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Preface

Anomaly detection is the practice of pinpointing outliers in a set of similar items.

Its main objective is to discern between typical and atypical data. Various strategies,
including statistical techniques, supervised and unsupervised learning, semi-supervised
learning, time-series analysis, and deep learning (DL) methodologies, can be employed
to perform anomaly detection. Anomaly detection is versatile, finding use in diverse
domains such as medicine, finance, manufacturing, identity protection, data security,
networking, video surveillance, and cyber security.

The emergence of next-generation networks has brought forth an array of sophisti-
cated and complex systems that are often vast, decentralized, and dynamic. These
networks, which might include 6G and beyond, Internet of Things (IoT) networks, or
even intricate data center networks, have multifaceted traffic patterns, a multitude

of interconnected devices, and varied user behaviors. Such complexity makes them
susceptible to a wide range of anomalies, from performance hiccups to security
breaches. Traditional anomaly detection methods might struggle with the sheer scale
and intricacy of these networks. In contrast, machine learning (ML), with its capacity
to learn from vast amounts of data, can potentially discern patterns and anomalies
that would be imperceptible to conventional methods. Given the critical nature of
networks, especially in sectors like healthcare or finance, it is paramount not just to
detect anomalies but also to understand the “why” behind them. By making artificial
intelligence’s (AI) decisions interpretable, it becomes easier for network administra-
tors or security experts to take informed actions, rectify issues, or even preemptively
address potential vulnerabilities.

In light of the aforementioned context, the editor requested chapters that address
various aspects of anomaly detection, such as novel strategies based on Al, machine
learning, optimization, control, statistics, and social computing, among others. We
received several chapter proposals, and each chapter was reviewed thoroughly. Three
sections and seven chapters were finally selected for this book and the details of the
chapters are as follows:

Chapter 1 by Venkata Krishna Parimala offers a foundational introduction to the
book, establishing a solid framework for understanding anomaly detection from Al
and ML perspectives. This chapter lays the groundwork by elucidating key concepts,
methodologies, and the significance of anomaly detection in the realm of AI) and
ML, setting the stage for more detailed explorations in subsequent chapters. The first
section of the book deals with anomaly detection with time series of data. Chapter 2
presents a review of anomaly detection in medical time series with generative adver-
sarial networks. The author, Milos Cekié, discusses anomaly detection in medical time
series, such as diagnosing diseases like epilepsy or preventing fatal events like cardiac
arrhythmias. Generative adversarial networks (GANs) have demonstrated potential
in various areas, including cybersecurity and data augmentation. Recently, they have
been applied to detect anomalies in medical time series. This chapter reviews the use



of GANs in this context, addressing the nature of time-series anomalies, challenges
in medical time series, and DL issues. The discussion includes popular GAN models
and their application in detecting anomalies in ECG and EEG medical time series.
Chapter 3 discusses anomaly detection with time series in IoT. This chapter explores
anomaly detection in IoT using ML and DL. With 85 billion devices anticipated by
2025, cyber security challenges arise, according to the authors Menachem Domb et al.
The chapter reviews these issues, suggesting protocols and solutions for a safer [oT
landscape. Chapter 4 explores the intricacies of anomaly detection in time series. The
authors, Farrukh Arslan et al., delve into the numerous challenges anomaly detection
confronts in contemporary applications.

The second section of the book discusses anomaly detection vs. intrusion detection.
In Chapter 5, Surendra Bhosale et al. explore anomaly detection using the Adaptive
Dolphin Atom Search Optimization (DASO) method. They utilize DASO combined
with deep RNN techniques to address anomaly detection and intrusions. In Chapter 6,
Siamak Parhizkari explains anomaly detection within intrusion detection systems.
The chapter examines various facets of anomaly detection, including signature-based
detection and both supervised and unsupervised learning methods. It further details
the application of anomaly detection in intrusion detection systems.

The third section of the book presents anomaly detection models. In Chapter 7,
Hironori Uchida et al. explain software log anomaly detection models. The chapter
presents technological advancements in automated software log analysis. Despite
DL high accuracy in software log anomaly detection, its adoption in software
development remains limited. Evaluations of five models, including the proposed
Neocortical Algorithm, on the BGL dataset revealed overfitting tendencies and
highlighted the need for diverse datasets.

This book will assist researchers in understanding the advancements occurring in the
field of anomaly detection with Al and ML techniques and their applications.

I would like to thank Publishing Process Manager Ms. Karla Skuliber and other
members of the editorial team at IntechOpen for their kind cooperation and help.

I also extend our sincere thanks to the contributing authors and reviewers for their
interest and support.

Venkata Krishna Parimala
Computer Science Department,
Sri Padmavati Mahila University,
Tirupati, India
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Chapter1

Introductory Chapter: Anomaly
Detection — Recent Advances,
Al and ML Perspectives and
Applications

Venkata Krishna Parimala

1. Introduction

The significance of anomaly detection transcends industries and impacts various
facets of daily life and societal functioning. In the world of finance, it servesasa
guardian of economic stability. Beyond fraud detection, it helps regulatory authori-
ties monitor for signs of market manipulation or systemic risks that could lead to
economic downturns. It is not just about protecting individual investors; it’s about
safeguarding the entire financial infrastructure on which modern economies rely.

In healthcare, the stakes are even more personal. Anomaly detection algorithms
are being integrated into wearable devices, constantly monitoring physiological data
to provide real-time health insights. This has the potential to revolutionize preventive
medicine by catching symptoms before they manifest into more severe conditions,
thereby facilitating early intervention and potentially saving lives.

In transportation, particularly in aviation and autonomous vehicles, anomaly
detection is critical for ensuring safety. Algorithms continuously monitor system
health and can alert human operators or initiate fail-safes if something goes awry. The
ability to detect a malfunction before it leads to a catastrophic failure could mean the
difference between a controlled emergency landing and a tragic accident.

The technology also has growing applications in environmental protection.
Algorithms can analyze satellite imagery to identify illegal deforestation or poach-
ing activities, enabling timely intervention. Similarly, in marine biology, anomaly
detection helps researchers identify unusual patterns in sea temperature or marine life
behavior, offering early indicators of environmental issues like ocean acidification.

Additionally, anomaly detection plays a critical role in the realm of data integrity
and information verification. In the age of ‘fake news, these algorithms can sift
through vast amounts of data to flag misinformation or anomalous reporting, thereby
helping to maintain the integrity of public discourse.

Finally, the technology is making inroads into the field of disaster management.
By analyzing data from seismic sensors, weather satellites, and historical records,
anomaly detection can provide early warnings for natural disasters like earthquakes,
tsunamis, or hurricanes, enabling timely evacuations and preparation, thereby
minimizing loss of life and property.
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The significance of anomaly detection is multi-dimensional, affecting both
individual lives and the larger fabric of society. Its potential to drive proactive solu-
tions, prevent crises, and even save lives makes it an indispensable tool in the modern
data-driven world.

2. The limitations of traditional methods

Traditional methods of anomaly detection have provided a foundational frame-
work for identifying outliers in data, but as data have grown more complex, these
methods are showing their limitations more prominently. One of the most glaring
issues is the assumption of a specific data distribution. Traditional techniques often
assume that data follow a Gaussian or similar distribution, an assumption that is
frequently violated in real-world applications. This not only affects the accuracy but
also limits the type of anomalies that can be detected.

Another substantial limitation is scalability. Traditional methods were not
designed to handle the massive datasets generated in contemporary applications, such
as social media analytics, sensor networks, and large-scale e-commerce. Processing
large datasets often requires significant computational resources, making these
methods inefficient and sometimes impractical for big data applications.

Sensitivity to parameter settings is another drawback. The effectiveness of tradi-
tional methods often hinges on the appropriate selection of parameters like thresholds
or cluster sizes. Inconsistent or suboptimal parameter selection can result in missed
anomalies or an excessive number of false alarms. This makes traditional methods
highly dependent on domain expertise and often requires manual tuning, which is
both time-consuming and susceptible to human error.

Traditional methods also struggle with high-dimensional data. In scenarios where
multiple attributes or features are involved, the effectiveness of traditional methods
diminishes. They often suffer from the “curse of dimensionality,” a phenomenon
where the data become increasingly sparse as the dimensionality increases, making it
challenging to identify meaningful patterns.

The issue of temporal dynamics is another limitation. Traditional methods are
often ill-suited for detecting anomalies in time-series data where temporal correlations
are essential. They usually treat data points as independent entities, ignoring the tem-
poral relationships that are often crucial for accurate anomaly detection in sequences.

Lastly, interpretability and transparency, although considered a strength of
traditional methods, can also be a limitation. The simplified models may offer easier
interpretation but at the cost of capturing the complexities of the data. This trade-off
often leads to models that are overly simplistic, failing to capture the nuanced behav-
iors that more advanced models can identify.

3. The role of Al and ML in anomaly detection

The infusion of artificial intelligence (AI) and machine learning (ML) technolo-
gies into anomaly detection is revolutionizing the field, offering a robust set of tools
and methodologies that far exceed the capabilities of traditional techniques. These
advanced algorithms are designed to tackle multi-dimensional and large-scale data,
making them well-suited for modern applications that often involve big data and
streaming analytics.
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Machine learning models like Random Forests and Support Vector Machines have
been particularly effective in feature selection and reducing dimensionality, which are
common challenges in high-dimensional data spaces. Deep learning techniques, such
as Long Short-Term Memory (LSTM) networks, have shown exceptional performance
in time-series anomaly detection, a critical aspect in sectors like finance and indus-
trial automation. More recently, Generative Adversarial Networks (GANs) have been
adapted for anomaly detection, proving effective in learning complex data distribu-
tions without the need for explicit labeling.

One of the most compelling advancements is the introduction of semi-supervised
and unsupervised learning techniques. These models do not require a fully labeled
dataset for training, a feature that is particularly advantageous in scenarios where
labeling is costly or impractical. This opens up new avenues for anomaly detection in
fields like cybersecurity, where attacks are continually evolving, and manual labeling
quickly becomes obsolete.

Furthermore, the Al and ML models are increasingly becoming capable of
real-time learning, a critical requirement in dynamic environments. For example,
reinforcement learning algorithms can interact with their environment in real-time,
adapting their anomaly detection strategies as they gain more information. This is
invaluable in applications such as autonomous driving and real-time network secu-
rity, where the cost of failing to detect an anomaly could be catastrophic.

In addition to performance benefits, Al and ML are also contributing to the
explainability and interpretability of anomaly detection models. With the advent of
techniques like Local Interpretable Model-agnostic Explanations (LIME) and SHAP
(SHapley Additive exPlanations), these complex models are becoming less of a ‘black
box, thereby gaining greater acceptance in fields that require rigorous validation,
such as healthcare and aviation.

Anomaly detection is a growing field with applications across various domains
such as healthcare, building management, cybersecurity, weather forecasting, and
surveillance. With the advent of artificial intelligence (AI) and machine learning
(ML), sophisticated techniques are being developed to tackle complex anomaly detec-
tion tasks. However, each domain has its own set of challenges and requirements that
influence the choice of techniques and their effectiveness.

In healthcare, Ceki¢ et al. [1] shed light on the importance of anomaly detection in
medical time series data, such as electrocardiography (ECG) and electroencephalog-
raphy (EEG). They highlight the use of Generative Adversarial Networks (GANSs) for
this purpose. While GANs have shown promise, they also present challenges related
to medical data, such as limited labeled samples and the complex nature of anomalies.
In a similar vein, Esmaeili et al. [2] investigate the use of GANSs for anomaly detection
in biomedical imaging. Their study, conducted on seven different medical imaging
datasets, shows highly variable performance (AUC: 0.475-0.991; Sensitivity: 0.17-
0.98; Specificity: 0.14-0.97), indicating the method’s limitations and the need for
further research.

In the context of building management, Copiaco et al. [3] take a unique approach
by using two-dimensional (2D) image representations of energy time-series data for
deep anomaly detection. Their method achieved impressive F1-scores of 93.63 and
99.89% on simulated and real-world datasets, respectively. Himeur et al. [4] expand
on this by surveying Al and big data analytics in building automation and manage-
ment systems (BAMSs). They identify the current limitations, including the system’s
focus primarily on heating, ventilation, and air conditioning (HVAC) controls, and
suggest Al as a promising solution.
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Cybersecurity is another critical application area. Javaheri et al. [5] focus on
Distributed Denial of Service (DDoS) attacks, providing a comprehensive survey that
proposes effective defensive strategies. They emphasize the use of fuzzy logic-based
methods as a promising avenue for future research. Zehra et al. [6] discuss the secu-
rity challenges in Network Function Virtualization (NFV), advocating for machine
learning-based anomaly detection techniques to enhance network security.

In other specialized applications, Jin et al. [7] provide a comprehensive review of
Graph Neural Networks (GNNs) for time series analysis, which includes forecasting,
classification, and anomaly detection. Their work serves as a guide to understand the
strengths and limitations of using GNNs for time-series data. Patriarca et al. [8] delve
into the importance of weather forecasting for aerodrome operations and propose a
machine learning-based approach for anomaly detection in historical weather data.
Finally, Sengoniil et al. [9] explore the use of Al in surveillance video anomaly detec-
tion, noting the increasing need for automated systems due to the sheer volume of
video data being generated.

In summary, while AI and machine learning offer promising solutions for anomaly
detection across domains, the effectiveness of these techniques varies significantly.
The limitations often arise from domain-specific challenges such as data sparsity,
complexity of the anomalies, and computational constraints. Therefore, tailored
approaches and continuous research are essential for advancing the field.

Author details

Venkata Krishna Parimala
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Chapter 2

Anomaly Detection in Medical
Time Series with Generative
Adversarial Networks:

A Selective Review

Milos Ceki¢

Abstract

Anomaly detection in medical data is often of critical importance, from diagnosing
and potentially localizing disease processes such as epilepsy to detecting and
preventing fatal events such as cardiac arrhythmias. Generative adversarial networks
(GANSs) have since their inception shown promise in various applications and have
been shown to be effective in cybersecurity, data denoising, and data augmentation,
and have more recently found a potentially important place in the detection of anom-
alies in medical time series. This chapter provides a selective review of this novel use
of GANs, in the process highlighting the nature of anomalies in time series, special
challenges related to medical time series, and some general issues in approaching time
series anomaly detection with deep learning. We cover the most frequently applied
GAN models and briefly detail the current landscape of applying GANs to anomaly
detection in two commonly used medical time series, electrocardiography (ECG) and
electroencephalography (EEG).

Keywords: anomaly detection, medical time series, generative adversarial network
(GAN), electrocardiogram (ECG), electroencephalogram (EEG)

1. Introduction

The increasingly widespread deployment of advanced technology in modern
healthcare has led to exponential growth in the generation and collection of medical
time series data, which offer unprecedented opportunities for the detection and diag-
nosis of disease processes. Being able to use these “big” data to detect and localize
anomalies can lead to early and precise disease recognition, timely and proactive
intervention, development of personalized treatment plans, improved patient out-
comes, and better risk management while at the same time offering opportunities for
better understanding and classification of disease pathology [1-5].

The extraction of meaningful insights from medical time series data, however,
poses a number of significant challenges. For one, the data are highly complex and
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often multidimensional/multimodal and nonstationary. They also usually suffer from
noise, missing values, and artifacts as well as from the inherent variability of human
physiology and broad range of normality across individuals, which makes the identi-
fication of “abnormal” a nontrivial task [6]. Anomalies within the data can be highly
heterogeneous and can manifest as subtle deviations or sudden, drastic changes.
Additionally, specific disease data that could be used to train analytical models are at
best highly heterogeneous and more likely simply not available; even when data are
available, properly labeled data are generally lacking. Finally, at the present time,
there is no expert knowledge related to large medical datasets that can parallel classical
medical knowledge—it is sometimes not even clear what exactly to look for since
traditional medical semiology operates in a different conceptual space (defined signs/
symptoms vs. patterns in massive data) [1-3, 6].

Traditionally, statistical and rule-based methods have been employed for
anomaly detection in medical time series data [4, 7, 8]. These methods rely on
predefined thresholds, statistical models, or expert knowledge to identify deviations
from normal. These approaches, however, often struggle to capture complex and
nonlinear patterns that may be present in the data. This has recently led to a growing
interest in leveraging machine learning and deep learning techniques for anomaly
detection in medical imaging [1-3, 6, 7, 9-11]. A widely used type of model is the
generative adversarial network (GAN), which has demonstrated superiority in a vari-
ety of tasks in medical imaging due to its powerful ability to learn the distribution of
the training data and to generate novel but realistic samples that reflect the underlying
data characteristics [12-26]. A GAN trained on normal instances only, for example,
can capture the complex patterns and dependencies inherent in the data, enabling the
generation of synthetic samples that closely adhere to the learned distribution.
Anomalies, being significantly different from normal, can then be identified by
how far they deviate from their reconstruction [27-32]. The application of GANs in
anomaly detection for medical time series has demonstrated promising results, and
GAN-based approaches have been shown to be able to effectively capture temporal
dependencies, handle complex patterns, and adapt to individual patient variations.
Moreover, they can detect subtle anomalies that may go unnoticed by traditional
methods [29, 31, 32].

This chapter endeavors to provide a brief review of the current landscape of the
use of GANs in anomaly detection in medical time series data. We first present a brief
overview of properties of anomalies, time series data, and specific challenges related
to medical time series. We then discuss general ways of approaching time series with
deep learning methods before discussing GANs and GAN applications to anomaly
detection in general and to time series in particular. We then review the current state
of the use of GANs in medical imaging and anomaly detection in specific fields of
electrocardiography (ECG) and electroencephalography (EEG). Finally, we briefly
discuss some challenges and future directions.

2. Anomalies in time series: problem complexities and challenges
2.1 Properties of time series data
While time is a fundamental concept in nearly all data, time series explicitly

involve the temporal dimension. The following is a brief summary of the specific
properties of time series and how they affect anomaly detection.
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2.1.1 Temporality

A time series is an ordered sequence of data points indexed by time (usually but
not always across equal temporal intervals) [33-36]. We can define a time series as a
vector X such that: X = {x1,x,, ...,x:}, where x; represents the datum at timeie T
and T = {1,2, ...,t}. The (necessary) assumption of continuity of the underlying
generative process implies that each point is in some way conditioned on previous
values (past states of the process), with this dependency captured as a joint distribu-

t
tion of a set of observations: p(x1,%2, ..., %) = p(x1) [[p(¢|x1,%2, ..., %—1). The influ-
2

ence of the past is generally assumed to decrease with time, though this may not
necessarily be the case [33].

2.1.2 Dimensionality

Time series data may be univariate or multivariate, with the dimension
representing the number of individual data attributes captured at each time point. The
above specification of a time series vector is univariate. Multivariate series can be
defined as a time-ordered set of multidimensional vectors X; (rather than points),
with X; = (x}, x2, ... ,xf) , where d is the number of dimensions; the multivariate time

series is then a rank d + 1 tensor X]i, wherejeD and D = {1,2, ...,d} is the number of
dimensionsandi€ T and T = {1, 2, ...,t} denotes time [9, 33]. Alternatively, multi-
variate series can also be conceptualized as a collection of univariate time series. While
analysis of univariate time series needs to consider only the relationship between the
current state and previous states (temporal dependency), multivariate series entail
dependencies and correlations (semantics) across both previous states (temporal)
within a series and other dimensions (spatial) at any given time point, keeping in
mind that any given datum may also depend on a mixture within and across different
time series (spatiotemporal dependencies). These dependencies may be multiscale
(short-, medium-, or long-range) and in some cases nonstationary or dynamic, mean-
ing that the scale and structure of dependencies itself may vary in time [37-40].

2.1.3 Nonstationarity

A time series is assumed to be stationary if its statistical properties do not change
over time. Most real-world time series are not stationary, however, meaning the mean
and variance (and other moments of the distribution) vary. Common sources of
nonstationarity include trends (baseline drift that may be local or global and linear or
nonlinear), seasonal cycles (with a stable period), nonseasonal cycles (with a variable
period), pulses and steps (including concept drift and change points, instances where
the relationship between input and output changes), and random/irregular move-
ment. Because nonstationarity implies that the data distribution itself changes in some
way, an appropriate model will need to somehow capture the underlying generative
process rather than the statistics of the apparent data [33-36].

2.1.4 Noise

Real-world datasets typically contain a significant amount of noise or unwanted
signal, which represents the semantic boundary between normal data and true
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anomalies. The classical definition of an anomaly or outlier is “an observation which
deviates so much from other observations as to arouse suspicions that it was generated
by a different mechanism” [41]. In this context, it is helpful to differentiate between
outlier and anomaly: outlier refers to “unusual data objects that are statistically rare
but may or may not result from the same generative process as other data objects,”
while, in contrast, anomalies are defined as “data objects that have resulted from a
distinct generative process that may or may not appear in the data as outliers” [42].
This distinction is necessarily contextual and application-specific, although typically
anomalies will have a much higher outlier score than noise [43] since they are pre-
sumably generated by a different underlying process.

2.2 Properties of anomalies

The detection of anomalies is a specific problem in pattern recognition that is
distinct from other analytical and learning tasks. Key complexities are discussed
below. These issues apply to any anomaly detection and not just time series, but with
time series and medical time series in particular additional specific challenges arise.

2.2.1 Unknown nature of anomalies

Anomalies are by definition unknown and may involve unknown abrupt behav-
iors, patterns, or distributions, which remain unknown until they occur. Even if a
particular type of anomaly is known and categorized (there are two distinct issues
here, since even if an anomaly type exists, it may not be immediately classifiable due
to the heterogeneity of its manifestations), recognizing it may still be difficult. With
machine learning, there is the added complexity that, even if various diseases are
categorized in terms of their specific symptoms, the disease process may not be clearly
defined within the particular modality performed for its detection [10, 11, 33, 37-39].

2.2.2 Anomaly class heterogeneity

Since anomalies are irregular and heterogeneous, one class of anomalies may have
very different abnormal characteristics when compared to another class of anomalies;
in other words, not only are anomaly classes themselves heterogeneous, the heteroge-
neity within anomaly classes or types is itself heterogeneous [11, 36, 39].

2.2.3 Dataset/class imbalance

Anomalies are typically rare events, occurring much less often than normal
instances, which account for the overwhelming majority of the data. It is therefore
extremely difficult and labor-intensive (if not impossible) to collect a sufficient
amount of labeled and/or clearly defined abnormal instances that could be used for
anomaly definition and model training. The result is severe class imbalance in any
potential training set [29, 32, 40].

2.2.4 Types of anomalies

Anomalies can generally be classified into three types, point anomalies,
contextual anomalies, and collective anomalies, which in time series correspond to
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abnormal time points, abnormal time intervals/subsequences, and abnormal
time series [10, 29, 33, 37, 39].

2.2.4.1 Point anomalies

A point anomaly is a single datum at which the value of the observed variable is
significantly different either from the entire time series (global) or from neighboring
points in a time series (local or contextual). Point anomalies may be univariate or
multivariate and usually entail extreme values. An example may include an abnormal
blood pressure reading, which would then need to be defined as noise or something
potentially indicating a deeper problem.

2.2.4.2 Time interval/subsequence anomalies

This type involves a subsequence of points that does not reflect the normal behav-
ior of the system and in which each individual observation may be within normal
range but the subsequence as a whole is anomalous. The subsequence may affect a
single (univariate) or multiple (multivariate) time-dependent variables. An example
would be an epileptic seizure on electroencephalogram (EEG), which may not be out
of normal range in any individual point, but in which the multivariate pattern across
multiple electrodes over a finite time period reflects the abnormality.

2.2.4.3 Collective or time series anomalies

This class includes cases where the entirety of a (or several) time series of a
multivariate dataset is anomalous with respect to the dataset as a whole. This type is
distinct from subsequence anomalies due to the length of the anomaly, which extends
to the same length as the sequence. The idea here is that what is represented is not a
temporary anomaly in the functioning of a part of a multidimensional system that
returns to normal at some point, but rather that there is a persistent underlying
abnormality in some portion of the system that can only be detected in the context of
the entire dataset. An example would be abnormal signal related to a voxel (volume
element) or group of voxels in a resting-state functional magnetic resonance imaging
(MRI) (rs-fMRI) study representing a brain region that might reflect an underlying
disease process such as an epileptogenic focus or tumor. The only way to detect this is
by looking at the relationship of the various time series to each other both within
individual patients and across individuals.

2.3 Challenges specific to medical time series

Anomaly detection in medical time series data comes with unique challenges,
stemming from the nature of the data, the inherent variability in human physiology,
and the requirement for the results to be interpretable by healthcare professionals.
The following are the major domain-specific challenges.

2.3.1 Noise and artifacts

Medical time series data can contain a significant amount of noise due to
sensor inaccuracies, patient movement, measurement errors, and physiological
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artifacts [1, 2]. For example, an ECG signal may contain noise from muscle contrac-
tions, or a glucose monitor may have inaccuracies due to calibration errors. These
artifacts can distort the underlying physiological signal and lead to false detections of
anomalies.

2.3.2 Missing and irregularly sampled data

Medical time series data often suffer from missing values and irregular sampling
intervals. For example, a patient might remove a wearable device for a period, leading
to missing data, or a sensor might malfunction. Irregularly sampled data can arise in
outpatient settings where measurements are taken at each visit, but the visits occur at
irregular intervals. These irregularities pose challenges for conventional time series
analysis methods, which typically assume regular sampling, and require specialized
techniques to handle missing values, synchronize timestamps, and ensure consistent
analysis across different time series [1, 2, 6].

2.3.3 Nonstationarity

Medical time series data often exhibit nonstationarity, meaning that their statisti-
cal properties change over time. This could be due to a patient’s changing health
status, the effect of medications or interventions, or changes in external conditions
such as time of day or physical activity. Traditional time series analysis techniques
often assume stationarity, so nonstationarity poses a significant challenge [35, 43].

2.3.4 High dimensionality

Medical time series data can involve a high number of variables or channels,
possibly with different types of data that are collected differently (e.g., blood pres-
sure, heart rate, electrocardiogram, oxygen (O,) saturation, and respiration may all be
monitored simultaneously in the intensive care unit (ICU)) or may consist of mas-
sively multidimensional imaging data (e.g., for the open source dataset in the Human
Connectome Project, each raw rs-fMRI time point contains 673,920 voxels or dimen-
sions, which over the span of an approximately 15 min scan generates 8 x 10° data
points per run per subject). This high dimensionality presents challenges in data
storage, computation, visualization, and analysis. It also increases the need for com-
plexity of anomaly detection algorithms, as they need to be able to handle and inter-
pret data across multiple dimensions [1, 4, 5, 38].

2.3.5 Intra- and interpatient variability

There is a high degree of variability in physiological parameters both within the
same individual over time (intrapatient variability) and between different individuals
(interpatient variability). This variability complicates the task of defining what con-
stitutes an “anomaly.” An anomalous value for one individual might be normal for
another, and a reading that is normal for a person at rest might be abnormal during
exercise. Anomaly detection methods need to account for these interpatient variabil-
ities and develop patient-specific or subgroup-specific models to accurately capture
normal and abnormal patterns [1].
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2.3.6 Lack of labeled data

Supervised learning methods, which can be very effective for anomaly detection,
require labeled data for training. Obtaining such labeled data in healthcare settings is
challenging, however, as it typically requires expert clinicians to manually review and
label the data, which is time-consuming and expensive [2]. This essentially forces
most anomaly detection (AD) models to be semi-supervised or unsupervised (see
below).

2.3.7 Privacy and security

Medical data are highly sensitive, and strong safeguards are required to protect
patient privacy. This can make it challenging to gather sufficient data for building
robust anomaly detection models, and it also requires careful consideration when
deploying these models to ensure that patient data are handled securely [1, 27, 28].

2.3.8 Interpretability and explainability

Healthcare professionals need to understand the detected anomalies and trust the
reasoning behind them to make informed decisions. Anomaly detection methods
should therefore provide interpretable results, visualizations, or explanations that can
lead to improved or optimized treatment decisions. Many advanced machine learning
models, however, and particularly deep learning models, often act as “black boxes,”
making their predictions difficult to interpret. This lack of interpretability can hinder
the adoption of these models in clinical practice [1, 28].

2.4 Summary

Anomaly detection in multidimensional time series data is a significant challenge
both from conceptual and technical points of view. Anomalies are by nature rare and
heterogeneous, and therefore not easily amenable to classification, which means that
they must generally be classified not as what they are but rather as what they are not.
This makes not just detection but even simply definition of anomalies challenging:
what is normal? How “different” must something be from some generalization (e.g.,
mean or average) of normal to constitute an anomaly? How do we define this differ-
ence? If the normal data change over time, how do we learn and describe this aspect of
normality? What is the normal evolution of the behavior of our system? For multi-
variate time series, the issues multiply due to dependencies in the data that may
extend over time and across multiple variables and may involve different spatiotem-
poral scales simultaneously. Determining normal behavior then is quite challenging,
and the detection of potentially multiscale spatiotemporal anomalies even more so. As
an extended example, consider rs-fMRI once again: say a brain region comprising a set
of voxels is abnormal and therefore generates an anomalous signal. Detecting this
anomaly requires that we are somehow able to learn all the multivariate dependencies
at multiple scales across multiple subjects (the normal population): spatially between
not just voxels but groups of voxels comprising brain regions, which may vary in size;
temporally in that the length of the anomalous series may vary from short unusual
behaviors to longer term abnormalities; and spatiotemporally in that different length
signals from regions of different sizes may affect other regions at different spatial
scales. Since anomalies are heterogeneous and we cannot know a priori exactly what
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we are looking for, detecting an “anomalous brain region” in the highly
multidimensional rs-fMRI signal requires significant model complexity and
computational power.

Finally, there are additional practical concerns: generalized unavailability of
labeled training data, unreliable or noisy data, heterogeneously organized or collected
data, data privacy (extremely important in medical datasets), interpretability,
throughput and automatization, and scalability from specific research purposes to
clinical applicability.

