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Preface

I am aware that this book will spark a lot of debate. It has never been easy to dispute 
the consensus because the “system”—of any kind, in any setting—will use whatever 
means possible to maintain the status quo. I feel obligated to share my knowledge, 
analyses, and conclusions after spending 20 years in the field of analytical chemistry, 
sample preparation, and separation techniques of bioactive molecules. I have pub-
lished twenty papers, including four reviews and book chapters on various aspects 
of analytical chemistry. The beneficiaries will be all of us – ourselves, scientists, 
researchers, students, and society. One of the most notable aspects of this book is that 
it lacks a textbook format where the chapters must be read in the order provided to 
be comprehended. In reality, you can begin the adventure at any point, depending on 
your interests, tastes, and preferences.

I do not expect everybody in the scientific community to agree with the content and 
ideas put forth in this book. But I do hope that the information and knowledge pre-
sented will be useful for the students, researchers, and scientists. The book comprises 
eleven chapters.

Chapter 1 describes the processes for synthesizing titanium dioxide (TiO2) with 
vanadium oxide V0, its properties, and some of its applications for photocatalysis. It 
also discusses the reductive, adsorption, optical, and structural properties of TiO2 
nanoparticles containing V0. This chapter is useful for engineers who seek to produce 
extremely effective photocatalysts and expand the functional applications of photo-
catalysis by developing defective semiconductors. Chapter 2 discusses the synthesis of 
black titania and its applications. It outlines various synthetic approaches employed to 
obtain black titania and describes the structural features of the black titania nanoma-
terials, along with their photocatalytic performances towards various applications. 
Chapter 3 focuses on the comparison of possible surface-related parameters and 
photocatalytic activity of anatase, rutile, and brookite polymorphs with exposed dif-
ferent crystal facets. It also summarizes computational data on their different possible 
surface structures, focusing on the geometry, energy, and possible reconstructions. 
Chapter 4 briefly describes the synthesis process of the different types of nanostruc-
tured (NS) TiO2, their chemical and surface modifications, and their applications. It 
also describes the preparation of NS TiO2, including nanoparticles, nanorods, nanow-
ires, nanosheets, nanofibers, and nanotubes. This chapter discusses the effects of 
precursor properties and synthesis conditions on the structure, crystallinity, surface 
specificity, and morphology of titanium dioxide nanoparticles. Chapter 5 explains 
the recently reported methods that are used to synthesize TiO2 nanoparticles, such 
as sol–gel, hydrothermal, precipitation, and so on. The chapter also highlights the 
different properties of TiO2. Chapter 6 describes the main features of TiO2, including 
processes, structure, and final properties, and reports and discusses different surface 
coating methods for TiO2 with inorganic oxides and organic matter. Chapter 7 deals 
with tuning the magnetic and photocatalytic properties of  wide-bandgap metal 
oxide semiconductors for environmental remediation. Chapter 8 describes the factors 
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that influence the crystalline structure, morphology, and adhesion of TiO2 films to 
ginger lily fibers. The surface properties of TiO2 films are determined using analytical 
techniques such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy 
(XPS), and their morphology and elemental composition are determined by scanning 
electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Chapter 9 
discusses the complex impact of gamma rays on materials of TiO2 and their practical 
use in photovoltaic contexts. Chapter 10 discusses plasmonic–TiO2 nanohybrids for 
environmental and energy applications. Chapter 11 reviews the design, fabrication, 
and theranostic biomedical applications of nano titania.

I hope this book is widely read. If we are to avoid the blunders of the past, then we 
need to change direction and start benefiting from the knowledge base created by the 
scientists. We did not have this chance a decade ago. Now is the right time.

Bochra Bejaoui
National Institute of Research and Pysico-chemical Analysis (INRAP),

Laboratory of Useful Materials,
Technopark of Sidi Thabet,

Ariana, Tunisia

Faculty of Sciences of Bizerte,
Department of Chemistry,

The University of Carthage,
Zarzouna, Tunisia
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Chapter 1

Oxygen Vacancy in TiO2:
Production Methods and Properties
Javid Khan and Lei Han

Abstract

Titanium dioxide (TiO2) is a versatile material used in a variety of applications,
including photocatalysis, photovoltaics, sensing, and environmental remediation. The
properties of TiO2 are influenced by its defect disorder, with oxygen vacancy (V0) being
a prominent defect that has been widely studied. Defective TiO2 materials, particularly
those containing V0 defects, are of interest for the development of next-generation
semiconducting nanomaterials. Several methods, including high-temperature calcina-
tion, ion implantation, and chemical doping, are used to produce defective TiO2 with
varying degrees of V0 defects. The properties of defective TiO2, including optical, elec-
tronic, and structural characteristics, are essential for determining the material’s suitabil-
ity for various applications. Modification of the defect structure of TiO2 through doping
with impurities can enhance the photocatalytic activity of the material. Researchers
continue to investigate the impact of factors such as crystal structure and the presence of
other defects on the properties of TiO2-based materials, further enhancing their potential
for various applications. Overall, a deeper understanding of defect disorder and the
development of production methods for defective TiO2 will play a crucial role in the
design and production of next-generation semiconducting nanomaterials.

Keywords: TiO2, defects, oxygen vacancies, structural, electronic, optical properties

1. Introduction

As a wide bandgap semiconductor material with industrially significant applica-
tions, titanium dioxide (TiO2) is commonly used in catalysts [1–3], ointments [4–6],
paints [7–9], sunscreens [10–12], and toothpaste [13–15]. Intense study has been put
into TiO2 materials since Honda and Fujishima [16] discovered the phenomenon that
TiO2 can be used for photocatalytic water splitting. This has allowed TiO2 to be used in
photoelectrochemical cells [17–19], photovoltaics [20–22], and photocatalysis [23–25].
TiO2 offers several benefits over other semiconductor materials, including its low
toxicity, resistance to photocorrosion, abundance on Earth, and chemical and thermal
stability [26]. However, due to its significant recombination rate and broad band gap
(3.2 eV), poor quantum efficiency as well as inadequate exploitation of visible light
during photocatalytic reaction TiO2’s applications is severely limited [27]. Therefore, a
variety of methods have been used to alter the TiO2 in an effort to narrow the band
gap and lengthen the lifetime of photogenerated charge carriers [28]. These methods
include co-doping with metal ion/nonmetal ions, coupling TiO2 with a semiconductor
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with a small band gap, encasing noble metal cores in a TiO2 shell to create metal
core@TiO2 shell composite photocatalysts, noble metal deposition, and surface sensi-
tization by organic dyes [29–32]. Recent research has shown that the defect disorder
of TiO2 may influence several of its physical and chemical characteristics, including
selectivity, photocatalytic reactivity, and light absorption, among others [33–35].

One of the most prominent defects observed in TiO2 is oxygen vacancies (V0),
which are also considered to be common defects in metal oxides and have been
studied extensively by using both experimental and theoretical characterizations
[36–38]. The V0 has the potential to function as active sites and adsorption
points during heterogeneous catalysis [39–41]. The electrical structure, charge
transport, surface properties, and other photocatalytic characteristics of metal
oxides based on TiO2 have also been demonstrated to be intimately connected to V0

[42–44]. It is theoretically possible that Ti3+ centers or unpaired electrons (e�),
which could lead to the creation of donor levels in TiO2’s electronic structure, are
produced as a result of the production of V0 on TiO2 [45–47]. Additionally, it is
thought that V0 alters the recombination rate of electron-hole pairs during
photocatalysis, which alters the chemical processes that rely on charge transfer from
either hole (h+) or e� [48–50]. According to theoretical and experimental findings, the
excess e� on V0 states impacts the reactivity and surface adsorption of important
adsorbates like H2O or O2 on TiO2. In order to take use of their special features for
photocatalytic applications, controlled synthesis of V0 incorporating TiO2 is of utmost
importance [51–53].

In this instructional chapter, we list the methods for producing TiO2 with V0, go
over their characteristics, and touch on some of the uses for photocatalysis. The
preparation technique is the main division used to classify the syntheses of TiO2

nanomaterials with V0. The readers may consult the relevant literature for compre-
hensive directions for each synthesis. In Section 3, the reductive, adsorption, optical,
and structural characteristics of the TiO2 nanomaterials containing V0 are discussed.
To create highly effective photocatalysts and increase the functional applications of
photocatalysis, it is intended that this chapter would be a beneficial resource for
engineers who want to create defective semiconductors.

2. Synthetic methods

2.1 Treatment under hydrogen

A common technique to alter the photoelectrochemical and surface characteristics
of TiO2 is the hydrogen treatment [54–56]. When TiO2 is heated, the oxygen (O)
atoms in the lattice are interacted with by hydrogen (H) atoms to generate V0 and
alter the material’s surface characteristics [57]. Three stages may be distinguished
between the interaction among H and TiO2 throughout this process: The elimination
of the adsorbed oxygen ESR signals in Figure 1 is evidence that hydrogen physically
interacts with the gas at temperatures below 300°C. Additionally, at temperatures
above 300°C, O atoms in the TiO2 lattice get e

� that were previously held by H atoms.
Then, the surface of TiO2 has its lattice O extracted, causing the O atom to separate
from the H atom and create H2O. As a result, TiO2’s surface develops V0, as seen in
Figure 1. Thirdly, as the temperature reaches 450°C, the contact between the two
substances happens more significantly. In order to produce Ti3+ defects, the e� in the
H atoms are transported to the Ti4+ ions of the TiO2. The V0 states’ e

� are forced away
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and moved to Ti4+ as the temperature rises to 560°C, where they remain until 600°C.
As a consequence, the V0 states’ ESR signal strength decreases and that of Ti3+ rises.

Notably, the hydrogen treatment used to reduce TiO2 results in the formation of Ti
interstitials as well as V0 in the matrix of TiO2 [58]. The optical band gap of TiO2

reduces when the amount of Ti exceeds that of O. According to Morgan and Watson
[59], V0 creation is to some extent more favorable in rutile compared to anatase,
whereas Ti interstitials formation occurs more in rutile. However, V0 is the preferred
defect type in oxygen-rich environments. Still, the formation energies of both defect
types are high. However, both defect types are stabilized in O-poor environments.
Additionally, it is proposed that vacuum annealing and high-temperature type harsh
conditions are needed for Ti ions interstitials formation than V0 [60]. Moreover, V0

are common defects in many oxides and not just significant defects in TiO2, which has
a significant impact on the physicochemical properties of such oxides. As a result, V0

has received a lot of attention and may be more interesting than Ti interstitials.

2.2 Bombardment with high-energy particles

Numerous studies have demonstrated that oxygen ions and neutral atoms can be
selectively desorbed from TiO2 surfaces, leading to the creation of vacancies [61–63].

Figure 1.
ESR spectra of Ti3+ and V0 in TiO2 after treatment with H2. Reproduced with permission from ref. [57] Copyright
Elsevier.
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Knotek and Feibelman [64] discovered that an interatomic Auger recombination practice
enables e� having energies of more than 34 eV to knockout surface oxygen. In their
research, a potential mechanism for the formation of V0 when irradiated with e� was also
put forth. They suggested that the formation of V0 is caused by the removal of O+ from
the surface of TiO2 due to e� induced desorption. The benefit of using this technique for
defect production is that e� with moderate energies are bombarded to cause slight
surface destruction and utterly create V0. Even exposing the electron-irradiated surfaces
at low temperatures to molecular oxygen can result in the creation of V0 [65].

Ion sputtering, specifically argon ion (Ar+) sputtering, produces V0 on the surface
of TiO2, much like electron bombardment does [66]. When exposed to oxygen at low
temperatures, the defects at the surface due to Ar+ sputtering do not go away. This
shows surface bridging V0 on Ar+ sputtered surfaces along with other subsurface
defects are suggested to be more highly reduced surface species. However, only by
treating under oxygen at low temperatures, these kinds of defects cannot be repaired.

Additionally, reducing gas atmosphere plasma treatment at low temperatures is
frequently used to produce V0 on the surface of metal oxides [67, 68]. Species with
high energies like radicles, atoms, and e� are used under low-temperature plasma.
Due to moderate reaction conditions, the outer layer of metal oxides is changed, while
the bulk materials are unaffected.

2.3 Doping

In the lattice of TiO2, V0 often occur when they are doped with a nonmetal or
metal ions. For instance, Krol and Wu have shown that the production of V0 in the
TiO2 lattice may occur when Fe3+ ions are substituted for Ti4+ ions in the lattice [69].
Additionally, Domen’s group [70] revealed that aliovalent cations can be used to
successfully dope and improve the defects of the photocatalyst. They proved that the
extrinsic V0 are introduced with the help of a cation that has a lower valence as
compared to the parent cation (Ti), preventing the creation of Ti3+, as seen in
Figure 2a. As a lower valence cation, trivalent cation (M3+) doping occupies the Ti4+

Figure 2.
Schematic diagram of doping of (a) trivalent cations and (b) pentavalent cations in SrTiO3. Replicated with
consent from Ref. [70] Copyright American Chemical Society.
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sites. As seen in the equation of Figure 2a, this causes the production of V0 to be aided
without producing Ti3+ species. In contrast, as seen in Figure 2b, the Ti3+ is stabilized
by the higher valence cations without developing V0. Similarly, the equation in
Figure 2b shows that Ti4+ sites have been occupied by the pentavalent cation (M5+) so
Ti3+ sites would be created and the development of V0 would be prevented when a
higher valence cation is doped.

Similar to how doping with metal ions may produce V0 in the TiO2 lattice, doping
with nonmetal ions like fluorine or nitrogen can also do so [51, 71–74]. According to
calculations using density functional theory (DFT), adding N to bulk TiO2 results in a
significant decrease in the energy required to generate V0. This shows that N doping
makes V0 more likely to occur. Additionally, N doping is often performed in a
decreasing environment. TiO2 may be partially reduced by this reducing environ-
ment, which will lead to the development of V0.

2.4 Through different reaction conditions

Another possible effect of the lattice oxygen participation in the thermally driven
catalytic reaction of organic molecules is oxygen removal from the surface of TiO2

[75]. A surface vacancy is created as a consequence of this process, which involves
oxidizing organic materials on the surface of oxides while losing oxygen atoms from
the surface lattice. For example, as shown in Figure 3, Morris and Panayotov [76]
showed that methoxyl groups could be burnt thermally by activated lattice oxygen,
leading to shallow donor states (Ti3+ and V0) below the conduction band of TiO2.

On the surface of several semiconductors, photochemically induced oxidation
reactions, the mechanism of reaction-driven V0 production is also at work [77–81].
For instance, under the circumstances of a photocatalytic process, Xu et al. [82] have
only recently discovered that V0 are photoinduced formed on TiO2. According to the

Figure 3.
Schematic illustration of (A) thermally activated oxygen leaving Ti3+-V0-Ti

3+ donors in the bridge lattice. (B)
Methoxyl groups attached to CUS Ti4+ Lewis acid sites burn on the particle surface where the oxygen atoms diffuse
to. Reprinted with permission from ref. [76]. Copyright American Chemical Society.
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detailed production method, when UV light is applied, molecular oxygen absorbs the
photo-generated e�, while the h+ diffuses to the surface of the TiO2 and are trapped by
the lattice oxygen. Consequently, the lattice oxygen and Ti atom’s binding link
become weaker due to the trapped h+, and this bond is broken by the adsorbed
molecule benzyl alcohol. The oxygen from the lattice is subsequently removed from
the surface of TiO2, creating V0 defects on the catalyst’s surface.

2.5 Thermal treatment under oxygen deficient conditions

Another method for producing V0 is to anneal TiO2 in the pure form above 400°C
under Ar, N2, or He gas atmosphere, or in a vacuum [83]. The following equilibrium
may be used to explain how V0 arises at high temperatures, using the common
Kroger-Vink notation:

O0 $TiO2 V0 þ 1
2
O2 gð Þ þ 2e– (1)

Following is an expression for the equilibrium constant of this reaction:

K ¼ V0½ �n2p O2ð Þ12 (2)

As a function of p(O2), Eq. (2) may be transformed to indicate the V0 concentration:

V0½ � ¼ Kn–2p O2ð Þ–12 (3)

Where O0 signifies the lattice oxygen; [V0] signifies the concentration of V0, V0

the number of oxygen vacancies, and p(O2) the oxygen pressure. From Eq. (3), we
may infer that the concentration of V0 rises as O2 pressure falls, i.e., the oxygen
deprived state during thermal annealing would promote the production of V0.

Reaction (1) is reversible even at room temperature, and thus, the V0 as they have
generated will gradually vanish when the TiO2 is exposed to air [69]. The TiO2

nanoparticles may be doped with foreign ions working as accepter-like Fe dopants, to
stabilize the V0.

Fe2O3 !TiO2 2FeTi þ 3O0 þ V0 (4)

There is no way to undo this breakdown process. Positively charged V0 in the TiO2

lattice would be made up for by the inclusion of Fe3+ [52]. The amount of free e� in
TiO2 is subsequently reduced as a consequence. Since Fe3+ ions are doped into TiO2,
V0 are so stabilized.

3. Properties

3.1 Structural properties

3.1.1 Electronic structure

One or two e� localize in a V0 state when an oxygen atom from the bulk or surface
of TiO2 is absent. The highly ionic crystal’s Madelung potential is the main factor
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behind the e-'s localization in the V0 state [60]. One or two “free” e� in the flawed
crystal take the O2 anion’s position from the normal lattice in this fashion, reducing
the energy cost of vacancy creation. As illustrated in Figure 4, these e� on the V0

states directly affect the electrical structure of TiO2 by producing a donor level below
the conduction band. Localized donor states generated from V0 have an energy level
between 0.75 and 1.18 eV below TiO2’s conduction band [84]. Additionally, the elim-
ination of oxygen atoms to create V0 may also result in the redistribution of extra e� to
the Ti atoms in the neighborhood of the V0 site, leading to the formation of shallow
donor states below the conduction band derived from Ti 3d orbits [85]. These donor
states are shown to rise with increasing V0 in both rutile and anatase TiO2. For anatase
TiO2 with very low oxygen content, they may even overlap the conduction band [86].
These results indicate that the formation of V0 leads to a large shift of the Fermi level
of TiO2 toward higher energies.

3.1.2 Geometric structure

In addition to altering the electrical structure of TiO2, V0 also changes the mate-
rial’s geometric structure [87–89]. The formation of V0 changes the surface structure
of TiO2, as shown by Park et al. [90] who also found that the generation of V0 resulted
in an upshift of the Eg mode of the Ti-O bond in the Raman spectrum. Due to the
existence of V0, this may be ascribed to atomic rearrangement. In order to strengthen
their connection with the remaining lattice, the three Ti atoms closest to an ejected O
atom have a tendency to move away from the vacancy [91]. Similarly, Watson et al.
reported that the bond length of the Ti-O bond is reduced as a result of outward
relaxation, which also reduces the overlap between the three Ti dangling bonds.
According to Dal Santo et al. [58] experimental electron diffraction data support this
conclusion. They have seen a TiO2 lattice shrinkage brought on by V0.

As illustrated in Figure 5, Cheng et al. [89] recently revealed that the prominent
surface reorganization is caused by V0 in TiO2 sheets with surface-terminated

Figure 4.
Projected band structure model for V0 in anatase TiO2. Copied with approval from Ref. [84] Copyright Elsevier.
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fluorine. This is supported by two new Raman modes at 155 and 171 cm�1 and the
weaker B1g mode at 397 cm�1. By simple calcination of the sample in air, the two
modes at 155 and 171 cm�1 entirely vanished when the surface fluorine and V0 were
removed from the TiO2 sheets. Additionally, only “fluorine-terminated anatase TiO2

sheets” are capable of producing a novel active mode. This finding suggests that the
two new Raman modes are separate from the single-surface fluorine. Additionally, it
was shown that the lone V0 only produces a few additional weak modes above
300 cm�1. The surface fluorine and V0 in oxygen-deficient anatase TiO2 have syner-
gistic effects that likely change the bonding length of the TidOdTi network and the
atomic coordination numbers. It is suggested that the rebuilt surface is made up of Ti
atoms having smaller coordination numbers such as Ti with four coordination num-
bers, which may provide reactants in catalytic processes with more advantageous

Figure 5.
Raman spectra of (a) anatase sheets with V0, (b) anatase sheets without V0 (a), and (c) reference anatase TiO2 in
the ranges of (A) 110–700 cm�1 and (B) 300–750 cm�1, respectively. Partial Raman spectra of curves b and c
between 100 and 300 cm�1 are shown in the left inset of panel A, while the fitted Eg mode of curve b at 100–
200 cm�1 is shown in the right inset of panel A. Copied with permission from Ref. [89] Copyright American
Chemical Society.

10

Updates on Titanium Dioxide



places to bind to. This is significant because, in contrast to TiO2 sheets without V0, a
regenerated surface may boost the contact between the TiO2 matrix and the loaded Pt
through a unique e� transfer mechanism induced by V0 that increases the
photocatalytic hydrogen generation rate.

3.2 Optical properties

To generate e�-h+ pairs for surface reactions, heterogeneous photocatalysis
depends on the ability of photocatalysts to harvest light energy. However, TiO2 can
only absorb UV light because of its broad band gap. Fortunately, defect engineering
allows for the manipulation of TiO2’s optical properties. As local states are created by
V0 below the conduction band edge, the light harvesting ability of TiO2 increases from
UV to the visible light range. The V0 states that have been developed may participate
in a fresh photoexcitation process. In other words, visible light’s energy is used to
excite the electron from the valence band to the V0 states, resulting in the usual
excitations seen in the visible spectrum. Because of this, V0 are referred to as F
centers, which comes from the German word for color, Farbe. Additionally, by
interacting with nearby Ti4+, the e� remaining in the V0 may create the Ti3+ species
[92]. Just below the conduction band, the Ti3+ defects may generate a shallow donor
level that might also affect the sensitivity to visible light.

3.3 Dissociative adsorption properties

Understanding the active locations on TiO2 has been aided by research into defects
using adsorbing probe molecules. On TiO2 single-crystal surfaces, small molecules
including HCOOH, O2, H2O, N2O, H2, and CO have been employed to study the
performance of such defective sites [93–95]. Some of these molecules’ adsorption
properties are discovered to change as a result of defects linked to V0 [96]. During the
photocatalytic activity, h+ and e� produced in the crystals of TiO2 under UV light may
transfer to the surface and then be transported to the adsorbed species, where they
take part in the redox reaction [97]. Even though the microscopic specifics of the
mechanism of these e� transfer are still not fully known, it is anticipated that the
transfer will be more effective if the surface and adsorbate are closely connected, as
well as when the adsorbed materials are detached.

3.3.1 Oxygen adsorption

In areas like gas sensing and heterogeneous catalysis, the interaction of oxygen
with TiO2 is essential. TiO2 catalyzes a number of photooxidation processes, where
molecular oxygen acts as the oxidizing agent [98]. One crucial stage of the
photocatalytic reaction in these systems is the adsorption of molecular oxygen on the
surface of TiO2 [99]. O2 does not, however, adsorb on a perfectly neutral TiO2 surface
[100]. Only when there is sufficient negative charge available to form OdTi bonds
can O2 adsorb onto the TiO2 surface; this charge may come from subsurface V0 or
photogenerated e�, with adsorption energies of 2.52 and 0.94 eV, respectively, as
shown in Figure 6. Superoxide radical groups may be created simultaneously by the
O2 adsorbed on the surface of TiO2 and the free e� present on V0 states. Both the
charge separation process and the oxidation of organic materials are actively
promoted by the production of these radical groups [101].
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3.3.2 H2O adsorption

As an example of a straightforward surface chemical reaction with considerable appli-
cations, water dissociation on TiO2 is of basic importance. It has been thoroughly investi-
gated howH2O and TiO2 interact with surfaces, significantly influencing the
photocatalytic processes [102]. It is particularly well known that on the imperfect TiO2

surface, H2Omolecules that have been chemically dissociated are energetically preferred,
whereas H2Omolecules are only physically adsorbed on the ideal TiO2 surface [103–105].
H2O dissociation only occurs on defect sites linked to V0 at low coverage, according to
research by Besenbacher et al. [106] that combines experimental and theoreticalmethods.
They used scanning tunnelingmicroscopy (STM) to show a direct correlation betweenV0

before water exposure and surface hydroxyl groups after exposure, and they used DFT to
show that only the defect sites are energetically capable of supporting water dissociation.
It is shown that V0 in the surface layer dissolves H2O by transferring one proton to an
oxygen atom nearby, resulting in the formation of two OH groups for every vacancy.

3.3.3 Adsorption of alcohol

The reactive sites on metal oxides, both in powder form and in single crystal, have
been intensively probed using alcohols. Both experimental characterizations and

Figure 6.
Schematic illustration of photoexcited charge carriers in (a) TiO2 and (b) Pt/TiO2. Reprinted with approval from
Ref. [101] Copyright American Chemical Society.

12

Updates on Titanium Dioxide



theoretical calculations have been used to extensively study the adsorption of alcohols
on TiO2 [107]. Using theoretical calculations, Oviedo et al. [108] have shown that
methanol dissociation is thermodynamically advantageous on the V0 states. According
to Farfan-Arribas and Madix, temperature programmed reaction spectroscopy
(TPRS) and X-ray photoelectron spectroscopy (XPS) are used to investigate the func-
tion of V0 in the adsorption of aliphatic alcohols on TiO2. They discovered that the
existence of V0 on the surface leads to greater alcohol adsorption on the surface. At
room temperature, the adsorbed aliphatic alcohols spontaneously dissolve on the
TiO2-(110) surfaces containing V0, generating hydroxide and alkoxide groups [109].
Particularly, it is discovered that the alkoxide species is more photocatalytically reac-
tive than the physisorbed species. Additionally, chemically dissociated alcohols may
swiftly scavenge the photogenerated h+, substantially extending the lifespan of
photogenerated e� [110].

3.3.4 CO2 adsorption

One of the potential options for lowering CO2 emissions and utilizing CO2 as a
building block to produce valuable goods is the photochemical conversion of CO2 into
solar fuels by photocatalysts like TiO2. The first stage in CO2’s photo-reduction is its
adsorption on TiO2 [39, 111]. According to theoretical research, the physisorption and
the most stable chemisorption of CO2 on the neutral charge of perfect anatase TiO2

(001) have adsorption energies of 9.03 and 24.66 kcal mol1, respectively, on the spin-
unpolarized TiO2 with V0. This suggests that CO2 is tightly bound by V0 on a TiO2

surface that is deficient. Additionally, it is shown that the CO2 activation barrier on
TiO2 with V0 is lower than it is on TiO2 with flawless anatase (001) [112]. Further-
more, it is discovered that the energetically favored conversion of CO2 to CO occurs
on the surface of flawed TiO2, with V0 acting as the photocatalyst. Surprisingly, Li
et al. [83] have shown that CO2 spontaneously dissociates into CO on a Cu(I)/TiO2x

surface created by thermal annealing under an inert atmosphere even when it is dark.
According to Figure 7, the surface V0 that provides the electrical charge as well as the
locations for the adsorption of oxygen atoms from CO2 is mostly responsible for the
spontaneous dissociation of CO2 in the dark. In addition, compared to those in the
dark, CO2 activation and dissociation may be markedly enhanced by photoirradiation.

In conclusion, the reactant molecule’s dissociative adsorption would be facilitated
by V0 on the TiO2 surface. In the photocatalytic processes, it seems that the dissocia-
tive adsorption of the reactant molecule on the TiO2 surface lowers its activation
energy and influences the reaction mechanism at the molecular level. Additionally,
compared to physisorbed species, chemically separated compounds have higher
photocatalytic reactivity. It should be emphasized, nevertheless, that the surface of
TiO2 goes through re-oxidation often in conjunction with the dissociated adsorption of
the adsorbates. Therefore, before investigating its dissociation adsorption capabilities
for photocatalytic application, we first need to stabilize the V0 in reduced TiO2. This
may be accomplished by doping the Fe into the TiO2 nanoparticles, a procedure we
covered in Section 2.5.

3.4 Reductive properties

In addition to changing the properties of adsorbates, V0 on catalyst surfaces also
plays a role in the reduction of a number of these adsorbates. As demonstrated by Lu
et al., one can observe the reactivity of thermally created V0 sites for the reduction of
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NO, CH2O, or D2O by adsorbing a test molecule on the defective surface as well as a
fully stoichiometric surface and comparing the results of temperature programming
desorption (TPD) [113]. By measuring the TPD, the reductive products (N2O, C2H4,
and D2) are identified after adsorbing these adsorbates on the flawed surface. The
oxidation of surface defect sites occurs concurrently with the deoxygenation of
adsorbates. Therefore, the coverage of surface V0 is inversely correlated with the yield
of reduction products. On the surface with no defects, there are no deoxygenation
processes seen. It has also been shown that surface V0 sites are active in the reduction
of metal ions. Our most recent study has shown that V0 plays a crucial role in the
charge transfer from the damaged surface to gold ions. As a result, a very quick, direct
development of metallic gold nanoparticles was accomplished on the surface of the
semiconductor TiO2 containing V0. Ye and colleagues also saw the metal ions sponta-
neously reducing on damaged surfaces. They have shown that on the flawed surface of
WO2.72, the ions of noble metals are engaged in redox processes where the metal ions
partly oxidize the reduced V0 states [114]. As a result, the metal ions are quickly
reduced and nucleated on their surface, where they develop into clusters and then
nanoparticles. The controlled synthesis of metal/semiconductor hybrid nanomaterials
may be accomplished using this approach in a single step without the need for external
reducing agents, stabilizing molecules, or pretreatment of the precursors. It is inter-
esting to note that Li et al. [115] found that the sub-stoichiometric WO3-x, which is
produced by utilizing hydrogen treatment to create V0 in WO3, is stable thermody-
namically at room temperature and has a strong resistance to re-oxidation. So, in the
absence of catalysts for oxygen evolution reaction, hydrogen-treated WO3 is stabilized
to be used for water oxidation in a neutral media. These ground-breaking findings
imply that by carefully selecting the preparation techniques, the property of V0 states
may be precisely regulated.

Figure 7.
Proposed mechanism for CO2 dissociation on the surface of Cu/TiO2 under ambient temperature in dark. Copied
with permission from Ref. [83] Copyright American Chemical Society.
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4. Conclusion

This chapter discusses various methods that can be employed to produce defective
TiO2 containing V0. These methods include thermal processing in an oxygen-depleted
atmosphere, doping with non-metal or metal ions, bombardment with high-energy
particles, and even in situ catalytic processes. These processes remove lattice oxygen
from the surface or bulk of TiO2, resulting in a vacancy state. The presence of V0

defects provides defective TiO2 with unique chemical and physical characteristics,
including enhanced reductive and dissociative adsorption properties and visible light
absorption capabilities. Although the function of V0 in photocatalytic processes is still
not completely understood, defective TiO2 has been shown to have benefits for a wide
range of applications, such as selective charge separation and visible light response for
photocatalytic activities. However, there are also conflicting claims about the role of
V0 in the photocatalytic performance of semiconductors. Overall, the intentional
introduction of V0 defects into TiO2 has great potential for improving the material’s
properties and enhancing its performance in various applications. Further research is
necessary to fully understand the impact of V0 defects on TiO2 and to explore the
potential of defective TiO2 materials in emerging fields such as sensing,
photoelectrochemical water splitting, and photocatalytic air purification.
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Abstract

Titanium dioxide (TiO2) nanomaterials are very important for generating 
 hydrogen through photoelectrochemical water splitting and remediation of envi-
ronmental pollution. It has remained the focus of many researchers during last few 
decades due to their wide applications. Optical absorption properties of TiO2 can lead 
to increase their photocatalytic activities. However, its overall solar performance is 
very restricted because of its large bandgap. The emergence of black titania nano-
materials has recently triggered worldwide research interest due to its significantly 
improved solar absorption and enhanced photocatalytic performances. In this 
chapter, various synthetic approaches employed to obtain black titania are outlined, 
and the structural features of the black titania nanomaterials are described in detail, 
along with their photocatalytic performances towards various applications.

Keywords: black titania, chemical synthesis, hydrogen treatment, structural disorder, 
photocatalysis

1. Introduction

By virtue of their large-scale applications in the removal of environmental 
 pollutants and photocatalytic water splitting, TiO2-based nanomaterials have fasci-
nated massive interest [1–3]. TiO2 exists in three main crystal phases that is brookite, 
anatase, and rutile. Electronic bandgaps of all these phases are above 3.0 eV, which is 
considered to be high bandgap. This limits their optical absorption in the ultraviolet 
(UV) region of the solar spectrum, which is below 5% of overall solar energy. If 
TiO2 utilized this UV light very efficiently, its solar activity is still not better. It is the 
number of electrons and holes of the photocatalysts that determine its photocatalytic 
activity [4].

Upon appropriate light absorption, TiO2 produces excited electrons in conduction 
band and excited holes in the valence band. For performing photocatalytic reactions, 
these excited charges, apart from each other, travel towards the surface. From all the 
excited charges, few of them are combined and vanished during the charge separa-
tion and migration processes. This absorption process leads to the generation of 
excited charges on the surface. If TiO2 absorbs more light, then more excited charges 
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come on the surface. The process is schematically illustrated in Figure 1. Therefore, 
if we improve the optical absorption properties of TiO2, its whole activity can be 
increased [5, 6].

During last decades, doping techniques have been extensively employed to make 
TiO2 colourful for desirable optical absorption [7]. For instance, in the early 1990s, 
a number of metallic species were employed to substitute the Ti4+ ions in the TiO2 
lattice [8]. More efforts lead to the doping of several nonmetals till 2001. Currently, 
many metal and nonmetal elements have been used to substitute partial Ti4+ and O2 
ions in the TiO2 lattice. All the aforementioned efforts lead to improved light absorp-
tion by TiO2 and consequent photocatalytic performance.

Recently, black TiO2 has become the focus of the research community because of 
much-enhanced photocatalytic performance. Materials appear black in colour if it 
absorbs 100% light from the overall visible light region. From the entire visible light 
region, if TiO2 absorbs certain percentage evenly, then it will become partially black 
or grey. If no light absorbs from the overall visible light regions, then it will show 
white colour. In the other case in which light is not absorbed appropriately, different 
colours (e.g., green, yellow and brown) will be observed. The focus of the research 
about titania is to tune their colour from lighter to darker. The properties and perfor-
mance of the TiO2 nanomaterials are affected by the apparent colour. In the proceed-
ing sections, different synthetic strategies to black titania as well as characteristic 
features and their properties related applications will be discussed.

2. Synthetic strategies used to obtain black Titania nanostructures

Black titania nanostructures have attracted extensive interest, and various reduc-
tive and oxidative approaches have been established to successfully fabricate the black 
or coloured titania [9]. A variety of structural and chemical modifications are in 
practice to impart unique features to black titania, like surface amorphousity, oxygen 
vacancy/Ti3+, hydroxyl groups and Ti–H bonds. Various strategies have been briefly 
explained below.

Figure 1. 
Mechanistic illustration of the photocatalysis.
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2.1 Hydrogen treatment

To reduce TiO2 nanocrystals using heat and hydrogen is an easy approach to 
obtaining black titania. Thermal hydrogen treatment changes TiO2 (Ti4+) into other 
chemical species, such as Ti3+ or any other reduction states. Consequently, their lattice 
structure and chemical/physical properties also change by changing reduction states. 
The chemistry involved in this reaction is illustrated in the following scheme.

 −× −× ×+× ∆
2 2 2 2 2 2H , , HTiO TiO TiO TiO  (1)

The above scheme illustrates that the chemical properties and concentration of 
starting TiO2 nanomaterials, reaction temperature and time, pressure and concentra-
tion of hydrogen gas are the various factors that determine the final product of the 
reaction. When TiO2 nanomaterials are treated with hydrogen, their final proper-
ties and the pathway through which the reaction proceeds will be different. This is 
because the final properties and the direction of reaction depend upon the conditions 
of hydrogen treatment. Many other factors that affect the chemical properties of 
nanomaterials are like morphology, shape, size, crystal facets and vacancies contents 
[10]. Reaction will be more complicated due to these variables. Preparation of these 
black TiO2 nanomaterials is achieved normally by different research groups using 
different synthetic strategies. These alterations in structures lead to variations in their 
properties and functionalities. These structural and functional developments enable 
us to tune the structural features of a material and then consequent performances.

Hydrogenated environment used to obtain black titania may vary and it includes 
simply hydrogen thermal treatment, high-pressure pure hydrogen treatment, ambient 
or low-pressure pure hydrogen treatment, ambient hydrogen-argon treatment, ambi-
ent argon treatment and hydrogen plasma treatment.

Chen et al. synthesized black titania NPs via treatment of pure white titania NPs 
with 20.0-bar pure H2 at 200°C for several days [11]. The precursor white titania NPs 
were synthesized following a solution-based route using titanium tetraisopropoxide 

Figure 2. 
(a) Schematic of the formation of black titania. (b) Digital photographs of white and black titania 
nanomaterials. High-resolution transmission electron microscopy images of (c) white and (d) black titania NPs, 
(e) UV-vis spectra of white and black titania NPs. Reprinted with permission from reference [11]. Copyright 2011 
AAAS.
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as precursor, Pluronic F127 surfactant, hydrochloric acid, deionized water, and etha-
nol solvents. Figure 2 illustrates the schematic of the formation of black titania NPs 
(Figure 2a), along with digital photographs (Figure 2b) and electron microscopy 
images (Figure 2c and d) of white and black titania NPs. The obtained black titania 
NPs contained a well crystalline lattice core fenced by a disordered lattice shell from 
the hydrogen treatment. The amorphous boundary was expected to host the external 
hydrogen dopant and impart black colour to the hydrogenated titania NPs. The black 
titania NPs had broadband absorption as compared to corresponding untreated white 
titania as indicated in the UV-visible absorption spectrum (Figure 2e).

2.2 Chemical reduction

Chemical reduction is another route to obtain black titania where the Ti+4 species 
from the corresponding white titania precursors are reduced into low valent Ti spe-
cies. The reducing agents involved in chemical reduction may include various natural 
products obtained from plants such as flavonoids, vitamins, phenolic acids, reducing 
sugars, polysaccharides, triterpenoids, tannins, and polysaccharides as all these are 
electron rich in nature. The resulting structure of the obtained materials can be tuned 
by controlling various reaction conditions. Besides these green reductants, some other 
chemical reducing agents such as aluminium, Zinc, NaBH4, CaH2 and imidazole have 
been extensively used to reduce TiO2 to black titania.

A representative example of synthesis of black titania through chemical reduction 
is given here. Wang et al. reported the use of aluminium (Al) as a reducing agent to 
prepare black titania NPs in an evacuated two-zone vacuum furnace at elevated tem-
perature. To obtain black titania, precursor white TiO2 and Al were placed in separate 
zone of a two-zone tube furnace and pressure was set at 0.5 Pa through evacuation 
(Figure 3a). The Al was heated at 800°C, whereas precursor white titania was heated 
at 500°C for 7–18 hours. Thus, obtained reduced black titania NPs displayed intense 
absorption in the visible regions [12].

2.3 Chemical oxidation

Black titania can be obtained by chemically oxidizing the titanium hydride 
 precursors. For instance, Liu et al. reported the preparation of black titania by oxidis-
ing TiH2 powder with 25% H2O2 solution at elevated temperature. In this way, reduced 
TiO2-x NPs obtained which possess characteristic blue colour. The obtained NPs are 
quite stable even in air atmosphere as indicated by the retention of their colour and 

Figure 3. 
(a) Schematic representation of the two-zone furnace. (b) Digital photograph of white and black titania NPs, 
(c) optical absorption spectra of titania NPs reduced at various temperatures. Reprinted with permission from 
reference [12]. Copyright 2013, The Royal Society of Chemistry.
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significant absorption towards the UV to visible light. Similarly, in another report, 
Grabstanowicz et al. prepared black titania powders following a multistep approach, 
as indicated in Figure 4. First, H2O2 (15 mL) was added into TiH2 powders (0.96 g) 
aqueous suspension (10 mL) and stirred for three hours at room temperature to 
obtain a miscible gel-like slurry, followed by additional H2O2 (12 mL and 15 mL) and 
stirring (4 hours and 16 hours) in forming a yellow gel. Second, the gel was vacuum-
desiccated overnight, placed in an oven at 100°C for 12–20 hours to become a yellow 
powder, and then finally at 630°C for three hours in Ar. The black TiO2 had a rutile 
phase and remarkably enhanced absorption in the visible-light and near-infrared 
regions [13].

2.4 Electrochemical reduction

Hydrogenated black titania nanotubes (NTs) were obtained through electrochemi-
cal reduction approach by Xu et al. [14]. The NTs were fabricated through two-step 
anodization at 150 V for an hour with a carbon rod serving as the cathode and Ti serving 
as the anode. Ethylene glycol, along with 0.3 wt% NH4F and 10 vol% H2O, was used 
as electrolytes. The NTs obtained through first-step anodization were removed using 
scotch tape and processed for the second anodization. The obtained NTs were then 
heated at 150°C for three hours and at 450°C for another five hours. The electrochemical 
doping that leads to reduced titania was achieved using a 5 V electric current for a very 
short period (5 to 40s) of time in 0.5 M Na2SO4 aqueous solution at room temperature. 
The NTs were used as the cathode, whereas Pt wire was used as the anode, respectively.

Likewise, Li et al. reported the fabrication of black titania NTs through anodiza-
tion approach followed by electrochemical reduction as indicated schematically in 
Figure 5 [15]. Precursor titania NTs were first obtained using titanium foil as anode 
and Pt gauze as the cathode. The voltage or applied was 80 V for 7200 s, or 4 mA for 
5000 s. The electrolyte was an “aged” ethylene glycol with 0.2 M HF and 0.12 M H2O2 
solution. The obtained NTs were further annealed at 450°C in air atmosphere for 
about 5 hours. The electrochemical reduction was achieved using conditions of 40 V 
voltage for 200 s in an ethylene glycol and 0.27 wt% NH4F solution. The samples were 
treated at a higher voltage for activation before electrochemical doping.

Figure 4. 
Schematic illustration of the route from precursor to black titania NPs, along with their pictures. Reprinted with 
permission from reference [13]. Copyright 2013, American Chemical Society.
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2.5 Anodization-annealing

Dong et al. reported the fabrication of black titania NTs using an anodization 
approach followed by heat treatment at higher temperature as indicated schematically 
in Figure 6 [16]. Precursor titania NTs were fabricated using 10-hour anodization 
on a Ti foil for two times at 60 V potential in an ethylene glycol solution having 
0.25 wt.% NH4F and 2 vol% deionized water. The titania NTs were removed from 
the reaction system after first anodization and then subjected to second anodization. 
The repeated washing and cleaning of anodized Ti foil was achieved using ethanol 
and distilled water. The pure cleaned analytes were then dried at 120°C, and then 
annealed at 450°C for an hour under ambient environment. The removal of top oxide 
layer from the substrate leads to the development of layer of black titania.

Figure 5. 
Schematic of the formation of black titania NTs through an electrochemical reduction approach. Reprinted with 
permission from reference [15]. Copyright 2014, The Royal Society of Chemistry.

Figure 6. 
(a) Representation of the experimental process and images of the stripped titania NTs. (b) Optical absorption 
spectra of titania NTs. Reprinted with permission from reference [16]. Copyright 2014, American Chemical Society.
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3. Characteristic features of black Titania nanostructures

It has been frequently stated that the various black titania nanostructures showed 
distinct chemical and physical characteristics, as briefly explained in the following 
sections, since the fabrication techniques and synthesis conditions of black titania 
nanostructures differ from one another in the literature. The observed black colour 
of the titania NPs has been attributed to some of these characteristics. The unique 
features responsible to impart colour to titania are given below.

3.1 Structural disorderness near the surface

According to certain investigations, the surface of black titania nanostructures 
with a crystalline/disordered core-shell structure shows disordered structural fea-
tures. However, literature also contains different reports. For instance, Chen et al. 
reported the existence of a disordered surface layer surrounding the crystalline core 
in hydrogenated black titania NPs obtained in the conditions of 20 bar hydrogen pres-
sure and 200°C [11]; Lu et al. have observed that hydrogenated titania nanocrystals 
made by treating commercial Degussa P25 under 35 bar hydrogen pressure and room 
temperature for up to 20 days also contain disorderness in the structure near surface 
[17]. Wang and Xu, observed the same structural features in the hydrogenated black 
titania nanosheets [18]. Therefore, the hydrogenation treatment also suggested a 
modest lattice expansion. Some groups reported lattice shrinkage in the disordered 
layer [19]. The surface of the hydrogenated titania NTs, on the other hand, was 
extremely transparent, according to Lu and Zhou et al. [20].

The disordered phase of the black titania nanostructures may be distinguished 
from the crystalline phase using high-resolution transmission electron microscopy 
(HRTEM). For instance, Figure 6 illustrates the comparison of the structure of 
black and white titania NPs using HRTEM and line analysis [21]. Even at the surface 
of the nanocrystal, the white titania nanoparticle revealed sharply defined, and 
well-resolved lattice fringes (Figure 7a), and the spacing between the adjacent 
lattice planes was uniform throughout the whole nanocrystal and typical for anatase 
(0.352 nm) (Figure 7b). The crystalline-disordered core-shell structure of the black 
titania nanoparticle (Figure 7c) revealed a structural divergence from the typical 
crystalline anatase at the outer layer, where the straight lattice line was curved at the 
nanoparticle’s edge, and the plane distance was no longer uniform (Figure 7d). The 
distinction between the amorphous structure and the crystalline phases has occasion-
ally also been made using electron diffraction (ED).

3.2 The presence of Ti3+ ion

Ti3+ ions can be seen experimentally or not, depending on the synthetic approaches 
adopted to obtain black titania NPs. With conventional X-ray photoelectron spectros-
copy (XPS), synchrotron X-ray absorption, emission, photoelectron spectroscopies, and 
electron spin resonance spectroscopy, Ti3+ ions were not detected in hydrogenated black 
titania nanocrystals obtained via hydrogen reduction or hydrogen plasma-derived black 
titania nanostructures. For instance, based on the almost identical Ti 2p XPS spectra 
of pure and hydrogenated titania nanowires (NWs), Wang et al. proposed the absence 
of Ti3+ in the black hydrogenated titania nanowires processed at 450°C [22]. However, 
in certain studies, Ti3+ ions in the black titania NPs were indicated after hydrogen 
treatment, chemical reduction, chemical oxidation, and electrochemical reduction, 
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respectively [19]. The existence of Ti3+ ions can be detected even using XPS in case of 
the black titania NTs produced by electrochemical reduction and oxidation of TiH2 [19].

3.3 Oxygen vacancies

Oxygen vacancies have been continuously documented in black titania nanostruc-
tures obtained via hydrogen thermal treatment, electrochemical reduction, chemical 
reduction, and chemical oxidation [19]. For instance, oxygen vacancies were detected 
by ESR spectroscopy in the black titania NTs formed through thermal hydrogen treat-
ment [23], and electrochemical reduction [16], as well as in the black titania NPs syn-
thesized through Al reduction approach [24]. Like Ti3+ ions, oxygen vacancies can also 
not always be detected. For instance, in the report of Xia et al. [25] no oxygen vacancy 
was found with ESR in the black titania NPs synthesized with thermal treatment.

