1

m
2iπℏε

� �3
2
YN
j¼1

d r! ¼ m
2iπℏε

� �3
2 Nþ1ð ÞYN

j¼1

ð∞
0

ðπ
0

ð2π
0
r2j sin θjdrjdθjdφj

� �
: (25)

The previous expression of the propagator is not appropriate for integration due to
the presence of the term �i

ℏ
m
ε rjrj�1 cosΘj, j�1

� �
, and this term is separable into a radial

part and an angular part.
For an explicit evolution of the angular part of the propagator, we will use the

following formula [6]:

exp iz cosφð Þ ¼ 2
1
2Γ

1
2

� �X
k¼0

þ∞

kþ 1
2

� �
ik zð Þ�1

2 Jkþ1
2
zð ÞPk cosφð Þ

¼
ffiffiffiffiffi
π

2z

r X
k¼0

þ∞

2kþ 1ð ÞikJkþ1
2
Pk cosφð Þ:

(26)

Jn xð Þ is the Bessel function, which is given by:

Jn xð Þ ¼
X
P¼0

þ∞ �1ð ÞP
P! nþ Pð Þ!

x
2

� �2Pþn
, (27)

if

x ¼ �U, (28)

then

Jn �Uð Þ ¼
X
P¼0

þ∞ �1ð ÞP
P! nþ Pð Þ!

�U
2

� �2Pþn

¼
X
P¼0

þ∞ �1ð ÞP
P! nþ Pð Þ!

U
2

� �2Pþn

�1ð Þn:
(29)

41

Path Integral of Schrödinger’s Equation
DOI: http://dx.doi.org/10.5772/intechopen.112183



we have

Jn ixð Þ ¼ inIn, (30)

where In is the modified Bessel function.
We define

y ¼ iz, (31)

According to (26) and (30), we can deduce that

ey cosφ ¼
ffiffiffiffiffiffiffi�π

2iy

r X
k¼0

þ∞

2kþ 1ð ÞikJkþ1
2
Pk cosφð Þ

¼ �1ð Þ12
ffiffiffiffiffiffi
π

2iy

r X
k¼0

þ∞

2kþ 1ð Þik �1ð Þkþ1
2Jkþ1

2
iyð ÞPk cosφð Þ

¼ �1ð Þ12
ffiffiffiffiffiffi
π

2iy

r X
k¼0

þ∞

2kþ 1ð Þik �1ð Þkþ1
2 ið Þkþ1

2Ikþ1
2
yð ÞPk cosφð Þ

¼
ffiffiffiffiffi
π

2y

r X
k¼0

þ∞

2kþ 1ð ÞIkþ1
2
yð ÞPk cosφð Þ,

(32)

where Pk cosφð Þ are the Legendre polynomials.
We arrive at the following expression for the propagator, by substituting formula

(32) in (22):

K r00
!
, t00; r0

!
, t0

� �
¼ lim

N!∞

Y
j¼1

Nþ1 m
2iπℏε

� �3
2
YN
i¼1

ð∞
0

ðπ
0

ð2π
0
r2j sin θjdrjdθjdφj

� �

�
Y
j¼1

Nþ1

exp
i
ℏ

m
2ε

r2j þ r2j�1

� �
� εV rj

� �h i� �� �

�
YNþ1

j¼1

iπℏε
2mrjrj�1

� �1
2 X
l… lNþ1¼0

þ∞

2lj þ 1
� �

� Iljþ1
2

mrjrj�1

iℏε

� �
Pl cosΘj,j�1
� �

,

(33)

lj ¼ l,∀j ¼ 1, … ,N þ 1

where else

K r00
!
, t00; r0

!
, t0

� �
¼ lim

N!∞

m
2iπℏε

� �3
2 Nþ1ð Þ X

l… lNþ1¼0

þ∞ YN
j¼1

ð∞
0
r2j drj

" #

�
YN
j¼1

ðπ
0

ð2π
0

2lj þ 1
� �

Iljþ1
2

mrjrj�1

iℏε

� �
Plj cosΘj,j�1
� �

sin θjdθjdφj

" #

� 2lNþ1 þ 1ð ÞIlNþ1þ1
2

mrjrj�1

iℏε

� �
PlNþ1 cos θj,j�1

� �h i

�
YNþ1

j¼1

exp
i
ℏ

m
2ε

r2j þ r2j�1

� �
� εV rj

� �h i� �� �

�
YNþ1

j¼1

iπℏε
2mrjrj�1

� �1
2

,

(34)
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we can use the following expression

YN
j¼1

rj ¼ 1ffiffiffiffiffiffiffiffi
r00r0

p
YNþ1

j¼1

rjrj�1
� �1

2, (35)

by substituting Expression (35) in (34), we obtain

K r00
!
, t00; r0

!
, t0

� �
¼ lim

N!∞

m
2iπℏε

� � Nþ1ð Þ 1ffiffiffiffiffiffiffiffi
r00r0

p
� � X

ℓ…ℓNþ1¼0

þ∞ YN
j¼1

ðþ∞

0
rjdrj

" #

�
YNþ1

j¼1

exp
i
ℏ

m
2ε

r2j þ r2j�1

� �
� εV rj

� �n o� �� �

�
YN
j¼1

ðπ
0

ð2π
0

2ℓj þ 1
� �

Iℓjþ1
2

mrjrj�1

iℏε

� �
Pℓj cosΘj,j�1
� �

sin θjdjdφj

� �

� 2ℓNþ1 þ IℓNþ1þ1
2

mrjrj�1

iℏε

� �
PℓNþ1 cosΘj, j�1

� ��h i
:

(36)

The Legendre polynomials can be decomposed into spherical harmonics

Pℓ cos θð Þ ¼ 4π
2ℓþ 1

� �X
m¼�ℓ

Yℓ,m θN,φNð ÞY ∗
ℓ,m θN�1,φN�1ð Þ, (37)

where Pℓ cos θð Þ represents the Legendre polynomial of order ℓ and degree m, θ is
the polar angle, and ϕ is the azimuthal angle. Yℓ,m θ,φð Þ corresponds to the associated
spherical harmonic of order ℓ and degree m.

This formula establishes a connection between Legendre polynomials and spherical
harmonics, providing an expansion in terms of angles for functions or phenomena
with spherical symmetry,

where

Yℓ,m θ,φð Þ ¼ �1ð Þm 2ℓþ 1ð Þ
4π

� ℓ�mð Þ!
ℓþmð Þ!

� �
Pm
ℓ cos θð Þ exp imφð Þ, (38)

Formula (32) is as follows:

ey cosφ ¼ 2π

ffiffiffiffiffi
2π
y

s X
ℓ¼0

þ∞

2ℓþ 1ð ÞIℓþ1
2
yð Þ
X
m¼�ℓ

ℓ

Yℓ,m θN,φNð ÞY ∗
ℓ,m θN�1,φN�1ð Þ, (39)

By inserting the last formula into the propagator expression (36)
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K r00
!
, t00; r0

!
, t0

� �
¼ lim

N!∞

m
iℏε

� � Nþ1ð Þ 1ffiffiffiffiffiffiffiffi
r00r0

p
� � X

ℓ…ℓNþ1¼0

þ∞ YN
j¼1

ð∞
0
rjdrj

" #

�
YNþ1

j¼1

exp
i
ℏ

m
2ε

r2j þ r2j�1

� �
� εV rj

� �n o� �� �

�
YN
j¼1

Iℓjþ1
2

mrjrj�1

iℏε

� �
IℓNþ1þ1

2

mrjrj�1

iℏε

� �h i

�
X

mj¼�ℓj

ℓj ðπ
0

ð2π
0
Yℓj,mj θj,φj

� �
Y ∗
ℓj,mj

θj�1,φj�1

� �
sin θjdθjdφj

�
Xℓ
m¼�ℓ

YℓNþ1,m θNþ1,φNþ1
� �

Y ∗
ℓNþ1,m θN,φNð Þ:

(40)

Using the orthogonality relation of spherical harmonics, which is described by the
following equation

ðπ
0
dφ
ð2π
0
Yℓ,m θ,φð ÞY ∗

ℓ,m θ,φð Þ sin θdθ ¼ δℓ,ℓ0 , δm,m0 , (41)

thus we find the following expression for the propagator

K r00
!
, t00; r0

!
, t0

� �
¼
Xþ∞

ℓ¼0

2ℓþ 1ð Þ
4π

Kℓ r00, t00; r0, t0ð ÞPℓ cosΘð Þ, (42)

where the radial propagator Kℓ r00, t00; r0, t0ð Þ is also expressed as

Kℓ r00, t00; r0, t0ð Þ ¼ lim
N!∞

m
iℏε

� � Nþ1ð Þ 1ffiffiffiffiffiffiffiffi
r00r0

p
� �

lim
N!∞

YN
j¼1

ð∞
0
rjdrj

" #

�
YNþ1

j¼1

Iℓjþ1
2

mrjrj�1

iℏε

� �h i

�
YNþ1

j¼1

exp
i
ℏ

m
2ε

r2j þ r2j�1

� �
� εV rj

� �n o� �� �
,

(43)

Indeed, considering the asymptotic behavior of the modified Bessel
functions, [6].

Ij
z
ε

� �
!
ε!0

ε

2πz

� �1
2
exp

z
ε
� 1
2
ε

z
υ2 � 1

4

� �� �
, (44)

then

Iℓþ1
2

mrjrj�1

iℏ

ε

� �
!
ε!0

εiℏ
2πmrjrj�1

� �1
2

exp
mrjrj�1

εiℏ
� εiℏ

2mrjrj�1

� �
ℓ ℓþ 1ð Þð Þ

� �
, (45)
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then we arrive at the formulation of the radial propagator in spherical coordinates
and as a function of the effective potential Veff rj

� �
:

Kℓ r00, t00; r0, t0ð Þ ¼ 1
r00r0

� �
lim

N!∞

m
2πiℏε

� � Nþ1ð Þ
2 �

YN
j¼1

ð∞
0
drj

" #

� exp
i
ℏ

X
j¼1

Nþ1 m
2ε

Δrj
� �2 � εV rj

� �� ℓ ℓþ 1ð Þℏ2ε

2mrjrj�1

� �
,

(46)

where the effective potential is defined by the following expression:

Veff rj
� � ¼ V rj

� �þ ℏ2ℓ ℓþ 1ð Þ
2mrjrj�1

, (47)

So the propagator (46) becomes:

Kℓ r00, t00; r0, t0ð Þ ¼ 1
r00r0

� �
lim

N!∞

m
2πiℏε

� � Nþ1ð Þ
2 �

YN
j¼1

ð∞
0
drj

" #

� exp
i
ℏ

X
j¼1

Nþ1 m
2ε

Δrj
� �2 � εVeff rj

� �n o" #
:

(48)

The specific form of the radial propagator will depend on the potential energy term
V(r) in the radial Schrödinger equation, which corresponds to the particular physical
system being studied. Different potential energy functions will lead to different solu-
tions and, consequently, different forms of the radial propagator.

5. Feynman propagator

The propagator related to a central potential V(r) between two space-time points

r0
!
, t0

� �
and r00

!
, t00

� �
, in spherical coordinates is written as [4, 5]:

K r00
!
, t00; r0

!
, t0

� �
¼ 1

4πr00r0
X∞
ℓ¼0

2ℓþ 1ð Þ � Kℓ r00, t00; r0, t0ð ÞPℓ cosΘð Þ, (49)

where Pℓ cosΘð Þ is the Legendre polynomial and Θ � r00
!
, r0
!� �

with

Kℓ r00, t00; r0, t0ð Þ ¼ lim
N!∞

ð
Π
j¼1

N
exp

i
ℏ
Sj

� �
� Π

j¼1

N m
2πiℏε

h i1
2 Π

j¼1

N�1
drj, (50)

where

Sj ¼ m
2ε

Δrj
� �2 � εVeff rj

� �
, (51)

here
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Δrj ¼ rj � rj�1, ε ¼ Δtj ¼ tj � tj�1, t0 ¼ t0 and t00 ¼ tN,
and effective potential Veff is defined by the relation as:

Veff rð Þ ¼ ℏ2

2m
ℓ ℓþ 1ð Þ

r2
þ V rð Þ, (52)

Thus, the condensed form is given by:

Kℓ r00, t00; r0, t0ð Þ ¼ Dr tð Þ exp
ðt00
t0

m
2
_r2 � Veff rð Þ

� �
dt

" #
, (53)

5.1 Pöschl-Teller potential

This potential is an important diatomic molecular potential. Many applications of
the analytical and approximate technique in the current literature have been made to
establish eigensolutions and thermodynamic properties [5, 7]. Another example of this
potential used as an effective model is as a reference potential manifested to elaborate
on the reliability of the order ambiguity parameters.

In the present chapter, the Pöschl-Teller potential of hyperbolic form [5] has been
used and is given by:

VPT rð Þ ¼ A
sinh 2 αrð Þ �

B
cosh 2 αrð Þ

" #
, r≥0, (54)

and

A ¼ ℏ2α2

2m
η η� 1ð Þ

B ¼ ℏ2α2

2m
λ λþ 1ð Þ

8>><
>>:

, (55)

where α, η, λ are positive constants.

5.1.1 s-states ℓ ¼ 0ð Þ

For ℓ ¼ 0, taking into account (50), the propagator of the Pöschl-Teller potential
(54) becomes:

Kℓ r00, r0, sð Þ ¼
ð
Dr sð Þ exp i

ℏ

ðs00
0

m
2
_r2 � Veff rð Þ

� �
ds

" #

¼
ð
Dr sð Þ exp i

ℏ

ðs00
0

m
2
_r2 � ℏ2

2m
η η� 1ð Þ
sinh 2 rð Þ �

λ λþ 1ð Þ
cosh 2 rð Þ

" # !
ds

" #

¼
ð
Dr sð Þμλ η sinh rð Þ cosh rð Þ½ � exp im

2ℏ

ðs00
0
_r2ds

 !

¼ lim
N!∞

m
2πiε

� �N
2
YN�1

j¼1

ð∞

0

dr jð Þ YN
j¼1

μλ η sinh rð Þ jð Þ cosh rð Þ jð Þ
h i

exp
im
2εℏ

rj � rj�1
� �2� �

,

(56)

46

Schrödinger Equation – Fundamentals Aspects and Potential Applications



we use the notation dsinh 2 θð Þ jð Þ ¼ sinh θð Þ jð Þ sinh θð Þ j�1ð Þ, when the functional
measure μλ η given by [4, 5]:

μλ η sinh αrð Þ, cosh αrð Þ½ � ¼ lim
N!∞

YN
j�1

μλ η sinh αrð Þ jð Þ, cosh αrð Þ jð Þ
h i

¼ lim
N!∞

2πm
εℏ

� �NYN
j¼1

dsinh αrð Þ jð Þ dcosh αrð Þ jð Þ

� exp
�m
iεℏ

dsinh 2 αrð Þ jð Þ � dcosh 2 αrð Þ jð Þ
� �� �

� Iη�1
2

m
iεℏ

sinh 2 αrð Þ
� �

� Iλ�1
2

im
εℏ

cosh 2 αrð Þ
� �

,

(57)

This is a known solved problem.
Adapting Frank and Wolf’s notion, the solution of the path integral reads

2S ¼ η η� 1ð Þ, � 2C ¼ λ λþ 1ð Þ, and by introducing the numbers k1, k2 which are
defined as a function of C and S [5], by setting,

k1 ¼ 1
2

1� 1
4
� 2C

� �1
2

" #

k2 ¼ 1
2

1� 1
4
þ 2S

� �1
2

" #

8>>>>><
>>>>>:

: (58)

The propagator Kℓ r00, r0,Tð Þ contains discrete and continuous terms, becomes:

Kℓ r00, r0,Tð Þ ¼
XNM

n¼0

exp
�is00EPT

n,ℓ

ℏ

 !
Ψ ∗ k1,k2ð Þ

ℓ,n r0ð ÞΨ k1,k2ð Þ
ℓ,n r00ð Þ

þ
ð∞

0

dk exp �is00
ℏk2

2m

 !
Ψ ∗ k1,k2ð Þ

k r0ð ÞΨ k1,k2ð Þ
k r00ð Þ,

(59)

we have NM indicate the maximum number of states with 0, 1, … , n≤NM < k1 �
k2 � 1

2 : The signs depend on the boundary conditions for r ! 0 and r ! ∞, respectively.
The bound states are explicitly given by [4, 5]:

Ψ k1,k2ð Þ
ℓ,n rð Þ ¼ N k1,k2ð Þ

n sinh αrð Þð Þ2k2�1
2 cosh αrð Þð Þ�2k1þ3

2

�2 F1 �k1 þ k2 þ k,�k1 þ k2 � kþ 1; 2k2;� sinh 2 αrð Þ� �

¼ 2n! 2k1 � 1ð ÞΓ 2k1 � n� 1ð Þ
Γ 2k2 þ nð ÞΓ 2k1 � 2k2 � nð Þ
� �1

2

sinh αrð Þð Þ2k2�1
2 cosh αrð Þð Þ2n�2k1þ3

2

� P 2k2�1,2 k1�k2�nð Þ�1½ �
n

1� sinh 2 αrð Þ
cosh 2 αrð Þ

 !
,

(60)

and
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N k1,k2ð Þ
n ¼ 1

Γ 2k2ð Þ
2k� 1ð ÞΓ k1 þ k2 � kð ÞΓ k1 þ k2 þ k� 1ð Þ

Γ k1 � k2 þ kð ÞΓ k1 � k2 � kþ 1ð Þ
� �

: (61)

the energy spectrum is also obtained by:

EPT
n ¼ � ℏ2α2

2m

� �
2k� 1ð Þ2 ¼ � ℏ2α2

2m

� �
2 k1 � k2 � nð Þ � 1½ �2: (62)

5.1.2 ℓ-states ℓ 6¼ 0ð Þ

Usually, we find that the effective potential is not exactly solvable for ℓ-states
00ℓ 6¼ 000ð Þ, To deal with the centrifugal term 1

r2
� �

, we need to find a better approximate
expression for this term and such approximations have been proposed as a general
approximation similar to the type of Pöschl-Teller potential [8]:

1
r2
≈F rð Þ ¼ α2

1
3 cosh 2 αrð Þ þ

1
sinh 2 αrð Þ

 !
, (63)

Moreover, these approximations are only valid for small values of the parameter α
and collapse for large α. This choice is useful and allows us to treat this hyperbolic
potential.

Substituting (63) into (52) we find:

Veff rð Þ ¼ ℏ2α2

2m
η1 η1 � 1ð Þ
sinh 2 αrð Þ �

λ1 λ1 þ 1ð Þ
cosh 2 αrð Þ

" #
þ C1, (64)

with

η1 η1 � 1ð Þ ¼ 2ℏ2α2

m
d1 ℓþD

2
� 1

� �2

� 1
4

" #
þ η η� 1ð Þ

" #

λ1 λ1 þ 1ð Þ ¼ �ℏ2α2

m
d0 ℓþD

2
� 1

� �2

� 1
4

" #
þ λ λþ 1ð Þ

" #
,

C1 ¼ 2ℏ2α2

m
d2 ℓþD

2
� 1

� �2

� 1
4

" #

8>>>>>>>>>><
>>>>>>>>>>:

(65)

with the bound states being explicitly given by [5]:

Ψ k1,k2ð Þ
ℓ,n rð Þ ¼ N k1,k2ð Þ

n sinh αrð Þð Þ2k2�1
2 cosh αrð Þð Þ�2k1þ3

2

�2 F1 �k1 þ k2 þ k,�k1 þ k2 � kþ 1; 2k2;� sinh 2 αrð Þ� �

¼ 2n! 2k1 � 1ð ÞΓ 2k1 � n� 1ð Þ
Γ 2k2 þ nð ÞΓ 2k1 � 2k2 � nð Þ
� �1

2

sinh αrð Þð Þ2k2�1
2 cosh αrð Þð Þ2n�2k1þ3

2

� P 2k2�1,2 k1�k2�nð Þ�1½ �
n

1� sinh 2 αrð Þ
cosh 2 αrð Þ

 !
,

(66)
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and

N k1,k2ð Þ
n ¼ 1

Γ 2k2ð Þ
2k� 1ð ÞΓ k1 þ k2 � kð ÞΓ k1 þ k2 þ k� 1ð Þ

Γ k1 � k2 þ kð ÞΓ k1 � k2 � kþ 1ð Þ
� �

: (67)

the energy spectrum is also obtained by:

EPT
n,ℓ ¼ � ℏ2α2

2m

� �
2k� 1ð Þ2 ¼ � ℏ2α2

2m

� �
2 k1 � k2 � nð Þ � 1½ �2: (68)

with

k1 ¼ 1
2

1� 1
4
þ λ1 λ1 þ 1ð Þ

� �1
2

" #

k2 ¼ 1
2

1� 1
4
þ η1 η1 � 1ð Þ

� �1
2

" #

8>>>>><
>>>>>:

: (69)

The energy spectrum is obtained from Eq. (69), namely

EPT
n,ℓ ¼ � ℏ2α2

2m

� �
2

1
2

1� 1
4
þ 2m

ℏ2α2
�ℏ2α2

6m

lþ D
2 � 1

� �2 � 1
4

h i

3
þ B

q

2
4

3
5

0
@

1
A

0
@

1
A

1
2

2
64

3
75

� 1
2

1� 1
4
þ 2m

ℏ2α2
ℏ2α2

2m
lþ D

2
� 1

� �2

� 1
4

" #
þ A

q

" # ! !1
2

2
4

3
5� n

0
BBBBBBBB@

1
CCCCCCCCA

2
666666664

� 1

3
77777775

2

,

(70)

6. Duru-Kleinert method

We often introduce a coordinate transformation followed by a local time transfor-
mation to make the study much more accessible.

Let us perform the following space and time changes [9]:

r ¼ f qð Þ
dt ¼ f 02 qð Þds

(
, (71)

These transformations allow us to transform a difficult propagator to calculate into
a more manageable form.