3. Anomaly detection in time series: concepts and models
3.1 Basic paradigms

Traditional anomaly detection methods in healthcare include statistical
approaches, rule-based methods, and machine learning techniques. Statistical
methods often rely on distribution-based models, such as Gaussian or Hidden Markov
Models, to capture the normal patterns and detect deviations from them. More
sophisticated classical models include autoregressive integrated moving average
(ARIMA) models, exponential smoothing state space model (ETS), and Seasonal-
Trend decomposition using LOESS (STL). These approaches are useful for detecting
point or global anomalies, but are not helpful in the detection of contextual or collec-
tive anomalies [42-45] and are not useful for multivariate or multidimensional data
[37-39]. Rule-based methods utilize expert-defined rules or thresholds to identify
anomalies based on predefined criteria. Machine learning models, especially
unsupervised machine learning algorithms, like clustering (K-means, density-based
spatial clustering of applications with noise (DBSCAN)) or K-nearest neighbors
(K-NN), are often used to detect outliers in time series data. Supervised
learning methods, like support vector machine (SVM) or Random Forests, can also be
used when labeled data are available. Deep learning methods, however, are best for
capturing complex nonlinear relationships and dependencies in time series data
[33, 35, 44-47]. Long Short-Term Memory (LSTM) networks and autoencoders
(AEs) have been common choices due to their ability to model temporal
dependencies, with GANs being utilized more recently for anomaly detection in time
series [29, 33, 39].

Generally speaking, machine (and deep) learning methods can be grossly catego-
rized along two axes: learning scheme vs. anomaly determination. Note that additional
axes are possible, e.g., univariate vs. multivariate, anomaly type (point, subsequence,
or time series); however, these will not be specifically considered here since most
medical time series are multivariate and most deep learning approaches attempt to
find anomalies in an anomaly-type agnostic manner [33].

3.1.1 Learning scheme

The three major learning schemes in machine learning are supervised,
unsupervised, and semi-supervised. Supervised models aim to learn a mapping from
data to their corresponding annotations and then use this mapping to perform classi-
fication on test data. Important examples of a supervised approach in the medical field
are applications to automated brain tumor and ischemic stroke recognition and seg-
mentation (using the extensively labeled Multimodal Brain Tumor Image
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Segmentation, BraTS [48], and Ischemic Stroke Lesion Segmentation, ISLES, datasets
[49]). Although these networks can successfully learn to recognize visual anomalies in
medical images [2, 4], they require accurate labels and annotations and can only learn
to recognize specific predefined abnormalities that are already present in the training
set. Given the difficulty and time-consuming nature of labeling data manually, this
approach is usually only appropriate for very specific use-cases.

Most approaches to anomaly detection time series therefore take the form of
unsupervised or semi-supervised learning [32, 38, 45]. In unsupervised anomaly
detection, the algorithms separate anomalies without prior knowledge or any explicit
distinction between normal and abnormal, whereas in semi-supervised approaches all
training data are assumed to be normal. Unsupervised methods are the most flexible
since they depend entirely on the internal features of the data; however, this type of
approach generates its own set of problems including potentially nonconvergent
training, unclear recognition of anomalies, and difficulty in interpretation. For most
medical data, including time series, a semi-supervised approach is generally consid-
ered to be most appropriate [6, 10, 11, 45-47], given the fact that the overwhelming
amount of data collected is normal and that the anomalies themselves are highly
heterogeneous.

3.1.2 Anomaly determination

Most anomaly detection involves an “anomaly score”—a number that is calculated
based on the analytical technique that can then be compared to what is expected from
a normal dataset. Once the data are learned (the model or distribution is assumed and
fitted), a measure of the difference of each particular datum (whatever form this
takes, point, subsequence, etc.) from the learned distribution must be determined,
and this is the anomaly score. The following approach is nearly universal in machine
(and by extension deep) learning for anomaly detection in time series: pick or create a
model/architecture that we think will appropriately model the dataset, train the model
on normal data in order to learn the data distribution (presumably with all dependen-
cies), and then test new data with reference to the learned distribution using an
anomaly score, which then determines if the datum in question was generated by the
same underlying process the model was trained on or something different [11, 29].

Three basic approaches to determining anomaly scores are used, regardless of the
time-modeling approach taken (see below): forecasting/prediction, reconstruction,
and distance/dissimilarity [45].

3.1.2.1 Prediction

Prediction or forecasting-based models learn to predict expected future values
based on the learned data, with anomalies determined based on the residual between
the predicted value and the observed quantity. Most forecasting models use a sliding
window to forecast one point at a time, although short sequences can also be gener-
ated. There is no robust forecasting-based model for rapidly and continuously chang-
ing time series, however, since such time series can only be predicted in the very short
term if at all, and forecasting models are known to demonstrate significantly increased
prediction errors as the number of time points increases [39]. This also makes them
generally unsuitable for subsequence anomalies. Even in the deep learning context,
forecasting-based models can only make short-term predictions with acceptable
accuracy.
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There is certainly a place for forecasting-based models in medical time series
analysis, however. For any real-time applications where early or real-time anomaly
detection is important, forecasting models are crucial. An example would be patients
on telemetry or in the ICU, where blood pressure, respiration, and ECG may, indi-
vidually or in combination, signal an impending collapse. This may also be the case in
predicting the onset of seizures with EEG or cardiac arrest with ECG, where any
advance notice of a critical event may significantly alter outcomes.

3.1.2.2 Reconstruction

Reconstruction-based models are not subject to the constraints of prediction
models. With this type of model, normal behavior is modeled by encoding subse-
quences of normal training data (usually input as a sliding window that provides the
temporal context for each datum) into a lower-dimensional latent space. In a semi-
supervised context where the model is trained on only normal data, the model should
be incapable of generating an anomalous output sequence. Anomalies are therefore
detected by reconstructing a subsequence/sliding window from the test data and
comparing it to the actual values, which generates a “reconstruction” error. Anomalies
are generally flagged when the reconstruction probability falls below a specified
threshold.

Most deep learning methods including generative models such as autoencoders
(AEs), variational autoencoders (VAEs), generative adversarial networks (GANs),
and transformers use reconstruction error as the anomaly score [29, 33]. Although
these models are different in their architectures, training, and objective functions,
most approaches using one of these models calculate anomaly scores as reconstruction
errors. Note that in multivariable time series with multiscale spatiotemporal depen-
dencies deciding what exactly constitutes “similarity” may be difficult. Fortunately,
analytically defining similarity is usually not necessary and the anomaly score is often
related to the loss function of the model. While reconstruction-based AD methods are
fairly intuitive and quite widely used, they can be plagued with difficulties such as
computational cost for data reconstruction, mode collapse, nonconvergence, and
instability [33, 50].

3.1.2.3 Distance/dissimilarity

Distance-based models are based on a similarity metric that flags anomalies if their
distance from normal is past a certain threshold. Clustering is an unsupervised
machine learning model that is effective for grouping data and detecting anomalies; it
involves mapping the time series data into a multidimensional space where the data
are grouped near centroids based on feature similarity. Anomalies are then detected if
they are far from existing clusters or have low probability of belonging to a cluster.
Examples of clustering methods include K-means algorithm, one-class support vector
machine (OCSVM), and Gaussian mixture model (GMM) [33]. More sophisticated
machine learning methods such as Dynamic Time Warping provide a more complex
comparison of temporal sequences (or subsequences, usually determined with a slid-
ing window of fixed length) by allowing nonlinear alignment between sequences that
are locally out of phase [11, 45]. Clustering methods are currently the benchmarks for
anomaly detection in time series [39] and some recent studies demonstrate that many
advanced algorithms do not deliver improved performance on basic univariate time
series in comparison to more traditional methods and may in fact result in inferior

18



Anomaly Detection in Medical Time Series with Generative Adversarial Networks...
DOT: http://dx.doi.org/10.5772 /intechopen.112582

performance [47]. The performance of clustering methods is generally degraded on
complex high-dimensional datasets [33, 43], however. In such cases, methods to
reduce data dimensionality such as expert opinion or various feature selection and
extraction techniques such as deep autoencoders, principal component analysis (PCA)
[51], and multidimensional scaling (MDS) [52, 53] can be used, in effect utilizing a
hybrid approach using deep learning for dimensionality reduction and clustering
methods for anomaly detection.

3.2 Capturing temporal context

The history of a sequence contains significant information regarding its potential
future behavior and most deep learning approaches in some way depend on modeling
the temporal dimension in order to explicitly capture the past during reconstruction
or prediction.

3.2.1 Input

Input shape is essential to capturing temporal context and can take the form of
individual (multidimensional) points or windows, which consist of a subsequence
that contains some portion of the historical information. The width of the window
is usually predetermined and can be based on the known or estimated/expected
characteristics of the dataset and the presumed underlying process. Windows can
be advanced by some number of data points (window step) and used in order
(sliding windows) or they can be shuffled and entered out of order depending on
the application and dataset. To specifically address the challenge of comparing
subsequences rather than points, many models use representations of
subsequences instead of the raw data. A sliding window decomposition/extraction
is usually performed in the preprocessing stage after other operations such as
missing value imputation, changing the sampling rate, or data normalization, have
been completed [38, 39].

3.2.2 Temporal modeling

Several approaches to modeling temporal context and dependencies are commonly
used in deep learning models. These essentially provide ways of organizing “mem-
ory,” which amounts to in some way utilizing appropriately weighted previously
encountered data in order to generate current or future output. These approaches may
constitute the model architecture itself or they may be utilized at the midlevel of
network dynamics and can be combined with various more basic activation functions
as well as higher-level deep learning architectures.

3.2.2.1 Recurrvent neural networks

Recurrent neural networks (RNNs) are a class of neural networks specifically
designed for modeling sequential data and are well suited for capturing temporal and
long-term dependencies. Unlike traditional feedforward neural networks, RNNs have
a recurrent connection that allows information to be looped back and processed at
each time step. This enables RNNs to retain memory of previous time steps that they
can use to inform predictions at subsequent time steps. The hidden state of the RNN
serves as an internal representation that evolves over time, capturing the context and
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history of the time series [52, 53]. A major shortcoming of RNNs is their instability due
to the vanishing or exploding gradient problem, where the learning gradient becomes
extreme as the network becomes deeper [54]. The earliest and most widely used RNN
modification designed to address this problem is the long short-term memory (LSTM)
unit [55], which avoids the problem by controlling retained information through a
memory cell and input, output, and forget gates. If the LSTM unit detects an impor-
tant feature from an earlier input sequence, it can carry this information over an
extended distance, sometimes up to thousands of steps [39, 55]. A simpler and more
computationally efficient but similarly effective modification is the gated recurrent
unit (GRU) [56], which modulates the flow of information inside the unit but without
a separate memory cell [52, 53]. Both LSTM and GRU cells are able to learn long-term
dependencies by determining the number of weighted previous states to keep or
forget at each time step. Both types of cells have been used with success in time series
anomaly detection [39].

3.2.2.2 Convolutional neural networks

Convolutional neural networks (CNNs) have traditionally been used for image
analysis but can be adapted to time series data and in some applications demonstrate
better performance than RNNs [57-59], which still remain the most commonly used
approach to temporal modeling. CNNs treat time series data as a one-dimensional
(1D) array rather than a sequence and employ convolutional operations to capture
local patterns and dependencies within the data. By applying one-dimensional convo-
lutions, CNNs can learn hierarchical representation of time series and automatically
extract relevant features at different timescales. Pooling layers can be added to
downsample the output and reduce dimensionality. The learned features can then be
fed into fully connected layers for classification or regression tasks [29, 33]. Anomaly
detection can be performed by training the model on a normal dataset and then
computing prediction or reconstruction error during inference. CNNs can be used for
multidimensional time series as well as for real-time detection of anomalies; however,
the extensive computational demands of CNNs make them less efficient for real-time
monitoring. A specific approach for time series, the temporal convolutional network
(TCN) [60], uses one-way convolutions in order to maintain temporally ordered/
causal relations in the data. The TCN can generate sequences of any length and
employs dilated convolutions, where the receptive field of the convolutional filters
expands exponentially, which allow the model to capture long-range dependencies in
time series.

Convolutional neural networks and RNNs can be combined in the same network
architecture in order to capture spatial and temporal dependencies distinctly but
simultaneously. In such models, CNNs are usually used to capture local patterns and
features, with the output then fed into a RNN (either LSTM or GRU) that then
processes the features extracted from the CNN in a sequential manner. The RNN
performs the task of modeling the temporal context and relationships between the
features extracted by the CNN [34, 61].

3.2.2.3 Attention

The attention mechanism, initially popularized in the context of natural language
processing [62], has been extended to handle general time series data and provides a
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recent alternative to both RNN and CNN models. In the context of time series analy-
sis, the attention mechanism allows the model to focus on specific temporal segments
or patterns within the input sequence that are most relevant for making predictions.
Using attention, the model can dynamically weigh the contribution of each time step
based on its relevance, rather than relying solely on a fixed window or fixed-size
context. Attention mechanisms typically involve a scoring mechanism that calculates
the relevance or attention weight for each time step, followed by a weighted combi-
nation of the time step representations to produce a context vector that is then used
for making predictions or further processing. Attention mechanisms in time series
analysis have shown effectiveness in tasks such as sequence classification, forecasting,
and anomaly detection, as they enable models to selectively attend to relevant
temporal information while disregarding irrelevant or noisy segments of the time
series [63-65].

3.2.2.4 Graph neural networks

Graph neural networks (GNNs) for time series data combine the power of graph
structures with the ability to model temporal dependencies. GNNs enable the repre-
sentation and analysis of time series data as graphs, where each data point is a node
and the temporal relationships between them are represented as edges [66]. By incor-
porating recurrent or convolutional mechanisms, GNNs can capture the dynamics and
patterns of time series data within the graph framework. These models leverage
information from neighboring nodes and the temporal context to make predictions or
perform tasks such as forecasting, classification, or anomaly detection. GNNs for time
series offer a flexible and effective approach for handling complex temporal depen-
dencies while leveraging the benefits of graph representations, enabling improved
understanding and analysis of time-varying data [66]. GNN ideas have been
implemented in graph convolutional networks [67] and graph attention networks [68]
and are a promising future direction.

3.3 Summary

Deep learning models can automatically learn representations from raw time
series data and capture both local and global dependencies, making them well
suited for anomaly detection tasks. One of the key advantages of using deep
learning for anomaly detection in time series is the ability to handle high-
dimensional and complex data. Deep learning models such as RNNs, CNNs, and
their variants, have been successfully applied to capture temporal dependencies,
spatial patterns, and multiscale features in time series data and can effectively
extract meaningful representations from the input data and detect anomalies based
on deviations from learned normal patterns. These medium-scale models can be
combined and integrated into larger scale unsupervised architectures such as
autoencoders and GANs, which have been widely employed to learn compact
representations of normal patterns in data. By reconstructing the input data
or generating synthetic data samples, these models can detect anomalies by
measuring the reconstruction error or the divergence between the real and
generated data. More recent ways of capturing the temporal context include
attention and GNNs, and these have shown promise in anomaly detection in
time series.
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4. Generative adversarial models for anomaly detection
4.1 Motivation for the use of GANSs in medical data

The key motivation for utilizing GANs for anomaly detection in medical time series
is that they almost directly address many of the challenges specific to medical time
series discussed above [1, 14, 16-21]. Since GANs can learn to recreate normal data
patterns and detect anomalies as deviations from these patterns, they are optimized to
operate in an unsupervised setting; they can easily be combined with a temporal model
(e.g., RNN or Attention) to model complex temporal and multivariate dependencies
due to their ability to capture intricate data structures and patterns, nonlinearities, and
high-dimensional relationships and they can do so in high-dimensional datasets
involving multiple variables recorded over time; they can generate synthetic realistic
data that can supplement original medical datasets, which often suffer from lack of
volume and diversity, thus aiding in the training of more robust and generalizable
models; and they have shown impressive generalization capabilities, allowing them to
learn representations that generalize well to unseen data, which are particularly valu-
able in anomaly detection in medical time series, where the ability to accurately detect
anomalies in previously unseen or rare cases is crucial.

4.2 GAN overview

Generative adversarial networks are a class of deep learning models introduced
by Goodfellow et al. in 2014 [69] designed to generate synthetic data that resemble
the training dataset by learning and reproducing the distribution inherent in the data.
A GAN consists of two parts, a generator (G) and a discriminator (D), which are
usually implemented as neural networks. Both networks play a two-player
minimax game, in which G tries to generate data that D cannot distinguish from the
real training data, while D tries to correctly classify data as real (from the training
data) or fake (from G).

The generator’s role is to produce synthetic data samples, such as images, texts, or
audio, which mimic the distribution of the training data. The generator is a mapping
function that projects random noise or an input vector sampled from a prior distribu-
tion (which may be uniform or Gaussian) to the data space. The network gradually
learns to transform the noise into output that is generated from the dataset distribu-
tion and is ideally indistinguishable from the training data. The discriminator, on the
other hand, acts as a binary classifier. It is trained to distinguish between real data
samples from the training set and synthetic samples generated by the generator. The
discriminator takes both real and generated samples as inputs and outputs a probabil-
ity score indicating the likelihood that the input is real. The objective of the discrim-
inator is to learn to accurately classify the data samples.

The generator and the discriminator are trained simultaneously. Initially, the gen-
erator produces poor quality outputs and the discriminator can easily tell the differ-
ence between real and fake. As training progresses, the generator becomes better at
generating fake outputs that appear real, and the discriminator becomes better at
distinguishing between the real and the fake. The training continues until a point at
which the discriminator can no longer distinguish fake data from real data (Nash
equilibrium). The optimization process uses backpropagation and an optimization
algorithm (like stochastic gradient descent) to adjust the parameters of G and D. The
loss function used for the training is typically binary cross-entropy.
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In the context of anomaly detection, after the GAN is trained, new data instances
can be fed to the trained generator, which then attempts to reconstruct or regenerate
these instances. The regenerated samples are then compared to the original data. If the
difference between the original and the regenerated sample surpasses a defined
threshold, the data instance is flagged as an anomaly. The underlying assumption is
that the GAN will be less successful in accurately reproducing instances that are
significantly different from the distribution it was trained on, i.e., anomalous
instances. This procedure allows for effective anomaly detection in an unsupervised
setting [27, 29-33].

The objective function summarizing this process is:

MingMaxpf (D, G) = Exp,,, () [10g (D(x))] + Bz ) [log (1 - D(9(2)))] (D)

Where E, and E, are the expectation values over real and random data
samples, respectively, D(x) is the probability estimate of the discriminator D if x is
real, G(z) is the output of the generator G for a given vector z as input, and D(G(z))
is the probability estimate of the discriminator D that the fake generated sample G(z)
is real.

Generative adversarial networks have achieved remarkable success in various
domains, including image synthesis, video generation, text generation, and more
and have been applied to additional tasks such as image-to-image translation, style
transfer, super-resolution, and data augmentation. The model structure described
above is considered to be “vanilla” GAN. Since it is the most basic, the GAN model has
been modified and extended to address specific challenges. For example, Wasserstein
GAN [70] was developed to address unstable optimization and mode collapse; it
shares the same minmax training procedure with the original GAN model but
adjusts the loss function to minimize the Wasserstein distance between the real
and fake data distributions. Conditional GAN (C-GAN) [71] adds conditioning
information to both the generator and discriminator, which allows the model to
generate data based on the chosen set of conditional parameters. Deep
Convolutional GAN (DC-GAN) [72] uses convolutional layers in both generator and
discriminator in order to generate more realistic images. Self-attention GAN
(SA-GAN) [73] adds the self-attention mechanism to the convolutional GAN in order
to model long-range, multilevel dependencies across image regions in order to avoid
using only spatially local properties for generating high-resolution images. In Bidirec-
tional GAN (Bi-GAN) [74], an encoder is added to the generator and discriminator in
order to map the data into a latent space, enabling learning of a bidirectional mapping
between the data space and the latent space. Finally, Cycle-consistent GAN
(CycleGAN) involves training two GANs simultaneously using cycle consistency loss
in order to encourage learned mappings in both directions and optimize image-to-
image translation [75].

4.3 GANs for anomaly detection

Generative adversarial networks have proven to be effective as an unsupervised
anomaly detection technique and have overcome significant challenges that are com-
mon to medical datasets such as a lack of adequately labeled datasets, dearth of
anomalous data, and unbalanced datasets [28-31]. The following is a brief summary of
the major models, which constitute the core models that have been adapted and
modified for different applications.
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4.3.1 AnoGAN

The AnoGAN model [76] was one of the earliest uses of GANs for anomaly
detection. It uses a deep convolutional GAN (DC-GAN) architecture (see above)
trained on normal data. Once the model is trained, anomaly scoring for a new instance
is performed by calculating the anomaly score as a discrepancy between the instance
and its reconstructed version obtained from the latent (random) space of the GAN. To
reconstruct an instance, AnoGAN employs an optimization process that finds the
closest point to it in the latent space by minimizing the difference between the
reconstructed output and the original input using gradient descent and updating the
latent code iteratively until convergence. The anomaly score is then calculated based
on the difference between the original instance and the reconstructed output. A
problem with this approach is that the GAN only implicitly models the data distribu-
tion and the optimization procedure for recovering the latent representation of a given
sample is computationally costly and not practical for large datasets [29, 31]. The same
authors followed up [77] with a modified model based on Wasserstein GAN, fast
unsupervised anomaly detection with generative adversarial networks (f~AnoGAN),
which substantially sped up the process of mapping to the latent space by moving
from an iterative gradient descent approach to a learned mapping, which made the
model more suitable for real-time anomaly detection.

4.3.2 Efficient GAN (E-GAN)

Efficient GAN [78] is based on AnoGAN, but it uses the bidirectional GAN (Bi-
GAN) rather than a DC-GAN and incorporates an encoder into the architecture in
order to alleviate the computational complexity associated with inference. Here, the
discriminator separates two joint distributions: the given sample and the
corresponding latent space (the output of the encoder) versus the original latent space
and its generated synthetic sample (the output of the generator). The encoder acts as a
regularization mechanism, helping to mitigate mode collapse and stabilizing the
training process as well as resulting in significantly improved efficiency in detecting
anomalies.

4.3.3 GANomaly

GANomaly [79] represents an addition of an autoencoder to AnoGAN in order to
learn both the image and latent representations jointly. Here, the generator is
constructed of an encoder and decoder, with an additional encoder that takes the
output from the generated sample space and maps it back to a latent space. The
discriminator as usual compares the generated samples to the original data. The total
training loss then consists of the reconstructed loss in the latent space, the
reconstructed loss in the sample space, and the adversarial loss in the sample space.
The anomaly score is based on the encoder loss [31]. An important aspect of this
model is that the space used for comparison is from the original sample space rather
than depending on random sampling from a latent space as in other GAN-based
models. This results in a model with high detection accuracy that has been adapted
extensively to specific applications. Skip-GANomaly, for example, adds skip connec-
tions between the encoder and generator, leading to improved reconstruction accu-
racy and thus more accurate anomaly detection [29].
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4.4 GANs for anomaly detection in time series

Generative adversarial networks offer a powerful framework for modeling and
generating complex data distributions, making them well suited for capturing the
intricate patterns and dynamics present in time series data. Several types of GAN
architectures have been adapted for anomaly detection in time series. The following is
a selected review of several important models.

4.4.1 TAnoGAN

Time Series Anomaly Detection with Generative Adversarial Networks
(TAnoGAN) [80] is the simplest GAN-based model adapted specifically for time
series. It is similar to the AnoGAN model, except that rather than using deep CNNs,
both the generator and the discriminator are composed of LSTM layers in order to
model temporality. A sliding window inputs real subsequences and the generator
outputs simulated sequences of the same length, which are then compared by the
discriminator using pointwise distance. A shortcoming of this model is that it is
incapable of dealing with multivariate time series.

4.4.2 MAD-GAN

Multivariate Anomaly Detection GAN (MAD-GAN) [81] was designed specifically
to address anomaly detection in multivariate time series. MAD-GAN also consists of
LSTM layers in the generator and discriminator, and its training is similar to that of
TAnoGAN. The model generates a residual loss based on the idea that the generator
implicitly models the data distribution by learning to map it back into its latent space.
During inference, this residual loss is combined with the standard discrimination loss
to determine whether the sample is abnormal or not.

4.4.3 TadGAN

Time series anomaly detection using generative adversarial network (TadGAN)
[82] also uses the LSTM structure in its generator and discriminator, but introduces an
encoder in order to generate the latent space from which the generator produces
synthetic data samples (rather than from a random latent space as usual). There are
two discriminators, one for the samples and one for the latent space. The model uses
Wasserstein distance for the discriminator loss and cycle consistency loss for the
reconstruction error, which are computed through a combination of pointwise differ-
ence, area difference, and dynamic time warping. Anomalies are detected through a
combination of reconstruction and discriminator errors.

4.4.4 Beat-GAN

Beat-GAN [59] was specifically developed for ECG anomaly detection. It utilizes
an encoder-decoder architecture as the generator, and both the encoder and decoder
are CNNs rather than LSTMs. They deal with temporality by utilizing a one-
dimensional filter sliding along the temporal dimension. An interesting contribution
that this model uses in order to deal with the inherent nonstationarity of their data
(heart rate variability) is a modified form of time warping, where data are imputed
during decelerations and removed during accelerations in order to generate a steady
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“beat.” The model functions essentially like an autoencoder, but uses the discrimina-
tor for regularization to improve stability. During inference, anomalies are detected
by a combination of pairwise reconstruction error and discriminator error.

5. GANs in medicine
5.1 GANs in medical imaging

Due to their capacity to generate realistic images, it is not surprising that the
most common use of GANs in medical imaging has been primarily in data synthesis
[83-85]. While some of these uses do not directly involve anomaly detection, given
that they are in some way involved in detecting and diagnosing specific disease or
behavioral states, they are at least obliquely related [21, 28]. The following are some of
the most common current applications.

5.1.1 Data augmentation

As previously discussed, scarcity of labeled data represents one of the main limita-
tions to the application of deep learning in medicine [86, 87]. Medical datasets are
often imbalanced and lack diversity, which can lead to biased or poor-performing
models. GANs have been shown to be able to generate synthetic medical data, helping
to augment existing datasets, rectify imbalance, increase diversity, and improve the
performance of machine learning models. A key advantage of being able to generate
synthetic data with the same statistical characteristics as the original data but without
personal health information is the ability to widely share and analyze data without the
risk of violating patient privacy, which is often a barrier to producing large public
datasets.

From an anomaly detection perspective, data synthesis can be used to turn an
unsupervised or semi-supervised anomaly problem into a supervised binary (or
multiclass) classification problem: GANs are used to generate synthetic data that
statistically resemble anomalies, which can then be used for balanced classification
training in a supervised manner. This is, in fact, the most common current application
of GANs in anomaly detection [21, 29, 30] and has been applied to images [83, 84] as
well as time series such as ECG [88] and EEG [89]. While this approach to anomaly
recognition is more straightforward than classical anomaly detection, it assumes that
the known anomalous data cover the entire distribution of possible anomalies, which
may not be the case and could result in excellent classification of known anomalies but
possible misclassification of unknown ones [39, 85].

5.1.2 Image-to-image translation

A powerful application specific to GANSs is their ability for image-to-image trans-
lation such as converting MRI images to computed tomography (CT) images or vice
versa, enhancing the quality of medical images, or generating angiography images
from MRI images. There are multiple potential benefits to this, including decreased
need for multimodal studies, reduced acquisition time and radiation exposure, and
increased availability of appropriate imaging in cases where there is limited access to
multimodal imaging, e.g., in a clinical scenario where a certain imaging modality
(such as MRI) might be optimal for diagnosis or treatment planning but only another
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modality (such as CT) is available to the patient. The predominant type of GAN used
for this application is CycleGAN [21, 90-93].

5.1.3 Super-resolution/denoising

Generative adversarial networks can also be used to increase the resolution of
medical images, known as super-resolution, and to reduce noise and artifacts. Since
the quality of medical images is often degraded by various factors such as hardware
limitation or patient movement, this can be extremely helpful for discernment of fine
details that can be critical for correct diagnosis. Super-resolution and noise reduction
are types of image-to-image translation that involve converting low-resolution images
into high-resolution images by imputing data. This is especially interesting in cases
where the imaging modality is intrinsically low-resolution, such as positron emission
tomography (PET) [94-99].

5.1.4 Image segmentation

Image segmentation is important for measuring and visualizing anatomical struc-
tures, delineating pathological regions, and for surgical planning and image-guided
interventions. The process of applying GANs to image segmentation is slightly differ-
ent than that of applying vanilla GAN: the generator now aims to create an image
where each pixel corresponds to a particular class label and the discriminator attempts
to differentiate between the ground-truth segmentation (real) and the generator’s
segmentation (synthetic). This is again a type of image-to-image translation for which
GANs have been used successfully [100-102].

5.1.5 Disease progression modeling

Disease progression modeling involves predicting how a disease will develop in a
patient over time, which can allow for early intervention, optimized treatment plans,
and better patient outcomes. In the context of disease progression modeling, the
generator could be conditioned on a particular disease stage or on past medical history
in order to generate synthetic data predicting what could potentially happen at the
next disease stage or time point. Different models or approaches might be used to
handle different kinds of data (continuous, discrete, etc.) and different diseases.
GANSs have been successfully applied to tumor growth [103] and Alzheimer’s disease
prediction [104].

5.1.6 Brain decoding

Brain decoding involves using machine learning algorithms to map patterns of
brain activity (measured via EEG or fMRI) to mental states or processes. For example,
using visual image reconstruction decoding researchers have been able to reproduce
images a person is viewing directly from brain activity [105-107]. This process is often
referred to as “mind reading” or “brain-to-image reconstruction”. The most direct
clinical applicability of this technique at this time is in brain-computer interfaces,
which would potentially allow disabled and paralyzed individuals to communicate and
control external devices more easily. The technique also offers the potential for sig-
nificant advancements in the understanding of the biology of consciousness and
mind-body medicine.
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5.2 GANs in medical time series: ECG
5.2.1 ECG overview

Electrocardiography (ECG or EKG) is a diagnostic tool that records the electrical
activity of the heart over a period of time through electrodes placed on the skin,
typically in a standard 12-lead setup for a clinical ECG. The ECG waveform represents
the electrical depolarization and repolarization of the cardiac muscle during each
heartbeat and can provide a large amount of valuable information such as the heart
rate, rhythm, and the size and position of the chambers. It can also show evidence of
damage to the cardiac muscle (ischemia or infarction), effects of drugs or devices
(such as a pacemaker), and other types of heart disease or conditions (e.g., pericardi-
tis, electrolyte imbalances). A significant advantage of ECG is that it is noninvasive,
inexpensive, and relatively quick to perform. However, it requires expert interpreta-
tion, and while it is highly valuable, it may not provide a definitive diagnosis on its
own and may need to be combined with other studies [108, 109].

