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Preface

“Code is poetry, and coding theory is the symphony that orchestrates the harmony  
of information”

Coding Theory Essentials is an edited book that unveils the intricacies and wonders of a 
field that lies at the heart of modern communication and information storage. In this 
digital era, where the transfer and protection of data have become paramount, coding 
theory plays a vital role in ensuring the reliability and security of our interconnected 
world.

The essence of coding theory is the art of transforming messages into a language that 
transcends the boundaries of noise, interference, and errors. By cleverly encoding 
information and implementing efficient algorithms, coding theorists have paved the 
way for robust and error-resilient systems, enabling us to transmit data over vast 
distances and safeguard it from corruption.

This book serves as a comprehensive guide, capturing the fundamental concepts, 
principles, and techniques that underpin coding theory. Whether you are an aspiring 
computer scientist, an electrical engineer, or a curious mind seeking to delve into the 
captivating realm of information theory, this compilation of knowledge will empower 
you to understand, appreciate, and apply the core tenets of coding theory.

The chapters within have been meticulously crafted by experts in the field, combin-
ing theoretical foundations with real-world applications. Through a step-by-step 
journey, we explore diverse topics, ranging from error-correcting codes and block 
codes to convolutional codes, channel capacity, and beyond. Each chapter offers a 
careful balance between theory and practical insights, equipping readers with both 
the conceptual understanding and the tools necessary to address modern challenges in 
data transmission and storage.

As you embark on this intellectual expedition, we encourage you to embrace the 
beauty and elegance that lies within coding theory. Witness how seemingly abstract 
mathematical concepts transform into tangible solutions that revolutionize our daily 
lives. Discover the profound impact of error-correcting codes on digital communica-
tion, from wireless networks to satellite transmissions, from data centers to deep-space 
exploration.

Our aim in creating this book is to inspire and empower readers to explore, experi-
ment, and innovate within the realm of coding theory. We hope that the insights 
gained from these pages will spark new ideas, foster interdisciplinary collaborations, 
and ignite a passion for the intricate world of information coding.

We extend our deepest gratitude to the contributing authors who have dedicated their 
expertise, time, and energy to enriching this collection. Their collective wisdom and 
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dedication have made this book a valuable resource for researchers, students, and 
practitioners alike.

Finally, we would like to express our gratitude to the readers, whose curiosity and 
thirst for knowledge motivate us to bring this book to fruition. May Coding Theory 
Essentials serve as a guiding light on your path towards unraveling the mysteries of 
coding theory and embracing the boundless possibilities it offers.

I owe special thanks to IntechOpen for their kind support and great efforts in bring-
ing the book to fruition. I also appreciate all those who worked tirelessly in the 
background throughout the publication process.

Dr. Dinesh G. Harkut
Head and Associate Professor,

Department of Computer Science and Engineering,
Professor Ram College of Engineering and Management,

Amravati, M.S., India

Dr. Kashmira N. Kasat
Head and Assistant Professor,
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Chapter 1

Introductory Chapter: Coding
Theory
Dinesh G. Harkut and Kashmira N. Kasat

1. Introduction

The field of channel coding is a fundamental part of digital communication
systems. Its purpose is to enable reliable transmission of data over noisy and
error-prone communication channels. Channel coding theory deals with the design of
error-correcting codes that can tolerate a certain number of errors introduced during
transmission, while still allowing for accurate reconstruction of the original data at the
receiver end.

Channel coding is the process of adding redundancy to a message or data stream to
protect against errors that may occur during transmission over a noisy communication
channel. The redundant information, known as the error-correcting code, enables the
receiver to detect and correct errors that occur during transmission. For example, let
us say you want to send a message “HELLO” to your friend over a communication
channel. During transmission, the message may get corrupted due to noise or inter-
ference on the channel. To protect against errors, you can add redundancy to the
message by encoding it with an error-correcting code, such as a cyclic redundancy
check (CRC) code. The CRC code adds a checksum to the message, which is computed
based on the message content using a mathematical algorithm. The receiver also
computes the checksum of the received message and compares it with the checksum
sent by the transmitter. If the two checksums do not match, it indicates that there was
an error in the transmission, and the receiver requests the transmitter to resend the
message. In this example, the CRC code serves as a channel coding scheme that
protects the message against errors during transmission over the noisy communica-
tion channel. By adding redundancy to the message, the receiver can detect and
correct errors, ensuring reliable communication between the transmitter and receiver.

2. Historical background

The history of channel coding dates back to the early days of telegraphy and radio
communication, when engineers first realized the need for error-correcting codes to
ensure reliable transmission over noisy and error-prone communication channels. The
first error-correcting codes were developed in the 1940s, with the work of Richard
Hamming and Claude Shannon laying the foundation for modern channel coding
theory [1]. Richard Hamming developed the concept of Hamming codes in 1950,
which were the first practical error-correcting codes used in digital communication
systems. These codes were designed to detect and correct single-bit errors, and they
were widely used in early computer systems and communication protocols [1]. Claude
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Shannon, a pioneer in information theory, introduced the concept of channel capacity
in his landmark paper “AMathematical Theory of Communication” published in 1948
[1]. Shannon’s work established the fundamental limits of communication over noisy
channels, and it paved the way for the development of more sophisticated error-
correcting codes that could approach these limits. Since then, channel coding theory
has continued to evolve, with new codes and techniques being developed to address
the challenges of modern communication systems. Today, channel coding is an essen-
tial part of digital communication systems, enabling reliable transmission of data over
a wide range of communication channels.

3. Basic concepts

Channel coding theory is based on several fundamental concepts that are essential
to understanding how error-correcting codes work. These concepts include code rate,
block length, minimum distance, error correction capability, and channel capacity.

• Code rate: The code rate is the ratio of the number of message bits to the total
number of transmitted bits, including the redundant bits added by the error-
correcting code. A higher code rate means that more information is transmitted
per bit, but it also means that the error-correction capability of the code is
reduced [2].

• Block length: The block length is the number of bits in a block of data that is
encoded using an error-correcting code. Longer block lengths typically provide
better error-correction capabilities, but they also increase the delay and
complexity of the encoding and decoding processes [2].

• Minimum distance: The minimum distance of an error-correcting code is the
smallest number of bit changes that must occur to transform one valid codeword
into another. A higher minimum distance means that the code is more robust
against errors, as it can detect and correct more errors during transmission [2].

• Error correction capability: The error correction capability of an error-correcting
code is the maximum number of errors that can be corrected during
transmission. This capability depends on the code rate, block length, and
minimum distance of the code, as well as the characteristics of the
communication channel [2].

• Channel capacity: The channel capacity is the maximum rate at which
information can be transmitted over a noisy communication channel with a given
error rate. This limit is determined by the channel characteristics and the laws of
physics, and it provides a theoretical upper bound on the performance of any
error-correcting code used over the channel [2].

These basic concepts form the foundation of channel coding theory, and they are
used to design and analyze error-correcting codes for a wide range of communication
systems. By understanding these concepts, engineers can develop more efficient and
effective error-correcting codes that can provide reliable communication over noisy
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and error-prone channels. Several types of error-correcting codes are commonly used
in digital communication systems. Each type has its own advantages and disadvan-
tages, depending on the specific application requirements and constraints. The main
types of error-correcting codes are:

4. Block codes

Block codes divide a message into fixed-size blocks, and each block is encoded
separately using an error-correcting code. The most common block codes are Reed-
Solomon codes, which are used in a wide range of applications, including CD and
DVD storage, satellite communication, and digital television [3].

Advantages:

• High error-correction capability

• Simple encoding and decoding algorithms

• Robust against burst errors

Disadvantages:

• High redundancy, leading to lower code rate

• Inefficient for variable-length messages

5. Convolutional codes

Convolutional codes are based on a mathematical concept called convolution,
which involves multiplying and adding a sequence of numbers. Convolutional codes
are designed to operate on a continuous stream of data, and they use a sliding window
to encode and decode the data [2].

Advantages:

• High error-correction capability

• Efficient for variable-length messages

• Can be used for high-speed communication systems

Disadvantages:

• Complex encoding and decoding algorithms

• Sensitive to phase distortion and timing errors

• Limited ability to correct burst errors
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6. Turbo codes

Turbo codes are a type of iterative code that use multiple convolutional codes in
parallel, with a feedback mechanism to refine the decoding process. Turbo codes are
widely used inmobile communication systems, such as 3G and 4G cellular networks [4].

Advantages:

• Very high error-correction capability

• Efficient for variable-length messages

• Robust against noise and interference

Disadvantages:

• High complexity, requiring specialized hardware or software

• Sensitive to phase distortion and timing errors

• Limited availability of standards and implementation tools

7. LDPC codes

Low-density parity-check (LDPC) codes are a type of linear block code that use a
sparse parity-check matrix to encode and decode data. LDPC codes are widely used in
high-speed communication systems, such as wired and wireless networks, as well as
storage systems [5].

Advantages:

• High error-correction capability

• Efficient for variable-length messages

• Robust against noise and interference

Disadvantages:

• Complex encoding and decoding algorithms

• Sensitive to channel characteristics and noise models

• Limited availability of standards and implementation tools

Overall, the choice of error-correcting code depends on the specific application
requirements and constraints, such as the required error-correction capability, mes-
sage length, transmission rate, and implementation complexity. Each type of error-
correcting code has its own trade-offs between error-correction capability, efficiency,
complexity, and robustness, and the most appropriate code must be selected based on
a careful analysis of the application requirements and constraints.

4

Coding Theory Essentials



8. Encoding and decoding

Encoding and decoding are fundamental operations in channel coding theory,
which are used to convert an input message into a coded message and to recover the
original message from the received coded message, respectively. The encoding and
decoding processes are based on mathematical algorithms and principles, which are
designed to provide a certain level of error-correction capability and robustness to the
transmission of data over noisy and unreliable communication channels [3].

Encoding: Encoding involves transforming an input message into a coded message,
which contains additional redundancy information that can be used to detect and
correct errors that occur during transmission. The encoding process typically involves
applying a mathematical function or algorithm to the input message, which generates a
set of parity bits that are added to the message to form the coded message. For example,
consider a simple block code called a parity code, which involves adding a single parity
bit to a message of length n bits. The parity bit is computed as the XOR (exclusive OR)
of all the bits in the message, and it is added to the end of the message to form the coded
message. The encoding process can be represented by the following equation:

C ¼ MkP (1)

where M is the original message, P is the parity bit, || denotes concatenation, and C
is the coded message. For example, if the input message is 1011, the parity bit is
computed as 1 XOR 0 XOR 1 XOR 1 = 1, and the coded message is 10111.

Decoding: Decoding involves recovering the original message from the received
coded message, which may have been corrupted by errors during transmission. The
decoding process typically involves applying a mathematical function or algorithm to
the received coded message, which uses the redundant information in the message to
detect and correct errors and recover the original message. For example, consider the
parity code described above. To decode a received message, the receiver computes the
parity bit of the received message and compares it to the received parity bit. If they are
the same, the message is assumed to be error-free and the original message is recov-
ered by removing the parity bit. If they are different, an error is detected and the
receiver may attempt to correct the error by flipping the received bit that is inconsis-
tent with the computed parity bit. The decoding process can be represented by the
following equation:

M0 ¼ C 1 : n½ �: (2)

where C is the received coded message, M0 is the recovered message, and [1:n]
denotes the first n bits of C. Of course, this is just a simple example of encoding and
decoding with a parity code, and there are many more sophisticated and powerful
coding schemes that are used in practice. However, the basic principles of encoding
and decoding remain the same, and they are critical for ensuring reliable and efficient
communication over noisy and unreliable channels.

There are various implementation strategies available for channel coding, and the
choice of implementation strategy depends on factors such as the complexity of the
coding scheme, the required data rate, and the hardware and software resources
available for implementation. In this section, we will discuss some common
implementation strategies for channel coding, along with their advantages and
disadvantages and examples of their applications in real-time environments.
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Software-based implementation: Software-based implementation of channel cod-
ing involves implementing the encoding and decoding algorithms using software
running on a general-purpose processor such as a CPU or a DSP. This implementation
strategy is flexible and can be easily updated or modified as needed, but may be slower
and less power-efficient compared to hardware-based implementation.

Example: The Reed-Solomon code is a widely used block code that can correct multiple
errors in a block of data. Reed-Solomon coding is often implemented in software on
general-purpose processors for applications such as digital audio and video storage and
transmission, and satellite communication.

FPGA-based implementation: FPGA (Field-Programmable Gate Array) based
implementation of channel coding involves implementing the encoding and decoding
algorithms on an FPGA, which is a programmable hardware device that can be
reconfigured to perform different functions. This implementation strategy provides
high performance and low latency, but may require specialized expertise and tools for
design and implementation.

Example: The Turbo code is a powerful and widely used convolutional code that can
achieve very high data rates and error-correction capability. Turbo code decoding is
often implemented on FPGAs for applications such as wireless communication, digital
broadcasting, and satellite communication.

ASIC-based implementation: ASIC (Application-Specific Integrated Circuit) based
implementation of channel coding involves designing and fabricating custom hard-
ware circuits that implement the encoding and decoding algorithms. This implemen-
tation strategy provides high performance and low power consumption, but may
require high initial costs and long design and fabrication times.

Example: The LDPC (Low-Density Parity-Check) code is a powerful and efficient
linear code that can achieve very high data rates and error-correction capability.
LDPC code decoding is often implemented on ASICs for applications such as wireless
communication, digital broadcasting, and storage systems.

Hybrid implementation: Hybrid implementation of channel coding involves com-
bining different implementation strategies such as software, FPGA, and ASIC to
achieve the desired balance of performance, flexibility, and cost. This implementation
strategy can provide high performance and flexibility while reducing the costs and
development time compared to fully custom hardware implementation.

Example: The convolutional code is a popular and widely used linear code that can
achieve high data rates and error-correction capability. Convolutional code decoding is
often implemented using a hybrid implementation strategy that combines software and
FPGA or ASIC for applications such as wireless communication and digital broad-
casting.

The choice of implementation strategy for channel coding depends on the specific
requirements and constraints of the application. Software-based implementation pro-
vides flexibility and ease of development, FPGA-based implementation provides high
performance and low latency, ASIC-based implementation provides high
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performance and low power consumption, and hybrid implementation provides a
balance of performance and cost.

Channel coding theory is a fundamental aspect of modern communication systems
that enables reliable transmission of digital data over noisy communication channels.
The goal of channel coding is to add redundancy to the transmitted data in such a way
that the receiver can correct errors caused by noise or interference in the channel. This
is achieved by using error-correcting codes that add redundancy to the data stream,
which can be used by the receiver to detect and correct errors. Channel coding theory
involves the study of the mathematical principles underlying error-correcting codes,
their encoding and decoding algorithms, and their performance analysis. Channel
coding is a multidisciplinary field that draws upon concepts from mathematics,
computer science, information theory, and communication engineering.