3.4 The existence of Ti: OH groups

The hydrogenation treatment leads to a change in the OH content in the black 
titania nanostructures. A satellite peak characteristic of Ti–OH in the O 1 s XPS spec-
trum was observed in black titania NPs obtained via hydrogen treatment at 200°C 
for five days [11], in the hydrogen-treated titania NWs [22] and in the hydrogenated 
titania NTs obtained using ultrapure H2 atmosphere and 200–600°C temperature for 

Figure 7. 
HRTEM and line analyses of (a & b) one white titania nanoparticle, (c & d) one black titania nanoparticle. The 
zeros of the axis in b and d correspond to the left ends of the lines in a and c. The red and green curves in b and d 
correspond to the red and green lines in a and c. Reprinted with permission from reference [21]. Copyright 2013, 
Nature Publishing Group.
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one hour [26]. However, the hydrogenated titania NTs arrays treated at 450°C for one 
hour in a reducing atmosphere of 5% H2 and 95% argon did not manifest any altera-
tion in the Ti-OH peak in the O 1 s XPS spectra, and the hydrogenated black titania 
NPs treated at 450°C for four hours under five bar H2 displayed a decreased OH signal 
in the O 1 s XPS spectrum [25].

Black hydrogenated titania NPs demonstrated a change in the strength of the OH 
vibrational band in the Fourier transform infrared (FTIR) spectrum [25]. In hydro-
genated titania nanosheets treated at 400°C for two hours in a pure H2 environment, 
more surface OH groups were seen. Titania NPs that had been hydrogenated and 
subjected to a hydrogen plasma at 500°C for 4–8 hours showed additional peaks at 
wave numbers of 3685, 3670, and 3645 cm−1 [27]. The intensity of the OH peak was 
significantly lower in hydrogenated titania microspheres than in pure titania after 
being treated at 500°C for 4 hours with a flow of H2 (5% in N2, 300 sccm). Based on 
the weaker bands at 3446 and 1645 cm−1, less water and/or hydroxyl groups were 
adsorbed onto the hydrogenated titania NTs when they were heated to 450°C for 
one hour in a reducing environment of 5% H2 and 95% Ar [20]. Black hydrogenated 
titania treated at 200°C for five days showed a drop in O-H intensity, and hydroge-
nated titania NPs treated at 450°C for 4 hours under 5 bar H2 showed no OH absorp-
tion bands [25]. When hydrogenated titania NPs were exposed to hydrogen plasma 
at 500°C for 4 to 8 hours, the proton nuclear magnetic resonance (NMR) spectra 
revealed a higher peak at 5.5 ppm from bridging hydroxyl groups and additional sig-
nals at 0.01 and 0.4 ppm from the internal and terminal hydroxyl groups [27]. In the 
hydrogenated black titania NPs treated at 200°C for five days, a peak at chemical shift 
+5.7 ppm with two additional tiny, narrow peaks at chemical shifts 0.03 and 0.73 ppm 
were observed [21]. The hydrogenated titania NPs, on the other hand, showed much 
smaller OH signals after being heated at 450°C for 4 hours under 5 bar H2 [25].

3.5 Hydrogen doping

It has occasionally been noted that hydrogenated black titania NPs possess Ti-H 
groups. 106,117,134,137 Hydrogenated titania nanowire microspheres obtained via treat-
ment at 500°C for four hours under a flow of H2 (5% in N2, 300 sccm) and hydrogenated 
titania NPs treated with hydrogen plasma at 500°C for 4–8 hours, a satellite peak at about 
457.3 eV in the Ti 2p XPS spectrum was observed, which refers to the presence of surface 
Ti-H bonds [27]. The surface of hydrogenated titania nanosheets produced at 400°C for 
two hours under a 10-bar pure H2 atmosphere was hypothesized to be converted to Ti-H 
bonds [18]. The diffraction peak at about 59.281 in the X-ray diffraction (XRD) pat-
tern of hydrogenated titania NTs obtained via treatment in ultrapure H2 atmosphere at 
200–600°C for one hour also referred to the presence of the Ti-H bond [28].

3.6 Valence band edge modifications

The black titania nanostructures sometime exhibit a shift in the valence band. 
For instance, when hydrogenated titania was obtained via treatment at 200°C for 
four days under 20 bar H2 [11] or heated at 500°C for one hour under a hydrogen 
atmosphere [29], a redshift of the valence band was observed as indicated from the 
valence band XPS spectrum. A similar shift was observed in the black brookite titania 
NPs, rutile titania NPs, and titania NTs prepared with the Al reduction method, in 
the black anatase titania NTs obtained through NaBH4 reduction, in the black titania 
NPs fabricated via electron beam treatment, in the hydrogenated titania NTs treated 
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at 450°C for an hour in a reducing 5% H2 and 95% Ar environment and in the elec-
trochemically hydrogenated black titania NTs [19]. It was discovered that Ti3+ ions 
did not contribute to the extra bandgap states of the hydrogenated TiO2 nanocrystals 
because when Ti3+ appeared, these mid-gap states vanished [21]. On the other hand, 
pure and hydrogenated TiO2 NWs treated for three hours at 200–550°C in an ultra-
pure hydrogen atmosphere (ambient pressure) showed similar valence-band struc-
tures. Hydrogenated titania nanosheets exhibit similar valence band shifts.

4. Photocatalytic applications of black titania nanostructures

There are three main steps that are involved in photocatalysis. These are absorp-
tion of light in the form of photons, electrons, and holes excitation, separation of 
charges and migration to the surface of photocatalysts, and then the transfer of 
charges between the photogenerated carriers and the reactant. Prior to the discov-
ery of hydrogenated black titania NPs, it had been demonstrated that hydrogen 
thermal treatment of titania could improve its photocatalytic properties. Harris and 
Schumacher discovered that hydrogen reduction at high temperatures decreased 
recombination canters and prolonged the lifespan of the holes [30]. Oxygen vacan-
cies, Ti3+ species, and hydroxyl groups produced by this process are probably what 
contributed to the increased photoactivity. Black titania nanostructures exhibit 
superior performance towards various photocatalytic applications because of the dis-
tinct optical and charge transport features as compared to the pristine white titania. 
Various photocatalytic applications include photocatalytic removal of contamina-
tions, photocatalytic hydrogen production through photoelectrochemical water 
splitting, photoelectrochemical sensor and photocatalytic CO2 reduction.

4.1 Photocatalytic degradation of environmental pollutants

It has been estimated that about 20% of dye was wasted while the dyeing process 
in the textile industry and released as effluent in the water. The release of such a 
large number of coloured dyes into water causes it to be polluted and become a major 
source of environmental pollution [31, 32]. This polluted water can be photocatalyti-
cally detoxified using high-intensity solar energy. Titania is usually thought to be the 
best photocatalyst and has the tendency to treat wastewater, but only restricted to the 
ultraviolet region. However, this limitation can be overcome by using coloured titania.

Chen et al. first time prepared the hydrogenated black titania NPs from white 
titania. The detailed synthetic strategy involves the treatment of white titania with 
20 bar of pure H2 at 200°C for five days [11]. The obtained black titania had core-shell 
structure in which the core is well crystalline, and shell is amorphous. The much-
enhanced photocatalytic performance towards methylene blue (MB) degradation was 
observed under simulated sunlight. For instance, the complete photodegradation of 
MB was achieved in a very short period of eight minutes under simulated solar light 
by using black titania as compared to white titania as indicated in Figure 8a and b.

4.2 Photocatalytic hydrogen generation

The recent energy and environmental situation suggests that hydrogen will be 
the ultimate source of clean and green energy. The photocatalytic water splitting 
facilitated by solar energy in which natural sunlight and water are employed as the 
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hydrogen source is considered an important source of hydrogen. Black titania-based 
photocatalysts have been extensively used for generating hydrogen through a water-
splitting reaction [33]. For instance, black hydrogenated titania obtained using the 
high-pressure H2 can generate H2 from water at a rate of 10 mmol h−1 g−1 with excep-
tional stability under sunlight illumination, as displayed in Figure 8c [11]. The H2-
plasma assisted black titania also exhibited enhanced photocatalytic H2-production 
rate of 8.2 mmol h−1 g−1, about 13.5 times greater than the white titania.

4.3 Photoelectrochemical water splitting

Photoelectrochemical (PEC) water splitting is an important strategy to generate 
hydrogen following a green solar-to-hydrogen route. Significant research is being done 
to enhance its efficiency. The black titania is thought to be an emerging candidate for 
PEC water splitting because of its ideal band structure [33]. For instance, black titania 
NTs fabricated via Al reduction approach exhibited much-enhanced photocurrent as 
compared to unreduced white titania NTs [15]. The applied bias photon-to-current 
efficiency (ABPE) of black titania NTs attained 1.20% at a greater bias of 0.68 V (vs. 
Pt), remarkably greater than that of white titania NTs, 0.25% at 0.49 V (vs. Pt). The 
incident-photon-to-current-conversion efficiency (IPCE) of black titania NTs was also 
impressively improved as compared to white titania NTs, along both UV and visible 
light regions. The superior photocatalytic performance of black titania NTs was cred-
ited to the greater electron density and the subsequent better electric conductivity, 
as indicated from the Mott-Schottky plot. On the basis of this effect, enhanced PEC 
water-splitting activities were extensively observed in black titania NTs arrays syn-
thesized via other reduction approaches. Moreover, Kim et al. reported that the black 
titania NTs displayed considerably unique electrocatalytic performance in producing 
OHs and Cl2 in comparison with white anatase titania NTs [34].

4.4 Photoelectrochemical sensors

Titania can be employed as a photochemical sensor to measure the concentra-
tion and type of different organics found in an aqueous medium. It can be done by 

Figure 8. 
a) Photocatalytic removal of MB from aqueous medium by white and black hydrogenated titania under 
stimulated solar light illumination, (b) cycling tests of solar-driven photocatalytic removal of aqueous MB of 
the black hydrogenated titania, c) stability tests of photocatalytic H2 evolution of the black hydrogenated titania, 
and the H2 evolution rate was calculated to be 10 mmol h−1 g−1. Reproduced with permission from reference [11]. 
Copyright 2011, American Association for the Advancement of Science.
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estimating the photocurrents generated from the dissociation process in PEC cells. 
The arrays of hydrogenated black titania NTs or nanorod fabricated through anneal-
ing in the H2 atmosphere were used as a photoelectrochemical sensor to detect and 
quantify various organic compounds in solar light. For instance, the hydrogenated 
black titania nanorods arrays (H-TNRs) exhibited a much more sensitive and steady 
photocurrent response (~100-folds greater than the white titania nanorods (TNR)) 
in the NaNO3 solution under solar light (Figure 9a). Under solar light illumination, 
the estimated photocurrents of the H-TNRs exhibited better linear correlations with 
the concentrations of most organics such as glucose, malonic acid and potassium 
hydrogen phthalate (Figure 9b), indicating that H-TNRs can sensitively and steadily 
quantify the given organic compounds. The enhancement in the photocurrent 
response was credited to the enhancement of conductivity [35].

4.5 Photocatalytic CO2 reduction

Liu et al. reported the fabrication of oxygen-deficient blue titania NPs with two 
exposed (101) (001) facets. The obtained coloured titania showed enhanced pho-
toreduction towards CO2 under visible light illumination. A comparatively higher 
quantum efficiency (0.31% under full spectrum solar light and 0.134% under visible 
light region) for CO2 reduction to CO was achieved using water vapour. This quantum 
yield was almost four times greater than titania having single exposed facets and P25 
(Figure 10b). The superior performance of titania was attributed to exposure of more 
active sites, the facilitated electron transfer between (001) and (101) planes, and Ti3+ 
induced mid-gap states to extend the visible light response (Figure 10a) [36].

5. Conclusions

Black titania nanostructures have attracted extensive interest, and several reductive 
and oxidative approaches have been established to successfully fabricate the black or 
coloured titania. A variety of structural and chemical modifications are in practice to 
impart unique features to black titania, like surface amorphousity, oxygen vacancy/Ti3+,  

Figure 9. 
a) The voltammograms of TNR and H-TNR photoanodes obtained at a scan rate of 5 mV s−1 under visible 
light. Inset shows the photocurrent responses for the TNR and H-TNR photoanodes. b) Relationships between 
the photocurrent related to the oxidation of the organics net and the concentrations of the organic at the H-TNR 
electrode. Reproduced with permission from reference [35]. Copyright 2014, Elsevier.
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Figure 10. 
a) Upper: Estimated relative band edges of the (101) and (001) facets of the anatase phase of titania, lower: Spin 
densities around the oxygen vacancy in (101) and (001) slab model of anatase TiO2 under antiferromagnetic 
alignment. The yellow and cyan isosurfaces refer to up-spin and down-spin densities, respectively. b) CO 
production over TiO2 and TiO2-x nanocrystals with different exposed facets under visible light. Reproduced with 
permission [36]. Copyright 2016, American Chemical Society.
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Chapter 3

Crystal Facet Engineering of TiO2
from Theory to Application
Szymon Dudziak, Marta Kowalkińska
and Anna Zielińska-Jurek

Abstract

Recently, the surface structure effect on photocatalytic activity has gathered
increasing attention due to its reported influence on the charge carrier trapping and
separation. Detailed control over the surface structure can be achieved by exposing
the specific crystal facets. As a result, the photogenerated electrons and holes can be
effectively separated between the different facets of semiconductor crystals. TiO2 is
the most studied photocatalyst, with the particles exposing {0 0 1}, {1 0 0}, {1 0 1},
{1 1 0}, {1 1 1}, and {1 0 5} crystal facets. The performed studies have shown that the
efficiency of the photocatalytic process strongly depends on the nature of the crystal
facet exposed at the photocatalyst surface. In this regard, this chapter focuses on the
comparison of possible surface-related parameters and photocatalytic activity of ana-
tase, rutile, and brookite polymorphs with exposed different crystal facets. Particu-
larly, computational data on their different possible surface structures are
summarized, focusing on the geometry, energy, and possible reconstructions. This is
followed by the general description of the hypothetical Wulff constructions and
existing stabilization/synthesis strategies. Such an approach could help to further
design, simulate, and optimize photocatalyst surface for efficient photoreduction and
photooxidation processes.

Keywords: crystal facets, computational, titanium dioxide, photocatalysis, crystal
growth, surface engineering

1. Introduction

Titanium dioxide (TiO2) is one of the most studied photocatalysts, especially
considering its application in the photocatalytic degradation of micropollutants. TiO2

can induce specific redox reactions through photogenerated charge carriers in
photocatalysis. Such process can be divided into subsequent steps, including (1)
excitation of electrons in the TiO2 structure; (2) dissociation of the generated excitons
to free electrons and holes; (3) migration of the charge carriers to the surface; and (4)
transfer of the e� or h+ to substrate present at the surface. All of these steps are
common for every photocatalytic reaction, and each deals with limitations that influ-
ence the overall process efficiency. However, steps (3) and (4) occur at the surface.
Therefore, any change at the interface between the photocatalyst and a substrate can
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induce significant changes in the involved elementary reactions. The importance of
this interface and photocatalyst surface was realized very early in the photocatalytic
studies, discussing problems like surface polarization with excess electrons, modifica-
tion with noble metals, and surface complexation with bidentate benzene derivatives
to improve the transfer of the charge carriers [1–3]. Simultaneously, the challenges of
surface trapping and recombination of the generated charge carriers were also
highlighted.

However, concerning these early studies, the exact geometry of the photocatalyst
surface was not considered at this point, and ultrafine particles were studied without
well-defined geometry. In the last years, significant progress has been made both in
the preparation procedures of the TiO2 particles and in the application of computa-
tional methods to simulate the geometry and properties of such interfaces at the
atomic scale. As a result, stabilization of a specific interface structure can be achieved
during the photocatalyst preparation, leading to the formation of faceted particles
terminated with specific, well-defined crystal planes. At present, the application of
such single-crystalline particles can be considered a state-of-the-art approach for
investigating the details of photocatalytic reactions. Moreover, when systematically
studied, it allows for the optimization of the final structure of the photocatalyst and
increases its activity in a specific reaction [4]. This is primarily a result of a preferred
electronic structure of the exposed facet. Therefore, photogenerated electrons and
holes may accumulate at different crystal facets leading to improved charge carriers’
separation and more selective photocatalytic reactions. In this regard, this chapter
concisely highlights recent state-of-the-art progress in (1) the synthesis of crystal-
facet exposed anatase, rutile, and brookite, (2) crystal facet-dependent properties of
TiO2, and (3) the correlation of surface properties with photocatalytic activity in
photodegradation of emerging pollutants present in water, H2 generation, and CO2

reduction into valuable chemicals. Furthermore, by reviewing the research progress
on crystal facet engineering of TiO2, we hope to provide directions for future selective
semiconductor modification with electron-donor or electron-acceptor to improve the
overall efficiency in photocatalytic reaction kinetics and mechanism.

2. Computed geometries and energies of the TiO2 surfaces in vacuum

Recently, detailed atomic structures of the possible crystal facet terminations and
their corresponding surface energies are preferably studied using a computational
approach. This allows us to describe actual surface geometry and investigate how it
will change in a different environment. Therefore, energetic stabilization of the spe-
cific facet might be predicted to help obtain it experimentally. However, the analyzed
models are often studied in a vacuum, which enables researchers to compare the
relative stability of different structures and provides a useful starting point for further
investigations. Concerning TiO2 crystal planes, corresponding surface models were
analyzed in detail for both anatase and rutile polymorphs, including (0 0 1), (1 0 0),
(1 0 1), (1 0 3), (1 0 5), (1 1 0), and (1 1 2) structures for anatase [5–11], as well as
(0 0 1), (0 1 1), (1 0 0), (1 1 0), and (1 1 1) for rutile [10–14]. On the other hand,
brookite surfaces are rarely investigated. Nevertheless, a detailed study on different
brookite surfaces was reported by Gong and Selloni [15], as well as additional infor-
mation can be found about the (1 0 1), (1 2 1), and (2 0 1) structures [16]. Moreover,
in the case of some models, different atomic geometries or possible reconstructions
have been suggested. This specifically includes (1 x 4) reconstruction of the anatase
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(0 0 1) surface, reconstruction of the rutile (0 0 1), (0 1 1), and (1 0 0) surfaces, as
well as two possible geometries of anatase (1 0 3), including smooth (1 0 3)s and
faceted (1 0 3)f terminations. The following description is a summation of these
works. Finally, a different number of atoms exposed to the environment are discussed
for different surfaces. For example, atoms from the second (or deeper) atomic layer
are not always considered as “exposed” by the authors, although they are needed to
complete surface structure. Here, if the surface structure has visible steps that give
possible access to such atoms, we have always considered them as exposed ones.
Nevertheless, it should be minded that such atoms are more or less covered with the
ones located closer to the top of the surface and might be less accessible in practice.

2.1 Unreconstructed anatase surfaces

The atomic structures of the perfect anatase terminations with different crystal
planes are presented in Figure 1. Starting from the top-left side, the (0 0 1) surface is

Figure 1.
Perfect, bulk-cut atomic geometries of different anatase surfaces in their isomeric (ball-and-stick models) and top
(space-filling models) views. Ti atoms are large, gray spheres and O atoms are small red ones. In the top view, the
undercoordinated atoms are marked with dots. The bulk crystal unit cell and the unit cell vectors are presented to
help navigate between different structures. Visualizations were performed with the VESTA program.
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flat, exposing all of the Ti atoms as 5-fold coordinated sites (5f-Ti) and ½ of the O as
2-fold coordinated ones (2f-O). The high density of the undercoordinated species
leads to a high surface energy of about 0.90–1.08 J�m�2. Noticeable relaxation of the
atomic structure, compared to the bulk (0 0 1) crystal plane, includes breaking of the
bond symmetry between 5f-Ti and two neighboring 2f-O, resulting in one Ti-O bond
being visibly longer than the other. For the (1 0 0) surface, exposed atoms consist of
both undercoordinated 5f-Ti and 2f-O, as well as fully coordinated 6f-Ti and 3f-O.
Here, all Ti atoms exposed directly at the first atomic layer are 5f-coordinated, while
only ½ of oxygens are 2f-coordinated, as shown in Figure 1b. Moreover, visible steps
inward of the crystal structure give access to the second-layer atoms, which are always
fully coordinated. Including these sites as surface, atoms give a final fraction of 5f-Ti is
½ and 2f-O is ⅓. The relaxed structure of the (1 0 0) facet shows outward relaxation
of fully coordinated O atoms and inward relaxation of 5f-Ti, creating an oxygen-rich
interface, while 6f-Ti relaxes outward. Corresponding surface energy is usually
reported in the range of 0.53 to 0.79 J�m�2.

Furthermore, the (1 0 1) surface of anatase is energetically the most stable, with
the reported surface energy in a vacuum being 0.44–0.65 J�m�2, and it is commonly
observed in nature. The corresponding atomic structure consists of a sawtooth profile
with ½ of Ti atoms being 5f-coordinated and ⅓ of O atoms being 2f-coordinated, as
shown in Figure 1c. Here, the most exposed atoms are undercoordinated oxygens, and
specifically, further relaxation leads to the outward rise of the 3f-O above the
undercoordinated Ti. Similarly to the (1 0 0) surface, the (1 0 1) can be considered
oxygen-rich. Next, the (1 0 3) surface is often discussed in two possible terminations,
either smooth one (1 0 3)s or faceted (1 0 3)f, both presented in Figure 1d-e, respec-
tively. The smooth (1 0 3) termination is one of the few facets that exposes 4-fold
coordinated Ti atoms (4f-Ti) at the top of the surface, being ⅓ of the total surface Ti.
Other Ti sites located below the 4f-Ti “tooth” are fully coordinated. Here, the 2f-O
represents ⅖ of all exposed O and two 2f-O are always bonded to the single 6f-Ti. The
outermost O atoms are 3f-coordinated and, similar to other facets, undergo significant
relaxation outward of the crystal structure. On the contrary, on the faceted (1 0 3)
termination relatively large fraction of Ti atoms is 5f-coordinated, being ⅔ of all Ti.
Two different 5f-Ti sites exist on this surface, one bonded to a single 2f-O and the
other bonded to three 2f-O atoms. The total fraction of 2f-O is the same as for the
smooth (1 0 3), that is, ⅖. Similar to the (0 0 1) surface, significant symmetry
breaking is observed for the 2f-O bridging two equivalent 5f-Ti sites (the one bonded
to three 2f-O), resulting in one bond being longer than the other. Analogically to other
facets, 3f-coordinated O relaxes outward; however, the change is smaller than for a
(1 0 3)s structure. Energetically, Lazzeri et al. reported that the (1 0 3)f is slightly more
stable than (1 0 3)s, with surface energies being 0.83 and 0.93 J�m�2, respectively [5].
However, different results were presented by Zhao et al. with analogical energies of
1.14 and 1.05 J�m�2 [6].

The (1 0 5) surface structure is rarely discussed; however, Jiang et al. have pro-
posed possible geometry of such facet with a corresponding surface energy of
0.84 J�m�2. In their model, the atomic structure of the (1 0 5) facet composes of both
4f-Ti (¼) and 5f-Ti (¼) exposed, together with 2f-O (3∕7), as shown schematically in
Figure 1f [17]. Although performed, relaxation of the geometry was not described.
Furthermore, the (1 1 0) surface has a characteristic layered structure with deep
cavities running along the [0 0 1] direction. Such structure exposes up to four atomic
Ti layers and three O layers at different depths. As shown in Figure 1g, the first layer
composes only of 4f-Ti and 2f-O atoms, while further layers are fully coordinated. As
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described by Zhao et al., this surface also shows a “layered” relaxation pattern, where
O atoms relax outward for the odd-numbered letters and inward for the even-
numbered ones [6]. Simultaneously, Ti relaxes in the opposite pattern, ultimately
leading to the breaking of the perfect 2D symmetry of the surface structure (i.e., the
surface stops being perfectly flat, in contrast to the bulk crystal plane). Following this
description and maximum exposition of the first four Ti and first three O layers, the
fraction of undercoordinated species is ¼ for 4f-Ti and ⅓ for 2f-O. Corresponding
surface energy is commonly reported between 01.02 and 1.33 J�m�2.

Finally, the (1 1 2) surface is also rarely considered; however, Mino et al. analyzed
its surface model with surface energy between 0.95 and 0.98 J�m�2, depending on the
possible relaxation of the cell parameters (exact value was approximated by the
authors from the graph) [9]. Similar to the (1 1 0) surface, the (1 1 2) geometry
exposes the first layer of undercoordinated species (5f-Ti and 2f-O, both being ½ of all
Ti/O atoms) and the second layer of fully coordinated atoms, as shown in Figure 1h. A
detailed relaxation pattern was not described.

2.2 Unreconstructed rutile surfaces

Concerning the rutile crystal structure of TiO2, its possible terminations with
different crystal planes are shown in Figure 2, analogically to the anatase. Starting
from the (0 0 1) crystal plane, the corresponding termination shows structure similar
to anatase (1 1 0), with the first atomic layer composed fully of undercoordinated 4f-
Ti and 2f-O species and the second layer being fully coordinated. Assuming that the
second layer is also partially exposed to the environment, the final fraction of
undercoordinated sites is again ½ for both Ti and O. The relaxation of this surface is
also similar to that of anatase (1 1 0), where the 4f-Ti atoms on the surface relax
inward toward the bulk structure, while the 2f-O and 6f-Ti atoms relax outward. The
high density of the broken bonds results in high surface energy, with reported values
between 1.21 and 1.58 J�m�2, making it one of the least stable rutile facets. Further-
more, Figure 1b shows (0 1 1) surface structure of the rutile phase with a little
corrugated profile. Here, the uppermost part composes fully of 5f-Ti and 2f-O, while
subsurface 3f-O atoms are also partially exposed, ultimately being ½ of all O atoms.
Surface relaxation described by Barnard et al. showed that all 5f-Ti, 2f-O, and 3f-O
atoms relax outward on this surface; however, a bit different pattern was also reported
by Ramamoorthy et al. [14]. Along the (0 0 1) surface, the (0 1 1) is reported to be one
of the least stable rutile surfaces, with surface energies reported in the range of 0.95 to
1.11 J�m�2.

Furthermore, the (1 0 0) surface shows a layered structure with rows of 5f-Ti and
2f-O atoms at the top of the exposed “tooths,” as well as fully coordinated species in
the cavities. The corresponding fraction of the undercoordinated atoms is ½ for Ti and
⅓ for O. Relaxation pattern described by Ramamoorthy et al. includes the moving of
the surface Ti and O atoms in opposite directions along the [0 1 0] axis [14]. Simulta-
neously, surface Ti relaxes outward the crystal structure. Corresponding surface
energy was reported in the range between 0.60 and 0.83 J�m�2. Next, the (1 1 0)
structure is energetically the most stable surface of the rutile polymorph, with the
reported surface energy between 0.34 and 0.59 J�m�2. Its surface structure exposes
both 5f-Ti atoms (½) and 2f-O (⅓) in the subsequent rows, as presented schemati-
cally in Figure 2d. Relaxation of the (1 1 0) structure includes an inward shift of all the
undercoordinated species and outward of the 6f-Ti and 3f-O, therefore making the
final structure more puckered.
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Finally, the rutile (1 1 1) surface is rarely discussed; however, a detailed analysis of
its possible structure was presented by Wang et al. [18]. For the unreconstructed,
bulk-cut, stoichiometric surface, the corresponding surface energy was found to be in
the range of 1.34 J�m�2, exposing⅓ of Ti atoms as 4f-Ti in the first layer,⅓ of Ti as 5f-
Ti in the second one, and hypothetically ⅓ of 6f-Ti in the third one. Here, all O atoms
in the first layers are 2f-coordinated and 3f-O can be found only below the 5f-Ti sites,
as shown in Figure 2e. According to Jiang et al., the 4f-Ti atoms show significant
inward relaxation for such a structure [13]. However, very high surface energy and
density of undercoordinated atoms generally lead to the instability of such “perfect”
(1 1 1) surface, and further stabilization by hydroxylation was discussed in the fol-
lowing parts.

2.3 Unreconstructed brookite surfaces

Finally, Figure 3 shows unreconstructed brookite surfaces, which are analogical to
the anatase and rutile. Compared to the other polymorphs, brookite surfaces form
rather complex structures, often exposing 4f-Ti. Due to such complexity, the calcu-
lated fraction of undercoordinated species for brookite surfaces is presented only for
Ti atoms. Moreover, in the case of most surfaces, multiple terminations can be con-
sidered. Here, we have highlighted only those, which were found to be most stable, or
whose reconstructed geometries showed significant stabilization.

Figure 2.
Perfect, bulk-cut atomic geometries of different rutile surfaces. Figure features are analogical to the anatase one.
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The (0 0 1) brookite surface directly exposes 4f-Ti and 6f-Ti; however, some
additional 6f-Ti, that are partially exposed can be found in the deeper parts of the
surface, as presented in Figure 3a (after including deeper-layer Ti fraction of 4f-Ti is
¼). The top Ti atoms are bridged with a network of 2f-O and saturated O can be found
only in the deeper parts of the surface. The calculated energy of such geometry after

Figure 3.
Perfect, bulk-cut atomic geometries of different brookite surfaces. Figure features are analogical to the anatase one.
The “X” mark indicates possible bond breaking after relaxation.
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straightforward optimization was found to be 1.18 J�m�2; however, possible recon-
struction is known to stabilize alternate geometry, which will be discussed later.

Furthermore, the (0 1 0) brookite surface shows structure similar to the anatase
(1 1 0) and rutile (0 0 1), with a top layer of (2f-O)-(4f-Ti)-(2f-O) bonding to the
6f-Ti in cavities. Assuming exposition up to the first three Ti layers, the fraction of
4f-Ti is ¼ for such geometry. Moreover, reported relaxation has shown that the
uppermost 6f-Ti significantly rises to the top, breaking one bond with a deeper layer
3f-O, as highlighted with “X” in Figure 3b. Therefore, additional 5f-Ti is expected to
be exposed on the relaxed surface. The final surface energy of such a structure was
found to be 0.77 J�m�2. Focusing on the next structure, the (0 1 1) brookite surface
is shown in Figure 3c, exposing a combination of both 4f-Ti (⅛), 5f-Ti (⅜), and
6f-Ti (½), which are connected by a quite complex network of both undercoordinated
and fully coordinated O atoms. Relaxation of the structure leads to outward displace-
ment of 6f-Ti, while undercoordinated titanium relaxes inward the crystal structure,
giving final surface energy of 0.74 J�m�2. The (1 0 0) brookite surface is similar to the
anatase (1 1 2), with a sawtooth-like profile, as shown in Figure 3d. The top of the
surface directly exposes a row of 5f-Ti (½) atoms connected by the 2f-O, while deeper
layers are fully coordinated. It can be noted that this structure can possess two very
similar, but not strictly identical, configurations, where the top of the surface is
composed of either the first or the second Ti layer, as shown in Figure 3d. Gong and
Selloni [15] reported that these two configurations differ slightly in surface energy
(either 0.88 or 0.93 J�m�2). Nevertheless, their overall geometry is very similar, and
both configurations differ mostly due to slight changes in the exact bond lengths and
angles at the very top. Next, Figure 3e shows the structure of the perfect (1 0 1)
brookite surface, again exposing a combination of 4f-Ti (¼), 5f-Ti (⅛), and 6f-Ti
(⅝), connected with both saturated and 2f-coordinated O atoms. Significant changes
in the perfect structure during the relaxation include bond breaking between 3f-O that
bridges two surface 4f-Ti atoms and the subsurface 6f-Ti, highlighted in Figure 3e
with “X.” In this case, the resulting 5f-Ti is located in the subsurface region; however,
additional 2f-O appears exposed directly on the surface top. The resulting surface
energy for such geometry is 0.87 J�m�2. The surface structure of brookite (1 1 0)
presented in Figure 3f is characterized by terraces that end with a 4f-Ti edge and
further step-down. Again a variety of Ti species are exposed at this surface (1∕7 of
4f-Ti and 2∕7 of 5f-Ti). Undercoordinated atoms undergo large relaxation at the edges,
with O atoms relaxing outward the crystal structure and Ti atoms relaxing inward.
The corresponding surface energy was found to be 0.85 J�m�2. The (1 1 1) surface of
brookite can be considered in a variety of different, complex terminations, which
were studied in detail by Gong and Selloni. Following their results, Figure 3g shows
the most probable (1 1 1) structure, exposing⅛ of Ti sites as 4-fold coordinated and⅜

as 5f-Ti. No significant relaxation changes were reported for such a structure and the
corresponding surface energy was 0.72 J�m�2. Next, the (1 2 0) brookite surface is
shown in Figure 3h, exposing 4f-Ti (3∕13) and 5f-Ti (2∕13). This is another brookite
surface that shows possible bond breaking between saturated Ti and O after the
relaxation, as indicated in the surface model with “X,”which results in the appearance
of the additional 5f-Ti site at the surface’s top. The corresponding surface energy was
0.82 J�m�2. Furthermore, the (2 0 1) brookite surface was not investigated in detail
through a computational approach; however, it has gained significant experimental
attention due to reported relatively high photocatalytic activity. The atomic model of
the (2 0 1) surface, proposed by Lin et al., and Zhou et al., is shown in Figure 3i
[16, 19]. This surface composes of little up-and-down terraces, exposing either 4f-Ti
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(2∕7) or 5f-Ti (2∕7), respectively. On the “flat” parts, the two 5f-Ti are bridged with
two 2f-O, while two 4f-Ti are bridged with one 2f-O and one 3f-O. Additional 2f-O are
present at the edge of each step. Finally, Figure 3j shows the energetically most stable
brookite surface (2 1 0), with reported surface energy of 0.70 J�m�2. The atomic
geometry of this surface shows similarities with anatase (1 0 1), as both expose
characteristic steps of undercoordinated 5f-Ti bonded to the 2f-O at the edge of the
step. Lower parts of the surface, below the (5f-Ti)-(2f-O) steps, are fully coordinated.
The final fraction of 5f-Ti for this surface is ½. Similar to other TiO2 surfaces, the 6f-Ti
and topmost 3f-O show visible relaxation outward of the crystal structure, while 5f-Ti
relax inward.

2.4 Surface energies and reconstructions

The above description shows possible terminations of the TiO2 crystals by different
crystal planes, resulting in different surface energies calculated for relaxed models.
Concerning analyses in a vacuum, these energies roughly correspond to the density of
theoretical bonds that needs to be broken to form particular termination. However, as
presented in Figure 4, considering different values reported in the literature, the
relationship is not always strict and should be considered more as a guidance than an
actual rule. It should also be noted that different computational details will lead to
different computed energy values, which should be especially minded.

As presented in Figure 4, some of the reported energies can achieve quite large
values, which is commonly the reason why such hypothetical structures are not
necessarily observed experimentally. This may include the fact that analyzed crystals/
nanoparticles do not terminate in such orientation or that the final structure does not
correspond to such particular atomic geometry. The second option is generally known
as surface reconstruction, where interface atoms adopt geometry different from the
corresponding crystal plane to minimize final surface energy.

Figure 4.
Relation between reported surface energies of different, unreconstructed TiO2 surfaces in vacuum and a density of
broken bonds, needed to form the surface from bulk crystal. To give better comparison between values obtained in
different studies (no single study reports all considered surfaces), final values are presented as a mean.
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Surface reconstruction was reported as an important process for several possible
TiO2 terminations. Probably, the most notable is the (1 x 4) reconstruction of the
anatase (0 0 1) surface, which was described in the early 2000s and should be
especially considered under ultra-high vacuum conditions [20–22]. The probable
structure of such termination was proposed by Lazzeri and Selloni with the “ad-
molecule” model, which was found to be energetically more stable than the unrecon-
structed surface (0.51 J�m�2 for the reconstructed geometry, vs. 0.90 J�m�2 for the
unreconstructed one) [8]. In their model, they propose that every fourth of the (5f-
Ti)-(2f-O)-(5f-Ti) periodic units, shown in Figure 1a, is replaced by the row of TiO3

bridging species that rise above the perfect surface. The stability of such a configura-
tion was explained due to the stress relief induced by the change in the bond length
between the 5f-Ti and 2f-O atoms “left” in the unreconstructed part of the surface.
Specifically, the (1 x 4) periodicity of such reconstruction resulted in the bond length
being the closest to the “natural” length and, in consequence, the lowest surface
energy. Nevertheless, despite the energetical stability of the proposed model, such a
structure was not found to be completely in agreement with the experiment. This was
mostly due to the relatively low activity of such structures, despite the expected
exposition of the 4f-Ti atoms at the formed bridges, which should act as good adsorp-
tion and dissociation centers. This has led to further refinement of the proposed
geometry by Wang et al. where they suggested that exposed 4f-Ti became oxidized to
the fully-coordinated 6f-Ti [23]. The atomic geometry of their model is shown in
Figure 5, where 5a and 5b correspond to the non-defected surface, while other images
show different defect sites observed during the scanning tunneling microscopy (STM)
analysis. In conclusion, they have shown that oxidized reconstruction is chemically
inert and only reduced 4f-Ti sites show considerable activity.

However, despite a lot of attention being given to such (1 x 4) reconstruction, the
actual geometry of the anatase (0 0 1) surface during growth and in aqueous suspen-
sions is still probable to be unreconstructed. This fact is firstly justified by the fluorine
stabilization of the (0 0 1) surface in its unreconstructed form, which is commonly
used during the preparation procedure of such nanocrystals (details of this stabiliza-
tion are described in the following section). After such preparation, fluorine has to be
removed from the surface, as well an energy barrier needs to be overcome to induce
the reconstruction. Both of these processes are known to occur in temperatures above
500–600°C, and below this temperature, reconstruction is not obvious [24–26].
Moreover, the possible stability of the unreconstructed geometry was experimentally
confirmed by DeBenedetti et al. in the aqueous carboxylic acid solution [27]. There-
fore, although (1 x 4) reconstruction of the anatase (0 0 1) surface should be minded,
the actual geometry should be carefully considered, depending on the experimental
details and available techniques.

Furthermore, different reconstructions were also proposed for other TiO2 surfaces,
and their general summation is presented in Table 1. Noticeably, a variety of rutile
surfaces are expected to reconstruct, including (0 0 1), (0 1 1), and (1 0 0) termina-
tions. Interestingly, these surfaces are also expected to be present in the equilibrium
shape of the rutile crystal, as shown later. The (0 0 1) rutile surface is generally
known to reconstruct or facet, especially in higher temperatures [28–30]. Commonly,
the {0 1 1} and {1 1 4} facets are reported to form at the (0 0 1) surface, from which
the {0 1 1} facets are also expected to adopt the geometry of the (2 x 1) reconstruction
of the (0 1 1) surface itself. Detailed studies of this (2 x 1) reconstruction were
presented by several authors, generally proposing a “brookite (0 0 1)-like” atomic
structure [31–33]. This structure shows a characteristic topmost zigzag, composed of
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the 5f-Ti and 2f-O, observed in the STM images. As reported by Gong et al., surface
energy of such a configuration was found to be 0.42 J�m�2, while the unreconstructed
surface of about 0.89 J�m�2 is under the same computational parameters [33]. Fur-
thermore, the (1 0 0) rutile surface can especially reconstruct after annealing in the

Polymorph and
surface

Periodicity Geometry Specific formation
conditions

Anatase (0 0 1) (1 � 4) Row of 6f-coordinated Ti above the bulk-
like surface.

Ultra-high vacuum and
annealing in 500–600°C.

Rutile (0 0 1) Not discussed {0 1 1} and {1 1 4} microfacets. Annealing in 750–780°C.

Rutile (0 1 1) (2 � 1) Brookite (0 0 1)-like. Not discussed.

Rutile (1 0 0) (1 � 3), (1 � 5),
(1 x 7)

{1 1 0} microfacets, partially reduced. Annealing in the ultra-
high vacuum.

Brookite (0 0 1) (1 � 1) Several bonds breaking between surface
and subsurface species, topmost
exposition of the 2f-O.

Not discussed.

Table 1.
Summation of the most important reported reconstructions of the TiO2 surfaces.

Figure 5.
Atomic models of the anatase (0 0 1) surface after the oxidized (1 x 4) reconstruction proposed by Wang et al.
[23]. Non-defected (a) and defected (c, e) structures. Panels (b, d, and f) show corresponding simulated scanning
tunneling microscope images. Please note that models (a, c, and e) are shown in parallel to the (1 x 4) periodicity
of the reconstruction. Reprinted from [23] under a creative commons attribution 3.0 Unported license.
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ultra-high vacuum conditions, showing the formation of the {1 1 0} microfacets with
several reconstruction patterns, such as a (1 x 3), (1 x 5), and (1 x 7). Commonly, the
(1 x 3) reconstruction is considered, which was recently studied by Balzaretti et al.
concerning its surface energy and interactions with water [34]. Interestingly, they
observed that reconstructed geometry is slightly less stable (0.04 J�m�2 difference)
than unreconstructed one. It is also noteworthy that photoemission experiments have
shown that such annealed, reconstructed surface is partially reduced, which might
influence its stability [29]. Finally, reports about brookite surfaces are relatively rare.
Therefore, possible reconstructions of its geometries are also not discussed. Never-
theless, Gong and Selloni reported an important reconstruction of the (0 0 1) surface,
which results in a reduction of its surface energy from 1.18 to 0.62 J�m�2, making it
one of the most exposed surfaces in the equilibrium shape [15]. This structure is very
similar to the proposed (2 x 1) reconstruction of the rutile (0 1 1) surface. In this
reconstruction, the 3f-O atoms, that were originally bridging the 4f-Ti atoms (see
Figure 2a), break their bonds with subsurface 6f-Ti and rise above the 4f-Ti. Simul-
taneously, two subsurface 3f-O break their bonds with surface 6f-Ti and move toward
each other, ultimately locating below the 4f-Ti pair.

3. Facets stabilization, crystal shapes, and synthesis strategies

According to general thermodynamics, the total surface energy of the crystal
should be minimized for the whole system to achieve minimum energy. Therefore,
the exposition of some crystal planes is not expected. However, to consider such a
lowest-energy shape, it is first necessary to consider the formation of surfaces equiv-
alent to the specific model. For example, for the anatase polymorph, the (1 0 0),
(1̅ 0 0), (0 1 0), and (0 1 ̅ 0) have the same atomic arrangement and are equivalent.
Therefore, if the (1 0 0) surface became stable at the considered conditions, it is
expected that four analogical facets will form in the crystal, with their orientation
being the same as the orientation between the crystal planes. The family of such
equivalent crystal planes is denoted using brackets and their Miller indices, which are
also used to index observed crystal facets. The most important TiO2 facets and their
corresponding equivalent crystal planes are listed in Table 2.

Finally, after considering possible surface terminations, their energies, and equiv-
alent planes, the 3-dimensional minimum-energy crystal shape can be obtained,
according to the Gibbs-Curie-Wulff theorem [35]. This shape is also called the Wulff
construction. Concerning the anatase, rutile, and brookite, their corresponding Wulff
constructions are shown in Figure 6, according to the existing studies [5, 14, 15].

Constructions shown in Figure 6 can be seen as a perfect case, and therefore, it is
not unusual that experimentally obtained micro- or nanostructures can exhibit a
variety of very different shapes. This results from two important aspects of the
preparation procedure. Firstly, the adsorption of a different species can drastically
change the energy of a final surface. Moreover, and more importantly, the relative
energy of different surfaces might also change, leading to a situation where minimum-
energy construction will expose a completely new set of different facets. Such ener-
getic stabilization is often achieved by the addition of specific capping agents, pH
control, or growing on a substrate. The second aspect is the kinetics of such growth.
Particularly, very fast nucleation of the substrate can lead to the situation where final
nanoparticles will not form a well-defined geometry, despite a thermodynamic pref-
erence to grow in some specific direction. In the case of TiO2, this can typically be
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addressed using “dissolution-recrystallization” processes, where nucleated seeds are
dynamically dissolved and then recrystallized in the rebuilt, stable crystal shape [36].
Alternatively, Ti-precursors, which will nucleate slower, can be used to achieve more
stable growth. For example, when using Ti-alkoxides as precursors, it is known that a
longer carbon chain should result in slower nucleation [37]. Ultimately, both kinetic
and thermodynamic aspects should be considered when designing a synthesis route

Polymorph Facet {h k l} No. of equivalent
crystal planes

Crystal planes

Anatase {0 0 1} 2 (0 0 1), (0 0 1)

{1 0 0} 4 (1 0 0), (1 0 0), (0 1 0), (0 1 0)

{1 0 l} 8 (1 0 l), (0 1 l), (1 0 l), (0 1 l), (1 0 l), (0 1 l), (1

0 l), (0 1 l)

{1 1 0} 4 (1 1 0), (1 1 0), (1 1 0), (11 0)

Rutile {0 0 1} 2 (0 0 1), (0 0 1)

{0 1 1} 8 (0 1 1), (1 0 1), (0 1 1), (1 0 1), (0 1 1), (1 0 1),
(0 1 1), (1 0 1)

{1 0 0} 4 (1 0 0), (1 0 0), (0 1 0), (0 1 0)

{1 1 0} 4 (1 1 0), (1 1 0), (1 1 0), (11 0)

{1 1 1} 8 (1 1 1), (1 1 1), (1 1 1), (1 1 1), (1 1 1), (1 1 1),
(1 1 1), (1 1 1)

Brookite {h 0 0}, {0 k 0},
{0 0 l}

2 Combination of all possible h, k, and l

{h k 0}, {h 0 l},
{0 k l}

4

{h k l} 8

Table 2.
Summation of the most important TiO2 facets and their corresponding crystal planes.

Figure 6.
Wulff constructions of the (a) anatase, (b) rutile, and (c) brookite TiO2 crystals, based on the existing studies
[5, 14, 15]. Adapted colors generally follow the reported surface energy.
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for a specific facet exposition. It is also noteworthy that multiple effects can be
ascribed to the same additive. For example, during the HF-assisted growth of anatase
nanostructures, hydrofluoric acid enables both dissolution of the TiO2 nuclei and
thermodynamically stabilized {0 0 1} facets [26]. A summation of general synthesis
strategies is presented in Figure 7.

The hydrothermal process is usually used under specific synthesis conditions to
obtain desired crystal shapes, considering the appropriate precursor, capping agent,
and solvent. Various reaction substrates or ions can play a role as a capping agent in
the synthesis. Therefore, in the next subsections, the most important synthesis strat-
egies are described, together with highlighting the key factors.

3.1 Anatase crystal facets and shapes

The evolution of the anatase crystal shapes due to the exposition of different
crystal facets is shown in Figure 8. Although the formation of a range of different
facets was reported, the most investigated anatase crystal facets in the literature are
{1 0 1}, {1 0 0}, and {0 0 1}, from which the first two facets are low energetic. Due to
the symmetry of anatase crystal structure, nanocrystals with exposed {1 0 1} facets are
octahedral, whereas the {0 0 1} facets form anatase nanosheets. Moreover, the com-
bination of {1 0 1} and {0 0 1} facets (decahedral anatase nanostructures) and {0 0 1}
and {1 0 0} (anatase cuboids) are also extensively studied. Decahedral nanocrystals
may also undergo further flattening to nanosheets, resulting in dominant {0 0 1}
facets. As reported by Barnard and Curtiss, the relative stability of these three facets
depends heavily on the hydrogenation/oxygenation of the surface and, therefore, is
strongly affected by the pH of the solution [11]. One of the consequences is that {1 0 1}
and {1 0 0} exposing structures can be prepared in similar conditions, but {1 0 0}
requires a higher pH. Alternatively, due to our best knowledge, the formation of the
{0 0 1} exposing structures in the basic pH was not yet reported.

