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Preface

Human history is full of instances where new inventions have created a sudden, 
significant, and lasting disruption. In a somewhat gradual and even stealthy way, arti-
ficial intelligence (AI) and machine learning (ML) are becoming part of our everyday 
lives, changing things in both predictable and unpredictable ways. This “randomly 
systematic” adoption process is putting humanity face to face with something never 
previously directly known to our civilization: an intelligence that may (and likely will) 
exceed our own.

It is fair to say that most people are not fully aware of current (and thus future) benefits, 
limitations, and threats related to AI/ML adoption. Within healthcare and medicine in 
general, there is little awareness of what AI/ML actually entails and what it is capable of 
at this time. It is this current state that will serve as our “starting point” in the emerg-
ing debate on AI/ML in medicine, including its integration, projected influence, and a 
variety of other considerations that are not all that different from other past technology 
adoption paradigms.

Like all other transformational human inventions, the emergence of AI/ML is a 
culmination of various simultaneous developments, often parallel and co-dependent, 
but also unpredictably synergistic, that ended up amalgamating to facilitate com-
putational processes that approximate the “functional outcomes” of various human 
logical processes. Among the advances that were required for AI/ML to enter the 
mainstream were modern integrated circuits, higher computer processing speeds, 
ability to deploy parallel-processing capabilities, greater amounts (and lower cost) of 
computer memory, software engineering knowledge, and the ability to harness the 
power of the Internet to gather vast amounts of high-density data in an efficient and 
highly structured manner.

This new “artificial intelligence” phase in human history represents a confluence of 
multiple factors uniquely coming together to change our civilization forever. Although 
significant threats and opportunities exist in relation to real-life implementations 
of AI/ML in health care and beyond, a tremendous amount of promise and positive 
developments may also be realized. We are at a crossroads, and the outcome of any 
decisions made “right now” will heavily depend on whether we (i.e., humanity) make 
the right collective decision, at the right time, and for the right reasons. Although the 
gravity of this historic moment may not have yet become apparent, we will have to 
live with its consequences.

When implemented optimally, AI/ML has the potential to result in vast improvements 
in healthcare efficiency, workflows and other related processes, patient safety, and 
overall clinical outcomes. Specific benefits of AI/ML in the clinical realm include 
better, more accurate, and faster diagnostics; early disease detection, especially as it 
applies to cancer, cardiovascular, and genetic conditions; dynamically updated clinical 
guidelines, informed by actual patient outcomes and supplemented by real-time 
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outcome data; and many other as yet undefined enhancements and advances. Specific 
threats related to AI/ML include workforce displacements (due to redundancies 
created by AI-based efficiencies); loss of human autonomy (due to “outsourcing of 
decision-making” to AI-based systems); and the propagation of various deleterious 
systemic biases (due to AI system reliance on potentially biased data feeding its ML 
algorithms).

As the early, more rudimentary capabilities of AI/ML continue to grow and mature, so 
will the diversity of the associated clinical applications. With further enhancements in 
hardware, software, and implementation infrastructure, increasingly complex areas 
(and problems) will become amenable to AI’s general “scope of abilities” and influ-
ence. This will gradually expand into highly sophisticated systems and areas, such as 
social sciences and health care. In this collection of chapters, we discuss current trends 
and future developments related to AI and ML across medical and surgical specialties.

Stanislaw P. Stawicki, MD, MBA, FACS, FAIM
Department of Research and Innovation,

St. Luke’s University Health Network,
Bethlehem, PA, USA
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Chapter 1

Introductory Chapter: Artificial 
Intelligence in Healthcare – Where 
Do We Go from Here?
Stanislaw P. Stawicki, Thomas J. Papadimos, Michael Salibi  
and Scott Pappada

1. Introduction

The human history is full of examples where new inventions have created a 
 significant disruption, dividing people into three broadly defined groups – propo-
nents or early adopters, those who oppose, and those who are ambivalent [1]. When 
looking back at the relatively recent history of the great industrial revolution in 
Europe, it was not uncommon for opponents to attack and destroy new factories and 
new machines, with the perpetrators believing that the technological advances would 
eventually lead to the loss of their jobs and even entire professions [2]. As recently as 
in the mid-1980s, a group of mathematics teachers held a protest against the use of 
calculators in schools [3]. Fast-forwarding to today, calculators are now an integral 
part of our students’ mathematics armamentarium!

Not surprisingly, our approach to artificial intelligence (AI) seems to be following 
a similar path. It is probably fair to say that most people are not fully aware of current 
(and thus future) benefits, limitations, and threats related to AI. Within medicine in 
general, there is little awareness of what AI actually entails, and what it is capable of 
at this time. It is this current state that serves as our “starting point” in the emerging 
debate on AI in medicine, including its integration, projected influence, and a variety 
of other considerations that are not dissimilar to past technology adoption paradigms.

In a very gradual and stealthy way, artificial intelligence (AI) and machine learn-
ing (ML) are becoming part of our everyday lives. This “randomly systematic” 
adoption process is putting humanity face-to-face with something never previously 
directly known to our civilization – An intelligence that may (and likely will) exceed 
our own. With the advent of modern computing capabilities, AI has evolved to a 
point where it can be integrated into everyday applications. Not surprisingly, it has 
been gradually introduced into various subdomains within the healthcare industry in 
recent years [4]. As a result, we will likely see significant shifts in education, clinical 
treatments and approaches, stakeholder expectations, and responsibilities – both in 

“When you outsource the production of something, you will gradually lose the 
knowledge and skills to make or produce it. What then, one might ask, will happen 
when we ‘outsource’ intelligence to another entity?”

- Stanislaw P. Stawicki
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terms of type and scope, as well as potentially redefinition of jobs and other typical 
employee characteristics across the healthcare space [4, 5].

In this chapter, we will focus on some of the most profound challenges facing human-
ity as the “human-AI relationship” approaches the so-called “technological singularity” 
– A term based on the astrophysical concept of “black hole” that denotes a point beyond 
which there is “no way back” to the previous state of affairs. In the case of a “black hole,” 
the gravitational force surrounding the super-massive object becomes so powerful that 
not even light can escape. In the case of AI, “singularity” refers to a point where “AI-based 
technology” is sufficiently evolved to essentially take over “control operations” of the 
human civilization [6, 7]. Alternative views describe both “integration” and “plurality” 
as possible scenarios, where humans and AI either co-exist synergistically (plurality) 
[8, 9] or even integrate successfully (e.g., human-machine hybridization) [10, 11].

As we explore the realities of this new world, with omnipresent AI and the grow-
ing need for human adaptation, change and caution, the issues at hand will likely 
become less and less “technological” but will rather gravitate toward the ethical and 
spiritual domains.

1.1 Destructive potential of AI

There are many science fiction movies highlighting the potential dangers of 
improperly implemented AI – just a few examples of such messaging include the 
“Terminator” series, “Star Trek Voyager,” “The Matrix” trilogy, and “I, Robot.” The 
most common themes across these artistic works include machines “taking over” 
for humans as a form of “misguided stewardship,” the objectivization of humans as 
“destructive and dangerous” followed by active control efforts, and finally, the most 
extreme form of “AI dominance” where highly evolved AI “machine hives” determine 
that humanity needs to be eliminated in its entirety [12–16].

At a less physically destructive level, but perhaps equally problematic in its extent 
and implications, the use of AI / ML in misdirected “societal control” efforts may 
represent another formidable challenge. For example, what would be required to stop 
a malignant governmental and/or regulatory entity that possesses powerful AI /ML 
tools, combined with omnipresent social media platforms, from abusing the tremen-
dous power to misinform, manipulate, and eventually subdue entire populations? 
[17–22]. Such concerns have been highlighted by Elon Musk and associates in their open 
letter, “Pause Giant AI Experiments,” which now has nearly 6000 signatories from 
all walks of life [23]. This open letter is blunt in stating that AI systems with human-
competitive intelligence pose a risk to our civilization. It goes on further to emphasize 
that the risks of powerful AI systems are likely unmanageable at this time. Appropriate 
oversight, tracking and regulatory frameworks must be put into place. The letter 
specifically addresses the inception of systems that are substantially more powerful 
that the more widely known GPT-4 (generative pretrained transformer 4) [24].

A further concern involves AI being used in the political and social influence 
spheres. Here there are ominous tidings regarding truth and transparency. In one 
instance, researchers at Stanford University examined whether AI could influence 
citizens regarding political issues such as assault weapons, a carbon tax, and parental 
leave…and it certainly did [25]. When looking at the case of ChatGPT in the setting 
of higher education, the AI-based system was able to readily pass exams at presti-
gious law and business schools, not to mention the United States Medical Licensing 
Examination [26–29]. Such issues are more than concerning, and they clearly consti-
tute potential threats to civilized society and the ascent of man.
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1.2 Potential benefits of AI

As much as there are negatives to wider AI implementation, there are certainly 
amazing potential benefits that can be derived from properly harnessed AI capabili-
ties, from reaching previously unimaginable levels of efficiency within our estab-
lished processes and workflows, to human-AI hybridization that could actively enable 
much longer functional (and meaningful) longevity, new disease cures, and solu-
tions to both physical and mental disability [11, 30]. Furthermore, AI will allow the 
simulation of unusual or theoretical situations such as legal cases before judges and 
negotiations with business competitors. In fact, there are multiple domains in which 
AI will benefit us (Table 1) [31]. There are also estimates that AI-driven innovation 
may contribute nearly $13 trillion dollars to the world’s economy by 2030 [32].

Perhaps the most significant benefits of AI will be realized in medicine and 
healthcare. Today’s society faces staffing shortages of healthcare professionals 
[33–35]. In absence of sufficiently staffed healthcare organizations and institutions, 
current healthcare practitioners will require support to achieve optimal patient safety 
and levels of care provision. To this end, machine learning and AI-based systems will 
offer the potential to improve monitoring and alerting of healthcare providers such 
that patients who are in the greatest need are appropriately resourced.

It is important to note that although machine learning and AI are used interchange-
ably, they are not one and the same. Machine learning involves data science and the 
development of models based on large datasets to serve a particular function, for 
example, supporting diagnosis [36], time series prediction of therapeutic set points, 
predicting patient outcomes [37] such as readmission [38] or mortality [39]. AI, refers 
to an artificially intelligent system in that it can ‘think and act’ on its own with some 
degree of autonomy. While machine learning is closely related to AI, machine learning 
feeds into AI-based systems to leverage its results to perform some autonomous tasks. 
AI is best explained by looking at some of its initial use in video games, where antago-
nists (characters) in video games are programmed with AI to complete a primary task 
(e.g., stop the player from achieving some goal). AI in medicine and healthcare is the 
ultimate end goal, where patient data can be monitored continuously over time, and 
some aspects of treatment and care can be automated by AI. An example of this would 
be leveraging machine learning to support prediction of glucose in patients with type 
1 diabetes [40] and leveraging predictions to automatically and dynamically adjust 

Automation

Productivity

Solving Complex Problems

Decision-Making

Economy

Managing Repetitive Tasks

Defense

Disaster Management

Personalization

Lifestyle

Table 1. 
Potential benefits of AI in our lives and work [31].
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insulin delivery to maintain tight glycemic control. AI can be incorporated into this 
system to learn patterns in lifestyle, activity, and other pertinent variables to automati-
cally adjust and adapt insulin delivery to further optimize glycemic control overtime 
given a patient’s chaotic and unpredictable lifestyle. This is only one example of an 
application illustrating the power of machine learning and AI in healthcare.

2. Important considerations regarding AI in healthcare

Digital bias is an important concept that is bound to become a mainstream consid-
eration in the still very young AI era [41]. In this context, biases that are already present 
in various types and channels of “source data” have the potential to perpetuate existing 
healthcare disparities, resulting in a system that may be technologically more advanced 
but also one that continues to disenfranchise entire segments of the population [42]. 
Some applications of AI and machine learning in healthcare are starting to come to the 
forefront. Primary healthcare education and training, as well as the area of continuing 
education and training are also important areas where machine learning and AI can play a 
role. Currently, medical education involves a one-size-fits-all curriculum approach where 
everyone is given the same set of training/education (simulation-based, didactic, and oth-
erwise) regardless of real-world clinical experiences and proficiency/competency levels. 
To this end, machine learning and AI in medicine can be used in different ways including 
personalizing training/education of healthcare professionals [43]. In this context, optimal 
training and education of healthcare professionals is a “big data” problem and via predic-
tion of performance and knowledge/skill acquisition, maintenance and decay over time, 
it will be possible to personalize training for an individual provider [44–49].

With the advent of AI and machine learning in any field, there is always the worry 
that it will replace the jobs of professionals in the field. Although there has been tre-
mendous growth and advancement of AI and machine learning in healthcare, bedside 
care providers are not at risk of replacement any time soon. In the near term, AI and 
machine learning in healthcare will primarily offer the potential to augment the per-
formance of healthcare providers and simplify or support their clinical decision-mak-
ing processes and clinical workflows. This will likely result in a reduction of workload 
by identifying patterns and trends in large electronic medical records databases and 
bringing to the forefront key information that will assist the provider in diagnostics 
and making the best treatment decisions for their patients. AI and machine learning 
will become extremely important in our fast-changing world and our continually 
evolving society, where staffing shortages of medical professionals are likely to remain 
a significant issue, with demographic trends working “against us” well into the future. 
Having AI and machine learning-based technologies which ultimately optimize the 
performance and efficiency of healthcare professionals is therefore urgently needed.

3. Artificial Intelligence in academic medicine

The topic of AI in academic medicine is certainly a heated one. It is becoming 
evident that the introduction of AI into medical education will likely prompt significant 
rethinking, and likely rebuilding, of our medical curriculums. This will help ensure that 
both our medical schools and the new generation of medical trainees are sufficiently 
prepared to optimize the positive aspects of AI while minimizing any potentially 
negative aspects and considerations [5]. For the current, fairly traditional medical 
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school curricula, the introduction of ML and AI applications will be both transforma-
tional and hugely challenging. Similarly, the increasing presence of ML/AI in clinical 
medicine will force many changes in clinical information management, patient care 
workflows, the broad range of diagnostics, and many other related areas [50, 51]. The 
optimal end-product will be the advent of true “precision medicine” where each patient 
can be treated using highly individualized and much more optimized approaches.

For all of the above to happen seamlessly, without undue disruptions, the incorpora-
tion of AI applications into medical education will require unique curricular modifica-
tions. It is likely that the current evidence-based medicine (EBM) guidelines will quickly 
become obsolete and instead may be replaced by dynamically updated AI-based recom-
mendations (AIBRs). Consequently, how we train our next generation of physicians and 
other healthcare professionals will likely become unrecognizable in the next 10–20 years. 
Moreover, the issues of “black box” interpretability, data security, and decision liability 
are bound to present us with problems not addressed by traditional curricula [52].

It is reassuring to know that research in this area has been ongoing and that a 
significant amount of expertise is available and continues to grow [5, 52]. Our collec-
tive perception of AI is also likely to evolve over time. According to recent data, a large 
proportion of medical students perceived AI as an assistive technology that could 
facilitate physicians’ access to information, and patient access to healthcare, all while 
reducing the number and impact of medical errors [53]. In parallel, more and more 
medical students are expressing the need for updates in the current medical school 
curriculum, accommodating the need for adaptation to AI-facilitated healthcare 
industry transformation [54, 55]. Curricular updates should revolve around equip-
ping future physicians with the knowledge and skills to effectively harness the power 
of AI-based applications, minimize potential harms related to the misuse of AI, and 
ensure that their professional values and rights are protected.

At the same time, implementing the right plan and appropriately re-setting profes-
sional requirements and boundaries is not an easy task. All clinicians, students, and AI 
professionals alike should understand the social, ethical, legal, and regulatory issues that 
will determine whether AI-based tools will narrow or widen health disparities, affect 
professional independence, and potentially influence any existing healthcare gaps. A 
multi-pronged approach should involve the development of novel teaching models, the 
recruitment of qualified and experienced content specialists (to design and teach ML/
AI curricula), and subsequently, the facilitation of communication challenges relative to 
any existing and/or perceived knowledge gaps between physicians and engineers [53].

Parallel to the issue of medical education reform, another set of critical issues will 
arise pertaining to intellectual property, content attribution, and content originality 
(e.g., plagiarism) [56]. Within this context, we must remember that ML, AI, and other 
advanced tools like “chatbots” and “ChatGPT” are not inherently “good or bad,” and that 
any inappropriate uses of said technological capabilities will stem from misuse by indi-
viduals whose intentions lack ethical and/or moral grounding. The educational setting in 
general, and higher education in particular, is largely based on the presence of academic 
integrity as an essential component of the system. While AI-based technologies have the 
potential to greatly enhance our lives and improve our efficiency across various areas of 
society [6], it is not unreasonable to speculate that such highly sophisticated tools could 
easily “fool an expert” into giving credit for effort that should have never been attributed 
to a particular individual, in effect propagating intellectual fraud [57, 58].

In addition to the potential for difficult-to-detect plagiarism, AI-based technolo-
gies also have the potential to be used for other nefarious purposes, such as cheating on 
assignments, using ‘deep fake’ or other unethical practices to gain an unfair advantage, 
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and even assisting unscrupulous individuals in actively lying on their resumes and 
job applications [59, 60]. As modern technology continues to advance relentlessly, it 
becomes increasingly difficult to determine whether a piece of writing is truly original 
or if it has been generated by a machine [61]. This raises questions about the value 
of originality and the importance of properly crediting sources in the digital age. It 
also highlights the need for individuals to be more critical of the information they 
consume and follow, as well as the importance of careful consideration of the sources 
of the information being actively shared, especially in the context of omnipresent 
social media [19]. Finally, we must always remember that AI-generated content will be 
inherently limited by the quality of data inputs utilized during the generative process.

4. Synthesis and conclusion

Similar to all other transformational human inventions, the emergence of AI/ML 
is a culmination of various simultaneous advances – often parallel and co-dependent 
– that synergistically combine to facilitate computational processes that approximate 
the “functional outcomes” of various human logical processes. Among the advances 
that were required for AI/ML to enter the mainstream were modern integrated 
circuits, higher computer processing speeds, greater amounts of computer memory, 
software engineering knowledge, and the ability to harness the power of the Internet 
to gather vast amounts of high-density data in a very efficient manner.

As the early, more rudimentary capabilities of AI/ML grew, so did the diversity of 
their applications. With further growth in hardware, software, and implementation 
infrastructure, increasingly complex areas (and problems) became amenable to AI’s 
general “scope of abilities.” This gradually expanded into highly sophisticated systems 
and areas, such as social sciences and healthcare. In this collection of chapters, we will 
discuss current trends and future developments related to artificial intelligence and 
machine learning across medical and surgical specialties.
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Abstract

This book chapter examines the potential of artificial intelligence (AI) to improve 
healthcare. AI has become increasingly prominent in healthcare, providing the capa-
bility to automate tasks, analyze large patient data sets, and deliver quicker and more 
cost-effective healthcare. We focus on its various applications in healthcare including 
vital sign monitoring, glycemic control, radiology, and emergency room triage with 
point of care ultrasound (POCUS). We also address Ai’s ethical, legal, and privacy 
implications in healthcare such as data protection and safeguarding patient privacy. 
Finally, we explore the potential of AI in healthcare improvement in the future and 
investigate the current trends, opportunities, and evolving threats posed by AI in 
healthcare, as well as its implications for human-AI interfacing and job security. This 
book chapter provides an essential and comprehensive overview of the potential of AI 
in healthcare, providing a valuable resource for healthcare professionals and research-
ers in the field.

Keywords: artificial intelligence (AI), healthcare clinical management, AI in 
healthcare, vital sign monitoring, glycemic control, radiology, point of care ultrasound 
(POCUS), ER triage, AI data security, human-AI interfacing, machine learning (ML), 
neural networks (NNs), deep learning (DL), AI ethical concerns, AI healthcare benefits

1. Introduction

AI has been rapidly increasing in popularity and application within the healthcare 
industry over the past decade. AI has the potential to greatly increase the efficiency 
and accuracy of healthcare, resulting in improved patient care, better decision-
making, and overall cost savings. AI allows for complex and rapidly growing datasets 
to be evaluated and analyzed with unprecedented accuracy and detail, using machine 
learning (ML), neural networks (NNs), deep learning (DL), and large language 
models (LLM).
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AI and ML are two distinct but related branches of computer science. The two are 
related in that AI requires data to be used in order to make decisions, and ML provides 
the tools to do so. Artificial intelligence is a spectrum of intelligence, learning, and 
analytical proficiency. Machine learning and deep learning are related applica-
tions within the artificial intelligence space with varying aptitudes and capabilities 
(see Figure 1). Machine learning (ML) can understand relationships from the data 
without the need to define them a priori and can derive predictive models without a 
need for strong assumptions about the underlying mechanisms. In other words, ML 
converts the inputs of an algorithm into outputs, using statistical tools [1, 2]. It can 
change when exposed to new data and can improve from experience.

In contrast, deep learning (DL) uses multilayered neural networks to compute 
large volumes of data and accept multiple data types (heterogenicity). This feature has 
proven applicability in healthcare, that is. the EHR system. Of the deep learning algo-
rithm, convolutional neural networks (CNN) processes data exhibiting natural spatial 
invariance (clinical images) [1]. Compared to ML, DL requires considerably less human 
guidance, and the overall difference is how DL interprets and presents raw data.

The level of analysis, sophistication, and detail exhibited by AI would be impos-
sible for humans to do alone. This can help healthcare organizations to gain insights 
and identify trends that would otherwise be difficult to detect. In addition, AI can 
provide real-time recommendations and feedback to healthcare professionals, helping 
them make better, more informed decisions.

As AI technology advances and becomes more integrated into healthcare systems, 
healthcare organizations can leverage its many advantages to become more efficient 
and effective such as automating mundane and repetitive tasks freeing up healthcare 
professionals to concentrate on more critical aspects of patient care. AI can also 
improve the accuracy and timeliness of diagnosis and treatment decisions, reducing 
the risk of medical errors, and potentially saving lives. Additionally, AI can be used to 
monitor patient health, alert healthcare professionals to potential issues before they 
become serious, predict future health outcomes, and help healthcare organizations 

Figure 1. 
Artificial intelligence (AI) hierarchical relationship.
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better plan for potential scenarios. The recent arrival of conversational AI systems 
based on LLM such as ChatGPT has opened a plethora of potential uses including but 
not limited to preauthorization, automatic generation of medical reports, summariz-
ing the electronic health record, and interactive computer-aided diagnosis (CAD) 
[3]. These applications are possible because LLM is efficient in a wide variety of tasks 
including summarization, machine translation, and quickly answering questions. 
Ultimately, AI applications enhance communication between healthcare profession-
als and patients, providing more personalized care and optimizing processes such 
as appointment scheduling and prescription refills. However, studies need to be 
performed and validated to confirm whether utilizing these resources brings ultimate 
value to patient care. See Table 1 for acronyms and abbreviations.

2. Methodology

We conducted a literature search of articles on AI in various healthcare fields in 
English over the last five years on search engines: PubMed and Google scholar. 

Acronyms and abbreviations Meaning

AI Artificial intelligence

AI-ML Artificial intelligence-machine learning

AUC Area under the receiver operating characteristic (ROC) curve

CAD/CADe Computer-aided diagnosis

CGM/rtCGM Continuous glucose monitors/real-time CGM

CNN Convolutional neural networks

CT computed tomography scan

CXR Chest X-ray

DL Deep learning

DNN Deep neural network

ER/ED Emergency room/department

ESI Emergency severity index score

IVC Inferior vena cava

LLM Large language models

MEWS Modified early warning score

MI Myocardial infarction

ML Machine learning

MRI Magnetic resonance imaging scan

NNs Neural networks

POCUS Point of care ultrasound

SIRS Systemic inflammatory response syndrome

SOFA/qSOFA Sequential organ failure assessment score/Q = quick

Table 1. 
Acronyms and abbreviations.
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The following key terms were used to generate the search: “artificial intelligence (AI)” 
in healthcare, vital sign monitoring, glycemic control, radiology, point of care 
ultrasound (POCUS), ER triage, AI data security, human-AI interfacing, machine 
learning (ML), neural networks (NNs), deep learning (DL), AI ethical concerns, and 
AI healthcare benefits. For the first review, two team members manually went over 
articles. For the next step, various topics of artificial intelligence on different subjects, 
such as radiology, vital signs monitoring, glycemic control, point of care ultrasound, 
and ER triage, were divided among the authors with relevant specialties. Each author 
then wrote the section with following themes: its utility, challenges, liabilities, impli-
cations on job security, and future education.

3. Utility of AI in radiology

AI is increasingly being used in radiology to improve diagnostic accuracy, efficiency, 
and decision-making. Some of the most common applications of AI in radiology include 
image analysis, computer-aided diagnosis (CADe), image segmentation, automated 
image interpretation, and automated reporting [4–6].

AI-based systems can be trained to detect and identify specific structures or 
abnormalities on medical images such as tumors, blood vessels, or organ abnormali-
ties [5, 7, 8]. This can improve diagnostic accuracy and efficiency by highlighting 
potential abnormalities that may have been missed by radiologists [9]. Additionally, 
AI-based systems can be used to assist radiologists in the diagnostic process by clas-
sifying different types of tumors or identifying specific patterns on medical images, 
which can help radiologists make more accurate, specific diagnoses, and guide 
treatment decisions [4, 5, 8]. AI-based systems can also be used to generate automated 
reports and summaries that include relevant information and analysis, which can 
save time, reduce the workload and errors caused by manual reporting, and improve 
communication with other healthcare providers [4, 6, 10].

AI applications have the protentional to be used in radiology for detection and char-
acterization in many body systems [8, 9]. Recent advances in AI for thoracic applications 
have focused on using deep learning techniques to assist with a lung cancer diagnosis 
and pulmonary nodule detection on CT scans. In abdominal and pelvic applications, AI 
has been used to assist with liver lesion analysis and the detection of abnormalities on 
CT and MRI scans. General lesion analysis using AI typically involves training a model 
on a large dataset of images to identify and classify various types of lesions [11]. This 
can include detecting and characterizing tumors, identifying and measuring anatomic 
structures, and determining the presence of certain disease states.

3.1 How is AI utilized in radiology?

AI in radiology utilizes the expertise of experienced radiologists to supply pre-
defined criteria for properly programming the algorithm [4, 8]. Radiologists with 
specialized knowledge in chest, abdominal, or musculoskeletal radiology can offer 
the essential insight and direction required to train AI algorithms to identify and 
locate specific structures or anomalies on medical images. This involves providing the 
algorithm with a set of “ground truth” or baseline images that have been annotated by 
radiologists to indicate the presence and location of specific structures or abnormali-
ties. The algorithm can then learn to identify these structures or abnormalities based 
on the patterns and features that are present in the images.
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AI algorithms can also learn from a large volume of data with supervised or 
unsupervised strategies. Supervised learning is when the algorithm is provided with 
labeled data, where each image is associated with a specific diagnosis or label [4, 12]. 
This allows the algorithm to learn from the data and make predictions about new 
images. Unsupervised learning is when the algorithm is provided with unlabeled data, 
where the algorithm must learn to identify patterns and features in the data without 
any prior knowledge [4, 12]. This can be useful for identifying new or previously 
unknown patterns or features in the data. The algorithm can also be trained to extract 
information via patterns and share deep insights that can be used to improve diagnos-
tic accuracy, efficiency, and decision-making [4].

3.2 How can AI transform the work of a radiologist?

AI can play a transformative role to help unlock the solutions to many challenges 
of radiology such as increasing workload and staff shortages. AI can also transform 
the work of a radiologist by mainly following steps in image analysis, which includes 
detection, characterization, and monitoring in several ways [5, 11, 13] (see Figure 2). 
One of the most important areas where AI is used in radiology is image analysis, where 
AI-based systems can be trained to detect and identify specific structures or abnormali-
ties on medical images such as tumors, blood vessels, or organ abnormalities. This can 
improve diagnostic accuracy and productivity by highlighting potential abnormalities 
that may have been missed by the human eye [5, 11].

Another important area is characterization, where AI-based systems can be 
trained to classify and characterize different types of abnormalities or lesions 
[5, 11]. For example, AI algorithms can be used to differentiate benign from malig-
nant tumors or to classify different types of liver lesions. This can help radiologists 
to make more accurate and specific diagnoses and guide treatment decisions [5, 8]. 
This can also reduce the need for additional imaging or biopsies, which can save 
time and money.

Figure 2. 
AI applications in radiology.
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Monitoring is another area where AI is being used in radiology, where AI-based 
systems can be used to monitor changes in lesions over time [5]. For example, 
AI-based systems can track the growth of a tumor or the response to treatment [11], 
which can help radiologists to make more informed decisions about patient care. This 
can also help to identify patients who need additional monitoring or treatment and 
can lead to improved patient outcomes.

AI is also being used in image acquisition by deep learning-based reconstruction 
algorithms that can reduce scan time and improve image quality, especially in MR 
imaging. MR imaging can take anywhere from 30 and 60 minutes and occasionally 
longer depending on the protocol. Some patients, particularly elderly patients, can 
become uncomfortable and claustrophobic lying in a confined space for this period of 
time. Being able to obtain high-quality imaging in a shorter time can help alleviate this 
issue and reduce the presence of motion artifact. This can ultimately improve the diag-
nostic confidence in the images and prevent unnecessary repeating sequences [14].

Additionally, AI can assist radiologists by providing them with automated reports 
and summaries that include relevant information and analysis, which can save time, 
reduce the workload and errors caused by manual reporting, and improve communi-
cation with other healthcare providers [8]. AI can also support radiologists by inte-
grating with other healthcare systems, providing them with comprehensive patient 
information and data from other sources such as electronic health records, lab results, 
and previous imaging studies, which can provide a more comprehensive view of the 
patient’s condition and assist in the diagnostic process.

It is important to note that AI in radiology still requires human interpretation and 
oversight, as AI algorithms are not perfect, they can make errors or miss certain find-
ings. It is anticipated that AI in radiology will become increasingly more precise and 
reliable over time as more data is acquired and technology advances.

3.3 Challenges of AI and liabilities around wrong and missed diagnosis

Though AI has the promise to improve diagnostic accuracy and efficiency, it also 
poses certain liabilities related to wrong and missed diagnoses [9]. One potential 
liability is that AI systems may produce incorrect or unreliable results due to factors 
such as poor image quality, incorrect data input, or errors in the algorithms used to 
analyze the images [15]. This could lead to wrong, delayed, or missed diagnoses, or 
unnecessary treatments [9].

Another potential liability is that AI systems may not be able to detect certain 
types of lesions or diseases, particularly those that are rare or atypical. Additionally, 
there are concerns about the lack of standardized benchmarks to compare and 
validate AI models for practical implementation. This could lead to missed diagnoses, 
which can be particularly dangerous if the condition is serious or life-threatening.

AI systems also require proper validation and testing before they are used in clini-
cal practice. Validating data sets is time-consuming, and thus can jam many machine-
learning projects. Handling unexpected inputs such as artifacts and poor imaging can 
also pose a problem in high-quality data sets. Medical research on data sets can also 
act as a hurdle as many patients value their privacy [16, 17]. If they are not appropri-
ately validated, they may not be suitable for the intended use or population, and this 
can lead to wrong or missed diagnoses as well.

Additionally, there is also a lack of reasoning and an inability to explain AI models 
[17]. There is the potential that AI systems could be used to override the judgment of 
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radiologists, leading to an increased risk of wrong or missed diagnoses if the radiolo-
gist’s judgment is ignored (see Figure 3).

To mitigate these liabilities, it is imperative to ensure that AI systems are properly 
validated and tested before they are used in clinical practice and that radiologists are 
properly trained in their use. Since investigating liability issues will require differ-
ent skills from lawyers and additional evidence from technology along with medical 
expert opinion, we will need support from our technology law colleagues to design 
regulations [18]. It is vital to have proper governance, policies, and regulations in 
place for the use of AI in radiology.

3.4 Future implications for job security

AI has the potential to construct intelligent applications that can mimic the 
cognitive capabilities of humans, potentially revolutionizing the workforce in myriad 
ways. Some experts believe that AI could eventually replace certain tasks currently 
performed by radiologists and technologists [17] such as the interpretation of medical 
images. However, it is also possible that AI could augment radiologists’ abilities and 
productivity, allowing them to spend more time on higher-level tasks such as consult-
ing with other physicians, analyzing more complex cases, and providing follow-up 
to patients [19]. Though there are more than 80 approved algorithms in the US and 
Europe, only 40 of these have been approved by the FDA and only 34% of those were 
used for interpretation. The number of radiologists working in the US has risen by 7% 
in five years from 2015 to 2019 [20, 21].

Regarding job security, it is likely that radiologists and technologists who are 
trained and experienced in using AI systems will be in high demand. However, those 
who are not able or refuse to adapt to this new technology may face challenges in their 
job market [7, 10, 17]. Administrative staff may also be impacted as AI can automate 
some of the tasks they do, but this may also be a positive change as it can lead to more 
time for the staff to focus on patient care and other important tasks.

Figure 3. 
Efficacy and safety of images.
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Overall, the effects of AI on the radiology workforce will depend on how the 
technology is adopted and implemented. Radiologists, standing at the leading edge of 
digital medicine, can provide support in the incorporation of AI into healthcare, their 
role in diagnostics communication, the incorporation of patient values and prefer-
ences, medical judgment, quality assurance, education, policy-making, and interven-
tional procedures and ensures that they cannot be replaced by AI [22]. However, it is 
important for all radiologists, technologists, and administrative staff to stay informed 
about the latest developments in AI and work to develop the necessary skills to remain 
competitive in the field [23].

3.5 Future resident education

The increasing presence of AI applications in radiology necessitates educators to 
prepare trainees and radiologists as proficient users and stewards of AI technology. Yet, 
despite the controversy around if and to what extent AI should be incorporated into 
radiology residency programs, organized AI education and AI-ML curricula are still lim-
ited to a few institutions, with formal training opportunities lacking across the board.

AI has the potential to revolutionize radiology resident education by providing 
new tools and resources for teaching and learning and is likely to include a greater 
emphasis on AI-ML curricula and precision medical education [24, 25]. By incor-
porating AI and machine learning into radiology resident education, they can stay 
up to date with the latest techniques and technologies used to diagnose and treat 
patients and gain valuable experience with AI as it becomes increasingly important in 
healthcare.

One potential application of AI in radiology resident education is the use of 
AI-assisted image interpretation, which could help residents to develop their diag-
nostic skills and improve their understanding of complex medical images [25]. For 
example, AI systems can be used to identify and highlight certain features on an 
image such as tumors or blood vessels, which can help residents to identify these 
structures and improve their diagnostic accuracy more easily.

Another potential application of AI in radiology resident education is the use of 
virtual reality and simulation to provide hands-on training experiences [26, 27]. This 
technology can be used to create realistic simulations of medical scenarios such as 
a surgical procedure or an interventional radiology procedure, which can provide 
residents with an immersive and interactive learning experience.

AI can also be used to provide personalized and adaptive learning experiences to 
analyze each resident’s progress and create personalized learning plans [24, 25]. For 
example, AI-based systems can be used to track residents’ progress, provide feedback, 
and adjust the learning experience based on their strengths and weaknesses. This can 
include providing tailored feedback and resources to help them improve their diag-
nostic accuracy, as well as providing opportunities for hands-on training and simula-
tion. By incorporating AI-ML curricula for radiology residents, the residency program 
can be at the forefront and focus on teaching residents the fundamental concepts and 
techniques of AI and machine learning such as data pre-processing, coding, model 
training, theory, and evaluation [28]. This would enable residents to understand how 
AI systems work and how to use them effectively in their practice. Precision medical 
education, which is an approach that aims to provide tailored education based on 
individual needs and characteristics, will also play an important role in and would 
involve using AI systems to personalize the learning experience for each resident, 
considering their strengths, weaknesses, and learning style [24, 28].
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Additionally, AI can also be used for automated grading and feedback for radiol-
ogy residents, which can save time for educators and provide more accurate and 
consistent feedback to the residents. Overall, the future of AI in radiology resident 
education will be closely tied to the development of AI-ML curricula and precision 
medical education encompassing the three learning theories (behaviorist, cognitive, 
and constructivist), which will enable residents to learn the latest techniques and 
technologies in an effective and efficient way and personalize the learning experience 
based on the residents’ needs [24].

A recently developed elective in data science pathway (DSP) for fourth-year radi-
ology residents at Brigham and Women’s Hospital (BWH) in Boston has the potential 
to prepare the next generation of radiologists to lead the way in artificial intelligence 
and machine learning (AI-ML) [28]. The resident feedback from the pilot resulted in 
the establishment of a formal AI-ML curriculum for future residents, which included 
logistical, planning, and curricular considerations for DSP implementation at other 
institutions [28].

In summary, AI has the potential to greatly enhance radiology resident education 
by providing new tools and resources for teaching and learning, improving diagnostic 
skills, providing hands-on training experiences, and personalized learning experi-
ences, as well as automated grading and feedback.

AI will impact radiology such asmany other medical fields, but radiologists can 
play a leading role in this forthcoming change by reducing the huge amount of data 
and information into the most relevant information.

4. AI and ML in emergency room triage and point of care ultrasound

Artificial intelligence in medical practice is shaping the way clinicians assess, 
analyze, and diagnose potentially life-threatening conditions, which will significantly 
impact the delivery of emergency care. The use of AI algorithmic systems may give 
the tools to possibly overcome previously ingrained limitations in care delivery 
strategies [29] thus extending the ability of emergency physicians to diagnose and 
treat acute and critical illnesses. Over the last 10 years, the U.S. Food Drug and 
Administration (FDA) has approved more than 500 AI and ML devices [30]. Of 
these, 100+ were radiology applications for devices used during an emergency.

This section will highlight the applications of artificial intelligence (AI), machine 
learning (ML), deep learning (DL), and convolutional neural networks (CNN) in 
emergency room triage and their use, specifically in point of care ultrasound test-
ing. The applicability of these technologies has an obvious advantage in emergency 
medicine as every year the demands on the emergency medicine practitioner increase 
as the number of emergency room visits grows and physicians are expected to care 
for more patients with fewer resources. The ability to provide timely efficient and 
accurate life-saving interventions is crucial, and AI holds the potential to help physi-
cians streamline processes, increase efficiency, and cognitively offload.

4.1 AI impact on emergency room care

Triage is the prioritization of the sick and injured based on their need for emer-
gency treatment. Traditionally, in the emergency department clinical support staff 
gather primary patient demographic data, vital signs, and basic information about 
a patient’s initial presenting problem. The patient then undergoes a brief evaluation 
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by a clinician, usually a nurse, to determine the patient’s acuity or need for emergent 
care or resources. Commonly during this process, a patient is assigned an emergency 
severity index (ESI) score, which is a common triage tool that provides a clinically 
relevant framework to stratify patients into five groups from one (most urgent) to five 
(least urgent) based on acuity and resource needs. This system essentially deter-
mines who receives care first. Subsequently, clinicians thoroughly assess presenting 
symptoms, perform appropriate physical examinations, order applicable laboratory 
studies, imaging studies, and consultations and either discharge the patient to home 
or admit them to the hospital as indicated [31]. With the growing number of emer-
gency room visits annually and a growing shortage of nurses and emergency medicine 
practitioners, the ability to provide timely efficient and accurate life-saving interven-
tions is crucial.

Effective triage is of the utmost importance to patient quality of care and outcome, 
especially as ER capacities are further and further stretched by increased volume and 
decreased resources, which have led to prolonged ED stays and wait time for care. 
Although ER wait times are multifactorial, convenient registration and the early 
identification of impending life-threatening conditions can obviate adverse patient 
outcomes and decrease mortality. One study that assessed the performance of a deep 
learning system, PatientFlowNet, in predicting patient flow in emergency depart-
ments found that the PatientFlowNet model prediction of patient arrival rates was 
higher, with substantially more accuracy in predicting treatment and discharge rates 
than the baseline methods used in the ER. The resulting mean absolute error was 
4.8% lower than the leading baseline [32]. Applying AI tools that combine both clini-
cal narratives (symptoms, pain scores, and ESI) and structured data (demographics 
and vitals), there is potential to positively influence outcomes.

The AI algorithmic tool (TriageGO) recently developed at Johns Hopkins aims 
to integrate patient medical health records with presenting symptoms, as well as 
vital signs to further risk stratify patients and predict morbidity and mortality [33]. 
Additionally, the DNN model with word embedding AI tool, which integrated clinical 
narratives and structured data, outperformed and better predicts patients’ hospital-
ization and discharge when compared to the rapid emergency medicine score (REMS) 
[34]. Furthermore, rapid response is paramount with time-sensitive complaints 
such as chest pains. Goto et al. neural networks AI model predicts whether patients 
presenting to ER chest discomfort needs urgent revascularization 12-lead EKG. Their 
AI model detects the presence of specific EKG characteristics not recognized by 
physicians [35]. Than et al. developed their “MI3 clinical support tool” to predict the 
likelihood of myocardial infarction (MI) using machine learning which achieved a 
high AUC (0.963) for diagnosing MI, which outperformed the European Society of 
Cardiology 0/3-hour pathway [36]. In all these examples, the impact of AI on today’s 
healthcare system has the potential to be transformational.

4.2 AI impact on point of care ultrasound

Over the last twenty years, ultrasound equipment has become more effective, eco-
nomical, and compact because of this the applications and uses have broadened and 
the use of ultrasound at the bedside as a modality has become more ubiquitous. This 
is especially palpable in the world of emergency medicine (EM). In EM, there is an 
inherent need to arrive at a time-sensitive diagnosis and initiate potentially life-saving 
treatments, and the use of bedside ultrasound of point of care ultrasound is a crucial 
tool that facilitates this. POCUS is the medical use of ultrasound (US) technology 
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for the bedside evaluation of acute or critical medical conditions. It is utilized for 
diagnosis, the guidance of procedures, monitoring of certain pathologic states, and as 
an adjunct to therapy. It has also demonstrated its utility as an adjunct in the resuscita-
tion of the critically ill.

POCUS examinations are typically performed, interpreted, and integrated into 
care by the treating physician in real-time at the bedside making it distinct from 
traditional radiology-based applications [37]. Instead of performing a systems-based 
study designed to interrogate a particular anatomic area, POCUS seeks to help answer 
specific clinical questions that are often binary in nature (e.g. is there free fluid in the 
peritoneum, is there a pneumothorax, is there hydronephrosis, etc.). An additional 
factor that differentiates POCUS from the traditional use of medical ultrasound is the 
fact that POCUS practitioners are inherently diverse in their training and their ability. 
Ultrasound image acquisition is a user-dependent skill, and both because of this as 
well as the binary nature that drives POCUS use at the bedside, POCUS is an area that 
is ripe for the application of artificial intelligence (AI) and deep learning (DL) [37].

The use of DL in POCUS is varied as the model used depends on the problem it is 
trained to solve [37]. For example, DL in POCUS has been already used to help iden-
tify structures [37], for image enhancement [38], and for the classification of images 
[38]. In each different application, depending on the clinical question, the POCUS 
operator would “only need to provide an image, and the trained DL model would be 
able to immediately return the desired output, whether it be the outline of an organ, 
an enhanced US image, or the classification of the US image along with a confidence 
score [37].” The ability of DL application allows the practitioner to cognitively offload 
some elements of image acquisition and interpretation, and thus be able to concen-
trate more on real-time application and direct patient care [37]. The advantage of this 
is especially palpable in the world of emergency medicine (EM). In EM, there is an 
inherent need to arrive at a time-sensitive diagnosis and initiate potentially life-saving 
treatments.

AI and DL have demonstrated utility in several cardiac studies (e.g., estimation of 
ejection fraction, calculation of IVC caliber and collapsibility to predict fluid respon-
siveness, and the identification of cardiac tamponade), as well as pulmonary applica-
tions (AI-enhanced lung ultrasound in discriminating viral and bacterial pneumonia, 
estimation of size of pneumothorax based on location of lung point, and prediction 
of antibiotic response from US lung images using DL). These applications expand the 
EM practitioner’s ability to risk stratify and implement treatment.

There is further potential, as AI ability evolves, to eventually achieve “real-time” 
image interpretation. This could in theory expand the number of POCUS practi-
tioners beyond the ranks of physicians or EM-trained clinicians to first responders, 
EMTs, and those responding to mass-casualty events or real-time disasters. The 
ability to use POCUS in the “field” by untrained or novice user will allow those on 
site to potentially diagnose fractures, abdominal/thoracic free-fluid or hemorrhage, 
pneumothorax, or even cardiac standstill thus optimizing the triage response and 
subsequent allocation of resources. A similar conclusion can be drawn from those 
practicing in the global health realm, which is traditionally a lower-resource practice 
environment.

However, despite the obvious advantages, there are some limitations to the use 
of AI in POCUS. Imaging modalities, such as CXR, CT, and MRI, have standardized 
imaging protocols that are archived for later use/review leading to the construction of 
large persistent imaging datasets for AI to “mine.” POCUS images and videos, on the 
other hand, are acquired and interpreted at the bedside, and findings are immediately 
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applied with variable storage/archiving protocols depending on time limitations, 
patient acuity, machine capabilities, and institutional guidelines. Additionally, the 
large variation in POCUS user skill level, the order in which images are acquired, and 
the image acquisition technique create a great deal of “noise” or randomness which 
further complicates the building of large, standardized ultrasound datasets. Despite, 
this as AI advances and DL modeling and the creation of CNN becomes more sophis-
ticated pathways are being found to navigate these limitations.

The impact of AI on today’s emergency room can be transformational from its 
effects on triage to disease diagnosis and detection. AI can reintegrate and augment 
ER staff rather than replace the human workforce by decreasing the work burden and 
improving clinical outcomes.

5. AI and ML for vital sign monitoring

Today’s healthcare, especially in the hospital setting, is complex, fast-paced, and 
busier than ever. Physicians make many individual decisions and treatment plans 
that are influenced by copious amounts of data that are collected and available for 
review in the EHR. Hospitalized patients are monitored frequently through vital 
signs and lab tests for signs of deterioration or instability. There is now a desperate 
need to automate this essential job and quickly alert clinicians if there are any signs of 
deterioration.

With the advancement of technology, artificial intelligence (AI) and machine 
learning (ML) algorithms are being used to analyze vital sign data and detect signs of 
disease in real-time, improving the accuracy and speed of diagnosis [39]. Conditions, 
such as sepsis, are commonly managed in the hospital setting and are the leading 
cause of inhospital death [40]. Traditionally, clinicians have relied on scoring systems 
such as the modified early warning score (MEWS), SIRS, Rothman index, sequential 
organ failure assessment score (SOFA), and quick SOFA (qSOFA) to identify patients 
at risk of deterioration. These scores utilize several data points from the patient’s 
record to predict the risk of deterioration. However, due to their high sensitivity and 
low discriminatory ability, these scores may identify a larger number of patients at 
risk than present [39, 41].

Studies have concluded that individual machine learning models can predict sepsis 
onset ahead of time and with more accuracy compared directly with the traditional 
sepsis screening tools such as SIRS, MEWS, and SOFA scores [39, 41]. From a clinical 
perspective, ML models are particularly useful as they could trigger earlier detection 
of sepsis and allow for early antibiotic administration leading to decreased mortality. 
Some additional studies have also highlighted earlier predictions of severe deteriora-
tion in sepsis utilizing only vital signs. For instance, Mao et al. developed a gradient 
tree boosting model using data from only six vital signs: systolic BP, diastolic BP, heart 
rate, respiratory rate, peripheral capillary oxygen saturation, and temperature. This 
model was able to predict sepsis at the onset with high AUC (0.92) and septic shock 
4 hours in advance with a high AUC (0.96). The model was also able to predict severe 
sepsis 4 hours in advance with a higher AUC (0.85) than the onset time for statistically 
calculated SIRS AUC (0.75) [42].

Additionally, AI-based monitoring incorporated into the EHR can facilitate the 
use of large volumes of data for the prediction of mortality in hospitalized patients. 
Shickel et al. used a modified recurrent neural network model on temporal intensive 
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care unit data to develop DeepSOFA, a real-time mortality risk prediction score 
based on the traditional SOFA score [43]. This model compared the traditional SOFA 
scores to deep learning technology in augmenting a clinician’s decision-making 
by generating accurate real-time prognostic data relating to mortality [43]. The 
DeepSOFA model was more accurate than baseline SOFA models for predicting 
inhospital mortality among ICU patients with baseline SOFA models significantly 
underestimating the probability of death, especially among non-survivors [43]. 
Recognition of mortality risk earlier in the disease course has the potential of aiding 
clinicians in taking preventative measures earlier and with more accuracy resulting 
in improved outcomes.

The COVID-19 pandemic demonstrated the utility of AI and ML for prehospital 
and posthospital management of patients. For instance, remote patient monitor-
ing (RPM) came to the forefront during the pandemic as hospital systems became 
overwhelmed with patients. RPM is a healthcare technology that uses digital devices, 
wearable sensors, and wireless communication to collect and transmit medical data 
from patients outside of traditional clinical settings. Traditionally, RPM has been 
utilized to monitor chronic diseases; however, the pandemic accelerated the use of 
this technology for acute monitoring and management of patients with COVID-19 
infections. RPM is achieved through use of smart devices such as blood pressure 
meters, thermometers, glucometers, and pulse oximeters utilizing an ecosystem 
known as the internet of health things (IoHT). IoHT refers to the interconnectivity 
of medical devices, wearables, and healthcare systems that allow for the exchange of 
health-related data between patients and healthcare providers.

ML techniques applied to enormous data sets generated through continuous 
monitoring of cardiac- and respiratory-related signals, coughing, body temperature, 
and patterns of activity collected from COVID-19 patients help predict the health 
status of a patient or individual easily [44]. Consequently, based on these measure-
ments, the appropriate medication can be administered, or people can be transferred 
to the hospital when necessary. Crotty et al. utilized RPM capabilities to monitor 5367 
patients with COVID-19 infection and found a substantial reduction in ICU utiliza-
tion, reduced length of stay, and lower 30- and 90-day mortality when compared to 
patients who did not participate in active monitoring [45]. RPM has the potential to 
improve patient engagement and health literacy by providing real-time information 
that can improve outcomes, such as pruning education, which likely led to improve-
ment in oxygenation requirements and improved outcomes [45].

AI and ML are also improving cardiovascular health through predictive analytics. 
Predictive analytics is the use of data, statistical algorithms, and machine learning 
techniques to identify the likelihood of future outcomes based on historical data. In the 
case of cardiovascular health, predictive analytics can be used to identify patients who 
are at high risk of cardiovascular disease [46, 47]. By using data from EHR, wearable 
devices, and other sources, healthcare professionals can identify patterns and trends 
such as low heart rate variability (HRV) that may indicate a higher risk of subsequent 
cardiovascular events (14). AI and ML algorithms can be also used to analyze HRV 
signals to track and evaluate the effectiveness of therapeutic interventions such as 
HRV biofeedback. Burlacu et al. outlined a systematic review on the beneficial effects 
of HRV-biofeedback, a slow breathing technique, on different cardiovascular diseases 
such as arterial hypertension, heart failure, and coronary artery disease. HRV modula-
tion can be implemented in high-risk patients to significantly reduce stress levels and 
improve autonomic nervous system function and cardiovascular endpoints [48].
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5.1 Challenges of AI in vital sign monitoring

With the increasing utilization of smart medical devices, there is a growing risk 
of sensitive medical data being accessed [49] or stolen. To address this concern, it is 
necessary to implement robust security measures such as encryption and access con-
trols to ensure that personal information is properly protected. Rajasekaran proposed 
that the IoHT must include several key features such as trust ability, low transmission 
latency, security, confidentiality, integrity, and availability [50]. They proposed a 
blockchain-based anonymous privacy-preserving authentication scheme to preserve 
the key features outlined above.

Additionally, the lack of interoperability of the different wearable devices is one of 
the biggest hurdles that we need to overcome. By enabling different devices to share 
data, interoperability opens the door to new possibilities for personalized health-
care. For example, a wearable health device that tracks a user’s physical activity can 
share data with another device that monitors their heart rate. This data can then be 
combined to create a more complete picture of the user’s health, helping healthcare 
providers make more informed decisions about treatment and care. Interoperability 
will also help generate high-quality data that can be used to train ML algorithms.

For machine learning algorithms to work effectively, they require a large 
amount of high-quality data to train on. ML algorithms can be biased if the train-
ing data contains systematic inaccuracies or overrepresents one group. Straw et 
al. demonstrated one such bias when they reviewed Indian Liver Patient Dataset 
(ILPD), which is the open source data set used extensively to create algorithms that 
predict liver disease. Due to the under representation of females in the data set, the 
model demonstrated a higher false negative rate in women leading to lower disease 
detection in females [51]. To minimize the risk of bias, it is important to carefully 
select training data by using diverse and representative data sets. Additionally, 
the development and deployment of ML models should be guided by ethical and 
inclusive principles. Mccradden et al. outlined ethical principles of nonmaleficence, 
relevance, accountability, transparency, and justice as the foundation for the regula-
tion of healthcare ML algorithms [52].

In inference, AI and ML have the potential to revolutionize the way healthcare 
is delivered. With the ability to collect vast amounts of patient data in real-time, AI 
algorithms can provide valuable insights into patients’ health, improve the accuracy 
of diagnosis, detect health issues early, and improve patient engagement and health 
literacy. While there are still challenges to overcome such as security, interoperability 
of wearable devices, and ML bias, AI and ML have the potential to significantly 
improve patient outcomes and transform the way healthcare is delivered. Clinicians 
and policymakers, however, must ensure that the technology is accessible and afford-
able for all patients, regardless of their socioeconomic status. While there have been 
significant advancements in RPM technology in recent years, many patients, particu-
larly those living in rural or underserved areas, may not have access to these tools due 
to cost or limited availability.

6. AI in diabetes and Glycemic control

Artificial intelligence is a fast-growing field with its applications for persons living 
with many chronic diseases such as diabetes. There has been global concern about 
the ever-increasing incidence rate of diabetes with one in two persons undiagnosed 
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and untreated [53]. The total number of people living with diabetes is likely to rise to 
643 million by 2030 and 783 million by 2045 [53]. A recent study of 300,000 patients 
with type 2 diabetes on medical therapy found that after 3 months, 31% of patients 
had discontinued their diabetes medications that number was widened to 44% by 
6 months, and to 58% by 1 year [54]. Besides, about 75% of diabetic adults live in low- 
and middle-income countries with only 5% of those receiving thorough treatment 
according to guidelines [55]. The best care for diabetes is mostly hindered by lack of 
real-time crucial health information required to make necessary choices with diabetes 
control and therapy.

Today, advances in AI have introduced a shift in diabetes care from conventional 
management approaches to targeted data-driven precision care. There is a spectrum 
of interventions spread across different care processes in diabetes. AI is not only being 
applied to predict diabetes risk utilizing genetic data and to diagnose diabetes via 
electronic health record data in clinical decision support but it is also transforming 
diabetic care and predicting the potential sequelae of diabetes such as nephropathy 
and retinopathy. Such solutions have enhanced the workflow of both medical staff 
and patients.

6.1 How is AI utilized in diabetic care?

To help fight diabetes disease and improve its management, AI can play a vital role 
in diabetic care at many different levels discussed below that can benefit both provid-
ers and patients in a team-oriented approach.

6.1.1 Diabetes prediction

AI can help diagnose diabetes noninvasively and proactively by identifying a 
subset of populations with the highest risks at a pre-illness stage. Though diabetes 
prediction models have been generated by conventional statistics, machine learning 
(ML) can maximize the predictive performance of conventional models to the next 
level [56]. Algorithms built by ML can do risk stratification by analyzing genomics, 
lifestyles, mental and physical health, and social media activity. Earlier detection and 
intervention for at-risk individuals could decrease the incidence of diabetes, and the 
financial costs associated with uncontrolled diabetes.

6.1.2 Lifestyle guidance for diabetes patients

Monitoring glucose levels in real-time is being done using wearable devices 
and continuous glucose monitoring systems of patient symptoms and biomarkers. 
Continuous glucose monitors (CGM), which are now frequently used by diabetics, 
acquire a large amount of data that has previously been underutilized. The amount 
of glucose in the fluid inside the body is measured by CGM. In certain circumstances, 
the sensor is glued to the back of the arm or is implanted under the skin of the belly 
rapidly and painlessly. The information is then sent to a wireless-pager-like monitor 
through a transmitter on the sensor [57].

CGM sensors can be divided into two main categories: Professional CGM sensors 
and real-time CGM sensors (rtCGM) [58]. Professional CGM sensors are prescribed 
by healthcare professionals usually for limited periods of time, they record glucose 
concentration data in blinded modalities (i.e., the patient cannot visualize the data in 
real-time), and they allow the healthcare professional to retrospectively review the 
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patient’s glycemic trends and make therapy adjustments. Conversely, with real-time 
CGM sensors (rtCGM) the recorded data are accessible in real-time to the patient, 
who can use these data for improved decision-making in the daily management of 
Type 1 diabetes. AI can enable patients to decide what to eat or drink and what level 
of physical exercise is suitable.

6.1.3 Insulin injection guidance

AI can be used to provide personalized recommendations for insulin dosage 
besides meal planning based on glucose levels, physical activity, and other factors. 
The CGM sensors provide in real-time, every 1–5 minutes, the current blood glucose 
concentration, and its rate-of-change, two key pieces of information for improving 
the determination of exogenous insulin administration and the prediction of forth-
coming adverse events such as hypo−/hyper-glycemia.

The most popular rtCGM sensors are minimally invasive electrochemical sensors 
that measure interstitial glucose concentration by a small transcutaneous electrode 
placed under the skin of the abdomen, or the arm. Some insulin pumps can be inte-
grated with rtCGM sensors into the so-called closed-loop system in which a control 
algorithm automatically adjusts the insulin dose based on the glucose concentration 
measured [58]. A recent randomized controlled trial using an automated AI-based 
decision support system for insulin showed statistically no difference in the percent-
age of time spent within the target glucose range with no adverse events reported in 
patients on remote AI arm versus three adverse events in patients on remote adjust-
ments by physicians’ arm [59].

6.1.4 Glycemic adverse events detection

Particularly, pediatric and geriatric patients are at risk of severe hypo- and hyper-
glycemic events. Many noninvasive techniques using AI-based algorithms are being 
proposed and tested to detect glycemic events. Scientists have developed an AI system 
that will detect hypoglycemia or low glucose through data collected via CGM, which 
is employed for detecting low glucose levels using a noninvasive wearable sensor.

Glycemic events, using ECG signals collected through noninvasive devices, are 
also being tested [60]. ECG-based glucose detection can be more practical for diabetic 
patients with comorbidities who are more familiar with ECG monitoring for other 
clinical monitoring [61]. It could also be more favorable for prediabetics who might be 
more aware due to commercial use in fitness or sports applications. Such AI assistants 
also provide statistics and communicate with the care provider in the case of an 
emergency.

6.1.5 Monitoring diabetes complications

Progress in AI for improving screening and detection of diabetic retinopathy, 
macular edema, and foot ulcers can transform the gaps in clinical care. The cost 
of screening and limitation on human and equipment resources is still challeng-
ing despite adoption of telemedicine especially in developing countries. The early 
detection of complications can protect patients from dangerous stages that may later 
cause blindness and foot amputations. Providers are successfully leveraging deep 
learning to automate the diagnosis of retinopathy with high accuracy and specificity 
levels [62].
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6.1.6 Patient engagement

Improving patient engagement and self-management through immersive technol-
ogy, virtual coaching, and educational programs can shift disease courses to better 
outcomes. Face-to-face educational programs are followed in less than 10% of newly 
diagnosed people, but the emergence of digital health has given them the opportunity 
to overcome the challenges of lower engagement and participation from patients 
[63]. A statewide survey study in Indianapolis found that about 50% of people use 
technology to communicate with providers [63]. Telemedicine, via various telehealth 
portals, is now accepted as the necessary new normal and is expected to grow by 33% 
from 2019 to 2026 thus reaching $ 185.6 billion by 2026 [64]. Patients involved in their 
healthcare will experience better long-term health outcomes and incur lower costs, so 
there is a push toward promoting greater patient engagement.

6.2 Challenges in AI of diabetic care

Though there are many diabetic AI apps and devices everywhere, however, there 
has been a lower uptake in the long-term engagement of digital health technolo-
gies [65]. Even with a slower understanding of technologies, digital data collected 
from diabetic patients is growing exponentially. Data is the key to creating better AI 
insights, but it can be very easy to get exhausted by big data. Besides, data collected by 
wearables has constraints around their integration into existing systems. It also raises 
concerns about data privacy, security, and even legal hurdles.

Our ambition should be to create comprehensive and relevant solutions to enhance 
the usability of AI-based tools with evidence-based models in collaboration with all 
stakeholders including patients. Effectiveness will depend on the rapidity of con-
struction and modification of new apps, devices, and sensors according to improve 
diabetes experience for patients and organizational needs. The resolution of such 
challenges will depend on adequate scientific research and regulation.

7. Conclusion

In conclusion, artificial intelligence (AI) has the potential to revolutionize health-
care management and provide tremendous benefits to healthcare organizations and 
patients alike. AI can help healthcare organizations gain insights into data that would 
otherwise be difficult to obtain, provide real-time decision support and recommenda-
tions, automate mundane tasks, improve diagnosis and treatment accuracy, monitor 
patient health, predict future health outcomes, and improve communication between 
healthcare professionals and patients. As AI continues to advance, healthcare orga-
nizations must take advantage of its many benefits and integrate the technology into 
their systems to ensure they are staying competitive in an ever-changing healthcare 
landscape.
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Abstract

Artificial intelligence (AI) is the machine-based approach for processing various 
communications and data in computers for defining their actions in future perfor-
mances. Different types of machine learning are described in medical sciences for 
proceedings in medical education, medical research, and clinical trials and in treat-
ment of the diseases after appropriate diagnosis. These require less time and efforts 
of medical professionals and bring a more efficient way to fulfill the standards of 
medicine. The clear understanding of the workforce accomplishments is required for 
the future doctors to perform well, alongside the AI. Awareness of AI in the field of 
medicine is needed for general population to give them an idea for utilization of all 
new technologies, thus enlightening the feasibility of machine learning at consumer 
level as well. In future, AI will enhance the efficiency and effectiveness of healthcare 
delivery in all sectors of medicine and surgery.

Keywords: artificial intelligence, future medical science, healthcare, medical 
education, medical research, robotic surgery

1. Introduction

Artificial intelligence, AI, is the process of developing perspicacious machines 
from already existing statistics and data. Past experiences of the different events are 
learned by these machines to perform human like activities including decision making 
on their own. This type of complicated technique can be used in almost every sector 
of the societies like transportation, healthcare, banking, and entertainment [1].

An English mathematician, computer scientist and theoretical biologist, Alan 
Turing, has been widely considered to be the father of Artificial intelligence. Term 
artificial intelligence was first coined in the Dartmouth college conference, in 1955. AI 
program MYCIN was the first use of AI in medicine, developed to identify the treat-
ments of blood infections, in 1970s [2, 3].

Here authors describe various types of AI and role of this machine-based technol-
ogy in medical sciences along with future perspective of AI for the budding doctors.
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2. Methodology of the chapter

The wide range of classifications have been described in different researches [4–7]. 
We have classified AI based on the need in medical sciences. The aim of present clas-
sification is predominantly focused on the understanding of this evolving technology 
for the scholars of the medical field and the clinicians [8]. This method of categoriza-
tion makes AI easy to understand to all the personnel concerned with their practices 
in every sector of the medicine.

To explore the future of AI in medical sciences various scholars in their study had 
focused individually on the criteria of medical education [9], innovations and researches 
[10], and disease diagnosis and treatments [11, 12]. Here, we have incorporated all the 
research details collectively and analyzed them for further use at multi-disciplinary 
level. Publications of AI on medical curriculum and research were few in comparison to 
the AI discussions on diagnostic methods and treatments of the diseases.

Here in this chapter, importance of AI in medical curriculum and innovative 
research are also stressed, along with the use of AI in delivery of medical services. Key 
word ‘artificial intelligence’ was used to search references on PubMed and on Google. 
Further literature was procured by exemplification of primary articles.

3. Types of artificial intelligence

Artificial intelligence in medical sciences is divided into two main categories [8]:

• Virtual

• Physical

3.1 The virtual component

Machine learning delineates the virtual part, which helps to control health man-
agement systems by electronic records of health and actively guides the physicians for 
decision making. It is a neural network-based system using deep learning of informa-
tion for different approaches of the clinicians. This machine learning or deep learning 
has three types of mathematical algorithms (Table 1).