Moreover, Green’s function relative to a given propagator allows us to derive from
its poles the spectrum of energies and the corresponding wave functions from the
residues at the poles. This function is obtained from the Fourier transform of the
propagator Kℓ r00, r0;Tð Þ as follows:

Kℓ r00, r0;Tð Þ ¼ 1
2πℏ

ð
Gℓ r00, r0;Eð Þ exp �iET

ℏ

� �
dE, (72)
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with

Gℓ r00, r0;Eð Þ ¼ i
ℏ

f 0 q0ð Þf 0 q00ð Þ� �1
2

ð∞

0

K̂ℓ q00, q0; s00ð Þds00, (73)

and

K̂ℓ q00, q0; s00ð Þ ¼
ðq00

q0

Dq sð Þ exp i
ℏ

ðs00

0

m
2
_q2 � f 02 qð Þ Veff qð Þ � E

� �� ΔV qð Þ
� �

ds

2
4

3
5, (74)

and the quantum correction ΔV is given by:

ΔV qð Þ ¼ ℏ2

8m
3

f 00 qð Þ� �2

f 0 qð Þ� �2 � 2
f 000 qð Þ
f 0 qð Þ

" #
(75)

7. Energy spectrum and wave functions

7.1 Shifted Deng-Fan Oscillator potential

Another important empirical potential of diatomic molecules is the Shifted Deng-
Fan Oscillator potential [7]. It was proposed since more than half century ago, but has
attracted much interest lately, and this potential is the form

VSDF rð Þ ¼ D1 1� b
eαr � 1

� �2

�D2, b ¼ eαre � 1, (76)

where D2 is the dissociation energy, re is the position of the minimum, and α
denotes the radius of the potential.

Here, we use for this potential a different approximation obtained using a power
series decomposition [10, 11].

1
r2

≃
1
r2e

C0 þ C1

eαr � 1
þ C2

eαr � 1ð Þ2
" #

, (77)

where re is the minimum of the potential (76) and

C0 ¼
1� 1� ηð Þ2

u2
4u

1� η
� 3þ uð Þ

� � !

u2

C1 ¼
exp uð Þ 1� ηð Þ2
� �

u3

C2 ¼
exp 2uð Þ 1� ηð Þ4
� �

u4
3þ u� 2u

1� η

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

,
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where u ¼ 2α re, and η ¼ exp �uð Þ.
Substituting Eqs. (77) and (78) into Eq. (52), we find

Veff rð Þ ¼ ℏ2

2m
C0 þ C1 exp �2αrð Þ

1� exp �2αrð Þ þ
C2 exp �2αrð Þ
1� exp �2αrð Þð Þ2

" #
þD1 1� b

exp αrð Þ � 1

� �2

�D2,

(78)

In a more compact for me, it reads

Veff rð Þ ¼ �Acoth α rð Þ þ B
sinh 2 α rð Þ þ C, (79)

where

A ¼ ℏ2

2m
ℓ ℓþ 1ð Þα2 C2

2
� C1

2

� �
þD1bþD1

b2

2

B ¼ ℏ2

2m
ℓ ℓþ 1ð Þα2 C2

4
þD1

b2

4

C ¼ ℏ2

2m
ℓ ℓþ 1ð Þα2 C0 � C1

2
þ C2

2

� �
þD1 þD1bþD1

b2

2
�D2

8>>>>>>>><
>>>>>>>>:

, (80)

Thus, the condensed form is given by:

Kℓ r00, t00; r0, t0ð Þ ¼ Dr tð Þ exp
ðt00
t0

m
2
_r2 � Veff rð Þ

� �
dt

" #
, (81)

the potential given by (79) is similar to the Manning-Rosen, a direct path integra-
tion is not possible, the problem can be solved with the help of the folowing space-
time transformation

r ¼ F qð Þ ¼ 1
α
arccoth 2coth2 qð Þ � 1

� �

dt ¼ F0 qð Þ½ �2ds

8<
: , (82)

According to [7], the wave function is given by

χS:D:F k1,k2ð Þ
n,ℓ rð Þ ¼ ffiffiffi

α
p

N k1,k2ð Þ
n 1� uð Þ1=2�k1þn uð Þk1�1�s=2�n

�2F1 �n, 2k1 � n� 1; sþ 1;
1

1� u

� �

¼ α 2k1 � 1ð Þn!Γ 2k1 � n� 1ð Þ
Γ nþ sþ 1ð ÞΓ 2k1 � s� n� 1ð Þ
� �1=2

1� e�2r� �k2 exp �2r k1 � s
2
� n� 1

� �h i

�P 2k2�2n�s�2,sð Þ
n 1� 2e�2r� �

,

(83)

where P α,βð Þ
n denotes the Jacobi polynomials and u ¼ 1

2 1� tanh 2αrð Þ½ �, where k ¼
k1 � k2 � n:

and
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k1 ¼ 1
2

1þ 1
2

sþ 2nþ 1ð Þ
� �

þ 2mA
α2ℏ2 sþ 2nþ 1ð Þ

� �
, (84)

k2 ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mB

α2ℏ2

r" #
� 1

2
1þ sð Þ, (85)

The energy spectrum is obtained from the poles of the Green function, Eq. (82),
namely

ESDF
n,l ¼ � α2ℏ2 sþ 2nþ 1ð Þ2

8m
þ 2mA2

α2ℏ2 sþ 2nþ 1ð Þ2
" #

þ C: (86)

7.2 Generalized inverse quadratic Yukawa potential

The generalized inverse quadratic Yukawa potential extends this concept by intro-
ducing additional parameters or modifications to the potential. These modifications
can include terms that account for different types of interactions or other physical
phenomena, depending on the specific context or application.

The general form of Generalized Inverse Quadratic Yukawa Potential is:

VGIQY rð Þ ¼ �a� b
e�αr

r
� c

e�2αr

r2
, (87)

which means that the effective potential becomes

Veff rð Þ ¼ �a� b
e�αr

r
� c

e�2αr

r2
þ ℏ2ℓ ℓþ 1ð Þ

2r2
: (88)

First of all, we deal with the centrifugal terms using the approximation [10, 11].

1
r2

¼ 4α2e�2αr

1� e�2αrð Þ2 , (89)

and

1
r
¼ 2αe�αr

1� e�2αr , (90)

putting these considerations together, we find the following:

Veff rð Þ ¼ �b
2αe�2αr

1� e�2αr � c
4α2e�4αr

1� e�2αrð Þ2 þ
ℏ2ℓ ℓþ 1ð Þ

2
4α2e�2αr

1� e�2αrð Þ2 � a, (91)

Veff rð Þ can be reformulated as

Veff rð Þ ¼ Acoth αrð Þ þ B
sinh 2 αrð Þ þ C, (92)

with
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A ¼ α 2cα� bð Þ;

B ¼ α2
ℏ2

2m
ℓ ℓþ 1ð Þ � c

� �
;

C ¼ �2cα2 þ bα� a:

8>>><
>>>:

(93)

Since the difficulties of doing the integration of Eq. (53) straightforwardly, we
perform a space-time transformation depending on the Duru-Kleinert method [4, 9],
so we do a nontrivial change of variable r ! qð Þ followed by time local transformation
t ! sð Þ

r ¼ h qð Þ ¼ 1
α
argcoth 2coth2 qð Þ � 1

� �
;

t ! s⇔dt ¼ h0 q sð Þð Þ� �2ds:

8<
: (94)

Putting these considerations together, we find the new Green’s function

Gℓ qb, qa;E
� � ¼ i

ℏ
h0 qa
� �

h0 qb
� �� �1

2

ð∞
0
Pℓ qb, qa; S
� �

dS, (95)

where h0 is the derivative of h with respect to q, and the new form of the promotor is

Pℓ qb, qa; S
� � ¼

ð
Dq sð Þ exp i

ℏ

ðS
0

m
2
_q2 � h02 Veff qð Þ � E

� �� ΔV qð Þ
n o

ds
� �

, (96)

the quantum correction ΔV qð Þ [4] is given by

ΔV qð Þ ¼ ℏ2

8m
3
h002

h02
� 2

h000

h0

 !
¼ ℏ2

8m
1

cosh 2 qð Þ þ
1

sinh 2 qð Þ

 !
, (97)

and the transformed effective potential is

Veff qð Þ ¼ A 2coth2 qð Þ � 1
� �þ 2B 2coth2 qð Þ � 2

� �
coth2 qð Þ þ C, (98)

therefore

h02 Veff qð Þ � E
� �þ ΔV qð Þ ¼ ℏ2

2m

8mB
α2ℏ2 þ

3
4

sinh 2 qð Þ þ
2m
α2ℏ2 Eþ A� Cð Þ þ 1

4
cosh 2 qð Þ

0
B@

1
CA

� 1
α2

E� A� Cð Þ:

(99)

And using the following abbreviations

D ¼ 1
α2

E� A� Cð Þ;

η2 � 1
4
¼ 8mB

α2ℏ2 þ
3
4
;

υ2 � 1
4
¼ � 2m

α2ℏ2 Eþ A� Cð Þ � 1
4
,

8>>>>>><
>>>>>>:

(100)

which means that
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D ¼ 1
α2

E� A� Cð Þ;

η ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mB

α2ℏ2

r
;

υ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2m
α2ℏ2 Eþ A� Cð Þ

r
,

8>>>>>>><
>>>>>>>:

(101)

we can rewrite the promotor as follows:

Pℓ qb, qa; s
� � ¼

ð
Dq sð Þ exp i

ℏ

ðS

0

m
2
_q2 � ℏ2

2m

η2 � 1
4

sinh 2 qð Þ þ
υ2 � 1

4
cosh 2 qð Þ

0
B@

1
CA

8><
>:

9>=
>;
ds

2
64

3
75

� exp
i
ℏ
DS

� �
,

(102)

which is nothing but a promotor formula corresponding to a system with modified
Pöschl-Teller potential and energyD [12], and accordingly, the integration over time S
enables us to obtain directly the radial Green’s function related to this system

Gℓ qb, qa;D
� � ¼

ð∞
0
Pℓ qb, qa; S
� �

dS, (103)

thus

Gℓ qb, qa;D
� � ¼

ð∞
0
dS exp

i
ℏ
DS

� �

�
ð
Dq sð Þ exp i

ℏ

ðS

0

m
2
_q2 � ℏ2

2m

η2 � 1
4

sinh 2 qð Þ þ
υ2 � 1

4
cosh 2 qð Þ

0
B@

1
CA

8><
>:

9>=
>;
ds

2
64

3
75,

(104)

The energy spectrum is obtained from the poles of Green’s function which leads us to

D ¼ � ℏ2

2m
2nþ η� υþ 1ð Þ2, (105)

therefore

En,ℓ ¼ �ℏ2α2

8m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mB

α2ℏ2

r !2

� 2A2

ℏ2α2

m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mB

α2ℏ2

r !2 þ C,

the energy spectrum is thus
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En,ℓ ¼ �ℏ2α2

8m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2

� 2 2cα� bð Þ2

ℏ2

m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2 � 2cα2 þ bα� a,
(106)

On the other hand, the associated wave functions can be displayed as

ψn rð Þ ¼ α� 4mA

αℏ2 ωþ 2nþ 1ð Þ2
 !

2k1 � 2n� ω� 2ð Þn!Γ 2k1 � n� 1ð Þ
Γ nþ ωþ 1ð ÞΓ 2k1 � ω� n� 1ð Þ

" #1=2

� 1� exp �2αrð Þð Þωþ1
2 exp k1 � ω=2� n� 1ð Þ

� P 2k1�2n�ω�2,ωð Þ
n 1� 2 exp �2αrð Þð Þ,

where P 2k1�2n�ω�2,ωð Þ
n are Jacobi polynomials with the notations

k1 ¼ 1
2

1þ 1
2

ωþ 2nþ 1ð Þ � 2mA
α2ℏ2 ωþ 2nþ 1ð Þ

� �
;

k2 ¼ 1
2

1þ ωð Þ,

8>><
>>:

(107)

and

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mB

α2ℏ2

r
: (108)

7.3 Modified screened Coulomb plus inversely quadratic Yukawa potential

The Modified Screened Coulomb plus Inversely Quadratic Yukawa potential (MSC-
IQY) is a combined potential energy function that incorporates both the screened
Coulomb potential and the inversely quadratic Yukawa potential. This modified poten-
tial is often used in various areas of physics to describe interactions between charged
particles, taking into account both screening effects and long-range Coulombic interac-
tions. For a ¼ 0, the GIQY potential reduces to Modified Screened Coulomb Plus
Inversely Quadratic Yukawa potential (MSC-IQY) of the form

VGIQY rð Þ ¼ �b
e�αr

r
� c

e�2αr

r2
, (109)

and the associated energy eigenvalues are obtained as

EGIQY
n,ℓ ¼ �ℏ2α2

8m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2

� 2 2cα� bð Þ2

ℏ2

m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2 � 2cα2 þ bα:
(110)
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7.4 Kratzer potential

The Kratzer potential [13] is a mathematical model used to describe the interaction
between a particle and a central force field. It is commonly employed to study molec-
ular systems and the vibrational motion of diatomic molecules. For
α ¼ 0, a ¼ 0, b ¼ 2Dere, and c ¼ Der2e , the GIQY potential (87) reduces to the Kratzer
potential of the form

VK rð Þ ¼ �2De
re
r
� 1
2
r2e
r2

� �
, (111)

where re is the equilibrium bond length and De is the dissociation energy.
The energy eigenvalues of the Kratzer potential are obtained as

EK
n,ℓ ¼ � b2

ℏ2

2m 2nþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c
q� �2 , (112)

thus

EK
n,ℓ ¼ � 2Dereð Þ2

ℏ2

2m 2nþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 Der2e
q� �2 : (113)

7.5 Yukawa potential

The Yukawa potential, also known as the screened Coulomb potential or the
Debye-Hückel potential, is a mathematical model used to describe the interaction
between charged particles with an exponential decay due to screening effects. It is
commonly employed in physics to study phenomena such as electromagnetic interac-
tions, nuclear forces, and scattering processes.

The Yukawa potential is given by the following equation (setting a ¼ 0 and c ¼ 0,
Eq. (88) takes the form)

VY rð Þ ¼ �b
e�αr

r
, (114)

which is known as Yukawa potential, its corresponding energy eigenvalues
achieved are

EY
n,ℓ ¼ �ℏ2α2

8m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ

p� �2

� 2b2

ℏ2

m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ

p� �2 þ bα,
(115)

or equivalently

EY
n,ℓ ¼ �ℏ2α2

2m
nþ 1þ ℓð Þ2 � b2

ℏ2

m 2 nþ 1þ ℓð Þ2
þ bα, (116)
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7.6 Inversely quadratic Yukawa potential

The Inversely Quadratic Yukawa potential (IQY) is a modified version of the
Yukawa potential that takes into account an additional inverse square term. As a ¼ 0
and b ¼ 0, Eq. (88) reduces to the Inversely Quadratic Yukawa potential (IQY) of the
form

VIQY rð Þ ¼ �c
e�2αr

r2
, (117)

the energy eigenvalue equation becomes

EIQY
n,ℓ ¼ �ℏ2α2

8m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2

� 2 2cαð Þ2

ℏ2

m
2nþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þ � 8m

ℏ2 c

r !2 � 2cα2:
(118)

7.7 Coulomb potential

The Coulomb potential is used to calculate important properties such as the electric
potential, electric field, and electrostatic forces in systems involving charged particles.
It forms the basis for understanding phenomena such as the behavior of ions in
solutions, the interaction between charged particles in plasmas, and the structure of
atoms and molecules.

When a ¼ 0, α ¼ 0, and c ¼ 0, Eq. (88) reduces to the Coulomb potential of the
form

VC rð Þ ¼ � b
r
, (119)

the energy eigenvalues of the Coulomb potential are obtained as

EC
n,ℓ ¼ � b2

ℏ2

2m 2nþ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ℓ ℓþ 1ð Þp� �2 , (120)

hence

EC
n,ℓ ¼ � 2m

ℏ2
b2

2 nþ ℓþ 1ð Þ2 , (121)

8. Conclusions

We have presented a rigorous treatment using the path integral approach of Feyn-
man. We affirm that this formalism is an efficient and powerful tool for finding the
propagator associated with several problems in quantum physics, particularly
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nonrelativistic problems. Most of these problems cannot be treated exactly, and prac-
tically no physical system can be studied without approximation methods.

In this chapter, we have adopted a two-step approach to study exponentially
shaped potentials. In the first step, by introducing a judicious approximation to handle
the centrifugal term, we were able to transition from solving a problem related to ℓ-
states to that of the s-state. The other step involves adapting a spatio-temporal trans-
formation by Duru-Kleinert. The use of this transformation was revisited in the
reasoning process to reduce the unsolvable relative propagator to the effective poten-
tial of several potentials, specifically to the modified Pöschl-Teller potential. This
problem is well known and was previously addressed within the framework of the
Schrödinger formulation and the path integral. The energy spectrum and wave func-
tions are determined in this case.

In conclusion, our method is effective in solving this type of potential. We hope to
continue developing the path integral formalism not only for exponential-type poten-
tials but also for other types and more general forms, and in other domains of physics.
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Chapter 4

The Inverse of the Discrete
Momentum Operator
Armando Martínez-Pérez and Gabino Torres-Vega

Abstract

In the search of a quantum momentum operator with discrete spectrum, we obtain
some properties of the discrete momentum operator for nonequally spaced spectrum.
We find the inverse operator. We use the matrix representation of these operators,
and we find that there is one more eigenvalue and eigenfunction than the dimension
of the matrix. We apply the results to obtain the discrete adjoint of the momentum
operator. We conclude that we can have discrete operators which can be self-adjoint
and that it is possible to define a self-adjoint extension of the corresponding Hilbert
space. These results help us understand the quantum time operator.

Keywords: discrete quantum mechanics, discrete momentum operator, inverse of the
momentum operator, nonstandard finite differences derivative, exact discrete
integration

1. Introduction

Nonstandard finite difference derivatives help determine the discrete versions of
some differential equations and their solutions [1–10]. This method uses nonstandard
expressions of the finite differences derivative in such a way that they give the exact
result when applied to a particular function.

Another benefit of nonstandard finite difference for the derivative of a function is
that it can be used as a discrete quantum operator to deal with quantum mechanical
operators with discrete spectrum [11, 12]. Since some quantum operators have a
discrete spectrum, a discrete derivative can be very useful in quantum mechanics
theory [11, 12].

In Section 2, we define and obtain some properties of the discrete derivative
operator from a global point of view, i.e., considering all the values of a function on all
the points of a mesh at once. This is done by defining a matrix that collects the
derivatives for each mesh point when applied to a given vector. We find the eigen-
values and eigenvectors of the derivative matrix. We also discuss the commutation
properties between the derivative and coordinate matrices. The canonical commutator
is satisfied only along some directions.

The summation by parts theorem and the adjoint of the momentum operator are
found in Section 3. We introduce the discrete symmetric operator definition similar to
continuous variables functions in a Hilbert space.
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An interesting result is that the considered matrices have more eigenvalues and
corresponding almost eigenvectors (the last entry of the eigenvector is null) beside the
usual number due to their dimension of them. For a semi-infinite matrix, the last
entry is of little effect, and such additional eigenvalues will belong to the matrix
spectrum when seen as an operator. Such additional eigenvalues and eigenvectors
are common to all the considered matrices. With these results, we can say that
there are also self-adjoint discrete operators and that we can also have discrete self-
adjoint extensions in the corresponding Hilbert space. These results are beneficial
when dealing with the question of the existence of a time operator in quantum
mechanics [12].

We introduce the discrete inverse matrix of the discrete derivative operator in
Section 4. The difference between the scheme we address in this work with other
proposals for a discrete derivative is a modification in the derivative matrix for the
final point of a grid of points, which causes the derivative matrix to have an inverse.

We can deal with any mesh without asking for equidistant points. At the end of
this paper, there are some concluding remarks.

2. Discrete derivation

Let us consider a partition P ¼ q0, q1, q2, … , qN
� �

of the interval q0, qN
� �

and

vectors f ¼ f 0, f 1, … , f N
� �T, and g ¼ g0, g1, … , gN

� �T associated to this partition. The
distances Δj ¼ qjþ1 � qj, for each j, are not supposed to be equal.

The finite differences derivative matrix D is defined as

D ¼

� 1
ξ0

1
ξ0

0 … 0 0

0 � 1
ξ1

1
ξ1

… 0 0

0 0 � 1
ξ2

… 0 0

⋮

0 0 0 … � 1
ξN�1

1
ξN�1

0 0 0 … 0 � 1
ξN

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

, (1)

where

ξj ¼ Δj e�ipΔj=2sinc
Δj

2
p

� �
, j ¼ 0, … ,N � 1, (2)

ξN ¼ � i
p
: (3)

The function sinc zð Þ is the entire function equal to one at z ¼ 0 and z�1 sin z
otherwise. The continuous parameter p in this expression is related to the conjugate
variable to the discrete variable qj, see Eq. (11) below. The choice of ξj ensures that the
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finite differences derivative (d-derivative) delivers the exact result when acting on
the complex exponential function e�ipq.

In case it is needed, for small Δj we have the power series expansion

ξj≈Δj � i
p
2
Δ2

j �
p2

6
Δ3

j , 0≤ j<N: (4)

We see that ξj is similar to the difference Δj of the usual finite differences deriva-
tive. However, we will only consider the case where Δj has a finite value.

Let us discuss some properties of the d-derivative matrix. The action of the d-
derivative matrixD when acting to the left, on the vector fT ¼ f 0, f 1, … , f N

� �
, results in

fTD ¼ � f 0
ξ0
,� Dfð Þ1,� Dfð Þ2, … ,� Dfð ÞN

� �
, (5)

where

Dfð Þj ¼
f j
ξj
�
f j�1

ξj�1
, (6)

is a finite differences approximation to the derivative of a function extended to the
complex plane. These improved increments ξj are defined over the complex plane. For
a small difference Δj, we have that

Dfð Þj≈
f jþ1

Δjþ1
�

f j
Δj

 !
þ i

p
2

f jþ1 � f j
� �

þ p2

12
f jþ1 � f jþ1

� �
Δjþ1: (7)

We see that we have another discrete approximation to the derivative of a
function.

Now, the action to the right of the derivative matrix on a vector is:

Dg ¼ Dgð Þ0, Dgð Þ1, … , Dgð ÞN�1,�
f N
ξN

� �T

, (8)

where

Dgð Þj ¼
gjþ1 � gj

ξj
, (9)

is a modified finite differences derivative of g qð Þ at qj. In case Δj is small, we have that

Dg
� �

j≈
gjþ1 � gj

Δj
þ i

p
2

gjþ1 � gj
� �

� p2

12
Δj gjþ1 � gj
� �

: (10)

The first term in this approximation is the usual finite differences derivative of a
function.

