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Preface

Within the dynamic realm of computational intelligence, genetic algorithms (GAs)
emerge as formidable tools for optimization, problem-solving, and machine learning.
This book, Genetic Algorithms — Theory, Design and Programming presents a collection
of scientific contributions that delve into the theoretical foundations of GAs while
providing practical insights into their design and implementation.

GAs extend beyond the confines of academia, finding meaningful applications in
societal and engineering domains. In societal contexts, from health care to urban
planning, GAs optimize decision-making and resource allocation. In engineering
applications, these algorithms revolutionize design processes, contribute to
manufacturing optimization, and shape the evolution of artificial intelligence
systems. Real-world examples and case studies within this volume bridge theoretical
insights with practical applications, offering a compendium that demonstrates the
potential of GAs in diverse scientific disciplines.

A solid understanding of programming principles is crucial to comprehending the
scientific contributions within this volume. A dedicated section of this book guides
readers through the practical aspects of implementing GAs in various programming
languages. From coding fundamental algorithms to optimizing performance and
handling real-world datasets, this edition aims to empower researchers with the tools
to translate theoretical knowledge into robust scientific applications.

I hope that this collection is not only a testament to the scientific advancements in
GAs but also a valuable resource for researchers, academicians, and practitioners.
Through these pages, we invite you to partake in the ever-evolving knowledge
bridging foundational theory and cutting-edge applications, fostering a deeper
appreciation for the scientific contributions that shape the ever-changing
landscape of GAs.

Yann-Henri Chemin
Joint Research Centre,
European Commission,
Ispra, Italy
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Chapter 1

Optimization Using Genetic
Algorithms — Methodology with
Examples from Seismic
Waveform Inversion

Subhashis Mallick

Abstract

Genetic algorithms use the survival of the fittest analogy from evolution theory to
make random walks in the multiparameter model-space and find the model or the
suite of models that best-fit the observation. Due to nonlinear nature, runtimes of
genetic algorithms exponentially increase with increasing model-space size. A
diversity-preserved genetic algorithm where each member of the population is given a
measure of diversity and the models are selected in preference to both their objective
and diversity values, and scaling the objectives using a suitably chosen scaling func-
tion can expedite computation and reduce runtimes. Starting from an initial model
and the model-space defined as search intervals around it and using a new sampling
strategy of generating smoothly varying initial set of random models within the
specified search intervals; the proposed diversity-preserved method converges rapidly
and estimates reliable models. The methodology and implementation of this new
genetic algorithm optimization is described using examples from the prestack seismic
waveform inversion problems. In geophysics, this new method can be useful for
subsurface characterization where well-control is sparse.

Keywords: global optimization, genetic algorithm, inversion, parameter estimation,
diversity preservation, sampling strategy

1. Introduction

Genetic algorithm (GA) is a global optimization method based on the natural
analogy from genetics and evolution theory [1, 2]. In geophysics GA has been used to
solve a variety of single- and multi-objective inverse problems [3-17].

GA belongs to the class of model-based optimizations in which there are three
distinct components: (1) model, (2) data, and (3) objective. It is also assumed that the
model and the objective are related to one another via data and the underlying physics
of the problem. The model or the decision space is usually denoted as X. In seismic
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inverse problems under an isotropic elastic assumption for example, the model con-
sists of the vectors of the P- wave velocity (Vp), S-wave velocity (Vs), and density (p)
for each subsurface depth (or time) sample and the model space is the entire feasible
range of their variability. For an anisotropic elastic inversion, the model would be
other anisotropic parameters in addition to Vp, Vs, and p. For electromagnetic (EM)
and gravity inverse problems, the model would consist respectively of the

electrical resistivities or densities. Mathematically, the model or decision space

is thus defined as

X = [xlaxZ’ "'axN]T~ (1)

In Eq. (1) the superscript T represents a transpose and each x;,i = 1,2, ---,N
represents one model vector and N is the total number of model vectors. Thus for
isotropic elastic seismic inverse problem at a single location, N = 3 with x; =
[Vpl, sz, ceey VPM}T,xz = [VSl, Vsz, sy VSM]T, X3 = [pl,pz, "',pM}T 5 where fOI‘ any
depth or time samplej,j = 1,2, ---, M, Vp;, Vg, pj respectively denote the P-wave
velocity, S-wave velocity, and density at that sample, and M is the total number of
samples. The data space is defined as

D = [dladZ’ “"d]]Ta (2)

where each d; i = 1,2, --J is the vector representing the i data being optimized.
Finally, the objective space is defined as

Y = [y, ...,y]r, 3)

where each y;,i = 1,2, ---,] is a scalar valued quantity representing the objective of

the i data. To compute the objective, it is assumed that there exists a unique mapping
of the model space onto the objective space, i.e., X — Y via the underlying physics of
the problem and the data space D. The aim of any model-based optimization is to find
the model (or suite of models) in the model (decision) space that either minimize or
maximize the objective.

The problem defined above is multi-parameter and multi-objective optimization
where multiple parameters (Eq. 1) are simultaneously estimated from multiple
datasets (Eq. 2) via optimizing multiple objectives (Eq. 3). Such multi-parameter and
multi-objective optimizations have been previously used in geophysics to solve a
variety of problems such as estimating anisotropic properties for mantle lithosphere
from the splitting parameters of teleseismic S-waves and P-wave residual spheres
[18], wave equation migration velocity inversion [19], estimating earthquake focal
mechanisms [20], inverting multicomponent seismic and electromagnetic (EM) data
[10-12, 14, 17], etc.

This chapter restricts to the discussion of the multi-parameter and single-
objective optimization problem such that there are multiple parameters in the
models space to be estimated (Eq. 1) using a single set of data and single objective,
i.e., when ] = 1in Egs. (2) and (3). Although the examples provided are from the
seismic inversion problem, its extension to solving other optimization problems is
straightforward.
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2. Multi-parameter and single-objective optimization problem

Restricting to seismic inversion under isotropic assumption, the model consists of
three parameters, (1) the longitudinal or P-wave velocity (Vp), (2) transverse or the
S-wave velocity (Vs), and (3) density (p). Thus, for single-component isotropic
elastic seismic inverse problems, the model and data can be redefined as

m = [VP, VS;p}T; (4)
and
d = [dl,dZa "'adN]T- (5)

In Eq (4), the vectors Vp = [Vpl, Vpa, ooy VPM]T, Vs = [Vsl, Vs, ooy VSM]T, and
0 =102 >Pm)” respectively denote the P-wave velocity, S-wave velocity, and den-
sity for each depth (or time) sample i;i = 1,2, ---, M, and the vector d in Eq. (5) is the
input seismic data with N samples.

Having defined the model and data, a unique forward modeling operator s = g(m)
is then defined which allows computing the synthetic or predicted data vector
s = [s1,52, -, sN]T exactly at the same points as those of the data vector 4 of Eq. (5).
This forward modeling operator varies depending upon the flavor of the inversion
method. For post-stack or pre-stack amplitude-variation-with-angle (AVA)/elastic-
impedance inversion [9, 20-24], g(m) is the convolutional modeling at normal or
nonnormal incidence angles [25]. For wave-equation based inversion such as the full
waveform inversion (FWI) [26-39], g(#) is the numerical solution of the elastic or
acoustic wave equation using finite-difference or finite-element modeling. Finally, for
prestack waveform inversion (PWI), which is a subset of FWI under the assumption
of a locally horizontal (1D) stratification at each location [3-8, 13, 16, 40, 41], g(m) is
the analytical solution to the 1D wave equation [42, 43].

After defining the synthetic or predicted datas = g(m) , the misfit or error between
the observed and synthetic data is defined as e = |d — 5| , following which, the objec-
tive is defined as the sum of the squared errors

y = ele, (6)

and the optimization can be cast as the minimization of the objective y. Alternatively,
the objective can be either defined as—e”e [17] or as the normalized cross-correlation [3]

Ts 4o
+s's
and the optimization can be cast as the maximization of y. The superscript { in

Eq. (7) denotes a complex conjugate transpose. It is assumed here that the real and
synthetic data vectors d and s can be complex valued. However, when they are real-
valued, d" = d¥ and st = sT. Also, the objective defined by Egs. (6) and (7) represent a
pure least-square optimization which is unstable for most practical problems. There-
fore, additional regularization or damping terms are used in defining the objective.
These damping terms stabilize the optimization by addressing the inherent noise that
are present on the data.
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Figure 1 illustrates single-objective and multi-parameter global optimization with
reference to PWI. As shown in Figure 1, an initial model of Vp, Vs, and p, each as
functions of depth is first estimated and the search windows around them are pro-
vided to define the model-space. In the presence of well-logs with borehole measure-
ments of Vp, Vs, and p, they can be used for generating this initial model. In the
absence of well-logs, initial Vp can be estimated from seismic data using velocity
analysis or other advanced velocity estimation procedures such as traveltime tomog-
raphy [44] and then established Vp-Vg [23, 24, 45, 46] and Vp-p relations [47] can be
used to estimate initial Vs and p. Based on the local geology and the knowledge of the
variability of Vp, Vs, and p, the model-space or search windows can then be defined
around these initial models and a suite of models is generated within them. These
suites of models can be generated in different ways by providing an appropriate
probability distribution around the initial model. For the most unbiased case, the
distribution could be uniform (boxcar) between the minimum and maximum values
and the models are generated such that the value of Vp;, V§;, and p; at any depth i can
have any random value within their minimum and maximum search bounds specified
for that depth with equal probability. Alternatively, a Gaussian distribution with the
mean and standard deviation, dictated by the initial model and the search window can
be defined for each depth, and depth-dependent models of Vp, Vs, and p can be
randomly drawn from this distribution. After generating these suite of models, syn-
thetic seismograms using each of these models are computed and matched with the
observed seismic data. When there are adequate offset samples, prestack seismic data
in time and offset domain can be decomposed into plane-waves in the intercept-time
and ray-parameter (r-p) domain [5]; synthetic seismograms can also be computed in
7-p domain and matched with the real seismic data using Eq. (7) to compute the
objective for each model. In many practical situations however, the offset samples
may not be adequate to perform an accurate plane-wave decomposition in the z-p
domain and it must be approximately done in the angle-domain instead [8]. Thus,
using the P-wave velocity field of each of the models, the offset-domain seismic data
are converted into the angle domain using an offset-to-angle transformation method

P-wave Starting
velocity fields | modeland
(for angle search
' gathers) __window
Prestack ms
Ph 1D
seismic data ::::::
| (4o equation) |
uncorrected) li
Set of
P-wave velocity | | Observed r-p synthetic
fields (for angle | orasetof |~ mpagch | (predicted) r-p Report
gathers) | ‘ angle gathers | F ‘ or angle ‘ sulutlm?sand
’ gathers exit
Scale
_objectives
[ New suite of } No Satisfactory Yes

| models ] ' Match?

Figure 1.
Illustration of the single-objective and multi-parameter global optimization for prestack waveform inversion of
seismic data.
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[48-50]. Synthetic seismograms are also computed in angle domain and matched with
the observed angle-gathers using Eq. (7) to compute the objective. Following the
objective evaluation, they are scaled using a suitably chosen scaling function. Objec-
tive scaling, in principle, is equivalent to objective regularization and will be discussed
in detail later in relation to genetic algorithms. Following scaling, the models gener-
ated so far are checked to verify if convergence is achieved. If yes, the method reports
the solutions and exits. If not, the models are iteratively modified until a point is
reached when one or more of the convergence criteria are satisfied (see Figure 1).

The way the models are modified in global optimization (the box shown with a
different color in Figure 1), depends upon the flavor of global optimization being
used. In simulated annealing (SA) for example [4, 6], the analogy of the
fundamental physics of crystallization from a melt via slow and steady cooling is
used to generate new models at each iteration. In Genetic algorithm (GA) on the other
hand [1-3, 7, 8], the analogy from the natural selection and survival of the fittest of
the evolution theory is used. In Particle swarm optimization (PSO), the models are
modified using the analogy from the social behavior of a flock of birds or a school
of fish [51, 52].

In theory, global optimizations do not depend upon the choice of the initial model
like the local, gradient-based optimizations do. The only requirement for global
methods is that the model-space provided as search bounds or prior probability
distributions, is wide enough to contain the true model. In seismology, these global
methods could be useful to characterize the subsurface in new exploration areas where
well-control is sparse or unavailable. Even in matured areas with adequate well con-
trol, if production data are to be integrated with time-lapse seismic data through
history matching via iterative reservoir simulations, geomechanical modeling, and
seismic inversion; existing wells before production may not represent the true sub-
surface model and a global optimization would be useful to predict dynamic reservoir
properties. Superiority of the GA over a linearized local inversion in predicting the
ocean salinity and temperature from the water column reflections with no prior
information has been clearly demonstrated by Padhi et. al. [41]. Yet, uses of global
methods in seismic inversion is still limited. The primary reason for this is the fact that
all global methods are nonlinear optimizations and computationally challenging for
handling moderate to large sized seismic inverse problems. The advantage of using a
global method is they can find a reasonable subsurface model even when the initial
starting model is far from the true model. However, to find the true (global) model
starting from a faraway initial guess requires (1) defining sufficiently large search
bounds within the model-space, (2) generating a very large number of models within
these bounds, and (3) iterating these models many times such that the model-space is
adequately sampled (Figure 1). And the runtime for all global optimizations expo-
nentially increase with increasing model-space size (i.e., with increasing search
bounds) and increasing number of models to be iterated within this model-space [12].

Restricting specifically to GA, we will now elaborate the steps shown in Figure 1
with particular emphasis on seismic inversion. As shown in Figure 1, the first step for
GA is to get an estimate of the initial model and define the model-space. This initial
model can be generated from the well-logs. But when well-logs are present, the initial
model is close to the true model. Under such conditions, there are many compute-
efficient local gradient-based methods to handle the inverse problem, and the use of a
global optimization is unnecessary. The power of using any global optimization is in
the situation where well-logs are unavailable, and the initial model must be differently
estimated.
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Figure 2 is a simple way to estimate the initial V> via velocity analysis and normal
moveout (NMO) correction. In this method, the input seismic data (Figure 2a) are
interactively NMO corrected using different Vp fields until a time-varying V) field,
shown in Figure 2b is obtained that optimally flattens (NMO-corrects) the input
gather (Figure 2c). Once the V} field is estimated directly from data using the
procedure shown in Figure 2 or using other sophisticated method like tomography,
initial Vs and p can be estimated using established Vp versus Vg and Vp versus p
relations. To keep things simple, V-V; relation, given as Vs = % and the Gardner’s
relation [47] given as p = aVlﬁj can be used to estimate the initial Vs and p. The V-V
relation Vg = % is commonly used in AVA/elastic-impedance inversion [23, 24, 46].
In Gardner’s relation, # = 0.25 and a is 0.23 or 0.31, respectively for Vp in ft/s and m/s
for most Gulf of Mexico sedimentary rocks.