S.No Type Applications

1 Unsupervised learning Previously undetected patterns are grouped in a logical way

2 Supervised learning Previous existing patterns are used to compare the given samples

3 Reinforcement learning Machine learns from its own experiences

Model based- advanced control of the planning from the learning

Value based- deep networks represent the functions

Policy based- more complex neural networks exemplify the functions

Table 1. 
Virtual component of artificial intelligence.
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• Unsupervised learning (UL)

• Supervised learning (SL)

• Reinforcement learning (RL)

3.1.1 Unsupervised learning (UL)

Unsupervised learning identifies the patterns that are undetected previously. 
Machines classify them without any guidance from any source. It groups the infor-
mation in a logical way after comparing and categorizing the unlabeled data, thus 
performs more complicated process compared to other forms of deep learning. UL 
is an auto-correction technique based on interpretation and identification to amend 
the issues of unpredictability. A more commodious AI aid can be developed by taking 
unsupervised learning principles to ameliorate the effectiveness and precision of 
health systems. Priority for the health in new generations causes a great number of 
clinicians to focus specifically on the use of UL to upgrade the efficiency of applica-
tions in medical sciences [4].

3.1.2 Supervised learning (SL)

Supervised learning uses the already existing labeled data to generate the correct 
conclusions from the samples given. Machines becomes more accurate to give conclu-
sions as number of the samples increases. Machines in SL have already been trained 
by the previously labeled correct and appropriate input data. This data input helps the 
machine to further plan a correct output when new unsolved tasks are subsequently 
given to it. Various algorithms and computational methods are used in SL techniques. 
Some frequently used learning methods in SL are Neural Networks, Naïve Bayes, 
Linear Regression, Logistic Regression, Support Vector machine, K-nearest neighbor, 
and Random Forest for accurate data predictions [5].

3.1.3 Reinforcement learning (RL)

Reinforcement learning is the science of creating verdict, which is akin to the 
process that appeared previously to focus in animal behavioral psychology. In this 
deep learning method, positive and negative reinforcement plays a key role to give 
reward for machine learning. Unlike supervised learning, in RL, machine is always 
bound to learn from its own experiences and does not use already labeled correct data 
for any favorable outcome (Figure 1A). RL gives output based on its own exploration 
of data with a balance between scrutiny of a given data and exploitation of the basic 
knowledge of machine for that data [6].

Three main approaches are there to apply in Reinforcement Learning [6]: policy 
based, value based and model based (Figure 1B).

3.1.3.1 Policy based

Policy is the core element of RL. Policy of RL has been made when an agent’s 
behavior at a particular time mapped by the machine and perceived by the 
environment.
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3.1.3.2 Value based

Value based approach gives an idea about the favorable and unfavorable situations 
to reward or un-reward the agent and depends on the signals for all good and bad 
steps. It predicts value of a behavior when measured by reward, whereas it counts no 
value when behavior has been finalized without any reward by the machine.

3.1.3.3 Model based

Model based approach is especially useful for further planning of the ways to take 
the set of tactics in consideration with all the future circumstances. It acts to make 
machines in learning process with a goal of having forward thinking in deep learning. 

Figure 1. 
Reinfiorcement learning. (A) Steps of reinfiorcement learning. (B) Model based, value based, and policy based 
reinfiorcement learning.
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Complex objective after many steps can be attained by these neural network-based 
learning [6].

3.2 The physical component

Robots, nanorobots, physical objects, medical equipment and many futuristic 
robots meant to deliver proper care to the patients, come under physical components 
of AI (Table 2). They assist to perform surgeries and help handicapped and aging 
population to deal with day-to-day challenges in their life [2].

Diagnosis of a disease is frequent and time draining process due to applications of 
various diagnostic procedures and their interpretation by a limited number of expert 
doctors. It brings the medical fraternity under a lot of stress for saving the patient’s 
life within limited initial golden hours of the treatment. Digitalized automatic diag-
nosis of diseases by complex algorithms of machine learning makes a cost effective 
and time saving measure for doctors as well as for patients. Standard algorithms for 
diagnoses can benefit consistently with the main quality of their universality in the 
form of assessment with same team of top experts globally on a low price and within 
seconds. AI also provides treatment alternatives for the specific diseases, which have 
been diagnosed by the machines [13].

Earliest detection of impending autism in children can be detected by the eye 
tracking technology in psychiatry [13]. Robotic characteristics of communication and 
teaching have created the most impressive example of AI utility in autistic children in 
future [14–16]. Facial emotion recognition (FER) is a separate area in AI to analyze 
patient’s emotions by comparing images with the available database in the system. 
This systematic database has already been fed with the patient’s data, who had under-
gone with the same disorders and treatments [13].

Robotic systems which can be used in surgeries are robotic surgery, computer 
assisted surgery and robotically assisted surgery. Open surgeries have now been 
improved in the form of minimally invasive surgeries when they are assisted by 
robots. Tele manipulator devices provide the possibility of distant surgeries in the 
areas where no surgeons are available. A remote control, governed by the doctor, 
potentiates the real surgeries on patients without the presence of specialist surgeon on 
the site of operation [13].

S.No Type Applications

1 Digital devices Early detection of some diseases (autism, stroke, 
lung cancers, neurological malignancy)

Digital diagnosis

Care of elderly people

Treatment of autism

2 Robots, nano robots, remote control devices Robotic surgeries

Computer assisted surgeries

Remote surgeries

Robotic solo performance

Table 2. 
Physical component of artificial intelligence.
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Da Vinci surgical system and AXSIS robot of the Cambridge advisors are well 
acquainted robots in surgery [13]. Da Vinci surgical system is commonly used for 
gynecologic surgeries and for prostate surgeries. Cardiac valve repair is the newer 
and propitious development by this machinery system. Most recent forms of robotic 
devices are highly evolved to give solo performance in advanced surgeries [14–16].

Benign and malignant tumors of the central nervous system and lung cancer 
detection by low dose computer tomography (LDCT) for high-risk individuals are 
some other applications of AI in medicine. Support vector machine (SVM) and 
convolutional neural network (CNN) are expert machinery system for identification 
and classification of stroke even before the episode of stroke. Direct analysis of stroke 
can be notified to the hospital team with in minutes. It helps the clinicians for early 
detection and treatment of such a medical emergency causing brain damage of the 
patient if there is any delay in the treatment [13]. Robots also has become promising 
to take care of elderly individuals and are becoming most emerging medical devices to 
help aging population on their own [14–16].

4. Future of artificial intelligence in medical sciences

Medical science enfolds various courses which describe the anatomy and functions 
of human body. Basic biology like anatomy, physiology, and biochemistry with many 
other graduate subjects in medicine come under medical sciences. Today, AI technology 
and machine learning (ML) have developed ahead of biological sciences to apply on a 
vast majority of medical specialties such as radiology, screening, psychiatry, primary 
medical care, diagnosis of the disease and telemedicine [17, 18].

Future of AI in medical sciences can be discussed in three forms (Table 3).

• Medical education

• Medical research and innovations

• Diagnosis and treatment of diseases

4.1 AI in medical education

Curriculum of medical education now emphasize more on e-learning methods 
which are yet to adopt in many countries. AI helps to see the bridge between the 
availability of digital resources and utilization of the resources by medical students 
and teachers. Integration of many technologies akin to neural networks, expertise, 
deep learning, machine learning, speech, image, and language recognition simulate 
insightful behavior of humans. Lately, AI has gained vast application in medical edu-
cation. Many research has been conducted to observe the cause of underutilization of 
e-content by the students and teachers to reach the conclusion for possible solutions 
of those problems [9].

Presumably, AI will help teachers to promote the students for self-directed 
learning and will help to give healthy discussions on case-based studies. The major 
hurdle is to face multiple distractions while finding knowledge about simple and 
small topics by the students through e-learning platforms. In near future, as the 
technology advances, there might be a possibility of level wise distribution of digital 
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content based on the understanding of graduate and post graduate students, as well 
as researcher and scientists. This distribution of content in digital library will be time 
saving for the teachers, students as well as for researchers [19].

Moreover, standard and quality along with the accessibility of the content will 
be considered the double edge sword for any digital content to make it available for 

S.No Category Methods Future expectations

1 Medical education Availability of standard and 
best quality digital resources

Consumer friendly E learning platforms

E content utilization by medical students 
and teachers

Promotion of self-directed learning of 
medical students

Level wise distribution of digital 
content for graduate, postgraduate and 
researcher scholars

Digital synchronization of topic 
understanding between medical student 
and faculty

Monitoring the use of digital 
content

Quality based efficiency of the 
electronic data for students and teachers 
can be measured

Digital assessment program Self-assessment methods to shape the 
right direction of student’s learning

2 Medical research 
and innovations

Research exploration 
through machine learning

Time saving and cost-effective clinical 
trials

Fair and ethical innovations by the 
diverse teams making universally 
acceptable data

3 Diagnosis and 
treatments

image analysis Interpretation of radiological and 
pathological images

Wide spread clinical 
practices

Digital clinical notes by speech 
recognition and text identification of 
the patient

Integration of medical professionals 
with newer technology

Prediction of high-risk 
situations

Stroke, sepsis, and heart failure

Digital recording of genetic 
outlines in different tumors

Early detection and treatment of cancers

Message alert and 
provocative action devices 
for the patient

Personalized and contextualized care of 
the patient

Documentation of health 
records and claims 
processing

Administration, health insurers and 
other stakeholders time will be saved

Table 3. 
Future of artificial intelligence in medical sciences.
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the students. Digital files will be more consumer friendly whether for teachers or for 
medical students, filling the gap between physical and digital resources. AI can be 
used to monitor the efficiency of e-resources to be used by the consumer on frequent 
basis and enhances the scope of improvement in medical education system globally in 
the universal form. It can make a synchronized understanding of the subjects between 
students and the medical faculty [20].

As the teaching is always followed by the assessment of students for different 
subjects, development of various digital platforms will make the assessment meth-
ods more convenient and user friendly. These platforms will save much time for 
the assessment as compared to the conventional methods. It will make formative 
evaluation easier for the teachers. Students can also evaluate themselves on different 
steps of learning by the newly developed assessment methods, giving them more 
confidence for development in the correct direction during their stay in medical 
schools. A digital self-assessment program can be developed for the students to 
judge themselves as to where they stand overall throughout the medical studies. 
These types of assessments will be helpful and time saving for the challenging 
newly applied competency based medical education curriculum, which is promising 
for creating competent physicians and surgeons to embark in health care system 
globally [21, 22].

4.2 AI in medical research and innovations

Implementation of machine learning (ML) to expedite clinical exploration are 
sporadically discussed on intellectual ground. Medical research is an extensive field, 
with investigations and observational evaluation, guiding traditional trials with real-
istic elements which in turn encourage clinical registries and additional implementa-
tion work. Clinical research is invaluable to improve the health care and outcomes. It 
has been proved as complicated, demanding in terms of labor, expensive and vulner-
able to unexpected errors. ML has the possibility to help and improve the accomplish-
ments, universality, patient focusing and effectivity of clinical trials, preventing the 
loss of years as well as dollars of expenditure as have been done in many conventional 
settings of analysis [10, 23].

Functional and metaphysical barriers in ML can do well in clinical research in 
future after précised focus on them. The prospective applications of ML to medical 
research recently overtake its existing use, because few potential studies are available 
about the reasonable effectiveness of ML in contrast to the conventional approaches. 
Conversion of traditional methodology to ML needs time, enthusiasm, and collabora-
tion for effective adoption. Communication and cooperation are crucial for applica-
tion of this favorable technology for the future application in medical research and 
innovations [24].

The future goal for application of ML in research is to create fair and ethical inno-
vations that will be universally acceptable. Vigorous and integrative collaborations 
can reduce chances of bias in clinical research with ML. More diverse teams may offer 
innovative insights for de-biasing ML models [2].

4.3 AI in diagnosis and treatment of diseases

For healthcare delivery of the future AI has a very important role. At the begin-
ning, efforts to provide diagnosis and treatment are challenging but expectations to 
pick up in this area is anticipated in the future (Table 2). In radiology and pathology 
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most images will be analyzed and examined by the machines at some point. Usage of 
already working speech recognition and text identification for communication with 
the patients and getting clinical notes will increase [11]. A widespread challenge for 
the use of AI in health domain is the ensured adoption in clinical practices rather than 
proven capability of technology itself. This provocation can overcome by integration 
with the system, approval by the regulators, sufficient standardization, awareness to 
the clinicians and getting updated (both medical professionals and consumers) over 
time-to-time basis. Overcoming the challenges will take longer time compared to the 
time taken by technologies to mature [12].

There will be more use of technologies in next 10 years but not within 5 years 
due to this time constraints in adoption of something new in medical field. On a 
substantial scale, it is very clear that AI methods will not supersede the human 
physicians, but rather will boost their endeavors for patient’s care. Human physicians 
gradually may proceed towards the job motif that makes them capable on unique soft 
skills like empathy, and the integration with unique understanding on the big scale. 
Conceivably, the healthcare personnel who deny to work next to the artificial intel-
ligence will no longer have a job in near future [12].

It is important to consider the development of our health care systems in terms 
of AI. These technologies potentially transform various aspects of patient care better 
than humans, most importantly the diagnosis of disease. But replacing humans by 
computer’s AI for a vast medical domain will take many years due to multiple barri-
ers [25]. To achieve the human level performance in terms of cognition, intelligent 
behavior of a computer has been used since year 2016, a well-known time to show 
highest investments in AI for healthcare applications [26].

As we already are familiar with “virtual” and “physical” subtypes of AI [8]. The 
physical part deals with the performance of robots in various surgeries, care of handi-
capped individuals and elderly people. The virtual part deals with a range of informa-
tion data from digital records of the patient’s health to the guided neural network in 
treatment decisions of the patients. It describes the diagnosis of the patients via two 
wide techniques: Flowchart based and Database [2].

The flowchart-based method translates the sequence of questions of a physician 
for taking history to reach a most likely diagnosis after amalgamation of complex 
presented symptoms. A large amount of data, containing multidirectional clinical 
features of diseases, is the main requirement into cloud-based machinery networks. A 
major challenge in ML is inability to gather patient’s cues which can only be observed 
directly by a doctor during consultation. This results in a belief that AI can assist the 
physicians in future but cannot replace the human physicians in health care [2].

The database uses recognition of different images of a specific group to apply 
for answering the questions related to a particular diagnosis. A decade ago, google 
project “artificial brain” was designed on the principle of deep learning by database 
approach. This approach was used to match and mismatch various images in radiol-
ogy and pathology for diagnosis of distinct sets of diseases [2].

MYCIN, Watson and some free open source such as Tensor Flow on Google are 
systems developed to incorporate in healthcare system. The strict rule oriented clini-
cal opinion making machinery systems are not easy to maintain on medical ground 
due to constant change in medical knowledge. A big amount of data handling too is 
a big challenge for the healthcare system in ML. Statistically based ML framework 
leading the way in a period of evidence-based medicine, which is reflecting a positive 
change in broad term, but has many challenges such as ethical issues of the patients. 
Google now a days collaborates with health delivery channels to make prediction 
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designs from big data to alert the physicians for high-risk situations, like sepsis and 
heart failure [12].

Various firms are also there to focus more on investigation and treatment protocols 
of different cancers based on their genetic outlines. Foundation medicine and Flatiron 
health are specialized firms for complex understanding of all the genetic variants of 
cancers and their response to new treatment protocols. These rules-based, algorithmic 
diagnosis and treatment methods are many times challenging to get embedded in 
clinical fields. Majority of AI techniques address only one aspect of medical care thus 
standalone in nature. Such incorporation issues have possibly been a substantial bar-
rier to broaden the application of AI than accuracy and effectiveness of the technique 
itself [27].

Patient’s cooperation is the final need for making any method to give good or bad 
outcomes. Better outcome has been observed as the participation of patients increases 
when they become more active to owe well-being and good health. For the better 
health outcomes, AI will be developed in such a way which personalize and contextu-
alize the care. This can be supplemented by message alerts and provocative actions for 
the concerned patients [12].

Administration uses the AI less potentially, but it provides substantial efficiency in 
management of revenue cycle, clinical notes, claims processing and medical records 
documentation. False insurance claims can be identified easily and help the health 
insurers and governments to save time, finance, and lot of efforts of stakeholders [12].

To the best of all outcomes by using AI, it is believed that no jobs will be elimi-
nated in health care working in parallel with the AI. Jobs pertaining to the direct 
patient interaction will have less impact to fade itself. In AI systems, radiology and 
pathology perform a single task such as specific nodule detection in chest computed 
tomography and specific specimen findings in a biopsy result. Only a few of pathol-
ogy and radiology findings have been identified by AI till date, thus showing the role 
of human pathologist and radiologist to be there for a longer time before technology 
fully replace all the possible tasks done by the medical specialists. It is likely to create 
more jobs for the individuals having knowledge to work with AI which can further 
develop the effective use of AI in future [11].

In public health area, AI has a well-established role, which causes reduction in time 
of the doctors given on diseases already observed and treated many times, augmenting 
their work on more complicated and rare cases. Reshaping of various aspects of medi-
cal services are possible by these developing technologies and many patients can take 
advantages of taking alternative medications and follow-up care without much efforts. 
AI is expanding to have a significant impact on every angle of primary health care, 
reducing physician’s labor and increasing their efficiency, precision, and effectivity. 
But AI cannot replace medical experts completely in the tactful branch of mankind [2].

5. Limitations of artificial intelligence in medical sciences

Data availability for construction of well executed artificially intelligent models 
consult the large quantities of high-quality data. Patient’s confidentiality and public 
right to privacy issues restrict the data availability [14–16, 24], making compro-
mised framework with limited potential (Table 4). This fragmented data limits the 
predictability of a model for successful application of AI within and between the 
organization. Biased data processing with or without biased data collection in terms 
of population specificity for distinct race, age, and gender result in the distorted 
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collection of data, fabricating defective algorithm. Thus, it is invariably difficult to 
find elite algorithm matched for upcoming task to accomplish. Basic information 
is constantly needed to understand, for the building of AI prototypes, by a user. 
These details help them to interpret the correct or incorrect output and execution of 
preferable use of the output. But, despite having some latest studies in this direction, 
complex black boxes of mathematical algorithms are burdensome to approach and 
decipher precisely by the medical users [24].

Machines can be able to construe human behavior, but many human characteris-
tics such as rational thinking, interactive and social skills, emotional understanding, 
and ingenuity cannot be acuminated by the machines and robots. The qualities for 
humanity present in the doctors cannot be replaced absolutely by AI. It is required for 
the medical neophyte to learn the notions and relevance of AI and how to ramify well 
organized work along with machines for greater advantages alongside plowing soft 
skills in them [8]. A wide range of skills are needed in future physicians to accom-
modate the constant changing technology-based healthcare delivery. An adequate 
understanding of technical concepts, basics of AI, data management and treatment 
oriented ethical issues are some newer expertise to incorporate in upcoming medical 
generations apart from the mastering medicine. These abilities will equip the doctors 
to identify the accuracy of machines, reducing the chances of error. Thus, a supervi-
sor of AI tools will always be needed even with a well-established source of treatment 
modality and robots [28, 29].

6. Conclusion

Artificial Intelligence is an expanding science. The types of AI come under two 
categories, including virtual and physical components. Virtual components have 
many subdivisions in the applications of AI. The combinations of these Machine-
based learning can be utilized in medical sciences including medical education, 
medical research and innovations along with the diagnosis and treatment of diseases. 
Some freely openable sources have already been developed in the field of health care, 
but need many modifications to define the uniqueness of AI for incorporation in the 
medical field effectively. Various research signals that AI is an intrinsically developing 
trade in the area of medicine. It can be safely concluded, there will be massive benefit 
to the healthcare care system by the application of AI under the supervision of medi-
cal professionals.

S.No Limitations Causes of the limitations

1 Data availability Ethical issues

Biased data collection

Biased data processing

2 Complex mathematical algorithm Burdensome for the medical users

Obstinate to adapt the constant change in medical sciences

3 Human social skills Not possible by machines and robots

Medical professional assistance needed

Table 4. 
Limitations of artificial intelligence in medical sciences.
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Chapter 4

Artificial Intelligence in Healthcare: 
Doctor as a Stakeholder
Subba Rao Bhavaraju

Abstract

Artificial Intelligence (AI) is making significant inroads into healthcare, as in 
many other walks of life. Its contribution to clinical decision making, to achieve better 
outcomes, image interpretation especially in radiology, pathology and oncology, data 
mining, generating hidden insights, and reducing human errors in healthcare delivery 
is noteworthy. Yet there are physicians as well as patients and their families, who are 
wary of its role and its implementation in routine clinical practice. Any discussion on 
AI and its role in healthcare brings into consideration issues like hype and hope asso-
ciated with any new technologies, uncertain understanding of who the stakeholders 
are, patients’ views and their acceptance, validity of data models used for training and 
decision making at the point of care. These considerations must be accompanied by 
thorough policy discussions on the future of AI in healthcare and how the curriculum 
planners in medical education should train the medical students who are the future 
healthcare providers. A deliberation on the issues on the issues that are common to 
Information Technology (IT) like cybersecurity, ethics and legal aspects, privacy, and 
transparency is also needed.

Keywords: artificial intelligence, data at point of care, stakeholders, annotation, 
anonymisation, ethical and legal issues, privacy and security, trust, concerns, 
explainability, medical education, emotions and behaviour, disability, negative impact

1. Introduction

Artificial Intelligence (AI) is making significant inroads into healthcare, as in 
many other walks of life. Its contribution to clinical decision making, improved 
outcomes, image interpretation especially in radiology, pathology and oncology, data 
mining, new insights generation and elimination of human errors creeping in health-
care delivery is noteworthy. Yet there are physicians as well as patients who are wary 
of its role and its implementation in routine clinical practice.

Data is key for successful AI and machine learning (ML) and more is not always 
better. Statistics and artificial intelligence need to analyse large data sets to dis-
cover useful information and the data should be accurate, appropriate, and clean. 
Care of the data in healthcare at its generation—the point of care and its value 
in AI and the healthcare provider’s role cannot be overemphasised. Is AI a totally 
computer scientists’ dominion? What is the doctor’s role in it? Are they just the 
beneficiary.
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Any discussion on AI and its role in healthcare brings into consideration the issues 
like hype and hope associated, who are the stakeholders, healthcare personnel and the 
patients’ views and their acceptance, data at its generation—at the point of care, the 
future of AI in healthcare and how would the curriculum planners in medical educa-
tion train the medical students, who are the future healthcare providers. Also needed 
is a deliberation on the issues that are common to Information Technology (IT) like 
cybersecurity, ethics and legal aspects, privacy, and transparency. This also brings 
into review various issues the developers of AI solutions in healthcare need to bear 
in mind. The gaps in the current knowledge and databases also need a thought. Do 
the AI database and the EHR cover the global scenario adequately. Many areas in the 
world do not follow the EHR. Are the ethnic and regional differences in health and 
disease well represented in the Database?

2. Methodology

This chapter is a review of the literature relevant to the medical profession and 
their concerns as stakeholders on a subject that is not primarily their dominion. 
The important search engines used are Google, Microsoft Bing, Google Scholar, and 
PubMed. The Search words used are: Artificial Intelligence, Data at point of care, 
Stakeholders, Annotation, Anonymisation, Ethical and Legal Issues, Privacy and 
Security, Trust, Concerns, Explainability, Medical Education, Emotions and behav-
iour, Disability, Negative Impact, and loss of Jobs.

The search included blogs, articles, reports and publications in peer reviewed 
journals referring to AI in healthcare. The ultimate beneficiary of AI in healthcare is 
the patients. The concerns of the patients as well as healthcare professionals with ref-
erence to trust and possible ethical and legal issues are covered. The claims of the AI 
are not without certain negative impacts. An attempt is made to cover the pros and the 
cons of AI in healthcare. The technical work concerned with the development of the 
AI/ML platforms and algorithms is beyond the scope of this review and are excluded. 
A number of tools applying AI/ML are currently in use in healthcare. A few of them 
are in pipeline. The purpose of this review is not to evaluate the AI/ML tools that are 
currently in use or in pipeline in healthcare (Table 1).

Pros Cons

Precision in Diagnosis: Computer Vision Absence of Trust: Lack of Human Touch

Elimination of Human Error No Peer Review of Processes

Efficient performance of Repetitive tasks: No Fatigue Absence of Research Protocol—Double blind Study

Decision Support Scare of Job Loss

Speed of Action Explainability

Digitalisation Not Universally Accepted

Newer Insights Reliability

Costs: Claim reduction Expensive to implement

Table 1. 
AI in healthcare—Pros and Cons.
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3. The Hype and The Hope

In today’s world of data intensive computing [1–3], we seem to live in a state of 
hype and hope for the role of artificial intelligence in every walk of life. A hope that 
AI is the panacea or cure all to a mistrust, and scepticism exist in several fields. The 
doctor patient relationship is a type of bond, much beyond the factual clinical relation 
of diagnosis, intervention, and outcome. The patients as well as doctors are circum-
spect and wary of the ability of AI to substitute that relationship [4, 5].

The ability of creating AI and to let an algorithm take over the human function is 
not preferred by many. The patients have a significant hesitation in handing over their 
health issues to a machine. Can the machine match the subtleties of communication, 
eye contact, personal touch and the empathy that is expected from a human? Can 
the AI manage a situation end to end in patient care? The complexities of healthcare 
are thought to be beyond the capability of a machine. Is the AI too standardised and 
not flexible enough to the individual needs of a patient. Decision support systems in 
vogue are accepted by the patient but want the decision making is preferred to be left 
to humans [6, 7].

The doctor performs a number of duties in the doctor patient relationships. Does the 
AI promise to replace the doctor in every aspect? As a clinician, he does interpret the dif-
ficulties the patient has, elicits certain signs suggestive of a diagnosis and orders relevant 
investigations. It is possible that humans err in judgement, may not be fully equipped 
with all the knowledge and is prone to have his own bias. AI certainly promises to cover 
these deficits of a human. However, does the AI take over the functions as a team leader, 
comfort the patient when needed, help the patient in risk assessment and make right deci-
sions in contrasting and compromising situations. One of the most important duties of 
the doctor is in terminal illness, palliative care, empathy, psychological support and even 
conveying the sad news of a near one’s death [8]. Is the AI equally competent to humans in 
these functions?

4. The stakeholders

Is AI a computer scientists’ dominion—the theoreticians, the analysts, the devel-
opers [9]? Who are all the stakeholders? Is the end user in healthcare—the patient or 
the provider a stakeholder? The healthcare provider is an important stakeholder. The 
doctor, nurse and other parties involved in the healthcare are responsible as a genera-
tor of the data at the point of care and as a beneficiary of the final product in AI. The 
patient too is a stakeholder. Some of the data unless provided by the patient does not 
contribute to the database under consideration in AI. Needless to mention, the patient 
is a beneficiary too of the improved outcome and error prevention. What is the stake-
holder’s responsibility. They all are accountable, liable, and blameworthy [10].

5. The data at the point of care

The data is the most important resource in the AI process. Efficient and effective 
management of this data by AI depends on many factors. The data in healthcare con-
sists of the details of the patients—personal demographic details, historical aspects of 
the illness, clinical observations, diagnostic evaluation, reports generated, treatment 
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including medication, outcomes, and financial data like costs, billing. For effective 
analytics, be it descriptive, predictive, prescriptive, or cognitive, the data shall be 
accurate and comprehensive. The healthcare providers play a major role.

Much of the data that forms the basis of AI development is generated at the time 
the patient is at the healthcare provider, at the point of care. The importance of 
recording the data at the point of care cannot be overemphasised, once the opportu-
nity of recording an event is lost, the data could be lost forever [11].

How careful are the clinicians, the laboratory staff, and others in the health care 
team while recording the data at the stage of its occurrence? Do they record the 
deficiencies, errors, personal bias in ordering tests and their interpretation? Are the 
complications and untoward reactions reported and recorded? One should know 
the value of data and the vigilance to be maintained at the point of care—where it is 
generated. The details, the quality, its reliability, and totality, including a report on the 
unexpected events, complications and interpretations need proper documentation.

Digital case records like electronic health records (EHR) have significantly 
enhanced the scope of the data collection [12]. The EHR is a health record that keeps 
the demographic data, clinical details including symptomatic, historical, clinical, 
diagnostic, therapeutic and outcome data, nurses’ notes, pharmacy, other thera-
pists like physical therapists, insurance, and billing data. Healthcare providers and 
organisations collect, track, store, and transmit personal health information. With 
so much data accumulating, what is important and what is not in the perspective of 
AI is an issue. What goes into the databases is important [13]. The responsibility of 
the health care personnel is noteworthy. The comments of the former editor of New 
England Journal of Medicine [14] reflect the rather unfortunate situation. He regrets 
to note that the published work does not represent the true state with significant data 
unpublished. True picture of the illness, its presentation, features, outcomes and 
complications and untoward reactions may go unrepresented in the database. With 
the policy of insisting on publication for academic recognition, doubts are cast on 
the validity of the published work [15, 16]. One should remember the old saying, “If 
an event is not documented, it did not occur.” The value-based care depends on the 
validity of the database and its true reflection of knowledge base [17]. Many countries 
are making electronic health records mandatory. These include Australia, Belgium, 
Canada, Denmark, the United Kingdom, and United States. The goal of these ini-
tiatives in health information technologies is to digitally transform the collection, 
display, transmission, and storage of patient leading to a steady increase in data at the 
point of care [18–20].

Two other dimensions need consideration when EHR is discussed. The EHR is not 
followed universally in all countries. Paper case records and data entry in non-digital 
format is common. The inadequacies that are incidental in paper records and their 
reflection in the database need consideration. The EHR or the paper case records talk 
of the patient data while he is in doctor’s office or in the hospital. Modern technology 
offers a different dimension to the data.

With advances in mobile technology, digital patient monitoring, tele-healthcare, 
ambulatory care and wearable devices, the data is generated while the patient is away 
from the hospital, at home, work or elsewhere. These data provides the status of the 
patient during the period intervening the doctor’s visits, contextual and historical 
data that influence the outcomes and insights that the AI generates. The providers 
have an obligation to incorporate this data in the patient records. Transfer of this 
self-collected data to the AI database and its influence on the insights provided by AI 
in healthcare is to be ensured. The mobile technology and the wearables generating 
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data also lead the concerns of patient privacy, transparency, interoperability, and data 
sharing across all platforms [21, 22]. The actual time when the event occurred and 
the uploading of the data is also important as the data is likely to change with times, 
especially in acute care situations.

6. Annotation

One of the most important steps in AI is Annotation. Data Annotation is the pro-
cess of categorising and labelling individual elements of the data for AI applications. 
The data can be in image, a video, audio, graphic or a text format. The annotation is 
to convert the data into a machine-readable format. The annotation was being done 
manually to start with, but machine read annotations are available currently. Manual 
annotators are currently creating the data sets helping the computers using Natural 
Language Processing (NLP) and Computer Vision to detect the text and images in 
interpreting images in radiology, pathology, oncology, retinopathy, biometrics, and 
data insights. Uniformity in description and standardisation of the data annotation 
detectable by NLP or computer vision forms the basics of annotation. Healthcare 
provider has an obligation to use the right machine-readable word for the text and 
description of an image or video. The AI interpreted annotation is one of the future 
probabilities. Even for the AI interpreted annotations, the algorithms. Need to 
consider manual data annotation to start with [23–28].

7. The AI and legal issues

A detailed discussion on the various legal issues relevant to AI and healthcare is 
beyond the scope of the current note and the reader shall look elsewhere. A brief 
account of the legal issues in relation to the healthcare is presented for awareness 
of the doctor as a user and stakeholder, especially in case of untoward reaction and 
damages occurring during the course of one’s actions using the AI. As per the com-
mon law, a person of unsound mind is not responsible for his actions. It means only 
a person with sound mind is responsible for his actions. The common law also talks 
of subjective element of criminal intent. Is the computer which lacks the human 
mind and intent held responsible for its actions. The AI is considered as a technologi-
cal tool with ability to simulate human brain and perform some of the duties that 
require human intelligence [29–33]. In case of wrong decisions, adverse reactions and 
untoward outcomes resulting after usage of AI, what is the liability of the AI and the 
healthcare team? The machine does not have its own identity but there are multiple 
persons involved finally in AI in healthcare—the vendor, the owner of the company, 
the designer, the hardware or the software developer, the persons who evaluates and 
tests the tool, the person who supplies the data or the database itself, or the doctor 
who uses the AI platform on a patient. Who is responsible or accountable for the dam-
ages caused in using the AI? The legal issues that arise in addition to adverse reaction 
or the outcome are—a foreseeable damage, a human rights violation, violation of pri-
vacy, a criminal intent, cybercrime, and risk of a hacker laying his hands on the data. 
While the machine is not responsible in itself, can the person behind the machine be 
held responsible? To what extent is the doctor accountable as a user. Are the people 
who built it and use it responsible. Lack of accountability raises concerns about the 
possible safety consequences of using unverified or unvalidated AI in clinical settings. 
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Awareness of the potential of AI, responsible use of the AI and the insights provided, 
potential harms, taking an informed consent from the patient while using AI inter-
preted results, is the responsibility of the doctor [34–38]. The interesting case of 
Google vs. Information Commission (UK) shows the issues that need consideration. 
Issues in handling sensitive data like privacy, transparency need attention. A code of 
ethics has to be developed [39–41].

Explainability is an issue that needs consideration [42–44]. How do the AI driven 
algorithms arrive at a prediction or a conclusion in a given situation? Should the process 
of AI be a part of the informed consent? Is it necessary to explain the process? Ethically 
the medical doctor is accountable for his actions. The informed consent one obtains 
shall be really informed. When using the AI driven clinical decision support systems, 
the doctor has to be aware of the reasoning behind such decisions. Four principles are 
considered when we talk of explainability of AI—the algorithms used in a language the 
user understands, the evidence and reasoning behind the conclusions drawn, the reli-
ability of the processes used, and the proof for the outcomes or insights. Doctor patient 
relationship involves mutual trust. The doctor has to explain his actions and decisions 
and they shall be transparent, patient centred and holistic. Are the processes and 
algorithms involved in reaching the conclusions in AI systems explainable to a doctor?

8. Privacy and security of data

The AI in healthcare deals significant sensitive personally identifiable information 
(PII) consisting of demographic and health data of the patient. Apart from the doc-
tors, the nurses, pharmacists, diagnostic lab personnel, other therapists, some statu-
tory bodies like regulatory authorities and the patients themselves access the digital 
platform in healthcare at various stages. This data generated is accessed at the point of 
care, at data analysis, deep mining, and when looking for insights. The data necessar-
ily has to be transparent and portable and is stored cloud. This scenario is a hacker’s 
haven. Whose responsibility is its security? When in a specific case the AI fails or is 
misused, the ethical principles of privacy, autonomy, and justice could be violated. 
Data theft and misuse are common threats in any computer program, and it is the 
responsibility of the user to protect the privacy, and security of the owner of the data. 
All the stakeholders who have access to the data have to be careful of the data in such a 
situation. The AI developer and user has to keep a watch on the impact of the misuse 
or discrimination. What processes should we implement to monitor the impact and 
how to overcome the unintended clinical outcomes. What skills does a developer, or 
a user has to acquire to enable performance of these tasks. A dialogue between all 
the stakeholders is necessary on these issues to protect the rights of those involved 
against direct or indirect coercion. Should the doctor as a user of the AI systems, and 
as a person involved in the management of the patient, the ultimate beneficiary, be 
involved in the various processes of AI [45–47]?

9. Anonymisation and encryption

Most countries have regulatory procedures to protect the privacy of the data. The 
Digital Personal Data Protection Bill 2022, The European Union‘s new General Data 
Protection Regulation (GDPR), The California Consumer Privacy Act (CCPA) and 
Digital Information Security in Health Care Act (DISHA) [48–51] are some of the 
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acts concerned with the data protection. Anonymisation and encryption are the two 
methods of protecting the identity of personal data when large databases are created 
and stored in places accessed in AI or other computer programs. Encoding, anony-
mization, pseudonymisation, generalisation, masking, data swapping, data perturba-
tion are some of the methods of removing or coding the words that connect the data 
to its owner, whereby the personal identity. Encrypted data storage in cloud and use 
of Internet of Things for remote access is in practice. Blockchain based secure sharing 
of data in healthcare is another form of secure data handling [52–55].

10. The promise and challenges of AI in healthcare

The AI in healthcare promises a bright future. The functions of AI can be sum-
marised as relieving, splitting, replacing, and augmenting the role of healthcare 
personnel [56]. The AI helps streamlining of the work, front office management, 
the EHRs, human error prevention, administrative work, and provides the expert 
systems, decision making algorithms, and new insights. The contribution of AI in 
the diagnostic work especially the interpreting the images in radiology, retinopathy, 
pathology, and oncology is striking. Help in analysis and mining of large cohorts is a 
great boon to the epidemiologist. The speed and accuracy of the data processing and 
predictions are more efficient than humans. Stroke prediction and cardiovascular risk 
assessment are some of the newer algorithms available. Robotics processes automa-
tion are used in healthcare, for repetitive tasks like prior authorisation, updating 
patient records and billing [57–59].

The challenge of acceptance by the patients remains. The value of the databases 
used and updating is always problematic. The ownership of the data, portability and 
sharing across all data sets need clarity. The ethical and legal issues of responsibility 
and accountability for adverse outcomes of use or rejection of expert advice of AI need 
clearer understanding. Informed consent is another area when AI based expert systems 
are used or not used. How informed is informed consent? It is necessary to inform the 
patient if the clinician is basing his decision as per the recommendations of AI [60].

There are some problems in AI [61]. Unlike much of the research publications 
and recommendations, the AI data and inferences are not peer reviewed and blinded 
on evaluation. Who is responsible and accountable for the insights it provides—the 
developer, the tech company, the regulator, or the clinician? Can the emotional 
component of the doctor patient relationship be simulated? Who among the devel-
oper, the tech company, regulator, the doctor, or other stakeholders are accountable 
for any mishaps that happen when AI system recommendations are followed? The AI 
in healthcare has on one side systematised the various tasks and made available the 
information at the click of a button, does it with confidence dispense away the human 
supervision, assure safety and security? Not all human qualities are easy to digitise, 
and machines may not succeed in copying the sensitive and realistic relationship 
between the patient and the doctor. The quality AI depends on the quality data. One is 
aware of the old colloquial saying “garbage in and the garbage out”.

11. Emotions and AI

Anxiety and emotions play a significant role in healthcare. The patients exhibit 
emotional reaction to the situation they are in. The suffering form pain is not equal 
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in all and is significantly subjective. Reaction to hearing an unpleasant news like a 
diagnosis of cancer, prognosis of a permanent disability or even news of death have a 
variable emotional component. Doctors and other healthcare personnel on the other 
hand, are expected to provide the emotional support to the patient. An arm around 
the shoulders, empathy, communication, the eye contact, and the body language 
while sharing the unpleasant news have significant influence on the patient and the 
family. The patients’ expectations and the helpers’ perceptions influence the emo-
tional support. The support has to be customised often. Where do the machines stand 
in this context [62, 63]?

The computers need to recognise and respond to the emotions and show empathy. 
They need to be ethical too. AI chatbots, intelligent healing platforms, therapeutic 
intelligence, communicative AI, emotion AI or affective AI are some of the AI tools 
that tend to simulate human emotions [64–70]. Software used is computer vision and 
natural language processing with facial recognition and voice recognition. The chat-
bots are becoming popular, earning the trust and engage the subjects in conversation 
either verbal or in the text format. While these were not rated as poor, opinion gener-
ally is in favour of a human over a machine proving the support. Simulating cultural 
differences in body language and communication pose problems of misinterpretation. 
Affective AI and Human Behaviour—Change Project (HBCP) [71, 72] deal with 
human behaviour. Bringing about a change in the human behaviour like mental health 
issues and therapy in addiction are the areas the AI is stepping into. AI and the HBCP 
are creating an open-access online knowledge system of behaviour change interven-
tions. The use of natural language processing and sentiment analysis another branch 
of AI, has permitted interpretation of verbal communication and helped understand 
human expressions. Emotion and behavioural assessment is possible through the 
sentiment analysis [73, 74].

12. AI and differently abled

AI empowers the differently abled. The disability could be physical, restricting 
the access or mental, restricting the cognition. Smart devices provide support in the 
activities of daily living. Assistance to the disabled is showing promise. The AI is 
stepping into help communication and cognition. Assistive technologies are showing 
lot of promise and a positive outlook for the differently abled. AI is into the diagnosis 
of cognitive disabilities like autism and such disorders. However, there are issues 
that need consideration and scope for improvement [75–77]. ABIDE (Autism Brain 
Imaging Data Exchange) is one of the AI projects for Autism and it helps the diagnos-
tic evaluation to be less time consuming, more efficient, and accurate. It even identi-
fies certain phenotypes that respond better for therapeutic interventions [78].

13. Medical education and future scope

The current curriculum in most institutes offering graduate and post graduate 
studies does not expose the students to AI and its importance in patient care. While 
the clinicians use AI platforms like clinical decision support systems, expert systems, 
outcome scores and special AI programs developed to help clinical judgements and 
gain insights, what knowledge of AI is being imparted to the students, postgraduates, 
and those already in practice. Medicine is a lifelong pursuit and need continuous 



61

Artificial Intelligence in Healthcare: Doctor as a Stakeholder
DOI: http://dx.doi.org/10.5772/intechopen.111490

learning. With the projections showing a great potential of AI in healthcare, is it 
not necessary to prepare the future healthcare force to be prepared for this growth? 
A basic information of AI and its impact in practice, and its promise is desirable. 
The healthcare personnel need not know the intricacies of AI and its development. 
They should at least know how the AI is used, interpret, and explain its utility to the 
patients. When ethical issues like privacy and autonomy are involved, the students 
shall know the legal standing as well. The medical doctor is a team leader in the 
healthcare, and he needs to know the future trends and possibilities. While at the 
current undergraduate program, an introduction to AI in the form of electives are 
offered to introduce the concepts of AI, the postgraduate needs to know more of AI. 
Integration into the curriculum short courses in data science, informatics, importance 
of data entry at the point of care, ethical and legal implications along with the use and 
interpretation of AI in healthcare in their curriculum is essential. Continuing educa-
tion programs, refresher courses and workshops in AI in virtual or physical mode to 
current practitioners are to be planned. There are two categories of doctors: those who 
need basic knowledge and those who show interest and wish to involve themselves 
in the promotion of AI in healthcare. The institutes shall identify the tech savvy 
faculty who can take the leadership and design a short course on computers, data and 
its importance and even assess the competence of the data entry at the point of care 
[79–82]. Certain published surveys [83, 84] indicate a mixed response from positive 
acceptance to totally negative fear.

14. Negative impact of AI

The developers of AI are striving continuously to make the computers simulate 
the human brain and visualise a day, computers outperform humans. There are many 
areas where the AI claims success. Recent advances have shown successful attempts 
to enter the emotional domain of human brain. The elimination of human error 
and fatigue factor in repetitive tasks, decision making algorithms, speed of action, 
and precision are some of the advantages. Yet there are concerns of the negative 
impact of AI.

The foremost concern is the lack of trust. The user perceptions and reliability of AI 
are two issues that influence the trust. The computers act on the inputs and function 
as a rule-based machine. The AI/ML tools are built on the database and as algorithms. 
With the concept of patient centred health care delivery gaining importance, the 
explainability, validity and reliability of the AI decision support systems are of great 
concern. Situations unexpected or unusual, are often met in clinical practice. Does 
the database reflect the real-world situation and ethnic variations. The influence 
of bias in sample selection, variations in the disease patterns, false negatives and 
false positives influencing the clinical decisions is significant on what is essentially 
retrospective database that is used while training the AI/ML tools. How predictable 
is the AI when applied to a prospective situation? Does it cover adequately the drifts 
and data shifts possible in newer practices, populations, and lifestyles? The clinician 
is likely to ignore diagnostic challenges or alternatives when an easier option like deci-
sion support systems is available. The human bias in case selection contributing to the 
database may lead to erroneous insights [85–89].

The scare of loss of jobs when a computer takes over the human actions is a real-
ity. Fatigue or distraction are common in humans performing repetitive tasks. The 
precision the computers achieve is well known. The scare one might be replaced by 
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a computer that outperforms a human is a fear in many. A Gallup poll held in USA 
revealed that the jobs lost are more than created. The AI proponents argue creation 
of new jobs will compensate the losses of human jobs to machines. The new jobs need 
new skills. Skill sets required, shortages in healthcare personnel will keep the AI in 
forefront in job creations, the proponents of AI claim. The AI developers have to strive 
hard to gain the trust of users and other stakeholders [89, 90]. Those concerned with 
healthcare, instead of mistrust in AI, should exercise their stakes in this technology. 
The medical professional shall see the database is well represented covering all varia-
tions and contribute to the development of AI. Data at the point of care contributing 
to the database is the primary responsibility of the healthcare personnel on which the 
AI/ML tools are built.

15. Conclusions

The medical doctor is an important link in the AI ecosystem in healthcare. The 
profession has a significant role in the data generation that forms the basis for diagno-
sis, management, and treatment. Doctor is also the ultimate user and beneficiary of 
the AI platforms. Data generation at the point of care and the comprehensive database 
for development of AI are heavily dependent on healthcare profession. For us to 
understand the true impact of AI, adverse and unwanted effects and complications of 
all interventions must be recorded at the point of care. However much the promise of 
intelligent machines performing the duties of the human, at least, as of today and the 
foreseeable future, the personal touch and empathy provided by the doctors is irre-
placeable. Further studies are needed to fully evaluate the potential and limitations 
of AI in healthcare. The medical profession instead of viewing the AI as a competitor, 
should collaborate and support actively this technology.

Artificial Intelligence is being promoted as the next major advance in healthcare 
delivery. AI is here to stay because of the promise, it offers across multiple fields of 
medicine. For the world to be able to see the true benefits of AI, new technologies 
using AI must also be developed and validated like any other technology in medi-
cine. Development of AI based technologies must start with thorough evaluation of 
appropriate use cases, understanding of user needs, whether the user is a patient or 
the doctor, and comprehensive assessment of risks and benefits. Because the outcome 
of any AI driven tool depends so much on the data used for training the algorithms, 
adequate care must be taken in collecting, curating, and use of data. Governing and 
regulatory bodies and standard committees must work with technical matter experts 
and intended users (both physicians and patient advocates) to set policies and guid-
ance that define the boundaries of use of this technology and establishing guardrails 
that prevent misuse or abuse of AI.
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Chapter 5

Artificial Intelligence Starts the
Big Bang of Modern Medicine
and Surgery
Tania María Blanchar Martinez and
Fernando Pio de la Hoz Restrepo

Abstract

Objective. To identify the areas of application and uses of artificial intelligence and
expert systems in medicine, surgical procedures, and surgical specialties, classifying
the degree of agreement in articles published between 2010 and 2019. Materials and
Methods. The methodology consists of a relational database model and an entity-
relationship model. To determine the quality of each article, the classification by
degrees of agreement between “highly concordant”, “relatively concordant” or “not
concordant” was created on our initiative. Results. A total of 146 articles were found,
of which only 28 were highly concordant with the subject of interest. Conclusions.
Artificial intelligence is the new research science that is revolutionizing the way of
intervention in the different disciplines of the area of medicine.

Keywords: application of artificial intelligence, expert systems medicine, surgical
specialties, and surgical procedures, science, technology

1. Introduction

The pure sciences, such as mathematics and physics, have been fundamental in
evolution and human survival; the great researchers in these areas were the first Nobel
Prize winners in the history of world discoveries. Discoveries that have undoubtedly
marked a line in time, in the postulations of the different theories of physics have led
to technological advances in different areas of science, whose origin has been obser-
vational and experimental from the beginning [1].

At this point in history, the different questions, predictions, and estimates related
to the behavior of a certain event or circumstance began to take shape, which was
references to other research areas, especially in the medical sciences, for the study of
diseases, from the causative agents to the damage caused to health [1].

These pure sciences gave rise to computational sciences, which were the gateway
to research focused on artificial intelligence. Shortly after the Second World War,
around 1950, when the first article on artificial intelligence was published in the
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philosophical journal MIND Computing Machinery and Intelligence, Alan Turing was
the first mathematician and researcher who applied his knowledge in developing a
computational machine that could perform mathematical analysis. And at the same
time, he wondered if this same computational machine could have the ability to think
like a human being [2, 3].

The first works developed with artificial intelligence were focused on
mathematical sciences, statistical analysis, and on an event that marked history
during the Second World War: algorithms to decode the Nazis’ attack plan
towards the allied countries against the government of Adolf Hitler, and whose
intervention saved thousands of soldiers and civilians from each of these countries.
On this occasion, artificial intelligence was used for the common good, to stop the
machiavellian attacks from a sick and ambitious mind that took more than 20 million
people [2, 3].

However, parallel to these feats uncertainty also grows to arise from the historical
background of advances in the pure sciences. Such as the discovery of uranium and
nuclear weapons, for human survival purposes, the discovery of dynamite to acceler-
ate construction and firearms, for human defense. All of these have been questioned
for their use in world wars, where human annihilation has prevailed, the most famous
of all, the atomic bomb [2, 3].

Today we are thinking of artificial intelligence for the benefit of health, just health,
which allows the approach from genetic and environmental risk factors and social and
institutional determinants of the population. However, arises the concern as to
whether the use of artificial intelligence is only of interest to ensure the survival of
human beings from many diseases of the XXI century and its evolution, or whether
we are approaching our annihilation [2–4].

The survival of the human race has been constantly threatened since ancient times
by different outbreaks, epidemics, and pandemics of different infectious agents such
as bacteria and viruses, an example of this, is the bubonic plague or black plague that
wiped out 50% of the European population, and currently, the Covid-19, that had a
demographic, social, economic and social impact. This has brought the world popula-
tion to its knees and has made us understand that we are not indestructible, in fact, we
are very vulnerable, and we must take into account nature’s limits, the environment
that surrounds us, and that exceeding them has led us to commit recklessness that has
led to the annihilation of the human race [5].

The question we ask ourselves now is if we have learned the lesson from previous
experiences, which have put human survival at risk. Or whether in this case, artificial
intelligence will focus only on preserving human life and the environment around us
improving our quality of life, or otherwise, we will be conquered again by the ambi-
tion for power, expansion, and wanting to be superior to others when we should be
working together for our well-being.

The big bang of artificial intelligence focused on medicine and surgical procedures
has already begun, the latest industrial revolution, a technological avalanche focused
on the solution of more timely health interventions, reflecting real-time decision
making, and influencing the health of different specific populations.

Likewise, it is urgent to regulate the uses and applications of artificial intelligence
with laws and norms, imposing limits that guarantee the use of this technology only to
preserve the human race, not replace it, much less annihilate it.

All countries, whether developed or developing, without exception, must sign
international agreements and treaties in which they commit to use it only for the
common good.
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Being prudent in the development of these technologies and sharing this knowl-
edge among sister countries that we are, without a doubt, would allow an unprece-
dented advance in science in general.

We must be very alert, and be able to impose limits on ourselves so that we do not
engage in unethical behavior that puts the human race at risk.

We are in a historical moment, where technological advances have allowed the
survival of the human race, it is important to mention that all the technology used for
the creation in record time of vaccines against the covid-19 disease, which has taken so
many lives worldwide.

In this way, we must unite our knowledge and efforts from all research fields, and
educational institutions, such as universities worldwide, are the guarantors of impos-
ing the limits of the different research approaches, thus favoring the good use of
artificial intelligence applications.

If the academy is the one that produces the generation of knowledge for research
purposes, and to solve problems, which in this case is focused on the solution of health
problems, then it should impose the limits of uses on human beings and their envi-
ronment.

Each research group, in their different areas, from different universities, should be
able to build their methods focus on this discipline, to generate high-level knowledge,
which can be translated into different computational languages, with the only purpose
of making decisions in real-time.

Currently, the areas of development of artificial intelligence are focused on: Machine
learning (machine learning, deep learning, unsupervised, supervised), driven by Mas-
sive Data (massive exploitation of data, identifying relationships between them,
detecting patterns, making inferences, and learning through probabilistic mathematical
models), natural language processing (content extraction, classification, translation,
text generators), expert systems (knowledge and rule-based systems, diagnostics),
computer vision (exploring the recognition and understanding of images and videos),
robotics (advanced laparoscopic surgery such as Da Vinci, the Sojourner, Spirit,
Opportunity, and Curiosity robots for space research) and speech recognition [6–8].

The applications, however, are focused on language analysis and understanding,
information retrieval, information extraction, answer searches, automatic summaries,
automatic translation, automatic document classification, speech recognition, chatbot,
child content control, document and opinion detection, and anti-spam filters. Spam,
voice assistants, Siri as Apple assistant, Cortana, Alexa, and Bixby all these applica-
tions use natural language techniques [6–8].

Search engines and entertainment and communications platforms such as Google
Search, Google Maps, Netflix, and social networks such as Facebook, Pinterest,
Twitter, Instagram, and Google Photos [6–8].

The challenge in the health areas is not only to create information systems with
artificial intelligence, big data, and data mining with sophisticated algorithms for
information management; making decisions in real-time is the key to intervening
quickly in health problems [6–8].

2. Methodology

Descriptive methodology, with a systematic literature search in four phases, of
potentially relevant articles published about artificial intelligence and expert systems
applied in the areas of medicine and surgical procedures.
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2.1 First phase (research question)

This phase will specify the structured research question, the population to be
studied, the what, the when, the where, and the delimitation of the review time,
which in this case is 10 years, and the context of interest, whose key event is the
application of artificial intelligence in medicine, specialties, and surgical procedures.

In which areas of medicine, surgical specialties, and surgical procedures have
artificial intelligence and expert systems been applied from 2010 to 2019?

How well do published articles on artificial intelligence and expert systems applied
in the area of medicine, surgical specialties, and surgical procedures from 2010 to 2019
match?

In how many of these articles on artificial intelligence and expert systems applied
in the area of medicine, surgical specialties, and surgical procedures were there
decision-making from 2010 to 2019?

2.2 Second phase (selection and localization of databases - relational database
model - entity-relationship model of the databases)

The location and selection of databases will be done, where the search for articles
with the subject of interest will be carried out.

We will use a relational database model and an entity-relationship model to guar-
antee the referential entity of which the databases and the articles are part.

The Relational Model Relationship refers to the entities and their respective relation-
ships with the other entities; therefore, it allows referential integrity to take place [9].

The Entity-Relationship Model consists of representing descriptively1 and through
a diagram the information system, formalizing all the storage structure of the database
(Figure 1) [9].

Figure 1.
Model entity general relationship model of the systematic review of the literature on a particular topic. Source:
Taken and adapted from the book Relational Database Programming.
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Inclusion and exclusion criteria will be applied to guarantee the following good
selection of articles.

2.2.1 Inclusion criteria

The inclusion criteria will take into account the central theme, which is artificial
intelligence and expert systems applied in medicine and surgical procedures, in
English, Portuguese, and Spanish; other criteria will be electronic publications in the
virtual health library from 2010 to 2019.

2.2.2 Exclusion criteria

The exclusion criteria included the Virtual Health Library database.

2.3 Third phase (selection of the articles in the languages of interest)

The list of eligible articles will be drawn up, and the concordance with the
established objectives should be evaluated to avoid invalidating the results of the
systematic reviews.

This list of eligible articles will be organized in a matrix with a degree of concor-
dance; it will be identified qualitatively and quantitatively by identifying the titles and
abstracts (Figure 2).

Very concordant = The title of the article and the research question have a clear
relationship with the topic of artificial intelligence, expert systems, and description of
uses.

Figure 2.
Entity-relationship model of selected article databases. Source: Taken and adapted from the book Relational
Database Programming.
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Relatively concordant = The title of the article and the research question are
partially related to the subject of artificial intelligence, expert systems, and description
of uses.

not concordant = The title of the article is not related to the research question,
subject of Artificial intelligence, expert systems, and uses.

2.4 Fourth phase (inspection, observation, and content extraction)

Inspection, observation, and extraction of the content of each of the articles rele-
vant to the systematic review of the literature.

Each of the selected contents will also be organized in a matrix according to the
degree of concordance.

Very concordant = The content of the article must be related to the subject of
interest artificial intelligence, expert systems, objectives, and description of uses.

Relatively concordant = The content of the article must be partially related to the
subject of interest artificial intelligence, expert systems, objectives, and description of
uses.

Not concordant = The content of the article is not related to the subject of Artificial
intelligence, expert systems, objectives, and description of uses.

3. Results

During the systematic reviews performed in the virtual health library database
with the keywords artificial intelligence and surgical procedures, a total number of
100 articles were found. 65 from which did not match the keywords, 63 from which
were from the MEDLINE database, and two from the LILACS database; 19 were
relatively concordant, all from the MEDLINE database, and only 16 were highly
concordant with the topic of interest, according to the MEDLINE database
(see Table 1).

About the Systematic Reviews carried out with the keywords Artificial Intelligence
and Medical Specialties, a total number of 39 articles were found, from which 29 were
not concordant, eight were very concordant with the subject of interest, and only two
were relatively concordant (Table 2).

Artificial
intelligence
in surgical
procedures

Languages Very
concordant

Relatively
consistent

Not
concordant

Total

English (97) /
Spanish (1)

16 19 63 98

Medline 98

Portuguese /Ingles 0 0 2 2

Lilacs 2

Total 100 100

Source: Own elaboration.

Table 1.
Systematic review of artificial intelligence in surgical Procedures.Colombia,2019.
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In the Systematic Review with the keywords Artificial Intelligence and Expert
Systems in Medicine, seven articles were found, from which four were highly concor-
dant and three were not concordant (Table 3).

4. Final evaluation of the articles of the systematic review virtual
health library

A total of 146 articles were evaluated, of which 97 were not concordant, 28 were
highly concordant and 21 were relatively concordant.

The red non-concordance refers to the fact that the article does not make any
reference to the stated objectives and the subject of interest, to the research question,
or to the uses.

The highly concordant articles, identified with the green color, are directly related
to the subject of interest, the stated objectives, the research question, and the uses.

In the case of the relatively concordant category, identified with the yellow color,
they have partially related to the subject matter and the research question, but not to
the objectives or uses (see Table 4).

During the Virtual Health Library Systematic Review, 135 articles from the
MEDLINE database, seven articles from the LILACS database, and four from the
IBECS database were analyzed.

Artificial
intelligence and
medical specialties

Languages Very concordant Relatively consistent Not concordant Total

Medline 35 English (35) 7 2 26 35

Ibecs 1 English 0 0 1 1

Lilacs 3 Portuguese
(2) Spanish 1

1 0 2 3

Total 39 39

Source: Own elaboration.

Table 2.
Systematic review of artificial intelligence and medical specialties. Colombia, 2019.

Artificial
intelligence and
expert systems in
medicine

Languages Very concordant Relatively consistent Not concordant TOTAL

Medline 2 English 0 0 2 2

Spanish (2) 2 0 1 3

Ibecs 3 English (1)

Lilacs 2 English (2) 2 0 0 2

Total 7 7

Source: Own elaboration.

Table 3.
Systematic reviews of artificial intelligence and expert Systems in Medicine. Colombia, 2019.
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Twenty-eight highly concordant articles were identified, whose analysis consisted
of organizing them by areas of artificial intelligence; to be able to visualize the
approaches that are currently being applied in medicine, surgical procedures, and
medical specialties. This analysis produced the following findings from the evidence
found by area of artificial intelligence:

5. Automatic reasoning or machine learning

Based on contexts of repeating patterns or parameters, it groups and analyzes them
and then identifies the behavior or tendency of a certain event or circumstance to
suggest different predictions. It is also a specialized tool in extracting stored informa-
tion to answer questions and draw conclusions to detect patterns, draw conclusions to
detect patterns, of certain epidemiological behaviors.

In this area of artificial intelligence, applications were recognized in Education
research: digital health: intersections between scientific research and its mediatization.
Medical education: opportunities for collaborative work towards artificial intelligence
tools in medical education, improvement of pedagogical techniques for learning.
Dermatology: diagnosis by dermatoscopy (sonification), laboratory, and prospective
observational study. Public health: comparison of the performance of machine learn-
ing algorithms in predictive analytics in public health and medicine, predictive and
probabilistic models for estimating the risk of health events or diseases. Occupational
health: human activity recognitions based on feature selection in the smart home using
a backpropagation algorithm. Deep machine learning for workflow recognition during
surgery. Occupational medicine: artificial intelligence in occupational medicine.
Pneumology: prediction of asthma exacerbations, and chronic disease changes, using
algorithms and predictive models of Bayesian classifiers and support vector machines
with artificial intelligence Internal medicine: mobile application of intensive insulin
therapy based on artificial intelligence techniques. Anesthesiology: artificial intelli-
gence system for endotracheal intubation. Pediatric surgery: preoperative prediction
of surgical morbidity in children: comparison of five statistical models, logistic
regression models. General surgery: development of an intelligent surgical training
system for thoracentesis. Laparoscopic surgery: Analysis and counting of the uses of
the multifunctional or modular tool in mixed procedures of cholecystectomies and
Nissen judicature to reduce operating room time and decrease patient risk, by means
of a video using fuzzy logic techniques, to analyze the types of instruments used, the
duration of each use and the function of each instrument. Diagnostics. fuzzy naive
Bayesian model for medical diagnostic decision support, medical applications as a

Degrees of agreement Total items

Very concordant 28

Relatively consistent 21

Not concordant 97

Total 146

Source: Own elaboration.

Table 4.
Compliance follow-up matrix resulting from the evaluation of systematic review articles. Colombia, 2019.
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diagnostic aid in medicine, SOFTEL-MINSAP experience, and segmentation methods
based on machine learning algorithms for large-scale magnetic resonance imaging.
Technological focus on diagnostic aids for cancerous lesions using learning algorithms.
Anatomical diagnosis: stable segmentation based on atlas mapped prior (stamp)
machine learning for large-scale multicenter MRI data. Diagnostic Microbiological
Metabolic Profiling: predicting colonic polyps with machine learning based on urinary
metabolomics. Cardiology: machine learning system to improve heart failure patient
care, predicting heart attacks four hours in advance in patients with a history of heart
disease with a tendency to myocardial infarction, and improving prediction times for
cardiologists. This system was fed with clinical data from each patient, incorporating
clinical parameters to make the prediction. Physiotherapy: a computerized behavioral
system for home.

physiotherapy exercises using an RGBD camera. Research: artificial intelligence
applied to evidence-based surgery. Rheumatology. identifies new pathways associated
with demineralization in a viral model of multiple sclerosis, prediction of HIV-
associated neurocognitive disorder from three genetic features of the gp 120 glyco-
protein envelope, and Molecular biology prediction of interactions between HIV-1
and human proteins by information integration. Genetics prediction of virus muta-
tions by statistical relational learning, Microbiology Genetics virus detection by sta-
tistical gene expression analysis, and classification of therapy resistance based on
longitudinal biomarker profiles [10–25].

6. Big data and machine learning

The combination of big data and machine learning has enabled data processing and
analysis to have a greater opportunity to participate in decision-making in a timely
manner. There are many areas of healthcare in which such combinations of algorith-
mic functions have shown positive results for intervention in this case of chronic
diseases and their respective treatments. Among these applications, the following
stand out: Intensive care medicine: artificial intelligence in the intensive care unit
using big data and machine learning in intensive care medicine. Improved specificity
of networked distributed physiological alarms based on a simple deterministic reac-
tive intelligent agent in the intensive care environment, Programmed databases to
analyze clinical questions of patient diseases and treatments, and intervention pro-
tocols to generate new lines of research [26–28].

7. Computer vision

Explores the recognition and understanding of images and videos, The tool is able
to perceive each of these. Recognized in Neurology: neuro GPS: automated neuron
localization for brain circuits using the L1 minimization model, automated neuron
localizations through biophysical models, concerning the morphology of the neural
axoma, through a Neurog method, to localize neurons in various parts of the brain
Oncology: detection of cancer cells to design a tool with precise optics for rectal colon
biopsy. Diagnostic Endoscopy: the potential of artificial intelligence-assisted colonos-
copy using an endocystocope with video optical biopsy, making use of an ultra-
magnified endoscope [3, 29, 30].
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8. Expert systems

Designed to solve complex problems by making decisions based on a knowledge
base and rules for applying that knowledge. Recognized in Surgery: reduction of
operating room time and reduction of patient risk through the use of modular surgical
instrumentation with artificial intelligence. Internal Medicine: Improved specificity of
networked distributed physiological alarms based on a simple deterministic reactive
intelligent agent in the intensive care setting [31, 32].