Note that for in the limiting case, Δj ! 0, both nonstandard finite differences
(Eq. 5) and (Eq. 8) reduce to the usual forward finite difference approximation to the
derivative.
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The eigenvalues of the derivative matrix D are λj ¼ �1=ξN, � 1=ξN�1, … , � 1=ξ0,
and the corresponding eigenvectors are

ξNNQN�1
n¼0 ξN � ξnð Þ

ξN�1
NQN�1

n¼1 ξN � ξnð Þ
ξN�2
NQN�1

n¼2 ξN � ξnð Þ
⋮
1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

,

ξN�1
N�1QN�2

n¼0 ξN�1 � ξnð Þ
ξN�2
N�1QN�2

n¼1 ξN�1 � ξnð Þ
ξN�3
N�1QN�3

n¼2 ξN�1 � ξnð Þ
⋮
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, … ,

1

0

0

⋮
0

0
BBBBBB@

1
CCCCCCA

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: (11)

Note that, due to the operator character of the matrix, there is an additional
eigenvector, the exponential function e ¼ e�ipq0 , e�ipq1 , e�ipq2 , … , e�ipqN

� �
, with eigen-

value �ip,

De ¼ �ipe: (12)

3. The adjoint of the discrete derivative

A sesquilinear form between vectors f and g is defined with the help of the
summation matrix:

S ¼

ξ0 0 0 … 0 0

0 ξ1 0 … 0 0

0 0 ξ2 … 0 0

⋮
0 0 0 … ξN�1 0

0 0 0 … 0 0

0
BBBBBBBB@

1
CCCCCCCCA
, (13)

obtaining

fT SDg
¼ �f 0g0 þ f 0g1 � f 1g1 þ f 1g2 � f 2g2 þ f 2g3 � f 3g3 þ … þ f NgN
¼ gT B� S~D

� �
f,

(14)

where

~D ¼

0 0 0 0 0 0

� 1
ξ1

1
ξ1

0 … 0 0

0 � 1
ξ2

1
ξ2

… 0 0

⋮

0 0 0 …
1

ξN�1
0

0 0 0 … 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: (15)
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and

B ¼

�1 0 0 0 0 0

0 0 0 … 0 0

0 0 0 … 0 0

⋮
0 0 0 … 0 0

0 0 0 … 1 0

0
BBBBBBBB@

1
CCCCCCCCA
: (16)

Eq. (13) is the summation by parts equality in matrix form. We call the matrix ~D
the d-adjoint of the discrete derivative matrix D.

A row of the summation by parts matrix equality is:

XN�1

n¼0

ξnf n Dg
� �

n þ
XN�1

n¼1

ξn ~Df
� �

ngn ¼ f N�1gN � f 0g0, (17)

which is the discrete version of the integration by parts theorem of the calculus of
continuous variables.

The previous results are useful in quantummechanics theory when considering the
momentum or the Hamiltonian operators with a discrete spectrum.

We define the discrete momentum operator at qj as

P̂j ¼ �i Dð Þj, 0≤ j<N, (18)

and its adjoint

P̂
†

j ¼ �i ~D
� �

j, 0< j<N: (19)

The summation by parts provides the adjoint of the momentum operator and its
symmetry property. Explicitly, Eq. (16) is rewritten as

XN�1

n¼0

ξnf
∗
n �iDg
� �

n �
XN
n¼1

ξn �i ~D
∗
f

� �
n

h i ∗
gn ¼ �i f ∗

N�1gN þ i f ∗
0 g0, (20)

This equality yields

f jP̂g� � ¼ ~Pf jg� � ¼ �i f ∗
N�1gN þ i f ∗

0 g0: (21)

Thus, we say that the discrete momentum operator P̂ is d-symmetric, if f N�1 ¼
eiθf 0 and gN ¼ eiθg0, as is the case for continuous variables operators.

It is also possible to consider self-adjoint extensions for the discrete momentum
operator, as it is done for the case of the continuous variable momentum operator [13].

3.1 Commutator between the d-derivative and the coordinate

In general, a discrete canonical commutation relationship A,B½ � ¼ I is not possible
for finite-dimensional matrices A and B because the trace of this relationship results in
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a contradiction ((0 = 1) [14]. However, there are some directions in which the
commutator evaluates to a constant different from zero: the directions pointed at by
its eigenvectors, for example. In addition, the matrix can be considered as an opera-
tion with additional eigenfunctions.

If we call Q ¼ diag qj
� �

to the coordinate matrix, the usual commutator between

the d-derivative and coordinate matrices is:

D,Q½ � ¼

0
Δ0

ξ0
0 … 0 … 0

0 0
Δ1

ξ1
… 0 … 0

0 0 0 … 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

0 0 0 … 0 …
ΔN�1

ξN�1

0 0 0 … 0 … 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: (22)

This matrix shifts and rescales the vector entries on which it acts. This matrix
approaches an identity matrix when Δj ! 0.

For a finite Δj, we look for the eigenvectors of the commutator matrix to obtain a
diagonal matrix. The eigenvalues of the commutator (21), considered as a matrix, are
all zero with multiplicity N þ 1. The eigenvectors are 1, 0, … , 0ð ÞT and 0, … , 0ð ÞT
with multiplicity N. In addition to considering the eigenvectors of this commutator
matrix to obtain a diagonal matrix, we can take advantage of rescaling to cancel
shifting and return to the original vector. Then, the commutator matrix (21) has the
additional eigenvector

hT ¼ 1
λN�1

YN�2

j¼0

Δj

ξj
,

1
λN�2

YN�2

j¼1

Δj

ξj
, … ,

λξN�1

ΔN�1

 !T

, (23)

with an eigenvalue λ. The action of the commutator matrix on these vectors results
in the same vector with the last entry equal to zero, which is almost an eigenvector.

Still another eigenvector, with eigenvalue one, is

~h
T ¼ 1,

ξ0
Δ0

, … ,
YN�1

n¼0

ξn
Δn

 !T

, (24)

The commutator is equal to one along this direction. Then, the canonical commu-
tation relationship is also valid in this direction.

Thus, along the mentioned directions, the d-derivative has similar properties as its
continuous variable counterpart.

4. The inverse of the d-derivative

The d-derivative matrix that we use can be inverted. The determinant of the
d-derivative matrix is

66

Schrödinger Equation – Fundamentals Aspects and Potential Applications



∣D∣ ¼ 1
ξ0ξ1ξ2ξ3 … ξN

: (25)

The inverse of the d-derivative matrix D is the negative of the progressive discrete
integration matrix

I ¼

ξ0 ξ1 ξ2 ξ3 … ξN
0 ξ1 ξ2 ξ3 … ξN
0 0 ξ2 ξ3 … ξN
0 0 0 ξ3 … ξN
⋮
0 0 0 0 … 0

0
BBBBBBBB@

1
CCCCCCCCA
: (26)

We discuss some properties of the d-integration matrix I. When the d-integration
matrix I is applied to the left to a vector fT results in

fT I ¼ I0f, I 1f , I 2f, … , INfð Þ, (27)

where

I jf ¼ ξj f 0 þ f 1 þ … þ f j
� �

, j≤N: (28)

The entries of the resulting vector are the progressive discrete integrations of f
when the subintervals are of equal length ξj. When the d-integration matrix is applied
to the right, we get

Ig ¼ I0g, I1g, I2g, … , INg
� �

, (29)

where

Ijg ¼ gjξj þ gjþ1ξjþ1 þ … þ gNξN, 0≤ j≤N: (30)

This result is the progressive discrete integration of g when the subintervals are of
different lengths.

The eigenvalues of I are ξ0, … , ξN, and its eigenvectors are the same as for D,

Eq. (10). But, there is the additional eigenvector e ¼ e�ipq0 , … , e�ipqN
� �T,

Ie ¼ i
p
e: (31)

The d-derivative and its inverse are constant along the same directions. The
domain of the d-derivative and d-integration is the same.

Now, the commutator between S and Q is
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Q , I½ � ¼

0 ξ1 q1 � q0
� �

ξ2 q2 � q0
� �

ξ3 q3 � q0
� �

… �ξN qN � q0
� �

0 0 ξ2 q2 � q1
� �

ξ3 q3 � q1
� �

… �ξN qN � q1
� �

0 0 0 ξ3 q3 � q2
� �

… �ξN qN � q2
� �

⋮
0 0 0 0 … �ξN qN � qN�1

� �

0 0 0 0 … 0

0
BBBBBBBB@

1
CCCCCCCCA
,

(32)

which is the progressive discrete integral of g qð Þ q� qj
� �

when acting on the vector g.

5. Conclusions

We have found another property of the d-derivative matrix: its inverse. The
inverse of the d-derivative has the right properties; the properties of the continuous
variable integration.

We discussed some of the properties of the discrete momentum operator when
considering all of a subset of the spectrum points at once and its associated discrete
integration matrices. The matrices are related by a common eigenvector for continu-
ous variable functions. These results give us confidence that our choice is a good
candidate for the discrete quantum momentum operator.

We also found that the matrices associated with the discrete derivative and the
discrete integration have an additional eigenvalue and eigenvector, in contrast with
the usual behavior of standard matrices. We have increased the number of eigen-
values and eigenvectors of a matrix by using it as an operator.

These operators are of help in defining a time operator and its eigenvalues and
eigenvectors for use in nonrelativistic quantum mechanics [12]. They can also be used
when the angular momentum on a circle is considered [15–17].

These results imply that we can deal with discrete quantum operators in almost the
same way as for continuous variable operators case, including deficiency indices and
self-adjoint extensions [13].

We have considered the exact discrete derivative for the complex exponential
function, but these results are also valid for the real exponential function e�pq with the
replacements

ξN ¼ 1
p
, (33)

ξj ¼
1� e�pΔj

p
, j<N: (34)
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Section 2
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Potential Applications
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Chapter 5

Perspective Chapter: Relativistic
Treatment of Spinless Particles
Subject to a Class of
Multiparameter Exponential-Type
Potentials
José Juan Peña, Jesús Morales and Jesús García-Ravelo

Abstract

By using the exactly-solvable Schrödinger equation for a class of multi-parameter
exponential-type potential, the analytical bound state solutions of the Klein-Gordon
equation are presented. The proposal is based on the fact that the Klein-Gordon
equation can be reduced to a Schrödinger-type equation when the Lorentz-scalar and
vector potential are equal. The proposal has the advantage of avoiding the use of a
specialized method to solve the Klein-Gordon equation for a specific exponential
potential due that it can be derived by means of an appropriate choice of the involved
parameters. For this, to show the usefulness of the method, the relativistic treatment
of spinless particles subject to some already published exponential potentials are
directly deduced and given as examples. So, beyond the particular cases considered in
this work, this approach can be used to solve the Klein-Gordon equation for new
exponential-type potentials having hypergeometric eigenfunctions. Also, it can be
easily adapted to other approximations of the centrifugal term different to the Green-
Aldrich used in this work.

Keywords: Schrödinger-type equation, Klein-Gordon equation, exponential-type
potentials, Greene-Aldrich approximation, hypergeometric equation

1. Introduction

At high energy levels, the study of physical phenomena is carried out by means of
equations invariant under Lorentz transformations. That is, it requires relativistic
wave equations that may be used as a starting point to evaluate the spin-orbit inter-
actions and relativistic effective core potential in the Schrödinger Hamiltonian. The
energy levels from these calculations are aimed to find the positions of experimental
spectral lines and to predict lines not heretofore observed in the systems under
consideration. To that purpose, the Dirac and Klein-Gordon equations are used for the
dynamic description of particles with and without spin, respectively. For that, the
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solutions of these equations have been an important field of research by employing
several methods as well as different physical potential models; usually a solution
method for a specific potential. In this regard, exponential-type potentials are
significant in the study of various physical systems, particularly for modeling diatomic
molecules. Within the different exponential potential models, stand out the proposals
of Hulthén, Eckart, Manning-Rosen, Rosen-Morse, Deng-Fan, Hyllerass, etc., as well
as mixed models with two or more of the above potential models. These latter, have
been developed with the aim to solve, as particular cases, the specific potentials that
are involved. In any case, the common feature of any exponential-type potential is
that wave functions are of hypergeometric-type. For this reason, in the quantum
mechanics treatment of this kind of potentials, the method that is most often used to
find the bound states solutions is the Nikiforov-Uvarov method [1], which is based on
solving a hypergeometric-type differential equation (DE) by means of special orthog-
onal functions. Albeit, other procedures such as Asymptotic Iteration [2], Supersym-
metric Quantum Mechanics [3], He’s Variational iteration [4], large-N solutions [5] or
Quantization-rule [6], among many other methods, have been also employed in both
non-relativistic and relativistic studies; obviously, including numerical solutions [7].
In the relativistic studies of spinless particles, it is well known that the Klein-Gordon
equation [8, 9] can always be reduced to a Schrödinger-type equation when the
Lorentz-scalar and vector potential are equal [10]. This fact is used in the present
research, devoted to obtaining approximate bound state energy eigenvalues and the
corresponding eigenfunctions of the Klein-Gordon equation for exponential-type
potentials. The method is based on a direct approach applied to the exactly solvable
Schrödinger equation with hypergeometric solutions for exponential-type potential
[11], which is given in Section 2. With this result, the corresponding analytical bound
state solutions of the Klein-Gordon equation are found in the frame of the Green and
Aldrich approximation to the centrifugal term [12] as shown in Section 4. Advanta-
geously, according to the method, several specific potentials are derived as particular
cases from the proposal such as those given in Section 5.

2. Direct approach to the exactly solvable Schrödinger equation
with hypergeometric solutions

For finding exactly-solvable quantum exponential-type potentials, the Schrödinger
equation must be transformed into a hypergeometric differential equation. To do so,
let us consider the Schrödinger equation (ℏ2 ¼ 2m ¼ 1)

�d2ψ rð Þ
dr2

þ V rð Þψ rð Þ ¼ Eψ rð Þ (1)

such that, after using the transformation

ψ rð Þ ¼ e�αru rð Þ (2)

it is written as

�d2u rð Þ
dr2

þ 2α
du rð Þ
dr

þ V rð Þ � Eþ α2
� �� �

u rð Þ ¼ 0 (3)
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With the aim of relating the above equation with a hypergeometric DE, we use the
coordinate transformation

x ¼ qe�r=k, k>0, q 6¼ 0 (4)

such that Eq. (3) is written as

x 1� xð Þ d
2u xð Þ
dx2

� 1þ 2αkð Þ 1� xð Þ du xð Þ
dx

� k2
1� x
x

� �
V xð Þ � Eþ α2

� �� �
u xð Þ ¼ 0:

(5)

Then, the similarity transformation

u xð Þ 1� xð ÞdF xð Þ (6)

with d being a real parameter, gives rise to

x 1� xð ÞF00 xð Þ þ 1þ 2αkð Þ � 1þ 2αkþ 2dð Þx½ �F0 xð Þ þ R xð ÞF xð Þ ¼ 0 (7)

where

R xð Þ ¼ xd d� 1ð Þ
1� x

� d 1þ 2αkð Þ � k2
1� x
x

� �
V xð Þ � Eþ α2

� �� �
; (8)

Hence, Eq. (7) can be compared with a hypergeometric DE

x 1� xð Þy00 xð Þ þ c� 1þ aþ bð Þx½ �y0 xð Þ � aby xð Þ ¼ 0 (9)

provided that

1þ 2αk ¼ c, 2 kαþ dð Þ ¼ aþ b; E ¼ �α2 (10)

and

R xð Þ ¼ �ab∧F xð Þ ¼ y xð Þ ¼ 2F1 a, b; c : xð Þ, (11)

where 2F1 is the hypergeometric function.
So, from R ¼ ab and E ¼ �α2 in Eq. (8), it is possible to identify the potential

V xð Þ ¼ 1

k2
ab� 1þ 2kαð Þdð Þx

1� x
þ d d� 1ð Þx2

1� xð Þ2
" #

(12)

which, by using Eqs. (4) and (10), can be written as

V rð Þ ¼
4ab� 2c aþ bþ 1� cð Þ½ �qe�r=k þ a� bð Þ2 � c� 1ð Þ2

h i
q2e�2r=k

4k2 1� qe�r=kð Þ2
(13)
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with eigenfunction given from Eqs. (2) and (6) by

ψ rð Þ ¼ e�αr 1� qe�r=k
� �d

2F1 a, b; c : qe�r=k
� �

(14)

and eigenvalue

E ¼ �α2 ¼ � c� 1
2k

� �2

: (15)

At this point, it is convenient to introduce the new parameters A,B, and C such
that 4k2 Aþ Bð Þ ¼ 4ab� 2c aþ bþ 1� cð Þ and 4k2 C� Að Þ ¼ a� bð Þ2 � c� 1ð Þ2 in
order to rewrite the potential as a multi-parameter exponential-type potential

V rð Þ ¼ Aqe�r=k

1� qe�r=k þ
Bqe�r=k

1� qe�r=kð Þ2
þ Cq2e�2r=k

1� qe�r=kð Þ2
(16)

By solving the condition d
dr V rð Þ ¼ 0, there will be a minimum value for the poten-

tial with sufficient depth for the existence of bound states, namely

V rminð Þ ¼ � Aþ Bð Þ2
4 Bþ Cð Þ

withrmin ¼ kln
q A� B� 2Cð Þ

Aþ B

� �
, (17)

provided that

Aþ B<0≤Bþ C (18)

which ensures that V rð Þ is an attractive potential with an infinite wall at its singular
point rs ¼ kln qð Þ.

Regarding the wave function, in order to have a node at rs it is necessary to apply
the condition ψ rsð Þ ¼ 0, which is achieved if d>0. Furthermore, by combining the
identities 4k2 Aþ Bð Þ and 4k2 C� Að Þ given above, we have

b ¼ hþ 1ð Þ h� að Þ � 2k2 Aþ Bð Þ
hþ 1� 2a

; c ¼ 2a h� að Þ � 2k2 Aþ Bð Þ
hþ 1� 2a

(19)

such that

c ¼ aþ b� h with h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2 Bþ Cð Þ

q
(20)

besides, if the parameter a ¼ �n, n ¼ 0, 1, 2, 3… :, the hypergeometric function
appearing in the eigenfunction given by Eq. (14) becomes a polynomial of n� th degree
in the variable qe�r=k. Additionally, the condition ψ rð Þ ! 0 when r ! ∞ implies that
α ¼ c�1

k >0, from which, the number of states is

0≤ n< k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C� A

p
� hþ 1

2
(21)
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In short, the above equations lead to a well define wave function for a legitimate
Schrödinger equation with potential V rð Þ. Likewise, by using Eqs. (19) and (20) in
Eq. (15) the energy spectrum will be

En ¼ �1

4k2
nþ hþ1ð Þ

2

� �2
þ k2 A� Cð Þ

nþ hþ1ð Þ
2

2
64

3
75
2

(22)

with wave-functions

ψn ¼ e�r=k
� �c�1

2
1� qe�r=k
� �hþ1

2

2F1 �n, b; c : qe�r=k
� �

(23)

3. Klein-Gordon equation in arbitrary dimensions

For a spinless particle with energy Enl and mass M, the D-dimensional Klein-
Gordon (KG) equation is given (ℏ ¼ c ¼ 1) by [13].

�∇2
Dψnlm r,Ωð Þ þ Mþ S rð Þ½ �2 � Enl þ V rð Þ½ �2

n o
ψnlm r,Ωð Þ ¼ 0 (24)

where V rð Þ and S rð Þ are respectively the Lorentz vector and the scalar
interaction potentials. The D-dimensional Laplacian operator in the space r,Ωð Þ ¼
r, θ1, θ2, θ3, … θD�2,ϕð Þ is defined ase

∇2
D ¼ r1�D ∂

∂r
rD�1 ∂

∂r

� �
� Λ2 Ωð Þ

r2
(25)

with Λ Ωð Þ the angular momentum operator. Hence, the functione

ψnlm r,Ωð Þ ¼ Rnl rð ÞYm
l Ωð Þ (26)

leads to the radial part of Eq. (24)

�d2Rnl rð Þ
dr2

�D� 1
r

dRnl rð Þ
dr

þ lD lD þ 1ð Þ
r2

Rnl rð Þ

þ Mþ S rð Þ½ �2 � Enl þ V rð Þ½ �2
n o

Rnl rð Þ ¼ ERnl rð Þ (27)

where we have used lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 þ l lþD� 2ð Þ

q
� 1

2 such that

Λ2 Ωð ÞYm
l Ωð Þ ¼ lD lD þ 1ð ÞYm

l Ωð Þ (28)

Likewise, with Rnl rð Þ ¼ r
�D�1

2 ψnL rð Þ Eq. (27) becomes

�d2ψnL rð Þ
dr2

þ Mþ S rð Þ½ �2 � EnL þ V rð Þ½ �2 þ Ls

r2

� �
ψnL rð Þ ¼ EnLψnL rð Þ (29)

where Ls ¼ L Lþ 1ð Þ, L ¼ lD þ D�3
2 such that the case D ¼ 3 implies L ¼ lD ¼ l:
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At this point, as already mentioned, the D-dimensional KG equation given in
Eq. (29) can be reduced to a Schrödinger-like equation, provided that the Lorentz
vector and scalar potential are equal [10]. In fact, if V rð Þ ¼ S rð Þ the corresponding KG
equation is given by

�d2ψnL rð Þ
dr2

þ E2
nL �M2� �� 2 EnL þMð ÞV rð Þ þ Ls

r2

� �
ψnL rð Þ ¼ 0 (30)

Different methods of the solution have been applied for solving the above
equation with many models of interaction potentials; see for example Ikhdair [14] and
references therein. Hence, to provide a unified treatment to the bound states solution
of the KG equation for equal vector and scalar exponential-type potentials, in the next
paragraph the results of Section 2 are extended to consider the D-dimensional case.
As we will see, this is done by a simple redefinition of the parameters that appear in
V rð Þ as defined in Eq. (16).