Cyan curves in Figure 3 represent the initial model for inverting the prestack
seismic data shown in Figure 2a. Figure 3a is the initial Vp, which is same as the Vp
shown in Figure 2b after time-to-depth conversion. Initial Vs and p, shown in
Figures 3b and c were computed from the initial Vp of Figure 3a using the Vp-Vgand
Vp-p relations as discussed above. The cyan curve of Figure 3d is the Poisson’s ratio,
computed from the initial Vp and Vs of Figure 3a and b using the formula for the
Poisson’s ratio, given as [53]

1—2(5}5)2 |
- (1))

Note that because the initial Vs is computed from the initial Vp by setting V, = 2,

(8)

UV =

per Eq. (8), the initial Poisson’s ratio, shown in Figure 3d is constant (%) The location

Source-receiver offset (km) Velocity (km/s) Source-receiver offset (km)
0.0 0 2 4 6 2 3 4 5 6 7 0 2 4 6
g i
0.5 113 ol ]
! ) "Eh;.
1.0 RiE T3Sty s
z ’g.:L :
o e
£
= L5 | [
s e x ;..‘-f
e o gt ot
2,05 ot e H
k;“ Tt SR I 4
i G
2.5 :%%% st it \éﬁ‘)‘:‘}:&‘g}?ﬁ;
o ”f‘?ﬂ% i igi‘
3(,%%% i,: : i e
(a) Input gather (b) Estimated V, O corrected gather

Figure 2.
Estimation of initial Vp from prestack seismic data. (a) Input seismic gather. (b) Estimated Vp. (3) Seismic gather
after NMO correction using the estimated Vp.
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Initial model  ----- Model-space search limits

Figure 3.
The well-log model (black), initial model (cyan), and the model space search limits (dashed red) for (a) Vp, (b)
Vs, (¢) p, and (d) Poisson’s ratio.

of the seismic data shown in Figure 2 coincides with a well location and the well-log
Vb, Vs, p, and the computed Poisson’s ratio are shown as black curves in Figures 3a—d.

Besides the initial model, GA needs the model-space to be defined. The upper and
lower bounds shown as dashed red curves on each panel of Figure 3 are computed by
varying (1) the initial Vp by £10% (Figure 3a), (2) initial p by £15% (Figure 3c), (3)
initial Poisson’s ratio from —70 to +25% (Figure 3d), and (4) by computing the upper
and lower bounds of Vg (Figure 3b) from the initial V (Figure 3a) and the lower and
upper bounds of the Poisson’s ratio (Figure 3d). Note that the model space, defined by
these upper and lower bounds (dashed red curves), are wide enough to span the range
of variations in the true (well-log) model.

After estimating the initial model and the model-space (Figure 3), the next step in
GA is generating the initial population of models. As mentioned earlier, these initial
models can be generated by letting initial Vp, Vs (or Poisson’s ratio), and p to ran-
domly vary between their respective lower and upper bounds such that each of them
can take any value between these bounds with equal probability. These models could
be generated from the lower and upper bounds of Vp and p and the lower and upper
bounds of either Vs or Poisson’s ratio. Note that for single-component (i.e., for vertical
or pressure response) seismic data considered here, the variations of reflection ampli-
tudes are controlled by the variations of P-P reflection coefficients (Rpp) at subsurface
interface boundaries as functions of the angle-of-incidence (8). While the exact
mathematical expression of Rpp is complex, linearized approximations suggest that
Rpp(0) is primarily controlled by (1) P-wave velocity contrast, (2) density contrast,
and (3) Vs-Vp ratio (Vs/Vp) or Poisson’s ratio contrast [53-59]. For both AVA wave-
form inversion and PWI, Mallick [7, 8] found that parameterizing the random models
with Vp, Poisson’s ratio and p, and then computing Vs from Vp and Poisson’s ratio
provides more stable inversion than parameterizing them directly in Vp, Vs, and p.
From Eq. (8), it is straightforward to show that V; can be obtained from Vp and
Poisson’s ratio (v) as

1-—2v

Vs = Vpy|o—v.
ST\ 20— )

)
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Thus, in the applications shown here, Vp, v, and p were randomly generated and
then Eq. (9) was used to calculate V. Also note that for 1D seismic inverse problems,
layer thickness is also necessary. However, instead of layer thickness to be treated as
the model parameter to be estimated, it is preferable to calculate them using a user-
defined wavelength fraction at the dominant seismic frequency. Therefore, from the
Vp value Vp; for any layer i, the thickness for the layer i can be computed ast; = g/;
where g is the user-defined wavelength fraction and 4; is the wavelength at the

dominant seismic frequency f,,, , i-e., 4 = ~2. Thus, the layer thickness also varies

dom

with the variation of Vp but controlled by the dominant seismic frequency and the
user-defined wavelength fraction. For seismic inverse problems, it has been shown
that allowing layer thickness to randomly vary along with Vp, Vs, and p is unstable and
stable results are obtained by fixing them at the observed reflection boundaries in
time domain [3, 4, 60]. Thus, in some old GA and SA implementations [3, 4, 60], the
layers were of fixed time-thickness. Later Mallick [8] obtained stable results by
resolving models at a given fraction of the dominant wavelength. More recently, a
trans-dimensional seismic inversion method [61-65] have been developed where the
number of layers besides Vp, Vs or v, and p is treated as additional model parameter
and estimated. However, in the applications shown here, a fixed number of layers
with thickness set as the user-defined wavelength fraction is used.

Figure 4 shows randomly generated Vp models along with the search window,
initial model, and true (well-log) model. For any layer i, the P-wave velocity Vp; for
the layer is assumed to have any random value between the minimum and maximum
search limits (Vp;),,;,, and (Vp;),,,, for the layer. Generating them for all layers and for
all other model parameters (i.e., for Vs/v and p) provides one random model and
repeating the same for many models gives the model population. In Figure 4, ten
random Vp models are shown with one of the models in orange and the other nine in
grey. Note that when a sufficiently large population of such random models are
generated, they would span the entire model space.

Velocity (km/s)
2 3 4 5 6 7

1.0 ".C;'."""'* Well-log model
S
1.5 ERra -
T =T Initial model
= 2.0 =
£ 0 1 -
B 25 [~ R A — Search limits
& E. -
3.0 - - -Random model 1
3.5 = =i
(g Random models 2-10
4.0 ———
4.5

Figure 4.

Ten random Vp models generated within the specified search window. One of the models is shown in a different
color than the others to show the variability of the model within the specified search limits. The well-log and initial
Vp are also shown.
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After generating the random population of models, synthetic data are computed
for each model and matched with observation to compute the objective (Figure 1).
However, before discussing objective computation, it is important to discuss one
important GA-specific step known as the parameter coding/decoding. One popular
version for GA works with coded parameters instead of the parameters themselves,
and one good way for parameter coding is binary coding, illustrated in Figure 5. In
binary coding, the model parameters (Vp, Vs or v, and p) for each layer are coded as
binary digits (bits). In Figure 5 for example, 16 bits are assigned for Vp and 8 bits are
assigned for Vs/v and p. Figure 5 shows the binary coded parameters for layer-1
only, but those for all layers are concatenated to form a single binary string to
represent one model or one member of the population. In GA, this entire binary
string representing one member is called a chromosome and each bit within the string is
called a gene. The number of bits (genes) Ny, in a single model (chromosome) is thus
given as N (Nyp + Nys + N,) in which Ny, is the number of layers and Nyp, Nys, and
N, are the number of bits used to code Vp, Vs or v, and p for each layer. Thus, in
binary coding, a coin is tossed Nj;, times with 50% probability for heads (1) and 50%
for tails (0) and the results (i.e., zeros and ones) of the coin-toss are placed next to
one another to represent one model (chromosome). Repeating this 2N times where
N is an integer, produces a population of 2N models (Figure 5). For a single model
parameter (Vp, Vs/v, p) in each layer i, having all bits set to 0 (zero) corresponds
to the minimum parameter value and having them all set 1 (one) corresponds to
the maximum parameter value, specified by the search window for that layer
(Figure 4). Thus, the bits with random zeros and ones from the coin-toss can be
decoded for their actual value by linearly interpolating between these minimum
and maximum values. For example, assume the following parameters for binary
coding:

* For each layer, Vp, v, and p are coded with 8 bits.
* Generated binary string for a single layer is given as

100101110011100111001001. And the search limits for the layer are 2500-
5500 m/s for Vp, 0.1-0.42 for v, and 2.0-2.5 g/cm3 for p.

Binary parameter coding

4+—— lLayer-1 —»

Ve Vi/v P
L L 1
¥ T
{01101110001011001100010110010110 e csccvvevere. Member-1
{01001010001011110001111181010101 L. e cvveeeee. Member-2
111010010101001010111001001111000. . cvvrvveeee. Member-2N-1
110111011101101000001101101010100... . cceseeveveee. Member-2N

Figure 5.
Hllustration of binary coding.
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Under these conditions, Vp for the layer is represented by the first eight bits, i.e.,
10010111, v for the layer is the next eight bits- 00111001, and p is represented by the
last eight bits- 11001001. Now the equivalent decimal integer d,,,; of the binary string
10010111 that Vp represents is dyy =1x 2° + 0 x 2P+ 0 x 22 +1x 2> + 0 x 2* + 1 x
2> +1x2°4+1x2" =1+ 8+ 32+ 64+ 128 = 233. Assuming when all eight bits are
zero (00000000) is equivalent to the minimum value (V5p),,;, of the search limit
(2500 m/s) and when all of them are one (11111111) is equivalent to the maximum
value (Vp),,,, of the search limit (5500 m/s), Vp for the layer is decoded as
Vi = (Vp) i+ (dyat — 1) V22 Vhoin — 9500 23255002500 — 5299 m/s. Similarly, it
can be shown that v and p for the layer are respectively 0.295 and 2.29 g/cm>. While
such binary coding and decoding allows an easy way to search the model-space via
crossover and mutation (see below), such a coding discreetly samples the model-
space. For any model parameter P with minimum and maximum search limits P,,;,and
Poyax, the resolution of this discrete sampling is given as % , where
Np is the number of bits used to code the parameter. Considering that the model space
is, in fact, continuous, modern GA implementations are real-coded, which do not use
any coding and directly work with real numbers. Thus, in real-coded GA, real values
of the model parameters (Vp, Vs/v, p) within the specified search window limits are
randomly generated for each layer to represent one model or member in the popula-
tion and do not require any decoding. Details of real parameter coding for GA can be
found elsewhere [10-12, 66] and is not repeated here. Irrespective of whether the
model parameters are coded as binary strings (Figure 5) or as real numbers, the next
step in GA is to compute synthetic data using the underlying physics, match with the
observation, and compute the objective.

Objective computation is followed by objective scaling or fitness scaling. In GA,
objective is the primary driving mechanism for model-space search. However, if these
objectives are directly used to drive search, the good models tend to dominate the
poor ones, which is undesirable at early generations when none of the models are
expected to be anywhere close to the true (global) optima, driving GA optimization to
a local optimum [2]. In fitness scaling, the good models are scaled down and the poor
models are scaled up and the degree of scaling up and down varies with generation. In
GA, the original objectives computed using the normalized cross-correlation (Eq. 7 or
equivalent) are called raw fituness and those after scaling are called scaled fitness.
Although many ways for fitness scaling have been proposed, one simple and yet stable
method is the linear scaling proposed by Goldberg (1989) [2]. In linear fitness scaling,
the scaled fitness (f') is assumed to be linearly related to the raw fitness (f) as

f'=a+bf, (10)
where 2 and b are constants, and are computed from the constraints
Fonaxe = Scf g, (11)
and
Farg =Fang: (12)

In Eq. (11), f:n . 18 the maximum value of the scaled fitness, f’ avg is the average

value of the raw fitness, S is the scaling constant, and f’

avg i1 Eq. (12) is the average
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scaled fitness, set equal to the average raw fitnessf .

The scaling constant S is the
user-defined parameter that controls the model selection and mathematically, it rep-
resents the expected number of copies of the best member to be selected for crossover
and mutation (discussed below). In seismic inversion, setting S¢ = 0.8 at the begin-
ning and slowly increasing it to 1.8 at the final generation provides good results [7, 8].
As mentioned earlier, fitness scaling is like adding a regularization or damping term to
the pure least square inverse problem.

Fitness scaling allows stability to GA optimization. In seismic inverse problems
however, Sen and Stoffa (1992) [4] found that even after fitness scaling, GA may still
fail to converge. This is because of genetic drift- a tendency for GA to cluster toward a
single region in the model-space when finite population size is used [2]. One way to
avoid genetic drift is to use a very large population size and propagate it to many
generations. However, being a nonlinear method, the runtime for GA becomes pro-
hibitively expensive with increasing population size and must be avoided. So, instead
of using a large population, running several independent GA optimizations with small
population sizes, and later combining them is one good way to handle genetic drift
[4, 7, 17]. However, making several such GA runs is still compute-intense, and it is
advisable to find ways to avoid genetic drift in a single rather than several GA runs.
For multi-objective optimizations, one way to avoid genetic drift in a single run is to
compute the population diversity, given as the normalized Euclidean distance of a
member in the population from its nearest neighbors measured along all objective axes
[67]. For single-objective optimization problem, diversity can be calculated using the
pseudo-code shown in Figure 6 in which the population size is given as Np and the
measured diversity is stored as a floating-point array dist of size Np. Note that the
diversity value calculated by the pseudo-code of Figure 6 is normalized, which can
have a value varying between 0 and 1. In addition, the higher the diversity value, the
more diverse (i.e., more isolated from its neighbors) is the model. Thus, multiplying
the raw fitness values of each model by their respective diversity values prior to
fitness scaling would prefer more diverse models over the ones that are less diverse
and add an additional control to avoid premature convergence of GA. Thus, in
diversity-preserved GA, diversity is an additional regularization parameter for the
objective besides fitness scaling.

Having discussed genetic drift and how to avoid clustering and premature conver-
gence via objective-regularization, the next step in GA is reproduction or tournament
selection. In this step, the models are selected in preference to their respective regular-
ized (diversity-preserved and scaled) fitness values. Although many methods are

maximum_distance = 0.0;
loop over Np (ipop=0; ipop < Np; ipop++)
distfipop] = 0.0;
loop over Np (jpop=0; jpop < Np; jpop++)
If (ipop # jpop)
distfipop] = dist[ipop] + | objective[ipop]-objective[jpop] |
endif
end Np loop (jpop=0; jpop < Np; jpop++)
if (dist[ipop] > maximum_distance) dist[ipop] = maximum_distance;
end Np loop (ipop=0; ipop < Np; ipop++)
loop over Np (ipop=0; ipop < Np; ipop++)
dist[ipop] = dist[ipop]/ maximum_distance;
end Np loop (ipop=0; ipop < Np; ipop++)
end

Figure 6.
The pseudo-code for diversity computation.
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proposed for reproduction, the stochastic remainder selection without replacement
[2] has been reported to work very well for seismic inversion problems [3, 7]. In this
method the mathematically expected value E; for each member i of the of the popula-
tion are first calculated as

fi i (13)

E; = Np
D)

In Eq. (13)Np is the population size (number of models in the population) and f}, is

the diversity-preserved scaled fitness of the k” member in the population. After calcu-
lating E; for all members, the integer part of E; is used as the number of copies of the
member i to be selected into a new population pool of the same size Np. For example, if
for a given member j, E; = 3.67, then three copies of the 7™ member would be selected
into the new population pool. Repeating this process for all membersj,j = 1,2, ,Np,
would then partially fill up the new population pool, in which some of the original
members would be present once, more than once, or not present at all, depending upon
whether the integer part of their mathematically expected values are 1, greater than 1,
or less than 1. Next, the rest of the new population is filled up as follows:

1. A member is randomly selected out of the entire original population and a coin is
tossed with the probability of heads set to the fractional part of its expected
value.

a. Using the same example again, if the member j is randomly selected where
Ej = 3.67, then the coin would be tossed with the probability of heads set
to 0.67.

i. If the outcome of the coin-toss is heads, then the one copy of the
member j would be selected.