9. Deep learning

Attempts to mimic the functioning of the human nervous system, using what is
known as neural networks or layers of the processing unit (artificial neurons) that
specialize in identifying characteristics or patterns determined in objects or unstruc-
tured data sets, without the need for prior training with a set of structured or labeled
data. Neural networks: in Neurology, clinical applications of neural networks in sleep
apnea-hypopnea syndrome were recognized, and backpropagation (BP) algorithms
were also programmed. The BP algorithm is used to train the feed-forward neural
network for human activity recognition in intelligent home environments in conjunc-
tion with probabilistic algorithms: the Naïve Bayes (NB) classifier and the Hidden
Markov Model (HMM), neural networks for diabetes control using a multipanel
graphic interface, neurological disease estimation [31, 33].

10. Automatic reasoning, expert systems, logistic regression

In these specialized areas of artificial intelligence, they have focused their algo-
rithm progradation in the medical area of infectious diseases; machine learning has
specialized in the realization of algorithms for statistical inferences, optimizing prob-
lems of analysis and interpretation of results from research studies, and the applica-
tion of models for representations and evaluations of statistical data using techniques
to predict response to antiretroviral therapy. Expert systems in organizing through
knowledge based on rules and categories focused on diagnostics to solve decision
making, and regression logistics in performing decision making based on a continuous
variable, taking values and predicting the outcome for decision making [34, 35].

11. Analysis of artificial intelligence applications by tendency of use in
medical areas

The trend of artificial intelligence in healthcare marks a meeting point between the
pure sciences and the medical sciences.

The most pronounced trend is machine learning. In this application area, the
medical specialties in which the greatest applications were developed were in the
diagnostic area with the use of advanced optics, on a large scale for the observation of
cancer cells in different parts of the body. Additionally in combination with Big Data
and automatic reasoning in internal medicine, have intervened in important areas
such as chronic non-communicable diseases, rheumatology, pulmonology, cardiology,
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and diabetes diseases for intensive insulin therapy. Additionally, the most intervened
surgical specialties or surgery are pediatric surgeries, ophthalmologic surgeries, and
general surgery.

The second trend is identified as Computer Vision, focused on image and video
recognition with ultra-magnified large-scale optics and also identification with precise
biopsy of colon cancer cells and finally, detection of cancer cells, and anatomical
identification of neuron parts.

The third trend focused on expert systems, where genetics and genetic microbiol-
ogy are identified in studies of viral mutations and DNA sequencing. Additionally,
knowledge is based on diagnostic rules for early detection of cancer in its early stages
and deep learning with the application of neural networks, estimation, and neurolog-
ical diseases.

There are also applications combined with machine learning and big data for the
use of physiological alarms structured in a network with intelligent agents, and
evidence-based medicine through questions and answers of diseases and
treatments, generating new research lines. Other combinations were machine
learning, expert systems, and logistic regression used in antiretroviral treatment
predictions.

12. Graphical representation simulation modified endemic index of the
development trend of artificial intelligence by specialized medical
areas

With this graphical representation, the behavior of the areas of development of
artificial intelligence in medicine by medical specialty can be established, and the
future behavior of each area can be monitored and, why not, predicted.

The results were organized in a traffic light fashion, with green being the most
trending AI development behavior, yellow the second most trending development
behavior and red the least trending.

In the green-colored success zone, the artificial intelligence area of Machine learn-
ing or Machine Learning is identified, it is the most developed area in medicine and
health. This is because it was the first to be developed and put into practice, addition-
ally because it has a lot of theoretical information. After all, it has been widely used in
the financial and business area for predictions and analysis of economic behavior,
financial profitability, and others. Nowadays it is used in the area of medical sciences
and health.

Therefore, in this area of artificial intelligence, it is where great decisions have
been made in the economic area and also in the health area, due to the large number of
applications developed.

The majority of scientific publications in the area of artificial intelligence were
found in this area of success, and the language in which most of them were published
was English.

In the security zone, marked in yellow, Computer Vision is identified. This area
was the second zone in which artificial intelligence applications were developed,
focused on diagnostic methods with large-scale optics and in the English language.

In the red alarm zone, deep learning and expert systems were identified, where
applications of neural networks were found, these being the most complex to develop,
requiring a lot of expertise and focused on the central nervous system; however,
expert systems are also complex, given the rule-based systems in which they are
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structured, they can be a good area of application that could be focused on molecular
biology and DNA sequencing.

Finally, in this area, the smallest number of artificial intelligence applications were
developed, since it is the least explored due to its degree of complexity, also in English
(Figure 3).

In the three zones of the traffic-light simulation, developed countries were
involved, with a notorious difference in participation compared to developing
countries.

Investments in education focused on technological areas have allowed for signifi-
cant progress in the different academic and research sectors.

The advantage that developed countries have over developing countries is
related to budget allocations and investments in the education and technological
innovation area.

Therefore, they are the pioneers in presenting the different advances in areas
related to information systems, research, health, economics, pedagogical and educa-
tional strategies, robotics, and other areas (Figure 4).

The following graph shows the development trend of artificial intelligence by area
and medical specialty. The most developed area of artificial intelligence was machine
learning, being located in the zone of success since it was applied in several medical
specialties; to name, including medical education, and specialized surgeries such as
ophthalmology, general surgery, and pediatrics. However, much progress has been

Figure 3.
Simulation graphical representation modified endemic index of areas of development of artificial intelligence
applications according to trend.
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made in diagnostic areas through the use of advanced and large-scale optics in
oncology (Figure 5).

During the review of the content of each of the articles, located in the three
simulated areas of the endemic channel, it was found that, in each of the medical
specialties, where the different areas of artificial intelligence were developed and
strategically applied, clinical decisions were made that allowed timely intervention in
real-time, according to the needs required in each of them (Figure 6).

In all these areas, decisions were made after applying each of these in the different
areas of medicine and health. It allowed for generating an impact in the intervention
of chronic and transmissible diseases and treatments for each one of them.

13. Limitations

Many of the languages were also limiting for the review of the articles.

14. Discussion

There are many technological applications being made focused on the area of
medicine, but not all of them are structured under artificial intelligence and expert
systems. This led to evaluate current healthcare technologies in terms of artificial
intelligence and expert systems.

Figure 4.
The trend of artificial intelligence in developed countries VS developing countries.
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Figure 5.
Development of artificial intelligence application by medical specialty.

Figure 6.
Decision making by artificial intelligence specialty.
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Important findings were obtained with respect to the interventions that have been
applied in the clinical part.

Among the most relevant findings, it was recognized that the areas of artificial
intelligence where different medical applications were developed were automatic
reasoning, computer vision, expert systems, and deep learning with neural networks.

The articles identified as highly concordant were in English, whose applications
were implemented in developed countries. This demonstrates the great void of pro-
jects and studies on technologies in developing countries, where there is little eco-
nomic investment in technology and research.

In addition, the epidemiological studies that apply to each of the areas of artificial
intelligence were identified, represented by observational, descriptive, analytical,
predictive, and experimental studies.

When comparing this article with another research conducted on artificial intelligence
in communicable diseases, we can observe that the total number of articles found
according to the degree of agreement was 70, compared to 146 in this study; 16 studies
were highly concordant compared to 28 in this research. The trend by areas of artificial
intelligence focusedmainly on automatic reasoning, computer vision, expert systems, and
neural networks; in this study, the same result was obtained according to the approach.

In both studies, it could be observed that the area of neural networks is the least
developed, the most published and very concordant studies were in the English
language in developed countries and in the Medline database, which demonstrates the
economic, educational, and research investment that these countries have made in
comparison with developing countries.

In addition, it reflects the transformation and technological advances that these
countries have made in different areas. The areas of health where there was greater
development were public health and epidemiology in infectious diseases, unlike this
study, which was in the area of internal medicine.

On the other hand, it made it possible to identify which clinical issues have been
evaluated and do not require further research, as well as which texts or topics do not
require further research. It also allowed professionals to keep up to date on current
trending topics.

We were able to assess the consistency of studies and explore the main sources of
variability in studies with apparently beneficial results. Different predictive models of
morbidity were identified.

The quality assessment of the body of evidence obtained was performed by two
reviewers or peers independently, and the differences in the results of the evaluation
of each aspect were discussed until a consensus was reached. The differences between
the peers between each of the filters were minimal.

15. Conclusion

It is interesting to observe how medical and technological sciences have been
harmonized with the only purpose of finding solutions to daily problems in the care of
patients and in search of improving their health condition.

The results of this systematic review of the literature will serve to have a qualita-
tive and quantitative balance of these medical interventions, allowing to an evaluation
of their benefits.

Decisions on the forms of medical intervention should be based on the evaluation
of the balance between the benefit and the risks or harm they generate; this evaluation
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will make it possible to obtain relevant and valid information that will allow the search
for different forms of intervention.

The search strategy was based on a relational model and an entity-relationship
model, in addition to a model for evaluating the thematic quality of the articles found,
which made it possible to establish strategies to minimize biases and avoid making
systematic errors when selecting or evaluating the relevant literature.

On this occasion, a systematic review of the literature was carried out, not based on
clinical or experimental studies, but focused on reviewing and evaluating health
technologies, specifically artificial intelligence and expert systems applied to medi-
cine, medical specialties, and surgical procedures.

The contribution that artificial intelligence is making to medical science, research,
and the population’s health has been fundamental in the advance of public health
interventions and in the approach to diseases. However, it is a cause for concern since
technology is advancing faster than the regulatory, ethical, and legal framework; and
to what extent these new technologies can benefit or harm humanity.
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Chapter 6

Human-Machine Collaboration in
AI-Assisted Surgery: Balancing
Autonomy and Expertise
Gabriel Szydlo Shein, Ronit Brodie and Yoav Mintz

Abstract

Artificial Intelligence is already being actively utilized in some fields of medicine.
Its entrance into the surgical realm is inevitable, sure to become an integral tool for
surgeons in their operating rooms and in providing perioperative care. As the tech-
nology matures and AI-collaborative systems become more widely available to assist
in surgery, the need to find a balance between machine autonomy and surgeon
expertise will become clearer. This chapter reviews the factors that need to be held in
consideration to find this equilibrium. It examines the question from the perspective
of the surgeon and the machine individually, their current and future collaborations,
as well as the obstacles that lie ahead.

Keywords: surgery, artificial intelligence, computer assisted surgery, robotic surgery,
surgical technology

1. Introduction

Artificial Intelligence (AI) is an exponentially growing field that has already
impacted many industries. Although the foundations of AI were laid out by Alan
Turing as early as the Second World War, recent advances in machine learning and
deep learning have bolstered the field, making it one of the most exciting areas of
research and development in today’s technology landscape. AI focuses on developing
systems to perform tasks that would normally require human intelligence, including
activities such as problem solving, pattern recognition, decision making, and even
creativity. In recent years, as AI popularity has increased, its impact on various
elements of the medical industry have become more visible, a harbinger to the future
integration of AI technology into the surgeon’s daily toolbox.

As this technology continues to mature, and integrates into surgical practice, the
questions surrounding its role in the operating room will become more complex.
While the primary question of “what can AI do for surgeons?” might soon have an
obvious answer, it will open the door to the more nuanced inquiry of “how will
surgeons adopt this technology and how can we mark the boundaries of what we
should permit AI to do in the operating room?”
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We herein discuss all the necessary information for the surgical community to
understand the issues at hand surrounding AI, and we lay the framework to assist in
making appropriate choices when it comes to balancing Human-AI collaboration in
the operating room (OR). The chapter is divided into three sections: The human
perspective of the collaboration, the machine side of the collaboration, and the balance
between Surgeon and Machine.

2. Methodology

A through literature search was conducted utilizing the online databases of
PubMed, Google Scholar, ResearchGate as well as relevant websites. The search terms
used were “artificial intelligence,” “machine learning,” “deep learning,” “neural net-
works,” “computer vision,” “computer assisted surgery,” “machine automation,”
“machine autonomy,” “surgery automation,” “surgery autonomy,” “robotic surgery,”
“surgeon responsibility”, “surgeon psychology”, “surgical training,” “technology
adoption,” and “levels of automation.” Inclusion criteria were peer reviewed articles
and book chapters published in the English language from 2018 to 2023. As this
chapter includes a thorough examination of current technologies, product and com-
pany websites were also included that lead to further articles. Excluded articles
included those that were not published in the English Language, that were not related
to the subject and that were not available in full text.

Our search initially yielded 6887 articles. After excluding articles and removing
duplicates, all abstracts were screened, resulting in 60 full text articles that met our
inclusion criteria.

The snowball sampling technique was utilized to identify additional relevant arti-
cles by reviewing the reference lists of the included articles. This resulted in an
additional 10 articles that met our inclusion criteria.

3. The human perspective of the collaboration

3.1 The surgeon’s responsibility in the operating room

Surgeons are trained to make complex decisions under pressure and to act on those
decisions with appropriate speed. This requires constant situation assessment and
analysis, and reassessment and reanalysis [1]. When leading a multidisciplinary team,
the surgeons are held responsible for their patient’s welfare, safety and wellbeing.
From the very beginning of a surgeon’s professional life this personal responsibility for
their patients’ outcome is instilled in them, and is constantly reinforced throughout
their career [2, 3]. The American College of Surgeons describes the surgical profession
as one of responsibility and leadership, where the surgeon is ultimately in charge of
every aspect of the patients’ well-being, even if they are not directly involved [4, 5].
While some of these responsibilities might be obvious, others may perhaps be less
obvious, as laid out in Table 1 [6].

The tremendous weight of carrying all this responsibility often creates a psycho-
logical mindset where the delegation of responsibilities becomes a difficult task that
must be managed with great assiduity. Surgeons learn via their training to “trust no
one”, to delegate tasks with caution, and to personally review all data [7]. This
constant and obviously essential need for oversight raises the question - What does it
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take for surgeons to feel comfortable delegating responsibility? When do surgeons feel
at ease when relinquishing part of this control? And subsequently, what does it take
for the surgical profession to adopt new technologies that take part of this burden of
responsibility away from the surgeon?

3.2 The surgeon as an innovator and the process of adopting new technology

Although surgical training is based on apprenticeship, where the student learns
from the master and replicates the master’s actions exactly, the advancement of
surgical capabilities has always relied heavily on the innovation and adoption of new
technologies. Throughout history, the desire to help their patients has motivated
surgeons worldwide to be creative in finding new solutions to their problems [8]. The
evolution and adoption of change within the actual surgical practice, however, is
rather complicated. Some surgeons are constantly innovating by customizing thera-
pies and procedures to meet the uniqueness of each patient, while most continue to
follow the path that was laid out by their mentors, often reluctant to adopt new
technologies. As such, the integration of novel technologies or procedures into a
surgeon’s daily practice is influenced by many factors, including the possible benefit
the innovation provides to the patient, the patient’s demand for it, the learning curve

Responsibility of the surgeon to ensure patient safety

Responsibility Description

Preoperative
preparation

Oversee proper preoperative preparation of the patient with standardized
protocols. Achieving optimal preoperative preparation frequently requires
consultation with other physicians from different disciplines; however, the
responsibility for attaining this goal rests with the surgeon.

Informed consent Obtain informed consent from the patient regarding the indication for surgery
and surgical approach, with known risks.

Consultation with OR
team

Consult with anesthesia and nursing teams to ensure patient safety. Oversee all
appropriate components of the surgical time-out (Identification of patient,
procedure, approach, etc.).

Safe and competent
operation

Lead the surgical team in performing the operation safely and competently,
mitigating the risks involved.
Ensure anesthesia type is appropriate for the patient and procedure. Including
planning the optimal anesthesia and postoperative analgesic method with the
anesthesia team.

Specimen labeling and
management

Overseeing specimen collection, labeling, and management with completion of
the pathology requisition.

Disclose operative
findings

Disclose operative findings and the expected postoperative course to the
patient.

Postoperative care Personal participation and direction of the postoperative care, including the
management of postoperative complications. If some aspects of the
postoperative care may be best delegated to others, the surgeon must maintain
an essential coordinating role.

Follow up Ensure appropriate long-term follow-up for evaluation and management of
possible extenuating problems associated with or resulting from the patient’s
surgical care.

Table 1.
Responsibilities of the surgeon as the treating physician.
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required for skill acquisition by the surgeon, and the amount of disruption it would
create within their practice [9]. Take for example, laparoscopic cholecystectomy; it
took only four years from its introduction, to become the gold standard for gallbladder
removal, as this procedure had obvious and very tangible benefits for the patients
compared to open cholecystectomy, and the amount of disruption to the surgical
practice was low. In contrast, laparoscopic simple nephrectomy attained only a mere
20% acceptance rate by surgeons thirteen years after its introduction –most likely due
to the lack of perceived benefit of changing the standard of care by the surgeons [10].
The question then arises, how does one promote and move forward a new concept so
that it can be adopted?

The process by which a cohort adopts a new concept (idea, technology, procedure,
etc.,) can be studied and understood with the Technology Adoption Curve (TAC).
TAC is a sociological model that divides individuals into five types of people with
different desires and demands, and explains what it takes for each of these groups to
adopt an innovation. These five groups are the innovators, the early adopters, the
early majority, the late majority, and the laggards (Figure 1) [11].

The TAC model, used to describe adoption in the general population can be
extrapolated and applied to the adoption of technology by surgeons [12].

Innovator surgeons are enthusiastic about new technologies and are willing to take
the risk of failure. They are willing to test a new procedure even if it is in experimental
stages. Early adopters are the trendsetters, they are also comfortable with risk, but they
want to form a solid opinion of the technology before they vocally support it. These
surgeons are comfortable trying a novel procedure that has enough published litera-
ture to be regarded as safe.

Surgeons in the early majority are interested in innovation but want definitive
proof of effectiveness. The benefits of a procedure are more important to them than

Figure 1.
Technology adoption curve. Bell-curve represents the variation of adoption, and S-curve represent the accumulated
adoption over time.
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the novelty. The late majority are averse to risk, as such, they need to be convinced
that the new procedure is worth their time. While Laggards are skeptical and wary of
change, making them reluctant to change, preferring to continue with what is familiar
to them.

In an effort to better relate the model to evidence-based practices like surgery,
Barkun et al. proposed some adaptations, allowing for critical appraisal and assess-
ment of the technology. In their model every stage would require peer review, thereby
promoting a more scientific approach to the application of new technology in surgery
(Table 2) [13].

On average, for a new concept to be considered adopted, 20% of people must have
already begun to use the technology [9], in other words, some but not all people in the
early majority group of the TAC. For this to happen with AI in the OR, the benefit of
the technology must be proven beyond the proof-of-concept stage. Once the technol-
ogy has been proven to be safe and beneficial then it will be easier to convince more
individuals to try it, thereby promoting wider spread acceptance, adoption and even-
tually integration into daily practice.

4. The machine side of the collaboration

4.1 The basics of artificial intelligence

Artificial intelligence (AI) is defined as the simulation of human intelligence in
machines programmed to think and learn like humans. The aim of AI is to create
machines with the ability to perceive their environment, reason with it and act in such
a way that would normally require human intelligence or to process data whose scale
exceeds what humans can analyze [14]. In other words, to create systems that have a
certain degree of autonomy [15]. Within the framework of autonomy in AI there is a
hierarchy, comprised of three main tiers:

4.1.1 Artificial narrow intelligence

Systems designed to perform a specific task or solve a specific problem. As such,
they have a narrow range of parameters allowing them to simulate human behaviors
in specific contexts such as face or speech recognition and processing, voice assis-
tance, or autonomous driving. They are “intelligent” only within the specific task they
are programmed to do.

Technology adoption curve Stages of surgical innovation

Innovators Development

Early Adopters Exploration

Early Majority Assessment

Late Majority Long Term Implementation

Laggards

Table 2.
Stages of surgical innovation according to Barkun et al. and how they compare to the TAC model.
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4.1.2 Artificial general intelligence

Systems designed to perform any intellectual task that a human can [16]. Apart
from mimicking human intelligence, these systems have the ability to learn and adapt.
Additionally, they can think, learn, understand, and act in a way that is indistinguish-
able from that of a human being in any situation.

4.1.3 Artificial superintelligence

A system designed to surpass human intelligence in every aspect with the ability to
improve its own capabilities rapidly [17]. This system is designed to have conscious-
ness and be sentient [18], surpassing humans in every way: science, analysis, medi-
cine, sports, as well as emotions and relationships.

While the tiers of AI are each fascinating in their own way, currently the only type
of AI that exists is Artificial Narrow Intelligence. The remaining tiers are merely
theoretical and philosophical concepts, as such have yet to be achieved, and are
beyond the scope of this chapter.

To further understand how AI works, it is important to discuss the concepts of
Machine Learning, Artificial Neural Networks, and Deep Learning. These terms are
used to describe the techniques that organize the basis of AI systems and are impor-
tant to understand how AI is achieved. These terms refer to different techniques used
to train machines on data, each one building upon the prior one in order to reach more
complex results [19–21].

• Machine Learning (ML) is the process by which an AI system can automatically
improve with experience; this process allows a system to learn from data without
being explicitly programmed. Machine learning algorithms can analyze large
amounts of information to identify patterns and make predictions or decisions
based on that analysis.

• Artificial Neural Network (ANN) is a type of machine learning algorithm based
on a collection of connected units called “neurons” that loosely model neurons in
the biological brain. Each connection can transmit a signal to other “neurons”
which in turn receive the signal, process it and forward a new signal to other
neurons connected to it. A neuron can only transmit its processed signal if it
crosses a certain threshold, a process similar to the depolarization of biological
neurons, hence the term neural network.

• Deep Learning (DL) is a type of neural network that is designed to learn and
make decisions based on multiple hidden layers of interconnected neurons. Deep
learning algorithms are capable of learning and representing complex
relationships in multiple datasets automatically (Figure 2).

Now that the techniques that serve as the basis of AI have been clarified, it is
important to understand how they are applied to create actual usable systems that
can perform a task. These basic applications of AI include Natural Language
Processing, Computer Vision, and Expert Systems, which leverage Machine
Learning, Artificial Neural Networks and Deep Learning to solve specific
problems [22–24].
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• Natural Language Processing (NLP) is the ability of AI systems to understand,
process, and interpret human language.

• Computer Vision (CV) is the ability of AI systems to interpret and understand
visual data, such as images and videos.

• Expert Systems (ES) is the ability of AI systems to emulate the decision-making
capacity of a human expert.

For the purpose of simplification one can say that there are different techniques to
train artificial intelligence (ML, ANN and DL) which each perform specific tasks (CV,
NLP, ES) in order to solve a specific problem (Figure 3).

Figure 2.
Deep learning example of an artificial neural network where an image is pushed through several algorithms in
hidden layers. Once all layers are processed the outcome can be reached, in this case a definition of the image.

Figure 3.
Relationship between basic concepts of artificial intelligence.
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Most of the cutting-edge AI systems available today use a variety of these algo-
rithms in tandem to accomplish their tasks. Table 3 presents examples of technologies
that use specific AI algorithms for each concept discussed above.

4.2 AI in medicine and its current applications

Today AI is already being utilized in medicine, and thus far, its applications have
shown promising results as demonstrated by improved patient outcomes, optimized
clinical workflows, and accelerated research. To date, there are 521 AI-Enabled med-
ical devices approved by the FDA [37], with the overwhelming majority of these
products being in the field of radiology used to process images for all pathologies,
excluding cancer [38]. Other AI applications currently available are used in the fields
of anesthesiology, cardiology, gastroenterology, general and plastic surgery, hematol-
ogy, microbiology, neurology, obstetrics and gynecology, ophthalmology, orthope-
dics, pathology and urology. Given the broad spectrum of applications within varying
fields of medicine, one understands that AI utilization is not only based on type but

Principle Analogy Real world Medical world

Machine
Learning

Teaching a child to recognize
an object by showing it
pictures of the object,
without telling the child
what it is.

Netflix, Inc. uses machine
learning to recommend
personalized content to each
user [25].

Owkin, Inc. [26], a company
that uses machine learning to
improve drug discovery and
clinical trial design.

Neural
network

The human brain processes
and interprets information
from the senses to make
decisions and control the
body.

AlphaZero™ by Deepmind,
Ltd. is a chess engine which
after 24 hours of training
defeated world-champion
chess programs [27].

PhysIQ, Inc. is a company
using neural networks to
continuously monitor at-risk
patients remotely and alert
their physicians in real time
[28].

Deep
learning

A student who starts learning
basic concepts in class and
continues to self-teach
building-up to more complex
ideas.

Tesla, Inc. uses deep learning
algorithms to constantly
improve their cars’ self-
driving system [29].

AIdoc, Ltd. [30] is a company
that uses deep learning
algorithms for image analysis
to detect and prioritize acute
abnormalities in radiology.

Natural
language
processing

A translator between people
who speak different
languages.

Alexa™ by Amazon, Inc. is a
virtual assistant that can
understand, process and
respond to language prompts
[31].

The UNITE algorithm
developed at Harvard
University can automatically
assign ICD codes based on
clinical notes without human
supervision [32].

Computer
Vision

A child that can see any
picture of a dog and know it’s
a dog.

Google Lens ™ [33] can
process an image and offer
actions depending on what it
sees.

DeePathology, Ltd. has
created an algorithm that can
autonomously detectH. Pylori
in pathology slides [34].

Expert
Systems

A firm that has a lawyer on
retainer to answer any
question at any time.

AITax, Ltd. has an AI system
that can automatically check
and file user taxes [35].

Merative™ (formerly IBM
Watson Health) [36], is a
clinical decision-support
system for the diagnosis and
treatment planning.

Table 3.
AI basic concepts with examples used in the real world and in the medical world today.
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also on what its end goal is. Generally, AI technologies in medicine can be classified by
the end goal they achieve; these include everything from screening and diagnosis, to
triage and clinical trial management. Multiple applications are currently being utilized
and under further development, including:

Computer-Aided Detection (CADe) technology is being developed to aid in mark-
ing/localizing regions that may reveal specific abnormalities. Its goal is to elevate the
sensitivity of screening tests. Curemetrix, Inc. product cmAssist™, for example, has
shown a substantial and statistically significant improvement in radiologists’ accuracy
and sensitivity for detection of breast cancers that were originally missed [39].

Computer-Aided Diagnosis (CADx) is being developed to help characterize or
assess diseases, disease type, severity, stage, and progression. An example of the
application of this technology is GI Genius™; an Intelligent Endoscopy Module by
Medtronic, plc. That can analyze a colonoscopy in real-time and estimate the possible
histology of colorectal polyps [40].

Computer-Aided Triage (CADt) aids in prioritizing time sensitive patient detec-
tion. VIZ™LVO is a software by Viz.ai, Inc. that detects large vessel occlusion strokes
in brain CT scans and directly alerts the relevant specialists in a median time of
5 minutes and 45 seconds, as opposed to 1 hour which is the standard of care today,
significantly shortening the time to diagnosis and treatment [41].

Computer-Aided Prognosis (CAP) can provide personalized predictions about a
patient’s disease progression. The EU-funded CLARIFY Project (Cancer Long Survi-
vor Artificial Intelligence Follow-Up) is working in harnessing big data and AI to
provide accurate and personalized estimates of a cancer patient’s risk for complica-
tions, including rehospitalization, cancer recurrence, treatment response, treatment
toxicity, and mortality [42].

Clinical Decision Support Systems (CDSS) are being employed to aid healthcare
providers in the diagnoses and treatment of patients in the most effective way possi-
ble. Babylon AI, by Babylon, Inc. for example, is a system that uses data to decide on,
and provide information about the likely cause of people’s symptoms. It can then
suggest possible next steps, including treatment options. The system has demon-
strated its ability to diagnose as well as or even better than physicians [43].

Remote Patient Monitoring (RPM) systems are being used to monitor patients, and
Virtual Rehabilitation is being developed to help patients recover from illnesses and
injuries. Systems like CardiacSense Ltd. Medical Watch continuously monitor heart
rate and blood pressure, process the data and update the physician in real time. This
noninvasive monitoring system allows the physician to change treatment according to
data that would not have been available otherwise [44].

Health Information Technology (HIT) is being employed to improve disease pre-
vention and population health. Medial EarlySign, Ltd. mines data from electronic
medical records for early detection of patients with high risk of colorectal cancer.
Patients determined to have a high risk by the system are flagged and consequently
scheduled for colonoscopy. This system has achieved early detection of an additional
7.5% of colorectal cancers that would otherwise have been caught in more advanced
stages [45].

Clinical Trials Management Systems (CTMS) are being developed to help stream-
line all aspects of clinical trials including preclinical drug discovery, clinical study
protocol optimization, trial participant management, as well as data collection and
management. These types of systems enable researchers to improve study design by
utilizing the guidance in choosing the best study design, determination of number of
patients needed for each study arm, optimizing candidate selection, as well as tracking
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and analyzing large amounts of data. CTMS are helping researchers create stronger
and more efficient trials [46].

As demonstrated by the above systems, the implementation of these types of
AI has significantly and measurably improved the field of medicine. As the
benefit of AI continues to be appreciated, via the understanding as to how it aids
in providing better and more efficient care to patients, more professionals will
begin to utilize it. With improved acceptance, the previously discussed adoption
model that Barkun et al. [13] proposed will continue to shift towards long term
implementation.

4.3 Potential benefits of AI in surgery

Improved patient care has historically been linked to technological advancements.
Laparoscopic cameras have evolved from simple VHS quality to HD and 4 K cameras
and even 3D vision with Near Infra-Red capabilities that allow the surgeon to see
beyond the naked eye. Laparoscopic instruments evolved from simple straight and
rigid instrumentation to articulating and flexible tools, providing a limitless range of
motion. Standardization and precision-surgery have infiltrated the OR in the form of
staplers for the creation of anastomosis, advanced energy tools for cutting and coagu-
lation, and robotic assisted surgery that combines all of the above technologies
together to enhance human precision. Most recently, AI has started to appear in the
surgical field, albeit in the perioperative setting. These systems are helping surgeons
with decision making processes both pre- and post-operatively by predicting compli-
cations and managing different aspects of patient variables [47]. Nevertheless, AI has
yet to penetrate the walls of the OR.

The disparity between the advancement of AI in surgery and other fields in med-
icine is probably because most applicable AI technologies today are focused on vision
and reporting, i.e. diagnosis and big data analysis. Surgery at its core is about both
vision and action, which presents a much more complex challenge. This challenge,
however, has not stopped research efforts in the field of Computer Assisted Surgery.
A PubMed query revealed that in 2022, there were more than 5200 publications
discussing AI in surgery, and according to The Growth Opportunities in Artificial
Intelligence and Analytics in Surgery study, by 2024 the AI market for surgery will
reach $225.4 million [48].

Prototypes, proof of concept and pilot studies are being developed around the
world, focusing mainly on improving patient safety and refining workflows in the OR
[49]. There are already published reports of AI projects in Expert Systems, Computer
Vision, image classification, as well as data acquisition and management that show
promising results. Studies have reported success of Computer Vision systems for
recognition of surgical tools, surgical phases and anatomic landmarks.

Research on videos of laparoscopic cholecystectomy, for example, has reported
success of tool recognition such as graspers, hooks and dissectors; other studies have
been successful in phase recognition during laparoscopic cholecystectomy. The tested
systems have demonstrated the ability of understanding and reporting when the
surgeon is dissecting the cystic duct, separating the gallbladder from the hepatic bed
or removing it from the body. More advanced systems have demonstrated the ability
to recognize and mark the critical view of safety [50, 51].

While these research efforts are certainly demonstrating promising results, the
application of AI within the operating room itself remains in its infancy.
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5. The balance between human and machine

When trying to find an adequate balance between human and machine collabora-
tion in the OR the subject of autonomy is a natural starting point. Surgical teams today
are comprised of highly specialized professionals that need to work in perfect syn-
chrony for surgical procedures to run smoothly. The surgeon, as the leader, must find
balance between managing everything going on with a high degree of control, whilst
still allowing for the autonomy and independence of each team member. Most sur-
geons are authoritative leaders within these teams, meaning that they retain control
while still empowering the freedom of self-management where each member can be
engaged, motivated and focused on their personal tasks at hand [52]. Although the
surgeon is ultimately responsible, he or she will not intervene in a nurse’s needle or
instrument counts, or check whether the anesthesia machine is properly working.
Surgeons authorize themselves to relinquish this direct control because via a strong
culture, values and guidelines they ultimately continue to provide the critical over-
sight and supervision for effective risk-management [52].

Besides team management, the surgeon may be liable for equipment malfunctions,
therefore there is a certain underlying hesitancy in giving autonomy to machines. A
2013 systematic review of surgical technology and operating room safety failures
found that up to 24% of errors within the OR are due to equipment malfunction [53].
This has not, however, stopped us from relinquishing control in certain parts of the
surgery and delegating it to tools which we cannot always fully control. Advanced
hemostatic devices like Ligasure™ for example, automatically adjusts and
discontinues the delivery of energy based on its own calculations without any surgeon
input. Similarly, the Signia™ Stapling System has Adaptive Firing™ technology that
automatically and autonomously makes adjustments depending on the tissue condi-
tions it senses [54, 55]. So, while there is hesitancy from the surgeon side for adopting
new autonomous devices, if the surgeon is able to see the benefits as with the
Ligasure™ and Signia™ systems, these types of tools can in fact break the barrier of
more advanced machines into daily OR practice.

5.1 Machine autonomy in other fields and how they can relate to the OR

Whether we are aware of it or not, AI is already affecting the world and
making our everyday lives easier. It is there every time we search for something
online. It automatically recognizes us in pictures we take, it recommends new music,
food or products we will like. AI helps us hear what is written and read what is spoken.
It protects us from credit card fraud and helps us make smarter investments. At home
it manages our thermostat and decides when and where to vacuum clean the floors.

Moreover, machines are already responsible for millions of human lives on a daily
basis, albeit indirectly. The oldest and most famous example is probably the autopilot
in airplanes; multiple studies have shown that in 95% of commercial flights, pilots
spend less than 440 seconds manually flying the plane [56, 57]. Other examples
include the automation of emergency medical service dispatchers and the automation
of trains and metros, where nearly a quarter of the world’s metro systems have at least
one fully automated line in operation [58–60].

The advancements of automation in settings where human lives are at stake have
pushed society to further debate the autonomy versus control issue. Depending on the
field, different scales have been proposed to define levels of automation and
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autonomy. These scales have been important as they help define the capabilities and
limitations of a system’s autonomous features and establishing expectations around
the operator’s behavior and responsibilities. In addition, they have helped build trust
and reduce anxiety around autonomous machines, while ensuring that legal and
ethical concerns are considered as technologies continue to develop.

The most prominent autonomy scales revolve around the automotive and aviation
industries. The main difference between the two is that the automotive scale encom-
passes all the systems in a car as a single unit and the vehicle is labeled depending on
its capability as a whole [61]. While in the aviation scale, each system in an airplane
receives a level of automation independent from other available autonomous systems
on the same plane [62]. It is important to note that the scales defining the levels of
autonomy in cars, trains, and planes all have basic similarities which are adapted to
each specific industry. These adaptations are dependent on the level of complexity of
each industry, and the training of the average operator. All the scales, across the
various industries begin at level 0 where there is no automation at all, gradually
increasing to level 5 (or the maximum of 4 in trains [63]) where there is full machine
autonomy without the need for human input at all.

In the field of surgery, the question of how to define the levels of autonomy in
systems within the OR has already begun, and although surgical systems are not yet as
advanced as other industries’, it is important to have a standardized language when
referencing this subject. Yang GZ et al.’s proposal for defining the levels of autonomy for
medical robotics [64] has been extremely effective in catalyzing the debate of defining
the levels of autonomy in surgery. This scale is loosely based on the automotive levels of
autonomy as it grades a robotic system as a whole depending on all of its capabilities.

The scale is composed of 6 levels (0–5) as follows:

• Level 0: No autonomy. This includes currently available robots which are master-
slave systems that follow the surgeon’s movements.

• Level 1: Robot assistance. The robot provides some mechanical assistance, while
the human has continuous and full control of the system.

• Level 2: Task autonomy. The robot can autonomously perform specific tasks
when asked by the surgeon.

• Level 3: Conditional autonomy. A system suggests and then performs a number
of tasks when approved by the surgeon.

• Level 4: High autonomy. The robot can make medical decisions while being
supervised by the surgeon.

• Level 5: Full autonomy. The robot can perform an entire surgery without the
need for a human surgeon.

Others have built upon this scale, using similar classification methods for surgical
robot autonomy [65, 66]. Current technology in robotic surgery is only at Level 0, but
when the objectives of the research projects described above are met, we might reach
level 1 and 2.

As surgeons, our experience in the OR environment is more comparable to flying a
sophisticated airplane than driving a car. A surgeon’s professional responsibility is
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similar to that of a pilot, as such the expected capabilities from autonomous systems in
the OR might be similar to those in an airplane’s cockpit, where each system has their
own level of autonomy, independent from other available systems. Therefore, it may
be more beneficial to expand the robotic surgery scale, creating a more comprehensive
autonomy scale in surgery encompassing all the types of technology used within the
OR. To this end one must first understand the flow of a surgical procedure. Every
surgery is built on a series of different phases, each of which are divided into tasks
based on specific steps (Figure 4). A surgeon’s job in the OR is to perform a series of
steps in order to complete tasks in different phases of a procedure. After fulfilling all
steps within each task and phase, the surgery is said to have been completed.

The following scale (Table 4), adapted from the levels of automation in aviation,
may be used to address the role of automation and autonomy in surgery as it

Figure 4.
Divisions of a surgery. The tasks and phases can be done in tandem or can be partially achieved and completed
following completion of another task.

Level Description Supervision

0: Complete
Human autonomy

• The surgeon performs all steps of in
every task.

The surgeon is in complete control

1: Task Assistance • The system executes a specific step of a
task.

The surgeon is in complete control.

2: Task
Automation

• The surgeon delegates execution of
multiple steps of a task to one or more
systems.

The surgeon monitors performance of
the system during the execution of the
specific steps.
The system requires active permission
from the surgeon to advance to next step.

3: Phase
Automation

• The surgeon delegates most steps of
multiple tasks to the system.

• The surgeon performs a limited set of
actions in support of the tasks.

The surgeon monitors performance of
the system and responds if intervention
is requested/required by the system.
The system reviews its own work in
order to advance to the next step.

4: Full Autonomy • The surgeon delegates execution of all
steps of a task in any phase to the
system.

• The system can manage most steps of
the task under most conditions.

The surgeon actively supervises the
system and has full authority over the
system.

5: Complete
system autonomy

• Execution of all steps of a task in all
phases is done by an automated system.

• The system can manage all steps of the
task under complicated conditions.

The surgeon passively monitors
performance of the system.

Table 4.
Levels of automation in surgery.
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encompasses every type of technology. It proposes a description of each level of
automation, taking into consideration the division of a surgery into phases, tasks
and steps.

5.2 The P.A.D. taxonomy—A novel scale for automation and autonomy in the OR

Every surgical procedure is completed based on a series of perceptions, actions and
decisions made by the surgeon. These three different duties are important aspects of
surgery and must be included in the conversation regarding AI and its application in
surgery (Table 5).

Perception refers to the recognition of variables in the surgical environment.
Surgeons do this instinctively using their senses. Systems sense using sensors like
cameras with computer vision, heat detectors, impedance measurements, etc., to
convert data from a physical environment into a computational system. As an exam-
ple, basic bipolar devices transfer a fixed amount of energy through the target tissue
for as long as it is activated by the surgeon regardless of the state of the tissue. While
using the basic bipolar it is important for the surgeon to use their own senses to see
that the tissue appears to have undergone coagulation in order to stop applying energy
and prevent inadvertent injury. Over-activation after the tissue has already been
coagulated will create a different path of energy transfer that could damage nearby
tissues. Advanced bipolar devices, in contrast, sense the tissues impedance, regulating

System

Perception Action Decision

Level 0: Complete
Human autonomy

Level 1: Task
Assistance

The system has the
ability of basic sensing.

The system performs a
step in a specific task.

The system may give basic
warnings

Level 2: Task
Automation

The system has the
ability of general phase,
tool and anatomy
recognition.

The System performs
multiple steps of a task
within a phase.

The system understands
current step and reacts
accordingly.

Level 3: Phase
Automation

The system recognizes
most phases, tools, and
anatomical variables.
The system can detect
abnormal events.

System can perform
most tasks within a
phase.

The system understands
current task, can predict next
actions and react accordingly.

Level 4: Full
Autonomy

The system can identify
every aspect of a
procedure under most
conditions.

The system can
perform all tasks of
every phase in a
procedure under most
conditions.

The system has full
understanding of current phase
under most conditions. It plans
and reacts accordingly.

Level 5: Complete
Autonomy

The system recognizes
every aspect and
abnormal event of a
procedure under any
condition.

The system can
perform all tasks of
every phase of a
procedure under any
condition.

The system has full
understanding of every aspect
of the procedure and its
variables. It plans and reacts
according to any event under
any condition.

Table 5.
The PAD (perception, action, decision) scale for surgical autonomy.
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the amount of energy dispensed, and automatically discontinuing the activation when
the tissue is coagulated.

Action refers to the maneuvers performed in order to execute a task. Surgeons
perform actions depending on their perception of a specific scenario. Basic tools and
systems can perform actions without having the ability to sense. Advanced systems
have the ability to perform an action depending on what they sense. The advanced
bipolar device, for example, acts to continue energy or stop it according to its own
perception (sensing).

Decision refers to the capability of reaching a conclusion after considering differ-
ent variables. Advanced systems can give real-time feedback to the surgeon during a
procedure, either passively in the form of alerts, warnings and suggestions, or actively
in the form of whole system halts, or action restrictions. For example, an advanced
laparoscopic stapler can sense the cartridge type inserted to the device as well as the
distance and physical resistance between its two jaws. When the stapler is ready to
fire, if these variables exceed the stapler’s ability, it makes the decision not to fire.

With this taxonomy, one can describe easily the level of AI autonomy by combin-
ing each section into a shortened form. As such, the current standard of care is at
P1A1D2, because although AI is not yet commercially available, we do have tools like
advanced devices that perform certain actions autonomously. Applying the scale to
these commercially available devices, we can say that advanced bipolar devices are a
Level 1 automated systems as they measure the impedance of a tissue to automatically
decide when a cycle is completed. A procedure using this device would therefore be
characterized as a P1A1D1 procedure. Smart staplers such as the Signia™ would also
be a Level 1 system and a surgeon using it would also be performing a P1A1D2
procedure. As current technologies are further developed with the evolution of AI into
more clinical applications, procedures at the level of P2A1D3 may in fact be in our
near future.

It is important to note that according to these Levels of Autonomy in Surgery, the
responsibility still always falls upon the surgeon, independently of the amount of
control and relative autonomy that the system has. The natural path of the debate in
the field will bring surgeons (and healthcare professionals in general) to reach a
consensus on the amount of control we are willing to give up for the whether it should
be ethical and legal for a surgeon to actually relinquish control and autonomy to the
point where the burden of responsibility should not be placed on them.

5.3 Will AI replace surgeons?

As with any industry, the perceived threat of AI taking control and pushing away
human involvement holds true in medicine. Although at the peak of the hype of AI in
radiology and pathology many experts predicted that humans would soon be replaced
by machines in these fields, they quickly revised their opinions, with the realization
that rather than replacement, the technology had arrived to augment their field’s
possibilities [67]. This is true in the surgical field as well, and as part of the adoption of
AI, surgeons will have to adapt training methods to include these new systems. Not as
a way of replacing, but as a way of augmenting the surgeon’s capabilities. As such, it is
imperative that surgeons understand the capabilities and limitations of the technol-
ogy, that they know how to use it and problem solve with it, with enough exposure
during their training to feel comfortable adding it to their bag of armament. More
importantly, as the technology advances it remains imperative that the surgeons
retain the ability to perform a surgery with all the necessary tasks safely, even without
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the use of automated systems. This is particularly important when faced with ensuring
safety of patients: Imagine the problematic hypothetical scenario of surgeon who is
unable to perform a cholecystectomy due to lack of the ability to recognize the triangle
of safety because they rely solely on AI. Conversely, imagine the exciting scenario
where a surgeon who is trained to recognize the triangle of safety can utilize AI tools
to augment its visualization in a patient with complex anatomy, bringing an added
benefit to the patient and the surgeon themselves.

Fundamentally, it is possible to continue to build on the basis of the surgeon’s
knowledge while maintaining control and delegating specific tasks to AI in order to
augment their capabilities, not replace them. As long as the human understands the
capabilities and limitations of an AI system as laid out above, the loss of control is
thereby mitigated.

It cannot be stressed enough that medicine is a profession of empathy. As physi-
cians we consider more than just the patient’s diagnosis in order to propose an appro-
priate treatment and management. Surgeons must weigh the patient’s prognosis, social
support system, risks involved in surgery, and patient expectations in order to pro-
pose the best treatment. Moreover, during surgery we make an immeasurable amount
of decisions and subsequent actions based on the unique patient laying on our table.
We cannot say that AI has the ability to consider a patient’s environment, desires and
expectations, nor can we say that it is machine-proof, but the potential for an AI
system with the ability to make such decisions with empathy remains only a theoret-
ical concept for now.

6. Conclusion

The goal of this chapter was to present the factors that both humans and machines
face in the evolution of surgery, as well as the balance needed to have a fruitful
collaboration. As the field of artificial intelligence has been catapulted into the medical
field with many new innovations, the transformation of the medical field is inevitable.
The question of how AI technology will affect the surgical profession has become
pivotal, as the technology continues to grow, finding new ways to benefit surgeons
and patients alike. AI should be viewed not as a threat, rather as another tool in the
surgeon’s armament for augmenting their skills, further benefiting the patients. The
challenge facing AI integration into the operating room are not simple, but as
presented herein, we already have some AI available at our fingertips. In the chapter
we proposed a novel taxonomy scale encompassing every type of technology that
could one day be used in the OR in a comprehensive manner. The PAD taxonomy for
Surgical Autonomy may help to bring more awareness to surgeons. With a simple
method for stratification of AI, surgeons may begin to feel more confident and be
more willing to adopt newer options by understanding what they are utilizing.

Questions remain with regards to the legality and ethics of AI in surgery, specifi-
cally with regards to autonomy and task delegation, which may take time to under-
stand and develop. As with any innovation, it is imperative to continue discussions
within the surgical community to find the ideal way of collaboration between sur-
geons and advanced AI systems, to ensure a beneficial partnership.
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Application of Computer-Assisted 
Surgery System Based on Artificial 
Intelligence in Pediatric Precise 
Oncological Surgery
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and Qian Dong

Abstract

Pediatric oncological surgery is difficult and challenging, especially in children 
with malignant solid tumors. Compared with adults, children have immature organs, 
thin blood vessels, and poor surgical tolerance. Moreover, pediatric malignant solid 
tumors are often huge, complex in location, fast-growing, and highly malignant. 
With artificial intelligence and machine learning breaking through many bottlenecks, 
computer-assisted precision medicine has also taken a quantum leap forward. Ten 
years ago, Professor Dong’s group invented the Computer-assisted Surgery System 
(Hisense CAS). Now, this three-dimensional (3D) visualization technology based on 
artificial intelligence has been used for pediatric precise oncological surgery and has 
been upgraded to version 5.0. Hisense CAS was developed based on enhanced pediat-
ric CT data, so it has advantages in displaying pediatric solid tumors. CAS can display 
the adjacent relationships of the tumor with the surrounding tissues (especially the 
compressed blood vessels) in a 3D, dynamic, and complete manner through rapid and 
accurate 3D reconstruction of organs, tumors, and blood vessels. Then, precise preop-
erative evaluations and surgical planning can be carried out. This chapter focuses 
on individualized computer-assisted surgical planning and progress in common and 
complex pediatric tumors (such as malignant liver tumors, retroperitoneal tumors, 
and mediastinal tumors) and introduces experience in improving the resectability of 
tumors and reducing surgical complications.

Keywords: tumor, surgery, pediatric, computer-assisted, precise surgery

1. Introduction

With decreasing mortality from infectious diseases and increasing cure rates 
for congenital malformations, pediatric tumors have become an important disease 
factor endangering the health of children, and their incidence continues to rise [1, 2]. 
Surgical resection is the most effective and important treatment for the eradication of 
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pediatric solid tumors, especially malignant solid tumors. However, pediatric tumors 
are often diverse, complex in location, and large in size compared to tumors in the 
young body. Malignant tumors are highly malignant and grow rapidly. Moreover, 
compared with that of adults, the organ structure of pediatric patients is slender and 
has poor tolerance, thus the space for surgical treatment is limited. Therefore, there 
is a greater need for high-technology tools that help perform precise and meticulous 
surgical procedures [3].

Technological innovation and interdisciplinary integration have brought surgery 
to a brand new stage, namely, the era of precision surgery. Precision surgery is a whole 
process of surgery-centered surgical practices, covering all stages from disease assess-
ment, clinical decision-making, surgical planning, and surgical resection to periop-
erative management. Computer-assisted surgery (CAS), a typical representative of 
medical-industrial integration, is a new technology based on artificial intelligence 
and machine learning that can process and learn large amounts of medical data and 
information at high speed and then provide technical support to surgeons through a 
virtual surgical environment to assist in the realization of precision surgery [4].

2. Methodology

This chapter provides a retrospective summary of the key technologies of our 
self-developed computer-assisted surgery system “Hisense CAS” and analyses its 
practical application in pediatric oncological surgery, providing individualized 
computer-assisted surgical planning for common and complex pediatric tumors (such 
as malignant tumors of the liver, retroperitoneal tumors, and mediastinal tumors) to 
improve tumor resectability and reduce surgery-related complications [5, 6].

3. Computer-assisted surgery

CAS is a new surgical concept that refers to the use of computer technology for 
presurgical planning and to guide or assist surgical procedures. CAS is generally con-
sidered to include (i) creation of virtual images of patients; (ii) analysis and in-depth 
processing of patient images; (iii) diagnosis, presurgical planning, and simulation of 
surgical steps; (iv) surgical navigation; and (v) robotic surgery. With its development 
and use in the medical field, CAS has helped realize precision surgery.

3.1 Digital three-dimensional reconstruction and simulation surgery

The technical basis of digital three-dimensional (3D) reconstruction is to convert 
two-dimensional (2D) cross-sectional images such as CT or MRI into 3D visual 
images using computer algorithms to provide the operator with more intuitive stereo-
scopic images for diagnosis and preoperative evaluation. Through the virtual reality 
surgeries available through modern computer technology, a virtual surgery model 
for specific individualized surgical modality evaluations can be established. The 
surgeon can input the conceived surgical plan into the computer, combine it with the 
presurgical medical images, and form a three-dimensional image after processing by 
the software system to understand in detail the specific location, involvement range, 
and adjacent relationships of the tumor, especially the involvement of blood vessels. 
Medical image data and virtual surgery systems are also used to reasonably customize 
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individualized surgical plans to reduce surgical injury, avoid damage to surrounding 
tissues, improve the precision of lesion localization, and increase the success rate of 
surgery [7].

3.2 Research and development of CAS based on artificial intelligence

The Hisense Computer-assisted Surgery System (Hisense CAS) was developed 
by Prof. Dong’s group in 2013. This system can perform medical image preprocess-
ing with CT imaging DICOM data, especially low-quality data that can be enhanced 
in high definition before preprocessing. The medical images labeled with features 
such as greyscale and texture features are then subjected to deep machine learning 
by U-Net on a large number of standard DICOM files. Thus, automatic and accurate 
segmentation of new input data is achieved. The segmentation results are processed 
by filtering, CT interlayer adaptive correspondence point interpolation, morphology, 
pattern recognition, and other algorithms, and a self-learning topological model is 
established to model and track the vessel shape in the three phases (arterial phase, 
venous phase, and balance phase) of imaging. Then, the matching cubes and ray 
cast algorithms are used for color rendering, and finally, the 3D alignment algorithm 
is used to stereoscopically align the three-phase data to accurately obtain enhanced 
3D images visualizing the target organs, lesions, and blood vessels. This system can 
precisely observe the relationships of the lesion with blood vessels and organs in 
3D, calculate the volume of the organs, lesions, and blood supply area of each blood 
vessel branch, perform virtual surgical resection, and determine the best surgical 
resection line.

With the progression of clinical needs, artificial intelligence technology, and 
machine learning based on big data, Hisense CAS has been updated to version 5.0. 
The improved algorithm enables less manual operation and a 25–30% reduction 
in 3D reconstruction time, and the whole process takes approximately 20 minutes. 
Hisense CAS can reconstruct more than 4 levels of vessels and distinguish tumors 
and vessels with 0.5 cm spacing. The Dice value of solid tissues can reach more than 
95%, and that of ducts can reach more than 90%. Hisense CAS can also display the 
overall 3D anatomical relationship and pipeline variations in a semitransparent and 
interactive way, calculate the distance between any two points and the angle of travel 
of any blood vessel, the range of innervation or drainage, and the volume of organs 
and tumors, and provide other information that cannot be obtained from traditional 
2D images. In addition, a cloud-based 3D visualization platform for precision surgery 
based on B/S architecture was constructed to realize the data interactions between the 
PC terminal browser and CAS and to store, manage and share 2D and 3D image data 
(Figure 1) [8, 9].

3.3 Gesture control intelligent display module (Hisense SID)

Real-time surgical navigation is used to accurately correspond the preopera-
tive image with intraoperative organ anatomy, and through instruments or signal 
transmission, real-time feedback to the image is provided to reconstruct the model, 
enable clear positioning, and achieve precision surgery. The 3D image gesture control 
intelligent display module (Hisense SID) developed by Prof. Dong’s group, based on 
somatosensory interaction, motion capture, and other technologies, can quickly and 
precisely realize human-computer interactions through simple gesture operations 
within a specific range to ensure intraoperative sterility. The operator can rotate, 
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zoom in and zoom out on the digital 3D image through different gesture control com-
mands to view the required details. In addition, the system provides intelligent track-
ing of specific operators, thus eliminating interference from surrounding personnel, 
reducing misuse, and improving recognition rates (Figure 2) [10].

Figure 1. 
Hisense computer-assisted surgery system based on artificial intelligence.

Figure 2. 
Real-time surgical navigation through Hisense SID gesture intelligent control.
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4. Application of CAS in pediatric precise oncological surgery

According to a survey by the International Society of Pediatric Oncology, the 
incidence of pediatric tumors has increased at a rate of 2.8% each year over the past 
10 years, and pediatric malignant solid tumors have become a major cause of illness 
and death in children. Primary surgical resection or surgical resection after other 
treatments is still recognized as the current first choice for the treatment of pediatric 
malignant solid tumors and is the only means to achieve a radical cure for malignant 
tumors. However, the necessity of pursuing radical surgery in children and the special 
characteristics of pediatric tumors put forward higher requirements for pediatric 
precision surgery.

4.1 Pediatric liver tumor

The anatomical structure of the liver is complex, and internal vascular and bili-
ary tract variants are common, especially in the hepatic vein. The structure of the 
intrahepatic vascular system in pediatric patients is very delicate, and the organ is 
small in size and poorly tolerant to surgical trauma. Moreover, pediatric liver tumors 
are often huge, complex, fast-growing, and highly malignant. Tumors often squeeze 
and deform the surrounding blood vessels, and the compression or invasion of the 
adjacent liver area is difficult to identify. Large tumors involving the hepatic porta 
and tumors originating from the hepatic porta are still difficult to treat surgically. In 
addition, pediatric liver volume changes greatly with age and weight, so individual-
ized liver anatomy and volume analyses are very important [11].

Hepatoblastoma (HB) is the most common primary malignant tumor of the liver 
in children. Its incidence rate is the highest among infants and children under 5 years 
old, with an annual incidence of approximately 1.5 cases per 1 million. The increasing 
incidence year by year and disparities between races have attracted widespread atten-
tion. With the combination of surgery and chemotherapy, especially neoadjuvant 
chemotherapy, the prognosis of children with HB has improved significantly, with 
survival rates increasing from 30% to approximately 80% [12, 13]. However, surgical 
resection is still an important and indispensable treatment for HB, and whether the 
tumor can be completely removed with a sufficient liver remnant volume is the key 
factor affecting the prognosis of such children [14].

All current collaborative trial groups used PRETEXT/POSTTEXT to assess the 
surgical resectability of HB before surgery. This staging is based on 2D cross-sectional 
images and is performed on the basis of Couinaud’s liver segmentation by determin-
ing the number of consecutive tumor-free liver sections. In practice, this approach is 
of limited help to the surgeon, and the assessment of staging and surgical resectability 
by window-level selection and artificial measurements is severely limited by ana-
tomical basis, image interpretation experience, and surgical experience. Only a very 
rough estimate of the expected surgical procedure difficulty can be made. In addition, 
although Couinaud’s segmentation is very classical and practical, it is limited by the 
small number of dissection cases available when the classification was established 
and some differences between the isolated and living liver. PRETEXT also provides 
a detailed and cumbersome description of vascular variants, but as definitions, their 
clinical application is limited [15].

From the point of view of surgical resection, regardless of the strategy and 
staging, what must be assessed is vascular involvement, which was also defined by 
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PRETEXT as the annotation factors V and P [13]. In clinical practice, the extent of 
tumor involvement in major vessels is difficult to assess due to the limitations of 2D 
images and the deformation variability of the liver vascular system. Another key 
consideration for surgical resection is the future liver remnant (FLR). An adequate 
postoperative FLR volume is important, as a small FLR volume can lead to acute 
liver failure or even death. For HB, guidelines emphasize anatomic hepatic resec-
tion, which allows for more normal liver tissue located >1 cm outside the tumor to 
be removed. Non-anatomic hepatic resection for advanced HB is often considered, 
such as extended major hepatectomies, mid-liver lobectomy, or segmental resections, 
which require more precise assessments of FLR [16].

3D imaging technology based on CT images is able to display the positional rela-
tionships of the liver, tumor, and all internal ductal structures in a comprehensive and 
simultaneous manner to achieve accurate evaluations of distances in three-dimen-
sional space, which has obvious advantages in vessels with compression deformation 
or individual anatomical variations. The ability to track the route of each vessel and 
determine the drainage segment of each vein is important for determining individual-
ized liver segmental anatomy [15, 17]. In addition, this technology allows for continu-
ous assessments of preoperative chemotherapy and postoperative liver regeneration, 
which is of greater value in selecting the optimal timing of surgical resection and 
assessing postoperative liver recovery. Hisense CAS was developed based on enhanced 
pediatric CT data, so it has more advantages in displaying pediatric liver tumors, 
especially huge tumors compressing the hepatic porta. Hisense CAS can clearly show 
the relationships between the tumor and blood vessels and improve the resectability 
of liver tumors.

Two typical cases of patients with HB who underwent surgical planning with 
Hisense CAS are shown below. Figure 3 demonstrates a 4-year-old boy with a large 

Figure 3. 
Computer-assisted resection of the liver tumor with hepatic vein variation.
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liver tumor. Enhanced CT allowed for an approximate analysis of the tumor size and 
the adjacent relationships (Figure 3A–D). 3D imaging based on CT could show the 
location of the liver, the tumor, and all internal ductal structures in relation to each 
other in a comprehensive, whole, and simultaneous manner. When vascular involve-
ment was evaluated after 5 cycles of neoadjuvant chemotherapy, it was found that 
the left hepatic vein cointersected with the middle hepatic vein and merged into the 
inferior vena cava. The tumor margin was only 0.5117 mm from the cointersection 
(Figure 3E–H). Preoperative simulation of right hemicolectomy showed that the 
residual liver volume was sufficient. The surgery was performed according to the 
preoperative plan, and the cointersection and the middle hepatic vein were success-
fully preserved (Figure 3I–L).

Figure 4 shows another 3-month-old girl with a massive tumor volume (459.1 ml) 
when her liver-occupying lesion was detected. The tumor was compressing and 
invading important blood vessels of the liver, and an aspiration biopsy confirmed 
HB. Neoadjuvant chemotherapy was the only option other than liver transplanta-
tion (Figure 4A and B). The tumor remained unresectable based on the evaluation 
performed after 4 cycles of neoadjuvant chemotherapy (Figure 4C and D). The re-
evaluation after 5 cycles of neoadjuvant chemotherapy showed no significant change 
in tumor volume, from 35.7 ml to 35.0 ml, and the tumor was still too close to the 
important blood vessels of the liver and could not be operated on (Figure 4E and F).  
The re-evaluation after 6 cycles of neoadjuvant chemotherapy showed that the 
tumor was slightly reduced in size, from 35.0 ml to 25.9 ml, and the tumor was in 
contact with blood vessels, so surgical resection was considered (Figure 4G and H). 
Intraoperative 3D images assisted the surgery. The operation was successful, the 

Figure 4. 
Computer-assisted resection of middle lobe tumor of the liver.
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tumor was completely removed, and the middle hepatic vein and portal vein were 
successfully preserved (Figure 4I–L).

4.2 Pediatric retroperitoneal tumor

Retroperitoneal tumors (RTs) are insidious in origin, lack specific clinical mani-
festations, and have multiple pathological types. Due to their special anatomical 
location, these tumors are often found to involve large blood vessels and adjacent 
organs. The incidence of RTs is low, accounting for approximately 0.07%–0.20% of 
systemic tumors [18]. However, its malignant degree and recurrence rate are high, so 
complete surgical resection is the most effective treatment and affects the prognosis 
[19, 20]. Therefore, it is particularly important to accurately evaluate the anatomical 
relationships of RTs.

At present, the preoperative evaluation of RTs mainly relies on ultrasound, CT, 
and MRI. Among them, CT is fast, with high resolution and clear images, and can 
objectively reflect the compression and displacement of tumors with the surrounding 
organs and large blood vessels, and it has good reference value [21]. However, CT can 
only provide simple 2D images, and surgeons can generally judge the tumor’s size, 
location, and adjacent relationships by reading consecutive 2D images. However, this 
lacks objective accuracy and does not facilitate preoperative communication with 
colleagues and family members. In addition, more importantly, CT images can only 
show blood vessels along a specific cross-section and cannot fully display the course 
and wall shape of the curved blood vessels or show large compressed vessels such as 
the abdominal aorta, inferior vena cava, portal vein, mesenteric arteries, and iliac 
vessels in detail.

The application and development of digital medical technology overcame the 
disadvantages of CT. 3D reconstruction of CT images has made it possible to display 
the relationships of the tumor with surrounding adjacent organs and blood vessels in 
a three-dimensional, dynamic, and visualized manner. Hisense CAS can also build a 
3D model, which can be rotated, scaled, and combined in any way to clearly show the 
size and shape of the tumor and the anatomical relationships and invasion situation 
between the tumor and the organs and blood vessels, especially the shape of the 
vasculature, thus reducing the subjective error of reading the original CT images to 
assess the size and degree of tumor invasion and making the preoperative assessment 
more realistic and reliable.

Pediatric RTs are mostly neuroblastic tumors, including neuroblastoma (NB) and 
ganglioneuroblastoma (GNB), which are malignant tumors, and ganglioneuroma 
(GN), which is a benign tumor. All three types originate from primitive neural 
crest cells in the neuroectoderm but are difficult to distinguish and can be mutually 
transformed [22]. NB is one of the most common malignant solid tumors in children 
and has no specific symptoms or signs. Its CT manifestations are as follows: mostly 
lobulated; poorly defined; often with coarse, patchy calcifications within the tumor; 
infiltrative growth across the midline; and high rate of involvement of the surround-
ing vital tissues and organs. Pediatric RTs are often found in stages III and IV and 
enveloping and infiltrating large retroperitoneal vessels, and up to 45% of abdominal 
neuroblastomas have invasion into the renal pedicle. Often the preoperative differ-
ential diagnosis between pediatric RTs and nephroblastoma becomes difficult due to 
excessive invasion of the kidney. This makes it difficult to resect NB. Despite chemo-
therapy, there are still quite a number of cases with only biopsy or partial resection, 
and radical surgery without a tumor at the surgical margin under the microscope is 
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actually impossible. However, complete surgical resection of NB is the basis for fur-
ther treatment, improves the confidence of both physicians and patients in treatment, 
and is associated with prognosis [23]. Hisense CAS assists in the anatomical analysis 
of important retroperitoneal vessels to improve surgical resectability and reduce the 
incidence of surgical complications such as vascular injury and kidney damage.