Anatase with exposed {1 0 1} facets is characterized by the lowest surface energy.
Alone they form octahedral nanostructures, which synthesis methods are presented in
Table 3. The most described procedure is a two-step synthesis, in which the first step
is the fabrication of potassium titanate nanowires from a hydrothermal reaction of TiO2

P25 (or other commercial TiO2) in KOH solution. The second step is not always the
same. For example, Amano et al. proposed direct hydrothermal treatment of titanate

Figure 7.
Summation of the most important aspects and some strategies used for the preparation of faceted TiO2
nanostructures.
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nanowires. This synthesis resulted in the formation of mesoparticles with exposed
{1 0 1} facets. The proportion of regular octahedral bipyramids in the nanostructures
was about 70% [38]. A different route is the production of ammonium-exchanged
titanate nanowires from K2Ti6O13 precipitates obtained during the first step [39]. The
above description considers mainly octahedral anatase nanostructures with the exposed
{1 0 1} facets. However, according to Wang et al., these bipyramidal facets were
obtained under hydrothermal conditions using potassium titanate nanowires as a pre-
cursor, hydrogen peroxide, and hydrofluoric acid as capping agents [43]. Alternatively,
hydrazine-assisted formation of the {1 0 1} octahedrons was reported when starting
from the precursors like TiOF2 and Ti(SO4)2 [41, 42].

Another low-energetic anatase crystal facet is {1 0 0}, which synthesis methods are
presented in Table 4. This crystal facet usually co-exists with other crystal facets and
forms cuboids or rectangular prisms with truncated prisms [40, 41]. However, some

Figure 8.
The possible anatase crystal shapes resulting from the exposition of different crystal facets.

Precursor Synthesis route and
conditions

Comments Ref.

Potassium titanate
nanowires

Hydrothermal; 170°C,
24 hours

The proportion of regular octahedral
bipyramids was ca. 70%

[38]

Potassium titanate
nanowires, NH4NO3, HMTA

Hydrothermal; 200°C,
24 hours

Relative high yield of regular
octahedral bipyramids >80%

[39]

TiCl4, oleylamine Synthesis in Schlenkline;
quickly heating at 290°C

— [40]

TiOF2, hydrazine Hydrothermal; 210°C,
24 hours

— [41]

Ti(SO4)2, hydrazine Hydrothermal; 200°C,
12 hours

The productivity of anatase
octahedra was over 80%

[42]

Table 3.
Selected synthesis of octahedral anatase nanocrystals with exposed {1 0 1} facets.
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syntheses with a high percentage of {1 0 0} crystal were also successfully performed.
For example, Xu et al. reported the preparation of anatase nanosheets with exposed
{1 0 0} facets [44]. Previously, nanosheets and nanocrystals were combined with
{0 0 1} facets exposition. The second possible shape of nanostructures is nanorod,
which synthesis was described by Li and Xu. The precursor was sodium titanate
obtained from a facile hydrothermal route during the reaction of P25 in sodium
hydroxide solution. Anatase nanorods with {1 0 0} facets were transformed from
Na-titanate via exchanging alkali-ions with protons under alkaline conditions to form
the H-titanates [45].

The starting point for the investigation on the high-energetic anatase crystal facets
was the research of Yang et al. [26], who proved that {0 0 1} facets could be energet-
ically preferable to {1 0 1}, although the surface energy of {0 0 1} facets is, in general,
higher than {1 0 1}. The main requirement was the addition of fluorine to the reaction
environment. In these theoretical studies, among the surface termination using 12
elements (H, B, C, N, O, F, Si, P, S, Cl, Br, or I), only fluorine-terminated surface
allowed to stabilize {0 0 1} facets rather than {1 0 1}. These calculations were com-
pleted by experiments in which anatase nanostructures with exposed {0 0 1} facets
were successfully synthesized using the hydrothermal approach with hydrofluoric
acid as a capping agent. However, in the above experiments, {0 0 1} facets accounted
for only �47% of all exposed crystal facets. In the meantime, Wen et al. [46] showed
the synthesis of anatase nanocrystals with exposed {0 0 1} facets using 1-butanol as a
solvent. This procedure allowed obtaining of large-sized well-defined anatase
nanosheets wholly dominated with {0 0 1} and {1 0 0} facets, which had a percentage
of 98.7% and 1.3%, respectively. The results can be explained by the alcohol stabiliza-
tion effect associated with fluorine adsorption over the (0 0 1) surface. The role of
particular alcohols, especially aliphatic with different chain lengths, was systemati-
cally studied recently [37, 47, 48].

The comparison of the anatase nanosheets with exposed {0 0 1} facets is presented
in Table 5. In most studies concerning TiO2 with exposed {0 0 1} facets, hydrofluoric
acid was used in the experimental procedure. However, other fluoride-based reagents
were also investigated. For example, ionic liquids (IL) were applied for stabilization of
these high-energetic facets, e.g., 1-butyl-3-methylimidazolium hydrogen sulfate
[Bmim]HSO4 and 3-methyl-1-(3-sulfonyl propyl) imidazolium trifluoro methane sul-
fonate [HO3S(CH2)3MIM][CF3SO3] [18]. Moreover, the fluorine atoms can be deliv-
ered by using an appropriate Ti source. An example of the compound in the Ti-O-F

Precursor Synthesis route and
conditions

{1 0 0} facets
exposition (%)

Comments Ref.

TiCl4, HCl, NaBF4 Hydrothermal; 130°C,
12 hours

45 55% {0 0 1} [44]

TiF4, ethanol,
oleic acid

Solvothermal; 200°C,
40 minutes

95 Anatase Nanosheets [45]

Na-titanate Hydrothermal; 120°C,
24 hours

Not mentioned Nanorods [46]

TiOF2, NH3 Hydrothermal; 210°C,
24 hours

Not mentioned Co-exist with {1 0 1} and
{0 0 1}

[41]

Table 4.
Selected synthesis of anatase nanocrystals with exposed {1 0 0} facets.
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system is titanium oxyfluoride (TiOF2), which can transform to TiO2 via a
solvothermal process [36] or simple calcination at a temperature above 600°C [58].

Moreover, next to {0 0 1} and {1 0 1} facets, a small rhombus originating from
{1 1 0} facet exposition with a surface energy of about 1.09 J � m�2 can be formed. Liu
et al. reported that the hydrothermal treatment of metallic Ti powder together with
the combination of hydrofluoric acid and hydrogen peroxide allowed the formation of
these highly energetic facets. It was described that HF was responsible for Ti dissolu-
tion, whereas H2O2 reacted with Ti4+ to obtain peroxotitanium acid. This complex
slows down the hydrolysis rate, which is necessary to pack the Ti–O–Ti chains and
finally form {1 1 0} facets [59]. Similar results were obtained by Li et al., who used
TiCl3 instead of Ti powder for the fabrication of {1 1 0} facets of anatase [49].

Excluding {1 1 0} facets, other synthesis procedures of anatase crystals with
exposed high-index facets have been reported in the literature. For example, Xu et al.
reported the synthesis of anatase single crystals with the exposed {1 1 1} facets.
According to the density functional theory calculations, their surface energy was
1.61 J�m�2, which was explained by a high percentage of undercoordinated Ti and O
atoms on the (1 1 1) surface [50]. Finally, Jiang et al. performed a gas-phase oxidation
process using TiCl4 as a precursor, which led to obtaining anatase single crystals with
exposed high-index {1 0 5} facets. The regulation of the Ti/O ratio in the reaction
system enabled inhibition of the growth of other crystal facets like {1 0 1} or {1 0 3}

Precursor and F source Synthesis route and
conditions

{0 0 1} facets
exposition (%)

Comments Ref.

TiF4, HF, 1-butanol Solvothermal; 210°C, 24 hours 98.7 Large size in length
(ca. 4.14 μm).

[47]

TBT, HF Hydrothermal; 250°C, 24 hours 75 — [49]

TBT, HF, isobutyl
alcohol

Solvothermal; 180–200°C,
20 hours

97 Flower-like
structure with ca.

2.0 mm

[50]

Degussa P25, HF, H2O2 Hydrothermal; 180°C, 10 hours 65 Truncated
bipyramidal anatase

[51]

TiOF2 Calcination at 300–900°C,
2 hours

>83 — [52]

TiF4, diethylene glycol,
acetic acid

Solvothermal; 180°C, 8 hours >90 — [53]

HFTiO3, HF Vapor-phase hydrothermal;
230°C, 3 hours

98.2 — [54]

TiF4, [bmin]+ [BF4]� Microwave-assisted; 210°C,
1.5 hours

80 — [55]

TiF4, 1-
Methylimidazolium
tetrafluoroborate

Microwave-assisted; 210°C,
1.5 hours

50 — [56]

TiCl4, ethylene glycol Solvothermal; 240°C, 48 hours 55 Hexagonal
nanoplatelets

[57]

Table 5.
Selected synthesis of anatase nanocrystals with exposed {0 0 1} facets.
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[17]. Therefore, the research direction to obtain high-index crystal facets with rela-
tively high surface energy is still under further investigation. However, there is a
probability that non-equilibrium conditions and sophisticated synthesis will be neces-
sary to preserve this surface.

3.2 Rutile and brookite crystal facets and shapes

Compared to anatase, preparation procedures of both rutile and brookite poly-
morphs are far less investigated. Moreover, observed nanocrystals are commonly not
consistent with a theoretical Wulff construction. In the case of rutile, above all, this is
due to the commonly observed appearance of the {1 1 1} facets after the hydrothermal
processes. As discussed previously, the (1 1 1) surface in its bulk-terminated form is
very energetic, and its stabilization can be achieved only through hydroxylation, as
reported by Wang et al. [18]. Interestingly, their calculations suggested that after the
hydroxylation, the surface energy of the {1 1 1} facets can be similar or even lower
than the most stable {1 1 0}. Ultimately, commonly prepared nanocrystals expose a
combination of these two facets [51, 52]. However, some authors report even 100% of
the {1 1 1} exposition. For example, Wu et al. reported that wholly exposition of the
{1 1 1} can be achieved with a suitably high addition of NaF to the reaction solution
[53]. Truong et al. synthesized the rutile nanocrystals with unusual {3 3 1} facets [54].
Their preparation route was based on the solvothermal treatment of titanium-
glycolate complex in the presence of picolinic acid as an additive. The resulting
product possessed a specific aggregated flower-like structure with facets exposed
along the (3 3 1) plane. Based on the detailed experimental investigation, it was
further proposed that {3 3 1} facets are composed with the periodically repeating {1 1
0} and {1 1 1} microfacets. Other rutile crystals with a less common shape were
synthesized by Chen and Lou, who have reported stabilization of the {0 0 1} rutile
facets during the hydrothermal growth in the presence of amorphous MoO3 [55]. The
detailed procedure involved the hydrothermal treatment of mixed TiF4 + HCl and
(NH4)6Mo7O24�4H2O + HNO3 solutions for 5 hours at 180°C. The final product com-
prised nanosized rutile platelets with {0 0 1} facets exposed aggregated to approxi-
mately 500-nm diameter spheres. The summation of the observed rutile crystal shapes
is presented in Figure 9.

The research on brookite with exposed facets is the most overlooked issue in facet
engineering of TiO2. Three main challenges can be distinguished: firstly, difficulties in
obtaining pure brookite phase. Secondly, the pristine brookite is supposed to be

Figure 9.
Scheme of some of the experimentally observed rutile crystal shapes.
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photocatalytic inactive. Finally, this TiO2 polymorph is metastable and undergoes a
thermal transition to rutile at high temperatures [56].

However, the rising investigations about brookite in recent years have led to the
recognition of this metastable phase as an active photocatalyst. One of the first studies
by Lin et al. reported single-crystalline nanosheets surrounded with four {2 1 0}, two
{1 0 1}, and two {2 0 1} facets. These nanostructures exhibited higher photocatalytic
performance toward methylene orange removal and hydroxyl radical production than
commercial TiO2 P25 [16]. Furthermore, {2 1 0} facets were also predominant in
nanocrystals described by Xu et al., who demonstrated a tunable synthesis of brookite
nanomaterials with the following shapes: quasi-octahedral, ellipsoid-tipped, and
wedge-tipped nanorods [57]. The above results can be explained by the lowest surface
energy of (2 1 0) surface among brookite crystals. However, Zhao et al. synthesized
and investigated brookite nanostructures with exposed {1 2 1} and {2 1 1} facets.
Particularly, TiO2 with a majority of {1 2 1} facets exposition, which had many
undercoordinated atoms on the surface and a lower VB potential, exhibited enhanced
photocatalytic activity toward Rhodamine B degradation under simulated solar light.
Therefore, the presented examples from the literature proved that crystal facets engi-
neering is a promising approach to obtaining photocatalytic active material from the
inactive phase [60].

4. Application in environmental photocatalysis

Following the ongoing demand for sustainable technologies, faceted TiO2

nanocrystals are primarily studied as possible photocatalysts in various environmental
remediation processes. Due to the relatively higher photocatalytic activity, the major-
ity of these studies focus on the anatase polymorph; however, some interesting find-
ings are also reported for rutile and brookite.

Concerning fundamental aspects of reactivity of different facets, it is often desired
to compare pristine photocatalysts with the majority of one specific facet exposed.
Comparison of their relative activities can give the so-called activity order of the
investigated surfaces [61–63]. Initially, it was generally noticed that an increase of the
{0 0 1} content on the anatase nanoparticles increases its photocatalytic activity both
for water splitting and for degradation of organic pollutants [64–66]. This was
straightforwardly connected with the high surface energy of the (0 0 1) surface,
which was expected to provide a high density of potentially active sites for the
photocatalytic reactions. However, further studies have presented opposite results,
leading to a significant reexamination of the problem. For example, studies by Gordon
et al. [67], Pan et al. [61], Mino et al. [68], and Mao et al. [63] have shown relatively
low photocatalytic activity of the {0 0 1} facets in different reactions. An interesting
study was also reported by Günnemann et al., who studied a variety of different TiO2

surfaces cut from single crystal samples [69]. Their conclusions support observations
of relatively lower photocatalytic activity of the anatase {0 0 1} facets, while {1 0 0}
were the most active for �OH generation (using terephthalic acid as a probe) and
{1 0 1} showed the highest activity for methanol oxidation. Ultimately, these results
showed that, at present, the photocatalytic activity of different crystal facets is hardly
connected a prioriwith its surface energy or high density of undercoordinated species,
as initially assumed. Instead, possible adsorption, detailed electronic interactions as
well as density of charge trapping and transfer are further considered as crucial for the
activity of a specific facet. This makes an overall problem very case-specific and due to
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our best knowledge, general conclusions are not possible to draw at this moment.
Nevertheless, some of the recent details, key factors, and suggested mechanisms can
be discussed for specific applications.

4.1 Water treatment from organic pollutants

Concerning photocatalytic degradation of organic pollutants, it is first noteworthy
that these studies can be sub-categorized into 3 categories: degradation of dyes, deg-
radation of non-color compounds, and generation of reactive oxygen species (ROS).
Particularly, it should be minded that due to possible sensitization, dye degradation
can be initiated by a different mechanism than other pollutants, therefore producing
possibly different results. In this regard, it is not recommended to use dyes as a model
pollutant, when assessing photocatalytic activity toward the degradation of organic
compounds in general [70]. Here, we will focus on the reports and mechanisms
discussing the degradation of photochemically inactive compounds and the generation
of ROS, which is the main issue for current advanced oxidation technologies.

Concerning degradation of persistent pollutants and ROS generation, water, oxy-
gen, and pollutant itself are the main substrates that can react at the photocatalyst
surface. Usually, it is assumed that the process is initiated by the photogenerated holes
(h+) that can either oxidize the pollutant, inducing its further transformation, or
produce �OH radicals from H2O [71, 72]. Simultaneously, excited electrons are often
expected to reduce oxygen to the �O2

�, which can also contribute to the final degra-
dation rate; however, their reactivity is much lower than h+ or �OH [73]. Based on this
description, it could be expected that the photocatalyst with the highest photooxida-
tion ability should achieve the highest degradation rates. Focusing on the anatase, this
is in accordance with some of the reported studies showing that the {1 0 0} facets are
highly active, especially concerning �OH generation [45, 69]. This is also in accordance
with the simulations performed by Ma et al., who have shown that h+ localization is
the most favored on this facet, compared to the {0 0 1} and {1 0 1} [74]. However,
many studies have also reported {1 0 1} facets to be the most photocatalytic active in
the degradation process, which cannot be connected to higher h+ reactivity on this
surface. Moreover, our recent studies have shown that {1 0 1} facets revealed higher
mineralization efficiency measured as a total organic carbon (TOC) removal during
the phenol degradation process, independently of the degradation rate [41]. Interest-
ingly, both of these facts can be attributed to the increased reduction ability of the
{1 0 1} facets. First of all, while the reactivity of the �O2

� is lower than h+ or �OH, they
are good ring-opening agents, which might promote the efficient conversion of the
aromatic compounds to CO2 [75]. Moreover, possible multi-electron oxygen reduction
can also promote the formation of the �OH, as well as proton transfer from organic
compounds to the adsorbed -OH groups, which might initiate the degradation. This
problem was specifically investigated in detail for the anatase {1 0 1} facets, which
have shown that a combination of O2 and H2O on the (1 0 1) surface results in the
formation of surface -OH groups [76]. The process was especially favorable in the
presence of two excess electrons in the reaction model, therefore connecting it with a
possible 2-electron reduction. Importantly, this shows that on the reduced (1 0 1),
H2O can dissociate, forming the final -OH, which is not occurring spontaneously on
the perfect surface. These findings have a fundamental meaning for the reactivity of
the {1 0 1} facets, especially for water treatment processes, as the -OH groups are a
preferable source of the �OH formation compared to H2O itself [77]. This is in good
agreement with a recent study by Hwang et al., who confirmed that a significant
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amount of free �OH is formed through the oxygen reduction process, based on the
18O2 incorporation into the product [78]. Although utilized samples were not strictly
faceted during this study, the exposition of the {1 0 1} structures might be expected
due to their energetic stability. Furthermore, a recent study by Dudziak et al. showed
that a very good correlation could be observed between the activity of the {1 0 1}
enclosed anatase samples for degradation of aromatic compounds and higher proba-
bility of both h+ and e� trapping on these facets, compared to the {0 0 1} and {1 0 0}
ones [79]. The combination of these studies suggests a possible mechanism of the
{1 0 1} reactivity as the result of e� induced H2O dissociation and further generation of
�OH with photogenerated holes. However, more detailed studies might still be needed
to clarify it. Finally, recent reports have also shown that the application of
nanostructures exposing {1 0 1} facets might result in lower toxicity of the final
solution, during the naproxen degradation process, than {0 0 1} ones [80]. Therefore,
at this moment, a combination of high reactivity, high TOC removal, and low toxicity
makes {1 0 1} a preferable choice for the degradation of organic compounds, especially
micropollutants with aromatic structure and high photostability.

Compared to the anatase facets, {1 0 1} in particular, other TiO2 structures are not
studied in detail and generally show markedly lower photoactivity. Nevertheless, a
few important findings are worth noticing. First of all, the same reductive pathway of
�OH generation, reported for anatase by Hwang et al., was not observed for rutile,
suggesting that especially for the {1 1 0} rutile facets, �OH generation occurs strictly
through H2O oxidation [78]. Furthermore, the study by Günnemann et al. showed
different activities of rutile {0 0 1}, {0 1 1}, and {1 1 1} facets in the methanol oxidation
and �OH generation. Specifically, they reported that {0 1 1} facets exhibited lower
methanol oxidation ability, while {1 1 1} generated lower amounts of hydroxyl radi-
cals. Besides, rutile activity in both reactions was fairly similar and generally worse
than anatase [69]. Nevertheless, their study did not consider rutile {1 1 0} facets,
which on the other hand, were studied by Kobayashi et al. for the oxidation of oxalic
acid [52]. In this study, {1 1 0} revealed higher activity than {0 0 1}, which is also in
some agreement with the oxidative �OH generation by this facet. Finally,
concerning brookite facets, it is especially worth mentioning that structures
co-exposing {2 1 0}, {2 0 1}, and {1 0 1} facets result in significant activity increase
for �OH generation and methyl orange degradation, otherwise not observed for the
control brookite samples [16].

4.2 Solar fuel production

In recent years, semiconductor-based materials have been extensively studied for
energy applications that can contribute to reducing greenhouse gases. Storing solar
energy into the chemical bonds of fuel seems to be a promising way to replace the
traditional combustion of fossil fuels with environmentally friendly technology. Spe-
cifically, much attention has been paid to photocatalytic H2 production from water
and CO2 reduction to valuable chemical compounds.

Regarding H2 generation from water, it should be noted that pristine structures
show low activity, and therefore, surface modification with co-catalysts needs to be
applied. In the case of the faceted particles, the overall problem deals with specific
interactions between the surface and co-catalyst, as well as possible charge separation
between different co-exposed facets. Focusing on the single-facet, important findings
were reported by Gordon et al., who noticed the higher activity of the anatase modi-
fied with Pt for octahedrons exposing {1 0 1} than nanosheets with exposed {0 0 1}
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[67]. Similar results were obtained by Wang et al. for anatase nanoparticles modified
with MoXC as a co-catalyst [81]. This fact is attributed to the increased reduction
ability of the (1 0 1) surface, which results in the synergy of TiO2 and co-catalyst.
Recently, specifically, the problem of interactions between (1 0 1) and different
possible metal co-catalyst was investigated in detail by Wang and Gong in their
computational study [82]. Based on the obtained results, they have proposed alloyed
Cu/Pt and Rh/Pt co-catalysts as promising candidates for hydrogen evolution. This
concept was based on optimizing the electron transfer between (1 0 1) anatase
surface and Cu or Rh as the electron-acceptor and further exposition of Pt as the active
part of the co-catalyst. Considered models and their electronic structures are shown in
Figure 10.

Furthermore, a combination of {1 0 1} with other co-exposed facets can increase
the activity of the TiO2 materials for H2 generation. For example, Wei et al. presented
a detailed comparison between octahedral {1 0 1} and decahedral {1 0 1}/{0 0 1}
anatase particles modified with Cu, Ag, and Au nanoparticles. Particularly, a combi-
nation of both {1 0 1} and {0 0 1} facets resulted in a slightly higher activity when
modified with Ag or Au, as well as a significantly higher activity when modified with
Cu [83]. Furthermore, Meng et al. reported increased H2 production using the
decahedral {1 0 1}/{0 0 1} anatase samples, when both facets were selectively modi-
fied by Pt and Co3O4, respectively [84]. It is especially noteworthy that such a com-
bination of the facet co-exposition and selective modification with optimized co-
catalysts was recently proposed to achieve almost 100% of quantum efficiency during
water splitting reaction over SrTiO3 photocatalyst [4]. Therefore, it confirms the

Figure 10.
Optimal models (a, c) for electron transfer between TiO2 (1 0 1) anatase surface and alloyed metal cocatalysts,
proposed by Wang and Gong and their corresponding density of states distribution (b, d). In images (b, d), blue
line shows the states of the metal cluster, while yellow-green is TiO2. Reprinted from the [92] under a creative
commons attribution 4.0 international license. IET refers to the energy of intrinsic electron transfer in eV.
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importance of optimizing facet-facet exposition and further facet-co-catalyst interac-
tions to optimize the final performance.

Furthermore, recent studies also focus on the photocatalytic reduction of carbon
(IV) oxide to valuable chemical compounds. This reaction begins with the adsorption
of CO2 and H2O molecules, which was investigated theoretically by Mishra and
Nanda. Using DFT calculations, they examined the chemical restructuring of CO2 and
H2O molecules during the process of adsorption, co-adsorption, and conversion on
(0 0 1), (1 0 0), and (1 0 1) surfaces [85]. They observed that the energy barrier of
bicarbonate complex formation, which resulted from the co-adsorption of carbon
dioxide and water, was the lowest for the (0 0 1) surface. Therefore, {0 0 1} facets are
supposed to be the most reactive anatase facets for CO2 photocatalytic reduction.
However, if this surface undergoes reconstruction, the number of active sites is
reduced. Therefore, experimental conditions like temperature and high vacuum will
be crucial for the photocatalytic performance of anatase nanocrystals.

Although the photocatalytic reaction depends on the adsorption of reactants, the
investigations provided by Ma et al., in the application of CO2 reduction to formic
acid, showed different behavior of anatase crystal facets compared with previous
studies [86]. The surface electron transfer for (0 0 1) and (1 0 1) surfaces was
characterized by similar barrier levels. However, the reductive ability of electrons
generated on the (1 0 1) plane is higher than that on the (0 0 1) plane; therefore,
electrons may be transferred more easily to reactants for low-energetic facets. More-
over, HCOOH on the (0 0 1) surface can replace water and, in consequence, occupy
the active sites, hindering the reaction. On the contrary, formic acid seemed to remain
undissociated on (1 0 1) surfaces, so more suitable product adsorption properties led
to a higher photocatalytic performance.

The above-reported studies were theoretical, so the experimental results may not
be consistent with DFT calculations. Therefore, Liu et al. demonstrated the blue
anatase nanocrystals with exposed {0 0 1}, {1 0 1}, and a combination of {1 0 1} and
{0 0 1} facets [87]. They reported that oxygen-deficient TiO2 nanostructures with
co-exposed {1 0 1} and {0 0 1} facets exhibited relatively high quantum yield for CO2

reduction to CO (0.31% under UV–vis light and 0.134% under visible light). More-
over, this photocatalyst demonstrated more than four times higher visible light activ-
ity in comparison with {0 0 1} or {1 0 1}. This high photocatalytic activity was a result
of two effects. Firstly, co-exposed {0 0 1} and {1 0 1} facets had increased the capacity
of reversible CO2 adsorption. Secondly, the created surface junction between facets
enhanced the charge separation and hindered the recombination processes. Similar
results were obtained by Yu et al., who investigated the mist-efficient content ratio of
{0 0 1} and {1 0 1} facets [88]. The decahedral-shaped sample with 58% content of {0
0 1} facets exhibited the highest methane production from CO2. {1 0 1} facets acted as
reduction sites, whereas {0 0 1} facets were the oxidation sites on the photocatalyst
surface. However, a too high amount of the {0 0 1} facets on the anatase surface may
have caused an electron overflow effect toward {1 0 1} facets, so the migration of
electrons to {1 0 1} facets is more difficult than in the previous case.

Carbon dioxide may be further converted to methane, which generally gives rise to
operational risks and environmental problems [89, 90]. Therefore, selective oxidation
to CH3OH is a promising way to CH4 storage. Feng et al. reported the facet-dependent
selectivity of CH4 ! CH3OH conversion over anatase nanocrystals. They showed that
silver-decorated TiO2 with predominant {0 0 1} facets exhibited a selectivity of
approximately 80%, which was significantly better than the sample with dominated
{1 0 1} facets. This high selectivity resulted from oxygen vacancy generation by
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photoinduced holes, which played a crucial role in avoiding the formation of �CH3 and
�OH radicals. Therefore, the undesired overoxidation to CO was limited, in opposite to
TiO2 exposing {1 0 1} facets [91]. The proposed mechanism of CH4 oxidation on the
{0 0 1} facets is presented in Figure 11.

5. Conclusions

The surface structure of TiO2 is constantly being recognized as a crucial factor
regarding its photocatalytic activity. Control over this interface can be achieved by
exposing the specific crystal facets, which allows detailed insight into the reaction
kinetics and mechanism. Experimentally, such high-quality structures can be pre-
pared through energetic stabilization of the specific facet, with simultaneous control
of nucleation and growth rates. However, contrary to the preparation procedures,
surface energy is now recognized as a less important factor for the final photocatalytic
activity. Here, more attention is given to the electronic properties, detailed interac-
tions with substrates, and local defects. However, as the presented chapter aimed to
provide a general introduction to the problem of TiO2 facets, only some of the recent
findings were stressed here, while these problems are still under constant intensive
research. Particularly, it should be highlighted that further modifications and charge
separation between different co-exposed facets are now used to achieve remarkable
final photocatalytic efficiency of different materials. In this regard, we believe that the
presented findings will be useful for further studies in this direction, providing a
survey of different aspects of crystal facet engineering of TiO2, a photocatalyst that is
still the most studied in this field.

Figure 11.
The proposed mechanism of methane photocatalytic conversion over {0 0 1} anatase crystal facet. Reprinted from
[101] under a creative commons attribution 4.0 international license.
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Abstract

During the past decade, research in the area of synthesis and applications of nano-
structured titanium dioxide (NS TiO2) has become tremendous. NS TiO2 materials 
have shown great potential and a wide range of applications. The decrease in the parti-
cle size and the increase of the surface/volume ratio lead to the increase of the specific 
surface and the modification of the physicochemical properties and the appearance of 
new interesting properties (photocatalytic, optical, magnetic, electronic...). Their new 
morphology even allows the appearance of new biological properties. NS TiO2 can thus 
be used for the same applications as those known for their precursors before transfor-
mation and their nanostructures are accompanied by new properties allowing applica-
tions. This chapter briefly describes the synthesis process of the different NS TiO2, 
their chemical and surface modifications, and their application. The preparation of 
NS TiO2, including nanoparticles, nanorods, nanowires, nanosheets, nanofibers, and 
nanotubes is described. This chapter discusses the effects of precursor properties and 
synthesis conditions on the structure, crystallinity, surface specificity, and morphol-
ogy of titanium dioxide nanoparticles. Recent advances in NS TiO2 in nano-biosensing, 
medical implants, drug delivery, and antibacterial fields, pharmaceutical applications, 
as well as their toxicity and biocompatibility, were presented.

Keywords: titanium dioxide nanoparticle, syntheses process, chemical methods, 
physical methods, biosynthesis, environmental applications, biomedical applications, 
biocompatibility

1. Introduction

Nanotechnology encompasses biology, chemistry, materials science, medicine and 
physics. Today, With the advent of nanoscience and titanium dioxide nanostructured 
materials nanotechnology, nanostructured materials are an important research 
area due to their various unique properties. Among all transition metal oxides, TiO2 
nanostructures are the most attractive materials in modern science and technology 
[1]. TiO2 is used commercially in donuts, cosmetics, pigments [2], catalysts, sun-
screens [3, 4], solar cells [5], water splitting, and more. TiO2 is used in plastics, paints, 
varnishes, paper, pharmaceuticals, inks, pharmaceuticals, toothpaste, food, and 
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industry [6, 7]. Nanostructured titanium dioxide (NS-TiO2) is a non-toxic, environ-
mentally friendly, inexpensive, and efficient functional material with a broad range 
of applications [8–11]. In the past decade, nanostructured TiO2, which can have either 
a stoichiometric or nonstoichiometric composition, has attracted increasing atten-
tion from researchers around the world as a promising highly efficient photocatalyst 
for the synthesis of organic compounds that meets the principles of green chemistry 
[12–17]. Today, nano-structured materials are an important area of research due to 
their several unique characteristic features. Among all the transition metal oxides, 
TiO2 nanostructures are the best-looking materials in modern science and technology 
[1]. Nano-TiO2 nanostructures include titanium dioxide nanoparticles (TiO2-NPs) 
and titanium dioxide nanotubes (TNTs) [18]. With the advent of nanotechnology, 
NS–TiO2 has found many applications. Nanoscale titanium dioxide (nano-TiO2) has 
been widely used in environmental protection, cosmetics, antibacterial agents, self–
cleaning coatings and cancer treatment, solar cells, photocatalysis, and composite 
nanofillers [19–21]; due to the fact of its unique size and high specific surface area, 
nano-TiO2 has more stable physical and chemical properties compared to titanium 
dioxide. In addition, nano-TiO2 has great application potential in biomedical fields  
[22, 23] due to the fact of its good antibacterial activity, favorable biocompatibility, 
and unique photocatalytic activity [24]. Research has shown that nanostructured 
TiO2 elicits a favorable molecular response and osseointegration, with better bone 
formation than non-nanostructured materials [25–27]. The unique physicochemical 
properties of all these forms of NS–TiO2, render this material a promising future 
in many applications. Several reviews and reports on different aspects of titanium 
dioxide, including its properties, preparation, modification, and application, have 
been published. However, despite advances in the development of nanostructured 
TiO2 systems for bone repair, review articles addressing this topic are still scanty [28].

The purpose of this chapter is to introduce and discuss the properties [29], fabri-
cation, modification, and applications of nanostructured titanium dioxide (NS-TiO2). 
With the advent of nanotechnology, NS-TiO2 has found many applications.

2. Synthesis process of NS TiO2

Various synthesis methods such as sol-gel, hydrothermal and solvothermal 
methods, vapor deposition, electrochemical deposition, oxidation, and sonochemical 
and micro-waves methods are used to obtain high-quality TiO2 nanostructures [12, 
15]. In this section, we will analyze the most used methods for the preparation of TiO2 
nanostructures.

2.1 Chemical and physical methods

2.1.1 Sol: gel process

Sol-gel is a versatile method used for the synthesis of TiO2 nanostructures of 
different morphologies such as sheets, tubes, particles, wires, rods, mesoporous, and 
aerogels [30–32]. Mehrotra and Singh [33] suggested different steps and conditions 
that can control the morphology of the final products in the sol-gel process (Figure 1).

The sol-gel method can use two ways of synthesis: the inorganic or colloidal route in 
which the precursors used are metal salts such as chlorides, nitrates, and oxychlorides 
in an aqueous solution. The Metallo-organic or polymeric route: obtained from metal 
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alkoxides in organic solutions. The polymerization reaction to obtain titanium dioxide 
takes place in two steps, namely hydrolysis, and condensation.

2.1.2 Hydrothermal and solvothermal processing

These two methods of synthesis are quite similar. The hydrothermal method is 
considered one of the most promising techniques for obtaining nanostructured TiO2 at 
stable temperatures and pressures. It has the advantage of following simple steps and 
being inexpensive. The hydrothermal technique allows the production of high-quality 
1D nanostructures, especially nanorods. By adapting the synthesis parameters, it is 
possible to control the morphology of the structures. However, the disadvantages of 
this method include the high capital requirement for instrumentation, the inability to 
monitor crystal growth, and the method can only be performed under supercritical 
solvent conditions [32, 34, 35]. Solvothermal methods use non-aqueous solvents with 
very high boiling points. When synthesizing with the solvents, better control of the 
properties of the titanium dioxide particles is achieved. The physicochemical charac-
teristics (viscosity, polarity, boiling point, thermal conductivity, dielectric constant) of 
the solvent have a great influence on the nanostructures of the product [36]. Kathirvel 
et al. [37] prepared TiO2 nanocrystals by the solvothermal method using six alcohols 
of different classes (primary, secondary, and tertiary). The synthesis was carried out 
using titanium isopropoxide as a precursor at a temperature of 150°C for 8 h. The crys-
tallinity and morphology of TiO2 nanocrystals varied depending on the chain length 
and the class of alcohol [37]. Li et al. [38] on the other hand, used the solvothermal 
method to obtain TiO2 microspheres with suitable size without surfactant in a single 
step. The synthesis was performed using titanocene dichloride and acetone, heated at 
180°C for 12 h [39]. It has been shown that the addition of surfactants to the synthesis 
effectively controls the growth of the particles [40–42].

Figure 1. 
Sol-gel process steps for the synthesis of TiO2 nanostructures [30, 32, 33].
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2.1.3 Vapor deposition

Deposition methods form high-quality solid materials by condensing materials 
in a vaporous state. The deposition process is usually performed at low pressure in a 
vacuum chamber. If a chemical reaction occurs, it is called chemical vapor deposition 
(CVD) and if no reaction occurs, it is called physical vapor deposition (PVD). In this 
process, a precursor (solid or liquid) is heated to form an active gaseous reactant that 
is transferred to the reaction chamber. When the substrate is exposed to the volatile 
precursor, a reaction occurs on the surface of the substrate and the deposition process 
begins to produce the desired product. The precursors used in this method are highly 
volatile, non-toxic, and pyrophoric. The by-products formed during this process are 
degraded through the reaction chamber by the gas flow. This technique proved to be 
suitable to prepare TiO2 nanostructures with tailored morphologies [43, 44].

2.1.4 Oxidation method

The principle of this method is to oxidize metallic titanium into titanium oxide 
by anodization or by the use of oxidants. Anodization or anodic oxidation consists in 
performing a surface treatment to form a titanium structure of pores/nanotubes on 
TiO2. Oxidation of titanium can be achieved by using oxygen sources such as hydro-
gen peroxide, pure oxygen, acetone, and a mixture of argon and oxygen [30]. Mohan 
et al. [45] used this technique to synthesize self-organized titanium oxide nanotube 
layers from titanium alloys in electrolyte mixtures. The length and diameter of the 
nanotubes were controlled by playing on different anodization parameters such as 
temperature and time. Significant results were observed at 25°C. Indeed, at this tem-
perature compared to others, smooth and circular nanotube arrays, with no apparent 
defects in their morphology were obtained [45]. From a previously treated titanium 
plate dissolved in 30% hydrogen peroxide, titanium dioxide nanorods were obtained 
by a dissolution precipitation mechanism. The addition of inorganic sodium salts can 
lead to the formation of anatase (NaF and Na2SO4) or rutile (NaCl addition) titanium 
dioxide nanorods [46].

2.1.5 Electrochemical anodization/electrodeposition process

Electrochemical anodization is an electrochemical process used to manufacture 
nanoparticles such as titanium nanotubes and nanopores. This method consists in 
growing the oxide layer on the metal surface. This process is performed in a standard 
two-electrode system immersed in a first, second, or third-generation electrolyte 
solution. The titanium forms the anode electrode and the platinum the cathode.

2.1.6 Sonochemical synthesis

Sonochemical synthesis has proven to be an efficient method to obtain nanopar-
ticles with interesting properties in a short time [47]. The chemical effects observed 
during this technique are attributed to acoustic cavitation phenomena. Indeed, during 
cavitation in a liquid medium, there is formation, growth, and collapse of bubbles 
in the liquid. The violent implosion of the bubbles in less than a microsecond gener-
ates short-lived hot spots with a temperature of about 5000 K, pressures close to 
1000 atm, and cooling rates higher than 109 K/s. Under these conditions, metal ions 
are reduced to metal or metal oxide nanoparticles [48]. The main advantage of this 
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method is that the reaction times are reduced and the manipulations are performed 
under ambient conditions. In addition, it is a simple technique to implement and 
energy efficient. The nanostructures obtained are ultrafine particles. Studies have 
shown that ultrasonic synthesis of TiO2 nanostructures can improve their properties. 
This technique is more efficient than other methods including microwaves [49].

2.1.7 Microwave method

The microwave-assisted synthesis method also uses electromagnetic waves such 
as sonication. Titanium dioxide can be synthesized by this technique at frequencies 
ranging from 0.3 to 300 GHz and wavelengths from 0.001 to 1 m. Two different 
mechanisms can be involved in microwave chaffing: dipolar polarization and ionic con-
duction [50]. Any material or substance containing mobile electric charges such as polar 
molecules or conducting ions can be heated using microwaves. In the dipolar polariza-
tion mechanism, microwave energy allows molecules to try to orient themselves with 
the electric field oscillating billions of times per second. The constant rotary motion of 
the molecule trying to align itself with the field causes friction and collisions.

3. Physical and chemical properties of NS TiO2

Titanium dioxide is one of the most studied and well-researched compounds in 
materials science, due to its outstanding and exceptional properties which include 
stability of its chemical structure, biocompatibility, physical, optical, and electrical 
properties, nontoxicity, corrosion resistance, and low cost [51–53]. Generally, the 
morphology and physical/chemical properties of TiO2 nanostructures depend on the 
synthesis process, precursor type, and concentration, use of capping agents, synthesis 
temperature, pressure, and time [31]. Titanium dioxide, CI 77891, also known as 
Titanium (IV) oxide or Titania, CAS No: 13463-67-7 is a naturally occurring oxide 
with the chemical formula TiO2 and a molecular weight of 79.87 g mol−1. It belongs 
to the family of transition metal oxides [54]. The most important titanium minerals 
are rutile (TiO2), ilmenite (FeTiO3), and titanite (CaTiSiO5) [54]. In nature, titanium 
dioxide occurs mainly in three crystalline forms: rutile, anatase, and brookite. In addi-
tion, other polymorphs have also been reported (Figure 2) [32]. In addition, there are 
at least 3 reported non-crystalline TiO2 phases: a low-density amorphous TiO2 and 
two high-density amorphous TiO2 types. TiO2 (II) and TiO2 (H) are high-pressure 
forms that have been synthesized from the rutile phase [31, 54–56].

In various technologically relevant applications, nano-size-scaled materials have 
shown beneficial properties related not only to their chemical composition but also to 
the small dimensions and the large surface-to-volume ratio. Generally, a material is 
defined as a nanomaterial when it has a specific surface area by volume greater than 60 
m2cm−3, excluding materials consisting of particles with a size lower than 1 nm [57].

The high surface area brought about by small particle size is a crucial parameter 
for the high performance of many TiO2-based devices. It provides more active sites 
and a large interface for any type of reaction/interaction between the device and the 
interacting media. Thus, the performance of TiO2-based devices is largely influenced 
by the size of TiO2 building units. For example, high surface area TiO2 nanomateri-
als can guarantee good accessibility and contact with the electrolyte in lithium-ion 
batteries. Small primary crystals offer short diffusion paths for lithium and are 
beneficial for short charging–discharging times in batteries. Anatase, which has a 
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greater surface area than its counterparts, is widely used as a photocatalyst in pho-
ton–electron transfer, whereas rutile is used for light scattering [57]. Surface charge is 
an important property of nanoparticle dispersions. When nanoparticles are dispersed 
in an aqueous solution, surface ionization and adsorption of cations or anions gener-
ate a surface charge, creating an electric potential between the particle surface and 
the bulk of the dispersion medium [58]. Depending on the measurement technique, 
the surface charge can be expressed either as surface charge density (potentiometric 

Figure 2. 
Structures of TiO2 phases: (a) rutile, (b) anatase, (c) brookite, (d) TiO2 (B), (e) TiO2 (II), (f) TiO2(R),  
(g) TiO2 (II), (h) baddeleyite TiO2, (i) TiO2-OI, (j) TiO2-OII and (f) cubic TiO2 [32].
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titration) or zeta potential (electrokinetic method). The point where the surface 
charge density is zero is defined as the point of zero charges (ZPC), and the point 
where the zeta potential is zero is defined as the isoelectric point (IEP) [58].

The surface of TiO2 nanoparticles dispersed in aqueous media or humid atmo-
sphere can react immediately with water molecules, and reasonable amounts of 
hydroxyl groups are formed as shown in Eq. 1 [30, 58].

 ++ → − +2
IV IVTi H O Ti OH H   (1)

When the surface of TiO2 is fully hydroxylated, the oxide ions in the oxide and 
water absorbed on the surface would distribute electrons and form equal quantities of 
two types of hydroxyl groups [30].

The surface charge of titania is a function of solution pH, which is affected by the 
reactions that occur on the particle surface as shown in Eqs. 2 and 3.

       + +− + → − 2
IV IVTi OH H Ti OH  (2)

 − +− → − +IV IVTi OH Ti O H   (3)

A variety of nanostructured TiO2 materials with fascinating morphologies have 
been reported. The synthesis methods used for the fabrication of these nanostruc-
tures have a significant effect on their dimensions. In general, nanostructure forms 
of TiO2 have been classified into 0D (nanospheres, quantum dots), 1D (nanowires, 
rods, and tubes), 2D (layers and sheets), and 3D (nanoparticles, nanoflowers, etc.) 
architectures, which are summarized in Figure 3 [61, 62].

Dissolution is defined as the dynamic process during which constituent molecules 
of the dissolving solid migrate from the surface to the bulk solution through a dif-
fusion layer. The thermodynamic parameter that controls this process is described 
as solubility and along with the concentration gradient between the particle surface 
and the bulk, the solution acts as the driving force of particle dissolution [36]. Both 
solubility and rate of dissolution are dependent on a particle’s chemical and surface 
properties such as surface area, surface morphology, and surface energy, as well as 
size. Crystallinity and crystal structure also need to be considered. They depend also 
on the possible adsorbed species, and the state of aggregation of the nanoparticles 

Figure 3. 
Categorization of hierarchical TiO2 nanostructure form [59, 60].
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and are further impacted by the surrounding media (properties of the diffusion layer 
and the possible solute concentration) [36, 63].

Studies have shown that TiO2 nanoparticles tend to aggregate and their aggrega-
tion has a strong influence on nanoparticle behavior due to the nature and size of 
the aggregates (i.e., the packing density of the nanoparticles), and aggregation can 
potentially impact their reactivity, nanoparticle-cellular interactions, and toxicity 
[43]. There are two types of aggregations: homo-aggregation and hetero-aggregation. 
Homoaggregation refers to the aggregation of two particles of identical characteristics 
(i.e., NP–NP attachment). Heteroaggregation refers to the aggregation of particles 
with different physical or chemical characteristics (e.g., NP–clay particle attach-
ment). In the natural environment of aquatic systems, the state of aggregation of the 
nanoparticles is greatly influenced by diverse conditions such as ionic strength (IS), 
ionic composition, co-existing colloids, natural organic matter (NOM) (e.g., humic y 
fulvic and humic substances), pH, and other physicochemical factors [64].

4. Potential and applications of NS TiO2

Metal oxide nanoparticles (NPs) have found a variety of applications in numerous 
industrial, medical, and environmental fields s, attributable to recent advances in the 
nanotechnology field.

4.1 Photocatalytic applications

Photocatalysis is the decomposition and degradation of pollutants under the action 
of light rays on the surface of a catalyst, usually titanium dioxide (TiO2). It allows the 
destruction of volatile organic compounds, inorganic pollutants, and microorganisms. 
The finalized process produces essential water and carbon dioxide [65]. All current 
applications of photocatalysis use TiO2 as a semiconductor for several reasons [66]. 
Titanium dioxide, in its current commercial forms, is not toxic (apart from recent res-
ervations about the use of reservations regarding the use of nanoparticles) and, due to 
its photostability in air and water, does not release toxic elements [67]. As titanium is a 
relatively abundant element, the cost of TiO2 is not too high, at least for some applica-
tions. The most widely used crystallographic form is the anatase form because TiO2 
with a rutile structure (although having a lower band gap value allowing it to absorb 
light in the early visible spectrum) is significantly less active. The most effective com-
mercial composition at present is TiO2 Degussa P25 (80% anatase, 20% rutile) [68]. 
For practical industrial applications of semiconductor photocatalysts, Sharma et al. 
[52] proved the development of research of new semiconductor materials in visible-
light active TiO2/SnX (X = S and Se) and their application as photocatalysts since it is a 
new area of scientific interest. Indeed, they focused on the addition of TiO2 composites 
with SnX (X = S, Se) as potential candidates for environmental purification.

4.2 Photovoltaic applications

In the current global scenario, the rise in technological demands of the world’s 
population has caused a rapid increase in energy consumption, which in turn has 
led to an exponential increase in environmental pollution, which we have witnessed 
seriously in the last decades. To surmount this situation, the efficient use of green 
energy has become a hot topic worldwide. On the other hand, intelligent materials 
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are also of great value in the current market due to their multipurpose for a variety 
of applications. Among the green energy alternatives available today, solar energy 
provides more promising perspectives as the sun can deliver the ultimate solution to 
the prevailing sustainable energy supply challenge. Among the different solar cell 
technologies currently available, dye-sensitized solar cells have drawn a lot of atten-
tion due to their promising prospects. On the Other Side, photocatalysis has also 
made a strong case for itself due to its promising opportunities for clean, green, and 
sustainable development in environmental technology applications [69, 70].

4.3 Sensing applications

In recent years, gas sensors have become extremely important for environmental 
and industrial atmosphere monitoring [71]. Gas detection techniques are based on 
resistance sensing, electrochemical and optical methods, gas and liquid chromatog-
raphy, and acoustic waves. Nevertheless, certain sensors have various drawbacks: 
they consume energy and time, they are wide in size, they are expensive, and they 
display slow response and low selectivity [72, 73]. Consequently, special attention 
has been given to chemoresistive sensors, which are formed by metal oxides, carbon-
based materials, and conducting polymers. Among these materials, semiconducting 
metal oxides have been extensively investigated and explored due to the potential 
for different valences, morphologies, and physicochemical characteristics [74]. They 
are becoming more complex than pure metals, with bonding going from ionic to 
highly covalent to metallic. For this reason, metal oxide nanoparticles are attracting 
considerable attention from industry for use in diverse applications such as catalytic 
processes, magnetic storage media, electronics, sensors, and solar energy conversion.