4. Klein-Gordon equation for exponential-type potentials in arbitrary
dimensions

To deal with the ‘-state approximate solutions for the D-dimensional KG equation
with the multi-parameter exponential-type potential given in Eq. (16) we define q ¼ 1
and

A ¼ Aþ αLs

k2
,B ¼ Bþ βLs

k2
, C ¼ Cþ γLs

k2
(31)

such that

V rð Þ ¼ Ae�r=k

1� e�r=k þ
Be�r=k

1� e�r=kð Þ2
þ Ce�2r=k

1� e�r=kð Þ2
þ LsTc (32)

with

Tc ¼ αþ βð Þe�r=k þ γ � αð Þe�2r=k

k2 1� e�r=kð Þ2
(33)

where, according to the values of the parameters α, β, and γ, the function Tc would
be approximate to the centrifugal term. Consequently, this method accepts different
approximation schemes, such as recently shown in [15]. For example, if we consider the
case α ¼ γ ¼ 0, and β ¼ 1, it leads to the standard Green-Aldrich approximation [12]

Tc ¼ e�r=k

k2 1� e�r=kð Þ2
≈

1
r2

(34)

however, if we add the constant c0L=k
2 in both sides of the Eq. (32) one has

V rð Þ þ c0L
k2

¼ Ae�r=k

1� e�r=k þ
Be�r=k

1� e�r=kð Þ2
þ Cqe�2r=k

1� e�r=kð Þ2
þ Ls Tc þ c0

k2

� �
(35)
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which means that any improvement to the centrifugal term through an additive
constant will be reflected as an additional term in the energy spectrum. In fact, the
improved Green-Aldrich approximation to the centrifugal term is achieved when
α ¼ γ ¼ 0, β ¼ 1 and c0 ¼ 1=12, that is [16]

Tc þ c0
k2

¼ e�r=k

k2 1� e�r=kð Þ2
þ 1

12k2
≈

1
r2

(36)

Another typical improved approximation used to 1
r2 is when α ¼ C1; β ¼ 0, and γ ¼

C2 and c0 ¼ C0 where the parameters C1, C2, and C0 are adjustable parameters [17],
leading to

Tc þ c0
k2

¼ 1

k2
C0 þ C1e�r=k

1� e�r=k þ
C2e�2r=k

1� e�r=kð Þ2
" #

≈
1
r2

(37)

However, for the sake of simplicity, we will use the standard Green-Aldrich
approximation, C0 ¼ 0, such that

V rð Þ ¼ V rð Þ þ Ls

r2
(38)

with

V rð Þ ¼ Ae�r=k

1� e�r=k þ
Be�r=k

1� e�r=kð Þ2
þ Ce�2r=k

1� e�r=kð Þ2
(39)

Since the solutions of Eq. (1) with potential V rð Þ are given by Eqs. (22) and (23),
the energy spectrum and the eigenfunctions will be

En ¼ �1

4k2
nþ hLþ1ð Þ

2

� �2
þ k2 A� Cð Þ

nþ hLþ1ð Þ
2

2
64

3
75
2

(40)

and

ψnL rð Þ ¼ e�r=k
� �CL�1

2
1� e�r=k
� �hLþ1

2

2F1 �n, bL; cL : e�r=k
� �

(41)

where the new parameters defined in Eq. (31) have been used. Besides, according
with Eqs. (19) and (20)

hL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4k2 Bþ Cð Þ

q
, (42)

bL ¼ hL þ 1ð Þ hL þ nð Þ � 2k2 Aþ Bð Þ � 2Ls

2nþ hL þ 1
(43)

and

cL ¼ �2n hL þ nð Þ � 2k2 Aþ Bð Þ � 2Ls

2nþ hL þ 1
(44)
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Furthermore, the number of states will be determined by Eq. (21) as

0≤ n< k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C� A

p
� hL þ 1

2
(45)

Likewise, in accordance with Eq. (17)

V rminð Þ ¼ � k2 Aþ Bð Þ þ Ls
� �2

4k2 k2 Bþ Cð Þ þ Ls
� � (46)

with

rmin ¼ kln
k2 A� B� 2Cð Þ � Ls

k2 Aþ Bð Þ þ Ls

 !
, (47)

such that

k2 Aþ Bð Þ<Ls ≤ k2 Bþ Cð Þ (48)

or more explicitly

k2 Aþ Bð Þ þ l lþ 1ð Þ< 3�Dð Þ 4lþD� 1ð Þ
4

≤ k2 Bþ Cð Þ þ l lþ 1ð Þ (49)

where all possible values of l ¼ 0, 1, 2, 3, … lmax fulfill the above inequality.
With these elements, the KG equation in arbitrary dimensions given in Eq. (30),

for S rð Þ ¼ V rð Þ ¼ V rð Þ; becomes a Schrödinger-type equation

�d2ψnL rð Þ
dr2

þ ΔEV rð Þ þ Ls

r2

� �
ψnL rð Þ ¼ ~EnLψnL rð Þ (50)

with ΔE ¼ 2 EnL þMð Þ and ~EnL ¼ E2
nL �M2 Hence, within the frame of the stan-

dard Green-Aldrich approximation, directly from Eqs. (40) and (41), the energy
spectrum and wave function are respectively

~EnL ¼ �1

16k2
2nþ hL þ 1ð Þ2 þ 4k2ΔE A� Cð Þ

2nþ hL þ 1

" #2
(51)

ψnL rð Þ ¼ e�r=k
� �CL�1

2
1� e�r=k
� �hLþ1

2

2F1 �n, bL; cL : e�r=k
� �

(52)

where

hL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4k2ΔE Bþ Cð Þ

q
, (53)

bL ¼ hL þ 1ð Þ hL þ nð Þ � 2k2ΔE Aþ Bð Þ � 2Ls

2nþ hL þ 1
(54)
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and

cL ¼ �2n hL þ nð Þ � 2k2ΔE Aþ Bð Þ � 2Ls

2nþ hL þ 1
(55)

The usefulness of our alternative approach for the calculation of bound state
solutions of the D-dimensional KG equation with exponential-type potentials is
exemplified in the next section.

5. Applications

The choice of particular values for the parameters A, B, and C appearing in the
multiparameter exponential-type potential of Eq. (39), leads to the solutions of the
KG equation in arbitrary dimensions for specific potentials. So, without being
exhaustive, at the following we are going to consider only some well-known special
cases, it being understood the existence of many others that can be treated in a
similar way.

5.1 The Eckart+Hultén potential

If we assume the parameters A ¼ � V2 þ V3ð Þ;B ¼ 4V1;C ¼ 0 and k ¼ 2að Þ�1 the
potential V rð Þ in Eq. (39) will be

V rð Þ ¼ � V2 þ V3ð Þe�2αr

1� e�2αr þ 4V1e�2αr

1� e�2αrð Þ2 (56)

such that the Eckart-type potential which also includes the Hulthén potential is
written as

VEH ¼ V rð Þ � V2 ¼ �V2

1� e�2αr �
V3e�2αr

1� e�2αr þ
4V1e�2αr

1� e�2αrð Þ2 þ
Ls

r2
(57)

Hence, from Eq. (51) this potential has an energy spectrum given by

~E
EH
nL ¼ �α2

4
2nþ hL þ 1ð Þ2 þ α�2ΔE V2 þ V3ð Þ

2nþ hL þ 1

" #2
� ΔEV2 (58)

which agrees with the transcendental Eq. (38) of the reference [14], after consid-
ering some algebraic steps on it and the displacement �V2 in the potential V rð Þ. At
this point, we want to notice that the term ΔEV2 in above equation appears from
V rð Þ ¼ VEH þ V2 given in Eq. (57). That is,

�d2ψnL rð Þ
dr2

þ ΔE VEH þ V2ð Þ þ Ls

r2

� �
ψnL rð Þ ¼ ~EnLψnL rð Þ (59)

Implies

�d2ψnL rð Þ
dr2

þ ΔEVEH þ Ls

r2

� �
ψnL rð Þ ¼ ~EnL � ΔEV2

� �
ψnL rð Þ (60)
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Likewise from Eq. (52), the corresponding wave functions are

ψnL rð Þ ¼ e�2αr� �CEH Lð Þ�1

2 1� e�2αr� �hEH Lð Þþ1

2
2F1 �n, bEH Lð Þ; cEH Lð Þ; e�2αr� �

(61)

where

hL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ α�2ΔEV1

q
, (62)

bEH Lð Þ ¼ hEH Lð Þ þ 1
� �

hEH Lð Þ þ n
� �� (63)

and

cEH Lð Þ ¼ �2n hEH Lð Þ þ n
� �� 2 (64)

5.2 The standard Hultén potential

In this case, for the potential V rð Þ given in Eq. (39), one can apply the selection

A ¼ �Zα,B ¼ C ¼ 0; k ¼ α�1 (65)

such that the Hultén potential is

VH ¼ �Zαe�αr

1� e�αr þ
Ls

r2
(66)

Similarly to the above case, from Eq. (51), this potential has an energy spectrum

~E
H
nL ¼ �α2

4
nþ Lþ 1� ZαΔE

nþ Lþ 1

� �2
(67)

that agrees with Eq. (47) of the reference [14] under the identification of their ν ¼
Dþ 2l� 1ð Þ=2 with our L ¼ ν� 1 i.e. ν ¼ Lþ 1. Additionally, our ~E

H
nL result coincides

with that of Saad [18] when the parameters V0 ¼ S0 and q ¼ 1 are used. Similarly,
from Eq. (52), the corresponding wavefunctions will be

ψH
nL rð Þ ¼ e�αrð Þ

CH Lð Þ�1

2 1� e�αrð ÞLþ1
2F1 �n, bH Lð Þ; cH Lð Þ; e�αr� �

(68)

where, according to Eqs. (54) and (55), the bL and bL parameters are now

bH Lð Þ ¼ Lþ 1ð Þ 2Lþ nþ 1ð Þ þ Zα�1 � Ls

nþ Lþ 1
(69)

and

cH Lð Þ ¼
�n 2Lþ nþ 1ð Þ þ Zα�1 � Ls

nþ Lþ 1
(70)

with hH Lð Þ ¼ 2Lþ 1.
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5.3 The standard Eckart potential

To obtain this potential model, one selects

A ¼ �V1,B ¼ V2,C ¼ 0; k ¼ b (71)

such that

VE ¼ �V1e�r=b

1� e�r=b þ V2e�r=b

1� e�r=bð Þ2
þ Ls

r2
(72)

corresponds to the Eckart potential. So, from Eq. (51), its corresponding energy
spectrum results in

~E
E
nL ¼ �1

16b2
2nþ hE Lð Þ þ 1
� �2 þ 4b2V1ΔE

2nþ hE Lð Þ þ 1

" #2
(73)

where

hE Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4b2ΔEV2

q
, (74)

and the eigenfunctions are

ψE
nL rð Þ ¼ e�αrð Þ

CE Lð Þ�1

2 1� e�αrð Þ
hE Lð Þþ1

2
2F1 �n, bE Lð Þ; cE Lð Þ; e�αr� �

(75)

bEH Lð Þ ¼
hE Lð Þ þ 1
� �

hE Lð Þ þ n
� �� 2b2ΔE V2 � V1ð Þ � 2Ls

2nþ hE Lð Þ þ 1
(76)

and

cEH Lð Þ ¼
�2n hE Lð Þ þ n

� �� 2b2ΔE V2 � V1ð Þ � 2Ls

2nþ hE Lð Þ þ 1
(77)

It is worth mentioning that in the particular case D ¼ 3, the energy spectrum given
in Eq. (73) coincides with the results of Akpan et al. [17] by assuming the standard
Green and Aldrich approximation (C0 ¼ 0; C1 ¼ C2 ¼ 1).

5.4 The Manning-Rosen potential

Let us consider now the parameters

A ¼ �V0=b
2,B ¼ 0,C ¼ α α� 1ð Þ

b2
; k ¼ b (78)

from which, one has the Manning-Rosen potential

VMR ¼ 1

b2
α α� 1ð Þe�2r=b

1� e�r=bð Þ2
� V0e�r=b

1� e�r=b

 !
þ Ls

r2
(79)
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with energy spectrum

~E
MR
nL ¼ �1

16b2
2nþ hMR Lð Þ þ 1
� �2 þ 4ΔE V0 þ α α� 1ð Þð Þ

2nþ hMR Lð Þ þ 1

" #2
(80)

where

hMR Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4ΔEα α� 1ð Þ

q
, (81)

Besides, the eigenfunctions are

ψMR
nL rð Þ ¼ e�r=b

� �CMR Lð Þ�1

2
1� e�r=b
� �hMR Lð Þþ1

2

2F1 �n, bMR Lð Þ; cMR Lð Þ; e�r=b
� �

(82)

bMR Lð Þ ¼
hMR Lð Þ þ 1
� �

hMR Lð Þ þ n
� �þ 2ΔEV0 � 2Ls

2nþ hMR Lð Þ þ 1
(83)

and

cMR Lð Þ ¼
�2n hMR Lð Þ þ n

� �þ 2ΔEV0 � 2Ls

2nþ hMR Lð Þ þ 1
(84)

5.5 The improved Manning-Rosen potential

To get this special case, it becomes necessary the choice A ¼ �2De eαre � 1ð Þ,
B ¼ 0; C ¼ De eαre � 1ð Þ2, and k ¼ α�1 leading to Improved Manning-Rosen
potential

VIMR rð Þ ¼ V rð Þ þDe ¼ De 1� eαre � 1
eαr � 1

� �2

þ Ls

r2
(85)

with, according to Eq. (49), energy spectrum given by

~E
IMR
nL ¼ �α2

2nþ hIMR Lð Þ þ 1
4

� α�2DeΔE e2αre � 1ð Þ
2nþ hIMR Lð Þ þ 1

� �2
þDeΔE (86)

where

hIMR Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4α�2DeΔE eαre � 1ð Þ2

q
, (87)

At this point, we want to notice that in the case ofD ¼ 3, the energy spectrum ~E
IMR
nL

is in agreement with Eq. (31) of Jia et al. [19] besides, it corrects Eqs. (21) and (24) of
the reference [20].

On the other hand, from Eq. (52), the eigenfunctions are in this case

ψ IMR
nL rð Þ ¼ e�αrð Þ

CIMR Lð Þ�1

2 1� e�αrð Þ
hIMR Lð Þþ1

2
2F1 �n, bIMR Lð Þ; cIMR Lð Þ; e�αr� �

(88)
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with

bIMR Lð Þ ¼
hIMR Lð Þ þ 1
� �

hIMR Lð Þ þ n
� �� 4α�2ΔE eαre � 1ð Þ � 2Ls

2nþ hIMR Lð Þ þ 1
(89)

and

cIMR Lð Þ ¼
�2n hIMR Lð Þ þ n

� �þ 4α�2ΔE eαre � 1ð Þ � 2Ls

2nþ hIMR Lð Þ þ 1
(90)

5.6 The Hylleraas potential

Assuming that A ¼ �V0 1� að Þ, B ¼ C ¼ 0 and k ¼ 2αð Þ�1 the potential given in
Eq. (39) reduces to

V rð Þ ¼ �V0 1� að Þe�2αr

1� e�2αr (91)

for which the Hylleraas potential in D-dimensions is given by

VHy ¼ V rð Þ þ V0a ¼ V0
a� e�2αr

1� e�2αr

� �
þ Ls

r2
(92)

As before, from Eq. (51), the corresponding energy spectrum will be

~E
Hy
nL ¼ �α2

4
2nþ hHy Lð Þ þ 1
� �2 þ α�2DeΔEV0 a� 1ð Þ

2nþ hHy Lð Þ þ 1

" #2
þ aV0ΔE (93)

where

hHy Lð Þ ¼ 2Lþ 1, (94)

in agreement with Hassamaadi et al. [21] when considering their parameters b ¼ 1
and V1 ¼ V2 ¼ 0.

In relation with wavefunctions, from Eq. (52), these are

ψ
Hy
nL rð Þ ¼ e�αrð Þ

CHy Lð Þ�1

2 1� e�αrð Þ
hHy Lð Þþ1

2
2F1 �n, bHy Lð Þ; cHy Lð Þ; e�αr� �

(95)

being

bHy Lð Þ ¼
hHy Lð Þ þ 1
� �

hHy Lð Þ þ n
� �� 2α�1ΔEV0 a� 1ð Þ � 2Ls

2nþ hHy Lð Þ þ 1
(96)

and

cHy Lð Þ ¼
�2n hHy Lð Þ þ n

� �� 2α�1ΔEV0 a� 1ð Þ � 2Ls

2nþ hHy Lð Þ þ 1
(97)
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where, as in all the above cases, the down index indicates the name of potential, i.e.
Hy refers to Hylleraas.

5.7 The Deng Fan potential

In this case, the involved parameters are chosen as

A ¼ �2bDe,B ¼ 0,C ¼ Deb
2and k ¼ 1=α (98)

such that the Deng Fan potential, also called generalized Morse potential will be

VDF ¼ �2bDee�αr

1� e�αr þ Deb
2e�2αr

1� e�αrð Þ2 þ
Ls

r2
(99)

where De is the dissociation energy. The corresponding energy spectrum is
obtained from Eq. (51) as

~E
DF
nL ¼ �α2

16
2nþ hDF Lð Þ þ 1
� �2 � 4α�2DeΔE 2bþ b2

� �
2nþ hDF Lð Þ þ 1

" #2
(100)

which is in agreement with Oluwadare et al. [22] for the three-dimensional case,
when considering the Green and Aldrich approximation [12]. Finally, from Eq. (52),
the respective wave functions are

ψDF
nL rð Þ ¼ e�αrð Þ

CDF Lð Þ�1

2 1� e�αrð Þ
hDF Lð Þþ1

2
2F1 �n, bDF Lð Þ; cDF Lð Þ; e�αr� �

(101)

where

hDF Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1ð Þ2 þ 4α�2DeΔEDeb

2
q

, (102)

bDF Lð Þ ¼
hDF Lð Þ þ 1
� �

hDF Lð Þ þ n
� �þ 4α�2ΔEbDe � 2Ls

2nþ hDF Lð Þ þ 1
(103)

and

cDF Lð Þ ¼
�2n hDF Lð Þ þ n

� �þ 4α�2ΔEbDe � 2Ls

2nþ hDF Lð Þ þ 1
(104)

At this point, it should be noted that the equivalence among the Manning-Rosen
potential, the Deng-Fan and Schiöberg models for diatomic molecules have been
already shown with detail in references [23, 24]. So, the solutions of the KG equation
in arbitrary dimensions derived in this section can also be extended to the Schiöberg
potential [25].

Finally, we want to pay attention that in a similar manner to the examples consid-
ered in this work, other exponential potentials would be achieved as particular cases
from our general proposal of multi-parameter exponential-type potential [26] after a
proper selection of the involved parameters.
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6. Concluding remarks

Through a direct approach to transform the Schrödinger equation into a
hypergeometric differential equation, we have obtained the exact solution of a class of
multiparameter exponential-type potentials. Also, we have used the fact that, for
equal Lorentz vector and scalar potentials, the Klein-Gordon equation can be written
as a Schrödinger-type equation. With these elements, and with a proper redefinition
of the involved parameters, we propose an approach to obtain the analytical solutions
of the Klein-Gordon equation for exponential-type potentials, in the frame of the
Green-Aldrich approximation to the centrifugal term. As a test of the usefulness of the
proposed method, by an appropriate selection of parameters, the Klein-Gordon equa-
tion has been solved for specific exponential potential models such as Hulthén, Eckart,
Manning-Rosen, Improved Manning-Rosen, Hylleraas and generalized Morse or Deng
Fan which are derived here as particular cases from the proposal. That is, with this
work, we are proposing a unified treatment for solving the Klein-Gordon equation
subject to multiparameter exponential-type-potentials, leaving aside the usual
methods of solution applied for each one of the aforementioned potentials, for partic-
ular parameters, given as examples. So, the displayed method offers an alternative
treatment of spinless particles with new exponential-type potentials as well as the
possibility to use other schemes of approximations to the centrifugal term.
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Chapter 6

From a 4-Rank Totally
Antisymmetric Field Strength to
Two Dual Electromagnetic Fields
in Four Time and Four Space
Dimensions
Juan Antonio Nieto

Abstract

A 4-rank “electromagnetic” gauge field strength in four-time and four-space
dimensions 4þ 4ð Þð -dimensions) is considered. We show that by necessitating such a
four-rank gauge field we satisfy the Grassmann–Plücker relations which allows to
choose an ansatz (for a basic basis) such that it is broken into two dual electromag-
netic fields – one in a 1þ 3ð Þ-world and the other in a 3þ 1ð Þ-world. An interesting
aspect of this mechanism is that the electromagnetic field 1þ 3ð Þ-world turns out to
be dual to the electromagnetic field in the 3þ 1ð Þ-world.

Keywords: 4-rank field strength, (4 + 4)-dimensions, electromagnetic field, Maxwell
equations and higher dimensional theory, antisymmetric field strength

1. Introduction

It is known that the Grassmann Plücker relations [1–6] of totally antisymmetric
forms determine the Plücker coordinates which mean that such a totally antisymmetric
form is decomposable (see Ref. [3] and references therein). Physically, the Plücker
embedding can be found in a Grassmannian sigma model in SU 2ð Þ Yang Mills model [7]
and in spherically symmetric instantons of the scale invariant SU 2ð Þ gauged
Grassmannian model in d ¼ 4 [8]. When this developments are applied to 2-rank
antisymmetric gauge field in four-dimensions, it is found that the corresponding elec-
tromagnetic field strength can be written in terms of the true degrees of freedom [9].

In this work, we make a number of remarks on Plücker coordinates associated with

4-rank totally antisymmetric gauge fields strength Fμ̂ν̂α̂β̂ (differential 4-form) in
4þ 4ð Þ-dimensions. When such a gauge field satisfies the Grassmann–Plücker relations
can be, of course, decomposable in terms of more elementary quantities. Surprisingly,
for a particular case of ansatz for such elementary basic quantities, the field equations

for Fμ̂ν̂α̂β̂ lead to both the electromagnetic field equation for Fμν in 1þ 3ð Þ-dimensions
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and the electromagnetic field equation for Gij in 3þ 1ð Þ-dimensions. An interesting
aspect of this mechanism is that the source of Fμν is determined in part byGij and dually
the source of Gij is determined in part by Fμν.

2. Field equations for a 4-rank field strength

Let us start considering a totally antisymmetric gauge field strength

Fμ̂ν̂α̂β̂ ¼ Fμ̂ν̂α̂β̂ xσ, yi
� �

in 4þ 4ð Þ-dimensions, which we shall assume is a function of 1þ 3ð Þ-coordinates
xσ and 3þ 1ð Þ-coordinates yi. Suppose that Fμ̂ν̂α̂β̂ satisfies the Maxwell type equations:

∂β̂F
μ̂ν̂α̂β̂ ¼ 0 (1)

and

∂β̂
∗ Fμ̂ν̂α̂β̂ ¼ 0, (2)

where ∗Fμ̂ν̂α̂β̂ is the dual gauge field defined as

∗ Fμ̂ν̂α̂β̂ ¼ 1
4!