5.2.2 GANs in ECG anomaly detection

As discussed above, Beat-GAN was specifically designed to detect anomalies in
ECG. It outperformed other anomaly detection methods (including OCSVM) and
achieved high accuracy and fast inference. It was also to some extent interpretable
since it was able to pinpoint anomalies in sample space. The model has also been
applied successfully to time series in other domains [59]. Shin et al. [110] deployed the
AnoGAN architecture, but modified it with extensive data preprocessing as well as
dimensionality reduction with t-distributed stochastic neighbor embedding (t-SNE),
which they utilized to generate an experimentally determined objective decision
boundary that could effectively differentiate between normal signal and arrhythmia
based on anomaly score.

Li et al. [111] proposed Single-Lead convolutional generative adversarial network
(SLC-GAN) for automated myocardial infarction (MI) in single-lead ECG. The model
involves a GAN with multiple convolutional layers (DC-GAN) in the generator and
discriminator with an added CNN classifier for MI detection. The GAN portion learns
to generate synthetic ECG data, which are then used to augment the volume of the
training data for the classifier. The model achieved excellent classification accuracy
and provides a good example of using synthetic data in order to change the problem
parameters from unsupervised to supervised and improve performance. Xia et al.
[112] extended this idea by applying a transformer model in the generator with a CNN
discriminator. This model was then used to generate synthetic data, which were used
to augment training of a classifier that combined a CNN-based feature extraction
block followed by a bidirectional LSTM (Bi-LSTM) architecture. The overall model
achieved superior performance and demonstrated improved classification than
models that did not use added synthetic data. A similar conclusion was reached by
Rath et al. [113], who tested several machine and deep learning methods and found
that the best performance on ECG classification was achieved by a GAN-LSTM
ensemble model.

Qin et al. [114] proposed ECG-ADGAN, a semi-supervised model that incorporates
a Bi-LSTM network in addition to multiple 1D convolutional layers into the GAN
generator in order to preserve temporal patterns of the ECG signal. Training takes
place in two stages, with stage I following normal GAN training to Nash equilibrium
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between the generator and discriminator and stage II freezing the generator and
training the discriminator/classifier separately specifically for anomaly detection. The
authors also utilized mini-batch training during stage I to improve convergence. The
model demonstrated superior detection of unknown anomalies when compared to
supervised learning methods.

Wang and colleagues [115] further extended this approach beyond binary classifi-
cation (normal vs. abnormal) by incorporating GAN into a two-level hierarchical
framework in order to not only detect but also classify different types of arrhythmias.
The first level consists of a memory-augmented deep autoencoder with GAN
(MadeGAN) designed to perform anomaly detection; the second level consists of a
multibranching deep CNN architecture utilizing transfer learning to allow classifica-
tion of different types of heart disease given the fundamental imbalance in the train-
ing dataset. This framework was able to effectively capture disease-altered features of
ECG signals and accurately predict and classify heart disease with better performance
compared to existing methods.

5.3 GANs in medical time series: EEG
5.3.1 EEG overview

An electroencephalogram (EEG) is a neuroimaging technique used to record the
electrical activity of the brain. It is carried out using multiple electrodes placed on the
scalp according to a standardized placement system, usually the 10-20 system. These
electrodes measure voltage fluctuations resulting from ionic current flows within
neural populations in the brain. The resulting traces, EEG waves, represent the sum-
mation of postsynaptic potentials (PSPs) from a large number of neurons, specifically
from cortical pyramidal neurons, detected as fluctuations in voltage over time [116].

EEG waves are characterized by their frequency (measured in Hertz), amplitude
(measured in microvolts), and waveform morphology. They are typically categorized
into bandwidths: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz),
and gamma (30-100 Hz), each of which may correspond to different states of brain
activity or consciousness. For instance, alpha waves are typically associated with
relaxed, closed-eye states, while beta waves are associated with active thinking,
attentional focus, or rapid eye movement (REM) sleep [116].

EEG can be used for the detection and study of various neurological and psychiat-
ric conditions such as epilepsy, sleep disorders, encephalopathies, and even cognitive
processes. The main advantage of EEG in cognitive imaging is its high temporal
resolution, which allows for the study of fast-dynamic processes within the brain. Its
spatial resolution is limited, however, and it is less effective for capturing activity
occurring deep within the brain. Anomaly detection in EEG traces involves all the
challenges discussed above: multidimensional time series with complex dependencies,
highly complex and nonstationary normal behavior, and rarity and extreme heteroge-
neity of disease patterns, from normal brain aging to active seizures.

5.3.2 GANs in EEG epilepsy detection

Epilepsy is a chronic neurological disorder marked by recurrent seizures, which are
symptoms of abnormal excessive or synchronous neuronal activity in the brain. Sei-
zures can vary greatly in their presentation, from minor sensory disturbances or
momentary lapses in consciousness (“absence seizures”) to full-body convulsions
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(“grand mal seizure”). EEG is crucial in diagnosing and localizing the disorder, as well
as in detecting seizures when they occur. Seizures are characterized by a variety of
EEG patterns and frequencies such as spike-and-wave discharges (70 ms waveforms
often followed by a slow wave, with specificity based on the frequency band), sharp
waves (typically seen in focal seizures), polyspikes (typically seen in generalized
seizures), focal slowing (which helps with localization and can be seen before, during,
or after focal seizures), or generalized paroxysmal fast activity (rapid continuous
spiking typically seen in severe diseases such as Lennox-Gastaut syndrome). Seizure
detection and monitoring has an important role in diagnosis, improving quality of life,
and general understanding of the disease. For example, alerting a patient about an
impending seizure might allow them to take appropriate safety precautions or break-
through medications for seizure control [117-121]. In this context, automatic seizure
detection or prediction essentially consists of a binary classification task between the
ictal (seizure) or pre-ictal and nonictal (nonseizure) EEG patterns.

A number of machine and deep learning approaches have been applied to epileptic
seizure detection and prediction, but these predominantly apply feature extraction
such as wavelets or independent component analysis (ICA) followed by a classifier
such as random forest or support vector machine (SVM) [122]. One of the only
models to directly apply a semi-supervised GAN model to seizure detection was
introduced by You et al. [119], who modified the AnoGAN model (DC-GAN archi-
tecture) for seizure detection in a behind-the-ear EEG two-channel signal. The EEG
signal channels were filtered and transformed into spectrogram images, which were
combined to form a virtual channel image that was fed to the network for training.
The GAN was trained on normal data and anomalies were detected using a combina-
tion of residual and discriminative loss. The authors noted that the addition of a Gram
matrix of the feature maps from each convolutional layer was shown to improve
performance. The model demonstrated a 96.3% sensitivity for automated seizure
detection.

Zhu and Shoaran [123] utilized an unsupervised adversarial model to map power
spectrum features from intracranial EEG recordings into a subject-invariant feature
space via domain transfer learning. The model consisted of an encoder and decoder
functioning as a generator for both the source (labeled data) and target (unlabeled or
new data) domains, with a discriminator designed to try to differentiate between the
domains. A discriminative model was then trained on the resultant subject-invariant
features to generate predictions about the target patients. The model demonstrated
improved performance compared to the more conventional subject-specific approach,
allowing for better generalization.

In contrast, Truong et al. [124] used a GAN to extract features from the EEG data
that could then undergo binary classification. The generator was trained to synthesize
realistic short-time Fourier transform images from a noise vector that were then
passed through the discriminator. After training, the discriminator was able to collect
and flatten features that could be used with any generic classifier, in this case two fully
connected layers. The model again consisted of a modified DC-GAN architecture that
was trained in an unsupervised manner where information regarding seizure onset
was disregarded.

While there are very few applications of GANs directly to seizure detection, most
applications use GANs in order to produce balanced training datasets with generated
synthetic data, again effectively changing the problem from an unsupervised to a
supervised one. One of the first applications of GANs to EEG data generation was
proposed by Pascual et al. [125] who used their conditional GAN model to generate
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synthetic ictal signals conditioned on interictal data from individual patients. The
model consisted of a convolutional autoencoder as the generator, in this case translat-
ing the latent code into an ictal sample rather than restoring the original sample. The
discriminator had the same architecture as the encoder of the generator and was
trained to distinguish between real and fake ictal signals. The inclusion of synthetic
samples resulted in improved classification performance compared to training on only
real samples. The additional benefit of the synthetic procedure, as the authors point
out, was deidentification of the original data and significant improvement in data
privacy. Multiple additional groups have applied similar data augmentation
approaches with various modifications, including different feature extraction
methods, different generator and discriminator architectures, different loss functions,
utilization of LSTM/GRU cells or attention instead of CNNs, and the application of
different classifiers [126-143].

6. Conclusion: challenges and future directions

Although GANs have shown significant promise in anomaly detection in medical
time series, serious challenges remain, such as (notorious) training instability, lack of
clear evaluation metrics for generated data, limited interpretability, inability to
explicitly model causal relationships, question of preservation of temporal dynamics,
privacy concerns, and ethical considerations in the use of generated data. For exam-
ple, evaluating the performance of GAN-based anomaly detection in time series is
nontrivial since traditional evaluation metrics such as precision, recall, or F1-score or
even more advanced techniques such as maximum mean discrepancy or Fréchet
inception distance [144, 145] may be unable to fully capture the highly complex
characteristics of the data. Additional issues such as fairness in AI models also need to
be considered to ensure that algorithmic decisions do not discriminate against certain
demographic groups.

Future research efforts should focus on refining training techniques, incorporating
domain knowledge, and developing hybrid approaches to enhance the performance
and applicability of GANs in anomaly detection in time series data. Since GANs were
originally designed to generate realistic images, their use is still predominantly
focused on the generation of synthetic data. This is, of course, extremely useful as it
can help resolve issues of unbalanced datasets and lack of anomalous and labeled data
and transform unsupervised or semi-supervised approaches to anomaly detection into
more manageable supervised problems. Direct anomaly detection with GANs is
becoming more common, however, as different research groups realize that applying
generative deep learning to data directly is feasible and provides significant advan-
tages (and since generation of synthetic data inherently biases the network away from
correct classification or detection of unknown or unusual anomalies). While GANs
have been applied successfully, at least initially, in anomaly detection in time series
such as ECG and EEG, there are many other areas where they could be extremely
useful, such as rs-fMRI, ICU physiological data, or even monitoring of medical records
for the possibility of subtle signs of chronic disease. In these areas, the application
would leverage the model’s ability to learn the underlying distribution, and modifica-
tions such as adding or embedding different modules (such as autoencoders) into the
adversarial structure and/or including recurrence, attention, or graph structures could
serve to better model the long-range spatiotemporal dynamics and dependencies in
the data. Additional potential areas of future research include building patient-specific
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models, improving generality through transfer learning, and real-time applications in
the monitoring of healthcare data. Finally, there is a need for more research on the
practical deployment of GANSs in clinical settings, which involves not only technical
considerations but also evaluation in terms of clinical outcomes, cost-effectiveness,
user experience, and ethical, legal, and societal implications.
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Anomaly Detection in IoT: Recent
Advances, Al and ML Perspectives
and Applications

Menachem Domb, Sujata Joshi and Arulmozhi Khn

Abstract

IoT comprises sensors and other small devices interconnected locally and via the
Internet. Typical IoT devices collect data from the environment through sensors, ana-
lyze it and act back on the physical world through actuators. We can find them inte-
grated into home appliances, Healthcare, Control systems, and wearables. This chapter
presents a variety of applications where IoT devices are used for anomaly detection
and correction. We review recent advancements in Machine/Deep Learning Models
and Techniques for Anomaly Detection in IoT networks. We describe significant in-
depth applications in various domains, Anomaly Detection for IoT Time-Series Data,
Cybersecurity, Healthcare, Smart city, and more. The number of connected devices is
increasing daily; by 2025, there will be approximately 85 billion IoT devices, spreading
everywhere in Manufacturing (40%), Medical (30%), Retail, and Security (20%).
This significant shift toward the Internet of Things (IoT) has created opportunities
for future IoT applications. The chapter examines the security issues of IoT standards,
protocols, and practical operations and identifies the hazards associated with the
existing IoT model. It analyzes new security protocols and solutions to moderate these
challenges. This chapter’s outcome can benefit the research community by encapsulat-
ing the Information related to IoT and proposing innovative solutions.

Keywords: anomaly detection, internet of things [I0T], cybersecurity, data security,
threats, risks, smart devices, time-series data, Al, machine learning, deep learning,
healthcare, smart city, IoT environments, internet of things, anomaly detection,

IoT intrusion detection, machine learning, deep learning, transfer learning, network
security, convolutional neural network

1. Introduction

The wide variety of IoT devices lacking any standard creates connectivity issues
and increases the security vulnerability of IoT local networks and the entire Internet.
Machine Learning techniques are already used in ECG, X-ray, pattern recognition,
cancer detection, brain signal modeling, and IoT services on electrical impedance
planes to discover defects. Extending ML and DL technologies to detect anomalies
where it is already operating is a natural and effective transition. Anomalies are events
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or patterns that deviate significantly from predictable behavior. Detection methods
are expected to identify anomaly occurrences and their probable cause promptly.

To comply with this chapter topic, we focus on these applications incorporating
Machine Learning and Deep learning methods. Chatterjee & Ahmed [1] provide a
comprehensive survey on Anomaly Detection in IoT and propose four measurements
for evaluating IoT Anomaly Detection methods: how they approach the problem, how
they are applied, the type of method, and the algorithm latency. Anomaly detection
using deep learning is described by Chalapathy and Chawla [2], and Yassine et al. [3]
provide a review of the methodologies, situations, and computation platforms used
for anomaly detection in the energy industry. Talagala et al. [4] propose a distribu-
tional unsupervised for anomaly detection in high-dimensional data. Yin et al. [5]
extract unique temporal features from a given temporal data file using a combination
of CNN and LSTM and continue in [5] to detect anomalies involving CNN, LSTM,
and Deep neural network (DNN).

They [1] also define 18 application types of anomaly detection processes. The
following are examples of various application types. Sobhani et al. [6] demonstrate
that the accuracy of final load projections is improved when eliminating observa-
tions from the original input using local load information. T. Asakura et al. [7]
detect damage to industrial rotating equipment by calculating the feature vectors
of the anomaly vibration data extracted from sensors’ vibration signal features to
construct a monitoring system for machinery equipment. Huang et al. [8] proposed
anomalies detection in Manufacturing using density peak weighted fuzzy C-means
(WFCM). Yasaei et al. [9] detect unexpected event changes in sensor signals using
an adaptive data-driven monitoring method. Zekry et al. [10] use a convolutional
LSTM model for anomaly detection in the context of connected vehicles. Wang et al.
[11] log anomalies in IoT systems using a natural language processing approach,
extracting the relevance between words and vectoring them. The method trains
supervised models to detect anomalies reducing computational time. Xu et al. [12]
used I-LSTM and Deep learning in smart-city data for multi-classification anomaly
detection to improve smart homes’ service quality. Tripathi et al. [13] proposed reli-
able and transparent city connectivity using IoT, MEC, and Blockchain consensus.
Ullah et al. [14] presented a timely identification of abnormal incidents in surveil-
lance networks, incorporating LSTM with CNN, where CNN features are collected
from successive frames. LSTM is used to distinguish between normal and abnormal
values. The in-depth features and multi-layer BD-LSTM provide high-level training
and validation data to real-world IoT surveillance networks. The DeL-IoT frame-
work [15] detects IoT abnormalities by observing flow-level traffic instances that
pass through switches. The IoT anomaly identification and prediction framework
uses a Deep Learning technique to identify anomalies. Mirsky et al. [16] proposed a
Blockchain-based distributed anomaly detection algorithm using the Markov chain
(MC) to simulate sequences efficiently. Y. An et al. [17] proposed anomaly detection
capable of relieving network congestion and CPUs from the computing pressures of
centralized servers, unlocking the potential of edge intelligence in IoT. Shen et al.
[18] propose a privacy-preserving SVM training strategy using encrypted IoT data.
Data providers encrypt their data locally using their private keys and then record the
encrypted data on the Blockchain.

The rest of the chapter comprises as follows: The next section outlines security
issues unique to the IoT environment. Section 3 presents a generic two-stage Anomaly
Detection approach. In the first stage, a process builds the envelope around the
weighted average, and the comparison is done in the second stage. In Section 4,
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Anomaly Detection using Random Forest Machine Learning is presented, and it
concludes in Section 5.

2.10T security issues

We see a considerable rise in the use of IoT applications in our day-to-day lives.
The IoT enhances web-based applications by enabling connections via the Internet
between people and their equipment/devices in a real-world or virtual environment.
IoT improves Web-enabled applications by allowing links between “everyone” and
“everything” in a real-world and virtual environment [19]. Utilizing IoT applications
and services is now easier than ever because of the exponential expansion of smart
devices. As the asset value of the data kept, processed, and conveyed increases along
with scale, so do the attacks against them. These predictions show that there will be a
rise in the number and level of threats and attacks against IoT devices, necessitating
more robust security measures. This section aims to investigate recent IoT cybersecu-
rity solutions.

Artificial intelligence, Machine/Deep Learning, and networking have become the
current area of IoT-related research. Adopting ultra-lightweight protocols for security
and core functionality is a significant development in the IoT.

IoT security is constantly evolving, with new risks always being found. The
focus of IoT security discussions is ACL techniques, interim encryption techniques,
hardware-specific security solutions, and SQL-related attack measures. Identifying
IoT-related cybersecurity risks, providing classifications, and looking for prevailing
solutions to address them. The following questions are addressed:

1. What architecture can be used considering various criteria?
2. What are the IoT standards and protocols currently in use?
3. What are the IoT cyber security threats?

2.1 Literature review

The recent industrial trends include embedded networking in the wireless seg-
ment, where IoT is the major player. The demand for smart applications and systems
grew, leading to the rise of IoT in commercial segments [20]. Due to the immense
increase in the retail segments, the usage of smart applications has spiked up,
increasing their dependability, which further leads to high risks. IoT devices have
emerged as the spot for intrusion activities because of the lightweight protocols and
standards that are currently present on these devices [21, 22], and the entities that
make up these devices have easier access to servers [23] because the security is not
fully resolved. The problem with the traditional model is the lack of low-powered
device algorithms and the incompatibility of security tools due to differences in policy
and implementation methods [24]. A variety of hardware-based techniques and
unique solutions have been suggested in recent research to address traditional security
challenges.

Xin Zhang and Fengtong Wen [25] proposed an authentication for IoT, where two
algorithmic models have been built to ensure valid authentication. The scope of the
security solution offered in this work is constrained to protect only lightweight sensor
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devices from the standard network layer and physical layer-based attacks. M. Dahman
Alshehri and Farookh K. Hussain [26] proposed a cluster-based fuzzy architecture
and a secured communications model for IoT nodes. This study effectively provides

a detection technique against the network’s malicious nodes but does not cater to

the threats posed by the audit attack surface. This study does not adequately address
the performance analysis of operational communication and computing costs. Chen
et al. [27] offered a unique Low scale Denial of-Service attack detection approach that
incorporates trust evaluation with Hilbert-Huang Transformation in Zigbee WSN

to address the security risks considering a large number of devices with low energy
which is susceptible to attacks. This work’s signal and anomaly detection technique
helps reduce the attack level. It has an extensible design because it supports cloud

and edge computing, but higher storage overheads persist as a problem. In traditional
network security, IDS is entrusted with identifying and keeping track of threat
behaviors. Hence, such models do not expressly target the IoT environment.

2.2 Security architecture and communication

This section discusses the IoT security architecture. Use-cases for IoT range from
single node devices to cross platform deployments of technology and real-time cloud
systems [28]. IoT operations consist of three main tasks: transmitting, retrieving,
and data processing. Application Layer: Embedded interface modules enable devices
to communicate with the underlying architecture. The device Management Plane
identifies the data’s source and destination to maintain the device’s input-output
operations. For instance, the Aggregator aggregates the given device data assets into a
fixed set. A communication Layer is an intermediary layer with network components
that establish various communication protocols and standards. This layer comprises
stacks of current protocols and criteria for controlling traffic throughout the system.
Standard protocols enable proper communication among IoT devices. Such systems
need a defined set of simple rules to initialize and share data information. Figure 1
depicts the multi-layer architecture of IoT.

The IoT’s communication protocols include:

1.Z-wave - The protocol facilitates device communication in a closed network.
It implies that the Z-wave regulating code is not publicly accessible. It prohib-
its anyone from changing the code and suggests that each Z-wave device has a
unique ID granting access to all remote controls. This architecture ensures effec-
tive interoperability and security, the Z-wave protocol’s core.

2.BLE -Bluetooth low energy is a widely used protocol. Due to its propensity to
consume less energy, it works well with low-energy devices. Based on Generic
Attributes, this protocol uses Services and Characteristics to carry out its
operations.

3.MQ Telemetry Transport (MQTT) is a protocol for small Internet of Things (IoT)
devices that allow data transmission and some reception between the sensor nodes.

4. Advanced Message Queueing Protocol (AMQP): includes efficiency, portabil-

ity, multichannel support, and security, a TCP-dependent binary protocol that
ensures authentication using SASL or TLS.
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IoT multi-layer architecture.

5.Limited Application Protocol (CoAP) is a protocol for constrained-based envi-
ronments. Significant traits of this protocol include its REST API-based founda-
tion, design for system applications, effective congestion control, cross-protocol
interoperability, and many others.

6. The Data Distribution Service protocol is an Internet of Things protocol for M2M
communications. Like the MQTT and CoAP protocols, data can be exchanged
using the publish-subscribe approach; the significant distinction is that this
architecture does not require a broker, unlike the latter two. DDS employs multi-
casting to provide apps with high QoS.

7.6LoWPAN is the 6th version of the Low-power Wireless Personal Area Network.
It is a standard protocol for implementing IPv6 on wireless networks comprising
low-power wireless modules.

8.DTLS: Datagram Transport Layer Security is a security protocol for the Inter-
net of Things and is intended to safeguard data transmission between apps that
use datagrams. It offers the same level of security and is majorly focused on the
Transport layer security protocol.

Heterogeneous physical components such as switches, actuators, gateways, sensor
nodes, and other embedded devices make up this unstable environment. A signifi-
cant impact on networking principles is made by the intelligent device’s engineering
process, which is the backbone of the whole concept. Gadgets with self-configuring
capabilities of the M2M communication paradigm are IoT innovations. Through algo-
rithms and auxiliary technology, this configuration gives nodes the intelligence they
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need to make decisions for themselves under any circumstance [29, 30]. It is helpful
during rescue operations and other emergencies where configuring the network for
a specific area is complex, and there is no support for damaged nodes. However, as
machines are not failsafe, it becomes susceptible if it depends too heavily on them.
Particularly in the present, adversaries use weak authentication, unpatched firmware,
and online credential vulnerabilities [31].

Following are some of the IoT security issues:

1. Heterogeneous devices: the paradigm most sensitive to access requests, detect-
ing third-party indulgence, and limited scalability compliance with security
management. Several security issues with IoT today relate to traditional network
architecture, including IoT devices that interact with the physical environment
differently than conventional network devices did in the past. IoT devices’
heterogeneous nature ramifies other components as they operate. NIST stressed
that IoT-specific privacy regulations [32] and cyber controls must consider the
consequences that impact physical systems [33], ultimately affecting the physical
world.

2.Regulations & Policies: No global IoT security standard applies to all IoT indus-
try segments. Although some regulations are in the process (such as the EU’s
General Data Protection Regulation and the US IoT Cybersecurity Improve-
ment Act), they are relatively fragmented and do not address issues with IoT.
IoT devices are used globally by many servers, whether they are in a business/
in a person’s workspace. Such devices can be monitored/managed using a dif-
ferent rule engine, and the security policy varies depending on the system’s
devices. Therefore, regularization requires updating every device, which is
time-consuming and challenging for any company. Problems include an
un-uniform pace of updating, new switches leaving some devices behind
that are not updated, or inadequately configured nodes since it takes time to
maintain track of millions of nodes.

3. Additional Plugins and Security: Since providing security measures for IoT was
never modeled, further security controls are added to the IoT’s security architec-
ture. Unlike the traditional networking paradigm, the effectiveness of security
characteristics relies on the IoT architecture’s ability to function with additional
resources. The efficiency of the IoT’s security is also influenced by client behav-
iors, such as how they choose among the various security solutions.

4.Lack of compliance: The lack of compliance among manufacturers is always a
cause for concern. A device should generally satisfy the following requirements:
Operational Compliance, Security Compliance, and Manufacturing Compliance.

5.An IoT network may be in danger if operational compliance is not maintained.
A city’s power distribution login system could be part of the network. The
network on which they operate is at risk due to legacy operating systems which
delayed security patches and other issues. Few makers of IoT devices utilize
open-source code. When these IoT devices join a network, the entire system’s
integrity may be compromised. A lack of security compliance only makes IoT
security issues more difficult. Many IoT device producers need to create patch-
able IoT products.
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6. Exposure Threats: IoT endpoints, such as sensors and IP cameras which are in
public spaces, are the threat points that are easiest for the enemy to access. Asa
result, the user’ integrity and authentication are threatened by physical-based
and proximity threats [34]. Our changes to the protocol method to safeguard
devices from adversaries are the biggest security difficulties in this area.

2.3 Classification of IoT attacks

Several commercial businesses have made significant financial investments to
secure their IoT-based networks in recent years. loT attacks are split into two modules:

2.3.1 Protocol-based attacks

Protocol-based attacks utilize known published protocols to serve their benefits,
affecting the communication channel. It is divided into two types:

1. Communications protocols attacks: (a) Attacks on communication protocols—
several types of exploitation occur when nodes transition, such as sniffer attacks,
flooding attacks, and key preshredding attacks. (b) Network protocol attacks where
connection establishment is exploited include Wormbhole attacks, selective forward
attacks, and sniffing attacks.

2.3.2 Transmitted data attacks

Threats on initial packets and messages moving across communication nodes.
Some of its most severely affected security exploitations are data leakage, malicious
node VM formation, hash collision, and denial of service. Active and passive attacks
compromise the system’s security—the effectiveness of the network is less affected
by passive attack protection systems, which are restricted to monitoring techniques.
Modern, responsive security techniques are needed to counter active attacks to reduce
risk and affect network performance.

a. Distributed Denial of Service attack — DDoS [35] impacts a network security
parameter’s availability. Botnets enable DDoS threats on sensor nodes. Affected
packets from various sources get access via these points, travel down network
data routes, and end up clogging the entire link architecture, making servers
unusable.

b.Sniffing attack [36] falls under data collection, a threat vector in which vital
system data is collected and used for attacks. With the use of sophisticated tools,
information assets are examined. Most devices available on the market need to be
sufficiently clever to counteract and are mainly targeted by them.

c.Replay Attack — A replay attack consists of the following steps: “eavesdropping
on the communication link between IoT devices or the gateway; intercepting
the acknowledgments or connection-establishing components; and deceitfully
delaying or rerouting the message.”

d.Masquerade attack [37] — This attack impersonates a valid access identifica-
tion procedure to get access to target node information. Devices that have
poor authorization procedures are highly vulnerable. Such attacks use stolen
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passwords and user credentials by exploiting program gaps or developing worka-
rounds for the current authentication procedure.

e. Port Scanning - Synchronize requests, target ports, sources, firewalls, packets,
open nodes [38], and listening nodes. Synchronize scans are a frequently used
technique that creates a partial connection to the target node on the target port
by sending a synchronized packet to test the host system’s initial response.

2.4 10T security solutions

In contrast to traditional security, which is tool-centric, the most recent cyberse-

curity solutions focus on software-oriented techniques [39, 40]. The security charac-
teristics that current systems address are authentication, trust, and integrity. Even in
its current state, the Internet of Things (IoT) cannot support powerful devices and is
not adaptable enough to keep up. Table 1 summarizes the IoT protocols, emphasizing
their characteristics and security concerns. According to the findings, protocol-based

S.No Protocol used Features Cyber Security issues
1 Z-wave * Z-Wave is a low-power RF technology that An attacker within Z-Wave
can control up to 230 devices at once and radio range could control
builds a wireless mesh network by deliver- weak devices, deny service,
ing signals in the sub-1GHz frequency. force devices to fail, deplete
batteries, intercept, observe,
and replay traffic.
¢ Minimal interference, reliable connectiv-
ity, high security through encryption,
and fewer disconnections will be the
main advantages of using this IoT Data
Protocol.
2 BLE * Offers a similar range to traditional Susceptible to cyberattacks
Bluetooth. and interception when
sending and receiving data.
* Has a mesh networking structure.
* Designed for low-energy gadgets.

3 MQTT * Power usage is comparatively low. Internet-based MQTT servers
that have been exposed, and
malicious third-party MQTT
message subscriptions.

* Malicious sinkhole and wormhole attacks
against nodes and Distributed Denial of
Service (DDoS) assaults.
* Provides a simple protocol for TCP data
exchange between machines.
4 AMQP * Deliveries of messages with reliability, Security of message broker is

messages delivered quickly, and acknowl-
edgments in messages.

affected.

Most corporate messaging uses AMQP.
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S.No Protocol used Features Cyber Security issues
5 CoAP * Designed for the limited network device Ina DDoS attack, a third party
environment. simultaneously sends forged
IP packets during CoAP
reflection and amplification.
* Specialized application for the homoge-
neous community of restricted devices.
* Consists of a variety of end node devices,
constrained small networks over the
Internet connection.
6 DDS * Has a communication protocol that varies Because of the expandability
from machine to machine. feature, poorly implemented
and managed devices might
result in Man in the Middle or
DDoS attacks.
* High performance
7 NFC * Make sure the two-way connection is safe; Malicious wormhole attack
Usage of smartphones as the end nodes. based on nodes.
8 SigFox * With low-power consumption, it makes Poor payload encryption.
the most of both the cellular and WiFi
networks.
* Supports star network topology and dense
node networks.
* Hasrestricted endpoint access control and
cloud access.
9 EnOcean * Self-powered wireless sensor network that Optional blocking, preshared
is user-driven and gathers data. security keys, and undefinable
re-synchronization of
rolling codes are frequently
overlooked.
* Key features include less idle current.
10. DTLS * A retransmission timer is used by DTLS to DDos Attacks.
address the packet loss problem. The client
retransmits the data if the timer expires
before it receives the server’s confirmation
message.
* By assigning a unique sequence number to
each message, the reordering problem is
resolved. This aids in assessing whether or
not the subsequent message to be received
is in sequence. If it is out of order, it is
placed in a queue and dealt with when the
appropriate number in the sequence is
reached.
¢ DTLS is used in applications where data
loss is significantly less essential latency.
Table 1.