The most common types of error-correcting codes used in channel coding are
block codes and convolutional codes. Block codes divide the input data into fixed-size
blocks and add parity bits to each block, while convolutional codes operate on a
continuous stream of input data and add redundant symbols based on a sliding win-
dow of previous symbols. One important concept in channel coding theory is the
Hamming distance, which is a measure of the number of bit positions in which two
binary strings differ. The minimum Hamming distance of an error-correcting code is
the smallest Hamming distance between any two valid codewords, and it determines
the error-correction capability of the code.

Another important concept in channel coding theory is the decoding algorithm,
which is used by the receiver to recover the original data from the received codeword.
There are two main types of decoding algorithms: maximum likelihood decoding and
syndrome decoding. Maximum likelihood decoding involves searching for the most
likely codeword given the received data, while syndrome decoding involves using the
syndrome of the received codeword to correct errors. Channel coding theory also
includes the analysis of the performance of error-correcting codes under different
channel conditions, such as the signal-to-noise ratio (SNR) and the bit error rate
(BER). The performance of a code is typically measured by its error-correction capa-
bility, which is the maximum number of errors that the code can correct, and its
coding efficiency, which is the ratio of the number of information bits to the total
number of transmitted bits.

The development of channel coding theory has led to the discovery of many
powerful error-correcting codes that have found widespread use in communication
systems. Some examples of widely used codes include the Reed-Solomon code, which
is used in digital audio and video storage and transmission, the Turbo code, which is
used in wireless communication and digital broadcasting, and the LDPC code, which
is used in wireless communication and storage systems.

In conclusion, channel coding theory is a crucial aspect of modern communication
systems that enables reliable transmission of digital data over noisy channels. It
involves the study of error-correcting codes, their encoding and decoding algorithms,
and their performance analysis. The development of channel coding theory has led to
the discovery of many powerful error-correcting codes that have found widespread
use in communication systems.
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Chapter 2

RS Codes and Optimized
Distributed RS-Coded Relay
Cooperative Communications:
Code Constructions and
Performance Analysis
Chen Chen and Fengfan Yang

Abstract

This chapter introduces the Reed-Solomon (RS) codes and the distributed
RS-coded cooperative system over the Rayleigh fading channel, where the encoding
and decoding procedures of the RS codes are elaborated. Besides, two optimized
selection approaches, i.e., the exhaustive search approach and partial search approach,
are employed in the relay to obtain a resultant code at the destination with better
weight distribution. Moreover, the two joint decoding algorithms, namely naive and
smart algorithms, are presented that further improve the overall average bit error rate
(BER) performance of the cooperative scheme. Also, the performance analysis of the
distributed RS-coded cooperative scheme is provided in detailed.

Keywords: BCH codes, RS codes, relay cooperation, distributed RS codes, joint
decoding

1. Introduction

Fifth-generation (5G) communication systems may accommodate the traffic
generated by a variety of wireless network types such as Device-to-Device (D2D) and
sensor networks. Hence, it is reasonable to consider the short-information-transmis-
sion scenario. Generally, one of the most important aspects of transmission is to
combat the signal fading over a wireless channel. Spatial diversity has proven to be the
most effective method for mitigating the impacts of fading [1]. However, many
mobile communication devices are unable to leverage spatial diversity techniques
owing to size, power, and hardware complexity. Therefore, coded cooperative diver-
sity with the aid of the relay was proposed to provide uplink diversity via single
antenna sharing. Factually, various distributed linear block codes have been employed
in the coded cooperation such as the distributed turbo codes (DTC) [2], distributed

11



low-density parity-check codes (D-LDPC) [3], and polar codes [4]. Nevertheless, for
the non-binary codes with short information sizes in coded cooperation, the literature
has not been thoroughly investigated. Note that Reed-Solomon (RS) codes are a
well-known class of non-binary codes with low encoding and decoding complexity.
Furthermore, as a member of maximum distance separatable (MDS) codes, short-
to-medium-length RS codes perform well in correcting random burst errors. Hence,
RS-coded relay cooperation is considered a promising exploration to support short
information transmission [5]. In addition, the distinct information selection in the
relay may result in a different resultant code at the destination, which will influence
the performance of the overall transmission. Hence, the optimized selection
approaches [6] at the relay are also introduced in this chapter.

The remaining contexts of this chapter are summarized as follows. Section 2
provides a brief introduction to the BCH codes and RS codes. The general distributed
RS-coded cooperative system is presented in Section 3. Section 4 exhibits the two
optimized selection approaches and the corresponding examples. The joint decoding
algorithms and the performance analysis are elaborated in Section 5. Section 6 con-
cludes this chapter.

2. BCH codes and RS codes

2.1 BCH codes

Bose-Chaudhuri-Hocquenghem (BCH) codes are a kind of cyclic codes that can
effectively correct random errors [7], which can be classified into binary BCH codes
and non-binary BCH codes according to the different fields from which symbols are
taken. Given any finite field GF qð Þ and its extension field GF qmð Þ, where q is a prime
or a power of a prime and m is a positive integer, let α be a non-zero and non-one
element of GF qmð Þ. If the generator polynomial g xð Þ∈ F x½ � F∈GF qð Þð Þ is the lowest-
degree-polynomial with consecutive roots α, α2,⋯, α2t

� �
, then a cyclic code generated

from this polynomial g xð Þ is called a BCH code.
Assume that φi xð Þ denotes the minimum polynomial of αi 1≤ i≤ 2tð Þ and ei repre-

sents the order of αi. Therefore, the generator polynomial g xð Þ and the code length n of
BCH code are provided as,

g xð Þ ¼ LCM φ1 xð Þ,φ2 xð Þ, … ,φi xð Þf g, n ¼ LCM e1, e2, … , e2tf g, (1)

where LCM denotes the least common multiple. In particular, when q ¼ 2, it is the
binary BCH code. Also, if α is the primitive element in GF qmð Þ, it is a primitive BCH
code of code length n ¼ qm � 1. Otherwise, the BCH code is non-primitive where n is
the factor of qm � 1. Consider a BCH code of length n, its parity check matrix is
provided as [8],

H ¼

1 α α2 α3 ⋯ αn�1

1 α2 α2ð Þ2 α2ð Þ3 ⋯ α2ð Þn�1

1 α3 α3ð Þ2 α3ð Þ3 ⋯ α3ð Þn�1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 α2t α2tð Þ2 α2tð Þ3 ⋯ α2tð Þn�1

2
6666664

3
7777775
: (2)
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Then, the minimum distance of the t-error-correcting BCH codes is at least 2tþ 1.
The proof process can be referred to [9]. This lower bound on the minimum distance
is called the BCH bound.

2.2 RS codes: encoding and decoding

The most important subclass of q-ary BCH codes is the RS codes, a particular
subclass of q-ary BCH codes for which m ¼ 1. The efficient encoding and hard-
decision decoding algorithms of RS codes as well as their improved capacity to rectify
random burst errors have made them extensively applied for error control in both
storage systems and digital communication [9]. The following describes the specific
characteristic, encoding, and decoding processes of the RS codes.

2.2.1 Free distance of RS codes

Suppose that α is a primitive element in GF qð Þ. The generator polynomial g(x)
of t-error-correcting n, kð Þ RS code has α, α2,⋯, α2t

� �
as all its roots, where all symbols

of RS codes are chosen from GF qð Þ, n and k denote the code length and length of
information sequence, respectively. Therefore, the minimum polynomial φi xð Þ
corresponding to each αi is x� αi. And g xð Þ can be obtained from Eq. (1) given as,

g xð Þ ¼ x� αð Þ x� α2
� �

⋯ x� α2t
� �

¼ g0 þ g1xþ g2x
2 þ⋯þ g2t�1x

2t�1 þ x2t,
(3)

where gi ∈GF qð Þ for 0< i< 2t. Since the all roots of xq�1 � 1 are α, α2, … , α2t, g xð Þ
can divides xq�1 � 1. Thus, g xð Þ generates a q-ary RS code of length n ¼ q� 1 with
exactly 2t parity-check symbols, which means n� k ¼ 2t.

From the BCH bound and the Eq. (3) where the code polynomial comprises 2tþ 1
terms. Hence, there cannot be a zero for any of the coefficients in g xð Þ can be zero.
Otherwise, the resultant codeword would have a weight less than 2tþ 1, which would
be in conflict with the BCH bound on the minimum distance. As a result, the g xð Þ
corresponds to a codeword with a weight of precisely 2tþ 1. It follows that the
minimum distance of the t-error-correcting RS code generated by Eq. (3) is deter-
mined as exactly 2tþ 1, i.e., dmin ¼ 2tþ 1. In addition, the minimum distance of the
RS code is more than the number of its parity-check symbols. Therefore, RS codes are
a prominent subgroup of the maximum distance separable (MDS) codes [10]. In this
chapter, we simply consider q ¼ 2.

Example 1. Let α is a primitive element in GF 24
� �

constructed based on the
primitive polynomial 1þ xþ x4 shown in Table 1. Consider the double-error-
correcting RS codes with the symbols from GF 24

� �
. The generator polynomial g xð Þ of

this code has α, α2, α3, α4 as all its roots. Hence, g xð Þ is acquired as,

g xð Þ ¼ x� αð Þ x� α2
� �

x� α3
� �

x� α4
� �

¼ α10 þ α3xþ α6x2 þ α13x3 þ x4,
(4)

The code is (15,11) RS code over the GF 24
� �

that can correct two errors. And, the
minimum distance of this RS code is 5.

The end of Example 1.
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2.2.2 Encoding of RS codes

Given the generator polynomial g xð Þ illustrated in Eq. (3), the polynomial c xð Þ of
the codeword c of the RS code is generated as,

c xð Þ ¼ g xð Þu xð Þ, (5)

where u xð Þ ¼ u0 þ u1xþ u2x2 þ⋯þ uk�1xk�1 is the polynomial of the information
sequence m, ui ∈GF 2mð Þ for i ¼ 0, 1, … , k� 1. Moreover, the polynomial c xð Þ of
systematic codeword c is obtained as,

c xð Þ ¼ xn�ku xð Þ þ p xð Þ, (6)

where p xð Þ ¼ p0 þ p1xþ p2x
2 þ⋯þ pn�k�1x

n�k�1 pi ∈GF 2mð Þ, i ¼ 0, 1, … ,
�

n�
k� 1Þ denotes the parity-check polynomial which can be computed by the polynomial
division as,

p xð Þ ¼ xn�ku xð Þ=g xð Þ: (7)

2.2.3 Decoding of RS codes

Consider a n, kð Þ RS code with the symbols from GF qð Þ. Suppose that a codeword
c xð Þ ¼ c0 þ c1xþ⋯þ cn�1xn�1 is transmitted, and the transmission error result in the
following received vector r xð Þ ¼ r0 þ r1xþ⋯þ rn�1xn�1. Let e xð Þ ¼ e0 þ e1xþ⋯þ
en�1xn�1 be the error pattern which have relationship with c xð Þ and r xð Þ as,

e xð Þ ¼ r xð Þ � c xð Þ: (8)

Assume that error pattern e xð Þ contains τ errors (nonzero components) at locations
xj1 , xj2 , … , xjτ , where 0≤ j1 < j2 <⋯< jτ ≤ n� 1. Then,

e xð Þ ¼ ej1x
j1 þ ej2x

j2 þ⋯þ ejτx
jτ (9)

Field elements Vector Field elementst Vector

0 0000½ � α7 ¼ 1þ α þ α3 1101½ �
1000½ � α8 ¼ 1þ α2 1010½ �

α 0100½ � α9 ¼ α þ α3 0101½ �

α2 0010½ � α10 ¼ 1þ α þ α2 1110½ �

α3 0001½ � α11 ¼ α þ α2 þ α3 0111½ �

α4 ¼ 1þ α 1100½ � α12 ¼ 1þ α þ α2 þ α3 1111½ �

α5 ¼ α þ α2 0110½ � α13 ¼ 1þ α2 þ α3 1011½ �

α6 ¼ α2 þ α3 0011½ � α14 ¼ 1þ α3 1001½ �

Table 1.
Galois field GF 24ð Þ with the primitive polynomial 1þ α þ α4 ¼ 0.
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where xji denotes error-location and eji is error values, 1≤ i≤ τ. And the specific
decoding steps are given as follows,

Step 1. Compute the syndrome. The syndrome is a 2t-tuple vector as,

S ¼ S1, S2, … , S2tð Þ ¼ r �HT

¼ r0, r1, … , rn�1½ � �

1 1 1 ⋯ 1

α α2 α3 ⋯ α2t

α2 α2ð Þ2 α3ð Þ2 ⋯ α2tð Þ2

⋮ ⋮ ⋮ ⋱ ⋮

αn�1 α2ð Þn�1 α3ð Þn�1 ⋯ α2tð Þn�1

2
666666664

3
777777775
:

(10)

Evidently, Si ¼ r αi
� �

1≤ i≤ 2tð Þ.
Step 2. Determined the error-location polynomial σ xð Þ and the error value evalua-

tor Z0 xð Þ based on Euclidean algorithm.
(1) From Eq. (8) and (10), we obtain,

Si ¼ r αi
� � ¼ e αi

� �þ c αi
� � ¼ e αi

� �
: (11)

From Eq. (9), all 2t syndromes are obtained,

S1 ¼ ej1 αj1
� �1 þ ej2 αj2

� �1 þ⋯þ ejτ αjτ
� �1

,

S2 ¼ ej1 αj1
� �2 þ ej2 αj2

� �2 þ⋯þ ejτ αjτ
� �2

,

⋮
S2t ¼ ej1 αj1

� �2t þ ej2 αj2
� �2t þ⋯þ ejτ αjτ

� �2t
,

(12)

where αji is called the error location number and eji is the error value 1≤ i≤ 2tð Þ. Let
βi≜αj1 , δi≜eji , Eq. (12) can be simplified as,

S1 ¼ δ1β1 þ δ2β2 þ⋯þ δτβτ,

S2 ¼ δ1β
2
1 þ δ2β

2
2 þ⋯þ δτβ

2
τ ,

⋮
S2t ¼ δ1β

2t
1 þ δ2β

2t
2 þ⋯þ δτβ

2t
τ :

(13)

(2) To solve these 2t equations, the error-location polynomial is firstly defined as:

σ xð Þ ¼ 1� β1xð Þ 1� β2xð Þ⋯ 1� βτxð Þ
¼ σ0 þ σ1xþ σ2x2 þ⋯þ στxτ:

(14)

The roots of σ xð Þ are β�11 , β�12 , … , β�1τ , which are the inverses of the error-location
numbers [11].