2.Step 1 above is repeated until the entire population is filled up, i.e., the selected
number of members in the new population is Np.

Reproduction generates a new population from the original (old) population, but
the new population is simply a fitness and diversity preferred copy of the old popula-
tion. To explore the model space and create a new generation of models from the old
generation, the processes that GA uses are crossover, mutation, and elitism (update).
Typically, crossover and mutation are combined into a single process, which is then
followed by elitism to advance to the new generation. In the following, crossover,
mutation, and elitism are explained using binary coding. Their extension for real-
coded GA can be found in [66].

Figure 7 illustrates the binary-coded crossover. First, two members from the
reproduced population are randomly selected and treated as parents. In Figure 7, they
are called Parent-1 and Parent-2. Next, a crossover site within each parameter space
(Vp, Vslu, p) for each layer is randomly selected (dashed purple lines in Figure 7).
Finally, the bits (genes) on the left-hand side of the crossover sites of each parameter
are swapped between the parents to produce two children, denoted as Child-1 and
Child-2 in Figure 7. Crossover is performed with a crossover probability Pc. For each
layer and each parameter, a coin is tossed with chances of heads set to Pc. If the
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Binary crossover
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Figure 7.
Illustration of crossover.

outcome of the coin-toss is heads, then the crossover for the given layer and model
parameter is performed, else the bits for the parents for the parameter are simply
copied into the children (i.e., Parent-1 is copied into Child-1, and Parent-2 is copied
into Child-2). Thus, crossover produces two new (child) members from the two
original (parent) members. For seismic inversions, setting Pc = 0.8 at early genera-
tions and slowly reducing it to about 0.65 at the end produces good results [7, 8]. In
mutation, for each bit (gene) in both child members (Child-1 and Child-2) is sequen-
tially visited and a coin is tossed with the chances of heads set to the probability of
mutation Py. If the outcome of the coin-toss is heads, then the bit is changed, i.e., if it
is 0 it is changed to 1 and if it is 1, it is changed to 0. A starting value of 0.15 and
reducing it down to about 0.01 at the end is a good choice for Py [7, 8].

After producing each pair of children from their parents via crossover and mutation,
objectives for the children are computed. Next, in elitism the objectives of the children
and their corresponding parents are compared and two members with the highest
objective values are allowed to advance to the next generation. Like crossover and
mutation, elitism is also performed with a probability of elitism Pr and a value of 0.5 at
early generations and increasing it to about 0.9 at the end are good choices for Py for
seismic inversion problems [7, 8]. Crossover, mutation, and elitism produces two mem-
bers of the next generation from the two members of the old generation and performing
N such operations of crossover, mutation, and elitism for a population size Np = 2N
would thus produce Np members of the new (next) generation from Np members of the
old (previous) generation. Once the new generation of models are produced, they are
advanced to another generation via reproduction, crossover, mutation, elitism, and the
process is continued until a prespecified maximum number of generations- G, is
reached or some other stopping criteria (see below for details) is satisfied.

3. Practical implementation of GA

GA optimization is computationally challenging. However, the entire methodology
can be parallelized in high-performance parallel computing environments, which, in
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turn, can lead to a compute-efficient nonlinear global seismic inversion method.
Considering that a global method in place of a local, gradient-based method for
seismic inversion can, in principle, allow estimating a reliable subsurface depth
model of elastic properties, even when there is no prior (well) information,
implementing an efficient global method like GA to solve seismic inverse problems
would certainly be a big leap forward not only for oil and gas exploration, but also in
solid earth geophysics, global seismology, and in the emerging fields like Carbon
Capture, Utilization, and Storage (CCUS), Underground Hydrogen Storage in Porous
media (UHSP) , characterization of the Enhanced Geothermal Systems (EGS), etc.
However, to implement GA in practice, it is important to address a few important
aspects. In above, GA is described as the process where an initial population models
of size Np, randomly generated within a user specified model-space (Figure 4) is
propagated via reproduction, crossover, mutation, and elitism up to a specified num-
ber of generations Gj,,. While these are the fundamental GA steps, implementing just
them, irrespective of how large the values of Np and G,y are, may possibly work on
synthetic data, but is most likely to fail when applied to real seismic data. To develop
GA that would work on a wide variety of real data, fundamental issue that must be
addressed is that the real data are always noisy, which must be efficiently handled.
Any model-based optimization, whether local or global, is an iterative process which
must have ways to stop iteration and exit such that the method does not suffer from
unnecessary computational burden. Thus, after each iteration, these algorithms check
if the method converged to a reasonable solution. If not, the iteration is continued, else
the method reports solutions and exits (Figure 1). In dealing with noisy real data
however, deciding whether to continue with iteration or to stop iterating is not one
simple step as shown in Figure 1. Noise levels on real seismic data are known to widely
vary, which are controlled by the geological factors, environmental factors, and many
other factors directly related to how the data were acquired in the field and later
processed in a computational facility. Even within a single area, there are often
different noise levels in different parts. To handle noisy data, the stopping criteria for
GA optimization must be implemented such that there is convergence check at dif-
ferent points within the algorithm, so that the data that are less noisy may converge
early and exit and at the same time, more iterations are allowed for noisy data. Such
multipoint convergence check, if correctly implemented, would not only allow addi-
tional computations when needed, but it would also avoid unnecessary computations
on the data that are relatively less noisy.

Considering the above issues, Figure 8 is the workflow for the prestack
waveform inversion (PWI) using GA optimization. The workflow shown in Figure 8
is complex, in which different parts or modules are shown with different colors and
are outlined by dashed boxes, also of different colors. The first module (Module-1)
is color coded in light green and outlined by the red dashed box. This module com-
prises the basic GA optimization steps. The second module (Module-2), color coded
in peach and outlined by gray dashed box is the first convergence checkpoint. The
third module (Module-3) in light blue and within purple dashed box is the second
convergence checkpoint. Finally, the fourth module (Module-4), coded in yellow
within green box is the output module where the method reports solutions and
exits. The main user defined controlling parameters are (1) Np— population size,
(2) Gyax— number of generations, (3) Ry, — maximum number of repeats, (4)
N.r— maximum number of iterations, and (5) C,,;,— minimum correlation, i.e., the
minimum value of objective (raw fitness value) to be achieved in the optimization
process.
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Figure 8.
Methodology for GA optimization with parallel implementation and multiple convergence checkpoints to solve
seismic inverse problems.

At the beginning of Module-1 (modules with the red box), an initial random
population of Np models are generated and distributed to different processors. Dif-
ferent processors compute the synthetic data and objectives (raw fitness values) for
the subset of the model population they each receive. The master node then collects
results from all processors, computes diversity, and performs fitness scaling and
reproduction (tournament selection). Next, the selected models are again distributed
to different processors such that they each perform crossover, mutation, and elitism
and produce new members of the next generation on a subset of the entire population.
The size of the population subset each processor receives and produces new members
is decided by the number of processors being used. For example, if Np = 100 and 50
processors are used, then each processor would receive two members from the
selected population as parents, produce two child members via crossover and muta-
tion, and then two new members of the new generation via elitism. When the number
of processors is less than 50, they each would then receive more than two parents and
thus produce more than two new next generation members. If the number of assigned
processors are more than 50, then only the first 50 processors would do the operation
and the rest would sit idle; thus, for a population size of Np, the maximum number of
processors to be used by the method should be 22, else the additional processors would

not be used. In addition, Np should be an even number so that % is an integer. After
generating new members within each processor, the master node receives them all
and checks if the method progressed to G, generations. If not, the master node
continues to perform tournament selection using the new models and distributes the
selected models to different processors for creating the models for the next genera-
tion. However, if G,y is reached, the methodology then goes into Module-2. In this
module, whether the best value of the objective achieved at this point is at least
0.9C,;y, is first checked. If yes, the method goes straight into Module-4 (yellow) to

17



Genetic Algorithms — Theory, Design and Programming

report solutions and exit. Otherwise, the generation number is reset to 1 and the
current model population is sent back to the green module (Module-1) to continue
with another set of GA optimization for G,,,x generations, and this process is repeated
for a maximum of R,,,, times with the chance of reporting solutions and exiting if
0.9C,nis reached during any stage. After such R, repeats, the method goes to
Module-3. In this module, the convergence criterion of reaching the objective at least
to 0.9C,,;, is first checked, and if not, a new initial model is set as the maximum
likelihood model achieved at this point, a fresh new set of random models are gener-
ated within the model-space and sent to the top of Module-1 to start a fresh set of GA
optimization with R,,,, repeats. Module-3 is repeated for a maximum of Nj,, times
with chances of being sent to Module-4 of reporting solutions and exiting at multiple
points (see Figure 8).

4. Examples

Here, different PWI runs using GA optimization on a single real prestack seismic
data are shown. Input seismic, initial model generated from velocity analysis and
NMO correction and then using established Vp-Vs and Vp-p relations, and the search
windows were used to define the model-space are shown in Figures 2 and 3. In all
examples, GA with diversity preservation and linear fitness scaling was used. Fitness
scaling constant (S¢), probabilities of crossover, mutation, and elitism (Pc, P, Pr)
were all set to their recommended values as discussed earlier. Also, the models were
parameterized as the P-wave velocity (Vp), Poisson’s ratio (v), and density (p).

Using the workflow of Figure 8, first two examples were run using
Np = 80, Gpux = 400, R,1ux = 5, Niter = 7, and C,,;, = 2. Note the value of C,,;, cannot
exceed 1. In these two runs, it was deliberately set to 2 to ensure that the methodology
goes through all seven iterations (Nj,,), each with five repeats (R,.x) of GA optimi-
zation using a population size (INp) of 80 with 400 generations (G4 ). In both
examples, the search windows to define the model space were £10% for Vp, -70% to
+25% for v, and +15% for p around their initial values, which are shown as dashed red
curves in Figure 4. Using 40 Intel Sandybridge/Ivybridge processors, runtimes for
each were approximately 45 min.

In the first example, the initial random models were generated using the method
shown in Figure 4, where the Vp, v, and p for each layer were allowed to randomly
vary within their respective model-space search limits, and the inversion result along
with the initial model and the true (well-log) model are shown in Figure 9. The
inverted model shown in red in this Figure is not the true inverted model, but a
smoothed version of it, computed by taking a moving average of five samples (layers)
across the entire depth range. The reason for showing a smoothed model instead of the
actual model is because for unconstrained GA inversion where well-logs are not used
at all, it is necessary to run multiple inversion passes. For the first pass, the initial
model, generated from velocity analysis, Vp-Vs, and Vp-p relations is discretized at
0.5 resolution where 4 is the dominant wavelength as discussed earlier. In successive
passes, a smoothed model from the previous pass is discretized at finer resolutions
(0.254, 0.154, etc.) and used as the initial model. If the search window required for any
given inversion pass is narrower than the one needed for the previous pass, then it can
be inferred that the multi-pass inversion is moving toward convergence. Now, com-
paring the (smoothed) inverted model with the true (well-log) model shown in
Figure 9, it can be readily verified that Vp is estimated reasonably well. However, the
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Figure 9.
PWI results using the diversity preserved GA optimization and random sampling method for initial model
generation shown in Figure 4. (a) P-wave velocity, (b) S-wave velocity, (c) density, and (d) Poisson’s ratio.

estimates of Vg (or v) and p are not as good, especially for depths greater than 3 km.
Thus, by creating the initial random models using the sampling method of Figure 4,
further refinements in the estimated inverted model is possible by making successive
GA runs with the smoothed inverted model from the previous run set as the initial
model for the next run with new search windows. Comparing the true (well-log)
model with the initial model and the smoothed inverted model, shown in Figure 9, it
can be readily seen that if the smoothed inverted model (the red curve in Figure 9) is
used as the initial model for another inversion pass, much narrower search window
than the first pass would be needed for GA to encompass all variations the true (well-
log), and running a few such inversion passes would eventually find a model close to
the true model. However, running such multiple inversion passes is not only compute-
intense and cumbersome, but also impractical. Although well-logs were not used here
to define the initial model, the results could still be compared with the well data and
the inversion could be stopped when the estimated model is sufficiently close to the
true well-log model. In the absence of well data, it is however difficult to come to a
decision point of when the estimated model is sufficiently close to the true model so
that the multiple inversion passes could be stopped. Thus, although the inversion
result of Figure 9 indicates that starting from a faraway initial model and using a wide
model-space, GA optimization would, in theory, find the true model via successive
inversion runs, the method is still difficult to apply in practice.

In contrast with the method for generating initial models shown in Figure 4,
Figure 10 shows a new way to generate them. Like Figure 4, Figure 10 also shows ten
random Vp models, generated between the minimum and maximum search bounds
with model-1 in a different color from models 2-10. Note that the random V, models
of Figure 10 span the entire search limit like the ones shown in Figure 4. These newly
generated random models, however, vary vertically, but are much smoother laterally
than the ones in Figure 4. Comparing the random models of Figures 4 and 10, the
former could be regarded as the laterally sampled and later as the vertically sampled
random models.

Figure 11 is the PWI result with GA optimization using the same parameters as the
ones used in Figure 9, except the initial set of random models were generated via
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Figure 10.

A new strategy of generating initial random models, demonstrated using Vp. Vertically varying and laterally
smooth models are genevated randomly between the minimum and maximum seavch limits. Like Figure 4, the
search limits, well-log and initial Vp models, and model-1 in a different color than models 2—10 are shown.

vertical sampling method of Figure 10. Note that unlike Figure 9, the smoothed
inverted model of Figure 11 is sufficiently close to the true model, and just a single
inversion pass using this smoothed inverted model as the initial model should find the
true model.

To verify, if the smoothed inverted model shown in Figure 11, would find the true
model, another pass of PWI with GA optimization was run by using the model shown in
red in Figure 11 as the initial model and discretizing it at 0.25) resolution. Search windows
for Vp and v were set to +5% and that for p was set to 2% and random models of
population size Np = 40 were generated using vertical sampling procedure of Figure 10.
Other parameters used for this inversion were Gz = 200, Ryax = 3, Niger = 3, and
Cuin = 1.0. Like last two inversions, a diversity preserved GA optimization with linear
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Figure 11.
Same as Figure 9 except when the initial set of random models were generated using the vertical sampling method
of Figure 10.
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Figure 12.
Pass-2 inversion, using the smoothed inverted model of Figure 11 as the initial model. The original initial model is
also shown in blue.

fitness scaling was used with the same parameters as before. Using 20 Intel Sandybridge/
Ivybridge processors, runtime for this inversion was 10 min and the results are shown
in Figure 12.

Unlike Figures 9 and 11, the inverted model in Figure 12 is the actual model
estimated from inversion, not a smoothed version of it. This model is almost identical
to the true (well-log) model, indicating that vertical sampling strategy for generating
the initial set of random models is superior to lateral sampling and is the practical way
for using GA optimization to solve seismic inverse problems when the initial model is
far, and the model-space is large.

5. Discussion

Vertical sampling (Figure 10) instead of lateral sampling (Figure 4) is a new
concept in the GA optimization for PWI. By starting from an initial model obtained
directly from data and well-known Vp-Vs and Vp-p relations, using a large model-
space defined as wide search windows for each model parameter, and generating
vertically sampled initial set of random models (Figure 10), this newly proposed two-
pass GA optimization can find the true (well-log) model with very good accuracy. By
comparing lateral sampling (Figure 4) with the new vertical sampling (Figure 10) it
may indicate the former sampling method encompasses the model space more uni-
formly than the latter. This is, however, untrue. In Figures 4 and 10 only ten random
models are shown, and when sufficiently large numbers of models are generated, both
methods sample the model-space equally well.