4.4 Hydrogen production and storage

Hydrogen (H2) generation has become viral in the last few decades due to hydro-
gen as a future energy source and its capacity to replace expensive and polluting fossil 
fuels [75]. In addition, hydrogen also contributes to the development of a green world 
due to its zero emissions and minimizes dependence on non-renewable resources. 
In general, hydrogen production processes can be divided into two categories based 
on the usage of renewable and non-renewable resources. The methods for utilizing 
renewable energy resources are photoelectrolysis, thermal and photocatalytic water 
splitting, and steam reforming and gasification. Steam reforming and gasification 
methods are processes that depend on non-renewable resources [76]. Among carbon 
materials, activated carbon (AC) can be produced easily from agricultural residues 
such as hardwoods, coconut shells, fruit pits, walnut shells, and lignite. Which makes 
CA abundantly available and less expensive. CA also has characteristics such as a high 
surface area and a porous structure [77]. Such as high surface area and porous struc-
ture [77]. Due to these characteristics, AC-TiO2 nanocomposites have been exten-
sively investigated for the photocatalytic decomposition of dyes [78]. As an example, 
Mahadwad et al. [79] decomposed the reactive black dye 5 under mercury vapor light 
with AC-TiO2 nanocomposites. Recently, Xing et al. [80] reported the H2 generation 
activity with different types of simulated seawater with Rh/Cr2O3GaN nanowire 
photocatalyst [81]. Reddy et al. [82] have developed a low-cost nanocomposite such 
as AC-TiO2 by a one-step hydrothermal method, which is a potential catalyst for H2 
generation under sunlight. In the photocatalytic H2 generation process, sacrificial 
agents have a crucial role in consuming the valence band (VB) holes.
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4.5 Environmental applications

TiO2 is an environmental-friendly material that has been widely used in the 
photodegradation of a large number of pollutants. Nanostructured TiO2 was used in 
pollution abatement, energy conversion (i.e. hydrogen production and solar cells), and 
energy storage (i.e. lithium batteries and supercapacitors). Its practical interest was 
also described in water purification, self-cleaning, self-sterilization of surfaces, as well 
as light-assisted H2 production [83]. In the textile field, Gaminian and Montazer [84] 
assessed the self-cleaning effects of Cu2O/TiO2 on polyester fabric and concluded that 
both washed and unwashed samples showed significant photodegradation properties 
of methylene blue. Production of the reducing agent ethylene glycol as a product of 
the alkaline hydrolysis for the synthesis of Cu nanoparticles was reported indeed. In 
another trial, Harifi and Montazer [85] developed Fe3 + −doped Ag/TiO2 nanostruc-
tures for photocatalytic uses under the UV-vis light spectrum. The photodegradation 
activity assessed using methylene blue was confirmed under both UV and visible light 
regions. Zhou et al. [86] explored the degradation of acetone in the air using iron-
doped mesoporous TiO2 nanoparticles. Their findings showed a high degradation rate 
of this organic pollutant. In the same way, El-Roz et al. [87] reported an enhanced pho-
tocatalytic activity of luffa/TiO2 nanocomposites against methanol. Píšťková et al. [88] 
investigated the photodecomposition of acebutolol, propranolol, atenolol, nadolol, and 
metoprolol, which are β-blockers, using immobilized TiO2 in an aqueous media. Their 
results showed a complete photodegradation in 2 h of all tested β-blockers. Coronado 
et al. [89] described some TiO2 applications in water purification. This application is 
argued by the excellent optical and catalytic properties of nanostructured TiO2, allow-
ing oxidation and reduction catalysis of both organic and inorganic contaminants. 
The photo-generated free radicals and e−/h + pairs are highly implicated in degrading 
organic substances, water pollutants, and harmful microorganisms [90]. In this trend, 
nanocomposite TiO2 thins films (P/Ag/Ag2O/Ag3PO4) were able to decompose up to 
90% of rhodamine B under solar light exposure [91, 92].

4.6 Biomedical applications

Nanomedicine is defined as “the development of nanoscale (1–100 nm) or nano-
structured objects/nano-robots/skin patches and their use in medicine for diagnostic 
and therapeutic purposes based on the use of their structure, which has unique medical 
effects” [93]. It relies on the use of nanodevices and nanostructures operating at the cel-
lular level, providing therefore comprehensive monitoring, control, repair, and enhance-
ment of biological systems at the molecular level. The use of nanoparticles is deep-rooted 
in the history of medicine. The application of nanosilver to overcome bacterial infections 
and the use of nanosized agents to modulate immune response are some examples. TiO2 
nanostructures are one of the most plentiful nanomaterials having a broad spectrum of 
applications in nanomedicine. TiO2 is not only a cost-effective and highly biocompatible 
nanoparticle [94], but it is also a non-toxic substance [95], which use in food and drugs 
has been approved by the American Food and Drug Administration (FDA) to be [96].

5. Future challenges and perspectives

In this chapter, the use of nanostructured titanium dioxide is an effective and 
attractive alternative for fabricating flexible devices for multiple applications, which 
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can be explored based on TiO2 properties, fabrication, and modification. A further 
challenge is to enhance the spectral sensitivity of these structures to the visible and 
near-infrared regions and the biocompatibility of TiO2 nanostructures. Therefore, 
future studies focused on long-term, constant photoactivity are greatly needed. These 
can be achieved by changing the synthesis route. Nonmetal-doped TiO2 nanostruc-
tures exhibit low photocatalytic activity under visible UV light. Some materials, such 
as polymers, glasses, ceramics, and metals, therefore serve as magical identities for 
economical and environmentally friendly applications in this field. Future research 
requires the development of new synthetic methods and nanostructures with higher 
surface states. This can be serviced by techniques compatible with non-lithographic 
complementary metal oxide semiconductors. This technique has potential applica-
tions in new dopant materials, incorporation of dopants into TiO2 nanostructures, 
and environmental and alternative energy applications. Therefore, there is a great 
need to improve the structure and properties of these materials. Basic knowledge of 
chemistry, physics, and computer modeling will help you accomplish your task.

6. Conclusion

Many reviews and reports have been published on various aspects such as the 
properties, production, modification, and application of titanium dioxide. This 
chapter provided a detailed overview of the synthesis, properties, and applica-
tions of nanostructured titanium dioxide (NS-TiO2). Moreover, Titanium dioxide 
nanoparticles have gained a lot of attention because of their numerous applications. 
The formation of TiO2 from various biological sources (plants, microorganisms, 
and related bioproducts) has been discussed. Furthermore, the mechanism of their 
uptake, translocation, and accumulation in plants is explored. The potential impact of 
TiO2 has also been reported. Titanium dioxide nanoparticles have found a variety of 
applications in numerous industrial, medical, and environmental fields, attributable 
to recent advances in the nanotechnology field.
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Chapter 5

Synthesis and Properties of 
Titanium Dioxide Nanoparticles
Mohsen Mhadhbi, Houyem Abderazzak and Barış Avar

Abstract

Natural titanium dioxide (TiO2) occurs in three distinct polymorphs (rutile, 
anatase, and brookite). Currently, TiO2 gained the attention of several researchers 
around the world. TiO2 is used in several applications because of its excellent proper-
ties (structural, optical, electrical, chemical, non toxic, etc.). Thus, the applications 
are influenced by its surface, size, morphology, and crystal phase. TiO2 as photocata-
lyst is widely used in energy and eco-friendly applications involving water purifica-
tion, hydrogen production, phenol degradation, etc. The novelty of the present 
chapter lies in explaining the recently reported methods that are used to synthesize 
TiO2 nanoparticles, such as sol-gel, hydrothermal, precipitation, etc. The different 
properties of TiO2 are also provided in this chapter.

Keywords: titanium dioxide nanoparticles, properties, synthesis, structure, natural 
titanium dioxide (TiO2)

1. Introduction

Titanium dioxide, with the chemical formula TiO2, is one of the most valuable raw 
material and has been used in several applications including photocatalysis, medicine, 
sensors, paints, environment, solar energy, and others. TiO2 has excellent corrosion 
resistance, good thermal and chemical stability, and low cost [1].

With the development of nanotechnology, TiO2 nanoparticles (NPs), with attrac-
tive properties, have been widely fabricated and developed. In the past decades, the 
demand of titanium dioxide NPs observed remarkable growth because of its specific 
properties. Moreover, titania is accepted as a pharmaceutical and food additive [2]. 
It is also used in destruction of viruses and bacteria, inactivation of cancerous cells, 
as well as clean-up of oil spills [3]. TiO2 NPs are employed for elimination of emerg-
ing contaminants [4]. Moreover, TiO2 NPs are one of the excellent semi-conducting 
materials applied in solar cells because of their good chemical stability, low toxicity, 
low cost, and high photocatalytic activity for the degradation of organic impurity 
[5, 6]. Furthermore, TiO2 NPs are widely used as photo-anode materials because of 
their powerful absorption of light particularly in UV range, good chemical solubility, 
excellent photo-corrosion resistance and low cost [7, 8]. TiO2 is widely used as photo-
catalyst material due to its suitable energy band gap, which is less than 3.5 eV [9].

The recent advances in TiO2 nanostructures and their applications have been sum-
marized by Reghunath et al. [10]. Chen and Mao [11] have reported a review on the 
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synthesis, properties, modifications, and applications of TiO 2  NPs. Environmental 
and energy applications of titanium dioxide have been discussed by Ge et al. [ 12 ]. 
Mao et al. [ 13 ] have completed a review on the recent progress in TiO 2  based catalysis 
for energy systems. In their work, Nur et al. [ 14 ] have investigated the development 
of TiO 2  for improved dye degradation under UV-vis irradiation. In addition, the 
correlation between the improved in photocatalytic activity and various surface 
modifications have been reported [ 15 ]. Fujishima and Honda [ 16 ] prepared TiO 2  used 
as photoelectrode for splitting water via photoelectrochemical water splitting. 

 This chapter provides recent advances in the synthesis of titanium dioxide NPs 
and their performance in different applications.  

  2. Synthesis methods of titanium dioxide nanoparticles 

 A number of methods have been used for the synthesis of TiO 2  NPs, which are 
detailed below. 

  2.1 Polyol method 

 Recently, the polyol method has been found to be a very powerful route for the 
fabrication of nano-oxide and chalcogenide materials [ 17 ,  18 ]. In addition, polyol 
method is a simple and low cost route for fabricating metal oxide NPs. 

 Thus, a number of studies have been reported on the synthesis of TiO 2  NPs by polyol 
method. For example, Shah and Rather [ 19 ] prepared TiO 2  NPs by polyol method using 
titanium (IV) butoxide, ethylene glycol, and acetone. They concluded that the mean 
crystallite size increased from 9.3 to 66.9 nm when calcination temperature rises from 300 
to 1000°C. In addition, the obtained products showed greater stability (zeta potential of 
−30.8 to −37.5 mV) in aqueous solutions. Also, Sasikala et al. [ 20 ] prepared a dispersed 
SnO 2  on TiO 2  NPs via polyol method at calcination temperature of 500°C. They concluded 
that the TiO 2  containing SnO 2  showed improved photocatalytic activity compared to pure 
TiO 2  because of improved charge separation. Ultrafine anatase TiO 2  nanocrystals, with 
size of 2–5 nm, have been prepared through polyol process [ 21 ].   Figure 1   shows the TEM 
images of TiO 2  nanocrystals. The samples exhibited excellent photocatalytic activities.  

 Furthermore, polyol method was used to synthesize TiO 2  NPs by using dif-
ferent mole ratios of titanium tetrachloride and polyvinylpyrrolidone [ 22 ]. The 

  Figure 1.
  TEM images of TiO 2  NPs prepared by polyol method [ 21 ].          
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photocatalytic performance of the prepared TiO2 NPs attained 97.83% with a power 
conversion efficiency of 4.6%. Kang and co-workers [23] synthesized TiO2 NPs, with 
average size of 25 nm, via polyol from titanium isopropoxide by refluxing at 270°C 
during 12 h. After that, the sample was heated at 600°C for 3 h. The final product 
showed an excellent electrochemical performance.

2.2 Hydrothermal method

Hydrothermal method is one of the most used route for nanomaterials synthesis. 
BiOI nanoflowers/TiO2 nanotubes were developed for the detection of atrazine [24]. 
The sensing platform showed good analytical performance for detecting atrazine.

Alev et al. [25] prepared TiO2 nanorods, with diameter of 100 nm, by hydrother-
mal using titanium butoxide, hydrochloric acid and deonised water. They concluded 
that the sensor response was 200% for 1000 ppm H2. Additionally, TiO2 NPs with 
size of 20 nm were prepared by hydrothermal method [26]. Figure 2 shows the TEM 
image of TiO2 NPs. The result obtained by UV-VIS analysis revealed that the decrease 
in size of TiO2 NPs is beneficial to the blue shift of their absorption peak.

Le et al. [27] synthesized TiO2/graphene by hydrothermal method using TiCl4 
as a precursor. High performance was attained for the catalysts including well dis-
persed TiO2 NPs on the graphene surface with loadings ranging from 16.5% to 26%. 
Similarly, Yang et al. [28] prepared TiO2 NPs by hydrothermal. The results revealed 
that the peptization of the precipitate favored formation of the rutile phase and 
highly crystalline anatase. Europium (Er) doped TiO2 NPs were prepared by hydro-
thermal method for photonic application [29]. TEM analysis showed that the average 
particle size was about 50 nm. Indeed, the Er doping leads to a change in morphology 
of NPs from rodlike to triangular for Er ions increased from 1 to 3 mol%, respectively 
(as presented in Figure 3).

Ag doped TiO2 NPs, with crystallite size of 10/13 nm, were prepared via hydrother-
mal at temperature of 180°C for 120 min [30]. It was revealed that the maximum pho-
todegradation of indigo blue attained 75% after irradiation time of 150 min. Dadkhah 
et al. [31] prepared anatase TiO2 NPs by hydrothermal. They achieved conversion 
efficiency higher than 2.61% with the influence of amine ligands as a shape controller.

Figure 2. 
TEM image of TiO2 NPs [26].
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2.3 Sol-gel method

Sol-gel process is a powerful pathway for the synthesis of multi-component 
materials because of its mild synthesis conditions and low temperature. Thus, several 
researches have been reported on the fabrication of TiO2 NPs by sol-gel method. For 
example, Sabry et al. [32] synthesized TiO2 NPs by sol-gel process. The prepared 
material showed efficient photocatalytic activity of up to 68% after 180 min. Hsiung 
et al. [33] investigated the structure of photocatalytic active sites of TiO2 NPs pre-
pared by sol-gel. They concluded that the material exhibited an excellent photocata-
lytic activity. Additionally, TiO2 NPs used as catalyst was prepared by sol-gel in acid 
at pH 3 [34]. The result showed that the material exhibited excellent reactivity for the 
photocatalytic reduction of nitric oxide.

Venkatachalam et al. [35] prepared alkaline earth metal (Mg2+ and Ba2+) doped TiO2 
NPs by sol-gel method using titanium isopropoxide as precursor. Figure 4 illustrates the 
SEM image of the metal-doped TiO2 NPs, which are spherical in shape. Furthermore, 
the final product exhibited higher photocatalytic activity for the bisphenol.

Saravanan and Duby [36] investigated the optical and morphological properties 
of TiO2 NPs synthesized via sol-gel method using titanium butoxide as a precursor. 
UV-Visible analyses revealed the absorbance peak in the UV region (about 380 nm) 
and FTIR spectrum confirmed the existence of anatase TiO2 in the range of 400–
1000 cm−1. The average particle size of the TiO2 NPs determined by dynamic light 
scattering (DLS) was found 131 nm. Govindaraj et al. [37] synthesized TiO2 NPs to be 
used as a photo-anode by the sol-gel method. UV-Visible spectrum revealed the light 
absorption in the UV region with optical bandgap of 3.2 eV (see Figure 5).

Sinha et al. [38] studied the structural, optical, and antibacterial performance 
of the Mg doped TiO2 NPs prepared by the sol-gel method. They reported that 
optical transmittance increases from 3 to 3.07 eV. In addition, the photolumines-
cence emission shows inner UV to blue resign from pure and doped TiO2 NPs. 
Furthermore, Mugundan et al. [39] synthesized barium doped TiO2 NPs by the 
sol-gel method. They concluded that the pure TiO2 NPs revealed higher second 
harmonic generation efficiency compared to barium doped TiO2 NPs. Nachit et 
al. [40] investigated the photocatalytic activity of TiO2 NPs prepared by sol-gel 
process at low temperature. The mean crystallite size of TiO2 NPs reached 30 nm at 
500°C using an acid. In addition, the photocatalytic activity of TiO2 NPs revealed 
that the degradation of Rhodamine B under UV light have a removal efficiency of 
95% during 60 min.

Figure 3. 
TEM images of Er doped TiO2 NPs: (a) 1 Mol %, (b) 2 Mol%, and (c) 3 Mol% Er2+ [29].
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2.4 Chemical vapor deposition method

Chemical vapor deposition (CVD) is a powerful method for the synthesis of 
nanomaterials with enhanced performances.

Several works have been reported on the fabrication of TiO2 NPs by CVD. For 
example, Liu et al. [41] prepared TiO2 NPs by CVD method. They revealed that the 
gas phase hydrolysis reaction may be decomposed into two processes: (i) hydrolysis 
of TiCl4 into TiO(OH)2 and (ii) decomposition of TiO(OH)2 to TiO2. The influence 

Figure 4. 
SEM image of metal-doped TiO2 NPs prepared by sol-gel [35].

Figure 5. 
Schematic diagram of the sol-gel route used for preparing TiO2 NPs [37].
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of various concentrations of TiO2 NPs on CVD grown graphene was investigated by 
electrical charge transport measurements and Raman spectroscopy [42]. The sche-
matic diagram of TiO2 doped CVD grown single layer graphene devices is presented 
in Figure 6. The obtained results showed that TiO2 change the electronic properties 
besides the structure of the CVD grown graphene.

Similarly, Li et al. [43] synthesized TiO2 NPs, with mean particle size of 22 nm, by 
CVD method. The TEM image of TiO2 NPs is presented in Figure 7. They concluded 
that the TiO2 NPs with the metal ion dopants possess elevated photocatalytic activities 
compared to un-doped TiO2 NPS.

Ding et al. [44] synthesized TiO2 NPs via CVD process. The results obtained by 
XPS and nitrogen ads/desorption revealed that most of TiO2 NPs were distributed on 
the external surface of the support and the coating was stable. V2O5-TiO2 NPs were 
prepared from two precursors by CVD [45]. They revealed that the CVD process was 
a suitable method for the single step synthesis of nanocomposite coatings. Lee et al. 
[46] prepared TiO2 NPs by CVD method. The results revealed that a 60 min sample 
coating time gave the most highly photocatalytic activity.

Figure 7. 
TEM image of TiO2 NPs prepared by CVD [43].

Figure 6. 
Schematic diagram of TiO2 doped CVD grown single layer graphene devices [42].



99

Synthesis and Properties of Titanium Dioxide Nanoparticles
DOI: http://dx.doi.org/10.5772/intechopen.111577

2.5 3D printing method

In the last few years, several works have been developed to fabricate 3D porous 
materials; principally 3D porous TiO2 based materials.

Arango et al. [47] prepared a porous TiO2 by 3D printing. They suggested that a 
large surface area could be realized for the TiO2 via 3D printing technology.

Liu et al. [48] used 3D printing to prepare the porous Pb/TiO2 composites applied 
to remove the organic contamination in the wastewater. The obtained materials 
exhibited high catalytic activity, good stability, and reusability against the treatment 
of high concentration 4-NP wastewater. The optical images of the Pb/TiO2 scaffolds 
with 4, 8, 12, and 16 layers are presented in Figure 8.

Additionally, Aleni et al. [49] used 3D printing to fabricate a 3D dense and porous 
TiO2 structure. The final products exhibited similar mechanical properties to those of 
porous ceramics prepared via conventional methods.

Xu et al. [50] developed 3D printing to assembly TiO2 powders into hierarchical 
porous structures at macro and microscale. The schematic illustration of 3D printing 
process is presented in Figure 9. The obtained results showed that the TiO2 structures 
with abundant light absorption sites and high surface area could enhance the conver-
sion efficiency of N2 and NH3.

Furthermore, Wang et al. [51] synthesized TiO2 NPs containing macrostructures 
by 3D printing for Arsenic (III) removal in water. They showed that 3D printing could 
fabricate and design macrostructures with special functions.

Figure 8. 
Optical images of the Pb/TiO2 scaffolds with (a): 4, (b): 8, (c): 12, and (d): 16 layers.

Figure 9. 
Schematic illustration of 3D printing of a hierarchical porous TiO2 [50].
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2.6 Mechanical alloying

Mechanical alloying (MA) is a low cost and simple route for preparing nano-
structured materials among them TiO2 NPs. The schematic illustration of the MA is 
presented in Figure 10.

Yao et al. [52] prepared nanostructured TiO2 coating by mechanical alloying 
process. The results showed that the obtained material exhibited an excellent photo-
catalytic activity. Vilchez et al. [53] synthesized TiO2 NPs by MA during 5 min. The 
TEM images of TiO2 NPs are presented in Figure 11. The obtained material, with 
size in the range of 2–4 nm and specific surface area of 298 m2 g−1, exhibiting a good 
photocatalytic activity.

Kim et al. [54] prepared TiO2 NPs by MA and heat treatment. The mean crystallite 
size was less than 6 nm. The UV-Visible spectrum showed that the obtained TiO2 NPs 
had an elevated wavelength rage (in the range of 650 and 700 nm) compared to Ni 
doped TiO2 (480–500 nm) and rutile (380–400 nm). In addition, PL spectrum exhib-
ited a new emission peak confirming the decrease in the band gap. Furthermore, Fe 
(III) doped TiO2 NPs have been synthesized via MA [55]. The final product showed 
excellent selectivity, stability, sensitivity, and fast response. Additionally, Eadi et 
al. [56] developed new Fe doped TiO2 NPs by MA from FeCl3 and TiO2 powder. The 
results showed that the mean particle size was about 28 nm and the prepared material 
could be applied for gas sensing and photocatalytic degradation. Carniero et al. [57] 
investigated the effect of process parameters on the structural, optical, magnetic, 

Figure 11. 
TEM images of TiO2 NPs prepared by MA [53].

Figure 10. 
Schematic illustration of the MA process.
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and photocatalytic properties of iron doped TiO2 NPs prepared by MA. The results 
showed that the incorporation of iron in the TiO2 NPs has improved their photocata-
lytic activity.

2.7 Green synthesis

Green synthesis is a simple and ecofriendly method used for the preparation of 
nanomaterials. Abisharani et al. [58] synthesized TiO2 NPs from titanium trychloride 
using Cucurbita pepo seeds extract. FTIR results showed that the existence of dif-
ferent functional biomolecules acted as a reducing factor for conversion of TiO4 into 
TiO2 NPs.

Isnaeni et al. [59] prepared TiO2 NPs by green method including TiCl3 hydrolysis 
with mango-peel extract. They revealed that the used method could be employed as 
an alternative to prepare phase pure anatase and rutile. Helmy et al. [60] synthesized S 
doped TiO2 NPs by a novel green synthesis using Malva parviflora plant extract. They 
also studied their photocatalytic, antimicrobial, and antioxidant activities. The results 
showed that the samples exhibited good antibacterial and photocatalytic activities.

In addition, Samhitha et al. [61] studied the TiO2 NPs prepared by various green 
synthesis methods for anticancer applications. Shen et al. [62] prepared Ce doped 
TiO2 NPs supported on porous glass. Figure 12 shows TEM image of TiO2 NPs. The 
mean diameter was about 5 nm. This study concludes that the green method makes Ce 
doped TiO2 NPs immobilized on porous glass.

Additionally, TiO2 NPs were synthesized through green method from 
Demostachaya bipinnata extract [63]. It has been shown that the prepared TiO2 NPs 
are a good candidate for controlling mosquito vectors and agricultural pest manage-
ment. Nabi et al. [64] prepared TiO2 NPs, with mean crystallite size in the range of 
80–100 nm, by green method using citrus limetta extract (as presented in Figure 13). 
The results showed that the degradation activity was more than 90% within 80 min. 
This excellent photocatalytic activity confirms that TiO2 NPs are ecofriendly and have 
powerful applications in purification of water.

Figure 12. 
TEM image of TiO2 NPs prepared by green method [62].
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3. Properties of titanium dioxide nanoparticles

Figure 14 shows the different crystal structures of TiO2 [65]. As it can be seen in 
this figure, there are three forms (polymorphs) namely anatase, rutile, and brookite, 
which are classified according to their crystalline arrangements. Thus, rutile is the 
most stable at higher temperature, whereas anatase is the most stable at lower temper-
ature. Furthermore, at high temperature, anatase and brookite could be transformed 
into rutile. Brookite in the powder or thin film forms reveals excellent stability and 
superior photocatalytic activity to that of anatase [66]. In addition, anatase is favored 
in photocatalysis because of its high photocatalytic activity between all the three 
polymorphs [19].

Figure 14. 
Different crystal structures of TiO2 [65].

Figure 13. 
Schematic diagram of the synthesis of TiO2 NPs by green method [64].
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Table 1 illustrates the different properties of titanium dioxide NPs. As it can be 
concluded from these values, TiO2 NPs possess interesting physicochemical proper-
ties, which are influenced by different factors such as exposed crystal faces, morphol-
ogy, and size of particles. Chen and Mao have published a review on the synthesis, 
properties, and applications of TiO2 NPs [11].

Figure 15 shows the different hierarchical nanostructures of TiO2. Four morphol-
ogies, involving 0D (quantum dots), 1D (nanotubes, nanorods, nanofibers,…), 2D 
(nanflakes nanosheets,…), and 3D (nanospheres, nanoflowers,…), can be obtained.

Parameter Value

Density (g/cm3) 4.23

Crystal structure Tetragonal

Appearance White solid

Melting point (°C) 1870

Boiling point (°C) 2500–3000

Molecular weight (g/mol) 79.88

Chemical formula TiO2

Young’s modulus (GPa) 244

Thermal conductivity at 800°C (W m−1 K−1) 8

Coefficient of thermal expansion (10−6/K) 9

Refractive index 2.55–2.75

Mohr’s hardness 5.5–7

Specific gravity 4

Size range (nm) 30–50

Table 1. 
Various properties of titanium dioxide NPs [67].

Figure 15. 
Different hierarchical nanostructures of TiO2.
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4. Conclusions

In this chapter, we summarized some advances in the synthesis and properties of tita-
nium dioxide nanoparticles. TiO2 is basically found in three crystalline forms: brookite, 
anatase and rutile. Its important potential application including its use as a food additive, 
in cosmetics, as a pigment, semiconductor, as well as in catalysis and photocatalysis, for 
UV adsorption and hydrogen storage has contributed to its massive elaboration by dif-
ferent methods and processes. On the other hand, materials with a nanometric structure 
display structural, mechanical, physical, chemical, optical and electrical properties that 
are distinctly improved in comparison to the materials with a micrometric structure. 
However, each synthesis method allows favoring one or more of the above mentioned 
properties, allowing to promote the application of the obtained material in a specific field.

Several researches have been made on the preparation and characterization of TiO2 
NPs for various applications. Different synthesis methods have been presented to prepare 
titanium dioxide nanoparticles. For instance polyol process, which combines simplicity 
and low cost, allows to obtain TiO2 NPs with different shapes and sizes depending on 
the starting reagents and operating conditions for photocatalytic activities applications. 
Hydrothermal is the most used method for nanomaterials synthesis and titanium dioxide 
can be successfully synthesized with different nanoscale shapes as sensors including 
dispersed TiO2 NPs on the graphene surface. Nevertheless, the sol-gel method remains 
a powerful alternative for the synthesis of multi-component materials at mild and low 
temperature conditions leading to efficient photocatalytic activity of TiO2. However, the 
Chemical vapor deposition process is suitable for the single step synthesis of nanocom-
posite coatings with enhanced properties. In this context, single layer graphene devices 
doped with TiO2 have been obtained by CVD. This doping has shown that TiO2 modifies 
the electronic properties as well as the structure of the CVD grown graphene. On the 
other hand, 3D porous TiO2 based materials with high catalytic activity and good stability 
can be obtained through 3D printing technology. Among the simplest and most cost-
effective processes for nanostructured materials synthesis, mechanical alloying is a very 
powerful technique for rapid elaboration of TiO2 NPs with excellent photocatalytic activ-
ity Nevertheless, compared to conventional methods, green method has been proven to 
be far more efficient; low cost, and eco-friendly route to the synthesis of TiO2 NPs.

The results obtained in this work enable a better understanding of the synthesis 
methods as well as the different related properties of titanium dioxide nanoparticles. 
However, the selection of the synthesis method is conditioned by the required proper-
ties of the titanium dioxide NPs and the cost of the final material to be obtained. This 
is all the more sought after for a value-added and large-scale TiO2 elaboration, which 
promotes the development of more innovative applications.

XRD, SEM, and TEM are the most used techniques for the nanostructured 
titanium dioxide characterization. The structural, morphological, and intrinsic 
properties of TiO2 NPs were also discussed and related to its performance in various 
applications. Titanium dioxide was a prime candidate material because of its low-cost, 
high-abundance, and ease of synthesis.
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Chapter 6

Modification Strategies of
Titanium Dioxide
Jingyi Wang, Hui Xiao and Huaxin Wang

Abstract

Titanium dioxide (TiO2) is a standard white pigment. However, when TiO2 is
exposed to ultraviolet light, it will catalyze the degradation of the surrounding organic
matrix. Surface coating of TiO2 is an effective method for reducing the catalytic effect
of TiO2. It can also improve the dispersion of TiO2 in an organic matrix. This review
critically introduces recent results on the surface coating of TiO2. First, the main
features of TiO2, including processes, structure, and final properties, are described
briefly. Second, this chapter reports and discusses different surface coating methods
for TiO2 with inorganic oxides and organic matter. Inorganic oxides, such as Al2O3,
SiO2, and ZrO2, would form a continuous dense film and block the defects of the TiO2

lattice. They can give TiO2 excellent weather resistance. The organic matter available
for surface treatment includes the surfactant, the coupling agent, and the macromol-
ecule. They can improve the affinity of TiO2 with various organic matrices. Surfactant
treatment is relatively simple. Coupling agents can give TiO2 more novel properties,
such as thermal stability. Macromolecules can increase the volume of TiO2 particles
through steric hindrance and improve the dispersion of TiO2 in an organic matrix.
However, coating TiO2 in a single matter is challenging to meet the increasing perfor-
mance requirements. Therefore, it is necessary to study further the effect of co-
coating with different inorganic oxides and organic matter on the structure and
properties of TiO2.

Keywords: titanium dioxide, inorganic coating, organic coating, structure,
pigmentary properties

1. Introduction

Since the discovery of titanium in 1791, TiO2 has been used commercially for over
100 years. Compared with other white pigments, such as ZnS, BaSO4, ZnO, etc., TiO2

is a nontoxic, stable pigment [1]. It shows high hiding power, refractive index, white-
ness, and other excellent physical properties (Table 1) [2]. As a result, TiO2 is widely
used in printing ink, plastics, paper, coating materials, and cosmetics. It is also an
indispensable raw material for the light industry, electronic industry, and other fields
[3]. TiO2 is produced by the sulfate and chloride process. The quality of TiO2 pro-
duced by the two processes is different (Table 2) [2, 4]. Upmarket TiO2 is mainly
produced by the chloride process [5].
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Pigment Relative
density

Refractive
index

Lightening power Covering
power/%

Reynolds
number

Relative
value/%

Rutile TiO2 4.20 2.76 1650 100 100

Anatase TiO2 3.91 2.55 1270 77 78

ZnS 4.00 2.37 660 40 39

BaSO4 4.50 1.64 — — —

Sb2O3 5.67 2.09 280 17 15

ZnO 5.60 2.02 200 12 14

Lithopone 4.20 1.84 260 16 —

Lead white (basic lead
carbonate)

6.10 2.00 159 9 12

Table 1.
Technical index comparison of white pigment [2].

Sulfate process Chloride process

Raw ore (1) Titanium concentrate: low price, stable,
can be obtained directly from mining; (2)
acid-soluble titanium slag: relatively high
price, good quality, need to be chemically
processed

(1) Titanium concentrate/white titanium:
low price, stable, high process technology
requirements; (2) rutile: relatively high
price, low process technology requirements;
(3) Titanium chloride slag and artificial
rutile: higher price, low process technology

Auxiliary
raw
materials

H2SO4 Cl2

Price Low High

Type Anatase, middle-end rutile High-end rutile

H2SO4

recovery/%
13 75

Flow Long and complex Short and simple process

Technology Mature Domestic immaturity

Control
accuracy

Low High

Quality Coverage and yellowing resistance are
weaker than chloride methods but cheaper
and less used in specific areas such as
papermaking and chemical fiber

High purity, good comprehensive
performance, high price

Energy
consumption

(1) Pressure on environmental protection,
but recycling of waste by-products can be
improved; (2) large consumption of coal,
natural gas, steam, water, and electricity

(1) Less three wastes, small pressure for
environmental protection, but the treatment
of ferric chloride in solid waste is difficult;
(2) consumption is relatively small

Government
policy

Restricted Supported

Table 2.
Comparison of different processes [2, 4].
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TiO2 shows a regular lattice structure. There are three crystalline forms of TiO2 in
nature: anatase, rutile, and brookite [6]. Anatase has a tetragonal crystal system.
However, it will slowly transform into rutile after heating at about 610°C [7] and
completely transform into rutile at 915°C. The latter also has a tetragonal crystal
structure, each unit contains six atoms, and its oxygen atoms are densely packed, so
rutile shows the highest stability [8]. Compared with anatase, rutile exhibits higher
density, hardness, refractive index, and dielectric constant.

TiO2 has excellent physical and chemical properties, however, TiO2 surface has a
photocatalytic active site (Figure 1). After absorbing ultraviolet light energy, elec-
tron–hole pairs (the charge carrier) are generated [10]. The valence band hole (h+) is
highly oxidizing while the conduction band electron (e�) is highly reducing [11]. The
h+ oxidizes H2O or OH� ion to the hydroxyl radical (OH•), the e� reduces adsorbed
oxygen (O2) species to superoxide (O2

•) and then undergoes a series of reactions to
give the OH• radical. These radicals will react with surrounding organic substances,
resulting in the decomposition of the organic matrix [12]. What’s worse, TiO2 particles
are easy to agglomerate due to the high special surface area, causing poor dispersion in
the organic matrix [13].

To overcome the drawbacks of TiO2 mentioned above, one can use coatings. The
coating of TiO2 by inorganic oxides, such as alumina, silica, and zirconia [14], can
effectively inhibit the oxidative degradation of the organic matrix, finally
improving the light and weather resistance [15, 16]. The poor dispersion of TiO2 can
also be effectively solved by coating [17]. Therefore, it is of great social significance and
economic value to study the coating of TiO2 to improve the physical stability and
dispersion, extending new applications of TiO2. In this chapter, we introduce the
modification strategies of TiO2 to the readers. To fully describe the modification
mechanism, processes and properties of modified TiO2 will be discussed.

2. Inorganic modification of TiO2

The purpose of the inorganic modification is to coat TiO2 with a layer of the
inorganic hydrated oxide film. This film can block and cover the lattice defects of TiO2

and reduce the connecting possibility between organic matrix and active groups of
TiO2. Such films comprise alumina, silica, zirconia, etc.

Figure 1.
The main photocatalytic process of TiO2 [9].
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2.1 Alumina

Alumina (Al2O3) is a suitable electron acceptor, which can annihilate the photo-
electrons generated by TiO2 after ultraviolet absorption and excitation, inhibiting
subsequent active groups’ generation [18]. In addition, Al2O3 can also reflect ultravi-
olet from natural light [19]. Thus, Al2O3 is one of the most used materials for the
inorganic coating of TiO2.

A variety of chemicals, such as sodium metaaluminate (NaAlO2) and aluminum
sulfate (Al2(SO4)3), have been used for TiO2 coating. These metal salts are added into
TiO2 suspension at various pH, and the positively charged OH-Al hydrolyzed by
soluble salt is adsorbed and wrapped on the surface of TiO2 particles to form hydrated
alumina. The structure of hydrated alumina will change at different pH values. It
shows an amorphous structure at pH 5, a floccular false boehmite structure at pH 8–
10, and a flaky gibbsite structure at pH above 10.

Zhang et al. [20] reported the preparation of compact amorphous Al2O3 film on the
TiO2 under the molar ratio NaAlO2/TiO2 of 1/22 at 80°C in pH 5. After being coated by
Al2O3 films, the whiteness and brightness of the modified TiO2 samples increased with
the increase of the Al2O3 loading, while the relative light scattering index depended on
the alumina loading.

Dong et al. [21] synthesized alumina-coated rutile TiO2 samples using the chemical
liquid deposition method under various pH and aging temperatures. The results
showed that this film-coating process should mainly be attributed to chemical bond-
ing and physical adsorption (Figure 2a). The higher aging temperature was in favor of

Figure 2.
(a) Schematic diagram of physical adsorption and chemical bonding of Al2O3 coated rutile; dispersion stability of
Al2O3-coated rutile TiO2 samples at different pH values (b) and aging temperatures (c) [21].
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the elevation of the boehmite content of the coating film, causing the enhancement of
dispersion stability. It contributed to the increase of steric hindrance and electrostatic
repulsion. The coated TiO2 exhibited well dispersion stability at pH 9 (Figure 2b) and
aging temperature 200°C (Figure 2c), respectively.

Wu et al. [22] discussed the mechanism of the film-coating process of hydrated
alumina on TiO2 particles in an aqueous solution. The effects of temperature, pH value,
and Al2(SO4)3 solution were investigated. It is found that TiO2 particles promote the
hydrolysis of Al2(SO4)3 in both acidic and basic solutions and adsorb positively charged
OH-Al species in slurries. When the OH-Al species or TiO2 particles have enough
energy to cross the repulsion threshold, the hydroxyl groups on the surface of the TiO2

particles will condense with the OH-Al species, leading to the coating of OH-Al species
on the surface of the TiO2 particles. As a result, the Al2O3 film is formed.

2.2 Silica

Silica coating shows a similar function as alumina. Compared with alumina, silica
film gives more chemical stability to TiO2. TiO2 suspension is added to water-soluble
silicon compound in base condition. Silicon is deposited on TiO2 particles as Si(OH)4
through physical adsorption and chemical bonding between Si(OH)4 and TiO2. The
deposited Si(OH)4 is further condensed into a silica gel, finally realizing the coating of
TiO2 particles (Figure 3).

Liu et al. [23] prepared SiO2-coated TiO2 powders by the chemical deposition
method starting from rutile TiO2 and Na2SiO3. The evolution of island-like and uni-
form coating layers depended on the ratio of Na2SiO3 to TiO2, reaction temperature,
and pH. The result showed that the whiteness and brightness of the TiO2 product
increased with the loading of SiO2.

Lin et al. [24] studied the surface characteristics of hydrous silica-coated TiO2

particles. Different analytical techniques were used to characterize the silica oxide
coatings on TiO2 particles. Analyses showed that hydrous silica is continuously coated
on the surface of TiO2 particles. The hydrous silica film coating can improve the
durability of pigment weather and dispersion properties.

SiO2 can be easily deposited on TiO2 surfaces. However, SiO2 coating layers with a
lower polarity cannot significantly enhance the dispersibility of TiO2 in a polar sol-
vent. Moreover, the hydrogen bond interaction between the hydrated SiO2 will lead to
thixotropy. Al2O3 coating layers with many –OH groups not only improve the
dispersibility of TiO2 powders in polar solvents but also provide abundant active sites
for further organic modification. However, Al2O3 coating layers tend to anchor loosely
at TiO2 surfaces. Therefore, various reports are about the formation of binary Al2O3/
SiO2 films on the TiO2 surface.

Figure 3.
Scheme of silica coating process.
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Zhang et al. [25] prepared binary Al2O3/SiO2-coated rutile TiO2 composites by
a liquid-phase deposition method starting from Na2SiO3�9H2O and NaAlO2. The
formation of continuous and dense binary Al2O3/SiO2 coating layers depended on
the pH value of the reaction solution and the alumina loading. The coated TiO2

particle had a high dispersibility in water. Compared with SiO2-coated TiO2 samples,
the whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 particles were
higher.

To improve the dispersion and reduce the photocatalytic activity of TiO2,
Godnjavec et al. [26] modified TiO2 by the SiO2/Al2O3 films on the surface of particles
and incorporated modified TiO2 into the polyacrylic coating. The results showed that
surface treatment of TiO2 with SiO2/Al2O3 could improve the dispersion of TiO2 in the
polyacrylic matrix, and the UV protection of the clear polyacrylic composite coating
was enhanced.

2.3 Zirconia

Zirconia (ZrO2) has a high refractive index (2.170) and weak ultraviolet light
absorption. Therefore, the ZrO2 coating considerably reduces UV absorption causing
higher photostability [27] and increasing the glossiness of TiO2 particles. This coating
can increase the amount of hydroxyl groups on the surfaces of the TiO2 particles,
which improves the dispersibility of TiO2 powders in aqueous media and provides
more active sites for the subsequent organic modification.

The TiO2 powders are dispersed in distilled water with ultrasonic treatment to
obtain TiO2 suspension, and the zirconium salt solution is added as follows. The
zirconium salt hydrolyzes rapidly, and the zirconia nanoparticles grow and form
aggregates on the surface of TiO2 through Zr–O–Ti bonds. The zirconia nanoparticles
will grow and form a continuous and dense film.

Zhang et al. [28] reported that the ZrO2-coated rutile TiO2 could be
prepared by the chemical liquid deposition method starting from rutile TiO2 and
ZrOCl2. The formation of zirconia coating depended on pH value of reaction
solution and the mole ratio of ZrOCl2 to TiO2. When the pH value reached to 9
with a mole ratio of ZrOCl2 to TiO2 of 1:51, the zirconia aggregates with an
average particle size of about 4 nm coated on the surface of the TiO2 particles
(Figure 4a, b). Compared with the exposed rutile TiO2, the dispersibility, whiteness,
brightness, and relative light scattering index of the ZrO2-coated TiO2 were
significantly improved.

Li et al. [29] prepared ZrO2-coated TiO2 by a precipitation method. The Zr(SO4)2
solution was added to TiO2 suspension at the pH of 5.2 at 50°C. The mass ratio of ZrO2

to TiO2 was 1.0%, and a dilute NaOH solution was used to adjust the pH value. The
results showed that supersaturation of the Zr(SO4)2 solution is one of the key factors
influencing the type of nucleation in the zirconia coating. Lower supersaturation
benefits the heterogeneous nucleation of zirconia on the surface of TiO2 particles,
while higher supersaturation leads to the homogeneous nucleation of zirconia itself. A
suitable ZrO2 content is about 1.0 wt.%, and this thick and continuous film gives
better pigmentary properties.

To sum up, the function of the inorganic oxide-coated film of TiO2 is to form a
barrier, reducing the photoactivity of TiO2 and the production of free radicals on the
surface of TiO2. As a result, the coated TiO2 has good pigmentary properties, including
weather and light resistance. However, using a single inorganic oxide coating is often
not sufficient to meet the requirements of several applications. So, it is one of the
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essential directions to study further the co-coating of various inorganic oxides and the
regulation and process of coating structure.

3. Organic modification of TiO2

Modifying TiO2 by organic agents is realized by coating them with organic sub-
stances such as surfactants, coupling agents and polymers. It can improve the affinity
of TiO2 particles with organic matrices, resulting in better dispersion of TiO2. Thus,
the pigmentary properties of TiO2, such as tint-reducing power, hiding power, and
whiteness, are shown.

In the modification, there are two mechanisms: physical adsorption of organic
agents on the surface of TiO2 and chemical bonding between TiO2 and organic agents
[30]. The principle of physical adsorption is that the hydrophilic group of the organic
coating agent is adsorbed on the surface of TiO2 particles. In contrast, the oleophilic
group is outwardly affinity to the surrounding polymer matrix. Therefore, the poly-
mer chains can penetrate the TiO2 aggregates and separate the TiO2 particles, finally
improving the dispersion of TiO2. For chemical bonding, the hydroxyl groups on the
surface of TiO2 particles act as active sites, which will react with organic coating
agents and form covalent bonds. As a result, the TiO2 particles change from hydro-
philic to hydrophobic. Several kinds of organic agents can be used for the surface
modification of TiO2, including surfactants, coupling agents and polymers.

Figure 4.
TEM micrographs of bare rutile TiO2 and ZrO-coated TiO2 at T = 80°C, ZrOCl2:TiO2 = 1:51 with different pH
(a) and with a different molar ratio of ZrOCl2 to TiO2 (b) [28].

121

Modification Strategies of Titanium Dioxide
DOI: http://dx.doi.org/10.5772/intechopen.111636



3.1 Surfactants

Surfactants can be divided into cationic, anionic, and nonionic surfactants.
One can use surfactants singly or together to modify TiO2 particles to evaluate the
performance of TiO2. Li et al. [31] chose anionic sodium dodecyl sulfate (SDS) and
nonionic nonylphenol ethoxylate (NPEO, Tergitol NP-9) to study the effect of sur-
factants on the behaviors of TiO2 in aqueous solution. The results showed that both
surfactants could be adsorbed onto the surface of nano-TiO2 but that only SDS can
significantly decrease the zeta potential of TiO2. Both surfactants reduced the
aggregation of TiO2 and retarded the aggregate sedimentation at surfactant
concentrations ≥0.015% (w:v). In addition, SDS exerted a more substantial reductive
effect than NP-9.

Wei et al. [32] used different surfactants, such as cetyltrimethylammonium bro-
mide (CTAB), sodium dodecylbenzene sulfonate (SDBS), and diethanolamine (DEA),
to modify TiO2 particles. The crystal type of TiO2 has no noticeable change with the
addition of different surfactants, but the morphology, size, and dispersion of the TiO2

particles have changed to some extent. Among the three surfactants, CTAB is
beneficial in reducing TiO2 particle size and improving TiO2 dispersion and
agglomeration. And this CTAB-coated TiO2 had the greatest photostability in methyl
orange degradation.

Wittmar et al. [33] prepared modified TiO2 particles by adding a cationic
imidazolium salt solution. It was found that an increase in the alkyl chain length was
beneficial, leading to a narrowing of the particle size distribution and a decrease of the
agglomerate size in dispersion. The smallest average nanoparticle sizes in dispersion
were around 30 nm.

Zhang et al. [34] discussed the influence of different surfactants on the
thermal stability, weather fastness, and pigmentary properties of TiO2 particles.
The results are collected in Table 3. Compared with neopentyl glycol (NPG),

Coating
agent

Dosage
/%

Hue Oil
absorption

/%

290°C
evaporation

/%L
(Whiteness)

a (Red and green
saturation)

b (Blue and green
saturation)

TMP 0.3 97.64 �0.41 2.39 15.98 0.41

0.5 97.64 �0.43 2.29 14.72 0.43

0.7 97.18 �0.52 2.23 13.95 0.52

0.9 96.85 �0.53 2.14 13.49 0.54

NPG 0.3 97.54 �0.40 2.46 16.26 0.49

0.5 97.49 �0.46 2.29 16.01 0.52

0.7 97.21 �0.53 2.9 15.69 0.56

0.9 96.89 �0.56 2.10 15.33 0.60

PEG 0.3 97.59 �0.42 2.49 16.86 0.44

0.5 97.53 �0.44 2.39 16.56 0.49

0.7 97.26 �0.57 2.23 16.01 0.53

0.9 7.00 �0.61 2.10 15.49 0.59
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polyethylene glycol (PEG) and trimethylolethane (TME), trimethylolpropane (TMP)
can bring the highest whiteness (97.64 of L) to TiO2 particles only in the content of
0.3 wt%.