ϵμ̂ν̂α̂β̂σ̂ρ̂γ̂η̂Fσ̂ρ̂γ̂η̂: (3)

In general, we raise and lower indices with a flat Minkowski metric ημ̂ν̂, which in
4þ 4ð Þ-dimensions takes the form

ημ̂ν̂ ¼ diag �1,1,1,1,�1,�1,�1, 1ð Þ: (4)

The ϵ-symbol is a totally antisymmetric symbol (Levi–Civita symbol) defined as

ϵμ̂ν̂α̂β̂σ̂ρ̂γ̂η̂ ∈ �1,0,1f g: (5)

In fact, the ϵ-symbol has values þ1 or �1 depending on even or odd permutations
of ϵ12:::8, respectively, otherwise the ϵ-symbol is zero. It is verified that the relation

ϵμ̂1 … μ̂8ϵν̂1 … ν̂8 ¼ �δμ̂1 … μ̂8
ν̂1 … ν̂8

, (6)

where δμ̂1 … μ̂8
ν̂1 … ν̂8

is a generalized Kronecker delta [10].
Let us assume that the Grassmann–Plücker relations (see Ref. [3] and references

therein) hold for Fμ̂ν̂α̂β̂, namely

Fμ̂ν̂α̂ β̂½ Fσ̂ρ̂γ̂η̂� ¼ 0: (7)

Here, the bracket β̂σ̂ρ̂γ̂η̂…
� �

means totally antisymmetric. This implies that Fμ̂ν̂α̂β̂ is

decomposable. In other words, this means that Fμ̂ν̂α̂β̂ can be written as
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Fμ̂ν̂α̂β̂ ¼ 1
4!
εÂB̂ĈD̂vμ̂

Â
vν̂B̂v

α̂
Ĉv

β̂

D̂
: (8)

Here, the elementary quantities vμ̂
Â
¼ vμ̂

Â
xσ, yi
� �

can be considered as basic basis

elements and εÂB̂ĈD̂ is an ‘internal’ four-dimensional ϵ-symbol.
Moreover, from (2) one learns that

Fμ̂ν̂α̂β̂ ¼ ∂μ̂Aν̂α̂β̂�: (9)

So one sees that Aν̂α̂β̂ is a totally antisymmetric gauge field which under the
transformation

Aν̂α̂β̂ ! Aν̂α̂β̂ þ ∂ν̂Ωα̂β̂�, (10)

the 4-rank tensor Fμ̂ν̂α̂β̂ becomes invariant.

3. Kaluza-Klein type ansatz

In general, one finds that Fμ̂ν̂α̂β̂ can be written as

Fμ̂ν̂α̂β̂ ¼ Fμ̂ν̂Gα̂β̂ � Fμ̂α̂Gν̂β̂ þ Fμ̂β̂Gν̂α̂

þGμ̂ν̂Fα̂β̂ �Gμ̂α̂Fν̂β̂ þ Gμ̂β̂Fν̂α̂,
(11)

where

Fμ̂ν̂ ¼ 1
4!

ϵabvμ̂av
ν̂
b (12)

and

Gμ̂ν̂ ¼ 1
4!

ϵABvμ̂Av
ν̂
B: (13)

Our next step is to consider some particular cases. In principle one may assume a
kind of Kaluza–Klein ansatz for vμ̂

Â
, namely

vμ̂
Â
¼ vμa vμA

0 viA

� �
: (14)

However, in this case, one looses the symmetry between the 1þ 3ð Þ-world and the
3þ 1ð Þ-world. So one shall assume that

vμ̂
Â
¼ vμa 0

0 viA

� �
: (15)
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In this case, one gets

Fμi ¼ 0 (16)

and

Fij ¼ 0: (17)

And one also obtains

Gμi ¼ 0 (18)

and

Gμν ¼ 0: (19)

Hence, using Eq. (11) one learns that the only nonvanishing component of Fμ̂ν̂α̂β̂ is

Fμνij ¼ Fμν xσ, yk
� �

Gij xλ, yk
� �

, (20)

where the “electromagnetic” fields Fμν and Gij corresponds to the 1þ 3ð Þ-world
and 3þ 1ð Þ-world, respectively.

4. Inhomogeneous Maxwell field equations

From (1) one knows that

∂βFμ̂ν̂α̂β þ ∂jFμ̂ν̂α̂j ¼ 0: (21)

Thus, the relevant equations that can be obtained from Eq. (21) are

∂νFμνij ¼ 0 (22)

and

∂jFμνij ¼ 0: (23)

Hence, using Eq. (20) one learns that

∂νFμνð ÞGij þ ∂νGij� �
Fμν ¼ 0 (24)

and

∂jGij� �
Fμν þ ∂jFμν

� �
Gij ¼ 0: (25)

These equations can also be written as

∂νFμν ¼ Jμ (26)

and

∂jGij ¼ Ji: (27)
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Here,

Jμ ¼ �Fμν
∂ν lnψ (28)

and

Ji ¼ �Gij
∂j ln ξ, (29)

with

ψ ¼ 1
2
GijGij

� �1=2

(30)

and

ξ ¼ 1
2
FμνFμν

� �1=2

: (31)

Another interesting way to write (26) and (27) is

∂ν ψFμνð Þ ¼ 0 (32)

and

∂j ξGij� � ¼ 0, (33)

respectively.
It is evident that (26) (and (27)) or (32) (and (33)) are inhomogeneous Maxwell

field type equations. Consequently, Fμν can be identified with the electromagnetic
field strength in the 1þ 3ð Þ-world and Gij with the dual-mirror electromagnetic field
strength in the 3þ 1ð Þ-world. However, (26) or (32) establishes something else that
the source of the electromagnetic field ψ arises in part from the 3þ 1ð Þ-world via Gij,
and the eqs. (27) and (33) indicate that the source of the mirror electromagnetic field
emerges from the 1þ 3ð Þ-world via Fμν. This process shows a duality between the
1þ 3ð Þ-world and the 3þ 1ð Þ-world. An important point is that both electromagnetic
fields Fμν and Gij are part according to (18) of the 4-rank gauge field strength Fμ̂ν̂α̂β̂

which “lives” in a 4þ 4ð Þ-world.

5. Dual Maxwell field equations

Moreover, from Eq. (20) one can also show that the only nonvanishing compo-

nents of the dual gauge field strength ∗Fμ̂ν̂α̂β̂ are ∗Fμνij which can be written as

∗Fμνij¼ ∗Fμν xσ, yk
� � ∗

Gij xλ, yk
� �

, (34)

where

∗ Fμν ¼ 1
2!
ϵμναβFαβ (35)
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and

∗Gij ¼ 1
2!
ϵijklGkl: (36)

From the field eq. (2), one obtains

∂ν
∗Fμν ¼ �∂ν lnψ ∗ð Þ ∗Fμν (37)

and

∂j
∗Gij ¼ �∂j ln ξ ∗ð Þ ∗Gij: (38)

Here,

ψ ∗ ¼ 1
2

∗
Gij ∗Gij

� �1=2

(39)

and

ξ ∗ ¼ 1
2

∗
Fμν ∗ Fμν

� �1=2

: (40)

One finds that (37) and (38) can also be written as

∂ν
∗ψ ∗ Fμνð Þ ¼ 0 (41)

and

∂j
∗ ξ ∗Gij� � ¼ 0, (42)

respectively.

6. Final remarks

Let us make some final remarks. Usually, for describing different phenomena in
our universe, one time and three-space dimensions ( 1þ 3ð Þ-dimensions) are the cho-
sen number of real dimensions. But the question emerges, why 1þ 3ð Þ-dimensions?
why not 3þ 1ð Þ-dimensions? or why not 4þ 4ð Þ-dimensions? Unfortunately (or for-
tunately) until now these questions are an open theoretical problem; as far as one
knows, nobody knows the answer. It turns out that looking for a possible solution one
stumbling with the discovery that there is a triality relation between the signatures
1þ 9ð Þ, 5þ 5ð Þ and 9þ 1ð Þ [11, 12]. This means that by triality the 5þ 5ð Þ-dimen-
sional world can always be related to the other basic signatures 1þ 9ð Þ and 9þ 1ð Þ. It
turns out that 5þ 5ð Þ-world is a common signature to both type IIA strings and type
IIB strings. From this perspective, one may say that the 4þ 4ð Þ-world can be consid-
ered as the transverse world of the 5þ 5ð Þ-world (see Refs [11, 12] and references
therein). Moreover, it turns out that in 4þ 4ð Þ-dimensions, there are a number of
remarkable mathematical and physical results that are worth mentioning.
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Mathematically, it has been suggested that the mathematical structures of oriented
matroid theory [13] (see Refs. [14–22] and references therein) and surreal number
theory [23, 24] (see also Refs [25, 26] and references therein) may provide interesting
routes for a connection with the 4þ 4ð Þ-world. Physically, the Dirac equation in
4þ 4ð Þ-dimensions is consistent with Majorana–Weyl spinors which give exactly the
same number of components as the complex spinor of 1

2-spin particles such as the
electron or the quarks (see Refs. [12, 27]). Second, the most general Kruskal–Szekeres
transformation of a black-hole coordinates in 1þ 3ð Þ-dimensions leads to eight-
regions (instead of the usual four-regions), which can be better described in 4þ 4ð Þ-
dimensions [28]. Third, it also has been shown [29] that duality

σ2 $ 1
σ2

, (43)

of a Gaussian distribution in terms of the standard deviation σ of 4-space coordi-
nates associated with the de Sitter space (anti-de Sitter) and the vacuum zero-point
energy yields to a Gaussian of 4-time coordinates of the same vacuum scenario.
Moreover, loop quantum gravity in 4þ 4ð Þ-dimensions [30, 31] admits a self-duality
curvature structure analogue to the traditional 1þ 3ð Þ-dimensions.

In the above sense, the contribution of this work adds to the fact that “electro-
magnetic” field in a 4þ 4ð Þ-world described by a 4-rank totally antisymmetric field

strength Fμ̂ν̂α̂β̂ can be broken into two electromagnetic field strengths; the field
strength Fμν associated with the 1þ 3ð Þ-world and the field strength Gij associated
with the 3þ 1ð Þ-world. An interesting aspect of this result is that there is a hidden
duality symmetry feature of Fμν and Gij in the sense that Gij contribute to the source of
Fμν and vice versa.

Finally, it is worth mentioning that 4-rank totally antisymmetric field strength

Fμ̂ν̂α̂β̂ in 1þ 10ð Þ-dimensions are a key mathematical notion in 3-brane theory which, it
is known, is an important part in the so-called M-theory (see Ref. [15] and references
therein). In fact, in Ref. [9] it is shown how totally antisymmetric fields can be related

to p-brane. For the case of the field strength Fμ̂ν̂α̂β̂
, one uses (6) and writes

Fν̂α̂β̂Â ¼ 1
4!

εB̂ĈD̂Âvν̂B̂v
α̂
Ĉv

β̂

D̂
(44)

and assume that Fμ̂ν̂α̂β̂ ¼ Fμ̂ν̂α̂β̂ xσ, yi, ξÂ
� �

. Moreover, instead of (1) one considers

the field equation:

∂ÂF
μ̂ν̂α̂Â ¼ 0, (45)

where ∂Â ¼ ∂

ξÂ
. This expression implies that due to (44) one can write

vμ̂
B̂
¼ ∂B̂X

μ̂: (46)

Thus, substituting this result into (8) leads to

Fμ̂ν̂α̂β̂ ¼ 1
4!

εÂB̂ĈD̂∂ÂX
μ̂
∂B̂X

ν̂
∂ĈX

α̂
∂D̂X

β̂: (47)
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In turn, this expression can be used to write the Schild type action for the 3-brane
in target 4þ 4ð Þ-dimensions, namely

S ¼
ð

Fμ̂ν̂α̂β̂Fμ̂ν̂α̂β̂

� �1=2
d4ξ: (48)

So it may be interesting for further work to continue relating our present approach
with p-brane theory and M-theory.
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Chapter 7

Qubit Lattice Algorithms Based on
the Schrödinger-Dirac
Representation of Maxwell
Equations and Their Extensions
George Vahala, Min Soe, Efstratios Koukoutsis,
Kyriakos Hizanidis, Linda Vahala and Abhay K. Ram

Abstract

It is well known that Maxwell equations can be expressed in a unitary Schrodinger-
Dirac representation for homogeneous media. However, difficulties arise when con-
sidering inhomogeneous media. A Dyson map points to a unitary field qubit basis, but
the standard qubit lattice algorithm of interleaved unitary collision-stream operators
must be augmented by some sparse non-unitary potential operators that recover the
derivatives on the refractive indices. The effect of the steepness of these derivatives on
two-dimensional scattering is examined with simulations showing quite complex
wavefronts emitted due to transmissions/reflections within the dielectric objects.
Maxwell equations are extended to handle dissipation using Kraus operators. Then,
our theoretical algorithms are extended to these open quantum systems. A quantum
circuit diagram is presented as well as estimates on the required number of quantum
gates for implementation on a quantum computer.

Keywords: Schrodinger-Dirac, qubit lattice algorithm, Dyson map,
2D electromagnetic scattering, dissipative systems, Kraus operators, dilation

1. Introduction

Qubit lattice algorithms (QLA) were first being developed in the late 1990s to solve
the Schrodinger equation [1–3] using unitary collision and streaming operators acting
on some qubit basis. QLA recovers the Schrodinger equation in the continuum limit to
second order in the spatial lattice grid spacing. Because the lattice node qubits are
entangled by the unitary collision operator (much like in the formation of Bell states),
QLA is encodable onto a quantum computer with an expected exponential speed-up
over a classical algorithm run on a supercomputer. Moreover, since QLA is extremely
parallelizable on a classical supercomputer, it provides an alternate algorithm for
solving difficult problems in computational classical physics.
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We then applied these QLA ideas to the study of the nonlinear Schrodinger equa-
tion (NLS) [4], by incorporating the cubic nonlinearity in the wave function, ψj j2ψ , as
an external potential operator following the unitary collide-stream operator sequence
on the qubits. While the inclusion of such nonlinear terms poses no problem for a
hybrid classical-quantum computer, it remains a very important and difficult research
topic for their implementation on a quantum computer. The accuracy of the QLA for
NLS was tested for soliton-soliton collisions in long-term integration and compared to
exact analytic solutions, and while the QLA is second order, it seemed to behave like a
symplectic integrator. The QLA was then extended to the totally integrable vector
Manakov solitons [5] to handle inelastic soliton scattering. The Manakov solitons are
solutions to a coupled set of NLS equations.

Following these successful benchmarking simulations, we moved into QLA for two
(2D) and three (3D) dimensional NLS equations—where now there are no exact
solutions to these nonlinear equations. In the field of condensed matter, these higher
dimensions NLS equations are known as the Gross-Pitaevskii equations and give the
mean field representation of the ground state wave function ψ of a zero-temperature
Bose-Einstein condensate (BEC). For scalar quantum turbulence in 3D, we [6]
observed a triple energy cascade on a 57323 grid, with the low-k (“classical”) regime
exhibiting a Kolmogorov k�5=3 cascade in the compressible kinetic energy while the
incompressible kinetic energy exhibited a long k-range of k�3 spectrum. Similar
results were found for both 2D and 3D scalar quantum [7–9], while results for spinor
BECs can be found in Refs. [10–12]. A somewhat related, but significantly different,
approach is that of the quantum lattice Boltzmann method [13, 14].

Here we will discuss a QLA for the solution of Maxwell equations in a tensor
dielectric medium [15–18] and present some simulation results of the scattering of a
1D electromagnetic pulse off 2D localized dielectric objects. This can be viewed as a
precursor to examining the scattering of electromagnetic pulses off plasma blobs in
the exterior region of a tokamak.

There has been much interest in rewriting the Maxwell equations in operator form
and exploit their similarity to the Schrodinger-Dirac equation from the early 1930s
(e.g., see the references in [19]). For homogeneous media, the qubit representation of
the electric and magnetic fields, E, H, leads to a Dirac equation in a fully unitary
representation. However, when the media becomes inhomogeneous, a Dyson map
[20] is required to yield a unitary Schrodinger-Dirac equation for the evolution of the
electromagnetic qubit field representation. In particular, one can use the fields
nxEx, nyEy, nzEz,Bx,By,Bz
� �

, where ni is the refractive index in the ith-direction.
A QLA is developed for this representation of the Maxwell equations in Section 3.

This particular algorithm is a generalization of that used for the NLS equations. The
initial value problem is then solved for the case of an electromagnetic pulse propagat-
ing in the x-direction and scattering from different 2D localized dielectric objects with
refractive index n x, yð Þ in Section 4. In particular, we have examined both polariza-
tions of the pulse and ∇ � B ¼ 0. In Section 5, we consider the case in which the
medium is dissipative. This brings in the field of open quantum systems and interac-
tions with an environment. For illustration, we consider a simplified cold electron-ion
dissipative fluid model in an electromagnetic field. Kraus operators are determined by
a multidimensional analog of the quantum amplitude damping channel. Some esti-
mates on the quantum gates required are given as well as a quantum circuit diagram
illustrating the implementation of Kraus operators on the open Schrodinger equation.
We summarize our results in Section 6.
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Finally, in this introduction, we quickly review the entanglement of qubits and in
particular for the 2-qubit Bell state [21].

Bþ ¼ 1ffiffiffi
2

p j00iþj11ið Þ: (1)

The most general 1-qubit states are a0j0i þ a1j1if g, and b0j0i þ b1j1if g with nor-
malization a0j j2 þ a1j j2 ¼ 1 ¼ b0j j2 þ b1j j2. The tensor product of these two 1-qubit
yields a space of the form

a0b0∣00i þ a0b1∣01i þ a1b0∣10i þ a1b1∣11i: (2)

However, the Bell state, Eq. (1) is not part of this tensor product space: to remove
the ∣01i state from Eq. (2) either a0 ¼ 0 or b1 ¼ 0. This in turn would remove either
the ∣00i or the ∣11i states, respectively. Now consider the unitary collision operator

C ¼ cos θ sin θ � sin θ cos θ½ � (3)

acting on the subspace basis j00i, j11if g. The choice of θ ¼ π=4 yields the Bell state
Bþ—a maximally entangled state. It is the quantum entanglement of states that will
give rise to the exponential speed-up of a quantum algorithm. The QLA is a sequence
of interleaved unitary collision-streaming operators that entangle the qubits and then
spread that entanglement throughout the lattice.

2. The Dyson map and the generation of a unitary evolution equation for
Maxwell equations

Consider the subset of Maxwell equations

∇� E ¼ � ∂B
∂t

, ∇�H ¼ ∂D
∂t

(4)

and treat ∇ � B ¼ 0 and ∇ �D ¼ 0 as initial constraints that remain satisfied in the
continuum limit for all times. (This, of course, follows immediately from taking the
divergence of Eq. (4)).

For lossless media, the electric and magnetic fields satisfy the constitutive relations
for a tensor dielectric nonmagnetic medium

D ¼ ε � E, B ¼ μ0H: (5)

For Hermitian ε, one can transform to a coordinate system in which ε is diagonal.
Eq. (5) can be rewritten in matrix form

d ¼ Wu , with d≐ D,Bð ÞT, u≐ E,Hð ÞT (6)

where W is a 6� 6 Hermitian block diagonal constitutive matrix

W ¼ ε3�3 03�3

03�3 μ03�3

� �
: (7)
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3�3 is the 3� 3 identity matrix, and the superscript T in Eq. (6) is the transpose. In
matrix form, the Maxwell equations, Eq. (4) become

i
∂d
∂t

¼ Mu (8)

where under standard boundary conditions, the curl-matrix operatorM is Hermitian:

M ¼ 03�3 i∇�
�i∇� 03�3

� �
: (9)

From Eq. (6), since W�1 exists, u ¼ W�1d, so that Eq. (8) can be written

i
∂u
∂t

¼ W�1Mu (10)

If the medium is homogeneous, then W�1 is constant and will commute with the
curl-operator M. Under these conditions, the product W�1M is Hermitian and
Eq. (10) gives unitary evolution for u ¼ E,Hð ÞT.

However, if the medium is spatially inhomogeneous, then W�1,M
� � 6¼ 0 and the

evolution equation for the u-field is not unitary.

2.1 Dyson map

To determine a unitary evolution of the electromagnetic fields in an
inhomogeneous dielectric medium, it [20] has been shown that there exists a Dyson
map ρ: u ! Q such that in the new field variables Q the resulting evolution equation
will be unitary. For the Maxwell equations consider

Q ¼ ρu ¼ W1=2u: (11)

For time-independent media, the evolution equation for the new fields Q is

iρ
∂u
∂t

¼ ρW�1Mρ�1ρu ) i
∂Q
∂t

¼ ρW�1Mρ�1Q (12)

and is indeed unitary. Explicitly, the new fields, Eq. (11) and the ρ are

Q ¼

q0
q1
q2
q3
q4
q5

2
666666664

3
777777775
¼

nxEx

nyEy

nzEz

μ1=20 Hx

μ1=20 Hy

μ1=20 Hz

2
6666666664

3
7777777775

, ρ ¼

nx 0 0 0 0 0

0 ny 0 0 0 0

0 0 nz 0 0 0

0 0 0 μ1=20 0 0

0 0 0 0 μ1=20 0

0 0 0 0 0 μ1=20

2
6666666664

3
7777777775

(13)

The refractive index ni ¼ ffiffiffiffi
εi

p
. Typically, we will use units where μ0 ¼ 1. In com-

ponent form, Maxwell equations for fields and with constitutive matrix restricted to
spatially 2D x, yð Þ dependence, Eq. (12) reduces to
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∂q0
∂t

¼ 1
nx

∂q5
∂y

,
∂q1
∂t

¼ � 1
ny

∂q5
∂x

,
∂q2
∂t

¼ 1
nz

∂q4
∂x

� ∂q3
∂y

� �

∂q3
∂t

¼ � ∂ q2=nz
� �
∂y

,
∂q4
∂t

¼ ∂ q2=nz
� �
∂x

,
∂q5
∂t

¼ � ∂ q1=ny
� �
∂x

þ ∂ q0=nx
� �
∂y

(14)

3. A qubit lattice representation for 2D tensor dielectric media

QLA consists of a sequence of unitary collision and streaming operators on a 2D
spatial lattice, which will recover the continuum Maxwell equations, Eq. (14) to
second order in the spatial grid size, δ. In particular, we need to have 6 qubits/lattice
sites to represent the field components in Eq. (13). QLA permits us to handle the x-
and y-dependence separately. Let us first consider the x-dependence and recover the
∂qi=∂x - terms. From Eq. (14), we see coupling between q1 $ q5, q2 $ q4, Hence, we
introduce the local entangling collision operator

CX ¼

1 0 0 0 0 0

0 cos θ1 0 0 0 � sin θ1

0 0 cos θ2 0 � sin θ2 0

0 0 0 1 0 0

0 0 sin θ2 0 cos θ2 0

0 sin θ1 0 0 0 cos θ1

2
666666664

3
777777775

(15)

The collision angles θ1 and θ2 need to be chosen to recover the refractive index
factors before the corresponding spatial derivatives,

θ1 ¼ δ

4ny
, θ2 ¼ δ

4nz
: (16)

The first of the unitary streaming operatorswill streamqubits q1, q4 one lattice unit in
either direction while leaving the other four qubits fixed: S�14. The other unitary stream-
ing operatorwill act on qubits q2, q5: S

�
25. The final unitary collide-stream sequence,UX in

the x-direction that leads to a second-order scheme in δ can be shown to be

UX ¼ Sþx
25 :C

†
X:S

�x
25 :CX:S�x

14 :C
†
X :S

þx
14 :CX:S�x

25 :CX:Sþx
25 :C

†
X:S

þx
14 :CX:S�x

14 :C
†
X : (17)

It should be noted that if only applies the first 4 collide-stream sequence in Eq. (17)
then the algorithm would only be first-order accurate.