(3) Define error-value evaluator Z0 xð Þ. Firstly, the syndrome polynomial S xð Þ is
defined as,

S xð Þ≜S1 þ S2xþ S3x2 þ⋯þ S2tx2t�1 þ S2tþ1x2t þ⋯ ¼
X∞
j¼1

Sjxj�1: (15)
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Then, S xð Þ can be further simplified as,

S xð Þ ¼
X∞
j¼1

xj�1
Xτ

l¼1
δlβ

j
l ¼

Xτ

l¼1
δlβl

X∞
j¼1

xδlð Þj�1: (16)

Since 1
1�βlx ¼

P∞
j¼1 xβlð Þj�1, Thus Eq. (16) comes to,

S xð Þ ¼
Xτ

l¼1

δlβl
1� βlx

: (17)

Then, we have,

σ xð ÞS xð Þ ¼ 1þ σ1xþ⋯þ στxτð Þ S1 þ S2xþ S3x2 þ⋯
� � ¼ S1 þ S2 þ σ1S1ð Þ

þ S3 þ σ1S2 þ σ2S1ð Þx2 þ⋯þ S2t þ σ1S2t�1 þ σ2S2t�2 þ⋯þ στS2t�τð Þx2t�1
þ S2tþ σ1S2t�1 þ σ2S2t�2 þ⋯þ στS2t�τð Þx2tþ⋯:

(18)

Therefore,

Z0 xð Þ ≜
Yτ
i¼1

1� βixð Þ
( )

�
Xτ

l¼1

δlβl
1� βlx

( )

¼
Xτ

l¼1

δlβl
1� βlx

�
Yτ
i¼1

1� βixð Þ

¼
Xτ

l¼1
δlβl �

Yτ

i¼1, i 6¼l
1� βixð Þ:

(19)

Step 3. Solve the key equation based on the Euclidean algorithm. In the expansion
of σ xð ÞS xð Þ, only the coefficient of the first 2t terms (from x0 to x2t) are known. Let
Z0 xð Þ ¼ σ xð ÞS xð Þ½ �2t denote the first 2t terms of σ xð ÞS xð Þ. Then, σ xð ÞS xð Þ � σ xð ÞS xð Þ½ �2t
is divisible by x2t. This simply says that if σ xð ÞS xð Þ is divided by x2t, the remainder is
Z0 xð Þ.

Therefore, we obtain,

σ xð ÞS xð Þ ¼ Z0 xð Þ mod x2t, (20)

which is called the key equation in decoding BCH code. Thus, the key equation can
be expressed in the following forms:

σ xð ÞS xð Þ ¼ Q xð Þx2t þ Z0 xð Þ ) Z0 xð Þ ¼ �Q xð Þx2t þ σ xð ÞS xð Þ: (21)

Setting,

a xð Þ ¼ x2t, b xð Þ ¼ S xð Þ: (22)

Then the key equation is exactly in the form given as follows,

Z0 xð Þ ¼ �Q xð Þa xð Þ þ σ xð Þb xð Þ: (23)
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Therefore, σ xð Þ and Z0 xð Þ can be found by the Euclidean iterative division algo-
rithm. Let

Z ið Þ
0 xð Þ ¼ ri xð Þ, σ ið Þ xð Þ ¼ gi xð Þ, γ ið Þ xð Þ ¼ �Q ið Þ xð Þ ¼ f i xð Þ: (24)

To find σ xð Þ and Z0 xð Þ, we carry out the iteration process as follows:
(1) Firstly, the initial conditions are given as,

Z �1ð Þ
0 xð Þ ¼ x2t a xð Þ ¼ x2t

� �
,

Z 0ð Þ
0 xð Þ ¼ S Xð Þ b xð Þ ¼ S xð Þð Þ,

γ �1ð Þ xð Þ ¼ σ 0ð Þ xð Þ ¼ 1,

γ 0ð Þ xð Þ ¼ σ �1ð Þ xð Þ ¼ 0::

(25)

(2) Step i: at the i-th step,

Z i�2ð Þ
0 xð Þ ¼ q1 xð ÞZ i�1ð Þ

0 xð Þ þ Z ið Þ
0 xð Þ,

) Z ið Þ
0 xð Þ ¼ γ ið Þ xð Þx2t þ σ ið Þ xð ÞS xð Þ,

(26)

where

σ ið Þ xð Þ ¼ σ i�2ð Þ xð Þ � qi xð Þσ i�1ð Þ xð Þ, γ ið Þ xð Þ ¼ γ i�2ð Þ xð Þ � qi xð Þγ i�1ð Þ xð Þ: (27)

(3) Finally, iteration stops when the iteration reaches a step ρ for which

deg Z ρð Þ
0 xð Þ<deg σ ρð Þ xð Þ≤ t: (28)

Therefore, Z0 xð Þ ¼ Z ρð Þ
0 , σ xð Þ ¼ σ ρð Þ are obtained.

Step 4. Evaluate error location numbers and error values.
(1) Determine error-location numbers αji from σ xð Þ. The error-location numbers

are the inverse of the roots of σ xð Þ.
(2) Determine the error values δl, 1≤ l≤ τ from Z0 xð Þ and σ xð Þ. Subsitituting β�1l in

Z0 xð Þ, then,

Z0 β�1l

� � ¼
Xτ

l¼1
δlβl

Yτ

i¼1, i 6¼l
1� βiβ

�1
l

� �

¼ δlβl
Yτ

i¼1, i 6¼l
1� βiβ

�1
l

� � (29)

(3) Compute the derivative of σ xð Þ as,

σ0 xð Þ ¼ d
dx

Y
i¼1

τ 1� βixð Þ ¼ �
Xτ

l¼1
βl

Yτ

i¼1, i6¼l
1� βixð Þ: (30)

Moreover, substitute β�1l in Eq. (30) and obtain,

σ0 β�1l

� � ¼ �βl
Yτ

i¼1, i 6¼l
1� βiβ

�1
l

� �
: (31)
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Hence, the error values δl at location betal is evaluated as,

δl ¼ �
Z0 β�1l

� �

σ0 β�1l

� � : (32)

The Euclidean decoding algorithm is terminated [12].
Example 2. Consider the triple-error-correcting RS code of length n ¼ 15 over

GF 24
� �

, α be a primitive element of GF 24
� �

such that α4 þ αþ 1 ¼ 0. The generator
polynomial has α, α2, α3, α4, α5, α6 as roots; that is,

g xð Þ ¼ xþ αð Þ xþ α2
� �

xþ α3
� �

xþ α4
� �

xþ α5
� �

xþ α6
� �

¼ α6 þ α9xþ α9x2 þ α4x3 þ α14x4 þ α10x5 þ x6:
(33)

Suppose that the codeword of all zero is transmitted, and the received polynomial
is r xð Þ ¼ α7x3 þ α11x10. The decoding procedures are shown as follows,

Step 1. Compute the syndromes S1, S2, … , S6ð Þ. The syndrome components are
exhibited as,

S1 ¼ r αð Þ ¼ α7 � α3 þ α11 � α10 ¼ α7,

S2 ¼ r α2
� � ¼ α7 � α2

� �3 þ α11 � α2
� �10 ¼ α12,

S3 ¼ r α3
� � ¼ α7 � α3

� �3 þ α11 � α3
� �10 ¼ α6,

S4 ¼ r α4
� � ¼ α7 � α4

� �3 þ α11 � α4
� �10 ¼ α12,

S5 ¼ r α5
� � ¼ α7 � α5

� �3 þ α11 � α5
� �10 ¼ α14,

S6 ¼ r α6
� � ¼ α7 � α6

� �3 þ α11 � α6
� �10 ¼ α14:

(34)

The syndrome polynomial is S xð Þ ¼ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5.
Step 2. Determine the error-location polynomial σ xð Þ and the error-value evaluator

Z0 xð Þ based on the Euclidean algorithm.
(1) Firstly, the initial conditions are acquired as,

Z �1ð Þ
0 xð Þ ¼ x6,

Z 0ð Þ
0 xð Þ ¼ S Xð Þ ¼ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5,

γ �1ð Þ xð Þ ¼ σ 0ð Þ xð Þ ¼ 1,

γ 0ð Þ xð Þ ¼ σ �1ð Þ xð Þ ¼ 0::

(35)

(2) When l = 1, then,

Z �1ð Þ
0 xð Þ ¼ q1 xð ÞZ 0ð Þ

0 xð Þ þ Z 1ð Þ
0 xð Þ,

) x6 ¼ q1 xð Þ α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5
� �þ Z 0ð Þ

0 xð Þ,
) q1 xð Þ ¼ αxþ α,Z 1ð Þ

0 xð Þ ¼ α6x4 þ α5x3 þ α5x2 þ α3xþ α8,

(36)

where,

σ 1ð Þ xð Þ ¼ σ �1ð Þ xð Þ � q1 xð Þσ 0ð Þ xð Þ ) σ 1ð Þ xð Þ ¼ αxþ α (37)
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(3) When l = 2,

Z 0ð Þ
0 xð Þ ¼ q2 xð ÞZ 1ð Þ

0 xð Þ þ Z 2ð Þ
0 xð Þ,

) α7 þ α12xþ α6x2 þ α12x3 þ α14x4 þ α14x5

¼ q2 xð Þ α6x4 þ α5x3 þ α5x2 þ α3xþ α8
� �þ Z 2ð Þ

0 xð Þ,
) q2 xð Þ ¼ α8xþ α11,Z 2ð Þ

0 xð Þ ¼ α2xþ α3,

(38)

where,

σ 2ð Þ xð Þ ¼ σ 0ð Þ xð Þ � q2 xð Þσ 1ð Þ xð Þ ) σ 2ð Þ xð Þ ¼ α9x2 þ α8xþ α11 (39)

Observe that degZ 2ð Þ
0 xð Þ< degσ 2ð Þ xð Þ≤ 3 ¼ t. Hence, The iteration is terminated,

and we can acquire,

Z0 xð Þ ¼ Z 2ð Þ
0 xð Þ ¼ α2xþ α3, σ xð Þ ¼ σ 2ð Þ xð Þ ¼ α9x2 þ α8xþ α11 (40)

Step 3. Evaluate error-location numbers and error values. The all roots of σ xð Þ are
α5 and α12. Then, the error location numbers are α5ð Þ�1 ¼ α10, α12ð Þ�1 ¼ α3. The error
values at these locations are

e3 ¼ �Z0 α�3ð Þ
σ0 α�3ð Þ ¼

α3 þ α2α�3

α11α3 1þ α10α�3ð Þ ¼
1
α8
¼ α7,

e10 ¼ �Z0 α�10ð Þ
σ0 α�10ð Þ ¼

α3 þ α2α�10

α11α10 1þ α3α�10ð Þ ¼
α4

α8
¼ α11:

(41)

Step 4. Perform error correction.
Therefore, the error polynomial is e xð Þ ¼ α7x3 þ α11x10. the decoded coded poly-

nomial is c0 xð Þ ¼ r xð Þ � e xð Þ ¼ α7x3 þ α11x10ð Þ � α7x3 þ α11x10ð Þ ¼ 0, which is all-zero
codeword.

The end of Example 2.

3. General distributed RS coded-cooperative systems

Coded cooperative diversity is an efficient technique combining channel coding
and cooperative diversity to combat the influence of channel fading and improve the
performance of the systems [13]. Generally, the coded cooperation is composed of
three terminals, i.e., source, relay, and destination. Hence, the channel codes
employed in each terminal are named distributed channel codes. Many distributed
channel codes are applied in the coded-cooperative systems. For short-to-medium-
length transmission information blocks, the RS channel coding may be a promising
candidate which illustrates a superior performance [13–16].

Figure 1 demonstrates the general distributed RS coded-cooperative scheme. Evi-
dently, all three terminals transmit and receive signals through one antenna and the
entire transmission requires two-time slots. During time slot-1, the binary information
sequence b1 is first converted to the M-ary symbol vector u1 of length K1 over the
GF 2M

� �
. Then, u1 is encoded by the RS1 N,K1, d1ð Þ encoder to obtain the systematic
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codeword c1 of length N, where d1 ¼ N � K1 þ 1 and the generator polynomial g1 xð Þ
of RS1 is given as,

g1 xð Þ ¼ x� γð Þ x� γ2
� �

⋯ x� γN�K1
� �

, (42)

where γk ∈GF 2M
� �

, k ¼ 0, 1, … ,N � K1. Then, c1 is further modulated to the sig-
nal v1 by the M-ary quadrature amplitude modulation (M-QAM). Subsequently, v1 ¼
v0, v1, … , v N�1ð Þ��

generated at the source is transmitted to the both relay and desti-
nation through the respective fading channels where the signals r1 ¼ r10, r

1
1, … , r1N�1

� �
and r2 ¼ r20, r

2
1, … , r2N�1

� �
are obtained at the relay and destination, respectively.

Moreover, each signal symbol rji i ¼ 0, 1, … ,N � 1, j ¼ 1, 2ð Þ is modeled as,

rji ¼ hjivi þ nji, (43)

where hji is the complex Gaussian variable satisfying zero mean and 1=2 variance

per dimension, and nji represents the complex Gaussian variable with zero mean and
N0=2-variance per dimension. Note that N0 denotes the power spectral density (PSD)
of the noise.

During time slot 2, r2 is demodulated and decoded subsequently to obtain the
estimated information sequence ~u1. If the source-to-relay channel is ideal, then,
~u1 ¼ u1. For the system, the information symbols at the relay are only from the source.
Therefore, the K2 symbols are simply chosen from ~u1 of length N through the ‘Symbol
Selection’ block. Note that different selection patterns contribute to a different mini-
mum distance of the resultant code at the destination and further affect the overall
performance of the RS coded-cooperative scheme, which will be elaborated on in the
next section. After that, the selected message vector u2 is also encoded by the
RS2 N,K2, d2ð Þ to acquire the c2, where d2 ¼ N � K2 and the generator polynomial
g2 xð Þ of RS2 is provided as,

Figure 1.
The system model of the general distributed RS-coded cooperation.
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g1 xð Þ ¼ x� γð Þ x� γ2
� �

⋯ x� γN�K2
� �

, (44)

Similarly, the codeword c2 is modulated by an M-QAM modulator and further
transmitted to the destination. The received signal r3 is also modeled similarly to
Eq. (43).

At the destination, the obtained signals r1 and r3 are concatenated is series as,

r ¼ r1jr3ð Þ, (45)

where ‘∣’ denotes that the two signals are conjunct in series during two-time slots.
Following that, r passes to the ‘M-QAM Demodulator’ block to get the joint
demodulated message sequence (~c1∣~c2) and then decoded by the joint RS decoding
algorithm that will be introduced in detailed later. Finally, the estimated information
sequence û1 is transformed to the extensive bit sequence b̂1.

4. The optimized codes resulted at destination by proper selection at relay

The different relay selection patterns determine the different minimum dis-
tance of the final joint code at the destination, which influences the performance of
the system. Therefore, we need to consider the proper selection approach at the
relay to capture the resulting code with a minimum distance as large as possible.
The following will introduce two proper selection approaches, detailed content can
refer to [13].