Summary list of security protocols for IoT.
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security solutions protect against most IoT attack surfaces [41]. Using secure tech-
niques performed over the Data Link and Transport layers, protocols like COAP and
DDS enable efficient immunity against well-known attacks like DDoS attacks and
botnet attacks. In Sigfox and EnOcean, new methodologies prevent new threat issues
like asynchronous code definition and poor payload encryption. The lightweight
protocols MQTT and BLE have also emerged as a viable defense against dangers posed
by malicious nodes and Man in Middle attacks. Divided security management is
beneficial for more straightforward management of security measures and increases
the efficacy of the most suggested solutions.

2.5 Summary

This section discussed IoT’s current cyber security trends by researching vari-
ous protocols, standards, and threats. The research findings on the cyber security
risks convey that the traditional methods must be more efficient against attacks in
heterogeneous IoT environments. Our study further reveals that most cyber security
solutions include encryption techniques with low energy use, which also is success-
ful in securing channel attacks in IoT. IoT security increased after integrating with
various technologies.

The complications of the IoT system have increased, and security features’ open-
ness has decreased. Even though the previously discussed issues have been attempted
to address the evolution of communication technologies and protocols, there is always
room for research.

3. Anomaly detection using an optimized envelope

IoT systems collect vast amounts of data to track and analyze the structure of future
recorded data. However, this data cannot be stored as is due to limited storage but must
be reduced to allow future data analysis based on past data that will not be compro-
mised. We propose a parameterized method of sampling the data optimally. Our
approach has three parameters— an averaging process for constructing an average data
cycle from past observations, an envelope method for defining an interval around the
average data cycle, and an entropy method for comparing new data cycles to the con-
structed envelope enabling identifying anomalies and predicting future cycle behavior.
This section concentrates on finding the optimal envelope using entropy methods.

We often have sequential data collected by sensors, and computational power and
bandwidth resources prohibit us from collecting large-scale data. Sampling preserves
the most critical information from the original data and reduces the complexity of the
subsequent knowledge discovery task to a traceable version without compromising
performance. Dictionary learning [42] helps extract patterns hidden in data. We can
apply dictionary learning to sequential data for natural language processing, video
analysis, and nonsequential data tasks [43]. Given the IoT data collected sequen-
tially, we can find a method that maintains a basis where we have enough elements
to describe the sequential patterns of the data. It helps to extract a set of common
sequential patterns from the sequential telematics data. In a smart home system, we
may collect the most frequent activity trajectories for home members to use for mem-
ber authentication. We aim to find an optimal sampling method given a set of time-
series records, where we collect information before and after the sampling reduction
process regarding the data’s purpose in the context of the relevant application. Many
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known data reduction techniques enable restoring the original data set from the
reduced one. Among these are compression and compaction routines and dictionary
methods. Given the sequential data, we may apply Classification and Prediction.
Classification defines whether a series of daily temperatures represent an El-Nifio year
or whether the data points to suspected intrusion.

3.1 Related work

Vlachos et al. [44] proposed a procedure for getting the best practical estimated
gap between two extreme measurements related to any data sequence. Sakurada and
Yairi [45] use auto-encoders with nonlinear dimensionality reduction for the anomaly
detection task. Reeves et al. [46] generate domain representations using scaleable layers.
Chilimbi and Hirzel [47] implement an iterative scheme that uses temporal data to
construct a profile. Then, they identify repeated data sequences with the same order,
prefetches them, and let the program continue executing the prefetched instructions.
Lane and Brodley [48] use instance-based learning (IBL) for boundary determination
by good user behavior and heuristics. Kasiviswanathan et al. [49] detect and cluster
user content for optimization. Mairal et al. [42] create a dictionary and adapt it to
specific data using data vectors proposing an optimization algorithm for dictionary
learning based on stochastic approximations. Aldroubi et al. [50] claim that a collection
of subspaces gives the best sparse representation providing an optimized sampling in
subspaces union. Rubinstein et al. [51] survey the various options up to the most recent
contributions and structures. Cherian et al. [52] propose learning over-complete dic-
tionary models where the signal can have both Gaussian and (sparse) Laplacian noise.
Dictionary teaching in this setting leads to a complex nonconvex optimization problem,
further exacerbated by large input datasets. Duarte-Carvajalino and Sapiro [53] intro-
duce a framework for the joint design and optimization of the nonparametric dictionary
and the sensing matrix. They demonstrate the use of random sensing matrices and
those optimized independently of the learning of the dictionary. They complement the
classical image datasets, maximizing the size of the sampling data to keep the balance
between the sampling data and the information extracted from it. Our problem state-
ment focuses on extracting concepts, methods, rules, and measurements so that, at the
end of the process, the original sampling data becomes redundant and need no longer
be stored. However, we incorporate an ongoing learning process to keep improving and
adjusting the extracted artifacts to natural changes in the sampled mechanism’s behavior.
Our study concentrates on time-dependent streaming sampling data divided by fixed
periods to repeat the analysis process for each period/cycle. We propose a condensed and
adjustable representation of the data. Reeves et al. [46] offer an alternative to the subject.

3.2 Introducing the envelope approach

Assuming periodic data sampling and extraction of logical artifacts at the period
level, we analyze the data collected over several periods. We divide the period into
time units. For example, we divide it into daily time units for a year. We average the
samples collected during each time unit and extract one value representing it. We
repeat this process for the period and get a graph illustrating the average values for an
intermediate and typical period. We then calculate the envelope around this average.
The generated envelope represents the standard range of values such that unanalyzed
periods are compared to this envelope. This period is normal if its graph value is
entirely within the envelope. If it is totally out of the envelope, it is an exception.
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If just sections of the graph are within the envelope, we use an entropy measure to
calculate the “distance” of the given period from the standard envelope. Assuming an
existing entropy threshold, we can decide whether the period is typical. We apply the
same concept at the unit level and determine whether a specific time unit in a period
is within the standard. This particular check is relevant to anomaly detection of IoT
behavior. Figure 2 depicts the main blocks of the envelope construction process.

The process has three key elements: an average measure per time unit, the bound-
aries around the middle chart, and an entropy value representing the distance of an
actual chart from the envelope. We propose an optimal intensity of each component
to generate a balanced and reliable anomaly detection method. We start by analyzing
typical data collected from several time-dependent cycles, determining the aver-
age value per time unit, and drawing the boundaries around the average to get the
envelope, as described in detail in Figure 3.

Figure 4 describes the anomaly detection process by summing—up the number
of cases in the examined chart that exceeds the envelope boundaries and in what
direction.

This envelope method is generic and may be used for any application for anomaly
detection, such as IoT sensors. In high variations, it can detect damaged or attacked
sensors or support automatic instant corrections where abnormal behavior is seen. We
may run a backtracking process for ongoing calibration of system parameters. This
idea may be used to construct a multi-dimension envelope to comply with depen-
dency among several columns within the same record.

3.3 Experiment

We accepted detailed Meteorological data about El-Nifio (EN) and NonEI-Nifio
years (NEN) from 1980 to 1998. We took data from the El-Nifio years 1982, 1983,
1987, 1988, 1991, and 1992 for the positive envelopes. All other years in the range were
Non-El-Niflo years. We tested three methods for generating envelopes: (1) minimum
over all cycles and maximum over all cycles, (2) average cycle + standard deviation,
and (3) confidence interval (CI). Figure 5 visually confirms that 1995 is a regular year
concerning its temperature spread. The Red and Blue charts represent the envelope’s
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Figure 2.
The process of constructing the optimal envelope.
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Figure 3.
The process of Constructing the Optimal Envelope.

upper and lower borders, respectively, while the Green chart represents the tem-
perature in 1995. We realize that most temperatures are within the envelope upper/
lower boundaries, generating a relatively low Entropy, 0.3631, beneath the selected
threshold, concluding that 1995 is indeed a NEN year. However, referring to the 1992
and 1988 years, we got 0.4266 and 0.3857 Entropy values above the threshold; hence
they are classified as EN years. However, we did not get a precise classification when
we applied the + standard deviation and the confidence interval (CI) methods.

3.4 Summary

Classification methods have recently gained attention due to rising IoT security
issues and threats. In this section, we proposed an envelope construction to clas-
sify streams of time-dependent events within a defined data cycle. We discussed
three envelope construction options: min-max, standard deviation, and confidence
interval (CI). We described an Entropy calculation and a Threshold determination
to classify whether a given steam data cycle is abnormal. We used Meteorological
data streams to demonstrate our proposal technology’s correct classification of daily
temperature streams for a year cycle. Several extensions to our proposal include
discovering early trends of behavior changes, determining the number of data cycles
required for constructing the optimal envelope, exploring the possibility of dividing
one cycle into segments associating different envelopes to each segment, and defining
rules for anomaly discovery.
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Min—max envelope for 1995 NEN.

4. Anomaly detection using random forest machine learning

The total transmitted data over the various sensors is growing accordingly. Sensors
typically are low in storage, memory, and processing power resources. Data secu-
rity and privacy are part of this ever-increasing domain’ significant concerns and
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drawbacks. A penetration discovery tool is recommended to predict possible attacks.
Machine Training data leads to the definition of good and bad patterns for generat-
ing a Lightweight and activation framework comprised of Machine learning rule
discovery, threat modeling, and timely reaction to rule violations. The model discov-
ers exceptions and immediately updates the system. Random Forest (RF) is used for
anomaly detection and rules generation. We converge IoT groups’ resource sharing
to build an efficient IoT security framework. IoT networks collect and exchange

vast data raising major security issues. To cope with it, we propose a decentralized,
layered, distributed, and parallel processing model embedded in the.

The IoT network utilizes the remaining resources to execute the RF method to
detect abnormalities. The model supports continued use and is decentralized over time.

The system identifies repeated patterns, while the Machine Learning algorithms
discover the geometric, arithmetic, and additive. The patterns are translated into rules
to be executed in violation cases. Anan adaptive extension is used to detect changes in
generating data and adapt the decision mod to manage suspected situations sel.

The aim is to have a framework with training data collection analyzing it to detect
patterns, proportions, etc., and converting it to rules. Combining the collected rules
and RF trees is deployed in the IoT devices and network. The rules are executed when
data is received from or transmitted to an IoT device. The corresponding action is
triggered to cope with the situation if the result is positive or negative.

4.1 Literature review

Eghbal et al. [54] propose analyzing numerical data and generating fuzzy rules.
The algorithm uses some rule-and-data-dependent parameters and a function that
modifies the rule evaluation measures to assess the candidate rules effectively. Ref. [55]
uses Sugeno integrals. They are qualitative criteria aggregations where it is possible to
assign weights to criteria groups. It shows how to extract if-then rules expressing the
selection of good situations based on local regulations and evaluations to detect bad
conditions [56]. Dealing with converting data into the appropriate layout requires a
significant investment in manual reformatting. The paper introduces a synthesis engine
to extract structured relational data. It uses examples to synthesize a program utilizing
an extraction language that extends regular expressions with geometric constructs.
Ref. [57] proposes a fast and compact decision rules algorithm. It works online to learn
rule sets. It presents a technique to detect local drifts relying on the rule set modularity.
Each rule monitors the evolution of performance metrics to detect concept drift. It pro-
vides valuable information about the dynamics of the process generating data, faster
adaptation to changes, and generates more compact rule sets [58, 59]. It uses averaging
techniques to propose a method in which a previous algorithm for association rules
mining specifies the minimum support automatically. It uses fuzzy logic to distribute
data in different clusters and then tries to introduce to the user the most appropriate
threshold automatically [60]. Suggests a two-stage hybrid model for data classification
and rule extraction. The first stage uses a Fuzzy ARTMAP classifier with Q-learning
and Genetic Algorithm for rule extraction from QFAM. Given a new data sample, the
model can provide a prediction about the target class of the data sample and give a
fuzzy if-then rule to explain the forecast. Q-values are applied to reduce the number of
prototypes generated by QFAM [61]. Proposes a granular-rules extraction method to
simplify a data set into a granular-rule set with unique granular rules [62]. It describes
a QAR (Quick Access Recorder) anomaly detection algorithm. The method retains the
time characteristics data and strengthens the relationship between the condition and
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decision attributes [63]. Describes an approach of data mining with Excel using the
XLMiner add-on. It presents an example of mining association rules to illustrate this
approach’s steps [64]. Introduces an algorithm for choosing which instances to request
next in a setting where the learner can access a pool of unlabelled samples and request
some labels [65]. It focuses on understanding the stochastic process’ role and how it
defines a distribution over functions. It presents the simple equations for incorporat-
ing training data and examines how to learn the hyper-parameters using the marginal
likelihood [66]. Proposes an active learning algorithm that balances such exploration
with refining the decision boundary by dynamically adjusting the investigation prob-
ability at each step [67]. Offers a multiclass learning model that optimizes informative
training compounds to support learning progress. Random Forest (RF) is used to
predict quantitative compound activities. The global prediction is made by aggregating
the predictions of the ensemble. Y. Brostaux [68] investigates the impact of noise in
training data on the RF learning curve.

The reviewed literature focuses on improvements to known rule discovery mecha-
nisms to transform them to become lightweight and able to be executed in a limited
resource setting. In most cases, the proposed solution remains general purpose but
can run with fewer required resources. Our proposal exploits the unique IoT attri-
butes utilizing it to build a combined comprehensive framework for IoT security.

4.2 Rules generation and deployment process

The process consists of seven stages. Stage 1 composes training data from the IoT net-
work; Stage 2 uses discovery techniques to extract essential measurements and patterns.
Stage 3 consists of generating for each measure and pattern a rule. Stage 4 evaluates the
effectiveness of each law against a set of training data. Stage 5 checks the generated rule
set’s completeness and integrity. Stage 6 simulates the same training data expecting all
the designated rules to be executed. Stage 7 deploys the developed regulations set. The
system is ready to accept the IoT traffic data in real-time and automatically check it
against the rules set. Figure 6 depicts The seven stages Anomaly Detection Process.

4.3 Extracting simple rules from training data

Sensor record layout includes record ID, timestamp, and values per attribute.
Simple rules, such as if-then, max, min, etc., are extracted directly from the record
and its associated workflows.

4.4 Compound and multi-stage rules extraction

IoT rule engines assume real-time data streaming, instant reasoning, and actua-
tors using Machine Learning extraction of compound rules from the continuous data
records. The outcome contains thresholds, measurements, and decision trees that keep
expanding, consuming vast storage, memory, storage, and runtime when analyzing
the decision tree for the specific rule and tracing the tree path to understand its logic.
Complex Event Processing (CEP) engines support matching time-series data patterns
from different sources but have downsides in IoT since the logic requires high process-
ing power and much time. We cope with these drawbacks by reducing the number
of decision trees and improving the search navigation scope to a reasonable search
time. IoT attributes and functionality are used to optimize tree navigation and process
sharing. We use the bootstrap aggregation technique, counting the majority vote in the

60



Anomaly Detection in IoT: Recent Advances, Al and ML Perspectives and Applications
DOI: http://dx.doi.org/10.5772/intechopen.111944

P
Data Collection& Cleansing Sensors
Data

I'd Y
Pattern recognition

Measurements &
Patterns

Rule-based Rules construction
Language

Rules evaluation

Integrity & completeness Ready
Rules set

Simulation & testing

—

\\./ é/

[ Deployment

Figure 6.
The anomaly detection process.

case of decision trees. Many trees reduce the depth and width of each tree and eventu-
ally save pruning and analysis time. The algorithm accepts the number of trees, K, and
the number of features, F, randomly sampled features for building a decision tree. For
extensive and high-dimensional data, a large K is used. Estimating the performance of
Random Forest for one core is based on the following parameters: # trees [K], # features
[F], # rows [R], and maximum depth [D]. The estimated runtime formula is K*F>*R*2P.
Hence, keeping just the most critical features, lowering the number of records, and
keeping the maximum depth low will improve the overall Random Forest performance.

4.5 Experiment and summary

We use Excel functions and macros to generate compound rules such as pattern
recognition for practical purposes. We also ran the Excel Machine Learning extension
to create additional rules. We loaded the spreadsheet with 8 years of training data. All
IoT devices are interconnected. In each device, we installed RF searching executable
and deployed the generated simple rules and the RF trees in each device. We loaded
the data by streaming it to the testing environment. Some generated rules do not
require real-time reaction, consume processing power and memory space beyond the
capacity of a typical sensor, and are executed at cloud processes. To have meaningful
testing data, we intentionally added to the El-Niiio file abnormal extreme values (e.g.,
over the maximum or lower than the minimum), wrong correlations, and classifica-
tion interrupts. We loaded the data by streaming it to the testing environment. The
corresponding rules and RF trees instantly detected all anomalies. We did not notice
any data flowing interruptions or delays.

This section demonstrates the ability to build a lightweight, simple, and handy
framework for anomaly detection, rules extraction, and rules execution given enough
training data. We then described accuracy and performance improvements. Based on
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the accuracy and performance results, the feasibility and effectiveness of the pro-
posed framework have been empirically proven.

5. Specific examples and case studies of successful anomaly detection

This section outlines practical and successful anomaly detection examples in
various application domains. Most modern hospitals have automated laboratories,
such as Chemistry, where all the blood tests are executed by dedicated machinery,
which is frequently calibrated at every time interval. The calibration is done according
to the manufacturer’ instructions. However, some laboratory managers run ongoing
anomaly detection demons to ensure real-time control. We got a request to develop
an ongoing anomaly detection process that also considers actual historical testing
results and incorporates an anomaly detection check that considers the history of the
specific population who visited the lab in the past. We collected 3 years of lab results
per machine. We ran our envelope construction process and provided a very com-
pressed envelope considering many parameters. As a result, any machinery problem
is detected in near real-time, preventing any escape of exceptional results.

Another example is detecting abnormal data streaming sequencing, timing,
and frequency from a permanent external resource using a sensor for each sampled
attribute. The system listens to the communication line for a while when receiving
transmissions from the designated source. The method constructs a multi-dimen-
sional envelope corresponding to each feature based on the collected features, such
as timing, interval length, and frequency. The multi-dimensional envelope and a
weighted compound entropy measurement provide comprehensive communications
anomaly detection.

6. Limitations and practical considerations related to IoT anomaly
detection mechanism

Anomaly detection systems include a preprocessing stage for defining the normal
value range where any value within the specified range is designated normal. In con-
trast, any other value is an exception. For a time-dependent data stream, the standard
value range may vary depending on the repeatable cycle, such as season or different
repeatable time ranges. Therefore, the correct determination of the repeatable cycle
is crucial to the accuracy of the anomaly detection process. Thus, the following vital
limitations and vulnerabilities are essential to mention:

a.Identifying the repeatable cycle length is the most critical step in IoT data analy-
sis. A wrong cycle length leads to wrong detected anomalies.

b.Detecting abnormalities at the beginning and the end of each cycle is more
complex because the difference between a normal state and an abnormal state is
minor; therefore, the chance of making a mistake is more significant.

c.To maintain accuracy in the standard indices, we must continuously examine
the correctness of the envelope values and their adaptation to the cycle we have
defined and predict natural and justified changes in the cycle and its correspond-
ing values used to check the anomalies over time.
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7. Conclusion

This chapter deals with current and future trends in Anomaly detection concepts
and technologies for the IoT context. We started with an overview of various IoT
applications spread over most functional domains, such as Industry machinery,
Health, Smart home, and smart city. Most of the new developments in IoT focus
on solutions to the severe security breach caused by interconnecting numerous
IoT devices to the Internet. These solutions provide tools for detecting/identifying
operations anomalies. Therefore, we allocated Section 2 to cover IoT operation and
communications security aspects. Then we elaborated on generating an envelope for
anomaly detection for temporal transactions, which are the nature of IoT activity and
networks. We finally elaborate on advanced technology for anomaly detection using
Random Forest distributed over a network of IoT devices.

IoT keeps evolving and spreading fast everywhere in all functional domains in the
modern world. Thus, new developments and recent trends will continue growing, so
new chapters will follow.
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Anomaly Detection in Time
Series: Current Focus and Future
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Abstract

Anomaly detection in time series has become an increasingly vital task, with
applications such as fraud detection and intrusion monitoring. Tackling this problem
requires an array of approaches, including statistical analysis, machine learning, and
deep learning. Various techniques have been proposed to cater to the complexity of
this problem. However, there are still numerous challenges in the field concerning
how best to process high-dimensional and complex data streams in real time. This
chapter offers insight into the cutting-edge models for anomaly detection in time
series. Several of the models are discussed and their advantages and disadvantages are
explored. We also look at new areas of research that are being explored by research-
ers today as their current focuses and how those new models or techniques are being
implemented in them as they try to solve unique problems posed by complex data,
high-volume data streams, and a need for real-time processing. These research areas
will provide concrete examples of the applications of discussed models. Lastly, we
identify some of the current issues and suggest future directions for research con-
cerning anomaly detection systems. We aim to provide readers with a comprehensive
picture of what is already out there so they can better understand the space — prepar-
ing them for further development within this growing field.

Keywords: anomaly detection, anomaly detection in time series, high dimensional
data, big data, current focus and future challenges, machine learning, deep learning,
forecasting, real time

1. Introduction

Time series data mining is becoming increasingly important due to the advances
in technology which have allowed us to collect and store large amounts of structured
temporal data. A wide range of tasks can be performed with this time series data
such as classification [1], clustering [2], forecasting [3] and outlier detection [4-6].
Extracting meaningful insights from this data opens up new opportunities for
research across diverse areas.
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Anomaly detection in time series is a critical task with significant implications in
numerous fields, including finance [7], healthcare [8], and security [9]. Identifying
and analyzing outliers in time-series data is a critically important operation for
obtaining meaningful insights [6]. As described in a seminal paper, there are two
types of univariate time-series outliers - type I and type II [10, 11]. Whilst type I
outlier events occur individually, type II can be linked to subsequent power shifts. It’s
essential to have an in-depth understanding of both these outlier types if a meaning-
ful analysis of the data is to be undertaken.

The detection of unusual patterns or events within data streams can provide
valuable insights and help identify potentially harmful or fraudulent behavior.
However, processing high-dimensional [12, 13] and complex data streams [14] in
real-time [15] remains a challenging task. In recent years, many statistical [16],
machine learning [17], and deep learning [18] techniques have been proposed to
tackle these challenges.

This chapter provides an overview of the current state-of-the-art models for
anomaly detection in time series, including their strengths and limitations. We also
explore new areas of research as current focuses of researchers in this field, that are
being explored by implementing recent techniques, models of machine and deep
learning to solve unique challenges posed by high-dimensional and complex data,
high-volume data streams, and the need for real-time processing.

One of the primary challenges of anomaly detection in time series is dealing with
high-dimensional and complex data. Traditional statistical methods such as ARIMA
[19] and exponential smoothing [20] have been used in the past but lack the flex-
ibility to handle complex data with multiple attributes. Newer techniques, including
machine learning-based approaches such as isolation forests [21], autoencoder-based
methods [22], and deep learning techniques such as LSTM and CNNs [18], have
shown promising results in detecting anomalies in high-dimensional and complex
data. However, these approaches also have their limitations, including high computa-
tional costs and the need for extensive training data [23].

Another challenge in anomaly detection in time series is dealing with high-volume
data streams in real-time [24]. Traditional batch processing methods are not suitable
for real-time applications where timely detection is critical. As a result, new methods
such as online anomaly detection algorithms [25] and sliding window-based [26]
approaches have been proposed, which process data in a continuous and efficient
manner.

In addition to the current state-of-the-art models, techniques, and areas of
research, this chapter also identifies some of the current issues and suggests future
directions for research concerning anomaly detection systems. These include the
need for more interpretable models, the development of novel unsupervised meth-
ods, the integration of domain knowledge, and the need to address the issue of data
imbalance.

Sections of this chapter discuss recent algorithms, models separately as well as
within current wide areas of research i.e., Forecasting, Real time anomaly detec-
tion, Dealing with Big and high dimensional data processing problem, Anomaly
detection using Artificial Intelligence (AI), Industrial Control Systems. There will
be a literature review of many models and strategies implemented in these areas.
All these areas as well as models will be solving challenges as discussed before.
Overall, the purpose is to provide readers a literature review about current focuses
of researchers and to facilitate further development and research in time series data
anomaly detection.
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2. Big data and high dimensionality

Modern data sets are increasingly high-volume, high-velocity, and high-variety,
making it difficult to identify anomalies with accuracy. Researchers and developers
have started to investigate new approaches for coping with this complexity. When
the number of features grows exponentially, more data is needed to create accurate
models - leading to sparse and isolated data points. Gartner [13] defines big data
as a collection of attributes that require cost-effective analytics to generate insight.
The key challenges associated with big data are described in the 5 Vs: value, veracity,
variety, velocity and volume [27].

The next stated paragraphs will give an overview of how real-time big data pro-
cessing can be used to detect anomalous events through machine learning algorithms,
as well as its current limitations and challenges.

McNeil et al. [28] examined existing tools used to detect malware on mobile
devices. It was noted that these methods lacked the capability to incorporate group
user profiling, which is necessary to automate behavior-based dynamic analysis for
focused malware identification. To overcome this, they demonstrated a scalable
architecture called SCREDENT, which allows users to classify, identify, and forecast
possible target malwares in real time. While initial evaluation indicated that the
approach had promise, further testing failed to demonstrate desired results.

In reference [29], a new architecture was proposed to detect threats in real-time
using stream processing and machine learning. This architecture promotes an envi-
ronment with minimal human oversight, allowing for improved detection of both
known and previously unseen cyberattacks in order to hone attack classification and
anomaly detection capabilities. However, their results did not benefit from the open
KDD dataset as much as expected.

In reference [30], complex network infrastructure with vast logs files became
the focus of another approach which looks to assess security logs that contain vari-
ous device information through data mining and machine learning techniques.

This proposed approach is split into two phases: defining/configuring the detection
mechanism and then executing it at runtime. Nevertheless, the practical implementa-
tion turned out to need more automation due to its high human intervention levels;
similarly, its output accuracy was not precise enough.

Recent research has highlighted the use of machine learning models for anomaly
detection. But, the inability of inherent system performance to keep up with increas-
ing network traffic is an issue that needs to be addressed. To do so, a novel model uti-
lizing Hadoop, HDFS, MapReduce, cloud and multiple machine learning algorithms
were developed. Weka interface was used to assess accuracy and efficiency through
naive bayes, decision tree and support vector methods. However, the implementation
of cloud infrastructure and real-time data streaming has not been sufficiently dis-
cussed as yet in this project [31].

Research paper [32] focuses on anomaly detection in streaming data, and provides
a new approach to evaluate online anomaly detection with entropy and Pearson cor-
relation. Big data streaming components like Kafka queues and Spark Streaming are
used as a means of ensuring scalability and generality, although some processes which
were potentially complicated by long batch processing periods or data limitations
were not resolved.

Researchers have proposed a method for anomaly detection in smart grids that
uses real-time, minimal energy consumption [33]. The proposed in-memory distrib-
uted framework, comprised of Spark Streaming and Lambda System, is viable for
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scalable live streaming. However, it did take longer to train the model and there were
scheduling issues with real-time tasks.

In reference [34], another framework was presented - one which involves sen-
sor data preprocessing: anomaly detection using principal statistical analysis and
Bayesian networks; as well as sensor data redundancy elimination using static or
dynamic Bayesian networks (SBNs/DBNs). Included were two algorithms: static
sensor data redundancy detection algorithm (SSDRDA) and real-time sensor data
redundancy detection algorithm (RSDRDA), both serving to reduce redundant data
in either static datasets or real-time scenarios respectively.

Anomaly detection in time series requires modifications in the above framework
of approaches for efficiency. Anomaly detection in real-time big data analytics is a
promising area of study, particularly when machine learning techniques are incor-
porated. Advancements in this field are likely to yield high accuracy and efficiency.
Thus, the potential benefits of such research cannot be underestimated.

Following points will lay out the foremost research challenges in this field, in order
to promote progress.

Redundancy: Managing real-time big data from diverse sources is challenging.
Current technologies like Hadoop and spark fail to address redundancy, data quality
and reliability, cost [35], and storage schema [36]. A new framework is needed to
tackle these complexities.

Computational cost: Anomaly detection requires multiple techniques, increasing
computation cost. Large datasets and high dimensionality cause algorithmic instabil-
ity and computational expense [23]. Big data and cloud technology enable parallel
and distributed processing and reduce computing costs. Cheaper processors and high
chips improve system power and data processing in real-time, minimizing computa-
tional expenses.

Nature of Input data: Input data has instances with binary/categorical or continu-
ous attributes, and can be univariate or multivariate. Anomaly detection algorithm
selection depends on data diversity and attribute type [37]. A hybrid framework using
unsupervised machine learning algorithms can detect anomalies in different datasets.

Noise and missing value: Network sensor streaming data has various types and
can produce false alarms due to noise and missing values from high speed [37]. Noise
can hide true anomalies [38]. An auto noise cleansing module in the detection frame-
work can remove unnecessary features and handle missing values.

Parameters Selection: Optimal parameters for machine learning algorithms are
hard to select [39]. Real-time anomaly detector needs to consider multiple and single
hyperparameters, which may change over time [40]. Parameter choice affects algo-
rithm performance; eccentricity techniques can reduce selection processes [41].

Inadequate Architecture: Organizations need big data architecture for large real-
time data. Existing architectures are insufficient. Real-time analytics and application
components can create efficient environment [42]. Big data technologies and hybrid
machine learning algorithms can solve architectural problems. Scalability for data in
motion and at rest is achieved.

Data visualizations: Data or reports need effective, visual insights. Anomalies
from connected devices can use heat maps, scatter plots, parallel coordinates and
node-link graphs for 2D/3D views. 3D interaction needs data understanding and user
rotation and zoom [43]. Opensource visualization techniques in frameworks can
automatically select techniques for better user experience.

Heterogeneity of data: Unstructured data is varied and large, such as emails,
faxes, form documents, social media posts, etc. Transcription is expensive. Hybrid
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Machine Learning algorithms can identify data types quickly and accurately. Complex
machine learning models can recognize heterogeneous information sources from
unstructured text.

Accuracy: Anomaly detection with existing technologies is inaccurate. A hybrid
machine learning algorithm can analyze large data from modern applications with
low memory and power. Our team combines real time big data technologies with this
algorithm for efficient and accurate results.

