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Preface

Long-term shifts in weather patterns are referred to as climate change. Natural shifts 
have always occurred, but during the last two centuries human activities have become 
a major driver of climate change.

We tend to equate climate change with rising temperature; however, its increase is 
only one part of the story because the planet is an interconnected system in which a 
change in one area affects all others. It is clear that climate change includes changes 
in water availability (scarcity and excess), melting ice and rising sea levels, extreme 
weather events, losses in biodiversity, and so on. Climate change can affect every 
aspect of our lives such as health, food availability, security, employment, and so on.

According to the Intergovernmental Panel on Climate Change (IPCC), the current 
alterations are evolving at a rate not seen in the past 10,000 years and “since systematic 
scientific assessments began in the 1970s, the influence of human activity on the 
warming of the climate system has evolved from theory to established fact.”

Climate change has a perilous impact on natural ecosystems and agricultural produc-
tion, threatening lives and livelihoods. Increases in global temperatures are accompa-
nied by other abiotic stresses such as drought, flooding, and changes in soil nutrient 
composition that reduce crop yields. Extreme weather events are already more intense 
across the globe, placing additional pressure on our production systems.

Abiotic stresses tend to occur in combination rather than individually and the plant 
responses (physiological, metabolic, and molecular) to the combination of stresses 
are significantly different than those to individual stresses. Faced with the challenges 
of climate change, biological studies strive to decipher how plants perceive different 
stressors, how the signals are transduced within plants, what are the response pathways 
elicited by them, and how are they genetically determined.

As climate change has already introduced alterations that are irreversible, we still  
have to devise strategies to mitigate their impacts on our crops and food supply and 
protect our production systems. Thus, this book provides a comprehensive overview 
of stress biology to increase understanding of its factors and influences and how to 
mitigate it.

Manuel Oliveira and Anabela Fernandes-Silva
Department of Agronomy,

Universidade Trás-os-Montes e Alto Douro (UTAD),
Vila Real, Portugal
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Chapter 1

Understanding the Impact of
Global Climate Change on Abiotic
Stress in Plants and the Supportive
Role of PGPR
Puja Agnihotri and Arup Kumar Mitra

Abstract

Plants form the fundamental trophic level of almost all the food chains, and as such
are the most significant biotic component of our ecosystems. However, there is a
rising threat on the growth and well-being of these organisms due to variations in
climatic conditions. Climate change conditions pose threat to plants by exposing them
to various abiotic stresses, such as salinity, drought and UV-B radiation, eventually
leading to oxidative stress in plant cells. Plants can put up their defence against such
stressors using a number of strategies namely, adaptation, avoidance and tolerance.
The action of antioxidant molecules and enzymes play a pivotal role in fighting the
oxidative stress and its key player, reactive oxygen species (ROS). Plants can also
develop an epigenetic memory of the stress, by modulating the expression of genes
involved in stress tolerance via the epigenetic code. With the rise in environmental
challenges due to climate change in recent times, it is also important to underline the
helpful role played by plant growth-promoting rhizobacteria (PGPR) in building more
stress-resilient plants, and the diverse array of plant genera with which these PGPR
can associate.

Keywords: salinity, drought, UV-B, antioxidant, ROS, epigenetic code, epigenetic
memory

1. Introduction

Presently, there is a rising concern regarding the extreme changes in climatic
conditions and their related impact on the living (biotic) and non-living (abiotic)
components of our ecosystems. The recent cases of flooding, drought, cyclones and
hurricanes have caused an alarm and called for us to review the way in which we
understand and interact with our biosphere. These situations arise not only due to
anthropogenic activities but also due to natural phenomenon. A vital factor that
contributes to climatic fluctuation is upsurge and accumulation of greenhouse gases
which eventually cause a rise in global temperature [1–5]. There has been a significant
increase in the amount of research pertaining to the mechanisms for and development
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of abiotic stress tolerance in plants over the past couple of decades. This is because
plants are the beings most readily and deeply affected by climate change issues due to
their immobile nature.

Under environmental stress conditions, arising from temperature extremes, fluc-
tuations in rainfall and wind patterns, heat, salinity, pH variations, drought, electro-
magnetic radiation, etc., plants show numerous symptoms of stress-induced
phytotoxicity. This ranges from modifications in metabolic and physiological activi-
ties to depletion in overall productivity. Consequently, this becomes a raging concern
in case of crop plants and other plant beings that are crucial for providing ecosystem
services (such as pulpwood, timber, ecotourism and natural habitat for wildlife). Due
to loss in growth and productivity, there is an issue of global food shortage and also
the deeply worrying aspect of oxygen depletion [6–15]. Therefore, among all the
effects of the current trend of climate change on our planet, the ones on plant systems
are of utmost importance.

In the backdrop of climate change, some abiotic elements of our biosphere are
more susceptible to variations than the others. These include drought, salinity and
UV-B. These factors influence plant life forms in solitary or in combined ways,
whereby morphological, physiological and biochemical attributes of plants are effec-
tively altered. Simultaneously, there are revelled modifications in the epigenetic codes
of the plant genome, leading to what is known as chromatin-based ‘epigenetic mem-
ory’. This memory may help the plant in future when it is exposed to similar kinds of
stress, wherein there is elevation of plant defence activities. Plants can also respond to
environmental stressors by adapting and acclimatising using various strategies. How-
ever, the climate-influenced rise in abiotic stressors continues to hamper plant growth
and productivity on a larger scale and also draw in the biotic or pathogenic stress
challenge into the picture.

As such, we have discussed in the present chapter some key issues related to
climate change and its impact, such as the nature and origin of climate variability, its
expected trend in near future, how the climate change conditions affect the sessile
plant beings, the strategies adapted by plants to overcome the stress created due to the
increasingly challenging environment, and the role of epigenetic mechanisms in help-
ing the plants adapt and acclimatise better to these conditions. Moreover, the role of
friendly bacteria also termed as ‘plant growth-promoting rhizo-bacteria’ in alleviating
the negative effects of climate change on plants has also been delineated. With a clear
understanding of the issue at hand, we can equip ourselves better to face the testing
times that lay ahead of us.

2. Causal factors of climate change and forecast

The various physical processes in our environment at a local scale combined with
responses to global climatic phenomena at a large scale form the basis of ‘regional
climates’. Notable examples of global-scale climatic phenomena and their respective
variability in present times include Monsoon Systems, Tropical Phenomena (includ-
ing the popular El Nino Southern Oscillation), Cyclones, Blocking, Atlantic Multi-
decadal Oscillation, Pacific South American Pattern, etc [1]. These phenomena are
largely considered relevant to climate dynamics because of perceived or proven con-
fidence that they can influence regional climate and are likely to change over time.
Various physical parameters are taken into account while understanding the dynamics
of regional climate, such as overall transfer of heat and moisture, and their
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momentum into a region [1]. According to recent updates, there continues to be a
debate around the causality of natural and anthropogenic factors towards
influencing climate change and also the impact of each of the causal factors. One of
the latest findings has suggested that both natural and anthropogenic factors are
responsible for temperature changes, contrary to what one might think, that the
anthropogenic factors majorly contribute to the global rise in temperature. In addition
to this, the study also indicates that there is a connection between the rise in temper-
ature and concentration of greenhouse gases [2]. The current trend of temperature
variability is arguably accredited to both natural and anthropogenic factors. For
instance, sharp deviation from the present greenhouse warming trend has been noted
in regions with variable volcanic activities—a period of unusually heavy activity is
followed by strong cooling, while a period of low activity is accompanied with greater
warming [3]. However, it is still supported by several studies that by limiting the
timescale of climate analyses to more recent times, we can see that anthropogenic
factors have been the major contributors to the greenhouse global warming trend.
Additionally, the anthropogenic aerosols as well as greenhouse gases have influenced
climate change through influencing regional temperatures and long-term changes in
monsoons [3].

Despite the need to understand and precisely delineate the underlying causes of
the changes in climatic conditions (such as temperature change and precipitation
variability), we also need to keep an eye on the current trend of climate variability.
Keeping in mind the Indian subcontinent, we have presented here the status of and
predictions for climate change in South East Asia. It has been reported that S.E. Asia
has observed a rise in temperature at the rate of 0.14–0.20°C per decade since the
1960s [4]. This is also accompanied by an increase in number of hotter days and
warmer nights, with a simultaneous decrease in cooler weather [5, 6]. The trend for
incidence of heavy and light rain episodes is positive, while that of moderate rain
episodes is negative [7]. The annual rainfall on total wet day has increased at an
average of 22 mm per decade, while that on extreme rain days has increased at an
average of 10 mm per decade [6, 8]. It is indicated that warming is expected to persist,
with extensive variation on regional basis [1]. Also, there is likely to be moderate
increase in precipitation, with the exception of the part of Indonesia near to the
southeast Indian Ocean. In parts of terrain, variation in precipitation is most likely to
be strong [1].

3. Impact of climate change from ecological perspective

For quite a few decades now, the impact of global climate change on regional
climates and the associated effects on regional as well as local ecosystems have been a
matter of extensive discussion. Changes in climatic conditions in different regions
across the globe have adversely affected agricultural productivity, food security, var-
ious ecosystem services, and overall composition as well as quality of flora and fauna
[9–11]. Some of the major outcomes of climate changes have been temperature
extremes and uncertainty or unevenness in rainfall patterns, which eventually pose a
threat to agricultural crops [12–14]. Variability in temperatures and precipitation has
also been found to influence cropping patterns, crop yields, and phenology, i.e. leaf
development, anthesis, asynchrony between anthesis and pollinators, increased respi-
ration, decrease in pollen germination, shorter grain filling period, and lesser biomass
production [12, 15, 16].
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Greenhouse gas emission and/or concentration pose a threat to the flexibility and
adaptability of natural ecosystems, through influencing climate change as well as
ocean acidification [17]. The recent 2018 International Panel on Climate Change
(IPCC) Special Report on 1.5°C alerts that drastic climate change impacts will ensue if
the planet is allowed to warm beyond 1.5°C, and such impacts include drought, flood,
heat waves and sea-level rise [17, 18]. Such effects would not only harm man-kind and
the lifestyle we are presently accustomed to but also the natural biodiversity in
general. The previously agreed upon temperature target was 2°C; however, the half-
degree variation was considered vital to avert the risk of Arctic and Coral Reef
Ecosystems’ degradation [17, 18]. A vital lesson to learn from this Special Report is
that there is an estimated 12 years of time to reduce the net carbon emissions by half in
order to avert the severe impacts mentioned earlier; however, achievement of this
target would still potentially result in continued global warming as well as the associ-
ated impacts [17].

Among the most notable effects of global climate change on ecology and biosphere,
salinity is number one. Several researchers have noted that one of the main reasons
behind the rising levels of soil salinity across the globe is global climate change and its
associated impacts, such as increasing temperature, lower precipitation, higher
evapotranspiration, consequent aridisation of susceptible regions and rise in sea levels
[19, 20]. Although salinity or sodicity in soil mostly originates due to natural factors
such as weathering and there is some amount of it always existing in soils, the
influence of climate change conditions is also substantial, whereby the amount of
salinity exceeds beyond the threshold.

An important stress factor for living organisms, in particular plant life forms, is
water-deficit or drought. Drought or drought-like situation arises for plants when
there is inadequate water supply near the roots. This is caused by several factors such
as natural climatic or geographical conditions, irregular rainfall pattern, high envi-
ronmental temperature, high light intensity, spells of dry wind, water-retaining
capacity of soil and water-deficit due to high transpiration rate [21, 22]. Although
agricultural drought is not a big threat in itself, since it is a common natural
phenomenon, and is often preceded by meteorological drought, it can still be seen as a
rising abiotic stressor for plants due to the wasteful and careless anthropogenic
practices. The alarming rise in greenhouse gas concentration in environment and the
subsequent global warming (due to the tendency of these gases to be well mixed in
atmosphere) has led to an upsurge in soil and surface water temperatures, leading
to drought-like conditions. Over the past two centuries, the concentrations of
carbon dioxide and methane have increased to 30% and 150%, respectively, and have
thus influenced climate change through global warming and alterations in rainfall
pattern [22, 23].

A direct impact of global change in climatic conditions of temperature and accu-
mulation of greenhouse gases is thinning of the protective ozone layer of Earth’s
stratosphere, a phenomenon that is being studied for almost three decades now [24].
An immediate concern arising from this observation was the impact of solar UV
radiation on animal as well as plant life forms. Both UV-A and UV-B are potentially
harmful to biological molecules and cellular systems, and it has been noted that the
interaction of UV-B with several other climate change factors (such as temperature,
drought/precipitation and greenhouse gas like CO2) can further complicate its effect,
as depicted in Figure 1 [24].

It is thus understandable that climate change is leading to enhanced abiotic stress
for organisms, in particular, the sessile plant beings. The ongoing section shall throw
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light on how the abiotic stress factors catalyse their detrimental effects on plants and
the strategies employed by plants to tackle these effects.

4. The challenge of abiotic stress for plants: Harms and defence strategies

As discussed in the preceding section, salinity is one of the significant stressors for
plants and is currently being elevated by climate change conditions. It is crucial to
discuss the impact of salinity stress because according some reports, and it is esti-
mated that salt-affected land is leading to a loss of approximately 12 billion USD
annually, and future predictions for agricultural production highlights the significance
of working efficiently under high saline conditions [25]. Some of the principal ways by
which salinity manifests its adverse effects on the physiology and biochemistry of
plant systems are as follows:

i. Heightened Na+ accumulation in plant cells causes efflux of K+ and Ca+ ions,
which eventually leads to imbalance in cellular homeostasis, nutrient
deficiency, oxidative stress, growth retardation and cell death [19].
Additionally, higher concentration of Na+ ions in soil may lead to reduced
uptake of K+ and Ca+ ions by the plants, further causing hindrance to proper
cellular functioning and enzymatic activities [19].

ii. Impairing photosynthesis through several means such as stomatal closure,
decline in primary and accessory photosynthetic pigments concentrations and
damage to chloroplast ultrastructure [19, 26]. Additionally, reduction in

Figure 1.
Schematic overview of how UV-B affects life forms at different levels, alone as well as through its interaction with
various climate change factors (derived from Caldwell et al. [24]).
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photosynthetic pigment concentrations and photosynthetic efficacy
together under increasing saline stress are attributed to loss of
photosynthetic-membrane integrity, destruction of proteins and enzymes
in photosynthetic pathway, dehydration of cell membrane leading to
reduction in CO2 permeability, enhanced senescence, alteration in enzymatic
activities due to morphed cytosolic integrity and negative feedback by
reduced sink activity [26].

Apart from salinity, abiotic stressors such as drought and UV-B radiation are also
currently on the rise due to climate change conditions. Some of the principal effects of
drought and excess UV-B light on plant systems are as follows:

i. Water-deficit conditions lead to loss of turgor in plant cells, reduction in plant
water potential, disruption of enzymatic activities and reduced energy supply
from photosynthesis. These factors eventually affect vital physiological
processes such as cell division, elongation and differentiation, thereby
arresting plant growth and development [27–31].

ii. Drought stress can also induce changes in morphology and anatomy of plants,
i.e. reduced leaf size, lower aperture in and reduced number of stomata,
thickened cell wall, cutinisation of leaf surface, enhancement in conductive
system (viz. large vessels), etc. [21]. Additionally, the total biomass of plant
greatly reduced under drought conditions, with an increase in root-to-shoot
ratio [21].

iii. Photosynthetic efficacy is highly affected under water-deficit stress due to
some notable reasons: decrease in chlorophyll pigment concentration,
reduced leaf surface (due to arrested growth and development), disruption in
activity and/or concentration of enzymes like RuBisCO, PEP carboxylase,
fructose-1,6 bisphosphatase, sucrose phosphate synthase as a result of reduced
water potential, and decline in the efficacy of both the cyclic and non-cyclic
types of electron transport in the photosynthetic light reactions [32–34].

iv. Impact of drought stress is also seen on plant cell membranes, whereby the
association of lipids with proteins, activity of bound enzymes and transport
capacity all are hampered [21].

v. UV-B radiation influences its adverse effects on plant systems by targeting
biomolecules and metabolic pathways. For instance, impairment of
photosynthetic electron transport chain and increased activity of membrane
localised NADPH oxidases and peroxidises both eventually lead to an
overproduction of reactive oxygen species (ROS) which is the main effector
molecule of oxidative stress. additionally, and UV-B stress is found to be
associated with impaired pathogen resistance and alteration in the antioxidant
machinery (i.e. pathways of glutathione, phenylpropanoids, cinnamates,
flavonoid, respectively, and pyridoxine biosynthesis pathways) [35–37]

In addition to the points mentioned above, all the abiotic stress factors discussed
herein are also potential contributors to the rise in cellular concentrations of ROS. As
rightly pointed out, all kinds of stress eventually lead to a rise in ROS
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concentrations beyond their threshold value, thereby manifesting symptoms of
oxidative stress [38]. The same has been depicted in Figure 2. Moreover, climate
change conditions have also witnessed a rise in biotic stress for plants, in particular for
the agronomically important plants, for instance, heightened pathogenic and pest
stress, and weed stress [39].

Even though there is an upsurge of stressing conditions for plants, these immobile
yet versatile organisms prove their resilience by strategically responding to the envi-
ronmental stressors. Some of the major defence strategies employed by plants against
the abiotic stress factors have been depicted in Figure 3.

5. Climate change conditions leave their imprints in plants through abiotic
stress: the epigenetic effect

It is clear to us that the sessile plant beings are capable of displaying various
defence strategies in response to stress factors. In nature, the plants are almost
always exposed to more than one kind of stress factors, implying that response
strategies are also versatile. The diverse array of signalling pathways and molecules
that are involved in environmental stress defence result from reprogramming of
gene expression patterns, which in turn are beautifully regulated. From research
spanning the last two decades, there is growing evidence that an epigenetic
regulation of gene expression also takes place under different kinds of abiotic
stress [40–43]. Following the consensus, we are using the definition of ‘epigenetics’
as the changes in gene expression activity due to alterations that are outside of
the DNA sequence of the gene, and that these changes may be meiotically or
mitotically inheritable but are largely displaying the non-Mendelian feature of
reversibility [40, 42, 44].

The epigenetic response of plant to different environmental stimuli is essential not
only for abiotic stress tolerance but also for various other essential processes such as

Figure 2.
Schematic overview of oxidative stress effects induced due to ROS overproduction (Taken from Dutta et al. [39]).
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leaf development, floral transition and bud dormancy [42]. In case of environmental
stress, it has been noted that the marks of epigenetic changes display stability or
transgenerational inheritance, leading to what is popularly known as ‘epigenetic
memory’ [40, 42]. This also becomes of source of ‘phenotypic plasticity’ (represented
as a simplified equation below).

NATURAL GENETIC VARIATION þ EPIGENETIC VARIATION ¼
PHENOTYPIC & FUNCTIONAL DIVERSITY ðorigin of ‘phenotypic plasticity’Þ

However, not all epigenetic marks are stable; some of them are transient, i.e. in
case of DNA repair and/or cell cycle phases. To delineate the epigenetic mechanisms
of regulating gene expression, it is important to understand how the epigenetic
changes work. Briefly, the genomic DNA in eukaryotes is packaged into organised
structure called the chromatin. The chromatin is composed of basic units called
nucleosome (as shown below):

Figure 3.
Schematic representation of some major defence strategies employed by plants in response to various abiotic stresses.
The strategies are categorised as ‘escape/adaptation’, ‘avoidance’ and ‘tolerance’, respectively. Colour codes—Blue:
Drought stress; Red—Salinity stress; Pink—UV-B stress; Yellow-Common to different kinds of stress. Symbols—‘↑’
indicates ‘increase in’; ‘↓’ indicates ‘decrease in’; Bold Arrows indicate the part of plant affected by each type of
abiotic stress, i.e., leaf, stem, and root, respectively. (Extracted from Müller-Xing et al. [40], Salehi-Lisar et al.
[21], Kamran et al. [19], Podolec et al. [41]) (Figure is slightly modified from the literature for simplicity).
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The targets for epigenetic regulation are as follows:

i. DNA methylation, wherein the 5th C of cytosine residues of the DNA
backbone get attached with methyl group.

ii. Histone modification, wherein the histone proteins are subject to post-
translational modifications such as acetylation, methylation, phosphorylation,
sumoylation and ubiuitination, mostly at the N-terminal region of the core
complex. Largely, the lysine residues are targets of histone modifications.

iii. Incorporation of histone variants.

These mechanisms, also sometimes known as the ‘epigenetic code’ directly regu-
late the activity of a gene by influencing the arrangement of nuleosome and conse-
quently the compactness of chromatin. If the chromatin is tightly packed
(‘heterochromatin’), it is less accessible for expression, and if the chromatin is loosely
packed (‘euchromatin’), it is readily accessible by RNA Pol II for carrying out gene
transcription. It has been indicated that under abiotic stress, plants can display three
different kinds of epigenetic memories (Figure 4) [40, 45].

There is growing evidence that plants from diverse genera, including forest
trees, respond to abiotic stresses of drought, salinity and UV through epigenetic modu-
lation of gene expression [40, 46]. Additionally, these epigenetic imprints are also
linked with adaptation, acclimation as well as acclimatisation under stressful conditions.

Figure 4.
Different types of epigenetic memories (Extracted from Müller-Xing et al. [40]).
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6. Plant growth-promoting rhizobacteria as a vital tool under
abiotic stress

Micro-organisms are an integral part of all ecosystems. They perform varied func-
tions that are not only vital to their own survival but are also beneficial to different
other life forms, including plants. Be it the free-living or symbiotic N2 fixing bacteria,
or the mycorrrhizal associations of fungi and plants, micro-organisms are famous for
their service to the most fundamental trophic level of all food chains, i.e. plants, and
consequently to the entire planet as well. For several decades now, the environmental
significance of bacteria has been a matter of utmost interest, and as such scientists
from all over the world have kept a close watch on the developments in this field.
Bacteria are exploited to amend environmental problems arising from both natural
and anthropogenic challenges, and this includes environmental pollution with toxic
heavy metals or pesticides, and abiotic stress factors such as salinity or drought.
Bacteria are also utilised to assist the sessile plant beings in overcoming such environ-
mental challenges, and one of the versatile number of tools with which they help their
plant hosts is collectively termed as ‘plant growth promoting properties’. Some essen-
tial plant growth-promoting properties of bacteria include N2 fixation, phosphate or
potassium or other mineral solubilisation (through organic acid production),
siderophore production, auxin (indole acetic acid) production and ACC deaminase
activity [47–49]. If these bacteria can colonise in the rhizosphere of the plant, they
form a group called ‘plant growth-promoting rhizobacteria’ (PGPR in short). The
PGPR can also assist the plants in enhancing their antioxidant defence machinery and
adapt better to the growing stress [50, 51]. In recent times, the role of PGPR in
assisting plants under various abiotic stresses is being extensively explored. For
instance, the efficient role of PGPR of Bacillus genus in salt tolerance in tall fescue,
alleviating drought stress in maize and wheat through PGPR of genera Bacillus and
Enterobacter, using PGPR Bacillus subtilis to mitigate drought stress in potatoes by
suppressing oxidative stress in the plant and enhancing antioxidative enzymes,
improvement in essential oil production by the medicinally important rosemary plant
under salinity stress through treatment with PGPR Pseudomonas fluorescens, and many
more [52–55]. Moreover, given the fact that bacterial species have high potential for
adaptation and plasticity in metabolism, their applicability can be dynamic. The utility
of PGPR thus covers a wide range of plants, from forest trees, grassland, agricultural
crops to medicinally as well as aesthetically important plants, making them well
applicable for cultivating more stress-resilient plants in the current backdrop of cli-
mate change.

7. Conclusion

The present trend of climate change and the resulting variation in temperature
and precipitation indicate a global rise in abiotic stress factors for plants, mainly
drought, salinity and UV radiation. These factors affect the plant in an integrated way,
eventually leading a loss in the plant productivity. This becomes an alarming
concern from agricultural as well as ecological perspective. The versatile plant
beings have a number of mechanisms to articulate their defence against these stress-
inducing factors, which are controlled genetically via a well coordinated cascade of
signalling events. Aside from this, there is also interplay of these mechanisms with
epigenetic memory, which makes the plant more resilient and better adapted to
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climate change conditions. However, even though plants have devised strategies of
their own, it is still desirable to provide them with added assistance, given the fact that
plants in the open are often exposed to multiple threats or stressors simultaneously. In
this regard, the role of PGPR is imperative, because not only are they a source of
beneficial activities that aid in the overall growth of plants but also a decisive tool for
boosting the plants’ defence mechanism against ROS and abiotic stress. Thus, the
impact of climate change on plant life is manifolds, and we need to address it more
resolutely with an understanding that friendly micro-organisms also play a vital role
in this battle.
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Abstract

Ultraviolet radiation is a portion of the electromagnetic spectrum ranging from 
10 to 400 nm, classified into three main categories: UV-A (320–400 nm), UV-B 
(280–320 nm), and UV-C (100–280 nm). The UV radiation from the sun that crosses 
the atmosphere and reaches the earth’s surface is composed largely of UV-A radiation 
(95%) and, to a lesser extent, UV-B (5%), which is normally filtered by stratospheric 
ozone. With the thinning of the ozone layer, UV-B radiation penetrates deeper into 
the earth’s surface, where it becomes dangerous due to its high energy content that 
acts at the molecular level, affecting the cycles of carbon, nitrogen, and other ele-
ments, thus, having a direct impact on global warming. On the other hand, UV 
radiation alters numerous essential organic compounds for living organisms. Since its 
discovery, it has been established that e UV-B causes alterations in plant development 
and metabolism, both primary and secondary. In this chapter, we summarize the cur-
rent knowledge about the effects of UV radiation on the morphological, biochemical, 
and genetic processes in plants.

Keywords: UV radiation, secondary metabolites, oxidative stress, 
photomorphogenesis, photosynthesis, UV transcription factors

1. Introduction

As sessile organisms, plants are constantly exposed to a wide variety of stress 
factors, such as desiccation, environmental pollution, temperature changes, and 
UV radiation. Ultraviolet radiation is a part of the nonionizing radiation region 
of the electromagnetic spectrum and comprises about 9% of the emitted solar 
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radiation; according to the ISO 21348 standard, it is divided into three types: UV-C 
(200–280 nm), UV-B (280–315 nm), and UV-A (315–400 nm) [1, 2].

The ozone layer (O3) efficiently filters much of the shortwave UV radiation (UV-
C). However, this absorption decreases rapidly for radiation with wavelengths greater 
than 280 nm, reaching a rate of 0% absorption for wavelengths greater than 330 nm. 
Factors, such as elevation above sea level, cloud cover ground reflectance, geographic 
latitude, and ozone gradient and can affect the amount of UV-B and UV-A radiation 
that reaches the Earth’s surface [3].

In normal conditions, the ozone layer filters around 80% of UV-B radiation, but 
human activities have caused a decrease in the stratospheric ozone concentration 
through the emission of compounds such as chlorofluorocarbons (CFCs), carbon 
tetrachloride (CCl4) and hydrochlorofluorocarbons (HCFCs). Therefore, UV-C radia-
tion and an increased percentage of UV-B radiation can pass through [3, 4].

Although UV radiation is a minor fraction of solar energy that reaches the earth’s 
surface, it significantly affects plants. UV-B radiation affects important biomolecules 
directly, including nucleic acids and proteins; these molecules absorb UV radia-
tion easily when presenting π electrons, and this absorption can lead to metabolic, 
biochemical, and morphological alterations, as well as alterations in the genetic 
material [5, 6]. UV-A radiation produces similar effects, although they are part of 
the constitutive regulation of plant metabolic and morphological processes, such 
as photosynthesis, biomass production, and synthesis of pigments and antioxidant 
compounds [7].

Since the discovery of the thinning of the ozone layer, the consequent penetra-
tion of UV-B radiation into the atmosphere and its undisputable contribution to 
global warming of the planet, the effects of UV radiation on plants have been closely 
studied. Plants can use sunlight not only as a source of energy to produce carbon 
compounds but also as a source of environmental information; that is, they can 
detect it as a signal and trigger different systemic responses related to photosynthesis, 
phototropism, photoperiodicity, and photomorphogenesis. These same processes can 
be affected by the abnormal incidence of UV radiation in the atmosphere; therefore, 
the impact of its damage has been studied in recent decades [8]. This assessment has 
led to the creation of initiatives such as the Montreal Protocol, which aims at mitigat-
ing the negative effects of climate change-derived increased UV exposure through 
international policies [9].

In addition, the analysis of the causes of the morphological alterations shown by 
plants under UV light stress is difficult because they can be affected simultaneously 
by other environmental factors such as temperature, salinity, or drought, which 
together can modify development at the cellular level. The objective of this chapter is 
to describe the effects of UV radiation on different biochemical, morphological, and 
genetic processes in plants.

2. Morphological alterations

Photomorphogenesis (light-regulated plant development) in the presence of UV 
light has been extensively studied [10]. Plants of several species modify the develop-
ment of their organs in the presence of UV light; for example, the length of the stems 
tends to shorten, although they form a greater number of axillary buds, while the 
roots tend to be longer and more abundant, akin to the development of plants that 
grow in conditions of low light radiation [11].
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One of the stages of plant development most susceptible to the incidence of 
light is germination, which is also greatly affected by UV-B radiation. In Arabidopsis 
thaliana seedlings irradiated with UV light, the growth of the hypocotyl was slower 
[12] compared to seedlings germinating under normal conditions; even the growth of 
the hypocotyl is lower in etiolated plants developed in the shade but irradiated with 
UV light [13]. On the contrary, in this same species, it has been observed that, under 
these conditions, the cotyledons tend to expand, even with short periods of UV light 
exposure [14].

Leaves also modify their structure, tending to decrease their surface area and 
increase their thickness in many broadleaf plant species that have been tested for 
their response to UV light. Apparently, this change in morphology depends on the 
imbalance between cell proliferation and elongation among the different leaf tissues, 
which can cause a decrease in leaf area, abnormal thickening, or rolling, resulting in 
slow plant development [15]. While searching for modifications at the cellular level 
that explain the alterations in the morphology of plants under UV stress, Krasilenko 
et al. demonstrated in 2013 [16] that UV radiation can cause depolymerization or 
fragmentation of microtubules in A. thaliana cells, causing the reorganization of the 
cytoskeleton and the cell in general, so that elongation and cell division are reduced, 
resulting in the formation of shorter leaves, which affects the development and the 
complete morphology of the plant.

It is currently accepted that some plant species avoid excess light radiation by 
forming a waxy cuticle on the epidermis. Exposure to UV radiation-induced deposi-
tion of wax in plants of species, such as Coffea arabica, Coffea canephora, Hordeum 
vulgare, Cucumis sativus, and Phaseolus vulgaris, which results in an increase in the 
thickness of the cuticle. Additionally, molecules such as phenolic acids and flavonoids 
can accumulate in the cuticle, functioning as photoprotectors against UV light or as 
UV light attenuators, respectively [17].

Stomata, the structures where gas exchange occurs, are also affected by the pres-
ence of UV light. High UV irradiation causes loss of stomatal opening and closing 
control in response to environmental stimuli, apparently due to an altered guard 
cell conductance. Since the stomatic function is vital for CO2 fixation in the light-
independent reactions of photosynthesis, its deregulation can deeply affect plant 
development and physiology [18].

UV light plays an important role in plant development, but extreme exposure 
can be detrimental. Unable to relocate, plants must balance the positive and negative 
effects of UV radiation mostly through intracellular mechanisms, as described in the 
following sections.

3. Photosynthetic alterations

Photosynthesis is a light-dependent process, so it is almost inevitable that it be 
affected by the presence of UV radiation. There are several reports about the dam-
age caused by UV radiation in specific sites of the photosynthetic apparatus of green 
plants (Figure 1A) [17]. Much of the damage is caused by the enhanced production 
of reactive oxygen species (ROS) that are involved in UV-induced responses, both 
as signaling agents within normal cellular processes and as damaging agents. ROS 
can cause damage to the proteins that make up the light-harvesting complexes of the 
photosystems or to those found in the protein complexes where the electron carriers 
of photosynthesis are concentrated, their accumulation is even known to cause the 
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destruction of ribulose bisphosphate carboxylase/oxygenase [19], and, therefore, a 
decrease in atmospheric carbon fixation and plant biomass occurs. Another impor-
tant damage caused by ROS is the oxidation of fatty acids in the membranes, which, 
in combination with peroxidation and photooxidation because of UV light, breaks the 
essential integrity of the thylakoid membranes in the chloroplast, generating altera-
tions in the organization of the membrane-embedded photosynthetic complexes, 
decreasing their photosynthetic capacity [20].

Ultraviolet light also causes damage to plant proteins; in fact, one of the effects 
on photosynthesis is the damage, it exerts on the enzymes that synthesize pigments 
such as chlorophylls [21]. In addition, pigments are also degraded by UV light, 
especially chlorophyll b and carotenoids, so exposure to this type of radiation can 
cause an imbalance in the proportion of pigments, with the consequent alteration of 
the photosynthetic apparatus, as has been observed recently in maize. After being 
exposed to UV radiation for 19 days, fluorescence and chlorophyll concentration 
decreased in several maize lines, although in different proportions in a line-depen-
dent manner [22].

Several elements at Photosystem II, the site where photosynthesis begins, are 
sensitive to UV radiation. This complex is formed by the association of pigments and 
proteins, and many of these proteins are part of electron transport centers; therefore, 
their alteration or degradation affects the electron transport chain of photosynthesis, 
reducing their levels under UV light stress. In an elegant work, Ihle [23] reported that 
proteins D1 and D2, which are found in the reaction center of photosystem II, are 

Figure 1. 
Effects of UV-B light on plants and alterations caused by UV-B radiation in photosynthetic metabolism (A) and 
secondary metabolism (B).
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especially susceptible even to low intensities of UV radiation (1 μmol m−2 s−1) [24]. 
The degradation of proteins D1 and D2 adds to the alteration of the manganese (Mn) 
oxidizing group of water, which together cause the loss of function of the reaction 
center and, therefore, the inhibition of electron transport [25]. Damage at the begin-
ning of the electron transport chain of photosynthesis makes it difficult to investigate 
downstream transporters; however, some reports indicate the change in the ratio 
of photosystems II and I due to the decrease in absorption at 700 nm—absorbed by 
Photosystem I—observed after prolonged exposure to UV light [26].

Plants are highly susceptible to the presence of ultraviolet light. Through research 
over the past four decades, it has been possible to discover the mechanisms related to 
damage in plant morphology, development, and metabolism. However, many ques-
tions remain to be investigated until the problem of the penetration of UV radiation 
into the atmosphere is resolved.

4. Oxidative stress by UV light induction

Ultraviolet radiation is an important stress in plants that elicits protective mecha-
nisms such as the accumulation of secondary metabolites in the cell (Figure 1B) 
[27–29] and an increase in leaf thickness [30]. Interestingly, UV radiation is a hor-
metic stimulus, that is severe exposure is harmful, but exposure to lower sub-acute 
levels can stimulate protective mechanisms [31]. Consequently, plants can become 
resilient to UV after repeated exposure [32].

The changes in the secondary metabolism of plants from all taxa under exposure 
to UV radiation have been widely documented. For instance, in the moss Pohlia 
nutans, UV-B radiation enhanced flavone biosynthesis through increasing type I 
flavone synthase activity [33]. In Taxus cuspidate, UV-B radiation (3 W/m2) provoked 
the accumulation of toxoids and flavonoids [34]. Also, the flavonoid contents in 
Scutellaria baicalensis reached the maximum concentration (41.86 mg/g−1) after seven 
days under UV-A radiation [35]. In Pisum sativum leaves, exposure to UV-B radiation 
increased the nicotinamide and trigonelline content; the nicotinamide induction is 
an oxidative stress reaction [36]. In an analysis performed on two different ecotypes 
of the Paubrasilia echinata tree, it was shown that UV-B radiation inhibited stem 
growth, biomass accumulation, CO2 assimilation, and photochemical efficiency in 
a shade-tolerant ecotype inhibition; in contrast, a sun-tolerant ecotype showed a 
positive response: UV-B increased flavonoids, lignin, and antioxidant properties, 
but reduced cell respiration [37]. In Pinus radiata, UV radiation provoked an early 
response reducing photosystem activity and accumulation of photoprotectors; even 
the primary metabolism was rearranged to minimize ROS production, also the 
isoprenoids compounds like carotenoids, tocopherols, phytol, and gibberellins were 
decreased [38]. Under exposure to UV-B radiation followed by dark treatment, the 
number of flavonoids and coumarins in Clematis terniflora increased significantly; 
while proteins related to photorespiration, the tricarboxylic acid cycle, and mito-
chondrial permeability showed differential expression profiles, indicating that UV-B 
radiation induces a reduction in energy consumption and maintains energy balance 
[39]. Nymphoides humboldtiana increased antioxidant activity and production of fla-
vonoids like phloroglucinol, chlorogenic acid, epicatechin, quercetin, and ferulic acid 
after 13 days of exposition of UV-B radiation [40]. Colobanthus quitensis under UV-B 
radiation increased the biosynthesis of flavonoids, particularly flavone C-glycosides, 
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metabolites located within the most metabolically active cells [41]. Melisa officinalis 
showed changes in the glycolysis and phenylpropanoid pathway under UV radiation 
stress with differential recovery times [28].

Studies on algae have shown similar mechanisms, as expected by their phyloge-
netical relation to plants. For example, UV-B radiation-induced ROS production in 
peroxisomes and chloroplasts in Ulva prolifera provokes irreversible damage under 
5 W m−2 [42]. In Chlamydomonas reinhardtii, UV-C radiation stress increased ROS levels 
and production of antioxidant polyphenols, a phenolic including caffeic acid, cinnamic 
acid, coumaric acid, salicylic acid, and protocatechuic acid, among others [43].

A notable example among plant-derived compounds is the alkaloid mimosine, 
present in the seedlings of Leucaena leucocephala spp. Glabrata is particularly interest-
ing due to its therapeutic uses as anti-cancer, antifungal, and antimicrobial, which 
increase its economic interest. Acute UV-C exposure of L. leucocephala seedlings 
induced a strong accumulation of mimosine, which could be implicated in general 
oxidative stress modulation [44].

The effect of UV-radiation stress has also been extensively studied in plants 
used in traditional medicine. For example, Morus alba, used in traditional Chinese 
medicine, reduces its growth and secondary metabolism after exposure to UV-B 
[45]. Gingko biloba leaves, after long-term exposure to UV-B radiation, increase 
flavonoids biosynthesis, and these are beneficial as therapeutic active ingredients 
[29]. Two different species of the Chinese herb Astragalus modified their secondary 
metabolite production under UV-B radiation; A. mebranaceus produced increased 
hydroxycinnamic acid derivates, while Astragalus mongholicus accumulated myricitrin 
and isoflavones, showing different tolerance to UV-B stress [30]. The flowers of 
Lonicera japonica are used as a medicinal herb in Asian countries. Under UV radia-
tion, L. japonica increases the levels of oxidative pentose phosphate and secondary 
metabolites such as secologanic acid, secoxyloganin, and isochlorogenic acid [46]. In 
Adhatoda vasica, also used in Asiatic traditional medicine, UV-B radiation (7.2 kj m−2 
day−1) induces a reduction of superoxide radical production while increasing hydro-
gen peroxide production [47]. Finally, Centella asiatica, used in Asian and African 
traditional medicine, accumulated saponins and epidermal flavonols under UV-B 
radiation in younger leaves with high levels of saponins; in contrast, in older leaves, 
sapogenins were the most abundant metabolites [48].

As shown in these studies, UV light has forced algae, bryophytes, and plants to 
modify their metabolism—particularly the secondary metabolism—to increase their 
ecological success rate. However, this also has important consequences for plants of 
commercial interest, as seen below.

5. UV radiation as functional quality of plant foods of commercial interest

Historically, economically important plants have been exhaustively studied; 
recent studies have focused particularly on UV light stress, searching for alterations 
in organoleptic properties and secondary metabolism. In modern horticulture, 
plants of economic interest have been irradiated with UV light during the flower-
ing/fruiting period, with the purpose of stimulating oxidative stress pathways as 
well as antioxidant production [49]. In tomato juice production, the stress caused 
by UV radiation in plants decreased pectolytic enzymes, improving and preserving 
tomato characteristics for a longer period of time [50]. Also, in a tomato cultivar, 
UV-A and B radiation produced higher ripening synchronization and smaller fruits. 
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Exposure to UV-A radiation-induced accumulation of phenolics and flavonoids, 
making these fruits more appealing to consumers [51]. Furthermore, in tomato 
seedlings under UV-B radiation, carotenoid content increased as well as antioxidant 
enzyme activities [52].

Another plant of great economic importance is soybean (Glycinine max), which 
increases the isoflavone content of the sprouts under UV radiation [53]. In soybean 
seedlings, nitric oxide is induced as a protection against UV-B stress [54]. Meanwhile, 
on germinated soybean, UV-B radiation increased the contents of linoleic acid and 
erucic acid content, as well as isoflavones, phenolic acids, vitamin C, folate, and 
chlorophyll, improving nutritional and functional qualities [55]. Conversely, exces-
sive UV-B exposure damaged cells and decreased the amount of isoflavones within 
them [56]. In cultured soybean, UV-C radiation increased the amount of genistein-O-
glucoside and genistein-O-glucosyl-malonate, suggesting in vitro culture to obtain a 
high level of metabolites [57]. Moreover, in germinated soybean under UV-B radia-
tion, total protein content and endogenous H2O2 were increased [58].

Cereals and ornate flowers also have responses to UV radiation. Wheat seedlings 
under UV stress showed an increase of phenylalanine ammonia-lyase only in the 
roots, indicating that UV-B radiation has a positive or negative impact, depending on 
the type of secondary abiotic stress factor observable in the production of phenolic 
compounds [59]. Also, germinated wheat under UV-B radiation increased phenols, 
ferulic acid, and coumaric acid. Exogenous Ca2+ positively affected free and bound 
phenolic accumulations [60]. In amaranth (Amaranthus cruentus L.), UV-C radiation 
improved postharvest quality by increasing levels of quercetin, kaempferol, copene, 
lutein, β-carotene, and caffeic acid derivates [27]. In lily bulbs, UV-C radiation 
increased total phenolic content and antioxidant activity, indicating that UV-C radia-
tion is a safe alternative for processing lily bulbs in storage [61].

Likewise, the effects of UV radiation have been studied in economically impor-
tant herbs. In spinach cultivars, UV-C induced a hormetic effect that increased total 
phenolic compounds and reduced the presence of the parasite fungi Alternaria ssp. in 
the crops [62]. In barley seedlings, UV-B radiation up-regulated enzymatic activity, 
resulting in the accumulation of phenolic acids [63]. Mentha aquatic responded to 
UV-B radiation on a morphological level, increasing glandular trichomes, and on a 
biochemical level, increasing oxidative metabolism and overexpressing genes impli-
cated in terpene biosynthesis, particularly volatile oils as camphene, β-pinene, and 
germacrene [64]. In wounded carrots under UV-A and C radiation, ROS increased, 
acting as a signal for ethylene synthesis, which activated the synthesis of jasmonic 
acid leading to the accumulation of phenolic compounds [65]. In fresh-cut carrots, 
UV-C doses inhibited ascorbic acid, total carotenoid, respiration, total phenols, lig-
nin, malondialdehyde, and ethylene production; all data collected indicated extended 
shelf-life and overall quality maintenance [66]. In parsley, UV-C doses resulted in 
an increase of antioxidants such as phenylpropanoid and phenolic compounds, as 
well as enzymes involved in the synthesis of phenylpropanoid [49]. The effect of UV 
radiation induces the production of 6″-0-malonylapiin, which is a flavone glycoside, 
as well as the 12-oxo-phytodienoic acid [67]. UV-B radiation (1.5 kJ m−2) maintained 
the color of broccoli florets during storage, and induced glucosinolates and hydroxyl-
cinnamates, raising their antioxidant properties. These findings suggested that UV-B 
radiation is likely to induce the indole glucosinolate pathway [31], maintaining the 
quality of broccoli florets in low-temperature storage [68].

Fruits are also of economic interest and respond differentially to UV. Grape 
berries (Jumeigui variety) decreased sugar content under UV-C, promoting the 
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accumulation of stilbenes and some flavonoids [69]. In contrast, berry clusters (red 
table emperor) under UV-A and B radiation decreased the amount of quercetin 
3-O-glucoside and quercetin 3-O-glucuronide, suggesting that UV radiation induces 
postharvest changes in phenolic metabolites [70]. In fresh-cut strawberries, UV-C 
increased phenolic compounds, anthocyanin, cyanidin 3-glucoside, pelargonidin 
3-glucoside, and cyanidin 3-glucoside-succinate, activating the phenylpropanoid 
pathway, thus improving antioxidant capacity without losing fruit quality [71]. In 
two blueberry cultivars (Vaccinium corymbosum), exposure to UV radiation showed 
that the amount of phenylpropanoid compounds was higher in the Legacy cultivar 
than in the Bluegold cultivar, which indicates that UV-B acclimation is different 
between cultivars [72]. Moreover, in highbush blueberry leaves (V. corymbosum L. 
cv. Brigitta and Bluegold), photosynthesis decreased in the Bluegold variety under 
UV-B radiation; in contrast, the Brigitta variety increased the photosynthesis rate as 
well as antioxidant activity [73]. In fragrant pear, postharvest UV-C radiation con-
trolled blackhead disease through chitinase, β-1,3-glucanase, peroxidase, superoxide 
dismutase, catalase, ascorbate peroxidase, and phenylalanine ammonia-lyase [74]. 
In nectarine, UV-C radiation induced an increase in anthocyanin biosynthesis and 
promoted the antioxidant system, stimulating the phenyl propane pathway. Together, 
these compounds exerted antifungal action against R. stolonifera [75]. In young leaves 
of Vitis vinifera, low UV-B radiation increase sitosterol, stigmasterol, and lupeol, 
probably as an acclimation response. In contrast, diterpenes, tocopherol, phytol, 
E-nerolidol, monoterpenes as careen, α-pinene, and terpinolene were present in high 
amounts in mature leaves; these results showed that the synthesis of terpenes is an 
adaptive response to UV-B radiation stress [76]. In postharvest lemon fruits after 
UV-B radiation, phenolic compounds increased in flavedo, indicating that lemon peel 
modifies enzymatic activities involved in sucrose metabolism [77].

Furthermore, in Olea europaea, UV-B radiation increases secoiridoids and 
2″-methoxyoleuropein metabolites, while decreasing oleuropein as an antioxidant 
defense against UV [78]. The peach (Prunus persica) diminishes the synthesis 
of anthocyanins and phenolic compounds under UV-B exposure, but after 36 h, 
it increases anthocyanins, cyanidin, and delphinidin compounds [79]. In Luffa 
seedlings, the oxylipins such as methyl jasmonate and 12-Oxo-phytodienoic acid 
mitigated the UV-B stress via improved photosynthetic and nitrogen metabolism, 
respectively [80].

Even economically important algae respond to UV radiation. In several Spirulina 
species, mild stress by UV-B radiation has been useful in increasing physiological and 
nutritional competencies in growth, rendering UV radiation useful in producing this 
functional food [81].

Although most of the above-mentioned economically important species appeared 
to benefit from UV exposure, it has been detrimental to some species. Rice (O. sativa) 
plants treated with UV-C had less palatability and were easily infested by the weevil 
Sitophilus oryzae, which provoked lower consumer acceptance and purchase inten-
tion [82]. Also, sweet cherry fruits under UV-C radiation diminished respiration, but 
increased rhamnose, mannose, galactarate, threonate, and aspartate contents [83].

This evidence highlights the importance of studying UV stress in plants of eco-
nomic interest, as it can lead to higher yields and thus higher profits. However, care 
must be taken before implementing UV irradiation as a production-boosting resource 
because some species might be impacted negatively, as evidenced by the effects of the 
increased exposure to UV derived from climate change. Plant litter decomposition, 
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especially in regions with low annual rainfall and reduction of photosynthetically 
active radiation (PAR), further strain crop production [84].

6. Genetic response

Several studies have focused on changes in gene expression in plants exposed to 
long- and short-wave UV-B radiation to identify the cellular components that regulate 
response to UV [85]. The results showed that UV-B radiation triggers cell growth and 
morphogenesis pathways [86]. UV-B response signals are also transmitted from cell to 
cell and are usually organ-specific [87].