Obviously, we should consider the worst-case scenario and aim to avoid as many of
them as possible. Since the minimum weight of the code at source is already deter-
mined as d1, only the minimum weight of the codeword selected by the relay needs to
be considered. Firstly, some nomenclatures are described below before providing
design steps:

1.The first scenario is expressed as the minimum weights of code is wt c1ð Þ ¼ d1,
wt c2ð Þ ¼ 0 for the source and relay, respectively, resulting in the final code at the

destination has the minimum free distance d 1ð Þ
3 ¼ d1, which is the worst case.

2.The second scenario is described as wt c1ð Þ ¼ d1 and wt c2ð Þ ¼ d2. Hence the

minimum weight of the final codeword is d 2ð Þ
3 ¼ d1 þ d2 that is the second-worst

case.

3.The third scenario is the weight of the resultant code d 3ð Þ
3 is greater than d 2ð Þ

3 at the
destination.

4.Define w1, w2 and w3 as the number of times three scenarios occur, respectively.

4.1 Exhaustive search approach

The exhaustive search approach is performed for all information sequences with
the weight 0<wt u1ð Þ≤ d1 that may be encoded to the codeword with the weight d1.
The preceding are the particular steps of this approach.
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1.Define the set ψ ¼ u1jwt c1ð Þ ¼ d1f g to store the information sequence u1 that
generate the exactly the codeword with weight d1.

2.Determine the set ϕ ¼ ξg
n o

which stores all selection patterns

ξg ¼ ξ1, ξ2, … , ξK2

� �
, where ξi ∈ 1, 2, … ,K2, g ¼ 1, 2, ξ,L and L is given as,

L ¼ K1 K2
¼ K1!

K2! K1 � K2ð Þ! : (46)

3.For each selection pattern ξg, determine the value of w1. If ∣Γ∣ ¼ 1, Moreover, save
the selection patterns corresponding to the min w1ð Þ to the set Γ. If then skip step 6
otherwise come to the next step, where ∣ � ∣ denotes the cardinality of the set.

4.From the set Γ, determine the selection patterns ξg that correspond to the
min w2ð Þ and are stored to the set Ω. Similarly, if ∣Ω∣ ¼ 1, proceed to step 6, else
move to the next step.

5.Determine the selection patterns ξg corresponding to min w3ð Þ from the set Ω and
are further saved in the set Ψ. If ∣Ψ∣ ¼ 1, then, come to step 6, otherwise add the
wt c2ð Þ by 1 and move on to step 5 until ∣Ψ∣ ¼ 1.

6.The optimized selection pattern ξ ESð Þ ¼ ξg is captured. The selection is terminated.

Example 3. In the distributed RS-coded cooperative system, consider the
RS1 15,11,5ð Þ and RS2 15,7,9ð Þ are employed in the source and relay, respectively. The
symbol elements of the RS1 and RS2 are chosen from GF 24

� �
shown in Table 1. The

exhaustive search for selecting the information symbol of K2 ¼ 7 from K1 ¼ 11 is
demonstrated below.

1.Find all information sequences u1 that generate the codewords c1 with weight
d1 ¼ 5. And store them to the set ψ . By numerical simulation, ∣ψ ∣ ¼ 45045.

2.Store all selection patterns ξg ¼ ξ1, ξ2, … , ξ7½ � in the set ϕ. And calculate
∣ϕ∣ ¼ L ¼ 330.

3.Through simulation, min w1ð Þ and its corresponding selection patterns are
obtained and saved in the set Γ as exhibited in Table 2. Since ∣Γ∣ ¼ 4 6¼ 1, then
come to the next step.

No. Selection pattern w1 w2

1 456891011½ � 840 17,010

2 457891011½ � 840 17,280

3 467891011½ � 840 17,535

4 567891011½ � 840 16,635

Table 2.
The procedure of exhaustive search approach to obtain an optimized selection pattern.
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4.For the four selection patterns, determine the min w2ð Þ ¼ 16635 that
corresponding to a selection pattern ξg ¼ 5,6,7,8,9,10,11½ �. Thus, ∣Ω∣ ¼ 1 and the

optimized ξ ESð Þ ¼ 5,6,7,8,9,10,11½ � is determined.

The end of Example 3.

4.2 Partial search approach

The exhaustive search approach can choose the optimal selection pattern with the
final codeword at the destination having a better weight distribution. However, the
complexity of determining the information sequence set ψ and the selection pattern
set ϕ increases rapidly when the information length and code length become large.
Therefore, we need to consider a low-complexity search approach, i.e., a partial search
approach [16]. This approach reduces the search range of the information sequences
and the scope of the selection patterns.

First, divide the information positions into two parts illustrated in Figure 2. Case
(a): the first part is greater than the other part one symbol. Case (b): the last part is
greater than the first part symbol. In two cases, make sure the symmetric structure of
the K1 information symbols. Hence, it is reasonable to position the information sym-
bols appropriately. Note that the message sequence generating the codeword with the
weight d1 has at least θ ¼ K1 � min K1, d1ð Þ zero symbols. Thus, we focus on selecting
the distribution positions of the θ zero symbols and K2 selection pattern.

1.Determine the distribution positions of the θ zero symbols. For case (a), take
ε θ=2d e≤ εθmin K1=2d e, θð Þð zero symbols set in the first part randomly, and the
other θ � ε distribute in the last part uniquely. For case (b), ε zero symbols are
uniquely assigned in the first part and the remaining θ � ε zero symbols are
randomly set in the last part, where �d e represent ceil operation. Consider two
cases, the set ψ that stores partial information sequences generating the
codeword with d1 is determined.

2.Determine the selection positions of K2 information symbols from the K1
positions. For case (a), randomly choose ζ K2=2d e≤ ζ≤ min K1=2d e,K2ð Þð Þ
positions out of the first part and the left K2 � ζ positions are fixed at the last
part. For case (b), select ζ positions randomly from the last part and the other
K2 � ζ positions are uniquely chosen from the first parts. Hence, the reduced
selection patterns ξg are stored in the set ϕ.

Figure 2.
The symmetric division structure of the positions of K1 information symbols, case (a) one more symbol in the first
part, case (b) one more symbol in the last part.
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Based on the reduced sets ψ and ϕ, the subsequent steps are same as the Step
3–6 of the exhaustive search approach.

Example 4. This example uses the same codes as Example 4.1. Evidently, the
information sequence that can be encoded to the codeword with weight 5 includes at
least 6 zero-symbols. The division structure of the partial search approach is shown in
Figure 3.

1.Determine the distribution positions of the 6 zero symbols. For case (a), take
ε ε ¼ 3,4,5,6ð Þ zero symbols set in the first 6 positions randomly, and the other 6� ε
distribute in the last 5 positions uniquely. For case (b), ε zero symbols are uniquely
assigned in the first part and the remaining 6� ε zero symbols are randomly set in
the last part. Consider two cases, the set ψ is determined and ∣ψ ∣ ¼ 24075.

2.Determine the selection positions of 7 information symbols from the 11 positions.
For case (a), randomly choose ζ ζ ¼ 4,5,6ð Þ positions out of the first 6 positions,
and the left 7 � ζ positions are fixed at the last 5 positions. For case (b), select ζ
positions randomly from the last 6 positions, and the other 7 � ζ positions are
uniquely chosen from the first 5 positions. Hence, the set ϕ of the partial
selection pattern is determined, and ∣ϕ∣ ¼ 44.

3.Through simulation, minw1 ¼ 360 and its corresponding selection patterns are
stored in the set Γ as demonstrated in Table 3. Since ∣Γ∣ ¼ 3 6¼ 1, then come to
the next step.

4.For the three selection patterns, determine min w2ð Þ that corresponds to two
selection patterns. Thus, ∣Ω∣ ¼ 2 6¼ 1, go to the next step.

5.Obtain the min w3ð Þ ¼ 6540 and corresponding selection pattern from the set Ω
and are further saved in the set Ψ. Since ∣Ψ∣ ¼ 1, then, the optimized selection
pattern ξ PSð Þ ¼ 123691011½ � is acquired. The partial search stops.

Figure 3.
The symmetric division structure of the positions of 11 information symbols, case (a) 6 symbols in the first part,
case (b) 6 symbols in the last part.

No. Selection pattern w1 w2 w3

1 123491011½ � 360 10,035 6615

2 123691011½ � 360 10,035 6540

3 123891011½ � 360 10,035 ����

Table 3.
The procedure of partial search approach to obtain an optimized selection pattern.
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The end of Example 4.
Based on Examples 3 and 4, the BER performance of the distributed RS-coded

cooperative scheme over the Rayleigh fast-fading channel employing the exhaustive
search and partial search is exhibited in Figure 4 where the 16-QAM modulation is
employed and the source-to-relay channel is ideal. The result reveals that the scheme
with two different approaches illustrates almost identical performance, which further
shows the feasibility of the reduced-complexity approach. More simulation results can
refer to [13].

4.3 Complexity comparisons

First, the complexity comparisons of the two search approaches are listed in
Table 4, where λþ1 , λ

�
1

� �
and λþ2 , λ

�
2

� �
represent the number of the operations of the

addition and the multiplication required to encode the information sequence from the
set ψ and ψ at the source and relay, respectively, and λtotal denotes the total operations.

5. Joint decoding algorithms and error performance analysis

The section introduces the two joint decoding algorithms, namely, the naive algo-
rithm and the smart algorithm. The two decoding algorithms may enhance the overall

Figure 4.
The BER performance comparison of the distributed RS-coded cooperative scheme with two selection approaches at
the relay over the fast-fading channel.
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performance by making full advantage of the two signals from the source and relay,
respectively.

5.1 Nave decoding algorithmm

The detailed steps for the naive algorithm are listed as follows:

1.For the received demodulated signal ~c1j~c2ð Þ, ~c1 and ~c2 are decoded by RS1 and
RS2 decoders, respectively, to acquire the estimated information sequences u01
and u02.

2.Determine the SNR cross-point of the RS1 and RS2 point-to-point coding scheme
over the fast-fading channel, denoted η.

3. If SNR ≤ η, û1 ¼ u01 due to the better performance of RS1 code than that of RS2
code at the low SNRs. Otherwise, u02 replaces u

0
1 at the corresponding selected

positions to obtain a re-combined €u1, then, û1 ¼ €u1. This is because the RS2 code
with more parity-check symbols outperforms the RS1 code at high SNRs. Finally,
the estimated sequence û1 is obtained.

5.2 Smart decoding algorithm

The specific steps for the smart algorithm are described below:

1.For the received demodulated signal ~c1j~c2ð Þ, only decode the last part ~c2 to get
the systematic non-binary message sequence u02.

2.For the first part ~c1 comprising of the check-parity sequence ~p1 and information
sequence ~u1, replace the non-binary symbols of ~u1 with u02 in the corresponding
K2 positions to obtain the re-combined sequence c1 due to the reliability of u02
than original message symbols.

3.Decode c1 by the RS1 decoder to acquire the final estimated information
sequence u1.

Figure 5 illustrates the BER performance of the distributed RS-coded cooperative
scheme under two different decoding algorithms over a fast fading channel, where
16-QAM is applied in the scheme and the partial search approach is employed in the

Approaches Operations λþ1 , λ
�
1

� �
λþ2 , λ

�
2

� �
λtotal

Exhaustive Search K1 N � K1ð Þ∣ψ ∣ð , K2∣ψkϕ∣ N � K2ð Þð , 2∣ψ ∣ NK1 þNK2∣ϕ∣½
K1 N � K1ð Þ∣ψ ∣Þ K2∣ψkϕ∣ N � K2ð ÞÞ � K1ð Þ2 � K2ð Þ2∣ϕ∣�

Partial Search K1 N � K1ð Þ∣ψ ∣ð , K1 N � K1ð Þ∣ψ ∣Þ K2∣ψkϕ∣ N � K2ð Þ�
,

K2∣ψkϕ∣ N � K2ð ÞÞ 2∣ψ ∣ NK1 þNK2∣ϕ∣
�

� K1ð Þ2 � K2ð Þ2∣ϕ∣�

Table 4.
Complexity comparisons of two approaches.
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relay. From the simulated result, the scheme under the smart decoding algorithm is
superior to that of the naive by a gain of over 1.5 dB at BER≈4� 10�5.

5.3 Error performance of distributed RS coded-cooperative systems

This section presents the average error probability (AEP) bound for the distributed
RS coded-cooperative scheme over the Rayleigh fast-fading channel. First, the uncon-
ditional error probability is provided as follows [5, 17, 18],

Pb Eð Þ ¼ 1
π

ðπ=2
0

1þ Λ1

sin 2φ

� �d1

1þ Λ2

sin 2φ

� �d2

dφ, (47)

where Λ1 and Λ2 denote the average signal-to-noise ratio (SNR) per information
bit from the source-to-destination and relay-to-destination links. The integral in
Eq. (47) is calculated by the available computer package. Then, the upper bound may
be acquired by assuming sin 2φ ¼ 1, shown as,

Pb Eð Þ≤ 1
2

1
1þ Λ1

� �d1 1
1þ Λ2

� �d2

, (48)

Therefore, based on Eq. (48), the upper bound of the bit error probability Pb is
further given as [6],

Figure 5.
The performance comparison of the distributed RS-coded cooperative scheme under two different joint decoding
algorithms over the fast-fading channel.
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Pb ≤
XN

ϖ¼d1þd2

Jϖ
K1

Pb Eð Þ, (49)

where Jϖ represents a weight enumerating factor for each codeword with weight w
which is obtained by exhaustive computer search.

6. Conclusions

The chapter first introduces the encoding and decoding procedure of the BCH
codes and RS codes. Then, the system model of the distributed RS-coded cooperation
is presented which improves the anti-interference transmission performance of the
short-to-medium-length information block. In the scheme, the exhaustive and partial
search approaches are introduced and employed in the relay to choose an optimized
selection pattern that results in a final code with a better weight distribution at the
destination. In addition, two joint decoding algorithms are provided to further
enhance the performance and the performance analysis validates the system.