GN is generally insensitive to chemotherapy, and radical surgical resection is the 
first choice to confirm the diagnosis and cure. The CT manifestations are often a well-
defined, regular-shaped mass, with mostly speckled calcifications in the tumor. The 
tumor mainly pushes and compresses the surrounding vessels and can grow along the 
peri-organ space and encircle the blood vessels. Despite the vessels being encircled, 
the vessels are generally not invaded, and the shape of the vasculature is natural 
and straight, with few occlusions or stenoses. To avoid sampling errors in aspiration 
biopsy, to relieve the symptoms of tumor compression already present, and to reduce 
the possibility of malignant transformation, surgical resection of suspected GN or 
GNB can be performed. In giant GN/GNB of retroperitoneal origin, the base of the 
tumor is often the mesenteric root, and involvement of the abdominal aorta, inferior 
vena cava, and mesenteric arteries is often the main reason for complete resection of 
the tumor [24]. Hisense CAS aids in the complete resection of the tumor to reduce 
recurrence and protects important vessels to avoid complications such as bleeding, 
intestinal obstruction, and intestinal necrosis.

Figure 5 shows a typical case of a 4-year-old child with an RT. Enhanced CT of 
the abdomen showed a huge mass-like mixed-density lesion in the abdominal cavity 
with a maximum cross-section of approximately 123 mm × 85 mm. The radiologists 
considered the mass to be a tumor (NB?), and there was a very thick blood vessel 
inside the tumor (Figure 5A–C). To clarify the diagnosis and decide on the next 
treatment, ultrasound-guided abdominal mass aspiration biopsy was performed. 
The pathologists first considered the mass to be a GN. Thus, surgical resection was 
the best option for this type of benign tumor. For precise preoperative evaluation, 3D 
reconstruction was performed using CAS. The reconstructed image clearly showed 
that the tumor was located in the retroperitoneum, and the mass had a volume of 
676.7 ml. The mass was extremely close to the abdominal aorta. The superior mesen-
teric vein was pushed forwards, and the inferior mesenteric artery passed through 
the tumor (Figure 5D–F). The intraoperative exploration was completely consistent 
with the preoperative three-dimensional evaluation, and the tumor had a relatively 
complete fibrous capsule. The superior mesenteric vein was pushed to the front of 
the tumor. The tumor was close to the abdominal aorta, and the inferior mesenteric 
artery penetrated the tumor. After splitting the tumor with a CUSA knife, the inferior 
mesenteric artery that was encased by the tumor could be seen. Arterial pulsation 
was seen in the exposed inferior mesenteric artery, and the distal sigmoid colon and 
rectum were ruddy. The tumor section was yellowish-white with a straight and intact 
vascular sheath, and the postoperative tumor weight was 820 g (Figure 5G–L). The 
tumor was finally diagnosed as a GNB.

4.3 Pediatric mediastinal tumor

Most mediastinal tumors have an insidious onset and lack specific clinical mani-
festations, and most of them have no clinical symptoms in the early stage. However, 
because there are many important organs and structures in the mediastinum, such 
as the heart, superior vena cava, trachea, and esophagus, the thorax, which has a 
bony structure, is not as elastic as the abdomen. Because they have less space for 
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cushioning, mediastinal masses are prone to compressing important organs and 
the corresponding symptoms, namely, mediastinal mass syndrome (MMS) [25]. 
Compared with that in adults, the thoracic cavity in children is relatively smaller in 
size, and therefore, its complex anatomic-spatial relationships and dense vascular-
neural structures have brought more challenges for surgical treatment [26].

Mediastinal tissues are of complex origin, and a variety of benign or malignant 
primary tumors can occur. Neuroblastic tumors are the most common mediastinal 
tumors in children. In principle, once a mediastinal mass is found, it should be 
actively treated. Tumors with clear borders and small volumes can be considered 
for radical surgery. For malignant tumors with high surgical risk, biopsy should be 

Figure 5. 
Computer-assisted resection of retroperitoneal tumor (With the permission of the author).
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considered, followed by a combination of chemotherapy, surgery, radiotherapy, 
and immunotherapy. The difficulty of surgery lies in separating the tumor from the 
arteries, thoracic vertebrae, chest wall, and lung lobes. In children, the mediastinum 
is small, and the tissues are delicate. Thus, it is easy to inadvertently damage blood 
vessels and nerves during surgery, resulting in massive hemorrhage or vascular injury 
or even death. Therefore, accurate preoperative positioning is particularly important 
[27]. In addition, it has been reported that the blood vessels supplying mediastinal 
tumors are highly variable and may come from intercostal arteries, coronary arteries, 
the thyroglossal trunk, internal thoracic arteries, bronchial arteries, etc. Mediastinal 
tumors usually have an abundant blood supply from multiple arteries, and surgical 
resection may lead to severe blood loss.

Compared with 2D CT images, 3D reconstructed images can better visualize the 
adjacent relationships of important mediastinal tissues, whether the tumor invades 
the blood vessels, and the variations of the blood vessels so that surgeons can clarify 
the anatomical relationships. Hisense CAS aids in the precise localization of medias-
tinal tumors and the accurate assessment of important and variant vessels to reduce 
damage to vital organs and vessels [6, 17].

Figure 6 shows a three-year-old girl with a mediastinal tumor. Enhanced 
CT of the thorax suggested that the tumor was located in the left posterior part 

Figure 6. 
Computer-assisted resection of mediastinal tumor.
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of the heart and T4-T9 left the paravertebral region, measuring approximately 
61.15 mm × 42.00 mm. The tumor pushed the adjacent lung tissue, and part of the 
tumor extended to the spinal canal (Figure 6A–C). 3D reconstruction suggested that 
the tumor originated from the posterior mediastinum and was closely adhered to 
the thoracic aorta and thoracic vertebra. The three supply vessels of the tumor came 
from the branches of the thoracic aorta, and part of the tumor protruded into the 
intervertebral foramen (Figure 6D–F). Intraoperatively, the anatomical relationship 
of the tumor was approximately the same as the preoperative three-dimensional 
reconstruction results. The tumor was very densely adherent to the thoracic 
vertebrae and rib space, and part of the periosteum and rib space were excised to 
gradually remove the tumor completely (Figure 6G and H). The postoperative 
pathological diagnosis was a GNB.

In summary, artificial intelligence technology has made significant breakthroughs 
and clinical applications in the field of precision surgery. Computer-assisted medi-
cal technology combines the interdisciplinary disciplines of imaging, medical image 
processing, and computer science, focusing on the development of assisted clinical 
treatment and surgical planning and simulation systems, and has become a frontier in 
the development of modern medical technology. Computer-assisted pediatric precise 
surgery improves tumor resection rates and surgical safety in a comprehensive and 
objective manner using artificial intelligence. In the future, individualized 3D-based 
precision surgery may be a new direction for surgical research.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 8

Application and Prospect of 
Telesurgery: The Role of Artificial 
Intelligence
Haitao Niu

Abstract

Remote surgery refers to a new surgical mode in which doctors operate on patients 
with the help of surgical robots, network technology, and virtual reality technology. 
These robots are located far away from patients. The remote surgical robot system 
integrates key technologies such as robot, communication technology, remote control 
technology, space mapping algorithm, and fault tolerance analysis. Apply a variety of 
emerging networking modes such as 5G, optical fiber private network, fusion network 
technology, and deterministic network to realize the motion of the subordinate surgi-
cal robot and the vision of the main knife, and ensure stable signal transmission and 
safe remote operation. The development and application of remote surgical robots has 
become a new trend, which helps to break the barriers of unbalanced regional medical 
resource allocation, promote the rational allocation of high-quality medical resources, 
and solve the telemedicine problems in special areas and special circumstances. The 
development prospect is broad. In the future, relying on the 5G network technology 
with high speed, low power consumption, and low latency, remote surgery can operate 
more efficiently and stably, and the surgical robot will also develop toward a more 
portable and flexible direction, so as to better serve patients.

Keywords: telesurgery, artificial intelligence, 5G network, master/slave signal 
communication, network delay, outlook

1. Introduction

Telesurgery is an emerging model in which the physician and the patient are 
located in geographically distant locations and the physician performs surgery on the 
patient with the help of surgical robotics, network technology, and virtual reality. 
The idea of telesurgery was first proposed during wartime, with the aim of providing 
fast, high-quality surgical treatment to forward hospital trauma patients. However, 
the progress of related research was slow due to the limited level of robotics, network, 
and other technologies at that time. The uneven distribution of modern medical 
resources and the limited distribution of resources in special areas have led to many 
patients losing the best surgical opportunities, and the demand for telesurgery has 
increased in modern society. With the development of telecommunication technol-
ogy and surgical robotics, the idea of telesurgery has gradually become a reality and 
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has already benefited some patients. Artificial intelligence is a new technical science 
that delves into the development of theories, methods, core technologies, application 
software, and control systems for simulating the extension and expansion of the intel-
ligence of the human brain. Its areas include robotics, image recognition, and expert 
systems. AI has important applications in many medical disciplines.

1.1 Method

We searched for literature on PubMed and the Internet using keywords such as 
“remote surgery,” “artificial intelligence,” “digital twin technology,” “quantum com-
munication,” and “5G network,” and summarized the retrieved literature.

2. History and current status of telesurgery development

2.1 History of the development of telesurgery abroad

As a country with advanced medical care, the United States has conducted early 
research in the field of telemedicine, and basic research such as teleconsultation in 
multiple hospitals and televideo medical education has been conducted before enter-
ing into formal research on telesurgery. Since the 1990s, telemedicine for surgical 
procedures has developed rapidly, and a large number of research results have been 
reported. The first real-time teleconsultation for telesurgery was reported in 1992 in 
which a standard telephone network was used to transfer pathology slides between 
surgical procedures and to give real-time pathology diagnosis by a remote patholo-
gist, but only 37% of the 35 cases received diagnostic help due to the limited network 
technology and medical level at that time [1]. In the same year, Satava et al. used the 
SRI remote operating system to directly control the movement of the mechanical 
needle tip to perform part of the operation and developed the famous da Vinci robot 
based on this operating system [2], which was the beginning of telesurgical robotics 
and the turning point of telesurgery.

In the 1990s, based on the continuous exploration of telesurgery, some foreign 
countries have mastered the key of technology in telesurgery, from the initial remote 
simple operation to the basic formation of telesurgery system, and began to try 
the real meaning of independent telesurgery. In 2001, the first real telesurgery was 
completed, namely the famous “Charles Lindbergh surgery” [3]. The patient was a 
68-year-old woman with gallbladder stones in Strasbourg, France, and the surgeon 
was operating 7000 km away in New York, USA. A special dedicated network was 
applied to transfer signals between the surgeries, and the data transmission was stable 
during the surgery, with smooth transmission of operational and imaging signals and 
low network latency maintained. This is a milestone in telesurgery, and it validates the 
feasibility of telesurgery technology.

2.2 History of telesurgery development in China

Medical resources in China are unevenly distributed. Highly qualified surgeons and 
advanced medical equipment are basically distributed in large- and medium-sized cit-
ies, while rural and remote areas are significantly lagging behind, and there are obvi-
ous geographical differences. Many patients in need of surgery are unable to receive 
timely and high-quality surgical treatment, which seriously threatens their lives and 
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health safety. Therefore, there is a need for the development of telesurgery in China. 
Although the research on telesurgery in China started late, it is developing rapidly.

In the early twenty first century, the Naval General Hospital used a remote surgical 
robot system to perform stereotactic biopsy surgery for brain tumor patients, completing 
the first off-site brain surgery in China. Beijing Jishuitan Hospital applied the master-
slave robotic surgery system to perform remote orthopedic assisted surgery operations. 
Although the two surgeries were completed successfully, the telesurgery system in the 
study only played the role of auxiliary positioning and image transmission.

The application of 4G network communication has promoted the development of 
telesurgery in China, and its network stability is better than that of satellite commu-
nication. In 2015, the domestic “Myriad S” surgical robot completed remote wireless 
animal experiments at an interval of about 170 km with the help of 10 Mb/s band-
width commercial network. Although the whole experiment was relatively successful, 
the narrow bandwidth and high latency of the 4G network still limit the extension of 
the clinical application of telesurgery.

2.3 The status of telesurgery abroad

In 2003, Anvari M’s team set up a telesurgery system between a teaching hospital 
and a rural hospital 400 km apart in Hamilton. This study led to the completion of 21 
telesurgeries in 2005, successfully establishing the world’s first tele-robotic system to 
serve rural communities.

In 2014, a study by Xu et al. showed that a time delay below 200 ms is ideal for 
remote surgery, but up to 300 ms does not affect the successful completion of the 
procedure. A higher network latency would affect the safety and accuracy of the 
procedure, or even make it impossible for the operator to perform the operation. This 
conclusion has also been used as a criterion for network selection in many domestic 
and international remote studies [4].

Since the beginning of 2019, many foreign studies have started to use 5G networks 
for remote surgery. And satisfactory surgical results have been obtained. Lacy’s 
team applies 5G network to remote surgical coaching of young physicians in off-site 
locations [5]. In February 2019, a Spanish medical team used 5G network to remotely 
perform an intestinal tumor resection. This is the world’s first human remote surgery 
done using 5G network.

2.4 The current status of telesurgery in China

The commercialization of 5G network is a sign that China’s telesurgery has entered 
modernization, and its low latency, high bandwidth, and high mobility meet the 
demand for real time, high efficiency and stability of remote surgery, advancing the 
research boom of domestic telesurgery. In December 2018, the People’s Liberation 
Army General Hospital applied a domestic self-developed surgical robot to success-
fully complete 5G telesurgery animal experiments in Fuzhou. The physician remotely 
controlled the robotic arm and the lens arm to remove part of the pig liver, and the 
intraoperative high-definition 3D image and sound transmission were in real time and 
stable. The robotic arm operated flexibly with good master-slave consistency, and the 
one-way average time delay between the two ends was less than 150 ms. In September 
2019, the National Institute of Hepatobiliary Surgery completed the world’s first 
multi-point collaborative 5G remote multidisciplinary animal experiment with stable 
network latency, smooth surgical operation, and stable intraoperative animal vital 
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signs. The surgical experiment allowed two physicians located in Beijing and Suzhou 
to perform gastrointestinal resection and liver resection on the experimental animals 
through remote control of the robotic arm. This experiment broke the traditional 
mode of single-point consultation and surgery between doctors and patients, and 
provided patients with multidisciplinary remote consultation and treatment options, 
realizing multidisciplinary cooperation in telesurgery.

Chinese telesurgery is developing rapidly with the help of 5G networks. And it has 
transformed from a single-center, few-sample exploration model to a multi-center, 
large-sample clinical research model. Since September 2020, Prof. Niu Haitao’s team 
at the Affiliated Hospital of Qingdao University has conducted a large sample, mul-
ticenter remote robot-assisted urological surgery study based on animal experiments 
and simulated time-delay experiments. More than 50 cases of telesurgery have been 
completed, further confirming the safety and feasibility of telesurgery [6].

In February 2023, Prof. Niu Haitao’s team completed the first case of quantum 
telesurgery in China. The implementation of telesurgery with the help of quantum 
communication technology means that the development of telesurgery has entered 
a brand new stage, which greatly expands the spatial scope for physicians to perform 
complex surgeries and creates more convenient conditions for people in remote areas 
to enjoy high-quality medical services.

In order to ensure the high requirements of network for telesurgery, more and 
more new network technologies are applied to the network line. The multi-link aggre-
gation transmission technology is a more mature and widely used network technology 
in telesurgery. Multi-link aggregation technology ensures data transmission capability 
for remote surgery. It adds a virtual layer on top of the traditional link layer, which 
implements the distribution of data frames that are distributed to each link through a 
rotation algorithm, successfully aggregating the transmission bandwidth of multiple 
physical links, thus achieving the effect of high-speed transmission with bandwidth 
overlay on the same terminal. Multi-link transmission and single-link transmission 
can coexist, and either multi-link transmission or single-link transmission can be 
selected according to the actual needs of the application. As an auxiliary technology 
of the networking scheme, it can guarantee the future development of telesurgery 
after the 5G network mode is popularized and has great development potential.

3.  Application of digital twin technology based on artificial intelligence in 
remote surgery

The application of artificial intelligence in remote surgery is a new emerging 
technology, also known as remote intelligent surgery or robot-assisted remote surgery. 
Its core is to combine robotic surgery systems with Internet technology, allowing sur-
geons to perform surgery remotely via the network. This technology can help patients 
in areas with limited medical resources to receive better medical services.

In this technology, artificial intelligence can identify human tissues and organs 
during surgery and provide accurate location and size information through deep 
learning and image recognition technology. In addition, based on patient medical data 
and surgical history, artificial intelligence can provide personalized surgical plans and 
treatment recommendations to surgeons. Moreover, artificial intelligence can also 
perform automatic control and adjustment during surgery to ensure accuracy and 
safety. Combining digital twin technology derived from artificial intelligence with 
remote surgery greatly enhances the safety of the surgical process.
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Digital twin is a digital representation of real-world entities or systems, 
creating virtual models of physical entities in a digital way that can describe the 
process of “symbiosis” between physical objects and their dynamic processes 
throughout their lifecycle. By simulating the behavior of physical entities in a 
real environment with interactive feedback between virtual and real worlds, 
data fusion analysis, and iterative decision optimization, and digital twin can 
add or expand new capabilities to physical entities and serve as a bridge and link 
between the physical and digital worlds. Currently, the concept and technology 
of robotic digital twin are also entering the medical and health fields from the 
industrial sector. The potential applications of digital twin include patient health 
monitoring, personalized medication, medical equipment, hospital operation 
management, etc. These characteristics are expected to play an important role 
in overcoming the limitations of remote surgery technology and expanding its 
application scenarios.

3.1  Establishment of artificial intelligence digital twin models in remote robot-
assisted surgery interactive processes

In remote robot-assisted surgery, stereoscopic image processing and remote 
transmission are the main factors causing delays, making it difficult for doctors to 
obtain real-time information about the current movement of instruments within the 
body cavity. Therefore, using artificial intelligence technology, real-time monitoring 
of the surgical process can be achieved through 3D images and laser scanning, helping 
doctors to more accurately locate and handle problems during surgery. Artificial 
intelligence can also apply digital twin technology to the surgical process and perform 
twinning of the expected movements of instruments in real time at the doctor’s end. 
By establishing a digital representation of the entity model’s geometric dimensions, 
physical relationships, and motion behaviors in multiple dimensions and expressing 
the entity’s characteristics using mesh simplification and entity rendering methods, a 
twinning model of instrument movement can be constructed. This twinning surgical 
instrument can interact with the main operating hand operated by the doctor in real 
time to reflect the ideal posture of the instrument under the current instructions of 
the doctor.

3.2 Dynamic fusion of digital twin model and real surgical scene

The interactive process observed by doctors during remote surgery is a 
delayed scene, while the digital twin environment can accurately reflect the real-
time position and posture of surgical instruments being operated by the doctor. 
By integrating these two, comprehensive remote operation information can be 
provided to ensure operational safety and avoid damage to intra-abdominal 
organs. Since both are time-varying scenes, a virtual scene perspective coor-
dinate system is first constructed based on the endoscopic camera coordinate 
system. Then, artificial intelligence techniques such as deep learning and image 
morphology are used to accurately segment the real instrument pole, determine 
the control points and the scaling relationship between the twin and real scenes, 
and reverse correct the coordinate system deviation introduced by the camera 
and disparity. Based on the control point registration, virtual and real image 
fusion is achieved to accurately present the twin instrument model under the real 
endoscopic image.
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3.3  Representation of motion correlation between real surgical instruments  
and their digital twin models

The motion of the digital twin surgical instrument and the real surgical instru-
ment is homologous but not synchronous, and the motion deviation of the two needs 
to be extracted to ensure remote operation safety. In the abovementioned fused 
environment of real and twin scenes, intelligent algorithms are used to establish the 
expression of the twin and real instruments in the image coordinate system based 
on the principle of projective geometry, and the spatial deviation between them is 
described by pixel difference. Based on this, the transparency of the twin instrument 
is controlled by the deviation, with smaller deviations resulting in greater transpar-
ency and larger deviations resulting in greater visibility. Without interfering with the 
doctor, the delay of the remote instrument is visually displayed to the doctor.

3.4 Virtual fixture and safety force feedback strategy for virtual-real fusion

A virtual fixture is constructed by introducing a gravitational potential field, with 
the reference point of the real instrument’s end point in the image as the zero point 
of the potential energy, and the distance between this reference point and the twin 
instrument’s end point used to represent the potential energy size. Dead zone and 
extreme value processing are performed on this potential energy to ensure model 
stability. Based on this, the potential energy generated by the virtual-real fusion is 
fed back to the primary operator as impedance force within the extreme value range. 
When the twin model’s potential energy reaches the safety threshold, the system auto-
matically generates feedback force to resist the driving force of the primary hand and 
waits for delayed motion to follow. If the feedback exceeds the limit value, the master-
slave operation pause command is executed, and the remote robot motion is stopped 
within one network transmission and robot execution cycle (less than 40 ms).

Remote surgical operation delay is currently a critical factor affecting the success 
of remote surgeries and patient safety. To address the core challenge of operation 
delay in robot-assisted remote surgeries, remote surgeons combine artificial intelli-
gence and digital twin technology. The AI system analyzes and deeply learns the basic 
principles of expressing delay based on the remote surgeon’s ideal operation behavior 
in virtual space and the observed real operation behavior. It achieves quantitative 
expression in both visual and tactile dimensions, making delay a visible and tangible 
physical quantity. Based on this, the surgeon’s operation process is intervened to 
provide safe and reliable guarantees for remote operations.

4. Remote surgical robot equipment and technology

4.1 Remote surgical robot system architecture

Remote surgical robot is a complex of multidisciplinary and high-tech means. It is 
composed of two parts: the doctor’s operation end and the operation end. It has two 
modes of traditional local surgical function and remote surgical function. The emer-
gence of remote surgical robot is of great significance. It is completely different from 
the traditional surgical concept. Through the remote surgical robot system, surgeons 
can carry out surgical treatment for patients in different geographical locations [7, 8]. 
This is another milestone in the history of surgical development.
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The remote surgical robot control system consists of five parts: the doctor console, 
the master communication control box, the patient console, the slave communication 
control box, and the three-dimensional endoscope camera system.

4.1.1 Doctor console

The doctor console is the control center of the surgical robot system and the 
interactive platform of the system at the doctor’s end. The surgeon controls the surgi-
cal instruments and three-dimensional laparoscopy by operating the two mechanical 
arms on the doctor’s console. The motion scaling function is added to the remote 
surgery robot system, which maps the motion of the doctor’s mechanical arm to the 
motion of the patient’s mechanical arm after reducing it to a certain proportion, 
minimizing the unconscious motion of the doctor’s hand, and improving the opera-
tion quality of the remote surgery.

In addition, the doctor console in the remote surgical robot system also includes 
the main communication control box, which is composed of industrial computer, 
display, controller, image processor, keyboard, etc. At the main operation end of 
remote surgery, the communication control box at the main end is connected with 
the doctor’s console. At the same time, all signals are collected and transmitted to the 
remote patient end, and the transmission signals and three-dimensional images from 
the remote patient end are received to the doctor’s console.

4.1.2 Patient console

The patient console is the executive part of the remote surgical robot system 
to implement minimally invasive surgery. Its main structure is to provide support 
for two patient manipulators and one image arm. In the process of remote surgery, 
the surgical assistant is also required to work next to the patient operating table 
in the sterile area, responsible for replacing the surgical instruments and three-
dimensional laparoscopy, and assisting the chief surgeon to complete the operation. 
The operation of the remote surgical robot system must always be under the absolute 
control of the chief surgeon or surgical assistant and meet a certain priority rela-
tionship, that is, the surgical assistant next to the patient’s console has the highest 
priority, and they can adjust the robot’s motion at any time according to the actual 
situation of the operation.

Similarly, the patient console also includes the slave communication control box, 
which is composed of industrial computer, display, image processor, keyboard, etc. 
At the slave operation end of remote surgery, the slave communication control box is 
connected with the patient console for use, receives all signals from the remote master 
operation end, and simultaneously sends all signals and three-dimensional images to 
the remote master operation end.

4.1.3 3D endoscope camera system

The three-dimensional endoscope camera system collects the three-dimensional 
images in the body cavity area and then presents the image data on the three-
dimensional display. During the operation, it is located outside the sterile area and 
can be operated by itinerant nurses, and various auxiliary surgical equipment can be 
placed. Three-dimensional laparoscopy is a high-resolution optical three-dimensional 
lens, which can magnify the surgical field by more than 10 times, and can obtain 
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three-dimensional high-definition images of the surgical field, so that the surgeon can 
get a clearer understanding of the structure, reduce visual fatigue, and improve the 
accuracy of surgery.

4.1.4 Other equipment

The doctor’s console, patient’s console, and 3D endoscope camera system all need 
separate power supply. There is a backup battery on the patient console. In order to 
prevent emergencies, always connect the power supply to ensure that the backup 
battery is in full charge.

In the process of remote surgery, the patient’s slave operation terminal and the 
doctor’s console at the master operation terminal are connected through 5G network. 
The rest of the equipment is connected through the control signal line. Each time the 
remote surgery is performed, the labels at both ends of each cable need to be con-
firmed to ensure that the connection is correct.

4.2 Core technology and security processing mechanism of remote surgical robot

4.2.1 System architecture

The key to implement remote surgery is the development of remote surgery robot 
system. Traditional commercial surgical robots are mainly used in the same physical 
space. To build a remote surgical robot system, the key is to add a reliable remote 
communication system. Among them, the remote robot system includes the patient 
console, the doctor console, the attached endoscope system, and the surgical instru-
ment unit. The remote communication system mainly provides a network channel for 
the transmission of multimodal signals at the master and slave ends of the robot.

4.2.2 Remote signal transmission mechanism

In order to ensure the smooth operation of remote surgery, doctors not only 
need to control the robotic arm at the patient end to perform surgery, but also need 
to constantly confirm the feedback information at the patient end. Therefore, the 
transmission of remote signals needs to have a high real-time two-way transmission 
mechanism. At present, the transmission hardware of the remote communication 
system is mainly based on the upper computer, and most of the transmission mecha-
nisms adopt the robot control information transmission protocol based on UDP 
[9]. However, due to the low transmission reliability of UDP transmission protocol, 
developing a real-time and reliable transmission mechanism is one of the important 
research directions for the future development of remote surgical robots.

4.2.3 Video compression processing mechanism

The doctors of remote robot surgery can obtain a wider and clearer operation 
field through 3D laparoscopy, and how to obtain a high-resolution 3D laparoscopy 
image is one of the key technologies of robot remote surgery. Because the laparoscopic 
image is a 3D high-definition image, which requires high bandwidth and network 
real-time, an external high-speed data acquisition card needs to be used at the patient 
end for image acquisition and 3D compression processing, which can effectively 
reduce the image transmission time and delay. In order to ensure the continuity of the 
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intraoperative image and add the breakpoint continuation function, the image can be 
continued from the breakpoint when the image is disconnected. With the develop-
ment of the fifth generation mobile communication technology, 3D high-definition 
laparoscopic image transmission is expected to be further improved. The emergence 
of 5G network technology is particularly important for the development of 3D laparo-
scopic high-definition images in remote surgery.

4.2.4 Remote master-slave security processing mechanism

In the robot remote surgery, doctors and patients are in different physical environ-
ments. The security processing mechanism of the doctor’s console and the patient’s 
console of the remote surgery robot is mainly controlled by the communication 
transmission. In case of an unexpected communication situation, such as continuous 
packet loss on the network, the remote control boxes at both ends will immediately 
stop two-way signal transmission. The holding brake at all joints at both ends of 
the doctor’s console and the patient’s console of the surgical robot will be activated 
immediately to stop all movements of the robot. At the same time, an alarm signal 
will be sent, and the robot will enter the standby state, thus ensuring the safety of 
remote surgery. It is particularly important to ensure the safety and operability of 
remote surgery by ensuring the master-slave security processing mechanism between 
“doctors and patients.”

5.  Basic principle and configuration conditions of the master and slave end 
of the remote surgical robot

The remote surgical robot system integrates key technologies such as robot 
technology, communication technology, remote control technology, space mapping 
algorithm, and fault tolerance analysis. The intraoperative endoscope image is com-
pressed by the image encoder and then transmitted to the decoder at the main hand 
end through the network for decoding. Then, the doctor can observe the transmitted 
surgical image through the display, so as to operate the main hand; the signals of 
each joint sensor in the master hand are collected and processed in real time and then 
output. The data packets are encapsulated by the master communication controller 
and sent to the slave hand via the dedicated Internet. The received data packets are 
verified and filtered by the slave controller at the hand end and sent to the robot 
motion controller. The motion controller performs motion calculation, and finally 
inputs the data information to the drivers of each motor, then controls the manipula-
tor to complete the operation of the main end physician.

5.1 Master and slave control communication method for remote surgery

The Internet is the basis of communication. It has not only complex physical cir-
cuits, but also complex protocol families, verification mechanisms and network secu-
rity mechanisms. The network delay mainly depends on the transmission distance 
and the physical link through which data transmission passes, including the number 
of routers and the processing time of routers. The transmission routes and routing 
routes of fixed transmission nodes are usually fixed. However, due to the sharing and 
competition of the network, the processing time and processing tasks of the router 
are changing, and the processing time of data packets on the router at different times 
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is also changing. Therefore, data packet disorder, delay, and other problems will 
occur. Therefore, in order to meet the stringent requirements of surgical operation, 
it is necessary to use a dedicated network and solve the problem of data transmission 
fluctuations through delay compensation and filtering.

5.1.1 Network control model

The network control system is generally divided into two structures, direct 
control and indirect control. The main difference between them is the signal 
transmission mode. Both the direct control signal and the sensor signal are 
transmitted through the network, and there is no restriction on the transmission 
network. The network that transmits the two signal flows can be independent of 
each other. The remote end of the indirect control structure is an independent 
closed-loop control system. The actuator signal collected by the sensor is directly 
fed back to the control system at the remote end and no longer fed back to the 
main controller to reduce the impact of the network on signal transmission.

5.1.2 Construction and implementation of control system

There are many ways of data communication, including wireless or wired Internet, 
optical fiber, 5G communication, etc. Each communication method contains a variety 
of different communication protocols. The remote control system uses socket to 
complete the communication protocol. The transport layer is implemented based on 
TCP protocol. When packet loss occurs in network congestion, we directly receive the 
next group of data packets to ensure the reliability of remote control.

5.1.3 Quantitative analysis of control model

In order to meet the requirements of remote surgery, it is necessary to test and 
verify the proposed method. In order to quantitatively analyze the practicability 
of predictive filtering algorithm, we build a remote operation simulation platform 
and randomly introduce 10-30 ms delay into the master-slave tracking system. The 
master-slave tracking test is carried out in combination with the motion frequency of 
the human hand, and good prediction results are finally obtained [10].

5.2 Remote surgery stereo image transmission method

5.2.1 Video encoding method

Unlike local surgical robots, remote surgery requires the transmission of endo-
scopic high-definition images through the Internet. Under certain network bandwidth 
conditions, in order to ensure the real time of image transmission, image compression 
means are needed to reduce the amount of data transmitted, and image compression 
and decompression processing will introduce new delays. Common video coding 
modes include H.264/MPEG-AVC coding, H.265/MPEG-HEVC coding, etc [11].

Compared with H.264, in order to improve the compression and coding efficiency 
of high-definition video, H.265 adopts the ultra-large quadtree coding architecture, 
and uses three basic units, namely, coding unit (CU), prediction unit (PU), and 
transformation unit (TU), to implement the whole coding process, which improves 
the coding efficiency and effectively reduces the decoding time [12].
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5.2.2 Stereo image transmission mode

Three-dimensional stereo images are composed of two cameras taking pictures 
of objects from different angles of view, and then interleaving the images with odd 
and even lines. The 3D stereo image synthesis process adopted by the remote surgery 
robot, At any time, the 3D stereo endoscope camera outputs two high-definition 
images (a) and (b) with a resolution of 1920 * 1080, scales the two images to an image 
(c) with a resolution of 1920 * 540, and then splices the two images to form a 1920 
* 1080 Top-Bottom format high-definition image, which is then input to the image 
encoder for compression and remote network transmission. After receiving the image 
at the main hand end, through parameter adjustment, the two images spliced up and 
down are displayed alternately in odd and even rows to form a three-dimensional 
stereo image (d), and finally, the stereo image under the endoscope field of vision is 
displayed on the display at the main hand operation end.

5.2.3 Delay and optimization of remote surgery

Low transparency and large network delay of remote minimally invasive surgical 
robot will prolong the response time of surgeons. According to the experiment, when 
the delay of remote surgery exceeds 500 ms, the operation risk will be significantly 
increased [13]; According to the statistics of the transatlantic remote “Lindbergh 
operation,” the delay doctors can tolerate is 330 ms. For the developer of robot equip-
ment, a detailed quantitative description of the system delay will help to find deficien-
cies and continuously optimize, so the delay test of surgical robot is very meaningful.

The delay of the remote robot system is mainly composed of two parts: ① the 
sample-communication-execution delay between the master and slave hands; 
② capture-transmission-display delay between the endoscope and the display. 
Therefore, it is necessary to measure the delay of these two parts separately. After 
continuous measurement and optimization of the test results, the final test results 
completely test the system delay of the remote surgical robot, and theoretically ensure 
that its reliability meets the use requirements.

5.2.4 Master and slave configuration of remote surgical robot

Based on the above test results, combined with the architecture of the minimally 
invasive surgical robot and the requirements for signal and video transmission, we 
designed a remote communication control system based on 5G/Internet dedicated 
line, which integrates the remote surgical robot.

The main terminal communication control box is the receiving and sending and 
control module of all kinds of information at the doctor’s operating terminal under 
network conditions. It consists of a box, an image encoding and decoding unit, a 
power supply unit, a network communication unit, a motion control and signal 
processing unit, a status display unit, an interaction unit, an interface unit, etc. The 
functions of each unit are as follows:

Box: integrated with each component unit to facilitate overall transportation.
Image encoding and decoding unit: composed of image encoder, used for encoding 

and decoding stereo endoscope dual-channel images and transmitting them at both 
ends of remote surgery.

Power supply unit: It is a switch power supply conforming to medical specifica-
tions, which is used to supply power to all units inside the box.
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Network communication unit: It is a special industrial computer used to transmit 
control signals at both ends of remote surgery and monitor the network status.

Motion control and signal processing unit: interacts with the network communica-
tion unit, can collect the motion information of the master hand, and can actively 
control the motion of the master hand.

Status display unit: used to display the working status of network communication 
unit and motion control and signal processing unit.

Interaction unit: human-computer interaction interface, which is used to set 
network connection, start/stop data transmission, etc., and can feedback the robot 
operation status to the operator through prompt tone, etc.

Interface unit: including power supply interface, network interface, video output 
interface, foot switch signal acquisition interface, robot main end operation data 
output interface, etc.

The main communication control workflow is to connect the interface of the main 
end of the robot itself and the main end medical monitor with the main end com-
munication control box, and then connect the main end communication control box 
to the Internet through the RJ45 interface. At the same time, supply 220 V AC power 
through the interface unit, and start-up.

The slave communication control box is the receiving and sending and control 
module of all kinds of information at the slave end of the robot under network condi-
tions. It is composed of box, image encoding and decoding unit, power supply unit, 
network communication unit, energy instrument control unit, status display unit, 
interaction unit, interface unit, etc. The functions of each unit are as follows.

Box, power supply unit, network communication unit and status display unit: the 
same as the main control box.

Image encoding and decoding unit: composed of image encoder, used for encoding 
and decoding stereo endoscope dual-channel images and transmitting them at both 
ends of remote surgery.

Energy instrument control unit: It is composed of PLC modules, which is used to 
simulate the control signal output by the main machine of the excitation energy tool.

Interaction unit: human-computer interaction interface, which is used to set 
network connection, start/stop data transmission, etc., and can feedback the robot 
operation status to the slave assistant through prompt tone.

Interface unit: including power supply interface, network interface, video input 
interface, robot slave operation data output interface, etc.

The work flow of the slave communication control box is as follows: connect the 
communication port of the slave robot to the slave communication box through the 
network cable, and then connect the slave communication control box to the Internet 
through the RJ45 interface. At the same time, supply 220 V AC power through the 
interface unit and start-up.

5.2.5 Use of remote surgical robot

After testing, in order to ensure the smoothness and security of remote operation, 
the average network delay should not exceed 30 ms, and two dedicated networks with 
a bandwidth of not less than 50 Mb should be provided to ensure network stability.

The remote surgical operation doctors should not only receive the operation 
training of local surgical robots, but also receive the operation training in the remote 
environment. The operating physician also needs to be familiar with the operation 
mode and operation specification of the robot, be able to know the meaning of 
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various operation status prompts fed back by the robot in a timely and accurate man-
ner, and intervene with the robot to ensure the safety of remote surgery.

The remote surgical operation assistant shall also receive sufficient local and 
remote surgical robot operation training of the system. The assistant also needs to be 
familiar with the operation mode and operation specification of the robot, be able to 
know the meaning of various operation status prompts fed back by the robot in time, 
and be able to accurately intervene the robot according to the surgical requirements to 
ensure the safety of remote surgery.

The assistant of the remote surgical robot should be familiar with the connection, 
setting, and testing processes of the robot, and the connection between the robot and 
each module should be accurate and reliable. A comprehensive test should be carried 
out 2 hours before the robot implements the remote operation to complete the initial-
ization and operation test of the robot.

6. Network solution for remote surgery

The construction and networking scheme for remote surgery support is a criti-
cal technology that ensures the smooth development of remote surgery. Since the 
inception of the concept of remote surgery, the choice of network communication 
mode has been crucial to ensure stable, speedy, and efficient signal data transmission. 
Additionally, minimizing operational delays caused by remote communication and 
surgical failure due to remote signal interruption has been a top priority for designers 
and users of remote surgery systems. From the first proposal of remote surgery to the 
realization of the first remote surgery and the current boom in the field, the selection 
of an appropriate network communication mode remains a vital consideration for the 
advancement of remote surgery technology.

6.1 Traditional networking schemes

6.1.1 Dedicated fiber optic cable network solution

In 2001, Professor Jacques Marescaux in France completed the world’s first remote 
surgery, Lindbergh surgery, through the Zeus robot system, using a dedicated subma-
rine fiber optic cable transmission network. This network directly connects the master 
operator and the slave operator through a dedicated fiber optic cable. It has several 
advantages, including wide bandwidth, large capacity, good signal quality, and high 
reliability. However, the drawback of this network is the limitation of the point-to-point 
physical connection, which requires special erection and maintenance of the fiber optic 
cable dedicated line and is extremely expensive, making it not widely promoted.

6.1.2 Satellite communication network solution

The satellite communication network uses artificial earth satellites as relay stations 
to relay radio waves, allowing interconnection between two or more earth stations. This 
network has many advantages, including wide coverage, large communication capacity, 
good transmission quality, less geographical restrictions, convenient and rapid network-
ing, and easy global seamless connection. However, the main disadvantages of satellite 
transmission are a delay of about 0.6 seconds for audio and video, high cost of satellite 
signal transceiver equipment and channel usage at the user end, and high professional 
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requirements for maintenance personnel. Currently, the satellite communication net-
working method can provide more than a few megabytes of communication rate, mainly 
used for mobile medical emergency rescue equipment to participate in telemedicine.

6.1.3 ADSL Internet access networking program

This networking scheme refers to client network or equipment access to the 
Internet through asymmetric digital subscriber line (ADSL) and the use of the 
Internet to form an interconnected network. This type of networking can provide 
up to 3.5 Mbps uplink and up to 24 Mbps downlink, and the cost of access is usually 
between several hundred and several thousand dollars per year in various provinces 
and cities. Although the cost of this solution is lower than that of private network 
and fiber optic Internet access methods, the actual available bandwidth drops when 
public network resources are insufficient, and upstream and downstream band-
widths are inconsistent because the data streams pass through the public network 
and share the public network bandwidth with the other user data streams. Therefore, 
the bandwidth stability is poor with this networking method, which may adversely 
affect two-way audio and video interaction applications with high bandwidth stabil-
ity requirements, such as non-smooth video. Nevertheless, the networking scheme 
still has the advantages of easy networking and low cost and is suitable for build-
ing a telemedicine system using software video among hospitals below the county 
level. Some of the hospitals’ self-built teleconsultation systems using software video 
partially adopt this networking method, which is one of the most common Internet 
access methods for small institutions and individual users.

6.1.4 3G/4G communication networking scheme

This networking scheme means that both the user side and the data center use 
3G/4G communication to connect to the Internet and achieve interconnection 
between them. When a business relationship is established between multiple users, 
the information flow is delivered to the destination device through the Internet. 
However, since the data stream must pass through both 3G/4G and public network 
bottlenecks while sharing the public network bandwidth, the actual available band-
width is reduced when the 3G/4G signal is weak or public network resources are 
insufficient. The upstream and downstream bandwidth may also be asymmetric. 
Therefore, the bandwidth stability using this networking method is poor, which can 
negatively impact applications that require two-way audio/video interaction.

6.2  Emerging networking schemes for remote surgery: the optional 5G 
communication networking scheme

6.2.1 5G communication networking scheme

The latest generation of cellular mobile communication technology is 5G, 
which inherits the advantages of previous systems such as 4G (LTE-A, WiMax), 3G 
(UMTS, LTE), and 2G (GSM), and also adds new features. Compared to previous 
technologies, 5G technology offers high-speed data transmission, low-latency rates, 
high capacity, large-scale device connectivity, low cost, and low energy consump-
tion. The development of 5G technology as a bearer network for new technologies 
has revolutionized the development of areas such as telesurgery.
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The International Telecommunication Union (ITU) has identified three main appli-
cation scenarios for 5G: enhanced mobile broadband, ultra-high reliability low-latency 
communication, and massive machine-like communication. The key performance 
indicators of 5G include high speed, low latency, and large connectivity. Enhanced 
mobile broadband (eMBB) provides a better application experience for mobile Internet 
users, while ultra-high reliability low-latency communication (uRLLC) is used for 
telemedicine, industrial control, autonomous driving, and other applications with high 
requirements for low latency. The most prominent features of 5G are high speed, low 
latency, and large connectivity, with user experience rates of up to 1Gbps, latency down 
to milliseconds, and user connectivity up to 1 million connections per square kilometer.

6.2.2 5G network architecture for remote surgery

The 5G remote surgery network communication system requires two-way network 
communication. One is for remotely controlling the robotic arm, and the other is for 
transmitting live surgical video feedback. To ensure the smooth progress of surgery, we 
adopt a dual 5G (or dual gigabit dedicated line) multi-guaranteed network, which ensures 
the stability, reliability, and low latency required for remote medical operations. To ensure 
the stability and reliability of the 5G access network, we use high-performance indoor 
distributed systems (Pico RRU) for 5G. We use dedicated 5G core network equipment to 
ensure low latency on both ends of the network, guaranteeing system independence and 
security. We use a new type of distributed Pico Site to provide indoor coverage and config-
ure uninterruptible power supply (UPS) backup power to ensure reliable power supply. 
These measures ensure the stability and reliability of the 5G remote surgery network 
communication system, meeting the requirements for remote medical care.

The use of network slicing technology in the 5G network can greatly improve the 
speed and security of remote surgery. With the development of 5G technology, the 
slicing packet network (SPN) has emerged, supporting the next-generation transport 
network architecture, bandwidth, traffic patterns, slicing, latency, and time synchro-
nization. The core advantage of the SPN network is its flexibility. By binding elastic 
ethernet or FlexE technology with SPN, a larger physical link can be divided into 
multiple smaller physical channels, ensuring quality of service and isolation between 
transport layers. The SPN technology is a fiber-optic network transmission technology 
architecture independently developed in China, which has been successfully applied 
in the transmission of China’s 5G network, achieving the organic integration of TDM 
transmission technology and packet transmission technology, fully meeting the require-
ments of lossless and efficient 5G transport. The SPN transmission technology has the 
advantages of large bandwidth, ultra-low latency, ultra-high precision synchronization, 
flexible control, and network slicing, which are essential in 5G remote surgery commu-
nication. By adopting SPN technology, efficient, secure, and fast network transmission 
can be achieved, ensuring the stability and precision of remote surgery.

Communication plan during surgery: If possible, a video conferencing system 
or a 5G smart bedside car can be utilized to ensure voice and video communication 
between the surgical control and the controlled end. In the absence of this equip-
ment, mobile phones can be used for voice communication between both parties. 
However, wireless or wired headphones should be provided for doctors to ensure 
convenience, real-time communication and to avoid external interference.

Quality of 5G remote surgery network communication and monitoring method for 
surgical equipment: During remote surgery, the network should be subjected to a PING 
test, and the network delay should be monitored in real time. Both test routes should be 
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tested. To reduce the impact on the network, the size of the PING packet should be set 
to the smallest possible size. During the surgery, three safeguard plans should be imple-
mented in the following order of priority: The first plan is to use 5G for both control and 
video transmission, the second plan is to use two dedicated 5G lines for transmission, 
and the third plan is to use two dedicated lines for transmission. The first plan should be 
adopted initially. If there are network quality problems resulting in increased delay or 
difficulty in controlling the robot, the second and third plans should be used.

Standards for diagnosing network and surgical equipment failures in 5G remote 
surgery: The ideal network delay for 5G during surgery should be within 30 mil-
liseconds, and the delay for dedicated lines should be within 10 milliseconds. If the 
average delay of 5G or dedicated lines exceeds 50 milliseconds within 3 minutes, or if 
there is unstable jitter in the instantaneous delay, the fallback plan should be initiated. 
The switch between 5G and dedicated lines should be completed within 3 minutes to 
ensure the smooth completion of the surgery.

The fusion of aggregate network technology and quantum communication 
encryption technology ensures the security of surgical networks. By adopting hetero-
geneous multi-link aggregation transmission technology, data is split and transmitted 
across different networks at the transmission layer of the network, endowing the 
network with features such as multi-link parallel transmission, link weight adjust-
ment, forward error correction encoding technology, network self-adaptation, and 
real-time determination of the total network bandwidth. This achieves lower latency, 
higher stability, and higher efficiency, fully exploiting the adaptability of the public 
network for data transmission. The implementation of this technology can greatly 
reduce the cost of remote surgery and promote the normalization process of remote 
surgery. In the process of applying quantum encryption communication technology, 
the project team combines quantum encryption communication technology with 
remote robotic surgery to achieve the theoretically “unconditionally secure” com-
munication mode for remote laparoscopic surgery. By using quantum superposition 
states and entanglement effects, combined with quantum random number genera-
tors (QRNG), quantum key distribution devices (QKD), and other equipment, key 
resources are generated, distributed, and received for quantum key production, 
distribution, and reception, providing encrypted transmission for remote surgery.

6.2.3 Fiber optic private network configuration

A fiber optic private network configuration is a star-shaped network that connects 
user LANs or devices through a dedicated line at a single point. Multiple private net-
works can also form a tree-shaped network by cascading. Fiber optic private networks 
are usually constructed using synchronous digital hierarchy (SDH) technology and 
are physically isolated from public networks. Therefore, from an application perspec-
tive, they offer high security, stable bandwidth, and high standardization of terminal 
equipment interfaces. However, the disadvantage of this network configuration is 
its higher cost compared to Internet-based networking. This networking approach 
can provide fully optical transparent channels ranging from 2 Mbps to 10 Gbps and 
offers data, image, and audio transmission services for point-to-point and point-to-
multipoint connections. It is suitable for networking remote medical systems between 
county-level hospitals or above in provinces and cities that require high-quality audio-
video interaction, frequent usage, and large image data volume.

During the specific implementation process of remote surgery, a gigabit dedicated 
line with dual router access is used, relying on clear networking architecture of SDH, 
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packet transport network (PTN), and optical transport network (OTN) equipment, 
which provides high-risk security operation guarantees. In terms of maintenance, it 
has a 7×24-hour full-time scheduling and maintenance capability, enabling quick fault 
repair and restoration. The above network guarantees should be deployed at least 
1 day before the operation, and network debugging should be completed. After the 
network debugging is completed, it is necessary to perform joint debugging with the 
surgical robot to ensure that both 5G and the dedicated line can support the surgical 
tasks. The networking adopts a disaster recovery mechanism. The 5G equipment and 
the dedicated line are protected by main and standby transmission equipment, and 
the reliability of transmission is ensured using dual router and dual-loop methods. All 
equipment is protected by UPS for power supply, and in case the power supply cannot 
be guaranteed, dual power supply or oil machine protection should be considered.

6.2.4 Aggregation network technology

Aggregation network technology is composed of 5G fused communication termi-
nals and cloud servers. The 2-channel 1920×1080P60 video signals of the endoscope 
are collected, and 3D signals are synthesized and encoded, and then transmitted 
through multiple 5G links via the aggregation transmission. The cloud server deploys 
the 5G fused communication system software, which provides the service-side func-
tion of heterogeneous multi-link aggregation transmission. In terms of aggregation 
network technology, the transmission of the surgical endoscope video signal and 
control signal uses heterogeneous multi-link network aggregation transmission tech-
nology to improve transmission efficiency and stability. The control command signal 
is issued by the main hand, connected to the 5G fused communication gateway next 
to the main hand through the aggregation link, and the gateway transmits the control 
signal through the network port to the 5G network for transmission. The cloud server 
deploys the 5G fused communication system software, which implements the service-
side function of heterogeneous multi-link aggregation transmission in the kernel 
layer, supporting both uplink and downlink aggregations. Therefore, aggregation 
network technology has the advantages of signal stability, fast transmission speed, 
environmental independence, and strong universality, and has good application 
potential in future remote surgery.

6.2.5 Deterministic network

“Deterministic network” is a new technology that provides end-to-end network 
service quality assurance for different users and businesses, and can provide dif-
ferentiated business services for remote surgery. Its determinism is reflected in three 
aspects: Firstly, security isolation determinism, achieved through logical or physical 
segmentation of the network using slicing technology, as well as measures such as 
user access authorization, data storage filtering, and transmission security checks to 
achieve security isolation. Secondly, latency and jitter determinism. In the 5G era, 
many network applications such as remote robotic surgery, autonomous driving, and 
VR games require end-to-end latency to be controlled within a few milliseconds, and 
jitter to be controlled within the range of seconds. Thirdly, bandwidth determinism. 
In the era of traffic, there are higher requirements for upstream and downstream 
bandwidth. Remote surgery has extremely strict requirements for network latency, 
jitter, packet loss, redundancy protection, and fast switching. Deterministic network 
is the key means to achieve these standards. It can cooperate with network slicing and 



Artificial Intelligence in Medicine and Surgery – An Exploration of Current Trends, Potential…

146

edge computing to sink AI and other technologies to the grassroots level, promote the 
integration of data and 5G’s “cloud-edge-end” functions, fully leverage the advantages 
and characteristics of 5G independent networking, adjust the network architecture, 
and meet the overall requirements of remote surgery. Therefore, deterministic 
network also has good application potential in future remote surgery.

7. Personnel and cost analysis of remote surgery

Generally, the cost of hospital medical services includes labor costs, fixed asset 
costs, material costs, administrative expenses, business expenses, and other expenses. 
Remote surgery involves special cost expenditures (such as remote networks) in addi-
tion to the general medical service costs.

7.1 Standard configuration for remote surgery resources

Remote Regional Medical Center
Equipment and software: remote surgical robot and its operating system, commu-

nication equipment, and data transmission system;
Personnel: one surgeon, one surgical assistant, one equipment maintenance 

personnel, and one communication transmission maintenance personnel.
Remote Primary Healthcare Institution
Equipment and software: remote surgical robot and its operating system, commu-

nication equipment, and data transmission system;
Personnel: two collaborating surgeons, one anesthesiologist, two nursing staff, one 

equipment maintenance personnel, and one communication transmission mainte-
nance personnel.

7.2 Composition of remote surgery costs

Depreciation and maintenance costs of equipment (including regional medical 
center and primary healthcare institution equipment): equipment depreciation and 
maintenance costs of the remote surgical robot system;

Usage costs of specialized instruments and consumables: costs of instruments and 
disposable materials used multiple times during remote surgical procedures;

Personnel costs: costs of personnel such as the surgeon, surgical assistant, remote 
collaboration surgeon, nursing staff, anesthesiologist, equipment maintenance 
personnel, and communication transmission maintenance personnel;

Other costs: depreciation costs of the operating room and auxiliary equipment, 
and other related consumables.

7.3 Cost-benefit analysis of remote surgery for patients

The hospitalization costs of remote surgery patients include two types of costs: 
direct costs and indirect costs. Direct costs include medical and non-medical 
expenses. Medical expenses include various treatment-related expenses, the cost 
depreciation of the surgical robot system, and personnel costs of remote surgical 
physicians. Non-medical expenses include living, transportation, and accommodation 
expenses during hospitalization. Indirect costs include family members’ lost income, 
patients’ lost income, and other costs. For remote surgery patients, the structure of 
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these costs is the same, but the amount of cost consumption will differ. Conducting 
remote surgery treatment will reduce the patient’s indirect cost expenditure.

7.4 Economic analysis at the regional medical center level

Hospitals are the main body for introducing and using new medical technologies, 
and they are also the most commonly used perspective for economic analysis. For 
hospitals, the cost of remote surgery includes resource costs used during surgery 
(instrumentation and surgical supplies), drugs, food and lodging, and nursing, as 
well as indirect costs such as hospital management and operating expenses. Remote 
surgery is a medical activity that connects experts with patients and medical workers 
using computer communication technology and medical technology to achieve long-
distance data, text, voice, and image data transmission. Considering the character-
istics of remote medical services, the cost of remote medical services should include 
hardware costs, software costs, housing costs, labor costs, and operating costs.

1. Hardware costs refer to the relevant hardware equipment purchased for the 
remote medical service project at the regional medical center and the patient’s 
primary healthcare institution.

2. Software costs refer to the development and purchase of software used for 
remote medical services at the regional medical center and the primary 
healthcare institution.

3. Housing costs refer to the cost of housing for the remote medical service project 
at the regional medical center and the primary healthcare institution.

4. Labor costs refer to the cost of human resources required for the remote medical 
service project at the regional medical center and the primary healthcare institution.

5. Operating costs refer to the costs incurred during the operation and maintenance 
of the remote medical service project at the regional medical center and the 
primary healthcare institution.

8. The future direction of telesurgery

The development and application of telesurgery robots has become a new trend 
worldwide, which helps solve the problem of telemedicine in special geographical 
areas and special situations, and has great prospects in the future [14].

8.1 The application in regions with scarce medical resources

As an important part of telemedicine, telesurgery can effectively improve the 
biased distribution of medical resources, coordinate medical resources, and increase 
the rate of patient treatment and medical resource utilization.

8.2 The application in the field of special environment

In military medicine, in 2009, the U.S. Army developed a complete surgical robot 
system based on the da Vinci system to cope with the wartime environment to achieve 
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unmanned processing [15], including surgical robot system, management and display 
system, control and supervision system, monitoring system, equipment replacement 
system, equipment delivery system, and drug supply system. Although the system is 
not used in the clinic, the study of the system suggests that telemedicine will enter the 
era of fully remote surgery in an unmanned mode.

8.3 Driving the development of other areas of technology

Faced with complex cases requiring multidisciplinary surgery to resolve the dis-
ease, telesurgery can also be performed many-to-one, with two or even more control 
systems controlling the same patient. Combined multidisciplinary surgery solves 
surgical problems of neighboring organs with the same surgical orifice or combines 
different hospitals to perform remote surgery [16]. In addition, the development 
of telesurgery can simultaneously lead to the development of other telemedicine 
disciplines, such as telecare and telerehabilitation after telesurgery [17]. The Telecare 
Medical Information System (TMIS) utilizes wireless communication technology and 
smart devices, enabling patients to receive remote medical treatment from doctors 
via the internet without the need to visit the hospital, thus providing convenience 
for postoperative rehabilitation care following remote surgeries [18]. It combines 
healthcare and information technology to achieve electronic medical information 
management and remote collaboration. Doctors and nurses can record patients’ medi-
cal information, and the system supports remote collaboration and consultations. 
Doctors can remotely access patients’ imaging data, provide remote guidance and 
diagnostic opinions. TMIS also collects and analyzes medical data, generates reports 
for medical quality assessment and decision support, thereby improving the service 
quality and efficiency of healthcare institutions.

It can also promote the development of imaging medicine. Data conversion in tele-
surgery cannot be achieved without remote proximity systems in the field of imag-
ing, which can present information about the surgical field of view and the surgical 
environment to the operator in an image-audio format to create a sense of presence 
[18]. A typical robotic telepresence system includes a light source, a digital image 
and audio acquisition and processing system, and an intelligent decision and control 
execution system. The remote presence system has evolved from a simple image-audio 
acquisition and processing system to an integrated system that incorporates surgical 
field of view, surgical environment, and other image-audio information with some 
learning and adaptive capabilities. The way forward now is to combine intraoperative 
images with patient-specific 3D models and to combine them with virtual/augmented 
reality imaging.

With limited medical resources in the deep sea and high altitudes, conventional 
medical resources may not be able to solve problems in a timely and effective manner 
in case of sudden surgical emergencies. The potential of telesurgery for applications 
in maritime aviation and space stations is enormous.

Telemedicine can help eliminate distance barriers and provide medical expertise 
to remote areas. Due to the relative shortage of surgeons and the need to explore 
new approaches to surgical education, surgical tele-mentoring may be a solution to 
enhance and improve surgical education models. Although remote robotic surgical 
teaching may not replace local surgical instructors, studies have demonstrated that it 
is a valuable tool for remote instruction in minimally invasive surgery.

Telesurgery can serve as a tele-education function. By remotely interrogat-
ing multiple surgical specialists and remotely training hands-on surgeons, the 
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professionalism of new hand surgeons around the world can be more effectively 
enhanced. This can revolutionize surgical education by creating an interactive, scal-
able and accessible education system with support and guidance from experts around 
the world [19, 20].

9. Prospect

As an emerging breakthrough technology in the twenty-first century, remote 
robotic surgery technology has been classified as a major research project by many 
countries by virtue of its advanced real-time transmission technology and robotic 
surgery system. Artificial intelligence has great potential for development as a strategic 
development plan in China, and the development of autonomous surgical capabilities 
has received a great deal of attention from researchers as one of the development direc-
tions of surgical robots. Surgical robots have replaced surgeons into numerous dan-
gerous environments to independently complete remote rescue and treatment work, 
and have played a significant role in national defense and military, major disasters, 
future battlefield, and aerospace fields. It is believed that with the increasing volume 
of remote surgery and further development of artificial intelligence, robotic systems 
capable of autonomously completing remote surgery will be further developed.
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Chapter 9

Artificial Intelligence in Surgery,
Surgical Subspecialties, and Related
Disciplines
Ryan Yimeng Lee, Alyssa Imperatore Ziehm, Lauryn Ullrich and
Stanislaw P. Stawicki

Abstract

Artificial intelligence (AI) and machine learning (ML) algorithms show promise in
revolutionizing many aspects of surgical care. ML algorithms may be used to improve
radiologic diagnosis of disease and predict peri-, intra-, and postoperative complica-
tions in patients based on their vital signs and other clinical characteristics. Computer
vision may improve laparoscopic and minimally invasive surgical education by iden-
tifying and tracking the surgeon’s movements and providing real-time performance
feedback. Eventually, AI and ML may be used to perform operative interventions that
were not previously possible (nanosurgery or endoluminal surgery) with the utiliza-
tion of fully autonomous surgical robots. Overall, AI will impact every surgical
subspecialty, and surgeons must be prepared to facilitate the use of this technology to
optimize patient care. This chapter will review the applications of AI across different
surgical disciplines, the risks and limitations associated with AI and ML, and the role
surgeons will play in implementing this technology into their practice.

Keywords: artificial intelligence, machine learning, robotics, surgery,
nanotechnology, nanosurgery, computer vision, autonomy

1. Introduction

Artificial intelligence (AI) and machine learning (ML) are rapidly transitioning
from “experimental” into the “mainstream adoption” [1–3]. The current pace of
progress appears to be accelerating, with an emerging number of potential applica-
tions of AI/ML in surgery and its various subspecialties [4]. These programs have
shown promise in their capacity to process vast amounts of data, identify multivariate
relationships within data, and reduce uncertainty of predictions to enable alternative
options to certain tasks [5, 6]. Still, AI has not yet progressed to fully automating tasks
due to certain limitations, such as the inability to understand common-sense scenar-
ios, adjust to untrained circumstances, and make intuitive or ethical judgments—all
necessary abilities required from a surgeon [7–10]. These complementary strengths
suggest that the role of AI may be optimized by collaborating with human intelligence
[11]. However, this has not stopped scholarly discussions from imagining what
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increasingly practical considerations of AI might look like in the future, including
concepts such as “autonomous actions in surgery” [12].

In this chapter, we will explore current and potential future applications of AI/ML
in the sphere of surgery, surgical subspecialties, and related disciplines of medicine.
Each section of this chapter will outline specific aspects where we believe AI may play
a role within the context of surgical care delivery.

2. Methods

For the purposes of this narrative review, we performed an exhaustive literature
search, with primary source platforms being Google™ Scholar and PubMed. The pri-
mary search term was “surgery” with the following secondary terms—“artificial intelli-
gence,” “machine learning,” “technology,” and “subspecialty.” Specific names of
surgical specialties (e.g., orthopedics, neurosurgery, and vascular surgery) were also
employed. The primary search term “surgery” in combination with each of the other
keywords, in various iterations, resulted in more than 875,000 potential listings. Litera-
ture screening focused on sources with “full text” availability, limited to English lan-
guage. In addition, various correspondences (e.g., Letters to Editor and Brief
Communications) were excluded. This resulted in approximately 142,000 secondary
literature results. The search was limited to original research and reviews within this
group, with at least five citations (using Google™ Scholar).With these criteria, our final
list of potentially suitable articles was fewer than 2000. A more intensive review of the
tertiary phase of our article screening resulted in 96 articles with relevance to this
review. After this, secondary sources (derived during in-depth review of our 96 most
relevant articles and examining their respective reference lists) were added. Utilizing
the above methodology, the resultant reference list includes 158 citations (Figure 1).

In the primary search, only studies with five or more citations were considered.
Because newer studies tend to have fewer citations, this may introduce selection bias
against newer studies that either address aspects of these concerns or bring up new
ones. Given the rapidly evolving field of AI, future reviews could evaluate more novel
studies for potential innovations.

Figure 1.
Flowchart of the selection process for review articles.
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2.1 Focused list of AI/ML applications across surgical specialties

A focused list of topics regarding the implication and application of AI and
ML are presented below. AI is broadly defined as a system that can learn to think
or act [13]. ML, which falls under the broad scope of AI, refers more specifically
to an algorithm that adjusts itself based on detected patterns in data [13]. Deep
learning is a subset of ML that uses neural networks to learn intricate relationships
in data [14]. Each item will be presented briefly, with relevant literature sources
provided accordingly. It is important to note that a complete review encompassing
all applications of AI/ML and all specialties of surgery is beyond the scope of this
chapter.