Figure 13 compares a single random model of Vp, p, and v generated from both
standard (lateral) and newly proposed (vertical) sampling methods along with the
initial model and the search limits. There is a fundamental difference between how the
models are generated in these methods and how do they behave within the model
space. In lateral sampling, values for each parameter and for each layer are indepen-
dently generated in between their respective search bounds. Thus, Vp, p, and v for
each layer vary widely between their specified search limits (light green curves in
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Figure 13.

Comparison between the lateral (light green) and vertical (magenta) sampling using a single random model. The
search limits (dashed red) and the initial model (black) are also shown. In addition, the dashed line in cyan
represents the top of the inversion window. (a) Ve, (b) p, and (c) v.

Figure 13). Vertical sampling, shown as magenta curves in Figure 13 on the other
hand, uses a single random number for each model. Thus, a random number between
0 and 1 is generated and combined with the minimum and maximum search limits for
each model parameter at each depth point or layer to define the model. For example,
consider two specific layers in Figure 13 at 1 and 2 km depths. The minimum and
maximum limits for Vp at 1 km are approximately 3.3 and 4.2 km/s and those at 2 km
are about 3.5 and 4.5 km/s. So, if the random number generated for a given model is
0.35, then the Vp at 1 km for the model would be set to 3.3 + 0.35 x (4.2 —3.3) =
3.615 km/s. Similarly, Vp at 2 km for the same model would be calculated as 3.5 +
0.35 x (4.5 —3.5) = 3.85 km/s. Values for p and v can also be computed in a similar
fashion. Note that because the initial Poisson’s ratio is constant, the random Poisson’s
ratio models generated by vertical sampling are also constant. Because a single random
number defines one model, vertically sampled random models are much smoother
than the laterally sampled ones. In addition, these vertically sampled random models
follow the initial Vp, Vi (or v) and p model trends. In the examples shown here, the
initial Vp is derived from the velocity analysis and NMO correction of prestack seismic
data, and the initial V5 (v) and p were generated from this initial Vp and established
Vp-Vgs and Vp-p relations, which, in a broad sense, is the representative of the local
geology that follows the regional compaction trend. Even for the case when well-logs
are used as the initial model and then the initial random models are generated by
vertical sampling, they would still be the representative of the geology. Thus, the
vertically sampled random models could also be regarded as geologically constrained
random models. Although random, their smooth and geologically constrained behav-
ior is the reason for their ability to better sample the model-space. Starting from the
combinations of Vp, Vs (or v) and p models, consistent with the local geology, they
tend to converge faster than those generated from lateral sampling. Finally, the
dashed cyan line across all panels of Figure 13 is the top of the inversion window. All
model parameters above this line were regarded as overburden and kept unchanged.
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Discussion here is restricted to the application of GA to solve seismic inverse
problem a single location using the parallel implementation outlined in Figure 8. This
procedure at single location is extendable to multiple location using the multi-level
parallelization. The concept of such multi-level parallelization is to use multiple sets of
the workflow of Figure 8 to simultaneously invert different regions of the seismic
data. Details of such multi-level parallelization is described elsewhere [13, 16] and
therefore not repeated.

6. Conclusions

By introducing a new sampling strategy for generating initial random models, a
GA optimization methodology is presented here. By avoiding genetic drift via diver-
sity preservation and fitness scaling, the proposed method has been shown to work
very well for large-sized model-spaces in solving seismic waveform inversion prob-

lems. The proposed method shown for a single location can be easily extended to
multiple locations using a multi-level parallelization approach.
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Application of Genetic Algorithms
in Health Sciences

Rohollah Fallah Madvari

Abstract

In this section, we introduce genetic algorithm (GA) and some of its applica-
tions in various health fields. Although GA and some other meta-heuristics are
inspired by biology, they are more familiar to experts in other sciences, and these
methods are often used to solve complex problems. The use of GAs has promis-
ing implications in various health specialities, including occupational health,
environmental health, HSE, occupational medicine, industrial safety, ergonom-
ics, toxicology, health care management, etc. This section of the book presents
applications of GAs in disease screening, diagnosis, prognosis and health care
management, and enables professionals to envision possible applications of this
meta-heuristic method in their health professions. In the following, we discuss

some applications of GAs in predicting, measuring and controlling factors that
affect health.

Keywords: health sciences, genetic algorithms, optimisation, health, safety,
environment

1. Introduction

The GA is an evolutionary method for constrained and unconstrained optimisa-
tion problems that uses the principles of Darwin's natural selection to find the optimal
formula to predict or match the model. In general, GA are based on iteration, with
most of the parts being selected as random processes. In nature, better generations
result from the combination of better chromosomes. In the meantime, there are
sometimes mutations in the chromosomes that can make the next generation bet-
ter. GA also use this idea to solve problems. The GA starts its entire process with an
initial population of random samples. Each sample in the population represents a
potential solution to the problem at hand. The samples are evolved through succes-
sive iterations, called generations, and evaluated against fitness criteria during each
generation. The population of the next generation is built by genetic operators and the
iteration process continues until the final state is reached.

In the following, we discuss some applications of GA in predicting, measuring and
controlling factors affecting health.

31 IntechOpen



Genetic Algorithms — Theory, Design and Programming

2. Application of genetic algorithm in acoustics

Noise is an unwanted and uncomfortable sound that has been the focus of much
research as a harmful factor. Many studies have been conducted on the effects of
sound, most of which point to the negative effects of sound on health [1, 2].

In general, the adverse effects of sound can be divided into three categories: psy-
chological effects, interference with activities and physiological effects [1, 3]. Factors
such as the level of sound exposure, the duration of exposure and the frequency
spectrum determine the extent and nature of sound effects.

In recent years, metal foams have emerged as an attractive area of research from
a scientific, industrial and audio application point of view [4]. Acoustic absorption
is one of the most important functional properties of metal foams [5]. Porous metal
is one of the most promising materials because porous metal has higher mechanical
strength and hardness, resistance to heat, corrosion and weathering than non-metal-
lic porous materials such as glass wool and urethane foam [6]. The sound absorption
behaviour of porous metal depends on the cell structure, which is mainly divided
into two types: open-cell structure and closed-cell structure [7]. Porous metals with
excellent absorption properties have an open cell structure because the sound wave
propagates inside the material. On the other hand, a porous metal with a closed cell,
which has a wavy cell wall, does not absorb sound. Sound absorption occurs due to
air adhesion friction at the boundary between the matrix and the air, and part of the
sound energy is converted into thermal energy. Therefore, the absorption of sound by
porous metal is related to the behaviour of air diffusion inside the cell, and therefore
the characteristic of sound absorption by porous metal is strongly dependent on its
cell structure, which is determined by the manufacturing methods and conditions
[8, 9]. Many parameters can affect the sound absorption coefficient of aluminium
foams, including porosity (€2), pore size (D), pore opening (), thickness (¢), resis-
tance to static flow, etc. (Figure 1) [10-12].

Various optimisation algorithms have been proposed, including the genetic algo-
rithm (GA) [13]. The GA algorithm checks the neighbourhood by repeatedly expand-
ing the search domain in the neighbourhood of the current solution and moving from
the current solution to the increasing neighbourhood. This process is repeated until
the current solution cannot be improved. This process continues until the optimal
location is reached.

Figure 1.
The morphology of the metal foam sample, where D represents the pore diameter and d represents the opening
diameter of the pores [12].
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Figure 2.
Optimised sound absorption coefficient chart at various frequencies using GA in the thickness of 5—40 mm [13].

GA is a problem domain-independent method and quickly searches the search
space for an optimised point with a quality function. GA has a distinct advantage over
other stochastic methods. It is very easy to parallelise the algorithm. This is because
the calculations of each iteration are independent of each other.

In general, the (Q), (D), (4) and (z) are not regulated in the manufacture of
sound-absorbing foam [14]. Therefore, approximate sizes of existing foam are tested
through trial and error to find the best sound-absorbing foam. However, if the shape
of the metal foam can be pre-determined for constant sound absorption with an
optimum SAC, it is a great step towards the intelligent production of porous foam. We
discuss how to use GA to improve an optimal set of metal foaming parameters includ-
ing the (Q), (D) and (d4) at any thickness and frequency to obtain an optimal foam
[13]. In Figure 2, the value of the SAC optimised for different thicknesses is shown for
each frequency.

The results in Figure 2 show that, in order to increase the amount of sound
absorption, the thickness of the panel must be increased at frequencies below
2000 Hz. However, at higher frequencies, for each thickness, it is possible to find
conditions (the value of d, D, Q), so that the amount of sound absorption reaches the
maximum.

3. Optimisation of sound power transaction of multi-wall panels using
genetic algorithm

Tanyo et al. [15] used a GA to optimise the layout of structural layers according
to the number of layers and corresponding thicknesses. The optimisation process

was performed by selecting materials from a given list that included a limited
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number of solid, liquid and foam materials. One of the advantages of this approach
is that there is no need to create new materials for a material designed for a specific
application.

The research by Shojaeifard et al. [16] began by explaining the theory behind the
acoustic analysis of multilayer panels using the transfer matrix method. After com-
paring with the existing laboratory results in this field and ensuring the correctness of
the modelling, in the next step, using this valid model, a multi-objective optimisation
of the acoustic behaviour of the panel was carried out. The acoustic behaviour of the
multi-wall acoustic panel is optimised by finding the optimal material and thick-
ness for the layers, and at the same time considering the acoustic behaviour criteria,
minimising the weight of the panel is considered during the optimisation process.
Since in the present work, the optimisation variables include both continuous and
discrete variables, therefore the GA, as one of the most powerful algorithms that can
manage continuous and discrete variables together, has been selected to solve the
present problem.

4. Using genetic algorithm in multi-objective optimisation of external
louvres in office buildings

Inadequate lighting will be associated with some degree of perceptual error such
as sleepiness [17]. Improving the comfort and convenience of the interior space
by optimising the level of natural light is one of the most important issues in the
renovation and improvement of space, especially in office buildings [18]. With the
increase in energy consumption, the need for multi-objective optimisation and
efforts to reduce consumption is increasing, especially in developing countries, and
this has led designers towards excellent architecture and maximum use of renew-
able energy, optimal use of energy and lighting. During the day, the sun not only
provides a favourable environment for users but also reduces the energy used to
cool and heat the environment. As a result, one of the most important factors in
improving the energy efficiency of the building is to control the amount of light
entering the space, and considering that the only part of the building that directly
receives sunlight from the sun is the window, the use of louvres to control the
amount of sunlight entering the space is essential. The use of daylight in many cities
in Iran, including the city of Tehran, is remarkable due to its favourable geographi-
cal location and the availability of many sunny hours throughout the year [18]. The
purpose of this research is to apply artificial intelligence and algorithmic program-
ming to estimate the proportions and technical specifications of external louvres
and to propose a model for the design of southern openings of office space in the
direction of efficiency and intelligent consumption of energy and providing the
required level of light in the interior space. The research method in this research is
simulation and logical reasoning, therefore, using office space simulation, paramet-
ric design of louvres and optimisation of parameters [degree of rotation (), length
(x), distance from the window (), amount of reflection (R) and number of louvres
(n)] using GA to design the south window has been analysed and studied in accor-
dance with the conditions of solar radiation in Tehran. The results show that the use
of external louvres is very efficient in controlling and improving the quality of light
(Figure 3) [18].
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Figure 3.
The results of the optimised brightness of the simulated sample [18].

5. Multi-objective optimisation of window shape in order to
simultaneously provide visual comfort and energy efficiency
components through genetic algorithm

Zhang et al. [19] used a multi-objective GA to optimise the thermal and daylight-
ing performance of a school building in the cold climate of Tianjin, China. First,
different plan designs, i.e. one-way open corridors, one-way closed corridors and
two-way corridors, were considered the main examples because they represent the
structures of school buildings in China. The main results show that the best case is
related to the design of the two-way corridor, mainly towards the south, in order to
take advantage of the absorption of radiation during winter. The Galapagos algorithm
and Octopus are optimisation tools in the Grasshopper environment [20]. Galapagos
algorithm as an extension for the single-purpose GA execution engine and Octopus
algorithm as an extension for the multi-objective GA execution engine in Grasshopper
software. As a multi-objective optimisation tool, the GA helps the production of
plans and forms to move towards the optimum, and even when the local optimum
occurs, it will cause a deviation from it by creating a genetic mutation [21]. For
single objective optimisation, the objective function is the minimum or maximum
value of each of these performance indicators. The GA is then used to explore the
relationship between the design components of the window shape and the daylight
and energy performance indicators and to generate new design options for better
performance. Multi-objective optimisation involves finding intermediate solutions
for different objectives. Firoozeh and Sayyed Majid [21] multi-objective optimisation
of window shape to simultaneously provide the components of visual comfort and
energy efficiency through GA provide the components of visual comfort (increasing
brightness and reducing glare) and energy efficiency (reducing energy consump-
tion). In order to achieve the optimal values of window design parameters, the
optimisation process based on simulation through GA was performed automatically
in Grasshopper software as multi-objective. Finally, multi-objective optimisation by
visualising the boundaries of the solution space can significantly reduce the complex-
ity of the problem and help the designer to achieve a set of variables that simultane-
ously consider relatively good values of all the objective functions and the possibility
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of choosing options with the priority of each of the conflicting objectives to achieve a
match between the project expectations and the final design [21].

6. Optimisation of the roof of a three-story residential building with the
help of genetic algorithm

The walls of a building are important in terms of heat exchange and control of the
building’s energy consumption, as they are the outermost envelope of the building
in direct contact with the air and temperature changes [22]. The body of the roof is
more important than the other walls of the building because its heat exchange is more
exposed to sunlight and other factors than other walls due to its area and time. The
aim of this section is to reduce energy consumption in a residential building in Shiraz
city and to achieve thermal comfort in the building spaces by optimising the roof
of the building. In this context, the following question was raised What is the most
optimal design of the roof of the building (materials and passive design methods)
so that the energy consumption of the building is minimised and the spaces of the
building are placed within the range of thermal comfort? The amount of reduction
in the energy consumption of the building has also been considered in this research.
The research method is quantitative and the energy consumption of the building and
the thermal comfort index were done with Energy Plus software and the optimisa-
tion process was done with GA [22]. The building roof variables were extracted and
defined in three general categories: passive energy system, physical characteristics
of the roof and location of the roof. The results obtained from the building simula-
tion calculations and the objective function output of the GA showed that the best
roof models provided reduced energy consumption by 50% and the average thermal
comfort index was 0.9 and 0.68, respectively in the warmest and coldest months of
summer and winter.

The GA is one of the methods used in many architectural optimisation projects
as an optimisation method when the number of variables is large [22]. Compared to
other optimisation methods, this algorithm has advantages that have made it used in
different fields, including the fact that it deals with discrete values and is not limited
to continuous values. The GA is inspired by the idea of natural evolution and Darwin’s
principle of survival. In general, GAs are population-based algorithms that can be
classified as global optimisation algorithms, which include the operation of searching
for the global optimal solution as well as the operation of improving local solutions.
The iterative process of GAs leads to better solutions based on mating and crossing
of higher-performing parents. The genetic coding of humans is called the genotype,
and the coded information of individual characteristics is called the phenotype. The
operations related to the genetic coding of the parents produce results for the next
generation. A basic GA has three main operations that are performed at each iteration:
inheritance, crossover and mutation [22].