3. Transformer

The Transformer architecture, introduced by Vaswani et al. [44], has been widely
used in various natural language processing tasks, such as machine translation and
text classification. However, its effectiveness in anomaly detection is limited due
to the lack of a specific mechanism to capture anomalous patterns. To address the
shortcoming of Transformer architecture, researchers have created a variety of
modifications to attempt to improve its performance, including the incorporation of an
Anomaly-Attention mechanism. One such modification is the Anomaly Transformer,
as illustrated in reference [45], which utilizes this mechanism to improve the detection
of anomalous patterns in data. Thus, the Anomaly Transformer architecture represents
an important advancement in the application of Transformers for anomaly detection.

Recent studies have focused on leveraging Transformer based architectures to
benefit the time series anomaly detection task. These approaches are capable of
modeling temporal dependencies, enabling better anomaly detection quality [45]. For
instance, TranAD [46], MT-RVAE [47] and TransAnomaly [48] all fuse Transformers
with VAEs i.e., neural generative models [49] or GANs [50], demonstrating improved
performance in anomaly detection. These models have been explained further below.

TranAD: TranAD [46] is a robust adversarial training procedure designed to
address small deviations in anomalies that the typical Transformer-based network
may overlook. This GAN-style approach consists of two transformer encoders and
two decoders in order to maintain stability. The results of an ablation study illustrate
the performance of this architecture, with F1 scores dropping by nearly 11% when
the Transformer-based encoder-decoder was replaced. This clearly demonstrates the
efficacy of using Transformers for time series anomaly detection. It’s valuable for
modern industrial systems where instant detection of anomalies is compulsory.

MT-RVAE: There are two different approaches that combine VAE and
Transformer to create novel models for time-series analysis. MT-RVAE, proposed by
Wang et al. [47], uses a multiscale Transformer model to extract information from
sequences of varying scales like complex satellite systems with several subsystems.
Each subsystem’ temporal features must be analyzed in correlation [47]. This
addresses the limitations traditional Transformers had in being able to accurately
analyze sequential data as these models were limited to local information extraction
only. TransAnomaly, proposed by Zhang et al. [48], combines VAE with transformer
for increased parallelization purposes. The combination of these two techniques is
predicted to reduce training costs up to 80%.

GTA: GTA [51] leverages Transformers and graph-based learning to accurately
detect anomalies in multivariate time series data, even when there are few dimensions
or limited close relationships among sequences. This method features a multi-branch
attention mechanism composed of global-learned attention, regular multi-head
attention, and neighborhood convolution for increased accuracy, as well as a graph
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convolution structure for modeling influence propagation processes. Thus, GTA seeks
to provide an improved approach for analyzing and detecting anomalies in multi-
variate time series data than previous methods. It’s valuable for internet connected
sensory devices like smart power grids, water distribution networks as they remain
under attack of cyber-attacks [51].

AnomalyTrans: AnomalyTrans [45] is a novel approach in distinguishing anoma-
lies. Drawing inspiration from TranAD, AnomalyTrans makes it more difficult for
anomalies to create strong connections with the entire time series, though retaining
connectivity between adjacent time points. The model leverages Transformer and
Gaussian prior-association to reach this objective. Through utilizing a minimax
strategy to optimize the anomaly model, AnomalyTrans enforces restrictions on
prior- and series-associations that result in a greater divergence between them.

D3TN: Disentangled Dynamic Deviation Transformer Network (D3TN) [52] is
highly effective system for multivariate time series anomaly detection. It considers
both short-term and long-term temporal dependencies as well as complex inter-
sensor dependencies. To better model static topology, a new disentangled multi-scale
aggregation scheme for graph convolutional neurons for fixed inter-sensor relation-
ships was introduced. A self-attention mechanism was also employed to capture
dynamic directed interaction in various subspaces that vary with time and unex-
pected events. Moreover, parallel processing of the time series helps simulate complex
temporal correlations that span multiple time periods.

DATN: The Decompositional Auto-Transformer Network (DATN) [53] is a unique
anomaly detection method for time series. This novel approach breaks complex
time series into seasonal and trend components, before then renovating them with
deep models. Additionally, the design integrates an auto-transfomer block to detect
important representations and dependencies based on seasonality and trends in the
series. Furthermore, rather than using a traditional complex transformer decoder, we
substitute it with a more efficient linear decoder.

Transformers have been applied in many real word scenarios for anomaly detec-
tion in time series like: SMD is a 5-week-long dataset acquired from one of the
leading Internet companies with 38 characteristics. Pooled Server Metrics (PSM) was
procured internally from multiple server nodes at eBay and consists of 26 variables.
Besides these, both Mars Science Laboratory rover (MSL) and Soil Moisture Active
Passive (SMAP) satellite datasets from NASA have been compiled as well, contain-
ing 55 and 25 features respectively with regard to the anomaly data derived from the
Incident Surprise Anomaly (ISA) reports for spacecraft monitoring systems. Last but
not least, the Secure Water Treatment (SWaT) dataset contains 51 indicators derived
from continuous operation on a critical infrastructure system [45, 53].

The possible future challenges are indicated below in paragraphs.

Inductive Biases for Time Series Transformers: Transformers are powerful,
general networks for modeling long-range dependencies. But they require quite a bit
of data to train effectively and avoid falling prey to data overfitting. Time series data
often follows seasonal or periodic patterns, as well as other trends, which suggests
that incorporating this information into Transformers has potential to lead improve-
ment in performance. For instance, recent studies have demonstrated the effective-
ness of frequency processing [54] and capturing series periodicity [55]. Additionally,
both explicitly allowing cross-channel dependency [56] and preventing it via
channel-independent attention module [57] have yielded better models for certain
tasks. The challenge then lies in finding a balance between designing inductive bias
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to suppress noise while amplifying signal — a task whose solution is yet to come but
promises exciting possibilities ahead.

Transformers and GNN for Time Series: As datasets with multi-dimensional
and spatial-temporal characteristics become more widespread, it’s essential to have
tools which can effectively capture the complexities that these data represent. Graph
Neural Networks (GNNs) is one method of modeling dependencies and relations with
each other between dimensions. Recent studies have shown that combining GNNs
with Transformers/Attentions leads to impressive performance improvement in areas
such as traffic forecasting [58, 59] and multi-modal forecasting [60, 61], knowledge
of latent causality and the underlying clarity of spatial-temporal performance can be
increased with a greater comprehension. It is an important development that could
result in more effective use of Transformer-GNN hybrid models for spatial-temporal
modeling in time series going forward.

Pre-trained Transformers: As the advances of large-scale Transformers using
pre-training have yielded observable improvements across a wide range of natural
language processing tasks [62, 63] and CV [64], research conducted on their efficacy
for time series applications has been limited. Works existing to this day primarily
focus on classification activities [65, 66]. In order to develop effective pre-trained
Transformer models that are equipped to address a range of use cases within time
series analysis, further examination will be required in the future.

Architecture Level Variants: Considering the success of Transformer variants
in NLP and CV; it may be beneficial to transfer this concept over to time series data
and tasks. We can look into more architecture-level designs for Transformers which
may optimize performance on time series specific models. Examples of these variants
include lightweight [67, 68], cross-block connectivity [69], adaptive computation
time [70, 71], and recurrence [72]. These architecture-level designs provide us with a
whole new range of opportunities for improvement.

Transformers with Neural Architecture Search: Tuning Transformer hyper-
parameters such as embedding dimension, heads, and layers can have a significant
impact on performance. Thankfully, Neural Architecture Search (NAS) provides a
means to automatically find architectures that optimize performance. Recently, NAS
technologies in NLP and CV have been applied to transformers [73, 74]. For machine
data which may be high dimensional yet long in length, this technique is especially
important for designing memory- and computationally-efficient transformers. We
anticipate further progress in this area as the industry gears up for more efficient time
series Transformers.

4. Non-pattern anomaly detection

Non-Pattern Anomaly Detection is an underdiagnosed but powerful method of
identifying anomalies in time series. Existing techniques use initial profiling to deter-
mine which behavior should be tagged as “normal” or “abnormal,” but this definition
fails to capture the nuanced changes between situations in different conditions.
Researchers recognized the importance of such a technique and emphasized its poten-
tial for detecting abnormalities even in the absence of statistical methods that often play
a dominant role in machine learning processes. Team of researchers aimed to compare
current machine learning algorithms relating to NP-AD approaches and assessed how
various datasets demonstrated their capacity for anomalies on diverse situations [75].
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5. Hybrid models

Multivariate time-series anomaly detection is a complex challenge due to the
imbalance of anomalous data and its underlying intricacies. Combining different
methods for detecting anomalies in time series has been well explored, resulting in
improved accuracy. Notably, hybrid models combining statistical and deep learning
approaches have been found to provide greater precision when determining uncer-
tainty and quantifying forecasts associated with these models.

One example hybrid approach is called HAD-MDGAT - it’s based on a GAT (graph
attention network) combined with multi-channel temporal stacked Denoising
Autoencoder (MDA), designed to learn temporal and spatial correlations among
observations. Ablation study results show that MDA enhances anomaly detection
accuracy dramatically; this model with an MDA layer scored 10.86% higher than one
without the extra layer [76].

A research paper published in reference [77] outlined a novel Long Short-Term
Memory (LSTM) network-based method for accurately forecasting multivariate
time series data. In addition, the study featured an LSTM Autoencoder network-
based approach coupled with a one-class Support Vector Machine (SVM) algorithm,
which was employed for anomaly detection. Their findings demonstrated that the
LSTM Autoencoder based method outperforms the previously proposed LSTM
based method. Moreover, their proposed forecast approach surpassed several other
methods by NASA. The LSTM based methodology is well suited to forecasting while
the combination of an LSTM Autoencoder with the OCSVM is suitable for detecting
anomalies [77].

MES-LSTM is a combination of a multivariate forecasting model and Long Short-
Term Memory, a form of Recurrent Neural Network (RNN). Accurate attribution
is an important part of any system as it reinforces confidence in the mechanics and
makes sure learning processes are not based on spurious effects. While MES-LSTM
does a great job of anomaly detection, overall performance could still benefit from
improvement [78].

A hybrid deep-learning model that integrates long short-term memory (LSTM)
and autoencoder (AE) networks was proposed for anomaly detection tasks in Indoor
Air Quality (IAQ) time series data. The LSTM cells are stacked together to learn the
long-term dependencies in time-series data, while the AE helps identify an optimal
threshold based on reconstruction loss rates across all sequences. This powerful
combination helps detect outliers with precision and efficiency [79].

A SeqVAE-CNN model to carry out unsupervised deep learning for anomaly
detection. This model takes inspiration from Variational Autoencoders (VAEs) and
Convolutional Neural Networks (CNNs), creating a Seq2Seq structure that can cap-
ture both temporal relationships and spatial features in multivariate time-series data.
The experimental results of their model on 8 datasets from different domains suggest
it has a higher performance for anomaly detection; indeed, the highest AUROC and
F1 scores have been observed when using our model [80].

Researchers propose a hybrid model of VAE-LSTM for unsupervised anomaly
detection in time series. This model combines the features extracted from the VAE
module [81], which capture local patterns for short windows, with the Long Short-
Term Memory (LSTM) module, which captures long-term correlations in the time
series. Additionally, Electrical power grids are vulnerable to cyber-attacks, existing
attack detection methods are limited so to tackle Graph Convolutional Long Short-
Term Memory (GC-LSTM) with a deep convolution network has been proposed to
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further improve time series classification and analysis with respect to anomaly detec-
tion and attack graph models [82].

A new hybrid anomaly detector that merges two detection approachesi.e., Key
Performance Indicators (KPIs) that are used in physics and Unsupervised Variational
Autoencoder (VAE), thereby improving accuracy and decreasing the possibility of
overlooking defective elements in safety-critical scenarios. Performance is discussed
in comparison to different VAE architectures like long short-term memory (LSTM-
VAE) and bidirectional LSTM (BiLSTM-VAE). Additionally, the efficient choice
of hyperparameters in these structures can be optimized with the help of a genetic
algorithm as presented in reference [83].

Due to the many advantages of conventional anomaly detection in time series
models, further innovations in this area have the potential to yield beneficial results.
In fact, tackling the complexities associated with real-world time series requires
advanced solutions, such as hybridization of hybrid classes. Research shows that this
technique can provide great improvements in terms of forecasting accuracy and has
been gaining much attention recently.

6. Forecasting and anomaly

Time Series Forecasting has always been a useful tool to detect trends, patterns
of any data. It’s about predicting the next time stamps using previous or existing
trends. Anomaly Detection and Time series forecasting have been interlinked several
times by researchers in this field. Several Machine Learning algorithms have been
implemented, sometimes merged with each other to derive another novel strategy to
predict whether the next time stamp is normal or abnormal.

The power of forecasting lies in its potential to revolutionize healthcare. The
goal? To empower medical professionals to take proactive and timely action, reduc-
ing patient transfers and hospital stay lengths, ultimately leading to improved
survival rates. But the accuracy of predictions relies heavily on expertly combining
machine learning algorithms like autoencoders and extreme gradient boosting
(XGBoost) [84].

Autoencoders excel in feature extraction [85]. They are uniquely adept at unsu-
pervised anomaly detection when labeled data is scarce or nonexistent [86]. They’re
trained via reconstruction error, only triggering an alert if said error exceeds a pre-
determined threshold - prompting a swift remedial response. As for XGBoost, this
decision tree-based ensemble principle takes physiological variables from time ti as
input and outputs variables from the next temporal unit; ti+1 [84].

All told, tapping into modern technology’s full potential could allow for massive
improvements in healthcare outcomes - starting with careful utilization of solutions
like autoencoders or XGBoost models.

Recent research has sought to compare the performance of supervised and
unsupervised algorithms on physiological data. Heart rate data, due to its ubiquity
and non-invasiveness, is ideal for predicting anomalies. Five algorithms were evalu-
ated for detecting anomalies in heart rate -- two unsupervised techniques and three
supervised methods. The models were tested on real heart rate data and findings
demonstrated that both local outlier factor and random forests algorithms were effec-
tive in detecting abnormalities in this type of data. Additionally, results showed that
simulated data can lead algorithms to a similar level as real labeled information when
not available, enabling rapid initial deployment without prior knowledge [8].
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DeepAnT is a deep learning-based anomaly detection approach for streaming and
non-streaming time series data. It can detect a broad range of anomalies, from point
anomalies to contextual and discords. Instead of learning about anomalies, DeepAnT
uses unlabeled data to determine normal time series. The two key components of
DeepAnT are its time series predictor (which uses CNN and takes context into
account) and its anomaly detector module, which identifies whether an upcoming
time stamp is normal or anomalous.

DeepAnT stands out against the competition by only needing a relatively
small data set to generate a model. It utilizes parameter sharing of a convolu-
tional neural network (CNN) which allows for good generalization capabilities.
Unsupervised anomaly detection in DeepAnT removes the need for labeling,
making it directly applicable to real-world scenarios with large streams of com-
plex data from heterogeneous sensors. Neural networks are popular as they enable
automatic feature discovery without having any prior domain knowledge; this
capability is what makes them such excellent candidates for time series anomaly
detection. DeepAnT optimizes through leveraging a CNN and raw data, mak-
ing it more robust to variations than many other neural networks and statistical
models on the market [87]. Using a data-driven approach can be beneficial in
many contexts, especially when there is access to an abundance of untagged data.
However, the data quality has a great impact factor on its accuracy; if too much
of the dataset is contaminated (5% or more), then it could potentially lead to
wrong inferences upon deployment. Additionally, selecting the right network
architecture and hyperparameters are often difficult tasks. Nevertheless, new
automated techniques have been developed that may assist in optimizing these
settings instead of opting for human expertise [88]. Last but not least, one major
drawback is the susceptibility to adversarial examples [89] which could restrict its
usage in safety-critical system models. Luckily though, research into understand-
ing and defending against such cases has increased progressively over time with
some successful results achieved.

Light curve prediction and anomaly detection using LSTM neural networks
is an important research area for time domain astronomy. A series of processing
was done on star images collected from the National Astronomical Observatories
of China using GWAC’s mini-GWAC system, resulting in light luminance data
over a period of time. Researchers explored a model of LSTM neural network to
accurately predict light curves, with an optimal structure obtained through model
training and validation; meanwhile, an anomaly detection mechanism based on
prediction error was implemented. Results showed that this method has great
potential when tested on real light curve data [90]. More historical data and certain
well-known astronomical principles are needed to further improve upon this
method.

Motorsports have limited access to sensors during competitions, limiting predic-
tive capabilities and providing an edge for competitors. The proposed variational
autoencoder-based selective prediction (VASP) framework addresses this challenge
by combining the tasks of anomaly detection and time series prediction in one
powerful approach. VASP consists of a variational autoencoder (VAE), an anomaly
detector, and LSTM predictors which can all work together to help produce more
robust predictions. Even if anomalies occur in the input signals, VASPs accuracy is not
significantly impacted like that of other deep learning approaches such as long short-
term memory (LSTM) neural networks. Try out VASP today to take your predictive
insights to the next level with more effective technique [91].
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7. Anomaly detection using Al

Time series data bring their own set of challenges when model analysis is applied,
like notions of time and uncertainty, and the presence of drift. Typically, the time
series window is broken down into two pieces with either sliding endpoints or
landmark endpoints. In this paper, they categorize anomalies and outliers as the same,
as presented in reference [92]. Detecting these outliers has been and remains an area
of exploration for researchers and practitioners alike. Time series data is one of the
most useful modalities available for a variety of applications. Upon analyzing this
type of data, it becomes clear that outlier detection plays a key role. Companies such
as Microsoft [93] have even created outlier detection services to monitor business data
with triggers to alert them when outliers are present.

As stated in reference [94], Al assurance is an important process that must be
incorporated throughout the engineering lifecycle of an Al system. This process
should ensure the system is dependable and its outcomes valid, trustworthy, and
ethical. Moreover, it should also be data-driven, explainable to all users, unbiased in
its learning processes, and fair for all involved.

One of the recent hot algorithm in Al for Anomaly detection in time series is GAN
proposed by Goodfellow [50], have become some of the most discussed topics in deep
learning. The use of a generator in GANSs helps to generate expected normal behavior,
while a discriminator can distinguish between “normal” and “abnormal” behaviors.
GAN technology has led to exciting new developments in deep learning. Generative
adversarial networks (GAN) are an innovative form of Al that offer a powerful
solution to the generative modeling problem. GAN is composed of two models - a
generator used to create normal behavior and a discriminator used to distinguish
between normal and abnormal behaviors. When dealing with imbalanced industrial
time series data, GAN can be applied to derive an anomaly detection architecture
that outperforms classic algorithms and other deep learning models such as big-
GAN, ANOGAN and DBN [95]. The attached article further elaborates on the inner
workings of GANs and their core design considerations. Additionally, drawing from
research conducted by Li et al. [96], this architecture can feature a dynamic threshold
generated by the discriminator which serves as a predictive warning for system fail-
ures or anomalies. GAN based approach is used to diagnose faults by generating much
higher anomaly scores when a fault sample is fed into the trained model [95].

Moving on to next one GTAD, researchers have developed a new anomaly detection
algorithm for multivariate time series, called Graph Attention Network and Temporal
Convolutional Network for Multivariate Time Series Anomaly Detection (GTAD). This
algorithm takes into account the correlation and temporal dependencies that many
other existing algorithms fail to address. GTAD promises to provide better results when
it comes to spotting anomalies in complex data sets. GTAD is an unsupervised approach
powered by graph attention networks and temporal convolutional networks [97].

TadGAN is a breakthrough in unsupervised anomaly detection that makes use of
Generative Adversarial Networks (GANSs). At the core of the system are Long Short-
Term Memory (LSTM) Recurrent Neural Networks, which provide an excellent base
model for creating Generators and Critics. TadGAN is unique in its ability to capture
temporal correlations with cycle consistency loss for more accurate time-series data
reconstruction [98].

Future concerns: Combining information between different dimensions of multi-
variate time series is a key focus of future work [95] in Al algorithms. When it comes
to GAN-based anomaly detection models, there can be difficulties in determining
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the right sliding window length and maintaining stability during training. Further
research is needed in order to more effectively train GANs [50].

7.1 Al based toolkits for automated anomaly detectors

TODS: TODS is a comprehensive automated Time Series Outlier Detection System
with a modular design that enables easy construction of pipelines. It includes a range
of primitives for data processing, time series analysis, feature analysis, detection
algorithms and reinforcement methods. This makes TODS suitable for both research
and industrial applications [99, 100].

ANOVIZ: ANOVIZ is an innovative anomaly detection solution for multivariate
time series. It provides you with accurate detections, as well as easy-to-use visualiza-
tions and user interfaces to promote better explanation and assessment of the quality
of those detections [101].

AnomalyKiTS: AnomalyKiTS is a system that allows end users to detect anoma-
lies in time series data. It provides a range of algorithms, as well as an enrichment
module to label identified anomalies. AnomalyKiTS offers four categories of model
building capabilities, enabling users to select the best option for their needs [102].

TranAD: TranAD is an advanced model designed to provide superior recognition
and diagnosis results. Our proprietary focus score-based self-conditioning and adver-
sarial training technology extract multi-modal features, while MAML ensures quick
and efficient on-the-fly training with minimal data. With TranAD, you get the best of
both worlds: powerful detection capabilities and superior performance. TranAD has
been proven to outperform existing baseline methods [46]. There is a range of data
sizes, formats, and anomalies to consider when deciding which anomaly detection
toolkit to use.

Future Scrutinizes: To maintain the quality of pipeline discovery system,
researchers are planning on adding more primitives in the future as well as improved
integral searchers to ensure optimal performance. To incorporate predefined rules
efficiently into pipelines, researchers should also aim to develop learning-based
active learning techniques for our reinforcement module. Existing solutions may not
be comprehensive enough for certain applications, such as scenarios where semi-
supervised or prediction-based unsupervised anomaly methods are needed.

The current research focused on using machine learning techniques to detect
anomalies before they arise in future forecasting, leveraging stacked and bidirectional
LSTM. The analysis produced promising results as noted in reference [103], validat-
ing the use of such models for anomaly detection. The review of Al-based energy
monitoring and anomaly detection commercial solutions for buildings [104] provides
an overview of the available systems. Efficient predictive maintenance of equipment
in various industries requires the detection of anomalies in time-varying multivariate
data. Researchers presented MTV (Multivariate Time Series Visualization), a visual
analytics system that helps to streamline collaboration between humans and Al,
facilitating the most ideal workflow [105].

8. Conclusion

In conclusion, this chapter has provided an insight into the cutting-edge models
for anomaly detection in time series, discussed their merits and pitfalls, and high-
lighted new areas of research that are being explored to solve unique problems posed
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by high-dimensional and complex data, high-volume data streams, and a need for
real-time processing. These research areas have provided concrete examples of the
applications of discussed models. Moreover, citations will help readers about how
these models can be used in real world scenarios. We have also identified some of
the current issues and suggested future directions for research concerning anomaly
detection systems.

As the field of anomaly detection in time series continues to evolve and new
challenges arise, it is crucial that researchers remain focused on developing innovative
solutions that can effectively process high-dimensional and complex data in real-time.
By better understanding the existing state-of-the-art models and the challenges that
still need to be addressed, researchers can identify new opportunities for developing
more effective anomaly detection systems.

We have not explored all the current algorithms, models, and new research areas.
This chapter has just provided readers an overview of some current techniques and
areas so that they can identify what is going on exactly in this field. Interested readers
will definitely go out and do some more research about it and prepare themselves for
further development within this growing field.
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Anomaly Detection through
Adaptive DASO Optimization
Techniques
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Abstract

An intrusion detection systems (IDS) detect and prevent network attacks. Due to
the complicated network environment, the ID system merges a high number of
samples into a small number of normal samples, resulting in inadequate samples to
identify and train and a maximum false detection rate. External malicious attacks
damage conventional IDS, which affects network activity. Adaptive Dolphin Atom
Search Optimization overcomes this. Thus, the work aims to create an adaptive opti-
mization-based network intrusion detection system that modifies the classifier for
accurate prediction. The model selects feature and detects intrusions. Mutual infor-
mation selects feature for further processing in the feature selection module. Deep
RNNs detect intrusions. The novel Adaptive Dolphin Atom Search Optimization
technique trains the deep RNN. Adaptive DASO combines the DASO algorithm with
adaptive concepts. The DASO is the integration of the dolphin echolocation (DE) with
the atom search optimization (ASO). Thus, the intrusions are detected using the
adaptive DASO-based deep RNN. The developed adaptive DASO approach attains
better detection performance based on several parameters such as specificity, accu-
racy, and sensitivity.

Keywords: intrusion detection system (IDS), recurrent neural network (RNN),
machine learning, anomaly detection, optimization algorithm

1. Introduction

Anomaly detection identifies the mechanism to study abnormal behavior notion in
the data, events or experimental observations. Role of Al is very important the wide
area of applications, including statistical analysis, video surveillance, computer vision,
medical image analysis, neuroscience studies, financial fraud detection, law enforce-
ment, and cyber securities.

Data analytics based on different ML novel algorithms opens a new field of
research of complex data processing solutions, which can handle huge data set. Today,
statisticians, programmers, engineers of multidiscipline, and medicos are brought on a
common platform to have concrete and fast solution.
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Real-time monitoring and dynamic data processing and finding the outliers in the
dataset and finding the fact that do not conform to the normal behavior in a dataset.
Cybercrimes are increasing day by day and shortcomings of the security protocols,
and algorithms are exposed and worldwide internet-based businesses are affected [1].

Anomaly detection can be either supervised or unsupervised, depending on
whether the dataset contains labeled or unlabeled data points. Anomaly detection
system first trains machine learning algorithm (considering a dataset) to learn the
normal patterns behavior, further it can identify the data points that deviate signifi-
cantly from the normal behavior.

The role of Al in anomaly detection is, therefore, crucial, and new avenues of
research in the field of data analytics can be possible and the demand for accurate and
efficient anomaly detection algorithm will increase substantially [2].

Anomaly identification is important for cleaning up data, making sure it is secure,
and building strong Al systems. This talk will talk about recent work in our group on
(a) benchmarking existing algorithms, (b) building a theoretical understanding of
how they work, (c) explaining anomaly “alarms” to a data analyst, and (d) re-ranking
potential anomalies in response to analyst feedback. The talk will then talk about two
applications: (a) identifying and diagnosing sensor failures in weather networks and
(b) open category detection in supervised learning.

Anomaly detection is the process of finding events or trends that do not fit
with what would normally happen. This is important for things as if predicted main-
tenance, but it can be hard to do just through inspection. Anomaly detection
methods that use machine learning and deep learning (AI) can find things in time
series or image data that would be hard to find any other way. Find out how and
why to use anomaly detection methods to find strange things in sensor data from
hardware.

2. Major research issues and areas in anomaly detection

In spite of several types of research carried out for anomaly detection, network
security is encountered with several challenges some of them are as follows [3]: the
system developed for anomaly detection in disabled many security features and auto-
matic backup settings, erases stored data, and opens associations to get commands
from a remote PC.

The multivariate statistical intrusion detection schemes in have difficulties in
estimating distributions for high-dimensional data. The problems rely on the fact that
it does not identify undesirable behavior, and thus the FAR can be high. The problems
in include the reliance on a well-defined security policy, which may be absent, and its
inability to detect intrusions that have not yet been made to be known to the IDS [4].
Some of the common challenges encountered by the network IDS are listed below:

* There are many types of intrusions; the detection techniques available cannot
accurately detect these varying attacks.

* Intrusion detection is very challenging as most of the data are encrypted in the
network; it is difficult to detect the attacks from an encrypted traffic.

* Dedicated hardware components are required for network intrusion detection,
and these components are very expensive.
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* Some IDS supports only in the recognition of network attacks, and the other
system attack is not detected.

* Several intrusion detection mechanisms adopted find it difficult to detect the
intrusions from the high-speed network.

* Insider attack is the most serious problem encountered by several IDS.

* It is very difficult to approximate when and what actions are going to occur in a
system.

3. Recent novel contributions in anomaly detection area

Following are the broad area in which there is research work done in the last
decade as developed based on “auto encoder-based techniques,” “novel machine
learning-based techniques,” and “hybrid techniques in IDS.” There are following
four broad areas viz auto encoder-based techniques, supervised and unsupervised
machine learning algorithm, hybrid techniques in IDS, and Deep learning-based
approaches.

3.1 Auto encoder-based techniques

The auto encoder learning-based techniques utilized in intrusion detection system
are demonstrated in this section.

Shone et al. [1] introduced a novel deep learning model for enabling NIDS opera-
tion within modern networks. This method was developed by grouping both shallow
and deep learning, and it had the ability to correctly analyze broad-array of network
traffic. Most principally, the influence of this nonsymmetric deep auto encoder
(NDAE) and the accurateness, as well as speed of random forest algorithm were
combined. Further, this method was evaluated practically and attaining promising
outcomes. This method provided elevated stages of precision, recall, and accuracy and
requires less time for training.

Mighan et al. [5] established a novel scalable IDS based on deep learning. Network-
based IDS was mainly focused on this paper. This method used one of the best
processing tools Apache Spark for quick identification malicious traffic and for big
data. Furthermore, this system utilized a network of stack auto encoder (SAE), sub-
sequently an SVM classifier. For an underlying extraction of feature, the SAE was
used. This methodology had four stages, known as, data preprocessing stage, decision-
making stage, latent feature extraction stage, and attack classification stage. The stage
of data preprocessing was the responsible for the preprocessing of data for making it
ready for the extraction of feature.

Andresini et al. [6] established an auto encoder-based deep metric learning for
network intrusion detection and the invented intrusion detection strategy evaluates
the flow-based characteristics of the data of network traffic. The model of intrusion
detection was learned by influencing a deep metric learning approach, which initially
united the triplet networks, as well as auto encoders. Two distinct auto encoders were
trained in the training stage on historical normal network flows, as well as attacks
correspondingly. After that, a triplet network was trained for learning the inserting of
the network flows’ feature vector demonstration.
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3.2 Novel machine learning-based techniques

The novel machine learning-based techniques utilized in intrusion detection are
demonstrated in this section.

Kaja et al. [7] discovered a new two-stage intelligent IDS for the detection and
protection of systems from such malicious attacks. Four preprocessing steps were
performed in this method. Initially, the variance of values of feature was calculated for
calculating the increase between features present in the dataset. The correlated fea-
tures are estimated and eliminated in the second step of preprocessing in order to
avoid overfitting. The third step utilized least square regression error (LSQE) to
maximize the reduction of dimensionality and to minimize similarities of feature. At
last, for analyzing relationships of feature, the maximal information compression
index (MICI) was utilized.