3.2 Coupling agent

Coupling agents are amphoteric structural compounds, which can be divided into
silane coupling agents, titanate coupling agents, aluminate coupling agents, etc. One
end group of the coupling agent can react with the hydroxyl group on the surface of
TiO2 particles to form a strong chemical bond. The other can react with the polymeric
matrix. Consequently, two kinds of materials of different polarity, TiO2, and a poly-
mer, are closely combined to give the composite material excellent comprehensive
performance.

Silane coupling agents were first developed and used widely to modify TiO2. In
the reaction, organic silicon is adsorbed on TiO2, and the molecule part reacts with
the hydroxyl group on the surface of TiO2 to prevent the aggregation of particles.
Wang et al. [35] reported the modification of TiO2 by three kinds of silane coupling
agents (KH550, KH570, and HDTMS). The chemical structure and the reaction
mechanism with TiO2 are shown in Figure 5(a). The results showed that TiO2

modified by silane coupling agent had small particle size, improved
hydrophobicity, and low surface energy (Figure 5(b, c)). Furthermore, compared
with raw TiO2 and KH550 coated TiO2, HDTMS-coated TiO2 and KH 570 coated
TiO2 had excellent dispersion stability as white pigments in blue light curing inks
(Figure 5(d)).

Sabzi et al. [36] used aminopropyl trimethoxyl silane (APS) as a coupling
agent to modify TiO2. The results showed that silane coupling agents could
significantly improve the dispersion of TiO2 in polyurethane composite and the
mechanical properties of composite. Xuan et al. [37] reported the modification of
TiO2 by vinyltrimethoxyl silane (A171) and the reinforcement of modified TiO2

on wheat straw fiber/polypropylene composite. The modified TiO2 could
effectively improve the tensile, flexural, and impact resistance as well as the UV
light stability of the composite. However, the thermal stability of the coupling
agents is poor. This leads to the degradation of the organic layer on the surface of
TiO2. Finally, the color and whiteness of TiO2 are changed.

Coating
agent

Dosage
/%

Hue Oil
absorption

/%

290°C
evaporation

/%L
(Whiteness)

a (Red and green
saturation)

b (Blue and green
saturation)

TME 0.3 97.62 �0.44 2.42 17.37 0.43

0.5 97.59 �0.49 2.31 17.04 0.49

0.7 97.35 �0.55 2.26 16.55 0.52

0.9 96.92 �0.59 2.09 16.01 0.61

Raw
TiO2

/ 97.01 �0.50 2.22 14.29 0.44

Table 3.
Routine index of TiO2 [34].
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3.3 Polymer

The above two organic treatment methods depend on the reaction of small
molecular modifiers with the surface groups of TiO2. In contrast, a modification with
a macromolecule uses the polymer to coat the TiO2 particles directly or the reactive
monomer to polymerize on the surface of TiO2 particles. In the coating with polymers,
there is no interaction between the polymeric groups and TiO2, but the polymer
induces a steric hindrance [38]. As a result, the dispersion of TiO2 in the subsequent
polymer matrix is improved. TiO2 shows good pigmentary properties. The reaction
mechanism and classification of polymer coating modification are collected in
Table 4.

Man et al. [40] used the microcapsule method to modify TiO2. The in situ poly-
merization of acrylic monomer on the surface of TiO2 particles obtained the core-shell
structure of modified TiO2. This core-shell structure TiO2 showed improved disper-
sion in organic media and excellent UV shielding ability. Olad et al. [41] used
polyaniline (PANI) to modify TiO2 through in situ polymerization. The results showed
that PANI was successfully implanted on the surface of TiO2, effectively inhibiting the
aggregation of TiO2 nanoparticles.

In the “Anchor positioning” coating method, the polymers used are named hyper-
dispersant, which Schofield first proposed in the 1980s. Compared with the structure
of traditional dispersants, such as surfactant SDS, with the hydrophilic and lipophile
groups, hyper-dispersants have two completely different groups: anchoring group and

Figure 5.
(a) The scheme of reaction between silane coupling agents with different chemical structures and TiO2 particle,
(b) particle size distribution of raw and modified TiO2, (c) contact angle of raw and modified TiO2-water
interface, (d) dispersion of raw and modified TiO2 [35].
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solvent group. The anchoring groups are anchored on the particles’ surface by single-
point or multipoint anchoring or co-anchoring with a surface synergist (Figure 6). At
the same time, the solvent chain is extended in a nonaqueous system to provide steric
stability. Therefore, the particles are stably dispersed (Figure 7). So, the hyper-
dispersants have a unique dispersion effect on the nonaqueous system.

There are a lot of different anchoring groups, and solvent chains can be designed to
synthesize hyper-dispersant (Tables 5 and 6). Thus, hyper-dispersants with different
effects can be designed and synthesized by selecting different anchoring groups and
solvent chains.

Schaller et al. [43] modified TiO2 with poly(acrylic acid)-polystyrene block copol-
ymer hyper-dispersants. It is proved that the end group of polymers will form some
bond interactions with TiO2 particles, which improves the stability between polymer
and TiO2 particles and then improves the dispersion of TiO2 in water.

Method Mechanism Classification

Microcapsule
method

The continuous and dense polymer capsule
is formed by in situ polymerization with
active monomer or adsorbing polymers
directly using the Van der Waals force

1.Active monomers are adsorbed on the
surface of TiO2 and then polymerized.

2. Surface active points of TiO2 are
stimulated and initiate the
polymerization of the monomer.

3.Polymer chains are adsorbed directly to
form a dense film on the surface of TiO2

by using Van der Waals force

Surface
grafting
modification

The surface of inorganic particles was
pretreated first, and graft polymerization
was initiated. There are two different
pretreatments: coupling agent pretreatment
and surfactant pretreatment

1. Surface coupling reaction with
polymerizable organic monomers.

2. Introducing free radical-producing
compounds to graft polymerizable
organic monomers.

3.The free radicals of the particle itself
capture the polymer chain to achieve
graft polymerization

“Anchor
positioning”
coating

The functional group of the polymer can
anchor on the surface of TiO2, and the
solvent chain of the polymer extends in a
nonaqueous system to provide steric
stability

Terminal group anchoring method of
macromolecules

Table 4.
Modification by polymer coating [39].

Figure 6.
The anchorage form of hyper-dispersant on particle surface: (a) single-point, (b) multipoint, and (c) co-anchoring
with a surface synergist.
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Zhang et al. [44] synthesized three hyper-dispersants: nonterminated, carboxyl-
terminated, and polyethylene imine-grafted poly(hydroxyl carboxylic acid) ester. It is
found that polyethylene imine-grafted hyper-dispersant has the best dispersion
performance in nano-TiO2/resin solution dispersion systems.

A novel acrylic polyester hyper-dispersant containing methacrylic acid (MAA),
butyl acrylate (BA), and 3-pentadecylphenyl acrylate (PDPA) was polymerized by Liu
et al. [45]. This hyper-dispersant was used to disperse TiO2 in a nonpolar solvent
system. The results showed that the viscosity and particle size of suspensions were
affected by monomer ratio and molecular weight. The optimum monomer ratio and
molecular weight were MAA: BA: PDPA = 1:10:1.2 (wt%) and 6000, respectively. Liu
et al. [46] further reported the effects of acrylic polyester hyper-dispersant on the

Figure 7.
The scheme of particle dispersion by using hyper-dispersant.

Anchoring group Electronegativity Section width of anchoring group (nm)

–OH 3.9 0.22

–NH2 3.7 0.36

–SH 2.6 0.37

–SO3
� 4.33 0.58

–PO4
2� 4.86 0.60

–COOH 4.1 0.52

4.88 0.74

4.15 0.22

3.8 0.65

Table 5.
Electronegativity and section width of the anchoring group [42].
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dispersion of TiO2 in different organic solvents. The results showed that acrylic
polyester hyper-dispersant adsorption onto TiO2 is spontaneous and physical.

4. Conclusion and prospects

As a critical pigment, TiO2 has a considerable application market. However, due to
the crystal defects, there is a photocatalytic active site on the surface of TiO2. After
absorbing ultraviolet light, free radicals are produced, causing organic compound
degradation in the surrounding TiO2. Besides, TiO2 particles are easy to agglomerate

Polymer Solvent chain structural unit Flexibility Solubility
parameter /J0.5m�1.5

Polyethylene glycol Good 1.88~2.49

Polyvinyl alcohol Good 2.58~2.91

Polyacrylamide Good 2.65

Polyacrylic acid Good 2.44

Polymethylacrylic acid General 1.86~2.64

Polymaleic Anhydride Bad 1.58~2.83

Polyvinylpyrrolidone Very bad 2.30~2.62

Table 6.
Solubility parameters of some polymer structural units [42].
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and are dispersed poorly in the organic matrix due to the high specific surface area.
The surface inorganic/organic modification of TiO2 is an excellent choice to overcome
the drawbacks of TiO2. The coating films on the surface of TiO2 can effectively inhibit
the oxidative degradation of the organic matrix and improve the dispersion of TiO2,
finally improving pigmentary properties of TiO2, such as whiteness, hiding power,
light resistance, and weather resistance. With the development of the economy, the
demands for applying TiO2, such as high weather resistance, light resistance, and
dispersion stability, are gradually increased. Thus, the coating treatments of TiO2 are
an essential strategic development direction in the future.
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Chapter 7

Tuning the Magnetic and 
Photocatalytic Properties of 
Wide Bandgap Metal Oxide 
Semiconductors for Environmental 
Remediation
Ganeshraja Ayyakannu Sundaram, Rajkumar Kanniah  
and Vaithinathan Karthikeyan

Abstract

The review focuses on recent developments towards preparing room temperature 
ferromagnetic metal oxide semiconductors for better photocatalytic performance. 
Here we reported the combined study of photocatalytic and ferromagnetic properties 
at room temperature on metal oxides, particularly TiO2, which is rapidly an emerging 
field in the development of magnetism and environmental remediation. Even after 
decades of research in this area, the exact mechanism of the combination of ferro-
magnetism and photocatalysis in these materials has been not understood completely. 
However, some of the critical factors were hinted about the contribution to magne-
tism. Many reports demonstrated that oxygen vacancy and various metal doping 
plays a primary role in the room temperature ferromagnetism and photocatalysis in 
wide-band-gap metal oxides. However, it is not easy to understand the direct correla-
tion between magnetism, oxygen vacancies, dopant concentration, and photocataly-
sis. This review primarily aims to encompass the recent progress of metal oxide for 
understanding magnetism and photocatalyst under visible light.

Keywords: metal oxide, titania, ferromagnetism, photocatalysts, semiconductors

1. Introduction

The optical, magnetic, and photocatalytic properties of wide bandgap metal oxide 
semiconductors (MOS) are easily tunable by adjusting the defect concentration, 
attaining great attention in the scientific research community [1, 2]. The position 
of the defect levels significantly influences the photons of various absorption and 
emission energies, and the intensity of intrinsic magnetism is also affected by the 
number of unpaired electron spins created by the defect levels in MOS compounds 
[3]. Therefore, tuning the magnetic properties of the MOS nanoparticles by defect 
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engineering could be directly correlated with the optical as-well-as photocatalytic 
properties [1, 2]. The tuning of the absorption spectra by the defects of varying 
charge states helps prepare light-emitting diodes, optic-magnetic-based devices, or 
optically writable oxides by the d0-magnetism various wavelengths of light [4, 5]. The 
nature of MOS and their recent research on n-type and p-type models were remark-
able in many applications [6].

The MOS nanoparticles with a unique combination of magnetic and charge 
transport properties such as TiO2, ZnO, and SnO2 are attracting substantial attention 
from the academic and industrial community. From all these various MOS materi-
als, TiO2 gains special attention due to its solid photocatalytic behavior and several 
other advantages like low cost, chemical and thermal stability, innocuity, and high 
refractive index [7, 8]. However, this wide-bandgap TiO2 semiconductor is activated 
to perform photocatalysis only under irradiation of ultraviolet (UV) light, which 
needs to improve for practical applications. Many investigations have been reported 
and strategies to enhance TiO2 photo-absorption capability [9–13]. Various strategies 
to improve photo-absorption, doping, co-doing, surface grafting, the combination 
of surface grafting and doping are efficient and established routes [14–18]. Suppose 
MOS nanoparticles are sitting in the core. In that case, the structure of MOS com-
posite nanomaterials could be divided into four forms: core-shell, matrix-dispersed, 
Janus, and shell-core-shell structures, as shown in Figure 1.

For example, metal-doped TiO2 nanoparticles improve the bandgap from the 
range of wide to mid-level electronic states, which imparts enhancement in charge 
migration or produces a strong redshift in the photo-absorption spectrum. More 

Figure 1. 
Various structures of magnetic MOS composite materials. Blue spheres indicate the magnetic MOS nanoparticles, 
and the non-magnetic matrix and secondary materials are shown in another color [19].
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emphasis has been explained in recent years on the [SnxTi1 − xO2] system by coupling 
TiO2 with SnO2 oxide. It is highly acceptable that these new nanocomposites exhibit 
high photocatalytic activity compared to pure TiO2 [20]. The simple hydrothermal 
synthesis route will produce SnO2-TiO2 nanocomposites; however, a small variation 
in the synthesis condition could lead to the formation of distinct secondary phases 
[21]. Cao et al. reported that annealing temperature strongly influences the Sn4+ ions 
doping into TiO2 lattice, depends on temperature, which may substitute in lattice 
and exist as secondary phases like SnClx or SnO2 [22]. Sn-doped TiO2 nanoparticles 
showed significant enhancement in performance as components of active visible light 
photocatalyst [23, 24], lithium-ion batteries [25], antibacterial activity [26], dye-
sensitized solar cells [27], photo-electrochemical conversion [28] and water splitting 
[29] has been reported. It is important to find a reliable way to synthesize Sn-doped 
TiO2 nanostructures, as TiO2 and SnO2 are environmentally benign, highly stable, 
and strong oxide materials [30, 31]. We developed a simple hydrothermal method to 
synthesize Sn-TiO2 nanocrystals with sufficient oxygen vacancies, in this nanocrystal 
with different concentrations of Sn observed ferromagnetism and excellent photo-
catalytic activity [32, 33]. Wang et al. reported that Sn doping and Sn-Fe co-doping 
in TiO2 showed a strong red-shift in the optical absorption spectrum [34]. The reason 
for this shift in absorption spectrum in the Sn-doped TiO2 system comes from the 
most of the Sn 5 s states are located at the bottom of the conduction band where Ti 3d 
states are present and mixed with them.

The combination of non-transition metal and non-metal co-doping improves the 
visible-light activities of MOS materials. The non-metal doping in TiO2 can make the 
new extra valance band and non-transition metal doping create the additional charge 
carrier traps, which improve the separation efficiency of photo-generated elec-
tron–hole pairs, reducing the bandgap width, and broadening the photo-absorption 
limit [35, 36]. Therefore, the combination of metal and non-metal co-doping will be 
applied to drastically enhance the visible-light photocatalytic performance of TiO2. 
Among the various non-metals, nitrogen is an effective and promising candidate 
because N doping modifies the charge transport properties of TiO2 along with which 
also induces the oxygen-defect sites, therefore improving the photocatalytic perfor-
mance [37]. The substitutional nitrogen doping on TiO2 showed an effective reduc-
tion in the bandgap width [38]. The nitrogen atoms were successfully substituted 
by either titanium or oxygen vacant atomic sites in the lattice of TiO2 lattice. Asahi 
et al. reported that nitrogen atoms successfully replaced the oxygen lattice sites and 
reduced the bandgap width by mixing N 2p and O 2p states [39]. Wang et al. have 
studied that the TiO2 nanocrystals were compacted closely together to form the solid 
TiO2. By doping nitrogen, some extra impurity levels were distributed on the surface 
of the TiO2 [40], as shown in Figure 2a. The solid TiO2 with a close packing structure 
creates the difficulty of nitrogen doping into the bulk structure of TiO2 and makes 
the diffusion of nitrogen difficult. However, the addition of the dodecyl tri-methyl 
ammonium bromide (CTAB) to TiO2 nanocrystals produces a loose packing mesopo-
rous structure, which is conducive for TiO2 to take up ammonia into the interspaces.

Compared to undoped mesoporous TiO2, the nitrogen-doped mesoporous TiO2 
with uniform distribution from the inside out produced successive energy levels 
from the bulk to the surface (Figure 2b). This subsequent impurity energy-band 
level formed by nitrogen doping are located above the valence band and successfully 
reduces the bandgap of the mesoporous TiO2, which is the primary attribution for 
the improved photocatalytic activity throughout the visible-light range. Zhuang et al. 
have reported that the facile sol–gel method prepared Sn and N co-doped TiO2 (SNT) 
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photocatalysts. The post-nitridation treatment enhances the photocatalytic perfor-
mance of co-doped TiO2 under visible light or simulated solar light irradiation [43]. 
However, more studies are required to clearly understand the effect of doping on the 
physical, chemical and catalytic properties of SNT microspheres.

2. Diluted magnetic semiconductors

Diluted magnetic semiconductors (DMS), referred to as doping of magnetic impu-
rities in bulk semiconductors, also called “semi-magnetic semiconductors”, have been 
studied. This concept has had a particular interest in the research community for the 
past few years because ferromagnetism in diluted magnetic semiconductors (DMS) 
has been another important subject that can manipulate the carrier-associated charge 
and spin-based parameters [44, 45]. Especially, DMS with room temperature fer-
romagnetic oxides gained particular attention in the applications of magnetic fluids, 
biomedical, magnetic resonance imaging, catalysis, and environmental remediation 
[46, 47]. Wang et al. developed a facile method to synthesize ZnO crystals with Zn 
vacancies, and these doped Zn vacancies created p-type conductivity, room-temper-
ature ferromagnetism, and excellent photocatalytic performance [48]. The recent 
development of ferromagnetic ordering in photo-induced transition metal-doped 
TiO2 nanoparticles can be justified by creating defects in the samples [15]. However, 
the actual role of dopants (e.g. transition metals) at the room temperature ferromag-
netism in TiO2 nanoparticles is still an unclarified problem [49]. In one of our recent 
papers, our group proposed a new model for combined mechanics of ferromagnetism 

Figure 2. 
Schematic diagrams depicting the band structures of (a) solid and (b) mesoporous TiO2 before and after doping 
on N [41, 42].
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and their photocatalytic activity in wide-band-gap metal oxide-associated nanocom-
posites [32]. The study of ferromagnetism and photocatalytic activity on synthesized 
metal oxide-based nanocomposites suggesting a significant role of oxygen vacancies 
present on the surface and improved charge carrier concentration on magnetism and 
photocatalytic performance [50]. Charanpahari et al. reported room-temperature 
ferromagnetic nanocomposites showing better photocatalytic performance compared 
to commercially available diamagnetic photocatalysts under visible light irradiation 
[51]. Doping and co-doping have the advantage of high activity in semiconductor 
nanocomposites, which imparts the concept of magnetic photocatalysts with charge 
carrier and separation function was raised [51, 52]. Hence, in the research of photo-
catalytic activity today researchers are focusing on the development of photocatalyst 
possessing ferromagnetic property and visible-light activity.

DMS with room temperature ferromagnetism has been extensively studied for 
the applications of spin-based field-effect transistors, spin-based light-emitting 
diodes (LEDs), and non-volatile memory devices [53, 54]. In DMS materials are due 
to the coupling of magnetic ordering with one of the other types of ferroic ordering 
parameters like ferroelasticity or ferroelectricity, which are very interesting from the 
standpoint of device applications in fields such as spintronic and magneto-optics. 
Therefore, DMS offering certainly promising immense opportunities for new 
next-generation applications [55]. Theoretical and experimental studies on these 
metal oxides have shown improved ferromagnetism by the presence of defects or 
lightweight doping elements like C, N, and Li [56]. The addition of light elements 
in DMS can develop magnetism and significantly stabilizes the intrinsic defects in 
the oxide materials [56]. In these systems, the improved ferromagnetism is mainly 
attributed to the following mechanisms (i) the concentration of the oxygen vacan-
cies (VO) and defects sites and (ii) the substitution of an oxygen atom with the 
doping element and associated formation of spin-polarized states in the bandgap 
and (iii) the change of titanium oxidation state (Ti3+) in the occurrence of ferromag-
netic order. Therefore, defect engineering is a powerful tool to tune or improve the 
functional properties of the metal oxides like their electronic band structure, charge 
carrier transport, and catalytic performance [48]. The photocatalytic performance 
of TiO2 significantly depends on their electrical and optical properties, which are 
primarily determined and altered by the crystal structure, optimized concentration 
of dopants, and defects [57].

Figure 3(A) showing the schematic diagram of the magnetic orientation of Fe 
doped TiO2 nanoparticles, which are annealed under vacuum. It shows the possible 
paramagnetic species, their distribution in the nanoparticles lattice, surface, and 
interfacial boundary, and the potential interaction with ferromagnetic or antifer-
romagnetic species. The red circles inside the nanoparticles representing the magnetic 
polaron and overlapped magnetic polarons form BMPs. Along with BMPs, coupled 
F+ centres on the surface and interface also contribute towards ferromagnetism. 
However, F2+ without any electrons and F Centre with two trapped electrons are not 
likely to contribute towards ferromagnetism [58]. In vacuum annealed pristine TiO2 
nanoparticles, the total magnetization is contributed from the surface and interfa-
cial oxygen vacancies, i.e. Mtotal = Msurface + Minterface. However, an extra BMP factor 
is added in the Fe doped vacuum annealed TiO2 nanoparticles; therefore, the total 
magnetization is written as Mtotal = MBMP + Msurface + Minterface. These observations of 
paramagnetic behavior in Fe doped TiO2 nanoparticles suggest that the density of 
oxygen vacancies is possibly insufficient to generate solid ferromagnetic coupling 
with the nearest lattice site of Fe3+ ions. To improve the magnetization in pure and 2% 
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Fe doped TiO2, vacuum annealed at 200°C for 3 h, generating donor carrier or oxygen 
vacancies. M–H measurements are carried out after the annealing on the samples, and 
as plotted in Figure 3(B), initially diamagnetic pristine TiO2 and paramagnetic Fe 
doped TiO2 nanoparticles both have exhibited ferromagnetism. The observed fer-
romagnetism in pure TiO2 nanoparticles could be attained from either Ti3+ ions or the 
presence of oxygen vacancies on the lattice site or the surface. Even though pristine 
and Fe doped TiO2 showed ferromagnetically, the saturation magnetization of pure 
TiO2 is less than that of Fe doped TiO2 nanoparticles. The enhanced magnetization in 
Fe doped samples could be due to the extra magnetic interaction generated by both Fe 
dopants and defects in the ferromagnetic exchange coupling. The ferromagnetism is 
again switched back to paramagnetic for reheated vacuum annealed Fe doped TiO2 in 
the air at 450°C samples as shown in Figure 3(B)d. The above results support that the 
oxygen vacancies possibly play the driving role in switching the magnetic ordering 
from paramagnetic to ferromagnetic and then back to paramagnetic in Fe doped TiO2 
nanoparticles. Just simple doping of Fe may not be sufficient to induce ferromagnetic 
solid exchange interaction. Only, when a high concentration of oxygen vacancies and 
Fe doping combining may participate in ferromagnetic exchange interaction.

Irradiation of various energy ion beams is one of the sophisticated techniques for 
incorporating the defects (i.e., vacancies, interstitials, etc.) into transition metal-
doped metal oxide semiconductor matrix materials. Many researchers have studied 
that ion beam irradiation could improve the structural complexity of the ZnO 
nanoparticles by dissolving the secondary impurity phases, helps in substitutional 
incorporation of Mn2+ at the Zn2+ site (Mn and Zn) and improves the ferromagnetic 
property of the samples [59–61]. To avoid the segregation of nano-dimensional doped 
transition metal or its oxide clusters and to induce intrinsic structural defects in the 
host material in a controlled fashion, irradiation of a low energy ion beam using inert 
gases such as Xe or Ar is the best option which also eradicates the complexities arising 
from the chemical reactivity of the ion beams [60]. A multilayer coating and high-
temperature calcination, thus affecting the photocatalytic efficiency, often influence 
the magnetic properties [62]. Therefore, a novel and facile approach to the low-cost 

Figure 3. 
(A) Diagram represents various possible magnetic species, their distribution, and interaction [58]. (B) M–H 
curves of vacuum annealed nanoparticles of (a) pristine TiO2 and, (b) 2% Fe doped TiO2 at room temperature, 
(c) 2% Fe doped TiO2 at 20 K and, (d) paramagnetic M–H curve of vacuum annealed 2% Fe doped TiO2 after 
reheating in the air at 450°C [58].
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preparation of the ferromagnetic and photocatalytic TiO2 nanocomposite at relatively 
low temperatures is highly recommended. We have reported several research articles 
related to the photocatalytic performance and magnetic properties of TiO2-based 
photocatalysts such as various metal (Sn, Cu and, Fe) oxide coupled TiO2 [32], Sn 
doped TiO2 [33], Fe2O3 coupled. Doped TiO2 [63], nickel(II)-imidazole doped TiO2 
[64], hierarchical Sn and N co-doped TiO2 [65] and hierarchical AgCl loaded Sn 
doped TiO2 [66].

3. Visible light photocatalysts

Progressive research towards solar power-based energy conversion, waste-
water treatment, and efficient photocatalysts attracting great attention [67–70]. 
Photocatalytic and photovoltaic solar cells convert solar-based light energy into 
chemical reaction and electrical power generation. Consequently, improving the 
stabilizations of photo-induced charge carrier transportation is the critical factor 
for light-harvesting systems. TiO2-based materials are widely used in environmental 
and energy-related applications like photocatalysis, photovoltaics, artificial photo-
synthesis, and spintronic, which have been often foreseen. For better performance, 
TiO2 is usually employed as nanocrystals or nanostructures [71–73]. However, the 
efficiency of photocatalytic activity of TiO2 needs to improve to induce charge carrier 
activity using visible light or sunlight. Noble metal (Pt, Pd, Rh, and Au) doped and 
modified TiO2 photocatalysts have been attracted great attention towards efficiency 
enhancement [74–76]. Especially in this context of an investigation, Ag-loaded TiO2 
that is Ag cluster-incorporated AgBr nanoparticles [77], Ag nanoparticles and CuO 
nanoclusters [78], and Ag/AgCl [79] in TiO2 photocatalysts are undoubtedly intrigu-
ing to attain high performance [80]. The interfacial heterojunction between TiO2 and 
SnO2 particles can have a synergetic effect on photo activity [24]. Furthermore, any 
agglomeration in TiO2/Ag/AgCl system due to the nature of the materials process used 
can influence the observed photocatalytic activity given that Ag/AgCl is a plasmonic 
system.

Therefore to improve the photocatalytic performance of metal oxide nanoparticles 
by expanding the range of photo-response and increasing the efficiency of electron–
hole carrier separation, the hierarchical assembly of nanoscale building photocata-
lytic blocks with a tunable dimensionality and structural complexity offers a practical 
strategy towards the realization of multi-functionality of nanomaterials [81]. In 
general, hierarchical heterostructures are formed by connecting two different low-
dimensional nanostructure materials; this type of structure provides the ultrahigh 
specific surface area and a network system consisting of parallel connective paths and 
provides interconnection of various functional components [82].

Liu et al., in their work, explained the photocatalytic mechanisms operating in the 
Fe(III)-FexTi1−xO2 system as illustrated in Figure 4. are discussed [17, 18]. They are 
owing to the wide bandgap of pristine TiO2, which is inactive under the illumination 
of visible or sunlight. However, by the selected surface grafting and bulk doping of 
Fe(III) ions, which have band energy levels identical to TiO2, the visible-light absorp-
tion of TiO2 is drastically improved by the bulk-doped Fe(III) ions. The QE was unaf-
fected because of the efficient transfer of electrons between doped Fe(III) and surface 
Fe(III). Moreover, a good interface junction between surface-grafted and bulk-doped 
Fe(III) ions is needed for efficient charge carrier transfer. Notably, the visible-light 
activity reaction was markedly reduced by introducing a thin layer between the 
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surface Fe(III) ions and doped TiO2. The photo-generated charge carriers are effec-
tively transferred to the surface of Fe(III) doped TiO2, which acts as an efficient 
co-catalyst for multi-electron reduction reactions. In photocatalysis by Fe(III) doped 
TiO2, holes with high oxidation potential are kept in the deep level of the valance band 
and effectively decompose the organic compounds. Therefore, efficient visible-light 
photocatalysts with high R is achieved.

The conceptual ferromagnetic photocatalysts show a better charge carrier separa-
tion function to take advantage of high activity in the couple, doped, surface modified, 
or co-doped semiconductor nanocomposites. However, furthermore development in 
these TiO2-based photocatalysts requires other strategies to improve photocatalytic 
efficiency. In today’s research, one of the effective strategies is AgCl nanoparticles 
loaded in Sn-doped TiO2 microsphere to enhance the visible-light activity have become 
an essential outcome in the photocatalytic and photovoltaic applications [83, 84].

4. Ferromagnetic TiO2-based photocatalyst

In our previous reports, we worked on various concentrations of Sn doping to 
improve the structural, electronic, magnetic, and photocatalytic properties of TiO2 
nanoparticles [32, 33, 85, 86]. Significantly, the study of room temperature photo-
catalytic and ferromagnetic performance in the Sn-doped TiO2 nanoparticles is one 
of the most emerging and fascinating fields in environmental remediation. Adding 
various concentrations of SnCl4 in Ti(NO3)4 aqueous solutions produced any one of 
the anatase, a mixture of anatase-rutile and rutile phases of TiO2 nanoparticles with 
the added Sn atoms, which are synthesized using the facile hydrothermal method. To 
study the photocatalytic performance of the synthesized Sn-TiO2 nanoparticles, both 
methyl orange (MO) and RPhOH (where PhOH is phenol group and R is 3-NH2, H, 
and 4-Cl) in water were chosen as model pollutants under both the illumination of 
visible light and UV light irradiation. Light irradiation showed a significant relation-
ship between the Hammett substitution constant (σ) of RPhOH and the photocata-
lytic degradation efficiency of Sn-TiO2 nanoparticles. The concentration of Sn doping 
significantly affected the structural, electronic, magnetic and, photocatalytic proper-
ties of the TiO2 nanoparticles. Even after decade-long research, the actual mechanism 
of ferromagnetism combined with photocatalytic behavior in these materials is still 
not understood. However, hints about some of the critical factors that contribute to 
magnetism have been revealed. It is believed that oxygen vacancies, phase changes, 

Figure 4. 
(A) Proposed photocatalysis process. (B) Change in bandgap and photo-activity by Fe doping [17, 18].
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and doping level play a significant role in the RTFM of semiconductor oxides; how-
ever, demonstration of a direct correlation between the magnetism, dopant concen-
tration, oxygen vacancies, and photocatalytic activity has been strenuous. Because of 
these reasons, in this work, we made an effort to investigate the essential role of Sn4+ 
ions on the above properties of TiO2 nanoparticles.

In another report, we first follow the facile hydrothermal synthesis route for pre-
paring ST microspheres, followed by nitriding treatment by flowing an ammonia gas 
to successfully fabricate hierarchical SNT microspheres with VO [64]. The fabricated 
as-prepared samples are characterized by the conventional analytical techniques and 
119Sn Mössbauer spectroscopy to understand the structure, magnetism, and photocata-
lytic performance. The main objective of this study is to improve the photocatalytic 
performance and RTFM of TiO2 by the co-doping of Sn and N atoms. As compared to 
pristine and Sn doped TiO2 nanoparticles, SNT microspheres showed significant absorp-
tion of visible light for photocatalytic activity is observed. Then we have further studied 
the photocatalytic movement of Rhodamine B (RhB) degradation under the illumina-
tion of visible light irradiation on pristine TiO2, P25, ST, and SNT microspheres and 
observed vigorous photocatalytic activity in SNT microspheres. However, until now, no 
one reported magnetic studies on the SNT microspheres. Suppose, if the photocatalysts 
exhibit RTFM, the phenomenon may insist on the electrons trapped in VO or structural 
defects. In this aspect, we can believe that this study can be implemented in the various 
other types of facile designing semiconductors to obtain an insight into the role of the 
visible light photocatalytic performance, RTFM behavior, and combined performance 
enhancement. In addition, we also studied the photovoltaic performance of ST and SNT 
microspheres in the applications of Perovskite solar cells. The combined mental and non-
metal doped TiO2 nanoparticles with other structural defect sites represent a new kind of 
semiconductor materials and provide novel opportunities for TiO2-based materials.

For the first time, we have reported a facile hydrothermal synthesis route to success-
fully fabricate hierarchical AgCl in Sn-TiO2 (AST) microspheres using post-calcination 
treated with different temperature samples [66, 87]. The primary objective of this 
study is to modify Sn doped TiO2 by loading AgCl nanoparticles to enhance photo-
catalytic performance. Improved visible light absorption capability was observed in 
the AST microspheres compared to Sn-TiO2, AgCl, Ag/AgCl, and commercial Degussa 
P25 photocatalysts. To check the photocatalytic performance of the as-synthesized 
AST microspheres, the rhodamine B (RhB) and 3-nitrophenol aqueous solutions were 
used as the model systems under visible light (λ ≥ 420 nm). The obtained results 
indicate that the hierarchical AST microsphere photocatalysts showed a higher photo-
degradation rate than Ag/AgCl, AgCl, Sn-TiO2, and the commercial TiO2 (P25) materi-
als. However, the study on various concentrations of AgCl in the AST microsphere is 
crucial to understand the optimized amount needed to obtain the best photocatalytic 
performance. To the best of our knowledge, for the first time, we reported the facile 
preparation route, high visible-light photocatalytic performance in hierarchical AST 
microspheres, and the magnetic behavior of these photocatalysts characterized by the 
119Sn Mössbauer technique. The new semiconductor family of noble metal halide and 
metal-doped TiO2 nanoparticles opens up novel opportunities for TiO2-based materials.

We have option [Fe(III)(bipy)2Cl2)]+[Fe(III)Cl4]− ionic salt-like complex as pre-
cursor complex [73]. The aqueous solution of precursor complex could behave like 
electrolytes. While the reduction potential from free Fe(III) to free Fe(II) is 0.77 V, that 
of photo-reduction from [FeIIICl4]− to [FeIICl3]− is 0.34 V which indicates that photo-
reduction of the [FeCl4]− ion is easier than the normal chemical reduction of free ferric 
ions [12]. Hence chosen iron(III) complex interacts with n-type TiO2 semiconductors. 
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It reduces Fe(III) to Fe(II) via interfacial electron transfer dynamics under dark 
(poor efficiency), near-UV (good efficiency), and visible light (moderate efficiency) 
irradiation systems. At the same time, the precursor complex is adsorbed on the TiO2 
surface to form a surface complex; it acts as a co-catalyst for the reduction of Fe(III) 
to Fe(II) with TiO2. However, there are no reports on the study of photosensitized via 
IFET dynamics between Fe(III)-bipy complex (bipy without -OH or -COOH groups) 
and titania semiconductor interface until now. Hence, we report the near-UV and 
visible-light-induced IFET process on [FeIII(bipy)2Cl2][FeIIICl4] (precursor complex) 
with TiO2 NPs, and the photochemical product was mainly characterized by electronic 
absorption, Fe K-edge X-ray absorption fine structure (XAFS), electron paramagnetic 
resonance (EPR) and 57Fe Mössbauer spectroscopes method. In addition, electron 
transfer was confirmed by cyclic voltammetric and photoluminescence measurements. 
However, the following factors control the IFET reaction, those are (i) the presence 
of TiO2 nanoparticles, (ii) the irradiation time-lapse, (iii) light source with various 
wavelengths (380 ≤ λ ≤ 520 nm), and (iv) different types of TiO2 nanoparticles.

In one of our works, nickel(II)-imidazole-anatase nanocomposites prepared by 
a simple adsorption method showed room-temperature ferromagnetism and good 
photocatalytic performance, which were designed by mixing of [Ni(1-MeIm)6]
Cl2H2O complex and anatase TiO2 starting materials in an aqueous medium [64]. 
Various conventional techniques as adsorption already elucidated the deposition of 
the surface species. We observed the ferromagnetic behavior in the composite sample 
under the vibrating sample magnetometer at room temperature. This Ni-dopedTiO2 
nanocomposite has good visible light absorption ability than pristine TiO2. To under-
stand and evaluate the adsorption and photocatalytic activity of the Ni-doped TiO2 
nanocomposite, selected methylene blue (MB) as an organic pollutant illuminating 
under visible light irradiation. We first reported the Ni(II)-imidazole complex depos-
ited on the anatase (TiO2) semiconductor with good photocatalytic and magnetic 
properties prepared by a simple adsorption method. The research of metal oxide-
based photocatalysis is expected to open up a general method for synthesizing other 
transition metal-loaded metal oxide semiconductor photocatalysts.

In all of our previous reports covers the studies related to Mössbauer spectro-
scopic, photocatalytic and magnetic investigations of Sn and Fe doped TiO2 nanocom-
posites [32, 33, 63–66, 73, 85–87]. Using the facile hydrothermal synthesizing route, 
we prepared Sn-based TiO2. For structural and magnetic characterization, Mössbauer 
spectroscopy has unique advantages to mature into one of the classical techniques 
for Sn or Fe-based TiO2 nanoparticles. Mössbauer spectroscopic results provided 
a strong understanding and evidence of the relationship between the structural, 
photocatalytic, and magnetic properties of Sn or Fe-based TiO2 nanoparticles. The 
Sn or Fe-doped TiO2 nanocomposites have promising applications in photocatalysis 
for water purification by degrading organic pollutants using efficient visible light 
absorption to produce strong stability and high photocatalytic activity. This review 
helps in the fundamental understanding of structural and magnetic properties of 
Sn or Fe-doped TiO2 nanocomposites and their contribution towards environmental 
remediation by visible-light photocatalysis.

5. Conclusion

This review mainly highlighted the importance of the development of wide 
bandgap metal oxide nanoparticles for photocatalyst applications. Several researchers 
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are primarily focused on developing a room-temperature ferromagnetic TiO2 as the 
photocatalyst, which has a high potentiality to absorb visible light from the solar 
spectrum. However, there are certain limitations in pristine TiO2 nanoparticles: their 
high photo-generated holes and electrons recombination rate, and they require UV 
light for photocatalysis. These problems can be overcome by introducing metallic or 
non-metallic dopants or creating oxygen vacancies and defect sites into TiO2. The two 
successful approaches that have been discussed are the doping and grafting of TiO2 
nanoparticles with either anionic or cationic elements and coupling TiO2 nanopar-
ticles with other semiconductors. Further study is needed to understand the use of 
novel ferromagnetic metal oxide-based photocatalyst for large-scale applications.
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Chapter 8

TiO2 Nanocoatings on Natural
Fibers by DC Reactive Magnetron
Sputtering
Helena Cristina Vasconcelos,Telmo Eleutério,
Maria Gabriela Meirelles and Susana Sério

Abstract

The surface functionalization of natural fibers, mainly using TiO2 films, shows a
growing interest in its application as yarns in fabrics that require advanced properties,
allowing the use of their excellent physical and chemical properties in the textile area.
The DC magnetron sputtering technique is a potential method for depositing TiO2

films onto natural fibers, allowing for the creation of advanced and competitive
properties compared to synthetic fibers. Different crystalline phases of TiO2 have
been shown to be effective in photocatalytic applications. Reactive discharges like the
Ar/O2 gas mixture can be used to deposit TiO2 films with desired characteristics, and
controlling deposition parameters can further manipulate the properties of the coat-
ings. Analytical techniques such as XRD, XPS, and SEM/EDS can be used to study the
surface properties of TiO2 films. XRD determines crystal structure, XPS provides
information on chemical composition, and SEM/EDS examines morphology and
elemental composition.

Keywords: TiO2, DC reactive magnetron sputtering, natural fibers, Hedychium
gardnerianum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS)

1. Introduction

In the last few years natural fibers of natural origin, especially those of lignocellu-
losic composition [1], attracted a great attention due its interesting properties as high
tensile strength and rigidity, and to the advantages of being recyclable, lightweight,
biocompatible, and extremely low costing, when compared to the synthetic ones.
Among others, ramie, jute, kenaf, etc. reinforced composites have been highly
emphasized [2]. The use of natural fibers fit into the concept of circular economy,
which seeks to reduce, reuse, recover, and recycle products. In addition, there are
economic and functional advantages in the use of natural fibers compared to the most
common artificial fibers, made of carbon, glass, or polymeric resins [3], namely due to
their low production cost and high abundance.

Sustainability is becoming a concern in the development of new materials,
mainly due to problems related to the use of scarce resources and waste management.
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On the other hand, there is a kind of activation energy for the creation of new
products and functionalities, enabling new commercial paradigms or complementing
the existing ones.

Cellulose fibers can be obtained from many plants and represent one of the most
abundant organic materials on earth. Invasive plants, such as ginger lily (Hedychium
gardnerianum) [4], are abundant in various countries and are therefore an ecological
source of fibers for scientific and industrial applications as an alternative to the
traditional glass, polymer, or carbon fibers [5]. Invasive species are a threat to ecosys-
tems and the survival of many endemic species, and their monitoring, control, or
eradication is crucial, to prevent the modification of ecological processes and the loss
of biodiversity. The ginger lily plant can be found in large quantities at Azores Islands
(Portugal), and they are mainly considered as waste. However, its biological nature
gives them specific characteristics less good for high-tech applications, namely the
ease way since they absorb water. This causes dimensional changes and swelling on
the fibers, mainly because its main composition of cellulose, which is structurally a
linear polymeric chain with OH groups, and thus highly hydrophilic.

Nowadays, titanium dioxide (TiO2) is one of the most effective photocatalysis [6]
demonstrating high efficiency of decomposition and detoxification of several toxins and
pollutants [7]. However, there is a huge disadvantage that involves the removal of TiO2

catalysts after their applications, in the case of catalysts based on particles in suspension.
In general, water purification reactors employ photocatalyst particles (powder type)
that have higher photocatalytic activity due to less mass transfer limitations between the
treated contaminants and the photocatalyst. However, powdered photocatalysts need to
be filtered and separated after water treatment, which is a tedious and expensive
process. So, to commercialize the process as a full-scale technology, it is critical to
increase the photocatalytic activity of TiO2 and manufacture devices with TiO2

immobilized on a specific support. This strategy can bring a great benefit. Therefore,
several attempts have been already used to immobilize TiO2 on different supporting
materials [8] and shapes. From these, glass substrates [9, 10], glass spheres [11], fiber-
glass [12], activated carbon, zeolite, and ceramics [13] stainless steel [14] and polyamide
fibers [15], can be emphasized. Moreover, photocatalytic fiber is an emerging solution to
immobilize catalyst powders [16, 17]. The natural fibers are nowadays preferable due to
their multiple advantages in terms of environmental sustainability. Inspired by these
remarkable characteristics, fibers have found a great interest as supporting substrates
[18]. Cotton and ginger lily fibers, have booth cellulose in its main composition and so
have abundant hydroxyl groups (OH) [18, 19] to link photocatalysts through hydrogen
bonds and van derWaals forces.Wool fiber, instead, possesses plenty of disulfide bonds
(-S-S-), carboxyl groups (-COOH), and amino groups (-NH2) [16]. Moreover, natural
fibers are considered desirable for TiO2 immobilization platforms on account of their
intrinsic porous structure [20], large specific surface area, and flexibility [16]. Its flexi-
ble form can be adapted to different spaces and purification devices. In addition, they
can be cut to any size, rolled up, etc., to meet the function’s requirements. For example,
cotton fibers were proved to be easily installed inside photoreactors [21].

Since TiO2 can impart antibacterial [22] and self-cleaning [23] properties to the
fibers it becomes clear that is of great interest for the textile industry. The multiple
fiber-related substrates involving fibers, yarns, and fabrics with different structures
can be used as support substrates for photocatalyst proposes [16]. Important fiber
properties are good adhesion of TiO2 which demands improvement of binding effi-
ciency with fibers to keep the necessary high specific surface area to enhance the
absorption affinity.
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There are many methods used for the synthesis of TiO2 [24]. TiO2 nanoparticles/
films immobilization was prepared successfully in a variety of natural fibers, by the
sol-gel method [25], microwave-assisted liquid phase deposition process [26], and
DC-reactive magnetron sputtering [18].

A promising method to prepare photocatalytic immobilized TiO2-based thin films
is by DC-reactive magnetron sputtering. This technique enables large-area deposition
with high uniformity, yet it is essential to understand why the film properties exhibit
after deposition. This is because the properties of the coatings obtained are highly
dependent on the selected parameters, and so it is necessary to establish the ideal ones
that satisfy any film application and understand the basic processes that control the
properties of that films. These include, for example, the type of species deposited,
their energy, and consequently the effects that their bombardment will have on the
surface of a growing film, etc. In addition, the influence of substrate temperature on
the nature of the film is also to be considered, among other factors, namely, for
instance, the substrate position relative to the target, discharge pressure, and the gas
mixture. In fact, bombardment can result in a series of surface effects, namely dis-
placement of lattice atoms, creation of defects that can lead to increased atomic
mobility, surface heating that can promote crystallization of nanoparticles, etc. These
effects will consequently affect the internal stress, crystal size, morphology, and
roughness of the deposited films. Quite often the physical structure of the thin film is
directly responsible for the expected film property. For instance, in photocatalytic
TiO2 films, deposition of crystalline or amorphous TiO2 is of crucial importance for
their functionality [22]. So, understanding the relationship between deposition
parameters that will affect film properties is therefore important for defining
procedures.

2. Basics of DC reactive magnetron sputtering

2.1 Sputtering

Sputter deposition is a physical vapor deposition (PVD) process [27] based on the
ejection of atoms from a solid target as a result of collisions with energetic particles.
However, if the collisions are due to the impact of positive ions, the process in known
as cathodic sputtering.

Sputtering allows the deposition of thin films of a variety of materials, including
metals and certain compounds such as oxides and nitrides and any type of substrate
can be applied for deposition. Simultaneous deposition from various sources permits
to develop complex compositions.

It has advantages over other deposition methods when the intended film is a
compound (e.g., oxide) or an alloy, avoiding non-stoichiometric films, separation of
phases of the constituent elements, and even differences in the desired composition.
Coatings deposited generally have good adhesion and exceptional coverage.

The objective is to remove material from a target and bring it to the substrate (e.g.,
the fiber to be coated). This is achieved by means of ion bombardment in the plasma,
usually by Ar+ ions. Further, the ions that reach the target with enough energy can
eject atoms from the target that are then dropped on the fiber (or other substrate)
surface placed nearby to the target. The process basically consists of three distinct
steps that occur altogether (Figure 1):
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1.Production of atoms to deposit from a target material source,

2.Transference of the atoms through the plasma to the substrate,

3.Deposition of atoms on the substrate and film growth.

The widespread use of sputtering is explained by the many advantages of this
technique, mainly due to its simplicity of operate and the quality of the thin films
through the stoichiometry control in complex compositions, excellent film adhesion to
the substrate, uniform deposition over a large area and tailor of the film thickness.
Moreover, by the change of deposition parameters such as oxygen partial pressure,
working pressure, and sputtering power is possible to achieve desired film parame-
ters, for example, microstructure, composition, step coverage, among others.