Similarly, to recover the ∂qi=∂y terms one would collisionally entangle qubits
q0 $ q5, q2 $ q3 with

CY ¼

cos θ0 0 0 0 0 sin θ0

0 1 0 0 0 0

0 0 cos θ2 sin θ2 0 0

0 0 � sin θ2 cos θ2 0 0

0 0 0 0 1 0

� sin θ0 0 0 0 0 cos θ0

2
666666664

3
777777775
, (18)
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with corresponding collision angles θ0 and θ2. θ2 is given in Eq. (16), and

θ0 ¼ δ

4nx
: (19)

The streaming operator Sy03 will act on qubits q0, q3 only and similarly for the
operator Sy25. The final unitary collide-stream second-order accurate or the y-direction
for Maxwell equations is

UY ¼ Sþy
25 :C

†
Y :S

�y
25 :CY :S

�y
03 :C

†
Y :S

þy
03 :CY :S

�y
25 :CY :S

þy
25 :C

†
Y :S

þy
03 :CY :S

�y
03 :C

†
Y (20)

We still need to recover the spatial derivatives on the refractive index components
in Eq. (14). To obtain the ∂nz=∂x and ∂ny=∂x terms, we introduce the (non-unitary)
sparse potential matrix

VX ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 � sin β2 0 cos β2 0

0 sin β0 0 0 0 cos β0

2
666666666664

3
777777777775

(21)

with collision angles

β0 ¼ δ2
∂ny=∂x
n2y

, β2 ¼ δ2
∂nz=∂x
n2z

, (22)

while the corresponding (non-unitary) sparse potential matrix to recover the
∂=∂y-derivatives in the refractive index components is

VY ¼

1 0 0 0 0 o
0 1 0 0 0 0

0 0 1 0 0 0

0 0 cosβ3 sinβ3 0 0

0 0 0 0 1 0

� sin β1 0 0 0 0 cos β1

2
666666664

3
777777775

(23)

with collision angles

β1 ¼ δ2
∂nx=∂y
n2x

, β3 ¼ δ2
∂nz=∂y
n2z

: (24)

Thus, the final discrete QLA, that models the 2D Maxwell equations, Eq. (14), to
O δ2
� �

, advances the lattice qubit-vector Q tð Þ to Q tþ Δtð Þ is

Q tþ Δtð Þ ¼ VY :VX:UY:UX:Q tð Þ (25)
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Provided, we have diffusion ordering in the space–time lattice, that is, Δt ¼ δ2. It is
this ordering that requires us to have the unitary collision angles to be O δð Þ, Eqs. (16)
and (19), and the external potential angles O δ2

� �
, Eqs. (22). We note that computa-

tionally QLA is more accurate if we employ the external potentials twice: once halfway
through the collide-stream sequence and then at the end.

3.1 Non-unitary external potential operators

Recently, considerable effort has been expended into developing more efficient
approximation for handling the evolution operator of a complex Hamiltonian system
than the standard Suzuki-Trotter expansion Eqs. (21) and (23) [22]. In particular, the
idea [23, 24] has been floated of approximating the full unitary operator by a sum of
unitary operators. The actual implementation onto a quantum computer we will leave
to another paper, as one of the outcomes of QLA discussed here will be a quantum-
inspired highly efficient classical supercomputer algorithm. Moreover, its encoding
onto a quantum computer will require error-correcting qubits with long coherence
times, something currently out of reach in the noisy qubit regime we are in. Here, we
will show the 4 unitary operators needed whose sum yields the sparse non-unitary
potential operator VX, Eq. (21). Letting 6 be the 6� 6 identity matrix, then it is easily
verified that

VX ¼ 1
2

X4
i¼1

LCUi (26)

where the first two unitaries are diagonal

LCU1 ¼ 6 , LCU2 ¼ diag �1,1,1,�1,�1,�1ð Þ (27)

and the remaining two unitaries are

LCU3 ¼

1 0 0 0 0 o

0 cosβ0 0 0 0 � sin β0

0 0 cosβ2 0 sin β2 0

0 0 0 1 0 0

0 0 � sin β2 0 cosβ2 0

0 sin β0 0 0 0 cosβ0

2
666666666664

3
777777777775

, (28)

and

LCU4 ¼

1 0 0 0 0 o

0 � cos β0 0 0 0 sin β0
0 0 � cos β2 0 � sin β2 0

0 0 0 1 0 0

0 0 � sin β2 0 cos β2 0

0 sin β0 0 0 0 cos β0

2
66666666664

3
77777777775

: (29)
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3.2 Conservation of energy

In a fully unitary representation, the norm of Q is a constant of the motion. This is
simply the conservation of energy in the electromagnetic field. For fields being a
function of x, yð Þ, we have from Eqs. (11)–(13)

ℰ tð Þ ¼ 1
L2

ðL
0
dxdyQ �Q ¼ 1

L2

ðL
0
dxdy εxE2

x þ εyE2
y þ εzE2

z þ μo B2
x þ B2

y þ B2
z

� �h i
(30)

where the (diagonal) tensor dielectric εx ¼ n2x, … and we restrict ourselves to
nonmagnetic materials, for simplicity.

4. 2D numerical simulations from the QLA for electromagnetic scattering
from 2D dielectric objects

We now present detailed QLA simulations of the initial value problem of the
scattering of a 1D electromagnetic pulse from a localized dielectric object. In particu-
lar, we consider a 1D Gaussian pulse propagating in the x-direction toward a localized
dielectric object of refractive index n x, yð Þ. The initial pulse has nonzero field compo-
nents Ez,By, Figure 1, and scatters from either a localized cylindrical dielectric,
Figure 2a, or a conic dielectric object, Figure 2b. These simulations were performed
for δ ¼ 0:1.

It should be noted that QLA is an initial value algorithm. The refractive index
profiles are smooth (e.g., hyperbolic tangents for the dielectric cylinder with bound-
ary layer thickness ≈10 lattice units) and so no internal boundary conditions are
imposed at any time in the simulation.

4.1 Effects of broken symmetry

When the 1D pulse scatters off the dielectric object with refractive index n x, yð Þ the
initial electric field spatial dependence Ez xð Þ now becomes a function Ez x, yð Þ, while
the initial magnetic field By xð Þ will become a function By x, yð Þ. Now the scattered field

Figure 1.
A 1D electromagnetic pulse with initial fields �Ez x, t ¼ð 0),By x, t ¼ð 0). 2D simulation grid L� L with
L ¼ 8192. Pulse full-width (in lattice units) ≈ 200. Since the Maxwell equations are linear and homogenous, the
initial amplitude of the fields is arbitrary.

108

Schrödinger Equation – Fundamentals Aspects and Potential Applications



has ∂By=∂y 6¼ 0. Thus, for ∇ � B ¼ 0, the scattered field must develop an appropriate
Bx x, yð Þ. This is seen in our QLA simulations, even though the explicit discrete collide-
stream algorithm only models asymptotically the Maxwell subset, Eq. (4). ∇ �D ¼ 0
and this is exactly conserved in our QLA simulation.

Similarly, for initial Ey xð Þ polarization. In this case, the scattered magnetic field
Bz x, yð Þ satisfies, for our 2D scattering in the x-y plane, ∇ � B ¼ 0 exactly and no other
magnetic field components are generated. Our discrete QLA recovers this ∇ � B ¼ 0
exactly. However, in an attempt to preserve ∇ �D ¼ 0, the QLA will generate a
nonzero Ex x, yð Þ field.

4.2 Scattering from localized 2D dielectric objects with refractive index n x, y
� �

Consider a 1D pulse with polarization Ez x, tð Þ propagating in a vacuum toward a
2D dielectric scatterer. In Figures 3–6, we consider the time evolution of the resultant
scattered Ez-field. The initial pulse is followed for a short time while it is propagating
in the vacuum to verify that the QLA correctly determines its motion. As part of the
pulse interacts with the dielectric object, the pulse speed within the dielectric itself is

Figure 2.
(a) The dielectric cylinder, diameter ≈ 200, has rapidly increasing boundary dielectric from vacuum n ¼ 1 to
nmax ¼ 3, whereas (b) the conic dielectric, base ≈ 240, has smoothly increasing dielectric from vacuum to conic
peak of nmax ¼ 3.

Figure 3.
The scattered Ez field after 15,000 iterations (i.e., t ¼ 15k). (a) There is an internal reflection at the back of the
cylindrical dielectric.
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decreased by the inverse of the refractive index profiles, n x, yð Þ. The remainder of the
1D pulse propagates undisturbed since it is still propagating within the vacuum.

One sees in Figure 3a, a circular-like wavefront reflecting back into the vacuum,
with its Ez field π out of phase as the reflection is occurring from a low to higher
refractive index around the vacuum-cylinder interface. One does not find such a
reflected wavefront when the pulse interacts with the conic dielectric, Figure 3b.

At t ¼ 23:4k, there is a major wavefront emanating from the back of the cylindrical
dielectric, Figure 4a. For the conic dielectric, there is a major wavefront reflected
from the apex of the conic dielectric, and this propagates out of the cone with a little
reflection, Figure 4b.

Figure 4.
The scattered Ez field at t ¼ 23.4k. (a) a reflected circular wavefront occurs as that part of the pulse reaches the
back-end of the cylindrical dielectric, along with the initial reflected circular wavefront with its π-changed phase
at the front of the vacuum-cylinder boundary. (b) for the conic dielectric, there is an internal reflection from the
apex of the cone’s nmax, which then propagates out of the weakly varying cone edges.

Figure 5.
The scattered Ez field at t ¼ 31.2k. (a) There are multiple reflections/transmissions within the boundaries of the
dielectric cylinder. (b) There is only one major reflection from the apex of the cone and which then propagates
readily out from the cone edge.
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One clearly sees at t ¼ 31:2k that more Ez wavefronts are being created because of
the large refractive index gradients at the vacuum-cylinder dielectric boundary, while
such gradients are missing from the vacuum-cone interface which leads to no new
wavefronts in the scattering of the dielectric cone, Figure 5.

At t ¼ 49:2k, the complex Ez wavefronts are due to repeated reflections and trans-
missions from the cylinder dielectric, Figure 5a. However, because of the slowly
changing boundaries of the dielectric cone there are no more reflections and one sees
only the outgoing wavefront from the pulses’ interaction with the region around the
nmax of the cone. Since the pulse reaches the apex of the cone before the corresponding
pulse hits the backend of the dielectric cylinder, the conic wavefront is further
advanced than that of the cylindrical wavefront, Figure 5b.

4.2.1 Auxiliary fields and ∇ � B

For incident Ez polarization and with 2D refractive index n x, yð Þ, the scattered
electromagnetic fields will need to generate a Bx field in order to have ∇ � B ¼ 0. In
Figure 6a and b, we plot the self-generated Bx x, yð Þ field at t ¼ 23:4k and t ¼ 49:2k for
scattering from the dielectric cylinder. It is also found that ∣∇ � B∣=B0 is typically zero
everywhere in the spatial lattice except for a very localized region around the vacuum-
dielectric boundary layer where the normalized max j∇ � Bjð Þ=B0 reaches around 0.01
at very few isolated grid points (Figure 7).

4.3 Time dependence of ℰ tð Þ on perturbation parameter δ

The discrete total electromagnetic energy ℰ tð Þ. Eq. (30), is not constant since our
current QLA is not totally unitary. However, the variations in ℰ decrease significantly
as δ ! 0. δ is a measure of the discrete lattice spacing. The maximal variations occur
shortly after the 1D pulse scatters from the 2D dielectric object. For δ ¼ 0:1, this
occurs around t ¼ 15k, with variations in the 5th decimal, Eq. (31). However, when

Figure 6.
The scattered Ez field at t ¼ 49.2k. (a) There are multiple reflections/transmissions within the boundaries of the
dielectric cylinder. (b) There is only one major reflection from the apex of the cone and which then propagates
readily out from the cone edge.
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one reduces δ by a factor of 10 on the same lattice grid, then one recovers the same
physics a factor of 10 later in time since δ controls the speed of propagation in the
vacuum. Thus, the wallclock time of a QLA run is also increased by this factor of 10.
We find, for δ ¼ 0:01, that the largest deviation in the total electromagnetic energy is
now in the 8th decimal, Eq. (31).

δ ¼ 0:1 :

time ℰ tð Þ � 10�4

0 1:442426615

15000 1:442448…

δ ¼ 0:01 :

time ℰ tð Þ � 10�4

0 1:442426615

150000 1:442426620

(31)

For δ ¼ 10�3, there is variation in ℰ in the 11th decimal.

4.4 Multiple reflections/transmissions within dielectric cylinder

We now examine the scattered electromagnetic fields—particularly the polariza-
tion Ez x, yð Þ—within and in the vicinity of the dielectric cylinder. These plots comple-
ment the global scattered Ez x, yð Þ in Figures 3a, 4a, and 5a, but for better resolution
we choose δ ¼ 0:01 and a slightly different ratio of pulse width to dielectric cylinder
diameter. In Figures 8–13, the perspective is looking down from above with the 1D
pulse propagating from left to right (!), seen as a dark vertical band. The dielectric
cylinder appears as a pink cylinder with the smaller darker pink being the base of the
cylinder. The time is expressed in normalized time: t ¼ t ∗ =10, where t ∗ is the QLA
time for δ ¼ 0:01.

In Figure 8a, at time t ¼ 7:2k, a part of the incident pulse has just entered the
dielectric cylinder with the transmitted Ez field starting to lag behind the main 1D
vacuum pulse since 1< ncyl. Also, the reflected part of Ez emanates from the two
boundary points at the sharp vacuum-dielectric boundary and has undergone a

Figure 7.
The self-consistently generated Bx x, yð Þ-field after the 1D incident pulse with By ¼ By xð Þ scatters from a local
dielectric with refractive index n x, yð Þ at times: (a) t ¼ 23.4k, corresponding to Figure 4a for Ez, and
(b) t ¼ 49.2k, corresponding to Figure 5a for Ez.
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π-phase change because the incident 1D pulse is propagating from low to high refrac-
tive index. In Figure 8b, the slower transmitted Ez wavefront within the dielectric is
very evident, as is the reflected part of Ez back into the vacuum.

By t ¼ 18k, Figure 7b, the 1D pulse has propagated past the dielectric. The Ez-field
within the dielectric is now being focussed due to its motion toward the backend of
the cylinder, with its increasing amplitude but reduced base. As it reaches the backend
of the dielectric, part of Ez will be transmitted into the vacuum while the other part
will be reflected back into the dielectric but now without any phase change since the
pulse is propagating from high to low refractive index.

Figure 8.
A view from the z-axis of the 1D incident Ez wavefront, with x-y the plane of the page. The vacuum pulse is
propagating in the x-direction, ! (a) the 1D incident pulse has encountered the localized dielectric cylinder, with
both transmission and reflection at the thin vacuum-dielectric boundary layer. The reflected Ez circular wavefront
undergoes a π-phase change. (b) the transmitted Ez, within the dielectric, has a lower phase speed and so lags the
1D vacuum pulse.

Figure 9.
As the 1D vacuum part of the wavefront moves past the dielectric cylinder, the two vacuum-dielectric boundary
“points” move closer together: (a) at t = 18 k, (b) at t = 22.2 K. the vacuum-reflected wavefront keeps radiating
out.
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5. Dissipative classical systems, open quantum systems, and Kraus
representation

So far we have treated Maxwell equations as a closed system based on the energy
conservation dictated from the Hermiticity and positive definiteness of the constitu-
tive matrix W, Eq. (7) since we have restricted ourselves to perfect materials. How-
ever, when we wish to consider actual materials, there is dissipation. This immediately
defeats any attempt to pursue a unitary representation in the original Hilbert space.
The obvious question is: can we embed our dissipative system into a higher dimension

Figure 10.
Wavefronts of Ez at times (a) t = 28.2 k, and (b) t = 32 k around and within the dielectric cylinder after the
original 1D pulse has moved past the dielectric. (a) the pinching of the two boundary “points” results in a focussing
of Ez and its subsequent spiking at t ¼ 28:2k. This spike now propagates toward the backend of the dielectric
cylinder, (b), and “diffuses,” one should also note the wavefront emanating from the 1D vacuum pulse.

Figure 11.
Wavefronts of Ez at times around and within the dielectric cylinder. At (a) t = 38.4 k the transmitted Ez within
the dielectric is radiating outward, with one part reaching the back of the dielectric and resulting in a complex
transmission into the vacuum region at the back end of the dielectric, (b) at t = 43.2 k, and a complex reflection
back into the dielectric. There is no phase change in the reflected Ez.
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closed Hilbert space, and thus recover unitary evolution in this new space and build an
appropriate QLA that can be encoded onto quantum computers? To accomplish this,
we resort to open quantum system theory [21] to describe classical dissipation as the
observable result of interaction between our system of interest and its environment.

For a closed quantum system, the time evolution of a pure state ∣ψ tð Þi is given by
the unitary evolution from the Schrodinger equation: ∣ψ tð Þi ¼ U tð Þ∣ψ 0ð Þi with U ¼
exp �itH0½ � unitary for the Hermitian Hamiltonian H0. The evolution of the density
matrix, ρ ¼ ∣ψihψ ∣, is governed by the corresponding von Neumann equation:
ρ tð Þ ¼ U tð Þρ 0ð ÞU† tð Þ. The density matrix formulation is required when dealing with
composite systems. Kraus realized that the density matrix retains its needed properties
if one generalized its evolution operator to

Figure 12.
Wavefronts of Ez at times (a) t = 47.4 k, and (b) t = 52.2 k around and within the dielectric cylinder. The major
vacuum wavefront that is transmitted out of the dielectric now radiates out in the xy-plane. The two boundary
contact “points” of the wavefront are now propagating back to the front of the dielectric cylinder, as clearly seen in
(a) and (b). These localized wavefronts will have their global wavefronts similar to those shown in Figures 3a,
4a, and 5a.

Figure 13.
Wavefronts of Ez at times (a) t = 55.8 k, and (b) t = 60 k around and within the dielectric cylinder.
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ρ tð Þ ¼
X
k

Kkρ 0ð ÞK†
k, with

X
k

K†
kKk ¼ I (32)

where the only restriction on the set of so-called Kraus matrices Kk is that the sum
of K†

kKk is the identity matrix. The evolution of the density matrix, Eq. (32), is no
longer unitary for k≥ 2.

The Kraus representation [21] is most useful when dealing with quantum noisy
operations due to interaction with an environment. For those problems in which this
noisy operation translates into a dissipative process, the Hamiltonian for the system in
the Schrodinger representation has both a Hermitian part, H0, and an anti-Hermitian
part, iH1, that models the dissipation. A simple but nontrivial example is the 1D
Maxwell equations (without sources) for a homogeneous scalar medium with
electrical losses,

i
∂

∂t
Ey

Hz

� �
¼

0
ε ∗

εj j2 p̂x
1
μ0

p̂x 0

2
664

3
775

Ey

Hz

� �
(33)

with complex permittivity ε ¼ εR þ iεI: ε ∗ ¼ εR � iεI: p̂x ¼ �i∂x is the momentum
operator. Introducing the Dyson map ρ ¼ diag jεj= ffiffiffiffiffi

εR
p

, ffiffiffiffiffi
μ0

p� �
into Eq. (33) and after

some algebraic manipulations the evolution equation can be written as

i
∂Q
∂t

¼ vδ σx þ 1
2
δσy

� �
p̂x �

i
2
δvδσxp̂x

� �
Q , (34)

where the state vector Q ¼ ρu, where u is defined in Eq. (6). δ ¼ εI=εR is the loss

angle, vδ is the phase velocity vδ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εRμ0 1þ δ2

� �q
and σx, σy, σz are the Pauli matrices.

5.1 Classical dissipation as a quantum amplitude damping channel

In symbolic form, the Maxwell equations with electric resistive losses, Eq. (34),
can be written in the Schrodinger-form

i
∂∣ψSi
∂t

¼ Ĥ0 rð Þ � i Ĥ1 rð Þ� �
∣ψSi (35)

where the Hamiltonians Ĥ0 and Ĥ1 are Hermitian, and the dissipative operator i Ĥ1
is anti-Hermitian and positive definite. The positive definiteness requirement for the
specific case of propagation in a lossy medium translates to

Im E ∗
y
∂Hz

∂x
þH ∗

z
∂Ey

∂x

� �
>0, with εI >0: (36)

In general, the dissipative operator Ĥ1 is relatively simple and models the phe-
nomenological or coarse-graining of the underlying microscopic dissipative processes.

We aim to represent the dissipation in the Schrodinger picture, Eq. (35), as an
open quantum system S interacting with its environment Env. The full system,
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Sþ Env, is closed, and hence its time evolution is unitary. Let Û be this unitary
operator, and ρ the total density matrix with Û : ρ 0ð Þ ! ρ tð Þ. We make the usual
assumption that the initial total density matrix is separable into the system and into
the environmental Hilbert spaces: ρ 0ð Þ ¼ ρS 0ð Þ⊗ ρE 0ð Þ. A quantum operation E on
the open system of interest is defined as the map that propagates the open system
density in time t:

ρS tð Þ ¼ E ρS 0ð Þð Þ: (37)

But under the conditions of initial separability, the action of the full unitary opera-
tors on the total density matrix will yield, after taking the trace over the environment,

ρS tð Þ ¼ TrE ρ tð Þð Þ ¼ TrE Û ρ 0ð ÞÛ†
� �

(38)

Assuming a stationary environment, ρE 0ð Þ ¼ ∣aiha∣, Eq. (38) can be written as

ρS tð Þ ¼
X
μ

K̂μ ρS 0ð ÞK̂†

μ: (39)

where K̂μ ¼ μjÛja� �
. These operators K̂μ will form a Kraus representation for the

quantum operation E for an open system, Eq. (37), provided the so-called Kraus
operators satisfy the extended “unitarity” condition

X
μ

K†
μKμ ¼ I (40)

Note that the individual Kraus operator need not be unitary. Based on this frame-
work for open quantum systems, we proceed to construct a physical unitary dilation
for the combined system-environment by identifying dissipation as an amplitude-
damping operation, [21].