Genetic approaches for phenotypic responses to UV-B are based on models of 
increased tolerance or aberrant responses (e.g., changes in hypocotyl growth) to 
UV-B irradiation [86]. Transcriptomic analysis from Arabidopsis seedlings exposed 
to different UV-B radiation intensities showed that more than 20% of the genes that 
modified their expression are transcription factors [85]. These approaches allowed the 
identification of mutants that lacked or overexpressed photoprotective compounds or 
inhibited hypocotyl growth in response to UV-B [14, 88].

UV-B radiation induces changes in the expression of genes that affect growth and 
development, as seen in UV-B light insensitive (uli) mutant plants, which present 
reduced hypocotyl growth relative to wild-type after UV-B exposure. Also, UV-B 
affects chalcon synthase (CHS) expression [14]; low levels of irradiation activate this 
gene, which is key in the biosynthesis of phenylpropanoids [89]. CHS, along with 
transcription factors, allows plants to protect themselves against UV-B.

LONG HYPOCOTYL5 (HY5) is a bZIP transcription factor that regulates 
morphogenesis in response to UV-B. HY5 gene expression is a component of the 
UV-B-induced signaling network. Transcriptomic analysis in Arabidopsis thaliana 
showed the importance of HY5-dependent regulation in response to low-level UV-B 
irradiation [85]. If HY5 is lost, transcriptional induction of the UV-B response genes is 
impaired [86] and cells undergo programmed death [90].

HY5 is a light-induced transcription factor required for many light-responsive 
genes; in the dark, it is degraded by the proteasome [91]. This transcription factor is 
key for phytochrome and cryptochrome regulation networks [85, 92, 93]. So, it seems 
that HY5 does not respond to UV-B radiation exclusively, which opens the door for 
research on other components that specifically drive plants’ response to UV-B.

Several genes are induced by UV-B independently from traditional photorecep-
tors, such as phytochromes and cryptochromes, through the activity of the LONG 
HYPOCOTYL5 (HY5) transcription factor [85]. This independence suggests that 
there must be a specific UV-B photoreceptor that activates HY5; however, the identity 
of this putative element is still unclear [94].

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is an E3 ubiquitin ligase 
that participates in the UV-B response [95]. COP1 has three functional domains, 
a RING finger (ligase activity), a coiled-coil for dimerization, and a WD40 repeat 
domain with binding activity [93]. COP1 targets bZIP transcription factors and is 
required to activate HY5 gene expression. Both proteins are localized in the nucleus 
and regulate photomorphogenesis under UV-B conditions in a specialized pathway 
[95]. COP1 was identified as a photomorphogenesis repressor in darkness and light 
[93, 96]. Visible light inactivated COP1 and separated it from HY5 [93], allowing HY5 
stabilization and, therefore, activation of light-responsive genes [91, 97] through the 
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interaction of phytochromes and cryptochromes [98, 99]. Phytochromes and cryp-
tochromes interact with the SUPPRESOR OF PHYTOCHROME A (SPA) proteins, 
causing light-dependent COP1 inactivation. COP1 response to UV-B radiation is 
independent of the SPA proteins [95, 100]; rather, COP1 responds to UV-B through 
the interaction with the UV RESPONSE LOCUS 8 (UVR8) protein [96].

UVR8 is a seven-bladed b-propeller protein that forms a homodimer in its inactive 
state [101, 102] and is capable of UVR-B perception [103, 104]. In contrast to other 
photoreceptors (phytochrome and cryptochrome), UVR8 does not employ a bound 
chromophore; instead, it uses a tryptophan residue localized in the b-propeller blade 
[101, 102, 105]. Upon UV-B absorption, the UVR8 dimer destabilizes and the mono-
meric form interacts with COP1 [104]. The UVR8-COP1 heterodimer activates the 
transcription factor HY5, consequently activating downstream genes that are implied 
in metabolic and morphological alterations [104, 106]; this mechanism activates 
UV-B acclimation and tolerance [96]. UVR8 is usually located in the cytoplasm, 
while COP1 is in the nuclear bodies of hypocotyl cells. When plants are irradiated 
with UV-B, UVR8 translocates to the nucleus [107] and colocalizes to the COP1-rich 
nuclear bodies [96]. After UV-B exposition, the UVR8 dimer COP1 prevents HY5 
degradation, so that HY5 can exert its transcriptional activation function [108].

In Arabidopsis plants, uvr8 mutants do not respond when grown under UV-B 
radiation; they lack a photomorphogenic signal and therefore do not display the 
damage usually found in wild-type plants [96]. UV-B-induced gene expression is 
important for UV acclimation and survival. When urv8 and cop1 mutants are initially 
grown in weak UV-B exposure and later moved to high UV-B irradiance, the mutants 
do not show an acclimation effect. When exposed to a natural spectral balance, the 
uvr8 mutant shows leaf damage. Also, HY5 or CHS gene expression is undetectable 

Figure 2. 
ELONGATED HYPOCOTYL5 (HY5) transcription factor activation.
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in both mutants. Consequently, the interaction between COP1 and UVR8 proteins is 
required for the regulation of UV-B response and confers UV-B protection. On the 
other hand, overexpression of UVR8 leads to UV-B photomorphogenic hypersensitiv-
ity, presenting inhibition of hypocotyl growth, activation of HY5 and CHS gene, and 
accumulation of anthocyanin [96].

COP1 is related to the repression of photomorphogenesis but it seems that UVR8 
provides UV-B-specific signaling and that the interaction COP1-UVR8 occurs 
within minutes [96]. UVR8 is reverted to homodimer (inactive form) through the 
REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins (RUP1 and 2). RUP1 
and RUP2 are two highly related WD40-repeat proteins that interact directly with 
UVR8 promoting its homodimerization, thus acting act as negative regulators [104, 
108, 109]. RUP 1 and RUP 2 are induced by UV-B but act downstream of UVR8-COP1 
forming a negative feedback loop that balances UV-B defense [109] (Figure 2).

Inhibition of the transcription factor HY5 by binding with COP1 in the absence of 
UV-B light, the expression of the response genes remains inactive (left). In the pres-
ence of UV-B light, the monomeric form of UVR8 enters the nucleus, binds to COP1, 
and activates HY5 (right).

7. Conclusions

The effects that UV radiation causes on plants have been extensively investigated 
from different perspectives. Studies on alterations in photomorphogenesis, primary 
metabolism, particularly photosynthesis, secondary metabolism, or gene expres-
sion have been carried out with model plants such as Arabidopsis thaliana; however, 
several other aspects still need to be addressed. Current technologies, such as omics 
tools, allow for the study of plants in their natural environments, considering all their 
complexity, and will, undoubtedly, lead to a better understanding of the impact of 
UV radiation in plants, an important constituent of climate change. Looking into the 
future, an integral view of plant responses to UV radiation has broad applications in 
agriculture and conservation, while providing scientific foundations for upcoming 
international regulations.
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Chapter 3

Role of Plant Hormones in 
Mitigating Abiotic Stress
Nazima Rasool

Abstract

Agricultural productivity world over is threatened by abiotic stress, intensify-
ing food security issues. The plant hormones play a significant role in mitigating 
abiotic stresses, including drought stress, salinity stress, heat stress, and heavy metal 
stress, faced by the plants. Considerable research has been conducted to understand 
hormone-mediated abiotic stress responses in plants and the underlying biosynthetic 
and regulatory pathways. Deciphering these pathways would allow their manipula-
tion in the laboratory and possible extension to the field. In the present chapter, an 
overview of the role plant hormones play in mitigating abiotic stress, the underlying 
mechanisms of their action, and the cross-talk between their signaling pathways to 
mitigate abiotic stress is presented.

Keywords: abiotic stress, plant hormones, stress response, stress mitigation, plant 
productivity

1. Introduction

Plant hormones or phytohormones are biochemicals required for the normal 
growth and development of plants [1–3]. Plant hormones include auxins (IAA), 
gibberellins (GAs) cytokinins (CK), abscisic acid (ABA), ethylene (ET), besides 
jasmonates (JA), salicylic acid (SA), brassinosteroids (BR), strigolactones (SL), 
and nitric oxide (NO). Apart from their role in plant growth and development, 
hormones also mediate response to biotic (disease, pathogens, herbivores, etc.) 
and abiotic (drought, heat, salinity, heavy metals, etc.) stress [3–6]. Hormones act 
at the site of their biosynthesis or some distance away from it [3, 6–8]. Hormone 
biosynthesis, distribution, and patterns of their signal transduction change under 
stress conditions [8, 9]. Ethylene and ABA play remarkable roles in regulating the 
abiotic stress response [8]. The exogenous supply of phytohormones also increases 
stress endurance in plants [10, 11]. Abiotic stress factors rarely occur individually, 
and many stresses produce the same effects at the cellular level with an overlap 
in the expression pattern of stress response genes [12]. In the current chapter, the 
hormone-mediated response of plants to the abiotic stress, including drought, heat, 
and salinity, is discussed.
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1.1 What is abiotic stress?

Ecological factors favor plant growth at optimum levels and constitute stress at 
sub- or supra-optimal levels. Abiotic stress reduces crop productivity by about 50% 
(Table 1) [8, 29]. High temperatures lead to 20% decrease in the yield, low tempera-
tures 7%, salinity 10%, drought 9% and other forms of stress cause 4% yield loss [30]. 
In grain crops, grain size, number, and dry weight are influenced by abiotic stress, 
especially if present during the reproductive phase [30]. Various aspects of plant 
growth as affected by abiotic stress are presented in Figure 1. Crop productivity may 
be reduced by 2.5–16% by a 1°C rise in seasonal temperature in tropical and subtropi-
cal regions [31]. The stress response depends on the genetic constitution and adaptive 
response of a plant [32].

1.2 Drought

Drought has been defined as “a period of abnormally dry weather sufficiently 
prolonged for the lack of water to cause a serious hydrologic imbalance in the 
affected area” [33]. Drought is one of the dominant factors diminishing crop 
productivity [34, 35]. Drought has been called as “one of the world’s extreme 
weather-related natural hazards” [35, 36]. It threatens the sustainability of agri-
cultural systems around the world [37]. From 1994 to 2013, it represented 5% of 

Crop Abiotic stress factor Loss in productivity References

Wheat Drought 27.5% Zhang et al., [13]

Temperature 29–44% Djanaguiraman et al., [14]

Salinity 45% Ali et al., [15]

Rice Drought 25.4% Zhang et al., [13]

Temperature 3.2%* Zhao et al., [16]

Salinity 30–50% Eynard et al., [17]

Maize Drought 5–15% Campos et al., [18]

Temperature 7.4%* Zhao et al., [16]

Salinity 34% Cucci et al., [19]

Chickpea Drought 45–69% Nayyar et al., [20]

Temperature 39% Devasirvatham et al., [21]

Salinity 8–10% Zawude and Shanko, [22]

Soybean Drought 46–71% Samarah et al., [23]

Temperature 42–64% Jumrani & Bhatia, [24]

Salinity 66–86% Bustingorri & Lavado [25]

Sunflower Drought 50% Hussain et al., [26]

Temperature *6% Rondanini et al., [27]

Salinity 50% El-Kader et al., [28]
*Estimates for 1°C rise in temperature.

Table 1. 
Loss of productivity in the major staple crops due to abiotic stress.
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all natural disasters and affected one billion people [35, 38]. All aspects of plant 
growth, including photosynthesis, protein synthesis, water relations, cell turgid-
ity, membrane integrity, and nutrient uptake, are affected by drought [8, 39, 40]. 
It causes oxidative stress and damages the biological molecules, including DNA, 
proteins, and photosynthetic pigments. [8, 35, 41–45]. Plants synthesize a whole 
range of molecules as protection against drought stress, for example, proline, 

Figure 1. 
Schematic presentation of impact of abiotic stress on growth & development of plants.
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glycine betaine, soluble sugars (mannitol, sorbitol, and trehalose), polyamines, 
and proteins [37, 46].

ABA levels increase in plants under drought stress [47, 48], inducing the expression 
of ABA-dependent genes [6, 49]. ABA signaling leads to the closure of stomata, reduc-
ing transpiration [48]. Expression levels of ZEP (Zeaxanthin Epoxidase) gene, AAO3 
(Arabidopsis Aldehyde Oxidase) gene, NCED3 (Nine-Cis-Epoxycarotenoid Dioxygenase) 
gene, and the MCSU (Molybdenum Cofactor Sulfurase) Gene are increased upon 
osmotic stress [50]. Overexpression of NCED3 improves water use efficiency and its 
mutation causes drought susceptibility [49, 51, 52]. ABA is transported into the guard 
cells through passive diffusion via members of ABC (ABCG25 and ABCG40) and 
nitrate (AIT1/NRT1.2 and NPF4.6) transporter families. ABCG25 is an ABA exporter 
with tissue-specific expression induced by ABA and drought stress [49, 53]. ABCG40, 
AIT1/NRT1.2, and NPF4.6 import ABA into the guard cells. ABA also generates ROS, 
which leads to increased cytosolic Ca2+ levels and stomatal closure [54–56].

About 14 ABA receptor proteins mediate ABA signaling. Pyrabactin Resistance 1 
(PYR1) and PYR1-like (PYL) regulatory elements undergo a conformational change 
after ABA binding and inactivate the clade A Serine/Threonine Protein Phosphatase 
2C (PP2C) [48, 57, 58]. This in turn triggers the ABA signaling cascade by phosphory-
lation of serine/threonine kinases [48, 59]. Transcription of ABA-responsive genes is 
upregulated by binding of ABRE (ABA-Responsive Elements) to the ABRE-Binding 
Proteins (AREBs) or ABRE-Binding Factors (ABFs) [48, 60]. ABFs are activated 
by their ABA-mediated phosphorylation [48, 61]. AREB1/ABF2, AREB2/ABF4, and 
ABF3 are induced by abiotic stress, including dehydration and high salinity [48]. 
Transcription factors belonging to MYC, MYB, and NAC protein families are also 
known to work in an ABA-dependent manner [48, 62, 63]. Stress response improves 
in plants overexpressing RD26 (Responsive to Desiccation 26), a stress-inducible 
NAC transcription factor [48, 63]. Dehydration-Responsive Element (DRE)-Binding 
Protein (DREB) transcription factors are regulated by ABA-dependent pathways under 
osmotic stress [48, 64]. The binding of AREB1, AREB2, and ABF3 to the DREB2A 
promoter results in the activation of DREB2A in an ABA-dependent manner [48, 65].

In Arabidopsis thaliana, many genes involved in ABA biosynthesis and signal-
ing have been characterized [6, 66]. When A. thaliana is exposed to drought or salt 
stress, expression of the ABA3/LOS5 gene increases considerably [67]. Constitutive 
or drought-induced expression of this gene has been reported to increase rice yield 
[6, 68]. AtNCED3 plays an important role in drought tolerance [6]. Higher expression 
of SgNCED1 in transgenic tobacco plants with this gene from Stylosanthes guianensis had 
improved drought and salinity tolerance and higher (51–77%) ABA content [6, 69]. In 
tomato plants, overexpression of LeNCED1 constitutively resulted in the accumulation 
of ABA [6, 70]. Drought-inducible rd29A promoter-driven gene construct in Brassica 
napus increased yield under mild drought conditions [6, 71]. The wild form of this gene 
codes for the b-subunit of farnesyltransferase, which is involved in ABA-dependent 
signal transduction [72]. Exogenous application of ABA enhances the activities of 
GT, CAT, APX, and SOD [31, 37]. ABA priming increases the relative water content in 
drought-stressed wheat cultivars [73].

ABA is negatively regulated by cytokinin receptor HKs, AHK2 (Arabidopsis histi-
dine kinase 2), AHK3, and AHK4 mutations in these genes increase drought tolerance 
[49, 74, 75]. CK, being an ABA antagonist, is decreased in conditions of drought stress; 
however, CK has also been reported to increase proline levels, inhibit senescence, and 
promote survival under drought conditions [6, 76]. Exogenously applied 6-benzyl-
aminopurine increased the photosynthetic rate and stimulated protective enzymes in 
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the maize seedlings [77]. BRs increase drought tolerance in many plants when applied 
exogenously [6, 78]. However, some reports also suggest that endogenous BRs or their 
perception are not involved in the water stress response [6, 79]. Auxins regulate ABA 
[37, 80]; Indole-3-acetic acid (IAA)-amido synthetase encoding gene TLD1/OsGH3.13 
increases expression of LEA (Late Embryogenesis Abundant) genes increasing 
drought tolerance in rice seedlings [6, 81]. Several studies indicate mitigating effects of 
SA on drought, salinity, and high-temperature stress [82, 83]. SA has been reported to 
increase catalase activity in wheat under drought stress [37, 84]. In Portulaca oleracea, 
SA improved photosynthetic pigments, secondary metabolites, and gas exchange  
[37, 85]. SA application increased water use efficiency, photosynthesis, and activity 
of antioxidant enzymes and also prevented cell damage under drought [86]. Ethylene 
activates DREB transcription factors [87]. Under mild drought stress shoot dry weight 
of six cultivars of wheat ranging from sensitive to tolerant was higher in the tolerant 
ones, which was related to higher ethylene content [37, 88]. Etol1 mutants of rice that 
accumulate more ethylene than OsETOL1 tolerate drought better.

1.3 Temperature

Temperature affects the distribution, phenology, and physiology of plants [89]. 
Temperature is increasing under dry as well as wet conditions in the changing global 
climate scenario [89, 90]. For 2081 – 2100, the IPCC has predicted average temperatures 
higher by 1.0°C to 1.8°C under very low, 2.1°C to 3.5°C under intermediate and 3.3°C 
to 5.7°C under very high GHG emission scenarios in comparison to 1850-1900 [91]. 
The crop productivity decreases by 6% for one degree rise in temperature beyond 
the optimum [8, 92]. Temperature stress causes accumulation of ROS, denaturation, 
misfolding, and aggregation of proteins, changes the membrane structure affecting 
permeability and raft distribution, besides its impact on leaf area, leaf retention, stoma-
tal conductance, water potential, rate of transpiration, etc. [89–91, 93]. Photosynthetic 
capacity may be diminished or permanently damaged due to heat stress [91, 94].

Plants produce transcription factors, heat signaling proteins, and molecular chap-
erones to prevent protein misfolding and aggregation after heat shock (HS) [95, 96]. 
In response to HS, the endogenous ABA levels increase transiently increasing the anti-
oxidant capacity [47, 97, 98], for example, by inducing RBOH-NADPH oxidases. Out 
of 10 different RBOH genes identified in Arabidopsis, only AtRBOHD is upregulated in 
response to heat stress [91, 99]. The mutants for this gene show low germination and 
seedling survival at higher temperatures [91, 97, 100]. ABA biosynthesis inhibitors 
and ABA signaling mutants have impaired heat stress tolerance [91, 97]. Both the heat 
shock proteins and their transcription factors are regulated by ABA. Expression levels 
of ABA1/ZEP and NCED2/5/9 increase in Arabidopsis at 32°C increasing the ABA 
levels. Cucumbers and red-skinned grapes show higher ABA levels at 35°C [98, 101]. 
Drought priming in Festuca arundinacea and Arabidopsis increases their heat tolerance. 
Arabidopsis ABA biosynthesis mutants or plants treated with ABA biosynthesis inhibi-
tors lack the drought priming effect [91, 102]. ABA treatment increases the expression 
of tall fescue heat stress transcription factor A2c (FaHSFA2c). ABA may also modulate 
carbohydrate and energy status to strengthen the heat stress response [103].

Auxins play an important role in thermomorphogenesis [91, 98, 104]. Auxin 
biosynthesis genes TAA1, CYP79B2, and YUCCA8 are upregulated at higher tem-
peratures; thermomorphogenesis response is abolished in shy2–2 (short hypocotyl) 
mutation affecting the auxin-responsive IAA3 gene [98, 105, 106]. Auxin-mediated 
thermomorphogenesis is regulated through phytochrome interacting factors (PIFs) 
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and bHLH transcriptional regulators. PIFs also upregulate auxin biosynthesis; HDA9 
(histone deacetylase 9), a chromatin-modifying enzyme, facilitates the binding of 
PIF4 to the promoter of YUCCA8 [91, 98, 106, 107]. pif4 mutants have very low levels 
of enzymes of the YUCCA family, aminotransferase, and cytochrome P450s, which 
are involved in the heat stress response [91, 105, 106]. In pif4 plants, ectopic expres-
sion of PIF4 under an epidermis-specific promoter restores hypocotyl elongation 
induced by heat stress [91, 98, 108]. PIF4 and PIF7 loss of function mutants lose their 
heat stress-induced thermomorphogenesis. Thermomorphogenesis also requires 
HSP90. Thermomorphogenesis also involves brassinosteroids through phyB-PIF4 
[98, 109, 110]; the temperature-sensitivity of hypocotyl elongation is inhibited by the 
application of PPZ (propiconazole), a BR biosynthesis inhibitor [109, 111].

BRs increase the production of HSPs [91, 112] and regulate the heat-induced 
accumulation of proton–pumping ATPase and aquaporins [91, 113], besides inducing 
the expression and activity of ROS scavenging enzymes under heat stress [91, 114]. In 
tomatoes, BR treatment increases the expression of RBOH1 and apoplast H2O2 levels 
[115]. Interestingly, H2O2 activates MPK2, which in turn enhances RBOH1 expression 
[91, 116]. Heat stress causes the accumulation of BZR1 (Brassinazole-resistant 1), an 
important transcription factor in BR signaling, in the nucleus [110].

Ethylene is another hormone involved in heat stress tolerance. EIN2 and ER1 
mutants have poor survival rates under heat stress [95, 97]. Arabidopsis plants 
overexpressing ERF1 are more tolerant to heat stress than the control plants; ERF-1 
overexpressing plants have higher transcript levels of HsfA3 and HSP70. Studies 
have indicated increased synthesis of ET under heat stress [98, 117]. However, in 
Arabidopsis, ein2–1 mutants exhibit greater tolerance to heat stress [91, 118]. ET is 
involved in CO2-induced heat stress responses in tomatoes [11] and increased thermo-
tolerance in rice [91, 95].

CKs play an important role in heat stress responses in plants [91, 119, 120]. They 
increase the activities of APX, SOD, and GP and also upregulate genes responsible 
for photosynthesis and carbohydrate metabolism under heat stress [91, 121]. CK 
oxidase/dehydrogenase inhibitors improve heat stress tolerance [91, 122]. Heat stress 
tolerance is also increased in plants with ectopic expression of isopentenyl transferase 
(ipt) from Agrobacterium tumefaciens [91, 123]. In Arabidopsis, rice, and passion fruit, 
external CK application decreased the negative effects of heat stress [124, 125].

In Medicago sativa, plant height, photosynthetic efficiency, and plant biomass 
were improved by pre-treatment with SA [126]. SA promotes the activities of CAT, 
SOD, and POX, which improve photosynthetic efficiency, ROS scavenging, and 
HSP21 levels [83, 95]. Under heat stress, it protects photosystem II and maintains high 
Rubisco activity [95, 127]. SA application in tomatoes under heat stress decreased 
oxidative damage and significantly improved gas exchange, proline content, and 
water use efficiency [83]. ET and JA accumulate in Arabidopsis after heat stress [97]. 
Plants with constitutive expression of PR1 (cpr5–1) have higher heat stress toler-
ance [95, 118]. Exogenous JA application reduced the negative effects of heat stress 
[95, 118]. External application of strigolactone to SL biosynthesis mutants restores 
seed thermo-inhibition [98, 128].

GA biosynthesis and accumulation increase under elevated temperatures in 
Carrizo citrange seedlings, wheat, and soybean hypocotyl [98, 129]. PIF4 upregu-
lates the GA20ox1 gene [130]. PIF4 transcription factors Class I TCP14 and TCP15 
(Teosinte Branched 1, Cycloidea, and PCF) play an important role during this pro-
cess; TCP14 and TCP15 mutants have reduced temperature sensitivity [130]. Seeds at 
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32°C have lower expression of GA20ox1, GA20ox2, GA20ox3, GA3ox1, and GA3ox2 in 
comparison to those kept at 28–29°C [98, 131].

SA biosynthesis is suppressed at higher temperatures in tobacco after TMV 
infection and in Arabidopsis after Pst 350 DC3000 infection [132]. High temperatures 
suppress the expression of Isochorismate Synthase 1 (ICS1), and ics1 do not show 
temperature sensitivity to infection [132]. JA biosynthesis genes are upregulated by 
moderately higher (29–30°C) temperatures after wounding or Pst DC3000 infec-
tion in Arabidopsis [132, 133]. High temperatures have a tissue-specific effect on JA 
systemic transport in plants [122].

1.4 Salinity

Soils with electric conductivity higher than 4 dS/m at 25°C are classified as 
saline [134]. Salinity has affected more than 800 million hectares of land globally, 
decreasing potential agricultural land by 1–2% per year [8, 135]. More than 50% 
of the land in developing countries, particularly that falling in the arid region, is 
affected by salinity, causing yield losses to the tune of 40%, for example, in the 
case of wheat [8, 136]. It decreases the quantity as well as the quality of the pro-
duce [8, 137]. Salinity impairs water uptake and causes ion toxicity, osmotic stress, 
nutrient deficiency, and oxidative stress [138]. Salt stress causes physiological 
drought impairing protein and photosynthesis [8, 137]. Changes in the intracellular 
Ca2+ levels, excess Na+, and ROS accumulation are the signals that trigger the salt 
stress response [139].

Ethylene is the major hormone in the salt stress response [138]. The levels of ET as 
well as its precursor ACC (1-aminocyclopropane-1-carboxylate) increase under salt 
stress [138, 140]. While salt tolerance can be increased by the application of ET or its 
precursor ACC [141, 142], inhibition of ET synthesis or signaling may increase salt 
sensitivity [138]. Ethylene signaling involves five ethylene receptors [ETR1 (Ethylene 
Response 1), ERS1 (Ethylene Response Sensor 1), ETR2, EIN4 (Ethylene Insensitive 
4), and ERS2], a protein kinase, CTR1 (Constitutive Triple Response 1—a negative 
regulator) and a key positive regulator EIN2, which signals primary transcription 
factors EIN3, EIL1 (Ethylene Insensitive Like 1) and EIL2 and many downstream 
ethylene response factors. Osmotic stress, induced by many abiotic stresses, including 
salinity, suppresses the expression of ETR1 [138, 143]. During short- and long-term 
salt stress, ethylene receptor genes (ETR1, ETR2, and EIN4), signaling genes (CTR1, 
EIN3, ERF1, and ERF2), and MAPK cascade genes (MEKK1-MKK2-MPK4/6), are 
upregulated in cotton [144]. Many ERF (Ethylene-Responsive Element Binding 
Factor) genes ESE1–ESE3 are induced by ethylene and salt stress. Accumulation and 
transcriptional activity of EIN3 and EBF1/EBF2 degradation are promoted under 
salt stress [144]. The levels of 1-aminocyclopropane-1-carboxylic acid synthases 
(ACSs) increase significantly under salinity stress [138, 144, 145]. ACC pretreatment 
increases salt stress tolerance in Arabidopsis seedlings [138, 141, 142, 146]. Salinity 
induces ACS1 transcription in tobacco [138, 147]. Salt stress given to salt-acclimated 
and non-acclimated plants upregulated four ACSs [138, 148]. In the post-tran-
scriptional regulation of ACSs, stress-induced MAPK cascades phosphorylate CSs, 
preventing their 26S proteasome-mediated degradation [138, 149]. The effect of salt 
acclimation is diminished by the loss of function of MAPK6 [148]. Stabilization of 
ACSs apparently needs MPK6 to maintain high ethylene levels [138, 148]. ACSs are 
also stabilized by CDPKs (Calcium-Dependent Protein Kinases) in tomatoes [138]. 
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ACC content and activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) is 
increased under salt stress in Cicer arietinum roots [138].

200 mM NaCl induces the expression of ETOL1 in rice [138, 150]. ETO1’s 
loss of function promotes ethylene production in Arabidopsis. Root-to-shoot 
delivery of Na+ is restricted in the absence of ETO1, which also increases RBOHF-
dependent ROS accumulation in root stele tissue. Loss of ETO1 also increases K+ 
levels by increasing K+-transporter HAK5 transcripts [138]. Arabidopsis etr1 loss-
of-function mutants have increased salt tolerance [141, 142, 151]. ET sensitivity 
decreases and salt sensitivity increases in tobacco and Arabidopsis on overexpres-
sion of NTHK1 [138, 147]. Loss of function of CTR1 increases salinity tolerance 
[142, 145]. Arabidopsis loss-of-function EIN2 mutants are salt sensitive; overex-
pression of the C-terminus of EIN2 in ein2–5 mutants decreases salt sensitivity 
[138, 141, 142  152]. ein3eil1 double mutants of Arabidopsis are highly sensitive to 
salinity. Also, ein3–1 mutants are highly salt-sensitive whereas plants overexpress-
ing EIN3 are salt tolerant [138, 142, 145, 152].

An array of stress-responsive genes is regulated by ABA [153]. ABA coordinates 
with ET in mediating salt stress. On exposure to salt, many genes involved in ABA 
biosynthesis, including ZEP, AAO, and MCSU, are stimulated through Ca2

+ −depen-
dent phosphorylation events and their downstream signaling pathways [153, 154]. 
Increased ABA levels have been reported in many plants, including Oryza sativa [155], 
Brassica [156], Phaseolus vulgaris [157], and Zea mays [158]. Higher ABA levels help 
accumulate proteins for osmotic adjustment and also cause stomatal closure. High 
accumulation of ABA due to ectopic expression of drought-responsive Genes OsDSM2 
(Drought-Hypersensitive Mutant 2) and OsCam1–1 (Oryza Sativa Calmodulin 1–1) in rice 
increases salt stress tolerance [153]. Salt stress as well as ABA treatment upregulates 
several MAPKs [153], and plants with higher expression levels of MAPKs have higher 
salt stress tolerance [153, 159]. ABA-regulated Ca2+-dependent kinases and SnRks 
phosphorylate ABA-related transcription factors, affect gene expression, and modulate 
salt stress [12, 153, 159]. Promoters of stress-responsive genes contain many regulatory 
sequences (DRE/CRT, ABRE, MYC recognition sequence (MYCRS), and MYB recog-
nition sequence (MYBRS)). Activation of salt stress-responsive genes is stimulated by 
ABA-dependent transcription factors ABFs, MYCs, and MYBs, which directly bind to 
these sequences on the promoters [153]. Promoters of all LEA genes have ABRE motifs 
that bind ABF [153]. ABFs and DREB2 regulate the drought-inducible Dihydroorotate 
Dehydrogenase1 gene, which is important in salt and drought stress responses [153]. 
Since ABA and ET enter into crosstalk during the stress response, tolerance to salt, 
osmotic, and heat stresses is alleviated by a mutation in ACS7 [138].

The information available on the mechanism of salt stress response via auxins is 
scarce [153]. YUCCA3, a gene involved in auxin biosynthesis, causes hypersensitiv-
ity to salt stress, leading to increased auxin production [160]. Auxin accumulation 
and redistribution in response to salt stress change the root architecture [161]. Salt 
stress in tomatoes decreases auxin levels by 75% [162]. The reduced growth under salt 
stress is a manifestation of altered levels of IAA biosynthesis and its distribution [8]. 
The salinity stress in wheat decreases CKs biosynthesis [8]. In Arabidopsis, wild-type 
plants were not as tolerant to salt stress as CK-deficient mutants [75]. Mutants with 
decreased CK levels had higher expression of the HKT1–1 gene, which encodes a Na+ 
transporter [75]. Salt tolerance was reduced in Arabidopsis plants overexpressing IPT8 
genes [163]. However, the positive role of CK in salinity stress has also been reported. 
Applying cytokinin oxidase inhibitor (INCYDE) to salt-stressed tomato plants 
improved flower production and photosynthesis [164].
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2. Conclusions

Plant hormones play an important role in the growth and development of plants 
and also represent an important line of defense against abiotic stress. Hormones change 
the pattern of growth to enable the plants to withstand stress. The plant stress response 
involves many hormones, their downstream response factors, associated gene networks, 
and transcription factors. The crosstalk between hormones and their synergistic or 
antagonistic interactions play central role in phytohormone-mediated abiotic stress toler-
ance [165]. Understanding the molecular level interaction between elements of different 
pathways controlling stress response is critical to allow their manipulation to improve stress 
tolerance. This is important, as the diversity, duration, and intensity of abiotic stresses 
are increasing in the changing global climate scenario. Plant hormones are an important 
target for better management of abiotic stress, especially, in view of the limited success 
of conventional breeding techniques in dealing with it. Phytohormone pathways and the 
intermediaries therein can go a long way in the production of climate-resilient crops.

New technologies to bioengineer plants have proven useful in achieving this end; 
examples include soybean [166], maize [167], rice [168], and potato [169]. Techniques 
including transcriptome analysis, next-generation sequencing analysis, transgenic 
plants, genome editing, etc. are being used to identify the hormone-mediated regula-
tory mechanisms of the plant stress response. Transcriptome analysis using microar-
rays, a survey of transcriptome profiles, and levels of microRNAs in plants under stress 
using RNA-seq have helped understand the mechanism of stress tolerance in plants 
[170]. With genome editing technology, genomes can now be modified in a site-specific 
manner using specifically designed endonucleases like zinc finger nucleases (ZFN) or 
TAL effector nucleases (TALEN; [49, 171]) and the CRISPR/CAS system [49, 172].

In a nutshell, new pathways are already emerging. However, the complex interac-
tions between the hormones and their ability to regulate a wide array of plant develop-
mental and physiological processes complicate teasing out the effect of an individual 
hormone. Lack of information about the tissue-specific stress response and genetic 
plasticity as well as the extreme complexity of thresholds for different stress responses 
makes mechanistic understanding of abiotic stress tolerance difficult [173]. In order to 
better understand the hormone mediated abiotic stress response, the future research 
should focus on identifying the antagonistic and synergistic interactions between vari-
ous hormones and the critical regulatory junctures in the hormone crosstalk.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 4

Reorganization of the 
Endomembrane System and 
Protein Transport Pathways under 
Abiotic Stress
Miguel Sampaio, João Neves, Tatiana Cardoso, José Pissarra, 
Susana Pereira and Cláudia Pereira

Abstract

Stress compromises protein trafficking in plants, which often results in modifications 
to the endomembrane system and trafficking pathways. Proteins travel in unexpected 
ways during stress, and cell compartments alter their appearance, activity, and 
content to cope with the difficulties that stress brings. We will piece together material 
on the issue in this chapter, emphasizing how the endomembrane system processes 
such changes and how it reacts to a dynamic environment. The intricate dynamics of 
protein transport pathways and how they maintain cellular homeostasis under chal-
lenging circumstances is illustrated.

Keywords: abiotic stress, endomembranes, protein trafficking, vacuolar routes, 
endoplasmic reticulum

1. Introduction

Diverse environmental stresses frequently trigger signals and pathways that lead 
to cellular responses, such as increased antioxidant expression, solute accumulation, 
altered protein transport, and endomembrane remodeling [1–4]. In fact, nowadays, 
crop failures caused by climate change and human action pose the biggest hazard to 
human and environmental health through food safety declining [5]. Trying to face 
this everchanging environment, plants have developed the capacity to adapt to and 
benefit from changes in their surroundings, activating stress defense mechanisms 
[6]. The processes behind the stress response are only partially understood, and 
alterations in the transcriptome are still the outcome of a complex chain of cir-
cumstances. One of the most important mechanisms, especially concerning inter-
organellar connections, occurs at the endomembrane level [7, 8], from which new 
markers for the assisted selection of stress-resistant crop types can be found. Since 
the plants’ successful adaptation likely relies on balanced interactions and synergistic 
effects among ordinarily unrelated proteins, defining each participant’s precise roles 
in the game is a crucial aspect of plant genetic improvement [9]. Recent experimental 
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evidence [10] points to a variety of protein classes (including aquaporins, soluble 
N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), ATPase 
pumps, or channels) that regulate particular membrane transport events, resulting 
in significant cell reorganization events in challenging environmental conditions. 
As an example, the AKT1/KC1, a shaker-like potassium channel, was selectively 
accumulated on small vacuoles [11] and is sufficient to confer stress tolerance when 
overexpressed. Several research groups discovered intriguing connections between 
stress tolerance and previously unrecognized membrane rearrangements. However, 
the relationship between the architecture of membranous structures and their ability 
to withstand stress has only recently gained the attention of researchers. Numerous 
research items have supported the notion that endomembrane trafficking is closely 
related to stress signaling pathways; nevertheless, these studies lack a better under-
standing of the underlying mechanisms. In the last several years, there has been a 
notable advancement in our understanding of the mechanisms behind protein sort-
ing. Due to their significance in maintaining the homeostasis of plant cells, particular 
attention has been paid to the study of proteins that are directed toward the vacuole 
and the inherent sorting mechanisms. Regarding this matter, recent results imply 
that alternative routes may challenge the orthodox concept of protein transport to the 
vacuole [12–14]. These alternative routes are regarded as one of the plant's adapta-
tions to challenging circumstances. As a result, it is believed that certain conditions 
may cause the vacuolar trafficking pathways to change to better serve the demands 
of the plant. Alongside the vacuole, the endoplasmic reticulum, as the entrance to 
the endomembrane trafficking routes, also plays an important role in the folding, 
quality control, and sorting of newly produced proteins [15–17]. Additionally, as the 
link between the actin cytoskeleton and the endomembrane system is essential to 
maintaining many aspects of plant cell function and development, the cell cytoskel-
eton also plays a significant role in the response and adaptation to stress [18]. This 
chapter aims at describing the more recent findings on the effects of abiotic stress 
in the endomembrane system, alterations in vacuolar trafficking routes, and the 
importance of the cell cytoskeleton in these processes. Also, examples of proteins and 
endomembrane effectors with altered expression/localization were depicted from 
the available literature that can represent a collection of putative markers for abiotic 
stress studies (Table 1).

2. Endoplasmic reticulum and stress

A network of tubules and cisternae that extends across the entire cell and links 
with several other organelles, the endoplasmic reticulum (ER), is crucial for main-
taining cellular homeostasis as well as for detecting and disseminating external sig-
nals [7]. The ER is one of the main organelles that mediate the stress response in both 
plants and animals [15–17]. Protein misfolding and accumulation following adverse 
environmental conditions can lead to ER stress [19–21]. In response, the cell activates 
various mechanisms to maintain the homeostasis of the ER, such as the expression 
of genes encoding chaperones and other proteins with the ability to fold proteins, 
degradation linked to the ER, or a reduction in the amount of protein translation 
loaded into the ER [19, 22]. As an example, unfolded proteins can bind to BIP proteins 
(binding proteins), which activate bZIP transcription factors like bZIP17/bZIP28 that 
are transported to the Golgi to be cleaved (Figure 1) [17, 19]. To regain ER equilib-
rium, this transport will upregulate genes related to the ER stress pathway [17]. The 
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Protein Stress-related response Refs

ER-related bZIP28 Involved in the activation of heat stress response genes [17, 19]

bZIP17 Participates in the activation of salt stress response genes [20, 21]

IRE1 Responsible for the splicing of bZIP60 mRNA, required 
for the activation of genes involved in the ER stress 
reaction; regulates the stress transcriptome by degrading 
several mRNAs

[22–25]

NPR1 Suppresses the transcriptional role of bZIP28 and bZIP60 
in ER stress responses triggered during pathogen attack

[26, 27]

ATG8 Following ER stress, many ER components are delivered 
for degradation via autophagy, forming ER-derived 
autophagic bodies

[28–30]

Vacuole-related CBL–CIPK Important role in the detoxification of Mg2+ in the 
vacuole during salt stress conditions

[31]

VPEs Hydrolytic enzymes, such as proteases and antimicrobial 
compounds, are released to the cytosolic environment, or 
extracellularly, to fight pathogen attacks.

[32–34]

Cytoskeleton-
related

CesA Osmotic stress induces endocytosis of cellulose  
synthase complex and their interaction with cortical 
microtubules

[35, 36]

CSI1-
dependent 
SmaCCs/
MASCs

During endocytosis, CSI1-dependent SmaCCs/MASCs 
are formed, allowing a quick regulation of cellulose 
synthesis under abiotic stress

[37]

NET1A Reacts to extracellular signals, such as stress related to 
pathogen infection

[38]

Vacuolar 
trafficking

RMR1; VSR1; 
SYP51; VTI12; 
VTI11; VSR2

Genes involved in the PSV sorting are positively 
regulated in plants under abiotic stress, while genes 
involved in the LV sorting downregulated

[4]

VSR1 Important for the regulation of abscisic acid (ABA) 
biosynthesis, a signaling molecule in several stress 
conditions

[39]

RabG3e Arabidopsis plants overexpressing AtRabG3e showed 
increased tolerance to salt and osmotic stress along  
with a reduction in the accumulation of reactive oxygen 
species

[40]

VAMP7C Suppression of the v-SNARE AtVAMP7C had a positive 
impact in improving plant salt tolerance by inhibiting the 
fusion of H2O2-containing vesicles with the vacuole

[41]

Unconventional 
vacuolar routes

PSIB Overexpression of PSIB in Arabidopsis thaliana correlates 
with salt and osmotic stress conditions, in some cases 
improving plant fitness

[42]

Cysteine
Proteinases

Cysteine proteinases accumulate in long ER bodies, 
whose fusion with the PSV may be triggered by stress

[43]

PR1
PDF1.2

ER bodies filled with defense proteins are formed and 
eventually fuse with the plasma membrane or with the 
vacuole in a Golgi-independent manner

[44]

Table 1. 
Endomembrane-associated proteins with responses to adverse abiotic conditions.
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upregulation of genes implicated in stress response, such as bZIP28, which activates 
heat stress response genes [17, 23] and bZIP17, which activates salt stress responses 
[20, 24], may also be mediated via this transport. As so, it is easy to see that ER stress 
responses are frequently triggered in scenarios of heat and salt stress [17, 23, 24]. 
However, other significant proteins, such as the ER-resident transmembrane protein 
inositol-requiring enzyme-1 (IRE1), are implicated in the unfolded protein responses 
(UPR) that react to unfavorable environmental conditions (Figure 1) [17, 25]. The 
heat stress response is said to be mediated by this protein. It is necessary for the acti-
vation of the genes involved in the ER’s stress response because bZIP60 mRNA, which 
is spliced by the heat-activated enzyme IRE1 [26], is present. By destroying several 
mRNAs, this protein also controls the stress transcriptome [27, 28]. Other UPRs are 
triggered in this sort of stress in addition to the previously reported mechanism, but 
their overexpression is irrelevant, suggesting that salt stress can merely increase the 
misfolding of a new group of proteins [17, 24, 29, 30]. Another transcriptional compo-
nent that affects plant UPR has recently been discovered. It has been shown that the 
nonexpressor of PR1 gene 1 (NPR1) inhibits the transcriptional function of bZIP28 
and bZIP60 in ER stress responses (Figure 1). NPR1 is a critical redox-regulated 
master regulator of salicylic acid (SA)-dependent responses to pathogens. NPR1 is 
translocated to the nucleus and physically interacts with bZIP28 and bZIP60, acting 
as an antagonist of such UPR proteins to maximize their cytoprotective function in 
the UPR (Figure 1). This occurs when ER stress causes the cytosolic redox potential 
to decrease. A negative feedback loop that is crucial for regulating energy consump-
tion and preserving basal cellular homeostasis during ER stress signaling may be 

Figure 1. 
Diagram showing the modifications in endomembrane trafficking and related protein effectors under abiotic 
stress conditions. LV—Lytic Vacuole; PSI—Plant Specific Insert; PSV—Protein Storage Vacuole; ROS—Reactive 
Oxygen Species; UPS—Unconventional Protein Secretion; VPEs—Vacuolar Processing Enzymes. Image created 
with BioRender.com, accessed on 21 November 2022.
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promoted by NPR1 roles in plant UPR monitoring [31]. The intercellular mobility of 
bZIP60, which promotes systemic UPR signaling, has been shown to govern a non-
cell-autonomous component in addition to cell-intrinsic UPR signaling. Evidence 
suggests that the sbZIP60 protein can move between cells and activate a target gene’s 
promoter, thus promoting UPR gene expression in cells far from the region of ER 
stress. Such findings imply that ER stress systemic signaling may represent a mode of 
anticipation of a potentially imminent ER stress, as the cells of tissues that have not 
yet been subjected to ER stress are prepared by triggering the accumulation of ER 
stress attenuating protein transcripts [32].

Under stress, the ER’s other compartmentalization mechanisms, such as 
autophagy, are also engaged in addition to ER stress responses. The sequestration 
of cytosolic components by a newly generated, double-membrane vesicle known as 
an autophagosome, which is subsequently directed to the plant vacuole, is known 
as macroautophagy [33, 34]. Notably, it was also claimed that selective autophagy 
delivered vacuolar resident proteins to this organelle via specific trafficking chan-
nels. The degradative aspect that autophagy is typically associated with contrasts 
with its role in the biogenesis-mediating process. It was demonstrated that triggering 
ER stress in Arabidopsis causes the transfer of ER components, like the ribosome-
decorated ER membrane, to vacuoles via autophagy [34], supporting the idea that 
autophagy may be involved in the trafficking of storage proteins. Additionally, it is 
now understood that both yeast and mammalian cells use autophagy to transfer ER 
components for destruction during ER stress [35–37]. Plants share many similarities 
with other eukaryotes in this regard, and the accumulation of Atg8-positive bodies 
that co-localized with the ER marker GFP-HDEL was found after ER stress. In the 
vacuoles of ER-stressed plants, the presence of autophagic structures, including 
ER membranes, was also discovered by electron microscopy [34]. IRE1b has been 
linked to this kind of response, according to a different study conducted by Bao and 
colleagues [38]. This pathway, however, is not related to BZIP60, but instead to the 
regulated IRE1-dependent decay of messenger RNA (RIDD), in which IRE1 degrades 
the mRNAs of factors encoded by genes that prevent the activation of autophagy pro-
cesses in response to ER stress [39], such as BGLU21, a member of the β-glucosidase 
family and one of the main elements of ER bodies.

The ER is in a unique position to identify extracellular stimuli and coordinate the 
cellular response to adverse and demanding situations in the cell because it is the origin 
of the endomembrane system. Its central network-like structure, which permeates the 
entire cell, enables it to interact with other organelles at several points, demonstrating 
the high complexity of the ER mechanisms that are crucial to preserving the func-
tionality of cellular homeostasis and signaling cascades.

3. The vacuole as a major player in cell homeostasis

Vacuoles perform physical and metabolic tasks, can occupy up to 80% of the 
volume of a cell, and are crucial for cellular responses to abiotic and biotic stimuli 
as well as to general cell homeostasis [40, 41]. These organelles often house water, 
nutrients, ions, and secondary metabolites, but they can also act as a deposition 
location for waste materials, excess solutes, and toxic cell remnants [42–45]. They also 
play a role in programmed cell death [46]. The protein storage vacuole (PSV) and the 
lytic vacuole (LV) are the two main forms of vacuoles found in plant cells. Proteins 
predominate in storage tissues (such as cotyledons, endosperm, and tubers) and 
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vegetative tissues (bark, leaves, and pods) of adult plants, and they often accumulate 
in the PSVs because of their higher pH and lower hydrolytic activity when compared 
to the LVs [47, 48]. LVs, on the other hand, are mostly present in vegetative tissues 
and are employed for storing and depositing undesirable substances. This form of 
vacuole controls the breakdown of a wide range of macromolecules and other chemi-
cals because of its high hydrolytic activity and acidic pH [49, 50]. Initially, it was not 
expected to find both forms of vacuoles in the same cell; however, research done in 
root tip cells of barley and pea seedlings proved this was not the case [51, 52]. In addi-
tion, a study employing the model plant Arabidopsis thaliana found that, rather than 
being created from scratch, the LV is embedded in the PSV during germination [53]. 
Two distinct types of vacuoles suggest that plants have unique trafficking processes 
and pathways for various proteins. Additionally, it has been suggested that the coexis-
tence of LVs and PSVs in a single cell may function as a plant flexibility mechanism in 
response to shifting environmental conditions [54–57].