3. Perioperative risk assessment and surgical planning

Due to the ability to quickly and efficiently incorporate and compile large amounts
of data, AI/ML paradigms are likely to be heavily involved in preoperative risk
assessment in all fields of surgery. Through the collection of patient data and charac-
teristics, such as weight, heart rate, blood pressure, comorbidities, and other factors,
highly sophisticated models can be used in algorithms that predict the risk of the
patient before undergoing a surgical procedure. With the ability to calculate risk, AI/
ML may also bring the potential for appropriate mitigating strategies that could
decrease patient morbidity and mortality [4, 15]. By utilizing large data sets organized
by specific surgical procedures and procedure types, AI/ML-powered algorithms
could be used to modify models that carry out statistical weight optimization for
different variables associated with morbidity and/or mortality for each type of sur-
gery, within a specific set of clinical circumstances (e.g., emergency versus
nonemergency) or within a certain population (e.g., demographic). Assuming a rep-
resentative sample, an effective AI/ML algorithm would allow surgeons and other
perioperative medicine experts to input values for individual patients and return an
objective preoperative risk assessment, leading to potential applications in precision
medicine. For instance, there are multiple different bariatric surgeries available to
patients, including sleeve gastrectomy, Roux-en-Y gastric bypass, adjustable gastric
band, and biliopancreatic diversion [16]. Though sleeve gastrectomy is now the most
common approach, each technique has trade-offs between cost, short-term morbidity,
long-term morbidity, and long-term weight loss, and this can sometimes lead to
complex decisions in choosing the optimal procedure [17]. Machine learning algo-
rithms could help address this issue using preoperative data to provide individualized
recommendations, potentially leading to more optimal bariatric surgery prescriptions
[16]. Recent studies have investigated the use of similarly structured and
implemented algorithms across many different types of surgeries and surgical chal-
lenges, from predicting preoperative risk of cardiac complications, identification of a
difficult airway prior to intubation, and the general risk–benefit estimations of differ-
ent procedural or surgical interventions [18–22]. When properly designed and
implemented, such algorithms would allow for risk stratification and, thus, better
preparation for adverse outcomes following surgery. Future improvements would
increase the specificity and sensitivity of these algorithms, facilitating a more accurate
prediction of perioperative risk. Additionally, AI algorithms may be able to provide
quantitative predictions about outcomes with and without surgery, providing both
surgeons and patients with the information for objective decision-making [23].
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Additional preoperative risk assessment could take the form of dedicated ML
analysis of the radiologic imaging [24]. Preoperative imaging is utilized before surgery
to give surgeons more information about the patient’s pathology and anatomy and is
essential for preoperative planning. ML algorithms can be used in the preoperative
setting to predict prognoses and augment surgical decision-making across various
surgical specialties [25–27]. An example of the implementation of preoperative ML
models is the utilization of computed tomography (CT) scans to diagnose lung cancer.
Using ML to evaluate CT scans has shown comparable to even better sensitivities and
specificities compared to radiologists [28]. Such models can be further augmented to
provide data about each identified tumor and suggestions for surgical planning [29].
More widespread adoption of ML algorithms that read imaging could lead to
advancements in surgical planning in interventions such as lumbar decompression in
spinal stenosis to assessing characteristics of corneal endothelium in specular micros-
copy for treatment of corneal edema [20, 30]. The utilization of ML algorithms could
transform how surgeons interpret CT scans preoperatively and could, in return,
improve patient care and surgical outcomes.

Advances in the algorithmic interpretation of medical imaging have led to the
emergence of radiomics, a field involving the analysis of medical imaging to provide
information about the physiology or pathology of the disease [31]. Radiomics contrib-
utes an additional layer to how ML algorithms can interpret medical imaging and has
shown unique promise in surgical oncology, where minute changes in image features
can be associated with various prognoses. Typical features used in radiomic workflow
may include the intensity of signals and the distribution of these signals [32]. Because
benign and malignant tumors have different microenvironments and expression of
specific markers, magnetic resonance imaging (MRI) radiomics shows promise in
being able to differentiate malignant or benign tumors from normal tissue [32]. Radio-
mics could therefore improve patient outcomes through early identification of disease.

In terms of specific examples, radiomics can be used to determine axillary lymph
node (ALN) metastases in patients with breast cancer. The most common site of
breast cancer metastasis is to the axillary lymph nodes (ALN). Early detection of ALN
metastases can inform the surgical management of breast cancer [33]. Based on the
Z0011 clinical trial results, the current diagnostic procedure for ALN metastases for
most patients is sentinel lymph node biopsy (SLNB) [34]. Although this procedure is
less invasive than ALN dissection, SLNB still carries the risk of lymphedema, axillary
paresthesia, and reduced range of motion in the involved upper extremity [35]. Fur-
thermore, in some cases, SLNB has been shown to have false negative rates in the
range of 5–10% [36]. Thus, finding more effective alternative ways to identify ALN
metastases is increasingly important. Radiomics has shown the ability to identify
malignant tissues and determine ALN metastases at a higher rate than radiologists
[37]. In the future, radiologists equipped with radiomics capabilities may be able to
more efficiently and more accurately identify ALN metastases, leading to more
prompt medical and surgical therapeutic interventions. Evidence suggests that radio-
mics may be able to differentiate between different subtypes of cancer based on the
unique molecular profile and the resulting appearance on imaging of each subtype
[38]. The ability to specifically diagnose different subtypes of cancer from their
respective radiologic imaging characteristics may allow surgeons to stratify patient
prognoses and better determine medical and surgical management (e.g., precision
medicine/surgery).

Preoperative uses of ML and AI could also improve patient outcomes for those who
are awaiting organ transplants. More specifically, ML algorithms trained to analyze
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patient characteristics, such as age, sex, severity of disease, hemodynamic measure-
ments, and other variables, could be used to predict waitlist mortality and
posttransplant outcomes [39]. These programs could be used to improve patient out-
comes more broadly through a more objective management of organ transplant
waitlists and recipient match optimization. ML algorithms may also be used in the
future in more direct applications to transplant surgery. For instance, in liver trans-
plantation, graft-weight-to-recipient-body-weight (GW/RW) ratios <0.8% are asso-
ciated with an increased risk of complications such as small-for-size syndrome [40].
Consequently, the estimation of graft weight in living donors is important for limiting
adverse outcomes associated with graft size mismatch. Studies have been conducted
on the potential use of ML models trained on donor age, sex, body mass index, CT
scans, and other data to estimate the donor graft weight [40]. These models have the
potential to greatly enhance the precision of graft weight estimation, improving out-
comes of liver transplantation. Additionally, experiences learned from hepatic trans-
plantation may be suitable for adoption across other areas of organ transplantation
(e.g., kidney, pancreas, heart, and lung), similarly reducing various potentially

Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to
this review

Hashimoto
et al.

2018 USA All disciplines ML surgical
decision-
making

AI in the form of ML, natural
language processing, artificial

neural networks, and
computer vision has led to
applications such as the

detection of bleeding in tissue
in video, analysis of

Electronic Health Record
(EHR) text, and predicting
lung cancer staging based on
diagnostic and therapeutic

data

Loftus
et al.

2020 USA All disciplines ML surgical
decision-
making

ML models may increase
accuracy and reduce biases in

surgical decision-making

Bihorac
et al.

2019 USA Major inpatient
surgeries

ML
preoperative

risk of
complications

ML algorithm using EHR data
could predict the risk of

certain complications and of
mortality at 1-, 3-, 6-, 12-, and

24 months after surgery
(Areas under the curve

(AUCs) of 0.82 and 0.94)

Zhou et al. 2022 China Thyroid
surgery

ML
preoperative

risk of
complications

ML algorithm using
preoperative patient data and
neck circumference could
predict difficult airway

intubation (AUCs of 0.812
and 0.848)

Wilson
et al.

2021 USA Orthopedic
surgery,

neurosurgery

ML
preoperative
determination
of surgery
candidacy

ML algorithm using lumbar
MRI scans could predict
spinal surgery candidacy

(Area under the curve (AUC)
of 0.88)
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Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to
this review

Bellini
et al.

2021 Italy Thoracic
surgery

ML
preoperative

risk of
complications

ML models can evaluate
preoperative data to provide
individualized preoperative
risk of outcomes after lung

cancer resection and
identification of pulmonary

nodules

Malani
et al.

2023 India Gynecologic
surgery

ML
preoperative
detection of

disease

ML models can evaluate
imaging to determine the
presence of disease for
surgical intervention

Shoham
et al.

2022 Israel Dermatologic
surgery

ML
preoperative
prediction of

surgery
complexity

ML model using preoperative
patient and tumor data can
predict the complexity of

surgical resection of
nonmelanoma skin cancer

(AUC of 0.79)

Bian et al. 2023 China Surgical
oncology

ML analysis of
imaging

ML radiomics model using
CT scans can predict the
presence of lymph node

metastases in patients with
pancreatic ductal

adenocarcinoma with better
accuracy than clinician alone

(p < 0.001)

Etienne
et al.

2020 France Thoracic
surgery

ML analysis of
imaging,

preoperative
risk

assessment

Multiple ML models can
identify the presence of
malignant nodules using

patient CT scans

Fairchild
et al.

2023 USA Neurosurgery ML analysis of
imaging

ML model can identify the
presence of difficult-to-detect
brain metastases with 94%
accuracy for prospectively
diagnosed metastases and
80% accuracy for new

metastases

Martin
et al.

2022 USA Orthopedic
surgery

ML analysis of
imaging,

preoperative
risk

assessment

ML algorithms can detect the
presence of fractures and
automate the calculation of

measurements such as
coronal knee alignment and

acetabular component
inclination and version

Savage 2020 USA Surgical
oncology

ML analysis of
imaging

ML algorithms can detect the
presence of lung cancer at

rates comparable to
radiologists

Cui et al. 2021 China Surgical
oncology

ML analysis of
imaging

ML model can identify the
presence of lung cancer
nodules (76.0% accuracy

158

Artificial Intelligence in Medicine and Surgery – An Exploration of Current Trends, Potential…



Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to
this review

with 0.004 false positives/
scan when double-read) and
provide information about
number, coordinates, and
suspicion of each nodule

Vigueras-
Guillén
et al.

2020 Netherlands Ophthalmology ML analysis of
imaging

ML model can assess corneal
endothelium density,

coefficient of variation, and
hexagonality using images
from specular microscopy in
98.4% of specular images
compared to 71.5% using

previous software

Yu et al. 2021 China Surgical
oncology

ML analysis of
imaging,
radiomics

ML radiomics can predict the
presence of axillary lymph
node metastasis (AUCs of
0.88 and 0.87) and provide

insight into tumor
microenvironment (immune
cells, methylation, and long
noncoding RNAs (lncRNAs))

Chang
et al.

2021 Taiwan Neurosurgery ML analysis of
imaging,
radiomics

ML radiomics can predict
molecular subgroups of

medulloblastoma based on
differing MRI profiles of each

subgroup (AUCs of 0.82,
0.72, and 0.78)

Hsich et al. 2019 USA Transplant
surgery

ML
preoperative

risk
assessment

ML model evaluated which
variables have high

importance in predicting
heart transplant waitlist
mortality, including

glomerular filtration rate
(GFR), serum albumin, and
extracorporeal membrane
oxygenation (ECMO) usage

Giglio et al. 2023 Italy Transplant
surgery

ML
preoperative

surgical
decision-
making

ML models trained on donor
characteristics and CT scans
can accurately predict liver

donor graft weight to
optimize donor-recipient
matching with less errors
than other methods (p

< 0.001)

Gujio-
Rubio et al.

2020 Spain Transplant
surgery

ML
preoperative

risk
assessment

ML algorithms for
preoperative risk assessment

show promise in liver,
pancreas, kidney, heart, and

lung transplantation

Table 1.
Summary of included studies on preoperative artificial intelligence/machine learning (AI/ML).
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preventable complications, improving patient clinical outcomes, and maximizing
effective utilization of organs (Table 1) [41].

4. Intraoperative surgical decision-making

Although AL/ML-based algorithms and approaches can greatly improve patient out-
comes during preoperative use, perhaps the most promising and powerful use of these
programs is their ability to improve intraoperative care. Algorithms trained on patient
vital signs, various biometric and non-biometric characteristics, electrocardiography
(EKG), and other data points could be utilized to help facilitate real-time reduction of
various intraoperative risks, including those of hypertension, hypoxemia, massive hem-
orrhage, and other complications [42–44]. Loftus et al. write that this comprehensive
analysis of patient parameters using AI is especially important for more complex disease
states, such as frailty [45]. Though frailty is a multifactorial disease state affected by
physical, cognitive, and social variables, frailty is currently diagnosed by a few physical,
often subjective criteria. For instance, the Fried frailty phenotype assesses patients based
on their recent physical activity, subjective feelings of exhaustion, walking speed,
handgrip strength, and unintentional weight loss. Diagnosing frailty can therefore be
inconsistent, even though frailty is known to increase morbidity, mortality, and risk of
other comorbidities that also increase surgical risk. Through expert-led ML training on
large sets, algorithms could be developed to better classify complex disease systems such
as frailty or sepsis and improve intraoperative risk assessment [45]. These outputs could
further allow for augmented decision-making, or the advanced application of highly
sophisticated models that are trained on multiple iterations of the same surgical proce-
dure type. This, in turn, could provide decision-making assistance for surgical teams
performing same-type operation based on the patient’s vital signs, procedural charac-
teristics, the progression of the surgery, and various other potential characteristics [46].
For instance, if a machine learning model identifies that a certain constellation of
parameters was associated with worse outcomes, it could potentially suggest that the
surgical team addresses a specific aspect of patient care to improve the projected out-
come, or perhaps to reduce various complication risks [4, 47–50]. Komorowski et al.
showed the possibility of this type of AI through an algorithm that was able to suggest
optimal treatment and dosing options for sepsis patients leading to lower patient mor-
tality than human clinicians alone [51].

Surgery often places high demands on surgeons’ cognition, creating an opportunity
for ML/AI algorithms to reduce cognitive load and further identify ways to improve
surgical outcomes [50, 52, 53].

4.1 Intraoperative pathology and histology determination

Clinical algorithms based on AI/ML have the potential to be highly helpful when
healthcare professionals must quickly “make sense of” large amounts of aggregate/
consolidated data, including text-based content [54–56]. One of the fields within the
broader domain of “AI” that has gained particular interest in recent years is the so-
called “computer vision” [57, 58]. Advancements in computer vision have been
applied to object recognition, facial recognition, and action recognition, and potential
applications of this technology in the area of surgery and related specialties are readily
apparent [59]. This includes the use of AI to interpret radiologic imaging and a
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potentially important role in intraoperative histological analysis. The current proce-
dure/workflow for intraoperative pathology in many oncologic surgeries involves the
excision of a portion of the tumor, where the sample is then transported to the
laboratory for preparation and interpretation by a pathologist. This process can take
20–30 min, prolonging the overall surgical procedure and also potentially delaying the
diagnosis, where each additional step also contributes potential barriers to timely
diagnosis [60]. Applications of “computer vision” could potentially address challenges
associated with intraoperative interpretation of histology. Data are also emerging on
the use of ML algorithms in analyzing images from Raman spectroscopy to identify
malignant and benign tumors. The actual algorithm is functionally similar to the
process used in radiologic analyses, but Raman spectroscopy imaging can be further
processed to provide imaging more similar to hematoxylin and eosin (H&E) staining,
which may better allow surgeons and pathologists to verify ML classifications of tissue
samples [61]. Intraoperative pathology consultations are quite common in neurosur-
gical tumor procedures, breast cancer, hepatobiliary and pancreatic resections, lymph
node dissections, and dermatopathology [62–66]. These procedures may also benefit
from AI-aided streamlining of intraoperative histology and pathology in the future.

The use of computer vision algorithms in surgery can be further expanded to
include the characterization of molecular tissue margins. When removing malignant
tumors, patient outcomes are optimal with maximal resection of the tumor while
sparing as much healthy tissue as possible. Positive margins, or cancerous cells that
remain after incomplete resection, are associated with recurrence of cancer, leading to
worse patient outcomes. Some estimates indicate that positive margins may be found
in approximately 5% of liver and breast cancer resections, so identification of tumor
margins is still a significant problem that must be addressed [67, 68]. As mentioned
previously, Raman spectroscopy has already been used by pathologists to distinguish
neoplastic and normal tissue based on differential Raman scattering, but future
advancements could also lead to intraoperative Raman spectroscopy to determine
tumor margins [69]. Like with other imaging modalities, computer vision algorithms
in the future will be able to identify features such as positive margins. This could allow
surgeons to identify tumor margins within the operating room without needing to

Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Hatib et al. 2018 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML model was able to predict
intraoperative hypotension from
the analysis of perioperative
arterial pressure waveforms

(area under the curve (AUC of
0.95 15 min before hypotensive

event)

Lundberg
et al.

2018 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML model was able to predict
intraoperative hypoxemia from

preoperative patient
characteristics, real-time

ventilation settings, anesthetic
agents, etc.(AUC of 0.76

compared to that of 0.60 with
anesthesiologist’s prediction)
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Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Lee et al. 2022 Korea All surgical
disciplines

ML
intraoperative

risk
assessment

ML model using pre- and
intraoperative parameters

(arterial pressure waveforms,
oxygen saturation, and ST

segment elevation) was able to
accurately predict intraoperative
massive transfusion (AUC of

0.972 compared to that of 0.824
using the benchmark model)

Loftus et al. 2019 USA All surgical
disciplines

ML
intraoperative

risk
assessment

ML algorithms will be useful for
modeling complex disease states
(such as frailty and sepsis) for a
more accurate intraoperative

risk assessment

Yang et al. 2019 USA All surgical
disciplines

ML decision-
making

ML decision support tools may
be able to provide clinical

decision-making in all aspects of
medicine

Pappada
et al.

2013 USA Surgical
critical care

ML decision-
making

The ML model was able to
predict glycemic trends in
critically ill trauma and

cardiothoracic surgery patients
with 96.7% accuracy for normal

glucose values and 53.6%
accuracy for hyperglycemic

episodes

Komorowski
et al.

2018 UK Surgical
critical care

ML decision-
making

The ML model was developed to
recommend sepsis treatment
strategy and dosage based on
patient demographics, vital
signs, laboratory values,

medications received, etc., and
patient mortality was the lowest

when clinician treatments
matched AI recommendations

Barth and
Seamon

2015 USA All surgical
disciplines

ML decision-
making

Situational awareness is vital for
patient safety, and AI may help
reduce cognitive load to increase

situational awareness

De Melo
et al.

2020 USA All surgical
disciplines

ML decision-
making

Virtual assistants significantly
decreased self-reported

cognitive load in participants
undergoing cognitively

demanding tasks

Voulodimos
et al.

2018 Greece All surgical
disciplines

Computer
vision

Recent advancements in
computer vision include object
detection, face recognition,
action recognition, and pose

estimation

Hollon et al. 2020 USA Neurosurgery Computer
vision

Computer vision models can
analyze Raman spectroscopic
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wait for margins to be identified histologically, increasing efficiency and outcomes of
tumor resection surgeries (Table 2).

5. Enhancement of laparoscopic and minimally invasive surgery

In addition to aiding in tumor resections, computer vision is likely to impact many
other aspects of surgery, especially with the increased integration of minimally invasive
and robotic surgery [70]. Computer vision ML algorithms in the future may be able to
process real time the videos taken during minimally invasive surgery (MIS) and robotic
surgery, providing the surgeon with a broad array of additional, structured, and poten-
tially actionable information. For example, computer vision algorithms may be useful in
enhancing laparoscopic images. Given the anatomy of the abdomen, one issue common
to an entire range of laparoscopic video signals is the quality of images. Nonuniform
lighting, light-absorbing surfaces and substances (e.g., blood), along with other reasons
for low endoscopic visibility, may lead to increased surgical risk and decreased effi-
ciency in the operating room (OR) [71]. Because of these potential setbacks, computer
vision algorithms may be able to process laparoscopic images in real time, digitally
increasing lighting, removing vapor haze, and potentially filling in aspects of the image
that may be obscured due to low visibility [72]. These applications have the potential to
greatly improve ease-of-use of laparoscopes during surgery, decreasing the risk of
incorrect targeting and decreasing the amount of time spent operating.

Further integration of computer vision in surgery could even lead to better identi-
fication of important anatomical landmarks in minimally invasive and robotic sur-
gery. As mentioned previously, computer vision has already been used to identify
objects in images and faces in security videos, and a logical extension of these uses
would be the capacity to identify important surgical landmarks. For instance, rates of
bile duct injury in laparoscopic cholecystectomies (LCs) have been seen to hover

Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

images to aid real-time
intraoperative brain tumor

diagnosis (overall accuracy of
94.6% compared to that of
93.9% with pathologist

interpretation)

Orringer
et al.

2017 USA Neurosurgery Computer
vision

Computer vision model can
process Raman spectroscopy of

brain tumor samples into
simulated H&E staining and can
be used to classify brain tumors

(AUC of 0.984)

Daoust et al. 2021 Canada Surgical
oncology

Computer
vision

Computer vision model
validated on porcine tissue can
identify tissue margins based on

Raman spectroscopy with
accuracy of 0.990 and 0.967

Table 2.
Summary of included studies on intraoperative artificial intelligence/machine learning (AI/ML).
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around 0.45–0.8% [73, 74]. One of the most common causes of bile duct injury in LCs
is misidentification of the common bile duct for the cystic duct [75]. An ML model
trained on imaging data from laparoscopic surgeries was developed to identify critical
anatomy in LCs in video with near-human accuracy, potentially leading to reduced
risk of bile duct injury in LC in the future [76]. The largest challenge in building a
model for this use would be the requirement for labeled video information. More
specifically, any actionable model would need to be trained on many videos of lapa-
roscopic surgeries in which the cystic duct is pre-identified in each of the thousands of
frames within each training video. This formidable task is further complicated by the
natural anatomical variations in human anatomy, necessitating the need for an even
larger test data set of “normal variants” that can be encountered in the OR. Despite
current limitations, it is likely only a matter of time before high fidelity models can be
created, with significant resultant downstream benefits.

Of importance, AI/ML may also play a role as a component of augmented reality
(AR) in surgery [77, 78]. One example with relatively mature application of AR is the
area of spine surgeries, such as using the XVision Spine System (Augmedics, Arling-
ton Heights, IL, USA) [79]. In this instance, AR-guided surgery works by using CT or
MRI imaging to develop a three-dimensional (3D) model, then employing the AR
program to overlay the model on the patient using AR glasses or other image projec-
tion modalities. Though this is a relatively new technology, initial studies investigating
the use of AR systems in cadaveric pedicle screw placement indicate an absolute
increase of accuracy from 88% (via fluoroscopy) to 94% (via AR guidance) [80]. In
the immediate future, AR implementations will most likely be concentrated in ortho-
pedic surgery and neurosurgery due to the relative immobility of bones and the spine
compared to visceral organs. However, the potential increased use of peri- and
intraoperative imaging in abdominal and thoracic surgeries may increase the viability
of AR guidance in other operation theaters [81, 82].

5.1 Surgical education

Perhaps, the most significant benefit of AR in surgery is in medical education.
Head-mounted devices used in AR have already proven useful in various aspects of
medical education, including anatomy and surgery [83]. In the near future, AR may
allow surgeons to practice various procedures anywhere in a low-stakes environment
and decrease cognitive effort, allowing for a more sustained practice [84]. AR may
eventually be used within the operating room as a teaching tool, allowing surgeons to
manipulate personalized models of the patient’s organs based on some of the tech-
niques described previously. Thus, AR may become a valuable supplemental tool to
train future surgeons and other specialists who want to practice procedures.

Machine Learning algorithms may play other essential roles in surgical education.
Aspiring surgeons start their training with varying degrees of motor skill and learning
abilities, with the use of ML algorithms in the future, students may be able to be
classified based on generated learning curves. Gao et al. were able to analyze the
proficiency of students performing various surgical tasks using an algorithm to predict
the number of trials needed for each student to proficiently complete the task [85].
Similar algorithms in the future may be applied to planning surgical resources for
students based on the need to optimize learning for all students within a surgical
program. Other ML programsmay be able to provide feedback to learners about specific
skills. For instance, surgical skill is an important factor in patient outcomes, directly
preventing complications and indirectly in mediating other elements such as the length
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of surgery [86]. Thus, measuring and improving surgical skills is important in improv-
ing patient care. However, there is a lack of practical objective assessments of surgical
skill and dexterity. Currently, many assessments of surgical skills are subjective in
nature [87]. AI algorithms may be able to address these concerns.

Video-based learning remains a promising learning method for surgical resi-
dents [88]. However, video-based review can be limited by having to parse
through long videos, especially when reviewing multiple examples. Hashimoto et al.
show that it is possible to develop a computer vision model capable of accurately
identifying distinct phases of a surgery [89]. This technology allows surgeons to
quickly find specific stages of an operation for more efficient review, and similar AI
models have been validated in other types of surgeries as well [90]. While out of the
scope of these studies, these models could be supplemented with AI that directly
analyzes the surgeon’s skills. For instance, an algorithm could be created to rate
surgical motion economy within the operation theater, and by proxy surgical skill
[91]. Using videos of surgeons performing the same procedure, the algorithm may be
able to provide objective feedback on the motion economy and path length compared
to other surgeons in a video database. AI programs that combine surgical phase
recognition and surgical skill analysis could be used to indicate certain stages of the
procedure where the surgeon could improve motion economy. Surgeons, especially
those in training, may not be completely aware of unnecessary movements they are
making during surgery, and these algorithms could provide an objective way to
compare and teach motion economy. AI algorithms may be applied to similar mea-
sures, such as fluidity of motion, force application in laparoscopic surgery, or a
combination of these factors. In the future, these algorithms may provide objective
insight into surgical skills and dexterity, allowing for targeted practice of specific skills
(Table 3).

Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Kumar
et al.

2015 USA Minimally
invasive
surgery

Computer
vision

Computer vision algorithms, especially
with growing usage of surgical robots,
may be used to decrease cognitive load

through identification of
intraoperative phases and

segmentation of objects and people
within the surgical theater

Xia et al. 2022 Canada Minimally
invasive
surgery

Computer
vision

Computer vision algorithm can
enhance and refine laparoscopic

images to optimize vision in occluded
regions of the abdominal cavity

Ruiz-
Fernandez
et al.

2020 Spain Minimally
invasive
surgery

Computer
vision

Computer vision application was able
to process imaging from laparoscopic
surgeries to remove water vapor haze
and improve visibility in dark areas

Owen et al. 2022 UK Minimally
invasive
surgery

Computer
vision

Computer vision algorithm developed
to identify critical structures in
laparoscopic surgeries 65–75%

accuracy (compared to 70% baseline).
Labels were verified by three expert

surgeons afterward
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Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Qian et al. 2019 USA All surgical
disciplines

Augmented
reality

Augmented reality could innovate
surgery in several ways, including

surgical guidance during laparoscopic
surgeries, overlay of tumor margins,

feedback of distance between
instrument and anatomical structures,
and the planning of port placement

Gorpas
et al.

2019 USA Surgical
oncology

Augmented
reality

Augmented reality program can
overlay fluorescence data within the da

Vinci surgical robot for real-time
identification of normal and malignant

tissue

Peh et al. 2020 Germany Spine
surgery

Augmented
reality

Augmented reality surgical navigation
showed improved accuracy of thoracic
and lumbar pedicle screw placement in

cadavers compared to standard
fluoroscopy-guided pedicle placement

(94% vs. 88%)

Soler et al. 2004 France Abdominal
surgery

Augmented
reality

Augmented reality shows promise in
digestive surgery through 3D modeling

of abdominal structures, overlay
visualizations during operations, and

planning of needle targeting

Rad et al. 2022 Thoracic
surgery

Augmented
reality

Augmented reality may be used in
thoracic surgery to improve surgical
training, enhance planning through

visualization of structures, and provide
visual assistance during surgery

Peden et al. 2016 UK Surgical
education

Augmented
reality

Augmented reality in suturing skill
development in suturing-naïve

students has been shown to be more
enjoyable than conventional learning
with comparable skill development

Barteit
et al.

2021 Germany Surgical
education

Augmented
reality

Augmented and virtual reality surgical
simulations of sleeve gastrectomy led
to subjective decreased cognitive effort

and decreased stress

Gao et al. 2020 USA Surgical
education

ML ML model trained on initial
completion times of suturing-naïve
medical students was able to predict

the number of trials needed for
proficiency

Hashimoto
et al.

2019 USA Surgical
education

Computer
vision

Computer vision algorithm can
identify the specific phase of

laparoscopic sleeve gastrectomy with
over 85% accuracy

Garrow
et al.

2021 Germany Surgical
education

Computer
vision

Computer vision algorithms have
shown the ability to identify the
specific phase of various surgeries
including sleeve gastrectomy,
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6. Postoperative risk assessment

The use of ML and AI in postoperative risk assessment would work similar to peri-
and intraoperative risk assessment using patient vital signs and characteristics. After
performing a surgery, the surgeon must be able to triage patients by likelihood of
postoperative complications. Improperly triaged high-risk patients may be sent to
hospital floors where there is a high patient-to-clinician ratio, which can limit the
frequency of patient assessments and lead to higher rates of morbidity and mortality
[92]. Loftus et al. were able to develop an AI model capable of using pre- and periop-
erative labs and vital signs, intraoperative anesthesia variables (such as intraoperative
high inspired oxygen fraction (FIo2)), and postoperative evaluations (including
scheduled postop location) to identify undertriaged patients at risk of postoperative
complication [92]. In the future, similar technology could be integrated into the
electronic health record and send mobile alerts to physicians, allowing for quicker
alterations to patient care [93]. Because postoperative risk assessments may utilize
more complete information, they have been shown to provide a more accurate pre-
diction of postsurgical prognoses and complications [94, 95].

Machine learning models for postoperative care will also be better suited for
predicting pain management needs of the surgical patient. Opiates are common med-
ications prescribed for postoperative pain. However, the opioid epidemic affects over
3 million people in the USA, and it is estimated that 500,000 people in the USA are
dependent on opiates [96]. Physicians are now much more aware of the risks of opioid
addiction; therefore, opioid dependence and abuse are important considerations to
make when prescribing opioids for postoperative pain. A few studies have investi-
gated the use of ML to predict long-term opioid use. One study developed a model to
predict long-term opioid use, defined as opioid prescriptions that were requested in
addition to the original prescription, in patients who underwent elective hip
arthroplasty. Internal validation indicated that the model had good predictive value
for the testing cohorts in the study [97]. Other studies have looked at the use of
similar algorithms in breast cancer surgery, anterior cruciate ligament (ACL) recon-
struction, and joint arthroplasty [98–100]. While these studies did not utilize external
validation, these proof-of-concept studies indicate that ML in the future may have
utility in predicting long-term opioid use, allowing for more informed prescription of
pain medications and potentially earlier identification of patients at risk for opioid
dependence.

Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

laparoscopic cholecystectomy, and
colorectal surgery

Azari et al. 2019 USA Surgical
education

Computer
vision

Computer vision data for tracking
surgeon hand movements during
surgery were used to train an ML
model for evaluating surgical skill,
with measures of motion economy
being most precise (R2 = 0.64)

Table 3.
Summary of included studies on computer vision and augmented reality (AR).
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Machine learning algorithms may also be used for gait analysis in postoperative
care. For most elective joint surgeries, postoperative assessment involves patient-
reported outcome measures or performance-based metrics like the range of motion
and mobility [101]. These assessment methods may introduce bias through subjective
ratings of outcomes measures by the patient or through biased ratings of performance
metrics by physicians [101]. Gait analysis using ML may be able to provide ancillary
objective analysis of postsurgical outcomes. One study showed that an ML model
incorporating walking speed, gait cycle, maximum force of a step, and other biome-
chanical variables was able to separate patients who had total knee arthroplasty with
patients who underwent unicompartmental knee arthroplasty [102]. Other studies
have shown similar potential in total knee arthroplasty and ACL reconstruction
[103, 104]. Furthermore, computer vision can likely be leveraged to increase the
power of these models. Currently, there exist programs that allow users to mark parts
of the body in videos, such as the knees and elbows, and follow the motion of these
structures throughout the video. However, manual input of data is time-consuming
and prone to human error. To alleviate these concerns, multiple markerless models
have been developed to map out patient gait, tracking the movement of anatomical
structures such as the ankles, knees, hips, shoulders, head, and arms that do not
require human input [105–107]. Based on gait estimation from video, future ML
algorithms may be able to stratify patients based on how well they will regain function
following surgery. Algorithms may also be able to identify which patients might
experience recurring issues or may be at higher risk of falls based on their gait
(Table 4) [108].

Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Loftus
et al.

2021 USA Surgical
critical care

ML
postoperative

risk
assessment

ML algorithms trained on pre- and
intraoperative patient data
extracted from the hospital

Electronic Health Record (EHR)
were used to develop a model that
could accurately identify critically
ill patients who were undertriaged
(Area under the receiver operating
characteristic curve (AUROC) of

0.92)

Ren et al. 2022 USA Surgical
critical care

ML
postoperative

risk
assessment

ML algorithm trained on real-time
perioperative data extracted from
hospital EHR could predict and

alert physicians about categorized
postoperative complications (AUC
between 0.78 and 0.89 depending

on complication predicted)

Shahian
et al.

2012 USA Cardiac
surgery

ML
postoperative

risk
assessment

ML models trained on data
combining clinical and

administrative data allowed for the
analysis of perioperative and long-

term postoperative data for
accurate prediction of survival up

to 2500 days post-CABG
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Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

Forte
et al.

2022 Netherlands Cardiac
surgery

ML
postoperative

risk
assessment

ML models implementing
postoperative data were more

accurately able to predict 30-day
and 1-year mortality compared to
models using just preoperative data
(AUCs of 0.75 and 0.79 using pre-
and postoperative data vs. areas
under the curve (AUCs) of 0.70
and 0.69 using preoperative data

only)

Kunze
et al.

2021 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML models trained preoperative
data, including Harris hip score,
age, body mass index (BMI), etc.,
were able to predict prolonged
opioid use in patients after hip
arthroscopy (AUC of 0.75)

Lötsch
et al.

2018 Germany Surgical
oncology

ML
postoperative

risk
assessment

ML models trained on clinical and
psychological data (such as
subjective answers to pain

perception surveys) were able to
accurately exclude the possibility
of persistent pain (95% accuracy)
following breast cancer surgery,
although it was unable to predict
patients who would experience

persistent pain

Anderson
et al.

2020 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on preoperative
demographic data, military

employment data (such as rank
and time deployed), and

prescription data was able to
predict patients at risk of long-term
opioid use (AUC of 0.76) following

ACL reconstruction surgery

Gabriel
et al.

2022 USA Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on patient
demographic data, comorbidities,
and perioperative data (such as
postoperative day 1 (POD1)

morphine equivalents) was able to
predict long-term opioid use (up to

AUC of 0.94 with balanced
bagging classifier)

Kokkotis
et al.

2022 Greece Orthopedic
surgery

ML
postoperative

risk
assessment

ML algorithms may be able to
provide insight into gait and

postoperative outcomes following
total knee arthroplasty and ACL
surgeries through the use of
biomechanical measurements

Jones
et al.

2016 UK Orthopedic
surgery

ML
postoperative

risk
assessment

ML algorithm using biomechanical
measurements was able to

differentiate between patients who
underwent total knee arthroplasty
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7. Autonomous robots and artificial intelligence

While the aforementioned applications of AI/ML will greatly enhance surgical
outcomes, the most impactful applications of AI will involve the development of
autonomous robots that will be able to apply and expand on these algorithms. Robotic
autonomy can be categorized based on the need for human involvement in robot
function. Within this proposed scale: a 0 denotes a machine that has no inherent

Source Year of
publication

Country of
origin

Surgical
discipline

Studied AI/
ML

algorithms

Major findings relevant to this
review

and unicompartmental knee
arthroplasty, and who had gaits
much more similar to healthy

patients

Martins
et al.

2015 Portugal Orthopedic
surgery

ML
postoperative

risk
assessment

ML model was used to determine
gait differences based on three
different assistive devices after
total knee arthroscopy, allowing
for the classification of the type of

assistive device used

Kokkotis
et al.

2022 Greece Orthopedic
surgery

ML
postoperative

risk
assessment

ML model trained on ground
reaction forces and biometric data
allowed for the classification of

ACL-deficient, ACL-reconstructed,
and healthy patients with accuracy

of up to 94.95%

Cao et al. 2017 USA Orthopedic
surgery

Computer
vision

Convolutional neural network was
implemented to create a program
that could estimate human poses

even with occlusion of feet or arms
during motion

Chen
et al.

2022 China Orthopedic
surgery

Computer
vision

ML models could classify the type
of gait based on computer vision-
aided anatomical markers and
calculations with up to 98%

accuracy

Moro
et al.

2022 Italy Orthopedic
surgery

Computer
vision

Computer vision algorithm allows
for automated gait analysis with
biomechanical measurements

comparable to manually marked
video

Ng et al. 2020 Canada Orthopedic
surgery

Computer
vision

Computer vision-aided models
trained on human pose estimation

and gait variables identified
cadence, average margin of

stability, and minimum margin of
stability as factors significantly
associated with falls during the

study

Table 4.
Summary of included studies on postoperative artificial intelligence/machine learning (AI/ML).
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autonomy and is rather completely controlled by the operator, a 1 represents a robot
that the operator controls but provides some degree of assistance, and 2–5 represent
varying levels of autonomy; a 5 represents “true autonomy” of the machine without
need for human intervention [109]. Currently, most surgical machines score at level 0
or 1, with machines such as the da Vinci surgical system and robotic endoscopic
systems falling squarely in these categories [110]. Applications of level 2 automated
robots, such as performing autonomous suturing, have been described [111]. At the
current stage, automatons are limited to the autonomy of simple tasks, though there is
a push to develop machines that may autonomously perform more complex tasks.
Some experiments using phantom tissue have shown success using autonomous robots
to ablate abnormal tissue or perform anastomosis of the small bowel, but these exper-
iments were performed on phantom tissue in idealized experimental settings with low
trial numbers [112]. Still, these proof-of-concept experiments show that higher-level
autonomous robots might emerge sooner rather than later. These complex autono-
mous robots would integrate multiple sensory modalities, from computer vision to
tactile sensation to proprioceptive or auditory information [113].

As AI gets more complicated, the process of training also becomes increasingly
complex. Three main learning methods exist for visual-based learning for artificial
intelligence: imitation learning, reinforcement learning, and transfer learning [114].
Imitation learning is a method of learning involving the observation of an expert
performing the task. Based on the observed actions, the algorithm updates its knowl-
edge (also known as policy) to be more like the demonstration [115]. In an ideal
environment, imitation learning will lead to the most reproducible behavior [116].
The use of imitation learning in surgery is limited because of its inability to generalize
behaviors. When environments are dissimilar to the demonstration environments,
such as differing orientation of visceral organs or working with anatomical variations,
the performance of imitation learning algorithms will be suboptimal [116]. This can be
alleviated somewhat by dividing the imitation task into subtasks and training subtasks
depending on starting circumstances. However, generalizability is still lower than in
the other learning methods [115].

Reinforcement learning is another type of learning that is used in AI. This method
of learning involves trial-and-error, where the agent performs its task and updates its
actions based on the outcomes of its actions. An example of reinforcement learning is
the training of the chess engine AlphaZero, in which the engine played many simu-
lated games with itself and improved its playing ability based on the outcomes of each
game [117]. Reinforcement learning is a powerful tool that is better able to generalize
behaviors compared to imitation algorithms, but reinforcement requires many trials
to optimize performance. Additionally, training a model in a real surgical environ-
ment is dangerous.

Fortunately, AI flaws can be circumvented via transfer learning, which essentially
involves the agent learning through reinforcement learning in a simulated environ-
ment and transferring its knowledge to a real environment [114]. Using the simula-
tion, the agent can quickly be trained on many trials before being transferred to real
circumstances. Issues for transfer learning are readily apparent; when there is discor-
dance between simulation and real environments, the performance of the model will
be suboptimal. A few methods have been proposed to improve transfer learning out-
comes. One method is simply improving the quality of the simulation. Computational
simulations are much more efficient than physical manipulations of simulated envi-
ronments, and improvements in computational power are enhancing virtual simula-
tion environments to better model the real world. Other methods involve changing
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the policies of the agents to better adapt to circumstances that were not seen during
simulation training. One proposed system involves the learning of multiple skill
latents in simulation. Broadly defined, “skill latents” represent prelearned or
predetermined “primitive skills” which can be subsequently combined within a
“model-predictive control” environment to perform more complex tasks [118]. These
skill latents can then be accessed and simulated in real time when situations arise that
have not been seen before, and the skill latents that produce the optimal effect can be
chosen for the agent’s actions [118]. Instead of perfectly modeling the real world, this
approach tries to make the AI’s learning as flexible as possible and/or applicable.
Because transfer learning models can be trained in simulation, and because these
models can be adaptive, it is likely that autonomous surgical robots in the near future
will use transfer learning models to navigate the surgical field (Table 5).

Source Year of
publication

Country of
origin

Surgical
discipline

Studied
AI/ML

algorithms

Major findings relevant to this
Review

Shademan
et al.

2016 USA All surgical
disciplines

Automation An autonomous robot using
computer vision and an automated
suturing algorithm was able to

perform suturing tasks on ex vivo
and living porcine tissue

Hu et al. 2018 USA Neurosurgery Automation Autonomous robot using computer
vision algorithms was able to create
a 3D reconstruction of the surgical
cavity and successfully perform
robotic ablation of a surgical

phantom in seven out of ten trials

Tapia et al. 2020 Switzerland All surgical
disciplines

Automation A proprioceptive liquid-metal
stretch sensor was able to

reconstruct deformation of soft
actuators in real time

Hua et al. 2021 China All surgical
disciplines

Automation Deep reinforcement learning,
imitation learning, and transfer
learning are the main methods to

teach autonomous robots

Rivera
et al.

2022 USA All surgical
disciplines

Automation Machine learning through
primitive imitation led to increased
performance compared to other

learning algorithms in two
different primitive tasks

Kumar
et al.

2022 USA All surgical
disciplines

Automation Though imitation learning
algorithms are very powerful in
ideal settings, reinforcement
learning is more optimal when

there is sufficient noise in the data
set for various different learning

policies and tasks

Silver et al. 2018 USA All surgical
disciplines

Automation Reinforcement learning algorithm
was used to create a program

capable of learning and optimizing
performance in chess, shogi,

and Go
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8. Nanotechnology

One technological field that is gaining increased interest in recent years is
nanotechnology. Nanotechnology refers to devices or machines on the scale of
microns and encompasses a wide range of technologies, including nanosensors,
nanoparticles, and nanobots [119]. Nanotechnology opens doors to new therapeutics
for a variety of reasons. Most obviously, the size of these devices allows access to
previously inaccessible spaces. Due to the nanoscale size of these machines, they have
higher surface area-to-volume ratios, leading to increased reactivity, and quantum
effects play a larger role in interactions compared to macroscale sizes [120]. While
nanotechnology does not necessarily need to involve artificial intelligence, these two
fields may work synergistically to help surgeons in the future provide interventions not
previously possible.

Because “nano-machines” operate on a scale much smaller than conventional
robots, nanotechnology can allow for better and more selective delivery of drugs, such
as chemotherapy agents. For instance, nanoparticle capsules may protect agents from
enzymatic degradation or unfavorable pH environments or allow drugs to cross the
blood–brain barrier [121, 122]. Additionally, one of the most powerful aspects of
nanotechnology is the increased specificity of drug delivery targeting. Attaching spe-
cific moieties to nanoparticles can allow for targeted binding and release of encapsu-
lated contents [123]. This application has implications in cancer treatment. Although
chemotherapeutic agents are useful in treating cancer, these drugs often cause a wide
range of adverse effects due to systemic distribution of these drugs. Various nanopar-
ticle vessels, including nanocrystals, liposomes, and carbon nanotubes, can be fitted
with surface coatings allowing cell-specific delivery of cancer therapies, ultimately
reducing side effects [121, 124, 125]. AI may further increase the specificity of nano-
particle drug delivery through analysis of patterns of biomarkers. Through the inte-
gration of AI in biomarker sensing, the presence of different groups and
concentrations of certain biomarkers can allow for classification of disease type and
stage, enabling targeted and modifiable release of drugs from nanocapsules [126].
The selectivity of nanoparticles can also be leveraged for targeted ablation therapy
for certain cancers. For instance, synthetic high-density lipoprotein nanoparticles
were used to facilitate the delivery of photothermal ablative agents to hepatocellular
carcinoma cells in mouse models, reducing tumor burden and stimulating local
immune response [127]. Similar technologies could be applied to other ablation tech-
niques, including radiation, cryoablation, and electroporation, in a wide variety of
cancers [128].

Source Year of
publication

Country of
origin

Surgical
discipline

Studied
AI/ML

algorithms

Major findings relevant to this
Review

He et al. 2018 All surgical
disciples

Automation Transfer learning algorithms
involving prelearned skill latents
could be successfully applied to
complete new tasks (such as

drawing and pushing an object)

Table 5.
Summary of included studies on autonomous robots.
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Besides use in surgical oncology, nanotechnology may allow surgeons to operate
on a nanoscale. Atomic force microscopy (AFM) may be an integral part of
nanosurgery in the future. At its core, AFM consists of a microscopic cantilever
fitted with a tip along with a laser and photodetector. As the tip of the AFM
traverses along a surface, such as tissue, changes in the surface will move the tip and
cause deflections of the laser, which can be detected by the photodetector [129]. The
use of AFM enables the detection of several angstroms of change [129]. Furthermore,
the force applied by the tip to the surface can be used to touch, push, and cut the
surface, providing the ability to manipulate membranes, proteins, and DNA [130–
132]. Some experiments show the viability of using AFM to alter cell morphology and
puncture cell membranes of individual cells [133]. Other uses of AFM in the future
include signaling pathway identification, targeted drug delivery using specialized
AFM tips, and disruption of cellular connections, such as dendrites, without
interfering with cell bodies [130, 134]. Other potential “nano-machines” are limited
only by human creativity and may include nanopropellors, nanowires, and
“nanograbbers” (microscopic machines created by Leong et al. capable of performing
in vitro biopsies) [134, 135].

Besides the direct manipulation of tissue, nanotechnology also makes possible
a wide range of other surgeries. For instance, nanotechnology may increase the
feasibility of islet transplantation in diabetes. While the results from the
Edmonton protocol show that islet transplantation has promise in long-term
glycemic control in type 1 diabetes, practicality of islet transplantation was limited by
immune response against exogenous islet cells, causing gradual loss of islet function
[136]. These concerns could be addressed by encapsulating islet cells with
nanoparticles, with several approaches having been investigated to decrease immu-
nogenicity of exogenous compounds [137–139]. Thus, alongside improving drug
delivery, nanoparticle capsules may also be used to shield contents and suppress
immune response.

Finally, nanoparticles may play roles in facilitating hemostasis and preventing
infection after surgery. Many different hemostatic nanomaterials, such as
mesoporous xerogels, polyphosphate-bound gold colloids, titanium dioxide (TiO2)
nanotubes, and many others, have peen proposed [140]. While additional
properties of each nanomaterial differ, they are thought to function by providing
scaffolding for coagulation factors [140]. Antimicrobial nanoparticles may also be
used for infection control in surgery. Postoperative infection carries a high rate of
morbidity. An estimated 11% of deaths in the intensive care unit (ICU) resulted
from surgical site infections [141]. Because of this need, antimicrobial nanoparticles
may be able to address postsurgical infection risk. Silver nanoparticles have shown
promise in accumulating within bacteria and disrupting various cellular processes,
such as DNA replication and protein translation [142]. Silver nanoparticles have the
potential to improve infection control, especially in orthopedic surgery. Orthopedic
implants are susceptible to colonization of biofilm-forming bacteria, which can lead
to high risk of morbidities [143]. One concern is the dose-dependent toxicity on
human tissue attributable to silver nanoparticle use [144]. However, studies have
indicated that osteocytes may be more resilient to this specific type of toxicity.
Though silver nanoparticles initially decrease Saos-2 (human osteosarcoma cell line)
survivability, Saos-2 cells seem to adapt to silver nanoparticle exposure over the
course of 35 days in vitro [143]. Given these findings, it is possible that silver
nanoparticles may be used to coat orthopedic implants that reduce the effect of
osteoblast function (Table 6).
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Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/ML
algorithms

Major findings relevant to
this review

Roduner 2006 Germany All surgical
disciplines

Nanotechnology Nanorobots have unique
properties due to their

microscopic size, including
increased surface area-to-
volume ratios and increased
strength of quantum effects

Hofferberth
et al.

2016 USA Thoracic
surgery

Nanotechnology Nanotechnology may have
numerous uses in thoracic

surgery, such as nanoparticles
mapping lymphatic drainage

of malignant tumors,
targeting tumor cells for drug
delivery, and selective cell

ablation

Krůpa et al. 2014 Czech
Republic

Neurosurgery Nanotechnology Various nanotechnologies
have shown promise in

transporting drugs across the
blood–brain barrier, allowing
for targeted delivery into

brain tumors

Zhang et al. 2013 China Surgical
oncology

Nanotechnology Nanotechnology may be able
to improve cancer care
through encapsulated

chemotherapy drugs, allowing
for targeted distribution.
Nanoparticles may also be
able to increase intracellular
accumulation of drugs within

cancer cells

Xu et al. 2021 China Surgical
oncology,
urology

Nanotechnology Nanotechnology may be able
to improve bladder cancer

care through targeted
intravesical delivery of

various drugs

Khawaja 2011 Pakistan Neurosurgery Nanotechnology Nanotechnology may improve
glioblastoma multiforme

outcomes through targeted
chemotherapy delivery,

thermo- and photo-therapy,
and surgical nanorobots

Adir et al. 2020 Israel Surgical
oncology

Nanotechnology,
ML

ML algorithms can be used to
analyze complexes of

biomarkers to classify various
cellular disease states,

allowing for targeted delivery
of drugs via nanotechnology

Wang et al. 2021 China Surgical
oncology

Nanotechnology Nanoplatforms may be able to
improve the delivery of
cancer drugs as seen in

multiple studies

Binnig et al. 1986 USA All surgical
disciplines

Nanotechnology Atomic force microscope that
could measure vertical
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Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/ML
algorithms

Major findings relevant to
this review

displacement of the cantilever
tip less than 1 Å was

developed

Song et al. 2012 USA All surgical
disciplines

Nanotechnology A modified atomic force
microscope setup that would

allow for mechanical
manipulation of cellular
samples, with possible

applications to separating
cellular junctions, was created

Li et al. 2005 USA All surgical
specialties

Nanotechnology A modified atomic force
microscope attached with

specific antibodies was used to
recognize cellular receptors
and provide augmented

reality feedback to the user,
allowing for

nanomanipulation of the
sample

Wen and
Goh

2004 Canada All surgical
specialties

Nanotechnology Atomic force microscopy was
able to incise a single collagen

fibril

Yang et al. 2015 USA All surgical
specialties

Nanotechnology Atomic force microscopy was
used to penetrate fixed HaCaT
cell membranes and disrupt
intermediate filaments,
leading to decreased

intercellular connections

Brodie and
Vasdev

2018 UK All surgical
specialties

Nanotechnology Nanomachines, such as
micropipettes to cleave
dendritic connections or

“micrograbbers” to biopsy-
specific cells, may innovate
nanosurgery in the future

Leong et al. 2009 USA All surgical
specialties

Nanotechnology A tetherless, temperature-
activated microgripper

190 μm when closed was able
to take biopsy samples from

ex vivo tissue samples

Im et al. 2012 South
Korea

Surgical
oncology

Nanotechnology Coating rat allotransplanted
islet cells with nanolayer
shielding almost doubled
survival against immune
response (6.8 days vs.

3.6 days)

Park et al. 2018 South
Korea

Surgical
oncology

Nanotechnology Nanolayer shielding of
allotransplanted islet cells was
validated in monkey models,
with heparin nanoshielded
islet grafts surviving average
of 108 days vs. 68.5 days in

the control
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9. Limitations and concerns

Though AI shows great promise in changing many aspects of medical and surgical
care, it is important to highlight the limitations of this technology. The construction of
ML algorithms is reliant on large amounts of data to create generalizable algorithms
that limit unnecessary data within the data set [145]. The classification of ML model
algorithms can identify tumors from imaging. Both training and test data sets still
require annotation, manpower, and time [12, 146]. These factors limit how quickly
these algorithms can be generated. Additionally, ML algorithms identify patterns from
input data without interpretation or critical analysis and may be prone to biases within
the data set. There often exist biases in who participates in clinical trials, and this may
lead to outputs that disproportionately segregate minorities and other groups which
are not as well represented in the training data for the ML model [147, 148]. In some
cases, minute changes or fluctuations in the input data can drastically affect the model
field output [146]. In the same vein, poor data, such as poor video or image quality,
can have deleterious effects on the quality of the model [149]. Because of this,

Source Year of
publication

Country
of origin

Surgical
discipline

Studied AI/ML
algorithms

Major findings relevant to
this review

Izadi et al. 2018 Iran Surgical
oncology

Nanotechnology Nanolayer shielding of mouse
islet cells with poly(ethylene
glycol) was conjugated with
Jagged-1 (JAG-1), which led
to significant reduction in
fasting blood glucose (p

< 0.01)

Sun et al. 2018 China Orthopedic
surgery

Nanotechnology Nanotechnology has enabled
the development of many
different kinds of synthetic

hemostatic materials,
including silica-based

xerogels, self-assembled
peptides, ethylene/propylene
oxide gels, TiO2 nanotubes,
polyphosphate gold colloids,

and others

Rai et al. 2012 India All surgical
disciplines

Nanotechnology Silver nanoparticles have been
shown in various studies to

have broad-spectrum
antimicrobial effects through
disruption of various cellular

processes

Castiglioni
et al.

2017 Italy Orthopedic
surgery

Nanotechnology High concentrations of silver
nanoparticles initially reduced

Saos-2 osteogenic cell
numbers, but this reduction

decreased over 35 days
without impairing cellular

differentiation

Table 6.
Summary of included studies on nanotechnology.
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standardization of imagining techniques and video characteristics is vital for model
efficacy [146]. Verifying the integrity of these models is integral to maintaining
patient autonomy. Faulty or biased recommendations made by AI models can affect a
patient’s ability to provide informed consent for their care [150]. Finally, there may be
a risk for “adversarial attacks,” defined as data inputted in the training set with the
intention of biasing outputs [151]. Notably, potential methods for adversarial attacks
have been identified for every type of machine learning model and may be as overt as
modifying input data or as seemingly innocuous as rotating an image slightly
[151, 152]. There may be many reasons for adversarial data input, from fraudulent
reimbursement to altering research outcomes, so it is vital that methods are
implemented to prevent intentional and unintentional biases in these models.

Ethical concerns surrounding the use of AI center around oversight and liability. It
is important that AI is tested and verified before actual clinical use, but there are
currently no governing body and no approval process for reviewing ML algorithms in
clinical care, let alone for autonomous surgery [12]. This is especially important
because of the “black-box” effect, which is especially prevalent in deep learning
algorithms. Due to the existence of “hidden” layers in deep learning neural networks,
it is often not entirely clear how the AI model arrives at its output, and this can limit
how much trust physicians and patients put in the recommendations made by these
algorithms [153]. Without entities to review these algorithms, AI will remain primar-
ily experimental. There are many legal concerns regarding the use of AI in surgery.
One of the most prominent concerns among physicians is liability [154, 155]. Cur-
rently, there is essentially no case law on the legality of AI in clinical settings [155].
Therefore, legal entities must establish how malpractice and liability are handled if
complications occur because of the use of AI. Without answers to complex legal
questions, the use of AI in surgery will be severely limited. According to Price et al.,
physicians are incentivized to minimize the use of AI under current law. Normally, a
physician’s actions are privileged under tort law if normal standard of care is followed
[155]. However, if a physician follows AI recommendations that go against the current
standard of care, even if the AI recommendation is correct, any resulting poor out-
comes could lead to litigation [155]. Thus, under current law, the clinical use of AI will
mostly be limited to confirming clinical decisions, greatly reducing the potential value
of AI. Finally, in cases where data are stored on the cloud or in cases where data are
crowd-sourced, there may be data privacy concerns [149]. Additionally, in shared
data, there may be concerns about the ownership of uploaded data [149]. Thus, with
each application of AI, terms must clearly delineate medicolegal terms, who owns
uploaded data, and how models may be monetized.

10. Future implications for surgeons

Though important barriers must be addressed before AI/ML can be more broadly
implemented in direct patient care, it is evident how powerful AI/ML can be in
finding patterns and facilitating/directing clinical care in the future. While some
surgeons may be concerned about AI replacing job opportunities in the future, AI
should instead be seen as a dynamic tool for enhancing surgeons’ abilities to provide
optimal patient care. AI algorithms in the near future will potentially improve the
diagnosis of conditions and enhance the prediction of complications. These algorithms
can consolidate vast amounts of data—more than any surgeon could reasonably cog-
nitively process—and thus may be ideal in helping surgeons identify patients at risk
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for certain complications, ultimately making surgeries safer for patients [156]. This is
addition to many other benefits appreciated across immediately adjacent clinical and
nonclinical fields, applications, and implementations. When properly leveraged, the
use of AI will help decrease cognitive load and allow surgeons to focus more on other
aspects of patient care.

Artificial intelligence may enhance many aspects of patient care in the future, but
machines cannot replace the human aspect of medicine. Though AI will allow pro-
viders in the future to parse massive data sets and find patterns that would previously
have been missed, AI does not diminish the need for human-human interaction and
the surgeon-patient relationship [157]. The surgeon-patient relationship is still an
essential aspect of care and is still vital in gaining the trust of the patient. Given the
complex nature of ML algorithms, patients may not be willing to trust recommenda-
tions from AI, especially in the near future. Thus, surgeons will remain instrumental
in the care of patients and can serve as advocates for the many uses of AI in the future.
Though surgeons in the future may utilize AI to enhance diagnosis, medical manage-
ment, and surgical procedures, it is critical that they do not solely rely on these
algorithms. Reliance solely on AI may lead to the “deskilling” of providers and may
lead to missing mistakes made by these algorithms [158].

Finally, while AI/ML may help enhance many other aspects and facets of patient
care, it is critically important to remember that it is most likely surgeons will be
ultimately responsible for interpreting patterns identified by AI and determining the
role of AI in surgery. Therefore, it is vital for surgeons to work with data scientists,
machine learning experts, and other healthcare team members to determine how AI
can be utilized for optimal patient care. AI has the potential to be a powerful tool, but
it will only be as helpful as the surgeons who wield it.

11. Conclusions

Artificial intelligence and machine learning have a myriad of uses in surgery in all
surgical disciplines. AI may enhance disease diagnosis, help surgeons identify patients
at risk of complications, and improve the ease of minimally invasive surgery. Fur-
thermore, AI shows promise in improving surgical education and may eventually be
used in fully autonomous surgery and nanosurgery. Despite its potential uses, AI is
currently limited by large data requirements, concerns about the integrity of data
input, and ethical and legal considerations. Surgeons should work to address these
issues and take an active role in determining the best ways to implement AI to
optimize patient care.
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Abstract

The last decade has witnessed a significant increase in the relevance of artificial 
intelligence (AI) in neuroscience. Gaining notoriety from its potential to revolutionize 
medical decision making, data analytics, and clinical workflows, AI is poised to be 
increasingly implemented into neurosurgical practice. However, certain considerations 
pose significant challenges to its immediate and widespread implementation. Hence, 
this chapter will explore current developments in AI as it pertains to the field of clinical 
neuroscience, with a primary focus on neurosurgery. Additionally included is a brief 
discussion of important economic and ethical considerations related to the feasibil-
ity and implementation of AI-based technologies in neurosciences, including future 
horizons such as the operational integrations of human and non-human capabilities.

Keywords: artificial intelligence, neurosurgery, machine learning, deep learning, 
neural networks, telemedicine, robotic neurosurgery

1. Introduction

Beginning with Harvey Cushing’s work in the early 1900s, modern neurosurgical 
advancements are often entwined with parallel developments in both medical and non-
medical technologies [1]. Just as the application of microscopy, endoscopy, computed 
tomography (CT), magnetic resonance imaging (MRI), and ultrasound in neurosurgery 
have revolutionized and transformed the field, artificial intelligence (AI) is poised to do 
the same [2]. The past decade has witnessed exponential growth in research seeking to 
reconcile AI and neurosurgery, with primary goals of improving patient outcomes and 
enhancing quality of care. Academic interest toward the intersection of the two fields is 
very evident, with literature search permutations of the phrase “neurosurgery and AI” 
revealing over 20,000 absolute publications in the last 10 years on the PubMed database 
[3]. As AI grows in sophistication, ease of applicability, and prominence, it may grow 
and develop to be intrinsically tied with neurosurgical care in the future. This chapter 
will provide an overview of the current thoughts and applications of AI in neurosurgery 
within pre-, intra-, and postoperative contexts, evaluate the nuances of AI functionality 
in both developmental and use stages, consider implementation costs, feasibility, and 
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limitations. We will also discuss any misconceptions related to the integration of AI 
within neurosurgery, with a focus on dispelling both exuberantly optimistic and overly 
negative views.

2. Methods

A literature search was performed using Google Scholar ™ search keywords of 
“artificial intelligence in medicine,” “robotic neurosurgery,” “artificial intelligence 
and neurosurgery,” and “cost of artificial intelligence in medicine.” This keyword 
search was mirrored in PubMed. The PubMed database and Google Scholar ™ were 
also searched for information on the basic information and explanation of artificial 
intelligence technologies, using the keywords “machine learning and neurosurgery,” 
“neural networks in neurosurgery,” and “deep learning in neurosurgery.” There were 
no de facto inclusion criteria and no specific time limitation or time frame to the 
articles being utilized; rather, the articles were included based on relevance or relation 
to artificial intelligence use in medicine and the neuroscience field.

3. Artificial intelligence development and use: woos and woes

Artificial intelligence is an emerging field broadly defined as a set of technologies 
capable of incorporating human behavior and intelligence into machines and systems 
[4]. Due to its potential scope in diagnostic efficacy and treatment recommendations, 
AI is poised to be increasingly implemented into healthcare and clinical practice. 
However, a better understanding of what AI entails is warranted.

3.1 Machine learning

A discussion of AI in neurosurgery would be incomplete without a basic under-
standing of machine learning (ML), a subfield of AI [5]. The accelerated increase in 
computerization of patient data in healthcare has resulted in vast quantities of infor-
mation beyond what can be reasonably digested by traditional methods of statistical 
analysis, commonly referred to as “big data” [6]. However, the emergence of ML has 
unlocked new possibilities for the extraction and identification of potentially valuable 
patterns from not only past data, but also created a framework for predicting future 
data trends [7–9]. The predictive potential of ML can only be harnessed when the 
model can be presented with large quantities of annotated data [10]. For instance, in 
radiographic imaging, ML is able to treat each computerized picture element, or pixel, 
as its own unique variable. Thus, when fed large quantities of data, the ML algorithm 
can learn at a degree of complexity (e.g., trace contours of fracture lines, parenchymal 
opacities, etc.) and a scale that is beyond natural human capabilities [10].

Machine learning subdomains have traditionally been grouped into two large 
categories: supervised and unsupervised learning. The former uses annotated datasets 
to train an algorithm to predict outcomes on unseen data; unsupervised learning, 
however, uses ML to cluster datasets without using labels, enabling the extraction 
of unknown features that may be useful for categorizing and predicting relevant 
clinical outputs without human intervention [11]. Nevertheless, many ML models in 
healthcare have been shown to demonstrate performance no better than conventional 
statistical methods [12, 13]. It should be repeatedly emphasized that the field of ML, 
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in addition to being new, still possesses many fundamental weaknesses that limit its 
immediate widespread applicability.

Using diagnostic testing to determine the presence or absence of disease is an 
essential process in clinical medicine. In these scenarios, test results are oftentimes 
obtained as continuous values, which require conversion and interpretation into 
dichotomous groups to determine the presence or absence of a disease [14]. A key 
stage in this process involves defining a cut-off value, or reference value, to differenti-
ate normal from abnormal conditions. The receiver operating characteristic (ROC) 
curve, the primary tool used for this determination, classifies a patient’s disease 
state as positive or negative based on test outcomes, simultaneously identifying the 
optimal cut-off value with the best diagnostic performance [14]. The area under the 
curve (AUC) serves as a singular, scalar value summarizing the overall performance 
of a binary classifier [15]. This measure provides an aggregate evaluation of perfor-
mance across all potential classification thresholds. In essence, the AUC measures the 
two-dimensional area beneath the ROC curve from points (0,0) to [1,1]. An AUC of 
1.0 signifies perfect, error-free classification, whereas an AUC of 0.5, comparable to 
a random classification method like a coin toss, holds no diagnostic value. Typically, 
an AUC exceeding 0.8 is deemed acceptable in non-medical contexts, and an AUC 
surpassing 0.9 is considered excellent [16].

Nonetheless, it is crucial to underscore that strong performance as indicated 
by AUC values greater than 0.80 does not necessarily guarantee a robust model. If 
machine learning algorithms have not been cross-validated with novel datasets, they 
risk being overfit to past data, compromising their generalizability [14]. Thus, when 
attempting to leverage the model to predict performance on unseen data, the ML 
model may, at best, only offer slight gains compared to traditional statistical analysis 
[12, 13, 17–19]. Additionally, the robustness of any given ML model is directly depen-
dent on the quality and quantity of data fed. If biases from differences in data collec-
tion methodologies are present in a dataset, both generalizability and performance of 
the model are negatively impacted [10]. Furthermore, the AUC is often presented with 
a 95% confidence interval because the data obtained from the sample are not fixed 
values but rather influenced by statistical errors. Finally, the use of real-world data 
inherently introduces corruptions in the dataset, also known as “noise.” Random noise 
in input datasets can confound ML tasks of classification, clustering, and association 
analysis in addition to increasing model complexity and time of learning, all of which 
can degrade the performance of the learning algorithm as noise cannot be easily dis-
tinguished from desired inputs unless appropriately pre-processed before introduction 
to the model [20, 21]. In other words, despite impressive AUC values, such models may 
lack reliability when applied to new, unseen data, underscoring the critical importance 
of rigorous validation processes in the development of diagnostic tools.