2.2 Chamber preparation and DC reactive plasma

The process begins by creating vacuum inside the chamber and thus the air is
pumped out. The chamber is then filled with argon, an inert gas, reaching a pressure
between 1 and 10 Pa. When a DC voltage is applied between the electrodes (with a gas
in between them), a plasma is formed. The applied voltage is high enough to enable
that a large quantity of inert gas atoms turns into ions; electrons acquire enough
kinetic energy to ionize gas atoms (break gas atoms) and thus, the plasma is formed
[29]. The ions and electrons are then accelerated towards opposite electrodes. Plasma
is thus a partially ionized gas. Depending on the mean free path in the gas, the
accelerated particles can collide with inert gas atoms and give rise to scattering occur-
rences at a rate that can change with the pressure and nature of the gas. Moreover,
these scattering occurrences can lead to ionization of further gas atoms. The
probability of ionization (α) occurs will depend basically on the threshold voltage to
initiate the breakdown of the gas (trigger the gas discharge) which must surpass the
ionization potential of the gas species and can be calculated by [30]:

Figure 1.
Schematic diagram of magnetron sputtering. Adapted from [28].
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α ¼ 1
λ
exp � Vi

eEλ

� �
(1)

where λ is the mean free path of the sputtering ion, Vi is the ionization potential of
the gas in electron volts, e is the electron charge, and E = V/d is the electric field
between electrodes [30].

The breakdown voltage of a gas, which is the voltage required break a sustained
plasma, is established by Paschen’s law, which is a function of the product of electrode
gap spacing and chamber pressure, according to:

Vb ¼ A
pd

ln pdð Þ þ B
(2)

where Vb is the breakdown voltage, d is the gap electrode distance (cm), p is the
pressure (torr), and A and B constants depending on the gas mixture inside the
chamber. Paschen’s law relationship the breakdown voltage versus the product of the
pressure and the gap electrode distance (pd) as shown in Figure 2 [31] and predict a
minimum breakdown voltage for any gas.

Once the Vb is achieved plasma becomes self-sustaining and plasma reaches a
steady state, exhibit enough energy to be used in sputtering.

2.3 Principle of sputter deposition

Typical gases used in the sputtering process are from the group of noble gases
because they tend not to react with the target material. Argon (Ar) gas is the most
common one in this process. Positively charged argon ions from the plasma (Ar+ ions)
are accelerated by an electrical potential difference toward the negatively biased
target (cathode), where the target material, for example, Ti, is placed and hits it.

Figure 2.
The breakdown voltage versus gas pressure curve [31].
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With the impact energy, atoms are ejected from the target and diffuse through the
vacuum chamber until they are deposited on the substrate to form a thin film
(Figure 1). This atom ejection is known as sputtering. From a physical point of view, the
principles of sputtering are based on a simple momentum transfer model, which allows
understanding how atoms are ejected from the surface of a material due to successive
collisions. The collision of particles and the transfer of momentum are important aspects
of the DC sputtering process. In a plasma, there are various types of particles, such as
electrons, ions, and neutral atoms or molecules. When these particles collide with each
other or with the target material, momentum is transferred between them.

Because of the bombardment of the target, beyond ejected or sputtered atoms,
additional events can occur as shown in Figure 3, including the followed briefly
underlined: secondary electrons, reflected ions at the target surface, ion implantation
in the structural atomic network, lattice defects, and structural rearrangement by
trapping ion species.

The mass of the energetic ions is key to the energy and momentum transferred to
the film atom during the collision. From the physics laws of the conservation (of
energy and momentum), the energy transferred in a collision of an incident particle
(i) and a target particle (t) is given by:

Et

Ei
¼ 4mimt

mi þmtð Þ2 cos 2θ (3)

where E and m, are, respectively, the energy and the mass. θ is the angle of
incidence as measured from a line across the two centers of masses, as shown in
Figure 4. When the ejected particles reach the substrate, they deposit onto its surface
due to the momentum transfer that occurs during the collision. The amount of
momentum transferred during the collision depends on the mass and velocity of the
particles involved. In general, heavier particles transfer more momentum than lighter
particles, and faster particles transfer more momentum than slower particles.

The transfer of momentum is an important factor in determining the quality and
properties of the deposited thin film. If the momentum transfer is too low, the
deposited film may be porous and have a low density. On the other hand, if the

Figure 3.
Events that may occur on the target surface being bombarded with energetic ions. Adapted from [27].
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momentum transfer is too high, the deposited film may be dense but have high levels
of residual stress. Therefore, it is important to carefully control the parameters of the
DC sputtering process, such as the gas pressure, target material, and substrate tem-
perature, to optimize the momentum transfer and achieve the desired properties of
the deposited thin film. The efficiency of the momentum transfer is the highest,
Et
Ei

� �
max

, when cos θ ¼ 1 and mi = mt, that is, is desired that the atomic weight of the

sputtering gas could be identical to that of one of the target.
Ejected atoms must be able to diffuse freely toward the substrate with desirable

little opposition to their movement, which explains the necessity of the sputtering to
be done in vacuum conditions. To achieve this, a low pressure within the chamber and
a suitable large DC voltage applied between the electrodes, in other words, between
the target and the substrate, give rise to a glow discharge that allow accelerate the
positive ions to the target. Therefore, ions can retain their high energies. Besides atom-
gas collisions can be prevent after ejection from the target. Still, the initial kinetic
energy of the atoms transported through the plasma can be lost by collisions within
the plasma, failing the energy needed to deposit themselves on the substrate. Thereby,
not all atoms ejected from the target reach the substrate, many are projected in
different directions and deposit on any surface they encounter. The atoms that can
reach the substrate thereby form a layer called a thin film. So, sputtering is also
described by its yield, which is the ratio of the number of atoms ejected to the number
of incident energetic ions and depends on the chemical bonding of the target atoms
and the energy transferred by impact [27].

The sputtering yield (Y) is an important parameter that characterizes the effi-
ciency of the sputtering process since it determines the rate at which atoms are ejected
from the target material and deposited onto the substrate. Therefore, the sputtering
yield plays a crucial role in the fabrication and processing of thin films, coatings, and
surface modifications using sputtering techniques. Y is defined as the number of
atoms or molecules sputtered from the target per incident particle. Y is zero for ion
energies below the threshold energy of sputtering, Φ. This means that particles with
energy below this threshold are not able to cause sputtering. Mathematically, we can
express this as Y = 0 for E < Φ, where Y is the sputtering yield and E is the ion energy.
Y is a function of the ion energy and the target material properties, with a threshold
energy below which sputtering does not occur and a power law relationship above the
threshold energy.

Figure 4.
Collision of particles and the transfer of momentum. Adapted from [32].
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The sputtering yield depends on various factors, such as the energy and flux of the
incident ions, the target material properties, and the surface conditions. By controlling
these factors, the sputtering yield can be optimized to achieve desired properties, such
as film thickness, composition, morphology, and adhesion. The sputtering yield also
affects the overall efficiency and quality of the sputtering process, as well as the cost
and environmental impact.

Reactive sputtering is a widely used technique for depositing compound films on
substrates. In reactive sputtering, a target material is bombarded with ions in the
presence of a reactive gas such as oxygen, nitrogen, or hydrogen. The sputtered
species react with the reactive gas to form a compound film on the substrate surface.

One of the advantages of reactive sputtering is that it allows for precise control of
the stoichiometry of the deposited film by adjusting the flow rate of the reactive gas.
This makes it possible to deposit films with desired properties such as optical, elec-
tronic, magnetic, or mechanical properties.

Another advantage of reactive sputtering is that it can be used to deposit films
on complex substrates, fibers, nanoparticles, films and materials with irregular sur-
faces, porous materials, etc. This is because the sputtered species have high kinetic
energies, which enable them to penetrate the pores and irregularities of the substrate
surface. As a result, the deposited film can conformally coat the entire surface of the
substrate, including its complex features, such as corners, edges, and high aspect ratio
structures.

2.4 Magnetron sputtering

The sputtering process is a relatively simple technology, but it still requires
additional support systems, such as efficient cooling of the substrate because the
electrons that are repelled by the negative cathode can reach the substrate heating it;
and the use of magnets to confine the electron paths towards the cathode surface
(magnetron sputtering) to increase the plasma efficiency and therefore the deposition
rate. This allows the plasma thus located/confined to improve deposition rates due to
the greater number of ions colliding with the target and reduces the temperature of
the substrate as less electrons collide with it.

The presence of magnets behind the cathode creates a magnetic field close to the
surface of the target. These magnets are positioned to produce a magnetic field near
the target is a such way that magnetic field lines are parallel to the cathode surface and
perpendicular to the electric field lines (Figure 5). This arrangement allows to con-
centrate the electrons close to the target, as shown in Figure 5a, instead of them
circulating randomly dispersed around it, while the ion trajectories are not influenced
by the deflection due to their greater mass. The combined action of the electric (E)
and magnetic (B) fields near the target generates the E � B drift phenomenon. The
trajectories of electrons, of charge q and velocity v, captured in this drift are forced to
bend and follow helical trajectories around the magnetic field lines (Figure 5b), and to
follow them because of the Lorenz force (FL). The Lorenz force acting on a charged
particle is given by the following equation:

F
!
L ¼ q E

! þ v!xB
!� �

(4)

where q is the charge of the particle, E
!
is the electric field, v! is the velocity of the

particle, and B
!
is the magnetic field. The term v! x B

!
represents the cross-product of
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the velocity and magnetic field vectors. In the case of DC sputtering, the magnetic
field is typically generated by a permanent magnet. The electric field is created by the
potential difference between the cathode and anode. As the electrons move toward the
anode, they experience a Lorentz force that causes them to follow a curved path.

This curved path increases the path length of the electrons to the anode, which
means they have a larger number of collisions with the argon atoms in the plasma.
This, in turn, significantly improves the ionization probability because the collisions
between the electrons and argon atoms result in the formation of more ions.

This additionally acting Lorenz force restricts the trajectories of the electrons.
Therefore, the path of the electrons to the anode increases which significantly
improves the ionization probability because of the larger number of collisions between
argon atoms and electrons.

3. TiO2: brief structure and properties

TiO2 naturally exists in three polymorphs such as rutile (tetragonal), anatase
(tetragonal), and brookite (rhombohedral) [33]. Figure 6 shows the three polymor-
phic structures of TiO2, which can be described based on their cell structure consisting
of a TiO6 distorted octahedron. Each structure has a different degree of distortion of
this octahedron, resulting in the characteristic differences observed between the
polymorphs.

TiO2 is an n-type semiconductor material that exhibits a bandgap ranging from
3.0 eV (for rutile) to 3.2 eV (for anatase), which corresponds to a light absorption
edge in the UV range. One of the advantages of TiO2 is that it is non-toxic, biocom-
patible, and has a high chemical stability. These properties, along with its exceptional
electronic properties, make it an ideal material for use in photovoltaic applications,
which convert solar energy into electricity. The discovery by Fujishima and Honda in
1972, which demonstrated the photocatalytic splitting of water in TiO2 electrodes [35],
has led to a growing interest in using TiO2 as a photocatalyst for environmental
purification [7], detoxification, and self-cleaning applications.

Figure 5.
(a) Layout of the DC magnetron sputtering system near the target; (b) helical electron trajectory around the
magnetic field line due to the Lorenz force.
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Anatase phase has proved to be a more efficient photocatalyst than rutile phase
[36], that might be explained by the reduction ability of O2 higher that rutile, despite
the larger band gap of anatase [36]. Recently, amorphous TiO2 has been considered
very effective in antibacterial disinfection [22]. Is well known that TiO2 photoactivity
is hampered by the narrow range of UV wavelengths for photoactivation. Its energy
gap is only sensitive to radiation in the ultraviolet (UV) region of the solar spectrum,
which represents only 4% of the global solar radiation [37].

Almost 20 years ago it has been reported that the TiO2 lattice doping with non-
metallic atoms like N [38] can shift the absorption edge from UV to lower energies
and thus increase visible absorption. Recently, a photonic band gap of 3.18 eV
(390 nm) was measured for amorphous TiO2 [22] which is slightly lower than the
value reported to anatase (3.2 eV). TiO2 absorbs photons and acquires enough energy
(hν) to allow an electron in the valence band to jump to the conduction band.

This process (photocatalysis) gives rise to an electron (e�)-hole (h+) pair, in
accordance with the reaction TiO2 + hν$ h+ + e�, further responsible for the elimina-
tion of water toxic components by active species (•OH, •O2, and H2O2) generated by
redox reactions on the TiO2 surface.

Rutile and anatase are stable phases at normal conditions an comprise identical
TiO6 octahedron building unit but with diversely sharing corners and edges giving rise
to different configurations [22]. The TiO6 in anatase are arranged in zigzag chains
along {221}, sharing four edges, while in rutile, TiO6 share two edges and link up in
linear chains along {001} [39]. These structural differences give rise to different
densities and electronic band structures between these two phases [22].

Moreover, the number of shared edges is related to the “energy of the structure”
(and thus its stability). Rutile is more stable that anatase (metastable) being the
number of shared edges per octahedron, respectively, two and four [22]. The distance
Ti-Ti between the center of edge-sharing octahedra being smaller with the decrease of
the number of shared edges which provided shorter Ti-Ti distances and a more closely
packed crystal structure of rutile. Thus, there is a strong interaction in the Ti-Ti bond
of rutile which has only two Ti atoms at the shortest distance. On the other hand, in

Figure 6.
TiO2 main polymorphs—anatase, rutile, and brookite [34].
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anatase, the Ti-Ti interaction, instead, depends on four Ti atoms, which allows for a
Ti-Ti distance greater than that of rutile. Therefore, rutile exhibits less blockage
around each TiO6 unit, leading to a more stable phase [40].

As in anatase there are four octahedrons, at a distance between them of 3.04 Å,
while in rutile, despite its higher density, only two octahedrons are present at 2.96 Å
[40], the distinct arrangement of TiO6 octahedrons gives rise to different structures
packaging that will condition the anatase-rutile transition.

In many synthetic routes, amorphous TiO2 is often the first phase to form. The
transformation of amorphous TiO2 into anatase and/or rutile, usually occurs by effect
of temperature, both in wet chemical methods, such as sol-gel [41] and also in DC
reactive magnetron sputtering [42].

X-ray diffraction (XRD) and Raman spectroscopy are commonly used techniques
for analyzing the crystallization process in materials science.

X-ray diffraction is a technique that involves shining X-rays onto a crystalline
material and observing the resulting diffraction pattern. The diffraction pattern is
characteristic of the crystal structure and provides information about the crystal
lattice parameters, the orientation of the crystal grains, and the degree of crystallinity.

The XRD patterns of anatase (JCPDS card No. 96-900-9087) and rutile (JCPDS
card No. 96-900-9084) phases shown in Figure 7 provide important information
about the crystal structures of these two polymorphs of TiO2. In the XRD pattern of
anatase, the main peak at 25.3° corresponds to the (101) plane of the crystal structure.
This peak is relatively sharp and intense, indicating a high degree of crystallinity and a
well-defined crystal structure. The presence of other peaks at lower angles also indi-
cates the presence of other crystallographic planes in the anatase structure.

In the XRD pattern of rutile, the main peak at 27.4° corresponds to the (110) plane
of the crystal structure. This peak is also relatively sharp and intense, indicating a

Figure 7.
XRD patterns for anatase and rutile TiO2 phases. The insets are Miller indices of anatase and rutile phases.
Adapted from [43].
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well-defined crystal structure and a high degree of crystallinity. The presence of other
peaks at higher angles also indicates the presence of other crystallographic planes in
the rutile structure.

Raman spectroscopy, on the other hand, involves shining laser light onto a material
and measuring the scattered light as a function of wavelength. The scattered light
provides information about the vibrational modes of the atoms in the material, which
are characteristic of the crystal structure.

By combining XRD and Raman spectroscopy, a more comprehensive understand-
ing of the crystallization process in a material is obtained. XRD provides information
about the long-range order and crystal structure, while Raman spectroscopy provides
information about the short-range order and local structure.

Anatase has a tetragonal crystal structure and is characterized by Raman peaks at
around 144, 399, and 519 cm�1. The peak at 144 cm�1 is due to the symmetric stretching
vibration of the Ti-O bond, while the peaks at 399 and 519 cm�1 are due to the bending
modes of the Ti-O-Ti bond. The Raman spectrum of anatase is also characterized by a
broad peak at around 639 cm�1, which is due to the lattice vibrations of the TiO6

octahedra. Figure 8 shows the Raman spectrum of a pure anatase film.
Rutile, on the other hand, has a tetragonal crystal structure and is characterized by

Raman peaks at around 143, 445, 610, and 880 cm�1. The peak at 143 cm�1 is due to
the symmetric stretching vibration of the Ti-O bond, while the peaks at 445, 610, and
880 cm�1 are due to the bending modes of the Ti-O-Ti bond. The Raman spectrum of
rutile is also characterized by a sharp peak at around 237 cm�1, which is due to the
lattice vibrations of the TiO6 octahedra.

When a material undergoes a phase transformation from the amorphous or liquid
phase to a crystalline phase, the specific crystalline phase that forms depend on a
number of factors, including the thermodynamic stability of the different phases and

Figure 8.
Raman spectra of anatase TiO2 phase.
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the kinetics of nucleation and growth. In the case of TiO2, the initial crystalline phase
that forms is generally anatase, rather than rutile, because of its lower surface free
energy compared to the rutile structure. Surface-free energy is a measure of the
amount of energy required to create a unit area of a material’s surface. Materials with
lower surface free energy are typically more stable, because they have a lower ten-
dency to form new surfaces or interfaces. In the case of TiO2, the anatase structure has
a lower surface free energy than the rutile structure, which means that it is more
thermodynamically stable.

This difference in surface free energy is due to the different crystal structures of
anatase and rutile. The anatase structure has a higher percentage of exposed (001)
surfaces, which have a lower surface free energy compared to the (110) and (100)
surfaces that are more prevalent in the rutile structure. As a result, the anatase
structure is more stable and more likely to form during the crystallization process.

The surface roughness and microstructure can significantly influence the perfor-
mance and hence the purpose of TiO2 thin films. These characteristics depend on the
deposition process, type of substrate, and chosen deposition parameters.

Liang et al. have produced TiO2 films by the sol-gel method [44], highly compacts,
continuous and smooth (Figure 9), exhibiting excellent self-cleaning properties.
Figure 10 shows SEM images of TiO2 films (on glass substrates) prepared by reactive
magnetron sputtering under different deposition conditions, namely plasma O2 concen-
tration (50% and 75%) and used power (500 and 1000W) [18]. It can be seen clearly the
differences in the morphology of the surface of TiO2 coatings, as a function of different
powers and concentrations of O2. In general, the morphology is typically constituted by
several agglomerates of nanoparticles (or grains) in the shape of a cauliflower but of
different sizes, which are distributed over the surface of the substrate [18] in accordance
with what was reported by Sério et al. [42]. There is a variation in the size of the
agglomerates in the morphology of the films dependent on the O2/(Ar + O2) ratio.

The value of the thickness (th) of the films allows estimating the deposition rate
(vd), in nanometers per minute.

vd ¼ th
t

where t is the deposition time. The thickness measurement is performed on SEM
images in cross-section (as exemplified in the insert of Figure 10a). Regardless of the
geometry, the surface is covered evenly.

Figure 9.
SEM image of the surface morphology of TiO2 film deposited onto glass substrates by dipping-based sol-gel method.
Adapted from [44].
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4. Characteristics of TiO2 thin films deposited on natural fiber surfaces by
DC reactive magnetron sputtering

The surface is the boundary that separates the material and the external environ-
ment. All alterations that occur in the sense of changing the surface structure will
condition and tailor the material for certain applications. A wide range of surface
modification processes, such as reactive magnetron sputtering, thermal oxidation,
thermal evaporation, molecular-beam-epitaxy, chemical vapor deposition, sol-gel-
assisted by dip-and/or-spin coating, spray pyrolysis, and electrodeposition have been
used for used to produce thin film and tailor surfaces. However, in many of them,
adhesion of the coating to the supports is still an important issue, which deserves
special attention, especially in some types of substrates, such as natural fibers, which
main composition is cellulose.

Cellulose is a polymeric chain with abundant hydroxyls (–OH) groups and other
oxygen-containing functional groups –C=O, –C–O–C–, –CHO, and –COOH which
makes the fiber surface potentially reactive [18]. These functional groups are available
to bond to desired molecules and provide new properties and new applications for
natural fibers [18]. The deposition of suitable coatings, such as TiO2 films, allows the
optimization of natural fibers by creation of new tailored properties of their surfaces,
such as the photocatalytic ones, which are independent of that exhibited by the bulk
fiber. Recently, nanostructured TiO2 films successfully deposited on ginger lily fiber
surfaces have been created by DC reactive magnetron sputtering [18].

The efficiency of the DC magnetron sputtering process to functionalize natural
fibers (Figure 11) depends not only on the quantity cellulose reactive accessible

Figure 10.
SEM images of surface morphology of TiO2 films deposited onto glass substrates by reactive magnetron
sputtering [18].
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groups but also on sputtering conditions, such as the operating pressure, discharge
power, O2 gas partial pressure, and deposition time.

The morphology of the films can be tailored by change of the partial pressure of
the reactive gas (Ar/O2) and the sputtering power [10]. Moreover, different film
typology, namely dense and porous, can be obtained, as well as amorphous or crys-
talline (anatase and/or rutile) nanofilms. The influence of the O2% in the discharge
and the sputtering power on the amorphous/anatase phase transition, surface stoichi-
ometry, and surface roughness of the films can be tailored.

4.1 Fibers preparation

Ginger lily fibers are obtained by mechanical extraction from the stems of the
plant, after removing the leaves, as shown in Figure 12a–c. Before TiO2 deposition by
reactive magnetron sputtering (Figure 12d), fibers are cleaned successively in ace-
tone, isopropanol, and deionized water to remove any organic contamination and
further dried at low temperature (about 30°C).

4.2 Scanning electron microscopy (SEM) and energy dispersive X-ray analysis
(EDX)

The EDX analysis (Figure 13) was used to determine the elemental composition of
the TiO2 films. The results show that as the power used during the reactive magnetron
sputtering process increases, there is a corresponding increase in the intensity of the
Ti peak. This finding supports the expected result that an increase in the number of
Ti-O bonds contributes to the growth of the TiO2 film. In other words, the higher the
power used during the sputtering process, the greater the amount of titanium present
in the film.

As the power and oxygen percentage during the reactive magnetron sputtering
process are increased, the resulting TiO2 films exhibit a nanostructured morphology in
certain areas, similar to that seen in Zone 1 of Thornton et al.’s model [46]. This
morphology is primarily due to the adatoms on the surface of the growing film having
low mobility and the “shadow” effect. A nanostructured thin film exhibits nano-scale
surface features, typically ranging in size from a few nanometers to several hundred
nanometers. These features can include nanopores, nanocrystals, nanotubes, or other
nano-items that are engineered into the film’s surface by adjusting the deposition

Figure 11.
SEM images of ginger lily fibers: (a) pristine; (b) after TiO2 sputtered at 50% O2–1000 W [45].
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parameters, such as temperature, pressure, and substrate morphology. The structural
and physical properties of the thin film can be controlled at the nanoscale. The
nanostructured surface greatly increases the surface area of the coating and is well
suited to photocatalytic applications due to its large surface area-to-volume ratio. The
presence of pores, for example, increases the density of active sites with high accessi-
bility of photons, but also facilitates diffusion and increases the adsorption capacity of
pollutants. The size, shape, and distribution of the pores can be precisely controlled,
allowing for the customization of the film’s properties for specific applications.

In sputtering, the bombardment of the substrate surface with high-energy ions
causes atoms to be ejected from the target and deposited onto the substrate surface.
If the bombardment intensity is insufficient for film densification, the presence of
pores can dominate the film’s structure. When the deposited atoms do not have
enough kinetic energy to overcome the surface diffusion and adhesion forces, they can
accumulate on the substrate surface and form islands. These islands can coalesce and
form a continuous film, but the presence of voids and pores between the islands can
significantly affect the film’s properties.

Figure 12.
Sequence of the ginger lily fiber preparation process for deposition of TiO2 films by reactive magnetron sputtering.
(a) Plant harvest; (b) stem preparation; (c) extraction of long fibers; (d) film deposition apparatus.
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The presence of pores in sputtered films can have both positive and negative
effects on their properties. For example, in some applications, such as sensing or
photocatalysis, the large surface area-to-volume ratio provided by the pores can
enhance the film’s activity. On the other hand, in other applications, such as barrier
coatings or electronic devices, the presence of pores can reduce the film’s performance
and durability.

The greater availability of oxygen (75%) in the chamber during sputtering causes
more ions to be generated, leading to an increase in the number of atoms bombarding

Figure 13.
SEM/EDX of the TiO2 films deposited by DC reactive magnetron sputtering: (a) 50% O2–500 W, (b)75%
O2–500 W, (c)50% O2–1000 W, (d)75% O2–1000 W.
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the surface of the growing film. This results in a denser film which can lead to the
formation of ridges and depressions on the film’s surface.

Overall, the effect of the increased oxygen concentration in the chamber during
sputtering is to create films with a high roughness topography, which can be advan-
tageous or disadvantageous depending on the intended application. The ability to
control the oxygen concentration and other process parameters during sputtering is
therefore important for achieving the desired film properties.

4.3 X-ray photoelectron spectroscopy (XPS)

Figure 14a is shown the XPS survey spectra of the film 75% O2–1000 W. Carbon
and oxygen lines dominate as expected because of the organic nature of the fiber.
Intense Ti lines are also observed due to the TiO2 film on the fiber surface. Typically,
the fiber surface area can be divided into two kinds of regions: those covered with
TiO2 and those covered with organic material. These two regions are on different
potentials, so that their reference binding energies are different. Nevertheless, the
analysis can be performed by using the charge reference Ti 2p3/2 assumed to be at
458.5 eV, which is characteristic for TiO2 phase [47] and the C 1 s line, with the
smallest binding energy corresponding to adventitious carbon at 284.8 eV. It is
believed that Ti at the surface of a “TiOx material” is generally present as TiO2. Since
in this case of study, the measured Ti 2p lines clearly show only a single phase, as can
be seen from Figure 14b, which confirms that only TiO2 phase is present.

Deposition of TiO2 increase the amount of oxygen at the fiber surface. This fact can
be interpreted in three ways: (a) the reactive atmosphere during the deposition pro-
cess contribute to significant surface oxidation of the surface; (b) the reactive atmo-
sphere in the magnetron chamber etches (probably chemically) the surface and
“opens” oxygen-rich phases laying below the carbon-rich surface layer; and (c) after
the magnetron sputtering the samples are able to adsorb more water which is bound
strongly so that it remains at the surface in vacuum [18].

During the deposition process, the increase in oxygen content mainly occurs for
two reasons: (1) deposition of the TiO2 film and (2) oxidation of the organic material.
The latter occurs due to the presence of O–C–O and COOH groups in the fiber [18].
The XPS analysis in this study is related to the fitting of the C 1 s line, which have four
contributions related to (a) C-C and C-H bonds, (b) C-OH and C-O-C bonds, (c) O-C-
O bonds, and (d) COOH group [18]. From Figure 14c, C1 is attributed to the satu-
rated C-C and C-H bonds. C2 at 287.0 eV is attributed to oxygen bound to two neigh-
boring carbon atoms, forming a triangle. C3 at 288.7 eV can be attributed to carboxyl
group (C=O)-OH, and C4 can be only attributed to –O–(C=O)–O– group [18].

4.4 Fourier transform infrared (FTIR) spectroscopy

The FTIR spectra observed in Figure 15 show the presence of TiO2 on the surface
of the fibers. The peak observed between 800 and 450 cm�1, at 670 cm�1, is quite
intense in the 75% O2–1000W sample, being attributed to the Ti–O elongation, which
is one of the characteristic peaks of the FTIR spectrum of TiO2. Švagelj et al. [48] in a
study of TiO2 deposition on Al2O3 substrates, they reported the presence of the Ti–O
elongation band, in the range of 640–700 cm�1. This peak is associated with the
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Figure 14.
(a) XPS survey spectrum from coated fiber 75% O2–1000 W, (b) high-resolution XPS spectrum of the line Ti 2p,
and (c) high-resolution XPS spectrum of the line C 1 s taken from the pristine fiber. Adapted from [18].
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presence of O–Ti bonds in the TiO2 film, which, in turn, bond to the surface of natural
fibers, possibly by hydrogen bonding or van der Waals forces.

4.5 X-ray diffraction (XRD)

The structure of the deposited films is influenced by various deposition parame-
ters, such as sputtering power, pressure, target-substrate distance, and the amount of
reactive gases present in the deposition chamber.

The formation of a solid film during the sputtering process is affected by two
factors: the heat generated by the substrate and the energy of the sputtered particles
hitting the substrate. In situations where the substrate is not intentionally heated, it
can still reach temperatures between 60 and 100°C due to the energy transfer from
the sputtered particles. Normally, amorphous TiO2 films require annealing at temper-
atures above 300°C to crystallize. However, Sério et al. [10] observed that crystalliza-
tion occurred in as-sputtered TiO2 thin films not because of the thermal energy, but
rather due to the energy of the sputtered particles.

The sputtered particles could be from the target, such as atomic Ti, molecular
TiO, molecular TiO2, and TiO2 clusters, as well as energetic electrons, negative ions
(O�), and neutrals reflected from the target (e.g., atoms of argon and oxygen) [10].
The films prepared with a sputtering power of 1000 W were found to be crystalline,
likely due to the enhancement of plasma density in front of the substrate and an
increase in the cluster growth rate with an augment in the sputtering power
(Figure 16) [10].

Figure 15.
FTIR spectra of the TiO2 films deposited by DC reactive magnetron sputtering in the 900–500 cm�1. Adapted
from [18].
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5. Conclusion

Ginger lily fibers are a new sustainable resource for new product development. Its
surface can be coated with a thin film of TiO2 by reactive magnetron sputtering whose
topography can be tailored depending on the power used and the percentage of
oxygen in the chamber. Regarding the structure, the application of 500 W power
allows obtaining a TiO2 film with an amorphous structure, while the samples with
twice the power showed polycrystalline structures. Anatase is the dominant phase in
the films deposited at 1000 W. XPS and FTIR analyses revealed that ginger lily fibers
can serve as a new sustainable resource for developing novel products, and the topog-
raphy of the TiO2-coated fibers can be tailored by adjusting the power and oxygen
percentage during reactive magnetron sputtering.
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Figure 16.
XRD patterns of as-sputtered TiO2 thin films deposited at 5% O2–500 W, 20% O2–1000 W, and 50% O2–
1000 W [10].
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Chapter 9

Effects of Gamma Radiation 
on the Structural, Optical, and 
Photocatalytic Properties of TiO2 
Thin Films and Nanostructures for 
Photovoltaic Applications
Aymen Bourezgui and Imen Kacem

Abstract

In this chapter, we delve into a comprehensive discussion of the complex impact 
of gamma rays on materials of titanium dioxide (TiO2) and their practical use in 
photovoltaic contexts. Our goal is to gain a better grasp of the dynamic interplay 
between gamma irradiation and the performance of TiO2 for better utilization in 
photocatalysis. We aim to explore how the employment of gamma-treated TiO2 in 
photovoltaic applications can lead to amplified solar cell effectiveness and endur-
ance. As we strive to enhance sustainable energy initiatives and extend the range of 
innovative prospects for TiO2 materials, we also scrutinize the fundamental processes 
that drive these developments. Additionally, we contemplate prospective avenues for 
research such as identifying optimal gamma-ray parameters, assessing the durability 
of treated TiO2, and studying the synergistic influence of combining gamma radiation 
with other treatments. Scientists and industrialists seeking to enrich the performance 
of TiO2 materials in solar energy endeavors can benefit from this chapter as a valuable 
reference.

Keywords: gamma radiation, TiO2 thin films, TiO2 nanostructures, structural 
modifications, optical properties, photocatalytic activity, photovoltaic devices

1. Introduction

Different fields are interested in titanium dioxide (TiO2) due to its exceptional 
traits that make it a versatile material and crucial area of research [1, 2]. With a high 
surface-to-volume ratio, TiO2 thin films are able to enhance properties and therefore 
receive significant attention [3]. The fabrication of TiO2 thin films has been accom-
plished through different synthesis techniques that include sol-gel, chemical vapor 
deposition, and physical vapor deposition [4–6]. Nevertheless, post-treatments like 
ionizing radiation [7] can enhance these thin films.
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Ionizing radiation in the form of gamma rays has been used to modify the chemi-
cal and physical characteristics of diverse materials, such as thin films of TiO2. 
Induction of defects and oxygen vacancies in TiO2 through gamma radiation has been 
found to change its structural, optical, and photocatalytic properties [8]. Still, the 
methods responsible for these adjustments are currently under investigation.

This chapter seeks to offer a thorough examination of how gamma radiation 
exposure affects the physical properties of both TiO2 thin films and nanostructures, 
emphasizing its applications in photovoltaic technology. An overview of how gamma 
radiation interacts with matter is provided in our discussion about the mechanism of 
TiO2 materials under this effect. This is given in our first section. In this section, we 
delve into how gamma radiation specifically impacts both the structural and elec-
tronic traits of TiO2. This includes examining how it creates defects and impurities 
within the material.

The third section thoroughly examines the optical effects of gamma radiation on 
titanium dioxide materials, which can lead to the creation of defects and alterations 
in electronic structure. These changes can result in improved visible light absorption 
and an overall enhancement of the material’s photocatalytic properties.

In the fourth section, we investigate the impacts of gamma ray exposure on TiO2 
photocatalytic characteristics. Our goal is to comprehend the intricate correlation 
between gamma radiation and TiO2 efficiency in various photocatalysis domains. 
Through exploring the underlying mechanisms, we can enhance TiO2 applications, 
realize more effective photocatalysts, and accomplish eco-friendly solutions, ulti-
mately resulting in increasing possibilities for innovation and utilization of TiO2 
materials.

In section five, we explore the prospects of utilizing gamma-treated TiO2 mate-
rials for photovoltaic purposes. The study concentrates on comprehending the 
consequences of gamma radiation exposure on TiO2 material’s efficiency, stability, 
and endurance concerning solar cells. Through scrutinizing the fundamental mecha-
nisms, our goal is to refine TiO2 implementation, design more potent photovoltaic 
apparatuses, and promote sustainable energy alternatives.

In the sixth section, we outline the future research directions for TiO2 materials in 
photovoltaic applications, which involve gamma rays treatment. Our primary focus is 
on finding the optimal gamma-ray treatment parameters and assessing the long-term 
stability of treated TiO2. Additionally, we investigate the possible synergistic benefits 
of combining gamma radiation with other treatments like doping and annealing.

In summary, this chapter provides a thorough examination of the impact of 
gamma radiation on thin films and nanostructures of TiO2, emphasizing its potential 
applications in photovoltaics. By exploring the underlying mechanisms that drive 
these effects, the latest advancements in this field, and the associated challenges and 
merits of gamma radiation treatment, this chapter aims to provide invaluable insights 
into utilizing this tool for optimizing the properties of TiO2-based devices.

2. Gamma radiation-induced structural changes in TiO2 materials

Significant alterations in the structural characteristics of TiO2 materials can result 
from exposure to gamma radiation. The crystalline composition may undergo changes 
such as transitioning from the anatase stage to the rutile phase or the emergence of 
faults in the crystal lattice. For instance, a study noted that a dose of 10 kGy (1 Mra) 
of gamma irradiation could raise the anatase to rutile transformation temperature 
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from T1 = 773 K to T2 = 873 K, indicating that the thermal stability of the TiO2 phase 
can be influenced by gamma radiation [9]. Furthermore, the ability of TiO2 nanopar-
ticles to perform optimally in procedures such as gas sensing and photocatalysis can 
be impacted by exposure to gamma radiation because it lowers the surface area and 
porosity of the particles. By way of example, another study found that the specific 
surface area of TiO2 nanoparticles declined from 233.2 to 107.9 m2/g subsequent to 
being exposed to 300 kGy of gamma radiation [10]. The reduction in surface area 
was determined to be due to the particles agglomerating and their porous structure 
collapsing.

Significant impacts on the properties and performance of TiO2 materials can result 
from structural changes induced by gamma radiation. The material’s optoelectronics 
and photocatalytic characteristics may be altered due to changes occurring in both its 
crystal structure and morphology [11]. In addition to its effects on other properties, 
such as morphology and gamma radiation-induced structural changes in titanium 
dioxide (TiO2), nanomaterials can reduce both surface area and porosity. Such altera-
tions could potentially hinder optimal functioning for gas sensing or photocatalytic 
applications [10].

The investigation of gamma radiation effects on TiO2 materials can involve 
various techniques such as X-ray diffraction, Raman spectroscopy, transmission 
electron microscopy, and positron annihilation spectroscopy [12]. A high anisotropy 
in stretched thermal and electrical conductivity of TiO2 nanostructures was dem-
onstrated by one study through DFT calculations [9]. Various studies have investi-
gated the effects of gamma radiation on organic matter composed of one or more 
constituents and determined that the radiation caused significant alterations to their 
electronic and structural properties [13].

It is important to comprehend the alterations in the structures of TiO2 nanoma-
terials and thin films caused by gamma radiation, as it can enhance their properties 
for numerous applications, such as photocatalysis, gas sensing, and electronics. For 
instance, research indicates that gamma radiation ameliorates the photocatalytic 
performance of TiO2 nanoparticles in eliminating pollutants [14]. Furthermore, a 
separate examination employing ceramography notes the influence of gamma radia-
tion on the electronic properties of TiO2 thick film, displaying that the method has 
potential in electronic device production [15].

It can be concluded that TiO2 material properties and performance can be greatly 
impacted by structural changes induced by gamma radiation. Therefore, it is crucial 
to utilize multiple techniques to study the impact of gamma radiation on TiO2 materi-
als in order to gain a better understanding of the underlying mechanism and enhance 
their effectiveness for diverse applications.

3. Gamma rays-induced optical effects in titanium dioxide materials

Gamma rays, as a form of high-energy electromagnetic radiation, can cause 
substantial changes in the optical properties of titanium dioxide (TiO2) materials, 
which serve as a highly adaptable and commonly employed semiconductor [4]. 
Interaction between titanium dioxide (TiO2) materials with gamma rays has been 
known to elevate photocatalytic properties, amend electronic structures, and lead to 
the formation of defects [5]. This section will analyze the different optical impacts 
caused by gamma rays in TiO2 materials, cite examples, and debate prior experimen-
tal findings.
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In their study, Bouregui et al. [16] explored the effect of gamma irradiation on 
TiO2 thin films’ optical properties. By examining how different doses of gamma 
radiation affected these properties, they found that the absorption edge shifted 
toward lower energies, indicating a decrease in bandgap energy. This change could be 
due to defects produced by gamma irradiation, which increase the number of defect 
states and enhance visible light absorption. Along with an increase in photocatalytic 
efficiency, Bouregui et al. [16] suggest that gamma irradiation may be a valuable 
technique for tailoring TiO2 thin films’ optical properties to meet specific application 
needs.

The TiO2 lattice can experience defects and oxygen vacancies when gamma rays 
disrupt the Ti-O bonds [16]. This, in turn, leads to an increased degree of defect 
states, decreased amount of energy in the bandgap, and a subsequent reinforcement 
of visible light usage [4]. This process can significantly amplify the photocatalytic 
efficiency of the TiO2 materials. Wang and colleagues [17] found that by diminishing 
the energy in the bandgap of gamma-irradiated TiO2 from 3.2 to 2.9 eV, there was a 
higher degree of photocatalytic activity for the breakdown of organic pollutants.

Several other investigations have reported related findings, supporting the 
influence of gamma rays on the optical properties of TiO2. In one study by Zuo et al. 
[18], gamma-irradiated TiO2 nanoparticles were perceived to demonstrate amplified 
photocatalytic activity in the degradation of organic pollutant under visible light. The 
enhancement was credited to a reduction in the bandgap and an escalation in oxygen 
vacancies induced by gamma irradiation. Furthermore, another study by Kumar et al. 
[19] observed a decline in the bandgap energy and improved photocatalytic activity 
of TiO2 nanoparticles following exposure to gamma rays, which they attributed to the 
creation of oxygen vacancies and other defects.

Furthermore, along with photocatalytic applications, gamma-irradiated TiO2 
materials seem to have the potential for solar energy conversion. TiO2-based solar 
cells can benefit from the reduced bandgap energy and increased visible light absorp-
tion. A good example is the improvement in photovoltaic performance shown by 
gamma-irradiated TiO2 nanotubes as reported by Choi et al. [20], which was due to 
the increase in visible light absorption and the gamma ray-induced modification of 
electronic structures.

In summary, TiO2 materials can undergo significant alterations in their optical 
properties, which can improve visible light absorption and photocatalytic efficiency 
when exposed to gamma rays. Numerous studies have highlighted the potential of 
gamma-irradiated TiO2 in areas like environmental remediation and solar energy 
conversion [16]. This is possible since the interaction between gamma rays and TiO2 
can produce defects, modify the electronic structures, and improve the photocatalytic 
properties. Subsequently, researchers should focus on refining the gamma irradiation 
protocol to achieve the optimal optical properties to enhance the applications of TiO2 
[14]. Hybrid materials are also an area of interest. Through the use of semiconduc-
tors or metal nanoparticles in conjunction with TiO2, researchers can enhance the 
separation of photogenerated charge carriers, resulting in improved photocatalytic 
performance [21]. In hybrid systems, gamma-irradiated TiO2 can be beneficial owing 
to the changes in optical properties resulting from gamma rays.

Research on gamma rays-generated optical outcomes in titanium dioxide materials 
has unraveled multiple remarkable phenomena that could be utilized to boost the effi-
ciency of TiO2 in diverse roles. Through comprehending the processes that underpin 
these outcomes and refining the gamma irradiation procedure, experts can forge 
fresh methods to engineer sublime TiO2 materials boasting specific optical traits. 
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This research domain is ripe with prospects for novel inventions and the generation 
of eco-friendly and better-performing resolutions in environmental revitalization, 
photovoltaic transformation, and other domains.

4. The influence of gamma radiation on titanium dioxide photocatalysis

Titanium dioxide (TiO2), a widely-employed photocatalyst, boasts reactive 
properties, commendable stability, cost-effectiveness, and biocompatibility. TiO2 
nanoparticles, of exceptional interest as photocatalysts, exhibit sterling photocata-
lytic activity since their nanometric size and high surface area promote such reactiv-
ity. Photocatalytic activity of TiO2 materials has been linked to a number of variables, 
gamma radiation among them. The effect of gamma rays on the photocatalytic 
activity of TiO2 nanoparticles has been investigated using a multitude of samples.

A research study by Bouregui et al. [16] examined the impact of gamma radiation 
on the photocatalytic performance of controlled atmosphere TiO2 nanoparticles. 
The nanoparticles underwent gamma irradiation at varying doses for investigation 
into their optical, structural, and photocatalytic attributes. According to the results, 
gamma radiation exerted favorable effects on the optic and structural properties of 
the TiO2 nanoparticles. Further, there was a rise in nanoparticle crystallinity while 
their bandgap energy decreased due to increased gamma radiation dosages. The pho-
tocatalytic activity of the nanoparticles also improved with gamma radiation dosages 
by enhancing their surface area and creating oxygen vacancies. Such vacancies served 
as recombination centers for electron-hole pairs, elevating the charge separation 
efficacy and photocatalytic activity of the nanoparticles.

The impact of gamma radiation on the photocatalytic features of TiO2 thin films 
was investigated in other studies conducted by Semalti et al. [22] and Haldar et al. 
[23]. Semalti et al. found that photocatalytic activity was amplified by gamma radia-
tion, particularly at higher doses, due to the accumulation of oxygen vacancies and 
the development of Ti3+ ions, which boosted carrier separation. In contrast, Haldar 
et al. found that TiO2 nanoparticle photocatalytic activity decreased with gamma 
radiation exposure due to defects and impurities formed in the crystal lattice, leading 
to reduced efficiency of charge separation and decreased photocatalytic activity.

A report published by Sajjadi et al. [24] shared that TiO2 nanoparticles’ photo-
catalytic activity reduced after gamma irradiation. Their research showed that as 
gamma radiation dose increased, the degradation rate of methylene blue dye under 
UV light irradiation also reduced. This is due to the reduction of oxygen vacancies 
and hydroxyl radicals. Xue et al. [25], on the other hand, discovered a rise in photo-
catalytic activity of TiO2 nanoparticles at higher doses of gamma radiation. However, 
they associated the decrease in activity at low doses to the formation of recombination 
centers for electron-hole pairs and oxygen vacancies, but the high concentration of 
Ti3+ ions enhanced the carriers’ separation.

We may reconcile these two studies by considering that oxygen vacancies and 
Ti3+ ions may impact TiO2 nanoparticle photocatalysis. Low gamma radiation may 
increase oxygen vacancies, limiting photocatalytic activity, but at higher doses Ti3+ 
ions may dominate oxygen vacancies, boosting photocatalytic activity.

Ti3+ ions may impact the photocatalytic activity of TiO2 nanoparticles [26], which 
can also be influenced by nanoparticle size, shape, contaminants, dopants, and irra-
diation conditions. Gamma radiation is known to affect the electronic structure and 
surface area of TiO2 crystals, potentially altering the generation and recombination 
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of electron-hole pairs vital to photocatalytic activity. The degree and type of defects 
formed by gamma radiation are dependent on a range of variables such as radiation 
dose, nanoparticle type, and environmental factors.

TiO2 materials remains an encouraging option for environmental use cases like 
purifying water and controlling air pollution despite contradictory findings. Using 
TiO2-based photocatalysis in solar photocatalysis has proven to effectively decontami-
nate and disinfect water [27]. The utilization of sunlight activates the photocatalytic 
reaction in this technology, without requiring any external energy sources or chemi-
cals. Moreover, nanotechnologies based on TiO2 have been created to purify and 
recycle water [28]. Their performance under visible light irradiation [29] is enhanced 
by combining TiO2 nanoparticles with other materials like graphene.

Photocatalytic performance of TiO2 materials can be enhanced by altering its 
surface properties. TiO2 nanoparticles that have high-energy {001} facets exhibit 
improved photocatalytic activity due to increased adsorption of reactant molecules 
and facilitated separation of charge carriers. This phenomenon has been previously 
established by researchers [30]. The photocatalytic activity of TiO2 nanoparticles can 
be enhanced by modifying their surface with metals or nonmetals, which improves 
their electron transfer and surface plasmon resonance properties.

Machine learning methods were utilized to examine the photocatalytic mechanism 
of semiconducting materials like TiO2. Photocatalytic processes involve various 
intricate steps such as adsorption-reaction mechanisms for reactants’ generation-
separation mechanisms for charged particles role played by defects impurities; all 
these procedures can be investigated with these techniques. To explore the photocata-
lytic mechanism of TiO2 nanoparticles under UV and visible light irradiation, Wu 
et al. [31] used machine learning algorithms. This study revealed that nanoparticles’ 
photocatalytic activity was most significantly influenced by its surface structure 
and defects. Additionally, other important factors include its adsorption energy of 
reactant molecules and its energy barrier for electron transfer.