According to a recent study by Neves and colleagues, Arabidopsis plants exposed 
to abiotic stress exhibit differential expression of genes involved in vacuolar traf-
ficking, with the pathway to the PSV becoming enhanced [4]. In fact, under abiotic 
stress, plants are able to control their growth and development by changing cellular 
and morphological mechanisms, and cellular responses/adaptations to stress may 
affect the distribution and sorting of particular proteins and molecules. Additionally, 
numerous studies highlight the crucial function of the vacuole as a defense mecha-
nism against abiotic stress. In fact, the vacuole appears to respond to stress through 
various processes, including the build-up of hazardous products and the maintenance 
of cell-turgor pressure. According to a study using suspension-cultured mangrove 
(Bruguiera sexangula) cells, when cells are exposed to salt stress, their vacuolar 
volume quickly increases at the expense of their cytoplasm volume in order to main-
tain turgor pressure, most likely due to an increase in the concentration of Na+ in the 
vacuole [58]. Another study employing the Arabidopsis thaliana plant demonstrates 
the significance of the vacuole during oxidative stress. In fact, the vacuole developed 
large concentrations of GSSG (oxidized glutathione) as a defense mechanism against 
a too positive shift in the cytosolic glutathione redox potential [59]. In addition, the 
vacuole plays a role in systems that counteract environmental stress, such as lowering 
the cytoplasmic toxicity of high ion concentrations to prevent cell death. According 
to a study by Tang and colleagues [60], the excessive Mg2+ vacuolar sequestration 
that plants use to survive Mg2+ stress is a novel function of the Calcineurin B-like 
(CLB) interacting protein kinases’ (CIPK) (CBL-CIPK) signaling network. A generic 
mechanism underpinning the detoxification of additional ions, such as Na+, may be 
represented by the reported Mg2+ partitioning process in the vacuole controlled by 
the CBL-CIPK pathway (Figure 1). Contrary to abiotic stress, where the vacuole’s 
integrity is crucial for maintaining the cell’s homeostasis, pathogen infections neces-
sitate the breakdown of the vacuole and the release of its contents (for a review on 
the subject, see [61]). The vacuole stores vast amounts of hydrolytic enzymes, such as 
proteases and antimicrobial substances as an innate defense mechanism, that are sub-
sequently released under pathogen attack in a procedure that is not fully understood 
[62, 63]. The release of vacuolar contents has been attributed to two distinct mecha-
nisms, including hypersensitive reaction and programmed cell death (PCD) [64]. The 
disruption of the tonoplast and involvement of vacuolar processing enzymes (VPEs) 
in one case, and the fusion of the tonoplast and plasma membrane (PM) in the other, 
were observed (Figure 1). Vacuolar contents are released as a consequence in both 
situations.
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Alterations in vacuolar morphology, such as changes in vacuolar trafficking, are a 
crucial aspect of cell homeostasis under stress and also help maintain plant homeo-
stasis. The actin cytoskeleton and SNARE proteins, which control these adaptations, 
allow the vacuolar network to be structurally reorganized while preserving its 
dynamics [65, 66].

4. The dynamic cytoskeleton concept

The notion of cytoskeleton has been transformed from a static, supporting 
structure to a dynamic mechanism in energetic balance that fine-tunes its time and 
space resolutions to adjust its functions to driving changes and stress reactions [67]. 
In plant cells, intracellular transport is primarily driven by myosin motors and actin 
filament bundles. Modifications in Golgi body motility show that changes in the pace 
of actin remodeling also have an impact on its functionality [68]. Depolymerization 
of actin inhibits both ER remodeling and Golgi movement, highlighting the signifi-
cance of the actin cytoskeleton [69, 70]. Four members of the Myosin XI family (xi-k, 
xi-1, xi-2, and xi-i) were subjected to mutant knock-out studies, which revealed the 
importance of these proteins for normal cellular and whole-organism development as 
well as Golgi body dynamics [71]. However, microtubules are believed to be crucial at 
specific times in the formation of plant cells [72]. Given that stress is a condition that 
the cell finds to be quite difficult, it is necessary to test the idea that the cytoskeleton 
network will also have to adapt because its contact with membranes is essential for 
the cell’s ability to self-organize. Reviewing the complexity of organelle movement 
within the plant secretory pathway, Brandizzi and Wasteneys [72] cast doubt on the 
actin-centric view of the motility of secretory organelles. They analyzed past studies 
and recent discoveries that support the critical function of microtubules in plant cell 
development, positioning of Golgi stacks, involvement in cellulose synthesis, and 
polar auxin transport.

The research of Ambrose and collaborators [73], which used hybrid and in vivo 
bimolecular fluorescence complementation techniques, was a turning point in 
understanding the relationship between endomembrane trafficking and microtu-
bules. They found that the microtubule-associated protein CLASP interacts with the 
retromer, facilitating the association between TGN/early endosomes and cortical 
microtubules through interaction with sorting nexin1 (SNX1). The retromer protein 
complex, which SNX1 is a part of, recycles the plasma membrane auxin efflux carrier 
PIN2, hence regulating auxin transport.

Further investigations demonstrated the anchoring of compartments transport-
ing cellulose synthase complexes to microtubules, confirming the importance of 
microtubules in organelle location and function. Cellulose is created at the plasma 
membrane by multi-enzyme complexes, in contrast to some cell wall polysac-
charides made by glycosyl transferases and altered by Golgi-located enzymes [72]. 
This multi-enzyme complex must be delivered to the appropriate places at the PM. 
The trans-Golgi network (TGN) compartment is used to secrete cellulose synthase 
(CESA) complexes (CSCs) to the plasma membrane [74]. Through research on the 
intracellular trafficking of cellulose synthase complexes, small CesA-containing 
compartments (SmaCCs) [75] and microtubule-associated cellulose synthase com-
partments (MASCs) [76] were identified. Osmotic stress or the reduction of cellulose 
synthesis causes the endocytosis processes of the cellulose synthase complex, which 
causes the concentration of organelles containing CESA and their intense interaction 
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with cortical microtubules [75, 76]. The SmaCCs associated with CSC transport may 
constitute a specialized secretory route involved in cell wall production, according to 
a theory where microtubule-associated compartments constitute functional secretory 
vesicles when plants are under cellular stress (Figure 1) [74]. This is a result of the 
fact that, before releasing CSC to the PM, these organelles reduce osmotic stress [75]. 
The SmaCC/MASC-mediated fast recovery of CSCs after stress relief depends on the 
protein cellulose synthase interactive 1 (CSI1), which is connected to cortical micro-
tubules and involved in the interaction between CSCs and these structures [77].

SmaCCs/MASCs are also formed as a result of AP2M, a part of clathrin-mediated 
endocytosis. Lei and colleagues [77] suggest a concept in which CSI1-dependent 
SmaCCs/MASCs are produced during endocytosis, enabling rapid modulation of 
cellulose synthesis in response to abiotic stress. All of these methods help to decipher 
a spatiotemporal model of trafficking processes in cell wall deposition under both 
stress-free and demanding circumstances. Actin-binding proteins from the NET 
super-family [18] are recruited to various membrane compartments via a C-terminal 
region and directly interact with F-actin. These proteins include NET1A, which 
labels the plasma membrane, NET4A, which labels the tonoplast, and NET3B, 
which labels the endoplasmic reticulum. The fact that NET1A is among the actin-
associated endoplasmic reticulum-plasma membrane contact site (EPCSs) proteins 
and that they react to extracellular signals like stress brought on by pathogen infec-
tion is further evidence for this claim [78]. The protein complex composed by the 
membrane-anchored protein VAP27 (At3g60600) and the actin-binding protein 
NET3C (At2g47920), which has an affinity for microtubules, is indicated to define the 
contact points between the plasma membrane and the cortical endoplasmic reticulum 
network [79]. In conclusion, the coordination of endomembrane trafficking requires 
the precise control of endomembrane carriage in space and time, incorporating both 
actin- and microtubule-based processes.

Additionally, vesicle shuttles (also known as transport vesicles) are the primary 
means of moving cargo molecules across compartments, and the cytoskeleton plays a 
function in making this process easier [80]. When the plant is exposed to harsh condi-
tions, the relevance of this “shuttle transport” may take on more substantial outlines 
in the context of cellular rearrangement.

5. Vacuolar transport under stress

A sophisticated network of receptors and vesicles controls the movement of 
proteins into the vacuole. Because of this, proteins can be sorted differently, arriv-
ing at various locations depending on the receptors and vesicles employed [81, 82]. 
The vacuolar sorting receptors (VSRs), which are in charge of cargo binding and 
release as well as traffic regulation from and to the prevacuolar compartment 
(PVC) [14, 83], are involved in the transport of soluble cargoes by the conventional 
pathway. In addition to these receptors, proteins with the receptor homology region-
transmembrane domain-RING-H2 (RMR) have been found to be involved in the 
flow to the PSV. These receptors, however, cannot be regenerated again [81, 84, 85]. 
The type of vesicles is another distinguishing element for the eventual location of 
the vacuolar proteins. Clathrin-coated vesicles (CCVs), which are located in the 
trans-Golgi Network (TGN) and are engaged in post-Golgi transport, are in charge 
of transporting proteins to the LV [81, 84, 86]. Dense vesicles (DVs), which are larger 
carriers compared to CCVs, fuse with PVCs and go to the PSV [14, 87–89]. It is evident 
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that it is a flexible and well-coordinated network when all the information on protein 
trafficking to the vacuole is considered collectively [90]. Therefore, it is not surprising 
that this delicate balance can be disrupted in response to abiotic stress in order for the 
cell and, eventually, the plant, to meet their demands and survive.

Few studies have focused on this topic, and the changes in vacuolar trafficking that 
occur as a result of stress in cells have not yet been fully defined. Nevertheless, a few 
singular observations and reports are noteworthy because they might pave the way for 
further focused investigation. In recent work, Neves and colleagues [4] examined the 
expression of multiple endomembrane system effectors to assess how various abiotic 
stresses affect the endomembrane system in A. thaliana. The authors demonstrate 
that during abiotic stress, the PSV sorting genes AtRMR1, AtVSR1, AtSYP51, and 
AtVTI12 are positively regulated, whereas the LV sorting genes AtVTI11 and AtVSR2 
are negatively regulated. The authors’ theory, which is based on these observations, is 
that under abiotic stress circumstances, the PSV route would be strengthened at the 
expense of the LV pathway. Despite being very preliminary, this research identifies 
several crucial genes that are involved in the vacuolar route that may help understand 
how the cell responds to challenging circumstances. One example is the v-SNAREs 
VTI12 and its homolog VTI11, which work in several vesicle transport routes and 
mediate the transport to various vacuolar types [88]. VTI12, however, performs dif-
ferent activities, including helping autophagic vesicle binding and fusion [91]. Along 
with SYP61 and SYP41, it is a protein complex component located at the TGN. SYP61 
has been linked to osmotic stress reactions [92], and it is hypothesized that it may also 
be a part of stress-responsive transport pathways, as that SYP121 at the plasma mem-
brane has been linked to [10]. As a member of the same complex as SYP61, VTI12 
might possibly take part in this mechanism. In fact, it has been demonstrated that 
VTI12 expression is 20–30 times higher in Arabidopsis plants grown under abiotic 
stress than in control circumstances [4], which is suggestive of a probable function in 
cells’ adaptation or stress response. Additionally, the VSRs implicated in the traffick-
ing of the PSV appear to react to stress. A unique role for AtVSR1 in osmotic stress 
tolerance and the control of abscisic acid (ABA) production, which is a key regulator 
of the signaling pathways generated by osmotic stressors, was recently proposed by 
Wang and collaborators [93]. With the aid of a vsr mutant, the authors demonstrated 
that vacuolar trafficking, which is mediated by VSR1, was essential for ABA produc-
tion and osmotic stress tolerance. A different study found that Arabidopsis plants 
overexpressing AtRabG3e were more tolerant to salt and osmotic stress and produced 
fewer reactive oxygen species [94]. AtRabG3e engages in membrane fusion between 
the PVC and the vacuole, highlighting the importance of this pathway in stress 
response (Figure 1). The Rab GTPases are a broad family of proteins that regulate 
vesicle targeting and specificity [95]. In addition to the traditional pathway, the endo-
cytic route to the vacuole has also been linked to plant tolerance to salt stress. This was 
demonstrated in a study by Leshem and colleagues [96], who found that suppress-
ing the v-SNARE AtVAMP7C, which is necessary for endosomal vesicle fusion with 
the tonoplast, had a favorable effect on enhancing plant salt tolerance. Overall, the 
SNARE proteins are essential for protein trafficking to the vacuole, which is critical 
for both responses to stress and adaptations to it (See [97] for a review on SNAREs in 
plant stress responses). As with Adaptor protein 3 (AP-3) and the adaptor complex 
that interacts with VTI12 in the TGN, it is also important to investigate the role of 
other post-Golgi pathways [98]. This system interacts with the traditional pathway 
in a way that appears to affect how plants respond to stress circumstances while 
enabling a quicker supply of vital proteins for the vacuole’s biogenesis. In addition, 



Abiotic Stress in Plants – Adaptations to Climate Change

74

DVs-mediated transport, which still has to be studied, is a good substitute for conven-
tional transport in these challenging circumstances.

6. Taking a shortcut to the vacuole

Studies have described proteins and vacuolar signals that do not follow the 
mainstream route to the vacuole. The Golgi apparatus is required for some alterna-
tive sorting routes, like AP-3 and dense vesicle sorting, although other pathways 
also seem to be Golgi-independent [14]. Stress may activate these alternative sorting 
routes to better meet the plant’s unique needs at the cellular level, but the relation-
ship between stress and unorthodox sorting routes is largely unknown. In fact, 
autophagy-related processes, which can be triggered by a variety of environmental 
perturbations, seem to be connected to direct ER-to-vacuole pathways. A different 
pathway from the ER to the vacuole has been described for a variety of proteins or 
vacuolar sorting determinants in recent years [99–101]. Cardosin, a Plant Specific 
Insert (PSI), stands out among them because other similar domains lack this 
capability [13].

It is thought that additional unidentified, unconventional routes operate identi-
cally to the PSI-mediated vacuolar transport when plants are under stress, providing 
plants the option to sort proteins by the conventional approach or by a direct ER-to-
vacuole transfer. In fact, a recent exploratory study [102] showed that Arabidopsis 
thaliana overexpression of PSIB correlates with conditions of salt and osmotic 
stress, occasionally improving plant fitness. A distinct family of proteins known as 
cysteine proteases also appears to be connected to salt stress. In both seedlings (as 
demonstrated in Vigna mungo [103] and Ricinus communis [104]) and the epider-
mis of vegetative tissues (Arabidopsis thaliana [105]), these proteins accumulate in 
lengthy ER bodies that eventually merge with the vacuole. Recent evidence suggests 
that direct ER body fusion with the vacuole might well be induced by stress, which 
sheds fresh light on the relevance of this kind of transport. The breakdown of stor-
age proteins during plant growth is brought on by these proteins and the vacuolar 
processing enzymes.

The formation of ER bodies filled with defense proteins like pathogenesis-
related 1 (PR1) or plant defensin 1.2 (PDF1.2) in response to pathogen attacks 
has been described in a similar way (for a review, see [61]) (Figure 1). These ER 
bodies then fuse with the plasma membrane or the vacuole in a way that is Golgi-
independent. Additionally, autophagy markers are regularly seen in the ER and 
vacuole membranes [93], and stress frequently induces autophagic compartments 
[3, 106]. It is yet unclear how autophagy in and of itself can aid in vacuolar sort-
ing, and additional mechanisms or regulators undoubtedly need to be engaged. 
An intriguing example of unusual trafficking involves the exocyst pathway, which 
plays a role in autophagy and plant defense, and anthocyanins that are imported 
to the vacuole during cycles of stress and famine [107, 108]. After reviewing all 
the available instances, it is critical to research the direct ER-to-vacuole transfer in 
stressed plants. In fact, defining atypical sorting routes along with stress responses 
would offer fresh perspectives on the scant knowledge that has previously been 
known. Given that it speeds up and increases the dynamic of protein transport to 
the vacuole, the Golgi bypass may significantly impact stress responses. As a matter 
of fact, a number of unconventional pathways are triggered by modifications in the 
cell environment rather than being constitutive.



75

Reorganization of the Endomembrane System and Protein Transport Pathways under Abiotic…
DOI: http://dx.doi.org/10.5772/intechopen.109535

7. Conclusions

For many years, studies and discussions on the effects of stress on plants have 
dominated the headlines. However, because of the discussion’s main emphasis on the 
physiology and antioxidant system of plants, essential cell activities are frequently 
overlooked. However, given that a significant number of genes and proteins are de 
novo generated in response to stress and must be transported to their correct loca-
tions, this is a crucial problem to investigate. Understanding trafficking processes and 
proteins linked with transport is crucial in this situation. The major “sensor” for stress 
is thought to be the ER, where the stress responses begin and from which proteins and 
signals are either transported to other parts of the cell or destroyed. Given its vari-
ous dimensions and functions, the vacuole is also crucial to this process. As a result, 
one of the key mechanisms in plant defense and cellular homeostasis is the transit of 
vesicles between the ER and the vacuole. According to a recent study, in which it was 
demonstrated that the Golgi is hypertrophied and associated with high vesiculation 
in plants under stress using Transmission Electron Microscopy [4], the high amount 
of proteins and molecules newly produced will likely cause saturation of the Golgi 
trafficking pathways. In this case, the ER is directly connected to the vacuole, which 
is a speedier path and can be thought of as an escape from the gridlock that started 
between the ER, Golgi, and prevacuolar compartments. In fact, it appears that stress 
or other challenging conditions are connected to these atypical pathways to the vacu-
ole or the plasma membrane. We still have a long way to go before we fully understand 
the mechanisms underlying these pathways and how they are regulated, but the first 
steps are being made, and in the near future, we anticipate having a clearer picture of 
the process and a better understanding of the mechanisms underlying plant tolerance 
and adaptation to stress.
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Abstract

The intense agricultural and human being activities, especially after the  
industrialization era, have increased the CO2 concentration, which led to changes in 
the global climate. Climate change and its consequences, that is, elevated CO2, water 
stress, and extreme temperatures, have induced many biotic and abiotic stresses 
and have caused alterations in plant physiology, leading to a reduced photosynthetic 
capacity of plants. Photosynthesis is the most crucial biochemical process in plants 
that determines the final dry matter production and productivity of plants. The effi-
ciency and status of the photosynthetic apparatus can be measured by the measure-
ment of chlorophyll fluorescence. Measurements of chlorophyll fluorescence are easy, 
non-destructive, and quick, and it reflects changes in the general bioenergy status of 
a plant. Studies have indicated that abiotic stresses emerging from climate changes 
cause changes in the biological processes of plants and damage the internal structure 
of photosynthesis and control of the cellular process. Chlorophyll fluorescence, 
meanwhile, is an effective parameter and an indicator of photosynthetic status and its 
mechanisms under stressful conditions. Therefore, the photosynthetic changes and 
adaptation and the role of chlorophyll fluorescence in determining its status under 
climate change are discussed in this chapter.

Keywords: abiotic stress, chlorophyll fluorescence, drought, elevated CO2, extreme 
temperatures, leaf physiology

1. Introduction

Food production is required to be increased by ~70% to feed the global population 
of 9 billion by 2050 [1], since the food demand, especially in developing countries, 
will be immensely enhanced. During the last 160,000 years, the concentration of 
atmospheric carbon dioxide has been varying between 170 and 300 μmol mol−1. But 
with the beginning of the industrial revolution in Western Europe (between 1750 and 
1800), the concentration of CO2 increased from 280 to 385 μmol mol−1 [2]. According 
to predictions, with the rapid increase in world population, consumption of fossil 
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fuels, industrial development, and deforestation, the concentration of carbon dioxide, 
which is ~400 μmol mol−1, will reach 700 micromoles by the end of this century [3].

Climate change and global warming have been one of the most controversial issues 
in the recent decade. Intense agricultural and industrial activities since the industrial 
revolution have hastened the process of global warming. The chemistry of the climate 
has been changed by agricultural and human being activities and consequently, many 
abiotic and biotic stresses have emerged and negatively affected plants’ physiology and 
biochemistry. Crops resistant to environmental stresses should be the focus of agricul-
tural plant development under the increased global temperatures and climate changes.

Due to continuously increasing the greenhouse gases, such as CO2, in the atmo-
sphere, climate change is happening rapidly. Climate change by increasing tempera-
tures and reducing precipitations imposes abiotic stress exposure in many areas. 
Abiotic stresses, such as drought, salinity, cold, heat, UV radiation, and heavy metals, 
are the major limitations in agricultural products and adversely influence plant 
growth. It is estimated that abiotic stresses reduce crop yield by approximately 50% 
[4]. Drought, salinity, and extreme temperatures are among the most dreadful abiotic 
stresses in modern agriculture.

One of the most vital processes of plants that are affected by global climate change 
is photosynthesis. Photosynthesis is a vital biochemical process in plants that sup-
plies the carbon and energy required for the biosynthesis of organic compounds and 
controls plant growth and development [5]. Photosynthesis is particularly sensitive 
to environmental constraints [6]. The environmental stresses adversely affect the 
photosynthetic capacity of plants. The increasing global population and climate 
change over the coming decades require enhanced photosynthetic efficiency to ensure 
food security. Thus, an understanding of the photosynthetic response and optimiza-
tion under future climate uncertainties will be required for an improvement in crop 
production to meet future food requirements.

Chlorophyll fluorescence is one of the effective, non-destructive, and quick 
methods for evaluating the photochemical status of the plant photosynthetic system. 
Chlorophyll fluorescence is a useful parameter for the measurement of environmental 

Plant species Environmental 
conditions

Parameters Reference

Potato (Solanum tuberosum) Elevated CO2 gm, Tr, gs ↓
An, Ci, RD ↑

[10, 11]

Tomato (Solanum lycopersicum 
L.)

Elevated CO2 An, Vcmax, Jmax, fv/fm, ETR, NADP+/
NADPH ↑
NPQ , RL ↓

[12]

Fagus sylvatica Elevated CO2 An, RD ↑
gs, Vcmax ↓

[13]

Yucca (Y. brevifolia and Y. 
schidigera)

Elevated CO2 An, fv/fm, ΦPSII ↑
gs ↓

[14]

Cotton (Gossypium hirsutum L.) Elevated CO2 Fo’, Fm′, ΦCO2, ↑
fv’/fm’, qP, ETR, ΦPSII, ΦPSII/ ΦCO2, 
ETR/An, ↓

[15]

Grape (Vitis vinifera L.) Elevated CO2 qP, ΦPSII, ETR↑
fv/fm, NPQ ↓

[16]

Oak (Picea abies) and (Quercus 
petraea)

Elevated CO2 An, gs, Tr, WUE ↑ [17]
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stress effects on photosynthetic apparatus and an effective indicator of photosynthe-
sis limiting factors. The photochemical efficiency of photosystem II (PSII) is strongly 
influenced by the climate change consequences such as elevated CO2, extreme 
temperatures, and water stress, and a reduction in leaf relative water content and the 
accumulation of carbohydrates in leaves decreases the quantum efficiency of PSII [7].

Plant species Environmental 
conditions

Parameters Reference

Pea (Pisum sativum L.) High 
temperatures

An, gs ↓ [18]

Wheat (Triticum aestivum) High 
temperatures

WUE ↓ [19]

Barley (Hordeum vulgare L.) High 
temperatures

fv/fm, ΦPSII ↓ [20]

Tomato (S. lycopersicum L.) High 
temperatures

ETR ↓ [21]

Alfalfa (Medicago sativa) High 
temperatures

Chl ↓
Fo, Fm ↑

[22]

Tomato (S. lycopersicum L.) High 
temperatures

An, Vcmax, Jmax, fv/fm, ETR, NADP+/
NADPH ↓
NPQ ↑

[12]

Lentil (Lens culinaris) Low 
temperatures

fv’/fm’, fq′/Fm′ ↓ [23]

Salvia leriifolia Benth, Visia 
faba

Low 
temperatures

fv’/fm’ ↓ [24–26]

Faba bean (Vicia faba L.) Low 
temperatures

gm, An, Tr, gs, Ci, Ci:Ca ↓ [27]

Chickpea (Cicer arietinum L.) Low 
temperatures

fv’/fm’, fq′/Fm′ ↓ [28, 29]

Barley (H. vulgare L.) Low 
temperatures

ΦPSII, ETR ↓
NPQ ↑

[30]

Oats (Avena sativa) Low 
temperatures

fv/fm ↓ [31]

Barley (H. vulgare L.) Drought Chl, Fo, fv/fo, fv/fm, ETR ↓ [32]

Maize (Zea mays L.) Drought Rubisco ↓ [33]

Black-eyed pea (Vigna 
unguiculata)

Drought An, fv’/fm’ ↓ [34]

Barley (H. vulgare L.) Drought NPQ ↑ [35]

Castor bean (Ricinus 
communis)

Drought An, Ci ↓ [36]

Wheat (T. aestivum) Drought gm, An, Tr, gs ↓ [37]

Oak (P. abies) and (Q. petraea) Drought An, gs, Tr, WUE, VC, J ↓ [17]

Sweet corn (Z. mays L.) Drought fv/fm ↓ [38]

Increase (↑), decrease (↓).

Table 1. 
Effect of climate changes induced stresses on photosynthetic and chlorophyll fluorescence parameters.
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More food must be produced by global agriculture to sustain a growing human 
population in the twenty-first century [8]. Producing more food, however, is threat-
ened by the climate change constraints that limit plant productivity [9]. Under 
natural conditions, plants are exposed to many adverse environmental stresses that 
disrupt the photosynthetic apparatus, causing a decrease in plant productivity and 
overall yield. In the present chapter, the impacts of changing climatic conditions on 
photosynthesis, with an emphasis on the main consequences of climate change, that 
is, elevated CO2, extreme temperatures, and drought are discussed (Table 1).

2. Climate change consequences and photosynthetic response

2.1 Elevated CO2

Carbon dioxide, like other important factors, such as light, water, and nutrients, 
is one of the determinant factors in plant production. Carbon dioxide is the key 
substrate for photosynthesis and the source of carbon for plants; however, high, or 
low CO2 concentration diversely affects plant growth and productivity [39]. Carbon 
dioxide stimulates photosynthesis, inhibits photorespiration, and increases the 
efficiency of water and nitrogen use, which leads to more biomass production and 
changes in plant composition. Increasing CO2 concentration by preventing photores-
piration in C3 plants increases the efficiency of photosynthesis because, in the current 
CO2 concentration the carboxylation capacity of Ribulose-1,5-bisphosphate carboxyl-
ase/oxygenase (Rubisco) does not reach the saturation limit (Drake et al., 1997). The 
increase in growth and yield of crop species due to doubling the CO2 concentration 
was primarily due to the faster photosynthetic rate and secondarily due to less photo-
respiration [40].

Photosynthesis of C3 plants is not completely saturated at the current CO2 con-
centration. Increasing CO2 concentration stimulates the rate of photosynthesis and 
has a positive effect on the growth and performance of plants [41]. Idso and Idso 
[42] believe that by doubling the current CO2 concentration, biomass production, 
and yield of plants will increase by one-third or more if other factors are not limit-
ing. However, plant species differ in response to CO2 concentration. Faster-growing 
species are more stimulated and produce more biomass than slow-growing species. 
Also, plants growing in better nutritional conditions respond more to increased 
CO2 concentration than those that are exposed to nutritional stress [43]. Apart from 
the indirect effects of atmospheric elevated CO2 concentration, CO2 concentration 
directly affects C3 plants if other factors are not limiting [44]. In research on potatoes 
in an open-growth chamber, it was found that the photosynthesis of plants grown 
under elevated CO2 concentration (720 ppm) was 10 to 40% higher than those grown 
under ambient CO2 concentration (400 ppm) [45]. In addition, leaf starch and 
sucrose content were higher in plants grown under CO2 concentration conditions, 
especially in young leaves. This shows that the response of plants to the CO2 concen-
tration also depends on leaf age.

In general, increasing CO2 concentration as a substrate for photosynthesis increases 
leaf area, biomass, and CO2 fixation. The main reason for the increase in photosyn-
thesis and subsequent increase in growth is the competitive effect of the Rubisco 
enzyme, which increases the carboxylation of this enzyme [46]. The results of the 
experiments showed that the rate of photosynthesis was significantly increased under 
elevated CO2 concentration in two potato cultivars [10, 11, 47]. Chen and Setter [48] 
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reported that cell division in physiological sinks is an important factor in increasing 
the photosynthesis of C3 plants under CO2 concentration. Increasing CO2 concentra-
tion to 720 μmol mol−1 increased cotton canopy photosynthesis by 40% [49]. Also, the 
increased CO2 concentration delayed the aging of sugarcane leaves [50]. Elevated CO2 
concentration also increased wheat production [51].

Potato plant leaves showed an 80–100% increase in photosynthetic rate when 
exposed to elevated CO2 concentration [52]. However, long-term growth under 
elevated CO2 concentration conditions led to plant acclimation to this environment 
and a relative decrease in photosynthesis [53]. Sicher and Bunce [54] reported that 
this acclimation is reversible by shifting plants to lower CO2 concentration. Sicher and 
Bunce [55] stated that the acclimation response to higher CO2 concentration is mainly 
due to a decrease in Rubisco activity than a decrease in the amount of this enzyme. In 
contrast, Schapendonk [56] found that photosynthetic acclimation, under elevated 
CO2 concentration, was accompanied by a decrease in Rubisco and concluded that the 
acclimation is a complex mechanism resulting from the negative feedback of source-
sink disequilibrium induced by high CO2 concentration. In a study on two model tree 
species—coniferous Norway spruce and broadleaved sessile oak, An was increased 
in oak saplings under elevated CO2 concentration (700 μmol CO2 mol−1), whereas in 
Norway spruce, Amax remained unchanged or slightly declined; indicating a down-
regulation of photosynthesis. Such acclimation was associated with the acclimation of 
both J and VC.

Transpiration rate and gs were decreased with increasing CO2 concentration, while 
WUE was increased [57]. Therefore, the beneficial effects of increased CO2 concentra-
tion on yield may be due to changes in either An or WUE or both; on the other hand, 
the reduction of gs can increase the temperature of the leaf, which further increases the 
speed of the developmental stages and shortens the grain filling period [58]. The increase 
in growth due to elevated CO2 concentration has been attributed to the improvement of 
plant water relations or the increase of cell expansion [59]. An increase in Ci due to an 
increase in CO2 concentration can trigger partial stomatal closure, although the process 
of how stomata respond to CO2 signals remained uncertain [60].

An increase in CO2 concentration accelerates aging in plants. One of the reasons 
for this is the effect of CO2 on reducing gs and increasing leaf temperature. Another 
reason is the increase in the demand for underground parts for nitrogen and the 
reduction of N supply to aerial organs [61]. Nitrogen redistribution from chlorophyll-
binding proteins has been proposed as the main factor in chlorophyll degradation 
[62]. Chlorophyll is known as the first electron donor in the process of electron 
transfer and the photosynthesis apparatus and plays a fundamental role in absorbing 
light energy in the photosynthesis apparatus [63]. The results of various studies show 
that elevated CO2 concentration causes a decrease [64, 65], an increase [66], or no 
change [52] in the chlorophyll content of potato leaves. Bindi [66] reported that the 
chlorophyll content of potato leaves under conditions of increased CO2 concentration 
was on average 9.3% lower than that of plants under normal conditions.

Reducing gs, oxidative stress, and decreasing the activity of Rubisco affect pho-
tosynthesis under environmental stresses [67]. In addition, PSI and PSII, ETR, and 
Chl biosynthesis are negatively influenced by abiotic stresses [68, 69]. The quantum 
efficiency of PSII is considered a quantitative indicator of electron transfer through 
PSII, which is related to the photochemical efficiency of PSII [69]. Non-photochemical 
quenching indicates how much excess energy is released as heat by the plant relative 
to linear electron transport. Under unfavorable conditions, that is, environmental 
stresses, more energy is required to be dissipated since qP is disrupted. Therefore, NPQ 
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is strongly enhanced when physiological sinks are few and leaf physiology and bio-
chemistry are adversely affected by environmental stresses [70]. Working on tomato 
and grape plants showed that elevated CO2 concentration decreased NPQ of leaves, 
while qP was enhanced, indicating that higher CO2 concentration probably stimulates 
the photosynthetic efficiency and improves the photochemistry of leaves [12, 16].

There are different reports on the effect of elevated CO2 concentration on 
chlorophyll fluorescence. Hao [71] stated that the increase in CO2 concentration 
increased the rate of photosynthesis and Jmax with an increase in fv/fm, the efficiency 
of photoreceptors, and the transfer energy of PSII reaction centers (RC). Also, qP was 
reduced under those conditions. On the other hand, Pérez [72] and Ge [73] reported 
reduced leaf Chl content and factors related to chlorophyll fluorescence, including the 
photochemical efficiency of PSII and the ETR due to an increase in CO2 concentra-
tion. Taub [74] also reported that in most of the species in their study, the efficiency 
of photosystem II (fv/fm) was significantly higher in plants grown under elevated CO2 
concentration. They stated that this higher efficiency was due to both higher Fm and 
lower Fo fluorescence. The results of a study showed that elevated CO2 concentration 
(800 mmol mol−1) improved leaf An, Vcmax, Jmax, and fv/fm of tomato (Solanum lycop-
ersicum L.) plants at a 24 h recovery [12]. Furthermore, the elevated CO2 concentra-
tion also increased the absorption flux, trapped energy flux, ETR, energy dissipation 
per PSII cross-section, the concentration of NADP+ and ratio of NADP+/NADPH, and 
decreased photoinhibition, damage to PSs and ROS accumulation.

2.2 Extreme temperatures

Plants are exposed to frequent low and high-temperature stresses during their 
life [75]. Global warming induces temperature stress on plants and limits productiv-
ity and biomass production. Climate change is likely to increase extreme tempera-
tures beyond the optimum temperatures for the growth of plants. Temperature 
above or below the optimal threshold disrupts plant cellular homeostasis, which 
further slows down plant growth, development, and metabolism [76]. The ideal 
temperature for plant growth and development is in the range of 10 to 35°C. Rising 
temperature to a specific point enhances plants to generate excess energy; however, 
heat stress adversely affects plant growth and diminishes the photosynthetic rate 
[77]. Elevated temperature increases respiration levels in plants. Raising the tem-
perature from 15 to 40°C elevated the respiration rate and disturbed the morpho-
logical features of crop species [78].

Heat tolerance is directly related to the ability of plants to maintain the CO2 
assimilation rate. Stomatal conductance and transpiration rate are closely related 
to leaf temperature [79]. Stomatal conductance, substomatal CO2 concentration, 
and leaf water status are affected by the temperature above the optimum levels for 
plant growth [80]. The concentration of substomatal CO2 is altered at high tem-
peratures upon stomatal closure and inhibits net photosynthesis [81]. Moreover, 
high temperatures directly affect the vapor pressure deficit that alters the plant’s 
hydraulic conductance and water supply of the leaves [82]. Studies indicated that 
the net CO2 assimilation rate in soybean decreased with an increase in temperature 
mainly due to the reduction in gs and Ci and lower biomass accumulation [83]. A 
reduction in photosynthetic ET diminished ATP production and An under high 
temperatures [84]. A significant decrease in the photosynthetic electron transport 
chain, ATP production, and NADPH under high temperatures led to a decrease in 
photosynthesis [85].
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The negative effect of heat stress on photosynthesis might be due to the reduced 
Rubisco content and activity [86]. The reduced Rubisco thermal stability decreases 
its activation under higher temperatures [87]. Rubisco is activated by the RA at an 
optimum temperature. The catalytic activity of Rubisco is stimulated by an increase 
in temperature, but the RA fluctuates in response to high temperature [87]. While 
Rubisco is stable even at 50°C, the activity of RA is decreased at temperatures beyond 
the optimum [88]. The first step in photosynthetic and photorespiration pathways 
is catalyzed by Rubisco. The carboxylation efficiency of Rubisco is decreased at high 
temperatures because of the temperature sensitivity of the RA protein. An elevation 
in temperature leads to the deactivation of the Rubisco enzyme by the generation of 
inhibitory compounds such as xylulose-1,5-bisphosphate. Also, the RA breakdown 
at high temperatures causes the Rubisco disruption [89]. The RA is the main enzyme 
in the CO2 fixation process in plants, but at higher temperatures, it is not sufficiently 
able to keep the balance of the inactivation [90].

Chlorophyll pigments are important for light harvesting; however, temperature 
stress negatively affects their biosynthesis in plastids [91]. High temperatures degrade 
the chlorophyll molecule due to different enzymatic impairments; the first enzyme in 
pyrrole biosynthesis (5-aminolevulinate dehydratase (ALAD)) is negatively affected 
by high temperature [92]. The decreased chlorophyll biosynthesis in celery leaves 
at high-temperature stress was likely due to the mRNA down-regulation of 15 genes 
involved in chlorophyll biosynthesis [93].

Plant productivity is restricted by temperature stress in different ways [94]. The 
photosynthetic apparatus is the first site of inhibition and is highly sensitive to heat 
stress. High-temperature alter the reduction-oxidation capacity of PSII acceptors and 
reduce the photosynthetic electron transport (ET) efficiency of both photosystems 
[76]. The important components of photosynthetic apparatus are the PSI and PSII, 
CO2 reduction pathways, photosynthetic pigments, and ETR and any impairment 
inhibits overall photosynthesis [92].

High temperatures increase the permeability of membranes, damage PSII 
subunits, and the manganese complex, and limit ET. The increased permeability 
of thylakoid membranes leads to peroxidation of membranes, membrane protein 
changes, the opening of ionic channels, redistribution of specific lipids in thylakoid 
membranes, and the formation of single-layered membranes [76, 92]. The oxygen-
evolving complex of plants grown at high temperatures is partially damaged. Kalaji 
[6] found that low and high temperatures decreased the reduced PSII electron accep-
tors pool (mainly QA) in barley seedlings. The ΦPSII and the qP were decreased at high 
temperatures in oak leaves [95].

Kalaji [7] believed that the PIABS is the most sensitive indicator of various stressors 
including extreme temperatures. Damage to thylakoid membranes and a decrease 
in the PSII activity can be the reason for decreased fluorescence in response to 
high-temperature stress [89]. PSII thermostability is often calculated with the use of 
fluorescence methods by determining the relationships between Fo and leaf tempera-
ture. The fast fluorescence kinetics (JIP-test parameters) can also use to determine the 
effects of critical temperatures, which are often affected by a much lower temperature 
than the Fo [7, 96].

One of the crucial factors in predicting future global warming is the response of 
photosynthesis to temperature. Plant CO2 assimilation is impaired under environmen-
tal stress conditions, such as temperature, while light absorption remains unaffected. 
Excessive light energy absorption leads to the production of ROS and the photosyn-
thetic machinery, mainly PSII, which is highly sensitive to photodamage, is severely 
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damaged. Although plants have various mechanisms to protect the PSII, photoinhibi-
tion occurs when the photodamage rate is exceeded the PSII repairment rate, leading 
to reduced photosynthetic efficiency [97].

High night temperature stress is increasing due to climate change, and it suppresses 
the net CO2 assimilation rate in both C3 and C4 plants. The ratio of reduced plastoqui-
none (QB) to (QA) and the ratio of QA to RC is reduced under high night temperatures. 
Furthermore, fv/fm was decreased, and Fo was increased under high night temperatures 
[98]. High night temperature reduces qP, ΦPSII, and ETR, increases NPQ , and inhibits 
the donation of electrons by the oxygen-evolving complex (OEC). Pan [12] observed 
that high temperature reduced tomato (S. lycopersicum L.) leaves photosynthesis by 
reducing the energy fluxes limitations, ET, and redox homeostasis. They observed that 
Vcmax, Jmax, and fv/fm were diminished by high temperature (42°C for 24 h).

The saturation of fatty acids and membrane fluidity is induced by low tempera-
tures, and it affects the efficiency of photosynthetic ET. Previous studies on various 
plant species elucidated that the leaf photosynthetic activity is affected by short-term 
or long-term high and low temperatures [7]. Plants by stimulating thermal energy 
dissipation and increasing the hydrophobic protein PsbS content, which participates 
in the thermal energy dissipation, try to reduce the generation of ROS and adapt to 
low temperatures [99]. Low temperatures inhibit sucrose synthesis, reduce photosyn-
thetic ET, increase photoinhibition, and disturb the photophosphorylation process. 
Rapacz [100] found that mild frosts initially disturbed the energy transfer to the 
primary quinone electron acceptor of PSII, QA in wheat plants; however, lower tem-
peratures, that is, freezing, may cease energy flow between the PSII RC, Chl, and QA, 
which these primary injuries could only be partially repaired. Consequently, further 
freezing hinders the ET between the PSII RCs and QA and the secondary damage may 
lead to PSII deactivation. They concluded that both primary and secondary freez-
ing damages resulted in a decreased PIABS. Strauss [101] also observed that the PIABS 
was decreased at low temperatures in soybean plants. Working on faba bean (Vicia 
faba L.) landraces revealed that gas exchange variables are promising criteria for 
screening freezing-tolerant landraces at early growth stages [27]. The physiological, 
biochemical, and molecular modifications of chickpea (Cicer arietinum L.) seedlings 
were studied under freezing stress, and it was found that fv′/fm′ and t ΦPSII of the cold-
tolerant genotype recovered faster compared to the cold-sensitive genotype [28, 29]. 
They found that fv′/fm′ and ΦPSII were significantly lower in freezing compared with 
higher temperatures. In a study on lentil (Lens culinaris Medik.) genotypes under 
freezing stress, Nabati [23] found that Fm′, fv′/fm′, and ΦPSII were decreased at freez-
ing temperatures. They concluded that the freezing-tolerant genotypes showed a high 
potential to restore PSII performance and survival rate.

2.3 Drought stress

Global climate change and lower availability of underground water induce a water 
crisis worldwide. The constant rise in the atmospheric global temperature induces fre-
quent droughts around the world, which further impacts the biological systems [102]. 
Plants may experience different forms of abiotic stresses, such as drought during their 
life, which adversely affect plant growth, survival, and productivity [103]. Drought is a 
serious problem in arid and semiarid environments with precipitation deficiency [104].

Plant photosynthesis, growth, and yield are impaired by drought stress [105]. 
Photosynthesis is highly sensitive to drought stress and is the first-line process that is 
altered by drought stress. Lower photoassimilate production reduces leaf growth and 
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crop yield [37]. Impaired photosynthesis under water deficit relates to either stomatal 
or non-stomatal limitations. Plants enhance their tolerance levels to survive under 
such a harsh environment by adopting different strategies, such as stomata closure 
and osmotic adjustment [106]. Closure of stomata as the primary response of leaves to 
drought conditions prevents water loss and decreases Tr and increases WUE of plants 
[92]. The primary response of plants to drought stress is closing the stomata. CO2 
and water exchange in plants are regulated by stomatal openings. Although stomatal 
closure limits water loss, CO2 absorption and transportation of non-structural carbon 
(NSC) are also hindered by stomatal closure, leading to carbon starvation which 
further affects further processes [107].

Nonstomatal limitations of photosynthesis might be due to lower synthesis and 
supply of Rubisco and/or other metabolic responses [108]. The proteins D1 and D2 
can also be damaged by drought stress [109]. Since the PSII is quite resistant to water 
stress, the photochemical reactions may only be influenced by severe water stress 
[110]. Lauriano [111] found that changes in the values of chlorophyll fluorescence 
parameters in peanut leaves were more pronounced under severe drought. Decreased 
leaf CO2 transport rate under prolonged and severe water stress reduces CO2 concen-
tration in chloroplasts, thus weakening photosynthesis. The decrease in the cells CO2 
concentration reduces the activity of sucrose phosphate synthase, nitrate reductase, 
and capacity for ribulose bisphosphate (RuBP) regeneration, and deactivates Rubisco 
[49]. The chloroplast thylakoid membrane is degraded under water stress and 
adversely affects photosynthetic pigment and reduces the photosynthetic rate [112].

Water stress induces oxidative stress. Under water stress, a reduction in chloro-
plastic CO2 concentration due to the stomatal closure leads to the impairment of the 
Calvin cycle and reduces the production of NADP+, leading to excessive electron 
transport chain (ETC) reduction and directing the electrons to O2 via Mehler reaction 
to form singlet O2, and consequently, ROS [113]. Under drought conditions, triplet 
chlorophyll stages (3Chl*) may be overproduced if too much energy is delivered to 
antenna complexes. This promotes singleton oxygen (1O2) production, which is a 
highly reactive form of oxygen that can photo-oxidase chlorophyll (mainly P680) and 
cause peroxidation of membrane lipids [111]. Partial closure of the stomatal reduces 
CO2 assimilation and might lead to an imbalance between PSII photochemical activity 
and NADPH demand, which in turn, the generation of ROS can be stimulated and 
lead to higher sensitivity to photodestruction. Under stressful conditions such as low 
water availability and high irradiance and temperature, photosynthetic efficiency 
decreases due to a probable high chronic photoinhibition [7].

Studies of the alterations in the chlorophyll fluorescence kinetics provide an in-
depth understanding of the structure and functions of the photosynthetic apparatus, 
particularly PSII [114]. Drought can change the kinetics of chlorophyll fluorescence 
by affecting PSII. The photochemical efficiency of PSII is strongly influenced by the 
relative water content of the leaf. The reduction of photosynthesis and the accumula-
tion of carbohydrates in the leaf decrease the quantum efficiency of PSII [7]. One of 
the consequences of drought is stomatal closure which reduces the heat exchange of 
leaves. High temperature affects PSII, photosynthetic ET, and ATP synthesis [7]. A 
decrease in fv/fm and yield are indicators of photoinhibition in plants under stressful 
conditions, indicating lower efficiency of photosynthetic conversion of PAR photon 
energy [108]. The fv/fm is decreased at advanced stages of stress. The fv/fm is directly 
related to chlorophyll activity in the PSs RC. Working on maize plants, Karvar [38] 
found that deficit irrigation decreased the fv/fm. A decrease in leaf Chl content was the 
likely reason for the diminished fv/fm. Carotenoids are non-enzymatic antioxidants 
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that prevent Chl photooxidation under stressful conditions [103]. The stability of 
carotene and xanthophyll cycle pigments significantly contributed to the protection 
mechanism of PSII RCs. Furthermore, the cyclic electrons flow around PSI signifi-
cantly contributed to the dissipation of excess energy in some plant species under 
water stress [111].

The PSII ΦPSII and ETRPSII are also important parameters to measure drought 
stress effects on leaves, which provide estimation for both stomatal and non-stomatal 
effects of drought stress. However, the relative fluorescence decreases ratio (Rfd) 
proposed by Lichtenthaler [115] as a more sensitive parameter correlated with 
photosynthetic assimilation than the PSII ΦPSII or ETRPSII. In sunflower plants, it was 
observed that water potential (Ψ), gs, An, ΦPSII, fv/fm, and daily accumulation of total 
non-structural carbohydrates (TNC) was decreased under drought, but NPQ , malo-
ndialdehyde concentration (MDA), and soluble carbohydrates content was increased 
[116]. The PIABS was also positively correlated with the water availability for plants. 
Van Heerden [104] found that a higher water supply increased PIABS in Augea capensis 
and Zygophyllum prismatocarpum.

3. Conclusions

Increasing greenhouse gases emission have led to global warming and climate 
change worldwide. The global climate change consequences, that is, elevated CO2 
concentration, water stress, and extreme temperatures, are serious problems affect-
ing the photosynthetic efficiency and adaptation of plants and adversely affecting 
agricultural yields. Studies suggest that most plants will be more stressed and less 
productive in the future in response to climate change. Climate change reduces pho-
tosynthetic capacity directly by damaging photosynthetic structures and processes. 
The changes and modifications of the photosynthetic machinery under different 
stressful conditions can be evaluated by the chlorophyll fluorescence analysis. 
Analyses of chlorophyll fluorescence seem to be a promising tool for breeding crops 
with improved tolerance under stressful conditions. Therefore, the application of 
chlorophyll fluorescence can be useful to identify which part of the photosynthetic 
apparatus is affected by the stress and it might help identify good-performing genes 
by chlorophyll fluorescence to be used in breeding programs.
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Chapter 6

Molecular Mechanisms and 
Strategies Contributing toward 
Abiotic Stress Tolerance in Plants
Aimen Nasir, Irum Shahzadi and Ismat Nawaz

Abstract

Plants respond to climate change via sensing the extreme environmental  conditions 
at cell level, which initiated significant changes in their physiology, metabolism, and 
gene expression. At the cell membrane, plants activate certain genes (like GRP, PRP, 
AGP) to provide strengthening to cell wall. Drought and salinity stress tolerance 
attained by osmotic adjustments, activation of transcriptional factors (like AREB, ABF, 
DREB2), and regulation of Na+ homeostasis via transporters (like NSCC, NHX1, SOS1, 
HKT1, LTC1). For adaptations to chilling and frost stress, plants use hydrophobic bar-
riers (waxes/cuticles), antinucleator (cryoprotective glycoprotein), and antifreeze pro-
teins. Higher expression of HSPs (heatshock proteins such as HSP70, HSP100, HSP90, 
HSP60) is important for thermal tolerance. Tolerance to heavy metal (HM) stress can 
be achieved via vacuolar sequestration and production of phytochelatin, organic acids 
and metallothionein. ROS generated due to abiotic stresses can be alleviated through 
enzymatic (APX, CAT, POD, SOD, GR, GST) and nonenzymatic (ascorbate, gluta-
thione, carotenoids, flavonoids) antioxidants. Genetic manipulation of these genes in 
transgenic plants resulted in better tolerance to various abiotic stresses. Genetic engi-
neering of plants through various genome editing tools, such as CRISPR/Cas9, improve 
the abiotic stress tolerance as well as enhance the crops’ quality, texture, and shelf life.