Jin et al. [8] implemented a Bayes system based on light gradient boosting
machine (light GBM) and parallel intrusion detection mechanism. The developed
IDS was called as Swift IDS, which had the ability of both investigation of
enormous data of traffic in speedy networks well-timed along with maintenance
of reasonable performance of detection. The abovementioned goals were
achieved by Swift IDS through two approaches. Light GBM was adopted in one
approach as the algorithm of detecting intrusion for the management of enormous
traffic data.

Sarker et al. [9] presented a machine learning-based security model namely, intru-
sion detection tree (IntruDTree). In this approach, initially, the security features
ranking was considered in accordance with their significance in modeling. Afterward,
a comprehensive model of intrusion detection based on a tree was constructed on the
basis of the chosen significant features. After completing the construction of the entire
tree by means of the integrating security data, the test data was utilized for authenti-
cate the model.

Injadat et al. [10] developed a multistage optimized machine-learning framework
for network intrusion detection. The effect of oversampling methods on the training
model size of the models was studied initially and the least reasonable training size for
successful intrusion identification was determined. This article suggests a multi stage
enhanced machine learning-based NIDS structure, which decreases computational
difficulty while keeping up with its performance of recognition. The stage of data
preprocessing includes the process of normalization of data utilizing the Z-score
strategy in addition to minority class oversampling by the usage of synthetic minority
oversampling technique (SMOTE) algorithm.

Bertoli et al. [11] illustrated an end-to-end framework for machine learning-based
NIDS. The AB-TRAP architecture was described in this paper, which enabled the
application of updated network traffic, as well as think about the operational
worries for enabling the entire employment of the resolution. The utilized AB-TRAP
was a framework had five steps, comprising of the creation of the attack dataset,
implementation of the models, the bonafide dataset, training of machine learning
models, and the evaluation of performance of the recognized model following
employment.

3.3 Hybrid techniques in IDS

The hybrid learning-based techniques exploited in intrusion detection are demon-
strated in this section.
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Jiang et al. [12] established a network intrusion detection algorithm combined
hybrid sampling with deep hierarchical network for the improvement of detection
accuracy. Two parts were included in the hybrid sampling. At first, for the elimination
of noise samples in the mainstream class, the one side selection (OSS) algorithm was
utilized. Next, the SMOTE was employed for creating the minority class samples in
order to lighten the imbalance of samples of minority class. Therefore, for the classi-
fication, the imbalanced data was converted into balanced data. Deep hierarchical
network was constructed for the difficulty of data features, which train the CNN in
addition to bi-directional long short-term memory (Bi-LSTM) when learning the
temporal and spatial feature of network traffic data.

Cavusoglu [13] implemented a new hybrid approach for intrusion detection using
machine learning methods. The developed IDS used a mixture of various feature
selection, as well as machine learning-based methods for offering high performance
intrusion discovery in several types of attacks. The first step of this technique was data
preprocessing, then the dataset’s size was decreased by utilizing various feature selec-
tion algorithms. For feature selection, two novel methods were introduced. By the
determination of suitable machine learning algorithms according to type of attack, the
layered architecture was generated. This approach had low false positive rates and
high accuracy in every form of attacks.

3.4 Deep learning-based approaches

The techniques on the basis of deep learning utilized in recognition of intrusion are
demonstrated in this division. This section is again classified into three as follows:

3.4.1 CNN-based techniques

The CNN learning-based methods employed in intrusion detection are demon-
strated in this division.

Tang et al. [14] developed a deep learning method for network intrusion
detection in software-defined networking (SDN). In the established framework,
the module of NIDS was established in the controller. The entire open flow
switches were monitored by the SDN controller and called all network information
when required; hence, the benefit of this global network was taken by the NIDS
module for the detection of intrusion. After a fixed time window, a request message
was sent to the entire open flow switches from the controller for requesting the
network information.

Wu et al. [15] introduced an original intrusion detection model for a huge network
using CNN. So as to involuntarily choose traffic features from raw dataset the CNN
was utilized and the cost function weight coefficient of each category was set on the
basis of its numbers for solving the problem of unprovoked dataset. Standard datasets
were utilized by this approach for assessing the performance of the developed CNN
model. The raw format of traffic vector was altered into image format in order to
condense the cost for calculation. This method reduced the false alarm rate and
improved the calculation cost and accuracy.

3.4.2 DNN-based method

The DNN learning-based methods exploited in intrusion detection are demon-
strated in this division.
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Vinayakumar et al. [16] presented a deep-learning approach for and intelligent
IDS. This method utilized deep learning network (DNN) for designing an effective
and flexible IDS for detecting and classifying unexpected and unknown cyber-attacks.
The summary and high-dimensional feature demonstration of the IDS information are
learned by sending them into several hidden layers. Moreover, this approach took up a
multilayer perceptron (MLP) model that was a form of feed-forward neural (FFN)
network consisting three or more than three layers with one output layer, one or more
hidden layer, and one input layer wherein every layer had a lot of units or neurons in
mathematical notation.

Gao et al. [17] explored an adaptive ensemble machine learning model for intru-
sion detection in which the advantages of every algorithm for various form of data
detection was integrated, and optimal results are achieved through ensemble learning.
The benefit of ensemble learning was merging the guesses of various fundamental
estimators to enhance the robustness and generalize ability over a distinct estimator. A
few widespread algorithms are utilized in this approach such as DNN, decision tree,
and random forest to train this model. Also, the adaptive voting and multi-tree
algorithm are developed in order to enhance the consequence of intrusion detection. It
was found from the comparison with various existing methods; this method was
superior to many former research outcomes and had good application prospects.

3.4.3 Other techniques

The other deep learning-based techniques utilized in intrusion detection are dem-
onstrated in this section.

Otoum et al. [18] developed deep learning-based intrusion detection in the super-
vising of critical infrastructures through sensor networks. The main intention of this
research is to examine the prospective of deep learning as a substitute for IDS based on
robust machine learning. A restricted Boltzmann-based Clustered IDS (RBC-IDS)
model was presented for a deep learning solution for detecting intrusion in critical
network applications based on wireless sensor network.

Yang et al. [19] introduced a joined wireless network intrusion detection model in
view of deep learning. The deep belief network (DBN) was involved in this approach
as the layer of feature extraction and support vector machine (SVM) characterization
layer. DBN layer, the error backpropagation algorithm, and the contrast divergence
algorithm were utilized to decrease aspects of information and extort features. It
assisted SVM for enhancing the capability to categorize high-dimensional informa-
tion. Contrasted with the preceding forward proliferation, this approach changed the
credence of the multi-restricted Boltzmann machine (RBM) with the back-
propagation algorithm. The recognition model was prepared and laid out with the
SVM to keep on enhancing the interruption. The classification performance of DBN
was efficiently progressed by this approach. Thus, the precision rate, recall rate, and
accuracy rate of this approach were superior to other methods.

Wu and Guo [20] introduced a hierarchical deep neural network for network
intrusion detection namely, LuNet, which was made up of numerous levels of merged
recurrent convolution sub-nets. The input data at every level was learned by RNN and
CNN nets. The granularity of learning turned into increasingly detailed, as progress of
the learning from the first level to the last level. With an understanding, the synergy
of both RNN and CNN was efficiently utilized for the of both temporal and spatial
feature extractions. By means of an in-depth examination and conversation for the
arrangement of LuNet, high learning efficiency was attained by this method.
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Khan et al. [21] presented a novel two-stage deep learning (TSDL) model, in view
of a stacked auto-encoder with a soft-max classifier, for effective network intrusion
identification. Two decision stages are involved in this model. This model varies from
preceding models as it comprised two stages of feature representation. Feature repre-
sentation was learned by the primary stage for characterizing typical and unusual
network traffic with a possibility score value.

Sohi et al. [22] presented a recurrent neural network-based IDS, namely RNNIDS
to catch complex designs in attacks and generate like ones. Initially, by the application
of a new method, the generation of mutants of a malware was demonstrated, and this
was the first step of this approach. This approach depends on the truth that an
unknown pattern could be learned and extorted by a RNN. On the basis of this truth,
new and unseen sequences were generated.

Zeng et al. [23] invented a deep learning-based network encrypted traffic classifi-
cation and intrusion detection framework for detecting intrusions. The developed
architecture was named as Deep-Full-Range (DFR), and it had three deep-learning
algorithms such as CNN, LSTM, and SAE. The CNN was used for learning features of
the raw traffic from spatial range. The features were learned from the time-related
aspect by the use of LSTM. The SAE was taken for extracting features from coding
characteristics.

4. Proposed adaptive dolphin atom search optimization-based DRNN for
network intrusion detection system

The main challenges in network security are the development of efficient and
robust NIDS. Although the significant developments in NIDS technology, the majority
of solutions are still functioning by less capable signature-dependent techniques as
opposed to anomaly detection approaches. The recent situation reaches a point,
whereby reliance on such techniques leads to unsuccessful and inaccurate analysis.
These challenges are utilized to create a widely-accepted anomaly detection (AD)
technique capable of overcoming limitations caused by the ongoing changes happen-
ing in modern networks. NIDS is composed of data gathering, attribute extraction,
attribute selection, IDS, and report generation. Every component in IDS have own
impacts and functions, which are not noticed. There are three major limitations exist
in IDS, where the contribution of this ID system is related to these limitations. First
challenge relies on the enormous quantity of network information, and this issue can
be handled using developing technique, which evaluates the data in an efficient
manner. Second challenge is granularity and depth observing required for boosting up
efficiency. Third limitation relies on quantity of distinct protocols and enormous
quantity of data communication through traditional networks that commence large
levels of intricacy and complexity. This augments the complexity for evaluating an
exact scope of potential implementation or zero-day attacks [24].

Machine learning (ML) techniques are enormously adapted for recognizing dis-
tinct categories of attacks, and ML technique assists the system supervisor acquire the
respective measures for preserving intrusions. Nevertheless, majority of conventional
ML techniques be owned by superficial learning, which cannot successfully evaluate
the issue of enormous intrusion information [25]. These limitations arise in the fea-
tures of real system in application background. The invention of multi-classification
process diminished accuracy with effective development of dataset. Additionally,
superficial learning is inappropriate to knowledge-based analysis and broadcasting
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necessities of elevated dimensional learning accompanied with enormous data. In
contrast, deep learners have ability for extracting better illustration from review data
for generating better learning schemes. Consequently, IDS has familiarized rapid
improvement after diminishing into moderately slow period [26]. Though, majority of
traditional ML techniques related to superficial learning and regularly emphasize
selection and feature engineering [27]. The innovations of deep learning (DL) tech-
niques employ a rapid improvement in the recent period, which gives an improve-
ment for detecting the new IDS. Recurrent neural network (RNN) plays a significant
function in enhancement of DL techniques in the domain of language processing,
translation, image depiction, human behavior identification, and semantic realization
[6]. Since, DL approaches contain potential for identifying better illustrations from
the information for creating much better schemes and inspired by RNN [28].

The main aspire of research is the detection of intrusions exist in the network using
DASO-based deep RNN. Initially, input image is fed into the feature selection using
mutual information in which the relevant features are selected. Then, the selected
features are forwarded to the ID module in which the process is done by deep RNN.
The deep RNN is trained using adaptive DASO algorithm for predicting whether it is
intruder or not.

Proposed model: The main contribution of the research is development of adaptive
DASO-based deep RNN for intruder detection. The Adaptive DASO is utilized to train
the DRNN for predicting whether the network is intruder or not.

4.1 Developed adaptive DASO-based DRNN for NIDS

NIDS is the efficient method for preserving the computer networks from malicious
threats and attacks. Different ID methods are adapted to predict the behavior of
malicious activities, but an accurate detection of intrusion exist in the network system
offers a major challenge. To deal with this challenge, an effective optimization
method, named adaptive DASO-based DRNN is developed for identifying intrusion
behavior in the network. The developed optimization scheme completes ID approach
using two stages such as feature selection and ID. Initially, input data is gathered from
ID dataset, and then it is forwarded to the feature selection steps, where the relevant
features are selected using mutual information. Once the suitable features are
selected, the intrusions are detected using DRNN, where the weight of the classifier is
trained using developed Adaptive DASO algorithm for predicting the malicious
behavior. Adaptive DASO algorithm is designed by including adaptive concept with
the integration of DE and ASO. Figure 1 shows the schematic illustration of
developed model.

4.2 Get the input data

Let us choose the database as F with x number of network intrusion data D, which
is depicted as,

F={D,D,, ..,D,, ..D, } 1)

where, D depicts the intrusion data, F indicates the database, and D, demonstrates
the intrusion data situated at p” index. From the intrusion dataset, intrusion data of
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Figure 1.
Schematic illustration of developed model for ID.

input network D, is considered and is permitted to feature selection module for
performing ID process.

4.3 Selection of features through mutual information

The input data D, is gathered from database and is fed to the feature selection
stage, where the important features are successfully extracted to reduce the dimen-
sionality of data. Here, the feature selection module is modeled using theory of mutual
Information [29], which is employed to overcome the nuisance of dimensionality in
prediction of malicious system. The motive of feature selection is to extract the
relevant features suitable for identifying the behavior of intrusions. Mutual informa-
tion establishes the relation among class label and features that are sampled simulta-
neously for predicting the relevant features. According to information theory [30],
the mutual information among two constraints is nothing if and only if two con-
straints are statistically autonomous. Joint distribution of mutual information among
two features S, and class label T is evaluated as,

L(S,T) =YY L(s,t)log LL(S;;) )

seS teT (S) (t)

L(S) and L(T) depict borderline distributions of S and T formed through margin-
alization approach. Here, S shows the features, and T shows the labels of class. Finally,
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the features are chosen by the mutual information theory are represented as S and
expressed by,

S = {S1,52, ...Sms . Su} (3)

Here, S, indicates the total count of features, and S,, depicts the m™ feature. The
output attained from the mutual information theory can be either normal or abnormal
behavior, which is considered based on threshold value for choosing the features [31].
The relevant features selected using mutual information are denoted as S with the
dimension of [1 x n]. Furthermore, the features chosen from feature selection are fed
to the input of deep RNN for performing ID process.

4.4 ID using developed adaptive model

NIDS is performed using developed adaptive model. The developed Adaptive
DASO is constructed by combining DE and ASO with adaptive concept. The deep
RNN classifier takes feature S as input obtained from feature selection module and
initiates intrusion detection process with the hidden layers of neural network. Fur-
thermore, the developed Adaptive DASO is employed for training the weights of
classifier for achieving optimal performance [32].

4.4.1 Structure of DRNN

Deep RNN uses the information from the feature selection tool to do its work. It
has three levels, including the input layer, the hidden layer, and the output layer. In
neural network design, the input layer is at the top and the output layer is at the
bottom. The hidden layer is in the middle. The output pattern of the last layer is fed
into the first layer of the next layer, and so on. The repeating link is only made
between levels that are hidden. Deep RNN classifier is better because it takes less time
to learn the data. The system design of deep RNN is depicted in Figure 2.

The organization of DRNN classifier is formed by picking the input vector of i**
layer at jthtime as S#) = {S;i’j) , Sé"’f) > S<3i’j>, S;:’j) 5 aees Sﬁf’j)} and output vector of i layer
at jth time as R/ = {Rgi’j),Rg’j),R(;’j), ...R;li’j), ,REf’j) }, respectively. & represents arbi-

trary unit number of i"layer, and # species the total count of units of i” layer. More-

over, the arbitrary unit number, total number of units of (i — 1) layer is indicated as i
and j, respectively However, the elements of the input vector are demonstrated as,

q n
1] i i—1, i ij—1
W:Z%@m+zm@/> (4)
z=1 14

where, #,_ and u! , are the elements of G¥ and g¥). Arbitrary unit number of i** layer

is represented as i’ The elements of the output vector of i’ layer are expressed as,

R,(;’j) — 0 (Ss‘,j)) (5)
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Figure 2.
System design of deep RNN classifier.

where, 7 depicts the activation function. After assessing the output vector, the
look becomes

R — (Gi RU-1) 4 pORE) (6)
Here, R indicates the output of classifier.

4.4.2 Training process of Deep RNN using adaptive DASO algorithm

The DRNN classifier is trained using developed Adaptive DASO. The developed
Adaptive DASO is formed by including adaptive concept with the integration of DE
and ASO. The ASO method is developed using the attraction and repulsion behavior of
atoms. Every atom interacts with other atoms using attraction behavior and repulses
the premature and over-concentrated atoms using repulsion properties. On the other
hand, the DE method is introduced for enhancing the security of detection using the
behavior of dolphins. DE method investigates the large space of candidate solutions,
and it is performed till the global solution is achieved. The mixture of DE and ASO
scheme, called as DASO technique, that offers best solution to solve optimization
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issues; however, this method consumes more computational time. Hence, in this
research adaptive concept is included with DASO method for obtaining less compu-
tational time.

Solution encoding: The developed optimization is employed to estimate the opti-
mal solution and reduced the error rate for NIDS-based on fitness measure. However,
the implementation steps engaged in the developed adaptive model are summarized
as below:

4.4.2.1 Population initialization
Let v be the number of atoms and the position of 4" atom is depicted as,
L= 1[I}, ... I5);d = [1, ...,]] 7

where, I% denotes the a™ position component of 4™ atom.

4.4.2.2 Fitness function

Fitness function is evaluated by estimating the variation of predicted output and
classifier output, and the less error value is selected as the best solution, which is
expressed as,

(8)

O —

2
[Z 6 R
s=1

IR

where, o, indicates the fitness value of d” atom, R®/) depicts the classifier output,
and ¢,denotes the predicted output.

4.4.2.3 Mass computation

Atom mass is estimated using fitness function and mass of @ atom at /™ iteration
is specified as,

M.(f) — —%d () (9)
D=5 i)

where, M, (f) indicates the mass, and the term ¢,(f) is expressed as,

ea(f) = 9d — Obest (10)

@Cworst —Obest

where, the terms oy, and 60, specifies the best and worst value, and the expres-
sion is depicted as,

Opess = Min oy (11)
d=1, ..,1

Oworst = p max oy (12)

=1, ...,1
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4.4.2.4 Evaluate neighbor

The exploration of initial iteration is enhanced by selecting the N neighbors, which
is based on the fitness value of interactions between atoms. The expression for N is
depicted as,

N(f)=1-(1-2) ]Z; (13)

4.4.2.5 Calculate the total force and constraint force

The summation of overall component that performed on the d” atoms from
neighboring atoms is specified as total force, and the expression given by,

=Y rand Q4 (f) (14)

5€Npest

where, Q% (f) indicates the force, and the term rand; specifies the random number
and varies from 0 to 1, respectively. Every atom in the population space behaves as the

best atom along with the constraint force of 4™ atom is expressed as,

2(f) = H(f) (I () — 14(f) (15)

where, H(f)) indicates the lagrangian multiplier.

4.4.2.6 Estimate the acceleration

The acceleration of 4" atom at fth time is calculated as,

Qi) | %)
) = 8 TG (16)

where, Qj(f) is the total force, A5(f) is the constraint force, Mj(f) indicates the
mass, and A (f) indicates acceleration of d™ atom at f™ time.

4.4.2.7 Renew the velocity

The velocity of d™ atom at f + 1iteration is expressed as,
9(f +1) = rand; Vi(f) + A5(f) 17)

where, rand," indicates the random number, and Aj(f) specifies the acceleration.

4.4.2.8 Update the atom location

The final updated equation of DASO algorithm is given as follows.
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rand, (2 x (ca(f)® - (ca)|

@My (f) Li(f) +rand,; V4(f) 71”(1 7%)36# >

Lf+1) = — $ € Npest Ma(f)
0uMy(f) —Ze= | (I(f) — Ta(f)) —Ze%ofld(f) + Wulf) + @1y — 01ala(f)
L) 02aMu(f)

(18)

where, M,(f) specifies the mass of d” atom, V,(f) is the velocity, Z indicates the
multiplier weight, y specifies the depth weight, a shows the maximum iteration, W,
signifies the search space dimension, J; depicts the personal best solution, and ®;,; and
@y, are the random number that lies between 0 to 1.

In equation, the term y is made adaptive for better performance of intrusion
detection. The expression y is given by,

W= W 7f(l//max _ ll/min) (19)
a
where, a signifies the depth weight, which is made adaptive, y,, and y,, depicts
the predefined max, and min value of y and « signifies the highest iteration. Algo-
rithm 1 states the pseudocode of the developed adaptive model.

4.4.2.9 Re-compute the fitness

Fitness value is predicted using objective function, which is mentioned in Eq. (8),
where the fitness with optimal value is selected as optimal solution.

4.4.2.10 Termination

The abovementioned iteration is repeated until the stopping criteria are reached.
The pseudocode of developed adaptive DASO-based deep RNN techniques is specified
in Algorithm 1.

Algorithm 1. Pseudocode of the developed adaptive model.

Sl no Pseudocode of the developed adaptive model

Input: I;

Output: I5(f + 1)

1 Initiate the set of atoms I and the velocity V
2 While termination criteria are not satisfied
3 Do

4 Evaluate o

5 if (Gd < abm)then

6 Obest = Od

7 Ipey =1y
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Sl no Pseudocode of the developed adaptive model
8 End if

9 Calculate M, (f)

10 Determine N neighbors

1 Compute Qj(f) and 45(f)

12 Calculate Aj(f)

13 Update Vi(f +1)

14 Location update of atom I} (f + 1)using Eq. (18)
15 Introduce adaptive concept in place of y = ., _M
16 End for

17 End while

18 Return I,

By including the Adaptive concept with ASO and DE provides enhanced optimal
result, and the computation time is also reduced. The performance of intrusion detec-
tion is also enhanced by including the adaptive concept within the hybrid optimiza-
tion algorithm.

5. Results and discussion

The results of developed adaptive model are briefly discussed in this area in terms
of sensitivity, accuracy, and specificity.

5.1 Experimental setup and dataset description

The developed adaptive model is executed in Pythontool using NSL-KDD dataset
[33], and BoT-IoT dataset [34]. Dataset-1 includes multiple information for solving
the optimization troubles such that this information is reasonable. The Dataset-2
comprises the source files with different formats such as CSV files, argus files, and
pcap files. However, these files are partitioned based on the kind of attacks.

5.2 Evaluation parameters

The performance parameters utilized for the analysis of intrusion detection in the
proposed adaptive model are sensitivity, accuracy, and specificity.

5.2.1 Sensitivity

The sensitivity is the proportion of true positive (TP) to the addition of TP and
false negative (FN). The sensitivity is expressed as,

P
Sensitivity — ﬁ (20)
F T
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5.2.2 Accuracy

The accuracy is the degree of proximity between predicted and original value. The
accuracy is expressed as,

Accuracy = Nt + Pr
Y = Pr+Np+Pr+ Ny

(21)

5.2.3 Specificity

The specificity is the proportion of true negative (TN) to the addition of false
positive (FP) and true negative (TN). The specificity is termed as,

N
Specificity = lﬁ (22)
T+ Pr

where, Pr, Pp, N7 and Ny represented the true positive, false positive, true nega-
tive, and false negative, respectively.

5.3 Comparative methods

The performance of the developed method is analyzed by comparing developed
method with the other state-of-the-art techniques, such as DBN [1], CNN [13], as well
as DSAE [14], respectively.

5.4 Comparative analysis

This part talked about how the developed adaptive DASO-based DRNN with
dataset-1 and dataset-2 were compared.

5.4.1 Analysis using dataset-1

Figure 3a shows how accuracy can be looked at by changing the training data. For
60% of training data, the accuracy of the newly created adaptive model is 0.8856,
while the accuracy of the currently used methods, such as DBN, DSAE, CNN, and
DASO-based DRNN, is 0.8290, 0.8224, 0.8056, and 0.860317, respectively. The per-
formance of the adaptive DASO-based deep RNN was improved by 6.39354%,
7.1329%, 9.0376%, and 2.8613% when compared to state-of-the-art methods such as
DBN, DSAE, CNN, and DASO-based deep RNN.

Figure 3b shows how the sensitivity and training data were looked at. The created
adaptive model has a sensitivity of 0.9849, while the training data is 70%. With
existing methods, such as DBN, DSAE, CNN, and DASO-based deep RNN, the sensi-
tivity values are 0.9362, 0.9230, 0.89, and 0.9779. The performance of the adaptive
DASO-based deep RNN was improved by 4.94251%, 6.2823%, 9.64145%, and 0.7154%
when compared to state-of-the-art methods such as DBN, DSAE, CNN, and DASO-
based deep RNN.

Figure 3c shows how the precision of training data was tested. With 80% of the
training data, the created adaptive DASO-based deep RNN gets a specificity value of
0.9754. Existing methods such as DBN, DSAE, CNN, and DASO-based deep RNN get
specificities of 0.7394, 0.8969, 0.9174, and 0.9611. The performance of the developed
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Figure 3.
Comparative analysis using dataset-1, (a) accuracy, (b) sensitivity, and (c) specificity.

adaptive DASO-based deep RNN was found to be better than state-of-the-art methods
such as DBN, DSAE, CNN, and DASO-based deep RNN by 24,193%, 80,476%,
59,513%, and 14,712%, respectively.

5.4.2 Analysis using dataset-2

Figure 4a shows how the accuracy of the training data was compared to the
accuracy of the test data. For 60% of the training data, the accuracy of the adaptive
model is 0.9767, while the accuracy of DBN, DSAE, CNN, and DASO-based DRNN is
0.9305, 0.9329, 0.9388, and 0.956087, respectively. When comparing the developed
adaptive model to state-of-the-art methods such as DBN, DSAE, CNN, and DASO-
based deep RNN, the performance improvement is 4.7341%, 4.4860%, 3.8829%, and
2.1169%, respectively.

Figure 4b shows how the sensitivity analysis is done with the training data. For
70% of training data, the developed adaptive DASO-based deep RNN gets a specificity
value of 0.9894, while existing methods such as DBN, DSAE, and CNN get values of
0.9560, 0.9238, 0.9280, and 0.9821 for sensitivity. When comparing the developed
adaptive DASO-based deep RNN with the most advanced methods, such as DBN,
DSAE, CNN, and DASO-based deep RNN, the performance improvement is 3.3776%,
6.6318%, 6.2063%, and 0.7416%, respectively.
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Figure 4.
Comparative analysis of dataset-2, (a) accuracy, (b) sensitivity, and (c) specificity.

Figure 4c shows how sensitivity is tested and how training data is used. When the
training data is 80%, the developed adaptive model has a sensitivity of 0.8513. On the
other hand, existing methods like DBN, DSAE, CNN, and DASO-based deep RNN
have specificities of 0.7370, 0.8178, 0.8041, and 0.8255. When comparing the devel-
oped adaptive DASO-based deep RNN with the most advanced methods, like DBN,
DSAE, CNN, and DASO-based deep RNN, the performance improvement was found
to be 13.4295%, 3.9380%, 5.539%, and 3.02870%, respectively.

5.5 Comparative discussion

Table 1 shows a comparison of the adaptive model that has been created. Using
dataset-1 as an example, the accuracy of the current DBN, DSAE, CNN, and DASO-
based deep RNN is 0.8479, 0.8245, 0.8094, and 0.9180, while the accuracy of the
proposed adaptive model is 0.93679, which is better. With dataset-1, the DBN, DSAE,
CNN, and DASO-based deep RNN each got a sensitivity of 0.9364, 0.9281, 0.89, and
0.9788, but the suggested adaptive model did better, getting a sensitivity of 0.9851.
With dataset-2, the accuracy of the existing DBN, DSAE, CNN, and DASO-based
DRNN is 0.9512, 0.9735, 0.9552, and 0.9822, respectively, while the accuracy of the
suggested adaptive model is 0.9854. With dataset-2, the specificity of the existing
DBN, DSAE, CNN, and DASO-based deep RNN is 0.7370, 0.8178, 0.8041, and
0.82557, respectively, while the specificity of the suggested adaptive model is 0.8513.
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Metrics/methods DBN DSAE CNN DASO-based Proposed adaptive
deep RNN model
dataset-1 Accuracy 0.847976 0.824557 0.809486 0.918039 0.936790
Sensitivity 0.936468 0.928132 0.890000 0.978848 0.985166
Specificity 0.739464 0.896963 0.917412 0.961113 0.975465
dataset-2 Accuracy 0.951206 0.973579  0.955279 0.982288 0.985469
Sensitivity 0.961222 0.963585 0.935414 0.983639 0.990000
Specificity 0.737022 0.817828 0.804192 0.825570 0.851355
Table 1.

Comparative discussion.

6. Conclusion

In this paper, a novel network ID mechanism named adaptive DASO-based deep
RNN is developed to predict the abnormal behavior in the network. At first, the data
are obtained from database and send this data to feature selection module using
mutual information, which selects the relevant features. The features selected through
feature selection are based on the threshold value. Once the features are selected,
these features are forwarded to the IDS for predicting the malicious behavior in the
network. The malicious activity is obtained by the developed DRNN, which is trained
using Adaptive DASO algorithm. The Adaptive DASO model is designed by integrat-
ing adaptive concept, DE, and ASO. Although, the combined DA and ASO algorithm
provides better result, but this method consumes high computational time. Thus, the
adaptive concept is introduced with the DASO for reducing computational time. This
algorithm predicts that the behavior of the network is either normal or abnormal. The
weights are accurately measured by the developed Adaptive DASO algorithm through
fitness function. In addition, the developed Adaptive DASO achieved optimal perfor-
mance utilizing the evaluation metrics such as accuracy, sensitivity, and specificity
with the values of 0.9854, 0.99, and 0.8513, using dataset-1. In the future, the
detecting capacity of IDS can be enhanced by using some other optimization
techniques.
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Chapter 6

Anomaly Detection in Intrusion
Detection Systems

Siamak Parhizkari

Abstract

Intrusion detection systems (IDS) play a critical role in network security by
monitoring systems and network traffic to detect anomalies and attacks. This study
explores the different types of IDS, including host-based and network-based, along
with their deployment scenarios. A key focus is on incorporating anomaly detection
techniques within IDS to identify novel and unknown threats that evade signature-
based methods. Statistical approaches like outlier detection and machine learning
techniques like neural networks are discussed for building effective anomaly detection
models. Data collection and preprocessing techniques, including feature engineering,
are examined. Both unsupervised techniques like clustering and density estimation
and supervised methods like classification are covered. Evaluation datasets and per-
formance metrics for assessing anomaly detection models are highlighted. Challenges
like curse of dimensionality and concept drift are outlined. Emerging trends include
integrating deep learning and explainable Al into anomaly detection. Overall, this
comprehensive study examines the role of anomaly detection within IDS, delves into
various techniques and algorithms, surveys evaluation practices, discusses limitations
and challenges, and provides insights into future research directions to advance net-
work security through improved anomaly detection capabilities.