To summarize, the influence of gamma radiation on the photocatalytic operation 
of TiO2 nanoparticles is still being questioned. Although some studies observed an 
improvement in photocatalytic performance, others noted a decrease. The inconsis-
tent findings could be ascribed to the different experimental parameters and TiO2 
nanoparticles employed in each analysis. Additional investigation is necessary to fully 
comprehend the fundamental mechanisms and optimize the conditions for employ-
ing gamma-irradiated TiO2 nanoparticles in photocatalytic applications. TiO2 remains 
a hopeful photocatalyst for environmental implementations, and its photocatalytic 
efficiency may be boosted by combining it with other substances or altering its 
surface attributes. Learning algorithms may provide useful understandings into the 
intricate techniques implicated in photocatalysis and lead the way in designing more 
dependable photocatalysts.

5. Potential uses of gamma-treated TiO2 materials in photovoltaics

The employment of gamma-examined TiO2 materials in photovoltaic devices 
has demonstrated various benefits over unexamined TiO2 materials. Gamma 
 radiation handling alters the surface qualities of TiO2, ensuring in enhanced light 
absorption, charge separation, and charge transit characteristics [16]. This may 
ultimately lead to amplified potency in solar cells, as well as enhanced resilience and 
durability.
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Dye-sensitized solar cells (DSSCs) could benefit greatly from using gamma-
treated TiO2 materials in photovoltaics. Their affordability, lightweight, and flexibil-
ity make DSSCs an attractive alternative to the conventional silicon-based solar cells 
[32]. Enhancement of the surface area, crystallinity, and charge transfer properties 
[33, 34] of TiO2 materials is achieved through gamma radiation treatment, thereby 
improving their performance in DSSCs. Additionally, this therapy can be a hopeful 
method to boost the effectiveness of DSSCs. TiO2 nanotubes treated with gamma 
radiation demonstrated higher DSSC efficiency compared with untreated ones, as 
discovered by Kim et al. [35], while Mahmoud et al. [36] found that using gamma 
radiation-treated TiO2 nanoparticles also increased DSSC efficiency.

Perovskite solar cells have displayed potential in photovoltaic applications due 
to their proficient power conversion efficiency and economical manufacturing 
expenses. Gamma radiation-treated TiO2 materials have been studied as electron 
transport layers in perovskite solar cells, with arousing outcomes. Liu et al. [37] noted 
a substantial progress in the conductivity and crystallinity of gamma radiation-
treated TiO2 films. This led to a better charge transfer performance and a consequen-
tial elevation in the efficiency of the perovskite solar cells.

The study of organic solar cells, which use organic materials rather than inor-
ganic semiconductors, has revealed promising results for use in photovoltaics. 
Gamma-treated TiO2 materials have been shown to improve power conversion 
efficiency by improving light absorption, charge separation, and mobility of charges 
properties [38].

Photovoltaic device performance may be enhanced by gamma radiation treat-
ment. Likewise, it can contribute toward enhancing the stability and endurance of 
TiO2 components that play a crucial role in their long-term deployment within solar 
panels. Gamma treatment applied on TiO2 materials enhances their surface area and 
crystallinity, which leads to reduced recombination speed and increased lifespan of 
electrons. This eventually promotes greater stability [35, 36]. TiO2 materials treated 
with gamma radiation have shown increased ability in resisting various forms of 
environmental stressors, among them being high temperature and humidity. Also, 
this can reinforce the resilience of solar panels [33].

In general, the utilization of gamma-treated TiO2 substances in the photovoltaic 
industry presents a hopeful pathway for creating effective, enduring, and stable 
solar cells. Further examination is necessary to investigate the complete potential 
of gamma radiation therapy on TiO2 materials and how it affects different photo-
voltaic devices. Solar energy’s adoption as a renewable resource can be boosted with 
improvements in this field. Additionally, their involvement can lead to the progres-
sion of a more eco-conscious future.

6.  Gamma rays treatment of titanium dioxide materials for photovoltaic 
applications: Future research directions

Further investigations are needed to find the optimum parameters for gamma-ray 
treatment of TiO2 materials, which would result in desirable properties for photo-
voltaic applications [10]. The dose and the dose rate of gamma radiation are critical 
considerations in controlling the physical and chemical properties of the material. 
Gamma radiation can affect the crystal structure, morphology, and electrical features 
of TiO2 materials in different ways, thus making it a promising research avenue to 
determine the optimal protocol for photovoltaic usage.



Updates on Titanium Dioxide

184

Combining gamma radiation with other treatments, such as doping and annealing, 
may further enhance the performances of titanium dioxide thin films and nanostruc-
tures used in photovoltaic applications. Doping with transition metal ions or non-
metals can improve titanium dioxide material’s photocatalytic activity and electronic 
properties [11], while annealing can enhance its conductivity and optical absorption 
properties by reducing defects and enhancing crystal quality [12]. Novel strategies for 
improving of titanium dioxide thin films and nanostructures properties for photovol-
taic applications can be explored by mixing gamma radiation with such treatments.

It is essential to study the long-term stability of TiO2 materials that have been 
exposed to gamma radiation [13], as gamma radiation has been shown to gradually 
diminish the properties of materials. Thus, it is crucial to identify the degradation 
processes and investigate the durability of TiO2 materials after extended exposure to 
gamma rays. This knowledge is essential for ensuring the long-term performance and 
durability of photovoltaic applications that involve TiO2 materials.

Future research should focus on enhancing the durability of irradiated TiO2 
materials, refining gamma radiation treatment settings, and exploring the use of 
gamma radiation in conjunction with other therapies. These strategies will help 
advance the comprehension of photovoltaics by utilizing more efficient and resilient 
TiO2 materials.

7. Conclusion

Titanium dioxide thin films and nanostructures exposed to gamma radiation 
exhibit significant modifications in their structural, optical, and photocatalytic 
properties, rendering them promising candidates for various applications. Gamma 
irradiation of TiO2 is being explored for its potential use as an electron transport layer 
in perovskite solar cells and as a photoanode in dye-sensitized solar cells. Experiments 
have confirmed long-term increases in power conversion efficiency and reliability, 
offering hope for practical usage of these materials in PV systems.

Future research avenues may include refining the gamma radiation treatment 
settings to achieve greater performance and investigating the compatibility of these 
materials with other photovoltaic systems such as organic photovoltaics and multi-
junction solar cells. Comprehensive research must be conducted to ensure the safety 
of these materials in real-world applications.

In summary, gamma radiation treatment of TiO2 is a promising technique for 
customizing the material’s properties for use in photovoltaic cells. Gamma radiation-
induced changes in the crystal structure, morphology, electronic properties, and 
photocatalytic activity of TiO2 contribute to enhancements in photoanode and elec-
tron transport layer performance in solar cells. However, further studies are needed to 
determine the viability of gamma radiation-treated TiO2 in practical applications.
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Chapter 10

Plasmonic-TiO2 Nanohybrid 
for Environmental and Energy 
Applications
Jaspal Singh and Ashwani Kumar Verma

Abstract

Engineering the plasmonic nanohybrid structures to provide the advancement 
in their optical and photocatalytic profiles is one of the important aspects for the 
development of several environmental and energy applications. Plasmonic  
nanohybrids, integration of semiconductors and noble nanoparticles provide  
efficient charge separation due to Schottky junction and plasmon nanoparticle 
induced electromagnetic field. Effective charge separation and electromagnetic 
features make plasmonic nanohybrids a promising candidate for SERS-based detec-
tion environmental detoxification and energy harvesting applications. In the present 
chapter, we will summarize and elaborate the different strategies and modification 
techniques to enhance photocatalytic-driven environmental and energy applications. 
Moreover, the current chapter also includes the detection of various harmful pollutant 
molecules and their decomposition under sunlight using several plasmonic nanohy-
brids. This chapter also reveals the origins of morphological, optical, and plasmonic 
variations on TiO2 nanostructures for enhanced photocatalytic efficiency. We have 
also highlighted the probable mechanism due to the plasmonic nanoparticles’ aspects 
over TiO2 nanostructures and their future perspectives of advanced photocatalysis. 
This chapter provides the fundamental synthesis aspects of plasmonic nanohybrid 
and their possible usage in energy and environmental applications significantly. This 
chapter will provide a basic understanding for the readers to develop several plas-
monic nanostructures for environmental applications.

Keywords: TiO2, plasmonic nanohybrids, photocatalysis, energy, pollutants in water

1. Introduction

Nanostructured semiconductor-based photocatalysts have proven tremendous 
candidates after the outstanding water-splitting discovery by using TiO2-based 
electrodes in 1972 [1]. Owing to the band structure properties, semiconductors have 
the ability to perform and enhance the redox reaction with different light exposure 
[2]. The nontoxicity, ease of availability, and cost-effectiveness properties of semi-
conductors make them fascinating for environmental and energy applications [3–5]. 
Several nanostructured semiconductors such as ZnO, CuO and TiO2, WO3, and V2O5 
have been employed for different energy and environmental applications [6–10]. 
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In comparison to other semiconductors, TiO2 has been found more beneficial for 
photocatalytic and energy generation devices due to its high photostability, unique 
band gap, lower cost, and non-toxic nature [11]. TiO2 is known to be an n-type 
semiconductor and is the most explored towards energy harvesting and energy 
generation applications owing to its fascinating electrical and optical behavior [12]. 
TiO2 contains three crystalline phases with wide bandgap; anatase rutile (3 eV), 
brookite (3.1 eV), and (3.2 eV) [13]. Among these phases, the rutile phase is more 
stable as compared to the brookite and anatase phases. Brookite and anatase phases 
are stable only at low temperatures and can be transformed into rutile phases by using 
high-temperature thermal annealing. The anatase phase is found to be more efficient 
as a photocatalyst as compared to both other phases of TiO2. Rutile TiO2 is the most 
stable phase, while. As compared to the rutile and brookite phases, anatase TiO2 is 
more suitable for energy-harvesting reaction processes [13]. The formation of the 
biphasic TiO2 is also one of the effective approaches to improving the charge separa-
tion in TiO2 without any external modification. Several research groups have demon-
strated the improved photodecomposition ability of mixed-phase TiO2 in comparison 
to single-phase TiO2 [14–17]. Singh et al. [13] used the hydrothermal method and 
synthesized mixed-phasic TiO2 nanoflowers and used them as photocatalysts for the 
water remediation applicators. They have shown that mixed-phase TiO2 nanoflowers 
exhibited high photocatalytic activity owing to the creation of the heterojunction 
interfaces among the rutile and anatase phases of TiO2.

As compared to the bulk, nanostructured TiO2 contains superior photocatalytic 
efficiency due to their effective active sites and high surface-to-volume ratio, which 
provides a strong tendency for molecular interactions. TiO2 with a wide band gap 
(3.2 eV) absorbs ultra-violet light, following the charge separation, yielding the photo-
induced electrons in the conduction band and the complementary holes in the valance 
band. These photo-generated carriers are short-lived, so they quickly recombine and 
result in diminishing photocatalytic efficiency. In order to resolve these issues, several 
methods have been adopted by various research groups, such as doping with metals 
[18], non-metals [19], and, more recently, through surface modification by noble 
metal nanoparticles [20–22]. Metal nanoparticles functionalizing TiO2 duplicate as 
an electron sink capturing electrons from TiO2 and also help to furnish more charged 
carriers using its localized electric field or Surface Plasmon Resonance (SPR) [20, 21]. 
With the attachment of plasmonic metal nanoparticles (MNP), the reduction in the 
recombination rate takes place by the migration of electrons from the conduction band 
of TiO2 to MNP. In addition, the electromagnetic field generated by the plasmonic 
nanoparticles attached over the TiO2 surface under electromagnetic radiation also 
helps to reduce the recombination rate. Owing to the SPR effect of plasmonic nanopar-
ticles, the plasmonic nanoparticles modified TiO2 enable visible light adsorption. Thus 
plasmonic nanoparticles functionalized TiO2 nanostructures are expected to exhibit 
superior energy harvesting efficiency as compared to bare nanostructured TiO2 [23]. 
Figure 1 reveals the working mechanism of the plasmonic nanoparticles functional-
ized TiO2 nanostructures. Bare TiO2 nanostructures contain a high probability of 
charge recombination. With the modification with plasmonic nanoparticles, efficient 
charge transfer occurs; consequently, a reduction in the recombination rate takes 
place. A high density of electrons in the conduction band produces superoxide radicals 
by reacting with the surface oxygen, while holes transform the water molecule into 
hydroxyl radicals [23]. These two unsaturated radicals effectively control the different 
energy generation and environmental applications, such as H2 production and water 
purification, respectively. Plasmonic nanoparticles functionalized TiO2 nanostructures 
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significantly improve its efficiency in various applications such as sensors [24], solar 
cells [25], photocatalytic activity [26], energy storage [27], and energy production 
[28]. Various physical and chemical techniques such as sol-gel [29], impregnation 
method [30], sputtering [31] pulse laser deposition method [32], and photo-deposi-
tion method [33] have been embraced by different research groups for the fabrication 
of plasmonic nanocomposites such as Ag-TiO2 and Au-TiO2.

2. Environmental applications of plasmonic-TiO2 nanohybrid

In this section, plasmonic-TiO2 nanostructure-driven environmental applications 
have been explained in detail. Environmental applications include the SERS-based 
detection of pollutant molecules solution and the breakdown of pollutant molecules 
in water under light illumination. This section also explains the underline mechanism 
responsible for the outstanding performance of plasmonic-TiO2 nanohybrid for 
photocatalytic water purification and SERS-based detection process. This section will 
provide an in-depth understanding for the readers and encourage them to develop 
several plasmonic nanostructures for environmental applications.

2.1 Photodecomposition of organic pollutants in water

Plasmonic-TiO2 nanohybrids have been proven the outstanding photocatalyst 
which can effectively decompose industrial pollutants [20–22]. Plasmonic-TiO2 
nanohybrids photocatalyst with efficient charge separation properties reveals the 
light-harvesting ability from UV to visible regions, which make them fascinating for 
photodecomposition reactions. Various research groups studied the modification 
of plasmonic nanoparticles over different morphologies of TiO2 for photocatalytic 
applications [34–36]. The attachment of plasmonic nanoparticles (Ag, Au) with TiO2 
nanostructures is an effective way to improve their photodecomposition behavior. 
The existence of plasmonic nanoparticles on nanostructured TiO2 forms the Schottky 
junctions interface and captures the photo-generated electrons, and decreases the rate 
of recombination in TiO2. Moreover, due to the presence of plasmonic nanoparticles 

Figure 1. 
Scheme reveals the efficient charge transfer mechanism in TiO2 using plasmonic noble metal nanoparticles.
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over TiO2, their light-harvesting ability significantly extended [20, 21, 37]. Previous 
reports indicate the remarkable improvement in TiO2 nanostructures with the modifi-
cation of plasmonic nanoparticles such as Ag and Au [20–23, 34–37].

Uniformly interspersed Ag nanoparticles on 1-D TiO2 nanostructures have been a 
favorite choice for their efficient SPR excitation ability, feasibility, electron mobility, 
and cost-effectiveness. Ag-dispersed TiO2 nanorods [38], nanobelts [39], and nanow-
ires [34] have been synthesized using different synthetic procedures for effective 
decomposition of a range of dyes such as Rhodamine B, Malachite Green, MB, R6G, 
etc. A contemporary study conducted by Singh et al. [40] postulates electron scaveng-
ing and LSPR of Ag as predominant factors responsible for the exceedingly high effi-
ciency of their synthesized photocatalyst nanocomposites towards toxin degradation. 
Three different Ag-modified TiO2 nanorods with increasing Ag loading, respectively, 
were synthesized using one pot wet chemical process. Their optical, structural, and 
morphological profiles were well characterized. Using sunlight (950 W/cm2) as their 
illumination source, they degraded model organic dyes methyl orange and methylene 
blue. In another report, Bian et al. [41] informed the synthesis of Au-attached TiO2 
nanohybrids using the impregnation reaction and demonstrated photodegradation 
of chlorophenol, MB, and RhB 4 pollutant solution under Xe lamp exposure. In their 
photocatalysis studies, 10 μM of chlorophenol, MB, and RhB were decomposed in 
4 hours, 20 minutes, and 2 minutes, respectively. Li et al. [42] reported the forma-
tion of Au-functioned TiO2 nanostructures by a wet chemical process. Pyrolysis 
method-driven TiO2 nanostructures were attached with plasmonic Au nanoparticles 
with various concentrations (2, 5, and 10 wt%). The prepared Au-TiO2 nanohybrids 
(100 mg) exhibited photodegradation by diminished RhB (20 mg/L) molecules 
solution in 180 minutes under visible light exposure. Singh et al. [43] reported the 
Ag-TiO2 thin films formation by combining the sol-gel method with the spin-coating 
method. Figure 2(a-d) show the morphological changes in modified Ag-TiO2 thin 
films in comparison to the bare Ag-TiO2 and. They tuned the photocatalytic profiles 

Figure 2. 
SEM images of (a) bare Ag-TiO2 thin films and (b-d) ion beam modified Ag-TiO2 thin films, (e) UV-Visible 
spectra of bare and modified Ag-TiO2 thin films, (f) photocatalytic activity of bare and modified Ag-TiO2 thin 
films under sunlight. Reprinted from the reference [43].
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of Ag-TiO2 thin films by using the ion-beam irradiation technique. They modulate 
the optical properties effectively, and consequently, the light-harvesting behavior 
of the Ag-TiO2 was largely affected. They have observed a significant shift in Ag SPR 
peak from 456 to 446 nm under different ion fluence values (Figure 2(e)). In their 
photocatalytic activity, they have demonstrated the breakdown of 5 μM MB pollutant 
molecule solution. They have shown that the most efficient Ag-TiO2 thin film decom-
posed the MB solution in 30 minutes of sunlight exposure (Figure 2(f )).

Wang et al. [44] successfully prepared Au-TiO2 nanohybrids with the joint effort 
of the sol-gel method with the solvothermal method. In their photocatalytic stud-
ies, 500 mg/L of the fabricated photocatalyst was employed for the decomposition 
of 50 mg/L MB solution under the exposure of a Hg lamp (500 W). In their stud-
ies, they have highlighted that Au-modified porous TiO2 nanostructures exhibited 
superior photodegradation nature as compared to bare porous TiO2. The superior 
photodecomposition nature of the porous Au-TiO2 nanostructures could be assigned 
to the effective charge separation and improved light harvesting properties owing to 
the SPR effect in plasmonic nanoparticles. Recently, Singh et al. [20] reported that 
Au nanoparticles encapsulated TiO2 nanospheres by using the chemical precipitation 
method. They have engineered the size of Au nanoparticles by varying the concen-
tration of Au precursors during TiO2 growth. Figure 3(a-e) shows the morphology 
and elemental mapping of Au-encapsulated TiO2 spheres. With the variations in the 
size of Au nanoparticles, their optical properties improved significantly. Modified 
Au-TiO2 nanohybrids absorb the entire visible region (500–800 nm) and majorly 
contributed to increased photocatalytic activity (Figure 3(f )). The quenching in the 
rate of recombination with the variations in the size of Au nanoparticles is further 
confirmed by the reduction in the intensity of photoluminescence spectroscopy.

They have highlighted that the outstanding photocatalytic behavior of the Au-TiO2 
nanohybrids can be assigned to the formation of the Schottky junction interface 
among the Au nanoparticles and TiO2. Owing to the creation of the Schottky junction, 
the density of electrons in the conduction band significantly improves the photode-
composition reaction and enhances the degradation rate of the pollutants solution. In 
their photocatalytic studies, 10 μM of solution three industrial well-known pollutant 
molecules solution (MB, MG, and MO) were decomposed in 30, 20, and 30 minutes 
of sunlight exposure, respectively, by using 5 mg of the photocatalyst. Singh et al. 
[45] prepared the Au-TiO2 thin films by combining the spin coating method with 
the thermal evaporation method and employed them for the decomposition of a 
5 μM solution of MB under natural sunlight exposure. They have demonstrated that 
30 minutes of sunlight exposure can decompose a significant amount of pollutants.

Enhanced photocatalytic activity of Au-TiO2 nanohybrids thin film can chiefly 
correspond to different electronic transfers occurring at the composite surface 
(Figure 4). When Au-TiO2 photocatalyst with adsorbed MB molecules is illumi-
nated by a light source of appropriate wavelength, two major electron pathways 
get activated. Primarily, upon excitation, electrons from the valence band of TiO2 
gain energy and subsequently get transferred to its conduction band, leaving a hole 
behind and thus generating a pair of photo-induced charge carriers. The presence of 
Au nanoparticles in the vicinity helps the composite system by taking up the photo-
induced electrons from the conduction band of TiO2, thereby suppressing recombina-
tion and felicitating catalytic reactions at the surface by acting as an electron sink. 
Secondly, Au nanoparticles upon light interaction, exhibit surface plasmon resonance 
(SPR), driving the generation of increased electron-hole pairs in TiO2 on account of 
intense electric fields localized around these plasmonic nanostructures close to the 
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TiO2 surface. This phenomenon is referred to as Plasmon Resonance Energy Transfer 
(PRET) [45]. These plasmonic nanoparticles have been reported to serve as “hot 
spots” allowing increased electron-hole generation and improved photocatalytic reac-
tions [45]. Though Au-TiO2 electron exchange is an important step towards improved 
catalytic behavior of the nanocomposite system, it is not the key rate-determining 
step for the reaction. As a consequence of Schottky junction formation, electronic 
flow is maintained from TiO2 to Au until equilibrium is attained. [45] Apart from Au, 
the adsorbed pollutant molecules also contribute to increased photocatalytic activity 
by absorbing light leading to electron transfer into the TiO2 conduction band. The 
photo-generated electrons produced through different pathways react with oxygen 
molecules at the surface, converting them into superoxide radicals (•O2

−), while the 
holes in the valance band react with water molecules generating hydroxyl radicals 
(•OH). These unsaturated highly active radicals transform the pollutant molecules 
into their degradation products [20, 21].

Figure 3. 
FESEM images of (a) Au-TiO2 nanohybrids revealing the Au encapsulated TiO2 spheres, (b) combined mapped 
FESEM image of Au-TiO2 nanohybrids, elemental mapping showing the individual distribution of (c) Au, (d) 
Ti and (e) O, (f) UV-DRS curves for synthesized Au-TiO2 nanohybrids with tuned optical properties, (g) Scheme 
for enhanced photodecomposition of Au-TiO2 nanohybrids. Reprinted from the reference [20].
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From the above discussion and excellent studies, it can be concluded that the 
tremendous properties of plasmonic-TiO2 nanohybrids have significantly improved 
the photodecomposition process by providing additional light adsorption and reduc-
tion in the recombination rate.

2.2 Detection of pollutants in water

The contamination of pollutant molecules in the form of organic dyes, pesticides, 
pharmaceuticals, and biomolecules requires proper monitoring due to the serious 
impacts on human health, aquatic life, and the terrestrial environment [46]. As a 
fingerprint recognition technique, Raman spectroscopy reveals deep chemical and 
structural insights such as chemical bonding and molecular interactions and thus 
enables the identification of unknown molecular species [47]. The Raman spectral 
features consist of bands corresponding to vibrational or rotational transitions; 
however, its direct applicability is hindered due to inherently weak Raman scatter-
ing. Surface-enhanced Raman spectroscopy (SERS) has proven its uniqueness as a 
reliable spectroscopic technique for the direct identification of bio-molecules and 
chemicals owing to its selectivity and sensitivity for the sensing of ultralow concen-
trations of analyte molecules [48]. Nowadays, As a sensitive, specific, non-destruc-
tive, and label-free identification technique, SERS has shown enormous potential 
in several fields inducing medical sciences, life sciences, and analytical chemistry 
for the targeted identification of chemical and biological hazardous trace species. 
Primarily, the overall signal enhancement through SERS is governed by electromag-
netic as well as chemical enhancement mechanisms. The modified SERS spectral 
features indicate the adsorption or chemical interaction of analytes with suitable 
SERS substrates and, thus, imply the involvement of charge transfer-initiated 
chemical enhancement along with the predominated electromagnetic enhancement. 
The formation of the charge-transfer complex is critically dependent on the atomic-
scale substrate’s surface properties along with the surface density of the adsorbates; 
therefore, the chemical state and topography of the surface strongly determine the 
overall SERS enhancement [49, 50].

Figure 4. 
Schematic picture revealing the efficient charge transfer among Au and TiO2 for enhanced photodecomposition. 
Reprinted from the reference [45].
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Initially, a wide range of isotropic and structurally modified anisotropic noble 
metallic nanostructures such as nanorods, nanotriangles, nanowires, pyramids, 
nanostars (NSs), nanocubes, nanodendrites (NDs), nanoflowers (NFs), and core-
shell NPs in the form of nano-crystalline aggregates and roughened surfaces were 
utilized for the ultra-sensitive sensing of different analytes. Along with efficient 
signal enhancement capabilities, the stability, reproducibility, cost-effectiveness, 
biocompatibility, and spectral background of SERS substrates are the vital param-
eters restricting the reliable and long-term practical applicability of plasmonic 
nanostructures-based SERS platforms for the identification of analyte molecules 
[51]. Owing to their high surface area, excellent physical properties, and flexible and 
low-cost fabrication peculiarities, semiconductor materials have shown the potential 
to address the issues with noble plasmonic SERS substrates and recently emerged as 
promising platforms for SERS-based molecular detection applications utilizing the 
chemical enhancement and the associated charge-transfer between the analyte and 
semiconductor’s surface. The signal enhancement produced by semiconductor SERS 
(SC-SERS) substrates relies on the chemical enhancement mechanism and depicts 
lesser enhancement than traditional plasmonic materials [52]. However, semiconduc-
tor SERS substrates recently gained significant research attention as the prospective 
potential candidates with improved SERS performance. The high sensitivity and 
resolution of the SERS technique enable the study of the chemical and physical nature 
of the interaction among molecule and semiconductor nanostructures, as well as the 
properties of semiconductor nanomaterials. Direct proximity among the adsorbate 
molecule and SERS substrate initiates the charge transfer (CT) between them and 
contributes to some distinct spectral features [53, 54]. The varied adsorption direction 
of the adsorbate molecules on the SERS substrate could produce distinctly resolved 
spectral features, which in turn provide significant insights into charge-transfer-
induced chemical enhancement mechanisms.

Interestingly, the synthesis simplicity, high stability, chemical inertness, non-
toxicity, and corresponding bio-compatibility of nano-structures titanium (IV) oxide 
(TiO2) make him a potential candidate for stable SERS signal requirements along with 
the excellent SERS response. A rich variety of novel TiO2 NPs-based SERS substrates 
have been fabricated through varying the nanostructure’s morphology, including 
spherical nanoparticles (NPs), nanowires [NWs], and nanorods [NRs] employing the 
various fabrication strategies such as sol-gel, hydrothermal, and solvothermal meth-
ods [55]. Especially, the three-dimensional (3D) architectures such as nanoflowers 
[NFs] and porous nanomaterials provide the supply larger surface area for the adsorp-
tion of analyte molecules and further support the chemical enhancement in SERS. 
The limited Raman intensity enhancements from semiconductor TiO2 substrates 
can be improved by optimizing the micro/nano-structured morphology or more 
efficiently through incorporating plasmonic nanomaterials. Musumeci and coworkers 
reported the strong SERS signal enhancements of adsorbed enediol molecules over 
the pure TiO2 NPs surface through the essential formation of the charge-transfer (CT) 
complex of TiO2 with the molecule. The enhancement was attributed to the increased 
surface atoms and the consecutive adsorbed analytes molecules as well as borrowing 
the intensity from the allowed continuum state transitions (Figure 5) [56].

Anatase and rutile phases of TiO2 NPs-based SERS substrates were prepared by 
Yang and coworkers utilizing the sol-hydrothermal method and explored for the TiO2 
phase-dependent study towards the sensitive identification of 4-mercaptobenzoic 
acid probe molecules significantly contributed by the TiO2-to-molecule charge 
transfer mechanism [57].
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As shown in Figure 6, the charge-transfer initiated SERS activity of analyte 
molecule adsorbed TiO2 NPs is dominated by the three different kinds of transition 
(i) the excitation of electrons from the valence band (VB) to the conduction band 
(CB) of TiO2 and their subsequent transition to LUMO of the adsorbed molecules 
with excitation larger than the TiO2 band gap energy (~3.2ev), (ii) the excitation of 
electrons from HOMO to LUMO of adsorbed molecules followed by the injection into 
TiO2 CB, and (iii) the excitation of electrons from TiO2 VB to surface state energy 
levels and their transfer to the LUMO of the adsorbed molecules [58]. The abundance 
availability of TiO2 surface defects or surface oxygen vacancy defects can bind the 
electrons and result in the formation of surface state energy levels. Lin et al. reported 

Figure 5. 
(a) Absorption, and (b) normal Raman (0.1 M ligands) and SERS spectra of 5 nm pure TiO2 NPs (1 × 10−4 M 
NP colloidal solution) after the modification with different (4 × 10−2 M) ligands. In figure λexc represents the laser 
excitation wavelength. Reprinted from the reference [56].

Figure 6. 
Different modes representing the charge transfer between the TiO2 and adsorbed analyte molecule. Reprinted from 
the reference [58].
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the ultrahigh SERS activity with EF ~105 for the 4-NBT probe molecule utilizing 
photo-induced charge transfer employing crystal-amorphous core-shell black TiO2 
NPs by a controllable solid-state synthesis method [59]. Electrochemical anodization 
of titanium substrates was employed for the fabrication of TiO2 Nanotube Arrays for 
the improved detection of cytochrome C with EFs ~104 and LOD down to the ~10−7 M 
concentration [59]. Notably, the crystalline femtosecond laser generated TiO2 nano-
fibers in the form of three-dimensional chained nanoparticles provided the resultant 
EFs of ~1.3 × 106 of the CV dye molecules, which is comparable enhancement 
produced by noble metal-based substrates. This significant contribution to SERS is 
assigned to the fabrication of 3D nanonetworks, including the combined contribution 
of nanogap, nanocluster, and plasmonic hybridization [60].

Nowadays, the noble metal-semiconductor nanocomposites have attracted signifi-
cant research attention as noble SERS substrates utilizing the synergistic interaction 
between the noble metal and semiconductor surfaces. The relatively poor SERS activ-
ity of pure TiO2 can be significantly improved by incorporating plasmonic materials 
with TiO2 substrates through the composite formation. Notably, noble metal NPs can 
be simply incorporated on the TiO2 surface through the photocatalytic process and 
therefore offers the ease of fabrication of noble metal-TiO2 hybrid nanocomposites 
[61]. The SERS activity of semiconductor substrates is dominantly assigned to metal-
molecule charge-transfer contribution and the correspondingly involved chemical 
enhancement mechanism results in the weak SERS activity of pure TiO2 NPs-based 
substrates. The considerably increased photophysical characteristics can be achieved 
through the attachment of metal nanoparticles with TiO2, through moving the 
titania’s Fermi level to more negative potentials and inhibiting the electron-hole pair 
recombination [62].

Initially, some studies reported the fabrication and SERS performance of hybrid 
Ag/TiO2 and Au/TiO2 composites [55]. The excitation of SPR of AgNPs produces 
enhanced electromagnetic fields at the AgNPs surface and, in turn, the generation 
of hot electrons at the metal-semiconductor interface. The correspondingly formed 
Schottky junction promotes the transfer of generated hot-electrons towards the 
conduction band of TiO2 from the metal-semiconductor interface. Thus, the SERS 
activity of Ag/TiO2 hybrid substrates is mainly governed by the three contributions, 
namely, the plasmonic NPs, the transition of electrons between the highest occupied 
molecular orbital (HOMO) energy level, and the lowest unoccupied molecular orbital 
(LUMO) energy level of analyte molecule and initiation of charge transfer between 
the Fermi level of Ag nanoparticle and HOMO level of the analyte molecule, as 
explained by Zhao et al. for adsorbed R6G molecules over surface of Ag/TiO2 nanow-
ire substrates [63].

Fu at el. employed the modified photocatalytic method for the AgNPs deposited 
TiO2 films for the detection of rhodamine 6G dye molecules [64]. However, the fast 
photocatalytic process results in the inhomogeneous synthesis of AgNPs under UV 
exposure and so restricts the applicability of the photocatalytic method for reproduc-
ibly uniform deposition of AgNPs over TiO2 surface. Especially, Song and coworkers 
demonstrated the applicability of metal composite nanofibers by detecting 4-MPy 
molecules adsorbed over the AgNPs-coated TiO2 nanofibers by an enhancement fac-
tor of ~105 [65]. In another report, Wang and coworkers fabricated the in-situ AgNPs-
deposited well-ordered TiO2 nanosheets utilizing hydrothermal synthesis exhibiting 
excellently uniform and renewable SERs activity with EF ~108 for 4-mercaptobenzoic 
acid [66]. Yang et al. utilized the wet chemical approach for the preparation of Ag/
TiO2 core-shell NPs and reported higher sensitivity as compared to Ag cores through 
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synergistic SERS enhancement. The prepared ultra-thin coated Ag/TiO2 core-shell 
NPs were employed for the 4-MBA and tetramethyl thiuram disulfide (TMTD) 
insecticide with significantly lowered detection limits of 10−11 M and 10−10 M con-
centrations, respectively [67]. Notably, Lu et al. synthesized the hierarchical micro/
nanostructured TiO2/Ag architectures utilizing a combined approach of femtosecond 
laser structuring and hydrothermal treatment. The prepared SERS substrates dem-
onstrated four-fold enhancement compared to the hydrothermally fabricated bare 
Ti surface along with LODs down to ~10−14 M R6G concentration [68]. In addition, 
the applicability of Ag/TiO2 hybrid SERS substrates was also explored towards the 
detection of various biomolecules such as antibiotics, circulating tumor cells (CTC), 
uracil DNA glycolase (UDG), and bacteria E. coli and S. aureus [69–72]. Recently, 
photo-catalytically synthesized TiO2@Ag nanostructured SERS bioprobe substrates 
were developed by Xu et al. targeted towards the ultralow (~10−14 M) concentration 
detection of R6G molecules and further utilized to specifically recognize CTC with 
LOD down to 1 cell per mL (Figure 7) [73].

Therefore, the recent SERS studies unveiled the amplified SERS performance of 
hybrid Ag/TiO2 substrates comparable to noble plasmonic NPs based substrates with 
detectability down to picomolar and femtomolar concentration range.

Furthermore, TiO2 substrates coated with Au nanohybrid structures were widely 
utilized to obtain higher sensitivity, stability, and superior compatibility for detect-
ing biological molecules. The incorporation of Au with TiO2 substrates improves 
the biocompatibility of the substrates along with the promoted stability of the SERS 
signal due to the non-oxidizing properties of Au. For instance, Jiang et al. proposed 
Au-deposited TiO2 (Au-TiO2) nanocomposites through photocatalytic reduction of 
HAuCl4 on TiO2 NPs [74]. The prepared Au-TiO2 nanocomposites produced recyclable 
and sensitive SERS detection of 4-MBA molecules with the lowest detectable con-
centration of ~10−8 M, which benefitted from the synergistic contribution of metals 
and semiconductors. The employment of nanometer-sized inter-particle gaps with 
densely packed AuNPs deposited on vertically aligned large-area TiO2 nanosheets 
(NSs) reported superior sensitivity along with the ultralow detectability of ~10−14 M 
crystal violet concentration (Figure 8) [75].

Interestingly, Singh et al. employed the combined thermal deposition and spin 
coating procedure with the improved optical response and targeted towards effi-
ciently sensitive and simultaneous identification of two organic pollutants rhodamine 

Figure 7. 
(a) SERS signal of different concentration of R6G molecules adsorbed over TiO2@Ag nanostructure. The inset 
depicts the SERS spectra at low R6G concentrations (10−12, 10−13, and 10−14 M), and (b) SERS intensity at 
~613 cm−1 R6G peak adsorbed over TiO2@Ag–R6G SERS system at different R6G concentrations. Reprinted from 
the reference [73].
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6G (R6G) and methylene blue (MB), exhibiting the Raman intensity enhancement 
factors of the order of ~107 along with excellent multiplexed detection capabilities 
[45]. Photo-reduced growth of AuNPs over TiO2 (TiO2/AuNWAs) nanowire arrays 
used as recyclable and sensitive SERS platform for detecting ~10−9 M concentration 
of R6G molecules. In addition, the comparative SERS study of bare TiO2, AuNPs, and 
TiO2/Au NWAs reveal remarkably improved SERS performance of TiO2/Au NWAs 
substrates [76]. Recently, AuNPs decorated ordered porous TiO2 thin films based 
SERS sensors were optimized by Liang and coworkers for detection of rhodamine 6G 
probe molecules [77]. The improved bio-compatibility of Au/TiO2 nanostructures 
offers an additional degree of freedom for detecting various biomolecules with high 
sensitivity. The highly sensitive detection of adenine biomolecules was performed by 
Jiang and coworkers utilizing Au/TiO2/Au nanosheet substrates through sputtered 
deposition of AuNPs with a detection limit of ~10−7 M concentration [78].

Apart from monometallic NPs deposited TiO2 SERS substrates, bimetallic Au/Ag 
nanoparticles (NPs) decorated well-aligned TiO2 nanorod arrays (NRAs) with strong 
absorption from 400 to 1300 nm spectral region generated the superior NIR-SERS activ-
ity for antibiotic chloramphenicol and ciprofloxacin in real-world water samples with 
nano-molar detection limits [79]. Additionally, Borges et al. demonstrated the incorpo-
ration of bimetallic Ag-Au NPs with TiO2 and the strong LSPR band and correspondingly 
improved SERS activity [80]. Along with noble (Ag and Au) metals, some recent SERS 
studies also focused on the implementation of poor plasmonic materials for the develop-
ment of hybrid TiO2 substrates. To prove the applicability of non-plasmonic materials, 
the uniformly deposited PtNPs onto the vertically aligned TiO2 nanorod arrays (Pt@
TiO2 NTAs) for the detection of R6G through effective prevention of electron-hole pairs 
recombination [81]. In another study by Jiang et al., the SERS activity of Fe2O3@TiO2 
hybrid substrates was investigated employing exosomal miRNAs via integrated miRNA-
triggered hot-spot SERS and Fe3O4@TiO2-based exosome accumulation [82].

In summary, the excellent physical, chemical, and biological properties of metal-
oxide TiO2 semiconductor enables broad SERS detection applications through facile 
incorporation of plasmonic materials utilizing synergistic interaction between TiO2 and 
metallic NPs. The SERS substrate design, material composition, and synthesis strategy 
strongly govern the stability, reproducibility, and compatibility with biomolecules and 
subsequently offers a new perspective of SERS substrate development benefitting from 
the charge-transfer induced chemical enhancement SERS mechanism.

Figure 8. 
(a) SEM image depicts the TiO2 NS/Au NPs@SiO2/Au NPs sample, and the inset shows a typical SEM image, 
and (b) SERS spectra of CV molecules with TiO2 NS/Au NPs@SiO2/Au NPs-based substrates. Reprinted from the 
reference [75].
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3. Energy applications of plasmonic-TiO2 nanohybrid

In this section plasmonic-TiO2 nanostructure-driven energy production appli-
cations have been elucidated in detail. This section includes the applicability of 
plasmonic-TiO2 nanohybrids for photovoltaics applications. This section explains the 
basic mechanism responsible for the tremendous usage of plasmonic-TiO2 nanohybrid 
for photovoltaic applications. This section will expect to enhance knowledge and 
understanding of plasmonic nanostructures-based solar cells.

As we have discussed in the previous sections, the plasmonic nanoparticles can 
significantly control the charge kinetics in TiO2 nanostructures and can additionally 
provide visible light absorption ability. By using these outstanding properties, differ-
ent research groups reported the improved performance of plasmonic nanohybrid-
based dye-sensitized solar cells (DSSC) [83–85]. After the discovery of TiO2-based 
DSSC in 1991 by O’Regan and Grätzel the development of DSSC has been made using 
other semiconductors [86]. DSSC known to be the third generation of photovoltaics 
has similar working as we observed in the photosynthesis process. Photoanode in 
plasmonic nanohybrids based DSSC formed by the layer of plasmonic-TiO2 nano-
hybrid which is further covered by the light-sensitive commercially available dye 
molecules such as black dye, which help to harvest solar light. Firstly, a light-sensitive 
dye molecule starts the conversion of light energy into electric energy by using a 
plasmonic-TiO2 photoanode, electrolyte, and counter electrode. The basic process in 
Plasmonic-TiO2 based DSSCs has been depicted in Figure 9 below.

Dissanayake et al. [87] used Ag and Au-decorated TiO2 nanostructures via 
chemical reduction methods. The fabricated Ag-TiO2 and Au-TiO2 nanohybrids were 
employed to design the photoanodes of DSSCs. In their study, they highlighted that 
the obtained PCE values for pure TiO2, Ag-TiO2, and Au-TiO2-based photoanodes 
were 5.12%, 6.51%, and 6.23%, respectively. In addition, they have concluded that 

Figure 9. 
Schematic diagram revealing the basic process of plasmonic-TiO2 based photoanodes of DSSC.
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Ag-functionalized TiO2 plasmonic nanohybrids exhibited higher PCE values com-
pared to pure TiO2 and Au-functionalized TiO2 nanohybrids.

Vaghasiya et al. [88] fabricated Ag-TiO2 hybrid thin films and used them as pho-
toanodes in DSSCs. The Ag-functioned TiO2 nanohybrids contained thin films were 
found to result in superior PCE than bare TiO2-based photoanodes. The computed 
values of Jsc, Voc, FF, and PCE for Ag-TiO2 thin films were found to be 5.7 mA/cm2, 
0.621 V, 54%, and 1.9%, respectively. The estimated Jsc, Voc, FF, and PCE for pure TiO2 
thin films were 4 mA/cm2, 0.507 V, 46%, and 1.1%, respectively.

Guo et al. [89] prepared core-shell of Ag@TiO2 nanostructures and employed 
them to design DSSCs. They have modulated the Ag content for enhanced photocur-
rent density. In their photovoltaic studies, they have highlighted that the optimum 
concentration of Ag (0.15 wt %) provides the maximum photo conversion efficiency 
(PCE = 5.33%) in comparison to bare TiO2−based DSSC (PCE = 3.96%).

Lim et al. [90] successfully prepared Ag-functionalized N-TiO2 nanohybrids by 
using thermal annealing combined with the chemical method. The obtained nano-
hybrids were embraced to fabricate the photoanode of DSSC. They varied the Ag 
loading by varying the concentration from 2.5 to 20 wt% over the surface of N-TiO2 
and obtained a significant value of PCE of 8.15%. Figure 10(a-b) showing the surface 
morphology of the Ag-TiO2 nanohybrids while their elemental mapping is presented 
in Figure 10(c-d). The improvement in the charge separation due to the attachment 
of Ag nanoparticles over TiO2 is assured by PL spectroscopy (Figure 10(e)). They 
have highlighted that the PCE value is higher for the N-TiO2-based photoanodes as 
compared to the PCE of photoanodes based upon pure TiO2 (2.19%), N-TiO2 (2.93%) 
and Ag-TiO2 (4.86%) (Figure 10(f )). In their study, they showed that increments in 
the Ag content significantly improve the PCE of DSSC.

In another study, Wang et al. [91] prepared Ag nanoparticles functionalized TiO2 
nanostructures via a hydrothermal process. They have used Ag nanoparticles to func-
tionalize feather-like TiO2 nanostructures. They have varied the Ag content over the 

Figure 10. 
(a-b) SEM images of Ag functionalized N-TiO2 nanostructures, (c-d) Elemental mapping of Ag functionalized 
N-TiO2 nanostructures showing the existence of Ti, O, N, and Ag atoms, (e) Photoluminescence spectra of N-TiO2 
and Ag decorated N-TiO2, (f) Current density characteristic of fabricated DSSC using TiO2, N-TiO2, and Ag 
decorated N-TiO2 nanostructures. Reprinted from the reference [90].
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surface of TiO2 varying from 1 to 7.5 wt %. They concluded that the optimum amount 
of Ag content on TiO2 can remarkably enhance the PCE value of Ag-TiO2-based pho-
toanode. With the modulation of Ag loading on the TiO2 nanostructures, the obtained 
photo conversion efficiency increased from 6.19% to 6.74%. Bhullar et al. [92] studied 
the effect of Ag implantation in TiO2 thin films for DSSCs application. They have 
doped the Ag ions by varying the fluence value from 1013 to 1016 per cm2. They have 
highlighted that due to the incorporation of Ag ion, the optical absorption is signifi-
cantly improved and also controls the recombination rate, which significantly contrib-
uted to enhanced the PCE of DSSCs. They demonstrated that at a fluence value of 1014, 
the Ag-doped photoanode significantly showed 21.82% better efficiency as compared 
to the bare TiO2-based photoanode of DSSCs.

Muduli et al. [93] informed the formation of Au-TiO2 nanohybrid by using the hydro-
thermal process. The prepared Au nanoparticles functionalized TiO2 nanostructures 
were embraced for the fabrication of photoanodes of DSSCs. They observed the superior 
PCE for Au-TiO2-based photoanodes as compared to the pristine TiO2-based photoanode. 
They have concluded that due to the Schottky junction creation among Au and TiO2 
nanostructures, the quenching in the recombination rate takes place, and consequently, 
the enhancement in the PCE of Au-TiO2-based photoanodes takes place as compared to 
bare TiO2. Alamu et al. [94] prepared Ag-decorated TiO2 nanohybrids and applied them 
for the fabrication of photoanodes of DSSCs. They have used natural plant extract of 
Azadirachta indica and Lawsonia inermis with the commercially available dye N719. They 
have revealed that the modification of Ag nanoparticles over TiO2 particles enables effec-
tive band gap narrowing and improvement in the optical absorption in the visible region. 
In their study, they concluded that Ag-TiO2-based photoanode with the usage of natural 
dyes exhibited tremendous photoconversion efficiency. The combined contribution of 
plasmonic nanoparticles with natural dye sensitizer effectively enhances the PCE for bare 
TiO2-based photoanode as compared to bare TiO2 nanoparticles based photoanodes.

Ran et al. [95] decorated the TiO2 nanostructures with Ag, Au nanoparticles and Ag, Au 
nanowires for application in DSSCs. They have highlighted that the improved PCE could 
correspond to the high mobility of plasmonic nanostructures and the SPR effect of Ag 
and Au nanostructures. Plasmonic nanoparticles functionalized TiO2-based photoanodes 
attained a higher PCE value as compared to the pristine TiO2-based photoanodes. Under 
sun simulator exposure, a PCE of 5.74% was found in the Ag nanowires decorated TiO2. 
The obtained efficiency of Ag-TiO2-based photoanode attained a 25.3% improvement in 
comparison to photoanodes prepared by using pure TiO2 film (4.58%). Improved electron 
mobility properties of Ag nanowires with enhanced optical absorption majorly contrib-
uted and enhanced the PCE of photoanodes. In addition, Ag nanowire also provides an 
enhancement in the light scattering, which is also favorable to improve the PCE of DSSCs.

Nbelayim et al. [96] reported the preparation of Ag@TiO2 core-shell with varia-
tions in the Ag content from 0.1 to 1% by wet chemical synthesis process. The syn-
thesized Ag@TiO2 with varied Ag loading was used to fabricate the photoanode of 
DSSCs. In their study, they optimized the Ag doping concentration for the enhanced 
PCE of the DSSCs and concluded that 1% of Ag doping showed the maximum PCE. 
They have concluded that 1% Ag doping provides the optimum band alignment for 
injection from the Ag nanoparticles to TiO2. In addition, the optimum concentration 
of Ag nanoparticles can effectively control the recombination rate in TiO2, which 
majorly contributed to enhancing the PCE of the fabricated DSSCs. The PCE value of 
the Ag@TiO2 and Ag-doped TiO2 was found to be significantly enhanced as compared 
to the pristine sample. Song et al. [97] informed the fabrication of different morphol-
ogy of Ag nanostructures (spherical and multi-shaped) and Au nanoparticles and 
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explored their effect on the PCE of the DSSCs. In order to fabricate photo anodes of 
DSSCs, individual Ag, Au nanoparticles, multi-shaped Ag, Au, and their mixture 
were employed. Each plasmonic nanostructure and its combination were mixed with 
the mesoporous TiO2 and were employed to fabricate photo anodes of DSSCs. Among 
all samples, a photoanode containing a multishape of Ag and Au with TiO2 was found 
to be the most efficient for the photovoltaics performance. The enhanced PCE perfor-
mance of multishaped Ag and Au nanostructures can be assigned to the wider optical 
absorption as compared to the spherical Ag and Au nanoparticles.