Keywords: climate change, molecular mechanisms, abiotic stress, adaptations, genome 
editing

1. Introduction

Climatic conditions are important for the well-functioning of any ecosystem. 
Altered climatic conditions have direct effects on plant health, productivity, and 
yield. Earth’s climate is changing very rapidly mainly due to human activities, hav-
ing negative effects on human and the ecosystem (particularly on the agriculture 
sector) [1]. Altered climatic conditions contribute negatively due to increased levels 
of greenhouse gases, global warming, higher emission of CO2, deforestation, and 
excessive use of fossil fuels. Plants are the primary producers and a very important 
component of the ecosystem. Temperature fluctuations, particularly due to altered 
climate conditions, may trigger other factors, such as drought, flood, soil erosion, 
waterlogging, and salinity, which ultimately led to lower crop productivity and yield. 
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As the world population is increasing rapidly, demand for the food is also increasing. 
We need good quality and quantity of crops to fulfill the feeding requirements of the 
world population. Natural stress factors (light intensity, temperature, water stress, 
and nutrient availability) and anthropogenic stress factors (mainly HM pollution, 
excessive use of herbicides, acid rain, and enhanced UV-B radiations) contribute 
strongly to deteriorate crop health and productivity. Continuously changing climatic 
conditions induce higher stress on crops due to irregular patterns of moisture con-
tents, more pest and disease infection, more waterlogging conditions, increased soil 
erosion, and global warming [2]. Climate change and food shortage are the most chal-
lenging factors of this century, which need our serious efforts and attention. It is very 
important to develop crops that are better able to tolerate abrupt climate changes and 
associated abiotic stresses to keep a balance between environment and agricultural 
crop production [3]. Among other techniques, the plant genetic engineering approach 
could also be used for abiotic stress management in crops. Transgenic plants have 
better tolerance level to various kinds of abiotic stress. They also have improved fruit 
quality, shelf life, and plant architecture. Genetic engineering of plants also results in 
reduced postharvest losses, which improve productivity and yield [4]. Induction of 
the expression of stress-related TFs (MYC, bzip, DREB1A, DREB1B, DREB1C, CBF1, 
CBF2), stress-responsive genes, signaling pathway kinases (MAPK, CDPK, S6K, 
PIP5K) hormonal biosynthesis (ABA, ethylene), antioxidant and ROS scavenging 
mechanism (APX, GSH, GR, GST, SOD, flavonoids, carotenoids), regulatory proteins 
(HSPs, LEA, dehydrins, aquaporins, metallothioneins, phytochelatins) osmolytes, 
and compatible solutes (proline, sorbitol, mannitol, polyamines, amino acids, glycine 
betaine), transporters (NHX, HKT, HMAs) improve the crop performance under 
altered environmental conditions. Through genetic engineering and genome edit-
ing tools, transgenic plants have developed, which are better able to adapt to climate 
changes without affecting their productivity and yield. Genotyping, sequencing, 
transcriptomics, proteomics, metabolomics, and functional genomics can be inte-
grated collectively for the identification of stress-responsive genes/gene products 
and their expression in targeted plants to develop abiotic stress-tolerant cultivars [3]. 
Different genome editing tools are being used like CRIPR/Cas9, which is of prime 
importance due to its rapid and effective outcomes. It is an environment-friendly 
technique to produce transgenic plants, which are better adapted to stress conditions 
that emerges due to climate change. The CRISPR system is based on candidate gene 
knockout/insertion or gene replacement, which results in either loss of function, 
downregulated, or over-expression of gene for abiotic stress tolerance [5].

2. Drought stress

Decreased water availability in soil or excessive loss of water from plants due to 
high transpiration rate causes drought stress. At the vegetative stage, it affects growth, 
development, turgidity, and stomatal conductance. At the cellular level, drought 
stress causes damage to cell division, expansion, nutrient uptake, chlorophyll content, 
and CO2 assimilation [6].

2.1 Molecular responses of genetically engineered plants

Genetic engineering basically focuses on the identification of key genes involved 
in drought stress resistance mechanisms and their potential transfer to different crops 
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through recombinant DNA technology. These candidate genes are involved in osmotic 
adjustments, induction of dehydrins, synthesis of abscisic acid (ABA), indole-3-acetic 
acid (IAA), polyamines for maintaining turgidity, tissue water potential, net photo-
synthesis, stomatal conductance, growth of plants, and development of deeper and 
prolific root system [7].

2.1.1 Induction of trehalose biosynthesis

Trehalose is a compatible osmoprotectant that plays its role in improving root 
architecture, maintaining the integrity of thylakoid membrane and sugar signal-
ing pathway, and increasing photosynthesis, stomatal conductance, and drought 
resistance [8]. The bacterial OtsB gene is introduced in tobacco for better growth 
and development under drought stress by promoting a deeper and more prolific root 
system. Such transgenic tobacco plants show more photosynthetic and water-retain-
ing capacity [9]. The yeast TPS1 gene is involved in developing drought tolerance in 
transgenic plants by regulating carbohydrate levels through SnRK1and ABA signaling 
pathways to regulate stomatal conductance [10].

2.1.2 Induction of LEA protein

LEA (late embryogenic abundant protein) plays a role in the sequestration and 
compartmentalization of ions. They also protect other proteins from degradation 
during cellular dehydration. HVA1 gene isolated from barley is introduced in rice for 
higher growth rates, hydraulic conductivity, and water permeability under drought 
stress [11]. Transgenic wheat containing barley HVA1 gene showed overexpression of 
aquaporins (PIP1, PIP2,NIP, TIP3, XIP) for cell proliferation, ions transport, germi-
nation, and morphogenesis under drought stress [9].

2.1.3 Induction of proline and polyamines biosynthetic pathways

Proline and polyamines are compatible solutes, whose expression is regulated 
under drought stress. They are of low molecular weight and are highly soluble in the 
cytosol. P5CS gene isolated from moth bean is inserted in tobacco plants for detoxi-
fication of ROS and stabilizing structures of membranes, enzymes, and proteins 
[10]. Transgenic soybean plants modified with P5CR gene showed increased proline 
accumulation for plant growth and development under drought stress. It also protects 
the lipid bilayer from damage during cellular dehydration [11]. Genetic engineering 
of the induction of polyamine biosynthetic pathway mainly focuses on two species 
rice and tobacco. Transgenic rice modified with oats ADC (arginine decarboxylase) 
shows increased biomass due to regulated plant growth, antioxidant defense, and 
metabolism [12].

2.1.4 Induction of transcriptional factors (TFs)

Transcription factors are proteins that bind to the promoter of the respective 
gene to regulate its expression. Under drought stress, different transcription fac-
tors are activated, such as DREB (DREB1A, DREB1B, DREB1C) and CBF (CBF1, 
CBF2, CBF3). Transgenic wheat modified with DREB1A gene from Arabidopsis 
thaliana showed increased drought resistance by overexpressing drought-tolerant 
genes [13].
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2.1.5 Induction of MAPK pathway

MAPK is involved in phosphorylating other protein molecules that initiate a 
downstream oxidative signaling cascade. NPK1 gene isolated from tobacco is inserted 
in maize to increase drought tolerance of transgenic maize by protecting photosyn-
thetic machinery under drought stress [14].

2.1.6 Induction of ABA signaling pathway

Under drought stress, the level of ABA increases to cause the closure of stomata 
and to prevent water loss through transpiration. Genetically engineered plants modi-
fied with ERA1gene isolated from A. thaliana showed better growth, development, 
and net photosynthesis under drought stress as compared to control. Identification 
and transference of candidate genes from donor to transgenic plant and their molecu-
lar responses have been summarized in Table 1.

3. Temperature stress (chilling/freezing and heat stress)

Temperature variations across the world have a direct effect on plant produc-
tivity. There is a prominent change in the growth and survival patterns of plants 
under temperature stress. Temperature stress is divided into two categories, that 
is, low-temperature stress (chilling injury) and high-temperature stress (heat 
stress).

Gene Source Transgenic 
plant

Adaptations References

P5CS1 Vigna aconitifolia Nicotiana 
tabacum

Delayed wilting of transgenic 
plants under drought stress.

[15]

Delta 
OAT1

Arabidopsis 
thaliana

Oryza sativa Transgenic plants showed higher 
growth rate under drought stress.

[16]

DREB1A
CBF3

A. thaliana Festuca 
arundinacea

ABA dependent signaling pathway 
that activates drought-responsive 
genes.

[17]

betA E.coli Gossypium 
hirsutum

Higher RWC and photosynthesis 
rate, reduced ion leakage, and 
lipid membrane peroxidation.

[18]

TPS1 Pichia angusta Solanum 
tuberosum

Increased yield and metabolite 
production, such as sugar, 
proteins, osmolytes, and 
hormones.

[10]

OtsA
OtsB

E.coli O. sativa Less photo-oxidative damage and 
improved mineral balance under 
drought stress.

[19]

codA E.coli S. tuberosum Drought stress-inducible glycine-
betaine (GB) production for 
protecting proteins, enzymes, and 
biological membranes.

[18]

Table 1. 
Molecular responses of transgenic plants to drought stress.
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3.1 Chilling injury

Morphologically, chilling injured leaves become purple or red in color, and 
wilting of leaves is also observed. Growth is retarded and foliage of leaves appears 
soggy. At the cellular level, changes in membrane structure and composition due to 
decreased fluidity and permeability of plasma membrane were observed. Decreased 
photosynthesis activity under low temperature is mainly due to distorted and swollen 
thylakoids, reduction in size and number of starch granules, unstacking of grana, and 
disappearance of the chloroplast envelope. Condensation of chromatin, alternation 
in the appearance of nucleolus, Golgi apparatus, and endoplasmic reticulum has also 
been reported under low temperatures.

3.2 Molecular responses of genetically engineered plants

3.2.1 Induction of dehydration-responsive element (DRE)

DREB1A is a transcription factor that interacts with DRE to induce the expres-
sion of cold-responsive genes (COR). At low-temperature, ICE transcription factor 
turn on the expression of CBF/DREB genes, which induces freezing tolerance [20]. 
Transgenic A. thaliana over-expressing ICE-1 showed increased tolerance to chilling 
stress by regulating CBF and other cold-responsive regulons [21]. In wheat, ICE-1 
homologs TaICE141 and TaICE187 are overexpressed to activate the wheat CBF fam-
ily. Transgenic A. thaliana modified with these homologs showed increased freezing 
tolerance by transcriptional and post-transcriptional changes [22].

3.2.2 Induction of cold-responsive LEA proteins

LEA proteins act as antifreeze proteins that prevent ice nucleation and the 
formation of ice crystals. They slowed the growth and recrystallization of ice. 
PmLEAS is a cold-responsive gene, which is expressed in Prunus mume under 
chilling stress. Transgenic tobacco modified with PmLEAS showed increased 
freezing tolerance by modifying the composition of the lipid bilayer to increase the 
proportion of unsaturated fatty acid. It also increases the activity of the desaturase 
enzyme [23].

3.2.3 Expression of LcFIN1 gene in transgenic A. thaliana

LcFIN1 gene is overexpressed in sheep grass to provide adaptation to cold 
stress. Transgenic A. thaliana modified with LcFIN1 gene showed high germina-
tion rates and long survival time period due to the accumulation of compatible 
solutes, membrane stabilization, reduced ROS generation, and expression of COR 
genes [24].

3.2.4 Induction of dehydrins

Dehydrins are thermostable, hydrophilic, and cryoprotective protein molecules. 
They are molecular chaperone. Chilling stress results in the formation of second-
ary structures of RNA. Dehydrins prevent the formation of secondary structures 
by acting as molecular chaperons. They also protect other proteins and enzymes 
from denaturation. ABA treatment induces the expression of dehydrins. PmLEA 
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is a cold-responsive gene of P. mume, which is overexpressed under chilling stress. 
Transgenic tobacco modified with PmLEA showed increased chilling tolerance 
due to reduced lipid peroxidation and electrolyte leakage [25]. Similarly, the maize 
ZmDHN2B gene inserted in tobacco provides cold adaptations by preventing the 
destabilization of membranes. It also increases the unsaturated to saturated fatty acid 
ratio to prevent ice crystals formation [26].

3.2.5 Induction of compatible solutes

Compatible solutes, such as amino acids, proline, polyamines, and sugars, 
provide molecular adaptations under chilling stress. Glycine betaine is very 
important for osmotic adjustments and subcellular functions. CodA (choline 
oxidase) isolated from Arthrobacter globiformis is inserted in transgenic A. thali-
ana provides cold acclimation [27]. Zinc finger protein gene OSISAP1 from rice 
is inserted into tobacco plants that showed increased growth and survival rates 
under chilling stress. OSISAP1 encodes for proline biosynthesis enzyme [28]. A 
short review of molecular responses of some transgenic plants has been summa-
rized in Table 2.

4. Heat stress

Heat stress means temperature above a threshold level, which causes irrevers-
ible damage to plant growth and development. Scorching of leaves, leaf senescence, 
abscission, fruit discoloration, reflective leaf hair, leaf curling, and vertical leaf 
orientation are the main morphological effects of higher temperature. Heat stress 
induces the production of NH3 within plant tissues. It leads to ammonia toxicity. CAM 
pathway is responsible for the high production of organic acids, such as pyruvate, 
citrate, malate, PEP, and oxaloacetic acid. These organic acids prevent ammonia 
toxicity within the cytoplasm under heat stress.

Gene Source Transgenic plant Adaptations References

CodA Arthrobacter 
globiformis

Brassica campestris Transgenic plants showed an 
increased net photosynthetic rate.

[29]

CodA A. 
globiformis

Lycopersicon 
esculentum

Chloroplastic synthesis of glycine 
betaine showed increased tolerance 
against chilling stress.

[30]

GmTCF1a Glycine max Arabidopsis 
thaliana

Improved survival rate and decreased 
electrolyte leakage.

[31]

BoCRP1 Brassica 
oleracea

L. esculentum Increased accumulation of 
osmoprotectants and increased 
activity of ROS-scavenging enzymes.

[32]

DaCB4/
DaCBF7

Deschampsia 
antactica

Oryza sativa Increased expression of cold-
responsive genes and Ca signaling 
pathway.

[33]

Table 2. 
Molecular responses of transgenic plants to chilling stress.
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4.1 Molecular responses of genetically engineered plants

4.1.1 Induction of heat-shock proteins (HSPs)

Expression of genes for the synthesis of various hormones, such as ABA, ethylene, 
salicylic acid, and brassinosteroids, are very important for thermotolerance. These 
hormones stabilize the heat-shock transcription factors and help them to bind with 
heat shock-related genes. DcHSP17.7 is a heat shock-related gene of carrots. It was 
inserted into the potato under the control of 35S promoter. Transgenic tomatoes 
showed increased tolerance to heat stress by stabilization of the tertiary structure of 
proteins and enzymes [34]. Fad8 is a cytosolic protein of Brassica napus, which is over-
expressed in the tobacco plant. Transgenic tobacco showed much more heat sensitiv-
ity, which shows that silencing of fad8 is important for heat stress tolerance because 
fad8 encodes for desaturase enzyme [35]. OsHSFA2e was isolated from oryza sativa 
and was introduced in A. thaliana. Resultant transgenic A. thaliana showed increased 
thermotolerance by upregulation of HSF-related genes [35]. Slhsp gene isolated from 
Solanum lycopersicon was introduced in N. tabacum. hsp101 gene was isolated from 
A. thaliana and was introduced in O. sativa. Both of the transgenic plants showed 
increased thermotolerance due to prevented protein aggregation [36]. A. thaliana 
AtPLC9 gene is responsible for heat tolerance as it induces the expression of HSPs 
and HSFAs. AtPLC9 gene was inserted into O. sativa. Transformed rice plants showed 
increased heat stress tolerance due to the over-expression of OsHSFAs, calcium ions, 
and calmodulin-related genes [37].

4.1.2 Induction of membrane associated lipid metabolism

Heat stress increases membrane fluidity, which causes disruption of cellular 
functions and membrane permeability. Plants achieve adaptation to heat stress by 

Gene Source Transgenic 
plant

Adaptations Reference

hsp21 A. thaliana S. lycopersicon Protection of PSII from heat-induced 
oxidative stress and detoxification of 
photo-induced H2O2.

[39]

OsHsfA2e O. sativa A. thaliana Transformed A. thaliana showed increased 
thermotolerance.

[40]

TaHsfA6f Triticum 
aestivum

A. thaliana Increased thermotolerance by inducing the 
expression of ABA metabolism and other 
heat stress-responsive genes (APX, LEA3, 
LTP3).

[40]

Badh Spinacia 
oleracea

N. tabacum Overexpression of chloroplastic glycine 
betaine providing thermotolerance during 
vegetative stage.

[40]

TaHSP23.9 T. aestivum A. thaliana High thermotolerance by preventing 
irreversible protein unfolding and 
aggregation.

[41]

Table 3. 
Molecular responses of transgenic plants to heat stress.
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increasing saturated fatty acids in membrane composition. Fad7 gene isolated from A. 
thaliana was introduced in N. tabacum. This gene encodes for the desaturase enzyme. 
Transformants that showed silencing of fad7 gene were able to adapt to heat stress 
more effectively. Similarly, fad8 isolated from B. napus was introduced in N. tabacum. 
Transformants with silenced fad8 gene showed better growth, chlorophyll content, 
and photochemical efficiency [38]. A short review of molecular responses of trans-
genic plants to heat stress has been summarized (Table 3).

5. Heavy metal stress

Plants required a small amount of HM for the proper functioning of their physiolog-
ical processes. When the concentration exceeds the threshold value, these HM become 
toxic for plants. Excess of arsenic (As) causes photosynthesis inhibition, and decreases 
biomass and yield; cadmium (Cd) toxicity causes chlorosis, reduced water, and nutrient 
uptake, browning of root tips, and ultimate death; chromium (Cr) and lead (Pb) stress 
cause reduced nutrient uptake and disturbance in metabolic pathways, respectively. 
Mercury (Hg) and zinc (Zn) toxicity cause reduced photosynthesis due to the inhibition 
of photosystems I & II. Excess of nickel (Ni) causes retarded seed germination, reduced 
plant height, reduced root length, and reduced chlorophyll content [42].

5.1 Molecular responses of genetically engineered plants

5.1.1 Induction of the organic acid biosynthetic pathway

TaALMT1 gene isolated from Triticum aestivum was inserted into tobacco and 
barley crops. Transgenic tobacco and barley showed increased tolerance to HM stress 
because TaALMT1 induces the expression of the malate biosynthetic pathway. Malate 
acts as a metal chelator and causes metal efflux. SbMATE gene isolated from sorghum 
was inserted into A. thaliana. Transgenic A. thaliana showed increased HM-stress 
tolerance. SbMATE induces the expression of citrate transporter for metal efflux [43].

5.1.2 Genetic engineering for Cd toxicity tolerance

Cd is a highly toxic metal due to its fast mobility and persistency. A very small 
concentration of Cd is lethal to plants. Different genetic engineering approaches have 
been implied to develop transgenic plants that can withstand Cd toxicity. gsh1 isolated 
from E. coli was inserted into Brassica juncia, which showed increased Cd tolerance. 
gsh1 gene encodes for γ-glutamylcysteine synthetase for the synthesis of glutathione 
(GSH) and phytochelatins (PCs). GSH plays role in HM-induced ROS scavenging by 
initiating the ascorbate-glutathione cycle. PCs form a complex with HM (HM-PC), 
which is transported to the vacuole for detoxification. N. tabacum modified with 
RCS1 gene of O. sativa showed higher cysteine synthase activity [44]. CDna-LTC1 a 
nonspecific transporter of Cd was introduced in tobacco that showed increased Cd 
tolerance due to less storage of Cd in roots [45].

5.1.3 Induction of the expression of metallothioneins (MT)

MTs act as chelator that binds with free metals and releases them slowly. MT1 gene 
isolated from chickpea was inserted into A.thaliana, which showed increased HM-stress 
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tolerance by upregulation of antioxidative enzymes (APX, GPX, GSH, GR) and 
reduced electrolyte leakage [46]. OsMT1e-P, a MT gene of Oryza sativa was inserted 
into tobacco that showed improved HM-stress tolerance (Cu and Zn) by metal ions 
compartmentalization and vacuolar sequestration [47]. Human MT2 was inserted into 
tobacco and oil seed crops. Transference of various MT genes (human MTIA, human 
MTII, yeast CUPI, pea PsMTA, and TaMT) into A. thaliana, Brassica compestris, and N. 
tabacum showed increased HM-stress tolerance due to overexpression of GSH-S- trans-
ferase activity. BcMT1 and BcMT2 genes from Brassica compestris were inserted into A. 
thaliana and showed improved tolerance to HM stress by upregulation of the activity of 
anti-oxidative enzymes [48].

5.1.4 Induction of the expression of metal transporter genes

Metal transporters are important for the transportation and compartmentalization 
of free metal ions. Genetic engineering mainly focuses on the expression of metal 
transporter genes in plants. Induction of AtPHT1/AtPHT7 genes isolated from A. 
thaliana along with YCF1 gene of Saccharomyces cerevisiae in tobacco showed much 
more As tolerance and accumulation. TgMTP1 gene from N. Goesingense was geneti-
cally engineered into A. thaliana that showed improved Zn tolerance [49]. Znta gene 
isolated from E.coli was inserted into A. thaliana that showed increased resistance to 
Pb and Cd. Znta gene encodes for V-type ATPase metal transporter that transports 
free metal ions from cytoplasm to vacuole for sequestration [50]. PvACR3 trans-
porter gene isolated from Pteris vittata was introduced in A. thaliana, which showed 
increased tolerance to As [49]. A brief review of the molecular responses of trans-
genic plants to HM stress has been summarized in Table 4.

6. Salinity stress

Increased concentration of soluble salts in the soil causes salinity stress. 
Salinity stress causes high-level accumulation of Na + and Cl- ions within the 
cytoplasm, which disturb enzyme activities and photosynthetic processes. It also 

Gene Source Transgenic 
plant

Adaptations References

NAS1 Arabidopsis 
thaliana

Nicotiana 
tabacum

Increased Ni tolerance and accumulation. [51]

MTA1 Pisum 
sativum

Populus alba Increased Cu and Zn tolerance. [52]

HMA4/
MT2

A. thaliana N. tabacum Increased Cd tolerance and Cd/Zn 
translocation efficiency.

[51]

MRP7 A. thaliana N. tabacum Increased tolerance to Cd and increased 
metal accumulation in roots.

[51]

merA E.coli N. tabacum More efficient Hg volatilization and 
tolerance.

[53]

ECS/
arsC

E.coli A. thaliana Enhanced As tolerance and 
hyperaccumulation.

[53]

Table 4. 
Molecular responses of transgenic plants to HM stress.
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causes ROS-induced oxidative damage to lipids, proteins, and nucleic acids. Other 
adverse effects include decreased nutritional value of plants, salinity-induced 
osmotic stress, decreased rate of seed germination, and decreased plant growth and 
productivity.

6.1 Molecular responses of genetically engineered plants

6.1.1 Induction of the expression of Na+/H+ antiporter

Genetic engineering approaches focus on the identification of various genes 
that encode ion transporters, antiporters, cationic channels, compatible sol-
utes, osmoprotectants, etc. Ion transporters play important role in the selective 
transport of ions and maintain the optimal level of these ions. Vacuolar Na+/
H+ antiporter catalyzes the exchange of Na + from the cytoplasm to vacuole for 
sequestration. It helps in maintaining cellular homeostasis, pH, and cell turgid-
ity. B. napus modified with AtNHX gene from A. thaliana. AtNHX gene encodes 
Na+/H+ antiporter. The transgenic plant showed increased salt tolerance, growth, 
and photosynthetic rate. Similar results were observed when Brassica juncia was 
transformed with pgNHX1 gene [54]. T. aestivum was modified by vacuolar Na+/
H+ antiport gene AtNHX1 from A. thaliana. The transgenic wheat plant showed 
a lower accumulated level of Na + in leaves. Transformed A. thaliana with a high 
expression level of AtNHX1 gene showed high salt tolerance. AtNHX1 gene is 
responsible for the compartmentalization and sequestration of Na + into the 
vacuole [55]. O. sativa was modified by Na+/H+ antiport gene nhaA from E.coli. 
Transgenic rice showed better salt tolerance, seed germination rates, growth, and 
productivity [56].

6.1.2 Induction of the expression of SOS gene

The high salt level is detected by receptors, which increases the cytosolic level of 
calcium. SOS3 binds to free Ca and activates the expression of SOS3 protein kinase. 
SOS3-SOS2 complex induces the expression of SOS1 gene, which encodes Na+/H+ 
antiporter. ThSOS1-ThSOS5 genes were isolated from T. hispidia and inserted into A. 
thaliana. The transformed plant showed increased salt tolerance due to increased ROS 
scavenging activity, and lower MDA and H202 levels [57]. SOS1 and AHA genes were 
isolated from Sesuvium portulacastrum and coexpressed in A. thaliana. Transgenic A. 
thaliana showed increased salt tolerance due to rapid Na + extrusion and regulated 
cellular homeostasis [58].

6.1.3 Induction of the expression of HKT1-type transporters

HKT1 transporters are responsible for regulating Na homeostasis by keeping a 
balance between Na and K in the cytoplasm. PpHKT1 gene isolated from almond 
rootstock was inserted into A. thaliana. The transgenic plant showed reduced 
electrolyte leakage, longer lateral roots, and increased salt tolerance [59]. McHKT2 
gene isolated from Mesembryanthemum crystallinum was inserted into A. thaliana. 
Transgenic A. thaliana showed increased salt tolerance due to lower root Na uptake 
and lower Na concentration in xylem sap. A short review of molecular responses of 
transgenic plants to salt stress has been summarized in Table 5.
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7. Genome editing strategy (CRISPR/Cas9) for transgenic plants

Different genome editing strategies are being used to develop transgenic-resistant 
crops to deal with food insecurity issues. CRISPR/Cas9 is the most powerful system to 
develop a genetically engineered crop system that is able to adapt to different climate 
change-induced stresses more effectively. It also helps in producing high-yielding and 
stress-resistant crops. It is environment friendly, fast, rapid, accurate and economical. 
SgRNA/Cas9 construct is established to target the specific genome sequence of a plant. 
This construct is introduced in the targeted crop by means of various transformation 
methods, such as Agrobacterium-mediated transformation and protoplast transfec-
tion, to produce abiotic stress-resistant variety [61]. B. napus was modified with 
CRISPR technology to downregulate the expression of CLVTA3. Transgenic B. napus 
showed more seed production. TaGW2 gene’s expression was knocked down using the 
CRISPR system in wheat. This modification helped in increasing the seed size of wheat. 
Overexpression of SlMAPK3 gene by CRISPR/Cas9 in S. lycopersicon showed improved 
drought tolerance. Knocking down the expression of Osann3 by CRISPR/Cas9 in rice 
produced more cold stress tolerance [62]. CRISPR/Cas9-mediated genome editing tech-
nology is very efficient to develop transgenic crops, which are environment-friendly 
and able to adapt to climate changes efficiently. A short review of the application of 
CRISPR/Cas9 in abiotic stress tolerance has been summarized in Table 6.

8. Conclusion

In this chapter, molecular responses of transgenic plants to different types of 
abiotic stresses have been discussed. This review has thrown light on the effects of 

Gene Source Transgenic 
plant

Adaptations References

Vacuolar Na+/
H+ antiporter 
MsNHX1

Alfalfa 
(Medicago 
sativa)

A. thaliana Increased osmotic balance. 
Reduced aggregation 
of Na + and increased 
accumulation of K+ in leaves.

[60]

Vacuolar Na+/
H+ antiporter AlNHXI

Aeluropus 
littoralis

Nicotiana 
tabacum

Compartmentalization of Na 
in roots.
Maintenance of K+/Na+ ratio 
in the leaf.

[60]

GhNHX1 Gossypium 
hirsutum

N. tabacum Na + extrusion and vacuolar 
sequestration.

[54]

AgNHX1 Atriplex 
gmelini

Oryza 
sativa

Na + vacuolar sequestration. [54]

ProDH A. 
thaliana

A. thaliana Proline biosynthesis for 
osmotic homeostasis.

[54]

Avp1 A. 
thaliana

O. sativa Vacuolar H+ pyrophosphatase 
synthesis. Vacuolar 
acidification.

[54]

Table 5. 
Molecular responses of transgenic plants to salt stress.
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climate change-induced stress factors for plants and how genetic engineering can help 
to develop transgenic plants that are able to respond to these stresses at the molecular 
level. Climate change is a major threat factor for the agricultural sector as it causes 
lower yield and productivity. It causes increased food demand leading to hunger and 
starvation. Drought stress, salinity stress, temperature stress, and heavy metal stress 
are major types of abiotic stresses that cause retarded and stunted growth, lower 
yield, and productivity. Molecular adaptations through genetic engineering can be 
achieved by expressing stress-related genes, accumulation of compatible solutes, 
activation of signaling pathways, activation of transcriptional factors, action of 
various transporters, synthesis of heat-shock proteins and secondary metabolites, 
and enzymatic and nonenzymatic defense mechanisms, etc. through various genome 
editing tools, such as CRISPR/Cas9. This review has covered a detailed analysis of 
each type of abiotic stress and responses of transgenic plants at the molecular level.

Most of the studies of transgenic plants are based on Arabidopsis, rice, and 
tobacco. Further studies are required by using model plants on different staple crops, 
such as wheat, cereals, and legumes. to meet food requirements. Climate is chang-
ing very rapidly and it has adverse effects on plant growth, productivity, and yield. 
Climate change-induced stress factors can cause famine and starvation. Different 
technologies and genome editing tools are being used worldwide to produce resistant 
transgenic crops, such as CRISPR/Cas9, OMICS, TALEN, QTL, nanobiotechnology, 
and miRNAs/siRNAs. These technologies focus on genome editing of transcription 
factors and stress-responsive genes to introduce novel modifications in the plant 
genome. The development of transgenic crops through genetic engineering is a need 
of time and demands serious efforts.

Specie Targeted gene/s Genome editing strategy Improved trait References

Oryza 
sativa

OsbHLH024 Knockdown expression by 
CRISPR/Cas9.

Salt tolerance [5]

O. sativa OsHKT1;3, SOS1, 
OsHAK7

Enhanced expression of 
ion transporter genes by 
CRISPR/Cas9.

Salt tolerance [5]

Zea mays ARGOS8 Replacing ARGOS8 with 
GOS2 by CRISPR/Cas9 to 
improve yield.

Drought 
tolerance

[5]

S. 
lycopersicon

SlLBD40 CRISPR/Cas9-mediated 
gene mutation.

Drought 
tolerance

[5]

Z. mays ZmWRKY106 Enhanced expression by 
CRISPR/Cas9.

Heat stress 
tolerance

[63]

O. sativa OsMYB30 CRISPR/Cas9-mediated 
gene knockout.

Cold tolerance [63]

O. sativa OsNramp, OsCd1, 
and OsNramp5

Overexpression of metal 
transporter genes by 
CRISPR/Cas9.

HM-stress 
tolerance.

[63]

A. thaliana AtPDF2.6 Overexpression by CRISPR/
Cas9.

HM-stress 
tolerance by 
chelation of 
cytoplasmic Cd.

[64]

Table 6. 
Genetic engineering of plants through CRISPR/Cas9 to adapt abiotic stress.
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Transgenic Plants in Heat Stress 
Adaptation: Present Achievements 
and Prospects
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Abstract

Global warming, which was rhetorical in the previous century, is a preeminent 
issue in multiple scientific areas today. Global warming has increased the frequency of 
extreme high temperature events all around the globe and expanded heat zones from 
tropic areas through both poles and even changed frigid poles to temperate zones. In 
the terrestrial earth, plants are the major CO2 consumers. The emergence and evolu-
tion of plants on earth decreased the global temperatures dramatically from mid-
Devonian to mid-Carboniferous Era; however, the human factors as industrialization 
were not in equation. Today, plants are still main actors of the nature-based solutions 
to global warming through afforestation and reforestation solutions. However, high 
temperature is a major deleterious abiotic stress for plant growth and productivity. 
Plant heat stress adaptation has been a focus of research for both environmental and 
agricultural purposes. Plant heat stress adaptation requires utilization of complex 
physiological traits and molecular networks combined. The present chapter sum-
marizes recent progress in transgenic approach through five main targets as heat 
shock proteins, osmoprotectants, antioxidants, transcription factors, and miRNAs. 
Additionally, miscellaneous novel transgenic attempts from photosynthetic machin-
ery to signal transduction cascades are included to cover different physiological, 
transcriptional, and post-transcriptional regulation of the plant heat responses.

Keywords: global warming, heat shock proteins, heat shock factors, antioxidants, 
osmolytes

1. Introduction

Plants are subjected to various biotic (insects, parasites, nematodes, weeds, 
bacteria, fungi, viruses, etc.) and abiotic stress factors in their natural environment 
due to the stationary lifestyle. A major part of the abiotic stresses is caused by factors 
related to the physical and chemical composition of the soil, while the rest may be 
related to climate properties such as cold and heat, UV exposure, and light inten-
sity. Among these, heat stress is particularly important since all the anabolism and 
catabolism reactions require particular cardinal temperatures for enzyme activities. 
Average surface temperature of the earth increased roughly 1°C since the beginning 
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of pre-industrial era 120–140 years ago. In local terms, it may seem insignificant; 
however, globally accumulated heat has vast effects. Various independent research 
groups measure and calculate global average surface temperatures through absolute 
temperature observations and temperature anomalies from different locations [1]. 
According to the Annual Global Climate Report 2021 statistics of The National 
Oceanic and Atmospheric Administration (NOAA), 2021 was the sixth warmest 
recorded year of the earth since 1880 by the rate of 0.84°C higher than average of 
twentieth century. It was also the 45th consecutive year in which the average global 
temperature surpassed the average of twentieth century, which means it was never 
colder than average since 1977. Each year in the last decade takes place among the 
top ten warmest years. The average temperature increase per decade was in range 
of 0.08°C since 1880; however, the rate was increased 2.25-fold to rate of 0.18°C 
since 1981. Worse than this rate, the earth is expected to warm roughly 1.5°C within 
the next two decades [2]. Moreover, major crops in tropical and subtropical regions 
present 2.5–16% yield losses for every 1°C increase in seasonal temperatures. Global 
temperature rises also lead to reduction in land and sea, more frequent heavy rains, 
increase on habitat ranges of some plants and animals and decrease on some others, 
regionally [3].

Heat stress changes diverse molecular pathways and causes physiological and 
morphological alterations. Various stages of plant development such as germination, 
seedling emergence, tillering, floral initiation, pollination, fertilization, and conse-
quently yield and grain quality are in range of heat effects. There are multiple factors 
which may divert the heat effects to a more dramatic or mild direction. Length, 
abruptness, and magnitude of heat are the major factors along with relatively minor 
factors as soil moisture and atmospheric CO2 concentrations [4]. Anther and pollen 
development stages are considered as the most heat vulnerable stages; however, expo-
sure during earlier stages may also lead to inadequate germination through reduced 
root and shoot growth. Heat exposure after the germination stage reduces green leaf 
area and the number of tillers per plant to ease the effects through reducing exposure 
surface. Prolonged exposure after anthesis may lead to flower abortion. Heat stress 
after flowering stage is referred as terminal heat stress which effects early meiosis 
to tetrad stages of pollen production and utterly reduce grain number, filling, and 
maturity. Terminal heat stress does not only reduce quantitative traits but also reduce 
qualitative traits such as dry matter accumulation and grain quality. Developmental 
stage-specific treatments and breeding strategies against various heat regimes are still 
under investigation [5, 6].

Physiological functions are mediated through enzymatic processes in all living 
organisms. Even though, there are thermophile organisms in lower evolutionary 
branches as archaea, bacteria, and fungus which all have resilient enzyme systems. 
Any deviations over the optimum temperature hamper enzymatic processes of 
plants. Photosynthesis is one of the most vital but fragile metabolic processes which 
is severely affected by heat stress. Some heat acclimation adaptations including 
reduced spiky leaf shape, altered leaf orientation, rolled leaves or small surface hairs, 
thick waxy cuticle, and stomatal crypts are present in high heat climate plants to 
reduce drastic effects; however, crop plants do not possess most of these structures. 
Symptoms as lower stomatal conductance, reduced CO2 assimilation, and water loss 
utilize non-photorespiratory processes. Heat stress also directly alters enzyme and 
protein structure and cell membrane permeability leading to photochemical modi-
fications in chloroplasts, damage on thylakoid membrane, and reduction of soluble 
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proteins as Rubisco and Rubisco binding proteins. Damaged chloroplasts cripple 
the photosynthetic capacity of plants and lead to leaf senescence, while disturbed 
thylakoid membranes elevate cellular reactive oxygen species levels. Respiration is 
crucial for leaf surface cooling in trade-off water loss. Leaf water potential and tran-
spiration pull is a driving force for nutritional uptake and transport of photosynthesis 
assimilates from leaves to the grains. Heat stress also disturbs nitrate and ammonium 
assimilation. Factors as decreased root mass, surface area, and/or a decrease in 
nutrient uptake per unit root or direct heat damage to roots are plausible for nutri-
ent acquisition decrease. Uptake of most of the nutritional elements is mediated by 
specific influx or efflux protein activity. Therefore, reduced proteins per unit root rate 
directly affect the mineral content [7, 8].

Heat stress causes all the above-mentioned damage through direct (primary) 
and indirect (secondary) effects at different levels. Weakening and damaging bio 
membrane integrity, altering fluidity, leading to electrolyte leakage, denaturing and 
misfolding proteins are among the most deleterious direct damage effects. Indirect 
effects can be listed as oxidative stress, methylglyoxal (MG) stress, and osmotic 
stress. Therefore, plant heat stress tolerance and adaptation mechanisms include heat 
shock proteins (HSPs), antioxidant systems, osmolytes, fortification of membrane 
lipids, and MG detoxification, in general. The present chapter will summarize the 
current knowledge on heat stress tolerance/adaptation approaches and will dis-
cuss transgenic approach contribution to these mechanisms with the emphasis on 
prospects.

2. Plant heat stress adaptation and tolerance targets

2.1 Heat shock proteins (HSPs)

HSPs are a highly conserved group of proteins which are expressed abundantly 
 following the sudden increase of temperature in wide variety of evolutionary 
branches as bacteria, fungi, plants, and animals. Even though plants are more 
responsive to temperature changes and react to fluctuation as small as 1°C, HSPs are 
expressed in response to sudden 8–10°C temperature increases. HSPs expression may 
increase within a few seconds following the temperature increase and reach the maxi-
mum level of transcripts within one to two hours of exposure. In high temperatures, 
protein synthesis is reduced to prevent misfolded protein production and protein 
denaturation which may present toxic properties for cells. Likewise, HSP expres-
sion is reduced following the cooldown of environment to optimum temperatures. 
Expressed HSPs are detectable for approximately 20 hours and generate thermo-
tolerance for further temperature increases. Plant HSPs can be categorized under 
five conserved families based on their molecular weights as HSP100, HSP90, HSP70, 
HSP60, and small HSPs (sHSPs) [9].

HSP100 family members which are found in prokaryotes as well as eukaryotes are 
75–100 kDa proteins. They can be further divided into two classes based on their ATP-
binding sites as class I contains two while class II contains one site. HSP100 family 
protein takes part in acquisition of thermotolerance through preventing and unfold-
ing of protein aggregations in association with chaperons by ATP-dependent manner. 
Their expression increases in different developmental stages as well as in response 
to heat shock. High salt, desiccation, abscisic acid (ABA), and cold stress-induced 
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expressions are also reported. HSP100 protein accumulation initiates as soon as heat 
stress begins and is retained for prolonged durations during recovery. Hence, the cru-
cial role of Hsp100 family is generally speculated for recovery instead of prevention. 
However, early accumulation of these proteins as stress initiates suggests that HSP100 
members may play important during stress as well [10].

HSP90s are evolutionarily conserved essential molecular chaperones in eukary-
otic cells, undertaking key functions in signal transduction networks, cell-cycle 
control, folding of newly synthesized proteins as well as re-folding and stabilizing 
tertiary structures of already folded proteins, and protein trafficking. HSP90s, 
which are constitutively expressed and abundant as 1–2% of total proteins in cell, are 
induced during stress conditions particularly in response to heat. They involve root, 
hypocotyl, shoot apical meristem, and stomatal development as well as fertilization 
and embryo formation. HSP90 is an ATP-dependent chaperone, which constitutes 
HSP90 chaperon complex in cooperation with other chaperons and co-chaperons 
to maintain its function. For an instance, proteins which require HSP90 chaperon 
activity to re-gain their functional conformation called client proteins as newly syn-
thesized or misfolded proteins, initially bind to general protein folding chaperones 
such as HSP40 and HSP70 which can recognize unfolded proteins. Then, HSP90/
HSP70-organizing protein (HOP) mediates binding of the client protein to HSP90. 
Role of the HSP40/HSP70 chaperone machinery during abiotic stress response is well 
documented. Acute heat shock temporarily reduces the cytoplasmic HSP90 activity, 
as it is recruited to stress-labile proteins hence releasing inhibition on stress response 
induction [11–13].

HSP70s are the most structurally and functionally conserved members of the 
whole protein family. Hsp70s are the most ubiquitous class of ATP-dependent chap-
erone proteins which are present in the cytosol of all eubacteria and eukaryotes, 
and some archaea, as well as within mitochondria, ER, and plastids of eukaryotic 
cells. In plants and other higher eukaryotes, they have constitutive expression for 
undertaking the cellular protein quality control and degradation system roles. In 
other organisms, they are stress-inducible for cyto-protective functions under 
several different conditions. As the most abundant HSPs, Hsp70 holds hydrophobic 
regions of misfolded proteins and prevents protein aggregation that can present 
toxicity to cells. They utilize ubiquitin-mediated proteasomal degradation pathway. 
Under heat shock and other abiotic stress conditions, heat shock transcription 
factors are triggered by the signal transduction from misfolded or unfolded outer 
membrane proteins to inner targets. One of the most notorious trans-acting 
elements are heat shock transcription factors (HSFs) which are associated with 
cis-acting heat shock elements (HSEs) in promoter regions of heat stress responsive 
genes [3, 14, 15].

HSP60s are ATP-dependent mitochondrial chaperones which are involved in 
importing mitochondrial proteins and macromolecule assembly. They can be cat-
egorized into structurally similar two groups which differ in amino acid sequences. 
Group I HSP60s are found in mitochondria and chloroplasts as well as prokaryotes. 
This group includes chaperonin 60 and its co-chaperon chaperonin 10. Chloroplast 
chaperonins have effects on growth, embryo development, flowering, and chlorosis 
of plants. In unstressed conditions, HSP60s utilize appropriate folding of the key 
proteins, while under heat stress they take part in prevention of protein misfolding 
and promote re-assembling and refolding of mitochondrial matrix proteins. Group II 
chaperonins are found in archaea and eukaryote cytosols, in general [16, 17].
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Small HSPs are in the range of 15–42 kDa. They have highly conserved sequences 
in C-terminal; hence they are found in all domains of life. They interact with higher 
HSPs as co-chaperons in response to heat stress. Individually, they constitute the 
first line of maintenance for misfolding of proteins. Contrary to the higher HSPs, 
sHSPs are not ATP-dependent and have high specificity and capacity to bind disor-
dered proteins during primarily as heat, oxidative, and salinity stress conditions. 
They do not possess the ability to fold unfolded proteins; however, they can prevent 
irreversible unfolding and protein aggregations by re-folding denaturated or already 
folded proteins to some extent. This large protein family consists of six classes based 
on their cellular localizations, immunological properties, and sequence alignments. 
Cytoplasmic and nuclear groups are clustered in classes I, II, and III, while classes 
IV, V, and VI are the groups found in chloroplast, ER, and mitochondria, respec-
tively [18, 19].

In past decade, substantial knowledge has been accumulated on mechanism of 
HSPs and chaperones as they are regulatory molecules that participation in stress 
sensing, signal transduction, and transcription activation of stress responsive genes 
in heat stress management. Therefore, transgenic plant approach is widespread 
among the studies which aim to improve crop productivity during consistently 
increasing heat stress worldwide [20]. Table 1 summarizes the recent progress of 
transgenic approach regarding HSPs to improve heat stress tolerance in crop and 
model plants.

2.2 Antioxidants

Different plants present variations in temperature response depending on species, 
organs, and developmental stages. Disturbance in equilibrium between ROS scav-
enging capacity and ROS production during heat stress leads to major indirect effects 
in plants [30]. Perception of heat is a crucial step for induction of stress responsive 
gene expression. Beside its deleterious cellular effects, ROS has significant intra- and 
inter-cellular signaling properties for local and holistic control in plants. Through 
signal transduction, they contribute to the acquisition of thermotolerance along 
with HSPs, molecular chaperones, and phytohormones. Hyper-activation of the 
ROS scavenging components is also a viable strategy since it prevents cellular dam-
age caused by ROS to membranes, organelles, and critical biomolecules as DNA, 
 proteins, lipids, and more.

Enzymatic antioxidant defense in plants is composed of super oxide dismutase 
(SOD), catalase (CAT), ascorbate peroxidase (APX), monohydro ascorbate reduc-
tase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), 
glutathione peroxidase (GPx), glutathione-S-transferase (GST), guaiacol peroxidase 
(GPX), peroxiredoxine (Prx), and thioredoxine (Trx). On the other hand, non-enzy-
matic antioxidant defense is divided into two categories as water solubles as ascorbic 
acid (AsA), glutathione (GSH), polyphenol, and lipid solubles as α-tocopherols, 
carotenoids, flavonoids, and retinoids [31].

In cellular processes, superoxide ions (O2
−) are converted to H2O2 by SOD in 

chlorophyll, cytosol, apoplast, mitochondria, and peroxisomes. H2O2 is detoxified 
into H2O by CAT in peroxisomes, chlorophyll, and mitochondria, APX in chlorophyll, 
cytosol, apoplast, mitochondria, peroxisomes, and GPX in mitochondria and cyto-
sol. GST also contributes to the process in chlorophyll, cytosol, and mitochondria. 
The oxidized form of GSH is produced through the DHAR activity in chlorophyll, 
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cytosol, mitochondria, and GPx activity in mitochondria and cytosol. GR reduced 
this by-product back into the reduced form of GSH. Monodehydroascorbate (MDHA) 
and dehydroascorbate (DHA) are produced as a result of APX activity, and both 
are reduced to AsA by MDHAR and DHAR, respectively, in chlorophyll, cytosol, 
and mitochondria [32]. Beside the notorious antioxidant enzymes as CAT and GPX, 
kinetic studies point out that Prxs reduce more than 90% of cellular peroxides [33]. 
Trxs function as cysteine reductases in plants. Eukaryotic cells utilize sensor proteins 
with redox-sensitive cysteine residues that function as signaling switches. Cysteines 
also provide signaling complexity through allowing reversible redox-based modifica-
tions such as S-nitrosylation, S-sulfenation, S-thiolation, and S-glutathionylation 
[34]. Therefore, redox sensors as Prx and redox transmitters as Trx take part crucial 
roles in posttranscriptional/translational regulation and initiation of signaling 
cascades during stress conditions [35].

Basal heat tolerance is significantly stronger in enhanced ROS scavenger species 
since their ROS scavenging gene expression is rapidly induced during heat stress. 
Therefore, fortification of antioxidant machinery is preferable option for reverse 
genetic applications as transgenic approaches. Table 2 summarizes the recent prog-
ress of transgenic approach regarding antioxidants to improve heat stress tolerance in 
crops and model plants.