Keywords: anomaly detection, intrusion detection systems (IDS), fraud detection,
cybersecurity, abnormal patterns

1. Introduction

An intrusion detection system (IDS) is a security tool designed to monitor
network or system activities to detect and respond to unauthorized or malicious
activities. It serves as an additional layer of defense in a comprehensive cybersecurity
strategy.

The primary goal of an IDS is to identify and alert security administrators about
potential security incidents, such as unauthorized access attempts, malware infec-
tions, or suspicious network traffic patterns. By analyzing network packets, log files,
system activities, and other relevant data, IDS can help detect and respond to security
threats in real-time.

There are two main types of IDS:

Network-based intrusion detection systems (NIDS) [1-7]: NIDS monitors network
traffic in real-time, analyzing packets to identify suspicious or malicious activity. It
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operates at the network layer and can detect threats such as port scanning, denial-of-
service (DoS) attacks, and network intrusions. NIDS can be deployed as a standalone
device or as part of a network security infrastructure.

Host-based intrusion detection systems (HIDS) [1-7]: HIDS monitors the activities
occurring on individual hosts or endpoints, such as servers or workstations. It analyzes
system logs, file integrity, and user activities to identify unauthorized access attempts,
privilege escalations, or suspicious behavior at the host level. HIDS is particularly
useful for detecting insider threats or malware infections that may bypass network-
based defenses.

IDS employs different detection techniques to identify potential threats:

Signature-based detection [4]: This technique relies on a database of known attack
signatures or patterns. IDS compares the incoming network traffic or system activities
against these signatures to identify known attacks. While effective against known
threats, signature-based detection may struggle with detecting new or zero-day
attacks.

Anomaly-based detection [4-6, 8]: Anomaly detection involves establishing a
baseline of normal behavior for a network or system and then identifying deviations
from this baseline. It analyzes traffic patterns, system performance, user behavior,
and other metrics to detect anomalies that could indicate a potential security breach.

When an IDS detects an intrusion or suspicious activity, it generates an alert or
notification for security administrators. These alerts provide information about the
nature of the incident, the affected system or network, and any additional details to
aid in the response and mitigation process.

It is important to note that IDS is not a standalone solution but works in
conjunction with other security measures like firewalls, antivirus software, and secu-
rity policies. Additionally, intrusion prevention systems (IPS) are often used in con-
junction with IDS to not only detect but also actively block or prevent detected
threats.

In summary, Intrusion Detection Systems play a crucial role in identifying and
responding to potential security incidents in real-time. By monitoring network and
system activities, IDS helps organizations strengthen their overall security posture and
minimize the potential impact of cyber threats.

2. Anomaly detection techniques in IDS

Table 1 shows Anomaly detection techniques with pros and cons.

2.1 Signature-based detection vs. anomaly detection

Signature-based detection, also known as rule-based detection, relies on pre-
defined signatures or patterns of known attacks to identify intrusions. However,
signature-based detection has limitations as it can only detect known attacks for
which signatures have been defined. New or unknown attacks can easily evade
signature-based detection. Anomaly detection techniques, on the other hand, focus on
identifying deviations from normal behavior, without relying on predefined signa-
tures. This makes anomaly detection more effective in detecting unknown or novel
attacks that do not have specific signatures [4, 6, 9]. Figure 1 shows the concept of
signature-based IDS.
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Anomaly Detection Techniques in IDS

Techniques Models

Pros

Cons

Signature- ¢ Pattern * High accuracy for known * Inability to detect New or
based matching attacks unknown attacks
* Protocol * Low false alarm rate ¢ Dependency on signature update
analysis * Easy deployment * Lack of flexibility
* Content ¢ Low computational overhead ¢ Limited coverage
inspection

* Log analysis

Statistical-  * Outlier * Well-established method witha e Limited ability to detect complex
based detection solid theoretical foundation or sophisticated anomalies
* Time series * Suitable for detection simple * Sensitivity to data distribution
analysis anomalies and assumptions
* Statistical * Interpretable results * Difficulties in handling high-
Modeling dimensional data
Machine * Clustering * Ability to handle complex and ¢ Requirement of large labeled
Learning ¢ Classification non-linear patterns training datasets
* Neural * Effective for identifying subtle ¢ Overfitting if no properly tuned
Networks anomalies or validated
* Adaptability to changing » Computationally intensive for
environments complex algorithms
* Can learn from unlabeled or ¢ Black-box nature may lack
partially labeled data interpretability
Hybrid Statistical +  Leveraging the strengths of ¢ Increase complexity and potential
Approaches Machine both statistical and machine for integration challenges
learning learning techniques ¢ Higher computational
methods * Improved detection accuracy requirements
and robustness * Potential trade-off between
* Enhanced ability to handle interpretability and performance
diverse anomalies
Table 1.

Anomaly detection techniques with pros and cons.

2.2 Statistical approaches for anomaly detection

Statistical approaches are commonly employed for anomaly detection in IDS. These
techniques involve the use of statistical methods to establish normal behavior baselines
and detect deviations from these baselines. Outlier detection algorithms, such as the
statistical outlier detection method or the Z-score method, are used to identify data
points that significantly deviate from the expected behavior. Time series analysis tech-
niques, such as autoregressive integrated moving average (ARIMA) models [10, 11], are
used to detect anomalies in temporal data. Statistical modeling approaches, such as
Gaussian mixture models or hidden Markov models, are utilized to capture the statisti-
cal characteristics of normal behavior and detect anomalies based on deviations from the
learned models [4, 5].

2.3 Machine learning approaches for anomaly detection

Machine learning algorithms play a crucial role in anomaly detection for IDS.
These algorithms can learn patterns and behaviors from historical data and apply that
knowledge to detect anomalies in real-time. Clustering algorithms, such as k-means or
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Concept of signature based IDS [4].

DBSCAN, group similar instances together and flag instances that do not fit into any
cluster as anomalies. Classification algorithms, such as support vector machines
(SVM) or random forests, learn from labeled data to classify instances as normal or
anomalous. Neural networks, including deep learning models like convolutional neu-
ral networks (CNN) [9] or recurrent neural networks (RNN) [9], can capture com-
plex patterns and relationships to identify anomalies [12]. Figure 2 shows machine
learning approaches in IDS.

2.4 Hybrid approaches

Hybrid approaches combine both statistical and machine learning techniques to
improve the accuracy and effectiveness of anomaly detection in IDS [4]. By leveraging
the strengths of different approaches, hybrid models can provide enhanced detection
capabilities. For example, a hybrid approach may use statistical techniques to establish
baseline behavior and machine learning algorithms to classify instances as normal or
anomalous. This combination allows for a more comprehensive and robust anomaly
detection system.

3. Data collection and preprocessing in IDS

Data sources for IDS [4, 12].
Intrusion detection systems (IDS) rely on various sources of data to detect anom-
alies and potential security breaches. Some common data sources used in IDS include:

1. Network traffic logs: IDS can analyze network traffic logs to monitor incoming and
outgoing network packets, protocols used, source and destination IP addresses,
ports, and other relevant information. Network traffic logs provide valuable
insights into communication patterns and can help to detect anomalies such as
unusual traffic volumes, suspicious connections, or protocol violations.

2.System logs: System logs record events and activities within the operating system
or specific applications. IDS can analyze system logs to identify abnormal system
behavior, such as unauthorized access attempts, changes to system configurations,
or unexpected system errors. System logs may include information about login
attempts, file access, process execution, or resource utilization.

3.Audit trails: Audit trails capture detailed information about user activities and
actions within a system. They record events such as file access, privilege changes,
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Machine learning approaches in IDS [12].

user authentication, or administrative actions. Analyzing audit trails can help to
identify unauthorized actions, unusual user behavior, or privilege escalation
attempts.

Data preprocessing techniques.

Data preprocessing [13, 14] plays a crucial role in preparing the data for effective
anomaly detection in IDS. Several techniques are commonly used in the
preprocessing stage, including:

1.Data cleaning [14]: Data cleaning involves removing or correcting inconsistent,
irrelevant, or noisy data. This process may include handling missing values,
dealing with outliers, and resolving inconsistencies in the data. Cleaning the
data helps to ensure the quality and reliability of the input data for anomaly
detection.

2.Feature selection [4, 15]: Feature selection aims to identify the most relevant and
informative features for anomaly detection. In IDS, this involves selecting the
attributes or variables that provide the most discriminative information about
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normal and anomalous behavior. Feature selection can help to reduce
computational complexity, improve detection accuracy, and eliminate
redundant or irrelevant features.

3.Normalization [14]: Normalization is the process of scaling data to a common
range or distribution. It ensures that different features are on a comparable scale,
which is essential for certain anomaly detection algorithms that rely on distance
or similarity measures. Normalization techniques include min-max scaling, z-
score normalization, or logarithmic transformations.

4.Dimensionality reduction [16]: Dimensionality reduction techniques aim to
reduce the number of features while preserving the most important information.
High-dimensional data can be computationally expensive and prone to
overfitting. Techniques such as principal component analysis (PCA), linear
discriminant analysis (LDA), or t-distributed stochastic neighbor embedding
(t-SNE) can help to reduce the dimensionality of the data while retaining its
essential characteristics.

4. Unsupervised anomaly detection in IDS

Unsupervised anomaly detection techniques in intrusion detection systems

(IDS) aim to identify anomalies in data without relying on pre-labeled instances of
normal and anomalous behavior [4, 9]. These techniques are particularly useful in
scenarios where labeled training data is scarce or unavailable, making it challenging
to train supervised models. Unsupervised anomaly detection methods utilize
statistical, clustering, or density-based approaches to identify patterns that

deviate from normal behavior. Here are some commonly used unsupervised
anomaly detection techniques in IDS and Figure 3 shows a summary of these

tec
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hniques:

1. Statistical-based techniques: Statistical-based techniques are commonly used for
unsupervised anomaly detection in intrusion detection systems (IDS). As we said
before, these techniques analyze the statistical properties of the data to identify
instances that deviate significantly from the expected behavior. The underlying
assumption is that normal behavior follows a certain statistical distribution, and
any deviation from this distribution is considered anomalous. Here are some
commonly used statistical-based techniques:

¢ Gaussian distribution: The Gaussian distribution, also known as the normal
distribution, is frequently used in statistical-based anomaly detection. It
assumes that the normal behavior of the data follows a bell-shaped curve.
Anomalies are identified as instances that fall outside a specified range or
threshold based on the estimated mean and standard deviation of the data.
Instances that lie in the tails of the distribution, beyond a certain number of
standard deviations from the mean, are considered anomalies.

* Mabhalanobis distance: The Mahalanobis distance measures the distance
between a data point and the center of a distribution, taking into account the
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correlation between variables. It accounts for the covariance structure of the
data and is particularly useful when the variables are correlated. The
Mahalanobis distance can be used to detect anomalies by comparing the
distance of each data point to a threshold value. Points with a large
Mahalanobis distance are considered anomalies.

Z-score method: The Z-score method is a simple statistical technique for
anomaly detection. It calculates the standard deviation from the mean for
each data point and expresses it as a Z-score. The Z-score represents the
number of standard deviations a data point is away from the mean.
Anomalies are identified as data points with a Z-score exceeding a specified
threshold. This method is particularly useful when the data is normally
distributed.

Hypothesis testing: Hypothesis testing is a statistical technique used to
determine the likelihood that an observed deviation from the expected
behavior is due to chance or represents an anomaly. Commonly used
hypothesis tests include the t-test, chi-square test, or Kolmogorov-Smirnov
test. These tests compare the observed data to a reference distribution or
expected behavior and calculate a p-value. If the p-value is below a
predefined significance level, the deviation is considered significant, and the
instance is flagged as an anomaly.
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Statistical-based techniques provide a solid foundation for detecting anomalies
based on deviations from expected statistical behavior. However, it is important
to note that these methods assume the data follows specific statistical
distributions and may not be suitable for data with complex or non-parametric
distributions. Additionally, choosing appropriate thresholds or significance levels
is crucial and requires careful consideration and domain knowledge.

2.Clustering-based techniques: Clustering-based techniques as shown in Figure 4
are commonly used for unsupervised anomaly detection in intrusion detection
systems (IDS). These techniques aim to partition the data into clusters based on
the similarity or density of instances [14, 17]. Anomalies are identified as
instances that do not belong to any cluster or are located far from the clusters.
Here are some commonly used clustering-based techniques:

* K-means clustering: K-means clustering is a popular technique that aims to
partition the data into K clusters. The algorithm iteratively assigns data
points to the nearest cluster centroid based on distance measures such as
Euclidean distance. Anomalies are typically identified as instances that do
not fit well into any cluster or are located far from the cluster centroids.
However, K-means alone may not be sufficient for anomaly detection as it
assumes that all clusters have similar sizes and shapes, which may not hold
true for anomalous instances.

* Density-based spatial clustering of applications with noise (DBSCAN):
DBSCAN is a density-based clustering algorithm that identifies clusters
based on the density of instances [18]. It groups together instances that are
close to each other and have a sufficient number of nearby neighbors.
Anomalies are typically instances that do not have enough nearby
neighbors to form a cluster and are considered noise points. DBSCAN
can effectively identify clusters of different shapes and sizes, making it
suitable for detecting anomalies that do not conform to regular cluster
patterns.

* Ordering points to identify the clustering structure (OPTICS): OPTICS is an
extension of DBSCAN that provides a hierarchical view of the clustering
structure. It orders instances based on their density and identifies core
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Clustering [14].
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points, reachability distances, and clusters. Anomalies are typically
instances that have low density and are located in regions with sparse or no
clusters. OPTICS allows for flexible parameterization, making it more
adaptive to different datasets and providing a richer characterization of the
data structure.

* Hierarchical clustering: Hierarchical clustering methods create a hierarchy
of clusters by successively merging or splitting clusters based on their
similarity. Agglomerative hierarchical clustering starts with each instance as
a separate cluster and iteratively merges similar clusters until a single cluster
is formed. Divisive hierarchical clustering starts with all instances in one
cluster and iteratively splits the cluster into smaller clusters. Anomalies can
be identified as instances that do not fit well into any cluster or do not
conform to the hierarchical structure.

Clustering-based techniques offer flexibility in detecting anomalies by
identifying instances that do not conform to regular cluster patterns. However,
these techniques require careful consideration of parameters such as the number
of clusters or density thresholds, and the interpretation of anomalies may depend
on the dataset and the clustering algorithm used.

3.Density-based techniques: Density-based techniques are commonly used for
unsupervised anomaly detection in intrusion detection systems (IDS). These
techniques focus on estimating the density distribution of the data and identify
anomalies as instances that lie in regions of low density [19]. Here are some
commonly used density-based techniques:

* Kernel density estimation (KDE): Kernel density estimation is a non-
parametric technique used to estimate the underlying density distribution of
the data. It places a kernel function on each data point and sums them to
estimate the density at any given point. Anomalies are typically identified as
instances with significantly lower density values compared to the majority
of the data. The choice of kernel function and bandwidth parameter affects
the smoothness and accuracy of density estimation.

¢ Local outlier factor (LOF): The local outlier factor measures the deviation of
an instance’s density compared to its neighboring instances. It calculates a
local density for each data point based on the distances to its k nearest
neighbors. Anomalies are identified as instances with significantly lower
local densities compared to their neighbors. LOF takes into account the local
density variations in the data, making it robust to varying densities and
useful for detecting anomalies in clusters or regions of different densities.

* Distance-based techniques: Distance-based density estimation techniques
measure the distances between instances and identify anomalies based on
deviations from the expected distance distribution. For example, the nearest
neighbor distance (NND) approach calculates the average distance to the k
nearest neighbors for each instance. Anomalies are identified as instances
with significantly larger or smaller distances compared to the majority of the
data. Distance-based techniques are effective in identifying anomalies that
exhibit unusual distance patterns.
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* Density-based clustering [18]: Density-based clustering algorithms, such
as DBSCAN, can also be used for anomaly detection. These algorithms
identify clusters based on the density of instances and label as anomalies
the instances that do not belong to any cluster. Anomalies are typically
located in regions with low density or as individual points far from the
clusters.

Density-based techniques provide flexibility in detecting anomalies by focusing
on regions of low density or deviations from expected distance patterns. These
techniques are effective in identifying anomalies that do not conform to regular
density distributions or exhibit unusual distance patterns. However, careful
parameter selection, such as the neighborhood size or density thresholds, is
important to ensure accurate anomaly detection.

4.Reconstruction-based techniques [20]: Reconstruction-based techniques are a
class of anomaly detection techniques that aim to reconstruct the normal
behavior of the data and identify anomalies based on the errors or deviations
from this reconstruction. These techniques typically employ autoencoders shown
in Figure 5 or similar models to learn the underlying patterns in the data and use
them to reconstruct or generate the data. Here are some commonly used
reconstruction-based techniques:

* Autoencoder-based anomaly detection: Autoencoders are neural network
models that are trained to reconstruct their input data. They consist of an
encoder that compresses the input data into a lower-dimensional
representation and a decoder that reconstructs the data from this
representation. During training, autoencoders learn to minimize the
reconstruction error by capturing the patterns and regularities in the data.
Anomalies are identified as instances that result in high reconstruction
errors, indicating deviations from the learned normal behavior.

* Variational autoencoders (VAEs): Variational autoencoders are a type of
generative model that learns a low-dimensional representation of the data
and generates new samples by sampling from this learned representation.
VAEs consist of an encoder that learns the parameters of a probability
distribution in the latent space and a decoder that generates samples from
this distribution. Anomalies can be identified based on the reconstruction
error or by measuring the dissimilarity between the original data and the
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Structure of autoencoders [12].
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generated samples. VAEs can capture the underlying distribution of the data
and detect anomalies that deviate significantly from this distribution.

* Generative adversarial networks (GANs) [21]: Generative adversarial
networks are another type of generative model that consists of a generator
network and a discriminator network. The generator network learns to
generate realistic samples that resemble the normal behavior of the data,
while the discriminator network learns to distinguish between real and
generated samples. Anomalies can be identified as instances that are not well
captured by the generator network or are classified as fake by the
discriminator network. GANs can learn complex data distributions and
detect anomalies that differ significantly from the learned distribution.

Reconstruction-based techniques offer the advantage of learning the normal
behavior of the data and identifying anomalies based on deviations from this learned
behavior. They can capture complex patterns and variations in the data, making them
effective for detecting anomalies that do not conform to specific statistical or density
distributions. However, these techniques require a representative dataset of normal
behavior for training the models and may be sensitive to the choice of model archi-
tecture and training parameters.

5. Supervised anomaly detection in IDS

Supervised anomaly detection in intrusion detection systems (IDS) involves train-
ing a model on labeled data, where both normal and anomalous instances are explicitly
identified [4, 9]. The model learns the patterns and characteristics of normal behavior
during the training phase and can subsequently classify new instances as either normal
or anomalous based on the learned knowledge. Here are some commonly used tech-
niques for supervised anomaly detection in IDS:

1.Supervised machine learning algorithms [4]: Supervised machine learning
algorithms, such as decision trees [4], random forests, support vector machines
(SVM), and neural networks, can be applied to train models for supervised
anomaly detection in IDS. These algorithms learn from labeled data, where the
labels indicate whether an instance is normal or anomalous. The trained models
can then classify new instances as either normal or anomalous based on the
learned patterns and decision boundaries.

2.Ensemble methods [4]: Ensemble methods combine multiple models to improve
the accuracy and robustness of supervised anomaly detection. Techniques such
as bagging, boosting, and stacking can be employed to create an ensemble of
models that collectively make predictions. Each individual model may use a
different algorithm or have different parameter settings, and the final prediction
is often determined through voting or averaging. Ensemble methods can
effectively handle complex data distributions and improve the overall detection
performance.

3.Deep learning [9]: Deep learning techniques, such as convolutional neural
networks (CNNs) shown in Figure 6, recurrent neural networks (RNNs) shown
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in Figure 7, and deep autoencoders, have shown promising results in supervised
anomaly detection. These models can learn complex representations of the input
data, capture intricate patterns, and generalize well to unseen instances. Deep
learning approaches require large amounts of labeled data and can be
computationally intensive but can achieve high accuracy in detecting anomalies
in IDS.

4.Feature engineering: Feature engineering plays a crucial role in supervised
anomaly detection. It involves selecting relevant features from the data or
designing new features that can effectively discriminate between normal and
anomalous instances. Domain knowledge and expertise are often employed to
identify informative features that can capture the distinguishing characteristics
of anomalies. Feature engineering techniques, such as dimensionality reduction,
feature selection, and feature transformation, can improve the detection
performance of supervised anomaly detection models.

5.0ne-class support vector machines (SVM): One-class support vector machines
(SVM) is a popular technique for anomaly detection that falls under the category
of supervised learning. Unlike traditional SVMs that are designed for binary
classification tasks, One-class SVM is specifically designed for the task of
learning a model of normal data and identifying anomalies based on deviations
from this model [22]. Here’s how One-class SVM works:

* Training phase: In the training phase, One-class SVM learns a decision
boundary that encloses the majority of the training data points, representing
the normal class. The goal is to find a hyperplane that maximally separates
the normal data instances from the origin or the center of the feature space.

Input layer Output layer
I o
- ] )
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Figure 6.

Structure of convolutional neural network [12].
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Figure 7.

Structure of recurrent neural network [12].
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¢ Decision function: Once the model is trained, the decision function of the
One-class SVM is used to classify new instances as either normal or
anomalous. The decision function assigns a score or distance to each
instance, indicating how well it fits within the learned model. Instances with
positive scores are considered normal, while instances with negative scores
are classified as anomalies.

* Kernel trick: One-class SVM can make use of the kernel trick to handle
nonlinear data distributions. By mapping the input data into a high-
dimensional feature space, the One-class SVM can find a nonlinear decision
boundary that better separates normal instances from anomalies.
Commonly used kernel functions include the radial basis function (RBF)
kernel and the polynomial kernel.

One-class SVM offers several advantages for anomaly detection:
* It can handle data with high-dimensional feature spaces effectively.
* It is robust to outliers in the training data.

* It can capture complex decision boundaries, including nonlinear ones, through
the use of the kernel trick.

* It does not require labeled anomalies for training, as it focuses solely on learning
the normal class.

However, One-class SVM also has certain limitations:

* It may struggle when the normal class exhibits significant variations or when the
normal data distribution is not well-represented in the training set.

* It may be sensitive to the choice of kernel function and its hyperparameters,
requiring careful tuning for optimal performance.

* It does not provide direct probabilistic outputs, making it challenging to interpret
the anomaly scores as probability estimates.

Supervised anomaly detection in IDS offers the advantage of explicitly labeled
data for training and can achieve high detection accuracy. However, it relies on
the availability of accurately labeled training data and may face challenges when
dealing with evolving or previously unseen anomalies. Moreover, supervised
approaches may not capture novel or unknown anomalies that were not present
in the training data.

6. Evaluation and performance metrics in IDS

Evaluation datasets play a crucial role in assessing the performance of anomaly
detection techniques in intrusion detection systems (IDS). These datasets are used to
evaluate how well a detection technique can accurately classify instances as normal or
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anomalous. Several datasets have been widely used in the field of IDS for evaluation
purposes. Here are some commonly used datasets:

* KDD Cup 99 [4, 9]: The KDD Cup 99 dataset is one of the most widely used
datasets for evaluating IDS techniques. It was created for the Third International
Knowledge Discovery and Data Mining Tools Competition held in 1999. The
dataset contains a large number of network connection records generated in a
simulated network environment, with various types of attacks and normal traffic.

* NSL-KDD [4, 9]: The NSL-KDD dataset is an updated version of the original
KDD Cup 99 dataset. It addresses some of the limitations and drawbacks of the
original dataset, such as redundant and irrelevant features. NSL-KDD provides a
more balanced and realistic representation of network traffic data, making it
suitable for evaluating IDS techniques.

e CICIDS2017 [4, 23, 24]: The CICIDS2017 dataset is a recent dataset that was
developed for evaluating IDS techniques in the context of real-world network
traffic. It consists of network traffic data collected from a real network
environment, containing various types of attacks and normal traffic instances.
The dataset offers a comprehensive and diverse set of scenarios for evaluating
IDS performance.

Performance metrics are used to quantitatively measure the effectiveness of
anomaly detection techniques in IDS. These metrics provide insights into the model’s
accuracy, precision, recall, and overall performance. Here are some commonly used
performance metrics:

1. Accuracy [4, 9, 25, 26]: Accuracy measures the overall correctness of the model’s
predictions. It calculates the ratio of correctly classified instances to the total
number of instances. However, accuracy can be misleading in imbalanced
datasets where anomalies are rare.

Accuracy = TP+ TN
Y TP+ TN+ FP+ FN

1)

2.Precision [4, 9, 25, 26]: Precision measures the proportion of correctly identified
anomalies among all instances classified as anomalies. It focuses on the correctness
of positive predictions, indicating the models ability to avoid false positives.

TP

—_— 2
TP + FP )

Precision =

3.Recall [4, 9, 25, 26]: Recall, also known as sensitivity or true positive rate,
measures the proportion of actual anomalies that are correctly identified by the
model. It represents the model’s ability to detect anomalies and avoid false
negatives.

TP

Recall = m

3)
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4.F1-score [4, 9, 25, 26]: The Fl-score is a harmonic mean of precision and recall,
providing a balanced measure of the model’s performance. It considers both false
positives and false negatives and is especially useful when dealing with
imbalanced datasets.

Precision.Recall
_ — 4
f = score Precision + Recall )

5.ROC curve and AUC [4, 9]: The receiver operating characteristic (ROC) curve
illustrates the trade-off between the true positive rate (TPR) and the false
positive rate (FPR) at different classification thresholds. The area under the
curve (AUC) summarizes the performance of the model across all possible
thresholds. A higher AUC indicates better discrimination between normal and
anomalous instances.

These performance metrics help in evaluating the accuracy, effectiveness, and

reliability of anomaly detection techniques in IDS.

7. Challenges in anomaly detection for IDS
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1. Curse of dimensionality [27]: The curse of dimensionality refers to the
phenomenon where the effectiveness of certain algorithms and techniques
deteriorates as the dimensionality of the data increases. In the context of
intrusion detection systems (IDS), the curse of dimensionality poses a significant
challenge for anomaly detection.

Anomaly detection in IDS often involves analyzing high-dimensional data, such
as network traffic logs, system logs, or audit trails. Each data instance is typically
represented by a large number of features or attributes that describe various
aspects of the network or system behavior. However, as the number of features
increases, the available data becomes increasingly sparse in the high-dimensional
space.

The curse of dimensionality has several implications for anomaly detection in
IDS:

* Insufficient data: As the number of dimensions (features) increases, the
amount of available data decreases exponentially. In other words, the data
becomes sparse, and the number of instances representing normal and
anomalous behavior becomes limited. This scarcity of data can lead to poor
generalization and inaccurate anomaly detection.

* Increased complexity: With a high number of dimensions, the complexity of
the anomaly detection problem also increases. Anomaly detection
algorithms may struggle to effectively capture patterns and relationships
among the features, leading to decreased detection accuracy.

* Increased computational cost [28]: The computational cost of processing
high-dimensional data is significantly higher than processing data with a



Anomaly Detection — Recent Advances, Al and ML Perspectives and Applications

130

lower dimensionality. Anomaly detection algorithms may require more
computational resources and time to analyze and classify instances
accurately, affecting the real-time performance of IDS.

To mitigate the curse of dimensionality in IDS, various techniques can be
employed:

* Dimensionality reduction: Dimensionality reduction methods aim to reduce
the number of features while preserving the most relevant information.
Techniques such as principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) can be used to reduce the
dimensionality of the data, making it more manageable for anomaly
detection algorithms.

* Feature selection: Feature selection techniques help to identify the most
informative and discriminative features that contribute to anomaly
detection. By selecting a subset of relevant features, the curse of
dimensionality can be alleviated, reducing computational complexity and
improving detection accuracy.

* Feature engineering: In addition to dimensionality reduction and feature
selection, feature engineering involves transforming or creating new
features that better represent the underlying characteristics of normal and
anomalous behavior. This process can help to extract more meaningful
information from the high-dimensional data and enhance the performance
of anomaly detection algorithms.

Overall, addressing the curse of dimensionality in IDS requires careful
consideration of data representation, feature selection, and dimensionality
reduction techniques. By reducing the dimensionality of the data and
focusing on relevant features, anomaly detection algorithms can be more
effective in accurately identifying anomalies in high-dimensional data.

2.Concept drift [29, 30]: Concept drift refers to the phenomenon where the

underlying data distribution, which defines what is considered normal or
anomalous, changes over time. In the context of intrusion detection systems
(IDS), concept drift poses a significant challenge for anomaly detection.

In IDS, anomaly detection models are trained on historical data to learn

patterns of normal behavior and identify deviations from those patterns as
anomalies. However, the characteristics of network traffic and system behavior
can evolve over time due to various factors such as changes in network
infrastructure, software updates, and emerging attack techniques. As a result, the
learned model may become outdated and less effective in detecting new types of
anomalies.

Concept drift in IDS can occur in different forms:

* Gradual concept drift: In gradual concept drift, the change in the underlying
data distribution is relatively slow and progressive. The statistical properties
of the data gradually shift over time, leading to a gradual degradation in the
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performance of the anomaly detection model. This type of concept drift
requires continuous monitoring and adaptation of the model to maintain its
effectiveness.

* Sudden concept drift: In sudden concept drift, the change in the underlying
data distribution occurs abruptly and unpredictably. This can happen due to
sudden changes in network conditions, system configurations, or the
introduction of new attack techniques. Sudden concept drift poses a
significant challenge as the model needs to quickly adapt to the new data
distribution to accurately detect anomalies.

Addressing concept drift in IDS is essential to maintain the effectiveness of
anomaly detection over time. Several techniques can be employed:

* Online learning: Online learning approaches allow the anomaly detection
model to continuously adapt to new data as it arrives. By updating the model
with each new data point or in small batches, online learning can capture
and respond to concept drift in real-time. Techniques such as incremental
learning, ensemble methods, and adaptive models can be used to achieve
online learning.