Let d be the dimension of the system Hilbert space, and r the dimension of the
dissipative Hamiltonian H1, Eq. (35). We require d≥ 2r, for optimal results but the
dilation technique can be also applied to systems with d ¼ r. If the system was quan-
tum mechanical in nature, then there can be a set of d2 Kraus operators at most. The
matrix representation of the total unitary dilation evolution operator consists of listing
all the Kraus matrices in the first column block. The remaining columns must then be
determined, so that Û is unitary. This unitary dilation is equivalent to the Stinespring
dilation theorem [25]. The advantage of the Kraus approach is that it avoids the need
to actually know the physical properties of the environment.

Returning to the Schrodinger representation of the classical system Eq. (35), one
can employ the Trotter-Suzuki expansion to exp �iδt Ĥ0 � iĤ1

� �� �

∣ψ δtð Þi ¼ e�iδtĤ0 � e�δtĤ1 þO δt2
� �h i

∣ψ 0ð Þi: (41)

Even though exp �δtĤ1
� �

is not unitary, Ĥ1 is Hermitian and can be diagonalized
by a unitary transformation U1

Ĥ1 ¼ Û1D̂1Û
†

1 with diagonal D̂1 ¼ diag γ1, … , γr½ �, (42)
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where γi >0 are the dissipative rate eigenvalues of Ĥ1. Thus, Eq. (41) becomes

∣ψ δtð Þi ¼ e�iδtĤ0Û1K̂0Û
†

1 þ O δt2
� �h i

∣ψ 0ð Þi, (43)

where K̂0 is

K̂0 ¼ Γ̂r�r 0r�r

0 d�rð Þ� d�rð Þ I d�rð Þ� d�rð Þ

" #
, with diagonal Γ̂r�r ¼ diag e�γ1δt … e�γrδt

� �
: (44)

The non-unitary K̂0 will be one of our Kraus operators, and it describes the
physical dissipation in the open system. We must now introduce a second Kraus

operator K̂1, so that K̂
†

0K̂0 þ K̂
†

1K̂1 ¼ ℐ:

K̂1 ¼
0 d�rð Þ� d�rð Þ 0 d�rð Þ� d�rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ir�r � Γ̂2

q
0r�r

2
4

3
5: (45)

K̂1 represents a transition that is not of direct interest. These Kraus operators
K̂0, K̂1 are the multidimensional analogs of the quantum amplitude damping channel
[21]: with K̂0 corresponding to the dissipation processes, while K̂1 corresponds to an
unwanted quantum transition.

The block structure of the final unitary dilation evolution operator Ûdiss,
corresponding to the non-unitary dissipation operator e�δtĤ1 , consists of column
blocks of the Kraus operators K0 K1 …ð ÞT, and the remaining column blocks are of
those matrices required to make Ûdiss unitary [21]:

Ûdiss ¼

Γ̂ 0 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ir�r � Γ̂2

q

0 I d�rð Þ� d�rð Þ 0 0

0 0 I d�rð Þ� d�rð Þ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ir�r � Γ̂2

q
0 0 Γ̂

2
6666664

3
7777775
: (46)

Thus, it can be shown that the evolution of the system ∣ψ0i and environment ∣0i is
given by

∣0i∣ψ0i ¼
1ffiffiffiffiffiffi
E0

p
X
q
ψ0q∣0i∣qi ! ∣0i⊗ e�iδtĤ0Û1K̂0Û

†

1 ∣ψ0i þ ∣1i⊗ K̂1∣ψ0i, (47)

where measurement of the first qubit-environment by ∣0ih0∣ ⊗ Id�d yields a state
analogous to ∣0i∣ψ δtð Þi. Finally, on taking the trace over the environment will yield the
desired system state ∣ψ δtð Þi. The corresponding quantum circuit for Eq. (47) is shown
in Figure 14.

It is important to highlight that the implementation of the dissipative case is
directly overlapping with the QLA framework. The QLA can be used to implement the
exp �iδtĤ0

� �
part in Eq. (43) as proposed in the previous sections. Specifically, for the

lossy medium, the exponential operator of the Ĥ0 term in Eq. (35) can be easily
handled with QLA [12, 13].
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6. Conclusions

The Schrodinger-Dirac equations are the backbone of the work presented here on
Maxwell equations both in lossless inhomogeneous and lossy dielectric media. In both
cases, straightforward application of unitary algorithms fail, in the first case, some-
what surprisingly one finds that even though a Dyson map points to the required
electromagnetic field variables in a tensor dielectric, its implementation has till now
defied a fully unitary representation. Our current QLA approach requires some exter-
nal non-unitary operators that recover the terms involving the spatial derivatives on
the refractive indices of the medium. These sparse matrices can be modeled by the
sum of a linear combination of unitaries (LCU), which can then be encoded onto a
quantum computer [23, 24]. In the second case, handling dissipative systems imme-
diately forces us to consider an open quantum system interacting with its environ-
ment. Typically, this forces us into a density matrix formulation and a clever
introduction of what is known as Kraus operators [21, 25]. The beauty of the Kraus
representation is that even though the system of interest is interacting with the
environment, the Kraus operators do not need detailed information on the
environment.

We presented detailed 2D scattering of a 1D electromagnetic pulse off localized
dielectric objects. QLA is an initial value scheme. No internal boundary conditions are
imposed at the vacuum-dielectrix interface. For dielectrics will large spatial gradients
in the refractive index, QLA simulations show strong internal reflection/transmission
within the dielectric object. These lead to quite complex time evolution of wavefronts
from the dielectric objects. On the other hand, for weak spatial gradients in the
refractive index, there are negligible reflections from the vacuum-dielectric interface.
This is reminiscent of WKB-like effects in the ray tracing approximation.

In considering the dissipative counterpart, one must now include both the system
and its environment in order to get a closed system with unitary representation. The
Kraus operators are the most general scheme that will retain the properties of the
density matrix in time. The probability of obtaining the desired non-unitary evolution
of the open system after the measurement operator P̂0 ¼ ∣0ih0∣ ⊗ Id�d is

p 0ð Þ ¼
Xr
i¼1

e�2γiδt ψ i0j j2 þ
Xd
i¼rþ1

ψ i0j j2 ≥ 1þ e�2γmaxδt � 1
� �Xr

i¼1

e�2γiδt ψ i0j j2 (48)

The form of the unitary operator Ûdiss, Eq. (42) implies that it can be decomposed
into r two-level unitary rotations R̂y θið Þ with cos θi=2ð Þ ¼ e�γiδt: Then, the quantum
circuit implementation of Ûdiss requires O rlog22d

� �
CNOT - and R̂y θið Þ quantum gates,

so that there is an improvement in the circuit depth of O r=d2
� �

. Our multidimensional

Figure 14.
Quantum circuit diagram for Eq. (47).
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amplitude damping channel approach is directly related to the Sz. Nagy dilation by a
rotation. The Sz. Nagy dilation [26] is the minimal unitary dilation containing the
original dissipative (non-unitary) system.
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Chapter 8

Blow-up Solutions to Nonlinear
Schrödinger Equation with a
Potential
Masaru Hamano and Masahiro Ikeda

Abstract

This is a sequel to the paper “Characterization of the ground state to the
intercritical NLS with a linear potential by the virial functional” by the same authors.
We continue to study the Cauchy problem for a nonlinear Schrödinger equation with
a potential. In the previous chapter, we investigated some minimization problems and
showed global existence of solutions to the equation with initial data, whose action is
less than the value of minimization problems and positive virial functional. In partic-
ular, we saw that such solutions are bounded. In this chapter, we deal with solutions to
the equation with initial data, whose virial functional is negative contrary to the
previous paper and show that such solutions are unbounded.

Keywords: nonlinear Schrödinger equation, linear potential, standing wave, blow-up,
grow-up, global existence

1. Introduction

In this chapter, we consider the Cauchy problem of the following nonlinear
Schrödinger equation with a linear potential:

i∂tuþ ΔVu ¼ � uj jp�1u, t, xð Þ∈� d, (1)

where d≥ 1, 1< p< 2 ∗ � 1,

2 ∗ ≔
∞ if d∈ 1, 2f g,
2d

d� 2
if d≥ 3,

8<
: (2)

and ΔV ≔Δ� V ¼Pd
j¼1

∂
2

∂x2j
� V. In particular, we consider the Cauchy problem of

Eq. (1) with initial condition

u 0, �ð Þ ¼ u0 ∈H1 d� �
: (3)
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Eq. (1) with V ∈L∞ d� �
is a model proposed to describe the local dynamics at a

nucleation site (see [1]).
Eq. (1) is locally well-posed in the energy space H1 d� �

under some assumptions,
where Eq. (1) is called local well-posedness in H1 d� �

if Eq. (1) satisfies all of the
following conditions:

• There is uniqueness in H1 d� �
for a solution to Eq. (1).

• For each u0 ∈H1 d� �
, there exists a solution to Eq. (1) with Eq. (3) defined on a

maximal existence interval Tmin,Tmaxð Þ, where Tmax ¼ Tmax u0ð Þ∈ 0,∞ð � and
Tmin ¼ Tmin u0ð Þ∈ �∞, 0½ Þ.

• There is the blow-up alternative. That is, if Tmax <∞ (resp. Tmin > �∞), then we
have

lim
t↑Tmax

∥u tð Þ∥H1
x
¼ ∞ resp: lim

t↓Tmin

∥u tð Þ∥H1
x
¼ ∞

� �
: (4)

• The solution depends on continuously on the initial condition. That is, if u0,n !
u0 in H1 d� �

, then for any closed interval I⊂ Tmin,Tmaxð Þ, there exists n0 ∈
such that for any n≥ n0, the solution un to Eq. (1) with un 0, xð Þ ¼ u0,n xð Þ is
defined on Ct I;H1 d� �� �

and satisfies un ! u in Ct I;H1 d� �� �
as n ! ∞, where u

is the solution to Eq. (1) with u 0, xð Þ ¼ u0 xð Þ.

To state a local well-posedness result, we define the space

K0 d� �
≔ f ∈L∞ d� �

: supp f is compact:
� �∥�∥K

, (5)

where

∥f∥K ≔ sup
x∈d

ð

d

∣f yð Þ∣
x� yj jd�2 dy: (6)

We note that

L
d
2�ε d� �

∩L
d
2þε d� �

,!L
d
2,1 d� �

,!K d� �
≔ f : ∥f∥K <∞f g (7)

for some ε>0, where the space Lp,q d� �
denotes the usual Lorentz space.

Theorem 1 (Local well-posedness, [2–4]) Let d≥ 1 and 1< p< 2 ∗ � 1. If V satisfies
one of the following, then Eq. (1) is locally well-posed in H1 d� �

.

• V ∈Lη d� �þ L∞ d� �
for η≥ 1 if d ¼ 1 and η> d

2 if d≥ 2,

• ∥V�∥K <4π and V ∈L
3
2 3� �

∩K0 3� �
, where V� ≔ min V xð Þ, 0f g.

Moreover, the solution u to Eq. (1) conserves its mass and energy with respect to
time t, where they are defined as
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Massð Þ M u tð Þ½ �≔∥u tð Þ∥2L2
x
,

Energy
� �

EV u tð Þ½ �≔ 1
2
∥u tð Þ∥2

_H
1
x
þ 1
2

ð

d
V xð Þ u tð , xÞj j2 � 1

pþ 1
∥u tð Þ∥pþ1

Lpþ1
x
:

(8)

We turn to time behaviors of the solution to Eq. (1). A solution to Eq. (1) has
various kinds of time behaviors by the choice of initial data. For example, we can
consider the following time behaviors.

• (Scattering) We say that the solution u to Eq. (1) scatters in positive time (resp.
negative time) if Tmax ¼ ∞ (resp. Tmin ¼ �∞) and there exists ψþ ∈H1 d� �

(resp. ψ� ∈H1 d� �
) such that

lim
t!þ∞

∥u tð Þ � eitΔVψþ∥H1
x
¼ 0 resp: lim

t!�∞
∥u tð Þ � eitΔVψ�∥H1

x
¼ 0

� �
, (9)

where eitΔV f is a solution to the corresponding linear equation with Eq. (1)

i∂tu t, xð Þ þ ΔVu t, xð Þ ¼ 0, u 0, xð Þ ¼ f xð Þ: (10)

We say that u scatters when u scatters in positive and negative time.

• (Blow-up) We say that the solution u to Eq. (1) blows up in positive time (resp.
negative time) if Tmax <∞ (resp. Tmin > �∞). We say that u blows up when u
blows up in positive and negative time.

• (Grow-up) We say that the solution u to Eq. (1) grows up in positive time (resp.
negative time) if Tmax ¼ ∞ (resp. Tmin ¼ �∞) and

lim sup
t!∞

∥u tð Þ∥H1
x
¼ ∞, resp: lim sup

t!�∞
∥u tð Þ∥H1

x
¼ ∞

� �
: (11)

We say that u grows up when u grows up in positive and negative time.

• (Standing wave) We say that the solution u to Eq. (1) is a standing wave if u ¼
eiωtQω,V for some ω∈, where Qω,V satisfies the elliptic equation

�ωQω,V þ ΔVQω,V ¼ � Qω,V

�� ��p�1Qω,V : (12)

In particular, Qω,V is ground state to Eq. (12) if

Qω,V ∈ ϕ∈Aω,V : Sω,V ϕð Þ≤ Sω,V ψð Þ foranyψ ∈Aω,V
� �

≕Gω,V , (13)

where Sω,V fð Þ≔ ω
2 M f½ � þ EV f½ � (and)

Aω,V ≔ ψ ∈H1 d� �n 0f g : S0ω,V ψð Þ ¼ 0
� �

: (14)

We know the following results (Theorems 2 and 3) for time behaviors of the
solutions to Eq. (1). For related results, we also list [5–38].
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Theorem 2 (Hong, [3]) Let d ¼ p ¼ 3, u0 ∈H1 3� �
, and Q1,0 ∈G1,0. Suppose that V

satisfies V ∈L
3
2 3� �

∩K0 3� �
, V ≥0, x � ∇V ∈L

3
2 3� �

, and x � ∇V ≤0. We also assume
that

M u0½ �EV u0½ �<M Q1,0
� �

E0 Q1,0
� �

and∥u0∥L2∥u0∥ _H
1
V
< ∥Q1,0∥L2∥Q1,0∥ _H

1 : (15)

Then, the solution u to Eq. (1) with Eq. (3) scatters.
Theorem 3 (Hamano–Ikeda, [4]) Let d ¼ 3, 73 < p< 5, u0 ∈H1 3� �

, and Q1,0 ∈G1,0.

Suppose that V satisfies V ≥0 and x � ∇V ∈L
3
2 3� �

. We also assume that

M u0½ �1�sc
sc EV u0½ �<M Q1,0

� �1�sc
sc E0 Q1,0

� �
, (16)

where sc ≔ d
2 � 2

p�1.

1.(Scattering)

If V ∈L
3
2 3� �

∩K0 3� �
, x � ∇V ≤0, and

∥u0∥
1�sc
sc

L2 ∥u0∥ _H
1 < ∥Q1,0∥

1�sc
sc

L2 ∥Q1,0∥ _H
1 , (17)

then Tmin,Tmaxð Þ ¼ , that is, exists globally in time. Moreover, if u0 and V
are radially symmetric, then u scatters.

2.(Blow-up or grow-up)

If “V ∈L
3
2 3� �

∩K0 3� �
or V ∈Lσ 3� �

for some 3
2 < σ ≤∞,” 2V þ x � ∇V ≥0,

and

∥u0∥
1�sc
sc

L2 ∥u0∥ _H
1
V
> ∥Q1,0∥

1�sc
sc

L2 ∥Q1,0∥ _H
1 , (18)

then u blows up or grows up. Furthermore, if one of the following holds:

• “u0 and V are radially symmetric,” x � ∇V ≥0, and V ∈L∞ 3� �
,

• xu0 ∈L2 3� �
,

then u blows up.
Remark 1 Mizutani [39] proved that for any ψ ∈H1, there exists ϕ� ∈H1 3� �

such
that

lim
t!�∞

∥eitΔVψ � eitΔϕ�∥H1
x
¼ 0 (19)

under the assumptions V ∈L
3
2 3� �

and V ≥0, where the double-sign corresponds.
Combining this limit and scattering part in Theorem 3 (or Theorem 2), we can see that
the nonlinear solution u to Eq. (1) approaches to a free solution eitΔϕ� as t ! �∞ for
some ϕ� ∈H1 3� �

.
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We realize that there is no potential, which satisfies scattering and blow-up or
grow-up parts in Theorem 1 at the same time. Indeed, if V satisfies x � ∇V ≤0 and
2V þ x � ∇V ≥0, then V ∉ L

3
2 3� �

. Then, we consider a minimization problem

nω,V ≔ inf Sω,V fð Þ : f ∈H1 d� �n 0f g, KV fð Þ ¼ 0
� �

(20)

to get a potential V, which deduces scattering and blow-up or grow-up at the same
time. It proved in [40] that the condition Eq. (16) can be rewritten as the following by
using nω,V .

Proposition 1 Let d≥ 3, 1þ 4
d < p< 2 ∗ � 1, f ∈H1 d� �

, and Q1,0 ∈G1,0. Assume that
V satisfies (A2) with ∣a∣ ≤ 1 and (A6) below. Then, the following two conditions are
equivalent.

1.M f½ �1�sc
sc EV f½ �<M Q1,0

� �1�sc
sc E0 Q1,0

� �
,

2.There exists ω>0 such that Sω,V fð Þ< nω,V .

Using nω,V , we expect that if Sω,V u0ð Þ< nω,V and KV u0ð Þ≥0, then the solution u
scatters and if Sω,V u0ð Þ< nω,V and KV u0ð Þ<0, then the solution u blows up or grows
up, where KV is called virial functional and is defined as

KV fð Þ≔ d
dλ

����
λ¼0

Sω,V edλf e2λ�� �� �

¼ 2∥f∥2
_H
1 �
ð

d
x � ∇Vð Þ f xð Þj j2dx� p� 1ð Þd

pþ 1
∥f∥pþ1

Lpþ1 :

(21)

It is well known that KV u tð Þð Þ denotes variance of the solution and if xu0 ∈L2 d� �
then

KV u tð Þð Þ ¼ 1
4
� d

2

dt2
∥xu tð Þ∥2L2

x
(22)

for each t∈ Tmin,Tmaxð Þ. We also consider a minimization problem rω,V , which
restricts nω,V to radial functions, that is,

rω,V ≔ inf Sω,V fð Þ : f ∈H1
rad d� �n 0f g, KV fð Þ ¼ 0

� �
(23)

and expect for radial initial data u0 and radial potential V that if Sω,V u0ð Þ< rω,V and
KV u0ð Þ≥0, then the solution u scatters and if Sω,V u0ð Þ< rω,V and KV u0ð Þ<0, then the
solution u blows up. For more general minimization problems

nα,βω,V ≔ inf Sω,V fð Þ : f ∈H1 d� �n 0f g, Kα,β
ω,V fð Þ ¼ 0

n o
,

rα,βω,V ≔ inf Sω,V fð Þ : f ∈H1
rad d� �n 0f g, Kα,β

ω,V fð Þ ¼ 0
n o (24)

with

α>0, β≥0, 2α� dβ≥0, (25)
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the authors showed in [40, 41] the following results (Theorems 4 and 5) Eq. (27),
where the functional Kα,β

ω,V is given as

Kα,β
ω,V fð Þ≔ d

dλ

����
λ¼0

Sω,V eαλf eβλ�� �� �
: (26)

Here, we realize nω,V ¼ nd,2ω,V , rω,V ¼ rd,2ω,V , and KV ¼ Kd,2
ω,V .

To state the results, we give the assumptions of the potential V: Let a∈ ∪ 0f gð Þd.

A1. V ∈L
3
2 3� �

∩K0 3� �

A2. xa∂aV ∈L
d
2 d� �þ Lσ d� �

for some d
2 ≤ σ <∞

A3. xa∂aV ∈L
d
2 d� �þ L∞ d� �

A4. xa∂aV ∈Lη d� �þ Lσ d� �
for some d

2 < η≤ σ <∞

A5. xa∂aV ∈Lη d� �þ L∞ d� �
for some d

2 < η<∞

A6. V ≥0, x � ∇V ≤0, 2V þ x � ∇V ≥0

A7. V ≥0, x � ∇V ≤0, ω≥ω0 for

ω0 ≔ � 1
2
ess inf x∈d 2V þ x � ∇Vð Þ: (27)

We note that the third inequality implies 2V þ x � ∇V þ 2ω≥0 a.e. x∈d.
Theorem 4 Let d≥ 3 and 1þ 4

d < p< 2 ∗ � 1.

• (Non-radial case) Let V satisfy (A2) with ∣a∣ ≤ 1 and (A6). Then, for each α, βð Þ
with Eq. (25) and ω>0, nα,βω,V ¼ nα,βω,0 holds. Moreover, if x � ∇V <0, then nα,βω,V is
never attained.

• (Radial case) Let V satisfy (A3) with ∣a∣ ≤ 1 and (A7). Let V be radially
symmetric. Then, rα,βω,V is attained for each α, βð Þ with Eq. (25). Moreover, if V

satisfies (A3) with ∣a∣ ≤ 2 and 3x � ∇V þ x∇2VxT ≤0, then Mα,β
ω,V,rad ¼ Gω,V,rad

holds, where ∇2V denotes the Hessian matrix of V,

Mα,β
ω,V,rad ≔ ϕ∈H1

rad d� �
: Sω,V ϕð Þ ¼ rα,βω,V , Kα,β

ω,V ϕð Þ ¼ 0
n o

,

Gω,V,rad ≔ ϕ∈Aω,V,rad : Sω,V ϕð Þ≤ Sω,V ψð Þ for any ψ ∈Aω,V,rad
� �

,

Aω,V,rad ≔ ψ ∈H1
rad d� �n 0f g : S0ω,V ψð Þ ¼ 0

� �
:

(28)

The inequality nα,βω,V ≤ rα,βω,V holds by their definitions and the attainability of nα,βω,V

and rα,βω,V deduces the following corollary.
Corollary 1 Under the all assumptions of (Non-radial case) in Theorem 4, we have
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nα,βω,V < rα,βω,V : (29)

Remark 2 In the case of V ¼ 0, it is well known that nα,βω,0 and rα,βω,0 are attained by

Qω,0 ∈Gω,0. That is, n
α,β
ω,0 ¼ rα,βω,0 ¼ Sω,0 Qω,0

� �
holds.