2.3 Osmolytes

Osmolytes, also known as cytoprotectants, osmoprotectants, or compatible 
solutes, are low molecular weight (LMW) compounds or metabolites that play 
important roles in balancing cellular redox, maintaining membrane integrity and 
protein stability, scavenging ROS, defending antioxidant compounds, and easing 
toxicity, and protecting cellular components in total. There are numerous samples 
which can be categorized as sugars, polyamines, secondary metabolites, amino acids, 
and polyols as proline, glycine betaine, trehalose, sorbitol, gamma-aminobutyric acid 
(GABA) which are widely used in bioengineering applications named as osmolyte 
induced stress tolerance [46]. Polyols as mannitol, D-ononitol, trehalose, sucrose, and 
fructane have been proven to accumulate in distinct evolutionary groups in response 
to various osmotic stress factors. They interact with the glutathione-ascorbate cycle 
enzymes which were mentioned earlier in this chapter to protect cellular membranes 
and enzyme complexes [47]. Proline, as one of the most studied amino acid type 
compatible solutes, has high water solubility and stable structure. Besides its essen-
tial structural roles, it plays well-known osmotic adjustment roles in plant cells. By 
these fundamental properties, its accumulation is observed in different kingdoms 
from bacteria to marine invertebrates. Most of the osmoprotectants are localized in 
cytoplasm during osmotic stress as it initiates. Osmoprotectants are suggested to ease 
osmotic imbalance through regulating osmotic potential within the cell. Reduced 
osmotic pressure maintains turgor pressure under heat stress conditions in which 
water potential is low as well as the conditions of high ionic strength. They also sta-
bilize protein complexes and cellular membranes by protecting the hydration shell of 
proteins [48]. Genetic transformation technologies allow deliberate transfer of genes 
precisely in predictable manner. Therefore, transgenic approach is a viable option to 
manipulate the osmoprotectant biosynthesis pathways for enhanced accumulation 
of such molecules [49]. Table 3 summarizes the recent improvements in osmolytes 
overexpressing transgenic plant approaches to provide protection by the osmotic 
action alone.
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2.4 Transcription factors (TFs)

Heat stress adversely affects the vegetative and reproductive stages of crop 
plants and leads to vast yield losses. Response to heat stress requires alterations 
on regular metabolic pathways through changes in gene expression profiles which 
are mainly regulated by various types of transcription factors (TFs). TFs are 
trans-acting elements which interact with cis-acting elements in promoter region 
of target stress responsive genes through genome. They are important signal 
transducers which convert perceived stress signals to stress specific responses. 
Many TFs including WRKY, MYB, NAC, bZIP, zinc finger protein, AP2/ERF, 
DREB, ERF, bHLH, and brassinosteroids transcription factors are associated 
with families of heat stress transcription factors or heat shock factors (HSFs). 
Approximately 7% of protein coding sequences of plant genomes consist of TFs. 
HSFs are among the largest gene families in plants compared to the other eukary-
otes. The multiplicity of HSFs in plants is suggested to be related to the gene 
duplications and whole-genome duplications at different stages of evolution [57]. 
Plant HSFs have highly conserved modular structure. Their N-terminal domain 
has DNA binding properties. Promoter sequences of heat stress responsive genes 
include heat stress elements (HSEs) and are specific targets for central helix-turn-
helix motif of HSPs. The C-terminal is an activation domain for plant HSFs. It 
contains short peptide motifs which play important roles in transcription activa-
tion of stress-inducible genes. Depending on hydrophobic amino acid residues 
linked to the DNA binding domain, plant HSFs are classified into three classes as 
HSFA, B, and C. HSFBs present common properties to the HSFs of other domains 
of life. On the other hand, HSFAs have 21 additional amino acid residues, while 
HSFCs have seven amino acid residue extensions [37]. HSFs are responsive to vari-
ous abiotic stresses as drought, heat, and salinity. In nature, plants are constantly 
subjected to combination of different biotic and abiotic stresses. Therefore, it is 
considerably challenging to extrapolate the tolerance contribution of individual 
HSFs directly. Nevertheless, each TFs regulates many genes and thus are good 
candidates for engineering crop plants with enhanced heat stress tolerance due 
to their regulatory role. Table 4 summarizes the recent progress of transgenic 
approach regarding TFs to improve heat stress tolerance in crop and model  
plants.

2.5 MicroRNAs (miRNAs)

In recent years, as an inevitable result of global climate change, there has been 
a significant increase in the number and severity of abiotic stress factors that 
plants are exposed to. Plants are vulnerable to the effects of heat, drought, salinity, 
cold, heavy metals, diseases, and pests due to their sessile nature. Therefore, the 
importance of developing plants tolerant to stress is increasing day by day. One of 
the most powerful methods for producing tolerant plants stands out as transgenic 
plants. MicroRNA (miRNA) transfer to plants is used as an important tool for 
thermotolerance.

miRNAs are RNA molecules with a length of 19–24 nucleotides (nt), not encoded 
by genes and involved in the regulation of gene expression. miRNAs are synthesized 
in the nucleus by RNA polymerase II as pri-miRNAs called precursor miRNAs. These 
pri-miRNAs are in hairpin structure and contain the mature miRNA sequence. The 
pri-miRNA structure is cleaved by the RNAase III enzyme to form the pre-miRNA 
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molecule. The resulting pre-miRNA is transported to the cytoplasm via Exportin-5 
(XPO5). 19–24 nt long duplex miRNA is formed by being cut again by Dicer, a 
ribonuclease enzyme in the cytoplasm. Argonaute in the RNA-induced silencing 
complex (RISC) complex, which will form the mature miRNA sequence, is loaded. 
The miRNA-loaded RISC complex regulates transcriptional repression or degradation 
of mRNA. miRNAs play a role in the regulation of many biological processes in the 
cell, such as plant growth, development, stress responses, and control of the correct 
folding of proteins [86, 87].

High temperatures reduce the efficiency of photosynthetic activity in plants, cause 
negative effects on growth, damage to cell membranes, cell death due to senescence, 
protein misfolding, decrease in germination percentage, and release of weak pollen by 
preventing decomposition of anthers. Transfer of miRNAs to plants for tolerance to 
abiotic stresses is an important tool for plant tolerance. miRNAs increase the tolerance 
to stress factors by acting on the expressed genes at the transcriptional and post-
transcriptional levels, inhibiting or regulating them. Temperature-sensitive miRNAs 
provide refolding of proteins, regulation of flowering, protection of reproductive 
tissues, repair of photosynthetic damage and regulating the antioxidant defense 
mechanism to alleviate the effects of stress. Table 5 summarizes the recent progress of 
transgenic approach regarding miRNAs to improve heat stress tolerance in crop and 
model plants.

2.6 Other approaches

For producing temperature-tolerant genetically modified plants, it is a prereq-
uisite to figure out how plants respond and adapt to heat stress and to characterize 
and identify novel heat stress-related genes. Heat stress (HS) can affect almost all 
aspects of plant processes such as germination, growth, development, reproduction, 
and yield, particularly by disturbing metabolic homeostasis, protein folding and 
processing capacity. In response to this challenge, plants utilize pathways/molecular 
mechanisms in complex and diverse systems, including photosynthetic metabolism, 
chaperones, signal transduction, epigenetic regulation, hormone signaling, lipid 
biosynthesis, plant growth regulation and additional intracellular actions. This 
radius of influence has allowed the development of a wide variety of strategies for 
the improvement of thermotolerance enhanced crop plants using genetic engineering 
approaches. Previous parts of the chapter presented that heat stress proteins (HSPs), 
heat stress factors (HSFs), transcription factors, osmoprotectants, ROS scaveng-
ing enzymes, and miRNAs are vital players in the plant’s response to heat stress. In 
addition to all these responses, numerous studies have been reported to increase 
thermotolerance of plants by transferring genes that play a key role in plant metabo-
lism to heat sensitive plants. Among these genes involved in stress management, 
genes encoding energy-dependent proteases, intramembrane proteases, calcium-
dependent protein kinases, methyltransferases responsible for histone methylation, 
rubisco-related enzymes involved in carbon assimilation, enzymes involved in RNA 
metabolism, proteins acting as transcriptional regulators, molecular chaperones such 
as disulfide isomerases, 14-3-3 and DnaJ-like proteins, phytohormones, proteins 
participated in metal hemostasis, the ubiquitin-proteasome system, carotenoid and 
flavonoid accumulation, and late embryogenesis abundant proteins come to the fore-
front as an effective targets. Table 6 summarizes the recent progress of transgenic 
approach regarding miscellaneous targets to improve heat stress tolerance in crop and 
model plants.
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3. Conclusions

Proteins undertake important structural and functional properties in cells. Among 
all abiotic stress factors, heat affects biological activity of proteins more directly by 
leading to aggregation and/or misfolding. HSPs constitute the frontal zone of defense 
against heat stress-induced accumulation of aggregated/misfolded proteins which 
may induce heat shock responses (HSR) in plant cells. Hsps are main targets for gene 
transfer approaches due to their chaperone roles to co-operate functional networks 
as well as re-solubilization roles for the recovery phase of aggregated/misfolded 
proteins. Along with the definite evidence to succession of HSP gene transfer-related 
thermotolerance, osmolytes as members of non-enzymatic antioxidative system 
contribute to the process through habilitating cellular environment to more reductive 
state due to higher energy status. Hence, by binding to the cellular proteins, they pro-
tect them from denaturation/aggregation. Likewise, enzymatic antioxidant systems 
as cell detoxification components undertake the major role in regulation of reductive 
cellular environment and minimizing the loss of active proteins. Besides, classifica-
tion and association of different HSFs and HSPs as functional candidates in heat stress 
tolerance and other developmental pathways are extremely crucial. Even though 
structural and functional association of Hsps/Hsfs have been widely established, 
they are still not mainstream targets in crop plant applications against heat stress. 
However, applicability is improving impetuously. On the other hand, transgenic 
approaches in heat stress tolerance through miRNAs in plants mainly involve model 
plants such as Arabidopsis or rice at present. Moreover, stress and species-specific 
miRNAs still require further discovery. A large number of miRNAs and their target 
genes related to heat stress have not been discovered yet. Since individual miRNAs 
may also play multiple roles in other various development regulatory pathways and 
biotic and/or abiotic stresses as well as heat, it is necessary to explore new miRNAs, 
reveal their target genes, and further evaluate the miRNA-mediated regulatory net-
works before announcing them as designated targets. Other than protecting protein 
stability, it is also a viable approach to sustain cellular membranes as their fluidity is 
vital to maintain cell volume. The physical state of the cellular membranes influences 
gene expression by initiating signal transduction. Altering membrane structures can 
also affect interactions of membrane lipids with proteins. Hereby, we can conclude 
transgenic approaches may still offer vast number of opportunities to heat stress tol-
erance area as in recent years we can follow miscellaneous novel targets from photo-
synthetic machinery to signal transduction cascades, despite the fact that there is still 
no biotech/GM crop events that have been approved for commercialization/planting 
and importation (food and feed) in International Service for the Acquisition of Agri-
biotech Applications (ISAAA) GM Approval Database for heat stress tolerance.
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Abstract

Environment fluctuations have become the greatest threat to global food  security. 
Of various abiotic stress factors, aridity hampers the most yield contributing attributes. 
In the context of agriculture, term “aridity” refers to a protracted period of insufficient 
precipitation, having detrimental influence on crop development and overall biological 
output. A sustained drought has considerable negative effects on crops and livestock, 
including the reduced production, destruction of property, and livestock sell-offs. 
Consequently, plants themself exert various kinds of defensive mechanisms to combat 
the ill effects of climate change. For example, plants with small leaves, benefit from 
aridity as part of their strategy for modifying the soil to water shortages and nutri-
ent restrictions. Furthermore, low genetic diversity among significant crop species, 
together with ecological productivity limits, must be addressed in order to adapt crops 
to episodic drought spells in the coming days. A deeper understanding of the molecular 
and genetic underpinnings of the most important intrinsic adaptation responses to 
drought stress seems to be beneficial for gene engineering as well as gene-based expres-
sion investigations in plant systems under hostile environment. Recently, molecular 
markers and “omics” have opened a huge opportunity to identify and develop specific 
gene constructs governing plant adaptation to environmental stress.

Keywords: environment, aridity, drought, molecular markers, omics

1. Introduction

The ability to produce enough food for an endlessly expanding population is a key 
issue for mankind in the twenty-first century [1]. Currently, the scenario has been more 
difficult by the loss of arable farmland brought on by human habitation, the deteriora-
tion of the soil, and a range of environmental conditions, such as flooding, drought, 
salinity, temperature, and heavy metal pollution [2]. Eventually, accumulation of 
osmolytes at cellular level, modification of water flow, and scavenging of reactive oxy-
gen species are some of the most frequent and well-documented adaptations that plants, 
which are sessile, have developed to recognize and respond to stress situations [3].
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Environmental stress known as abiotic stress restricts plant growth and metabo-
lism. Abiotic stressors are thought to diminish major food and cash crop yields and 
output by more than 50% [4]. Abiotic pressures may be divided into two categories: 
above- and below-ground abiotic stresses. Abiotic strains that are atmospherically 
produced come from the atmosphere, whereas abiotic stresses that are edaphic come 
from the soil [5]. In regions where climatic variability and precipitation patterns alter 
with extended periods of drought interspersed with spells of copious rainfall, abiotic 
stressors of atmospheric origin are prevalent [6]. On the other hand, anthropogenic 
activities such as the use of brackish water and sewage water for irrigation, sewage 
sludge for fertilisation, and inorganic chemicals for fumigation may result in abiotic 
pressures of edaphic origin. This issue is frequently made worse by inadequate waste 
management procedures, the weathering of local rocks, and subpar cultural practises 
that have rendered vast tracts of land unsuitable for agricultural development [7].

Aridity has a significant impact on community structure as well as ecological 
exploits, including primary productivity and nutrient cycling, by acting as a powerful 
environmental filter for plant survival, growth, and development [8]. For instance, 
plants with tiny leaves benefit from aridity as part of their strategy for adjusting the 
soil to water shortfalls and nutrient constraints. Plants adapt to their environment 
and develop an ideal phenotype, producing a set of adaptation tactics at both the 
collective and individual levels.

2. Relevance of plant-water kinship in agriculture

Water is the most abundant material in any living entities across the globe. The 
weight of water contained in a plant is usually four to five times the total weight of 
dry matter [9]. Inside a plant body, about 80–90% of cell mass is comprised of water. 
Plants absorb water from soil through their roots and other parts in the way of vascu-
lar system. Xylem tissues of plant vascular system play a crucial role in the movement 
of water containing essential elements from roots to the shoot. Water supply through 
cells by diffusion alone is not enough to maintain the hydration of a perspiring canopy 
plant. The necessity for a vascular system becomes more apparent while studying 
the hydraulic dynamic of a tree on a hot day, which requires a massive flow of water. 
Water transport through xylem is over a million times more efficient than water trans-
port through plasmodesmata of parenchyma. Several theories have been proposed to 
explain the mechanism of movement of water into xylem against the concentration 
gradient. The cohesion-tension theory, proposed by Boehm, Dixon and Joly (1894) in 
the late 19th century is thought to be the most appropriate tenet to explain the mecha-
nism of upward movement of water. According to this theory, the water evaporated 
from leaf surface establishes a tensile strength in the xylem, where the hydrogen 
bonds provide a continuous intermolecular attraction (cohesion) between the water 
molecules from the leaf to the root. Thus, the water column in the xylem lumen is 
driven out of a region with a higher water potential, i.e., from the root and the stem, to 
a region with a lower water potential, as the leaves, and finally toward the air that can 
reach very low water potential. Once water reaches the xylem, it enters conducting 
elements of either conifer tracheid or angiosperm vessels, and flows upwards through 
the stem to the leaves. The conduit diameter of xylem gets smaller and tapered with 
plant height, indicating the widening aspect of xylem anatomy from apex to the base 
of plant. Plants that have an increased number of xylem conduits per cross-sectional 
area can maintain hydraulic conductance by reducing effects of path length [10].
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Droughts can be classified as meteorological, agricultural, hydrological, or socio-
economic, according to the American Meteorological Society (1997). Precipitation 
deficits can be used to categories meteorological droughts, and these crises can 
develop in other categories of droughts. Agricultural drought focusing on precipita-
tion shortages, discrepancies between actual and potential evapotranspiration, 
inadequate soil water, and lower reservoir levels. A lack of water in the hydrological 
system is referred to as a “hydrological drought,” which is characterised by reduced 
river flow as well as declining dam, lake, and subsurface water levels on a basin-scale. 
Economic, social, and environmental harm brought on by many sorts of droughts 
refers to what is meant by socioeconomic droughts [11]. There is limited clarity over 
the metrics that better reflect the effects of drought on the environment and society.

Agriculture is a key activity of human being since it provides basic needs and water is 
a critical input for agriculture production. Several factors pose significant risk to farms 
leading to yield reduction like limited water condition. A limited water availability 
leading to drought, increased diseases and pest incidence and extreme weather events 
at local to regional scale. Limited water availability accounts for about 30–70% loss of 
productivity. It also results in abnormal metabolism that may reduce plant growth or 
cause the death of plant. Water stress is one of the most detrimental factors seriously 
affecting the growth and production of many plants mostly during the flowering 
phases. Under the exposure of severe water crisis, significant diminution in the major 
growth attributing characters including number of leaves, leaf area, stem length is very 
often in various plants. Furthermore, the crop yield and productivity are also found to 
be affected severely under water stress. The damaging effects on plants are associated 
with oxidative damage in the plant cells are commonly realised by elevated lipid per-
oxidation, reactive oxygen species (ROS) accumulation, and electrolyte leakage. Under 
usual conditions, ROS exist in plant organelles, mainly mitochondria, chloroplasts, 
and peroxisomes, while under stressful conditions such as drought, ROS levels increase 
resulting in lipid peroxidation and proteins degradation [12]. Also, biological yield and 
physiological characters such as stem length, number of leaves, leaf area, relative water 
content, and chlorophyll concentration as well as overall biological yield are decreased 
under stress condition in many plants [13]. Drought during blossoming is frequently 
associated with infertility [14], owing to a reduction in assimilating flow to the develop-
ing ear. Drought stress can significantly reduce production in important field crops by 
prolonging the anthesis period and delaying grain filling [15]. Numerous factors could 
explain the decline in yield, including decreased photosynthesis, inefficient flag leaf 
formation, uneven assimilate portioning, and a depleted pool of critical biosynthesis 
enzymes such as starch synthase, sucrose synthase, starch enzymes, and α-amylase.

3.  Impact of water stress: physiological and biochemical alterations in 
plants

Agriculture output is gradually been threatened every year due to drought stress. 
Drought proves an obtrusive climatic factor for agriculture, livestock and climate. 
Climate change led to increased temperature and varied environmental conditions 
globally. So, we need plant varieties that are adapted to these environmental condi-
tions specially drought stress. Water is crucial for plant survival and responsible for 
various biological, physical and biochemical activities of plant system. Influence of 
drought desperately hampers plant functioning and limits plant growth at various 
development stages. Water deficit conditions alter many metabolic activities in plants 



Abiotic Stress in Plants – Adaptations to Climate Change

158

like reduced photosynthetic rate, increased reactive oxygen species (ROS) accumula-
tion, and production of plant secondary metabolites etc.

3.1 Influence of water tension on plant adaptation at physiological level

The ever-changing nature of mercurial environment has forced the higher group 
of plants to develop a variety of intrinsic tactics at morphological, physiological 
(Figure 1), biochemical, and molecular levels for survival especially at limited water 
conditions. On the other hand, some plant species avoid water shortage circumstances 
by finishing their life cycle, for instance, before or after a drought period, while 
others showed adaptations to increase water absorption and minimise water loss to 
prevent its negative effects [15]. For example, Phedimus aizoon L., which was observed 
to respond the severity of drought stress by accelerated root system, thickened the 
waxy layer of leaf surface and closure of stomata for making sure of maximum water 
retention [16]. Under extreme arid conditions, the xerophyte Zygophyllum xanthoxy-
lum is surprisingly found to accumulate ample amounts of Na+ ions, coming from the 
soils they thrive on. The primary role of accumulated Na+ in Z. xanthoxylum has been 
attributed to their ability to drastically reduce the osmotic potential of leaves, which 
enhances their ability to absorb water during drought spells [17]. Reaumuria soongorica 
shows specific characteristics during the process of adapting to desertification, such as 
an incredibly thick cuticle, hollow stomata, specialised leaf shape, deep root system, 
and efficient physiological mechanisms like a decreased transpiration rate, increased 
water use efficiency, and maintaining stem vigour to survive desiccation by leaf 
abscission [18].

Figure 1. 
Plausible alterations in plant physiognomy under drought stress.
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3.1.1 Root modification

The soil provides nutrients and water to roots. As a result, the morphological and 
physiological traits of roots greatly influence the growth of shoots and overall produc-
tion [19]. Plants attempt to extract water from deeper soil layers when there is a water 
shortage by strengthening their root architecture. In addition, roots are the primary 
organ that detects the presence of water, and control key aspects of plant growth and 
development [20]. In comparison with plants with shallow roots, those with deep root 
systems and perennial growth patterns demonstrated greater drought tolerance [21]. 
In addition to increasing the amount of soil that may be investigated for water and the 
surface area of roots in contact with moisture, roots with small diameters and long 
specific root lengths also boost hydraulic conductivity by lowering the apoplastic bar-
rier to water entering the xylem. Additionally, decrease in root diameter also attribute 
the enhancement of water access and increases the productivity of plants under water 
stress. An examination of the root system of marigolds revealed a sharp decrease in 
the meta-xylem area (Tagetes erecta L.). Reducing the diameter of the meta-xylem 
vessels reduced embolism risk and improved water flow. Increased meta-xylem area 
is related to the flow of minerals and water and necessary for the growth of cortical 
parenchyma [22]. According to reports, the mechanism for drought tolerance in 
winter wheat, is supported by development of a deep root system, whereas a well-
branched (albeit shallow) root system is found in spring wheat [23].

There are three alternative strategies to confer drought resistivity, viz., drought 
escape, drought avoidance, and drought tolerance. Each of these tactics could develop 
into a constitutive reaction that happens independently of environmental cues such 
as water deficit. Drought tolerance and drought avoidance are the major strategies 
of plants against water deficit stress. The ability of a plant to withstand a dry envi-
ronment through a variety of physiological processes, such as osmotic adjustment 
using osmoprotectants, is known as drought tolerance [24]. The continuation of 
physiological functions including stomata regulation, and root system development 
even at the period of prolonged dry spell is known as drought avoidance. The ability 
to adjust short life cycle to avoid drought stress is known as drought resistance [25]. 
The root system plays a crucial part in the plant’s response to drought stress and may 
be the first organ to detect it. Shorter roots are less suited to drought tolerance than 
longer roots. Drought stress results in a significant reduction in the number of roots, 
as shown by Helichrysum petiolare [26]. Drought tolerant adaptive characters of plant 
roots including long roots, high density, and intense root system. Long roots with 
a high density are necessary for plants to retain performance when water is scarce, 
especially when the water is deeper. Factually, more roots may come into contact with 
more water vapours in the soil, and a denser root system absorbs comparatively more 
water than thinner ones [27].

3.1.2 Leaf modification

The majority of photosynthetic products are produced primarily in the leaf, which 
is the main portion of the plant. When Andrographis paniculate was subjected to 
water stress, precocious leaf fall was found [28]. Reduced leaf area due to water stress 
results in less photosynthesis, which lowers crop output. In order to achieve stability 
between the water received by roots and the water status in different plant parts, 
leaf area was found to be decreased in Petroselinum crispum and Stevia rabaudiana at 
limited water conditions [29]. Reducing leaf area is a method for avoiding drought 
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because it reduces the amount of water lost by transpiration. This reduction in leaf 
area is due to the suppression of leaf growth caused by a decline in cell division, 
which causes a loss in cell turgidity [30]. Reduced leaf area is probably a fundamental 
element of the drought resistance strategy used by eucalypts, and it might be more 
beneficial to survival than any physiological changes that have been observed [31].

The decline in leaf water potential is typically followed by the rolling of the leaves. 
Reduced leaf rolling, which occurs in plants with high osmotic adjustment, is thought 
to indicate that the plant is avoiding desiccation to a larger extent through a deep root 
system [32].

In addition, thick epidermis with large epidermal cells in plants also comes under 
the potential strategy of plant drought tolerance. Epidermal tissue thickness offers 
higher resistance of plants to water loss from root surface under arid climate [33].

With the application of the drought hardening treatment, the stomatal density of 
potato seedling leaves dramatically increased while the leaf area, stomatal size, and 
stomatal aperture decreased. These changes led to reduced leaf transpiration rate and 
improved water utilisation efficiency (WUE). The drought resistance of the potato 
seedlings that had undergone drought hardening was also enhanced by the alterations 
in leaf microstructure [34].

An intensive study on leaf trichomes in Caragana korshinskii has revealed that 
leaf trichomes are important structures on epidermis which uptake the dew from 
outer environment that assist in sustaining the leaf hydraulic assimilation system 
and mitigate the adverse effects of drought stress [35]. The outermost layer of 
defence against abiotic stress on plants is called cuticular wax. It was found that 
compared to healthy plants, sunflower genotypes exposed to drought stress had 
increased wax loads [36].

3.2 Influence of water tension on plant adaptation at biochemical level

3.2.1 Photosynthesis

A severe drought results in decrease or suppression of photosynthesis. Increased 
stomatal closure, reduced leaf area, and consequent reduced leaf cooling by 
evapotranspiration leading to damages to the photosynthetic apparatus contribute 
as the major obstacles for photosynthesis [37]. Decline in CO2 conductance via 
reduced stomatal activity enhances diffusive resistance and other vital metabolic 
processes [38]. Loss of CO2 uptake, affect Rubisco activity and decrease the func-
tion of nitrate reductase and sucrose phosphate synthase and the ability for ribulose 
bisphosphate (RuBP) production [39]. The closing of stomata, restriction of gas 
exchange, degraded photosynthetic apparatus, primarily PSI and PSII, and increased 
metabolite fluxes are all factors that also contribute to reduced photosynthesis [40]. 
Drought induced water loss affects the activity of photosynthesis-related enzymes, 
causing the photosynthetic device to malfunction and resulting in the poor execu-
tion of metabolic processes [14]. Reduction in photosynthesis attributed to increased 
metabolite fluxes result in the production reactive oxygen species, which impede cell 
growth by causing oxidative stress [41]. Extreme water limitations substantially hin-
der the rate of CO2 uptake and the photosynthetic system in cedar seedlings (Cedrus 
atlantica and Cedrus libani). The chlorophyll content, net photosynthesis, potential 
yield of the photochemical reaction of PSII and stomatal conductance of Atractylodes 
lancea shown persistent negative trends as the length of drought stress treatment 
increased [42].
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3.2.2 Mineral nutrition

Water deficit situations usually lessen the ion content in various plant tissues by 
reducing the overall soil nutrient accessibility and root nutrient translocation [43]. 
Water stress conditions decreased plant potassium (K) uptake [44]. Reduced K 
mobility, declined transpiration rate and weakened action of root membrane trans-
porters [44, 45]. Decrease in K level in leaves due to disrupted stomatal dynamism 
as well as irregular guard cell turgidity, also restricts the rate of photosynthesis and, 
backpedal the plant biomass production [46]. K transporters were inhibited by water 
stress conditions [47] and inner K channels were stimulated by a protein kinase, 
CIPK23, which in turn cooperates with calcium sensors (calcineurin B). This K chan-
nel was inhibited in roots but activated in leaves of grapevine [48]. K level decreased 
in Ocimum basilicum and Ocimum americanum plants subjected to limited water 
availability [49].

Leaf nitrogen (N) content did not change under drought-stress in Mentha piperita, 
Salvia lavandulifolia, Salvia sclarea and Thymus capitatus, whereas, in Lavandula 
latifolia and Thymus mastichina plants, reduced N level were observed. While leaf 
phosphorus (P) level reduced in all species except S. sclarea whose concentration 
remained the same [50]. Reduced N level and decline in K level in Thymus daenensis 
was considered as the main responsible factor for photosynthesis decline and leaf 
senescence under water deficit conditions [51]. Water deficit conditions increased the 
accumulation of manganese (Mn), molybdenum (Mo), P, K, copper (Cu), calcium 
(Ca) and zinc (Zn) in soybean [52].

3.2.3 Antioxidant defence system

Plants defensive system prevents the unwanted exposure of extraneous physical 
and biological agents which harm the plant body. In this context, a prompt, powerful 
and efficient antioxidant system is of pivotal importance to provide drought tolerance 
[53]. This system involves enzymatic and non-enzymatic detoxification moieties, 
which lessen and repair injury triggered by ROS. Antioxidant defence system helps in 
ROS scavenging that decreases electrolyte leakage and lipid peroxidation, therefore 
maintaining the vitality and integrity of organelles and cell membrane [54].

It is well established that drought induces oxidative stress by generating ROS, for 
instance O2

•, hydroxyl radicals (OH•), singlet oxygen (1O2) and H2O2 [55]. Numerous 
studies conducted under water stress conditions found enhanced activities of pivotal 
antioxidant enzymes, namely CAT, SOD, POD and APX [56]. Usually, an enhanced 
antioxidant enzymes activity is observed in stress tolerant genotypes as compared to 
non-tolerant plants.

Antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and 
catalase (CAT) significantly involve in the production of antioxidants such as O2•- 
and H2O2 [57]. Ascorbate peroxidase (APX) also participates as ROS scavenger. APX 
mainly occurs in the chloroplast and cytoplasm and is a crucial enzyme for scavenging 
H2O2 in chloroplasts which convert H2O2 to H2O), and its activity is usually elevated 
under stress conditions. APX mainly occurs in the chloroplast and cytoplasm and is a 
crucial enzyme for scavenging H2O2 in chloroplasts [58].

Enzymatic activities of SOD, CAT and POD were stimulated by limited water 
availability in Vicia faba [59]. The amount of enzymatic and non-enzymatic antioxi-
dants was improved in drought tolerant plants under mild and moderate water deficit 
conditions. CAT, SOD, POD and APX activities indicating that improved functioning 
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of these enzymes helps to lower the level of ROS and mitigate the drought generated 
oxidative stress [60]. Water deficit boosted the levels of SOD and POD levels of these 
enzymes which stimulate tolerance against drought stress and are vital to reduce its 
adverse effects [61].

3.2.4 Secondary metabolites

Plants produce some chemical compounds in response to various environmental 
stresses, called secondary metabolites [62]. Biosynthesis of secondary metabolites 
(SMs) is regulated by environmental factors, such as temperature, light regime and 
nutrient availability. In this context, the drought stress signals induce systemic SM 
biosynthesis such as terpenes, alkaloids, and phenolic complexes to protect the plant 
system from oxidative stress [63]. On the order hand, high temperatures can also 
induce changes in SM biosynthesis. For example, heat stress has shown that isoprene 
levels increase; this biosynthesis is energetically costly for the plant, but these SM 
protect the cell membrane against oxidative stress, showing physiological benefits 
that far outweigh their energetic cost. Improved production of secondary metabolites 
is usually observed under water deficit conditions, which is caused by reduction in 
biomass formation and destination of assimilated CO2 to C-based secondary metabo-
lites to avoid sugar-promoted feedback of photosynthesis.

4. Molecular symphony of plant adaptation: innate shield to aridity

The intrinsic ability of plant system to respond against drought stress involves a 
complex cascade of highly regulated genes and signal transduction pathways. Under 
drought prone conditions, competent stimuli are perceived and captured by unchar-
acterized membrane sensors, and the signals are then passed down through multiple 
signal transduction pathways, resulting in the expression of drought-responsive genes 
and drought adaptation. Secondary messengers (such as Ca2+, ROS, phosphoglycerol, 
ABA, and diacylglycerol) and transcriptional regulators all play important roles in 
signalling pathways.

Drought stress increase ABA accumulation in plants, and exogenous ABA applica-
tion, such as gene induction, can have similar effects to osmotic stress. According 
to Mittler and Blumwald (2015), drought causes the production of ABA in roots, 
which is then transferred to the shoots and causes stomatal closure, ultimately limit-
ing development [64]. Additionally, ABA is produced in leaf cells and distributed 
throughout the plant. According to recent data, xylem/apoplastic pH affects ABA 
compartmentation, which in turn affects the quantity of ABA that reaches stomata. 
As a result of less ABA being removed from the xylem and leaf apoplast to the sym-
plast in drought-stressed plants (a process known as alkaline trapping of ABA), more 
ABA reaches the guard cells, allowing for the modulation of stomatal aperture in 
response to various environmental factors.

Transcription factors are early genes that are activated within minutes of being 
stressed. Some of the gene families including RD29A contains both ABRE and DRE/
CRT elements [65]. The RD29A gene has served as a model for both ABA-dependent 
and ABA-independent gene regulation. Although ABA does not activate the DRE 
element, it is required for the DRE to be fully activated by osmotic stress.

Both cis-acting and trans-acting regulatory elements involved in drought-
induced ABA-independent/ ABA-responsive gene expression have been thoroughly 
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investigated at the molecular level [66]. Several drought-inducible genes, on the 
other hand, do not respond to ABA treatment, implying the existence of an ABA-
independent pathway during the dehydration stress response. Exogenous ABA 
treatment increases the expression of many osmotic stress inducible genes. ABRE is 
a key cis-acting element in ABA responsive gene expression. Two ABRE motifs are 
critical cis-acting elements that regulate RD29B-mediated ABA responsive expression 
[67]. ABA up-regulates three members of the AREB/ABF subfamily, AREB1, AREB2, 
and ABF3, and their full activation requires ABA. The triple mutant areb1 areb2 abf3 
exhibits increased ABA resistance and decreased drought tolerance, indicating that 
the three factors co-ordinately govern ABRE-dependent gene expression under water 
stress conditions. Involvement of ABA in drought responsive system has been well 
depicted in the Figure 2.

Some ROS genes have been used to create drought-tolerant plants. The formation 
of ROS, also referred to as the “oxidative burst,” is a primary defence response of 
plants to water stress and serves as a secondary messenger to start additional defence 
responses in plants [68]. Overexpression of a pea manganese superoxide dismutase 
(MnSOD) gene in rice chloroplasts under the control of an oxidative stress-inducible 
promoter SWPA2 improved transgenic rice drought tolerance. Cytosolic APX1 has 
been shown to play an important role in the response to a combination of drought and 
heat stress.

Multiple mechanisms increase ROS generation when there is a drought stress. The 
Mehler process leaks more electrons to O2 when photosynthesis is occurring. One of 
the main risks to the chloroplast during a drought is the Fenton reaction’s creation of 
the hydroxyl radical in the thylakoids. Since it has the strongest oxidising potential 

Figure 2. 
Two intrinsic immune strategies in plant system for survival against aridity. ABA: Abscisic acid; ABRE: ABA-
responsive element; DRE/CRT: Dehydration-responsive element/C-repeat; bZIP: Basic-leucine zipper.
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and the shortest half-life, the hydroxyl radical is the ROS that reacts with the majority 
of biological molecules.

LEA proteins are expressed at specific stages of late embryonic development and 
play critical roles in desiccation tolerance by capturing water, stabilising and protect-
ing protein and membrane structure and function, and acting as molecular chaperons 
and hydrophilic solutes to protect cells from water stress damage [69].

Many transcription factor families, including APETALA2/Ethylene-responsive 
element binding protein (AP2/EREBP), basic leucine zipper (bZIP), MYB, NAM-
ATAF1/2-CUC2 (NAC), and zinc finger, have been implicated in drought responses 
(as shown in Figure 3). Zinc finger proteins (bZIPs), a big family with 75 members 
identified in the Arabidopsis genome, are among the transcription factors depen-
dent on ABA. Two basic leucine zipper (bZIP) transcription factors that are ABA-
responsive element-binding proteins/factors (AREBs/ABFs) best known for their 
roles in ABRE-dependent ABA signalling during drought stress. The ABA-responsive 

Figure 3. 
Schematic diagram showing genetic cross-talk as an important part of drought responsive system in plants.
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elements-binding (AREB) proteins react to drought at the transcriptional and 
post-transcriptional level, enhancing tolerance to drought stress. AREB/ABF, bind to 
ABRE and activate ABA-dependent gene expression [67]. The AREB/ABF proteins 
require an ABA-mediated signal to be activated, as evidenced by their decreased 
activity in Arabidopsis ABA deficient aba2 and ABA insensitive eabi1 mutants and 
increased activity in Arabidopsis ABA hypersensitive era1 mutant [66]. Several rice 
bZIP proteins, including OsbZIP23 and the constitutive active form of OsbZIP46, 
have also been identified as having a high potential for improving rice drought 
resistance [70, 71].

In transgenic petunia, constitutive over-expression of a Cys2/His2 (C2H2)-type 
zinc finger protein encoding the ZPT2-3 gene improved tolerance to dehydration 
stress. DST, another zinc finer protein, has been shown to act as a negative regula-
tor of drought and salt tolerance in rice by controlling the genes involved in H2O2-
mediated stomatal movement. ATGPX3, a gene encoding an Arabidopsis thaliana 
glutathione peroxidase, was discovered to function as a scavenger and an oxidative 
signal transducer in ABA and drought stress signalling, as well as a key player in H2O2 
homeostasis [72]. Several other genes, including OsSKIPa and OsSRO1c, have been 
shown to modulate drought resistance in plants by controlling ROS metabolism and 
regulating ROS homeostasis.

Numerous factors including heat-shock proteins, and other key enzymes involved 
in protein folding make up the most prevalent functional group of proteins respond-
ing to drought. Additionally, in order to generate drought-tolerant crop plants, 
aquaporin proteins could be used as possible targets. In Arabidopsis, constitutive 
over-expression of the aquaporin gene GoPIP1 enhanced the rosette/root ratio while 
lowering drought resistance due to stunted development. It was discovered that the 
expression of stress-responsive genes, particularly genes of a large set of antioxidant 
enzymes that directly affect water stress-related traits in rice, was regulated by the 
plant-specific protein OsGRAS23.

Numerous candidate genes identified through mutant screening or expression pro-
filing studies have been studied further for their roles in drought response. Regulatory 
proteins have been shown to play critical roles in plant responses to drought stress. 
Protein phosphorylation and dephosphorylation are common events in plants caused 
by drought stress. Several kinases have been implicated in drought response, includ-
ing calcium dependent protein kinases (CDPKs), CBL (calcineurin B-like) interacting 
protein kinase (CIPK), mitogen-activated protein kinases (MAPKs), and sucrose 
nonfermenting protein (SNF1)-related kinase 2 (SnRK2). In response to drought 
stress, the Arabidopsis CDPK gene CPK10 was found to mediate stomatal movement 
via the ABA and Ca2+ signalling pathways [73].

5. Conclusion

The frequency and severity of agricultural aridity are predicted to increase in the 
near future due to a warming environment. Under intermittent drought situations, it 
will be crucial to provide sustainable agricultural production so that plants can retain 
physiological activities at low plant water status and swiftly recover once the stress is 
eliminated. In this scenario, selection of individuals with better water use efficiency, 
stronger antioxidant defences, and ability to produce important osmolytes as well as 
secondary metabolites seems potential approach to minimise yield loss under limited 
water conditions. Currently, the use of genetically modified agricultural plants to 
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introduce and/or overexpress candidate genes appears to be a promising alternative 
for accelerating the breeding of improved adaptable and high-yielding crop geno-
types. The introduction of genomic technology and gene mapping methods like as 
genome-wide association studies (GWAS) and precision genome editing with the 
CRISPR/Cas9 system has aided in the development of alleles that can increase plant 
yield and performance under a variety of conditions. The sincere research of drought 
response networks that may be targeted by diverse strategies has currently been 
possible by molecular studies that combine tissue- or cell-specific promoters with live 
imaging methods for real-time monitoring of cellular processes. In addition, trans- 
and multidisciplinary research is urgently required to develop pertinent answers 
for all the environmental issues affecting agricultural yields and guaranteeing food 
security. Together, research projects targeted at revealing the physiology of plant 
responses to water scarcity in model systems and employing innovative discoveries to 
agriculture are believed to find out some effective avenue to deal with aridity.
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Abstract

Plants are under the threat of climatic changes and there is a reduction in 
productivity and deterioration in quality. The application of nanoparticles is one 
of the recent approaches to improve plant yield and quality traits. A number of 
nanoparticles, such as zinc nanoparticles (ZnO NPs), iron nanoparticles (Fe2O3 
NPs), silicon nanoparticles (SiO2 NPs), cerium nanoparticles (CeO2 NPs), silver 
nanoparticles (Ag NPs), titanium dioxide nanoparticles (TiO2 NPs), and carbon 
nanoparticles (C NPs), have been reported in different plant species to play a 
role to improve the plant physiology and metabolic pathways under environmen-
tal stresses. Crop plants readily absorb the nanoparticles through the cellular 
machinery of different tissues and organs to take part in metabolic and growth 
processes. Nanoparticles promote the activity of a range of antioxidant enzymes, 
including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in 
plant species, which in turn improve the growth and development under stressful 
conditions. The present review focuses on the mode of action and signaling of 
nanoparticles to the plant systems and their positive impact on growth, develop-
ment, and ROS scavenging potential. The appropriate elucidation on mechanisms 
of nanoparticles in plants leads to better growth and yields under stress conditions, 
which will ultimately lead to increased agricultural production.

Keywords: agriculture, climatic challenges, crop development, food security, 
nanotechnology

1. Introduction

Population of the globe is rising and is predicted to reach almost 9.6 billion by the 
year 2050. Sustained growth of 70–100% in global agricultural and food production is 
essential to feed the growing population [1]. The area under cultivation may shrink over 
time due to the increasing nonagricultural uses of the land and urbanization, making it 
difficult to increase agricultural production [2]. Plants are constantly exposed to envi-
ronmental changes during their life cycle. Deteriorating soil health conditions inevi-
tably have a detrimental impact on plant development and productivity [3]. Billions 
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of dollars worth of crops are being destroyed each year due to abiotic stresses, such as 
salinity and drought. Prior to the advent of efficient selection techniques, conventional 
breeding was used to maintain agricultural productivity, but its effectiveness was 
constrained by the diversity of stress tolerance traits [2]. Determining innovative solu-
tions to reduce abiotic stress challenges and maintain food security is therefore urgently 
required under these deteriorating environmental conditions [1] as most promising 
approach currently available is nanotechnology.

To improve abiotic stress tolerance in agricultural biosystems, Eric Drexler initially 
coined the term “Nanotechnology” [4]. It deals with the study of nanostructures that 
possess diverse physicochemical properties and biochemical activities that are depen-
dent on their surface-to-volume ratio [5]. Different physical, chemical, and biological 
processes can be used to manufacture nanoparticles (NPs), and they can interact with 
plants in a variety of ways [6]. Crop plants readily absorb NPs, which can enter the 
cells and play crucial roles in metabolic and growth processes [7]. There is a surge in 
the use of nanobiotechnology tools in agricultural production that has the potential 
to boost plant metabolism since NPs promote plant growth, development, and yield 
to withstand environmental stresses [8]. Additionally, it has been observed that NPs 
promote the activity of a range of antioxidant enzymes, including catalase (CAT), 
peroxidase (POD), and superoxide dismutase (SOD) [9]. Extensive research revealed 
that NPs are crucial for plants dealing with abiotic stress conditions [10].

Nanobiotechnology will improve plant functions that will help them cope with 
environmental challenges [11]. Therefore, this technology is strongly encouraged due 
to the rising global food demand as well as the potential for positive effects on the 
economy and ecology [12]. Despite its extraordinary potential in the enhancement 
of agricultural productivity and improvement in abiotic stress tolerance, the wider 
application of nanotechnology at the field level is limited in agriculture. In this review 
article, updates on the positive effects of nanotechnology for the improvement of 
abiotic stresses in crops have been discussed in detail.

2. Role of nanoparticles in salinity stress

Salinity has a negative impact on crops in various physiological and biochemical 
processes that decrease crop production drastically [13]. Water scarcity in the soil 
causes low osmotic potential and ionic toxicity of Cl− and Na+ in plant cells [14]. It is 
also seen that salt stress results in decreased concentration of photosynthetic pig-
ments, reduced stomatal flow, lack of efficiency of photosystem II, and increased 
production of ROS.

2.1 Zinc nanoparticles (ZnO NPs)

Salt stress causes chlorophyll concentration leads to membrane disintegration and 
the rate of photosynthesis is significantly decreased. It also causes injury in thylakoid 
and grana that results in limited starch content [15]. Lupine (Luminus termis) was 
protected in saline conditions by priming with ZnO NPs, which enhanced the photo-
synthetic pigments, antioxidant responses, and growth [16]. ZnO NPs treatment also 
increased the antioxidant enzymes in Zea mays [17]. When Abelmoschus esculentus was 
treated with ZnO NPs, it increased the SOD and CAT activities and photosynthetic 
pigment [18]. Canola (Brassica napus) plant treated with ZnO NPs, alleviated the 
harmful effects of salt by upregulating the osmolyte biosynthesis, ionic regulation, 
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and antioxidant system under saline conditions [19]. Gossypium hirsutum plants 
treated with ZnO NPs enhanced the contents of carotenoids, chlorophyll a and b, and 
total chlorophyll under salt stress conditions [20, 21]. When salt-stressed citrus plants 
(Citrus reticulata) were treated with ZnO NPs, it results in decreased accumulation of 
total soluble sugars and proline contents that help in the osmoregulation of plants and 
maintain the growth rate of treated plants [22].

2.2 Iron nanoparticles (Fe2O3 NPs)

Iron oxide nanoparticles are a rich source of Fe for plants. When peppermint 
was exposed to Fe2O3 NPs, proline content, and lipid peroxidation were decreased 
significantly in saline soil. Antioxidant enzyme activities (guaiacol peroxidase, CAT, 
and SOD) declined in plants. They also increased the potassium, zinc, calcium, iron, 
leaf dry and fresh weight, and phosphorus [23]. Grape softwood showed a prominent 
increase in protein content and reduced production of hydrogen peroxide, proline, 
and antioxidant enzyme activities when treated with potassium silicate and Fe2O3 NPs 
[24]. Under salt stress, the application of Fe2O3 NPs on Helianthus annuus increased 
the activities of POD and CAT [25]. Ajowan (Trachyspermum ammi) was treated with 
Fe2O3 NPs under saline conditions increased antioxidant activities, osmolyte syn-
thesis, and maintained Na+/ K+ ratio. These adaptations help plants to improve leaf 
pigments, seed yield, membrane stability, and shoot and root growth [9].

2.3 Silicon nanoparticles (SiO2 NPs)

SiO2 NPs are used to help plants by forming a layer in cell walls and maintaining 
yield. In squash and tomato plants, the antioxidant system is enhanced and seed 
germination increases due to SiO2 NPs under salt stress [26]. In Basil plants, silica 
nanoparticles have shown promising results related to morphological and physiologi-
cal traits under salt stress [27]. SiO2 NPs increased the seedling growth of lentils and 
seed germination and improved the defense mechanism of plants in saline conditions 
[28]. They help plants to cope up with salt stress by increasing the fresh weight in 
maize [29]. Under salt stress, the application of SiO2 NPs on soybean decreased toxic 
ROS production and Na + level in leaves [30]. Wheat cultivars treated with SiO2 NPs 
improved biological antioxidant levels and seedling growth under salt stress [31]. 
Application of SiO2 NPs on the strawberry plant in saline conditions increased the 
photosynthetic pigment and maintained the carotenoid and chlorophyll content, 
decreasing the effect on epicuticular wax [32].

2.4 Cerium nanoparticles (CeO2 NPs)

They can be used as fertilizer to stimulate the growth of roots, enhance the 
antioxidant enzyme activities, and to prevent membrane leakage and peroxidation 
[33]. Moreover, CeO2 NPs help to preserve cell wall and chloroplast structure [34]. 
Activation of CeO2 NPs as antioxidants depends upon the pH of surroundings, sub-cel-
lular localization, surface charge, concentration, and particle size. CeO2 NPs increased 
the growth in Dracocephalum Moldavica (a herbaceous plant also called Moldavian 
balm), by regulating nonenzymatic and enzymatic defense mechanisms under saline 
conditions [35]. Brassica Napus plants treated with CeO2 NPs have efficient chloroplast 
and biomass under salt stress [36]. Anatomical changes, such as low accumulation of 
Na + in roots and high Na + flow toward shoots have also been reported [37].
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2.5 Silver nanoparticles Ag NPs

Silver nanoparticles enhanced the sodium, potassium, and chloride to regulate 
the osmolality level in treated plants under salt stress conditions. The stability of Ag 
NPs can be easily controlled in aquatic environments as compared to soil conditions 
[38]. Priming of seeds was carried out with Ag NPs to enhance the seed germination 
in wheat and the development of tomato plants [39]. The combined effect of Ag NPs 
with NaCl reduced the thiobarbituric acid reactive substances, electrolyte leakage, 
and hydrogen peroxide to control the oxidative damage in plants that is linked with 
the overproduction of ROS [40]. Triticum aestivum treated with Ag NPs increased 
the fresh and dry biomass under saline conditions [41]. Seeds of Pennisetum glaucum 
treated with Ag NPs improved the growth, proline, and relative water content (RWC) 
and decreased the oxidative damage by increasing the antioxidant enzyme activities 
under saline conditions [42].