* Change detection: Change detection techniques monitor the statistical
properties of the data and detect significant changes that indicate concept
drift. By periodically comparing the current data distribution with the
historical distribution, these methods can trigger model retraining or
adaptation when a significant change is detected. Statistical methods like
control charts, cumulative sum (CUSUM), and change point detection
algorithms can be used for change detection.

* Ensemble methods: Ensemble methods combine multiple anomaly
detection models or algorithms to improve detection performance and
resilience to concept drift. By aggregating the decisions of multiple
models, ensemble methods can adapt to changing data distributions
and make more robust anomaly predictions. Techniques like
ensemble averaging, boosting, and stacking can be applied to create
ensemble models.

It is important to note that concept drift detection and adaptation in IDS is an
ongoing research area, and the development of effective techniques to handle
concept drift remains an active research topic.

3. Adversarial attacks [31-33]: Adversarial attacks in IDS refer to deliberate
attempts by adversaries to exploit vulnerabilities in the system and manipulate
its behavior in order to evade detection or cause misclassification of normal or
malicious activities. These attacks are specifically designed to target the anomaly
detection capabilities of IDS and can have serious consequences for the security
of the network.

There are different types of adversarial attacks that can be launched against IDS:
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* Evasion attacks: Evasion attacks aim to manipulate the input data in a way that

the IDS fails to detect or correctly classify the malicious activities. Attackers
carefully craft the input features to deceive the IDS into treating them as normal
behavior, thus evading detection. Evasion attacks often involve carefully
modifying or adding features to manipulate the decision boundary of the IDS.

* Poisoning attacks: Poisoning attacks occur during the training phase of the IDS

and involve injecting malicious or manipulated data into the training set. By
poisoning the training data, attackers aim to manipulate the learning process of
the IDS, compromising its detection capabilities. The poisoned data can introduce
biases or alter the statistical properties of the training set, leading to degraded
performance or increased false positives/negatives.

* Stealth attacks: Stealth attacks aim to exploit the specific weaknesses or blind

spots of the IDS to remain undetected. These attacks often involve carefully
crafted sequences of activities that exploit temporal or contextual vulnerabilities,
making it difficult for the IDS to identify them as anomalies. Stealth attacks can
leverage timing patterns, bursty activities, or sophisticated evasion techniques to
bypass detection.

* Data injection attacks: Data injection attacks involve injecting malicious or

unauthorized data into the network or system monitored by the IDS. These
attacks can disrupt the normal operation of the IDS by overwhelming it with
excessive or irrelevant data, triggering false alarms, or causing system failures.
Data injection attacks can exploit vulnerabilities in data handling mechanisms or
target specific weaknesses in the IDS architecture.

Addressing adversarial attacks in IDS is a challenging task. Some strategies and

techniques that can help to mitigate the impact of these attacks include:
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* Adversarial training: Adversarial training involves training the IDS on both

normal and adversarial examples to make it more robust against adversarial
attacks. By exposing the IDS to various adversarial scenarios during training, it
can learn to recognize and classify adversarial behavior more effectively.

* Defense mechanisms: Implementing defense mechanisms such as input

sanitization, feature engineering, and anomaly detection ensembles can enhance
the resilience of the IDS against adversarial attacks. These techniques focus on
improving the robustness of the IDS to handle manipulated or malicious inputs.

* Monitoring and response: Continuous monitoring of the network and system

activities can help to detect and respond to adversarial attacks in a timely
manner. Real-time analysis, incident response, and adaptive countermeasures
can aid in mitigating the impact of attacks and preventing further exploitation.

* Collaboration and information sharing: Sharing information and collaborating

with other IDS systems, security researchers, and organizations can help to create
a collective defense against adversarial attacks. Sharing knowledge about attack
techniques, patterns, and countermeasures can lead to more effective defense
strategies.
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It is worth noting that adversarial attacks and defense mechanisms in IDS are
evolving research areas, and new attack techniques and defense strategies are contin-
uously being developed.

8. Emerging trends and future directions

1.Integration of deep learning techniques [34]: Deep learning techniques, such as
deep neural networks and recurrent neural networks, have shown promising
results in various domains. In anomaly detection for IDS, the integration of deep
learning techniques can help to capture complex patterns and dependencies in
network traffic data, improving the accuracy of detection [9].

2.Explainable Al for anomaly detection [35]: Explainability is a crucial aspect of
anomaly detection in IDS. As complex machine learning models are being used,
understanding and interpreting their decisions become essential. Future research
focuses on developing explainable Al techniques that provide transparency and
insights into the reasoning behind anomaly detections.

3.Real-time and streaming anomaly detection: Traditional batch processing
approaches are not sufficient to handle the high-speed and large-scale nature of
network traffic data. Future directions involve developing real-time and
streaming anomaly detection methods that can process and analyze data on the
fly, allowing for timely detection and response to anomalies.

4.Integration of multiple data sources: IDS can benefit from the integration of
multiple data sources, such as network traffic data, system logs, and user
behavior data. Incorporating diverse data sources and applying advanced fusion
techniques can enhance the accuracy and robustness of anomaly detection.

9. Conclusion

In conclusion, this chapter has provided an overview of anomaly detection tech-
niques in intrusion detection systems (IDS). We discussed the two main types of IDS,
including signature-based detection and anomaly detection, and highlighted the
advantages of using anomaly detection techniques over signature-based approaches.
We explored various anomaly detection techniques, including statistical-based tech-
niques, clustering-based techniques, density-based techniques, reconstruction-based
techniques, and One-class support vector machines (SVM).

We also discussed the importance of data collection and preprocessing in IDS,
emphasizing the relevance of different data sources and the need for effective
preprocessing techniques to enhance anomaly detection accuracy. Furthermore, we
covered the evaluation and performance metrics used to assess the effectiveness of
anomaly detection techniques, including commonly used evaluation datasets and
performance metrics such as accuracy, precision, recall, F1-score, ROC curve,
and AUC.

We highlighted the challenges faced in anomaly detection for IDS, such as the
curse of dimensionality, concept drift, and adversarial attacks. These challenges
require ongoing research and development efforts to improve the accuracy and
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resilience of anomaly detection techniques. Additionally, we discussed emerging
trends and future directions in the field, including the integration of deep learning
techniques, the use of explainable Al, and the exploration of real-time and streaming
anomaly detection methods.

In conclusion, anomaly detection techniques play a crucial role in IDS for enhanc-
ing network security by identifying potential threats and attacks. However, there are
ongoing challenges and opportunities for further research and development. By
addressing these challenges and embracing emerging trends, we can advance the field
of anomaly detection in IDS and improve the detection and prevention of sophisti-
cated and unknown attacks, ultimately enhancing the overall security of network
systems.
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Chapter 7

Verification of Generalizability in
Software Log Anomaly Detection

Models

Hironori Uchida, Keitaro Tominaga, Hideki Itai, Yujle Li
and Yoshihisa Nakatoh

Abstract

With recent rapid technological advances, the automatic analysis of software logs
has received particular attention. Currently, there is much research on the use of Deep
Learning in the field of software log anomaly detection, and they have reported high
accuracy of more than 0.9 in the f1-score. On the other hand, there are reports that it
has not been used in the field of software development. We conducted a generalized
evaluation against representative models for log anomaly detection to elucidate the
cause of this problem. Five models were used in the subject: four representative
models (two supervised and two unsupervised) and our proposed Neocortical Algo-
rithm (supervised). We used the commonly used Blue Gene/L supercomputer log
(BGL) dataset. The learning curves and cross-validation showed a tendency toward
overfitting in all models. In addition, a survey of the frequency of log patterns con-
firmed the need for a more diverse dataset, as many of the patterns are a series of
specific logs.

Keywords: anomaly detection, log analysis, log parsing, deep learning, software log,
software development

1. Introduction

Automatic analysis of software logs has attracted significant attention due to the
rapid development of technology in recent years. Currently, there are many studies
with Deep Learning in the field of software log anomaly detection, reporting high
accuracies surpassing 0.9 on the fl-score [1, 2]. On the other hand, it has been
reported that Deep Learning for software log anomaly detection is not widely
employed in the software development industry. The Loghub dataset, released by He
et al., is presently frequently used in the field of software log anomaly analysis [3].
While Loghub contains logs from various systems, only one type of log is available for
each system. Consequently, the accuracy of anomaly detection is assessed for only one
pattern, and a comprehensive evaluation using multiple datasets is not performed. As
a result, the effectiveness of the various anomaly detection models reported may be
limited to specific datasets.
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Therefore, to assess the generalizability of representative anomaly detection
models across multiple dataset patterns, we initially conducted cross-validation using
the Blue Gene/L supercomputer log (BGL) dataset from Loghub. For this purpose, we
utilized the Deep-loglizer Toolkit developed by Chen et al. [4], which comprises four
models, namely, CNN, LSTM (supervised learning), Transformer, and Auto Encoder
(unsupervised learning). Additionally, we incorporated our proposed SPClassifier
(supervised learning) to make use of a total of five models.

The second approach to evaluating generality involves using the validation
datasets. In the study by Chen et al. that evaluates various models, the dataset is split
into two partitions: the training dataset and the test dataset [1]. At each epoch, the
models are evaluated on the test data, and the model with the highest accuracy in that
epoch is considered the optimal model to calculate the accuracy for the test dataset.
Given the potential for overfitting on the test dataset with this method, we split the
dataset into three separate datasets for evaluation: the training dataset, the validation
dataset, and the test dataset.

Furthermore, we examined the type and frequency of logs included in the dataset
to assess whether the dataset is suitable for generic evaluation.

In summary, this experiment aims to clarify the following three points:

1.Evaluation of generality through cross-validation: Investigating the variation in
accuracy due to differences in the types of logs included in the training and test
datasets.

2.Evaluation of generality using the validation dataset: Assessing the generality
using the validation dataset, which has not been included in previous benchmark
studies.

3.Investigation of the log structure included in the dataset: Examining the
similarity of the log structure in the commonly used BGL dataset to that used in
software development.

2. Study design

This study uses the Toolkit (Deep-loglizer) provided by Chen et al. This Toolkit
allows for flexibility in the model setup, including the ability to modify the loss
function and determine whether or not to incorporate semantic information from the
logs. We exclusively utilized sequential information in this experiment since our
experimental setup lacked the necessary computational resources to handle semantic
information. Notably, Chen et al. reported comparable accuracies with and without
semantic information.

2.1 The common workflow

The common parts of the workflow for anomaly detection used in this experiment
are shown in Figure 1. A standard anomaly detection model comprises four key steps:
(1) Log Parsing, (2) Log Grouping, (3) Log Representation, and (4) Deep Learning
Models [2]. Sections 2.1.1-2.1.4 provide an overview of each step and the specific
techniques used in this study.
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Learning curve for CNN.
2.1.1 Log parsing

The log contains different fields such as timestamp, process ID, and severity.
However, for the line-by-line anomaly label dataset, only the crucial log message
portion is extracted and used through log analysis. Log analysis is used to automati-
cally translate each log message into a specific event template (constant part) associ-
ated with the parameters (variable part). Various log analysis techniques are available,
such as frequent pattern mining, clustering, heuristics, etc. For this experiment, log
analysis was conducted using Drain (heuristic) [5], which has been used in bench-
mark studies. Drain uses fixed-depth analysis trees to speed up the analysis process
and encodes rules specifically designed for the analysis. The parameters used are as
follows: Similarity threshold = 0.5, Depth of all leaf nodes.

2.1.2 Log grouping

This step separates the logs into various groups. Typically, three types of windows
are employed for log grouping, namely, Fixed Window, Sliding Window, and Session
Window. Fixed Window is a grouping technique that splits the logs according to their
frequency of occurrence, whereas Sliding Window segments the logs into window size
and step size. Session Window, on the other hand, leverages log identifiers to group
logs with the same execution path. For the current study, the Sliding Window of 10
and Sliding Step of 1 are utilized for log grouping.

2.1.3 Log representation

After grouping the logs, the logs are represented in the various formats required by
the DL model. In general, they are converted into (1) sequential vectors, (2) quanti-
tative vectors, and (3) semantic vectors. (1) Sequential vectors reflect the order of log
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events within a window. (2) Quantitative vectors use the frequency of occurrence of
each log event within a log window. (3) Semantic vectors acquired from the language
model represent the semantic feature of log events.

In this experiment, the (1) sequential vector is used.

2.1.4 Deep learning models

After the log representation step, the extracted features are fed into a deep-
learning model for anomaly detection.

2.2 Evaluated models

In this experiment, we used a total of five models, consisting of two supervised
learning models, namely Convolutional Neural Network (CNN) [6] and Long Short-
Term Memory (LSTM) [7], and two unsupervised learning models, namely Auto
Encoder (AE) [8] and Transformer [9], in addition to our proposed SPClassifier [10].
An overview of each model and the Toolkit parameters used in this study is provided
in Section 2.2.1-2.2.5.

2.2.1 CNN (supervised model)

The input logs undergo the following preprocessing steps: first, they are converted
to IDs, then to vectors using logkey2vec, and finally fed into the CNN model. This
approach resulted in an impressive F-measure of 0.98 on the HDFS dataset. The
specific Toolkit parameters used for this experiment are as follows: “python
cnn_demo.py —label_type anomaly —feature_type sequential — 10.”

2.2.2 LSTM (supervised model)

This approach utilizes fixed-dimensional semantic vectors to represent log events
and employs an attention-based Bidirectional Long Short-Term Memory (Bi-LSTM)
classification model for anomaly detection. The Toolkit parameters used for this
experiment are as follows: “python Istm_demo.py -label_type anomaly —feature_type
sequential —use_attention —topk 50 —epochs 10”.

2.2.3 Auto encoder (unsupervised model)

The model consists of two Auto Encoders and one Isolation Forest; the Auto
Encoder is used for feature extraction and anomaly detection, and the Isolation Forest
is used for positive sample prediction. The parameters used in the Toolkit for this
experiment are as follows: “python ae_demo.py —feature_type sequential —
anomaly_ratio 0.8 —epochs 10.”

2.2.4 Transformer (unsupervised model)

Existing approaches exhibit limitations in their ability to generalize to new, unseen
log samples. To address this issue, Logsy was proposed as a novel method for anomaly
detection, utilizing a self-attention encoder network for hyperspherical classification.
Logsy formulates the log anomaly detection problem by discriminating between
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regular training data from the target system and samples from auxiliary log datasets
that are easily accessible from other systems.

The parameters used in the Toolkit for this experiment are as follows: “python
transformer_demo.py —label_type next_log —feature_type sequential —topk 50 —epochs
10 —use_attention.”

2.2.5 SPClassifier (supervised model)

SPClassifier is a model with sparse features and internal representations suitable
for training in CPU environments [10]. The proposed method consists of one spatial
pooling layer [11, 12] and one Feedforward Neural Network for classification, which
identifies anomalous patterns from log data transformed into 2D features. The feature
transformation process involves converting the input log sequence into a sparse dis-
tributed representation (SDR), which is a binary sequence of fixed dimensions. In the
SDR, a specific percentage of the bits are set to 1, while the remaining bits are set to 0.
These transformed features serve as input to the spatial pooling stage. Spatial pooling
(SP) incorporates local suppression between adjacent mini-columns and implements a
k-wins-take-all computation. At any given time, only a small fraction of the mini-
columns with the most active inputs are active. Feed-forward connections to active
cells are adjusted at each time step based on Hebb’s learning rule. Additionally, a
homeostatic excitation control mechanism, referred to as “boosting,” operates on a
slower time scale. Boosting enhances the relative excitability of underactive mini-
columns, encouraging their activation and participation in the input representation.
Subsequently, the transformed SDRs obtained through spatial pooling are fed into a
classifier responsible for detecting anomalies. The employed classifier utilizes a single-
layer neural network. It takes as input a flat binary SDRs array representing the output
of the spatial pooling layer and predicts the abnormal or normal label. A softmax
function is employed as the activation function for the output of the network. The
network weights are updated during training using a formula based on the provided
label information.

c—1 c—1
1
wijj — wij +a X E P softmax E w,-jzj> } (1)
iz0 i—0

where wy; is the weight between the j-th value of the flattened input z; and the i-th
output node of the neural network. c is the number of categories, c = 2 since normal
and abnormal categories are used for anomaly detection. a is a coefficient that controls
the speed of learning.

The parameters are shown in Table 1.

Parameter Value Description

Window size 10 Size of sliding window

Stride 1 Step size of sliding window

Input SDR Length 500 Number of dimensions of SDR transformation for a single template
index.

Input SDR Sparsity 0.15 Proportion of binary values equal to 1 across all dimensions post SDR

conversion.
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Parameter Value Description

Input Dimensions (500, 10) Shape of the coded image generated by stacking SDRs.

Column Dimension (830, 15) Shape of the columns in spatial pooling layer.

Potential Radius 7 Value that determines the input range over which one column has a

potential connection.

Potential Pct 0.1 Percentage of inputs with potential connections in the hypercube.

Global Inhibition True Whether to consider all columns as neighbors when determining the
active state of a column.

Local Area Density 0.1 Percentage of columns that can be active between neighbors.

Stimulus Threshold 6 Minimum number of synaptic connections required for a column to
be active.

SynPermActivelnc 0.14 Amount of increase in permanence value of active synapses at each

learning step.

SynPermlInactiveDec ~ 0.02 Amount by which the permanence value of inactive synapses
decreases with each learning step.

SynPermConnected 0.5 Minimum permanence value at which a synapse is considered connected.

DutyCyclePeriod 1402 Length of time step considered when updating the boost factor based
on how often each column is active.

MinPctOverDutyCycles 0.2 Lower limit on how often a column has active input above the
stimulus threshold.

Boost Strength 7 Parameters that control the strength of the boost factor’s adaptive
effect.
WrapAround False Whether the first and last dimensions of the input are considered

adjacent in the mapping between input and column.

Table 1.
Parameter list for SPClassifier.

2.3 Dataset

The BGL dataset collected from the supercomputer system Blue Gene/L was used
as the evaluation dataset for this experiment. This dataset contains log data labeled
with anomaly logs. It was sourced from Loghub [3], a renowned repository offering a
vast collection of log datasets that can be employed for Al-based log analysis.

2.3.1 Data selection strategies

In this study, a set of time series was used, where 80% of the available logs were
allocated for training and the remaining 20% for testing. The testing dataset was further
split into two halves, with the initial half used for validation purposes and the second half
used for testing. Such a partitioning strategy emulates a practical software development
scenario, where past logs are utilized for training and future logs are used for testing

purposes.

2.3.2 Different data grouping

There are two major data grouping techniques: window grouping and session
grouping. In this experiment, we used the window grouping approach, utilizing a
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window size of 10 with a sliding value of 1. It is worth noting that the results obtained
using session windows outperform those obtained using fixed windows on the BGL
dataset, as previously reported by Le et al.. This result may be attributed to the fact
that the larger size of the input data augments the amount of information that can be
acquired, which facilitates the detection of anomalies. In this study, we selected to use
fixed grouping with a window size of 10, as we believe that anomaly detection at a
more detailed level is important, particularly in a developmental setting.

2.4 Evaluation metrics
2.4.1 Evaluation method

In the accuracy comparison, each model after training is used to verify the accu-
racy of anomaly detection for test data. The classification performance of each model
is evaluated by the F-measure value; F-measure is an evaluation index that indicates
the balance between detection accuracy and the number of anomalies detected. Here,
the F-measure is calculated as follows.

TP
iSi e — 2
Precision TP+ FP 2
TP
e — 3
Recall TPF 3)
F — measure = 2« Precision « Recall @

Precision + Recall

where:

TP represents abnormal instances correctly classified by the model.
TN represents normal instances correctly classified by the model.
FP represents normal instances misclassified by the model.

FN represents abnormal instances misclassified by the model.

2.4.2 Learning curve

Each training set consisted of one epoch, and during training the model was
evaluated for accuracy using both training and validation data. The training range
consists of epochs 1 through 10. In experiments without a validation set, the test data
were evaluated as the validation set.

2.5 Objectives of the experiment

Objective 1: Generalizability evaluation with cross-validation.

To evaluate the generalizability of each model, we employed five-fold cross-
validation in this experiment. Four-fifths of the dataset was used as the training
dataset, while the remaining one-fifth was designated as the test dataset. The test
dataset was subsequently split in half, with the first half serving as the validation
dataset. By varying the split points and comparing the accuracy of anomaly detection,
we will explore the potential impact of training dataset bias and test dataset bias on
the performance of the system.

Objective 2: Generalizability evaluation with the validation dataset.
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This experiment aims to evaluate the accuracy with and without the validation
dataset, as previous studies only split the dataset into training and test data. The test
data are used to determine the optimal model among multiple Epoch training runs;
however, there is a potential risk of over-training on the test data. Hence, this study
incorporates the validation dataset to assess whether over-training occurs. The dataset
segmentation method was the same as Obj1, with train 80%, validation 10%, and test
10%. Our previous studies have shown that the accuracy is extremely high when the
train dataset ratio is increased to 90% [13]. We attribute this result to the extreme
reduction in the number of unknown anomaly logs not present in the training dataset,
from 268 to 3, resulting in fewer opportunities to test the unknown anomaly logs. In the
actual field of development, the source code is updated daily and the logs are updated
accordingly. Therefore, we use 80% of the training data, a condition that includes a
large number of unknown anomaly logs, to measure the generality of the test.

Objective 3: Examination of Log Structure within the dataset.

In this section, we explore the dataset following the grouping of raw logs into fixed
groups with a window size of 10. It is essential to examine the types of logs contained in
the dataset to evaluate its versatility. For example, an application development site may
receive more than 10,000 different types of logs. Therefore, if the experimental dataset
comprises only 100 log types, it is inadequate in representing an actual development
site, and the accuracy of anomaly detection will be questionable. Thus, this experiment
aims to determine the number of log types and their frequency within the dataset.

3. Experimental results

We conducted five trials to eliminate errors in each experiment and evaluated the
results using their average.

3.1 Obj1: Generalizability evaluation with cross-validation

Table 2 presents the results obtained through cross-verification applied to the five
models. The table reveals the following four observations:

Types of cross verification F-measure Recall Precision
without/with
CNN
Type A 0.217/0.216 0.124/0.122 0.886/0.945
Type B 0.961/0.925 0.992/0.971 0.932/0.885
Type C 0.837/0.698 0.961/0.962 0.750/0.581
Type D 0.718/0.514 0.699/0.151 0.777/10.040
Type E 0.971/0.755 0.996/0.996 0.949/0.636
Ave Without/With 0.741/0.622 0.755/0.683 0.859/0.782
LSTM
Type A 0.211/0.207 0.118/0.116 0.981/0.975
Type B 0.928/0.908 0.986/0.949 0.883/0.879
Type C 0.540/0.392 0.959/0.963 0.422/0.272
Type D 0.771/0.516 0.784/0.365 0.756/0.877
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Types of cross verification F-measure Recall Precision
without/with
Type E 0.942/0.909 0.994/0. 997 0.895/0.837
Ave Without/With 0.678/0.586 0.768/0.678 0.788/0.768
SPClassifier

Type A 0.176/0. 514 0.279/0. 427 0.595/0. 696
Type B 0.759/0.689 0.843/0.932 0.695/0.549
Type C 0.568/0.546 0.624/0.777 0.609/0.456
Type D 0.569/0.181 0.426/0.115 0.893/0.675
Type E 0.871/0.840 0.948/0.966 0.809/0.744
Ave Without/With 0.589/0.554 0.624/0.643 0.720/0.634

Auto encoder

Type A 0.160/0.118 0.954/0.588 0.087/0.080
Type B 0.226/0.214 0.982/0.975 0.128/0.120
Type C 0.019/0. 007 0.850/0. 669 0.010/0. 004
Type D 0.400/0. 315 0.666/0. 848 0.306/0. 218
Type E 0.362/0. 152 0.962/0. 994 0.232/0. 083
Ave Without/With 0.233/0.161 0.883/0.815 0.152/0.101
Transformer
Type A 0.159/0.159 0.963/0.961 0.087/0.087
Type B 0.457/0.429 0.709/0.712 0.338/0.307
Type C 0.257/0.243 0.521/0.451 0.172/0.166
Type D 0.587/0.508 0.519/0.484 0.675/0.562
Type E 0.865/0.810 0.911/0.911 0.824/0.744
Ave Without/With 0.465/0.430 0.725/0.704 0.419/0.373
Table 2.

Generaligability evaluation vesults by cross-validation.

1.For all models, the accuracy is notably low when using the Type A dataset.
2.For all models, the accuracy is good when using Type B and Type E datasets.

3.When using the Type D dataset, the accuracy diminishes in supervised learning,
whereas unsupervised learning demonstrates higher accuracy compared to the
other four types of datasets.

4.When Type A dataset is used, unsupervised learning results in high precision and
low recall, while unsupervised learning results in high precision and low recall.

We attribute observation (4) to the contrasting characteristics of the two learning
methods. Supervised learning involves learning from the training data one-to-one,
making it proficient in correctly identifying the anomalous data on which it is trained.
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Types of cross verification Normal types Anomaly types Total anomaly logs
Test/validation Test/validation Test/validation

Type A 681/263 9/8 24,284/ 6881
Type B 64 /27 0/1 0/24

Type C 26/9 1/0 24/0

Type D 8/15 0/0 0/0

Type E 18 /98 0/0 0/0

Table 3.

Composition of unknown logs included in each dataset used for cross-validation.
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Figure 2.
Learning curve for LSTM.

However, it struggles to detect anomalous patterns outside its learning range, leading
to a significant drop in Recall. On the other hand, unsupervised learning often detects
patterns that deviate from the training data as abnormal, resulting in higher recall.
However, it also tends to identify non-anomalous data as abnormal, leading to a
substantially lower precision.

Figures 1 and 2 show the learning curves of the CNN and LSTM models, show-
casing their high accuracy. The data points on the graph represent the mean values
obtained from five experiments, with the upper and lower widths representing the
standard deviations. Figure 1 demonstrates a substantial variation for Type C, Type
D, and Type E.

These findings indicate that the cross-validation results exhibit significant varia-
tions in accuracy across different types, suggesting limited generality and versatility.

As an additional investigation, we examined the number of unknown normal and
abnormal logs in each split type. The results are presented in Table 3. The table
reveals that the Type A dataset, which yielded the poorest results, had the highest
number and diversity of abnormal logs. Conversely, the datasets used for testing
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Type B, Type C, and Type D, which exhibited relatively good results, did not contain
any unknown anomaly logs. This suggests that the supervised learning method
achieved high accuracy primarily because it was tested with learned anomaly logs.
These findings highlight the susceptibility of the system to unknown anomaly logs and
indicate that it may not be universally applicable for certain purposes.

3.2 Obj2: Generalizability evaluation with the validation dataset

The comparison between the cases with and without the validation dataset, as
shown in Table 2, reveals the following characteristics:

1.The CNN, LSTM, and AE models show a decrease in accuracy when the
validation dataset is utilized.

2.The Transformer model maintains its accuracy even when the validation dataset
is used.

3.The SPClassifier model maintains a basic level of accuracy, but its performance
varies depending on the dataset type. Accuracy increases when Type A is used
and decreases when Type D is used.

Especially, the accuracy of the CNN and LSTM models decreased by 0.2 when the
validation dataset was employed, indicating a potential issue of over-training during
the validation phase. Furthermore, the precision values for both CNN and LSTM
significantly dropped when validation was used, resulting in a higher number of
instances where anomalous data were incorrectly identified as normal. This suggests
that over-training may occur during the validation stage, potentially impeding the
models’ ability to accurately detect anomalies in the test dataset.

The reason behind the observed characteristic (3) can be attributed to the learning
method employed by the SPClassifier. In this method, the Spatial Pooling layer gen-
erates similar firing patterns for similar inputs and distinct firing patterns for different
inputs. Consequently, we posit that utilizing a more complex dataset for validation
would lead to a more refined Classifier threshold, ultimately enhancing the accuracy
of the model.

3.3 Obj3: examination of log structure within the dataset

The experimental dataset was constructed from the BGL dataset using a sliding
grouping method (Window size = 10, Sliding = 1). Sequence Patterns were formed
based on templates delimited by Window, and the survey focuses on identifying the
number of distinct Sequence Patterns present. Table 3 showcases a total of 19
Sequence Patterns, which account for 80.3% of the dataset. Considering that there are
131,803 Sequence Patterns in total, the fact that the top 19 patterns represent such a
significant portion indicates a bias toward specific Sequence Patterns. It is noteworthy
that these 19 patterns are composed of only three templates, suggesting successive
repetitions of the same log.

While such Sequence Patterns are commonly observed in OS system logs and
network system logs, they are less prevalent in application development, which con-
stitutes a significant portion of software development. In large-scale application
development scenarios, where there are tens of thousands of diverse logs, the
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simultaneous operation of multiple systems leads to the appearance of complex
Sequence Patterns in the output logs. Consequently, a model that exhibits high accu-
racy on a BGL dataset like this one may not achieve the same level of accuracy when
applied to application development due to the inherent differences in the log patterns.

4, Conclusion

In this experiment, our focus was to investigate the limited adoption of deep neural
network (DNN)-based anomaly detection methods in the development field. Existing
anomaly detection models tend to classify anomaly logs as normal when window
grouping is applied. Additionally, when incorporating validation data, the models
tend to overfit and exhibit stable learning curves from the initial epoch.

Furthermore, we delved into the structure of the BGL dataset employed in this
experiment and observed that certain logs appeared consecutively, with specific
Sequence Patterns accounting for a substantial portion of the dataset. In addition, we
performed a more in-depth examination of the structure of the BGL dataset used in
this experiment. Our findings revealed a recurring occurrence of specific logs within
the BGL dataset, along with the presence of certain Sequence Patterns that encompass
a significant fraction of the logs. It is crucial to note that in application development,
which constitutes a substantial aspect of software development, logs exhibit a greater
level of complexity and encompass a wide range of diverse Sequence Patterns. Con-
sequently, the existing representative model faces challenges when applied to the
realm of application development.

While the anomaly detection field often focuses on logs with repeated occurrences,
such as Super Computer logs or network systems, we aim to target anomaly detection
in logs associated with large-scale software development, including applications.
Therefore, our plans involve creating diverse datasets that reflect the characteristics of
the field under development and exploring the feasibility of employing multiple
anomaly detection systems in this context.
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