3.2 Neural networks

The basic functional unit of the nervous system is the neuron [22]. Neurons 
function by receiving an input, processing the signal, and generating an output 
signal [23, 24]. Anatomically speaking, neurons are capable of consolidating up to 
thousands of neurotransmitter-driven synaptic inputs simultaneously via dendritic 
extensions, processing a highly transformed version of the original inputs in the 
soma, and producing a singular output through its axon in the form of an action 
potential [25]. Importantly, neuronal outputs are not generated at a fixed rate but 
rather are a function of whether or not the signal summation (excitatory - inhibitory 
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inputs) exceeds a predefined threshold value in order to successfully depolarize the 
neuron and induce an action potential [26–28]. After traveling through the axon, 
the action potential signal is transmitted to a multiplicity of neurons synapsed at the 
axon terminal.

Broadly speaking, artificial neural networks (ANNs) model the biological princi-
ples of neuronal signaling in order to stratify and solve complex, nonlinear problems 
[29]. Considered a subfield of ML, ANNs refer to a digital machine learning algorithm 
based upon the concept of a biological neuron. Comparatively, where neurons rely on 
neurotransmitter signaling inputs ANNs leverage binary, categorical, or numeric data 
sets [5]. Transformation of input signals at the soma into an action potential is akin to 
an ANN arithmetic-based calculation of inputs into an output [30].

Although the theory underlying ANNs was first developed in the 1980s, premier 
advances in computational power and training data acquisition at scale have enabled its 
extensive application in recent years. In neurosurgery, ANNs have grown to be increas-
ingly utilized in diagnostics, prognostics, and management [31]. Deep learning (DL) is 
yet another class of algorithms increasingly studied in the literature. Although similar 
to neural networks in principle, the term “deep” refers to the increasing depth of layers 
present in the neural network – typically accepted to imply at least three layers [32].

The ability to analyze non-linear data by ANNs is ideal for assisting neurosurgeons 
in clinical decision-making [33]. In particular, ANNs have been widely demonstrated 
to be superior to traditional analytical methods, especially as it pertains to clinical 
imaging tasks [34]. Even so, significant challenges still exist which limit the wide-
spread use of ANNs and DL in neurosurgery and medicine at large, including insuf-
ficient data, obscured interpretability, reliability of data, high threshold of processing 
power, and data privacy [3].

3.3 Natural language processing

Natural language processing (NLP) is another subfield that falls under the scope 
of ML. As its name implies, the goal of NLP is to better enable human-computer com-
munication by leveraging natural human language to better perform data abstraction 
processes [35]. In other words, the computer functions to understand human-gener-
ated text inputs by breaking down sentences into their constituent parts and applying 
algorithms to derive meaningful outputs. There are two primary divisions within the 
field of NLP: rules-based models and machine-based models. A rules-based model 
boasts minimal set-up costs, however is burdensome to scale for large datasets and 
inflexible as language usage evolves over time; conversely, machine-based models are 
preferable for large datasets as it can circumvent the rigidity of rules-based model 
while adapting to evolutions in human lexicon over time [36]. Three methodological 
approaches that dominate the application of NLP to neurosurgery are classification, 
annotation, and prediction [37]. Classification involves providing further diagnos-
tic information, and informing the surgeon’s decision making in the preoperative 
phase. Annotation entails automatizing the annotation of a large amount of data 
(e.g., radiological images) by identifying specific phenotypes related to a disease 
condition, enabling the NLP algorithm to train on much larger amounts of data and 
better extrapolate clinical outcomes. Prediction exploits previous data (e.g., free text 
notes) to predict patient surgical outcomes and enable the neurosurgeon to arrange 
the resources necessary for their care accordingly. Machine-based NLP as applied to 
neurosurgery and medicine at scale remains in its infantile stages, though its possibili-
ties rise with the emergence of Large Language Models.
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3.4 Large language models

Large Language Models (LLMs) like ChatGPT, developed by OpenAI, are a new 
wave of AI technology that have profound implications for diverse fields, including 
healthcare. Educated on a colossal quantity of textual data, these models grasp the 
delicate intricacies and nuances of human language, thereby equipping them to form 
pertinent and contextually relevant responses to a broad spectrum of prompts [38].

In March 2023, the performance of ChatGPT and GPT-4 was assessed on a 
500-question mock neurosurgical written boards examination. Using Self-Assessment 
Exam 1 from the American Board of Neurological Surgery (ABNS), Ali et al. fed ques-
tions in single best answer, multiple-choice format. ChatGPT and GPT-4 achieved 
scores of 73.4 and 83.4%, respectively, relative to the question bank user average of 
73.7% [39]. Both the question bank users and the LLMs exceeded the previous year’s 
passing threshold of 69%, demonstrating the models’ potential technical utility [39].

In a clinical context, including neurosurgery, LLMs could serve multiple pur-
poses. Firstly, they could play a significant role in patient education, simplifying 
complex neurosurgical procedures, and providing insights into the recovery process 
in an accessible language [40]. Secondly, these models could help facilitate medical 
research, from identifying new hypotheses to aiding in clinical decision-making by 
providing summaries of recent research, medical literature, or guideline updates 
relevant to specific cases [41].

Another promising application lies in the realm of medical documentation. LLMs 
could help transcribe doctor-patient conversations, draft surgical reports, or sum-
marize patient histories, thereby streamlining administrative tasks and allowing 
physicians to focus more on patient care [42]. Continuing Medical Education could also 
benefit from LLMs. By simulating complex clinical scenarios or generating case stud-
ies, these models could serve as an effective teaching tool for medical trainees [43].

4. Preoperative applications

The goal of the preoperative phase of care is to prepare both the neurosurgeon and 
the patient for a potential operation through means of diagnosis, surgical candidacy 
stratification, selection of treatment, and informed consent. AI is increasingly enter-
ing these realms as a potential adjunct to clinical practice.

4.1 Patient selection

A quantitative means of evaluating an individual patient outcome preoperatively 
is highly desirable in improving surgical decision-making. At the present moment, 
clinical outcome judgment is heavily reliant on the individual neurosurgeon. 
Prognostic indices in use today, though easily applicable, lack adequate predictive 
performance primarily due to the streamlining of numerical data to categorical data 
[44, 45]. Conversely, ML, by its very nature, could circumvent such a simplification.

Until now, previous literature has compared neurosurgical patient outcome 
predictive performance between ML algorithms, classical logistic regressions, prog-
nostic indices, and neurosurgeons with differential results. Against classical logistic 
regressions, ML models have demonstrated superior performance in predictions of 
successful endoscopic third ventriculostomy, postoperative ventricular peritoneal 
shunt infection, mortality after embolization of AVMs, patient satisfaction after 
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laminectomy for lumbar spinal stenosis, in-hospital mortality in patients with trau-
matic brain injury, cerebral vasospasm after aneurysmal subarachnoid hemorrhage, 
and outcomes after a burr-hole procedure for a chronic subdural hematoma [45–52]. 
Against current logistic regression prognostic indices for prediction of successful 
endoscopic third ventriculostomy (ETV) 6 months postoperatively, ANNs have dem-
onstrated superior performance [45]. Masoudi et al. found that for ETV prediction 
6 months postoperative, their multi-layer perceptron ANN demonstrated an AUC 
of 0.913 compared to a logistic regression AUC of 0.819 [53]. Some ML models have 
shown better performance compared to prognostic indices predicting outcome after 
stereotactic radiosurgery for cerebral arteriovenous malformation (AVM) with AUCs 
of 0.70–0.71 vs. 0.57–0.69 [44, 52]. A random forest classifier (RFC), a class of ML 
model achieved an AUC of 0.80, with 0.34 sensitivity, 0.95 specificity, 0.73 positive 
predictive value, 0.80 negative predictive value, and 0.79 accuracy for the prediction 
of traumatic brain injury in children following a cranial CT of the brain, demonstrat-
ing a substantial alternative to the currently used nomogram for the prediction of 
intracranial injury following CT in children with TBI [54].

Some recent studies have investigated the differences in ML and clinician perfor-
mance in predicting neurosurgical outcomes in patients. Emblem et al. found that 
against fuzzy C-means, a class of ML model, neuroradiologists performed similarly 
in survival predictions for newly diagnosed glioma patients [55]. Emblem et al. also 
discovered that a support vector machine (SVM) model combined with perfusion-
weighted magnetic resonance (MR) imaging better predicted survival in glioblastoma 
patients compared to neuroradiologists [56]. Currently, although especially expe-
rienced neurosurgeons have been demonstrated to exhibit strong patient survival 
prediction skills in patients with high-grade glioma undergoing surgery on group-
wide metrics, they often missed on the individual level [57]. Hence, future AI tools 
could help bridge this gap by supporting neurosurgeons’ insights in the prediction of 
patient survival.

4.2 Diagnostics

Both LLMs and ML have utilization within diagnostics. LLMs can serve as an 
adjunct to the patient evaluation process by suggesting rarer diagnoses and interven-
tions that the physician may not have typically considered. These can be incorporated 
with the overall clinical picture as appropriate. The potential scope of which ML can 
be applied to diagnostics is largely divided between three categories: classification, 
detection, and segmentation. Classification involves algorithmic stratification of data 
inputs into categories (e.g., normal, abnormal). Detection entails visual localiza-
tion of an area of interest (e.g., lesion). Segmentation implies outlining a target area 
using a precise, pixel-wise boundary [58]. The following categories will elucidate the 
various areas through which general ML and deep learning (DL) models have been 
applied to neurodiagnostics.

4.3 Intracranial hemorrhage

Earlier efforts were able to determine important correlations between imaging 
characteristics, the presence of intracranial hemorrhage (ICH), and patient outcomes 
[59–61]. Today, approved commercial software for ICH detection exists on the market 
with clinical uses including triage and early warning systems, double reading, and 
hemorrhage type classification. Boasting a validated sensitivity of 88.7 to 96.2% and 
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a specificity of 92.3 to 99.0%, Aidoc for ICH, an FDA-approved DL tool, is one of 
the industry’s leading support systems for evaluation and warning notification of 
unenhanced head CT images of ICHs [62–66]. Aidoc for ICH and other DL learning 
models have been demonstrated to produce inconsistencies in performance when 
applied to non-native trained clinical sites [64, 67]. Thus, further studies have sought 
to investigate alternatives including competing commercial software in addition to 
independently developed models. For instance, McLouth et al. and Rava et al. have 
validated the diagnostic capabilities of other DL ICH tools such as CINA v1.0 and 
Canon’s AUTOStroke Solution ICH across hospital sites in the United States, finding 
high accuracy and specificity with medium sensitivity thresholds [68, 69]. Wang 
et al., winners of the 2019-RSNA Brain CT Hemorrhage Challenge, developed a con-
volutional neural network (CNN) using a diverse array of datasets sourced from three 
institutions that achieved accuracy levels similar to that of senior radiologists [67]. 
Despite the outstanding results of the algorithm, it is important to note that the CNN 
model’s applicability in clinical settings is currently limited by (1) the lack of patient 
clinical information in the RSNA-challenge provided datasets, thereby obscuring the 
confounding effects of scanner type, cause of bleeding, and patient demographics, 
(2) its inapplicability to MRI imaging which is oftentimes crucial for ICH screening 
and diagnosis, and (3) external validation data are lacking [67].

4.4 Stroke

In the past decade, deep learning applications in stroke imaging have dramati-
cally risen, likely as a byproduct of higher stroke imaging volume with the arrival of 
endovascular thrombectomy in addition to the increasing acknowledgement of the 
emergent nature of the disease process [58]. DL applications to stroke imaging can be 
divided into three areas: (1) Alberta Stroke Program Early CT Score (ASPECTS) mea-
surement, (2) large vessel occlusion (LVO) detection, and (3) infarct prognostication.

ASPECTS is a 10-point topographical quantitative grading scale widely used to 
guide acute stroke treatment by measuring 10 regions within the middle cerebral 
artery (MCA) territory for early signs of ischemia [70, 71]. Many commercial DL 
tools designed to perform automated ASPECTS evaluation have been tested in clinical 
settings, demonstrating variable results. One study found that three neuroradiologists 
showed a higher correlation with infarct core than e-ASPECTS (Brainomix) (r = 0.71, 
0.76, 0.80, compared to 0.59) while another study found that RAPID ASPECTS (iSch-
emaView) displayed higher correlation than two neuroradiologists from between 
symptom onset and imaging until 4 hours post-symptom [72, 73]. These results 
suggest that automated ASPECTS evaluation may continue to be implemented as an 
adjunct to current neuroradiological diagnostics. The efficacy of ASPECTS analysis 
depends on the software utilized and established ground truth.

Early identification of large vessel occlusion (LVO) in the early stages of admission 
can mitigate the probability of the patient suffering from the long-term implications of 
stroke and rescue life. A 2019 study developed a U-Net architecture DL tool designed to 
detect the hyperdense MCA sign in noncontrast head CT scans from a local Hong Kong 
population and achieved a high sensitivity (.930), though relatively lower specific-
ity accuracy and AUC [74]. Automated LVO detection on CT angiograms (CTA) has 
become integral to many stroke centers. Viz-AI, a commercial CNN-based solution, has 
demonstrated 82% sensitivity and 94% specificity for LVO detection [71].

The ability to accurately and reliably predict posttreatment stroke outcomes 
can aid the neurosurgeon in selecting patients for thrombectomy or other 
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neuroendovascular procedures and developing a plan of care precisely tailored to the 
individual patient. Recent stroke thrombectomy trials utilizing automated perfusion 
CT and MR imaging have revolutionized the modern care of stroke patients. The now 
commercially available Rapid.AI perfusion product, which employs a threshold-based 
segmentation method, resulted in a 3-fold reduction in severe disability and death 
when used to select patients for thrombectomy [75]. However, CT perfusion (CTP) 
maps have historically been unreliable and threshold-based approaches may fail to 
fully capture the complexity of infarct evolution. Processing this data under a DL 
system, one can take into account other biomarkers and patient-specific factors for 
better prognostication. One study validated a CNN designed to identify and predict 
post-treatment MRI final lesion volume, achieving a modified ROC-AUC of 0.88 [76]. 
Nishi et al. used a U-Net DL tool to assess clinical post-treatment outcomes of LVO 
patients using pretreatment diffusion-weighted image data of patients who under-
went mechanical thrombectomy, finding an ROC-AUC of 0.81 [77].

4.5 Intracranial aneurysms

Intracranial aneurysms (IAs) are commonplace in the population, with a global 
estimated prevalence between 2 and 5% [78]. Although most of these aneurysms are 
asymptomatic, they carry the risk of rupture which if realized leads to a subarachnoid 
hemorrhage – a prognosis producing a dramatic case fatality of 50% [79]. Thus, there 
is great interest in the rapid and accurate identification of unruptured intracranial 
aneurysms on brain imaging.

At the present moment, intra-arterial digital subtraction angiography (IADSA) is the 
gold-standard for the diagnosis of intracranial aneurysms, with computed tomography 
angiography (CTA), magnetic resonance angiography (MRA), and transcranial Doppler 
sonography also shown to be effective diagnostic tests [80]. Time-of-flight MR angi-
ography (TOF-MRA) is a non-invasive, non-contrast enhanced technique that enables 
discrimination between vessels and stationary tissues by inducing blood inflow effects 
[81]. Due to the absence of ionizing radiation or intravenous contrast agents, time-of-
flight MR angiography (TOF-MRA) is typically the first modality of choice for aneurysm 
screening. Hence, many inroads for DL applications have been explored in this area.

Nakao et al. developed a computer-assisted detection (CAD) deep CNN archi-
tecture combined with a maximum intensity projection (MIP) algorithm trained on 
450 patients worth of TOF-MRA scans. The team achieved a high sensitivity of 94.2% 
(98/104) and only 2.9 false positives per case [82]. Faron et al. similarly developed a 
CNN model finding an overall sensitivity of 90% with a false positive rate of 6.1%. 
More consequently, the Faron team further found that there was no significant differ-
ence in aneurysm detection performance between the CNN model and two blinded 
diagnostic neuroradiologists, with an overall increase in human detection sensitivity 
when combining their detection hits with the CNN model’s hits (reader 1: 98% vs. 
95%, P = 0.280; reader 2: 97% vs. 94%, P = 0.333) [83].

Ueda et al. developed a ResNet architecture algorithm fed with 683 TOF-MRA 
patient scans and achieved a sensitivity of 91% (592 of 649) and 93% (74 of 80) for 
their internal and external data sets, respectively [84]. More interestingly, the model 
improved aneurysm detection in their retrospectively collected TOF-MRA scans by 
4.8% (31 of 649) and 13% (10 of 80), respectively, compared to the initial radiologist-
interpreted assessments.

Until recently, machine-learning algorithms largely focused on MRA imag-
ing. However, more recent efforts were expanded to include CT-based imaging 
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approaches. In 2020, Shi et al. developed a 3D CNN trained on 1177 digital subtrac-
tion angiography verified bone-removal CTA cases, which when tested on a cohort of 
suspected acute ischemic stroke (AIS) patients found that the model could exclude 
IA-negative cases with 99.0% confidence [85]. Limitations in their study include 
a relatively small sample of positive cases in the validation cohorts as well as the 
experimentally reasonable exclusion of CTA data with head trauma and arteriovenous 
malformation/fistula (AVM/AVF). In 2021, Yang et al. proposed a 3D CNN algorithm 
for detecting cerebral aneurysms using head CTA images, achieving a very high sen-
sitivity of 97.5% (633 of 649) while revealing 8 intracranial aneurysms overlooked in 
initial reports [86]. When the model was paired with expert radiologists, their overall 
weighted alternative free-response receiver operating characteristic (wAFROC) 
curve improved by 0.01 (P < .05), demonstrating the viability for physician-machine 
adjunct usage.

4.6 Neuro-oncology

For over a century, neurosurgeons have played an essential role in the management 
of cancers afflicting the central nervous system (CNS). As the tenth leading cause of 
death for both men and women, accurate clinical evaluation of disease progression, 
and early detection of brain tumors using effective brain imaging techniques is para-
mount to improving patient outcomes. Historically, the preoperative phase involved 
manual segmentation of brain tumors and small related brain structures by the neuro-
surgeon – a laborious task [87]. Hence, many automated solutions have been explored, 
with the broadest categories for automated brain tumor segmentation of MR images 
including (i) intensity-based, (ii) ML-based, and (iii) hybrid-based approaches.

The intensity-based approaches are among the most conventional methods used 
in brain tumor segmentation, relying on a basic analysis of pixel values within the 
spatial domain. The thresholding technique, for instance, functions by binarizing the 
MR image by pixel intensity relative to an intensity threshold [87]. This technique, 
however, suffers from many limitations including sensitivity to noise and intensity 
non-homogeneity. Also classified as an intensity-based approach, the region-based 
method involves using pre-defined pixel/voxel conditions to extract intensity infor-
mation by locating a region following seed point selection and connecting pixels with 
similar intensity values; many studies have recently improved upon this technique but 
suffer from limitations such as inability to remove noise, subjective manual setting 
of parameters, and annotation bias [88–92]. Most existing methods rely on such fully 
supervised methods [93].

Largely due to the aforementioned constraints and inflexibility, ML-based 
approaches to brain tumor segmentation have increasingly been explored, both 
in traditional ML as well as DL forms. Many recent studies leveraging traditional 
ML models have shown equal or superior performance relative to the conventional 
intensity-based models, though observing limitations in some studies such as subjec-
tive user-directed pixel label refinement of segmentation results, sensitivity to noise 
and distortions, non-uniform intensity distribution, and extraction of redundant 
features [94–96].

In the past decade, interest toward deep learning as applied to brain tumor segmen-
tation has soared in popularity due to its anticipated superior performance compared 
to more conventional models of data abstraction. Many studies have relied on 
extracting 2D patches from 3D MR images to use as inputs for the 2D CNN [97–109]. 
Though CNNs have generally demonstrated improved performance compared to its 



Artificial Intelligence in Medicine and Surgery – An Exploration of Current Trends, Potential…

200

intensity-approach counterparts, model training is often time-consuming as a large 
amount of training data, parameters, and processing power are required. Furthermore, 
3D contextual information is often bypassed in 2D CNNs, thus spurring the devel-
opment of 3D CNNs in recent years [110–115]. Although 3D CNNs enable better 
exploitation of 3D features from MR image information data, high computational 
resources (i.e. high network intensiveness and memory consumption) limit its wide-
spread applicability. Thus, 2.5D deep neural networks (DNNs) approaches have been 
explored; Wang et al. validated a cascaded 2.5D model which improved segmentation 
accuracy by striking a balance between memory consumption and model complexity, 
demonstrating superior inference compared to already established models such as 
DeepMedic and ScaleNet [116–118].

Recently, Pham et al. introduced a hybrid metaheuristic-ML model to circum-
vent sensitivity to noise, intensity non-uniformity, and trapping into local minima 
and dependency on initial clustering centroids [119]. However, this model suffered 
from decreases in performance, though its introduction spurred the development 
of many hybrid models to find an optimal balance between each efficiency metric 
[96, 119–122]. Other hybrid approaches such as DL-traditional ML and ML-contour 
based models, though better than conventional methods, have not observed overall 
efficiency greater than the metaheuristic-ML hybrid [87]. At the present moment, the 
literature indicates that deep learning based and hybrid-based metaheuristic models 
are the most efficient and reliable methods available, though its widespread applica-
tion requires further validation. Despite improvements in deep learning models as 
applied to brain tumor segmentation, it is imperative to note that limitations in tumor 
morphological uncertainty, low contrast resolution, annotation biases during data 
labeling, and imbalanced voxel distribution persist. Thus, advances in AI can aid the 
neurosurgeon in various brain tumor segmentation contexts though neurosurgeons 
should remain cautious when using DL models to inform his or her clinical judgment.

4.7 Spine

From the genesis of AI applications in surgery spine has been a site of significant 
innovation in ML and DL models, generating opportunities for applications in scolio-
sis quantification, vertebral fracture detection, and vertebral body segmentation.

The Cobb measuring method is the gold standard for quantification of the 
scoliotic curve [123]. With the digitalization of computerized radiography, most 
surgeons opt to use built-in computer software such as the Picture Archiving and 
Communications System (PACS); despite the proven efficiency of the software 
relative to the traditional “manual” method of Cobb angle measurement, systems like 
PACS use software (e.g., Surgimap) which requires users to manually select the upper 
and lower ends of vertebral bodies inherently introduces human error [123–127]. 
Hence, Cobb angle measurement has been an area of significant AI exploration.

Caesarendra et al. utilized a deep CNN to measure the Cobb angle of patients diag-
nosed with adolescent idiopathic scoliosis, producing accuracies up to 93.6% which 
demonstrates a high reliability compared to neurosurgeons’ measurement (intraclass 
correlation coefficient > 0.95) [123]. Sun et al. assessed DL models based upon CNNs 
designed to segment each vertebra and locate the vertebral corners, finding a very 
high intraclass correlation coefficient (ICC) of 0.994, with a Pearson correlation 
coefficient and mean absolute error between the model and orthopedic annotation of 
0.990 and 2.2° ± 2.0° [128]. These results are especially promising in cases where the 
Cobb angle does not exceed 90°.
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AI applications in vertebral fracture detection have generated tremendous inter-
est due to the relative ease in algorithmic-driven image discrimination relative to 
other neurosurgical contexts. Many studies have evaluated both ML and DL models 
in the context of fracture detection. Tomita et al. utilized a deep neural network to 
detect osteoporotic vertebral fractures trained upon 1432 CT scans, finding an ROC-
AUC between 0.909 and 0.918 with an F-score of 90.8% and accuracy of 89.2%, 
measures approximately equivalent to radiologists [129]. Small et al. tested C- 
spine, an FDA-approved CNN developed by Aidoc to detect cervical spine fractures, 
finding an accuracy, sensitivity, and specificity for the CNN and radiologists of 92 
vs. 95%, 76 vs. 93%, and 97 vs. 96%, respectively [130]. Derkatch et al. trained a 
CNN binary classifier fed with dual-energy x-ray absorptiometry data to vertebral 
compression fractures, which yielded an ROC-AUC of 0.94 with a sensitivity of 
87.4% and a specificity of 88.4% [131]. Thus, these data suggest that ML and DL 
models can serve as an accessory to the radiologist and the neurosurgeon in verte-
bral fracture detection.

Currently, only a few semi-automatic methods for disc and vertebral labeling 
exist and are widely utilized. However, these methods are inundated with subjectiv-
ity due to the presence of user-directed input. Hence, many studies have sought 
to develop alternative methods to enhance accuracy and efficiency in radiological 
evaluation. Lehnen et al. demonstrated the feasibility of using a single CNN to 
identify various degenerative changes of the lumbar spine from MR images, finding 
high diagnostic accuracy for intervertebral disc detection/labeling (100%), spinal 
canal stenosis (98%), and nerve root compressions (91%) as well as moderately 
high diagnostic accuracy for disc herniations (87%), extrusions (86%), bulgings 
(76%), and spondylolisthesis (87.61%) [132]. However, the generalizability of their 
study is limited by a small sample size and exclusion of patients over 70 years old. 
Furthermore, the use of CNNs for spine segmentation is not particularly novel; in 
2018, Whitehead et al. trained a cascade of CNNs and achieved Dice scores of 0.832 
and 0.865 for vertebrae and discs, respectively [133]. Huang et al. developed a DL 
tool appropriately named Spine Explorer which quickly and automatically segments 
and measures lumbar MR images, achieving a near perfect mean Intersection-over-
Union (IoU) of 94.7 and 92.6% for the vertebra and disc, respectively [134]. A year 
later, Shen et al. expanded the scope of Spine Explorer to include the paraspinal 
muscles and the spinal canal, finding IoU values of 83.3 to 88.4% and 82.1%, 
respectively [135]. However, both studies using Spine Explorer suffered from a low 
patient sample size. Recently, Cheng et al. developed a two-stage MultiResUNet 
DL model for the automatic segmentation of specific intervertebral discs, which 
yielded a segmentation accuracy of 94%, potentially indicating its eminence over 
other DL models, such as the U-Net, CNN-based, Attention U-Net, and standard 
MultiResUNet models [136].

Spine imaging findings are often insufficient in the determination of the underly-
ing cause of lower back pain (LBP) and are often not of clinical significance due to 
the high frequency of asymptomatic presenting patients. NLP algorithms, however, 
can bridge the gap in data abstraction in the relationship between spine imaging 
findings and LBP. Tan et al. developed an NLP to identify lumbar spine imaging 
findings related to LBP on x-ray and MR radiology reports, demonstrating a signifi-
cantly greater sensitivity (0.94, compared to 0.83 for rules-based), a higher overall 
AUC (0.98, compared to 0.90 for rules-based), and comparable specificity (0.97 vs. 
0.95 for rules-based) when compared to the rules-based model [36]. Miotto et al. 
developed a convolutional neural network which, after training on manual free-text 
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clinical notes on LBP patients, was able to discriminate between acute and chronic 
LBP (AUC of 0.98 and F score of 0.70), demonstrating the potential for systematiza-
tion of patient symptomatology [137].

5. Intraoperative applications

The intraoperative phase of patient care revolves around optimizing the neurosur-
geon’s functionality and performance in the operating room (OR). AI’s role intraop-
eratively includes augmented reality (AR), ML for pathology and neurooncologic 
applications, using algorithms to automate identification of intraoperative injuries 
based on the operative note.

Augmented reality has a myriad of intraoperative uses in both cranial and spinal 
procedures. From the cerebrovascular standpoint, AR has been used to decrease the 
craniotomy size and delineate aneurysm architecture for safer aneurysm clipping 
[138]. AR has also been used to superimpose white matter tracts onto the surgical field 
as well as identify eloquent brain regions during tumor resections [139]. The imple-
mentation of AR was shown to result in significantly greater rates of total resection 
with better preservation of critical functions such as vision, speech, and motor [139]. 
Head-up AR microscope displays with navigation were found to be more accurate 
than traditional microscopy with navigation based on fiducial or automatic intraop-
erative CT registration in the setting of transsphenoidal surgeries [140]. Rychen et al. 
described the successful use of AR to fuse CTA, DSA, and TOF MRI imaging with 
neuronavigation for superficial temporal artery to middle cerebral artery (STA-MCA) 
bypass operations [141]. Perhaps one of the most impressive features of these applica-
tions is that augmented reality is formulated to work with current microscopes and 
neuronavigation systems that are commonly used for neurosurgical procedures, 
rather than requiring an entirely new device.

Resection margins are of the utmost importance in the resection of malignant 
tumors as remnants of malignant tissue led to the recurrence of disease and decreased 
survival. Real time analysis of resection margins typically requires an experienced 
neuropathologist, as well as a processor well versed in chemistry [142]. ML was 
employed to process samples through the High Resolution Magic Angle Spinning 
Nuclear Magnetic Resonance (HRMAS NMR) methodology, with high accuracy 
(median AUC of 85.6% and AUPR of 93.4%) [142]. Jabarkheel et al. established the 
use of Raman spectroscopy to accurately differentiate benign and malignant tissue 
intraoperatively in pediatric tumor resections [143].

Spinal procedures also utilize AR to aid in the precise placement of pedicle screws, 
superimposing trajectories into the surgical field [144]. Computer-assisted naviga-
tion (CAN) has a wide range of uses from tumor resection to deformity correction. 
When utilized for screw placement, CAN reduces the need for fluoroscopic guidance 
thus decreasing radiation exposure. CAN also increases operative efficiency, which 
diminishes the operative time and patient exposure to anesthesia [145].

Another promising AI application in spinal surgery is robotics. The SpineAssist 
(MAZOR Robotics Inc., Caesarea, Israel), ROSA (Medtech, SA, Montpellier, France), 
the Excelsius GPS Robot (Globus Medical, Inc., Audubon, PA), and the Da Vinci 
Surgical System (Intuitive Surgical, Sunnyvale, CA) are the four most studied 
robotic systems available [145]. Each has its strengths and weaknesses, and it is worth 
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mentioning that all of these systems are still ultimately controlled by the surgeon. 
Prospective trials on the SpineAssist system demonstrate up to 99% accuracy with 
pedicle screw placement, as opposed to the 92% accuracy rate achieved with naviga-
tion alone [145]. The robot mounts directly onto the spinous process or other bony 
landmark and easily interfaces with a CAN system. Retrospective trials and case 
reports for the ROSA and Excelsius machines show increased accuracy of pedicle 
screw placement, however the difference was not statistically significant for the 
ROSA system [145]. Both systems are freestanding which removes the issue of incor-
rect landmark fixation that can occur with the SpineAssist system, and the Excelsius 
decreases total radiation exposure. The ROSA, initially created for intracranial neu-
rosurgery, uses a camera and a percutaneous pin system placed over bony landmarks 
that the robot arm follows. In terms of efficiency, the ROSA is less efficient than cur-
rent methodologies, adding over 70 minutes to the operative time [145]. Lastly, the Da 
Vinci system is the most widely used surgical robot though not typically used for and 
not approved for neurosurgical applications such as spinal instrumentation. Current 
thinking on potential neurosurgical applications of this device are anterior lumbar 
fusions [145]. Further randomized trials are needed and likely some adjustments to 
the systems in order to truly harness the advantages they offer.

6. Postoperative applications

The goals of the postoperative phase of care include predicting prognosis, identi-
fying potential postoperative complications, and optimizing variables for enhanced 
aftercare and recovery. A study by Arvind et al. demonstrated that ANN and LR 
are superior to the American Society of Anesthesiologist (ASA) class in predicting 
the incidence of the cardiac, wound, VTE, and mortality in patients undergoing 
anterior cervical discectomy and fusion (ACDF) [146]. Similarly, Kim et al. found 
ANN and LR to be more accurate than ASA classification for predicting the same 
complications in posterior lumbar fusion [147]. AI has also allowed for greater dis-
tinction between disease progression versus tumor necrosis from radiation therapy 
in gliomas [144, 148].

Follow up in the postoperative phase can be simplified using telemedicine with 
smart phone apps, video conferencing or simple phone communication. A prospec-
tive trial by Reider-Demer et al. found that telemedicine postoperative follow up for 
patients who underwent elective intracranial neurosurgery was a safe and effective 
alternative to in-office visits [149]. What’s more, the patients preferred the conve-
nience of telemedicine visits.

It has been estimated that doctors spend up to 50% of their time on documenta-
tion, and nurses 20% [150]. Moreover, the initiation of the twenty first Century 
Cures Act has created a great need for methods to quickly produce summaries and 
communications that are easily understood [151]. Once further refined, LLMs could 
be invaluable tools to help fill this gap by generating rudimentary plain language 
medical information that can be modified by clinicians. They can also be used to 
generate authorization letters and various other types of documentation based on 
keywords. This would drastically reduce the amount of time spent on documenta-
tion and allow physicians as well as other medical providers to devote more of their 
time to patient care.
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7. Cost, feasibility, and limitations

7.1 Cost and feasibility

Successful integration of any new process or technology is dependent upon the 
ease of implementation, as well as the overall cost of the technology versus the 
revenue and benefit it generates. The United States leads in health care spending 
but has the worst outcomes when compared to nations such as Canada, Germany, 
the United Kingdom, Australia, Japan, Denmark, France, the Netherlands, 
Switzerland, and Sweden [152]. Health care spending is estimated to comprise 
nearly 20% of the US gross domestic product in 2025, which equates to $5.3 trillion 
[145]. Neurosurgery is among the most expensive medical specialties, with the 
average procedure and hospitalization costing $21,825 to $22,924 depending on 
the volume of the medical center [153]. The cost of a spinal fusion is 12 times 
greater than it was 30 years ago [145]. This in combination with the emergence 
of value-based care and changing reimbursement patterns has led to increased 
research into cost saving methodologies. AI applications associated with this 
research include risk adjusted reimbursement models, predictive models of 
hospital length of stay, and predictors of patients more suitable for outpatient 
procedures. Within the neurosurgical realm, these studies have focused on spinal 
surgeries and there is a paucity of data on the intracranial surgical aspects of 
neurosurgery [154]. A meta-analysis of AI economic studies performed by Khanna 
et al. revealed that most of the research is focused on either diagnosis or treatment 
aspects throughout all medicine and the studies lack consideration of purchase 
and maintenance costs associated with AI, as well as few if any comparisons to 
alternative technologies [152].

Though investigation into the financial aspects of AI use in neurosurgery is 
on the rise, no study to date has produced a thorough net present value assess-
ment within a large-scale experimental design [154]. Externally validated studies 
conducted on a larger scale with robust cost and net gain/loss calculations are 
necessary to accurately determine the feasibility and true value of the integration 
of AI into neurosurgery from a financial standpoint. This is particularly impor-
tant being that the mean cost of an AI system ranges from $20,000 to $1 million, 
depending upon the system. The more complex the system, the greater the cost, 
albeit there are minimal viable products available in the $8000 to $15,000 price 
range [155].

Maintenance and continued operation represent a significant investment as well. 
AI systems require a staff of project managers, software engineers, data scientists, 
and software developers. A project manager will cost between $1200 to $4600 per 
month. Software engineers and data scientists contribute $600 to $1500 per day and 
$500 to $1100 per day in cost respectively. The annual salary of an in-house data sci-
entist averages $94,000 while a software developer has an annual salary of $80,000 
[156]. Additionally, health networks incur an average cost of $15,000 to recruit candi-
dates to fill these positions, as well as the cost to train the staff [156]. Outsourcing the 
maintenance and operation of the system offers a more frugal alternative to in-house 
staffing, however, there can be a lack of continuity and immediate availability with 
the remote staff.

Reimbursement for AI is still in its relative infancy as payers only began to 
approve coverage of AI use in late 2020 [157]. Currently, eight image-based 
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assistive or autonomous AI devices are approved by Center for Medicare and 
Medicaid (CMS) for repayment, with two of the technologies holding surgical 
utility (Table 1). The criteria for repayment is very specific and quite complex, 
with payments ultimately only covering a maximum of 65% of the actual expense 
[158]. Compensation is based on Current Procedural Terminology (CPT) codes or 
New Technology Add-on Payments (NTAPs), which have a reimbursement limit 
of 3 years [157, 158]. In Europe, AI is not routinely covered and not recognized as 
a separately reimbursable expense. Several suggested payment models including 
gainsharing models, outcome incentivization, and advance market commit-
ments have been proposed as the potential for abuse/fraud or underutilization 
in  underserved areas with per use payments has been recognized as a legitimate 
concern [157].

Ultimately, the future integration of AI into the field of neurosurgery will depend 
heavily upon whether the increase in efficiency and performance result in a tangible 
improvement in patient outcomes while providing a net cost savings to health net-
works. If AI is proven to be a substantial solution, reassessment of reimbursements 
and insurance coverage are likely to follow.

Manufacturer System Description/Use Payment mechanism

Digital 
diagnostics

IDX-DR Deep learning algorithm to diagnose 
diabetic retinopathy from fundoscopic 
images in the outpatient setting

CPT

viz.ai Viz LVO Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the brain and notifies hospital 
staff when a suspected large-vessel 
occlusion (LVO) is identified

NTAP

Rapid AI Rapid LVO AI-guided medical imaging acquisition 
system intended to assist medical 
professionals in the acquisition of cardiac 
ultrasound images.

NTAP

Caption health Caption 
guidance

NTAP

viz.ai Viz SDH Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the brain and notifies hospital 
staff when a suspected subdural hematoma 
is identified

NTAP

Rapid AI Rapid 
aspects

Computer-aided diagnostic device 
characterizing brain tissue abnormalities 
on brain CT images

NTAP

AIDoc Briefcase 
for PE

Radiological computer-assisted triage and 
notification software that analyzes CT 
images of the chest and notifies hospital 
staff when a suspected pulmonary 
embolism is identified

NTAP

PROCEPT 
BioRobotics 
Corporation

The 
AQUABEAM 
system

Autonomous tissue removal robot for the 
treatment of lower urinary tract symptoms 
due to benign prostatic hyperplasia (BPH).

NTAP

Table 1. 
Modified from paying for artificial intelligence in medicine. Parikh and Helmchen [157].
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7.2 Limitations

The remarkable growth and promise of AI in neurosurgery are not without limita-
tions and concerns that must be taken into account. Firstly, it is imperative to consider 
that potentially substantial ML-driven improvements in performance are distinct 
from clinically significant improvements. Although ML models may offer drastic 
improvements in big data prediction problems, many medical prediction scenarios 
tend to be intrinsically linear and binary; in such cases, it is unlikely ML models will 
offer substantial improvements in discrimination and be of clinical value to the neu-
rosurgeon [12, 23]. In short, the efficacy of ML algorithms boils down to the ability to 
predict future outcomes based on past data.

A primary concern with LLMs is their current inability to fully comprehend 
context or exercise judgment, which causes significant misinterpretations along with 
the potential to disseminate incorrect and potentially harmful information [159]. 
LLMs lack a mechanism for discriminating against biased or false information and 
cannot inform the end user that the information provided is incorrect. This concern is 
further compounded by the lack of transparency in the decision-making processes of 
LLMs like GPT-4. These models can offer explanations as to how and why they make 
certain decisions upon request, but these justifications are formed post-hoc [160]. 
This makes it impossible to verify if the explanations accurately represent the model’s 
actual decision-making process. Even more problematic is that when probed for an 
explanation, GPT-4 may provide contradictory information to its previous statements 
[159, 160]. The lack of reliability and reproducibility necessitates constant human 
oversight to ensure accuracy. Specific to medicine, clinicians would be required to 
fact check these tools, which could easily negate any time savings LLMs may offer. 
Intellectual property matters are another issue with LLMs. These tools not only pull 
data and property from creators without consent, but some have also created and 
cited false references [150].

Furthermore, there is a tendency for bias, violations of privacy, and inherent 
logistical difficulties with the global utilization of AI. Datasets used to train algorithms 
are predominantly composed of information representing the majority and common 
conditions. This model bias can negatively impact racial and ethnic minority groups, 
genders, and socioeconomically disadvantaged peoples, in addition to diminishing the 
ability to recognize difficult anatomy [161, 162]. A study by Kamulageya et al. found 
that the AI dermatologic algorithm Skin Image Search was woefully inaccurate when 
presented images of pathology in Ugandan patients with dark (Fitzpatrick 6) skin 
types [163]. The company website boasts an accuracy of 80% and but was found to 
only be 17% accurate when presented with darker skin tones [163]. Facial recognition 
algorithms have also been found to have diminished capabilities with both gender and 
race, performing the worst with females of darker skin tones [164]. These very groups 
already suffer from diminished access to care and undertreatment of disease in compar-
ison to non-disadvantaged people. Model variance, which stems from insufficient data 
from minority groups also furthers the bias of AI algorithms. Differences in practices, 
equipment, and coding also decrease the generalization of AI algorithms. Designing 
algorithms with the global population in mind, analyzing performance on a subgroup 
basis, as well as externally validating the algorithms are ways to combat this [162].

Obtaining large quantities of patient data to train AI systems is difficult due to 
the necessary privacy protections added to patient data [161]. Inappropriate access 
to data sets and algorithms poses significant ethical, security, and privacy concerns. 
Algorithms can be manipulated by the addition of noise or altered data to produce 
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harmful or deleterious effects on the system. Ensuring data privacy and security 
while allowing users and developers to learn and improve upon the technology is key 
to moving AI forward.

On a global scale, challenges to telesurgery include lags in connection speeds 
and the potential for delays and disconnections. The introduction of 5G technol-
ogy has been touted as a possible remedy, however this remains to be seen [165]. 
Another consideration to this includes the cost of these systems and the maintenance 
[165, 166]. Will lower to middle income countries, which are in the greatest need 
of assistance, share in the cost or will the burden fall on the higher income nations? 
While this will reduce medical tourism to a point, this will still remain unless the 
infrastructure for preoperative and postoperative care is created within the countries 
in need. A likely solution for remote regions would involve smartphone apps for pre- 
and post-operative care and medical tourism over a shorter distance for operative and 
immediate aftercare until the patient is sufficiently recovered. With any AI solution 
to be implemented in a low to middle income country, the obstacles of infrastructure 
(electricity, wifi, phone lines, etc.), and governance for AI will need to be overcome 
on a broad scale.

Frequently stated worries are overreliance on technology, the loss of jobs, and phy-
sician disapproval. Most technologies being created are intended to assist and prevent 
fatigue, and skills must be maintained in order to properly utilize the technology. 
While there are solutions that involve autonomous actions to be handled solely by AI 
technology, patients themselves are not in favor of operations or procedures in which 
a surgeon is not involved. A cross-sectional study conducted by Palmisciano et al. 
found that while the majority of patient respondents thought AI use was appropriate 
for image interpretation/preoperative planning or indicating potential complications 
(76.7 and 82.2% respectively), only 17.7% of these patients approved of AI perform-
ing an entire operation [167]. Physicians themselves are also quite welcoming of AI 
integration into neurosurgery. A survey of neurosurgeons, anesthetists, nurses, and 
operating room practitioners conducted by Horsfall et al. revealed that the majority of 
respondents viewed the use of AI in various aspects of neurosurgery favorably [167].

The responses were 62% in favor of use for imaging interpretation, 82% approved 
of use for operative planning, 70% use for coordinating the surgical team, 85% in 
favor of AI generated real time alerts to complications or hazards, and 66% approved 
of autonomous surgery by AI. Members of the Congress of Neurological Surgeons and 
European Association of the Neurosurgical Societies were polled by Staartjes and col-
leagues regarding the use of ML in neurosurgery. The results demonstrated that 28.8% 
of respondents used ML in clinical practice and 31.1% used ML for research [168].

8. The future of AI in neurosurgery

Future directions of AI integration into the field of neurosurgery involve both 
simple and complex solutions, some with global implications. The rise of telemedicine 
during the COVID-19 pandemic resulted in expanded applications which can be 
further built upon to partially address the global shortage of neurosurgeons [165]. 
Approximately 39 countries do not have access to neurosurgical care [3]. Smartphone 
apps can be used for postoperative follow up, obviating the need to travel prolonged 
distances to receive continued evaluation. Telesurgery has garnered significant inter-
est, as the potential to decrease transportation costs, improve logistics, and reduce the 
carbon footprint associated with medical tourism is great. Conceptualized iterations 
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involve an operative suite with robotic equipment that will be controlled by surgeons 
in a control room. Given the paucity of neurosurgeons relative to the population in 
need globally, it has been proposed that a general surgeon be at the control room 
adjacent to the patient, while a neurosurgeon is at the helm in a remote control room 
[165]. This also has implications for military use as surgeons would be able to care for 
patients in war zones remotely rather than risking their lives in the field [165].

Within the operating room, the push toward improved logistics and ergonomics 
as well as minimal to no contact procedures continues. Technologies to merge the 
microscope view, navigation imaging, and virtual or augmented reality screen into 
a single device such as surgical glasses are being developed [165]. There are a few 
augmented reality glasses (HoloLens, xvision Spine System) designed for surgi-
cal planning that are already commercially available [169]. The glasses project 3-D 
models of the patient’s anatomy (based on preoperative CT scans) directly into the 
surgical field, and can be controlled in a contactless manner with hand gestures and 
voice commands [169]. Magnetic navigation systems are being piloted for contactless 
endovascular operations [3].

9. Conclusion

This chapter broadly elucidated the scope of artificial intelligence in the field of 
neurosurgery. At the current moment, AI has successfully been introduced in some 
clinical settings, especially in the realm of diagnostics. With the increasing capacity of 
ML and ANNs to abstract patient information and produce clinically relevant results, 
it appears likely that AI will continue to be increasingly integrated within neurosur-
gery. In particular, a trend prioritizing the transition from fully supervised and rules-
based methods toward self, partially, and semi-supervised algorithms is observed in 
deep learning, although the latter possesses its own set of limitations.

Furthermore, the literature has demonstrated ad nauseam that when ML and 
ANN algorithms are tested prospectively on novel patient datasets, they perform, at 
best, equivalent to expert neurosurgeons in diagnostic examples. Thus, notions sug-
gesting a diminishing scope of the neurosurgeon due to the emergence of AI should 
be dispelled. Rather, AI can serve to function as an adjunct to the neurosurgeon by 
playing a supportive role in the pre-, intra-, and postoperative phases of care. An ideal 
world for the neurosurgical patient of the future is one in which they are treated by a 
neurosurgeon clinically informed by artificial intelligence.

Yet, there are certain issues to be addressed prior to the overwhelming adoption 
of AI. In order to make this a truly feasible and applicable solution on a wide scale, 
uniform (or at least interchangeable) and globally generalizable, externally validated 
products are needed. Robust studies to fully elucidate the entire cost versus the cost 
savings from increased efficiency and improved clinical results must be conducted. 
This will help to inform both healthcare networks and payers on the true value of AI, 
thus facilitating the creation of a framework for reimbursement and funding meth-
ods. In short, greater communication and consensus among developers, healthcare 
systems, physicians, and payers will allow for the true potential of AI to be realized as 
a health solution.
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Abstract

Artificial Intelligence (AI) has begun to transform industries including healthcare. 
Unfortunately, Primary Care and the discipline of Family Medicine have tended to 
lag behind in the implementation of this novel technology. Although the relationship 
between Family Medicine and AI is in its infancy greater engagement from Primary 
Care Physician’s (PCP’s) is a must due to the increasing shortage of practitioners. 
AI has the chance to overturn this problem as well as speed up its development. 
Considering the vast majority of PCP’s utilize Electronic Medical Records (EMR’s) the 
field is ripe for innovation. Regrettably, much of the information available remains 
unused for practice disruption. Primary Care offers a large data platform that can 
be leveraged with the use of technology to deliver ground-breaking trails forward 
to provide better comprehensive care for a wide-variety of patients from various 
backgrounds. The purpose of this chapter is to provide context to AI implementation 
as it relates to Primary Care and the practice of Family Medicine.

Keywords: artificial intelligence, machine learning, technology, primary care, family 
medicine, screening, management, and treatment

1. Introduction

Although Artificial Intelligence (AI) in Healthcare has recently become trendy, 
the concept is not new. Alan Turning developed the concept of machines that could 
think around the 1950’s [1]. Soon thereafter, John McCarthy proposed the term 
“Artificial Intelligence” to describe the process of computers that could perform the 
cognitive functions of humans. Since these early propositions healthcare has seen a 
monumental increase in data available for interpretation. Consequently, the power 
and usefulness of computers in data analysis has become paramount to the success of 
a healthcare organization as it is unrealistic for individuals and even highly organized 
teams to extrapolate important information. Subsequently, various medical societies 
and disciplines have invested heavily in AI to meet the growing demands of modern 
medicine. Alarmingly, Family Medicine appears to lag behind other specialties in 
advancing its footprint in the AI healthcare space. Specifically, the American Board of 
Family Medicine performed an extensive literature review in the year 2020 and found 
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no publications for this specialty during that time despite knowledge that Family 
Medicine scholars were actively pursuing research related to Primary Care and AI [2].

The importance of the discipline of Family Medicine being actively involved in 
AI research cannot be understated as historically this profession has lagged behind 
when the adoption of new technology takes place. Subsequently, the discipline and 
more importantly, the patients have needlessly suffered for it. For example, when the 
Health Information Technology for Economic and Clinical Health (HITECH) Act was 
passed, it was widely assumed the introduction of electronic medical records (EMR) 
would enhance the patient, physician, and organizational experience through the 
optimization of efficient, equitable, and effective healthcare delivery [3]. Certainly, 
EMR’s have had numerous positive impacts on an individual patient and systems-
based perspective [4]. No one would rightly argue for a return to paper charts and 
hand-written notes. Nevertheless, we cannot ignore the role the implementation of 
EMR has had on increased physician burnout and decreased face-to-face time with 
patients. Moreover, because of the lack of Family Medicine involvement in the role-
out of EMR’s many in our field strongly feel as though its usability, interoperability, 
and applicability have fallen short of the initial intended goals of EMR. This is likely 
due to lack of engagement from family physicians in the design, advocacy, and imple-
mentation of EMR. Accordingly, there is a rising concern that healthcare technology 
has grown to suit hospital administrators more than patients and physicians [4].

With the advancement of AI, the specialty of Family Medicine must be an active 
participant to further influence this transformation. The relationship-oriented 
nature of Family Medicine will allow for technology to focus on providing value to 
patients and communities as opposed to administrators and technology companies. 
Healthcare costs continue to escalate and without FM providers who are focused on 
providing value AI will likely only exacerbate the sentiment that only those who can 
afford such advances in healthcare will benefit from it. The ethos of Family Medicine 
is that the development of the therapeutic relationship optimizes treatment outcomes 
and positively effects health on a population level. Without this belief AI will only 
further reduce the patient-physician interaction through increased screen-time. 
Family Medicine practitioners pride themselves on seeing a diverse patient panel. 
Consequently, if Family Physicians voices are not heard AI may amplify existing 
biases. Specifically, algorithms used by recognition programs have demonstrated 
challenges in recognizing persons of color secondary to limited participation [5].

Computers process information faster, more efficiently, and more systematically 
than humans. They make judgments more regularly and act in response to variations 
faster. Currently, computers perform automated repetitive tasks once assigned to 
humans. Clinical decision support systems alert providers when immunizations are 
due, automatic American Society for Cardiovascular Disease (ASCVD) risk calcula-
tors provide myocardial infarction risk assessment, and advertisements for potential 
drug–drug or allergic reactions pop up before a medication may be administered or 
prescribed. Moreover, AI can already complete challenging multifactorial jobs to 
create an accurate differential diagnosis and evidence-based assessment and plan. 
Worryingly, machines autonomously managing patients may give administrators 
pause as to the value of human physicians.

Family Practitioner engagement in AI is a must. Primary care offers the grandest 
healthcare distribution platform and provides an influential stage for data use [6]. 
Family Practitioners are operations specialists who may practice approaches for the 
adoption of scientifically validated AI tools. Family Medicine practitioners focus 
on patient-oriented outcomes and will publish results that affect the patients [7]. 



225

AI in Healthcare: Implications for Family Medicine and Primary Care
DOI: http://dx.doi.org/10.5772/intechopen.111498

Family Medicine practitioners operate between extensive delivery systems practi-
tioners such as mental health, home health, and public health. The familiarity with 
various healthcare stakeholders will enhance AI performance tools.

Because the amount of data we will manage will only increase, there needs to 
be a strategy both for the here-and-now and beyond. Without this, Primary Care 
risks becoming incapacitated, subjugated to metrics, and more prone to burnout. 
Ultimately, AI should be used to enhance the time we spend with patients and 
complement the Family Medicine experience. NLP aids computers to comprehend, 
deduce, and use an individual’s vernacular. Moreover, AI may unearth material from 
prior visits, images, labs, and health data to composite them into the right documents 
so providers can focus on the human-connection [8]. AI chatbots can replicate human 
dialog, assist individuals in receiving the optimal care, utilizing advanced technol-
ogy through patient surveillance between visits and provider consultations [3]. 
Patients suffering from congestive heart failure (CHF) may broadcast their weight 
through internet-enabled scales, have their diuretic doses titrated, or ensure that their 
worsening symptoms are being examined by their PCP. Patients may be reminded of 
health maintenance services like breast and colon cancer screening, provided educa-
tion for shared decision making, create referrals, book appointment, and organize 
tests that need to be performed [9]. AI may data mine environmental, EMR, claims, 
and pharmaceutical data and integrate these to identify and treat high risk patients 
afflicted with asthma, MI’s, and opioid overdoses to aid appropriate management. 
AI may explore massive amount of data, convey measures, close care gaps, and most 
importantly allow providers to spend more time with patients.

While these tools are fascinating, they are not yet equipped to being put into 
practice. They necessitate improvement, investigation, and substantiation. Privacy, 
malpractice, and overtreatment must all be carefully weighed and dealt with. Without 
consideration of fitting payment models AI will be imperfect to influence healthcare 
delivery. Figure 1 provides a guide for Family Medicine providers on how to get better 
involved in leveraging this technology.

Figure 1. 
Steps for family physicians to get involved in artificial intelligence research.
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Family physicians pride themselves on the personal relationships they form with 
their patients. Computers will outdo physicians when it pertains to the performance 
of complicated undertakings. Nevertheless, creating and upholding strong relation-
ships, recognizing and handling their intricacies, and eliciting and integrating 
preferences into medical decisions are difficult for technology to replicate. Humans 
and computers must complement each-other to enable physicians to spend more time 
with their patients.

2. Methodology

Internet searches using Google Scholar and PubMed was done with the funda-
mental words “Artificial Intelligence, Machine Learning, Technology, Primary Care, 
Family Medicine, and screening, management, and treatment.” Additional citations 
were acquired through cross-referencing the main studies. Following the literature 
review all relevant contributors to the manuscript created an outline that identified 
the historical context of AI technology in relation to the discipline of Primary Care 
and Family Medicine, clinical implications for Primary Care and AI technology, and 
the role of AI technology and Graduate Medical Education as key pieces to include 
in this chapter. Other studies not pertaining to the aforementioned themes were 
excluded. The following manuscript includes various purposes employing Artificial 
Intelligence instruments presently in operation or in progress is portrayed. The 
names of the articles and their abstracts were vetted by one assessor (T.W). Complete 
manuscripts were reread for insertion by two authors.

3. AI & Clinical applications for family physicians

The applicability of AI for Family Physicians is vast. A scoping review condensed 
targeted health conditions that could be aided either through diagnostic or treatment 
decision support that include: cardiovascular, psychiatric/neurologic/cognitive, 
diabetic/metabolic/chronic, skin conditions, musculoskeletal, cancer, pulmonary, 
gastrointestinal, general, and other conditions [10]. A comprehensive breakdown 
of the use of AI in Family Medicine for diseases is beyond the scope of this chapter. 
Below, the authors provide a systems-based outline of various AI-related diagnostic 
and therapeutic modalities for family practitioners to be made aware of as well as 
more focused sub-sections on diabetes screening, management, and treatment, as 
well as breast cancer screening given their relevance to PCP’s in the outpatient setting 
and to give the reader a better understanding of the depths to AI research in helping 
clinicians optimize patient outcomes.

3.1 Neurology

Alzheimer’s disease (AD) may account for up to 80% of dementia cases and is a 
huge cost for society both economically and socially [11]. Although much advance-
ment has been made in the underlying pathophysiological mechanisms of this disease 
as well as targeted approaches to therapy a significant barrier to any breakthrough 
occurs in the Identification of patients who will develop AD so that they are able to 
enroll in clinical trials at the appropriate time to examine the effectiveness of poten-
tial disease alternating treatment modalities. To combat this, a study was performed 
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using machine learning (ML) to assess advancement to dementia by two years using 
data from amyloid positron emission tomography scans [12]. The high accuracy that 
ML demonstrated relative to standard algorithms holds promise for the development 
of better individuals to be included in AD clinical trials with the hope that that this 
will optimize their design and lead to advancement of targeted disease therapies.

3.2 Head, eyes, ears, nose, throat (HEENT)

Glaucoma, an increase of intraocular pressure that results in optic nerve damage 
and ultimately blindness, can be diagnosed with AI. Through the proliferation of a 
neural network, retinal images have been mined to aid in in diagnosis of Glaucoma 
with up to 96% accuracy [13].

Diabetic retinopathy (DR), a common microvascular problem of diabetes, is also 
a significant source of irreparable loss of sight [14]. This disease and subsequent loss 
of vision can be averted and assorted therapeutic selections are obtainable. Despite 
calls for routine screening for DR comprehensive strategies face difficulty with 
implementation [15]. Implementation issues include: inadequate trained personnel, 
lack of resources, and inability to cope with an increased disease burden. To combat 
this concern, a deep-based learning algorithm was created to validate the detection of 
DR [16]. Retinal images were compared to that of trained ophthalmologists. Results 
showed high accuracy when compared to current standards of care, which may lead to 
more efficient and accessible screening for DR.

3.3 Cardiovascular

Cardiovascular disease (CVD), the foremost cause of illness and death globally, 
consumes extensive preventative measures to curtail risk factors for disease develop-
ment that center around controlling hypertension, lowering cholesterol, smoking 
cessation, and optimizing diabetes management. Including age, risk factors for 
development of CVD are mainly predicted using validated instruments [17–20]. 
Nevertheless, many people are still at risk for the development of CVD and are unable 
to be identified with these tools. What’s more approximately 50% of myocardial 
infarctions and strokes will occur in people that do not meet screening criteria and 
thus are considered to be low risk [21]. Fortunately, machine learning provides a 
chance to expand precision by taking advantage of multifaceted connections among 
risk factors. For example, in a prospective cohort study machine learning correctly 
predicted additional individuals who got CVD versus a standard set of rules [22]. 
These results show that ML may identify more individuals who might be helped from 
anticipatory therapy and help others eschew pointless therapy.

3.4 Gastrointestinal (GI)

Gastro-esophageal reflux disease (GERD) is the presence esophageal mucosal 
interruptions or occurrence of reflux-induced symptoms that significantly impairs 
quality of life [23]. Symptom evaluation and assessment is vital for disease manage-
ment. Sadly, symptom evaluation and effects of reflux are currently insufficiently 
correlated with disease severity. Furthermore, given the ambiguity of these rela-
tionships no diagnostic tool remains reliable. A retrospective study of 150 patients 
compared AI in the form of an artificial neural network (ANN) comprised of 45 
clinical variables versus the current standards to esophagoscopy or pH-metry. 
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The use of ANN to make a diagnosis of GERD demonstrated superior accuracy [24]. 
Although this work is still in the preliminary stages it shows promise in delivering a 
non-invasive approach to the diagnosis of GERD.

3.5 Endocrine

Diabetes affects millions of people around the world, accounts for approximately 
12% of global health expenditures, and still one in two persons continue to be 
unaware they have the disease and are sub-optimally treated [25]. Early intensive 
mediation may prevent onset and decelerates the development of retinopathy, 
nephropathy, neuropathy, and other difficulties associated with diabetes [26]. Lack of 
timely, crucial health data is vital for the patient and provider to make well-educated 
decisions in regards to diabetics care. AI may provide timely information concerning 
a diabetic patient’s health. A review of literature shows that the relationship between 
AI and diabetes management can be group into four categories that include automated 
retinal screening that was discussed above, clinical decision support, predictive 
population risk stratification, and patient self-management support tools [27].

AI-driven extrapolative modeling proactively recognizes diabetics with the 
greatest risk for needless complications that create avoidable emergency department 
outings, hospital stays, and readmissions [28]. AI can dig through various patient 
information to classify and describe diabetes populations [29]. In addition, patients 
with risk factors for diabetic comorbid conditions may be discovered [30–32]. AI may 
pinpoint individuals who may benefit from specific diabetes disease management 
programs [32]. On a molecular level it may aid in the discovery of proteins and genes 
linked with diabetes [33, 34].

AI can run practice decision-support instruments to aid healthcare profession-
als tailor diabetes treatments that boosts compliance and maximizes outcomes on 
a population level [35]. AI-powered devices may even diagnose diabetes noninva-
sively [36]. Furthermore diabetic neuropathy and diabetic wounds may be more 
accurately measured and treated [37, 38].

There is ongoing research on a Closed Loop System, which is a synthetic pancreas 
that blends continuous glucose measurement and an algorithm-run insulin pump to 
enhance diabetes self-management and lower hypoglycemic episodes [39]. A meta-
review of 12 trials compared patient acceptance of Artificial Pancreas Devices (APDs) 
versus standard of care. Based on the results, the authors surmised that the latest APD 
were safe and demonstrated high patient satisfaction [40].

More investigations are being done to determine the potential of diabetes apps to 
support persons in tracing and examining their statistics easily and to convey custom-
made evidence-based understandings that diabetic patients may employ every day. For 
example, all-inclusive dietary databanks can describe nutritional subject matter once a 
barcode is scanned on a smart device, explore food chain options, common food items, 
or distinguish food stuffs [41]. Machine Learning and representative analysis can diag-
nose and enumerate complex happenings and the standard of living of diabetic patients 
and provide assistance so they are better informed about the decisions they make [42]. 
AI may possibly quicken wound recovery, avoid unnecessary expenses secondary to 
commutes, and lower medical expenditures with the use of an AI-based smartphone 
camera [43]. Pregnant women with gestational diabetes have demonstrated approval 
of AI supplemented telemedicine appointments to help expedite clinical care via the 
amalgamation of AI interpreted evidence-based procedures, information obtained from 
EMR’s, and blood sugars, blood pressure readings, and movement sensors [44].
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In 2018 Medtronic’s Guardian Connect, the first AI-powered continuous glucose 
monitoring (CGM) system, was approved by the FDA in service of diabetic patients 
between the ages of 14 and 75 years. A prognostic system signals patients of sub-
stantial oscillation in glycaemia up to an hour before the critical event happens. The 
system has demonstrated accuracy and has been shown to announce around 98.5% of 
hypoglycemic occurrences; consequently, patients could potentially seize control to 
stabilize blood sugar [27]. The records can be collectively distributed and supervised 
by all relevant stakeholders involved in the patient’s care.

Several questions persist before technological advancements in diabetes care 
permeate the health care sector. Practical interoperability, the capacity of two or more 
structures to interchange and utilize data, remains an obstacle [45]. Cost, overhead, 
continued expenditures, buy-in from healthcare providers and relevant participants, 
and the various definitions and involvedness surrounding the term Meaningful Use 
are all additional barriers to implementation [46]. The ability to replicate outcomes 
from previous studies remains blurry as well. For various reasons proprietary data 
such as source codes may be difficult to share. For example A survey of approximately 
400 algorithms presented in papers at an Artificial Intelligence conference revealed 
around 6% of the presenters disseminated an organization’s code, a third distributed 
information utilized to tryout their algorithms, and half provided an abridged of a 
source code (pseudo-code) [27]. Even if some of this data can be obtained it remains 
to be seen if the results will end up the same. What’s more in machine learning, which 
stems from mastery of previous encounters, may be influenced by the typology of 
speech patterns implemented.