Villanueva-Cab et al. [98] prepared Au-decorated TiO2-based DSSCs and adjusted 
the concentration of Au nanoparticles on TiO2 for efficiently enhanced PCE. In their 
study, they have highlighted several parameters, such as charge collection efficiency, light 
absorption efficiency, and charge injection efficiency of dye majorly influenced the PCE 
of DSSC. Moreover, they showed that the existence of various Au content on the TiO2 sur-
face majorly influences the collection efficiency and consequently, PCE of DSSC varied.

We have successfully elaborated the importance of various parameters which 
majorly affect the photo-conversion efficiency of plasmonic nanostructures-based 
DSSCs. Plasmonic nanohybrids with their fascinating optical and electronic properties 
largely increase the PCE of the DSSCs. Plasmonic nanoparticles with TiO2 tune the 
band alignment and significantly control the charge injection properties. Apart from 
this, plasmonic nanostructures over the TiO2 surface also quench the rate of recombi-
nation and increase the lifetime of the charge carriers. Moreover, plasmonic nanopar-
ticles also enhance the charge conduction properties of photoanodes which is also 
beneficial for the improvement in the PCE value of DSSCs. Thus this chapter explains 
the preparation and characterization of plasmonic-TiO2 nanohybrids and their usage 
for water purification, SERS-based detection, and photovoltaic applications. This 
chapter provides a wide overview related to the preparation and employment of 
plasmonic nanostructures for different environmental and energy applications. This 
chapter also includes the importance of specific parameters of plasmonic-TiO2 nanohy-
brids, which largely influence their performance for different energy and environmen-
tal applications and thus provide a better understanding to the readers.

4. Conclusion

In brief, plasmonic nanohybrids have the tremendous ability to show remarkable 
performance for environmental sensing and energy harvesting applications. Noble metal 
nanoparticles functionalized TiO2 nanostructures-based studies provided significant 
evidence for their capability to address the environmental detoxification and energy 
crises problems. This chapter provides the recent trends, development, and applicability 
of plasmonic-TiO2 nanohybrids for energy and environmental applications. This chapter 
includes fundamental aspects of the plasmonic-TiO2 nanohybrid designing and brief 
details for the mechanism for SERS-based detection, environmental remediation, and 
solar cell applications. The fascinating properties of plasmonic nanohybrids include 
tunable enhanced optical absorption and efficient charge separation properties which 
open up several new opportunities for the researcher to engineer them for targeted new 
applications. In this chapter, we have presented the roadmap of each application by 
using the plasmonic-TiO2 nanohybrids which can provide a better understanding for the 
readers to develop the plasmonic nanohybrids for particular applications. Certainly, the 
research field dealing with plasmonic nanohybrids is growing rapidly and in the future, 
properties, and applications will be explored for the plasmonic-TiO2 nanohybrids.
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Abstract

Titanium is one of the most abundantly utilized nanomaterials for human con-
sumption. Biomedical applications of nano titania include sunscreens, drug delivery, 
prosthetic implants, bioimaging probes, and antimicrobial and antirheumatic agents for 
various treatment of diseases, including autoimmune disease, neurogenerative diseases, 
cardiovascular, musculoskeletal, and cancer. Its applications as a drug delivery vehicle 
and photosensitizer in cancer therapy and diagnosis are highly appreciated, especially for 
skin and natural cavities applications. The reactive oxygen species (i.e., H2O2, OH., OH2, 
1O2, etc.) generation properties of nano titania after activation with light or ultrasound 
make it ideal for apoptosis induction in neoplastic cells. In addition, the singlet oxygen 
(1O2) generating properties make it suitable for bioimaging deep-seated and superficial 
tumors after activation. Nano titania is highly biocompatible with negligible adverse 
effects. In this chapter, we will focus on the anticancer effects of nano titania on various 
types of cancers by employing it as a drug delivery vehicle and sensitizer for external 
source-activated modalities viz. photodynamic and sonodynamic therapy.

Keywords: nano titania, anticancer effects, theranostics, photodynamic therapy, 
sonodynamic therapy

1. Introduction

Nanotechnology has opened a new avenue to investigate and explore the poten-
tials of materials at the nanoscale with known functionality at the macroscale. The 
biomedical applications of nanoscale materials are supported by the evidence that 
most of the cellular organelles, cell membranes, protein ligands, and DNA sizes are 
ranged from 2 to 20 nm [1]. The interaction of materials with cellular organelles at 
the nanoscale can significantly enhance their desired biomedical application with 
enormous traceability. Nanotechnology is applicable in various areas of the healthcare 
system due to the distinguished biological and physicochemical properties of nano-
materials. Various nanostructures with distinct characteristics have been utilized in 
drug delivery, diagnostic probes, prosthetic implants, and biotechnological applica-
tions. Out of many, titanium dioxide (TiO2) has been extensively utilized [2].

TiO2 are metallic oxide nanoparticles, widely used, and are of great inter-
est in modern therapeutics. They are semiconductive, highly stable, and possess 
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anticorrosive and antibacterial characteristics. Titanium is the second most 
abundantly consumed metal, with daily 1–2 mg/kg consumption for children and 
0.2–0.7 mg/kg for adults in the USA [3]. It is well distributed on the earth’s crust and 
abundantly found in T, TiCl4, and TiO2. The anatase is the most reactive crystalline 
form of TiO2 compared to brookite, rutile, and TiO2-B1 as various polymorphs [4]. 
Titanium is well recognized for its exceptional characteristics, such as low weight, 
good mechanical strength, high wear resistance, and biocompatibility [5, 6]. They 
are less toxic than other nanomaterials and relatively economical to fabricate [7, 8]. 
Anatase and rutile exist in a tetragonal structure, whereas brookite is rhombohedral 
[9]. Moreover, an amorphous form of TiO2 can also be found [10].

Their white appearance is attributed to their high refractive index and is used in 
skin care products as a white pigment. They possess catalytic activity upon exposure 
to UV light and can be utilized for water treatment to remove the chemicals from 
them [8]. In addition, TiO2 has also been used as an additive in food products [11–14]. 
TiO2 is one of the most produced nanoparticles due to its wide range of applications 
[15]. TiO2 has been employed in biomedical applications such as molecular imaging, 
drug delivery system, and therapeutic approaches alongside conventional therapies 
or substitutes [16, 17]. Akira Fujishima was the first to discover its anticancer effect 
against human cervical cancer cells (HeLa). Photoactivation with UV light could 
generate hydroxyl (OH.), per hydroxyl (H2O.), and singlet oxygen (1O2) as Reactive 
Oxygen Species (ROS) [18]. These ROS then interfere with cellular signal pathways 
and induce apoptosis by damaging the mitochondria. Different biomedical applica-
tions of nano titania are shown in Figure 1. This chapter focuses on combining 
various applications of titanium NPs in biomedicine, especially in various cancer 

Figure 1. 
Various biomedical applications of titanium-based nanoparticles (developed by using BioRender).
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therapeutics and diagnostic purposes. We will also spotlight its applications in the 
specialized modalities viz. photodynamic and sonodynamic therapy as photosensitiz-
ers. In targeted cancer therapies, the use of nano titania as a delivery vehicle is highly 
favorable and this will be the main focus of this chapter.

2. Antimicrobial activity of Titania nanoparticles

Antimicrobial activity is one of the major applications of biomedical sci-
ence. Pathogenic microbial species such as Escherichia coli, Klebsiella pneumoniae, 
Staphylococcus epidermidis, Staphylococcus aureus, and Proteus vulgaris are known to 
affect humans by causing various infections. Prescribed antibiotics occasionally 
cannot kill or cause growth inhibition of these pathogenic bacteria, and they often 
develop multidrug resistance. Therefore, there is an urgent need to develop novel and 
nano-based therapy to eradicate bacterial infections. Mahendran et al. synthesized 
biomolecule-coated TiO2 nanocatalysts by using rhizome extracts. They observed that 
nano titania catalysts showed robust antimicrobial activity. This potential antimi-
crobial activity was produced against P. aeruginosa and S. epidermidis. They further 
observed the resistance against nano titania catalysts in gram-positive than gram-
negative bacteria [19].

Fungal diseases cause deterioration in mangoes post-harvesting, affecting their 
quality and shelf-life. In the last few years, edible coatings have been investigated to 
preserve fruits and vegetables. Nano titanium dioxide is an immensely active nano-
material with antibacterial, anti-ultraviolet, super lipophilic, and non-toxic charac-
teristics. Chitosan is a good food preservative, antioxidant, and antibacterial agent 
for coating fruits and vegetables. Xing et al. used Chitosan (CTS) and TiO2 composite 
coating and analyzed its antifungal properties against Colletotrichum gloeosporioides 
(MA), Cladosporium oxysporum (ME), and Penicillium steckii (MF). They found 
that CTS/TiO2 composite exhibited a better antifungal effect than chitosan coating 
alone. CTS/TiO2 coating killed the molds, induced leakage of intracellular proteins 
and nucleic acid, disrupted the cell membrane integrity, retard the mycelial growth, 
and increased the conductivity value of fungal suspensions [20]. Maneerat and 
Hayata used TiO2 coating films and examined the antifungal effect. They showed a 
significant reduction in the penicillium rot development in apples and lemons [21].

3. Sonodynamic therapy

Sonodynamic Therapy (SDT) has recently gained much attention as a new 
anticancer treatment strategy that is relatively cheap, minimally invasive, and 
possesses deep penetration power. In this therapy, ultrasound waves activate the 
sonosensitizers (sound-sensitive agents), killing tumor cells by producing ROS 
[22]. The use of ultrasound offers some advantages in comparison to the use of 
light in cancer treatment which includes sonoporation (cell permeabilization medi-
ated by ultrasound waves) and deeper penetration (depending on the frequency 
of ultrasound) which could be up to 15 cm in soft tissues [23–25]. Sonosensitizers 
refer to the use of chemical compounds that could increase the cytotoxicity 
of ultrasound. Nano-sonosensitizers are considered potent sonosensitizers, as 
compared to conventional organic sonosensitizing agents, owing to their high 
bioavailability achieved by improved pharmacokinetics, pharmacodynamics, and 
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biodistribution properties. Generally, nano-sonosensitizers can be categorized 
into two main types: (1) nanoparticles which include TiO2, and (2) nanoparticles 
assisted sonosensitizers, consisting of nanoparticles loaded with organic molecules 
with controlled release at the target site [26]. Among many nanoparticles, the use 
of TiO2 NPs is preferred because of their inert behavior in the biological system, 
easy fabrication, and cost-effectiveness. TiO2 is a semiconductor with a large 
energy band gap, allowing for electron transitions from the valence to the conduc-
tion band when exposed to UV light. This facilitates the generation of free radicals, 
including the enormously reactive singlet oxygen. However, UV radiations are 
not clinically ideal due to low penetration power. Using ultrasound can overcome 
this due to its greater in vivo penetration ability with low frequency [27]. Various 
studies have reported the use of TiO2 NPs as anticancer agents in vitro and in vivo 
systems, especially when combined with ultrasound irradiation.

TiO2 NPs, in association with high-intensity ultrasound waves, were used for 
sonodynamic therapy of squamous cell carcinoma cells (HSC-2). The authors 
reported that the toxicity of TiO2 with ultrasound was much higher than that of TiO2 
or ultrasound alone, which increased with the increase in intensity and exposure time 
[28]. SDT with TiO2 NPs was evaluated for the treatment of melanoma. C32 (mela-
noma cell line) was treated with ultrasound waves of 1 MHz frequency. The apoptotic 
effect was more significantly observed in the TiO2-based SDT than in either treatment 
alone. In addition, the apoptotic percentage of cells was increased by 2.73 times than 
untreated cells [29]. Aksel et al. reported that TiO2 NPs mediated sonodynamic, 
photodynamic, and Sono-Photodynamic (SPDT) Therapy for prostate cancer. SDPT 
combines sonodynamic therapy and photodynamic therapy along with TiO2 NPs as 
sensitizers. The results showed a reduction in cancer cell viability after TiO2-mediated 
sono-photodynamic therapy. The production of singlet oxygen affects the intrinsic 
pathway, which might be responsible for producing antiapoptotic effects [30].

4. Photodynamic therapy

Photodynamic Therapy (PDT) is an emerging non-invasive therapy that received 
clinical approval. This therapy is preferred over conventional anticancer treatments 
due to its high efficacy, specificity, and subtle side effects [1, 31]. This therapeutic 
strategy utilizes photosensitizers (chemicals, drugs) with light in the presence of 
molecular oxygen to stimulate the generation of ROS, thereby inducing tumor cell 
death. However, the combination of PDT and drug is expected to produce a more 
significant effect as an anticancer treatment since PDT alone is relatively inefficient in 
eradicating cancer [32–35]. The photosensitizer should ideally enter the target cells/
tissues without affecting the neighboring healthy tissues (Figure 2).

Moreover, the treatment can be confined to an elevated concentration of photo-
sensitizers. This promising strategy can be applied to inhibit microbial growth and 
treat cancer and infectious diseases [35]. The effectiveness of PDT relies on the type 
of photosensitizers used. Several materials, including inorganic [33], organic, and 
porphyrin-based materials [34], have been used as photosensitizers in PDT. However, 
several drawbacks have been associated with these materials, such as inadequate dis-
persion in water and photostability. In addition, these materials cannot absorb light of 
longer wavelength, i.e., greater than 700 nm, which results in improper light penetra-
tion and subsequent reduction in cell killing effect. This causes unwanted toxicity and 
damage to cancer and normal cells or tissues.
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Metal oxide nanoparticles have been widely studied as photosensitizing agents 
in PDT due to the drawbacks associated with porphyrin-based photosensitizing 
agents. TiO2 NPs gained immense interest due to their distinct characteristics, 
enabling them to effectively kill tumor cells upon optical irradiation. Irradiation 
of TiO2 NPs, with an energy greater than or equal to the bandgap, causes the redox 
reaction on the surface of these NPs, which leads to the generation of reactive 
oxygen species, including superoxide anions, hydrogen peroxide, and hydroxyl 
radicals [36, 37]. TiO2 is more stable than other conventional photosensitizers 
because they are nanosized particle with anti-photodegradable stability. TiO2 
NPs have been used as photosensitizers in several types of tumor cell lines, which 
include HepG2 (hepatocellular carcinoma cells) [38], HeLa (cervical cancer cells) 
[39], MDA-MB-468 and MCF7 (breast cancer cells) [40], leukemia cells (K592) 
[41], and lung cancer cells (NSCLC) [42].

TiO2 NPs are considered marvelous photosensitizers; however, their possible 
toxicity impedes their applicability in PDT [8, 43]. TiO2 can be excited in its pris-
tine form by short-wavelength ultraviolet irradiation. Lagopati et al. conducted a 
study in which they used TiO2 as photosensitizers against breast cancer cells (MCF7 
and MDA-MB-468). TiO2 nanostructures were prepared by using the sol-gel tech-
nique. The results showed significant effects of the applied modification against 
MDA-MB-468 cells [44]. Modifying TiO2 NPs with Quantum Dots (QDs) have 
received significant attention since they allow TiO2 to absorb light of much longer 
wavelengths and, thereby, deeper tissue penetration. In PDT, QDs usually possess 
dual-function properties and act as energy transducers and carriers for photosensitiz-
ers. Ramachandran et al. synthesized TiO2 NPs by microwave-assisted synthesis and 
TiO2 conjugated with N-doped graphene QDs (N-GQDs/TiO2) by two-pot hydro-
thermal method. N-GQDs/TiO2 nanocomposites generated ROS, particularly singlet 
oxygen, upon activation with the light of the near-infrared region. This induced cell 
death in MDA-MB-231 cells more significantly than in the HS27 cell line (human 
foreskin fibroblasts) [45].

Figure 2. 
TiO2 NPs-based photodynamic or sonodynamic therapy of cancer cells. The ROS generated after photo-
sonoactivation results in mitochondria damage leading to cytochrome c release to induce apoptosis in cancer cells 
(developed by using BioRender).
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5. Drug delivery vehicle

Nano titania holds a higher reputation among various nanodrug delivery materials 
due to its amenability to a vast array of surface functionalization for targeting tissues, 
easy forming composites with other metals, porous texture, and highly biocompatible 
nature [46]. Its excretion also occurs via a standard excretory route, i.e., the hepato-
urinary system. Nano titania has been reported to carry not only anticancer drugs 
but also other types of drugs, such as dexamethasone [47], DNA fragments [48], 
norfloxacin [49], ciprofloxacin [50], and aspirin [51], etc.

TiO2 nanowhiskers were employed in cancer therapeutics to deliver Temozolomide 
(TMZ) to Glioblastoma Multiforme (GBM) orthoptic models. These TiO2 nanowhis-
kers traversing the Blood-Brain Barrier (BBB) were accelerated by ultrasonication. 
Additionally, the ultrasound could also assist in releasing TMZ from TiO2 and gener-
ate ROS to induce apoptosis [52]. Likewise, Kim et al. have also reported ultrasound-
driven doxorubicin delivery to cancer cells by TiO2 nanoparticles [53]. Among other 
anticancer drugs, 5 fluorouracil drug delivery to cancer cells by ZnO-doped TiO2 was 
performed by Faria et al. The ZnO doping could shift their absorption from UV (TiO2 
only) to red (TiO2-ZnO), making it a perfect candidate for photodynamic therapy 
[54]. Liposome-covered TiO2 nanotubes have also delivered the 5 fluorouracil to HeLa 
cells [55]. Doxorubicin’s successful loading on TiO2 nanotubes and efficient delivery 
to cancer cells is another example of TiO2 employment as a drug delivery vehicle. 
The drug release was lower pH dependent [56]. Similarly, paclitaxel delivery via 
Polyethylene Glycol (PEG) and folic acid surface decorated TiO2 nanoparticles was 
reported by Venkatasubbu et al. [57].

Not only in cancer theranostics but TiO2’s role as a vehicle in other diseases, 
including rheumatoid arthritis, has also been explored. The porphyrin derivative, i.e., 
Tetra Sulphonatophenyl Porphyrin (TSPP), was loaded on TiO2 nanowhiskers by an 
adsorption process assisted by its porous nature [58–60]. The TiO2 could deliver the 
TSPP to inflamed tissue and release it upon photoactivation with 532 nm light.

6. Anticancer effects

Cancer remains a critical global threat due to severe complications such as unbear-
able physical pain, severe cytotoxicity, side effects, and compromised therapeutic 
efficacy of conventional therapeutic strategies, including surgical interventions, 
chemo- and radiotherapy [61–73]. Various studies are aimed at investigating the new 
therapeutic approaches, including Photodynamic Therapy (PTD), Chemodynamic 
Therapy (CDT), Sonodynamic Therapy (SDT), Photothermal Therapy (PTT), 
Starvation Therapy (ST), and Immunotherapy (IMT) having lower side effects and 
high-level efficiency [26, 74–79]. New therapeutic approaches have been effectively 
applied as a substitute to conventional therapies and merged with imaging techniques 
for diagnosis, which is quite optimistic for the diagnosis and treatment of cancer 
[80, 81]. Cancer theranostics, a combination of diagnostics and treatment, has recently 
gained much interest [82]. Several therapeutic strategies can be integrated with various 
imaging techniques to synthesize multifunctional tumor-targeted nanoprobes, having 
a significant therapeutic effect and improving tumor identification [83].

In recent years, a newly established field of nanomedicine has been instigated 
to offer various solutions. Nanomedicine is the implementation of nanomaterials, 
possessing particle sizes ranging from 1 to 100 nm, to diagnose, observe, prevent, 
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and treat disease [84]. Nanoparticles (NPs) have been extensively used as anticancer 
therapeutic agents, particularly in cargo delivery, i.e., genes, chemotherapeutic 
drugs, or contrast agents [70, 85–87], or alone, using their inherent toxicity, e.g., 
associated with the release of reactive oxygen/nitrogen species [88, 89]. Additionally, 
nanoparticles can be coated with a chemical or biological material to facilitate their 
stealth characteristics and minimize their tendency to aggregate in biological fluids. 
Moreover, they can be coupled with selected ligands to enhance their targeted cell 
delivery [90]. NPs can impulsively accumulate in the tumors because of the Enhanced 
Permeability and Retention (EPR) effect. They can easily pass through the tumor 
vasculature due to large pores, and inadequate lymphatic drainage allows their reten-
tion, expediting their therapeutic efficacy without being associated with the targeted 
ligands [91]. Nano titania-based anticancer therapy is well-known (Figure 3). Below 
are various types of cancers treated with nano titania.

6.1 Breast cancer

Breast cancer is the primary cause of mortality in women ranging from 35 to 
55 years of age in industrialized countries. The prevalence of breast cancer is rela-
tively high because the breast is among the most vulnerable organ to malignancy 
(after the liver, lungs, and stomach) [92, 93]. Conventional treatment modalities 

Figure 3. 
Different types of cancer that can be treated with nano titania (developed by using BioRender).
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include surgery, chemo-, radio- and hormonal therapy, or a combination of these 
therapeutic options [94–96]. The complete removal of the tumor is challenging due 
to limited access to the region for surgery, side effects associated with conventional 
therapy, and the development of drug resistance. Hence, the five-year survival rate is 
limited to 20% [97]. Recently, pembrolizumab and atezolizumab, immunotherapeu-
tic drugs, have received FDA approval. However, only triple-negative breast cancer 
patients can use these therapeutic drugs [98]. Therefore, designing a targeted drug 
delivery technique for anticancer therapy with minimal cytotoxicity in normal tissues 
is persistently required [99]. In this context, nanoparticles seemed to be a promising 
approach possessing low cytotoxicity, target specificity, mature drug distribution in 
the tumor, and fast elimination of the drug from the body [99–102].

TiO2 nanoparticles are among the prominent nanoparticles with both in vitro and in 
vivo applications. TiO2 nanoparticles exhibit distinct morphology and surface chemistry, 
adequate biocompatibility, employ intrinsic biological activity, reduced side effects, and 
insignificant eco-toxicity [103]. Previously, it was reported that TiO2 induces ROS gen-
eration by interfering with the EGFR signaling cascade, leading to apoptosis induction in 
tumor cells compared to nearby physiological cells [104]. However, there is little infor-
mation about the therapeutic role of TiO2 in breast cancer compared to conventional 
therapeutic drugs, i.e., doxorubicin is lacking. Doxorubicin is among the most effective 
therapeutic drugs in ovarian and breast cancer [105]. However, its clinical application 
is restricted due to adverse effects, of which cardiotoxicity is the most significant [106]. 
Iqbal et al. synthesized TiO2 NPs from leaf extract of Zanthoxylum armatum and evalu-
ated their safety and anticancer activity. They demonstrated that TiO2 NPs and doxoru-
bicin were equally effective against breast cancer in vivo and ex vivo. TiO2 NPs exhibited 
anticancer activity by inducing ROS-dependent cell death in 4 T1 breast cancer cells. In 
vivo analysis in 4 T1 breast cancer cells containing BALB/c mice revealed that TiO2 NPs 
exerted doxorubicin comparable to anticancer activity and without any cardiotoxicity 
and body weight alteration as compared to doxorubicin [107].

Kim et al. analyzed the possible cytotoxicity in breast cancer cells. They used two 
cell lines, Hs578T and MDA-MB-231, which overexpress Epidermal Growth Factor 
Receptor (EGFR). EGFR is a transmembrane protein activated by binding growth 
factors and transmitting cellular signals inducing cell survival and propagation. They 
tried to elucidate the effect of alterations in extracellular signaling receptors mediated 
by TiO2 nanoparticles rather than focusing on the toxicity induced by TiO2-mediated 
ROS generation. They showed that the cytotoxicity caused by TiO2 nanoparticles in 
breast tumor cells is due to the interference in the EGFR-regulated signaling pathway, 
which reduced cell adhesion, survival, and propagation, thus inducing apoptosis [104]. 
Mahendran et al. used Gloriosa superba rhizome extract to synthesize crystalline TiO2 
nanocatalysts. These TiO2 nanocatalysts caused exorbitant mitochondrial depolariza-
tion and DNA damage when treated with MCF-7 cells, primarily due to the persistent 
release of TiO2 nanoparticles and the generation of free radicals [19].

6.2 Pancreatic cancer

Pancreatic cancer is the third major contributor of deaths caused by cancers in 
the United States [108], with a five-year survival rate of about 10% only [109, 110]. 
Only about 15–20% of cancer patients can avail the surgical treatment due to 
delayed diagnosis [111], and even after tumor resection, the five-year survival rate 
remains about 20% only [112–114]. Immune Checkpoint Blockade (ICB) therapeutic 
approaches have been developed which are based on the applicability of monoclonal 
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antibodies against PD-L1 (programmed cell death ligand 1) and CTLA-4 (cytotoxic 
T-lymphocyte antigen 4), able to support tumor eradication and protection from 
recurrence and metastasis [115–118]. However, these approaches failed to exhibit 
significant results in patients diagnosed with pancreatic cancer [119–121]. Hence, the 
combination of ICB and therapeutic approaches, able to enhance T-cell infiltration 
and activation in the tumor, can be promising for treating and preventing tumor 
relapse and metastasis [122–124].

Ultrasound exposure represents a non-invasive, inexpensive, and well-portable 
therapeutic tool [125–127] and is well-studied in the perspective of cancer treatment, 
in addition to its general utilization in imaging systems [126, 128–130]. Ultrasound-
activated sonodynamic therapy (SDT) can cause tumor cell death by inducing high 
levels of ROS generation, causing apoptotic or necrotic immunogenic cell death [131, 
132]. Titanium diselenide (TiSe2) is a 2D transition metal dichalcogenide extensively 
used in photodynamic therapy due to its good photoresponsivity [133]. Chen et al. 
synthesized TiSe2 nanosheets and evaluated the combination of TiSe2-mediated 
sonodynamic therapy with PD-1 blockage for pancreatic cancer treatment in vitro 
using Pac02 cells and in vivo model of pancreatic cancer. They reported the genera-
tion of ROS by TiSe2 nanosheets upon exposure to non-invasive US irradiation and 
induction of immunogenic death of malignant cells, thereby promoting the matura-
tion of dendritic cells and infiltration of activated T cells within the tumor. Besides 
inhibiting primary pancreatic tumor growth, this combinatorial therapeutic approach 
also inhibited the growth of distant tumors and lung metastasis [134].

6.3 Lung cancer

The limited therapeutic efficiency of Non-Small Cell Lung Carcinoma (NSCLC) 
is due to the resistance to chemotherapeutic drugs. The median survival rate is about 
6 months only. Nanoparticles are progressively emerging as a new tool against drug 
resistance because of their limited toxicity and ability to act on numerous targets in 
cancer cells due to their distinct physicochemical features [135]. Two-dimensional (2D) 
titanium carbide (Ti2C) possesses ultra-high surface area and enhanced cell membrane 
penetration ability as compared to other conventional nanoparticles [136]. It also 
contains many reactive groups that can be utilized as potent protein interaction sites 
affecting their structure and function. The chemo drug resistance reversal ability of 
Ti2C was evaluated by Zhu et al. by using the characteristics of 2D Ti2C on the NSCLC 
cell line. The cells were treated with cisplatin, the standard drug for treating end-stage 
NSCLC, with and without Ti2C. They found that Ti2C reversed the resistance of NSCLC 
to cisplatin by reducing the antioxidant reserves in the cells and decreasing the expres-
sion of primary drug resistance genes. They also reported drug resistance reversal in the 
NSCLC model in vivo [135]. Balachandran et al. synthesized TiO2 nanoparticles using a 
novel wet chemical technique using titanium tetra isopropoxide precursor, characterized 
by SEM, TEM, XRD, and UV–visible spectroscopic analysis. The synthesized nanopar-
ticles exhibited good photocatalytic activity and were evaluated for anticancer effect in 
A549 (lung cancer) cells. The cells were treated with TiO2 and exposed to UV light. After 
4 hours, TiO2 caused approximately 85% of cell decomposition [137].

6.4 Colorectal cancer

Colorectal Cancer (CRC) is among the most common malignancy in humans. 
Its prevalence is increasing despite several advances in therapeutic and diagnostic 
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interventions. CRC is caused due to gradual transformation of epithelial cells found 
in the intestinal lumen to tumor cells. Cancer treatment aims to utilize an anticancer 
agent that can induce apoptosis. These days, nanoparticles (NPs) are considered 
novel anticancer agents. Nanosized titanium dioxide nanoparticles (TiO2 NPs) with 
about <100 nm diameter possessing whiteness and opacity are publicly accepted. The 
biological properties of TiO2 NPs depend on their size, physicochemical properties, 
and surface area since particles with a large surface area are more chemically reactive 
[138]. Wei et al. reported the green synthesis of TiO2 from the extract of Calendula 
officinalis and evaluated its effects on colorectal carcinoma cell lines WiDr, LS123, 
DLD-1, and SW1417 [SW-1417]. TiO2 reduced the viability of all colorectal carci-
noma cells in a dose-dependent manner [139]. Vigneshwaran et al. synthesized TiO2 
nanoparticles from Lactobacillus and evaluated its cytotoxic effects on the HT-29 cell 
line. They reported ROS generation in HT-29 cells by the treatment with TiO2 NPs and 
the induction of apoptosis by intrinsic pathway [140].

6.5 Cervical cancer

Cervical cancer is the malignancy of the uterine cervix. It is ranked fourth in 
commonly occurring cancer in women globally and second in the low and medium 
Human Development Index (HDI) [141]. The key risk factors include late menopause, 
increasing age, obesity, elevated estrogen levels, breast cancer, no childbirth, diabetes 
mellitus, and tamoxifen use. Some gene mutations can also cause cervical cancer 
[142]. The treatment strategies for cervical cancer include radiotherapy, immunother-
apy, and chemotherapy [143]. Due to the severe adverse effects of chemotherapeutic 
drugs, research interest has been transferred to metallic nanoparticles [144–146].

Titanium nanoparticles can be used with other nanoparticles, such as zinc and 
silver, to evaluate their anticancer effects on cervical cancer cell lines [147]. Ag/AgBr/
TiO2 nanoparticles effectively eliminated xenograft tumors due to their photocata-
lytic activity [148]. Thermodynamic therapeutic potential, bioimaging, and doxo-
rubicin delivery to cervical cancer cells by hybridized TiO2 and zinc phthalocyanine 
nanoparticles were also studied [149]. Yurt et al. synthesized zinc phthalocyanine and 
hybridized it with TiO2 to evaluate their photodynamic therapeutic effect and nuclear 
imaging potential. Intracellular localization of ZnPc and ZnPc/TiO2 in cervical adeno-
carcinoma (HeLa) and breast cancer cells was observed. High uptake of ZnPc/ZnPc-
TiO2 by the cervical and breast cancer cells suggested their use as cancer theranostic 
agents [150]. TiO2 has also been reported to enhance caspase-3 activity and prevent 
the growth of HeLa cells [151].

6.6 Brain cancer

The brain is probably the most mature organ of the human body, so its protection is a 
crucial issue [152]. Despite several advancements in developing therapeutic and diag-
nostic procedures, brain cancer is a great challenge to treat, and a successful therapeutic 
strategy still cannot be established. The major hurdles to establishing a successful treat-
ment strategy for brain tumors include tumor recurrence, acquired resistance to chemo-
therapeutic agents, and complex central nervous system structure [153]. Glioblastoma 
is the most common and dangerous tumor in adults. Despite the availability of various 
treatments, such as chemotherapy, radiotherapy, and surgical resection, the prognosis is 
still inferior. Following the diagnosis, the life expectancy of glioblastoma patients is just 
12–15 months, and the five-year survival rate is approximately 5% [154].
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The blood-brain barrier (BBB) is a highly selective interface responsible for 
maintaining homeostasis, protecting from harmful agents, and providing all neces-
sary molecules to the brain [155]. Brain disorders and tumors require the drug to 
cross the BBB to exert its therapeutic effect. Several lipophilic therapeutic agents can 
pass through the BBB, but due to its selective permeability, several other medications 
fail to cross it [156, 157]. Various pharmacological agents are considered potentially 
harmful external agents by the BBB. Thus they are removed by the efflux system, 
degraded by the enzymes, or hindered from crossing the BBB [158]. Only molecules 
smaller than 400 Daltons or less than nine hydrogen bonds are BBB permeable. 
Therefore, several nanomedicine-based approaches have been suggested to facilitate 
drug delivery across the BBB in the recent past [159, 160].

Nanoparticles have gained much interest in this regard [161–163]. It has been 
reported that engineered nanomaterials can cause neurotoxicity [164]. TiO2-NPs can 
induce neurotoxicity due to their ability to cross BBB [165–167]. They are potential 
candidates for treating glioblastoma multiforme (GBM) and other tumor types. Gene 
and protein expression analysis revealed the reduction of antitumor drug resistance 
and metastasis by inhibiting angiogenesis. These characteristics would make TiO2 
promising therapeutic agents against cancer, particularly if other chemotherapeutic 
agents can be combined. Fuster et al. evaluated the anticancer effects of TiO2 NPs and 
ZnO-NP on the T98G glioblastoma cell line and reported that TiO2 is a more effective 
anticancer agent than ZnO. They demonstrated that TiO2 exposure disrupted the 
BBB and induced neuroinflammation and suggested the necessity of risk assessment 
regarding the TiO2 toxicity in the central nervous system [168]. Using ultrasound-
sensitive piezoelectric nanoparticles, Marino et al. delivered electric stimulations to 
distant glioblastoma cells. Barium titanate NPs were functionalized with antibodies 
against transferrin receptors to target BBB and glioblastoma cells. The distant ultra-
sound-mediated piezo-stimulation caused a significant reduction in the proliferation 
of glioblastoma cells in vitro and greatly enhanced the chemotherapeutic sensitivity 
when combined with temozolomide [169].

6.7 Prostate cancer

Cancer is the major cause of global mortality after cardiopulmonary arrest [170]. 
Prostate cancer is the fifth most common cancer worldwide and ranked second in 
men among common cancer types [171]. The onset of cancer can be characterized 
by delayed progression, tumor markers, detectable preneoplastic abrasion, and high 
prevalence [172]. Surgery is a successful option in some cases. However, after a few 
years, tumor recurrence can shorten chemotherapy as a valuable therapeutic option 
for prostate cancer. However, associated side effects such as toxicity, fatigue, diffi-
culty breathing, low white blood cell count, and blood clotting hamper their efficacy 
for tumor eradication [173]. Recently, targeted drug delivery and stimulus-responsive 
release have minimized toxicity and improved drug delivery and accumulation at the 
target site [174, 175].

Different inorganic nanoparticles such as TiO2, graphene oxide, iron oxide, and 
porous silica have been used for drug delivery and anticancer therapeutic agents 
[173]. TiO2 NPs are considered potent drug carriers and photosensitizers due to their 
low cost, toxicity, and non-photobleaching characteristics [176, 177]. ROS generation 
by ultrasound-activated TiO2 NPs has been reported by various studies [29, 178, 179]. 
However, in comparison to light, ultrasound scattering in the tissue is weaker, mak-
ing it penetrate deeply without losing energy [33]. Previous studies revealed that 
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combining TiO2 with rare earth or noble metals can increase ROS quantum yield 
[29, 180]. Ayca et al. synthesized TiO2 and ZnO NPs. They showed the potent inhibi-
tion of the growth of prostate cancer cells (DU-145) by TiO2 and ZnO2 nanocompos-
ites [173]. Ultrasound-activated multifunctional system based on TiO2:Gd@DOX/FA 
for MRI-guided therapy for prostate cancer was developed by Yuan et al. [181]. This 
system acts as a sonosensitizer for sonodynamic therapy and drug nanocarriers for 
pH-responsive drug release. Gd doping to TiO2 improved their sonodynamic ability 
and their performance in MRI. In vitro and in vivo anticancer treatment proved the 
efficacy of TiO2:Gd/DOX/FA in inhibiting cancer by ultrasound-responsive chemo-
sonodynamic therapy without damaging other organs and as MRI agents. Aksel et al. 
showed the formation of apoptotic bodies in the PC3 prostate cancer cell line by TiO2 
NPs-mediated photo-sonodynamic therapy [30].

6.8 Bladder cancer

Urothelial bladder cancer is among the most widespread malignancies [182]. It is 
categorized into two subgroups, i.e., Muscle-Invasive Bladder Cancer (MIBC) and 
Non-Muscle-Invasive Bladder Cancer (NMIBC). Most bladder cancers are NMIBC 
at diagnosis. Frequent tumor relapse is found in about 50–70% of NMBIC [183], and 
10–15% tend to progress into MIBC [3, 184]. Chemotherapy or Bacillus Calmette-
Guérin (BCG) and post-transurethral resection are the therapeutic interventions used 
[185]. Other therapeutic options are under investigation, including photodynamic 
therapy, radiotherapy, immunotherapy, gene therapy, and nanodrug delivery system 
using nanoparticles [186]. Among many therapeutic options, a photodynamic theory 
is less invasive than any surgical intervention [187]. Under physiological conditions, 
TiO2 NPs possess promising photodynamic characteristics and are suitable materi-
als for cancer treatment. Studies reported the development of Ti(OH)4 in which 
peroxide was coated on TiO2 nanoparticles [188, 189]. Ti(OH)4 could absorb visible 
light and showed equivalent photocatalytic activity upon exposure to UV radiations 
with 90% greater photocatalytic efficiency than TiO2 NPs. Moreover, Ti(OH)4 can 
generate hydroxyl radicals when it comes in contact with water, even after numerous 
photodegradation cycles [188]. In another study, a bladder cancer cell line, MB49, was 
treated with various concentrations of Ti(OH)4, and the results demonstrated that 
photo exposure of Ti(OH)4 stimulated ROS generation and induced dose-dependent 
necrosis in cancer cells [190]. Black TiO2 NPs were used as photosensitizers triggered 
by near-infrared light with maximum 808 nm absorbance by T24 cells (bladder 
cancer cells). The cells were incubated with TiO2 NPs and irradiated at 808 nm. The 
results showed concentration-dependent enhanced antitumor activity by the black 
TiO2 NPs. Hence, black TiO2 was proven a potent anticancer agent, promising photo-
sensitizer, and maximally active at near-infrared and visible light [191].

6.9 Skin cancer

Skin cancer is the most common human malignancy due to the uncontrolled 
growth of tumor cells associated with the dermis and epidermis. Patients need 
recurrent treatment due to the aggravated and repetitive growth of tumor cells and, 
therefore, suffer from treatment-associated side effects and toxicity. Though the topi-
cal chemotherapeutic option is associated with less severe side effects, it is impeded 
due to the rapid liquifying characteristic of the polymers used in the therapy and 
tormenting-sized microneedles [192, 193].
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Melanoma is a type of skin cancer that appears in melanocytes (skin cells) [194]. 
Melanocytes are the producers of melanin, which gives color to the skin [4, 195]. 
Ultraviolet radiations are the leading cause of melanoma, adversely affecting DNA 
repair, skin cell growth [196], immunosurveillance, and apoptosis. These adverse 
reactions allow the activation of oncogene or deactivation of tumor suppressor genes 
and subsequent tumor development [197]. Clinically, nanoparticles are shown to have 
the ability of tumor reduction and lessen the side effects [198–200]. Conventional 
anticancer therapies, including chemotherapy, radiotherapy, and surgery, are associ-
ated with the risk of harming adjacent healthy cells. This problem can be overcome 
using chemotherapeutic agents conjugated nanoparticles that can precisely target 
tumor cells [201, 202]. TiO2 NPs possess unique characteristics and have been applied 
in various fields [203]. They also have immunomodulatory effects [204].

Titanium dioxide nanotubes (TNT) offer a larger surface for carrying molecules 
and have distinct physicochemical properties. They are potent anticancer agents. 
They have been conjugated with quercetin to evaluate their effect against melanoma. 
Quercetin is a flavonoid found in fruits and leafy vegetables and possesses antioxi-
dant, antiviral, and anticancer effects. The in vitro anticancer effect of quercetin-
conjugated TNT (TNT-Qu) was evaluated on melanoma cells (B16F10). The results 
showed inhibitory effects of TNT-Qu on the migration of B16F10 cells, enhanced 
DNA fragmentation, and cell cycle arrest in the cells. Moreover, TNT-Qu was more 
cytotoxic to the B16F10 cells than quercetin or TNT alone [205]. The anticancer effect 
of TNT-Qu was also evaluated on the B16F10 mouse melanoma model and two-stage 
chemical carcinogenesis in vivo model. The study’s results demonstrated enhanced 
antitumor effects of TNT-Qu than either of the two alone by the topical application of 
TNT-Qu. TNT-Qu treatment inhibited tumor growth and increased the survival time 
of the two-stage chemical carcinogenesis mice models [206]. TiO2 exhibits full-size 
dependent immunomodulatory effects in the nanorod form [207]. TiO2 NPs were 
hydrothermally converted to nanorods that greatly enhanced the loading efficiency of 
resveratrol, which would be a great anticancer agent for skin cancer [208]. Polyvinyl 
Alcohol (PVA) is biocompatible, hydrophilic, and biodegradable [209]. PVA nano-
fibers are a dressing material for wound healing [210, 211]. Conjugating a polymeric 
form of PVA with a pharmaceutical agent improves EPR and facilitates the slow and 
sustained release of the incorporated drugs [212]. Ekambaram et al. reported the 
anticancer effect of the green synthesized TiO2 nanorods loaded with resveratrol-
incorporated nanofibers against skin cancer cells (A431). They found inhibition in 
cancer cell growth by activating caspase enzymes [213].

6.10 Hematological malignancies

Hematological malignancies originate from the bone marrow or blood and result 
from the acquisition of genetic abnormalities that lead to unrestrained proliferation, 
resistance to cell death, and evasion of the immune system [214]. The occurrences 
of hematological malignancies, including leukemia, multiple myeloma, lymphoma, 
myelodysplastic syndromes, and myeloproliferative neoplasm, continuously increase 
despite recent advances which increased the five-year rate in many types of hema-
tological malignancies [215]. Photodynamic therapy (PDT) has advantages over 
conventional anticancer therapy, including no risk of drug resistance and control-
lable ROS generation by controlled dosimetry [216–218]. TiO2 NPs have been used 
in many cancer types [40, 42, 219–221], but the biggest hurdle is the high energy 
band gap of TiO2 (anatase, 3.2 EV) which needs the excitation by detrimental UV 
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radiations. Doping of TiO2 with metal/non-metals resolves this issue by making TiO2 
able to activate by absorbing light of longer wavelengths [222–224]. N-TiO2 exhibits 
anticancer activity and higher capability of ROS production in comparison to TiO2 
NPs [39, 225, 226]. N-TiO2 was used as a photosensitizer in PDT for leukemia cells. 
Upon activation with visible light, N-TiO2 photosensitizers induced ROS-mediated 
autophagy in leukemia cells (K562), which increased with the increasing doses of 
light and photosensitizer. In addition, low doses of PDT also showed enhanced ROS 
and autophagy in normal peripheral lymphocytes. However, the typical human cell 
model showed no cytotoxic or inhibitory effects [41].

Acute lymphoblastic leukemia occurs due to the abnormal growth of white 
blood cells in the bone marrow [227, 228]. It is the most common cancer in children 
2–5 years of age [229]. The treatment advancements show 90% effectiveness in cur-
ing the disease, but relapse and drug resistance remain the most significant clinical 
challenge [230]. Recently, using nanostructured devices and nanomaterials to deliver 
medications against cancer is the most advanced method for treating cancer [231]. 
Metal nanocomposites are being investigated for theranostics, and various functional 
groups are being incorporated to modify metal/metal oxide nanocomposites [232]. 
Recently, ZnO-TiO2-chitosan-amygdalin nanoparticles have gained much interest 
as potent anticancer agents. MOLT-4 (T-lymphoblast malignant cells) were treated 
with nanocomposite (ZnO-TiO2-chitosan-amygdalin) to evaluate its cytotoxic effect 
on these cells. The results showed increased cytotoxicity, mitochondrial membrane 
depolarization, caspase activation, and ROS generation in leukemia cells [233].

6.11 Oral cancer

Oral Squamous Cell Carcinoma (OSCC) is characterized by local hypoxia and 
tumoral necrosis spreading on a large area, which is the cause of drug resistance and 
low chemotherapeutic response [234]. Immune suppression is also a factor that limits 
the therapeutic response and poor prognosis [235]. The primary therapy is surgical 
resection for OSCC, while radiotherapy and chemotherapy are additional treatment 
options [236]. However, with all the present treatment options, the five-year survival 
rate is still 60%, which severely damages the life quality [237]. Photodynamic theory 
utilizing nanoparticles as photosensitizers has gained much attention for OSCC 
cure and prevention [238, 239]. TiO2 NPs have widely investigated nanoparticles as 
photosensitizers in photodynamic therapy since their photocatalytic activity was 
discovered in 1972 [240–242]. Metal polypoidal complexes have attracted scientists 
as photosensitizers. Ru(II) complex TLD-1433 photosensitizers have been used in 
clinical trials for bladder cancer (non-muscle invasive bladder cancer) in Canada 
[243, 244]. TLD-1433 can potentially cause DNA damage under hypoxic conditions 
[243, 245]. Based on this phenomenon, TiO2@Ru@siRNA nanocomposite comprised 
SiRNA-loaded TiO2 NPs modified with ruthenium-based photosensitizers. This 
nanocomposite shows photodynamic effects upon irradiation with visible light. It can 
cause lysosomal damage, HIF-1α gene silencing, production of type I and type II ROS, 
and eradication of OSCC cells efficiently. In addition, it also reduces the expression of 
immunosuppressive factors and elevates the antitumor immune response. The PDX 
and oral rat carcinoma model significantly improved antitumor immunity and inhib-
ited tumor progression and growth [246]. Pure TiO2 and TiO2 nanoparticles modified 
with ginger, garlic, and turmeric were used for anticancer activity against KB oral cell 
line by Maheshwari et al. They found that modified TiO2 showed better anticancer 
activity against oral cancer cells than pure TiO2 [247].
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7. Conclusion

In summary, the nano titania application in cancer therapy and diagnosis is highly 
favorable due to its biocompatible and porous nature, surface modification, and ROS 
generation properties. The TiO2 surface can be coated with polymeric and metallic 
nanostructures to enhance drug loading ability and target desired tissue viz. tumor. 
Due to their inert nature, nano titania is commonly implemented as food additives 
and cosmetic products. However, UV light application limits its photoactivation, 
which is inconsistent with WHO recommended therapeutic window (600–1000 nm). 
Indeed, their surface coating or nanocomposite formation can shift its absorption 
from UV to NIR range, which holds promising effects in anticancer therapy and 
diagnosis via bioimaging. Their photodynamic or photothermal therapy effect suits 
topical and body cavity cancer resection. Employing titanium nanoparticles as drug 
carriers for anticancer therapy might help improve therapeutic effects and avoid 
undesirable side effects. Combining titanium NPs with other nanoparticles also 
holds great therapeutic potential in cancer. The applications of nano titania and their 
conjugates discussed in this chapter can be utilized to improve cancer theranostics.
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