7. Accurate modelling and prediction of PM, s concentration or use of
genetic algorithm

Many large cities face the problem of air pollution, partly from mobile sources
such as vehicles and partly from stationary sources such as industry [23]. The gradual
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and long-term effects of air pollution have led authorities and people to pay less atten-
tion to it. It should be noted that the increasing trend in the number of deaths, cancers
and heart attacks caused by air pollution indicates that air pollution has caused the
gradual death of people [23].

There are limitations in measuring air pollution concentration, one of the impor-
tant limitations is the number and spatial distribution of air pollution monitoring
stations. Due to the high cost and lack of necessary facilities, it is not possible to cover
the entire city with air pollution monitoring stations; therefore, interpolation and
prediction algorithms are used to model air pollution. The accuracy of these models is
of particular importance and various research works have been conducted to improve
the quality of air pollution modelling.

It is used to select effective parameters for estimating the concentration of
air pollution. This algorithm uses biogeography-based optimisation and GA for
optimisation [23].

8. Optimising air distribution in ventilation network by using genetic
algorithm method

Ventilation is one of the most important support activities in the production
chain of underground mining and construction activities, providing and distribut-
ing the air required by the various sectors [24]. The main purpose of a ventilation
system is to economically supply the required fresh air at a speed and volume
sufficient to rapidly dilute and remove contaminants from work areas. Pollutants
and disturbance factors in drilling and mining operations include a wide range of
flammable and noxious gases, dust, toxic gases from the explosion of explosives,
heat and moisture and the acceptable levels of these pollutants are defined by a
number of standards. Inadequate ventilation during the mine’s operating life can
cause problems with extraction and even halt production. The design of ventilation
systems is usually based on technical considerations and economic analysis is rarely
used as a decision criterion.

Optimum air distribution in mining operations can be described as the most
important practical solution for reducing the operating and capital costs of the venti-
lation network, which can be achieved by selecting the correct position and resistance
of the regulating doors, as well as the position and specifications of the booster fans,
for real and adequate distribution of airflow in the network. It can be achieved.

In order to optimise the air distribution, a GA can be used to search for the
optimum values of fan allocation, damper pressure drop and flow intensity of each
branch of the ventilation network.

The GA was determined by analysing the optimal fan power and the amount
of pressure drop required for the control dampers. The effect of the GA parameter
values of mutation rate and grafting rate, together with the population size, on
achieving the optimum response was then investigated. It was found that increasing
the population to a certain extent increases the probability of achieving the optimal
solution. As the linkage and mutation coefficients increase, the accuracy of the
calculations decreases and the time to reach the optimal solution also increases. To
complete the research, it is proposed to investigate GA coding in combination with
the Hardy Cross method for the optimal design of air distribution in a mine ventila-
tion network [24].
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9. Scheduling employees’ work shifts using a genetic algorithm approach

The general objective of this section is to apply human factors engineering to
scheduling theory in order to exploit the optimal performance of employees [25].
The problem of scheduling the work shift of employees with variable performance
is investigated in this section. The objective function of the mathematical model
for employee scheduling presented in this section is to minimise labour costs and
attempts to assign efficient employees to work shifts in order to meet the work
demand of the organisation. The important feature of the presented mathemati-
cal model is the consideration of ergonomic dimensions of employees, including
learning, forgetting and fatigue caused by work. GA was used to solve the presented
mathematical model in a reasonable computation time. In order to verify the effi-
ciency and effectiveness of the GA compared to the exact problem-solving methods,
the performance of the algorithm was compared with the performance of the LINGO
software and the lower limit of the presented examples. The results of the study by
Akbari et al. showed that the presented model has the ability to model human factors
and provides favourable work shifts. This study also showed that the human param-
eters studied have an impact on the efficiency of the employees and consequently on
the planning of the organisation’s work schedules. Therefore, it is suggested that man-
agers in organisations should use the proposed model to study the effect of human
factors on employees’ efficiency and provide an optimal schedule for employees’ work
shifts [25].

The set of analyses showed that the change in human parameters has an effect
on the planning of work shifts, and therefore it is suggested that managers use the
presented model to study these effects and provide suitable work schedules for
employees. The presented model also has the ability to be used in a dual way to plan
job rotation with the aim of improving employees’ health, which can be investigated
in future research. In general, the results showed that the effect of human param-
eters on the efficiency of employees and organisations in scheduling work shifts can
be mathematically modelled using exponential and hyperbolic functions, and the
presented GA has the necessary power to solve the optimisation model. Modelling
other human factors such as motivation, stress, etc. in employee scheduling problems
and applying other meta-heuristic methods and comparing the results are topics that
can be explored in future research.

10. Providing the optimal model for urban waste management system
using genetic algorithm based on fuzzy logic

In recent years, all kinds of models have been studied and used to evaluate the
waste management subsystems of the city of Tehran and to select the best waste
management option [26]. However, the problem of final waste disposal in Tehran is
one of the most important issues related to the environmental management of this
metropolis. The aim of the present research is to provide a model to allocate the opti-
mal annual amount of Tehran’s waste to waste management subsystems in order to
achieve maximum efficiency, reduce costs and increase the system’s revenue. Firstly,
the data required for the research was collected by referring to the Aradkoh Complex
in Tehran and personal interviews with experts and using the information recorded
in the Aradkoh Complex. Then, the proposed research model for the purpose of
allocating the optimal amount of annual waste taking into account all constraints to
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five recycling subsystems, aerobic compost, anaerobic digester, waste incinerator and
sanitary landfill using the GA based on fuzzy logic with the aim of reducing the total
cost of waste management system Shahri was implemented in MATLAB environment
and its results were analysed. According to the results of the optimal model proposed
by the research, it is necessary to allocate the optimal flow and process of the annual
waste of Tehran city among recycling, aerobic composting, anaerobic digestion, waste
incineration and sanitary landfill systems with more accuracy in order to increase

the annual efficiency of the waste management system. The city of Tehran should be
followed.

In this research, it was tried to present an optimal model for Tehran’s urban waste
management system with the aim of reducing costs and increasing income using the
improved GA method by fuzzy logic controller, and based on this, the annual optimal
values of Tehran’s waste were allocated to each of five under the recycling system,
aerobic compost, anaerobic digester, waste incinerator and sanitary landfill, so that
the presented model can be fully implemented to increase the annual efficiency of
Tehran’s waste management system. The results of this research showed that the
optimal model of the urban waste management system is a combination of different
waste management options in order to achieve maximum productivity and reduce
costs and increase revenues, and using only one waste management option is not
cost-effective. It can also be said that increasing the capacity allocated to each of the
subsystems does not mean reducing costs and increasing revenue generation, and the
most optimal point in each of the subsystems is the point where the objective func-
tion is optimised [26].

According to the results of the implementation of the proposed research model
using fuzzy GA, increasing the capacity of subsystems with lower costs and higher
revenues up to a certain amount can lead to the highest profitability and the capacity
increase of these subsystems after this amount is not specified. It can be affordable.
Also, by examining the changes in the total cost of the system, it can be concluded
that increasing the capacity of the subsystems in total up to a certain amount will
optimise the urban waste management system, and after that, it will not have a
positive effect on reducing the cost of the system and increasing income generation.
The comparison of the results of the GA implementation alone with the GA improved
by the fuzzy logic controller shows that the fuzzy system plays a positive role in the
efficiency of the GA in reaching a more optimal solution with a higher speed, and
therefore it can be used to make the algorithm more dynamic. Genetics makes good
use of the fuzzy system in this model in the direction of greater efficiency to reach the
optimal solution.

11. Conclusion

The idea of a GA, like an artificial neural network, is inspired by nature. Another
such innovation is evolution. By “simulating” the process of evolution in nature,
GAs search the “space of candidate solutions” to find the best possible solution to a
problem. In the search for the optimal solution, a set or population of initial solutions
is first generated. Then, in successive “generations”, a set of modified solutions is
produced (in each generation of the GA, certain changes are made to the genes of the
chromosomes that make up the population). The initial solutions are usually modi-
fied in such a way that, in each generation, the population of solutions “converges”
towards the optimal solution.
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This branch is inspired by the field of “artificial intelligence”, which is based on the
mechanism of evolution of living organisms and the production of more successful
and graceful species in nature. In other words, the main idea of GAs is “survival of the
fittest” In general, it is an algorithm based on repetition, most of its parts are selected
as random processes, and these algorithms consist of the functional parts of adapta-
tion, representation, selection and modification. GAs can help many health sciences
and even medicine in the future.
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Chapter 3

Using Group Theory to Generate
Initial Population for a Genetic
Algorithm for Solving Traveling
Salesman

Dharm Raj Singh

Abstract

In this chapter, we propose a novel algorithm that uses Genetic algorithm with
group theory for initial population generation and also propose a novel crossover for
solving Traveling Salesman Problem. In the group tour construction method, each
individual/initial tour has distinct start city provided that population size is equal to
total number of cities. In the initial population, each individual/tour has a distinct
starting city. The distinct starting cites of each tour provide genetic material for
exploration for the whole search space. Therefore, a heterogeneous starting city of a
tour in initial population is generated to have rich diversity. Proposed crossover based
on greedy method of sub-tour connection drives the efficient local search, followed by
2-opt mutation for improvement of tour for enhanced/optimal solution. The result of
the proposed algorithm is compared with other standard algorithms followed by
conclusion.

Keywords: genetic algorithms, traveling salesman problem, group theory for
population generation, 2-opt mutation, group theory

1. Introduction
1.1 Genetic algorithm (GA)

Genetic algorithm draws the idea from natural selection and natural genetics
principles for searching and optimization algorithm. In this method, we use survival
of the fittest rule of natural evolution. Invention of GA was done in 1960 by John
Holland [1]. It consists of population of chromosomes, with each chromosome
representing a solution to the particular problem. Each chromosome is evaluated to
obtain its fitness value of the chromosome against some given fitness function. A set
of chromosomes are selected for genetic operation(s) (selection, crossover, and
mutation) in order to get new chromosomes. Chromosomes are selected according to
their fitness values to reproduce/generate the next generation by genetic operations,
which generate new chromosomes. To achieve this, two transformations, namely
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crossover (generates new chromosomes by overlapping genes of two chromosomes)
and mutation (creates a new chromosome by making changes of genes in a single
chromosome), are used. After performance of crossover and mutation operation, we
generate a new chromosome called child. The process continues by selecting fit chro-
mosomes from parent and child population. Whole process of genetic algorithm is
repeated until best individual is obtained or desired number of iterations completed,
providing an optimal/suboptimal solution to the problem [2].

We developed a genetic algorithm for Traveling Salesman Problem (TSP) to pro-
vide balance between exploration and exploitation for the search space. For this, all
the components of the genetic algorithms were carefully examined.

1.2 Literature review

Traveling Salesman Problem is a famous combinatorial optimization problem,
which is still NP-complete [3, 4]. There is no clear evidence for its origin. However,
credit goes to Irish mathematician Hamilton and British mathematician Thomas
Krikman for its mathematical formulation, which is discussed in detail in “Graph
Theory 1736-1936” book by Wilson, Biggs and Lloyd 2 [5]. The general form was
firstly studied by mathematician Karl Menger [6]. Alexander Schrijver [7] pointed out
the connection between the works of Whitney and Menger along with growth of TSP
in his paper “On the history of combinatorial optimization (till 1960).” Merrill Flood
[8] while searching for the solution of school bus routing problem used TSP mathe-
matically for the first time. Hassler Whitney [9] of Princeton University introduced
the name traveling salesman problem. The popularity of TSP increased considerably
during 1950s and 1960s when prizes were offered by RAND Corporation for solving
steps of the problem. As a result of it, prime contributions were made by Fulkerson,
Dantzig and Johnson [10] from the RAND Corporation who used branch and bound
algorithm [11] for solving integer linear program for which they developed the cutting
plane method [12] for its solution. Later 532 and 2392 city TSP was solved by M.
Padberg and Rinaldi [13] in 1987, and 1000 city TSP by solved M. Grotschel and O.
Holland [14]. In 1991, Reinelt [15] introduced TSPLIB, which is still providing prob-
lem instances for TSP. In last few decades, many heuristic and meta-heuristic algo-
rithms have been developed with some of the following notable algorithms: Ant
colony optimization [16-25], Neural network [26-29], Self-organizing maps [30],
Particle swarm optimization techniques [31, 32], Simulated annealing [33], Weed
optimization [34, 35], Genetic algorithm [36-39].

The rest of chapter is divided into following sections: Details of Genetic algorithm
are given in Section 1. Section 2 describes our proposed hybrid methods. In Section 3,
experimental result is presented followed by conclusion in Section 4.

2. Proposed hybrid method

The methods used here are hybrid because we have used a proposed group theory
tour construction algorithm and proposed crossover with 2-opt mutation Croes (1958)
[40]. The framework of the proposed algorithm is shown in Algorithm 1.

The main idea of the first step is to generate a population of chromosomes (tours)
by using proposed group theory approach. Clearly, each chromosome of the popula-
tion is same but which start city unique providing rich diversity of genetic materials
for exploration.
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Fitness value of each chromosome in the population is calculated in the second
step. In the third step, select two parent chromosomes (selected randomly) from the
population and replace the first chromosome with minimum fitness value (tour cost).
After that, apply proposed crossover operator on the selected two chromosomes with
crossover probability rate. And finally, apply 2-opt mutation operator on selected
parent chromosome or new pair of chromosomes generated after crossover, with
mutation probability rate. Mutation operator helps in generate new population, which
is then replacing new population with the previous population by the new population.
Whole process is repeated until termination condition is satisfied.

Algorithm 1: Proposed Algorithm

1: Generate initial population of the tour with population size P using Group
theory.

2: Gen = 1;

3: while (Gen < Ng.,,) do.

4: Calculate the fitness of each tour in P.

5: Bs = Best tour in P;

6: Randomly select two parents S; and S, tour in P;

7 Slnew = Bs;

8: SZnew = S2;

9: rnd1 = rand (0,1];

10: if (rnd1 < crossover probability rate (pc)) then.

11: Perform proposed crossover on selected two parents Bs and S, to generate two

new children C; and C;

12: end if.

13: Slnew = Cl;

14: SZnew = C2;

15: rnd2 = rand (0,1];

16: if (rnd2 < mutation probability rate (pm)) then.

17: Perform 2-opt optimal mutation operator on Sipew and Spew

18: update new population P’;

19: P — P;

20: end if.

21: Gen = Gen + 1;

22: end while

2.1 Proposed group theory for population generation

There are various possible methods for generating the initial population [41-43].
One of the simplest ways is generating the initial population randomly using random
number generator. Zhang [42, 43] proposed greedy tour construction heuristic with
Karp-patching for feasible tour construction and used for solving Assignment problem
[44]. We proposed the group tour construction heuristic for initial population gener-
ation. In this method, nodes of graph are label using group of integers, Z,, with integer
modulo n operation

a+y, b= (a+b)modn 1)
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3456789 101 2
4567 895101 2 3
567 89101 2 3 4
6 78 9 101 2 3 45
7 89 101 2 3 456
8 9101 2 3 4 56 7
9101 2 3 45 6 7 8
101 2 3 4567 809
123456789 10
23456789101

Figure 1.
Population generated using Group Modulo.

where “+,” is operator that represents addition modulo of n, and (a + b) represents the
normal addition of integers. This helped in generating the group table shown in Figure 1.
In group table, no two row or column elements in the same position are identical. The
function used for generating initial population of chromosomes (P) is as follows:

P(a) = mod((a + b), n) + 1. )

where a represents population size whose value is from a = 1 to population size,
and b = 1 to n (As mentioned in earlier, we are taking population size equal to number
of cities, therefore population size = n). For n = 10, the initial population generated
using Group theory is as follows: Each chromosome in the initial population being
unique (group theory technique) provides a wide diversity of genetic materials for
exploring of search space.