Acknowledgements

The financial assistance provided by the National Natural Science Foundation of
China under contract No. 61771241 is acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Author details

Chen Chen and Fengfan Yang*
College of Electronics and Information Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing, China

*Address all correspondence to: yffee@nuaa.edu.cn

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

28

Coding Theory Essentials



References

[1] Alamouti SM. A simple transmit
diversity technique for wireless
communications. IEEE Journal on
Selected Areas in Communications.
1998;16(8):1451-1458. DOI: 10.1109/
49.730453

[2] Ejaz S, Yang FF. Turbo codes with
modified code matched interleaver for
coded-cooperation in half-duplex
wireless relay networks. Frequenz. 2015;
69(3–4):171-184. DOI: 10.1515/freq-
2014-0072

[3] Wang H, Chen Q. LDPC based
network coded cooperation design for
multi-way relay networks. IEEE Access.
2019;7:62300-62311. DOI: 10.1109/
ACCESS.2019.2915293

[4] Umar YFF, Mughal S. Distributed
polar coded single carrier-FDMA based
on multilevel construction over
multipath channels. Wireless Personal
Communications. 2019;105(3):835-856.
DOI: 10.1007/s11277-019-06124-4

[5] Park J, Kim J. Generator polynomial
model-based eye diagram estimation
method for Bose-Chaudhuri-
Hocquenghem (BCH) code and reed-
Solomon (RS) code. IEEE Transactions
on Electromagnetic Compatibility. 2020;
62(1):240-248. DOI: 10.1109/
TEMC.2018.2881146

[6] Ejaz S, Yang FF. Jointly optimized
reed-uller codes for multilevel multirelay
coded-cooperative VANETS. IEEE
Transactions on Vehicular Technology.
2017;66(5):4017-4028. DOI: 10.1109/
TVT.2016.2604320

[7] Gong B, Ding C, Li C. The dual codes
of several classes of BCH codes. IEEE
Transactions on Information Theory.
2022;68(2):953-964. DOI: 10.1109/
TIT.2021.3125933

[8] Guruswami V, Sudan M. Improved
decoding of Reed-Solomon and
algebraic-geometry codes. IEEE
Transactions on Information Theory.
1999;45(6):1757-1767. DOI: 10.1109/
18.782097

[9] Barry JR, Lee EA, Messerschmitt DG.
Digital Communication. 3rd ed. Springer
US; 2004

[10] Blasco FL, Garrammone G, Liva G.
Parallel concatenation of non-binary
linear random fountain codes with
maximum distance separable codes.
IEEE Transactions on Communications.
2013;61(10):4067-4075. DOI: 10.1109/
TCOMM.2013.090513.120834

[11] Zeh A, Li W. Decoding Reed-
Solomon codes up to the Sudan radius
with the Euclidean algorithm. In: 2010
International Symposium On
Information Theory & Its Applications.
2010. pp. 986-990

[12] Andreas FM. Channel coding and
information theory. Wireless
Communications. IEEE. 2011;63:277-317.
DOI: 10.1002/9781119992806.ch14

[13] Guo PC, Yang FF, Zhao CL, UllahW.
Jointly optimized design of distributed
Reed-Solomon codes by proper selection
in relay. Telecommunication System.
2021;78(3):391-403. DOI: 10.1007/
s11235-021-00822-w

[14] Halbawi W, Ho T, Yao HY,
Duursma I. Distributed Reed-Solomon
codes for simple multiple access
networks. In: IEEE International
Symposium on Information Theory.
2014. pp. 651-655

[15] Zhao C, Yang FF, Waweru DK.
Reed-Solomon coded cooperative spatial

29

RS Codes and Optimized Distributed RS-Coded Relay Cooperative Communications: Code…
DOI: http://dx.doi.org/10.5772/intechopen.109081



modulation based on nested construction
for wireless communication.
Radioengineering. 2021;30(1):172-183.
DOI: 10.13164/re.2021.0172

[16] Chen C, Yang FF, Zhao CL, Xu HJ.
Distributed reed-Solomon coded
cooperative space-time labeling diversity
network. Radioengineering. 2022;4(96):
496-509. DOI: 10.13164/re.2022.0496

[17] Hunter TE, Nosratinia A. Diversity
through coded cooperation. IEEE
Transactions on Wireless
Communications. 2006;5(2):283-289.
DOI: 10.1109/TWC.2006.1611050

[18] Simon MK, Alouini M. A unified
approach to the performance analysis of
digital communication over generalized
fading channels. Proceedings of the
IEEE. 1998;86(9):1860-1877.
DOI: 10.1109/5.705532

30

Coding Theory Essentials



Chapter 3

Linear Codes from Projective
Varieties: A Survey
Rita Vincenti

Abstract

Linear codes can be constructed from classical algebraic varieties or from
appropriate subsets of finite geometry by considering projective systems arising from
their rational points. This geometric point of view allows to look for linear codes
by choosing suitable sets to get immediately length, minimum distance, and
spectrum (cf. Lemma 1, Propositions 5, 9, 12, 13, 17). In some cases, it is also possible
to build a PD-set or an antiblocking decoding (cf. Propositions 3, 4, 14, Examples of
Section 5).

Keywords: finite projective geometry, projective systems, linear codes, quadrics,
schubert variety

1. Introduction

In the construction of a code, it would be desirable to have a small length, great
dimension, and minimum distance to keep the transmission rate low and to get both
much information and the correction of many errors. But it is impossible to improve
all the basic parameters at the same time.

The purpose of this article is to collect results on linear codes arising from classical
varieties via projective systems, by adopting a geometric point of view. If the basic
parameters of such varieties (or of appropriate subsets of points) in a projective space
can be calculated directly, then it is possible to know immediately length and mini-
mum distance and sometimes also the weight distribution of the related linear codes.

When the group of automorphisms of a variety is read in the automorphism group
of a related code, in some cases, it is possible to construct a PD-set (Permutation
Decoding set) and/or an AI-system (Antiblocking system).

A PD-set for a t-error-correcting code C is a set S of automorphisms of the
code such that every possible error vector of weight w≤ t can be moved out of the
information positions by some member of S (cf. [1, 2]). To apply a PD-set to decode a
message refer to Huffman ([3], pp. 1345–1440), where an algorithm is given. The
permutation decoding algorithm is more efficient the smaller size of the PD-set. The
Gordon (lower) bound on this size is crucial (cf. [2] and [3], p. 1414).

A large automorphism group of a code allows to find a PD-set. Indeed, linear codes
defined by projective systems usually have large automorphism group. In [4] is
generalized the notion of a PD-set of a code to that of a t-PD-set of an arbitrary
permutation set.
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An AI-system (Antiblocking system) is a new decoding algorithm developed by
Kroll and Vincenti in [5, 6], which is comparable to the permutation decoding
algorithm, but more efficient being simpler and faster than the permutation
decoding algorithm. The existence of a PD-set implies usually also the existence of an
AI-system of the same size. But there also may exist AI-systems that are not derived
from PD-sets and which are smaller than the known PD-sets. By comparing the two
decoding algorithms, it is clear that the antiblocking decoding needs less computing
steps than the permutation decoding, even if the size of both systems is the same.
Moreover, the antiblocking decoding may be applied even if there does not exist a
PD-set or if there exists only a PD-set of very large size and an AI-system of smaller
size. For the technique to find small AI-systems, refer to [5], where some properties of
antiblocking systems are established.

Codes related to quadrics in the 3-dimensional finite projective spaces PG(3, q)
mark the way for the next examples. The geometries of the plane sections of the
quadrics over a conic are well known, as well as their automorphism groups. In
Section 3, PD-sets for q ¼ 3 for all three cases are presented. For the elliptic and
hyperbolic quadric, also examples for q ¼ 4 are given. These results say that the
corresponding codes admit PD-sets S. The size ∣S∣ is minimal in some cases. For
the hyperbolic quadric also a 5-AI-system is shown, while the Gordon bound is
6 (cf. Propositions 3, 4).

In Section 4, we will refer to the construction of linear codes arising,
respectively, from the Grassmannian of the lines of the third dimension (that is, the
Klein quadric) and from the Schubert variety of PG 5, qð Þ (cf. Proposition 5, 6 and
Examples 1, 2).

In Section 5, we consider codes related to what we call the celtic variety, that is, the
ruled rational normal surface V3

2 of order three in PG 4, qð Þ (cf. Propositions 13).
Examples of PD-sets for q = 3 and q = 4 are given in Proposition 14.

In the last Section, results concerning projective systems and codes related to ruled
sets are collected (cf. Proposition 17 and Examples 3, 4, 5). In the examples, the weight
distribution of each code is also shown.

The title of each section refers only to the varieties of which the related codes are
described there.

2. Codes and projective systems

Let F ¼ GF qð Þ be a finite field, q ¼ ps, p prime, denote by Fn the n-dimensional
vector space over F.

A linear n, k½ �q-code C of length n is a k-dimensional subspace of the vector space Fn.
For t≥ 1 the t-th higher weight of C (cf. Wei [7]) is defined by

dt ¼ dt Cð Þ ¼ min ∥D∥ for all D<C, dimD ¼ tf g, (1)

where D is a subspace of C and ∥D∥ is the number of indices i such that there exists
v∈D with vi 6¼ 0.

The first parameter d1 ¼ d1 Cð Þ is the Hamming distance d, that is, the classical
minimum distance (or, minimum weight) of C.

The code C has genus at most g≥0 if kþ d1 ≥ nþ 1� g.
Sometimes an n, k½ �q-code C of minimum distance d is denoted n, k, d½ �q-code.
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Let Pk�1 ¼ PrFk ¼ PG q� 1, qð Þ denote the k� 1ð Þ-dimensional Galois projective
space over the field F, k≥ 3 with point set P and line set L. Denote T the set of all
subspaces of PG k� 1, qð Þ,ℌ the set of the hyperplanes of PG k� 1, qð Þ.

The incidence hull of a subset X ⊂P is denoted by X. Thus the joining line of two
points X,Y ∈P is X,Y≔ X,Yf g.

An [n, k]-projective system X of Pk�1 is a collection of n points. X is non-degenerate if
its n points are not contained in any hyperplane.

From now on assume that X consists of n distinct points of rank k.
A standard matrix M can be constructed as follows: for each of the n points of

X choose a generating vector, such n vectors are the rows of M. Let CX be the
linear code having Mt as a generatrix matrix. The code CX is the k-dimensional
subspace of Fn which is the image of the mapping Fk� � ∗

↠Fn from the dual

k-dimensional space Fk� � ∗
onto Fn that calculates every linear form over the points of X .

Therefore the length n of a codeword CX is the cardinality of X , and the dimension of
CX is k.

An automorphism of the code C is a weight-preserving linear automorphism (cf.
[4], Section 2).

The equivalences among n, k, d½ �q-codes are the restrictions of the automorphisms
of Fn represented by monomial matrices, where a monomial matrix is the product of a
permutation matrix and a diagonal matrix (for the basic concepts of coding theory see
for example [3]). To any subset representing the n points of X is associated a linear
[n, k, d]-code, any two such n, k, d½ �q-linear codes are equivalent.

A natural 1–1 correspondence connects the equivalence classes of a non-degenerate
n, k½ �q-projective system X with a non-degenerate n, k½ �q-code CX . If X is an n, k½ �q-
projective system and CX is a corresponding code, then the non-zero codewords of CX

correspond to hyperplanes ℌ of Pk�1, up to a non-zero factor, the correspondence
preserving the parameters n, k, dt. Therefore, the weight of a codeword c
corresponding to the hyperplane Hc is the number of points of XnHc so that the
minimum weight d of the code CX is d ¼ ∣X ∣�max jX ∩Hj jH∈ℌf g.

A linear code C having d as minimum weight is an s-error-correcting code for all
s≤ ⌊d�12 ⌋, and t ¼ ⌊d�12 ⌋ is the error-correcting capability of C.

Subcodes D of C of dimension r correspond to subspaces of codimension
r of Pk�1. Therefore the higher weights of C are
dt ¼ dt Cð Þ ¼ n� max jX ∩ Sj: S<Pk�1j codim S ¼ t,

� �
. In particular,

d1 ¼ d1 Cð Þ ¼ n� max jX ∩Hj: H<Pk�1j codim H ¼ 1,
� �

.
The spectrum of a projective system X of Pk�1 is the set of the following

numbers A sð Þ
i ¼ ∣ S<Pk�1 : codim S ¼ s, jS∩X j ¼ n� i

� �
∣ for all

i ¼ 1, 2, … , n, s ¼ 1, 2, … , k� 2.
Let H∈ℌ be a hyperplane. An intersection number of X (with respect to hyperplanes)

is ∣X ∩H∣. The type of X with respect to the hyperplanes is the set MP of all intersection
numbers of X . For i∈MP , ti≔ H∈ℌj jX ∩Hj¼ if g is the total number of hyperplanes
providing the intersection number i.

Let X be a projective system of type MP . Then for i∈MP there are ti code words in
the related code CX of weight ∣X ∣� i. Analogous definitions can be stated for all sub-
spaces of T. Therefore, the spectrum of X induces the weight distribution of the
codewords of CX .

For the above definitions see also [8–10].
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For the definitions of the permutation and the antiblocking decoding and the
respective algorithms, see [5, 6], p. 1463.

The following result holds (cf. [8]):
Result A (non-degenerate) projective system of Pk satisfies the following
Gordon bound: (cf. [2, 11]) Let S be a PD-set for a t-error-correcting [n, k]-code

with redundancy r ¼ n� k. Then

∣S∣ ≥
n
r

n� 1
r� 1

…
n� tþ 1
r� tþ 1

� �
…

� �� �
: (2)

Following the geometric interpretation of a linear code shown by Tsfasman and
Vladut (cf. [12, 13]) many authors studied codes arising from sets of the rational
points of an affine or of a projective space.

Denote F the algebraic closure of the field F ¼ GF qð Þ.
The geometry PG r, qð Þ ¼ Pr is considered a sub-geometry of PG r, qð Þ ¼ P

r
, projec-

tive geometry over F. We refer to the points of Pr as the rational points of Pr
.

A variety Vv
u of dimension u and of order v of Pr is the set of the rational points of a

projective variety Vv
u of P

r
defined by a finite set of polynomials of F x0, … , xr½ �.

Choose a coordinate system in Pr so that it is a coordinate system for Pr
too, denote

a point P≈ x0, x1, … , xrð Þ≔F
∗
x0, x1, … , xrð Þ,F ∗ ¼ Fn 0f g.

P is a rational point if there exists x0, x1, … , xrð Þ∈Frþ1 such that P≈ x0, x1, … , xrð Þ.
For the definition of projective variety, the reader can refer to [14, 16].
If X is a subset of n ¼ ∣X ∣ points of Pr, then a subspace of Pr of projective dimen-

sion u is denoted by Su. A variety of dimension u and of order v is denoted Vv
u.

A t-secant subspace is a subspace intersecting X in t points. A t-secant is a t-secant
line.

A line t is a tangent of X if either t has just one point in common with X or, each
point of t is contained in X . If a tangent line t has just one point in common with X ,
then t is a tangent of X at the point P. A subspace U is a component-subspace if each
point of U lies in X . A line l with the property that each of its points lies in X is a
component-line, or simply a component. If m� 1 is the largest dimension of a compo-
nent space of X , then m is the vector index of X .