2.6 Titanium dioxide nanoparticles (TiO2 NPs)

Titanium is a transition element and the 9th most abundant element that contrib-
utes 0.33% of the earth’s outer layer [43]. It improves photosynthesis and chlorophyll 
pigments in plants by altering antioxidant enzyme activities [44]. Titanium has an 
integral role in plants’ tolerance under stressful conditions [45]. Dracocephalum 
moldavica plants were treated with TiO2 NPs improved plant growth, and proline 
content and increased enzymatic activities, soluble sugars, and amino acids under 
salinity stress [46].

Type of NPs Plant species Physiological responses of plants under salt stress References

Zinc NPs 
(ZNO NPs)

Luminus termis Enhanced photosynthetic pigments, antioxidant 
responses, and growth.

[16]

Zea mays Increased antioxidant enzymes and improved salinity 
tolerance.

[17]

Abelmoschus 
esculentus

Increased the activities of CAT and SOD and 
photosynthetic pigments and decreased the 
accumulation of soluble sugar and proline content.

[18]

Brassica napus Ionic regulation, osmolyte synthesis, and upregulated 
oxidative defense system.

[19]

Gossypium 
hirsutum

Enhanced content of carotenoids and chlorophyll a & b. [20]

Citrus reticulata Decreased accumulation of total soluble sugars and 
proline contents, osmoprotectants.

[22]

Iron NPs 
(Fe2O3 NPs)

Mentha piperita Decreasing lipid peroxidation and increase in leaf 
dry and fresh weight, potassium, calcium, iron, 
phosphorus, and zinc contents.

[23]

Grape softwood Increased protein content and reduced production of 
hydrogen peroxide, proline, and antioxidant enzymes.

[24]

Helianthus 
annuus

Increased antioxidant activities. [25]

Trachyspermum 
ammi

Improved osmolyte synthesis, antioxidant activities, 
and improved Na+/ K+ ratio.

[9]
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2.7 Carbon nanoparticles (C NPs)

Carbon nanoparticles have distinctive properties, including morphologically small 
surface area and better chemical reactivity [47]. They help in increasing seed germi-
nation and crop production under salt stress [48]. Application of C NPs on Brassica 

Type of NPs Plant species Physiological responses of plants under salt stress References

Silicon NPs 
(SiO2 NPs)

Tomato and 
squash

Increased ROS and seed germination. Maintained 
vitamin C concentration and chlorophyll content.

[26]

Ocimum 
basilicum

Increasing proline accumulation, antioxidant responses, 
leaf dry and fresh weight, and chlorophyll content.

[27]

Zea mays Boosting defense mechanism by ROS. [29]

Glycine max Decreased ROS, lipid peroxidation, and Na+, increased 
antioxidant activities and K+ content.

[30]

Triticum 
aestivum

Improved chlorophyll content and seed germination. [31]

Fragaria 
ananassa

Maintained carotenoid and chlorophyll content, and 
decreased the effect on epicuticular wax.

[32]

Chitosan Zea mays Increasing chlorophyll content, growth, photosystem II, 
and enhanced nitric oxide bioactivity.

[53]

Cerium NPs 
(CeO2 NPs)

Glycine max Rubisco carboxylase activity stimulates growth and 
increased photosynthesis.

[33]

Dracocephalum 
Moldavica

Increased enzymatic and nonenzymatic defense system. [35]

Brassica napus Efficient chloroplast and increase in biomass. [36]

Silver NPs 
(Ag NPs)

Solanum 
lycopersicum

Increased germination with seed priming. [39]

Triticum 
aestivum

Enhanced dry and fresh biomass of plants. Increased the 
activity of CAT and decreased the activity of POD, and 
increased the accumulation of soluble sugar and proline 
content.

[41]

Pennisetum 
glaucum

Improved proline and RWC, decreased oxidative damage 
by increasing the antioxidant enzyme activities.

[42]

Titanium 
dioxide NPs 
(TiO2NPs)

Dracocephalum 
moldavica

Increased seedling growth, dry and fresh weight, root 
and shoot length. Increased antioxidant activity.

[46]

Carbon NPs 
(C NPs)

Brassica napus Reestablishing ion homeostasis and redox balance. [49]

Ocimum 
basilicum

Increased enzymatic and nonenzymatic defense system, 
increased carotenoid, and chlorophyll content.

[50]

Sophora 
alopecuroides

Increased proline content in roots and leaves, 
photosystem II activity, soluble sugar in leaves, and 
membrane integrity was maintained.

[51]

Triticum aetivum Enhanced phosphorus and potassium contents in root 
and phosphorus content in the shoot. Increased activity 
of antioxidant enzymes. Improved chlorophyll content, 
free ascorbic acid, amino acid, and soluble sugars.

[52]

Table 1. 
Effect of nanoparticles on plants under salinity stress.
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napus increased the NaCl stress tolerance in the plant by reestablishing ion homeosta-
sis and redox balance [49]. When Ocimum basilicum was treated with C NPs increased 
enzymatic and nonenzymatic defense systems, and increased carotenoid and 
chlorophyll content [50]. Proline content in roots and leaves, photosystem II activity, 
soluble sugar in leaves were increased, and membrane integrity was maintained due 
to an increase in unsaturated fatty acid in Sophora alopecuroides C NPs treated plants 
under salt stress [51]. Application of C NPs on Triticum aetivum plants under saline 
conditions enhanced phosphorus and potassium content in roots and phosphorus 
content in shoot and increased the activity of antioxidant enzymes and improved the 
chlorophyll content, free ascorbic acid, amino acid, and soluble sugars [52]. Table 1 
consists of the reports of different scientists who studied the effects of the treatment 
of different nanoparticles on different plant species and their responses to physiologi-
cal levels under salt stress.

3. Role of NPS in drought tolerance

Water crisis is one of the several issues that have been afflicted by climate change 
and global warming. Water is crucial for plant vitality as it has a role in the transpor-
tation of nutrients. Therefore, water deficit results in drought stress, which harshly 
affects the survival of plants and reduces agricultural production [54]. Therefore, 
a key solution in relation to sustainable agriculture is the identification of resistant 
crop varieties or improving drought tolerance in plants. Crop management and 
coping with various environmental challenges are possible by the new features of 
nanotechnology. The negative impacts of a restricted water supply on agriculture 
have been attempted to be reduced utilizing nano-materials. Farmers may be able 
to identify the effects of stress on plants at an early stage by using nano-sensors in 
global positioning systems that produce satellite photographs of fields [55]. Crop 
production in drought-prone locations may rise if soils have been given better water-
retention capabilities [56]. Using nanoparticle-based plant modifications, conven-
tional technologies may be used to improve crop plants by increasing the capacity 
of food crops to retain water, and nanoparticles improve the effectiveness of water 
consumption in the plants [57].

3.1 Silicon nanoparticles (SNPs)

Only a few studies have documented the biological activity of silica, an element 
that makes up a major portion of the Earth’s crust and is found as silicon [58]. The 
tolerance of Hawthorn (Crataegus sp.) plants to drought stress is increased by apply-
ing various concentrations of silica nanoparticles [59]. The findings indicated that 
pretreating SNPs had a favorable impact on the photosynthetic metrics, RWC, malo-
ndialdehyde, membrane electrolyte leakage, as well as the levels of carbohydrate and 
proline. Two Sorghum bicolor cultivars treated with silicon demonstrated enhanced 
drought tolerance by reducing their shoot-to-root ratio, which may have indicated 
enhanced root development and retention of photosynthetic rate. This suggests that 
increasing plant water uptake efficiency will increase resistance to drought [60]. 
Using sodium silicate at 1.0 mM enabled the reduction of the effects of drought stress 
on wheat [61]. Although the precise process is unknown but silicon helps stressed 
plants to boost shoot growth, preserve RWC, and chlorophyll content, and reduce the 
membrane lipid peroxidation.
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3.2 Zinc nanoparticles (ZnO NPs)

Application of Zn plays a role in increasing the radical growth and seed viability 
along with the establishment of germinated seeds, especially in Zinc deficient areas. 
Soybean seeds subjected to water stress showed that nano-zinc oxide has improved 
seed germination [62]. A composite of ZnO, B2O3, and CuO NPs reduced the effects of 
drought stress on soybean [63] and increased grain production and shoot growth by 
36 and 33%, respectively, and improved nitrate and phosphorus uptake. By boosting 
the activity of the antioxidant enzymes SOD and CAT in wheat, ZnO NPs improved 
drought resistance. Zn and Cu NPs also increased the antioxidative enzyme activity, 
decreased lipid peroxidation, stabilized the photosynthetic pigments with increased 
RWC, and enhanced drought tolerance in wheat [64]. CuO and ZnO NPs modified the 
root morphology of plants colonized by Triticum aestivum, a beneficial pseudomonad, 
altering the plants to withstand drought [65]. CuO NPs boosted the production of 
lateral roots in wheat seedlings, and ZnO NPs stimulated the growth of extended root 
hairs proximal to the root tip. Drought stress severely affected eggplant development 
and production [66]. Exogenous ZnO NPs with 50 and 100 ppm, boosted the RWC 
and membrane stability index, improved stem and leaf morphology and better photo-
synthesis in water-stressed eggplant and yield rose by 12.2 and 22.6%, respectively.

3.3 Iron nanoparticles (Fe2O3 NPs)

Iron is a key micronutrient that is essential for plant growth and development and 
its reduction causes chlorosis in plants [67]. Thus, iron absorption in plants expe-
riencing drought stress may play a crucial role in their ability to withstand drought 
[68]. Fe2O3 NPs applied topically to Carthamus tinctorius leaves, reduced the negative 
effects of drought stress while simultaneously promoting yield, growth, and develop-
ment metrics [69]. Plants under drought stress have a substantial impact of Fe2O3 
NPs on the number and weight of seeds, number of bolls yield, and oil percentage in 
cotton. Drought stress in sunflower was significantly reduced by the application of 
maghemite nanoparticles (a member of iron oxide) [70]. The activity of zerovalent 
(nZVI) iron nanoparticles is hypothesized to activate the proton pump ATPase (H+ 
-ATPase) of the plasma membrane in leaves of Arabidopsis thaliana plants, which 
in turn contributes to their ability to withstand drought by increasing the stomatal 
aperture [71]. They retained the drought sensitivity and boosted CO2 uptake, the rate 
of the stomatal opening was accelerated, which in turn increased the plant biomass 
and chlorophyll content [72].

3.4  Titanium nanoparticles (titanium dioxide TiO2 & anatase titanium  
dioxide AnTiO2)

Wheat seed gluten and starch contents have responded favorably for using TiO2 
NPs foliar applications and improved plant height, seed and ear numbers, ear weight, 
gluten and starch content, yield, biomass, and harvest index under drought stress 
[73]. Enhanced photosynthesis and increased the maize plant’s capacity to absorb light 
under water deficit [74]. Applying nanoparticles and Gibberellic acid to basil plants 
effectively enhanced the rate of photosynthesis, enhancing their tolerance to drought 
stress [75]. Various doses and sizes (10–25 nm) of AnTiO2NP on the flax plant under 
water-scarce conditions responded favorably for growth, development, hydrogen 
peroxide (H2O2), malondialdehyde content, seed oil production, protein content, and 
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photosynthetic pigments [76]. The effects of TiO2 NP on onion seedlings have also 
been documented as they boosted SOD activity. TiO2 NP concentrations of 40 and 
50 mg/ml, lowered the CAT and POD activities and secretion of amylase was reduced. 
However, seed germination and seedling growth were reduced at higher concentration 
of TiO2 NPs, whereas the effect was enhanced at lower concentration [77].

Type of NPs Plant species Physiological responses of plants under drought 
stress

References

Silicon NPs 
(SiO2NPs)

Crataegus sp. Positive effects on photosynthesis, malondialdehyde, 
RWC, membrane electrolyte leakage, chlorophyll, 
carotenoid, carbohydrate, and proline content.

[59]

Sorghum bicolor Reduced shoot-to-root ratio, improved root growth 
and the maintenance of photosynthetic rate, 
augmentation of water uptake efficiency, increase in 
leaf area index and leaf weight.

[40]

Triticum aestivum Improved shoot growth, increased the leaf chlorophyll 
content, maintained leaf water potential in stressed 
plants, reduced membrane lipid peroxidation.

[61]

Zinc NPs (ZnO 
NPs)

Glycine max Increased germination, radical growth and seed 
viability, shoot growth and grain yield, and uptake of 
N and P.

[62, 63]

Triticum aestivum Increased antioxidant enzymes, reduced lipid 
peroxidation, stabilized the photosynthetic pigments, 
proliferation of elongated root hairs, and increased 
water stress tolerant gene expression.

[64]

Solanum melongena Increased RWC and MSI, improved stem and leaf 
anatomy, photosynthetic efficiency, growth, and 
yield.

[66]

Iron NPs (Fe2O3 
NPs)

Carthamus tinctorius Improved crop yield at the flowering stage and 
enhanced oil percentage.

[69]

Arabidopsis thaliana Enhanced plasma membrane proton pump ATPase 
activity, plant biomass, chlorophyll content, and CO2 
assimilation.

[71, 72]

Titanium NPs 
(Titanium 
dioxide TiO2

Triticum aestivum Enhancement in seed gluten and starch contents, 
plant height, seed number, and biomass.

[73]

Zea mays Improved sunlight absorbance, synthesis of 
photosynthetic pigments, and photosynthesis.

[74]

Ocimum basilicum Increased plant drought resistance and improve 
photosynthetic mechanism.

[75]

Linum usitatissimum Increased chlorophyll and carotenoids, enhancing flax 
development and yield, declining malondialdehyde 
and H2O2 content.

[76]

Allium cepa Increased SOD activity, seed germination, and 
seedling growth.

[77]

Silver NPs (Ag 
NPs)

Lens culinaris Increased germination rate, root length, root fresh, 
and dry weight.

[68]

Cerium Oxide 
NPs (CeO2 
NPs)

Sorghum bicolor Enhanced catalytic scavenging of ROS, reduced 
O2

− (41%), H2O2 (36%), increased yield, pollen 
germination, and CO2 absorption.

[80]

Table 2. 
Effects of nanoparticles on plants under drought stress.
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3.5 Silver nanoparticles (Ag NPs)

Developing drought-tolerant cultivars and reducing drought stress is essential for 
maintaining food security [78]. Only a small amount of historical literature focused 
on the interaction between drought and Ag NPs. Diminishing the detrimental impacts 
of drought stress on Lens culinaris has been credited to the application of Ag NPs [68]. 
The study indicated that varying PEG and Ag NPs concentrations had a significant 
impact on seed germination, root length, and biomass. Hence, Ag NPs could help to 
reduce water stress that affects plant development and productivity [79].

3.6 Cerium oxide nanoparticles (CeO2 NPs)

Cerium oxide NPs could help Sorghum bicolor to cope with drought stress by 
inducing oxidative stress by catalytically neutralizing ROS and maintaining the pho-
tosynthetic activity and grain yield [80]. The foliar spray of nanoceria dramatically 
decreased free radicals (H2O2 and superoxide) under drought conditions, for instance, 
by 36 and 41%, respectively. ROS-scavenging enzymes were shown to be more active 
in plants exposed to drought: POD (54%), SOD (94%), and CAT (117%). The rate of 
pollen germination, carbon absorption, and seed output per plant was improved by 
38, 31, and 31%, respectively. Different reports summarizing the effects of a number 
of nanoparticles on different plant species and their physiological responses under 
drought stress are discussed in Table 2.

4. Nanoparticles and other environmental stresses

Titanium oxide nanoparticles play a substantial role in the mitigation of light stress 
in crops as they catalyze the oxidation-reduction reaction, which then forms super-
oxide anion radicals and hydroxides. Oxidative stress is induced by ultraviolet (UV) 
light and has a negative impression on the growth of the plant. UV-B produces H2O2 
and superoxide radicals and enhanced the leakage of electrolytes and lipid peroxida-
tion, which leads to reduce the photosynthesis rate and normal leaf structure is also 
deteriorated [81]. In wheat plants, Silicon NPs increase antioxidant activities for the 
regulation of oxidative stress after UV-B exposure [82]. Herbicides are used to control 
weeds in agroecosystems. A methyl viologen herbicide, Paraquat is used extensively 
to control weeds in rice. Multiwall carbon nanotubes can modulate the toxicity of 
Paraquat [50], which promotes lateral root growth and photosynthesis in Arabidopsis 
and protect against the toxicity of Paraquat by lowering its bioavailability and promot-
ing the oxidative-stress-related protein expression and photosynthesis. Therefore, the 
NPs can modulate abiotic stress-induced responses in plant growth at different levels. 
However, their physiochemical, electrical, optical, and biological properties are crucial 
[83]. Plants’ tolerance to low temperature in green beans is increased by the exogenous 
application of Ag NPs [84] as they are used to reduce the oxidative stress in wheat.

5.  Effect of nanoparticles on antioxidant and molecular mechanism  
of plants

Nanoparticles have an impact on plants’ antioxidant system at the molecular level 
as they increase the capability of plants to tolerate oxidative stress. When Brassica 
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juncea plant was treated with silver NPs, antioxidant enzyme activities (CAT, ascor-
bate peroxidase APX and guaiacol peroxidase) were increased which reduced the 
ROS [78]. The antioxidant system of Spirodela polyrhiza plants was activated when 
copper NPs were used to induce the activity of CAT, POD, and SOD. Moreover, 
ROS level also increased remarkably because of malondialdehyde and glutathione 
[85]. When seedlings of Brassica juncea were treated with gold NPs, the activity of 
antioxidant enzymes (guaiacol peroxidase, CAT, glutathione reductase, and APX) 
was significantly increased, in addition to the accumulation of the higher amount of 
proline and hydrogen peroxide. The activity of glutathione reductase was maximum 
at 200 ppm and the activity of other antioxidant enzymes, such as APX and guaiacol 
peroxidase, were also increased at 400 ppm of gold NPs treated plants [86]. When 
roots of kidney beans were exposed to CeO2 NPs for a longer time, then antioxidant 
enzymes’ activities were reduced and soluble protein was increased. While leaves 
treated with CeO2 NPs showed increased activity of guaiacol peroxidase [87]. Plants 
exposed to ZnO NPs increase the Zn and SOD antioxidant enzyme minimizing the 
effect of oxidative stress [88].

The molecular mechanism of plants can be studied by using the model plant 
species. Arabidopsis thaliana treated with AgNPs gene expression analysis done by 
RT-PCR and cDNA microarray analyzed for transcriptome behavior [89] showed 281 
upregulated genes associated with metal and oxidative stress and 80 downregulated 
genes associated with hormonal stimuli and plant defense system. The effect of 
AgNPs on rice has also been studied and some responsive proteins were associated 
with transcription, oxidative stress, protein degradation, cell division, calcium signal-
ing and regulation, and apoptosis [90]. Hence, the effect of different nanoparticles on 
different plant species for the functioning of ROS and antioxidant enzymes has been 
briefed in Table 3.

Type of nanoparticles Plant species Impact on antioxidant system and ROS References

Zinc NPs (ZnO NPs) Solanum 
lycopersicum

Decreased malondialdehyde content and increased 
SOD, CAT, POD, and APX activities under salinity 
stress.

[91]

Silver NPs (Ag NPs) Pennisetum 
glaucum

Significant increase in proline content, antioxidant 
enzyme activities, flavonoid contents, and 
phenolics.

[42]

Titanium NPs 
(Titanium dioxide TiO2

Spinacia oleracea Enhance antioxidant stress tolerance. [92]

Glycine max Enhance antioxidant enzyme activities 
contribute to reduction in hydrogen peroxide and 
malondialdehyde content under salinity.

[45]

Silicon NPs (SiO2NPs) Coriandrum 
sativum

Reduce the detrimental impact of Pb under lead 
stress by altering vitamin C, antioxidant enzyme 
activation, and flavonoids and increase plant 
capabilities to endure abiotic stresses.

[93]

Cerium oxide NPs 
(CeO2 NPs)

Phaseolus vulgaris Scavenge ROS in isolated chloroplasts protect plant 
photosynthesis from detrimental effects Of ROS 
accumulation during abiotic stresses.

[87]

Table 3. 
Effect of nanoparticles on plants for ROS and antioxidant system.
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6. Mechanism of nanoparticle (NPs) absorption in plants

Absorption and translocation of NPs in plants are one of the latest disciplines of 
study. The most commonly used NPs to enhance abiotic stress tolerance in plants are 
metal-based (MB) and carbon-based (CB). Among MB, the most widely studied nano-
materials are metal and metal oxides, such as copper, silver, titanium, iron, and zinc; 
while the most explored CB nanomaterials are carbon nanotubes (CNTs), fullerene 
(C70), and fullerol (C60(OH)20) [94]. The impact of NPs on plants is determined by a 
number of variables, including availability, uptake, translocation, and accumulation. 
The plant cell wall restricts the entry of foreign elements; therefore, effective tech-
niques are needed to introduce advantageous NPs and make them available to plants.

Different factors like size, chemical content, and plant species affect the entry of 
NPs, which is further influenced by their stability, transport and absorption, toxic-
ity, and accumulation [95]. Particle size, surface charge, and the hydrophobicity of 
the plant surface all play important roles in their absorption [96]. Additionally, the 
absorption rate and translocation in plants are directly correlated to the structure 
of the nanomaterial utilized [97]. All of these elements highlight the requirement 
for developing and enhancing laboratory techniques to comprehend the NPs physi-
cochemical qualities [98] as they undergo biotransformation in the soil, which has 
a direct impact on their toxicity and bioavailability. Foliar spraying or incubating 
isolated cells, roots, pollen, seeds, and protoplast with NPs, direct injection, irriga-
tion of plants with NPs, delivery by biolistic, and hydroponic treatment have all 
been employed in previous research to make NPs available to the plant cells [99]. 
Bioaccumulation defines the uptake of NPs by plant roots and travels through apo-
plastic and symplastic routes to the cortex and pericycle [100].

Nanoparticles entered through the stomata, cuticle, stigma, trichomes, wounds, and 
lenticels and move through the phloem. They reach the xylem and phloem through the 
root tip meristem, where the Casparian strips continue to the shoot but have not fully 
developed. Endocytosis allows NPs to enter cells even when the cell wall, cell mem-
brane, and Casparian strips block their uptake and transport. Additionally, transporters 
like aquaporins and carrier proteins facilitate their easier entry into cells [101]. The 
capacity of roots to absorb nutrients can change if NPs accumulate on the surface of 
the roots. Parenchymatic intercellular gaps in seeds enable NPs to be directly absorbed 
before being diffused into the cotyledon. Stomata allow for the internalization of NPs 
larger than 10 nm, which are then delivered to the plant’s vascular system via apoplastic 
and symplastic pathways. Once internalized, NPs move through vascular systems 
carried by phloem alongside sugar flow, move-in both the directions, and eventually 
build up in organs that could serve as sap-sinks [102]. The apoplastic pathway has been 
extensively described to enhance the transfer of water nutrients and nonessential metal 
complexes. Leaf shape and chemical composition of surface waxes limits the entry of 
NPs through leaf [103]. Hence, to ensure the NPs’ effective absorption in plants, it is 
crucial to consider their size, concentration, and physiological environment.

7. Mechanism of translocation and accumulation of NPs in plants

Mechanism of NPs translocation in different plant cells and organelles has 
been clarified [96]. Plant cell wall serves as a barrier that manages NPs uptake and 
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establishes solubilization needed to enable their translocation. NPs with a size range 
of 40–50 nm can easily pass through the cell wall [104]. Composition of NPs affects 
their mobility through cell membrane or cell wall and also encourages their adsorp-
tion to radical exudates. Positively charged NPs have better adherence to cell walls. 
Their coating and morphology have a big impact on how they behave inside plants 
and the rhizosphere [105]. After penetration through cells, they go through the shoots 
[101] and roots are transmitted to various aerial tissues and the seeds [6]. Gold NPs 
were only collected in the shoots of Oryza sativa when used with Cucurbita pepo, 
Raphanus raphanistrum, and other plant species. Positively charged gold nanoparticles 
tend to be quickly absorbed by plant roots [106]. The entry of NPs into the cell is 
facilitated by capillary action and osmotic pressure [95]. Membrane proteins of NPs, 
including as receptors and transporters, are altered as a result of their interaction with 
the outermost layer.

Negatively charged gold nanoparticles are easily translocated from plant roots to 
shoots. The most stable are SiO2 and TiO2, as they remain present in plant tissues after 
their uptake. When Zea mays is exposed to ZnO NPs hydroponically, most of them are 
accumulated in its roots and shoots. It is explained by the maximal NPs dissolution in 
the rhizosphere, which produces the zinc ions and enhances its absorption and translo-
cation in the plant [107]. Soil-grown wheat has also been observed for this perseverance.

Different processes have been identified by the translocation of CeO2 and ZnO NPs 
into Glycine max [108]. CuO NPs have been shown to be capable of moving from Zea 
mays roots to shoots and vice versa. TiO2 NPs with a diameter of 140 nm or larger may 
translocate in Triticum aestivum roots [103]. The data of different reports about accu-
mulation of different NPs in different plant tissues have been summarized in Table 4.

Type of 
nanoparticles

Plant species Conc (mg/l 
*mg/kg)

Accumulation  
(mg/kg)

References

Roots Shoots

Copper NPs Oryza sativa 1000 1544.1 17.27 [109]

Lactuca sativa 250 3773 — [110]

Vigna radiate 125 — 18.46 [111]

Brassica juncea 1500 190.4 — [112]

Cajanus cajan 20 5.82 19.06 [113]

Phaseolus vulgaris 100 800 — [114]

Silver NPs Glycin max 4000 2102 11.35 [108]

Oryza sativa 1000 20 5 [115]

Solanum 
lycopersicum

250 — 50 [116]

Zinc NPs Solanum 
lycopersicum

1000 — 250 [117]

Zea mays 100 10 30 [107]

Titanium NPs Solanum 
lycopersicum

1000 — 250 [117]

Magnesium NPs Zea mays 1000 103 131 [118]

Table 4. 
Accumulation of nanoparticles in different plant species’ tissues.
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8. Conclusion and prospective

Various abiotic factors are damaging the plants in terms of growth and develop-
ment leading to a reduction in yield and deteriorating the quality. Applications of NPs 
have been proven very protective as they stimulate germination, growth, and improve 
yield. They increase tolerance in plants as they enhance the uptake of water and 
nutrients. They are capable to metabolize starch reserves in plant cells. They stimulate 
the process of photosynthesis and alter levels of phytochromes and modulate oxida-
tive stress.

Although various studies suggest the beneficial roles of NPs in plants but the 
molecular basis of the actual mechanism is still unknown. Further elucidation on this 
mechanism may generate the smart NPs for the production of crops sustainable to the 
environment. In addition, their interaction with signaling molecules is also required 
to be explored. The economic stability of the use of NPs in agriculture is important 
as silver and gold nanoparticles costs very expensive. Understanding their mode of 
action, toxicity limits, signaling, and translocation; hence cheaper NPs may be used as 
an alternative.
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Chapter 10

Seed Nanopriming to Mitigate 
Abiotic Stresses in Plants
Afagh Yavari, Elham Ghasemifar and Mehdi Shahgolzari

Abstract

Abiotic stresses affect crop plants extensively during their life span, reducing 
productivity and threatening global food security. Stress conditions can result in fail-
ures of seed germination, uniformity, crop yield, cellular redox homeostasis, and the 
over-accumulation of reactive oxygen species. Seed nanopriming, pre-treating seeds 
with nanoparticles, is one way to overcome these limitations and successfully increase 
the tolerance of plants to future biotic and abiotic stress conditions. Nanopriming can 
play a significant role through the induction of several metabolic and physiological 
methods to better tolerate abiotic stresses. However, further research is needed to 
determine whether nanoparticles are stress promoters or stress inhibitors in plant 
systems. Here, we review how nanoparticle agents-based seed priming has the capac-
ity to mitigate abiotic stresses.

Keywords: agriculture, nanoparticle, priming, seed, stress, tolerance

1. Introduction

The stressor factors negatively affect plant growth, development, and seed yield, 
which are commonly connected to biochemical, physiological, and molecular varia-
tions [1]. Priming is a technique to mitigate these stresses that allows plants to deploy 
a stronger and speedier defense response against of them [2]. Priming induces a 
collection of metabolic activities in seeds and seedlings which help them to toler-
ate various abiotic stresses. Therefore, under subsequent stimuli, plants can show 
better growth biomarkers and stress tolerance when repeatedly exposed to stress [3]. 
Pathogens, pests, useful microorganisms, natural and synthetic compounds, nano-
materials, and the existence of abiotic stresses at mild levels can trigger a priming 
event [4, 5].

There have been several advancements in use of nanoparticles (NPs) for improv-
ing sustainability in agriculture, such as nanopesticides, nanofertilizers, and nanosen-
sors [6]. NPs can optimize depending on their unique physicochemical characteristics 
in order to increase the growth and development of plants, and resilience to stressful 
conditions [7, 8]. The utilization of NPs is also being investigated as a priming agent 
to ensure better germination and growth of the seedling, thereby increasing plant 
yields and nutritional value [9, 10]. The extremely small size of NPs, their surface 
area, and their slow release rate aid plants in increasing nutrient uptake [11]. There 
are many benefits associated with nanoparticle-based priming, including change in 
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metabolism, physiology, enzyme activity, and their interplay with phytohormones, 
etc. [12, 13]. Here, we summarize the potential use of seed nanopriming to mitigate 
abiotic stresses.

2. Nanoparticles in agriculture

Nanoparticles on the nanoscale (less than 100 nm) have the capacity to contribute 
to a new technology-based agricultural revolution [14]. NPs exhibit unique physico-
chemical properties such as high surface area-to-volume ratios and high reactivity 
that make them suitable for several of agriculture applications. NPs can load and 
deliver agrochemicals (e.g., fertilizers and pesticides) with controlled releases, 
biomolecules (e.g., nucleotides, proteins, activators), and monitoring plant health 
(e.g., sensors) [5]. Agri-nanosustainability can use NPs to stimulate plant growth, 
increase crop productivity, protect plants, improve soil quality, and detect pathogens 
and pesticide residues [15]. During the last decade, NPs have been widely used as 
fertilizers or metal fertilizers [16].

NPs can enter into cell by direct diffusion, endocytosis, and channel process [4]. 
A key factor in NP delivery could be the electrical gradient across the cell membranes 
[17]. The efficacies of passage are related to several properties, namely particle size, 
hydrophobicity, structure, charge, and shape [18]. NPs also can transfer from the cell 
to the tissues via the apoplastic or symplastic route in foliar/shoots or roots [19]. The 
entry of NPs into plant cells can facilitate via the plasmodesmata [20], aquaporins 
[21], ion channels [22], cuticle membrane and stomata [23], vasculature [24]. For 
example, gold NPs (AuNPs) can be transported through plasmodesmata [25].

Positive impacts of NPs in plants can be achieved via foliar spray, root exposure, 
and seed priming to improve plant performance under biotic and abiotic stress condi-
tions [17, 18]. For example, foliar use of ZnO nanoparticles and TiO2 in sunflower can 
induce physiological responses and increase resistance to drought and water depletion 
[18, 26]. Recent research has indicated that interfacing plant seeds with NPs has posi-
tive impacts on field crops under stress [5, 27].

3. Nanoparticles as seed priming agents (seed nanopriming)

Pre-treatment of seed and plant with chemical and biological agents can enter 
plants to the primed state (PS), which allows deploying faster and stronger responses 
compared with a non-primed [28]. Seed priming is pre-treating seeds before planting 
the seeds for a certain period of time in salt solutions (halo-priming), water (hydro-
conditioning), osmotic agents (osmo-priming), plant hormone solutions (hor-
monal priming), valuable microbe solutions (bio-priming), under a magnetic field 
(magneto-priming), and solutions containing NPs (NPs) (nanopriming) [4]. In seed 
priming, various biochemical changes occur in the seed that increments the germina-
tion rate, consistency of development, abdicate, and resistance of seedlings against 
unfavorable natural conditions [3, 29]. Seed priming results in actuating chemicals 
dependable for fetus advancement and mining of the bland endosperm via increased 
water content. In addition, seed priming can initiate biochemical reactions of cell 
repair, increment RNA substance, and improve DNA replication. Seed priming can 
increase the activity of antioxidant enzymes such as superoxide dismutase, catalase, 
and glutathione reductase for improving the defense system [30]. Priming increases 
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seed yield, crop uniformity, and germination, improves performance under various 
environmental conditions, and helps overcome dormancy. This causes variations in 
seed water content, regulation of cell cycle, and alteration of seed ultrastructure. 
Seed priming and foliar application reduce the stress response during seed develop-
ment and seedling establishment [31].

Seed nanopriming, pre-treatment of seed with NPs, is an emerging method 
for seed priming [27]. Nanopriming involves soaking seeds in nanosuspensions 
or nanoformulations, and the seeds may or may not absorb the NPs [27, 32]. NPs 
are mostly absorbed, but mostly remain on the seed surface as coatings [27]. Seed 
nanopriming can promote seed germination via organization of nanopores in the 
seed coat for increasing uptake of water [3, 33]. The nanoparticle introduces reactive 
oxygen species (ROS) to the seed, makes aquaporin genes active, alters starch deg-
radation enzymes, and alters the metabolism of seed tissue [3]. Seed coat uptake of 
NPs results in the aggregation of reactive oxygen species (ROS), resulting in a chain 
reaction [34]. ROS localization is important for the communication between cells in 
endosperm, as well as for the breakdown of glycosidic links between polysaccharides 
[35]. Superoxide dismutase (SOD) allows the interplay between H2O2 and the phyto-
hormone gibberellic acid (GA). GA activates alpha-amylase to stabilize the hydrolysis 
of starch into highly soluble sugars to support embryo development and ultimately 
seed germination and thus seedling vigor [3, 36] (Figure 1). The absorption and 
transfer of nanoparticles into the seed compartment is affected by the anatomy of the 
seed coat. Fewer parenchyma cell layers and larger intracellular voids lead to faster 
uptake and translocation of NPs into seed compartments, i.e., seed coat, cotyledon, 
and radicle [27]. There have been several studies concerned with the application of 
NPs (NPs) as seed pre-treatment agents, including metal-based NPs (e.g., Ag NPs, Au 
NPs, Cu NPs, Fe NPs, FeS2 NPs, TiO2 NPs, Zn NPs, and ZnO NPs), carbon-based NPs 
(e.g., fullerene and carbon nanotubes), and polymeric NPs.

3.1 Polymeric nanoparticles

Natural and synthetic polymer nanoparticles are used for controlled release of 
fertilizers and pesticides in precision agriculture. For example, synthetic polysuccin-
imide polymeric NPs (PSI-NPs) were detailed to have awesome potential focusing on 
conveyance of anti-microbial in plants with negligible effect on soil quality. Recently, 
the Impacts of PSI-NPs on seed germination and seedlings of maize (Zea mays L.) 
demonstrate that PSI-NPs could mitigate the influence of the heavy metals stress 
(e.g. Cu) and phytotoxicity with the increase of antioxidant enzyme activities and 
storage of copper as Cu-PSI complexes [37].

Seed priming with natural chitosan nanoparticles (CSNP) increased salt toler-
ance in milk thistle seedlings by improving physiological mechanisms such as 
photosynthetic pigment synthesis, antioxidant enzyme activity, and free proline 
content [38]. Nanopriming of maize (Z. mays L.) seeds with chitosan NPs con-
taining copper particles (NPCu) combined the properties of chitosan with the 
essentiality of Cu2+, advancing the enzymatic antioxidant reaction [39]. The result 
of distinctive concentrations of CSNPs appeared that adsorption of CSNPs on the 
surface of wheat seeds can initiate the auxin biosynthesis and increment seed ger-
mination and seedling development of wheat [40]. Seed priming of Vicia faba seeds 
cv. Sakha 1 study shows that the moderately low concentration of chitosan NPs 
improved the defense system of seeds by expanding total phenols and antioxidant 
enzyme activities [41].
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3.2 Metallic nanoparticles

Metallic NPs (MNPs) consist of a metal core consisting of an inorganic metal 
or metal oxide [42]. Metallic nanomaterials in seeds can improve stress tolerance 
in plants. Seed nanopriming with Fe-NPs [43], TiO2-NPs [44], AgNPs [45], poly 
(acrylic acid)-coated cerium oxide NPs (PNC) [5], ZnO NPs [46] can induce defense 
responses to stressors. For example, it is demonstrated that priming seeds with PNC 
in cotton (Gossypium hirsutum L.) were associated with ROS, and Ca2+-related signal-
ing pathways in salinity tolerance [5]. Similarly, nanopriming with TiO2 mitigates the 
salinity injury in maize via improving germination indexes, ion hemostasis, rela-
tive water content (RWC), non-enzymatic/enzymatic antioxidants as compared to 

Figure 1. 
Seed nanopriming can regulate abiotic stress tolerance via different mechanisms. Seed nanopriming can lead to the 
creation of nanopores and facilitate the uptake of nanoparticles (NPs) and water. NPs can enhance the expression 
of aquaporin genes and change metabolism. Nanopriming increases oxidative activity and produces reactive 
oxygen species (ROS, e.g., superoxide radical (O2.−), hydrogen peroxide (H2O2)). NPs can activate antioxidant 
enzymes (e.g., SOD), and the conversion of ROS to H2O2. Diffusion of H2O2 to embryo and interaction with 
phytohormone gibberellic acid (GA) lead to GA activating, its impact on α-amylase to stabilize starch hydrolysis 
to highly soluble sugars to support embryo development and ultimately seed germination and thus seedling vigor.
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non-primed [44]. Among the metal oxide NPs, zinc oxide NPs have attracted owing 
to unique photocatalytic and photo-oxidizing capacity against chemical and biologi-
cal species the attention of many researchers [47]. For example, ZnO NPs alleviated 
the toxic impacts of cobalt (Co) by reducing its absorption and conferred stability to 
plant ultra-cellular structures and photosynthetic apparatus [46]. It has been demon-
strated that nanoprimed seeds with solutions containing AgNPs can loosen seed coat 
cell walls and the endosperm, which in turn will induce seed germination [48].

3.3 Carbon nanoparticles

Carbon NPs (CNPs), such as single-walled carbon nanotubes (SWCNTs), multi-
walled carbon nanotubes (MWCNTs), graphene (GR), and fullerenes, can stimulate a 
variety of positive responses owing to their unique chemical and physical properties, 
including accelerated growth and development, improved performance, and greater 
tolerance of stress [49]. It is known that CNTs can penetrate thick seed coats and support 
water absorption inside seeds, and may affect tomato seed germination and growth [50]. 
The penetration of MWCNTs into the seed coats of corn, barley, and soybean can induce 
the expression of genes encoding of water channel proteins [51]. MWCNTs function-
alized with carboxylic acids can help to resolve seed dormancy in boreal forests by 
modulating lipid metabolism in cell membranes [52]. A significant increase in drought 
tolerance was achieved with SWCNTs at low concentrations by modifying water absorp-
tion and activating plant defense mechanisms, including up-regulating starch hydrolysis 
processes and reducing oxidative damage markers (e.g., H2O2, malondialdehyde con-
centrations) and electrolyte leakage [53]. A microscopic observation of seeds of Sorbus 
luristanica Bornm revealed seed endocarp abrasion and oxygen and moisture infiltration 
during MWCNT-priming [54].

The results indicate that MWCNTs enhanced tolerance of plant under Cd toxicity 
by active antioxidant enzymes (peroxidase (POD), superoxide dismutase (SOD), 
and catalase (CAT) activities) and reduced the malonaldehyde (MDA) [55]. The data 
presented demonstrate that sCNPs treatments can improve seed germination in plant 
species, including boreal forest native species, green alder, and lettuce [56, 57]. It 
was shown that fullerene nanopriming in wheat increments growth and productivity 
under salt stress [58]. Under drought stress, nanopriming of Caucasian alder seeds 
demonstrated that MWCNTs can be utilized to increment seed and seedling toler-
ance [59]. When tomato plants are subjected to salt stress, carbon nanomaterials can 
be added to seed by priming, modifying the bioactive compounds in the fruit and 
improving the antioxidant defenses. As a result, the plant may be protected from the 
negative effects of salinity stress [60].

Seeds treated with SWCNTs showed improved drought tolerance, and the combi-
nation of SOD, CAT, and POD activity can be responsible for improved antioxidant 
capacity under drought conditions [61].

4. Effects of seed nanopriming on plants

Nanopriming can improve the seed germination, stability, growth, and physiology 
of plant species by changing absorption, biochemical processes, antioxidants, pho-
tosynthesis [62, 63]. Various investigations demonstrate that nanoprimed seeds can 
better maintenance of cell balance and photosynthetic capacity [47, 62], increasing 
nutrient uptake and photosynthetic efficiency [59, 62], increased chlorophyll capacity 
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and antioxidant activity, defense mechanisms (e.g., changes in osmotic pressure, sto-
matal movements) [64, 65]. It also removes the absorption of heavy metals (copper, 
cadmium, and zinc) and thus reduces toxicity [66].

Seed priming by NPs was discovered as a novel approach for regulating anti-
oxidant enzymes in plants [67]. Plant antioxidant systems include non-enzymatic 
compounds and various enzymes, such as catalase (CAT), peroxidase (POX), ascor-
bate peroxidase (APX), superoxide dismutase (SOD), phenylalanine ammonia lyase 
(PAL), and glutathione. Priming of corn seeds with sodium metasilicate increased 
the activities of SOD, CAT, and POX under salt stress [68]. Similarly, maize seeds 
primed with TiO2 NPs increased SOD, CAT, and PAL activity [44]. Priming rice 
seeds with ZnO NPs enhances SOD and POD activity [67]. In addition, priming 
of Egyptian roselle (Hibiscus sabdariffa L.) seeds with Al2O3 NPs enhanced SOD, 
CAT, POD, and APX functions [69]. Priming of lavender (Lavandula angustifolia 
Mill.) by silver nanoparticles improved the performance of APX, POX, and SOD 
[70]. Wheat seeds primed with Si NPs increased SOD, POD, and CAT functions 
in cadmium stress [71]. Antioxidants produce ROS in response to environmental 
stressors. Antioxidant enzymes determine how ROS indirectly helps germination of 
nanoprimed seeds [72]. However, studies on the modulation of antioxidant enzymes 
by NPs priming are very few.

ROS as a by-product has a signaling role in germination and reducing seed dor-
mancy [73]. This can occur by activating GA synthesis [74]. The accumulation of ROS 
such as superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH) 
causes oxidative stress [73, 75]. Seeds generally receive NPs as extrinsic factors [72], 
and accumulation in the seed coat causes ROS production [34]. The increase of ROS 
in non-primed seeds is connected to the increase of abscisic acid (ABA), which caused 
disruption of seed dormancy and seed germination [76]. Furthermore, nanopriming 
increased ROS levels in plant cells, disrupted seed endosperm cell wall junctions, 
and promoted rapid and healthy seed germination [77]. Nanopriming can regulate 
ROS under normal and stress conditions, and seed nanopriming can regulate ROS 
production for faster seed germination. Under conditions, seeds accumulate ROS, 
and nanopriming can regulate ROS hemostasis via increased antioxidant activity for 
faster seed germination and improve plant stress tolerance [3]. Similarly, priming of 
maize seeds with copper NPs reduced ROS levels to drought stress [78]. Furthermore, 
Lathyrus odoratus seeds primed with Si-NPs reduced ROS and MDA levels under salt 
stress [79].

Stress and accumulation of ROS can affect membrane lipids, leading to lipid 
peroxidation, and loss of quality, germination, and seed viability [80, 81]. In stress 
conditions, an important lipid peroxidation reagent is malondialdehyde (MDA) 
[47, 82]. Studies have demonstrated that nanoparticle treatment by reducing lipid 
peroxidation stabilizes the cell membrane in various plants under abiotic stress [47], 
which is caused by the increased activity of antioxidant enzymes [83]. However, 
further research is necessary to elucidate the regulatory role of nanoparticle prim-
ing in ROS and membrane damage repair in different plants.

5. Seed nanopriming in abiotic stress mitigation

Due to the increase in pollution and climate changes, seeds are exposed to biotic 
and abiotic stress, which has a negative effect on their growth and development 
[83]. These stressors can cause physicochemical changes in various cellular levels. 
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Stress can sense via cellular compartments such as cell wall and membrane, cyto-
plasm, chloroplast, mitochondria, endoplasmic reticulum, and peroxisomes [84]. In 
response to stress, gene transcription, transcription, translation, and post-transla-
tional modifications (PTMs) of proteins are altered, leading to the production and 
modification of proteins that play various roles in stress response [84].

In non-stressed conditions, the seed activates the GA signaling pathway and 
the transcription factors of hydrolytic enzymes by absorbing water; both processes 
break down the endosperm and release soluble sugar for seed growth, whereas, in 
stress conditions, the seed is unable to absorb water. In contrast, it activates the ABA 
signaling pathway, overproduces ROS, and prevents endosperm breakdown, which 
directly either slows down or delays seed germination [27]. In stressful conditions, 
nanoparticles can reduce seed ROS levels and thus seed cell damage due to increased 
activity of enzymes such as superoxidase dismutase, catalase [14].

5.1 Seed nanopriming under salt stress

Salinity is abiotic stress that threatens to impede plant growth and thereby affect 
crop yield [85]. Salinity in seeds causes osmotic and oxidative stress, which is associ-
ated with slowing down and prolonging the germination period [27]. Seed priming 
with Mn nanoparticles increases root length, alters the redistribution of macro-/
micronutrients including Mn, Na, and Ca, and increases salt tolerance of Capsicum 
annuum [10]. However, under the pressure of salinity, maize seeds and Paeonia 
suffruticosa were enhanced germination by TiO2, vigor index, shoot and root length, 
seedling biomass, RWC, total phenol, antioxidant enzyme function [44, 67]. In addi-
tion, priming rapeseed with cerium oxide increased germination, water absorption, 
SOD, POD, α-amylase activities, total soluble sugar content, and Na+/K+ ratio while 
reducing accumulation of ROS and improved salt tolerance [86–88]. Additionally, 
lentil seeds containing iron nanochelates [89], cucumber seeds containing NPs from 
water treatment residues [90], and milk thistle containing NPs of chitosan [38] 
reduced salt stress by enhancing physiological salt stress. Latef et al. (2017) showed 
that priming of lupine seed with ZnO NPs increased photosynthetic pigments, total 
phenols, Zn and APX, POD, SOD, and CAT activities, and decreased MDA content 
and Na + under salt stress conditions [91]. Similarly, ZnO nanopriming improved 
wheat salt tolerance by activating the antioxidants to reduce oxidative explosion and 
increased photosynthetic electron transport efficiency and sucrose production in 
plants under stress [9]. Priming lettuce seeds with water-soluble carbon NPs (CNPs) 
increased seed germination and Chl content under salt stress [57].

5.2 Seed nanopriming in drought stress

Drought stress inhibits plant growth and reduces crop yields [92]. NP-mediated 
priming had a great effect on the growth of different plants to reduce drought stress. 
Seed priming with multi-walled carbon nanotubes increased the germination rate, 
root index, and root-shoot growth of alnus subcordata (Caucasian alder) under dry 
conditions [93]. In addition, Cape (Catharanthus roseus L.) seeds under drought stress 
with chitosan nanoparticles improved aggregation, membrane integrity, and plant 
growth [94]. In addition, corn seeds prepared with Cu nanoparticles increased RWC, 
Chl, and carotenoid and anthocyanin content and decreased ROS accumulation 
during drought stress [78]. Priming marigold seeds (Calendula officinalis L.) with 
silicon NPs increased quercetin, total flavonoid content, and antioxidant activity 
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under drought stress conditions [95]. Nanozymes, Fe3O4 magnetite, and γ-Fe2O3 
magnetite are magnetic nanoparticles that are effective in the development of plant 
growth under drought stress. For example, γ-Fe2O3 nanoparticles in rapeseed reduced 
H2O2 and lipid peroxidation and increased growth under drought stress. It has been 
reported that nanozymes reduce plant stress by removing ROS and increasing enzyme 
capacity [96].