2.2 Proposed crossover operator for GA

Sharing information between a pair of chromosomes is called crossover [2]. In this
process genes of parent’s chromosomes are swapped to generate offspring. The selec-
tion of the parent chromosomes is with the possibility that good chromosomes may
generate better offspring. Goldberg described several order-based operators, such as
the Partially Matched Crossover (PMX) [45]. The order crossover (OX) was suggested
by Syswerda [46]. The position-based crossover (PBX) was introduced by [39]. The
cycle crossover (CX) was suggested by Oliver, Smith & Holland [47]. Freisleben &
Merz introduced a distance preserving crossover (DPX) [37]. Inspired by DPX cross-
over, we propose a new crossover in this chapter. In the proposed crossover the cities
that are identical for the same position in both parents (s; and s,) will not change in
child ¢; and c; as shown in Figure 2. The remaining cities will change accordingly
Algorithm 2.

46



Using Group Theory to Generate Initial Population for a Genetic Algorithm for Solving...
DOI: http://dx.doi.org/10.5772 /intechopen.109049

Algorithm 2: Algorithm for Proposed Crossover

1: ¢; = zeros (1, n);
2: ¢, = zeros (1, n);

3:fori=1:ndo
4:  forj=1:ndo
5: if (s2(i)==s1(j)) then;
6: c1(i) = s2())s
7: end if
8: if (s1(i) == s,(j)) then
9: c(i) = S1(j);
10:  endif
11:  end for
12: end for
2.3 Example

Given a complete weighted graph with 5 nodes obtain weighted (cost) matrix of
graph is in Figure 3.

Parents, : [2[3 6[7]8]1

4
Parent s, : |7]2]4
Child ¢, : [9]7]4
Child ¢, : [3|5]4

NO | (B2 (o] [on
~1| || || |NO
(@)
()
co
—

Figure 2.
Example of Proposed crossover.

084909
1 8 06 710
46 056
9 750 4
9106 4 0|

Figure 3.
Example of a complete weighted graph with 5 nodes.
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Population cost
34512 32
45123 32
51234 32
12345 32
23451 32

Figure 4.
Generate initial population with Population size =5 using Group Theory method.

Initial set Population size = 5, Crossover probability rate (pc) = 0.8 and Mutation
probability rate (pm) = 0.2. Generate initial population with Population size = 5 using
Proposed Group Theory method as shown in Figure 4.

Generate two random number between (1-Population size) is 4 and 2, then select
two chromosome 4 and 2 from population after then replace first chromosome with
minimum cost therefore selected chromosome with cost is

population cost
23 451 32

34512 32

Generate a random number rnd1 = 0.3243. if (rnd1 < = pc), then apply proposed
crossover, after crossover generate two new chromosomes is

51

again, generate a random number rnd2 = 0.0161. if (rnd2 < = pm), then apply
2-opt mutation, the operation 2-opt mutation on both chromosome one by one given
as Apply 2-opt mutation on first chromosome = 45123

a=3,b=4,c=5d=1andsetzmin=0,i=1,j=1
z = dmat(a, ¢) + dmat(b, d)-dmat(c, d)-dmat(a, b);

Where dmat(a, c) represent cost from node a to c.
z=6+9-9-5=1

if z < zmin false, thena=3,b=4,c=1,d=2,andi=1,j= 4.
z=4+4+7-8—-5=-2

if z < zmin true, then set zmin = —2, imin = 1, jmin=4,anda=3,b=4,c=2,d = 3,
andi=1,j=5.
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z=6+56-5=0

if z < zmin false, thena=4,b=5,c=1,d=2,andi=2,j=4.
z=94+10-8-4=7

if z < zmin false, thena=4,b=5,c=2,d=3,andi=2,j=5.
z=74+6-6—-4=3

if z < zmin false, thena=5,b=1,c=2,d=3,andi=3,j=5.
z=10+4-6-9=-1

if z < zmin false.

if zmin <0 Then apply 2-opt mutation between imin to jmin —1 on first selected
chromosome = 4 512 3, after then we get a new chromosome is 154 2 3.

Again apply 2-opt mutation on new chromosome 154 2 3.

a=3,b=1,c=5d=4,andsetzmin=0,i=1,j=3.

z2=6+9-4—-4=7
z = dmat(a, c¢) + dmat(b, d)-dmat(c, d)-dmat(a, b);

if z < zmin false, thena=3,b=1,c=4,d=2,andi=1,j=4.
2=5+87 4=2

if z < zmin false, thena=3,b=1,c=2,d=3,andi=1,j=5.
2=6+46-4=0

if z < zmin false, thena=1,b=5,c=4,d=2,andi=2,j= 4.
z=9+10-7-9=3

if z < zmin false, thena=1,b=5,c=2,d=3andi=2,j=5.
z=8+6-6—-9=-1

if z < zmin true, then set zmin = —1, imin = 2, jmin = 5,anda=5,b=4,c=2,d =3,
andi=3,j=5.

2=10+56—4=5

if z < zmin false.

if zmin <0, then apply 2-opt mutation between imin to jmin —1 on first selected
chromosome =15 4 2 3, after then we get a new chromosome is 12 4 5 3.

Again apply 2-opt mutation12453anda=3,b=1,c=2,d =4, and set zmin = 0,
i=1,j=3.

z=6+9-7-4=4
if z < zmin false, thena=3,b=1,c=4,d=5,andi=1,j = 4.
z=54+9-4-4=6
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if z < zmin false, thena=3,b=1,c=5,d=3,andi=1,j=5.
z=6+4-6—-4=0
if z < zmin false, thena=1,b=2,c=4,d=5,andi=2,j=4.
2z=9+10-4-8=38
if z < zmin false, thena=1,b=2,c=5d=3andi=2,j=5.
z=9+66-8=1
if z < zmin false, thena=2,b=4,c=5,d=3,andi=3,j=5.
z=10+56-7=2
if z < zmin false and completed loop, then we get new first child chromosome is
- gifn?iarly Apply 2-opt mutation on second chromosome =12 3 4 5 and completed

loop, then we get new second child chromosome is 312 4 5.
After one iteration is completed, the new population is updated as

population cost
12 45 3 29
312 45 29
512 3 4 32
123 45 32
23 451 32

3. Experimental results
3.1 Experimental setup

For evaluation purpose, results were generated on 2.20 GHz Intel Core i5 machine
with 4 GB RAM.

3.2 Experimental design

The following standard benchmark data set was taken from TSPLIB: Eil51, ber-
1in52, St70, Eil76, Pr76, Kroal00, Eil101, ch150, and ts225, were taken for perfor-
mance comparison.

For the experiment, the experimental parameters crossover probability rate
(pc = 0.8) and mutation probability rate (pm = 0.2) values were set to and respectively
with number of iterations = 500. Population size of each instance equal to number of
cities was generated by group tour construction method. For result comparison,
Percentage Best Error (% Best Err.) is used. The Percentage Best Error is calculated as
follows:
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[(Best path cost from n trail) — (Best Known Solution(BKS))]

PDbest =
e (Best Known Solution(BKS))

x 100

3.3 Experimental result

For each standard TSP data taken, we performed n = 20 trails for first set of
comparison shown in Table 1 and Figure 5. Best results are shown in bold. Results are
taken from [48]. It can be clearly seen that proposed method is better than Hierarchic
method used for comparison for every dataset taken in to consideration. Proposed
method although not exact but do provide good heuristic solution.

The pictorial presentation for performance comparison in terms of Mean (average)
solution for different methods is shown in Figure 5. Table 2 reports the outcome of
some large size of instances. If size of instances is increases then increases the popu-
lation size because population size of each instances is equal to number of cities in

Proposed method Hierarchic approach BKS
Problem Best Mean % best error Best Mean % best error
Eil51 428.87 431.28 0.561 431.74 443.39 3.39 428.87
Berlin52 7544.37 7544.37 0.000 7544.37 7544.37 0.000 7544.37
St70 677.12 679.30 0.324 687.24 700.58 3.47 677.11
Eil76 544.37 553.05 1.184 551.07 557.98 231 545.39
Pr76 108160.00 108232.00 0.067 113,798.56  115,072.29 6.39 108,159.44
Kroal00  21285.00 21359.05 0.346 22,122.75  22,435.31 5.40 21,285.44
Eil101 645.25 656.62 4.391 672.71 683.39 6.39 642.31
Ch150 6588.60 6665.29 2.103 6641.69 6677.12 2.21 6532.28
Tsp225 3878.80 3909.04 1.297 4090.54 4157.85 7.74 3859.00

Table 1.
Performance comparison of proposed algorithm and hierarchic algorithm.

T T T

10 I Hierarchic approach| _
-Propuscd method

Mean Path length
[=}]
T
|

L mm

]
Eil51 Berlin52 St70 Eil76 Prié Kroa100 Eil101 Ch150 Tsp225
Instances

Figure 5.
Performance comparison of Average distance (Mean) (over 20 trails) between Proposed algorithm and Hierarchic
algorithm for the 9 TSPLIB instances.
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Proposed method BKS
Problem Best Mean % best error time
Pr264 49,135 49388.90 0.00 37.98 49,135
a280 2594 2616.40 0.58 21.86 2579
Pr299 48,414 48732.05 0.46 70.59 48,191
lin318 42,446 42697.20 0.99 78.41 42,029
Pr439 108,767 109284.05 1.45 173.98 107,217
rat575 7128 7245.10 5.24 432.33 6773
Rat783 9302 9396.70 5.63 2934.03 8806
pr1002 267,663 270128.34 3.33 1698.14 259,047

Table 2.
Performance of proposed algorithm for large instances size.

instances therefore increases the time complexity and space complexity due to
increases population size.

4, Conclusion

This chapter proposed a Genetic algorithm, which works by taking features of
Group theory for tour construction, proposed crossover, and 2-opt mutation.
Although the other reported methods can usually find a better solution for the TSP,
their solution is dependent on the quality of the random initialization of the popula-
tion and parameters. In order to have our proposed method uses heterogeneous
population for process initialization with population size equal to number of cities, we
applied group tour construction method. In group tour construction method generates
all solution(tour) in the initial population has a distinct starting node that provides the
initial exploration of the search space. After this, the proposed crossover and 2-opt
mutation are applied. In order to maintain local optimality, crossover and mutation
operators are used. By using crossover operator, new starting points were defined for
a local search using information of the current population. The proposed crossover
utilizes a greedy method for the duplicated paths in the parents for connecting sub-
tours into the solution. However, 2-opt mutation can easily get stuck in a local opti-
mum to improve the tour quality. The combination of the proposed method is
required as 2-opt mutation easily gets stuck in local optimum. From the experimental
results, one can easily find that our proposed algorithm gives better performance in
comparison of [48].

As future work, we would like to extend the group theory for population initiali-
zation in other heuristics such as scheduling algorithm, network problems, estimation
of distribution algorithm, etc.
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Chapter 4

Programming an Evolutionary
Algorithm for the Estimation of
Non-Linear Damping Vibration
Parameters

Carlos A. Lara and Cesar Guerra

Abstract

The use of genetic algorithms (GAs) has branched out into various disciplines such
as mechanical engineering, providing solutions in cases where some models do not
have a mathematical solution. In the field of mechanical vibrations, there are empiri-
cal nonlinear models that seek to represent the physical behavior of certain elements,
such as in aeronautical applications, where stiffness and damping in structures can
present hysteresis and can be represented by means of the Bouc-Wen (BW) model.
This model includes constants that define the behavior of non-linear stiffness and
damping, which are difficult to obtain since they are empirical models. This work
presents the results of programming a GA to estimate the BW model constants for
wire rope springs, commonly used as vibration isolators that have nonlinear stiffness
and damping resulting in hysteresis behavior.

Keywords: genetic algorithms, Bouc-Wen model, non-linear stiffness, damping,
rope springs

1. Introduction

The study of vibration control has taken great importance and necessity in recent
years. The emergence of new isolating and vibration-dissipating elements has
prompted new studies about their behavior in hysteresis damping. Damping is diffi-
cult to model this is often due to more than one phenomenon, for example, a combi-
nation of viscous damping, internal damping, dry friction, viscoelastic effects, etc. [1].
There are various of insulator configurations, among which are: metal springs, i.e.,
helical or leaf springs, and viscoelastic elements such as rubber, neoprene, silicon, air
springs, etc. Steel cable springs are characterized by their high energy storage and
dissipation capacity, based on dry friction [2].

In the study of hysteresis damping, there is a problem in describing its non-linear
behavior [1]. One solution is the model of BW [3], from which heuristic algorithm
techniques have been proposed, which seek to estimate the parameters, factors,
error reduction, among others, of which it is possible to establish an estimated

59 IntechOpen



Genetic Algorithms — Theory, Design and Programming

model of the system, and from it, design control and/or estimation strategies [4].
Given the non-linear nature of the model, it has been approached by different
methods, including the following: Gauss-Newton, modified Gauss-Newton, Least
squares, Simplex, Levenberg-Marquardt, extended Kalman filter, reduced gradient
methods, genetic algorithms (GAs), real-coded GAs, Differential Evolution, adaptive
laws, etc.

It is well known that the classical linearized analysis of the dynamical systems can
lead to results that are reasonably accurate only when the minimum (rest position)
force and the displacements are of such magnitude that the relative change in force
during the motion is small. In practice, however, very often some or all of these
assumptions are violated, so that in many dynamical systems nonlinear phenomena
may completely alter intuitively expected behavior and can drastically change their
dynamical responses [5].

In mechanical vibrations systems, the nonlinear phenomenon can be presented
principally in the springs elements and/or the dampers models, significant results
have also been obtained to represent these phenomena.

Recently, the use of new insulator mechanical in several systems, for example in
Aeronautics, has prompted research to design new non-linear model representatives
of this elements, where a memory-dependent, multivalued relation between force and
deformation, i.e., hysteresis, is often observed in structural materials and elements,
such as reinforced concrete, steel, base isolators, dampers, and soil profiles.

Many mathematical models have been developed to efficiently describe such
behavior for use in time history and random vibration analyses. One of the most
popular is the BW class of hysteresis which is used to describe the hysteretic behaviors
of structures in nonlinear dynamic and stochastic analyses.

BW model is used to describe the non-linear behavior of the stiffness and damping
of an element, where the restoring force becomes highly nonlinear showing significant
hysteresis. The hereditary nature of this nonlinear restoring force indicates that the
force cannot be described as a function of the instantaneous displacement and veloc-
ity. Accordingly, many hysteretic restoring force models were developed to include
the time-dependent nature using a set of differential equations.

BW model is a semi-empirical model that contains several parameters and is one of
the most used hysteretic models, and it was introduced by Robert Bouc [6] and
extended by Yi-Kwei Wen [7] who demonstrated its versatility by producing a variety
of hysteretic patterns.

Being a semi-empirical model, the BW model contains semi-empirical parameters
which should be esteemed using several mathematical and empirical strategies, such
as Gauss-Newton [8], modified Gauss-Newton [9], Least squares [10], Simplex [11],
Levenberg-Marquardt [12], extended Kalman filters [13] among others.