3. The quadrics in PG 3, q
� �

In the 3-dimensional geometry P3 ¼ PG 3, qð Þ over the Galois field F ¼ GF qð Þ we
will consider the elliptic quadric E3, the hyperbolic quadric H3, and the quadric cone QO

with vertex O and directrix a conic of a plane π,O ∉ π:.
Denote Q the projective system defined by the rational points of a quadric Q . Let

CQ be a related code.
The minimum weights dt of the projective system Q consisting of n points are, in

such a dimension, dt ¼ n� max jQ∩ Stjf g, t ¼ 1, 2,
and the spectrum of Q is

A sð Þ
n�i ¼ ∣ S3�s <PG 3, qð Þ : jS3�s ∩Qj¼ if g∣

i ¼ 1, 2, … , n, s ¼ 1, 2: (3)
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To construct a linear code related to a quadric, one needs to know all the
intersection numbers related to it.

From [14] we get

a. the elliptic quadric E3 : f x0, x1ð Þ þ x2x3 ¼ 0, consists of q2 þ 1 points no three
of which are collinear, q2 þ 1 tangent planes, q q2 þ 1ð Þ and secant planes;

b. the hyperbolic quadric H3 : x0x1 þ x2x3 ¼ 0 consists of qþ 1ð Þ2 ¼ q2 þ 2qþ 1
points on 2 qþ 1ð Þ (component) lines, each point on two lines, q q2 � 1ð Þ secant
planes through conics;

c. the cone QO : x20 þ x1x4 ¼ 0, consists of q qþ 1ð Þ þ 1 ¼ q2 þ qþ 1 points on
the qþ 1 (component) lines projecting from the point O a conic directrix.

Let H be a plane of ℌ. If Q is elliptic, then Q∩H is a point or a conic. If Q is
hyperbolic, thenQ∩H is the union of two lines or a conic. IfQ is a cone, thenQ∩H is
the vertex O or a line or the union of two lines or a conic.

From [14] and from above the basic parameters and the spectrum of the projective
system Q can be shown.

Lemma 1 (1) If Q ¼ E3 then n ¼ q2 þ 1, k ¼ 4, d1 ¼ q2 � q, d2 ¼ q2 � 1;

A 1ð Þ
n� qþ1ð Þ ¼ q q2 þ 1ð Þ,A 1ð Þ

n�1 ¼ q2 þ 1,A 2ð Þ
n�2 ¼ q2

q2þ1ð Þ
2 ,A 2ð Þ

n�1 ¼ qþ 1ð Þ q2 þ 1ð Þ,
A 2ð Þ

n ¼ q2
q2þ1ð Þ
2 and no other parameter is different from zero.

(2) If Q ¼ H3 then n ¼ qþ 1ð Þ2, k ¼ 4, d1 ¼ q2, d2 ¼ q2 þ q;

A 1ð Þ
n� 2qþ1ð Þ ¼ qþ 1ð Þ2,A 1ð Þ

n� qþ1ð Þ ¼ q q2 � 1
� �

; (4)

A 2ð Þ
n� qþ1ð Þ ¼ 2 qþ 1ð Þ,A 2ð Þ

n�2 ¼ q2 qþ1ð Þ2
2 ,A 2ð Þ

n�1 ¼ qþ 1ð Þ q2 � 1ð Þ,A 2ð Þ
n ¼ q q�1ð Þ2

2 and no
other parameter is different from zero.

(3) If Q ¼ QO then n ¼ q2 þ qþ 1, k ¼ 4, d1 ¼ q2 � q, d2 ¼ q2;

A 1ð Þ
n� 2qþ1ð Þ ¼

q qþ 1ð Þ
2

,A 1ð Þ
n� qþ1ð Þ ¼ q3 þ qþ 1,A 1ð Þ

n�1 ¼
q q� 1ð Þ

2
; (5)

A 2ð Þ
n� qþ1ð Þ ¼ qþ 1,A 2ð Þ

n�2 ¼
q3 qþ 1ð Þ

2
, (6)

A 2ð Þ
n�1 ¼ q3 þ q2,A 2ð Þ

n ¼ q3 q�1ð Þ
2 and no other parameter is different from zero.

Then is proved the following (cf. Proposition 5 of [4]).
Proposition 2 (1) If Q ¼ E3, then Q is a q2 þ 1, 4, q q� 1ð Þ½ �q-projective system. 2) If

Q ¼ H3, then Q is a qþ 1ð Þ2, 4, q2
h i

q
‐projective system. 3) If Q ¼ QO, then Q is a

q qþ 1ð Þ, 4, q q� 1ð Þ½ �q-projective system.

The following propositions supply examples for q ¼ 3 and q ¼ 4. Denote Q a
quadric in PG 3, 3ð Þ and CQ a related code. From [4], Proposition 11 we get

Proposition 3 (1) IfQ ¼ E3, then CQ is a 2-error-correcting 10,4,6½ �3-code admitting a
PD-set S of minimum size 4.
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(2) IfQ ¼ H3, then CQ is a 4-error-correcting 16,4,9½ �3-code admitting a PD-set of size 8.
(3) If Q0 ¼ QOn Of g, then a related code C0Q is a 2-error-correcting 12,4,6½ �3-code

admitting a PD-set S of minimum size 3.

DenoteQ a quadric in PG 3, 4ð Þ and CQ a related code. From [4], Propositions 12, 13
and from the Example of [6], p.1464, we get

Proposition 4 (a) If Q is an elliptic quadric, then CQ is a 5-error-correcting-
17,4,12½ �4-code admitting a PD-set S of size 16.

Let Q be a hyperbolic quadric. Then
b1ð Þ CQ is a 25,4,16½ �4-code admitting a PD-set S of size 20 and a 5-AI-system A.
b2ð Þ If P∈Q and [P] is the union of the two generators of Q passing through P, then

Q0 ¼ Qn P½ � gives rise to a code CQ 0 being a 16,4,9½ �4-code admitting a PD-set S of size 12.
Note that in case b1ð Þ, the Gordon bound is 6.

4. The Klein quadric and the Schubert variety of PG 5, q
� �

Let Ul be the set of all l-dimensional subspaces of PG r, qð Þ. The Grassmann mapping

G : Ul ! PG N, qð Þ,N ¼ rþ 1

lþ 1

� �
� 1, associates to any U ∈Ul a point G Uð Þ of

PG N, qð Þ. Then imG ¼ Gl,r ≔G Ulð Þ is an algebraic variety called the Grassmannian of
the l-dimensional subspaces of PG r, qð Þ (cf. [16], p. 107). The number of points of Gl,r
is given by

∣Gl,r∣ ¼
rþ 1

lþ 1

� �
¼ qrþ1 � 1ð Þ qr � 1ð Þ… qr�lþ1 � 1

� �
qlþ1 � 1ð Þ ql � 1ð Þ… q� 1ð Þ : (7)

The Grassmannian G1,3 of the lines of PG 3, qð Þ is the hyperbolic quadric KQ of
PG 5, qð Þ consisting of q2 þ 1ð Þ q2 þ qþ 1ð Þ points. It is called the Klein quadric.

It has a projective index 2, and it is covered by two systems of component planes. For
general details see [14–16], for details on the intersection properties see [17] Section 4).

A linear code related to KQ is an [n, k]-code where n ¼ q2 þ 1ð Þ q2 þ qþ 1ð Þ, k ¼ 6
and minimum distance d ¼ q4 (see [18], p. 147, [13], p. 1579]).

Let X ¼ XKQ denote the projective system associated to KQ. As usual, the basic

parameters and spectrum are denoted respectively n, k, dt ¼ dt Xð Þ and A sð Þ
n�i ¼

A sð Þ
n�i Xð Þ with s, t ¼ 1,2,3,4.

By direct computation we get
Proposition 5. X has the following basic parameters and spectrum:
(1) n ¼ q2 þ 1ð Þ q2 þ qþ 1ð Þ, k ¼ 6,

d1 ¼ q4, d2 ¼ q4 þ q3, d3 ¼ q4 þ q3 þ q2, d4 ¼ q4 þ q3 þ 2q2; (8)

(2) with respect to the hyperplanes:
A 1ð Þ

n� q3þ2q2þqþ1ð Þ ¼ q4 þ q3 þ 2q2 þ qþ 1 (hyperplanes cutting Schubert varieties);

A 1ð Þ
n� q3þq2þqþ1ð Þ ¼ q5 � q2 (hyperplanes cutting parabolic quadrics of the

4th dimension);
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and A 1ð Þ
n�j ¼ 0, j 6¼ q3 þ q2 þ qþ 1 or j 6¼ q3 þ 2q2 þ qþ 1:

(3) with respect to the solids:
A 2ð Þ

n� 2q2þqþ1ð Þ ¼ q3 þ q2 þ qþ 1ð Þ q2 þ qþ 1ð Þ (solids cutting pairs of component
planes);

A 2ð Þ
n� qþ1ð Þ2 ¼ 1

2 q
4 q4 þ q3 þ 2q2 þ qþ 1ð Þ (solids cutting hyperbolic quadrics of the

3th dimension);
A 2ð Þ

n� q2þqþ1ð Þ ¼ q3 � qð Þ q2 þ 1ð Þ q2 þ qþ 1ð Þ (solids cutting cones of the 3th dimension);

A 2ð Þ
n� q2þ1ð Þ ¼ 1

2 q
4 q3 � 1ð Þ q� 1ð Þ (solids cutting elliptic quadrics of the 3th dimension);

and A 2ð Þ
n�j ¼ 0, j 6¼ qþ 1ð Þ2, q2 þ 1ð Þ, q2 þ qþ 1ð Þ, 2q2 þ qþ 1ð Þ:

(4) with respect to the planes:
A 3ð Þ

n� q2þqþ1ð Þ ¼ 2 q3 þ q2 þ qþ 1ð Þ (component planes);

A 3ð Þ
n� 2qþ1ð Þ ¼ 1

2 q
2 qþ 1ð Þ2 q2 þ 1ð Þ q2 þ qþ 1ð Þ (planes cutting two component lines);

A 3ð Þ
n� qþ1ð Þ ¼ q4 q3 � 1ð Þ q2 þ 1ð Þð Þ þ q4 � 1ð Þ q2 þ qþ 1ð Þð Þ ¼ cþ r (planes cutting one

conic (c conics) or one line (r lines));
A 3ð Þ

n�1ð Þ ¼ 1
2 q

2 q4 þ 1ð Þ q2 � qþ 1ð Þ � 2q3ð Þ (planes cutting one point);
and A 3ð Þ

n�jð Þ ¼ 0, j 6¼ q2 þ qþ 1ð Þ, 2qþ 1ð Þ, qþ 1ð Þ, 1 (there are no s-secant planes for
s∈ 2, 3, … , qf gÞ:.

(5) with respect to the lines:
A 4ð Þ

n� qþ1ð Þ ¼ q2 þ 1ð Þ q2 þ qþ 1ð Þ qþ 1ð Þ (component lines);

A 4ð Þ
n�2 ¼ 1

2 q
4 q4 þ q3 þ 2q2 þ qþ 1ð Þ (2-secant lines);

A 4ð Þ
n�1 ¼ q3 � qð Þ q2 þ 1ð Þ q2 þ qþ 1ð Þ (tangent lines);

A 4ð Þ
n�0 ¼ 1

2 q
4 q3 � 1ð Þ q� 1ð Þ (external lines);

and A 4ð Þ
n�j ¼ 0, j 6¼ qþ 1ð Þ, 2, 1, 0.

From Section 2, it is clear that the previous Proposition 5 provides the complete
spectrum of a linear code CX related to the Klein quadric.

In Section 5 of [19] is shown the following example.
Example 1 A binary linear code CKQ related to the Klein quadricKQ in PG 5, 2ð Þ is a

[35, 6]-code with minimum distance d ¼ 24 ¼ 16 and admits a PD-set of size 40.

A Schubert variety SKQ of PG 5, qð Þ is a section of the Klein quadric KQ by a tangent
hyperplane T. Thus SKQ is a cone of 2 qþ 1ð Þ planes with vertex O∈KQ and consists
of n ¼ q3 þ 2q2 þ qþ 1 points. It corresponds via the Grassmann mapping G to a
special linear complex of lines of PG 3, qð Þ, that is, a set comprising all lines meeting a
fixed line. It is unique up to projectivities (cf. [14–16]).

If x0, … , x5ð Þ are projective coordinates in PG 5, qð Þ, the quadric KQ can be
represented by the equation x0x5 � x1x4 þ x2x3 ¼ 0 so that a Schubert variety SKQ is
the section of KQ by the hyperplane T with the equation x5 ¼ 0. Then SKQ ¼ KQ∩T
is a cone section with vertex the point (1, 0, 0, 0, 0) from which the hyperbolic
quadric H3 : x1x4 � x2x3 ¼ 0 of a solid is projected.

To calculate d1 it is easy to verify that the maximum intersection with hyperplanes
H ofℌ is obtained when H contains one of the planes and meets each of the remaining
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q planes in lines, all passing through the vertex. Hence the maximum intersection is
2q2 þ qþ 1.

To calculate d2 the maximum intersection with planes (2-dimensional subspaces of
T) is obtained if a plane is one of the ruling planes or is a plane through the vertex
which meets every ruling plane in a line. In any case, we get q2 þ qþ 1.

Finally d3 is clear as in SKQ there are component lines.

From above is proved the following result.
Proposition 6. The basic parameters and weights of SKQ are

n ¼ q3 þ 2q2 þ qþ 1, k ¼ 5, d1 ¼ q3 ¼ n� 2q2 þ qþ 1, (9)

d2 ¼ n� q2 þ qþ 1 ¼ q3 þ q2, d3 ¼ n� qþ 1ð Þ ¼ q3 þ 2q2: (10)

If H is a hyperplane of ℌ, then ∣SKQ ∩H∣ ¼ qþ 1ð Þ2, or ∣SKQ ∩H∣ ¼ 2q2 þ qþ 1
according to O ∉ H or O∈H, respectively. Therefore linear codes related to SKQ and
to V ¼ SKQn Of g (both of dimension 5) have the same minimum distance d ¼ q3.
Since the automorphisms group Aut SKQ fixes the vertex O, a code related to V has
better parameters than a code related to SKQ.

In Section 5 of [19] is shown the following example.
Example 2. A binary linear code CV related to the Schubert variety V ¼ SKQn Of g

in PG 5, 2ð Þ is a [18, 5]-code with minimum distance d ¼ 23 ¼ 8 and admits a PD-set of
size 9.

To get some information about the Grassmannian Gl,r of the l-dimensional
subspaces in PG r, qð Þ, r> 5, and the Schubert variety Ω αð Þ⊂Gl,r (where α ¼
a0, … , alð Þ is the corresponding sequence of dimensions) and their codes, see
Theorem 12 of [9, 20–22].

5. The rational ruled surfaces Vr�1
2 of PG r, q

� �

Let us consider varieties of Pr with u ¼ 2 and v ¼ r� 1.
The following result is well known (see [15]).
Proposition 7 The varieties Vr�1

2 of Pr are the rational ruled varieties and the Veronese
surface if r ¼ 5.