5.3 Seed nanopriming in heavy metal stress

Metal toxicity is one of the abiotic stressors that disrupts plant growth. NP prim-
ing reduces the accumulation of toxic metals and adverse effects in various agri-
cultural productions. For example, in sunflower seeds primed with green synthetic 
sulfur under Mn stress (Helianthus annuus L.), it activates antioxidant enzymes and 
reduces ROS and lipid peroxidation [97]. Under cadmium (Cd) stress, priming of 
zinc nanoparticles increased amylase, POD and SOD activities, and seedling growth 
in rice [67]. Furthermore, wheat seeds pretreated with TiO2 enhanced germination 
rate, seedling growth, and water holding capacity under Cd stress. In maize seed 
priming with zinc oxide nanoparticles under cobalt stress, ROS and MDA decreased 
and plant growth, biomass and photosynthesis were improved [46]. In general, NPs 
reduce the adverse effects of HM by modulating plant physiological and biochemical 
parameters [98].

6. Conclusion

Seed nanopriming is an effective perspective that enables us to provide seeds with 
nanoform micronutrients at the seed level that acts as initial fertilizers for seed and 
increases the seed germination process, plant growth, and yield. The nanopriming 
can modulate molecular mechanisms affecting plant morphology, and physiological 
and biochemical responses. More research is necessary to test the performance of 
nanopriming in plants under stress conditions. In this regard, the precise cascade of 
molecular changes and the specific genes induced to produce such an effect remain to 
be further elucidated. However, several issues such as nanotoxicity on cells, tissues, 
and organs, as well as long-term effects of NPs exposure still need to be studied.
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Chapter 11

Toxic Aluminum and Water Deficit 
Interaction in Plants: Physiological 
Aspects and Chemical Soil 
Management to Improve Root 
Environment in the Context of 
Global Climate Change
Flávio José Rodrigues Cruz

Abstract

Human activity has contributed to the intensification of climate change. These 
climate changes cause a reduction in plant growth and agricultural production due to 
increasingly frequent periods of water restriction. This effect can be more severe in 
tropical regions where the acid pH of the soil and the toxic levels of aluminum have a 
natural origin due to the weathering of the soils. In this context, water deficiency and 
aluminum toxicity alone or together promote biochemical and physiological changes 
in plants. This suggests the need to adopt soil management strategies that minimize 
the joint impact of these two abiotic stresses. Thus, liming and gypsum contribute 
to improving the edaphic environment, because they reduce the availability of toxic 
aluminum but increase the soil pH. In this chapter, we propose a systematic review of 
the isolated and combined effects of water deficiency and aluminum toxicity in plants 
based on physiological, biochemical, and nutritional variables. Thus, the understand-
ing of these responses will improve the understanding of the mechanisms of tolerance 
to the two abiotic stresses, indicating the need to use soil correctives to minimize the 
effects of water deficiency and toxic aluminum in the soil on plant growth.

Keywords: toxic metal, soil pH, global warming, plant growth, gas exchange

1. Introduction

Drought is a factor that leads to environmental degradation and has adverse effects 
on rural populations dependent on natural resources such as water and soil. Drought 
can eventually lead to the loss of livelihoods, promote migration in affected areas 
[1], and have a significant impact on the economy, society, and environment [2]. 
According to the IPCC, the global population exposed to extreme or exceptional total 
scarcity of stored water will be 3–8%. In this context, risks of drought are predicted 
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throughout the 21st century in many regions, increasing the probability of an eco-
nomic crisis [3]. This prediction is worrying because the world population reached 
8 billion inhabitants in 2022 [4], a fact that increases the demand for food. However, 
global climate changes can negatively affect agricultural production by altering the 
rainfall regime, inducing water deficiency and, consequently, reducing agricultural 
production [5, 6].

In tropical regions, high precipitation over time promotes the leaching of 
exchangeable bases and increases the levels of toxic aluminum. These two edaphic 
aspects result from the intense weathering of the soil. However, in tropical regions 
the occurrence of periods of water deficiency is normal. Thus, the sum of the factors 
of water deficiency and toxic aluminum potentiate the reduction of plant growth 
and agricultural production, because they cause disorders in gas exchange, nitrogen 
metabolism, and antioxidant in plants [7–10].

The chemical management of weathered tropical soils with toxic levels of alumi-
num can contribute to minimizing the effect of water deficit because liming reduces 
the toxic aluminum content and increases the surface pH and the calcium and 
magnesium content of the soil. In addition, gypsum contributes to the reduction of 
subsurface aluminum content and the increase of sulfur content in the soil.

Together, liming and plastering can minimize the effects of water deficiency, 
because they create an edaphic environment that improves root growth in volume and 
depth and, consequently, increases the absorption of nutrients and water. Therefore, 
the use of these two agricultural inputs can mitigate the effects of water deficiency on 
plants in acid soils.

This chapter will address the problem of water deficiency and aluminum toxic-
ity in plants in the context of global climate change, emphasizing plant responses to 
aluminum toxicity and water deficiency, and liming and gypsum management as 
mitigating agents of soil chemical stress.

2. Physiological mechanism of plants under water deficit

With the advancement of global climate change, the occurrence of longer periods 
of water deficiency becomes more frequent, causing climatic risks to plant growth 
and, consequently, to agricultural activity. In the environmental context, prolonged 
periods without precipitation cause a reduction in soil water content and a decrease 
in vegetation growth, except in plants adapted to conditions of water scarcity, a fact 
quite common in arid and semi-arid regions. In the semi-arid region of northeastern 
Brazil, the occurrence of prolonged periods of water scarcity is common, with a 
drastic reduction in the availability of water in the soil, with the permanence of only 
species adapted to the semi-arid climate (Figure 1).

Physiologically, plants under water stress manifest a set of responses that cul-
minate in reduced plant growth. Thus, the decrease in water availability induces 
stomatal closure due to greater synthesis and physiological action of abscisic acid on 
stomata. These close as a physiological strategy to reduce water loss through perspira-
tion. This physiological phenomenon induces stomatal limitation to photosynthesis 
due to the reduction in the intercellular concentration of carbon dioxide [11].

The drop in the intercellular concentration of carbon dioxide can decrease the 
consumption of ATP and the NADPH2 reducing power by the Calvin cycle, allowing 
electrons from the electron transport chain to interact with free molecular oxygen 
forming superoxide radicals, since NADPH2 is chemically reduced (Figure 2).
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This set of events culminates in oxidative stress that causes lipid peroxidation 
and important cellular damage in plants under water deficit [12]. However, although 
water deficiency reduces the carboxylation activity of the enzyme RUBISCO (ribulose 

Figure 1. 
Effect of rainfall seasonality on vegetation. (A) Atriplex nummularia in dry soil; (B) soils with cracks due to 
periods of intense water deficit; (C) plants tolerant to water deficit in the rainy season and (C) in the dry season. 
Images recorded in the semi-arid region. Northeast Brazil. Source: Author.

Figure 2. 
Stomatal closure in response to water deficiency: Water deficiency induces the synthesis of abscisic acid in the 
root and leaves. ABA modulates stomatal closure, which reduces gas exchange. The decrease in CO2 diffusion 
implies less consumption of NADPH2 by the Calvin cycle. This allows O2 to react with electrons from the electron 
transport chain and there is the formation of free radical O2

− in the vicinity of photosystem I, triggering oxidative 
stress. Source: Author.
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1,5-bisphosphate carboxylase-oxygenase), its oxygenase function is increased, which 
allows temporary consumption of NADPH2 and ATP, reducing the production of reac-
tive oxygen species (ROSs). However, photorespiration allows the recycling of phospho-
glycolate (a toxic compound) to phosphoglycerate during carbon fixation [13, 14].

Despite the cellular damage caused by ROS, they have a dual role in cells because 
they participate in cell signaling, but they are also toxic products of aerobic metabo-
lism in plants [15, 16]. The main free radicals produced in plants under water deficit 
are the superoxide radical (O2

−), peroxide radical (H2O2), and hydroxyl radical (OH−). 
The O2

− radical is synthesized in the apoplast, chloroplast, mitochondria, peroxi-
somes, and electron transport chain. The H2O2 radical, in turn, can be synthesized 
in peroxisomes, chloroplasts, mitochondria, cytosol, apoplast, and cytosol. The 
OH− radical is synthesized from the H2O2 radical according to Fenton’s reaction [16]. 
The oxidative stress resulting from water deficiency, in addition to increasing lipid 
peroxidation, reduces photosynthetic activity due to the harmful action of ROS on the 
photosynthetic machinery causing photoinhibition [17].

The mineral metabolism of plants is considerably affected by water deficiency, 
especially by nutrients that are absorbed through mass flow such as nitrogen [18]. The 
key enzyme present in plants that allows the entry of nitrogen into plants is nitrate 
reductase (RN, EC 1.6.6.1) which converts nitrate (NO3

−) to nitrite (NO2
−). One of 

the environmental factors that modulate the activity of the RN enzyme is the avail-
ability of nitrate, which is absorbed by the root system via transpiration [19]. Thus, 
water deficiency is a factor that indirectly decreases NR activity, because it limits the 
absorption of nitrate by the roots [20].

Water deficiency imposes limitations on plants regarding the acquisition of water 
in the environment in which they live since with the advancement of water restric-
tion, the water potential of the soil tends to become more negative. In this sense, 
plants must maximize water use to avoid excessive loss through transpiration and 
maintain their water status favorable to their physiological activities. A biochemical 
strategy aimed at tolerating water deficiency is the synthesis of compatible osmolytes, 
which reduce the cellular osmotic potential for water influx into cells. Furthermore, 
compatible osmolytes preserve the conformational structure and maintain the 
biological activity of biomolecules [21, 22]. Amino acids (proline, glycine betaine, 
gamma-aminobutyric acid) and carbohydrates (sorbitol, sucrose, trehalose, man-
nitol, and raffinose) are compatible osmolytes used by plants during water deficit for 
osmotic adjustment and improvement of water status [21, 23]. Proline and glycine 
betaine are two important compatible osmolytes involved in modulating the response 
of plants to water stress [24, 25].

It should be emphasized that there is a negative correlation between the water 
content and the concentration of compatible osmolytes in plants under water deficit. 
However, increases in the concentration of compatible osmolytes do not necessarily 
imply an increase or stability in the plant growth rate in the face of water restriction 
experienced by the plants [7].

3. Physiological mechanisms of aluminum toxicity in plants

Metal toxicity is one of the world’s biggest problems for agricultural production. 
Some metals are not essential to plants but are very toxic when present in certain 
forms in soil. Among metals, aluminum (Al) is one of the most toxic because it 
reduces the growth and production of many crops in acidic soils [26]. Around 50% 
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of arable land in the world is acidic [27] and around 60% of acidic soils are found in 
tropical and subtropical regions because in these regions the soil acidification process 
is natural [28].

The absorption of Al via symplast or apoplast can cause injuries to biomolecules 
in the cell wall, membrane, cytoplasm, and nucleus, affecting the structure of root 
cells and, consequently, the ability of root cells to absorb water and mineral salts from 
the soil [28]. Al bound to root cells appears to be localized to the apoplast cell wall 
and plasma membrane surface [29]. Therefore, the toxic effect of Al results from its 
external connection with root cells [27]. Thus, the initial site of Al toxicity occurs in 
the roots, which present physiological and biochemical changes that result in reduced 
root growth (Figure 3).

The physiological activity of the root system is affected by Al as it is the initial site 
of toxicity for this toxic metal. Thus, the ability to absorb water and mineral nutrients 
is compromised by toxic levels of Al. Therefore, toxic Al affects water relations in 
plants, reducing transpiration, water use efficiency, and intrinsic water use efficiency 
[30]. In addition, transpiration, root hydraulic conductivity, and leaf water potential 
are negatively affected by Al and these disorders in plant water relations coincide with 
increased levels of ABA in plants treated with toxic Al, indicating that this metal has a 
broad spectrum of action. Physiology in plants [31].

The mineral metabolism of plants is affected by the toxic action of Al, because this 
toxic metal inhibits the activity of the nitrate reductase enzyme and, consequently, 
the conversion of nitrate to nitrite in plants. In addition, Al reduces the levels of mac-
ronutrients (calcium, magnesium, phosphorus, and potassium) inducing nutritional 
disorders in plants that result in reduced plant growth [32, 33].

Although there is a greater accumulation of Al in the root system than in the aerial 
part of the plants, the physiological activity of the leaves is considerably affected 
by Al. This metal reduces the concentration of chlorophylls and, consequently, the 

Figure 3. 
Toxic aluminum primarily targets the root system. Aluminum concentrations above 4 mmol L−1 severely reduce 
root and shoot growth of Cajanus cajan seedlings. Source: Author.
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photosynthetic activity [34]. Al reduces the rate of photosynthesis because it is 
harmful to the functioning of the photosynthetic machinery by inhibiting electron 
transport mediated by photosystems I and II [34–36] and the carboxylate activity of 
the enzyme RUBISCO [37]. This negative effect of Al is reinforced by the fact that 
free radical production is located close to the reaction center of photosystems I and II 
of thylakoids in chloroplasts [15].

Al toxicity induces the production of O2
−, H2O2, and OH- both in shoots and roots, 

causing lipid peroxidation and electrolyte leakage in plants [34, 38–40]. Although 
Al triggers oxidative stress in plants [34], the mechanism itself is indirect because Al 
activates NADPH oxidase (Figure 4) one of the main sources of ROS generation in 
plants under Al stress  [39].

Respiratory burst oxidase homolog proteins (RBOHS) are integral plasma mem-
brane proteins. They are formed by six transmembrane domains that support two 
heme groups, C-terminal FAD and NADPH hydrophilic domains, and two N-terminal 
calcium-binding domains (EF-hand). NADPH oxidase acts as a cytosolic electron 
donor to the extracellular O2 electron acceptor, which is reduced to O2

− via FAD and 
two independent hemes [41].

4. Interaction between stress: water deficiency and aluminum toxicity

In tropical countries, the occurrence of periods of water scarcity is common in 
regions where the soil is weathered and with high levels of toxic Al. However, with 
global climate changes, the occurrence of water deficiency has become more frequent. 

Figure 4. 
Aluminum-modulated free radical production and programmed cell death in mitochondria. Aluminum activates 
the NADPH oxidase located in the mitochondrial membranes, inducing the overproduction of free radicals (O2

− 
and H2O2) accelerating programmed cell death. Source: Figure adapted from hung et al. [39].
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Thus, the interaction between toxic Al and water deficiency potentiates the reduction 
of plant growth and production.

Under non-stressful conditions (absence of water deficiency and Al toxicity), cell 
growth can be explained by cell expansion resulting from the action of the enzyme 
xyloglucan endotransglycosylase—XET (EC 2.4.1.207). This enzyme promotes the 
cleavage and reformation of bonds between the xyloglucan chains (Figure 5) allow-
ing cell expansion to occur due to the entry of water into the cell and an increase in 
cell pressure potential [41].

However, the interaction between water deficiency and toxic aluminum results 
in lower water influx into the cell and inhibition of XET activity. This set of events 
implies less cellular expansion of the root system with negative repercussions on plant 
growth and production (Figure 5). Therefore, toxic aluminum has as its primary 
target the root system whose elongation rate is considerably reduced when there is an 
interaction between toxic aluminum and water deficiency [8, 42].

The interaction between toxic Al levels and reduced water availability induces an 
increase in leaf contents of important compatible osmolytes such as glycine betaine, 
proline, and trehalose. However, a greater accumulation of compatible osmolytes does 
not prevent the decrease in plant growth [7, 43] represented by the dry mass of roots 
and shoots, and leaf area [43, 44].

The photosynthetic machinery is greatly affected by the interaction between 
aluminum toxicity and water deficiency because the concentration of photosynthetic 
pigments is considerably reduced [8] due to the production of free radicals that lead to 
lipid peroxidation, degradation of chlorophyll, and carotenoids [9, 45]. The degrada-
tion of chloroplast pigments may originate from lower root absorption and reduced 

Figure 5. 
Cell expansion in the presence (left) and absence (right) of water and aluminium. The symplastic and apoplastic 
influx of H2O into cells increases the activity of the cell wall enzyme xyloglucan endotransglucosylase (XET) and 
the pressure potential on the cell wall. XET improves cell wall extensibility which is favored by intracellular water 
influx. These biochemical and physical phenomena imply cell expansion (left). Toxic aluminum reduces water 
influx into the cell and decreases XET activity. This implies less cell expansion (right). Source: Figure adapted 
from Yang et al. [42].
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accumulation of magnesium in plant leaves due to toxic Al since magnesium is an 
integral part of the chlorophyll molecule [46].

Despite the large production of ROS such as O2
−, H2O2, and OH− due to the interac-

tion between toxic Al and water deficiency, plants activate detoxification enzymatic 
mechanisms. In this context, the enzymes superoxide dismutase and guaiacol 
peroxidase have their activities increased to reduce the production of ROS and lipid 
peroxidation [9].

The mineral metabolism of plants is affected by the interaction between Al toxic-
ity and water deficiency because the joint action of these two limiting factors reduces 
the calcium, magnesium, and phosphorus content in the leaves and roots of plants 
[47]. Essential macronutrients absorbed mainly by mass flow such as calcium and 
magnesium can be found in lower levels in plants due to the lower flow of water in the 
soil-plant-atmosphere system under conditions of water deficit.

This negative effect of water deficiency can be potentiated by Al toxicity. For 
example, in acid soil with an Al content of 12 mmol L−1 (soil depth of 0–20 cm) and 
with 50% of its pores filled with water, the contents of nitrogen, phosphorus, potas-
sium, calcium, magnesium, zinc, and manganese were reduced in maize plants under 
the interaction of stresses [48]. Similarly, in soybean plants, the contents of nitrogen, 
phosphorus, potassium, calcium, magnesium, sulfur, copper, and manganese are 
reduced under the interaction of stresses. Furthermore, root density and biomass 
production of soybean and corn is strongly reduced by the interaction between toxic 
aluminum and water stress [48].

5.  Liming and gypsum: Chemical soil management aimed at mitigating 
toxic aluminum and improving the water status of plants

Agricultural production can be limited by physical and chemical factors in the soil, 
which reduce root growth and restrict the uptake of mineral nutrients and water. In 
this context, toxic Al plays an important role in tropical regions where soil pH is not 
corrected because growth, development, and, consequently, agricultural production 
are negatively affected. This effect on plants is aggravated when there are dry spells or 
periods of water deficiency, an increasingly recurrent phenomenon in the context of 
global climate change.

The water conduction mechanisms in the soil-plant system represented by hydrau-
lic conductivity and stomatal conductance are affected by the increase in the cellular 
concentration of abscisic acid induced by Al toxicity [31]. In addition, cellular and 
structural damage to the root system caused by toxic Al reduces cell turgor [49] and 
decreases plant root growth [31]. The negative effects of toxic Al on plants are poten-
tiated by the action of water deficiency which, together, reduce plant growth [7].

A soil chemical management strategy aimed at neutralizing toxic Al consists of the 
adoption of liming based on soil chemical analysis. Liming raises the pH and reduces 
Al availability in the layers where limestone is applied [50], increases the availability of 
calcium and magnesium in the soil, and the assimilation of nutrients such as nitrogen, 
phosphorus, potassium, and sulfur by plants [51]. The increase in pH occurs through 
the exchange of H+ for Ca2+ in the soil colloids and its neutralization (Figure 6). 
Similarly, the Al3+ is exchanged for Ca2+ in the soil colloids forming a little toxic com-
pound (AlOH3) that rushes into the soil (Figure 7).

Another strategy to neutralize toxic Al, but in subsurface soil layers, is plastering. 
Gypsum renders Al insoluble causing it to be leached into deep soil layers. In addition, 
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gypsum improves the physical and chemical quality of the soil, creating better condi-
tions for root development and growth. These changes promoted by gypsum nullify 
the effects of Al toxicity, increase root growth and attenuate the effects of water 
deficiency in plants [52]. These effects of gypsum indicate that the practice of gypsum 
can mitigate the effects of global climate change on water deficiency because there 
is greater root growth of plants in depth in the soil. Agricultural gypsum provides 
calcium and sulfur that improve soil fertility. In addition, the gypsum insolubilizes 
toxic aluminium, allowing its leaching to the subsurface layers of the soil (Figure 8).

Figure 6. 
Effect of limestone on the neutralization of soil acidity. Ca2+ displaces H+ from soil colloids, neutralizing it and 
increasing soil pH. Source: Author.

Figure 7. 
Chemical mechanism of action of limestone in reducing soil aluminum saturation. Ca2+ displaces Al3+ from soil 
colloids, reducing its solubilization and causing precipitation. Source: Author.
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The benefit of gypsum is related to the greater root growth of plants. For example, 
the mean percentage distribution of the root system of sugarcane plants in the 
0–20 cm, 20–40 cm, and 40–60 cm layers after gypsum soil application was 51.80, 
29.72, and 18.64%, respectively. Furthermore, gypsum shows a positive effect on the 
root density of sugarcane plants [53]. Gypsum also increases the percentage of water 
absorbed by the root system at depths greater than 40 cm (Figure 9) because gyp-
sum improves the physical and chemical attributes of the soil, allowing greater root 
growth in depth [53]. Gypsum improves the physical properties of the soil because it 
has a flocculating action on soil particles. This favors the aggregation of clay, reducing 
its dispersion. Thus, there is greater soil porosity, increased permeability, and water 
retention capacity in the soil. These changes promoted by gypsum create a favorable 
environment for the root growth of crops.

The interaction between limestone and gypsum in the soil shows a positive effect 
on root growth and agricultural production. For example, the application of gypsum 
and limestone in the soil shows positive effects on root growth because it improves 
the relative root distribution in depth [53], in addition to increasing the production 
of soybeans by 11.4% in conditions of water deficit [54]. Under conditions of water 
deficit, gypsum is shown to be efficient in increasing grain production in grasses such 
as maize and wheat [55].

In an oat cultivation area, liming and plastering increase grain production under 
water deficit [50]. These positive effects of gypsum, together or not with liming, 
result in a better edaphic environment that favors greater root growth with a positive 
impact on the absorption of water and mineral nutrients, two essential factors for 
plant production. Thus, the mechanism of action of gypsum and limestone in the soil 
suggests that these two agricultural inputs can be used to mitigate the effects of global 

Figure 8. 
Gypsum action on subsurface toxic aluminium. Gypsum supplies calcium and sulfur to the soil. Ca2+ from gypsum 
displaces Al3+. This will form with sulfate ions a poorly soluble compound, Al2(SO4), which is leached to deeper 
layers of the soil. Source: Author.
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climate change, particularly in tropical regions where the natural acidity of the soil is 
a limiting factor for plant growth and agricultural production [52].

6. Conclusion

In the context of global climate change, water deficiency is an increasingly 
frequent phenomenon in many regions of the world, directly impacting plant and 
animal production, which have water as a vital input. In tropical regions in particular, 
water deficiency is particularly serious because in these regions many soils are acidic 
and with high Aluminum saturation. This metal compromises plant growth and 
production because its target is the root system, the organ responsible for absorbing 
nutrients and water from the soil. Thus, water deficiency and Al toxicity together 
potentiate the reduction of plant growth and production, with considerable social 
and economic impacts. The increasingly frequent periods of water deficiency restrict 
soil water availability, inducing less water absorption and cellular water influx. 
These events culminate in the loss of cell turgor, lower cell expansion, and, conse-
quently, lower plant growth with a negative impact on gas exchange, and mineral 
and antioxidant metabolism. These effects of water deficiency are potentiated by the 
action of toxic Al present in the soil because the primary site of Al action is the root 
system. Al reduces the fluidity of cell membranes, affecting their capacities related 
to the absorption of mineral nutrients and water, inducing nutritional and water 
deficiency in plants. Although the genetic improvement of plants aimed at tolerance 
to Al toxicity is an important tool to increase agricultural productivity in Al-affected 
soils, it occurs slowly and in few areas. A strategy that can be adopted to overcome the 
problem of acidity and toxic Al is the use of gypsum and agricultural limestone as soil 
amendments. Together, the use of gypsum and limestone reduces toxic Al in depth 

Figure 9. 
Root growth and percentage of water use by plants in response to the presence or absence of gypsum. In the 
presence of gypsum, there is greater root growth in depth and, therefore, better use of water by the root system up 
to 100 cm deep in the soil. Source: Figure adapted from Sousa et al. [54].
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and surface, increases soil pH, and thus creates an edaphic environment favorable to 
greater root growth in volume and depth. Thus, crops will be more tolerant to periods 
of water deficit in soils treated with gypsum and limestone. However, the physiologi-
cal and biochemical mechanisms of plant responses to liming and soil gypsum need 
further studies, since these two agricultural inputs, when applied to the soil, improve 
the absorption mechanisms of mineral nutrients and water, gas exchange, and the 
production of cultures.
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the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
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Stress in Plants: Adaptations to 
Climate Change
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Abstract

The global temperature is constantly increasing due to the phenomenon of climate 
change. Plants have developed various mechanisms to defend themselves against 
environmental stresses including drought stress. Apart from indigenous biochemical, 
physiological, and molecular mechanisms of adaptation to stress, the plant-associated 
microbes may also play a crucial role in plant drought tolerance. The endophytic and 
rhizospheric microbes perform various functions and produce different enzymes and 
compounds that play an important role in plants’ adaptation to various environmental 
stresses including drought stress. Some of the key mechanisms include production 
of growth hormones, siderophores, organic acids, induction of the ROS scavenging 
system, phosphate solubilization, and nitrogen fixation. However, the production 
of ACC deaminase in the plant-associated microbes has vital roles in reduction of 
ethylene levels under drought stress, resulting in improved plant growth and stress 
tolerance. Owing to the complex nature of drought tolerance, a multi-pronged 
approach would have to be adapted to further enhance the microbial-mediated 
drought tolerance in plants.

Keywords: microbial functions, rhizospheric microbes, ROS scavenging,  
ACC deaminase, osmolytes

1. Introduction

Climate change is the long-term shift in temperatures and weather patterns. These 
changes may be natural, such as through variations in the solar cycle or man-made 
activities. Different studies reveal that it mainly occurs due to anthropogenic activities 
taking place in a huge amount these days. Also, many other factors such as greenhouse 
effect, deforestation, urbanization, global warming, fossil fuels combustion, 
increased livestock farming, excessive use of fertilizers, and nitrous oxide emissions 
are included, which has resulted in increasing incidence of different abiotic and biotic 
stresses [1]. Currently, climate change is known to be the most serious contemporary 
challenge for humanity. The global climate conditions have been adversely affected 
due to different natural and unnatural activities, which have stimulated the rise in 
average temperature and carbon dioxide level. During the last century, the average 
global temperature soared up by 1.5 F, and it has been estimated that within a period 
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of 100 years that it might surge higher by additional 0.5–8.6 F [2]. These changes in 
climatic conditions have led to erratic events such as increase in rainfall and snowfall 
worldwide, excessive release of greenhouse gases, increase in air temperature, which 
renders soil dry and decreases its moisture content forming drought-like conditions, 
water scarcity, severe fires, rising sea levels, flooding, melting polar ice, catastrophic 
storms, declining biodiversity and an increase in pollution due to excessive CO2 
emissions, air pollutants, ground-level ozone, aerosols, methane, and others. By 
altering wind patterns, it also induces seasonal variations. In other words, it involves 
the altering of climatic or weather patterns that occur by emission of greenhouse 
gases, which are likely to be more erratic and extreme in the forthcoming years 
[3]. Moreover, these climate-changing parameters are known to affect different 
terrestrial macroorganisms such as plants. However, according to recent studies, 
other organisms and ecosystems may be impacted as well [4]; that is, it affects human 
health, their ability to grow food, housing, safety, and work; for example, some 
people living in small islands in developing states are already more vulnerable to 
climate impacts.

As a result of ever-growing population, there is an increased demand of food, 
which has resulted in intensive agricultural practices including excessive use of 
agro-chemicals, livestock generation (for meat and other source of income), 
and exploitation of water resources, which have further worsen the situation by 
release of GHG (due to agricultural activities) and resulting in pollution of natural 
resources. The uncontrolled deforestation mainly for development and agriculture 
has created imbalance in the natural process of carbon cycle, which has led to a rise 
in the concentration of carbon footprint and brought uneven pattern of climate 
causing a variety of adverse effects that have huge effect on agricultural production. 
Due to climate change, a very high rate of land degradation has been observed 
causing enhanced desertification and nutrient-deficient soil, which is characterized 
as a major global threat. According to Global Assessment of Land Degradation 
and Improvement (GLADA), a quarter of land area around the globe can now be 
marked as degraded. Lives of 1.5 billion people have been adversely affected by land 
degradation caused by anthropogenic activities and climate change, and also 15 billion 
tons of fertile soil is lost every year, which results in mass migrations. According to 
a report published by United Nations Environment Programme in 2017, about 500 
million hectares of farmland has been abandoned due to drought and desertification 
resulting in major social and environmental constraints [5].

The climate alterations highly influence the growth behavior of different crop 
species. For example, it has a huge impact on mineral accumulation and nutrient 
acquisition in the plants. Changes in morphology, physiology, and plant productivity 
are the direct effects observed on the plants body. The organs and membranes of 
plants are impaired due to different stress conditions. Due to increased oxidative 
stress, the production of carbohydrates, proteins, and secondary metabolite in 
the plants is adversely influenced. Furthermore, it also highly affects soil fertility, 
irrigation measures, occurrence of pests and diseases, and also, stress incidence such 
as heat and drought are detected. Other ill effects of climate change on production 
strategies observed are effects on food demand, trade opportunities, and unequal 
distribution of products [6]. These variations thus cause a very damaging impact 
on plant growth, and their developmental patterns also significantly impact the 
diversity and activities of different plant-associated microbial communities as 
they possess a huge variety of microbiomes in phyllosphere and endophytes from 
surrounding soil and air [7]. This beneficial microbiome present in the plants 
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plays a vital role in regulating plant immunity, production of metabolites, nutrient 
uptake and acquisition, disease, and insect-pest management along with several 
other functions. The different microbes living in soil system comprise numerous 
PGPR, fungi, actinomycetes, algae, yeasts, cyanobacteria, and many more [8]. 
They help in transforming different organic substance into simpler form that can 
be assimilated by plants. Different microbiomes especially filamentous fungi and 
some bacterial species secrete a wide range of secondary metabolites, which are 
essential for plant development and many phenological responses [9]. Consequently, 
the microorganisms that are known for their positive effects on plant development 
and health might also be compromised due to climate change, in terms of exhibiting 
their desirable properties and their colonization capacity under certain conditions. 
Therefore, microorganisms present in the soil hold great importance in this regard, 
as they are vital constituent of nitrogen and carbon cycles and are also involved in the 
emission and removal of greenhouse gases such as CO2 and CH4, which in turn are 
mostly responsible for the climate change.

2. Drought stress effects on agricultural production

In nature, plants are exposed to various environmental stresses due to their 
sessile lifestyle. These different unfavorable factors negatively impact plant growth, 
productivity, and their geographic distribution. Plants may face many diverse stresses 
(e.g., drought, salinity, and pathogens) under field conditions individually or in 
combination, which might have a devastating effect on crop yield [10]. Water is the 
most essential resource for plants, and all the plant organs need to maintain 60–90% 
water content for sustainable activity. However, global climate change, caused by 
different anthropogenic activities and greenhouse gas emissions, has become more 
thoughtful worldwide, leading to drought conditions all over the world [11]. In 
agricultural technology, it is considered one of the main environmental stresses for 
plants. Due to the frequent changes in climate observed throughout the world, it has 
increased the severity of drought events for plants [12]. Important cereal crops are 
increasingly diminishing by over 10% yield due to drought stress, and it is still the 
main limiting factor of food production in numerous countries [13]. Decrease in 
plant metabolism and electrolyte disturbances in plant cells are major symptoms of 
drought stress, which automatically lead to their death. Because of inhibiting various 
morphological, physiological, and biochemical processes such as changes in leaf, root 
length, biomass photosynthesis, respiration, translocation, carbohydrate synthesis, 
nutrient metabolism, ion uptake, and growth promoters of plants are affected [14]. 
Also, it primarily prevents the photosynthesis system by causing an imbalance 
between light capture and utilization, due to which Rubisco activity is reduced and 
the amount of photosynthetic pigments, inhibiting leaf area and damaging the 
photosynthetic apparatus [15]. Similarly, it reduces the rate of carbon fixation by 
inhibiting metabolism or limiting carbon dioxide input into leaves. It also leads to 
various biochemical changes, such as an excessive accumulation of ROS including 
O2−, and H2O2, inside the host, which can further damage various tissues and cellular 
constituents such as nucleic acids and other biomolecules, resulting in cell death [16]. 
Furthermore, drought also lowers seedling vigor and affects germination by reducing 
water intake. Wilting, yellowing, discoloration, and leaf burning are the phenotypic 
signs observed in plants under drought condition [17]. Also, leaf senescence, 
drooping, leaf rolling, brittleness, scorching, limp leaves, premature fall, etiolation, 



Abiotic Stress in Plants – Adaptations to Climate Change

236

wilting, turgidity, flower sagging are the other symptoms observed [18]. Drought 
stress also alters carbon permeability and transport networks by lowering cation 
(Ca2+, K+, and Mg2+) absorption by roots. They later can also limit development by 
preventing the activity of several critical enzymes that take part in nutrient digestion, 
uptake, translocation, and metabolism of plants [19]. It also has a negative impact on 
biogeochemical cycles, such as the nitrogen and carbon cycles, which further reduce 
the decomposition of organic matter that considerably lowers the uptake of water and 
minerals by the root system, thus increasing soil fertility. For instance, many drought-
triggered plants decreasing in macronutrient absorption and translocation (K, N, 
and P) are found [20]. Many vital characteristics representing plant water relations 
in plants include relative water content (RWC), leaf water potential, stomatal 
conductance, transpiration rate, leaf, and canopy temperatures [21]. These traits have 
also been found to be affected considerably during drought stress in plants [22]. So 
the above information shows that water scarcity affects plants at all growth stages 
but causes maximum damage during critical growth phases, such as during the seed 
development stage or reproductive phase, thereby reducing seed size, number, and 
quality, which are primarily responsible for substantial yield losses [23].

3. Potential strategies to mitigate drought stress in plants

Plants incorporate a wide range of morphological, physiological, and molecular 
defense responses contrary to drought, which prevents water loss, maintaining 
cellular water content, and water supply to vital parts [24]. Drought stress can 
be reduced through breeding, mass screening, and exogenous phytohormone 
production. Different strategies are used by plants to minimize stress, for example, 
by producing phytohormones (e.g., abscisic acid (ABA) and gibberellins) and 
low-molecular-weight osmolytes (e.g., amino acids and polyols) and by modifying 
succulent leaves to reduce transpiration loss [25]. Also, a significant plant 
defense strategy in response to drought is the transcriptional and translational 
reprogramming of key genes and proteins that are involved in signal perception and 
transduction, transcription factors, and upregulation of drought tolerant genes, 
all of which drive drought resilience [26]. Plants protect themselves from drought-
induced reactive oxygen species (ROS) and other radicals owing to their efficient 
antioxidant system. During extended drought stress, they also synthesize an array 
of osmoprotectants such as prolines, soluble sugars, betaine, and spermines, to 
maintain cell turgor pressure. Over the past two decades, researchers have focused 
on transgenic approaches and other molecular breeding tools to increase drought 
resilience in different crops [27]. For instance, various biotechnological tools, 
such as CRISPR/Cas, RNAi, and transgenics, have made significant contributions 
to improving drought-resilient traits in both model and crop plants. But due to 
their high costs, complexity, ethical considerations, and toxicity concerns, their 
accessibility to farmers has been limited [27]. Furthermore, adaptive responses in 
plants are driven by complex genetic features involving several pathways, which have 
proven to be major impediments to long-term drought-tolerant crop improvement. 
Furthermore, the development of climate-resilient crops is required by integrating 
modern technological methods. The use of next-generation breeding approaches 
(genomic selection and genomic editing) and high-throughput phenotyping is 
desirable to develop crops that are exposed to different stresses [28]. Also, different 
bioinformatics tools have also been reported to overcome stress responses [29]. 
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The recent advancement in genomics and genome editing technologies has been 
coming across various approaches of genetic study to produce climate-resilient crops 
[30]. Many other strategies are incorporated to grow climate-resilient/smart crop 
including SNP genotype, trait mapping, and plant breeding methods. The CRISPR/
Cas technology has also been efficiently used in enhancing productivity in rice crop in 
fluctuating climatic conditions [31].

4. Microbial mechanisms governing drought stress tolerance

Microbes have the potential to promote plant growth directly and indirectly 
through several mechanisms. The indirect activation of plant growth involves a series 
of events by which microbes prevent the inhibition of plant growth and development 
induced by pathogens [32]. During direct activation, microbes biosynthesize bacterial 
compounds that promote the uptake of nutrients from the soil and stimulate plant 
growth and development [33]. Microbes trigger local or systemic stress mitigation 
response mechanisms that enable plants to survive and overcome the negative effects 
of abiotic stress conditions. The mechanisms governing microbial-mediated stress 
tolerance may include such as drought stress and help plants sustain growth and 
development through the production, mobilization of nutrients, and induction of 
the levels of hormones and organic phytostimulants [34]. Below are the fundamental 
mechanisms governing drought stress tolerance in plants.

4.1 Microbial production of aminocyclopropane-1-carboxylate deaminase

Aminocyclopropane-1-carboxylic acid (ACC) is a precursor of ethylene, and its 
production increases in plants during stress conditions. Plants enhance their ethyl-
ene production under drought stress, which inhibits plant growth by affecting root 
enlargement and seed germination. The production of higher ACC levels in plants is a 
strategy to combat severe drought stress [35]. A group of beneficial microbes have the 
potential to produce ACC deaminase that regulates plant growth and development by 
sequestering the plant-produced ACC, responsible for ethylene production in plants. 
A large number of microorganisms have been reported to produce ACC deaminase 
that in turn reduces ACC, thereby lowering the increased ethylene levels in plants 
under stress conditions [36]. These microbes play a vital role in plants’ adaptation to 
stress conditions. In particular, drought stress tolerance has been achieved in several 
plants through the production of ACC deaminase. Some of the prominent examples 
of the microbial production of ACC deaminase and its mitigation effects on drought 
stress in several plants have been summarized (Table 1). The ACC deaminase produc-
tion by Bacillus subtilis Rhizo SF 48 strain conferred maximum seed and plant growth 
promotion in tomato plants under drought stress [37]. The underlying biochemical 
mechanisms for this improved drought stress tolerance included induction in the 
proline, SOD, and APX activities, whereas reduction in the MDA and H2O2 contents. 
The maize plant-associated rhizospheric microbial species; that is, Pseudomonas 
aeruginosa, Enterobacter cloacae, Achromobacter xylosoxidans, and Leclercia adecarbox-
ylata were reported to produce ACC deaminase that resulted into enhanced drought 
stress tolerance. The plants showed improved grain yield plant−1, photosynthetic rate, 
and stomatal conductance, enhanced chlorophyll a, total chlorophyll, and carotenoid 
contents under drought stress [38, 42]. Chandra et al. [40] reported ACC deaminase 
production in the wheat-associated microbes, that is, Variovorax paradoxus RAA3, 
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Pseudomonas spp. Achromobacter spp. and Ochrobactrum anthropi DPC9 that improved 
plant growth and foliar nutrient concentrations in the wheat plants subjected to 
drought stress under glasshouse conditions. The plants also showed positive changes 
in the antioxidant properties under drought stress. Similarly, the rhizospheric Serratia 

Plant type Microbe Effects on growth Biochemical changes Reference

Solanum 
lycopersicum

Bacillus subtilis Rhizo 
SF 48.

Maximum seed 
(laboratory) and plant 
growth promotion 
(greenhouse)

Increased Proline, SOD 
and APX activity.
Decrease in MDA, 
H2O2 contents

Gowtham 
et al. [37]

Zea mays Leclercia adecarboxylata Enhanced shoot and 
root length, shoot fresh 
and dry weight and root 
fresh and dry weight in 
maize seedlings under 
axenic conditions

— Danish et al. 
[38]

Capsicum 
anum

Bulkhorderia cepacia, 
Citrobacter feurendii

Plant growth 
promotion under stress 
conditions

— Maxton et al. 
[39]

Triticum 
aestivum

Variovorax paradoxus 
RAA3; Pseudomonas 
spp. Achromobacter spp. 
Ochrobactrum anthropi 
DPC9

Improved wheat plant 
growth and foliar 
nutrient concentrations 
under glasshouse 
experiment

Positive changes in 
antioxidant properties

Chandra 
et al. [40]

grapevine (Vitis 
vinifera L.)

Strains of Pseudomonas, 
Enterobacter, and 
Achromobacter

Increased plant height, 
biomass of shoot and 
root organs, relative 
water contents, and 
net photosynthetic rate 
of leaves

Significant changes in 
IAA, abscisic acid, and 
malondialdehyde

Duan et al. 
[41]

Z. mays Pseudomonas aeruginosa, 
Enterobacter cloacae, 
Achromobacter 
xylosoxidans and L. 
adecarboxylata

Grain yield plant-1, 
photosynthetic rate, 
stomatal conductance

Enhanced chlorophyll 
a, total chlorophyll and 
carotenoids contents 
under drought stress

Danish et al. 
[42]

T. aestivum Serratia marcescens and 
Pseudomonas sp.

Improved harvest index Improved water 
status, reactive oxygen 
species, osmolyte 
accumulation, 
chlorophyll and 
carotenoids content

Khan and 
Singh [43]

Cyamopsis 
tetragonoloba

Strains of Pseudomonas, 
Enterobacter, and 
Stenotrophomonas

— — Goyal et al. 
[44]

Vigna  
mungo L.  
and Pisum 
sativum L.

Ochrobactrum 
pseudogrignonenseRJ12, 
Pseudomonas sp.RJ15 
and B. subtilisRJ46

increase seed 
germination 
percentage, root length, 
shoot length, and dry 
weight of treated plants

An elevated production 
of ROS scavenging 
enzymes and cellular 
osmolytes; higher leaf 
chlorophyll content

Saikia et al. 
[45]

Table 1. 
Microbial ACC deaminase production confers drought stress tolerance in plants.
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marcescens and Pseudomonas sp. conferred drought stress tolerance to wheat plants, 
which showed improved harvest index, water status, reactive oxygen species scaveng-
ing, osmolyte accumulation, chlorophyll and carotenoid content [40]. Moreover, 
the rhizospheric Ochrobactrum pseudogrignonense RJ12, Pseudomonas sp. RJ15, and 
B. subtilisRJ46 exhibited increased seed germination percentage, root length, shoot 
length, and dry weight of treated plants, Vigna mungo L. and Pisum sativum L under 
drought stress. The ACC deaminase production triggered the induction of ROS 
scavenging enzymes and cellular osmolytes, and higher leaf chlorophyll content. The 
microbial production of ACC deaminase showed growth improvement and drought 
stress tolerance in other plants such as Capsicum anum, Vitis vinifera, and Cyamopsis 
tetragonoloba [39, 41, 43].

4.2 Microbial production of phytohormone

Phytohormones such as indole acetic acid (IAA), gibberellins, ABA, ethylene, 
and cytokinin are organic chemical messengers that coordinate cellular events in 
plants and, therefore, play a crucial role in plant development and drought stress 
tolerance [44]. These phytohormones are generally produced by plants; however, 
they also produced by some plant-associated microorganisms. Phytohormones such 
as auxins indirectly regulate drought stress through modification of root growth and 
root hairs in a manner that enable plants to absorb maximum water and nutrients 
from the soil. In plants, auxins are produced through the tryptophan-dependent 
pathways [46]. Downward in the tryptophan pathway, indole-3-acetamide is 
produced that is converted into indole-3-acetaldoxime and tryptamine that further 
give indole-3-pyruvic acid, the final product [47]. The role of IAA in drought stress 
mitigation through inducing the drought signaling pathways has been reported in 
several studies [48]. Auxin production has the potential to induce the elongation 
of stems and coleoptiles of plants under stress conditions; thus, its production in 
the microbe-treated plants may trigger such modifications [49]. In a similar pas-
sion, plant-associated microbes also induce the production of plant gibberellins. 
These are diterpeniods and are responsible for the hyperactive elongation of stems 
under stress conditions. Gibberellins are in association with carotenes and isoprene, 
bioactive compounds [50]. Carotenes protect the plant cells from harmful photody-
namic reactions through triggering the photosynthesis, whereas isoprene regulates 
the turgor pressure that provides stability to the cell membranes [51]. In plants, 
the cytokinin biosynthesis increases in association with auxin and regulation of 
developmental responses under abiotic stress conditions. Cytokinin mediates in the 
phosphorylation of sugars leading to cellular accumulation in cells and also helps 
to prevent the reverse diffusion of sugars [52]. This cytokinin-mediated competi-
tive phosphorylation enables plant cells to adapt to stress and provides protection 
against the damaging effects of oxidative stress [53]. Abscisic acid is generally 
known as a universal stress hormone because of its very important in plant adapta-
tion to stress condition. In plants, the stomatal closure and inhibitor of stomatal 
opening are the underling mechanisms of the ABA-mediated stress tolerance [54]. 
The ABA production also confers desiccation tolerance through regulation of gene 
expression [55].

The ethylene production in plants plays a significant role in regulation of plant 
growth and senescence. In interaction with other hormones, ethylene serves as a mes-
senger hormone that regulates developmental processes, ranging from seed germina-
tion to the plant vegetative and reproductive stages [56].
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The plant-associated microbes have the potential to produce phytohormones, 
which in turn help plants to adapt to the stress condition. Phytohormones mitigate 
stress through triggering a complex signaling network of genes and production of 
metabolites, which protect the inner cellular machinery and function as a response to 
environmental stress condition. The underlying mechanisms may include hormone 
regulation, and production of osmolytes and antioxidant enzymes.

4.3 Osmotic adjustment

Plants experience a sudden osmotic shock upon exposure to abiotic stresses. 
However, the plant-associated microbial communities and their interactions assist in 
osmotic adjustments. In response to drought stress, the plant-microbe interactions 
are governed by a series of biochemical and molecular changes leading to secretion of 
metabolites such as glycine, proline, organic acids, sugars, betaine, trehalose, calcium, 
chloride, and potassium ions. Proline is one of the most important osmolytes that is 
accumulated in plants and provides maintenance and protection to vital cellular organs 
as an adaptation to osmotic stress. Proline production has been reported in several rhi-
zospheric bacteria [57]. Trehalose, a non-reducing sugar, is produced in plants under 
stress condition. Trehalose contains two glucose molecules that store energy for utiliza-
tion under stress conditions. Trehalose biosynthesis in microbes is accelerated through 
the TPS/trehalose-6-phosphate phosphatases (TPS/TPP) pathway. Trehalose stabilizes 
turgor pressure and maintains osmotic adjustment in plant cells [58]. Production of 
organic acids has been one of the key mechanisms that microbes utilize to benefit the 
associated plants. Microbial inoculation of plants triggers the secretion of organic acids 
such as oxalic acid, malic acid, citric acid, and minerals, for example, chlorine, potas-
sium, and sodium. These are very important for metabolic reactions, maintenance of 
osmoregulation, and nutrient availability in plant cells [59].

4.4 Microbial production of exopolysaccharides for drought stress mitigation

Exopolysaccharides are long-chain polymers of repeating sugar units (e.g., 
glucose, galactose, and rhannose) [60]. Exopolysaccharides play a crucial role by 
forming hydrophilic biofilms, which provide protection against aridness during 
osmotic stress. Exopolysaccharides enhance the water-retaining potential and 
regulate the distribution of biological carbon sources in the soil. Microbes protect 
the roots from dehydration and maintain the moisture content by forming sheaths 
of exopolysaccharides [61]. Microbes release exopolysaccharides in the soil as slime 
ingredients comprising van der Waals linkages, anion adsorption interactions, and 
cation hydrogen bridges, which improve the biological properties of the soil [62]. The 
vital microbe-plant interaction regulates the production of biofilms, which facilitate 
microbial attachment to the plant roots, and imparts a strong root adhering capability. 
In conclusion, the microbial production of exopolysaccharide is one of the important 
strategies that protect plants against the damaging effects of abiotic stresses including 
drought stress [63].

4.5 Effects of microbial volatile organic compounds against osmotic stress

The plant growth-promoting microbes produce volatile compounds, which 
increase plant growth and development, iron uptake, photosynthesis, and overall 
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crop productivity. Organic acid production helps plants against disease-causing 
pathogens. The stress-induced organic compounds such as 2-pentylfuran, 3-hydroxy-
2-butanone, and 2,3-butanediol play an important role in plant growth and develop-
ment [64]. These compounds regulate stomatal closure and impart systemic stress 
resistance, and thus ensure plant growth and development under abiotic stress 
conditions [65]. These volatile compounds help boost plant growth by acting as insect 
repellents owing to their strong odor. The microbial production of these compounds 
triggers stress tolerance in the associated plants through inducing the biosynthesis of 
ROS scavengers and gene expression.