Recently, the use of GAs for the estimation of BW parameters has been used, for
example, Kwok et al. [14] used a GAs to estimate the parameters of the BW model
with characteristics of non-symmetrical hysteresis; Wang et al. [15] used a novel
differential evolution algorithm for estimation of parameters of asymmetric hysteresis
loops.

Meanwhile, Charalampakis et al. [16] presented a new identification method that
determines the parameters of Bouc-Web hysteresis based on a hybrid evolutionary
algorithm which utilizes selected stochastic operators.

In most cases, the problem lies in that the BW model can be easily solved
because it combines an algebraic equation with a differential equation, in addition,
it is found that there are redundant parameters [17]. One solution to deal with
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this problem, users of the BW model often fix some parameters to arbitrary
values, while other users eliminate the redundant parameters via a process of
normalization.

In this work, a discrete approximation of the BW model is proposed to facilitate
the estimation of BW parameters using an efficient evolutionary algorithm called
“Evonorm”. The programming of algorithm helped model the behavior of physically
loaded/unloaded springs in an experimental setup.

2. BW discrete model approximated

Starting from a mass-spring-damper vibratory system, where the interest is based
in accordance with the type of damping present (hysteresis or a combination of
phenomena) as shown in Figure 1, the application of BW for the study of its behavior
in terms of the damping present in the system.

Mass (m) represents the inertia in kg and Damper (c) is the viscous damping in
N’s/m; both elements are considered as lineal elements of the system. Now, the spring
(k) represents the stiffness lineal in N/m, but in our study, this element contains both
the non-linear stiffness and non-linear damping.

Actuality, no any mathematical representation exists for this non-lineal phenom-
ena, but an empirical representation known as BW model and are described in the
following.

The BW model was proposed initially by Bouc early in 1967 and subsequently
generalized by Wen in 1976. Its typical equations are expressed as follows:

R=rlkx +kyz 1)
% = Ax — plx|]z]" "z — yxlz|" )

Where R is the restoring force, x = x(t) is the deformation of spring, z = 2(¢) is
known as hysteresis displacement and not physically measured, x = dx/dt and
g =dz/dt; k, = ak and kj, = (1 — a)k; where k is the lineal stiffness coefficient.

The a parameter is the ratio of post-yield to pre-yield stiffness, 4, #, f, y are
parameters that control the hysteresis shape.

Analyzing Egs. (1) and (2), it is found that there are redundant parameters in BW
model. That is why to estimate the control parameters in the BW model, have been
defined with alternative models or modified; for example: “The normalized BW
model” presented in [18], “A multi-objective optimization algorithm for Bouc-Wen-
Baber—Noori model [19].

Spring (k) | B | pamper (c)

Mass (m)

Figure 1.
m-k-c system.
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In this work, the first step in order to solve the BW equation consists of eliminating
the derivative function using a numerical approximation, in this case discrete approx-
imation of the first-order of the original model called “Euler-backward discretization”
is used as:

. Xk+1 — Xk
AR 3)

Where x;,1, x;, are the two-sample data of the x(t) and At is the time sample of the
sample data width as shown in Figure 2.

Now, from Eq. (1), it is possible to define the differential equation R =k + ks,
therefore applying the discrete approximation (3) to R, % and # the following equation
is applied.

Rii1 — R = ko1 — Xe) + kn (211 — 2) (4)
Zhs1 — 2k = A1 — x1) — Blarsa — x|zl 2k — 7 (o011 — x0) 2] (5)

This model can be solved in programming if the deformation Ax = xj.1 — x;, is
fixed or AR = Rj.1 — Ry, is fixed, is clear that if Ax is fixed, so AR is easy to determine.
In the sample, & = 0 is clear that xg = 0, Ry = 0 and 2o = 0, now the next values can
be calculated using the next Pseudocode as shown in Table 1.

1. Ax = xj41 — xy, is fixed and given.

1.A,B,y,n,a and k is given.

1.Ink:0,zk:0,Rk:0.

1. Determine 2j,1 using (5).

1. Determine Ry 1 using (4).

1.Set 2, = 2p11, R = Rea

1. Go to (4) to calculate the values of the next sample.

Table 1.
Pseudocode to solve the BW discrete model.

Xk+1
Xk

Figure 2.
Euler backward approximation.
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3. Evolutionary algorithm model

Evonorm [20] is an evolutionary algorithm used in this work to estimate the
parameters of BW model. Next definitions are required to understand the algorithm.

3.1 Variables definition

Decision variables (Y). These are the m-variables of the system with unknown
values. The determination of these values will be the target of the algorithm.

Y= {y19293 sV} (6)

Design variables (X). These are the n-variables of the system with known values,
these values set that will allow determinate the decision values (Y) using the
algorithm.

X = {X1,X2,X3 w5 %} (7)
Decision values (Y). These are the values of Decision variables (Y).
Y=1[ 75 = 3, (8)

Design values (X). These are the values of Design variables that will be used to
determine the decision values in the algorithm. The efficiency of the algorithm

depends on selecting the p-samples required, therefore X is a matrix of p x n
dimension

X(1) 21(1) (1) - Za(1)
% X(.z) _ 5c1.(2) 5@'(2) 5%2) o

X@) xi1(p) Xa(p) - Xau(p)

Fitness function. It is a function or heuristic algorithm required to evaluate if the
values of decision variables and design variables are correct, namely.
Minimal ervor (e). It is a selected value such that the fitness function evaluation,

allows to affirm that the Y values are correct:

p ~ ~

If (X(),Y)] <e (10)
i—1

1

Population (P). It is a g-data set (individuals) of the Decision values candidates to
solve (10), therefore P is a matrix of ¢ x m dimension

3:((1) 711 3,1 - 3,0
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3.2 Selection (T's)

Since each row of the P-matrix in (9) represents a possible solution of the condi-
tion (10), it is necessary determinate the value of the error for each row of the
population matrix (11),

p
= Y (RG), Y0)) (12)

i=1

Now, for each j-individual in the matrix population, it is necessary to evaluate the
contribution it makes to the solution (12), for which the rows of the P-matrix (11),
must be ordered in ascending order. Now, must be selected the fits Ts-individuals
(rows) to mutate and crossover to generate the new Population.

3.3 Mutation and crossover

In order to avoid the algorithm being trapped in local optima, Evonorm uses
random variables with normal distribution. The normal distribution function is a
random variable and describes many random phenomena that occur in everyday life.
It simulated the normal distribution function with two parameters, the first is the
mean and it is a numeric measure of the central tendency of the random variable. The
second parameter is the standard deviation, and it is a measure of the dispersion of a
variable around the mean. A normal distribution function can be used to represent a
set of possible values of a decision variable, so it is necessary to use a set of
parameters (mean and standard deviation) of the normal distribution function per
decision variable (18).

Therefore, the mutation is generated using each k-column of the (11) and to
Ts-individuals select as follows:

Zl—lyk \/21 1 k ﬂk)z

My = (13)
At the same time, the new population is generated as follows:
- Hp +N(0,1)o if U(.)>0.5
g ={ S s
9.(i) + N(0,1)0, if U(.)<0.5

Where N(0,1) = Y12, U(.) — 6, and U(.) is a random value between 0 and 1.
The pseudocode of the Evonorm algorithm is shown in Table 2.

1. Generation of initial population (11).

2. Evaluation of initial population.

3. Selection of the best Ts <¢ individuals.

4. Mutation and generation of new population (13) and (14).

5.If a criterion (10) satisfied, then end else go to step 2.

Table 2.
Pseudocode of Evonorm.
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4. Experiment result
4.1 Experimental data

The experimental data were obtained from tests made to a set of four wire rope
isolators (WRI) in parallel (like the one shown in Figure 3), to have stability during
the test.

The mechanical tests were carried out in the universal machine Shimadzu (Figure 4)
of 10 KN, with controlled displacement for compression-decompression load.

The values of Force-deformation in the wire ropes were plotted in Figure 5,
showing the hysteretic behavior of the WRI.

X
Xk+1
Ry
Rpyq

Figure 3.
Picture and physical characteristics of the wire rope isolator (WRI) used in the experimental procedure.

Figure 4.
Experimental setup for the static monotonic and cyclic tests.

Mobile frame

Upper clamp

Arrangement of
wire rope isolators

Lower clamp

Fixed frame

(a) (b)

Figure 5.
Data result from experimentation.
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From the data that are plotted in Figure 5, representative samples were taken, this
is to input variables for the evolutionary algorithm, which performs the calculation of
distribution function parameters to generate new individuals.

4.2 Algorithm programming

In order to apply the Evonorm algorithm to estimate the BW parameters model,
which is necessary to define the decision variables and design variables of the system.
In the BW model the data set of hysteresis loop are the design variables, Meanwhile

the parameters a, f, y, %, A, k are the decision variables:

Y={a/p,y,n Ak}

X = {Xp11, Xk, Res1, Re }

(15)

(16)

The values of the design variables can be obtained from the result experiment with

the values in Figure 5. In this case, the values that appear below are selected::

[-153 —151 -10.37 -10.327
117 -128 —461 -5093
~1.04 -117 -330 —4.61
X,=|-020 —-039 266 162 (17)

0.70 0.53 7.32 6.57
1.36 1.27 0.51 9.21
| 1.52 1.64 10.04 10.19 |

Now, it is necessary to determine the fitness function F(Xd, Yd) in the algorithm,
this function included the design variables Xd and de decision variables Yd. Therefore,
the fitness function is the approximated model discrete (6).

F(X,Y) = Rys1 — Ry — koAxky, (AAX + BlAx 2" Sy +Ax |2 |") (18)

The major objective will be to minimize the function F(Xd, Yd) = 0.

Next values was used in the algorithm programming: Number of individuals: p = 50,
number of selected individuals: Ts = 25 and the numbers of iterations: (iters) Nr = 100.

On the other hand, it is necessary establish limits in the Design variables, this
provides to algorithm’s heuristic find the optimal values and in minor iterations.

The limits values of the Design variables are:

ael0, 1], fe[0.1,0.9], y¢[0.1,0.9], (19)
Ae[1,10], ne(1, 2], ke[10, 1000] (20)

The selection of these values and the number of samples is important to make the
algorithm run more efficient, so they must be strategic and minority. Strategic
because, for this case, the middle of the loop was selected, taking as samples: the ends,
the point at the intersection with the vertical, as well as two intermediate points at the
ends of the intersection with the vertical; and minorities so as not to increase the
computational cost of the algorithm. The result obtained is shown in Table 3 for
different runs.
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o A N [i] Y k Error

0.40 1.69 11 0.81 0.72 7.78 0.21

0.43 1.35 11 0.78 0.79 8.53 0.23

0.53 1.98 11 0.86 0.64 6.96 0.23

0.46 1.50 1.1 112 0.37 7.92 0.25
Table 3.

Evonorm algorithm results.

Deformation (mm)

Figure 6.
Ervor graph.

Table 3 shows the results of the Evonorm algorithm with the values that define the
shape of the hysteresis loop.

The convergence of the error showing the efficiency of the algorithm is also shown.
Figure 6 shows the graph of the error percentage against the number of iterations
performed by the algorithm.

ernor

0.5

0.4

0.3

02 T T T T T T T T T
[ 10 20 30 0 50 L 70 80 ©0 10¢

num. of iters

Figure 7.
Comparison between real graph and loops obtained from evolutionary algorithm.
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Real data

Force (N) Estimate data

Real data

Deformation (mm)

Figure 8.
Graph of actual data vs estimated data

On the other hand, the real results obtained from experimental tests (represented
by the red graph) and the results with the BW parameters obtained from the evolu-
tionary algorithm (represented by the blue graph) were graphed (Figure 7). The data
that was chosen to feed the BW model were those that were obtained with the
minimum percentage of error. Figure 8 shows the comparison of the real values
versus those produced by the evolutionary algorithm.

5. Conclusion and future work

The evolutionary algorithm can obtain adjusted BW parameters that can be fed
into the model. The experimental hysteresis loops were fitted, with the parameter
from Evonorm, in only 4 runs of the evolutionary algorithm.

The convergence of the minimum value of the error of the different permutations
was achieved in 25 iterations, which is acceptable and can be improved by feeding
more amount of experimental data to the evolutionary algorithm.

Of the 4 runs that were carried out with the Evonorm evolutionary algorithm, very
similar ranges of errors were obtained. With the best option, very similar graphs, of
the real experimentation and of the algorithm, were also obtained, and for that reason
can be confident with the values that the algorithm delivers.

From Figure 7, the parameters provided by the EVONORM evolutionary
algorithm, which are fed to the BW model, generate a graph that is very close to the
graph that is made with the values obtained from experimental tests. Given the above,
performing the selection of the input variables to the evolutionary algorithm correctly
and strategically makes the estimated output values that are fed to the
model guaranteed precision to the hysteresis loop compared to that produced by
experimental tests.

It is clear that the correct selection of limits values in Evonorm is a condition to
ease the convergence, these values can be obtained using the knowledge of the expert;
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but is possible to use a neural network, so that after the training, estimate the values of
the limits, which a future work.

Finally, concerning the error value, in Figure 6 this remains constant after 25
iterations and the ideality is that this value declines gradually, some changes in the
limits values can tackle this, furthermore, it is possible to improve tunning the per-
centage values in Eq. (14), for example, if U(.) > 0.4,if U(.) <0.4.
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Chapter 5

The Genetic Algorithm and its
Application in Calculating the
Kinetic Parameters of the
Thermoluminescence Curve

Nguyen Duy Sang

Abstract

This chapter explores the use of genetic algorithms as a tool for calculating the
kinetic parameters of the thermoluminescence curve. Genetic algorithm is a search
algorithm inspired by the process of natural selection, and it has proven to be effective
in solving optimization problems in various fields. Author used genetic algorithm to
estimate the activation energy and frequency factor of the thermoluminescence curve,
which are important parameters in determining the dosimetric properties of mate-
rials. The results showed that genetic algorithm could accurately estimate the kinetic
parameters of the thermoluminescence curve with high precision and efficiency com-
pared to conventional methods. This approach can also handle noisy data and reduce
the impact of outliers on the estimation process. Furthermore, author demonstrated
that genetic algorithm can be generalized to different types of the thermolumines-
cence curves, such as those generated by different materials or under different exper-
imental conditions. The proposed method is fast, accurate, and robust, making it
useful for researchers in the field of dosimetry who require precise estimations of
these parameters.

Keywords: genetic algorithms, kinetic parameters, thermoluminescence, materials,
dosimetry

1. Introduction

The study of thermoluminescence (TL) has been an important area of research for
many years due to its numerous applications in dating, dosimetry, and material
characterization. The TL curve is a graph of the light emitted by a material as it is
heated, and it provides valuable information about the energy states of the material. In
order to extract useful information from the TL curve, it is necessary to analyze its
kinetic parameters, such as activation energy and frequency factor. One powerful
method for calculating these parameters is the genetic algorithm, which is a
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computational technique based on the principles of natural selection and evolution.
Genetic algorithm is based on the simulation of genetic processes in living organisms
and the principle of natural evolution. The experimentally obtained TL spectra are
curves that are fitted according to different kinetic models [1-3]. The algorithm works
with a biological population, each of which represents the ability to adapt to the
explore space through synchronous combinations of evolutionary processes such as
selection, crossover, and mutation [4].

Python provides a powerful platform for TL analysis, allowing for complex data
analysis and visualization for accurate interpretation of experimental results. Python
can be used for TL analysis by performing data analysis on experimental data obtained
from TL measurements.