Suitably modified it can be easily proved also for the finite case.

Assume r 6¼ 5. Denote St a projective t-dimensional subspace of Pr for t< r.
Proposition 8

i. Vr�1
2 is a ruled rational normal surface.

ii. A variety Vr�1
2 contains irreducible rational normal curves Ct of order t≤ r� 1

each of them existing in a t-dimensional subspace St.

iii. Each Vr�1
2 is a ruled surface obtained by means of a projectivity between two

irreducible directrix curves Cm and Cr�m�1 contained in an m-dimensional
subspace Sm and in an r�m� 1ð Þ-dimensional subspace Sr�m�1, respectively.
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iv. Let m be the order of the minimum order directrix of Vr�1
2 . Then h generatrix lines

are dependent if h≤mþ 1, otherwise they are independent.

v. If r ¼ 2s, then m ¼ r� 2ð Þ=2 is the order of the minimum order directrix, if
r ¼ 2sþ 1, then there exist directrix curves of order m≤ r� 1ð Þ=2.

Choose and fix a surface Vr�1
2 with a minimum order directrix Cm with m< q.

Denote X the projective system of the rational points of Vr�1
2 , C the linear code

related to X . It is ∣X ∣ ¼ qþ 1ð Þ2.
Proposition 9 C is an n, k, d½ �q-code with

n ¼ qþ 1ð Þ2, k ¼ rþ 1, d ¼ d1 ¼ q2 �mq, dr�1 ¼ q2 þ q: (11)

For the proof see [20], Theorem 4.
From d1 ≤ n� kþ 1, the definition of genus of a code and from Proposition 9

follows
Proposition 10 (1) The inequality mþ 2ð Þq≥ r� 1 holds for every q and r.
(2) C is of genus at most g≥ mþ 2ð Þq� r� 1ð Þ
Consider now the case r ¼ 4. Denote ℌ the set of the hyperplanes. Let V3

2 be a
ruled surface of P4 ¼ PG 4, qð Þ. We have named V3

2 the celtic variety for its hut shape
(see [4], Section 4).

From Proposition 8, from Lemma 7 of [20] and Propositions 1.1, 1.3, 1.4, 1.5, and
Theorem 1.2 of [23] we obtain

Lemma 11

a. A celtic variety V3
2 is constructed by means of a projectivity connecting the points of

the minimum order directrix, the line l, with the points of a non-degenerate conic C2

of a plane π with π ∩ l ¼ �0.

b. V3
2 has qþ 1 two by two skew generatrix lines. They connect birationally the points of

l and the points of C2.

c. There exists a unique hyperplane H such that l⊂H and l0 ¼ π ∩H is skew to l.

d. There exist hyperplanes H0 such that one generatrix line g1 belongs to H
0 and

H0 ∩V3
2 ¼ g1,C

02
n o

for some conic C02.

e. For every two generatrix lines gi, gj, i 6¼ j the hyperplane H0 ¼ gi∪gj is such that

H0 ∩V3
2 ¼ gi, gj, l

n o
. Such hyperplanes have the maximum intersection with V3

2.

f. No hyperplane contains 3 generatrix lines.

g. Every two points P,Q ∈V3
2 belong to l, or to a generatrix line g, or to a unique conic

of V3
2.

h. A plane π0 can meet V3
2 either in one point, or in one line, or in one irreducible conic,

or it is the intersection of l with e generatrix line g. A plane π0 ¼ l∪g is a tangent plane
and ∣π0 ∩V3

2∣ is maximum.

39

Linear Codes from Projective Varieties: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.109836



i. The totality of varieties V3
2 of PG 4, qð Þ having l and C2 as directrices are projectively

equivalent and their number is qþ 1ð Þq q� 1ð Þ.

Denote X the projective system consisting of the rational points of V3
2 and CX a

linear code associated to it.
From Proposition 9, Proposition 10, 2), Lemma 11, (a), (h) and from [20],

Theorems 8 and 9, we obtain
Proposition 12 CX is an n, k½ �q-code with n ¼ qþ 1ð Þ2, k ¼ 5, d1 ¼ q2 � q, d2 ¼

q2, d3 ¼ q2 þ q:CX (and C⊥
X Þ is of positive genus g≥ 3q� 3.

The spectrum A 1ð Þ
i of X is

A 1ð Þ
d1
¼ qþ 1ð Þ q

2
, A 1ð Þ

d2
¼ q2 � q

� �
qþ 1ð Þ, A 1ð Þ

d3
¼ q4 þ 1

� �þ q qþ 3ð Þ
2

, (12)

A 1ð Þ
i ¼ 0 for all i∈ 1, 2, … , nf gn d1, d2, d3f g: (13)

Denote gs the generatrix line joining corresponding points Ls ∈ l and Cs ∈C. As l
is the unique line intersecting all generatrices and there are no other lines contained in
X than l and the generatrix, follows that every automorphism α∈Aut X fixes the
directrix line l and maps every generatrix gs to a generatrix g0s (cf. [4], Lemma 3).

From Lemma 11 follows that the intersection of X with a hyperplaneH is the union
of a generatrix and a conic, or the union of two generatrices and l, or the union of one
generatrix and l, or l, or a cubic curve. Hence max jX ∩Hj jH∈ℌf g ¼ 3qþ 1.

In order to construct PD-sets for the related codes, in Proposition 14 of [4], two
subgroups of Aut X , namely A andN , are chosen. A is isomorphic to the group of the
affine bijections of F: xjx↦xmþ b,m, b∈ F,m 6¼ 0f g,N fixing each generatrix line is a
normal subgroup.

Let X 0 ¼ Xn lf g. Note that ∣X 0∣ ¼ q2 þ q and max jX 0 ∩Hj jH∈ℌf g ¼ 3qþ 1�
qþ 1ð Þ ¼ 2q so that the codes CX and CX 0 have the same minimum distance.

As X generates PG 4, qð Þ, choose a subset I ⊂X of independent points.
From above and by comparing [4], Proposition 15, we get the following result.

Proposition 13 (1) CX is a qþ 1ð Þ2, 5, q q� 1ð Þ
h i

q
-code.

(2) CX 0 is a q qþ 1ð Þ, 5, q q� 1ð Þ½ �q-code.
(3) If q≥4, I ⊂X an independent set of PG 4, qð Þ with I ∩ l 6¼ �0, then there is no PD-

set for I .

From [4], Propositions 17 and 19 follows
Proposition 14 (1) If X is in PG 4, 3ð Þ, then CX is a 2-error-correcting 16,5,6½ �3-code

admitting a PD-set S of minimum size 3.
(2) If X is in PG 4, 4ð Þ and X 0 ¼ Xnl, then the code CX 0 is a 5-error-correcting

20,5,12½ �4-code admitting a PD-set S of size 24.

6. Ruled sets

Let PG k� 1, qð Þ ¼ P,Lð Þ be a k� 1ð Þ-dimensional projective space over F ¼
GF qð Þ, k≥ 3 with point set P and line set L. Denote ℌ the set of the hyperplanes of
PG k� 1, qð Þ.
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Let K⊂P. Denote MP the type of K with respect to hyperplanes (that is, the set of all
intersection numbers of K). For i∈MP let ti ≔ H∈ℌj jK∩Hj¼ if g denote the total
number of hyperplanes yielding the intersection number i.

If K is a projective system of type MP , then for i∈MP there are ti code-words in
CK of weight ∣K∣� i.

From Lemma 1 of [24] we obtain
Lemma 15 Let S ⊂P be a subspace with �0 6¼ S 6¼ P andK⊂S. Then MP ¼MS∪ jKjf g.
Let S and S0 be two complementary subspaces in PG k� 1, qð Þ. Choose and fix two

subsets K⊂S and K0 ⊂S0 with K ¼ S,K0 ¼ S0: Set m≔ ∣K∣,m0≔ ∣K0∣.
Denote R ¼ x, x0jx∈K, x0 ∈K0

� �
. A ruled set X is the set of the points of the lines

of R, that is, X ≔ ⋃
X ∈R

X.

From [24], Lemmas 2 and 3 follows
Lemma 16

1.Let x1, x2 ∈K and x01, x
0
2 ∈K0 with x1 6¼ x2, x01 6¼ x02; then x1, x01 ∩ x2, x02 ¼ �0:

2.Let L1,L2 ∈R,L1 6¼ L2 with L1 ∩L2 6¼ �0; then L1 ∩L2 ∈K∪K0.

3. ∣R∣ ¼ mm0:

4. ∣X ∣ ¼ mm0 q� 1ð Þ þmþm0:

5.If H∈ℌ is a hyperplane and mH ≔ ∣H ∩K∣, m0H ≔ ∣H ∩K0∣, then ∣H ∩X ∣ ¼ mH �
m0H q� 1ð Þ þmH þm0H þ m�mHð Þ � m0 �m0H

� �
:

6.The linear code CX has length ∣X ∣ ¼ mm0 q� 1ð Þ þmþm0 and dimension k.

IfK ¼ S andK0 ¼ S0 then X ¼ P, hence CX ¼ CP is the simplex code of dimension
k. As each hyperplane H is contained in X , in such a case every code word has the
same weight. Therefore the minimum distance (or, weight) is d ¼ ∣X ∣� ∣H∣ ¼ qk�1.

From [24], Lemma 4 follows
Result If HS ⊂S and HS0 ⊂S0 are subspaces of dimHS ¼ dimS � 1 and

dimHS0 ¼ dim S0 � 1, then there exist exactly qþ 1 hyperplanes H with HS,HS0 ⊂H
one of which contains S and one contains S0.

Let MS and MS0 be the type of K and K0 with respect to hyperplanes, respectively.
Denote M ¼MS∪ mf g,M0 ¼ MS0∪ m0f g,mo ¼ min M,m0o ¼ min M0,m1 ¼ maxMS

and m01 ¼ maxMS0 .
Consider the following mapping

ι : M�M! N, ι a, a0ð Þ ¼ a0 aqþ 1�mð Þ þ a 1�m0ð Þ þm �m0: (14)

Then the type of X is MX ¼ ι a, a0ð Þj a, a0ð Þ∈M�Mn m,m0ð Þf gf g and maxMX ¼
max ι mo,m0o

� �
, ι m,m01

� �
, ι m1,m0ð Þ� �

(cf. [24], Proposition 5 and Lemma 6).
Hence we can determine the weight distribution of CX once known the types MS

and MS0 of K and K0, respectively.
Proposition 17 The code CX is a linear code of length n ¼ ι m,m0ð Þ, dimension k and

minimum weight d ¼ n� max ι mo,m0o
� �

, ι m,m01
� �

, ι m1,m0ð Þ� �
.

See [24] Theorem 7.
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Since X generates the projective space P,Lð Þ there exists a basis B⊂X of P,Lð Þ.
Let X ¼ p1, … , pn

� �
such that B ¼ p1, … , pk

� �
is a basis. Let v Xð Þ be a system

of vectors representing X . For pj ∈X let vðpjÞ ¼
Pk

i¼1 γijv pi
� �

be the vector

representing the point pj with respect to the basis v Bð Þ of Fk. Then G ¼ ðγijÞ is a
standard generatrix matrix of the code CX .

If BK ⊂K is a basis of S and BK0 ⊂K0 is a basis of S0 then B ¼ BK∪BK0 ⊂X is a basis
of P,Lð Þ. With such a basis it is easy to write down the standard generatrix matrix, in
particular in the binary case.

For q ¼ 2, the standard generatrix matrix G for CX is shown in [24], p.751.

For the following Examples see Examples 1, 2 and 3 of [24], pp. 751–754.
Example 3 In PG k� 1, qð Þ, k≥ 5, choose and fix an ellipsoid E in a 3-dimensional

subspace S, let S0 be a complementary subspace of S, set r≔ dimS0 ¼ k� 5.
The code CX associated to the ruled set defined by K ¼ E,K0 ¼ S0 has length

n ¼ q2 þ 1ð Þ Pr
i¼0 q

i
� �

q� 1ð Þ þ q2 þ 1þPr
i¼0 q

i ¼ qrþ3 þPrþ1
i¼0 q

i and dimension
k ¼ rþ 5.

The type of K ¼ E is MS ¼ mo ¼ 1,m1 ¼ qþ 1f g; it holds tmo ¼ q2 þ 1 and
tm1 ¼ q3 þ q.

The type of K0 ¼ S0 is MS0 ¼ m00 ¼
Pr�1

i¼0 q
i

n o
and tm0o ¼

Pr
i¼0 q

i.

Then the weight distribution is obtained. There are:

• q2 þ 1 code words of weight qrþ3,

•
Prþ4

i¼4 q
i code words of weight qrþ3 � qrþ2 þ qrþ1,

• q3 þ q code words of weight qrþ3 � qrþ2.

This shows that the minimum weight of CX is d ¼ qrþ3 � qrþ2.
For q ¼ 2 the code CX is a linear 2rþ3 þ 2rþ2 � 1, rþ 5, 2rþ2

� �
-code with error-

correcting capability t ¼ 2rþ1 � 1.
For r ¼ 1 the code CX is a [23, 6, 8]-code.

Example 4 In PG 5, qð Þ, q ¼ 2h, choose and fix two ovals with their nucleus, K⊂S
and K0 ⊂S0, respectively, where S and S0 are two skew planes.

The code CX associated to the ruled set defined by K and K0 has length n ¼
qþ 2ð Þ qþ 2ð Þ q� 1ð Þ þ 2 qþ 2ð Þ ¼ q3 þ 3q2 þ 2q and dimension k ¼ 6.

There are
qþ 2

2

� �
¼ 1

2 q2 þ 3qþ 2ð Þ lines in S and S0 meeting K and K0 in 2 points

and 1
2 q2 � qð Þ lines in S and S0 missing K and K0, respectively.
We obtain the following weight distribution. There are

• q2 � q code words of weight q3 þ 3q2 þ q� 2,

• 1
2 q5 þ q4 � 3q3 � q2 þ 2qð Þ code words of weight q3 þ 2q2 � 2,

• 1
4 q5 þ 5q4 þ 7q3 � q2 � 8q� 4ð Þ code words of weight q3 þ 2q2 � 2q,

• 1
4 q5 � 3q4 þ 3q3 � q2ð Þ code words of weight q3 þ 2q2 � 2q� 4,
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• q2 þ 3qþ 2 code words of weight q3 þ q2 � q.

This shows that the minimum weight of CX is d ¼ 8 for q ¼ 2 and d ¼ q3 þ q2 � q
for q≥4.

For q ¼ 2 the code CX is a linear [24, 6, 8] -code with error-correcting capability
t ¼ 3.