Nevertheless, diabetes remains an attractive target from AI research to apply 
industrial methods to solve the various complexities surrounding this disease. Many 
technological products have obtained approval from the FDA, are on the market, 
and have shown promising results. More innovative approaches are being created to 
challenge the status quo of current diabetic care by the enhancement of reliability, 
effectiveness, operability, straightforwardness, and patient, family, and provider, 
satisfaction with applying these products for diabetic management. Ideally, the right 
mix of monitoring and appropriate feedback will help isolate telling precedents and 
head to customized understandings that boost patient and provider commitment, 
conviction, and achievement in optimizing blood sugar control.

3.6 Hematology/oncology

The utilization of artificial intelligence (AI) in cancer screening is becoming 
increasingly evident in recent studies across multiple types of cancer. This includes 
lung, breast, colorectal, and cervical [47–50]. Given the overwhelming research 
across multiple disciplines, the focus of this review will be on the evidence-based 
application of AI in breast cancer screening. This research can be categorized into two 
applications: risk assessment and image analysis.

The United States Preventive Services Task Force (USPSTF) guidelines of primary 
screening for breast cancer with conventional mammography has resulted in a reduc-
tion of breast cancer mortality across both randomized trials and screening cohort 
studies [51]. Outlined in the USPSTF recommendations is screening every 2 years for 
women aged 50–74 years old, as opposed to individualized decision to start screening 
between the ages of 40–49 years old [51]. In the latter age group, high-risk individuals 
who would benefit from starting screening at an earlier age can include those with 
known underlying genetic mutation (such as BRCA1 or BRCA2 gene mutation) or a 
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history of chest radiation at an early age [51]. There are several risk prediction models 
for breast cancer. One example is the Breast Cancer Risk Assessment Tool (BCRAT), 
which can be used to estimate a patient’s 5-year and lifetime risk of developing 
invasive breast cancer. This considers a patient’s age, age of menarche, age of first 
childbirth, number of first-degree relatives with breast cancer, number of previous 
biopsies, and presence of atypical hyperplasia in a biopsy. Of note, this tool may 
not be appropriate for assessing risk in patients with a history for certain medical 
conditions, such as personal history of certain breast cancer types [52]. Considering 
multiple qualitative and quantitative risk factors can better stratify risk-based screen-
ing and maximize the benefit while minimizing the harms of screening [53]. But how 
can AI advance current tools of risk assessment?

Breast density has been shown to be an independent risk factor for the develop-
ment of breast cancer [54]. As a result, this has led to updates in prediction models to 
include this quantitative risk factor, such as the Tyrer Cuzick model, the Breast Cancer 
Surveillance Consortium Model (BCSCM), and the Breast and Ovarian Analysis of 
Disease Incidence and Carrier Estimation Algorithm (COADICEA) [52]. In a recent 
study, the authors created three models to estimate five-year breast cancer risk. One 
model only considered risk factors. The second model utilized deep/machine learning 
on mammographic images. The third model was a hybrid of the two. These models 
were then compared to the Tyrer–Cuzick model, a well-known clinical standard that 
recently incorporated mammographic breast density into its calculation. They found 
that their hybrid model had the highest accuracy, followed by the deep/machine 
learning model, while the Tyrer–Cuzick model had the lowest. These results indicate 
that a model that considers both traditional risk factors and mammographic data can 
improve current practices of assessing risk. Future research can aim to identify the 
imaging features and patterns that are most useful to stratifying risk [52].

Breast density is typically assessed through interpretation of the standard two-
view mammogram by a radiologist. A visual estimation of the proportion of glandular 
and fatty tissue within the breasts is scored and applied to a scale, such as the Breast 
Imaging Reporting and Data System (BI-RADS). The four BI-RADS categories of 
breast composition according to breast density are: type 1 fatty breast, type 2 fibro-
glandular, type 3 heterogeneously dense, and type 4 dense and homogeneous. This 
subjective quantification of breast density requires certain training and experience to 
allow for accurate and reproducible scoring. Even so, there is a certain amount of user 
variation among radiologists that contributes to error [55].

There are 3 potential approaches to applying AI to mammogram image analysis: as 
a standalone system, for triage, and for reader aid [56]. In a simulation performed by 
McKinney et al., the findings demonstrated the ability of an AI system to outperform a 
group of radiologists in accurately interpreting mammograms [57]. Using deep learning-
based AI, Balta et al. found that the breast cancer screening workflow, which typically 
requires double-reading, could be replaced by a single-reading. This was achieved by 
AI-driven identification of normal-appearing screening mammograms, which were then 
verified by a single human reader [56]. Similarly, in a retrospective study by Dembrower 
et al., AI was used to triage mammograms into those requiring no further radiologist 
assessment and those requiring further radiologist assessment. This system demon-
strated potential for detecting a significant number of cases where breast cancer was not 
identified by human readers, but then diagnosed later [58]. Rodriguez-Ruiz et al. showed 
that radiologists interpreting mammograms with the support of an AI computer system 
performed better at diagnosing breast cancer than without [59].
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The application of AI in mammogram-based breast cancer screening is by no 
means limited to the approaches previously discussed. These include more precise 
stratification of risk assessment, increasing accuracy of detecting breast cancer 
during image analysis, and potentially decreasing workload burden in breast imaging 
radiologists. Given the evidence shown across retrospective studies and simulations, 
AI has the potential to improve current breast cancer screening practices. As studies 
continue to explore its application in the various aspects of cancer screening, it is 
likely that AI will become a more prevalent tool in medicine and, hopefully, lead to 
better patient outcomes.

4. AI and administrative capabilities

The ambulatory clinic is an indispensable feature of patient-centered medical 
care. Today, many different stakeholders are involved to ensure the patient experi-
ence is enhanced and clinical outcomes optimized. Consequently, ensuring a clinic 
runs smoothly has proven to be labor intensive. Numerous obstacles to realizing a 
well-organized workflow for pre-visit planning (PVP) exist. These barriers include a 
lack of workforce shortages as well as limitations on time. The vast majority of time 
consumed administering care is sandwiched between appointments. PVP improves 
the possibility that an appointment will flow more easily, require not as much time, 
and develops a sophisticated and fulfilling patient-provider experience. AI tools may 
enhance pre-visit planning (PVP) [60, 61]. PVP contains distinct information built 
on predictable timetables and patient-provider messages that serve modern EMR 
and AI well. Criticisms of AI implementation include: absence of needs assessments, 
minimal real world applicability, and ignored complexity of healthcare with subse-
quent misallocation of investments [10, 62].

Clinicians are interested in automated PVP if it affords them more time with 
patients and saves them time on administrative duties. Technology already supports 
clinician work through: advanced solutions such as chat bots that monitor signs 
and symptoms, rudimentary functions like electronic sticky notes in the EHR, and 
updated best practices that serve as a reminder for outstanding or upcoming health 
maintenance. Current technological advancements include: algorithms that pool 
healthcare data in order to produce a summary of care gaps [63–65], automated 
patient questionnaires sent through a secure electronic portal [66–70] and pro-
grammed schemes that inform providers of requisite activities [65, 71]. The rise of 
value-based care along with telemedicine secondary to the recent Covid-19 pandemic 
has moved treatment of patients in the virtual space. This situation means that atten-
tion will needed to be further allocated to inter-visit happenings [72].

With the appearance of AI, particular aspect of PVP may be better supported. 
Unfortunately, there remains of dearth of literature that demonstrates the impartial 
value of this technology. PVP and its present condition must be further investigated, 
hindrances to performance examined, and areas for potential automation realized. 
Technology and AI obviously exhibit an ability to enhances the principally human 
method for PVP; however unless the structures surrounding value-based care is more 
refined, than the underestimation and subsequent dearth or compensation for PVP 
will remain a significant obstruction. Specifically, challenges such as ease of use, con-
fidentiality, safekeeping of patient information, EMR interoperability, and workflow 
for providers need to be addressed [72].
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5. AI and education in family medicine

The final section of this chapter concerns the role of AI and graduate medical edu-
cation (GME). Family Medicine Residency in the United States is three years. During 
this time the residents must develop appropriately so that upon completion of their 
training they may feel confident practicing medicine independently. Although there 
are many issues that could be addressed concerning GME and AI the two the authors 
focus on in this chapter include motivational interviewing (MI) and shared decision 
making (SDM).

5.1 AI & Motivational Interviewing

Motivational Interviewing (MI) is a scientifically validated, short-form interven-
tional style that has been established to positively affect change in chronic disease 
management. MI is a driving force towards constructive, healthy, patient focused 
behavior change. MI concentrates on the aims, trepidations, and viewpoint of the 
patient. Unfortunately, this process often contradicts the directional, instructional, 
and educational role healthcare providers have undertaken [73, 74]. Therefore 
providers must unlearn these behaviors to permit a more patient-oriented encounter. 
Critical skills to master include talking less, listening more, and reflecting on the 
patient’s wishes. Open-ended questions help facilitate this rapport. Instantaneous 
feedback greatly enhances skill development [75, 76]. Unfortunately, for a variety 
of reasons insufficient advice is often given during the early stages of instruction. 
Consequently due to inadequate and unproductive training MI is underdeveloped.

AI may help to apply MI by delivering timely, well-organized feedback in a 
time and resource-constrained environment. Real-time Assessment of Dialog in 
Motivational Interviewing (ReadMI), utilizes natural language processing that 
delivers specific motivational interviewing indicators that helps pinpoint areas 
for improvement during the patient’s visit [77]. The benefits of ReadMI include 
cost-effectiveness, portability, and immediate valuation and breakdown of the MI 
process. Advantages include: deep-learning-based speech recognition, NLP, AI-human 
interaction, and mobile cloud-based computing. The following (Figures 2 and 3) 
demonstrate the architecture, advantages, and encounter process of ReadMI respec-
tively. What’s more, the team involved in the patient interview may go over past 
cases and correlate the trainee’s behavior and speech with the AI scores. Afterwards, 
these sessions generate novel records that make possible auxiliary fine-tuning of the 
program and the natural language based performance coding designation. Currently, 
ReadMI constructs comprehensive transcriptions of the discourse with greater than 
92% accuracy, displays above 95% accuracy when measuring the amount of time the 
provider speaks versus the patient, and has over 92% accuracy when determining the 
amount of open-ended versus close-ended questions [77].

ReadMI has been shown to be as valid and reliable as humans when rating the 
kinds of questions and assertions that trainees yield when performing motivational 
interviewing. Physicians who are too loquacious in contrast to the patient are doubt-
ful to produce high-level motivational interviewing techniques. These early results 
show that AI can produce instantaneously reliable scores to relevant stakeholders to 
enhance the educational experience. Specifically, if a learner talks too much and does 
not ask enough open-ended questions then the educator can use this information to 
promptly fine-tune the interview process. Because of the limitations on time, leveled 
proficiency improvement through AI based measures is invaluable. Moreover, less 
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skewed criticisms directed towards the learner as well as less onerous video review 
sessions will advance medical education. Finally as clinicians become better deci-
sion support agents they may improve healthcare quality by aiding patients in living 
healthier lives.

5.2 AI and shared decision making

Shared decision making (SDM) is an approach where the patient and provider work 
in concert to formulate evidence-based medical choices that align with patient values 
[78]. Thus, the final choice is based on what matters most to the patient with medi-
cal data as an adjunct [79]. Unfortunately, real world applicability is lacking [80–82]. 

Figure 2. 
Framework for ReadMI artificial intelligence.

Figure 3. 
General flow of the motivational interview process with ReadMI.
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Constraints on time, difficulties with generalizability, and medical circumstances are all 
obstacles to SDM [83]. AI may advance SDM through better informed decision-making, 
which allows providers to concentrate their energy on the patient [84]. Furthermore, 
AI may discover missed correlations by individuals participating in clinical assessments 
[85]. Nevertheless, bioethical concerns for AI and health decision-making remain [84]. 
Moreover, AI-based decision aids remain foreign in regards to their patient-centered-
ness [86]. Lastly, the facilitation of AI and shared decision making remains unknown. 
A three step scheme has been offered [87, 88]. It is further depicted in (Figure 4).

A scoping review showed the range of AI systems applied to SDM [89]. Sadly, few 
studies concerned primary care. Of the involved studies, three devised AI interven-
tions for primary care involving the support of chronic conditions such as diabetes 
and stroke [90–92]. These studies focused on the decision-making step of SDM either 
by launching trials to calculate clinically significant results or for medical advice. 
Wang et al. aimed to tailor knowledge and choices about medications in type 2 diabet-
ics [92]. SDM is essential secondary to the complexity of diabetics. In this report 
information from an EHR was compiled to aid clinicians with decision support tools 
to enable patients to better comprehend their well-being. Over 2500 patients with 
type 2 diabetes, 77 features, and eight different medications were amassed to generate 
a prototype for reference. The AI model had a correctness of 0.76. The records just 
pertained to hospitalized individuals and the result of medication utilization was not 
accounted for. Still, the intervention exhibited practicability and adaptability, mean-
ing if the scheme did not remain current, the mediation could be fine-tuned without 
any impact to the interoperability of the hospital EHR. Moreover, the program was 
created with the patient in mind, which allowed key stakeholders to evaluate an indi-
vidual’s ailment more systematically and modify discussions in an up-to-date manner.

Kökciyan et al. made “CONSULT,” a decision-support agent to help stroke survi-
vors in treatment compliance and self-care in partnership with a practioner [90, 91]. 
It was generated through an argumentation construct, which is beyond the scope 
of this chapter. However, a brief description is as follows. Health sensors and EHR 
information as well as medical standards were used as inputs. Proposals and written 
descriptions for systematized choices were provided as outputs. The program was 
carried out with a mobile Android app. Six unpaid workers in decent health were 

Figure 4. 
3-step model of shared decision making (SDM) for clinical practice.
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enrolled for one week, used various system features, and were solicited to gather 
information from wellness sensors and input data. The CONSULT system aided the 
decision-making point in SDM by showing the latest interpretation of the clinical 
picture via individualized measurements taken from the health record and wireless 
sensor input. After, stylistic descriptions of automatic findings supplemented the 
medical suggestions offered. Overall, the existing, pertinent, concise information plus 
medication options and proposals helped buoy the patient-provider decision-making 
moment.

Overall, the relationship between AI and SDM is young. More research is needed 
to examine, apply, and gage the impact of AI on SDM, standardize its use, and evalu-
ate its impact on choices that effect a population. Importantly, any AI intervention 
must be human-centered. Lastly, SDM is a stepwise process; therefore research must 
demonstrate how AI interventions better re-enforce the therapeutic relationship.

6. Discussion

The authors recognized and elaborated on various research studies concerning 
AI, Family Medicine, and Primary Care and separated this manuscript into three 
predominant categories. First, on the subject of the history of Family Medicine 
adoption of technology, an overwhelming trend when contextualizing this issue is the 
lack of involvement of Family Medicine stakeholders in the literature [10]. Secondly, 
concerning clinical applicability, there is a wide variety of functions that AI could 
perform for PCP’s. Clinical trials repeatedly established AI to strengthen problem-
solving or management of chronic diseases. Still, the results exhibit Artificial 
Intelligence remains at an initial phase of development for applicability; therefore 
much remains to be done to measure AI’s influence on the primary care system.

7. Future research

To conclude this section of the chapter the authors shed some light on novel 
research and funding to expand the Family Medicine footprint in the AI realm. 
Specifically, in 2022 the American Board of Family Medicine (ABFM) established 
a funding program to support Family Medicine Departments in hiring Artificial 
Intelligence/Machine Learning (AI/ML) focused research faculty. The initial cohort 
of funded institutions include: University of Houston, University of Pittsburgh, 
University of California, San Diego and University of Texas, San Antonio. Each insti-
tution is pursuing its own focused work with the shared general aims of establishing a 
sustained AI/ML research presence, securing further external funding and producing 
peer-reviewed research publications. This program also includes regular conven-
ing of the research teams to share progress and information hosted by the Stanford 
Healthcare AI Applied Research Team.

8. Conclusion

AI in healthcare has arrived. Nevertheless, many Family Physicians are unaware 
of its uses and how it will impact their practice. Subsequently, Family Medicine 
remains constrained by its limitations and the ethical implications remain unclear. 
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This chapter hopes to act as a guide to front line health care works like Family 
Physicians. Primary care is essential to the well-being of a population and is 
unmatched in its ability to interconnect the various parts of a healthcare system. The 
profound bonds Family Physicians create with both their patients and community 
makes this discipline inimitably fitting to steer the health care AI revolution. In order 
to do so it is vital that Family Physicians collaborate with engineers to guarantee that 
AI use is pertinent and patient-centered, improves health care AI implementations, 
and acts inclusively and ethically AI that optimize outcomes and reduce inequities.
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Abstract

Artificial intelligence (AI) refers to computer capabilities that resemble human 
intelligence. AI implies the ability to learn and perform tasks that have not been 
specifically programmed. Moreover, it is an iterative process involving the ability 
of computerized systems to capture information, transform it into knowledge, and 
process it to produce adaptive changes in the environment. A large labeled database 
is needed to train the AI system and generate a robust algorithm. Otherwise, the 
algorithm cannot be applied in a generalized way. AI can facilitate the interpretation 
and acquisition of radiological images. In addition, it can facilitate the detection of 
trauma injuries and assist in orthopedic and rehabilitative processes. The applications 
of AI in musculoskeletal conditions are promising and are likely to have a significant 
impact on the future management of these patients.

Keywords: artificial intelligence, musculoskeletal conditions, musculoskeletal 
radiology, skeletal trauma, physical and rehabilitation medicine, orthopedic surgery, 
sports medicine

1. Introduction

The term “artificial intelligence” (AI) was proposed by John McCarthy in 1956 [1]. It 
refers to computer capabilities that resemble human intelligence. It is a broad concept, 
involving both virtual (computing) and physical (robotics) elements [2], and this 
chapter is going to focus on the virtual aspects.

The term “AI” has been mistakenly used to refer to automated digital systems or 
probabilistic algorithms. It implies the ability to learn, for example, to perform tasks 
that have not been specifically programmed. An AI can analyze data and make deci-
sions much like a person [3].

It is thought that AI could help change the mechanistic model of current medicine. 
Health being the result of a complex system based on multiple nonlinear interactions, 
it could help to better understand its functioning [4].

Nowadays, AI is deeply established in today’s society. They are used in personal 
assistants (Alexa, Siri), music platforms to display recommendations (Spotify), or 
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graphical applications (FaceApp). Although there are promising results, the applica-
tion of AI in musculoskeletal medicine is just starting its way [5]. However, it is likely 
that AI will be part of our routine clinical practice in a few years.

2. Methodology

On 30 January 2023, a bibliographic search was carried out in PubMed and the 
Cochrane Library (Cochrane Reviews) using “artificial intelligence musculoskeletal” 
as keywords. We found 957 articles in PubMed and 18 in the Cochrane Library (of 
which 10 were repeated in PubMed). In other words, we used a total of 965 article 
abstracts, of which we finally analyzed 51 because we subjectively considered them 
to be the best and most closely related to the chapter title. The remaining 914 articles 
were excluded (Figure 1). This way of including and excluding articles and the fact 
that we did not use other bibliographic search engines (Web of Science, Google 
Scholar, and Embase) can be considered as two limitations of this chapter, as some 
important publications were probably not included in it. In addition, due to the 
novelty of the topic studied, we have included one book and three websites because of 
their relevance and the topicality of their content. However, we would like to men-
tion that the bibliographical references are so abundant (thousands) that one way 
or another, there could always be something important left out, even if a systematic 
review and meta-analysis is carried out.

3. Types of AI

An AI is an iterative process involving the ability of computerized systems to 
capture information, transform it into knowledge, and process it to produce adaptive 

Figure 1. 
Flow chart of our search strategy regarding artificial intelligence (AI) in musculoskeletal conditions.
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changes in the environment. AI is capable of surpassing the speed of human analysis 
in many cases. Within this broad framework, there are different systems with their 
own characteristics.

Machine learning (ML) is a branch of artificial intelligence that refers to sys-
tems and algorithms capable of learning and improving through data analysis. 
Unsupervised ML does not require a labeled database to perform its training. Instead, 
it can identify nonapparent or hidden relationships in different data patterns. 
Supervised ML requires a labeled database in order to perform training. This data-
base contains information in which the input and output are linked. This is what the 
computer uses to perform the correct matching.

Deep Learning (DL) is a type of ML capable of learning complex tasks through the 
analysis of large amounts of information with which it is trained [6]. An artificial neural 
network composed of nodes arranged in a hierarchy of levels is used in the DL. The 
network is able to process basic information at the initial level and forward it to the next 
level. There it is integrated with data from other nodes and passed to the next level. This 
process is done iteratively until the system learns the task, such as identifying a particular 
pattern. For example, DL techniques can be applied to radiologic studies to develop 
computer algorithms capable of analyzing images, classifying, and segmenting them [7].

Convolutional neural networks (CNN) are a subtype of DL especially used in 
image processing. They use learnable layers and filters through which data are passed 
and processed in a complex way, until they are completely transformed to the final 
layer or output layer. CNNs take advantage of the position of pixels in the images to 
reduce the processing complexity and parameter requirements per layer.

One of the great advantages of DL and CNN is their ability to be trained end-to-
end. This means that the training model only needs input data, for example, knee 
magnetic resonance imaging (MRI) and a set of gold standard labels, medial menis-
cal lesion, and no medial meniscal lesion. The algorithm is capable of self-learning, 
considering by itself which elements are most relevant to perform a process. Since 
training a CNN is an iterative process, a larger volume of information usually yields 
better performance of the algorithm. In addition, although the computational power 
required to train DL algorithms is high, subsequent analysis of new data is faster and 
easier than in other AI systems.

4. How to generate AI in musculoskeletal medicine?

To generate an AI, a large volume of labeled data are needed to train the AI system 
and generate a robust algorithm. Otherwise, the algorithm can only be applied in a 
limited way. In the case of radiology, 49% of the papers using DL use databases of 101 
to 1000 cases, 25% less than 100 cases, and only 6% use more than 10,000 cases [7]. 
It seems necessary that centers could coordinate to increase the size of their databases. 
In this regard, there are de-identified public databases that can be used to train AI 
algorithms, such as musculoskeletal radiographs (MURA), with almost 41,000 
images of the upper extremity labeled as fracture or nonfracture by radiologists [8].

Many times, images processed by AI systems are manually selected, which is very 
time-consuming. It is vital that the database that is going to train the AI is appropri-
ate to what is to be analyzed and has no flaws. In addition, it is recommended for 
the data to be homogeneous and of a volume proportional to the complexity of the 
computational task.
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Unsupervised learning is likely to be critical in the future for building new AI 
systems. However, most successful AIs currently use supervised learning that may 
actually hinder their development [9].

One element used in some algorithms is heat maps in DL systems. Their use allows 
us to find out the part of the image that contributes the most within the analysis and 
reduce the impact of incorrect data. For example, if the heat map points out that a 
part of the image is being analyzed while the lesion is in a different one, it can be 
discovered that the algorithm is not processing the correct data.

5. Applications of AI in musculoskeletal medicine

5.1 Application in image interpretation

Errors in image interpretation in trauma radiology can increase morbidity and 
mortality, and it has been estimated that there can be up to a 4% error rate even by 
a trained radiologist [10]. There is an increasing pressure on physicians to interpret 
radiological images due to their growing use. It has been estimated that the greatest 
number of undiagnosed fractures occur in patients assessed between 8:00 p.m. and 
2:00 a.m. This is probably because physicians who can assess these images may not be 
available in certain facilities or at certain times of the day [11].

The application of an AI in the world of radiology is the natural consequence of 
history and discipline, which has been characterized by incorporating technological 
innovation into clinical practice [12]. However, most existing algorithms used to 
identify fractures usually provide performance similar to, but not superior to, the 
capabilities of an expert radiologist. Therefore, it is possible that physicians who are 
not specialists in musculoskeletal radiology may benefit the most from using these 
AI tools. For example, CNNs have been used to detect fractures on radiographs in 
different anatomic locations, including the upper extremity, lower extremity, hip, 
and spine [13].

On the other hand, AI-based imaging systems are usually used in specific ana-
tomical locations, so they should be integrated with each other to have an impact on 
clinical practice. An example of this would be a study in which 715,343 radiographs 
from 16 anatomical sites and 10 CNNs were used to detect fractures with promising 
results [14]. Another example would be the use of DL on computed tomography (CT) 
images to detect osteoporotic femoral neck, calcaneal, and vertebral fractures with an 
acceptable result [15]. An interesting aspect is the ability of the AI to detect fractures 
that are inconspicuous to the human eye. An algorithm with the ability to detect 
subtle lesions might not be able to discover radiographically obvious fractures [16].

Algorithms have also been used to detect anterior cruciate ligament tears, find-
ing no difference in sensitivity or specificity versus expert radiologists [17]. AI has 
also shown good results for diagnosing meniscal tears [18]. DL has also been used to 
evaluate acute and chronic cartilage lesions [19].

5.2 Application in orthopedic surgery and orthopedic trauma

The incorporation of AI to assist in the surgical procedure has aroused great inter-
est at present. For example, AI has been used as an assistant for image segmentation. 
The algorithm is able to differentiate the image fragment that is a healthy tissue from 
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the mass to be studied or removed. This facilitates a time-consuming task in a fast and 
automated way [20].

AI has also been used in algorithms for predicting outcomes or costs associated 
with the surgical procedure. The DL is able to process a large amount of input data 
(age, comorbidities, and gender) and generate a certain outcome with predictive 
capacity (cost of hospitalization). For example, one paper analyzed 175,042 patients 
undergoing primary total knee replacement surgery with 15 preoperative variables, 
being able to estimate length of hospital stay and hospital costs, adjusting certain 
comorbidities [21].

Furthermore, AI has been used to help decide on the appropriateness of perform-
ing a surgical intervention, for example, to preoperatively assess the risk of death 
or complication. This would serve to provide the surgeon and patient with better 
information when deciding on the optimal management option [22].

5.3 Clinical workflow

In general, AI systems have the potential to assist physicians in certain tasks by 
improving the ability to diagnose and treat accurately despite the increased workload. 
Within the radiological practice, AI could improve two very important aspects such as 
effectiveness and efficiency. Effectiveness implies accuracy in interpreting radiologi-
cal images and taking optimal clinical action. On the other hand, efficiency implies 
the optimization of workflows to make the best use of available resources and avoid 
clinical errors. These benefits would be achieved even considering the increased care 
pressure on physicians nowadays and the enormous workload involved in imaging on 
modern musculoskeletal radiology machines [12].

AI can be used to optimize clinical workflow and prioritize the tasks to be per-
formed by clinicians. For example, an algorithm would be able to analyze a queue 
of images pending assessment and determine those that should be reviewed earlier 
because they are more likely to be pathological. This could be a critical advance in 
emergency situations, such as reviewing brain scan images to rule out intracranial 
hemorrhage [23].

Furthermore, it could accelerate image acquisition. Algorithms have been used to 
obtain MRI scans in five minutes that have higher image quality than other conven-
tional MRI scans and can be optimally assessed by specialist radiologists [24].

5.4 Clinical decision-making

AI has been used as a decision support tool [25]. For example, in the field of 
rehabilitation, a DL algorithm has been developed to recommend to patients with 
low back pain, and according to clinical aspects whether they should go to their 
primary care physician, a physical therapist, or whether they can perform self-
management [26].

DL has also been used to develop pain phenotypes based on resonance imaging 
findings. However, due to the complexity of pain, the role of this classification in daily 
care is unclear [27].

One aspect that AI could enhance would be biomarkers. In many cases, certain 
biomarkers cannot be used because they are too costly to obtain in terms of time or 
money. For example, in frailty, DL has been used to analyze body composition (bone 
mass, muscle mass, and fat distribution) in a CT slice at third lumbar vertebra (L3) 
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to assess frailty and sarcopenia [28]. This would allow obtaining important data that 
would allow prescribing rehabilitation programs more appropriately.

AI has also been used to classify fractures. There are algorithms that have shown 
72% accuracy in calcaneal fracture classification using CT [29], with similar or 
superior effectiveness to orthopedic surgeons for classification of proximal humerus 
fractures [30], good performance in hip fractures [31], femur [32], and ankle [33].

AI systems that combine clinical data in rib fractures with imaging test results 
have been published to improve sensitivity and reduce diagnostic time compared with 
expert radiologists [34].

DL has also been used to discover hidden fractures by combining clinical and 
radiological data. For example, an algorithm could predict the likelihood of posterior 
malleolar fracture in patients with tibial shaft fractures by analyzing the image along 
with other clinical, demographic, and injury data of the patient such as age, mecha-
nism of injury, and fracture type [35].

5.5 Prediction and risk of musculoskeletal injuries

A growing field for the use of AI is sports medicine, although not only for the 
purpose of predicting whether an athlete is going to suffer an injury during a match 
or training but also about measuring the risk of injury to the athlete by analyzing all 
intrinsic and extrinsic factors and their relationship to each other, since injuries occur 
because of these. For example, in basketball, extrinsic factors could include the ball, 
the type of floor, the playing field, the temperature, or the time at which the game is 
played. Within intrinsic factors, we would have previous injuries, age, or gender [36].

In addition to the sport, the predictive factors are probably related to biological 
variables of the athletes, although no clear relationship has been established. Static 
traits such as flexibility, strength, or balance have usually been considered to predict 
injury. However, the dynamic and changing aspect of these characteristics, as well as 
their mutual influence, have not been taken into account [37]. AI could help manage 
this data.

5.6 Application to improve health literacy

Literacy is a heterogeneous and multidimensional concept that implies the ability 
to understand, evaluate, use, and interact with written texts in order to participate 
in society, achieve one’s goals and develop one’s potential. Health literacy involves 
the ability to enable individuals to obtain, understand, appreciate, and use informa-
tion to make decisions and take actions that have a significant impact on their health 
status [38].

To improve health literacy, one tool that could be used within AI would be the 
use of chatbots. A chatbot is a computer system that mimics a human conversation 
by text or voice. Despite its potential, users of these systems often abandon them 
after the first or second encounter with it [39]. AI has been incorporated to achieve 
more empathetic and human interfaces that more realistically simulate user inter-
action [40].

Chatbots could facilitate health literacy, improve disease self-management, 
stimulate treatment adherence, or improve administrative services, such as medical 
appointment management [41].

These systems are also used to facilitate adherence to a home rehabilitation exer-
cise program at hospital discharge. The role of algorithms here would be to enhance 
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exercise adherence, achieving improved patient motivation and involvement [42]. 
In addition, AI could solve the fact that resources to assist patients in home-based 
Rehabilitation are often generic and not well adapted to individual needs and prefer-
ences [43]. For that reason, AI has been used to improve the performance of home 
exercise programs [44].

5.7 Data management and wearable devices

A fundamental aspect of data management today is big data. Big data involves a 
set of tools that analyzes data too large or too complex to be processed by traditional 
statistical systems. This complexity has led to the use of AI systems to analyze Big 
Data. For example, it has been successfully employed to coordinate the results of mas-
sive multicenter studies in the field of drug discovery [45].

In the field of musculoskeletal diseases, a large volume of data are being recorded 
through imaging, electronic medical records, sensors in wearable devices, and in 
genome sequencing. Major advances are also being made in analysis and processing 
systems. Thus, analyzing in detail the multidimensional information in a patient’s 
electronic health record would provide a powerful tool to facilitate individualized 
health management [46].

Fuzzy logic-based AI systems that are capable of analyzing questionable, incom-
plete, or inconsistent clinical information have been employed and still facilitate the 
diagnostic management of certain pathologies [47].

Wearable devices are ubiquitous today. These devices are equipped with different 
sensors (accelerometers, global positioning system, gyroscopes. ..) that can record a 
large number of biological parameters and also have permanent connectivity. Internet 
of Things (IoT) refers to the set of physical objects with sensors and programs 
connected to other devices and systems through a network. One of the practical 
applications of this type of technology would be to extract a high volume of data from 
lifestyles, training, and sport events [48]. AI could use all this data and integrate it 
with other sources of information to generate algorithms to make clinical decisions or 
predict adverse events.

In addition to sports activity, wearables are used by users to record sleep qual-
ity, general physical activity, and walking (speed, distance traveled, and number of 
steps). However, it has not yet been possible to leverage this information to optimize 
healthcare or decrease healthcare costs [49]. It is thought that AI may be the solution 
to harness the performance of all this data and improve patient health.

5.8 Bioethics

By facilitating the acquisition and analysis of images, AI could improve equity in 
healthcare. This would facilitate access to optimal radiological assessments in areas 
where specialists are not available such as developing countries or rural areas [50].

It has been proposed to use AI-based systems to facilitate the entry of clinical infor-
mation to reduce the time and cognitive load required to perform such a task. However, 
from an ethical and human point of view, there are controversies, since the doctor–
patient relationship is based on trust and close treatment, and these are not assumable 
by a computer [51]. Clinical care remains a human process. It should never be reduced 
to applying more or less complex diagnostic or treatment algorithms. A patient’s health 
should not be limited to a mere statistical concept [52]. It seems unreasonable and 
unethical to make clinical decisions based solely on computerized processes.
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Another aspect of ethical interest is related to the costs associated with surgical 
procedures in which the use of algorithms to adjust the payment models per proce-
dure has been evaluated. Although the price of interventions is usually fixed, patient 
comorbidities are known to increase the number of perioperative complications and 
produce worse outcomes [53]. This could result in some centers selecting lower-risk 
patients to extract a higher financial return, creating an ethical issue that must be 
resolved before recommending widespread use of these algorithms [54].

When interpreting radiological evidence, the physician not only classifies and ana-
lyzes the images but also interprets them within a broad clinical context. This clinical 
reasoning ability is acquired through the clinician’s professional experience and even 
during the undergraduate years [55]. In fact, not all clinical decisions are made based 
on objective aspects. Sometimes, an experienced clinician may make clinical decisions 
based on experience or intuition. Even the clinician cannot explain why he or she 
makes this decision, and yet, in many instances, these decisions are accurate. An AI, 
devoid of feelings and emotions, can hardly make up for this aspect [52]. It is con-
troversial to think what will happen in the case where an algorithm recommends one 
course of action and the clinician thinks that another clinical action should be taken.

On the other hand, clinical decision-making based on the use of AI algorithms, 
and the possible errors in diagnosis and treatment that this may cause, implies an 
important liability issue. And it is not clear who should assume this responsibility: 
the clinician, the health center or the company that has designed the algorithm. 
Figure 2 summarizes current applications of AI in musculoskeletal medicine.

6. Limitations of artificial intelligence

AI is far from being able to solve all the problems that exist in musculoskeletal 
disease management today. To train AI systems, large, appropriately labeled databases 
are needed, which are expensive to build. In addition, if there are many correlated 
variables, AI can establish false correlations.

Figure 2. 
Current applications of artificial intelligence (AI) in musculoskeletal medicine.
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In radiological image interpretation, two parameters must be taken into account: 
accuracy and recall. An algorithm that has a high recall will classify all images with 
lesions as positive, but will have a low accuracy. However, an algorithm that only 
classifies a lesion when it is completely certain will have high accuracy but low recall. 
There is still great difficulty in achieving AI systems that are effective in both capa-
bilities, so algorithms should be used depending on the clinical task to be performed: 
confirmation or screening [18].

On the other hand, many algorithms can only be applied in common pathologies. 
This makes them not applicable across the board. In addition, different AI systems 
may analyze the same data differently.

7. Conclusions

AI is an emerging reality that could produce a paradigm shift in the management 
of musculoskeletal diseases, from mechanistic to predictive medicine. The differ-
ent algorithms may also facilitate the acquisition and interpretation of radiological 
images, provide information related to surgical processes, facilitate the decision-
making process by clinicians, or enhance patient health education. However, they 
still have many limitations and raise important ethical issues. An algorithm cannot 
replace the role of clinicians, as they must bring their knowledge, experiences, skill, 
and humanity to patient care. Finally, AI systems must be integrated sensibly and 
moderately within care processes.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 13

The New Landscape of Diagnostic
Imaging with the Incorporation of
Computer Vision
Manuel Cossio

Abstract

Diagnostic medical imaging is a key tool in medical care. In recent years, thanks to
advances in computer vision research, a subfield of artificial intelligence, it has
become possible to use medical imaging to train and test machine learning models.
Among the algorithms investigated, there has been a boom in the use of neural
networks since they allow a higher level of automation in the learning process. The
areas of medical imaging that have developed the most applications are X-rays, com-
puted tomography, positron emission tomography, magnetic resonance imaging,
ultrasonography and pathology. In fact, the COVID-19 pandemic has reshaped the
research landscape, especially for radiological and resonance imaging. Notwithstand-
ing the great progress that has been observed in the field, obstacles have also arisen
that had to be overcome to continue to improve applications. These obstacles include
data protection and the expansion of available datasets, which involves a large invest-
ment of resources, time and academically trained manpower.

Keywords: artificial intelligence, computer vision, healthcare, deep learning,
diagnostic imaging

1. Introduction

A large part of diagnosis in various specialties of medical care relies heavily on
image analysis. Depending on the type of technique used, more or less detail of the
structures of interest can be obtained. It will also depend on the type of technique,
whether the image is in two dimensions or if there are several slices that then can form
a three-dimensional reconstruction [1]. Some specific techniques can also produce
video output [2]. All of these different formats can be adapted for use as training and
testing material for computer vision models. Computer vision, a subfield of artificial
intelligence (AI), comprises all those techniques that allow a computer system to
understand an image or a set of images and produce as a result a numerical or
symbolic output. This output can be used to make a decision about the image [3].
When these models are applied to healthcare images, the output can be used to make a
clinical decision [4]. Within computer vision algorithms, we have those that are
handcrafted, where a person analyzes the set of images to be classified and chooses the
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features to be extracted from those images. For example, if we want to classify
cardboard boxes in a scene, the person will probably choose to detect the edges of the
box and the texture of the cardboard, as a first step [3]. Now, thanks to advances in
research in this area, neural networks can also be used. A neural network is a compu-
tational algorithm composed of a set of interconnected nodes called artificial neurons,
which are similar in function to neurons in the human nervous system. A neuron in
this network receives information from the preceding neuron, processes it, and trans-
mits it to other neurons. Networks can be simple, with very few layers of neurons, or
complex, with many layers and many interconnections [5]. These models have the
advantage that the determination of the features is automatic and does not need to be
handcrafted. However, neural networks require a large amount of data to be able to
perform accurate feature extraction with minimal error. In addition, as the number of
connections between its different neurons is very high, it becomes complex to eluci-
date which features have been selected to produce an output from an initial image
[3, 5, 6]. In the following chapter, we will discuss the most common AI applications of
neural networks as computer vision models in the clinical medical field. In addition,
we will analyze the different obstacles that the field of AI has encountered in its
development along with the advancement that these vision applications have brought
to the medical field.

2. Methods

A targeted review of the literature was carried out using the criteria “AI,” “Com-
puter Vision,” and “Medical Imaging.” The databases consulted were PUBMED and
Google Scholar until January 2022, selecting only articles in English. Our initial search
revealed 860 articles of which a subgroup of 130 was selected. The inclusion criteria
focused on the quality of the research, the robustness of the models, the transfer to the
clinical setting, and the optimization of the parameters for the rational use of
resources.

3. Computer vision with neural networks

Computer vision (CV) and AI research have several decades of steady progress.
Specifically, the part of this discipline that uses convolutional neural networks (CNN)
for image processing had its first boom with handwritten digit identification in 1989.
This application was developed by Yann LeCun using some of the insights previously
proposed by Kunihiko Fukushima [5]. Since computational capabilities at that time
were scarce, there was little research in this area between 1990 and 2000. Thanks to
the progressive increase in processing and storage capacities, in 2012 the AlexNet
model was tested in competition with great success and from then on, the field of
computer vision began to be populated with numerous applications [7]. The applica-
tions varied according to the type of task required and the type of dataset used. Also at
this time, several authors began to investigate further the structure of the different
published models and started to work on their taxonomy. Thus, we have articles that
examined the components of various CNNs and their interconnection [8] and others
that analyzed the different architectures, their engineering challenges, and their
possible future applications [4, 9].
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4. Healthcare computer vision

The advancement of computer vision in the field of medical imaging awakened in
the late 2000s [4]. As partially mentioned earlier, the advances were made possible by
advances in deep learning (DL) research, increased local processing capabilities with
graphic processing units (GPUs), and the creation of medical image datasets [10]. The
creation of larger and more complete datasets was mainly due to the increasing
digitization of medical records in several countries. These electronic health records
(EHR) are able to store, in addition to the images that will constitute the raw material,
the labels that will be used to guide the training of the models [11]. These EHRs started
out as a tool to generate billing codes for different medical practices. Then they
changed their use, becoming digital support for clinical practice [12]. This change
allowed its adoption not only in institutions or networks of institutions but also in
entire regions and countries [12, 13]. The extension of the coverage territory allowed
to expand even more the image datasets and included more patient variability, which
is key to obtain models with wide generalization power.

5. Operation of computer vision algorithms

When applying AI models, specifically computer vision models to different types
of medical images, we can perform different tasks. According to Huo et al., these tasks
can be classified into four categories [14]. The first one is classification, in which the
input is an image and the output is a label. The label can be numerical (e.g., 1, 2) or it
can be text (e.g., cancerous, noncancerous) [14, 15]. The second is detection, which
consists of the identification of an object in the image by means of a bounding box.
This task offers an extra degree of information since in addition to locating the object
it can inform about its position by means of coordinates in the input image [14, 16,
17]. The third is segmentation, which provides the highest degree of information
about an image. In this task, each pixel receives a label, and the final result is a mask
that groups several pixels. This enables the segmentation of precise structures within
medical images, such as glomeruli or metastatic zones in pathology slides, or entire
organs, such as the bladder in CT images [14, 18–20]. The last task is synthesis. It
consists of generating images from noise or other images. For this, two different
models work antagonistically, one generates the images de novo from available data
and the other model tries to discriminate this artificially generated image from a real
image. With each iteration of the process, both the generator and the discriminator
become more efficient, which produces images with high similarity to the real ones
[14, 21]. This task allows for example to generate of more training samples to populate
datasets and thus, to achieve models with more generalization power [22, 23].

6. Transfer learning and data augmentation

As neural networks increase their number of layers and the connections between
them, their complexity increases. Neural networks with many layers have demon-
strated more than satisfactory performance in several tasks, many of them superior to
human performance [24]. However, when working with these complex networks it is
necessary to have a large amount of data for training, to avoid overfitting, and to
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expand the power of generalization. The use of networks with few layers trained on
small datasets has also been researched, which has shown that there is a tendency to
overfitting or underfitting [25]. In the AI medical field, it is very difficult to have very
large datasets, as this demands a lot of specialized manpower. Specialized manpower
(doctors, biologists, geneticists, etc.) is the one that analyzes the data and aggregates
the labels to train the algorithms [25, 26]. Therefore, two solutions have been found to
deal with this problem of small datasets. The first one consists of data augmentation.
This group of techniques creates images in virtual form from the original images of the
dataset. For example, you can alter the position of the images, rotate them on their
axis, and change the contrast and brightness, just to mention a few [25, 27]. The
second solution is transfer learning. This technique consists of training a complex
network on a massive dataset (ImageNet) usually of common images (dogs, cats,
etc.), and then performing a finetuning. The finetunning is the training with the
specific medical dataset, which only alters the weights of the last layers of the neural
network. This helps to obtain better results than training the network from scratch on
the specific dataset [25, 28].

7. Model performance evaluation

Being able to measure the performance of our models is crucial to be able to evaluate
their suitability for different tasks. Also, when performing finetunning, it is important
to be able to have performance measures to know which parameters promote the best
results. First of all, every time we test a model, we will have part of a dataset (in this
particular case, images) that already has the labels assigned to it. The assignment of
labels is done by themedical professionals specialized in the pathology being worked on.
When the model processes the samples and predicts the new labels, these are compared
with the original ones (called ground truth). With the result of the comparison, what is
called a confusion matrix is constructed [29, 30]. This structure contains the true
positives (TP) and true negatives (TN) and false positives (FP) and false negatives
(FN). A TP or TN is established when the prediction and the ground truth are the same
for a given sample (e.g., is a TN when the model predicted negative and the image was
negative). On the contrary, a FP or FN is established when there is no coincidence
between the model and the ground truth (e.g., the model predicted negative and the
ground truth indicated a positive sample, therefore, the sample is a FN) [29]. Almost all
the other global metrics that are usually reported in the different publications are
derived from the four previous metrics. For example, the accuracy of a model corre-
sponds to the number of samples correctly predicted by the model over the total number
of samples. Then, considering the previous metrics, the correctly predicted samples
would be included in the sum of the TP and TN. Additionally, the total number of
samples would not be more than the sum of the TP, TN, FP, and FN [29].

8. Healthcare applications of AI and computer vision

8.1 X-ray imaging

Medical X-ray imaging consists of the emission of these rays by a transmitter that
passes through the area of the patient. According to the radiographic density
(depending on the density of the tissue and the atomic number of its components),
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the structures in the area will absorb the rays differentially, which will result in lights
and shadows [31]. In the AI field of computer vision applied to X-ray, there is a
preponderance of work in the area of the thoracic cavity [32]. Thus, we found work
focused on the detection of pulmonary nodules with models trained on images from
one pool of patients and tested in a different pool. We also found longitudinal work,
where the model was trained and tested on images from the same patients, with
images separated by a time window [32–34]. Another large part of the work focused
on the detection of pneumonia. Several models were trained on datasets from differ-
ent hospitals, which showed variations in various image features between hospitals.
As expected, the models showed better metrics when trained and tested on data from
the same hospital [32, 35–37]. With the advent of COVID-19, there was an explosion
of research in the detection of this pathology in X-ray images. Thus, numerous models
were created that attempted to distinguish COVID-19 pneumonia from viral or bac-
terial pneumonia. These developments were key since they allowed screening and
managing patients automatically and to avoid spreading the contagion of COVID-19
patients [32, 38–41]. Work was also carried out to contribute to the detection of
tuberculosis in chest images. These models demonstrated satisfactory performance in
screening tuberculosis images with respect to normal lungs or other pulmonary
pathologies. However, the models did not show the ability to distinguish between
active and quiescent disease [32, 42, 43]. Additionally, part of the research was also
directed to the detection of pneumothorax. This part of the development was of
important value in patient triaging, especially in determining the size and position of
the pneumothorax and its changes over time in the same patient. Several of these
models have already received FDA clearance as assistive devices in the emergency unit
[32, 44–46]. As a final part of this section, to a lesser extent than the previous ones,
models were also built for the detection of other types of pulmonary involvement,
such as consolidation, edema, emphysema, fibrosis, and pleural effusion [32, 47].

8.2 Computed tomography

Computed tomography (CT) integrates many X-ray images taken from different
angles thanks to the high-speed rotating platform that rotates on the same axis where
the patient lies. The type of images it produces is cross-sectional [1]. Using AI com-
puter vision techniques, it is possible to operate directly on a fixed plane (one section)
or to use complete volumes (several consecutive sections). Most of the research in this
area is classification (about 36%), followed by segmentation (27%), detection (22%),
and others (15%) [30]. Broadly speaking we can list the works in this area in the
identification of organs (kidney [48], liver [49, 50], lungs [51, 52], and heart [53, 54])
and in the identification of substructures or lesions (artery calcification [55], nodules
[56], polyps [57, 58], and lymph nodes [59–61]). Among the most commonly used
measures to report the performance of the different models are accuracy, sensitivity,
specificity, AUC-ROC, and F1 score [1]. The processing of the images as input is also
diverse. It is possible to use 3-dimensional inputs, that is, several consecutive slices
that form a volume. Projection methods, such as maximum intensity projection, can
also be used to transform a 3-dimensional input into a 2-dimensional one [1, 62].

8.3 Positron emission tomography

Positron emission tomography (PET) is a technique that allows the observation of
metabolic processes in different tissues of the patient’s body. Radiolabeled compounds
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that follow a specific metabolic pathway are injected, the radiation is detected by
sensors and then the complete image is reconstructed with the areas of highest activity
[1]. 18F-fluorodeoxyglucose (FDG) is one of the most widely used radioactive sub-
strates as a marker in PET [1, 63]. Among the applications of AI computer vision to
this medical imaging modality, we have the segmentation of tumor areas in the brain
[64], heart [65], head and neck [66], and nasopharynx [67] to adjust the dose and
position of the radiotherapy intervention. With respect to classification tasks, work
has been published on esophageal cancer [68], Alzheimer’s disease typing [69], and
Hodgkin’s lymphoma [1, 70].

8.4 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a technique that uses high-intensity electro-
magnetic fields and radiofrequency waves to detect changes in the rotational axis of
protons, mostly in water molecules. Water makes up almost all the tissues in the body
and the difference in the percentage of water influences the axis changes. Deep
learning applications in the field of MRI can be grouped into two broad categories. The
first is related to the physical aspects and the generation of images on the device. In
this category, you can find works that focus on image restoration, image reconstruc-
tion, and multimodal image registration [71]. The second category emphasizes appli-
cations for medical purposes, in which the determination of pathology or its progress
is the main purpose [71–74]. Focusing on the second category, we find works on brain
aging [75], brain vascular lesions [76], Alzheimer’s disease [77], multiple sclerosis
[78], glioma [79], and meningioma [80]. In the abdominal cavity, we find works of
identification and segmentation of organs [81], polycystic kidneys [82], and renal
transplantation [83]. Finally, isolating the spine as the focus of the study, we found
works on labeling and separation of vertebrae [84], spinal stenosis grading [85], and
identification and segmentation of spinal metastasis [86]. It is important to mention
that organ segmentation is a very important focus in deep learning applications for
MRI images. With the definition of organ contours in each plane (slice), the determi-
nation of the organ coordinates and the addition of consecutive areas, volumes can be
calculated. The calculation of volumes is of crucial importance since they can be used
to determine the dilation of organs (e.g., splenomegaly). The measurement of dilation
is not only an important initial measurement. Thanks to the volumetric determina-
tion, it is possible to follow up on patients to observe the efficiency of treatments [81].

8.5 Ultrasonography

Ultrasonography (US) consists of the use of ultrasound (usually at a frequency
greater than 20,000 hz) to form images of the inner regions of the organism. To do
this, a probe emits waves and they bounce back at different speeds according to the
type of tissue [87]. From this technique, we can count on two different outputs. One is
an image (frame) where the structure of medical interest is located. The other is a
complete video where we can visualize, for example, blood flow or muscle contrac-
tion. Within the research in AI computer vision applied to US, most of the works
include the analysis of individual frames. In this way, frames can be produced directly
from the device or they can be extracted from ultrasound videos. When extracting
frames from videos, the regions of interest for the specific task is usually timely
located and the rest are discarded [88]. Other less common and more integrative
methodologies can use videos directly as input. They produce the division into frames,
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use a model (CNN) to extract features from each frame, and then integrate all the
extracted features with a recurrent model (e.g., long short-term memory network)
following a timeline [2]. Focusing on applications, in those works that performed
classification we found the study of breast lesions [88–90], thyroid nodules [88, 91],
liver fibrosis [88, 92], and focal liver disease [88, 93]. Regarding the detection of
lesions, some works focused on papillary thyroid carcinoma [94] and breast cancer
[95]. Continuing in the detection task, but moving from lesions to the detection of the
fetal standard plan, several papers proposed different methodologies [88, 96, 97].
These works constituted important pillars for the improvement of automatic guidance
tools in the fetal US that could be embedded in image production software. Finally, in
the segmentation task, several works have been registered with approaches in areas
similar to those mentioned above, such as breast lesions [88, 98] and lymph node
contouring [88, 99, 100]. However, in this part, there is also an application that has
several works and that has an important diagnostic value in the clinical setting. This
application is the detection of atheroma plaques in the carotid artery and the automa-
tion of this process would allow screening and prevention in a faster and more cost-
effective way [101, 102]. In fact, a multicenter clinical study has already been
published to evaluate the feasibility of the technique [102].

8.6 Computational pathology

Classical pathology consists, very briefly, of the preservation, treatment, and
staining of very small portions of tissue in slides. Stains can be standard ones, which
highlight general structures, such as nuclei or cytoplasm, or immunohistochemical
stains, in which specific cellular markers are targeted [103]. Thanks to advances in
storage capabilities and the availability of cloud computing, the last few years have
seen a migration from direct microscopic observation of stained tissues to the digiti-
zation of slides. Digital slides are stored in a specific file type called whole slide image
(WSI), where it is possible to store the different magnification planes with very high
compression. The scanning of the slides and the production of WSI for different uses,
such as telepathology, constitute a branch of pathology called digital pathology
[30, 104]. In addition, the increasing production and cataloging of WSIs for the
diagnosis of different diseases made it possible to use them as training and testing
materials for computer vision algorithms. This application of algorithms in WSIs has
been called computational pathology and most of the published works use deep
learning as a basis for different tasks. In a very general manner, one could describe the
process of creating a computational pathology pipeline for any disease. Once the WSIs
of the pathology to be studied are available, the final magnification to work with must
be selected (20�, 40�) and consecutive patches of the different zones (disease and
healthy tissue) must be generated [30]. The patches are generated due to the large size
of the WSIs (the highest magnification can exceed 3e10 pixels). Consequently, the
patches are used as input to the model and the model will learn, according to the task,
to identify tumor and non-tumor zones [30]. In test WSIs, the same technique can be
used to generate patches, process them with the model and then reconstruct the final
image with a heat map. The heat map will identify the regions with the highest
probability of belonging to a class (healthy or tumor). Jiang et al. categorize the
implementation of computational pathology in oncology into five purposes, which are
tumor diagnosis, subtyping, grading, staging, and prognosis [30]. Thus, we can find
applications of these five purposes for breast cancer [30, 105–108], lung cancer
[30, 109–111], colorectal cancer [30, 112–115], gastric cancer [30, 116, 117], prostate
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cancer [30, 118, 119], and thyroid cancer [30, 120, 121]. Another set of applications of
computational pathology lies in the automatic analysis for the identification of rejec-
tion in organ transplantation. Several papers have been published for kidney
[122, 123] and heart [124] transplantation.

9. COVID-19 research landscape remodeling

The COVID-19 pandemic created a compelling need for innovation in testing to
generate solutions that were cheap, easy to use, fast, and ubiquitous. Since lung imaging
is a useful diagnostic tool, during the pandemic many research groups began to look for
solutions using AI and computer vision [125]. As lung imaging is an important resource
in emergency medicine for optimal triage of patients with suspected COVID-19 infec-
tion, computer vision solutions aimed to be a rapid analysis element that could speed up
patient management times. From 2019 to 2020, a nearly two-fold increase in the
number of publications on the artificial intelligence applied to medical imaging was
observed. Moreover, starting from zero publications in 2019, by 2020 about 15% of all
deep learning research associated with medical imaging was on COVID-19. With
respect to the focus on the type of medical imaging, it was observed that of all the
proposed computer vision solutions, almost half (49.7%) were focused only on X-rays.
The remaining modalities were CT (38.7%), multimodality (10.2%), and ultrasonogra-
phy (1.5%) [125]. As the research progressed, the usefulness of ultrasound as a tool for
the diagnosis and management of COVID-19 was also observed. The ease of
maintaining sterility, the possibility of performing bedside operations, the reduced time
to obtain the image, and the possibility of using only one operator for the procedure
have made this imaging modality highly suitable for this pandemic. The group of Born
et al. opened the door to the use of deep learning with ultrasound for COVID-19
screening [126, 127]. Several groups followed with different proposals and today, the
field has grown considerably by extending applications to other pathologies [128, 129].

10. Challenges for the field

As we briefly mentioned in one of the previous sections, one of the biggest chal-
lenges facing the field of AI and computer vision applied to medicine is the availability
of datasets. Generating general datasets, although it is a task that requires time, can be
done in a more laborsaving way. For instance, it does not require a high degree of
training to classify common images. In fact, some search engines ask their users when
they access specific content to first select from a group of images those that have a
traffic light in it. That generates labels and in this way very large datasets are built. As
we also mentioned before, in order to generate medical image datasets, trained doc-
tors are needed to perform the same activity. That requirement makes the process
complex, time-consuming, and expensive [25, 26]. Another problem facing the field is
the variability between different hospital centers’ samples. As we have already
explained before, the greater the amount of data that the algorithm trains with, the
higher its generalization power. However, when the data comes from different hospi-
tals, even if they are in the same city, samples of the same medical condition may
suffer variations in color, brightness, contrast, and position, to mention just a few.
These variations respond to the different equipment used by hospitals and the
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different sample preparation techniques that different laboratories may have. This
variability is manifested in its maximum expression in computational pathology.
Moreover, the most current works usually include studies with different scanners and
from different hospitals to analyze the robustness of the model [124]. Another chal-
lenge that specifically affects computational pathology is the weight of each sample.
As we mentioned before, the WSI of the pathology samples contains a considerable
amount of pixels, especially at their highest magnification level. This makes it
challenging to be able to share the images and store complete datasets. It is worth
mentioning that also operating digitally with these images raises the hardware
requirements to high levels. For this reason, parallelization tasks or image batch
processing can become complex, which also increases processing times [130]. Finally,
a crucial aspect must be addressed. Operating with medical images requires a high
degree of data protection and the use of anonymization techniques. In order to use
hospital data, an ethics committee must first review the scope of the project. The
ethics committee will determine the degree of consent that patients must provide in
order to use their data. In many retrospective studies, depending on the amount of
private data being used, committees may approve the waiving of informed consent
(IC). For example, if patients have already consented to the original study and no
further identifying data will be added to the project, this may be a favorable setting for
not requiring additional IC. However, that decision rests solely with the committee
and this entity will decide the constraints of the project. Ethics committees may be
slow to grant project approval, especially if the scope of the project is extensive. Also,
should new ICs be required, this can also add cost and time to the project [131].

11. Innovating through challenges

The challenges that have crossed the field of AI and computer vision in healthcare
have also promoted the search for solutions. This search has sparked ideas and
achieved some interesting proposals that are slowly being incorporated into daily
practice. To begin with, the problem of generating labels in WSIs gave rise to a new
technique called multiple instance learning (MIL). This technique uses as labels only
the diagnosis of the patient (which is usually available in EHRs). Thanks to this new
approach, a group managed to analyze 44,732WSIs without any kind of data curation,
incredibly speeding up project times [132]. As we also mentioned, the variability
between samples from different hospitals is a problem that threatens the creation of
large datasets. One of the solutions to this problem was the creation of stain normal-
ization. This is a method that in one of its variants uses autoencoders and allows to
standardize of the color distribution in the images, using another image as a template
[133]. Thanks to this method, it is possible to have more homogeneous images, even if
they come from different laboratories. Regarding the weight of the WSIs, generally,
only a small part of the image is used by the deep learning models for the task they
perform. For example, as the image passes through the successive layers of a CNN, the
information is reduced. In the last layers, only the essential information remains that
will complete the task with the least possible error. Using this principle, one group
created the concept of neural compression. Basically what this group proposed is to
create abstract representations of the WSI images after passing through successive
steps in a convolutional network. In this way, noise is removed at each step and only a
small, compressed representation remains [134]. This concept would help store WSIs
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more efficiently with only the information needed for the task. Finally, to provide the
greatest privacy protection to patients and also speed up data exchange processes,
blockchain networks and interplanetary file system (IPFS) can be used. In this way,
the information is decentralized, which reduces the risk of data leakage. In addition,
the different hospitals participating in the study can provide the files, which can be
fragmented and hashed according to IFPS. The entire process would be governed by
one or several smart contracts, which would ensure that only authorized nodes con-
tribute data or extract data. Smart contracts may also contain portions of sensitive
information, which would eliminate the need for human interaction and the possible
breach of confidentiality [135–137].

12. Conclusions

The use of AI and computer vision algorithms, especially neural networks, has
advanced greatly in recent years. The various applications with different types of
medical images have made numerous diagnostic and prognostic applications available
to the medical field. The field of oncology has seen the greatest number of develop-
ments. Particularly, computational pathology applied to oncology has developed a
high degree of diversification in vision tasks, achieving models that could perform
diagnosis, subtyping, grading, staging, and prognosis. However, just as innovative
applications have emerged, the field has also had to overcome obstacles, which are still
complex to analyze for some conditions today. The difficulty of constructing medical
datasets, the variability of samples between different institutions, and the mandatory
data protection are some of them. However, these obstacles have promoted the crea-
tion of ideas to overcome them and that is how we have neural compression and stain
normalization that can be great allies to exponentially expand the datasets. Finally, the
COVID-19 pandemic was a major trigger for research in AI and computer vision
applied to the field of medical imaging, specifically lung imaging. It could be seen that
a modeler of the research landscape was the feasibility in the clinical field. In fact, the
ease of use, the short operating time, and the possibility of maintaining sterility were
part of the parameters that promoted the use of ultrasonography expanding the
research with deep learning in this imaging modality. Despite these great advances,
more studies must be done to further refine computer vision models to ensure that
patients receive the best quality of medical care.
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Chapter 14

Developing and Deploying a Sepsis 
Deterioration Machine Learning 
Algorithm
Rohith Mohan, Alexandra King, Sarma Velamuri  
and Andrew Hudson

Abstract

A sepsis deterioration index is a numerical value predicting the chance of a patient 
become septic by a predictive model. This model usually has pre-specified input variables 
that have a high likelihood of predicting the output variable of sepsis. For the purposes 
of predicting sepsis deterioration, we will primarily be using regression to determine the 
association between variables (also known as features) to eventually predict an outcome 
variable which in this case is sepsis. Among the cohort examined in our model at Cedars 
Sinai, we found patients who met or exceeded the set threshold of 68.8 had an 87% 
probability of deterioration to sepsis during their hospitalization with sensitivity of 39% 
and a median lead time of 24 hours from when the threshold was first exceeded. There 
is no easy way to determine an intervention point of the deterioration predictive model. 
The author’s recommendation is to continually modify this inflection point guided by 
data from near-misses and mis-categorized patients. Collecting real-time feedback from 
end-users on alert accuracy is also crucial for a model to survive. An ML deterioration 
model to predict sepsis produces ample value in a healthcare organization if deployed in 
conjunction with human intervention and continuous prospective re-assessment.

Keywords: sepsis, deterioration, ML, AI in medicine, deterioration index, algorithm 
deployment

1. Introduction to sepsis

1.1 Defining sepsis

Sepsis is the body’s exaggerated response to an infection where a cascade of 
inflammation can potentially lead to multiorgan failure or death [1]. It is a condition 
that could impact patients across the healthcare continuum whether they are well-
appearing neonates or geriatric patients with an abundance of medical problems. It 
is pervasive in its ability to affect nearly every organ system requiring comprehen-
sive multi-specialty care. Healthcare providers have been grappling with treatment 
of sepsis for as long as medicine has been practiced. As a field, we have made great 
strides in the ability to identify and treat sepsis, but it still kills nearly 270,000 
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people annually in the United States. We have a variety of therapeutics to treat the 
source of infection but one area that remains elusive is the ability to predict sepsis 
prior to onset.

1.2 Financial burden of sepsis

“Septicemia” is the most common diagnosis treated in US hospitals, having 
surpassed osteoarthritis in 2011. The number of aggregate sepsis-related hospital-
izations has grown exponentially, with the numbers of additional hospitalizations 
having tripled when comparing 1997–2011 averaging 48,650 hospitalizations/
year to 2011–2018 averaging 160,700 hospitalizations/year [2]. In 2018, the US 
spent more than $41.5 billion on hospital care for patients with sepsis, accounting 
for a disproportionate amount of total hospital costs (10.3%). Of the top 10 most 
common diagnoses, it ranks as the second most costly, averaging $18,700/stay, 
after acute myocardial infarction [2]. Hospitalizations with sepsis as the principal 
diagnosis also claim the highest 30-day re-admission rate with 8.3% patients 
getting re-admitted, and the highest average readmission costs at $19,800 per 
re-admission [2].

2. Current sepsis evaluation and scoring

In the landmark Sepsis-1 paper, the authors stressed the importance of hav-
ing a specific definition for sepsis to identify where along the sepsis continuum 
a patient presents [3]. Since the formalized definitions of SIRS and sepsis were 
published in 1991, a multitude of different scoring systems have been proposed, 
tested, and validated to predict deterioration and/or risk of mortality. Each 
system offers a distinct group of variables with weighted sums or point systems 
attempting to optimally determine which patients are at the highest risk of 
deterioration.