Here are some steps that can be followed: Import necessary modules: The first step
is to import the necessary modules that will be required for data analysis. Some
commonly used modules include NumPy, Pandas, Matplotlib, and Seaborn. Load
experimental data: Load the experimental data into Python using the Pandas module.
The data should be stored in a CSV or TXT file format that can be easily loaded into
Python. Data processing: The next step is to clean and process the data. This involves
removing any noise or unwanted signals present in the data. This can be done using
NumPy’s signal processing functions such as filtering and smoothing. Plotting data:
Visualizing the processed data is an important step in TL analysis. Using Matplotlib
and Seaborn, create different types of plots such as scatter plots, line plots, histo-
grams. Curve fitting: The next step is to fit a curve to the data. This helps in deter-
mining the kinetic parameters of the material being studied. Python provides various
curve fitting algorithms such as least squares fitting and nonlinear regression. Ana-
lyzing results: Finally, interpret the results obtained from curve fitting and apply them
to the material being studied.

2. Genetic algorithm approach to the TL curves
2.1 Theoretical basis

Genetic algorithm (GA) is based on the simulation of genetic processes in living
organisms and the principle of natural evolution. The algorithm works with a biolog-
ical population, each of which represents the ability to adapt to the explore space
through synchronous combinations of evolutionary processes such as selection, cross-
over, and mutation [4]. The GA tuning process includes the following steps: (i)
Setting initial chromosome and its encoding; (ii) Calculate GOK model distributions
for each variable from individuals of a population and evaluate the fit of the fitness
function; (iii) Select randomly parents and go to the next step; (iv) Crossover and
mutation, go to the next step; (v) Select randomly individuals and go to the next step;
(vi) Accept the results if there is better fitness value than the worst explore in the
population and go to the next step, reject the worst explore and return step (iii); (vii)
If the number of pre-determined steps (stopping condition) is reached and go to the
next step; and (viii) Print results for best explore in population and GA finish. The
block diagram of the GA is shown in Figure 1.

Explanation of Figure 1: Initial population: create an initial population of candi-
date solutions randomly. Each solution represents a potential solution to the problem
being solved. Selection: The selection process is typically based on a fitness function
that evaluates each individual’s performance. Crossover: Two selected individuals are
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Initial population

Fitness function

Parents selection

Crossover and
mutation

Individual
selection

Figure 1.
Flowchart of the genetic algorithm.

combined to produce offspring with characteristics from both parents. The crossover
point is chosen randomly, and the resulting offspring replace their parents in the
population. Mutation: To maintain diversity in the population, some individuals
undergo random mutation, which introduces new characteristics not present in the
parent population. Evaluation: The fitness function is used to evaluate the perfor-
mance of each individual in the population, including the newly generated offspring.
Termination: The algorithm terminates when either a termination criterion is met
(e.g., a maximum number of generations) or the best solution has been found.

Code in Python:

1. #Individual class

2. class Individual:

3 def __init_ (self, gene_list: List[float]) -> None:
4. self.gene_list = gene_list

5. self.fithess = func(self.gene_list[@])

6 def get_gene(self):

7 return self.gene_list[Q]

8 def crossover(cls, parentl, parent2):

9 child1l_gene,

1e. child2_gene = crossover_blend(parentl.get_gene(),

11. parent2.get_gene(), 1, -18, 18)

117, return Individual([childl_gene]),Individual([child2_gene
1

13. def mutate(cls, ind):

14. mutated_gene =

15. mutate_gaussian(ind.get_gene(), ©, 1, -10, 10)

16. return Individual([mutated_gene])

17. def select(cls, population):

18. return select_tournament(population,tournament_size=3)

19. def create_random(cls):

20. return Individual([random.randrange(@, 900)])

The Python file FSG_GA.py at GitHub [5].
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2.2 The thermoluminescence kinetic equation

The most commonly used models for analyzing such signals are the first order
kinetics (FOK), second order kinetics (SOK), the general order kinetics (GOK) [6, 7].
The empirical equation describing the first-order TL curve has the form:

ET-T, T <E T—Tm><1 21<T> 2kT,,

I(T) = Iy exp |1+ — — exp(—
() =Tnexp| 1t gp —p = ~ 2 *P\i7 T, E E

} (1)

Code in Python:

1. def func(x):

7 a,b,c=10e, 473, ©.35

3, kbz = 8.617385e-5

4 return a*np.exp(1.@+c/kbz/x*((x-b)/b) -
((x/b)**2)*np.exp(c/kbz/x*((x-b)/b*(1.0-2.0*kbz*x/c)-
2.0*%kbz*b/c)

Graph of first-order kinetic TL curve:
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Figure 2.
First-order glow peaks of TL curve.

Explanation of Figure 2: Graph of the first-order kinetic model of the TL spectrum
with a peak and symmetry.
The empirical equation describing the second-order TL curve has the form:

E T—T,\ [T 2KT ET—T, kT, ] >
I(T)—4Imexp(ﬁ T )[ﬁ (1_T> exp(a T > +14+— } 2)

Code in Python:

1. def func(x):

2 a,b,c=100, 473, 0.35

3. kbz = 8.617385e-5

4 return 4*a*np.exp(c/kbz/x*((x-b)/b))
*(((x/b)**2)*np.exp(c/kbz/x*((x-b)/b)) *(1.8-
2.0%kbz*x/c)+1+2.0*kbz*b/c)**(-2)
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Graph of second-order kinetic TL curve:
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Figure 3.
Second-order glow peaks of TL curve.

Explanation of Figure 3: A graph of the second-order kinetic model of the
TL spectrum with a peak and an asymmetrical shape, sloped forward of

the peak.
General-order glow peaks are produced in intermediate cases (neither of first-
order nor of second-order). The four parameters describing a glow peak are I,,,, E,

Ty, and b.
The empirical equation describing the general-order TL curve has the form:
ET—-Tn
( > +1 (3)

ET-Ty 2KkT\ T?
I(T) = InbtTexp (kT T ) (b—1) (1 - E> E eXp| 17 T
5
2kTm(b —1)
E

Code in Python:

1. def func(x):
12. a,b,c,bv = 100,473,0.35,1.5
(3. kbz = 8.617385e-5
return a*(bv**(bv/(bv-1.0)))*np.exp(c/kbz/x*((x-b)/b))*(((bv-
1.0)*(x/b)**2)*np.exp(c/kbz/x*((x-b)/b))*(1.0-2.0*kbz*x/c)+1+(bv-

14.

| 1.8)*2.8*kbz*b/c)**(-bv/(bv-1.8))
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Graph of general-order kinetic TL curve:
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Figure 4.
General-order glow peaks of TL curve.

Explanation of Figure 4: The graph of the general-order kinetic model of the TL
spectrum has the form of an intermediate peak of a first- and second-order kinetics
model, with a slightly sloping front peak.

In addition to the three kinetic models above, the TL spectrum is also matched
according to the mixing model and the one-trap one-center recombination model. Each
model has its own advantages and disadvantages in calculating TL trap parameters.

Details and full Python source code for TL kinetic models can be found on

GitHub [5].

2.3 Fitting TL curves to estimate the energy value

2.3.1 Straight line fitting

The initial rise (IR) method introduced by Garlick and Gibson [8] is used to
estimate the trapping energy value of the TL curve. The IR method works as
follows: A sample is irradiated with a known dose of ionizing radiation. The
sample is then heated at a constant rate, and the emitted light is measured as a
function of temperature. This is called a TL curve. The TL curve is divided into
equal temperature intervals, and the total integrated light output for each interval
is calculated. The integrated light output is plotted against the natural logarithm of
the heating rate for each interval. The slope of the resulting straight line is
proportional to the activation energy required to release the trapped charges in the
sample. This method is based on the principle that the intensity of TL increases
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initially with the temperature. The activation energy can be calculated using the
Arrhenius Eq. (4)

I exp <— k}::T> 4)

where E is the activation energy, k is the Boltzmann constant, and slope is the
slope of the straight line. The IR method is repeated at different doses of ionizing
radiation, and the activation energy is plotted against the dose. The trapping
energy value can be estimated from the intercept of this plot with the x-axis (dose
axis). In summary, the IR method involves measuring the total integrated light
output as a function of temperature for a sample irradiated with a known dose of
ionizing radiation [8-11]. An example of an IR region of a glow peak is shown in
Figure 5.

Explanation of Figure 5: The low-temperature peak tail in this region increases
up to a critical temperature T¢ which is less than Ty,. The values of E from the
IR remain true for some critical values of temperature up to Tc, corresponding
to a TL intensity I¢ smaller than about 10% of the maximum TL intensity
I, [12].

Code in Python:

|1. def IR(x, E, b):

| P return E * x + b

3. def AE_IR(x,a,b,c,bv):

4. y=gaussian(x,a,b,c,bv)

I5. Im = geneticTLy(x,a,b,c,bv)

6. j=10

17 Tei=[]

8. Ici=[]

9. for i in range(1,3j):

18. yi=np.zeros_like(x)+Im*i/100

11: idx = np.argwhere(np.diff(np.sign(y - yi))).flatten()
12. Tc = x[idx][@]

[13. Ic = y[idx][@]

{14. Tci=np.append(Tci, Tc)

|15, Ici=np.append(Ici, Ic)

|16. kbz = 8.617385e-5

117. Xx_ND=1/(kbz*Tci)

118. y 1ln=np.log(Ici)

[19.

20. # curve fit

|21. popt, _ = curve_fit(IR, X_ND, y_ln)

22. # summarize the parameter values

|23. E_IR, b_IR = popt

24. print("E & b:",-E_IR,b_IR)

25. print('y = %.5F * x + %.5f" % (E_IR,b_IR))
126. print("E_IR=",-E_IR)

127.

128. #define function to calculate adjusted r-squared
29, coeffs = np.polyfit(x_ND, y_1n, 1)

|3e. p = np.polyld(coeffs)

[31. yhat = p(x_ND)

32. ybar = np.sum(y_1n)/len(y_1n)

{33, ssreg = np.sum((yhat-ybar)**2)

34, sstot = np.sum((y_ln - ybar)**2)

|3s. R2 = 1- (((1-(ssreg/sstot))*(len(y_ln)-1))/(len(y_ln)-1))
36. print("R$**2$=",R2)

I37. return -E_IR
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150

Figure 5.
Diagram of initial rise (IR).

Linear spectral fitting graph:
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Figure 6.
Fitting line-fit of the TL1 to estimate E.

Explanation of Figure 6: On the left is the TL1 sample matched by GA and
applying the IR method, the kinetic parameters are also calculated, E = 0.72 eV.

2.3.2 Gaussian peak spectral fitting

The peak shape (PS) method is generally called as Chen’s [13] method, which is used
to determine the kinetic parameters of the main glow peak of the TL materials. This
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Intensity

Figure 7.
Diagram of peak shape (PS).

method is mainly based on the temperatures Ty,, T, and T,, which are the peak
temperatures, the temperatures at half of the maximum intensity, on the ascending and
descending parts of the peak, respectively. Calculation of the activation energy by PS
method is shown in Figure 7. The expression deduced by Chen [13] and valid for any
kinetics is given by Eq. (9), where a stands for 7, §, and ®, in which the low-temperature
half width 7 = T, - Ty, the high-temperature half width & = T, -T,,,, and the total half
intensity width @ = T, - Ty. The values of ¢, and b, are summarized as defined in Eq. (6).

2
E, = ¢y (lﬂ;“‘ > — by (2KTw) (5)
c. — 1,51+3,0(pg - 0,42)
b, — 1,51 + 4,2(pg - 0,42)
o = 0,976 +7,3(, — 0,42) 6)
bs = 0
co = 2,52 + 10, Z(pg _o, 42)
by = 1

where y, is the so-called geometrical shape or symmetry factor that determines the
order of the kinetics. The order of the kinetics depends on the glow PS. The value of p,
for first- and second-order kinetics is 0.42 and 0.52, respectively. The symmetry
factor in GOK model can be evaluated from the following Eq. (7). The TL glow peaks
corresponding to second-order kinetics are characterized by an almost symmetrical
shape, whereas first-order peaks are asymmetrical [6].

e = 2 = (To = T)/(To — Ty) %
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Figure 8.
The TL spectrum of the Rq sample is matched with four peaks.

Explanation of Figure 7: describes how to fit the Gaussian peak spectrum and the
PS method to calculate the trap energy. The calculation results depend on the T;, T5,
and T values of the TL peak.

Code in Python:

1. def AE_gen(x,a,b,c,bv):

2 y=gaussian(x,a,b,c,bv)

3. Tm = geneticTL(x,a,b,c,bv)

4. Im = geneticTLy(x,a,b,c,bv)

5 y_half=np.zeros_like(x)+Im/2

6 print("I=",Im)

7 idx = np.argwhere(np.diff(np.sign(y -y_half))).flatten()
8 Ti=x[idx][@]

9% T2=x[idx][1]
1e. print("Tm=",Tm)
11, E=E1(Tm,T1,T2)
2% print("E=",E)
113. return E

TL curves from R package tgcd [14] with 22 TL curves are measured from different
materials provided by George Kitis. Among them is the TL curve denoted as R4,
which is used to fit the Gaussian peak shape and calculate the kinematic parameters.
The results are shown in Figure 8.

Details and full Python source code for calculating the activation energy can be
found on GitHub [5].

Explanation of Figure 8: spectrum of R4 consisting of four peaks matched and
peaked by genetic algorithm. The kinetic parameters of the spectrum are calculated
reasonably, and the obtained FOM coefficient is very small.

2.4 Calculation of the frequency factor

The intensity I(t) of the TL signal is measured at time t after the start of the
experiment. This magnitude TL I(t) is proportional to the derivative —dn/dt,
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Figure 9.

The spectrum of K2GdF5:Tb curve and results of calculating E and s values.

depending on the measurement conditions. In experimental research, experimental-
ists pay much attention to the frequency factor of the TL signal. Kitis et al. [7] obtain
the following analytic equation for s with the GOK model:

E E 2kT,, 1t
— (k";mz> exp (kTm> {1 +(b-1 (E } (8)

Thus, kinematic parameters such as E and s of the TL curve will be estimated
according to Egs. (5) and (8). Each peak coordinate of the TL curve including two
parameters of temperature and TL intensity will be recorded after each mouse click on
the screen containing the TL curve. The kinematic order of the GOK model is also
selected and changed from 1 to 2 until the FOM values of the TL curve reach the
minimum condition.

Code in Python:

1. def ffGOK(x,a,b,c,bv):

24 kbz = 8.617385e-5

3. hr=1

4 return (hr*c)/(kbz*b**2)
*np.exp(c/kbz/b)/(1+(bv-1)*1*kbz*b/c)

K2GdFS materials doped with concentrations of 10%Tb are widely used in radia-
tion dosimetry and materials science [15]. The spectrum of K2GdF5:Tb curve and
results of calculating E and s values are shown in Figure 9.

Explanation of Figure 9: depicts the result of spectral matching of sample K2GdF5:
Tb with four peaks. The calculation results of sample K2GdF5:Tb in terms of E and s
values are also calculated with high accuracy.

Details and full Python source code for calculating the frequency factor can be
found on GitHub [5].

U‘I

3. Conclusion

The application of GA to TL curve analysis provides an efficient and effective
method for the estimation of kinetic parameters such as activation energy, frequency
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factor, and order of reaction. The algorithm can explore a large search space of
candidate solutions and converge toward a solution that optimizes the fitness func-
tion. The use of GA in TL curve analysis has significant implications for the field of
geochronology and archeological dating, as it provides a powerful tool for the accurate
and precise determination of the age of materials.
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