Then, we investigate global existence of a solution to time-dependent Eq. (1).
Theorem 5 (Global well-posedness in H1) Let d≥ 3 and 1þ 4

d < p< 2 ∗ � 1.

• (Non-radial case) Let u0 ∈H1 d� �
and Qω,0 ∈Gω,0. Suppose that V satisfies “(A1)

or (A4) with ∣a∣ ¼ 0,” (A2) with ∣a∣ ¼ 1, and (A6). We also assume that there
exist α, βð Þ satisfying Eq. (25) and ω>0 such that

Sω,V u0ð Þ< Sω,0 Qω,0
� � ¼ nα,βω,V

� �
, Kα,β

ω,V u0ð Þ≥0: (30)

Then, the solution u to Eq. (1) with Eq. (3) exists globally in time. In
particular, it follows that

sup
t∈

∥u tð Þ∥H1
x
<∞: (31)

• (Radial case) Let u0 ∈H1
rad d� �

and Qω,V ∈Gω,V,rad. Suppose that V is radially
symmetric and satisfies “(A1) or (A5) with ∣a∣ ¼ 0,” (A3) with ∣a∣ ¼ 1, 2, (A7),
and 3x � ∇V þ x∇2VxT ≤0. If there exist α, βð Þ with Eq. (25) and ω>0 satisfying
ω≥ω0 such that

Sω,V u0ð Þ< Sω,V Qω,V
� � ¼ rα,βω,V

� �
, Kα,β

ω,V u0ð Þ≥0, (32)

then the solution u to Eq. (1) with Eq. (3) exists globally in time.

1.1 Main theorem

In the previous paper, the authors handled the solution u to Eq. (1) with initial data
u0 satisfying Sω,V u0ð Þ<mω,V and KV u0ð Þ≥0, where mω,V denotes nω,V or rω,V . We
note that mω,V is mα,β

ω,V with α, βð Þ ¼ d, 2ð Þ and mα,β
ω,V is independent of α, βð Þ. In this

chapter, we are interested in the solutions to Eq. (1) with initial data satisfying
Sω,V u0ð Þ<mω,V and KV u0ð Þ<0. Our main theorem is the following:

Theorem 6 Let d≥ 3 and 1þ 4
d < p< 1þ 4

d�2.

• (Non-radial case) Let u0 ∈H1 d� �
and Qω,0 ∈Gω,0. Suppose that V satisfy “(A1)

or (A4) with ∣a∣ ¼ 0,” (A2) with ∣a∣ ¼ 1, and (A6). We also assume that there
exists ω>0 such that

Sω,V u0ð Þ< Sω,0 Qω,0
� � ¼ nω,Vð Þ, KV u0ð Þ<0: (33)

Then, the solution u to Eq. (1) with Eq. (3) blows up or grows up. Moreover, u
blows up under the additional assumption xu0 ∈L2 d� �

.
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• (Radial case) Let u0 ∈H1
rad d� �

and Qω,V ∈Gω,V,rad. Suppose that V is radially
symmetric and satisfies “(A1) or (A5) with ∣a∣ ¼ 0,” (A3) with ∣a∣ ¼ 1, 2, (A7),
and 3x � ∇V þ x∇2VxT ≤0. We also assume that there exists ω>0 satisfying
ω≥ω0 such that

Sω,V u0ð Þ< Sω,V Qω,V
� � ¼ rω,Vð Þ, KV u0ð Þ<0: (34)

Then, the solution u to Eq. (1) with Eq. (3) blows up.
Remark 3 Let V be a potential in Theorem 6. Combining Theorems 5 and 6, we

complete bounded and unbounded dichotomy of
u0 ∈H1 d� �

: Sω,V u0ð Þ< Sω,0 Qω,0
� �� �

and global existence and blow-up dichotomy of
u0 ∈H1

rad d� �
: Sω,V u0ð Þ< Sω,V Qω,V

� �� �
by using sign of the virial functional of initial

data.
Remark 4 The following potential satisfies all of conditions in Theorem 6:

V xð Þ ¼ γ log 1þjxjð Þf gθ
xj jμ , γ >0, 0≤ θ≤ μ< 2, μ>0ð Þ: (35)

Theorem 6 with the potential Eq. (35) having θ ¼ 0 was considered in the previous
paper [19] by the authors. As the other example, we put

V xð Þ≔ γ

xh iμ , γ >0, 0< μ< 2ð Þ, (36)

where �h i is called the Japanese bracket and is defined as 1þ �j j2
� �1

2
.

1.2 Organization of the paper

The organization of the rest of this chapter is as follows. In Section 2, we collect
some notations and tools used throughout this chapter. In Section 3, we prove non-
radial case in Theorem 6 by using an argument in [13]. In Section 4, we show radial
case in Theorem 6 by using an argument in [33].

2. Preliminaries

In this section, we define some notations and collect some tools, which are used
throughout this chapter.

2.1 Notation and definition

For 1≤ p≤∞, Lp ¼ Lp d� �
denotes the usual Lebesgue space. For a Banach

space X, we use Lq I;Xð Þ to denote the Banach space of functions f : I � d ! whose
norm is

∥f∥Lq I;Xð Þ ≔∥∥f tð Þ∥X∥Lq Ið Þ <∞: (37)
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We extend our notation as follows: If a time interval is not specified, then the
t-norm is evaluated over �∞,∞ð Þ. To indicate a restriction to a time subinterval
I⊂ �∞,∞ð Þ, we will write as Lq Ið Þ. Hs d� �

and _H
s
d� �

are the usual Sobolev spaces,

whose norms ∥f∥Hs ≔∥ 1� Δð Þs2f∥L2 and ∥f∥ _H
s ≔∥ �Δð Þs2f∥L2 respectively. We also

define the Sobolev spaces Hs
V d� �

and _H
s
V d� �

with the potential V via norms

∥f∥Hs
V
≔∥ 1� ΔVð Þs2f∥L2 and ∥f∥ _H

s
V
≔∥ �ΔVð Þs2f∥L2 respectively.

2.2 Some tools

Proposition 2 Let p≥ 1. For f ∈H1
rad d� �

, we have

∥f∥pþ1
Lpþ1 R≤ jxjð Þ ≤

C

R
d�1ð Þ p�1ð Þ

2

∥f∥
pþ3
2

L2 R≤ jxjð Þ∥f∥
p�1
2

_H
1
R≤ jxjð Þ (38)

for any R>0, where the implicit constant C is independent of R and f .
To state the next proposition, we define two functions:

XR ≔R2X
∣x∣
R

� �
, (39)

where X : 0,∞½ Þ ! 0,∞½ Þ (forms)

X rð Þ≔
r2 0≤ r≤ 1ð Þ,

smooth 1≤ r≤ 3ð Þ,
0 3≤ rð Þ

8><
>:

(40)

and satisfies X 00 rð Þ≤ 2.

YR xð Þ≔Y
∣x∣
R

� �
, (41)

where Y : 0,∞½ Þ ! 0,∞½ Þ (forms)

Y rð Þ≔
0 0≤ r≤

1
2

� �
,

smooth
1
2
≤ r≤ 1

� �
,

1 1≤ rð Þ

8>>>>><
>>>>>:

(42)

and satisfies 0≤Y 0 rð Þ≤ 3.
Proposition 3 (Localized virial identity, [3]) Let w be XR or YR defined as Eqs. (39)

and (41) respectively. For the solution u to Eq. (1), we define

Iw tð Þ≔
ð

d
w xð Þ u tð , xÞj j2dx: (43)

Then, we have
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Iw0 tð Þ ¼ 2Im
ð

d

x � ∇u
∣x∣

uw0dx,

Iw0 0 tð Þ ¼
ð

d
F1 x � ∇uj j2dxþ 4

ð

d

w0

∣x∣
∇uj j2dx�

ð

d
F2 uj jpþ1dx

�
ð

d
F3 uj j2dx� 2

ð

d

w0

∣x∣
x � ∇Vð Þ uj j2dx:

(44)

where

F1 w, jxjð Þ≔4
w00

xj j2 �
w0

xj j3
 !

, F2 w, jxjð Þ≔ 2 p� 1ð Þ
pþ 1

w00 þ d� 1
∣x∣

w0
� �

,

F3 w, jxjð Þ≔w 4ð Þ þ 2 d� 1ð Þ
∣x∣

w 3ð Þ þ d� 1ð Þ d� 3ð Þ
xj j2 w00 þ d� 1ð Þ 3� dð Þ

xj j3 w0:

(45)

3. Non-radial case of main theorem

In this section, we prove (Non-radial case) for Theorem 6. First, we recall
rewriting of nω,V , which is given in [40].

Lemma 1 Let d≥ 3, 1þ 4
d < p< 1þ 4

d�2, and Qω,0 ∈Gω,0. Assume that V satisfies
(A2) with ∣a∣ ≤ 1 and (A6). Then,

Sω,0 Qω,0
� � ¼ nω,V ¼ inf Tω,V fð Þ : f ∈H1 d� �n 0f g, KV fð Þ≤0

� �
(46)

holds, where the functional Tω,V is defined as

Tω,V fð Þ≔ Sω,V fð Þ � 1
4
KV fð Þ: (47)

Next, we give uniform estimate of the virial functional KV .
Lemma 2 Under the all assumptions of (Non-radial) in Theorem 6, there exists

δ>0 such that

sup
t∈ Tmin,Tmaxð Þ

KV u tð Þð Þ≤ � δ<0: (48)

Proof: Let δ≔4 Sω,V Qω,V
� �� Sω,V u0ð Þ� �

>0. Applying Lemma 1, we have

Sω,V Qω,V
� �

≤Tω,V u tð Þð Þ ¼ Sω,V u0ð Þ � 1
4
KV u tð Þð Þ

¼ Sω,V Qω,V
� �� 1

4
δ� 1

4
KV u tð Þð Þ,

(49)

which implies the desired result.
The blow-up result with xu0 ∈L2 d� �

of (Non-radial case) in Theorem 1.1 follows
immediately from Lemma 2.

Proof of blow-up part in (Non-radial case) for Theorem 6:We assume that the
solution u exists globally in time for contradiction. When xu0 ∈L2 d� �

, we have
Eq. (22). Combining Eq. (22) and Lemma 2, there exists δ>0 such that
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d2

dt2
∥xu tð Þ∥2L2 ¼ 4KV u tð Þð Þ< � 4δ<0 (50)

for any t∈. Therefore, we obtain ∥xu tð Þ∥2L2 <0 if ∣t∣ is sufficiently large.
However, this is contradiction.

We consider Lemmas 3 and 4 to prove blow-up or grow-up part in (Non-radial
case) for Theorem 6.

Lemma 3 Let d≥ 3 and 1þ 4
d < p< 1þ 4

d�2. We assume that u∈C 0,∞½ Þ;H1� �
be a

solution to Eq. (1) satisfying C0 ≔ supt∈ 0,∞½ Þ∥u tð Þ∥ _H
1
x
<∞. Then, it follows that

∥u tð Þ∥2L2 jxj≥Rð Þ ≤ oR 1ð Þ þ η (51)

for any η>0, R>0, and t∈ 0, ηR
6C0∥u∥L2x

� �
, where oR 1ð Þ goes to zero as R ! ∞ and is

independent of t.
Proof:We consider IYR given in Eq. (43). Using Proposition 3,

I tð Þ ¼ I 0ð Þ þ
ðt
0
I0 sð Þds≤ I 0ð Þ þ

ðt
0
∣I0 sð Þ∣ ds

≤ I 0ð Þ þ 2t
R
∥Y 0∥L∞ sup

t∈ 0,∞½ Þ
∥u tð Þ∥ _H

1
x
∥u∥L2

x
≤ I 0ð Þ þ 6C0∥u∥L2

x
t

R

(52)

for any t∈ 0,∞½ Þ. By the definition of YR, we have

I 0ð Þ ¼
ð

d
YR xð Þ u0 xð Þj j2dx≤∥u0∥2L2 jxj≥ R

2ð Þ ¼ oR 1ð Þ (53)

and hence, we obtain

∥u tð Þ∥2L2 jxj≥Rð Þ ≤ I tð Þ≤ oR 1ð Þ þ η: (54)

Lemma 4 Let d≥ 3 and 1þ 4
d < p< 1þ 4

d�2. Let u∈C 0,∞½ Þ;H1 d� �� �
be a solution

to Eq. (1). Then, for q∈ pþ 1, 2 ∗ð Þ, there exist constants C ¼ C q, ∥u0∥L2 ,C0ð Þ>0 and
θq >0 such that the estimate

IXR 00 tð Þ≤4KV u tð Þð Þ þ C∥u tð Þ∥ pþ1ð Þθq
L2 R≤ jxjð Þ þ

C
R2 (55)

holds for any R>0 and t∈ 0,∞½ Þ, where θq ≔
2 q� pþ1ð Þf g
pþ1ð Þ q�2ð Þ ∈ 0, 2

pþ1

� �
, C0 is given in

Lemma 3, and IXR is defined as Eq. (43).
Proof: Using Proposition 3, we have

I00XR
tð Þ ¼ 4KV u tð Þð Þ þR1 þR2 þR3 þR4, (56)

where Rk ¼ Rk tð Þ k ¼ 1,2,3,4ð Þ are defined as

R1 ≔4
ð

d

1

xj j2 X
00 r

R

� �
� R

xj j3 X
0 ∣x∣

R

� �( )
x � ∇uj j2dx

þ4
ð

d

R
∣x∣

X 0 ∣x∣
R

� �
� 2

� �
∇u t, xð Þj j2dx,

(57)
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R2 ≔ � 2 p� 1ð Þ
pþ 1

ð

d
X 00 ∣x∣

R

� �
þ d� 1ð ÞR

∣x∣
X 0 ∣x∣

R

� �
� 2d

� �
u t, xð Þj jpþ1dx, (58)

R3 ≔ �
ð

d

1
R2 X

4ð Þ ∣x∣
R

� �
þ 2 d� 1ð Þ

R∣x∣
X 3ð Þ ∣x∣

R

� �
þ d� 1ð Þ d� 3ð Þ

xj j2 X 00 ∣x∣
R

� �(

þ d� 1ð Þ 3� dð ÞR
xj j3 X 0 ∣x∣

R

� �)
u t, xð Þj j2dx,

(59)

R4 ≔ 2
ð

R≤ ∣x∣
2� R

∣x∣
X 0 ∣x∣

R

� �� �
x � ∇Vð Þ u tð , xÞj j2dx: (60)

We set

Ω≔ x∈d :
1

xj j2 X
00 ∣x∣

R

� �
� R

xj j3 X
0 ∣x∣

R

� �
≤0

( )
: (61)

By the inequality X 0 ∣x∣
R

� �
≤ 2∣x∣

R , we have

R1 ≤4
ð

Ωc
X 00 r

R

� �
� 2

n o
∇u t, xð Þj j2dx≤0, (62)

where Ωc denotes a complement of Ω.
Next, we estimate R2. Applying Hölder’s inequality and Sobolev’s embedding, we

have

R2 ≤C∥u tð Þ∥pþ1
Lpþ1 R≤ jxjð Þ ≤C∥u tð Þ∥ pþ1ð Þ 1�θqð Þ

Lq R≤ jxjð Þ ∥u tð Þ∥ pþ1ð Þθq
L2 R≤ jxjð Þ

≤C∥u tð Þ∥ pþ1ð Þ 1�θqð Þ
H1 ∥u tð Þ∥ pþ1ð Þθq

L2 R≤ jxjð Þ ≤C∥u tð Þ∥ pþ1ð Þθq
L2 R≤ jxjð Þ:

(63)

Next, we estimate R3.

R3 ≤
C
R2 ∥u tð Þ∥2L2 R≤ jxjð Þ ≤

C
R2 : (64)

Finally, R4 is estimated as R4 ≤0 by X 0 ∣x∣
R

� �
≤ 2∣x∣

R and x � ∇V ≤0, which completes
the proof of the lemma.

Proof of blow-up or grow-up part in (Non-radial case) for Theorem 6. We
assume that

Tmax ¼ ∞ and sup
t∈ 0,∞½ Þ

∥u tð Þ∥ _H
1
x
<∞ (65)

for contradiction. By Lemmas 2, 3, and 4, there exists δ>0 such that

I00XR
sð Þ≤ � 4δþ C∥u sð Þ∥ pþ1ð Þθq

L2
x R≤ jxjð Þ þ

C
R2 ≤ � 4δþ Cη

pþ1ð Þθq
2 þ oR 1ð Þ (66)

for any η>0, R>0, and s∈ 0, ηR
6C0∥u0∥L2

h i
. We take η ¼ η0 >0 sufficiently small

such as
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Cη
pþ1ð Þθq

2
0 ≤ 2δ: (67)

and set

T ¼ T Rð Þ≔ α0R≔
η0R

6C0∥u0∥L2
: (68)

Applying Eq. (67), integrating Eq. (66) over s∈ 0, t½ �, and integrating over
t∈ 0,T½ �, we have

IXR Tð Þ ≤ IXR 0ð Þ þ I0XR
0ð ÞT þ 1

2
�2δþ oR 1ð Þð ÞT2

¼ IXR 0ð Þ þ I0XR
0ð Þα0Rþ 1

2
�2δþ oR 1ð Þð Þα20R2:

(69)

Here, we can see

IXR 0ð Þ ¼ oR 1ð ÞR2 and I0XR
0ð Þ ¼ oR 1ð ÞR: (70)

Indeed, we get

IXR 0ð Þ≤R∥u0∥2L2 jxj≤ ffiffiffi
R

pð Þ þ cR2∥u0∥L2
ffiffiffi
R

p
≤ jxjð Þ ¼ oR 1ð ÞR2, (71)

and

I0XR
0ð Þ≤4

ffiffiffi
R

p
∥u0∥ _H

1∥u0∥L2 jxj≤ ffiffiffi
R

pð Þ þ cR∥u0∥ _H
1∥u0∥L2

ffiffiffi
R

p
≤ jxjð Þ ¼ oR 1ð ÞR: (72)

Combining Eqs. (69) and (70), we get

IXR Tð Þ≤ oR 1ð Þ � δα20
� �

R2: (73)

We take R>0 such as oR 1ð Þ � δα20 <0. However, this contradicts IXR Tð Þ≥0.

4. Radial case of main theorem

In this section, we prove (Radial case) for Theorem 6. First, we introduce another
characterization of rω,V .

Lemma 5 Let d≥ 3, 1þ 4
d < p< 1þ 4

d�2, and Qω,V ∈Gω,V,rad. Assume that V is radially
symmetric and satisfies (A3) with ∣a∣ ≤ 2, (A7), and 3x � ∇V þ x∇2VxT ≤0. Then,

Sω,V Qω,V
� � ¼ rω,V ¼ inf Uω,V fð Þ : f ∈H1

rad d� �n 0f g, KV fð Þ≤0
� �

(74)

holds, where the functional Uω,V is defined as

Uω,V fð Þ≔ Sω,V fð Þ � 1
d p� 1ð ÞKV fð Þ: (75)

Proof: The lemma follows from proof of Lemma 1 (see [40], Lemma 4.3) com-
bined 2ωþ 2V þ x � ∇V ≥0.
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Proof of (Radial case) for Theorem 6. Assume that the solution u to Eq. (1) exists
globally in time for contradiction. We consider IXR again and recall

I00XR
tð Þ ¼ 4KV u tð Þð Þ þR1 þR2 þR3 þR4, (76)

where Rk 1≤ k≤ 4ð Þ are defined as Eqs. (57) � (60). We use same estimates with
proof of blow-up or grow-up for R1, R3, and R4. Applying Proposition 2 and the
Young’s inequality, we have

R2 ≤
C

R
d�1ð Þ p�1ð Þ

2

∥u tð Þ∥
pþ3
2

L2 R≤ jxjð Þ∥u tð Þ∥
p�1
2

_H
1
R≤ jxjð Þ

≤
C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

∥u∥
2 pþ3ð Þ
5�p

L2 þ 2 d p� 1ð Þ � 4f gε∥u∥2_H1

≤
C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

∥u∥
2 pþ3ð Þ
5�p

L2 þ 4d p� 1ð ÞεUω,V uð Þ

(77)

for each positive ε>0, which is chosen later. Collecting these estimates, we have

I00XR
tð Þ

≤4KV uð Þ þ 4d p� 1ð ÞεUω,V uð Þ þ C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

þ C
R2

¼ 4d p� 1ð Þ Sω,V uð Þ � Uω,V uð Þf g þ 4d p� 1ð ÞεUω,V uð Þ þ C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

þ C
R2

<4d p� 1ð Þ 1� δð ÞSω,V Qω,V
� �þ 4d p� 1ð Þ ε� 1ð ÞUω,V uð Þ þ C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

þ C
R2

≤4d p� 1ð Þ ε� δð ÞSω,V Qω,V
� �þ C

R
2 d�1ð Þ p�1ð Þ

5�p ε
4

5�p

þ C
R2 ,

(78)

where the second inequality is used Sω,V uð Þ< 1� δð ÞSω,V Qω,V
� �

for some δ∈ 0, 1ð Þ
and the third inequality is used Sω,V Qω,V

� �
≤Uω,V (see Lemma 5). Taking ε∈ 0, δð Þ

and sufficiently large R>0, there exists η>0 such that I00XR
tð Þ< � η<0 for each t∈.

However, this inequality implies that if ∣t∣ is sufficiently large, then . This is contra-
diction and hence, we complete the proof.

5. Conclusions

In this chapter, our main result is Theorem 6. Combining the main result and a
previous result (Theorem 5), we can classify time behavior of solutions to Eq. (1) with
initial data below the ground state in the sense of their action Sω,V by using sign of the
virial functional for the initial data. More precisely, for the solution u tð Þ with
Sω,V u0ð Þ< Sω,0 Qω,0

� �
, if KV u0ð Þ≥0 then u is bounded in H1 d� �

and if KV u0ð Þ<0
then u is unbounded in H1 d� �

. In addition, for the radial solution u tð Þ with
Sω,V u0ð Þ< Sω,V Qω,V

� �
, if KV u0ð Þ≥0, then u exists globally in time and if KV u0ð Þ<0

then u blows up.
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