4.6 Microbial induction of antioxidant machinery in plants

The production of reactive oxygen species (ROS) is induced in plants under 
osmotic stress. These include hydrogen peroxide (H2O2), superoxide, singlet oxygen, 
radicals, alkoxy radicals, and superoxide anion radicals. The ROS production triggers 
irreversible damages to lipids, proteins, and DNA, affecting the redox regulation [66]. 
Plants induce antioxidant defense systems involving enzymatic and non-enzymatic 
pathways to protect against the oxidative damage during osmotic stress. Several 
enzymes (e.g., glutathione reductase, superoxide dismutase (SOD), catalase, and 
ascorbate peroxidase) and non-enzymatic components (e.g., ABA, cysteine, and 
glutathione) catalyze the biosynthetic pathways of antioxidant pathways [67, 68]. The 
microbial inoculation of plants triggers the antioxidant biosynthetic pathways in the 
soil and, thus, confers drought stress tolerance. Kaushal and Wani [69] and Ilyas et al. 
[70] reported the secretion of phenolic components by various microbes (e.g., algae, 
zatinomycetes, and fungi) upon exposure of plants to stress condition. The microbe-
plant interaction confers stress tolerance through regulating the ROS biosynthesis 
and maintaining a homeostatic balance between ROS and their removal. Overall, the 
ROS scavenging ability of PGPR regulates the antioxidant enzymes and may provide a 
solid barrier against abiotic stress.

4.7 Stimulation of stress-response genes by plant-microbe interactions

The microbial inoculation of plants confers stress tolerance by triggering 
the expression of genes involved in plant defense against abiotic stresses. Under 
drought stress in plants, the expression of stress-responsive genes is modulated, 
which is necessary for optimization of plant growth and development. There are 
numerous stress-responsive genes and proteins, which are involved in plant-microbe 
interactions and the resulting stress tolerance. These include sHSP, CaPR-10, 
dehydrin-like protein (Cadhn), 11-pyrroline-5-carboxylate reductase (P5CR), 
pyrroline-5-carboxylate dehydrogenase (P5CDH), and vacuolar ATPases [71]. 
Depending on the role of the encoded proteins, the expression of these stress-
responsive genes can be categorized into functional or regulatory proteins as revealed 
by microarray studies. The stress-responsive functional proteins include water 
channel transporters, detoxification enzymes, osmolyte biosynthesis enzymes, 
macromolecule protection factors, and proteases [71, 72]. The stress-responsive 
genes encoding regulatory proteins include transcription factors, ABA biosynthetic 
factors, and phosphate kinases. The microbial-plant interaction-based expression 
and upregulation of stress-responsive genes can be harnessed as a powerful tool for 
enhancing plant drought stress tolerance.
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5. Microbes and drought stress mitigation

5.1 Plant growth-promoting rhizospheric bacteria

The plant growth-promoting rhizobacteria (PGPR) have the potential to mitigate 
drought stress and alleviate the negative effects of climate change on plant growth 
and development in a sustainable way [73]. These microbes trigger the onset of bio-
chemical changes, which enable the plant to set a response to alleviate drought stress 
[74]. The underlying mechanisms include optimization of exopolysaccharides and 
phytohormone production, antioxidant defense system, and cyclic metabolic path-
ways, involved in the deposition of sugars, polyamines, amino acids, and heat-shock 
protein synthesis [75]. Several studies have reported the positive effects of PGPR on 
plant growth and development under drought stress (Table 2). Particularly in wheat, 
the inoculation of PGPR mitigated drought stress. In one study, Li et al. [76] reported 
growth improvement in wheat plants upon inoculation with the Actinomycetes, 
Streptomyces pactum Act12. The bacterial inoculation significantly increased the 
overexpression of several genes including P5CS, EXPA6, SnRK2, and EXPA2. Overall, 
the root length, shoot length, and fresh biomass were significantly increased. 
Enhanced levels of sugars and antioxidant enzymes were detected in the exposed 
seedlings under stress condition. Inoculation of wheat plants with Pseudomonas 
libanensis EU-LWNA-33 increased the root length and biomass under drought stress 
[77]. The biochemical analysis revealed an increased production of osmolytes, that 
is, proline and glycine betaine. At the cellular level, proline and glycine betaine 
production regulates osmotic homeostasis, as well as the phosphorus solubilization 
and uptake. Phosphorus availability is a crucial factor in the overall growth and 
development of plants. In this study, the inoculated strains showed solubilization of 
phosphorus. In previous studies, Jochum et al. [79] reported drought stress tolerance 
in wheat and maize plants when inoculated with Bacillus sp. 12D6 and Enterobacter 
sp. 16i. The inoculation improved root length, surface area, and plant productivity. 
The study further revealed that Bacillus sp. 12D6 was comparatively more effective 
in countering drought stress. This enhanced drought stress mitigation was possible 
due to the production of phytohormones such as IAA and salicylic acid. In another 
study, Raheem et al. [80] isolated and investigated the impact of PGPR, namely 
Bacillus, Moraxella, Enterobacter, and Pseudomonas, on wheat plants under drought 
stress. Biochemical analysis of the inoculated stressed plants revealed production of 
increased levels of auxin that obviously helped plants to avoid the negative impact of 
drought stress. It was further concluded that the enhanced auxin production triggered 
by the Bacillus species improved the field capacity by 10% and crop yield by 34%. The 
drought stress mitigation effects of the plant growth-promoting bacteria (PGPB), 
Azospirillum were investigated in wheat plants [78]. The stressed plants showed 
drought tolerance, which was attributed to the microbial-mediated production of 
phytohormones, solutes, ACC deaminase, exopolysaccharides, chlorophyll synthesis, 
and increased mineral solubilization.

Drought stress imposes osmotic and oxidative stresses, which negatively affect 
the crops’ growth and productivity. Microbial inoculation has been the most pre-
ferred strategy to reduce stress-associated losses in crop plants. In this connection, 
Kour et al. [81] investigated the effects of bacterial inoculation on foxtail millet 
crop subjected to drought stress. Inoculation of plants with Acinetobacter calcoace-
ticus EU-LRNA-72 and Penicillium sp. EU-FTF-6 showed drought stress tolerance. 
The drought stress mitigation was mainly due to the accumulation of osmolytes 
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(proline and glycine betaine) and increased levels of chlorophyll a and b contents. 
In this study, the increased proline and glycine betaine levels improved osmotic 
adjustment and membrane integrity, while the increased chlorophyll content 
resulted in plant growth and development.

In one study, Chiappero et al. [82] investigated the positive impact of PGPR 
inoculation on peppermint subjected to drought stress. Two rhizospheric bacteria, 
Pseudomonas fluorescens WCS417r and Bacillus amyloliquefaciens GB03, were used in 
the inoculation and drought experiment. The results revealed a significant improve-
ment in drought stress tolerance, which was attributed mainly to the upregulation of 
the antioxidant defense system and phenolic components.

The effects of bacterial inoculation on drought stress were further tested in 
soybean plants [83]. The plants were inoculated with Bacillus thuringiensis, Bacillus 
cereus, and B. subtilis strains. The inoculation of plants with these strains resulted 
into an improved efficiency of the photosystem II (PS-II) and maintained the overall 
photosynthetic rates of the plants, transpiration rate, and stomatal conductance, 
which in turn improved the overall growth of inoculated plants compared with that of 
control plants. In addition, the genomic analysis revealed that the overexpression of 
Gmdreb1a might partly be responsible for drought stress mitigation.

The PGPBs have proven their potential as ecofriendly biofertilizers that can allevi-
ate the negative effects of drought stress on plants. In a previous study, the PGPR 
strains, Pseudomonas putida and B. amyloliquefaciens, were isolated from alkaline 

Host plant Microbe Underlying mechanism Reference

Triticum 
aestivum

Streptomyces pactum Act12 Increased overexpression of EXPA2, 
EXPA6, P5CS, and SnRK2, increased 
root length, shoot length, sugar 
content, MDA, and ABA

Li et al. 
[76]

T. aestivum Pseudomonas libanensis 
EU-LWNA-33

Increased ACC deaminase, osmolytes, 
and P solubilization

Kour et al. 
[77]

T. aestivum Azospirillum Increased phytohormone, solute 
formation, and exopolysaccharide 
production

Priyanka 
et al. [78]

T. aestivum 
and Zea mays

Bacillus sp. (12D6) and 
Enterobacter sp. (16i)

Increased IAA and SA Jochum 
et al. [79]

T. aestivum PGPR (Bacillus, Enterobacter, 
Moraxella, and Pseudomonas)

Increased auxin Raheem 
et al. [80]

Setaria italica Acinetobacter calcoaceticus 
EU-LRNA-72 and EU-FTF-6

Increased glycine betaine, chlorophyll 
a and b, proline, and sugars, decreased 
LPO

Kour et al. 
[81]

Mentha 
piperita

Pseudomonas fluorescens 
WCS417”r and Bacillus 
amyloliquefaciens (GB03)

Increased phenolic compounds and 
antioxidant defense

Chiappero 
et al. [82]

Glycine max Bacillus strains UFGS1, UFGS2, 
UFGRB2, and UFGRB3

Expression of Gmdreb1a, increased 
stomatal conductance, transpiration 
and Fv/Fm

Martins 
et al. [83]

Cicer 
arietinum

Pseudomonas putida and B. 
amyloliquefaciens

Increased chlorophyll, antioxidant 
enzymes, and protein content

Kumar 
et al. [84]

Table 2. 
Rhizospheric plant-growth-promoting bacteria and drought stress mitigation in plants.
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soils and then were used in the inoculation of chickpea plants under drought stress 
in the greenhouse and in vitro experiments [84]. The inoculation of plants with the 
strains in combination showed increased chlorophyll content, osmolyte production, 
and improved photosynthesis and biomass compared with plants inoculated with a 
single strain. In conclusion, the PGPR enhances the overall growth and development, 
as well as the biotic and abiotic stress tolerance of plants through a wide range of 
mechanisms.

5.2 Endophytic bacteria and fungi

Endophytes bacteria and fungi reside in different organs and tissues of plants and 
establish symbiotic relationship. The endophytes get their prepared food, while plants 
are benefited in different ways such as access to limited nutrients in the soil and biotic 
and abiotic stress tolerance. Endophytes have been specifically focused due to their 
crucial role in abiotic stress tolerance of plants [85]. It was previously reported that 
endophytes assist their host plants to increase their biomass under stress conditions 
[86]. However, different plant species showed variable levels of endophytic-mediated 
biomass accumulation under stress condition. For example, eudicots and C4 plants 
exhibited increased biomass accumulation compared with C3 and monocots [87].

Endophytic microbes play a very important role in reducing the damaging effects 
of abiotic stresses on plants. Several studies have demonstrated the drought stress 
mitigation in plants with endophytic bacterial inoculation (Table 3). Previously, 
Singh et al. [88] investigated the inoculation effects of endophytic bacterial strains, 
Trichoderma T42 and Pseudomonas on the growth and metabolic alterations in rice 
plants subjected to drought stress. The inoculated plants showed significantly 
improved metabolic activity such as induction of the antioxidant enzymes, and 
increases in the total polyphenolic content, which in turn, conferred oxidative stress 
tolerance. In another study, rice seedlings were treated with Gluconacetobacter diazo-
trophicus strain Pal5, and the drought stress tolerance was tested in the inoculated and 
uninoculated plants [89]. The plants were subjected to various drought stress levels 
for 15 days. The inoculated plants showed increased levels of proline and glycine 
betaine, which conferred the plants drought stress tolerance. Molecular analysis 
revealed relative expression of several genes such as cat, gor, sod, BADH, and P5CR. 
In conclusion, inoculation with G. diazotrophicus mitigated the effects of drought 
stress on rice plants.

The effects of bacterial inoculation on the growth of Glycine max were evaluated 
under drought stress [90]. Inoculation with bacterial strains, LHL10 and LHL06, 
produced positive improvement in plant growth under stress condition. The inocu-
lated plants showed increased roots, shoot length, leaf area, and dry biomass. The 
underlying mechanisms included an increase in HSP90 expression levels: lipid peroxi-
dation, increased calcium levels, and phosphate solubilization. In a study, Kour et al. 
[91] investigated the effects of Streptomyces laurentii EU-LWT3–69 and Penicillium 
sp. EU-DSF-10 on sorghum plants subjected to drought stress. Bioavailability of 
phosphorus to plants is reduced under drought stress. However, the plant-associated 
microbes contain the active form of phosphate that is provided to plants to counter 
the stress effects. Both the strains used in the study might solubilize phosphate and 
ensure its availability to the plants. The biochemical alterations mediated by bacterial 
inoculation included an increase in the proline and glycine betaine levels and chloro-
phyll content, while a decrease in the lipid peroxidation. Overall, the study suggested 
that bacterial inoculation enabled the plants to grow better under the drought stress.
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Microbial inoculation confers drought stress tolerance to the plants partly by an 
induction in the growth hormone levels and acquisition to soil mineral content. This 
was demonstrated in a study conducted by Kang et al. [100], in which the alfalfa 
plants were inoculated with two Enterobacter ludwigii strains, namely AFFR02 and 
Mj1212. The inoculated plants were assessed under drought stress for hormones and 
mineral concentrations. The results showed that the inoculated plants were more 
drought-tolerant than the uninoculated plants. Growth attributes such as fresh and 
dry biomass, root/shoot elongation, and stalk diameter were significantly higher in 
the inoculated plants than in the uninoculated plants. It was also observed that the 
treated plants accumulated higher levels of flavonoids, minerals, and ABA than those 
of untreated plants. In a previous study, Silambarasan et al. [92] used Rhodotorula 
mucilaginosa strain CAM4 in the inoculation of Lactuca sativa subjected to drought 
stress. The inoculated plants showed drought tolerance at various developmental 
stages. The treated plants showed a clear increase in the growth, dry biomass, root 
proliferation, and stem elongation as compared with the untreated plants. The 
inoculation caused a significant increase in the content of chlorophyll, carotenoids, 
and proline, while a decrease in the malondialdehyde (MDA) levels, indicating lipid 
peroxidation.

Fungal endophytic species have been extensively studied for their positive effects 
on plant growth, stress tolerance, and disease resistance. They exert their positive 
effects through production of growth hormones, siderophores, secondary metabo-
lites, and phosphate solubilization. Several studies have demonstrated the drought 
stress-mitigating effects of fungal inoculation on plants (Table 3). Fungal endo-
phytes, specifically isolated from desert plants, have shown promising results when 
used for stress mitigation in crop plants. Desert plants are usually exposed to high 
magnitudes of drought conditions and thus may harbor fungal endophytes that may 
confer drought and salt stress tolerance under arid environments. Jain et al. [101] used 
halotolerant fungal endophytic strains, namely Neocamarosporium chichastianum, 
Neocamarosporium goegapense, and Periconia macrospinosa in the inoculation of tomato 
and cucumber seedlings. The treated plants showed stress tolerance, which was evi-
dent from the increased plant growth, chlorophyll content, proline, and antioxidant 
enzyme levels.

Osmotic adjustment is one of the key physiological mechanisms, which have been 
observed in the drought-tolerant plants. Endophytic fungal strains confer drought 
tolerance in plants by maintaining osmotic balance and water uptake efficiency. 
In one study, Dastogeer et al. [94] investigated the role of the fungal endophyte 
Neotyphodium coenophialum in the drought tolerance of Lolium arundinaceum. The 
results revealed that the treated plants had high drought tolerance than the untreated 
plants. The underlying mechanism of this enhanced tolerance was dependent on the 
osmotic balance and improved water uptake efficiency, which in turn enhanced the 
gene expression and photosynthesis rate. In addition, drought tolerance was achieved 
in Nicotiana benthamiana, when inoculated with fungal endophytes isolated from a 
Nicotiana plant. Overall, the fungal endophytes contribute to the drought tolerance 
trait mainly by increasing the water-use efficiency, nutrient uptake and maintaining 
the ion homeostasis to induce stress tolerance in the associated plants.

5.3 Mycorrhizae

Mycorrhizae are fungal species that establish a symbiotic relationship with higher 
plants and play a significant role in plant growth, nutrient acquisition, soil fertility, 
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Microbe type Host Underlying mechanism Reference

Endophytic 
bacteria

Oryza sativa L. Trichoderma T42 
and Pseudomonas

PAL expression, 
polyphenols

Singh et al. [88]

O. sativa L. Gluconacetobacter 
diazotrophicus Pal5

Expression of gor, cat, 
P5CR, sod, and BADH
Increased proline and 
glycine betaine production

Filgueiras et al. 
[89]

Glycine max Endophytes (LHL10 
and LHL06)

Expression of GmHsp90A2 
and GmHsp90A1 increased 
SOD and decreased LPO

Bilal et al. [90]

Foxtail millet EU- LRNA-72 and 
EU-FTF-6

Increased glycine betaine, 
chlorophyll a and b, 
proline, and sugars

Kour et al. [81]

Sorghum bicolor 
L.

Streptomyces 
laurentii 
EU-LWT3–69 and 
Penicillium sp. 
strain EU-DSF-10

Increased osmolytes, ACC 
and deaminase, solubilize P 
and reduced LPO

Kour et al. [91]

Lactuca sativa CAM4 Reduced MDA, and 
increased proline, 
chlorophyll a and b and 
carotenoids

Silambarasan 
et al. [92]

Endophytic 
fungi

Broccoli YNA59 Increased sugar, protein, 
chlorophyll content, ABA, 
JA, and SA

Kim et al. [93]

Lolium 
Arundinaceum, 
Nicotiana 
benthamiana

Neotyphodium 
coenophialum

Increased gaseous exchange 
and antioxidant enzyme 
production, altered gene 
expression and osmotic 
balance

Dastogeer et al. 
[94]

Mycorrhizae G. max Arbuscular 
mycorrhizal fungus

Increased proline, glycine, 
and soluble sugars, reduced 
MDA content

Grümberg et al. 
[95]

Fragaria 
ananassa Duch.

Arbuscular 
mycorrhizal fungus

Increased Zn, AA enzyme 
and water uptake

Moradtalab 
et al. [96]

Trifoliate orange Funneliformis 
mosseae

Increased phenolic 
contents, terpenes, root 
exudates and coumarins, 
reduced alkanes, ester, and 
amides

Cheng et al. 
[97]

Triticum spp. Glomus mosseae Decreased 6-SFT, SOD 
and sulfur metabolism; 
increased genetic diversity

Bernardo et al. 
[98]

Ephedra foliata 
Boiss

AMF (Glomus 
etunicatum, Glomus 
intraradices, and 
Glomus mosseae)

Increased gene expression, 
mineral solubilization, 
hormone production, 
expression, osmolytes and 
antioxidant enzymes

Al-Arjani et al. 
[99]

Table 3. 
Microbial mitigation of drought stress in plants.



247

Microbial Mitigation of Drought Stress in Plants: Adaptations to Climate Change
DOI: http://dx.doi.org/10.5772/intechopen.109669

and biotic and abiotic stress tolerance. They have interspecific functionality and are 
generally host-specific [102]. The endophytic microbes induce stress tolerance in the 
associated plants mainly through producing phytohormones and induction of the 
synthesis of secondary metabolites. On the contrary, arbuscular mycorrhizae confer 
stress tolerance to host plants by maintaining a steady flow of water and nutrient 
absorption from the soil [103].

The role of arbuscular mycorrhizae in drought stress tolerance of plants has been 
documented in several previous studies (Table 3). In one study, the impact of inocu-
lation of arbuscular mycorrhizal strains, namely Septoglomus constrictum, Glomus sp., 
and Glomus aggregatum was studied in soybean, which is highly sensitive to abiotic 
stress [95]. The plants were subjected to drought stress after inoculation, and the 
biochemical, physiological, and molecular attributes were investigated. The treated 
plants showed increased levels of soluble sugars, proline, and glycine betaine and 
reduced MDA levels. The increased osmolyte levels in the treated plants conferred 
increased protection against the drought stress, while the lowered MDA content 
reduced the osmotic stress. The induction of phenolic compounds is one of the key 
mechanisms through which plants generate a response not only to infectious diseases 
but also to drought stress. In one study, Cheng et al. [97] used Funneliformis mosseae in 
the inoculation of trifoliate orange. The inoculated plants exhibited a marked increase 
in several growth attributes such as stem elongation, leaf number, leaf area, and root 
architecture. Biochemical analysis revealed induction in the contents of coumarin, 
terpene, and phenolic contents in the root exudates of the treated plants as compared 
with those of untreated plants. The drought stress tolerance in the inoculated plants 
was attributed to the induction of phenolic components, as they reduce oxidative 
stress in plants. In a similar study, a mycorrhizal fungal strain, Glomus mosseae was 
used to inoculate bread and durum wheat cultivars, and the plants were then exposed 
to drought stress [98]. The drought stress tolerance mechanism was evaluated through 
measurement of growth parameters and proteomics analysis. The inoculated plants 
showed increased dry weight, and the two genotypes responded differently to the 
fungal inoculation in terms of stress tolerance. A significant upregulation in the 
osmolytes concentrations was observed. Moreover, the inoculated plants accumulated 
lower ethylene levels an indication of stress tolerance.

Oxidative stress triggers the production of reactive oxygen species (ROS), 
which further causes irreversible damages to the macromolecules and key enzymes. 
Microbes have an ameliorating impact on oxidative stress in plants. Drought stress 
imposes oxidative stress on plants with associated growth and yield reduction. 
Plants respond to ROS generation by triggering the induction of ROS scavengers, 
which protect the cellular machinery. In one study, Zou et al. [104] used Gigaspora 
margarita and Glomus intraradices strains in the inoculation of host plants subjected 
to drought stress. Molecular analysis revealed upregulation of the expression of 
GintSOD, GmarCuZnSOD, GintPDX1, and GintMT1 in the inoculated plants. 
Moreover, it was concluded that the drought stress tolerance mechanism also 
involved reduction in the cytoplasmic protein levels and regulation of redox status 
through synthesis of pyridoxamine. The drought-associated secondary stresses 
negatively impact both quality and quantity of crop plants. However, these negative 
effects can be efficiently mitigated through inoculation of various AMF strains. In 
one study, Al-Arjani et al. [99] isolated three AMF strains, namely Glomus mos-
seae, Glomus etunicatum, and Glomus intraradices from the rhizosphere of Acacia 
gerrardii. These strains were used to inoculate the Ephedra foliata Boiss plants, 
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subjected to drought stress. Compared with the untreated plants, the treated plants 
showed a significant increase in the chlorophyll and carotenoid contents. In addi-
tion, the treated plants showed increased levels of sucrose-phosphate synthase 
and osmolyte levels, which might be responsible for the enhanced drought stress 
tolerance. In another study, Moradtalab et al. [96] inoculated strawberry seedlings 
with AMF and silicon to evaluate their combined effects against drought stress. It 
was observed that the AMF and silicone inoculation caused a marked increase in the 
water uptake, mineral content, and overall biomass. The antioxidant defense system 
was also triggered, which reduced the drought-associated damages and conferred 
stress tolerance.

6. Conclusion and prospects

Climate change tends to increase the global temperatures, which have devas-
tated impacts on agricultural production. Furthermore, the rapid industrialization 
and increase in the world population have put a lot of burden on agriculture to 
produce more food and feed from the existing crop varieties, and land and water 
resources. Drought tolerance in plants is a multigenic trait and can be enhanced in 
a meaningful way by adoption of multi-pronged strategy. Endophytic and rhizo-
spheric microbes have well-established mechanisms to support plants in nutrient 
acquisition, stress tolerance, and disease resistance. In this connection, microbes 
with high potential of osmolytes and siderophore production, phosphate solubi-
lization, and nitrogen assimilation should be selected for plant inoculation. Also, 
the microbial induction of the genes involved in ROS scavenging may help plants 
to overcome the negative effects of drought stress. Inoculation experiments should 
involve mixtures or consortium of microbes rather than individual microbial 
strains. Some recent experiments have used mixtures of diverse microbial strains, 
and it was suggested that a microbial consortium would have broad impacts on the 
plant growth and productivity under drought stress. Furthermore, the modern and 
state-of-the-art gene sequencing and editing tools could be used in genomic stud-
ies, which would involve identification, cloning, and functional characterization 
of target genes in the selected microbes with high potential of conferring drought 
stress tolerance. These efforts could be combined with approaches of system 
biology studies, which would further explore the microbial-mediated alterations in 
metabolic profiles under drought stress. An important consideration would be to 
combine the complex genetic networks with those of metabolic events, which are 
lying at the core of plant-microbe interaction under environmental stresses includ-
ing drought stress.
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Chapter 13

Plant-Growth Promoting 
Endophytic Bacteria and Their Role 
for Maize Acclimatation to Abiotic 
Stress
Víctor Manuel González-Mendoza, Mayra de la Torre  
and Jorge Rocha

Abstract

In order to grow, reproduce, and defend themselves, maize plants use various 
strategies to obtain adaptive advantages in varying conditions, for example, to toler-
ate abiotic stress (e.g., drought or heat due to climate change). One of these strategies 
is the establishment of interactions with plant-growth-promoting bacteria. Bacteria 
can be associated with plants in the rhizosphere, rhizoplane, or as endophytes. Recent 
evidence suggest that modern agricultural practices are detrimental to these beneficial 
plant-microbe interactions, and reservoirs like traditional agroecosystems called milpas, 
emerge as sources of microbiota associated with maize crops, with increased diversity 
and beneficial functions. Particularly, bacterial endophytes associated with native maize 
from milpas show promising features for their use as plant-growth-promoting inoculates, 
however, it is necessary to first understand the mechanisms known for beneficial func-
tions of endophytes associated with maize and other plants. Here, we review the mecha-
nisms of beneficial interactions between plants and endophytic bacteria, with emphasis 
on maize and with mentions of recent findings on maize landraces from milpa systems.

Keywords: plant associated-microbial communities, milpa, stress responses, 
amelioration, climate change

1. Introduction

Plants are constantly challenged with a plethora of stressful conditions and 
require several response mechanisms, including the interactions between the roots 
and soil microbes, which allow for nutrient availability, growth promotion, and 
disease suppression. Microbiota can be found associated to plants in different degrees 
and locations, which are divided into (1) endosphere (inter or intracellular tissues), 
(2) rhizoplane microbial (on the root surface and possibly attached to root hairs), 
and rhizosphere microbial (soil close to the root surface). The composition of each 
of these communities is influenced by the host genotype, soil source, cultivation 
practice, and so on [1–4] (Figure 1). Bacteria present in the endosphere have recently 
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been considered as potential agents for acclimatation to abiotic stress response. One 
example is endophytic bacteria isolated from native maize from milpa traditional 
systems, which has been proposed as a bacteriome fraction that could be useful 
for obtaining products toward the bio-fertilization of maize crops [5]. Milpas are 
polyculture systems that include domesticated, semi-domesticated, and tolerated 
plant species that combine native maize landraces with almost any other crop, tree, 

Figure 1. 
Localization of maize associated-microbial communities. (A) Endosphere; here, communities are affected by 
plant genotype, its defenses system, and intrinsic responses; (B) in the rhizoplane, extrinsic factors like carbon 
sources or phytochemicals, [O2], pH, or nutrient depletion, affect microbial community composition; (C) in the 
rhizosphere, communities are strongly affected by soil source, cultivation practice, and others.
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or shrub species. Milpas constitute a dynamic system with diverse genetic resources, 
used as the main crop of native maize (Zea mays L.) and as associated crops to beans 
(Phaseolus spp.), squashes (Cucurbita sp.), chili peppers (Capsicum sp.), tomatoes 
(Solanum lycopersicum), among others. Modern practices of agriculture affect bacte-
rial diversity and functions, therefore, milpas have retained unique beneficial micro-
organisms that interact with native maize, which could have been lost in modern 
hybrid maize with monocultures, high-tillage, and large agrochemical input [6].

With the current worldwide agricultural practices trend, it is necessary to promote 
a reduction of agrochemical use and a reintroduction of ancestral agricultural prac-
tices and/or the use of microorganism-based bio-formulations that generate a benefi-
cial interaction between plants and microbes and thereby influence plant growth. One 
option is the use of plant-growth-promoting endophytes, which could be regarded 
as a new approach to mitigate the detrimental effect of pests and/or diseases, low 
rainfall, and current climate change [5].

Endophytic bacterial species have been identified in a vast number of plants; 
notably, they are symbionts that usually do not cause negative effects on plant 
growth [1, 7, 8]. The endophyte community within the plant is very as dynamic but 
usually is enriched with specialized types of bacteria with features such as flagella, 
plant-polymer-degrading enzymes, type V and VI protein secretion systems, iron 
acquisition and storage, quorum sensing, detoxification of reactive oxygen species 
(ROS), degradation of aromatic compounds, among others [9]. Colonization of 
endophytic bacteria can be also classified into three main categories in accordance 
with lifestyle strategies as (1) obligate endophytes, unable to proliferate outside of 
plants and are likely transmitted via seed; (2) facultative endophytes, as free living 
in soil but will colonize plants once conditions are appropriate, and (3) passive 
endophytes, as do not actively seek to colonize the plant [7, 9, 10].

Recent work suggests that microorganisms from the bulk soil in milpas are selected 
by native maize roots. Native maize selectively recruits, including strains from 
phyla like Acidobacteria, Actinobacteria, and Bacteroidetes, with a higher relative 
abundance in comparison to soil adjacent to the roots [6]. Recently, Gastélum et al. 
reported a greater presence of endophytic microbial load in native maize vs. hybrid 
landraces, which include more bacterial strains with antagonistic activity against 
soil-borne bacteria, and overall harbor more diverse bacterial communities [5]. There 
are many factors influencing endophytes to colonize and penetrate the root tissue, 
as well as the resulting interaction. After colonization, the role of microbes could 
modulate plant growth and development by diverse mechanisms [11]. In order to 
grasp maize endophytic microbes from milpas for plant growth promotion, we first 
need to understand the mechanisms for growth promotion. Here, we will discuss how 
maize-related endophytes can potentially have used in the alleviation of abiotic stress 
and/or climate change.

2. Endophytic bacteria

Bacterial endophytes inhabit the tissues of plants for at least a part of their life 
cycle without harming or inhibiting the growth of the plant and establishing sym-
biotic associations than can result in great benefits for plant health. Endophytes are 
microorganisms that survive within healthy plant tissues and promote plant growth 
under stress. A large proportion of endophytic bacteria groups are shared between 
leaves and roots, suggesting that they are inoculated from the soil. These communities 
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are also dynamic, as they shift when the plants age [12]. Reinhold-Hurek et al. defined 
a community of least complexity where specific bacterial traits are required for inter-
nalization and establishment inside of this compartment, and host genotype likely 
has the strongest influence on community structure here, in comparison with other 
compartments such as the roots [9].

2.1 Plant-growth-promoting endophytes (PGPEs)

The PGPEs as well as PGPRs (plant-growth-promoting rhizobacteria) promote 
plant growth by regulating plant hormones, improving nutrition acquisition, sidero-
phore production, and enhancing the antioxidant system [13]. Bacterial endophytes 
associated with plants can be classified into three groups, based on the ecological 
interaction: beneficial, deleterious, and neutral. Various genera of Pseudomonas, 
Enterobacter, Bacillus, Klebsiella, and Burkholderia, (which are normally considered 
pathogenic), are also present as PGPEs, promoting plant growth and development 
under both normal and stress conditions [14]. In most cases, these are indirect 
mechanisms, such as preventing the deleterious effects of other phytopathogenic 
microorganisms, and this function is achieved by antibiosis, induction of systemic 
resistance (ISR), and competitive exclusion [13–15]. There are several mechanisms 
for plant growth stimulation by PGPEs, such as nitrogen fixation; synthesis of auxin, 
1-aminocyclopropane-1-carboxylate (ACC)-deaminase, siderophores production, 
and phosphate solubilization, and most of them are well documented [16]. In the 
case of endophytic bacteria isolated in native or hybrid genotypes of maize, genera, 
such as Pantoea, Bacillus, Burkholderia, Klebsiella, and others were found [6, 8]. There 
are mechanisms by PGPE to mitigate stress responses, and these are described in the 
following sections [17].

2.1.1 Nutrient fixation

PGPEs act as a direct enhancer to increase the accessibility and concentration of 
chemical elements by fixing or locking their nutritional supplies for plant growth 
and development [14]. To date, there are few nutrient-fixing bacteria reported as 
associated with maize.

2.1.2 Nitrogen fixation

Biological nitrogen fixation is a biological process that is carried out either by sym-
biotic or non-symbiotic interactions between microbes and plants. Symbiotic PGPRs, 
which are most frequently reported to fix atmospheric N2 in soil, include strains 
of Rhizobium sp., Azoarcus sp., Beijerinckia sp., Pantoea agglomerans, and Klebsiella 
pneumoniae [10, 13]. Bio-fixation of atmospheric nitrogen is carried out by genera like 
Azospirillum, Klebsiella, Burkholderia, Bacillus, and Pseudomonas [18]. Someone of 
these species has been reported as endophytes in native maize.

2.1.3 Phosphate solubilization

Solubilization and mineralization of phosphorus by phosphate-solubilizing 
bacteria is an important trait that can be achieved by PGPR. Phosphate solubilizing 
PGPR includes genera, such as Arthrobacter, Bacillus, Beijerinckia, Burkholderia, 
Enterobacter, Microbacterium, Pseudomonas, Erwinia, Rhizobium, Mesorhizobium, 
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Flavobacterium, Rhodococcus, and Serratia, and some of these have been found associ-
ated to maize [19].

2.1.4 Potassium solubilization

Potassium solubilizing PGPR, such as Acidothiobacillus sp., Bacillus edaphicus, 
Ferrooxidans sp., Bacillus mucilaginosus, Pseudomonas sp., Burkholderia sp., and 
Paenibacillus sp., have been reported to release potassium in accessible form from 
potassium-bearing minerals in soils; some of them have been reported in interaction 
with maize [20].

2.1.5 Phytohormone production

One process employed by PGPRs is phytohormones production. Bacterial species, 
such as Pantoea agglomerans, Rhodospirillum rubrum, Pseudomonas fluorescens, Bacillus 
subtilis, Paenibacillus polymyxa, Pseudomonas sp., and Azotobacter sp., were found to 
carry out this mechanism and they have been tested in maize development [13].

2.1.6 Siderophore production

The production of siderophores by microbes is crucial for plant growth since 
these compounds chelate iron in the soil. This process is performed by a bacterium, 
such as Pseudomonas sp. and Streptomyces sp., and it is useful for generating soluble 
complexes that can be absorbed by plants, and some of these bacteria have been 
tested in maize [10].

2.1.7 Exopolysaccharide production (EPS)

EPS-producing PGPR, such as Azotobacter vinelandii, Bacillus drentensis, 
Enterobacter cloacae, Agrobacterium sp., Xanthomonas sp., and Rhizobium sp., play a 
vital role in maintaining water potential, aggregating soil particles, and ensuring an 
obligate contact between plant roots and rhizobacteria [21].

2.2 Acclimatation to abiotic stresses

It has been proposed that stress conditions cause the recruitment of particular 
microbial taxa from the soil. In this sense, environmental factors, such as drought, 
pH, and temperature have a significant impact on the microbiota associated to 
roots [15]. Advantages of bacterial endophytes on plant growth include protection 
from competing bacteria and fungi, a constant and reliable source of nutrition, and 
protection from exposure to a wide range of potentially deleterious environmental 
conditions, such as extreme temperature and the presence of inhibitory chemicals in 
the soil. Some of these responses are described below.

2.2.1 Chemical responses

Plant exudate compounds through their roots and these are key factors for the 
assembly of microbial communities in the rhizosphere. Some of these compounds 
are sugars, amino acids, organic acids, fatty acids, and secondary metabolites such 
as triterpenes [22]. On one hand, the composition of the root exudate profiles 
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changes in different plant species, genotypes, and developmental stages. Thus, it is 
suggested that variations in the composition of root-associated endophytic micro-
bial are caused by changes in root exudation [15, 22]. On the other hand, endo-
phytic bacteria also synthesize a varied array of secondary metabolites with unique 
chemical structures that have been exploited as biocontrol agents. Additionally, 
these bioactive compounds can be beneficial as they can stimulate plant growth 
and development. The composition of secondary metabolites produced by endo-
phytic bacteria depends on the physiological status and species of plants and 
microorganisms. The bacterial genera include Azotobacter, Serratia, Azospirillum, 
Bacillus, Caulobacter, Chromobacterium, Agrobacterium, Erwinia, Flavobacterium, 
Arthrobacter, Micrococcous, Pseudomonas, and Burkholderia. These carry out mecha-
nisms like nutrient fixation, neutralizing biotic and abiotic stress, and producing 
volatile organic compounds (VOCs) and enzymes to prevent diseases. However, 
the mode of action is different depending on PGPR-types and varies according to 
the type of host plant [23]. Our unpublished data report that some native maizes 
have been shown to induce the synthesis of anthocyanin and phenolic compounds 
in response to drought or waterlogging (unpublished data), cold, high salinity, or 
nutrient deficiency stresses. This response is a protective strategy to alleviate these 
adverse impacts [24]; (Figure 2). Studies have shown some specific changes in root 
exudation of primary and secondary metabolites as follows: (1) high sugar levels 
exuded in early plant developmental stages may attract a wide range of microbes 
that can consume sugar substrates, and (2) high levels of phenolics exuded in later 
plant developmental stages induce specialized pathways, where these compounds 
are used as specific substrates or signaling molecules in ways that vary across 
taxa [25].

2.2.2 Nutritional starvation responses

Plants exposed to nutrient limitations exhibit a wide range of responses that 
include changes to the quantity and composition of the compounds released by 
roots. In maize, N-deficit causes a reduced exudation of amino acids; P-deficiency 

Figure 2. 
Putative chemical response to abiotic stress.
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stimulates the release of gamma-aminobutyric acid (GABA) and carbohydrates; 
whilst K-deficient plants release less sugars. Moreover, Fe deficiency causes increased 
release of glutamate, glucose, ribitol, and citrate [26]. Accordingly, plants exposed 
to different nutrient limitations show differences in the microbial structure 
composition. For example, P-deficient plants release compounds involved in bacterial 
chemotaxis and motility, whilst exudates released by Fe and K-deficient plants did not 
cause dramatic changes in bacterial composition [4, 26]. Interestingly, native maize 
landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P 
uptake, but there is still no data on bacterial composition [27].

2.2.3 High or low-temperature responses

Plants growing under high or low-temperature stress exhibit responses such 
as a decline in photochemical efficiency, stomatal conductance, and net CO2 
fixation. High temperatures cause changes in the plasma membrane, water content 
(transpiration), impaired photosynthesis activity, enzyme functioning, cell division, 
and plant growth. Some strategies to overcome this stress include the production 
and accumulation of enzymes and osmolytes. Temperature plays a significant role in 
the regulation of physiological and metabolic responses. Bacterial endophytes also 
possess effective mechanisms to protect the structure of proteins, membranes, and 
nucleic acid molecules, and in this way, they can survive under high temperatures or 
low temperatures. These phenomena have been studied in genera like Pseudomonas 
cedrina, Brevundimonas terrae, and Arthrobacter nicotianae, among others [14].

2.2.4 Waterlogging and water deficit responses

Waterlogging stress adversely impacts the physiology and photosynthetic capacity 
of the plant, and prolonged exposure generates severe damage to plant growth 
or productivity. Some strategies that are adopted by plants under water deficit 
response are reduction in transpiration loss through altering stomatal conductance 
and distribution, leaf rolling, root-to-shoot ratio dynamics, root length increment, 
accumulation of compatible solutes, enhancement in transpiration efficiency, 
osmotic and hormonal regulation, and delayed senescence [28]. In addition, bacterial 
endophytes can enhance plant tolerance through the maintenance of cell homeostasis 
and diminishing the adverse effects of oxidative stress [29].

2.2.5 Drought responses

Drought stress cause as responses a decline in turgor and water potentials, a sup-
pression in photosynthesis, a decrease in the contents of the chlorophyll, and increased 
accumulation of proline in most plants [30]. Several studies suggest that the use of 
distinct endophytic bacteria could produce beneficial effects on their host plants if 
their co-inoculation does not generate antagonistic responses. They show mechanisms 
that involve the maintenance of the cell water homeostasis under drought conditions, 
allowing diminished water loss and increasing water inlet, carbon sequestration, 
nutrient cycling, resulting in health of crops, and rhizosphere ecosystem function-
ing [31, 32]. Many  bacterial groups have been related to these mechanisms, for 
example, Acinetobacter, Azospirillum, Azotobacter, Arthrobacter, Bacillus, Beijerinckia, 
Brevundimonas, Burkholderia, Clostridium, Delftia, Duganella, Erwinia, Enter- 
obacter, Flavobacterium, Hydrogenophaga, Methylobacterium, Paenibacillus, 
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Pantoea, Proteus, Providencia, Pseudomonas, Psychrobacter, Rhizobium, Serratia, 
Stenotrophomonas, Streptococcus, and Streptomyces [33, 34].

2.2.6 Salinity responses

Salinity stress induce a condition that prevents water uptake by the plant and 
relate to a decline in photosynthesis, growth, and uptake of other nutrients. Salinity 
adversely affects plant growth and development. Halophytic bacteria have several 
adaptations to mitigate salinity stress that include a reduced stomatal conductance 
of the host, lower water potential, uptake of inorganic ions, a salt discharge from 
roots, and accumulation of organic acids, among others [16]. Salinity can disrupt 
water uptake and ion equilibrium and lead to oxidative damage due to the produc-
tion of ROS. Halophytic bacteria can keep these ROS at minimal levels due to the 
presence of an antioxidant system that consists of enzymes like catalase (CAT), 
peroxidase (POD), and superoxide dismutase (SOD). The salt-tolerant endo-
phytes include genera like Pseudomonas, Kocurias, Cronobacter, Gracilibacillus, 
Staphylococcus, Virgibacillus, Salinicoccus, Bacillus, Zhihengliuella, Brevibacterium, 
Oceanobacillus, Exiguobacterium, Arthrobacter, and Halomonas. These bacterial 
groups possess an ACC deaminase activity with the potential to ameliorate plant 
salinity stress [16, 35, 36].

2.2.7 Heavy metal responses

Heavy metal stress is characterized by the inhibition of processes like 
photosynthesis, respiration, nitrogen and protein metabolism, and nutrient uptake 
[37]. There is a wide range of heavy metal-tolerant microorganisms and plant-
associated microbes that involve various mechanisms such as efflux, impermeability 
to metals, volatilization, EPS sequestration, metal complexation, and enzymatic 
detoxification [14, 38]. The microorganisms with tolerance to heavy metals include 
genera such as Rhizobacteria and the phylum Firmicutes that promote plant growth 
and development during metal stress conditions. They carry out mechanisms to 
reduce ethylene concentration, production of plant growth regulators such as auxin 
indole-3-acetic acid (IAA), ACC deaminase, and disease suppression [14].

2.2.8 Pathogen responses

Biotic stress can be caused by different pathogens or plagues, such as bacteria, 
viruses, fungi, nematodes, protists, insects, and viroids. These result in a significant 
reduction in plant growth and development. Endophytic bacteria have been used as 
antagonists against plant pathogens and species like Bacillus spp. and Pseudomonas 
sp., produce a wide variety of compounds such as antibiotics, antifungal compounds, 
antivirals, and so on [39]. In plants, some defense mechanisms are activated by 
pathogenic or non-pathogenic invasion, that results in the activation of enzymes, 
such as chitinase, β-1, 3-glucanase, phenylalanine ammonia-lyase, polyphenol 
oxidase, peroxidase, lipoxygenase, SOD, CAT, and ascorbate peroxidase (APX). 
After these encounters, plants remain primed, which means that they are better 
prepared for future attacks by pathogens. PGPEs promote plant growth by producing 
metabolites that control phytopathogenic agents. These metabolites include β-1,3-
glucanase, ACC-deaminase, and chitinase, which are generally involved in lysing cell 
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walls and neutralizing pathogens [40]. Finally, species from diverse genera, including 
Pseudomonas, Bacillus, Arthrobacter, Stenotrophomonas, and Serratia can produce 
VOCs that impact plant growth and development [13].

2.3 Abiotic stress amelioration by plant growth-promoting endophytes

The use of bacterial strains from rhizosphere, phyllosphere, or endosphere 
has been suggested to promote an amelioration of abiotic stress. Endophytes 
promote plant growth through nitrogen fixation, phytohormone production, 
nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. 
These mechanisms have been reported across many genera such as Bacillus, 
Pantoea, Klebsiella, Burkholderia, Gluconobacter, and Pseudomonas, among others 
[13, 41, 42]. Specifically, for maize endophytes, these functions have been associ-
ated with genera, such as Massilia, Burkholderia, Ralstonia, Dyella, Chitinophaga, 
and Sphingobium. However, the bacterial community structure significantly 
changes through different growth or development process. For example, Massilia, 
Flavobacterium, Arenimonas, and Ohtaekwangia were enrichment at early 
growth stages, whilst genera like Burkholderia, Ralstonia, Dyella, Chitinophaga, 
Sphingobium, Bradyrhizobium, and Variovorax were dominant at later stages 
[43]. In milpa, studies have reported the presence of genera such as Flavitalea, 
Sphingomonas, Blastococcus, Luteitalea, and Vicinamibacter, among others groups 
that are uncommon in hybrid maize [5]. Moreover, endophytes bacteria like 
Bacillus, Enterobacter, Pseudomonas, Azotobacter, Arthrobacter, Streptomyces, and 
Isoptericola were related to the alleviation of drought, heat, and salt stress in differ-
ent crop plants, Figure 3 [11, 44].

Figure 3. 
Potential bacterial endophytes from Arabidopsis, Rice, and maize.
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Several studies have proposed that different rhizosphere bacterial types may serve 
as initial inoculum populations. It was shown that bacterial communities, such as 
epiphytic and endophytic, are highly similar in both leaves and roots, respectively, 
supporting the hypothesis that the communities are recruited from the soil [12]; 
(Figure 3). Firstly, rhizosphere microbial could be defined by exudates released from 
the host; this is because concentration gradients of carbon sources and phytochemicals 
function as attractants, while the modulation of oxygen and pH in the soil acts as 
limiter strategy, and finally, nutrient depletion works as selective mode [9] (Figure 1). 
Secondly, rhizoplane microbes could be recruited by favoring specific functions like 
attachment or adhesion. Swimming and other types of motility and chemotaxis are the 
first step to colonization. These depend on cell structures, such as flagella or pili, while 
colonization requires biofilm formation and adhesins. These are all important features 
for gaining access to the plant surface and to colonize in susceptible areas caused by 
wounds or mechanical injuries [42]; (Figure 1), Endophytic microbes are found in 
inter or intracellular spaces in the plant, and it is hypothesized that they require prop-
erties such as flagella and twitching motility that contribute to access and colonize at 
the host. On the other hand, lipopolysaccharide production (LPS), ROS detoxification, 
plant polymer degradation, quorum sensing, and type VI secretion system are impor-
tant for the establishment inside the plant host [9, 42]. Finally, it has been reported 
that some mechanisms are central features in abiotic stress alleviation by plant growth-
promoting endophytes. One important example is ACC deaminase activity to keep the 
stress ethylene concentration below growth inhibitory effects [16, 45–47].

3. Conclusions

The plant associated-microbial communities play important roles in nutrient 
competition, and in general, in plant health and crop yields. It is therefore important 
to clearly differentiate between the structure and diversity of bacterial communities 
found as endophytes vs. on the roots (rhizosphere). Important progress has been 
achieved in the study of beneficial microbes in maize, but recent studies show that 
there are unexpected differences between hybrid and native landraces, probably due 
to opposing farming systems between conventional modern crops and traditional 
milpas system with ancestral practices. It has been hypothesized that milpa prac-
tices favor the maintenance of specific microorganisms that could have been lost in 
modern hybrid maize with monocultures, high-tillage, and large agrochemical input 
techniques. Particularly, endophytic microbes appear to be important communities 
with unique diversity and functions in native maize. In order to understand milpa 
microbial diversity for developing sustainable solutions, it is first necessary to review 
our general knowledge on the role of endophytes for the health of plants in general, 
but specifically for maize. Today, it is increasingly recognized that these endophytic 
bacterial communities could be significant restore to plant health and they could have 
offered an opportunity to maximize crop productivity and mitigate the effects of 
climate change without huge impacts on the ecosystems.
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