Variables used as criteria for scoring have transformed with the evolution of sep-
sis’ definition. The pivot in sepsis’ definition from SIRS with concomitant infection 
to focusing more on the spectrum of end-organ dysfunction resulted in an increased 
reliance on laboratory values in diagnosis of sepsis. Inclusion or exclusion of each 
variable in a scoring system was the result of iterative assessments of the variable’s 
ability to predict the risk of an adverse outcome (deterioration and/or death) and its 
sensitivity in allowing for timely intervention (Figure 1).

2.1 Systemic inflammatory response syndrome (SIRS)

The presence of SIRS is defined by derangements in temperature, ventilation, 
increased heart rate, or leukocytes—all markers of systemic inflammation. The 
authors of Sepsis-1 specified that SIRS was more for the recognition of sepsis rather 
than a tool for grading severity of sepsis. Despite this, studies have validated SIRS 
to have prognostic value. Higher SIRS scores correlate with more rapid progression 
to sepsis and are positively correlated with mortality rates [4, 5]. Higher SIRS scores 
also showed stepwise increases in mortality as sepsis severity increased comparing 
patients with SIRS, sepsis, severe sepsis, and septic shock [4]. However, SIRS scores 
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were found to be overly sensitive and poorly specific in predicting mortality leading 
to overdiagnosis and treatment of sepsis.

2.2 Sequential organ failure assessment (SOFA)

Recognizing sepsis’ dependence on SIRS and its inherent limitations in characterizing 
end-organ damage, Sepsis-3 re-defined sepsis as a “life threatening organ dysfunction 
caused by a dysregulated host response to infection” and endorsed the sequential organ 
failure assessment (SOFA) score as a scoring system for mortality [6]. SOFA’s summa-
tive score of multiple organ systems reflects PaO2/FiO2 (respiratory), platelet count 
(coagulation), bilirubin (liver), hypotension (cardiovascular), Glasgow coma score 
(GCS-neurologic), and creatinine or urine output (renal). The creators of SOFA aimed 
to keep it simple to allow for repeated assessments over time. The worst daily value is 
used to trend the risk of mortality in patients who are admitted to the intensive care unit. 
SOFA only uses variables that are obtained routinely and implemented a scoring system 
from zero to four to stratify a patient’s risk rather than using binary categorization.

Key limitations to SOFA include its simplicity in characterizing only six organ 
systems as detailed above. It is unclear if bilirubin is the best biomarker for the hepatic 
system given hyperbilirubinemia takes days to manifest and is also the most fre-
quently missing variable if the lab is not ordered [7]. GCS as a measure of neurologic 
function is at risk of being uninterpretable in hospitalized patients, a patient popula-
tion in whom sedatives are frequently used.

2.3  Early warning systems (EWS): modified EWS (MEWS) and national early 
warning score (NEWS)

Compared with mortality risk scores, early warning systems (EWS) monitor a 
patient’s vital signs at shorter intervals and screen for early indications of clinical 
decline. The first EWS described was the modified Early Warning Score (MEWS) in 
1997 and it was the first to gain wide acceptance in the United States. MEWS was later 
modified and then adopted as the United Kingdom’s National Early Warning Score 
(NEWS). There are over 100 EWS but we will only discuss two here [8]. Figure 2 
compares several well-known scoring systems.

Figure 1. 
Included variables in sepsis scoring systems.
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2.4 Modified early warning score (MEWS)

The modified early warning score (MEWS) evaluates temperature, pulse, respi-
ratory rate, systolic blood pressure, and level of consciousness by the AVPU score 
(Alert, Reacting to Voice, Reacting to Pain, or Unresponsive). Each parameter is 
assigned a score from zero to three based on the degree of abnormality and then 
parameters are aggregated as a MEWS score. Different scoring thresholds trigger 
pre-determined interventions. For example, a score of 3 may recommend increasing 
frequency of patient assessment to every 8 hours. MEWS has been validated for use 
in all hospitalized patients with its parameters easily attainable at bedside allowing 
for generalized use [9]. MEWS at a cut-point of 4 demonstrated higher sensitivity 
when utilized with a clinician’s input compared with using MEWS with a cutoff score 
of 4 alone (56.6% vs. 72.4%) [10]. This highlights the need for clinical context when 
utilizing a deterioration score for decision-making.

2.5 National early warning score (NEWS)

The national early warning score (NEWS) was adapted from MEWS and 
encompasses all the same variables – temperature, pulse, respiratory rate, systolic 
blood pressure, AVPU score—while adding oxygen saturation, shown to be a 
strong independent predictor of mortality [11] and considers the need for respira-
tory support. It has been validated for use in all admitted patients for predicting 
deterioration, escalation of care, or death within 24 hours. When compared with 
thirty-three other EWS, NEWS, based on AUROC (Area Under Receiver Operator 
Curve), outperformed the others in predicting adverse events and in predicting 
sepsis prior to onset. The thirty-three EWS compared to NEWS all included the 
following common variables: heart rate, respiratory rate, systolic blood pressure, 
temperature, AVPU score for consciousness, oxygen saturation, urine output 
and age. Each had specific weighted scores and thresholds assigned for triggering 
specific response [12].

Figure 2. 
Early warning score performance for sepsis discrimination.
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2.6 Key variables

Urine Output: The three EWS that shared the same variables as NEWS that incor-
porated urine output into their score had minor increases in AUROC, particularly 
for predicting mortality within 24 hours, but not for clinical deterioration [13–15]. 
Oliguria and anuria are signs of organ dysfunction and are therefore logically associ-
ated with predicting pending mortality.

Age: Age showed statistical significance in predicting the following adverse 
outcomes:, ICU (Intensive Care Unit) admission, attendance of the cardiac arrest 
team at a cardiorespiratory emergency, or death at 60 days with a small increase in 
AUROC from 0.67 to 0.72 [9]. This contradicts a subsequent study that compared 
multiple EWS and revealed that only the EWS that included age as co-variable did not 
outperform those excluding age in predicting deterioration [16].

2.7 Pediatric early warning score (PEWS)

Although sepsis is less common in the pediatric population compared with adults, 
it is more challenging to detect because symptoms like fever and tachycardia, herald-
ing signs in adults, frequently accompany mild illness in pediatric patients. Thus, 
the ability to detect and differentiate patients at risk for deterioration is even more 
crucial.

The bedside pediatric early warning score (PEWS) includes seven variables deter-
mined by expert consensus: heart rate (HR), capillary refill time (CRT), respiratory 
rate (RR), respiratory effort, systolic blood pressure (sBP), transcutaneous oxygen 
saturation, and oxygen therapy [17]. Each variable’s ability to discriminate between 
control and case patients was assessed by logistic regression. HR, RR, respiratory 
effort, and oxygen therapy had AUROC > 0.75 while CRT, oxygen saturation, sBP, 
and temperature had intermediate AUROC scores between 0.65 and 0.74 [17]. 
Temperature was ultimately excluded as a variable due to little added value. Bedside 
PEWS’ AUCROC was 0.91 with a sensitivity of 82% and specificity 93% at a threshold 
score of eight [17]. Bedside PEWS is sensitive in detecting deterioration with scores 
increasing 24 hours prior to urgent escalation of care and can identify patients at risk 
within at least 1 hour’s notice of sepsis [18].

2.8 Sepsis deterioration index

A sepsis deterioration index is a numerical value predicting the chance of a patient 
becoming septic by a predictive model. This model usually has pre-specified input 
variables that have a high likelihood of predicting the output variable of sepsis. With 
the proliferation of healthcare data in the last two decades due to the mandated use 
of electronic health records, we are now approaching an era where there is enough 
data to train machine learning models to predict sepsis. The electronic health record 
(EHR) system Epic is estimated to have approximately 30,000 data points per patient 
[19]. While large volumes of data are now becoming available, the data must be 
formatted in a way that can be processed by machine learning models. Healthcare 
data within EHR repositories tends to be heterogenous and require extensive cleans-
ing before becoming usable for this purpose. Clinical data is rarely standardized and 
is entered into the EHR without the intention of being utilized for back-end data 
analysis. Prior studies of de-identified Epic-derived data have characterized these 
issues and encouraged standardized data entry by clinical staff on the front-end [20]. 
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This is a lofty goal which may be attained at some point in the future. For now, data 
can be entered into machine learning models through feature extraction followed by 
creative cleansing and wrangling methods to be discussed. We will first describe in 
detail the derivation of our institution’s sepsis deterioration index. Afterwards we will 
discuss how our model was trained and compare it to existing models.

3. Methodology: creating a sepsis deterioration machine learning model

The dataset to create our Cedars- Sinai Deterioration Index (CS-DI) consisted of 1521 
hospital admitted patients from June 1st, 2021– September 1st, 2021, and is a representa-
tion of a standard medical/surgical unit patient population, containing 157,845 encoun-
ters. We used 70% (110,492) encounters for training, and 30% (47,353) encounters for 
testing. The average age of patients in the dataset is 63.22 years. 95,844 of patients identi-
fied as male, 61,203 of patients identified as female, and 798 of patients identified as 
other. 89,517 patients identified as Caucasian, 13,430 patients identified as Asian, 23,568 
patients identified as Black or African American, 401 patients identified as American 
Indian or Alaska Native, and 29,624 patients identified as Other/Unknown. The dataset 
includes lab results, nursing assessments, vital signs, and a predictor for an event, which 
is a binary indicator for an escalation of care, classified as a transfer to an Intensive Care 
Unit (ICU), Respiratory or Cardiac Arrest (Code Blue), or Death (Mortality).

3.1 Key variables for the CS-DI

In our model, the CS-DI, our patient cohort was extracted based on meeting the 
following inclusion criteria:

1. Inpatient Hospital Admission

2. Inpatient Admission Date between 6/1/2021-9/1/2021

3. Hospital Problem List ICD-10 Diagnosis including the following:

A41.2 Sepsis due to unspecified staphylococcus.

A41.51 Sepsis due to Escherichia coli [E. coli].

A41.52 Sepsis due to Pseudomonas.

A41.59 Other Gram-negative sepsis.

A41.81 Sepsis due to Enterococcus.

A41.9 Sepsis, unspecified organism.

R65.10 SIRS of noninfectious origin w/o acute organ dysfunction.

R65.11 SIRS of non-infectious origin w acute organ dysfunction.
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R65.20 Severe sepsis without septic shock.

R65.21 Severe sepsis with septic shock.

Based on these inclusion criteria, our annual patient cohort ranged from approxi-
mately from 4462 to 5729 patients per year. The following variables were extracted 
from our database to be used as features in the CS-DI:

3.2 Demographics

• Patient MRN/Patient ID

• Age

3.3 Admission encounters—Diagnosis, ICU LOS

• Discharge Diagnosis

• Admission Source

• Discharge Disposition

• LOS

• ICU LOS

• 30-day readmission (Y/N)

3.4 Clinical variables

• Respiratory Rate (breaths per minute)

• Oxygen Saturation SpO2 (%)

• Temperature (F)

• Systolic Blood Pressure (mmHg)

• Heart Rate/Pulse Rate (bpm)

• Partial Pressure Co2 (mmHg)

• PaO2

• Urine Output

• Consciousness Level/Mental Status

• A,V,P,U Scale
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• White Blood Cells (mm3)

• Bands (%)

• Bilirubin (Liver Function)

• Platelet Count (Coagulation Function)

• Serum Creatinine (Renal Function)

3.5 Data wrangling

There are numerous EHR systems within the United States but to train a machine 
learning model with reasonable predictive power, it requires a large enough volume 
of data and a wide variety of features. Epic is one of the largest EHR systems in the 
United States and had the most data available from its back-end Caboodle ware-
house making it an ideal choice as the data source for our model. Our model was 
developed at Cedars Sinai which uses Epic as its EHR. Our data was trained with 
patient data from Cedars Sinai, but our methodologies could be used by other health 
systems using Epic-derived data if features are defined in a similar fashion to our 
methodology.

Most machine learning algorithms require data to be converted into numerical 
values before entry into the model. Clinical data, particularly for lab values, can be 
extremely noisy with values documented in non-standardized formats in flowsheets. 
For example, when reporting the results of white blood cell counts in a urine sample, 
the data could be reported as 0, 1+, 2+, 3+, 4+ or none, or as some, few, many white 
blood cells with variations in how the text is entered by each technician. A data 
analyst must go through each data element entered in the algorithm and use code to 
replace text data or strings into numerical values. This is a painstaking process requir-
ing meticulous data review. Afterwards, a clinician, preferably a clinical informaticist 
should comb through the data to identify outliers or mis-entered data that would not 
fit in the dataset with an understanding of the data from a clinical perspective.

Once individual data elements have been cleansed, data elements from different 
tables will be converted to a format allowing tables to be joined. When extracted from the 
Epic Caboodle Data Warehouse, data is often stored in rows for each encounter. To merge 
with data from another table such as vital signs, each lab value needs to be converted to 
a column for interpretation by the machine learning model. We utilize a pivot function 
to reformat this data from rows into columns using the common identifiers of medical 
record number, encounter identifier, measurement value, measurement time, and mea-
surement unit. We then used a merge function to combine data elements from different 
tables to create a usable dataset. Please refer to the following link for details on our code:

https://github.com/rohith-mohan/caboodledatacleanse/commit/7d17c05fc3eeb04
3d22cb97e454701d2fbe81075

4. Choice of machine learning (ML) model

In the realm of data science, the choice of the appropriate machine learning model 
is critical in gaining the most information out of the data extracted while also being 
mindful of the computing resources needed to run the model (Figure 3).
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For the purposes of predicting sepsis deterioration, we will primarily be using 
regression to determine the association between variables (also known as features) to 
eventually predict an outcome variable of sepsis. As seen in our section above regard-
ing validated sepsis scoring methodologies, all of our features are numerical making 
regression a reasonable choice for our model. The mathematics behind most forms 
of regression are complex but we will go through the basic premise of a few common 
types of regression.

• Linear regression is the simplest form of regression which most people are famil-
iar with. It simply uses a set of dependent variables with coefficients that dictate 
the strength of association with an independent variable (y = mx + b).

• Bayesian linear regression is useful for small datasets since its features are based 
on a weighted sum of other variables to reduce dependence on the output a single 
point of data [21].

• Decision forest regression use a set of binary decision branch points to eventually 
reach a decision node. This is a very popular choice of model given its efficiency 
in use of computing power, accuracy even when presented with heterogenous 
data, and speed to train [22].

• Neural network regression determines the relationship between features and 
output variables through use of “neurons” in “layers” that associate weights to 
features in the model. They can be used for structured and unstructured data to 
create highly accurate models but are slow to train and require high amounts of 
computational power [23].

Figure 3. 
Rationale for selecting a machine learning algorithm.
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4.1 Epic deterioration index (EDI)

The epic deterioration index (EDI) is a proprietary prediction model implemented 
in over 100 U.S. hospitals to support clinical-decision support in diagnosis of sepsis 
[24]. The EDI aims to detect patients who are deteriorate and require higher levels of 
care. Its score ranges from 0 to 100, in which the higher numbers denote a greater risk 
of experiencing a composite adverse outcome of requiring rapid response, resuscita-
tion, ICU-level care, or death in the next 12–38 hours. The EDI uses a cumulative 
link model, a specific type of ordinal logistic regression model, that uses two parallel 
linear combinations of clinical inputs drawing two decision boundaries in the space of 
prediction using proportional odds assumptions. The details of the implementation 
are proprietary, and Epic has not shared this information publicly or described it in 
their published literature, but the accuracy of this model is 47.4% [24].

4.2 Cedars Sinai deterioration index (CS-DI)

After evaluating the accuracy of the EDI model, and other early warning systems, 
a decision was made at our organization to create a Cedars-Sinai deterioration index 
(CS-DI) machine learning algorithm that uses data from the patient’s electronic medical 
record and calculates a percentage value that predicts the likelihood of a patient deterio-
ration with an escalation of care. The predefined intervention point would automatically 
be activated if the calculated deterioration percentage value is reached and generate an 
alert notifying care providers to intervene sooner and possibly prevent further deterio-
ration. Once trained, the CS-DI was deployed as a clinical decision support application 
to identify patients at risk for sepsis in real-time. Seventy percent of the cohort was 
used as the training set for the model while the other 30% was used as the test set. We 
used the CS-DI percentage value calculated to predict a composite outcome of further 
deterioration, intensive care unit-level care, mechanical ventilation, or hospital death.

Among the cohort examined, we found patients who met or exceeded the set thresh-
old of 68.8 had an 87% probability of a composite outcome during their hospitalization 
with sensitivity of 39% and a median lead time of 24 hours from when the threshold 
was first exceeded. Among the patients hospitalized for at least 48 hours who had not 
experienced a composite outcome, 13% never exceeded 37.9 with a negative predictive 
value of 90% and a sensitivity above the threshold of 92%. When run against the MEWS 
early warning system, NEWS early warning system, and the EDI, the CS-DI predicted 
deterioration on average a full hour ahead of the other deterioration index models.

4.3 Unstructured data in ML models

Recent studies have shown that incorporating non-numerical data including key 
words from clinical documentation and diagnostic imaging can increase the accuracy 
of models [25]. This data is first converted to a format usable by machine learning 
algorithms via natural language processing (NLP). NLP uses sophisticated methods 
of text analytics to convert text into numerical data usable by an algorithm [26]. Goh 
et al. use a method of text analytics known as latent Direchlet allocation to group texts 
that are similar into topics. They identified 100 common text topics that were grouped 
into one of the following seven categories: (1) clinical status, (2) communication, (3) 
laboratory tests, (4) non-clinical status, (5) social relationships, (6) symptom, and 
(7) treatment. The numerical values derived from this text data were combined with 
structured numerical data like those used in the numerical regression models such 
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as patient demographics, vitals data and laboratory data. By adding text data into the 
mix, the AUC of their Sepsis early risk assessment (SERA) model was as high as 0.87 
with a lead time of 48 hours before the onset of sepsis.

Unstructured data in these models increases the accuracy and lead time as expected. 
Healthcare professionals rely on a multitude of unstructured data including all the data 
above and a physical assessment of the patient. The more of these features we can incor-
porate into models, the more accurate they can become. Humans cannot be omniscient 
to continuously monitor all the data they are presented and make real-time assessments 
on every patient in the hospital. If we can train a machine to think like an astute health-
care professional with the processing power of a supercomputer, we can ideally reduce 
the incidence of sepsis in our healthcare systems before it occurs.

5. Deployment of the CS-DI model

5.1 Prospective scaling of CS-DI

Our model has been used utilized prospectively to determine the risk of patients 
deteriorating into sepsis. The data was extracted from the Epic Caboodle Data 
Warehouse and pushed every 15 minutes to an S3 datastore and then to an Amazon 
Redshift Cloud Data Warehouse. The code to cleanse the data and run the features 
through our model was stored on docker containers to allow the data to be analyzed 
prospectively and at scale. The algorithm would calculate a percentage value from 0 
to 100% and visually display a near-real time swim lane on an intuitive user interface 
in our command center. If patients neared a predefined intervention point, a protocol 
for escalation by the triaging Rapid Response Team (RRT) was initiated.

A crucial step in realizing the potential of ML algorithms is to work closely with the 
facility’s IT department to integrate them into the clinical workflow while minimizing alert-
fatigue. Ultimately, the successful integration of ML algorithms should aim to enhance the 
productivity of clinical teams while avoiding any attempt to replace them entirely.

5.2 Institutional considerations for deployment of sepsis model at cedars-sinai

The deployment of sepsis AI alerting systems can be categorized into two 
approaches - passive and active, each with distinct staffing models. The passive 
approach involves a central hub of trained personnel monitoring sepsis alerts at one 
location such as a command center.

Despite claims of successful implementation at some institutions, this approach 
has huge dependency on a small group of people and is much more expensive than the 
second approach which we will cover shortly.

Effective staffing of this passive model requires careful consideration of the 
number and distribution of generated alerts. The distribution of alerts over time 
must also be considered. Due to the workflow of data collection that feeds the alert, 
the distribution of alerts may be bimodal or trimodal. Most alerts may occur during 
specific times of the day such as when labs are reported, vital signs are entered by 
nursing or during changes of shift. To adequately manage the expected volume and 
timing of alerts, staffing requirements should be calculated. Specifically, the team 
should be capable of handling 30–40 alerts within a 3-hour period, with occasional 
alerts occurring during off-peak times. In practice, this will likely require the hir-
ing of an additional three full-time equivalent (FTE) nurses for the day shift and 2 
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FTE nurses for the night shift, with float coverage provided during weekends and 
vacations. The active approach or the fractal-behavior model is one in which humans 
work collaboratively with the AI model. In this approach each nurse is responsible for 
managing their own 4 or 5 patients assigned to them during the shift. There are two 
phases to the management of a patient based on whether they have sepsis or not.

Phase 1—When the sepsis alert is prevented from firing because the nurse has pro-
actively screened the patient for sepsis using a standardized rule-based ML algorithm 
that uses a multivariate decision tree—i.e., non-linear decision making. In this case each 
nurse is consistently evaluating every patient at shift change, or when they first have the 
patient assigned to them. This method captures data before it is readily available in the 
EHR (e.g., patient’s mental status, clinical appearance, and subjective judgment around 
source of infection). If a patient screens positive for infection—more action can be 
taken at that time to implement a diagnostic or treatment workflow.

Phase 2—When the sepsis alert fires—the bedside provider activates a workflow 
that allows them to perform a secondary clinical evaluation (SCE) to evaluate the 
alert in the context of the patient’s clinical status. Frequently the decentralized active 
approach is criticized for failing because bedside nurses and providers fail to respond 
to alerts due to alert fatigue [26–28]. However, this approach only fails when the 
institution is relying solely on the EHR to mobilize the alert.

Hospital systems should consider adopting a user-centered design (UCD) instead 
of relying on traditional EHR interfaces. UCD involves the development of an inter-
face that is tailored to clinical workflows thereby maximizing efficiency. Ruminski et 
al. found that displaying a visual monitor significantly reduced the rate of sepsis [27]. 
Furthermore, studies have shown that color coding and screen positioning in the user’s 
visual field can improve provider satisfaction and reduce sepsis rates by over 50%. It 
is vital to align clinical end-users with the facility’s IT department to ensure that the 
product meets clinical expectations while remaining compatible with the EHR.

This approach establishes a highly reliable two-step method that when repeated 
by hundreds of nurses daily resembles a fractal that is made of repeated behaviors. It 
is independent of staffing and nursing ratios, does not require additional FTE hires 
and is more economically feasible the cost of several million dollars a year less in staff 
salaries to implement than the passive model.

5.3 Model surveillance

Machine learning (ML) models for sepsis are notorious for creating alerts that 
are not actionable. In addition, these models’ predictive performance degrades over 
time especially when deployed on populations not resembling their training sets. 
Concept drift, or the change in the underlying data distribution over time, is often not 
considered in the deployment of ML models. Many companies that provide sepsis ML 
detection systems fail to account for new data or changes in patient demographics.

For example, let us examine the following example (Figure 4) [28]. Models built 
in states with low death rates will perform poorly when being deployed in states with 
high death rates and vice versa due to overfitting to a particular population/dataset. 
Both data drift and concept drift can occur at the same time, leading to inaccurate 
predictions and reduced model efficacy. It is crucial to incorporate methods that 
can handle data drift, concept drift and population drift in the maintenance and 
deployment of ML models, especially in the clinical setting where predictions have 
an impact on patient outcomes. One solution to these issues is continuously incor-
porating prospective data to re-calibrate the model. In the case of the CS-DI, if the 
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model predicted sepsis when a patient was not septic, the model should eventually be 
retrained to correctly categorize that patient.

5.4 Governance of the model

Given patient safety concerns, the governance of a sepsis deterioration model 
falls under the jurisdiction of a medical executive committee (MEC). Additionally, 
hospitals now have sepsis steering sub-committees and patient safety committees in 
advisory roles. Patient risk—especially with respect to false negatives—should be 
presented and all non-treatment decisions that lead to poor patient outcomes should 
be examined on a quarterly basis at minimum to ensure patient safety.

Machine learning is how a computer learns to predict a particular outcome based on 
prior data. Artificial intelligence (AI) is the ability to take the information and translate 
it into an actionable insight. There remains weariness of AI and fear that it will replace 
human decision-making capacity. As shown in the development of the model above, AI 
takes human-derived knowledge but augments the ability to act on that knowledge via 
computing power. AI is a good servant but a terrible master—all treatment and non-
treatment decisions remain with a licensed independent practitioner.

5.5 Determining an intervention point

There is no easy way to determine an intervention point based on the predictive 
model. The beauty of deploying an ML model based on the active method described 

Figure 4. 
Septicemia mortality by state.
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above is that one will be able to set an intervention point on when to alert an end user 
(theoretically at 90% sensitivity and 90% specificity) and leave the decision to inter-
vene with the clinical end user. The author’s recommendation is to continually modify 
this inflection point guided by data from near-misses and mis-categorized patients. 
Collecting real-time feedback from end-users on alert accuracy is also crucial for a 
model to survive. In conclusion, an ML deterioration model to predict sepsis produces 
ample value in a healthcare organization if deployed in conjunction with human 
intervention and continuous prospective re-assessment.

6. Conclusion

Sepsis is a ubiquitous condition across healthcare continuum causing millions of 
deaths annually and incurring high costs on the healthcare system. We have made 
great strides in the ability to identify and treat sepsis, but it still kills nearly 270,000 
people annually in the U.S. A sepsis deterioration index is a numerical value predicting 
the chance of a patient becoming septic by a predictive model. This model usually has 
pre-specified input variables that have a high likelihood of predicting the output vari-
able of sepsis. For the purposes of predicting sepsis deterioration, we used regression 
to determine the association between variables (also known as features) to eventually 
predict sepsis. Among the cohort examined in our model at Cedars Sinai, we found 
patients who met or exceeded the set threshold of 68.8 had an 87% probability of dete-
rioration to sepsis during their hospitalization and a median lead time of 24 hours from 
when the threshold was first exceeded. Another model incorporating unstructured text 
into their deterioration model, had an AUROC (Area Under Receiver Operator Curve) 
as high as 0.87 with a lead time of 48 hours before the onset of sepsis. There is no easy 
way to determine an intervention point of the deterioration predictive model. The 
author’s recommendation is to continually modify this inflection point guided by data 
from near-misses and mis-categorized patients. Collecting real-time feedback from 
end-users on alert accuracy is also crucial for a model to survive. An ML deterioration 
model to predict sepsis produces ample value in a healthcare organization if deployed 
in conjunction with human intervention and continuous prospective re-assessment.

Acronyms and abbreviations

SIRS systemic inflammatory response syndrome
SOFA sequential organ failure assessment (formally sepsis organ failure 

assessment)
PaO2 partial pressure of oxygen
FiO2 fraction of inspired oxygen
GCS Glasgow Coma Score
EWS early warning system
MEWS Modified Early Warning Score
HR, bpm heart rate, beats per minute
RR respiratory rate
sBP systolic blood pressure
NEWS National Early Warning Score
AVPU alert, reacting to voice, reacting to pain, unresponsive
AUROC area under the receiver operator curve
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Chapter 15

A New Liver Segmentation  
Based on Digital Liver Portal  
Vein Ramification Using 
Computer-Assisted Surgery 
System: Exploring Artificial 
Intelligence
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Abstract

A good understanding of liver anatomy is required for performing precise liver 
resection. However, the currently described methods of liver segmentation based 
on portal and hepatic veins are inconclusive. We proposed a system of liver  
segmentation based on previous reports and our data. Three-dimensional computed 
tomography software based on artificial intelligence was used to analyze the portal 
vein branching pattern in 759 patients. We analyzed four different types of liver 
segmentation and measured their respective segmental liver volumes. We classified 
four types of liver segmentation based on the right portal vein. Median segmental 
liver volumes were variable for the different types of segmentation. Our system 
of liver segmentation enables a better classification of individual patients into one of 
the different types, thus assisting in preoperative surgical planning. Segmental liver 
volume is useful for the preoperative evaluation of remnant liver volume.

Keywords: liver anatomy, portal vein, segmentation, liver volume, computer-assisted 
surgery

1. Introduction

An accurate understanding of liver anatomy is important for surgical safety [1]. 
This is particularly relevant to the progression of modern surgery toward individual-
ized treatment and the advent of partial hepatectomy and living liver transplantation 
technology [2, 3]. Initial liver segmentation studies were based on the cadaver liver 
specimen perfusion model and were limited by the number of specimens and the 
research techniques available at the time [4–6]. With the development of artificial 
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intelligence, the development of modern imaging and digital medical research 
enabled the analysis of dimensional anatomical relationships and spatial vascular 
variations by three-dimensional (3D) visualization technology from all directions in 
a transparent and interactive manner [1, 3, 7, 8]. This has particularly helped with the 
performance of in vivo liver segmentation and liver volume measurement [9, 10]. In 
recent years, several studies have used digital imaging technology for liver segmenta-
tion, although these were often confined to liver lobe variations [11–13] and did not 
involve systematic research. None of the existing liver segmentation methods includes 
all possible variations in the liver anatomy. The portal vein branches are relatively 
consistent in the left hepatic lobe, which is divided into segments II, III, and IV. 
However, none of the existing single segmentation methods describes the different 
variations in the right liver. We describe a new liver segmentation system based on 3D 
reconstruction studies of digital liver models.

We used the 3D U-Net framework. In the field of machine learning, the U-Net is a 
successful encoder-decoder network that has received a lot of attention in recent years. 
Its encoder part works similarly to a traditional classification CNN in that it succes-
sively aggregates semantic information at the expense of reduced spatial information.

2. Materials and methods

A total of 759 patients without liver disease were enrolled in this study from July 
2013 to November 2017. Upper abdominal contrast-enhanced computed tomogra-
phy (CT) image data were collected for all patients. Patient selection criteria were as 
follows: (1) no liver lesions or other diseases affecting the portal vein arrangement; 
(2) availability of high-quality CT imaging that clearly displayed the portal vein up 
to its fourth-level branch; (3) no history of liver surgery; and (4) CT layer thick-
ness less than 1 mm. This study was approved by the research ethics committee of 
the affiliated hospital of Qingdao University, and written informed consent was 
obtained from all parents.

All included patients underwent upper abdomen contrast-enhanced CT 
(Discovery HD 750; GE Healthcare, Milwaukee, WI, USA and Definition Flash; 
Siemens Healthcare, Forchheim, Germany). The scan parameters were set as fol-
lows: nonionic contrast agent (Iopromide 350 mg I/mL; Schering Ultravist, Berlin, 
Germany) was injected via the forearm elbow vein or the hand vein with a double-
tube high-pressure syringe (Stellant; Medrad, Indianola, PA, USA). Approximately 
1.5–2.0 mL/kg body weight of contrast was injected at a rate of 1.0–3.0 mL/s. For 
Definition Flash CT, the tube rotation time was 0.28 s, detector collimation was 
2*64*0.6 mm, and pitch was 1.0. For Discovery HD 750 CT, the tube rotation time was 
0.5 s, detector collimation was 64*0.625 mm, pitch was 0.984, and noise index was 10.

2.1. Image processing and 3D reconstruction based on artificial intelligence

DICOM data of the upper abdomen CT were uploaded into the Hisense Computer 
Aided Surgery System (Hisense CAS, version 2.1.3; Qingdao, China) for 3D recon-
struction [3–5]. The following steps were performed: liver image extraction (liver 
segmentation was performed automatically through the artificial intelligence auto-
matic adjustment of the window width and window level); extraction of intrahepatic 
vascular system (the scope of blood vessel formation was determined through the 
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selection of intrahepatic vascular markers, followed by automatic extraction of 
intrahepatic vascular information); and integration (with integration of the liver and 
intrahepatic vascular system, 3D reconstruction was used to display the portal vein 
trunk, branch arrangement, and dominated region clearly from all directions in 3D).

2.2. Segmental volume measurement

By using the surgical simulation module of Hisense CAS, watershed analysis 
was performed based on the portal vein arrangement, radius, and supply area. The 
volumes of liver segments for types A, B, and C were calculated based on the fourth-
level branch of the portal vein. Type D varied greatly and the number of each variant 
was small.

2.3. Basic principle for Dong’s liver segmentation

Based on statistical analysis, approximately 10% of cases were selected for pre-
verification. Preliminary segmentation was performed and segmentation principles 
were proposed; these were verified by using the larger sample. The following basic 
principles for liver segmentation were developed based on the statistical analysis of 
preexperimental results obtained by the 3D reconstruction of the normal liver and 
vascular system of 120 humans.

a. The 3D model of the digitalized liver and vascular system was utilized to 
describe Dong’s liver segmentation based on the portal vein branch. The area 
supplied by the fourth-level portal vein is often considered the basic unit for 
precision liver resection. Therefore, the dominant area of the fourth-level portal 
vein was identified as the criterion for liver segmentation in Dong’s liver seg-
mentation system.

b. The caudate lobe region of the liver (segment I) has a relatively special portal 
vein blood supply with large variations. Following the primary portal vein 
branch, three to six small blood vessel branches are derived directly from the 
left and right main branches of the secondary portal vein to supply the caudate 
lobe area. Generally, five to eight short hepatic veins allow for backflow of blood. 
During precision liver surgery, portal vein bleeding cannot be solved by blocking 
a third-level or fourth-level portal vein, as performed for other liver segments.

c. We defined the caudate lobe as segment I to respect tradition and to enable easy 
recall. The subsequent lobes, starting from the left lobe of the liver, were num-
bered segments II–IX in a clockwise direction.

2.3.1 I 3D  reconstruction and intrahepatic vascular system Based on Artificial Intelligence

The 3D reconstruction of the liver and intrahepatic vascular system was per-
formed for 759 patients of different ages. The reconstructed digital liver by use of 
machine learning appeared to have a clear structure (Figure 1). The spatial distribu-
tion and variation of the portal vein were observed in rotated directions, leading to 
the observation of the spatial anatomical relationships of the portal vein within the 
liver from different angles.
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2.3.2 II Dong’s liver segmentation

Type A is similar to Couinaud or Cho’s segmentation, with the liver containing eight 
segments (365 cases, 48.09%). Type B contains nine segments because of the three 
branches of the right-anterior portal vein (203 cases, 26.75%). Type C (76 cases, 10.01%) 
has two variations, type C-a, wherein the right-posterior portal vein is sector-shaped and 
the right-anterior portal vein is similar to that in type A, and type C-b, wherein the right-
posterior portal vein is sector-shaped and the right-anterior portal vein is similar to that 
in type B. Type D contains special portal vein variations that need three-dimensional 
simulation to design individualized liver resection plans (115 cases, 15.15%).

2.3.2.1 Type A

Segment I is the caudate lobe, which is supplied by three to six small portal vein 
branches derived directly from the left and right main portal veins. Segments II and 
III are supplied by fourth-level portal vein branches derived from the superior and 
inferior outer aspects of the umbilical part of the left main portal branch. Segment IV 
is supplied by the fourth-level branch of the left portal vein.

Figure 1. 
(a–d) The three-dimensional (3D) reconstruction results of the liver, hepatic vein, and portal vein using Hisense 
CAS and integration.
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The left lobe nomenclature, including segments I to IV, is similar for all four types 
(Figure 2). The right portal vein divides into the right anterior and the right posterior 
branches. The right anterior branch further divides into two main branches, the 
cephalic and caudal branches, or the ventral and dorsal branches, depending on the 
angle of their branching. The caudal or ventral branch supplies segment V, whereas 
the cephalic or dorsal branch supplies segment VIII (Figure 3a).

Segment VI is the area supplied by the fourth-level portal vein derived from the 
outer inferior aspect of the right liver following the third-level branch of the right 
portal vein branch. Segment VII is the area supplied by fourth-level portal vein 
derived from the superior outer aspect of the right liver following the third-level 
branch of the right portal vein branch (Figure 3b).

2.3.2.2 Type B

According to the portal vein branches and the dominant areas, the liver was 
divided into nine segments for type B. A total of 203 (26.75%) cases were type B. 
Segments I to IV are similar to that of type A.

Figure 2. 
(a–d) Liver segments I, II, III, and IV and their respective portal venous blood supply.
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The right portal vein divides into the right anterior and the right posterior 
branches. Segments V, VIII, and IX are the areas supplied by the three main branches 
of the right anterior branch: the caudal (portal branches of segment V, P5), dorsal 
(portal branches of segment VIII, P8), and ventral branches (portal branches of seg-
ment IX, P9), respectively (Figure 4a). Segments VI and VII are the areas supplied by 
the fourth-level portal vein derived from the outer inferior and superior aspects of the 
right liver, respectively, of the right posterior branch (Figure 4b).

2.3.2.3 Type C

The right posterior area of the liver is supplied by 5–11 sector-shaped branches 
of the portal vein branches that are derived from an arched main vessel (Figure 5). 
It is not possible for segments VI and VII to be resected individually with precision 
(but is possible for types A and B). The proportion of livers with type C is small but 
significant from the point of view of precision liver resections. Type C has two varia-
tions, type C-a (6.59%), wherein the right-posterior portal vein is sector-shaped and 
the right-anterior portal vein is similar to that of type A (P8), and type C-b (3.42%), 

Figure 3. 
(a) Branches of the right anterior portal vein and the liver segments supplied by them for type A. (b) Branches of 
the right posterior portal vein and the liver segments supplied by them for type A.

Figure 4. 
(a) Branches of the right anterior portal vein and the liver segments supplied by them for type B. (b) Branches of 
the right posterior portal vein and the liver segments supplied by them for type B.
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wherein the right-posterior portal vein is sector-shaped and the right-anterior portal 
vein is similar to that of type B (P8 and P9).

2.3.2.4 Type D

Type D is a special group of variants that included 115 cases (15 15%). The vari-
ous portal vein configurations identified were as follows. Among the common type, 
the portal vein divides into right and left branches and the right anterior portal vein 
branch is derived from the left portal vein (74 cases, 64 35%) (Figure 6a). The P6 
portal vein is derived from the right anterior portal vein distal to the branching of the 
P7 portal vein from the right portal vein (19 cases, 16 52%) (Figure 6b). The portal 
vein trunk is trifurcation at the porta hepatis; it divides into the left, right anterior, 
and right posterior branches (8 cases, 6 96%) (Figure 6c). The right anterior portal 
vein is derived from the saccule of the left portal vein (4 cases, 3 48%) (Figure 6d). 
Approximately four to eight branches with similar thickness are derived from the 
right anterior portal vein supplying the right anterior liver (Figure 6e). The P2 and P3 
branches share a common trunk (Figure 6f) that leads to several branches that supply 
liver segments II and III. The right anterior portal vein has a trunk that divides into 
several sector-shaped small branches.

The different types of liver segmentations in the different sexes are shown in 
Table 1. There was no difference between the sexes in terms of the different types of 
liver segmentation (χ2 = 2.823, p = 0.420) (Table 1). Similarly, there was no difference 
between the pediatric (3 months to 15 years) and adult groups (>15 years) (χ2 = 1.095 
and p = 0.778) (Table 2).

2.3.3 III Segmental volumes for types A, B, and C of Dong’s liver segmentation system

The volumes of each of the liver segments of the different types are presented in 
Tables 3–6. For type A, segments V and VIII account for 15.78% (±5.12) and 16.43% 
(±5.18) of the total liver volume, respectively. For type B, the volumes of segments 
V, VIII, and IX account for 10.36% (±3.72), 11.84% (±3.28), and 12.69% (±3.70), 
respectively. The volume of the right-posterior (RP) segment of type C was smaller 
than that of segments VI and VII of type A and type B (26.379% [±5.613] and 24.447 
[±5.025], p < 0.01).

Figure 5. 
The right posterior portal vein and its branches supply the segments for type C.
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Accurate preoperative knowledge of the liver anatomy and volume is essential 
for performing safe liver resections [1, 10, 14, 15]. We proposed a liver segmentation 
system to enable better classification of the different types for individual patients 
to assist with their preoperative surgical planning. Segmental liver volume, which is 
useful for the preoperative evaluation of remnant liver volume, was also predicted.

Recently, many studies have proposed different methods of liver segmentation 
based on variations in the vascular anatomy of the liver [11–13]. Functional liver seg-
mentation that included eight segments based on portal vein blood supply and hepatic 
venous drainage was most well-known and applied in clinical work [4]. However, the 
actual anatomical segmentation of the liver varied substantially in some cases.

Segmentation Sex Total

Male Female

Type A 118 (46.27%) 247 (49.01%) 365 (48.09%)

Type B 77 (30.20%) 126 (25.00%) 203 (26.75%)

Type C 26 (10.20%) 50 (9.92%) 76 (10.01%)

Type D 34 (13.33%) 81 (16.07%) 115 (15.15%)

Total 255 (100%) 504 (100%) 759 (100%)

Male vs. female: χ2 = 2.823, p = 0.420.

Table 1. 
Distribution of liver segmentation in different sexes.

Figure 6. 
(a) The right anterior portal vein is derived from the left portal vein main trunk. (b) The P6 portal vein is 
derived from the right anterior portal vein. (c) The portal vein trunk has trifurcation at the porta hepatis and 
divides into the left, right anterior, and right posterior branches. (d) The right anterior portal vein is derived 
from the saccule of the left branch. (e) The right anterior lobe has a dominant supply from seven branches that 
are simultaneously derived from the right anterior portal vein. (f) The P2 and P3 branches of the left portal vein 
share a common trunk.
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Based on artificial intelligence, the development of imaging technology has enabled 
3D reconstruction of the digital liver model in a CT DICOM file by using simulation 
software [16, 17]. The possibility of observing the anatomical relationship of the portal 

Segmentation Age Total

3 months–15 years >15 years

Type A 22 (50.00%) 343 (47.97%) 365 (48.09%)

Type B 9 (20.45%) 194 (27.13%) 203 (26.75%)

Type C 5 (11.36%) 71 (9.93%) 76 (10.01%)

Type D 8 (18.18%) 107 (14.97%) 115 (15.15%)

Total 44 (100%) 715 (100%) 759 (100%)

Pediatric vs. adult age groups: χ2 = 1.095, p = 0.778.

Table 2. 
Distribution of liver segmentation in pediatric and adult groups.

Liver segment 
classification

% of total liver volume (range)

I II III IV V VI VII VII

Type A  
(n = 365)

4.86 ± 1.89 10.16 ± 
3.07

11.60 ± 
3.52

14.27 ± 
3.40

15.78 ± 
5.12

11.65 ± 
4.23

15.28 ± 
4.83

16.43 ± 
5.18

Table 3. 
Volume ratio for each type A segment of Dong’s liver segmentation (%).

Liver segment 
classification

% of total liver volume (range)

I II III IV V VI VII VII IX

Type B (n = 203) 4.79 ± 
2.05

9.55 ± 
3.02

11.70 ± 
3.43

13.71 ± 
3.49

10.36 ± 
3.72

10.61 ± 
4.17

14.77 ± 
4.48

11.84 ± 
3.28

12.69 ± 
3.70

Table 4. 
Volume ratio for each type B segment of Dong’s liver segmentation (%).

Liver segment 
classification

% of total liver volume (range)

I II III IV V RP VII

Type C-a (n = 50) 4.99 ± 2.42 10.33 ± 3.31 12.32 ± 4.05 14.08 ± 
3.06

16.88 ± 
4.59

24.61 ± 
4.70

16.69 ± 
4.59

Table 5. 
Volume ratio for each type C-a segment of Dong’s liver segmentation (%).

Liver segment 
classification

% of total liver volume (range)

I II III IV V RP VII IX

Type C-b (n = 26) 5.19 ± 
1.98

9.70 ± 
3.44

11.39 ± 
3.66

14.03 ± 
3.58

11.47 ± 
3.82

24.14 ± 
5.69

11.50 ± 
3.52

12.50 ± 
3.47

Table 6. 
Volume ratio for each type C-b segment of Dong’s liver segmentation (%).
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vein and hepatic vein in the liver from different angles allows for individualized evalu-
ation of liver segmentation and subsequent surgical planning [18–23]. Based on pedi-
atric patients’ CT DICOM data, we developed software called Hisense CAS [17, 24, 25], 
which could accurately reconstruct the intrahepatic portal vein branches up to their 
fourth level. In the present study, we analyzed 759 digital livers; based on the variation 
of the fourth-level portal vein branch, we proposed Dong’s liver segmentation system. 
This system attempts to include all types of anatomical variations in the liver.

We found that the portal vein branches in the left hepatic lobe, which was divided 
into segments II, III, and IV, were relatively consistent. However, there were several 
variations in the right liver that cannot be described by a single segmentation method. 
Consequently, we classified them into four types: A, B, C, and D. For types A and B, 
segments VI and VII are supplied by a fourth-level portal vein derived from the outer, 
inferior, and superior aspects of the right posterior portal vein branches.

Couinaud divided cephalic segment VIII and caudal segment V based on the right 
anterior portal vein. This was disputed by a recent study that proposed that the right 
anterior divides into ventral and dorsal branches [11, 13]. Our study findings demon-
strated that in some livers, the right anterior usually divides into two main branches, 
either cephalic and caudal or ventral and dorsal. We classified this as type A. Our 
observations suggest that a preoperative understanding of the angle of the portal 
vein branch is necessary for the right-anterior branch to avoid intraoperative injuries. 
Furthermore, the right anterior portal vein branch may also divide into three main 
branches, including the caudal (P5), cephalic-dorsal (P8), and cephalic-ventral (P9) 
branches. We classified this as type B.

The right posterior portal vein branch of type C is a single main branch with 
several small sector-shaped branches that supply the right-posterior lobe. These 
anatomical variations are important for segmental, subsegmental, and combined-
segmental precision resections of the right liver.

A variety of special variations that could not be categorized into the first three 
types were included as type D. This strategy of grouping the special variants into one 
type may facilitate a full understanding of the complexity of liver anatomy. A higher 
proportion of such variance also supported the need for individualized precision 
surgery. To perform precision hepatectomy, liver segmentation should be performed 
based on individual liver models established using each patient’s imaging data preop-
eratively so that virtual surgery and remnant liver volume may be evaluated by using 
the 3D simulation software.

According to Kumon’s criteria, the caudate lobe (segment I) comprises three 
parts: the Spiegel lobe, the paracaval portion, and the caudate carina. Because of the 
uniqueness of the caudate lobe blood supply, the Spiegel lobe is supplied by one or 
two caudate lobe portal branches. Variations in the portal blood supply to the caudate 
lobe are very common. In our study, a considerable proportion of subjects were found 
to have two to five branches that were derived from the left and right portal veins 
supplying the caudate lobe. However, the actual number of such branches could not 
be accurately determined because of their tiny size and inadequate CT resolution. 
Because of these tiny vessels, we suggest that surgeons should demonstrate extra care 
during caudate lobe surgery.

We did not find any significant differences in sex and age using Dong’s liver 
segmentation. Because our data were from the Chinese population, the differences in 
the liver anatomy of people from various races and regions need further exploration.

The average volume of each segment of the different segmentation types can 
be used for predicting remnant liver volume to ensure safe anatomic hepatectomy. 
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However, because of the large diversity in portal vein anatomy, it is our opinion that 
individualized volume measurements are critical for the safety of anatomic hepatec-
tomy, especially in patients with large tumors, impaired liver function, or atypical 
portal vein branching.

Artificial intelligence technology has made significant breakthroughs and clinical 
applications in the field of precision surgery. The development of digital medicine has 
provided new perspectives regarding liver segmentation. We believe that Dong’s liver 
segmentation system and segmental liver volume will enable a better understanding 
of liver anatomy and will be useful for liver surgeons.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Intestinal infections in common and colorectal cancer in particular are quite widely
spread and affect modern population in a significant manner. Therefore, they have
been objects of intensive scientific research for quite a long time. It is known that the
colorectal cancer’s diagnostics can face some difficulties caused by the uncertainties in
patients’ health status and disease data. The uncertainty, in common, can be classified
as probabilistic or possibilistic (fuzzy). The goal of this chapter is to analyze a fuzzy-
rule-based medical expert system for the colorectal cancer’s diagnostics. In the
modeling, fuzzy inference based on possibility measure and knowledge extraction
based on fuzzy clustering are applied. During the initial stage of the system’s model-
ing, the applied parameters of colorectal cancer were defined by using clinical data.
During the next stage, the soft-computing-based evaluation of the cancer’s factors is
performed. During the third stage, the applied fuzzy inference, based on possibility
measure, is introduced and supported by the examples. The knowledge base of the
modeled system consists of the case data obtained from 100 patients in the course of
3 years by the National Center of Oncology. The effectiveness of the modeled system
was checked on the testing subset of 30 diagnoses, and 22 predictions by the expert
system were defined as correct.

Keywords: colorectal cancer, IF-THEN rules, possibility measure-based inference
system, tumor response, fuzzy logic, fuzzy inference, fuzzy clustering

1. Introduction

Cancer has a long and complicated history: it appeared and was recognized even in
the ancient times. Modern science has carried out some significant amounts of
research on tumors and their treatment. The classic triplet of the disease’s treatments
is surgery, radiation, and chemotherapy, which are constantly supplemented by more
and more advanced methods. Modern oncology has, at its disposal, a wide arsenal of
tools and methods for treating cancer: for saving human life, they help to prevent its
occurrence and development; in hopeless cases, they prevent the maximum extension
and ease the painful symptoms.
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Due to the wide spread of oncological diseases, it is especially important to be able
to detect cancer at the early stage, when it is more possible to completely heal the
patient. Nowadays, cancer is the second leading cause of death in the world, after
cardiovascular diseases. Cancer causes almost one in six deaths worldwide. According
to the World Health Organization, the incidence of cancer in the next 20 years will
increase by 70%. The State Statistical Committee also reports that in Azerbaijan, for
every 100,000 people, there are over 400 patients with a malignant tumor; most of
them are women. The conducted statistical data demonstrate that in our country,
there is an increase in the number of patients diagnosed with cancer. Many experts
believe that in a few years, malignant neoplasms will become the main cause of death
worldwide, leaving cardiovascular diseases far behind. The worst thing is that the
incidence of cancer is growing, but the survival rate is not increasing. In most cases,
this occurs because of the late detection of the disease, as success in recovery strongly
depends on the early diagnosis of asymptomatic cancer. The problem with the grow-
ing number of cancer patients should be solved not only by medicine but also by all
sciences that can help in the fight against this cruel disease. This work is specifically
aimed at helping oncologists in making an accurate diagnosis at early stages and
possibly saving someone’s life.

Nowadays, one of the most spread cancer-related infections is colorectal cancer
(CRC). The statistics of this illness is studied in [1], and it has been found that CRC
should be more investigated among the young generation.

In the other research [2], risk factors that affect development of CRC are analyzed.
In the research, the risk for growth of cancer is defined, but patients’ gender wasn’t
taken into consideration. Thus, a more accurate analysis of colorectal cancer is required.

Information about the illness is discussed in [3–9]. The authors used two
data-driven approaches: logistic regression and neural network. The effectiveness
of logistic regression in the study appeared to be near 66%; the effectiveness of
neural approach was 78%. The study was performed on the data obtained from
403 patients. The results demonstrate superior effectiveness of neural networks
in comparison with logistic regression when applied to cancer diagnostics. In
general, neural networks have several advantages: ability to process vast amounts
of information, fault tolerance, generalization ability, adaptability, and learning. In the
discussed studies and applied methods, crisp statistic information was used; but data
on patients are always rather inaccurate, which enables the applicability of fuzzy data.

There are several research studies on medical expert systems reported in scientific
literature [10–14]. These research studies are based on linguistic information, fuzzy
inference reasoning, and probability-based reasoning. However, these systems’ per-
formance is accompanied by the collateral information loss; thus, these studies possess
some effectiveness limits. From this viewpoint, a possibility-measure-based fuzzy
inference method seems to be more effective [15–19]. This measure-based algorithm is
a kernel of information processing of the software system ESPLAN [20]. Possibility
measure is a fuzzy measure and can partially operate Z number-based information.
Zadeh’s last theory [21] is an extension of fuzzy logic and able to represent different
types of information uncertainties. Processing of information based on possibility
measure might be quite effective in medicine.

The purpose of this study is to design a fuzzy rule-based expert system for diagnosis
of colorectal cancer based on possibility measure and data extracted from Big Data. The
rest of the paper is organized as follows. Section 2 briefly describes fuzzy c-means
algorithm and the possibility-measure-based inference algorithm. Statement of the
problem and its solution are given in Section 3. Finally, Section 4 concludes the paper.
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2. Preliminaries

2.1 Representation of fuzzy if: then rules and possibility-measure-based inference
algorithm

The framework of the knowledge base relies on the fuzzy interpretation of
production rules [20]:

Rk : IF x1 is ~Ak1 and x2 is ~Ak2 and… and xm is ~Akm THEN

y1 is ~Bk1 and y2 is ~Bk2 and… and ykl is ~Bkl, k ¼ 1,K
(1)

where xi, i ¼ 1,m and yj, j ¼ 1, l are input and output variables, rule antecedents
~Akj and consequents ~Bkj are defined by using fuzzy sets, and k is the number of rules.

Inputs and outputs of the rule are linguistic data.
Main steps of the applied fuzzy-measure-based reasoning algorithm are as follows:

1.Fuzzification: inputs and outputs are defined in a linguistic manner by using
trapezoidal fuzzy numbers.

2.The firing levels of the rules are calculated by using possibility measure (Poss):

If the sign is “ ¼ ” and λk ¼ 1� Poss ~vkj~ajkÞÞ � cf k, then
��

(2)

λjk ¼ 1� Poss ~vkj~ajkÞÞ � cf k:
��

(3)

If the sign is “6¼”, then Poss is determined as

Possð~vj~aÞÞ ¼ max
y

min μ~νð yð Þ, μ~a yð Þð Þ∈ 0, 1½ �, τj ¼ min λjk
� �

: (4)

Here, one of the main elements of logistic inference is demonstration of the object.
Value of each wi object consists of its linguistic value and the confidence degree of
the linguistic value. Together, they constitute a pair, vi, cf i

� �
.

3.For each rule, the following computation is performed

Rj ¼ min jλjk
� �

∗CFj=100 (5)

where CF is the confidence degree of a rule, j is the index of a rule, k is the index
of the relation, and λjk is the truth degree of the kth elementary antecedent.

4.This step is to define the firing level (π) and to check Rj ≥ π . If the condition
holds true, then the consequent part of the rule is calculated.

5.The evaluated wi objects have Si value: wi, v1i , cf
1
i

� �
, :… , … , vSii , cf

Si
i

� �
. Si is the

number of the rules in the fuzzy inference process
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6.Calculation of the resulting value by using the fuzzy average value is performed
as follows

vi ¼
PSi

n¼1v
n
i � cf niPSi

n¼1cf
n
i

(6)

IF x1 ¼ ~aj1 AND x2 ¼ ~aj2 AND ... THEN y1 ¼ ~b
j
1 AND y2 ¼ ~b

j
2 AND ...

IF … THEN Y1 ¼ AVR y1
� �

AND Y2 ¼ AVR y2
� �

AND …

This model has a built-in function, AVRG, which calculates the average value.

2.2 Fuzzy C-means algorithm

Fuzzy C-Means algorithm attempts to minimize the sum of squared errors. The
algorithm is based on the iterative minimization of the following objective function
[22, 23]:

J W,Cð Þ ¼
Xk
j¼1

Xn
i¼1

wp
i,jdist xi, cj

� �2 (7)

The following condition is satisfied for the sum of degrees of membership of a
given element xi to all clusters:

Xk
j¼1

wi,j ¼ 1 (8)

The following condition is satisfied for the sum of membership degrees of all
elements in each cluster:

0<
Xn
i¼1

wi,j < n (9)

The corresponding cj centroid for a Cj cluster is defined as:

cj ¼
Pn

i¼1w
p
i,jxiPn

i¼1w
p
i,j

(10)

The fuzzy partition update formula can be obtained by minimizing the objective
function with the constraint that the sum of the weights equals 1:

wi,j ¼
1=dist xi, cj

� �2� � 1
p�1

Pk
q¼1 1=dist xi, cq

� �2� � 1
p�1

(11)

3. Problem description and possible solution

Nowadays, as was previously mentioned, CRC is the second most frequent malig-
nancy in the case of both men and women. The tumor is localized in the rectum, the
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farthest portion of the digestive tract, in around one-third of cases. Patients’ quality of
life is severely impacted by surgical therapy for rectal cancer, which results in dys-
functions that include fecal incontinence, urinary problems, and sexual issues.
Increasing the number of sphincter-preserving surgeries was the primary goal of
rectal cancer treatment for the past 20 years; today, the focus is on organ preservation
strategies.

Neoadjuvant radiotherapy and chemotherapy are used to increase local control and
overall survival in around 75–80% of instances for individuals with rectal cancer,
making their care complicated. However, only 20–30% of patients who receive
neoadjuvant therapy gets a full pathological response; the other 70–80% experiences a
poor or ineffective response. How we can anticipate tumor response in people with
rectal cancer is the key issue right now.

This variance is assumed to be influenced by the tumor’s size, height from the anal
margin, depth of invasion, differentiation and, of course, genetic variables such as the
KRAS and BRAF mutation. The purpose of this work is to create an expert system to
forecast tumor response value following neoadjuvant chemoradiation. A crucial issue
is how to define the predict value of the tumor response following neoadjuvant
chemoradiation. To assess tumor response using pertinent parameters is the funda-
mental problem. Using fuzzy rules, we can calculate the tumor response value. A
compound index made up of five characteristics, each of which is judged by an expert,
makes up the tumor response value following neoadjuvant chemoradiation, abbrevi-
ated as R.

The five components are: V—age, LO—localization of tumors, T—infestation rate,
N—state of lymph nodes, G—mutation in the genes, and R—predict value of tumor
response.

Using the abovementioned parameters, the tumor response value model can be
expressed as a set of 21 rules obtained by using fuzzy C-means algorithm:

1.If Age(V) = about 80 and Localization tumor(LO) = about 2 and Infestation
rate(T) = about 2 and State of lymph nodes(N) = about 1 and Mutation in
the genes(G) = about 0,THEN predict value of tumor response (R) = about 0;

2. If Age(V) = about 40 and Localization tumor(LO) = about 2 and Infestation rate
(T) = about 2 and State of lymph nodes(N) = about 3 and Mutation in the genes
(G) = about 0,THEN predict value of tumor response (R) = about 0;

… … … …

3. If Age(V) = about 20 and Localization tumor(LO) = about 92 and
Infestation rate(T) = about 2 and State of lymph nodes(N) = about 3 and
Mutation in the genes(G) = about 1, THEN predict value of tumor response
(R) = about 100

Our goal is to use five parameters represented by fuzzy linguistic terms to describe
the level of the tumor response value. Values of linguistic terms are given below as
intervals. In addition, they are expressed as fuzzy data in diagrams.

Age (V):
Positive [0–40]
Medium positive [30–50]
Medium negative [40–60]
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Negative [60–100]
Localization of tumors (LO):
Negative [0–5]
Weak negative [3–8]
Medium positive [6–11]
Positive [10–15]
Infestation rate (T):
Early form [0–1]
Localized [1 – 2]
Early locally developed [2 – 3]
Late locally developed [3 – 4]
Metastasized [4–4<]
Status of lymph nodes (N):
Negative [0–2]
Medium Positive [1–4]
Positive [4–20]
Mutation in genes (G):
Negative [0–0.5]
Positive [0.5–1]
TRG (tumor regression grade) (R):
Very bad [0–10]
Bad [10–20]
Sufficient [50–60]
Good [70–80]
Excellent [90–100]
Graphical representation of these linguistic terms is as shown (Figures 1–6):
From the defined linguistic terms, a knowledge base of interpretable rules is

created. For instance:
Rule. If age is about 35 and localization of tumors is middle positive and infestation rate

is middle positive and state of lymph nodes is middle positive and mutation in the genes is
positive,THEN predict value of tumor response is bad.

ESPLAN shell is used for creating an expert system for rectal cancer. Below, the
computer simulation is discussed.

Computer simulation. ESPLAN shell has the following modules: the module that
manages all the procedure of the system; read-in and interpretation of knowledge;
inference; explanation generator; knowledge base and work are service; environment
interface; user interface. ESPLAN shell is realized using Prolog Artificial Intelligence
language. There are functional constructions that Prolog predicates in this system.
This possibility of system gives it a chance for including new functions to the pro-
gram.

Representation objects and linguistic terms by using ESPLAN are given in
Figure 7.

For example: Parameters about 50 are represented as: about K: (D, K,1.1*K,
D) = about 50:(D = 7.5, K = 47.5, 1.1 K = 52.5, D = 7.5).

Given linguistic terms are used in ESPLAN system:
much: (D, F – D, F, 0);
more than a: (D, K + D, F, 0);
about K: (D, K,1.1*K, D);
neutral: (D, M + 2 * D, M + 3*D, D);
less than K: (0, M, K – D, D).
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Figure 1.
Linguistic terms for Predict value of tumor response(R).

Figure 2.
Linguistic terms for Age(V).
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Figure 3.
Linguistic terms for Localization of tumors(LO).

Figure 4.
Linguistic terms for Infestation rate(T).
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Figure 5.
Linguistic terms for State of Lymph nodes(N).

Figure 6.
Linguistic terms for Mutation in genes(G).
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Here, minimum value is M, and the maximum value of the universe is F;
D = (F-M)/5.

Demonstration of the rule is given below (Figure 8):
Fragment of the knowledge translation process is represented in Figure 9, and

Fuzzy inference process is in Figures 10–13.
For instance,
object= “localization of tumors”,

Figure 7.
Values of parameters for tumor response.

Figure 8.
Representation of the rule.
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M = minimum = 0, F = maximum = 15,
linguistic term = “about 5”: About 5 = (D, M + 2*D, M + 3*D, D)
The abovementioned model is created using knowledge representation language

and implemented in ESPLAN shell. Results of the performed test are:
Test 1: If age = about 38 and localization of tumors = about 4 and infestation

rate = about 2 and state of lymph nodes = abou11 and mutation in the genes = about 0,
THEN predict value of tumor response =?

Figure 9.
Knowledge translation process.

Figure 10.
Fuzzy inference process (1).
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Result: predict value of tumor response is from 0 to 2.
The results of tests are shown in Figures 12 and 13.
Test 2: Test 1: If age = middle positive and localization of tumors = weak negative and

infestation rate = middle positive and state of lymph nodes = positive and mutation in the
genes = negative,THEN predict value of tumor response =?

Figure 11.
Fuzzy inference process (2).

Figure 12.
Fuzzy inference result.
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FOR TEST 2. ANSWER:
predict value of tumor response =? very good.
Representation of linguistic terms of tumor response is given in Figure 14.
Knowledge base is realized using possibility measure-based algorithm in ESPLAN.

In this system, fuzzy logic theory is used in demonstration and operation of the
linguistic terms. After fulfilling of the knowledge base of the system by adding values
of several objects (for example, age is about 50), searching the solution in knowledge
base is done by logical inference procedure.

Figure 14.
Linguistic terms of tumor response.

Figure 13.
Fragment of results.

323

Fuzzy Expert System for Rectal Cancer Based on Possibility Measure
DOI: http://dx.doi.org/10.5772/intechopen.109405



There is the following opportunity of the ESPLAN shell: creating an expert system
for several applications, relation with applied software package, explanation of the
advices, demonstration of the results, interface with user, and so on.

The advantages of the created expert system are: working with linguistic values;
possibility measure-based reasoning; realization of composition rule of inference,
including knowledge base as dialog; storing knowledge about different areas in the
knowledge base of the system; setting of a confidence degree for any rule (in per-
centage); application of external programs; and data interchange by using a file
system.

4. Conclusion

The data used in this study are from the Database of National Center of Oncology.
Three years of case data of 100 patients are implemented for extracting the
knowledge-based rule using clustering method. Veracity of 30 diagnoses of patients
was checked, and 22 from them were defined as correct. In this chapter, for the
evaluation of value of tumor response, a possibility-measure-based method is used.
The created expert system for rectal cancer was implemented in the ESPLAN. Several
tests were performed, and the outcomes were compared to the actual patient data.

The presentation of the developed system and samples of its use in medicine
demonstrate that it has a wide range of potential capabilities for making decisions
based on fuzzy information under uncertain circumstances. Experimental findings
demonstrate the effectiveness of the proposed intelligent system.

In the future, we are planning to study and compare different types of cancer
illnesses by using soft computing tools-neural network, genetic algorithm, evolution-
ary computing, chaos theory, Zadeh last theory-Z-number theory, and real-life results
for giving help and advice to doctors for decision-making during the treatment pro-
cess. For the future works, the data that have been used in computations will be
gathered from different hospitals and centers of oncology from all over the world by
using internet resources.
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