Example 5 In PG 7, qð Þ choose and fix two ellipsoids E and E 0 in two non-
intersecting 3-dimensional subspaces S and S0, respectively. Then the code CX related
to the ruled set defined by K ¼ E,K0 ¼ E 0 has length n ¼ q2 þ 1ð Þ q2 þ 1ð Þ q� 1ð Þ þ
2q2 þ 2 ¼ q5 � q4 þ 2q3 þ qþ 1 and dimension k ¼ 8.

There are q2 þ 1 planes E⊂S with ∣E∩ E∣ ¼ 1 and q3 þ q planes E⊂S with
∣E∩ E∣ ¼ qþ 1.

We obtain the following weight distribution.
There are

• 2 q2 þ 1ð Þ code words of weight q5 � q4 þ q3,

• 2 q6 � q5 þ 2q4 � 2q3 þ q2 � q
� �

code words of weight q5 � 2q4 þ 3q3 � q2,

• q7 � q6 þ 2q5 � 2q4 þ q3 � q2 code words of weight q5 � 2q4 þ 3q3 � 2q2,

• q5 � q4 þ 2q3 � 2q2 þ q� 1 code words of weight q5 � 2q4 þ 2q3,

• 2q q2 þ 1ð Þ code words of weight q5 � 2q4 þ 2q3 � q2.

This shows that the minimum weight of CX is d ¼ q5 � 2q4 þ 2q3 � q2.
For q ¼ 2 the code CX is a linear [35, 8, 12]-code with error-correcting capability

t ¼ 5.
In [24], pp. 752–753 the standard generatrix matrices of the three examples are

shown.

7. Conclusions

The close connection between the geometry of the projective varieties, or in gen-
eral, of suitable subsets of a finite geometry and linear codes through projective
systems, certainly still has prospects for interesting developments. This is, on the one
hand, because of the elaboration and study of eventually new varieties, and, on the
other, for the possibility of constructing linear codes with interesting parameters for
the various applications in the communication systems.
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Chapter 4

Hybrid Obfuscation of Encryption
Asma’a Al-Hakimi and Abu Bakar Md Sultan

Abstract

Obfuscation is an encryption method. It allows the programmer to reform the code
for protection. Obfuscation has promising chance to change the way of coding, where
the programmer has the ability to program with any language, not necessarily English.
Obfuscation, Unicode, and mathematical equations have the possibility to change
strings and identifiers and to hide secret algorithms and business rules. Special dictio-
nary is used for the string obfuscation to hide the logic of the program. The hybrid
obfuscation technique will be implemented into a tool that automatically converts the
code. It can be can be used for games and mobile applications for protection. With
obfuscation, the application still has the ability to perform sufficiently and provide the
desired output without any delays in performing timing. After obfuscating the source
file, reverser still has the ability to break the object file but will not be able to read or
understand and when obfuscation technique is complicated, reversing leads to error
where original code disappears. In this chapter, hybrid obfuscation will be presented
with examples, and obfuscation table is presented as well for future use.

Keywords: obfuscation, encryption, anti-reverse engineering, reverse engineering,
hacking prevention

1. Introduction

Obfuscation is considered as anti-reverse engineering to prevent hacking and code
theft. It mainly works in the source file to change the form of the code to confuse the
reverser or the hacker and also to prevent the compiler from reading the hacked code.
The obfuscation technique converts all the code into unreadable text, but it functions
like the original code and produces the same output. There are many forms of obfus-
cation, such as string encryption, hiding, changing identifier names, junk code obfus-
cation, packing, byte code obfuscation, string encryption, stealth obfuscation, chaotic
encryption, and junk code obfuscation. In this chapter, a newmethod of obfuscation is
introduced to produce a different kind of chaotic code that is almost impossible to
read and understand but still produces the desired output [1]. For this case, Java code
will be used to implement and test the code. Figure 1 presents most common
categories of obfuscation.

The decision of using any category of any obfuscation or merging them together
depends on the level of complication the programmer or author wish to make the code
and also depends on the part that wanted to be obfuscated, such as a business rule or
an algorithm that is important to the code or the business of the company that is
developing the code. Following section describes the categories of the obfuscation.
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1.1 Lexical obfuscation

This technique is used to transform or alter the compiler information. Other
information will be removed from the byte code such as comments and identifiers.
Programmers use this technique alone without merging it with any other technique
that does not guarantee protection [2].

1.2 Stealthy obfuscation

This is an obfuscator that contains several obfuscation techniques to obfuscate the
code when it is read. Stealthy obfuscation provides a sort of false sense of the actual
program structure. This technique works with the assembly file. After applying this
technique, two files are created, one of them is the assembly file and the second file is
the obfuscated file. In this technique, the source file is not encrypted. However, there
is a possibility that the reverser will be confused when reading the code [3].

1.3 Key hiding obfuscation

This technique is used to protect intellectual property, and it is based on key
hiding. This method should not be used alone. It must be combined with another
technique to provide more protection. A symmetric mechanism is used to combine
with key hiding. Key hiding focuses on executable software. The software protection
key is then encrypted with a threshold key to make it difficult for the reverser to find
it and break the code. This technique focuses on executable software and leaves the
source code and class file as they are [4].

Figure 1.
Obfuscation categories.
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1.4 Junk obfuscation

This technique converts identifiers into an unreadable but performs and produces
output that can be read by the compiler. This technique is particularly useful when
combined with another technique to increase code security level. Junk obfuscation
misleads and does not allow the reverser to read the identifier or understand what is
the purpose for it but can only see the output [5].

1.5 Control obfuscation

This technique hides the actual flow of the code and creates a fake one. It controls
flow by using a structured exception handling mechanism in Windows. It disguises
the control flow by adding exception statements. When the exception occurs, the
exception handler is called and the flow of execution is changed in the exception
handler. This technique is provided by Windows operating system for exception
handling. It focuses on basic blocks that can be obfuscated by further splitting them
into few parts. This technique does not modify the class file. It changes the source file,
which is a good point to protect the code. However, newer reverse engineering tools
can change the flow of the software and even create new flows [6].

1.6 String obfuscation

This technique uses many approaches such as encryption, mathematical equations,
or chaotic obfuscation. It depends on the programmer to decide how complicated the
obfuscated strings should be. String obfuscation is very effective in protecting the
code from theft. When the string is obfuscated, only the compiler can read and output
it, while it becomes unreadable to humans [7].

1.7 Chaotic obfuscation

Here, a mathematical modeling is used for string encoding. It is up to the pro-
grammer to determine the form of the equation for encrypting the string. The pro-
grammer has the option to encrypt all strings or some of them. Chaos theory involves
stems generated from mathematical equations that produce random numbers and
chaos that are not readable by the user; however, the chaos sequences are readable by
the compiler at runtime. The chaotic equations are deterministic by nature, which
means that they go into saturation after several iterations at a single value. Figure 2
presents sample of string after applying chaotic obfuscation [8].

1.8 Cipher algorithm

This technique uses session keys instead of permeant. Session keys are symmetric
keys that are regenerated for each encryption. The keys in Cipher are automatically
generated in the algorithm itself to prevent the inverter from guessing the permanent
key. The user using Cipher can purchase a permanent key from the developer; how-
ever, the key can be compromised by determined reversers. String encryption in
Cipher follows certain steps: the first step is to choose the secret key, which can be an
x-value. The second step is to assign the equation used for encryption that will to
cause the series of chaos. The encryption is a secret function that only the developer
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knows. The third step is the iteration of x-value to produce the ciphertext. Figure 3
presents sample of cipher obfuscation [9].

1.8.1 Cipher block chaining

This technique divides the data or code into blocks of bits and chains. The
encrypted data are blocked together to avoid eavesdroppers from inserting their own
blocks of bits among the blocks of encrypted code. A mathematical equation is used
for the for the Cipher block changing, and the equation is given as follows:

C1 ¼ ek m1XORIVð Þ (1)

Figure 2.
String chaotic obfuscation.

Figure 3.
Cipher obfuscation.
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C1 ¼ ek m1XORCi�1ð Þ for i> 1 (2)

The technique involves a specific (N) value passed between the plaintext to ensure
that the ciphertext blocks look different. The N value is the second layer of encryp-
tion, while the first layer of encryption is done by the secret key. Each generated text
is encrypted with the same secret key. If an error occurs in one of the blocks, it will
also occur in all other blocks that follow the affected block [10].

1.9 Symmetric cipher

The symmetric Cipher is well known and common for string encryption and
decryption. It can encrypt large data. This technique uses one key of encryption and
decryption. The reverser or the end user must find the meaning of exchanging the key
securely. Without the key of the encryption algorithm, the reverser will not be able to
reveal or translate or decrypt the encrypted string. Below figure illustrates the sample
of code before and after applying Cipher algorithm. Figure 4 presents sample of
symmetric obfuscation after applying on Java code [11].

2. Discussion of current obfuscation techniques

Obfuscation techniques based on the identifiers renaming have been recently
presented. Such techniques can be classified as a form of layout obfuscation, since
they reduce the information available to a human reader which examines the target
program, or of preventive obfuscation since they aim to prevent the decompilation
from producing original code with full meaning or to produce an incorrect Java source
code. Such techniques try to hide the structure and the behavior information embed-
ded in the identifiers of a Java program by replacing them with meaningless or
confounding identifiers to make more difficult the task of the reverse engineer. It is
worth to notice that the information associated with an identifier is completely lost
after the renaming [12]. By replacing the identifiers of a Java bytecode with new ones
that are illegal with respect to the Java language specification, such techniques try to
make the decompilation process impossible or make the decompiler return unusable
source code. After applying any obfuscation technique, it is very important to test the
program, especially if there are many loops that execute many times such as games or
algorithmically intensive method. The constant test is to ensure that all obfuscated

Figure 4.
Symmetric cipher obfuscation.
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parts are well working with no error recorded. During test for several obfuscation
techniques, there were several limitations that can be a vulnerable entrance for the
any strong decompiler [13].

Control flow obfuscation is only able to defeat decompilers when the
method contains basic blocks of code. This technique is not fully deterministic,
whereby it is only applicable to methods if the developer sees the performance degra-
dation during testing. If the control flow obfuscation was implemented on highly
complicated code that contains extensive loops, it will not be useful as it will be
difficult to trace the errors during implementation, and it does not work
sufficiently during reversing. However, it is useful with small applications. Control
flow obfuscation does not have the ability to be nested in the source file, as it will be
difficult to trace the loops during execution. Error management will not be as possible
as it should be [14].

The obfuscation techniques offered by various developers have several gaps. The
obfuscation techniques are able to protect the code to some extent; however, the code
contains some debugging information. There is no obfuscator tool that can be
completely declared as the best obfuscation technique. If the secret of an obfuscator is
known, reverse engineers can easily accomplish their tasks by constructing de-
obfuscators. These de-obscuscator tools have not yet been published, but in the future
there may be the possibility of developing de-obscuscators [15].

The bytecode contains unknown characters and symbols from the source code.
Reverse engineers have cracked the secrets of the byte code using reverse engineering
tools. Therefore, it is possible to copy the original code after reversal, improve it, and
resell it on the market to gain an advantage over the original author who developed
the code in the first place. Some software development companies hire a hacker or a
reverser to crack their code and find out the weaknesses and vulnerabilities of the
software so that the company can fix it before it is actually hacked. All software
programs contain a security key or registry file that ensures the protection of the
software. Reverse engineers convert this file into source code when they remove the
registration file from the software and use the exposed code for their own illegal
development purpose [16].

Most of the obfuscation techniques are applied in the source file. These obfuscation
techniques are applied individually in the source file. Most obfuscation techniques
focus on renaming the identifiers and hiding the meaning of the code. Most reverse
engineering tools are capable of analyzing the obfuscated code. According to the
discussion in the papers highlighted in this research, they do not include mathematical
equations to convert or encrypt the strings in the source file, and they do not include
garbage conversion to change the layout of the code [17].

Obfuscation techniques are applied in the source code as a single technique.
For example, the developer uses only variable names or hides only the names of
classes. None of the papers discussed the use of a hybrid obfuscation technique, and
none discussed a hybrid obfuscation technique with a mathematical equation for
protection. For the obfuscation technique to be strong, it must be merged or joined.
If the developer uses more than one obfuscation technique, there is a good chance
that the code is protected from the reversal tools. The developer selects the obfusca-
tion techniques that work together based on the layout and complexity of the
original code. From the work examined in this study, the use of combined or
hybrid obfuscation techniques guarantees strong protection against prohibited reverse
engineering [18].

Table 1 presents limitations of most common obfuscation techniques.
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3. Implementing hybrid obfuscation of encryption

In this section, we introduce a new hybrid obfuscation technique based on identi-
fier renaming and string encryption. The technique relies on hybrid identifier
renaming in the program’s source file to cause extreme confusion for both reversal
tools and humans when they examine the source file without permission. Regardless
of the obfuscation strategy used, it was possible to contrast the obfuscation by
renaming the identifiers and string encoding in two phases to first overcome the
preemptive obfuscation and then add type information to the identifiers in the source
code to contrast the layout obfuscation.

The first phase is renaming, and the hybrid obfuscation technique consists of two
sections. The first section is obfuscating the identifiers to junk code to hide the
meaning and increase complexity and confuse the decompiler during reversing. The
second section is replacing the system keywords with Unicode.

The second phase is string encryption, where a set of random mathematical equa-
tions are injected into the strings to encrypt them. A transformation framework has
been implemented to represent the steps of the hybrid obfuscation technique. The
proposed technique can be used for many languages such as Arabic, English, Chinese,
and so on. Using this technique creates the possibility of programming in different
languages instead of English, which increases the protection of the code.

List Limitation

• Logistic map
• Cipher block chaining
• Symmetric cipher [19]

This technique uses mathematical equations to replace the text in the string
with a chaos stream. The technique uses a secret key for encryption and uses a
mathematical equation. The key can be randomly generated at the time of
encryption or acquired from the developer. If the reverser can guess the key,
there is the possibility of using the key to decrypt the entire code.

• Renaming
• Hiding [20]

This technique emphasizes to hide features and change the layout. This is
harder to understand but is not impossible to reverse. These tools can hide the
code somehow. Nevertheless, reverse engineering is possible

Key hiding obfuscation
[21]

This technique emphasizes to execute software and leave the source code and
class file unchanged. Reversing tools have the ability to find and crack the key
to the source file and perform code analysis.

Encryption [22] This technique encrypts the executable code. The limitation of this technique
is the programmer either limits key or round sizes, or leaves only stubs for
restricted classes. Longer keys are used in encryption to provide better
security. The longer key length in itself leads to slower encryption speed.

Packing [23] This technique puts all the code into one package. The reversing tool is
currently able to unpack the packed code and create new code that is useful
and produces the same output as the original.

Classes combination
obfuscation [24]

This technique hides classes by combining them. The inversion tools allow the
user to create new classes and open the combined classes. The inversion tools
contain great analysis function that allows the user to find the class trees and
the connection between the classes.

Junk code obfuscation
[25]

This technique emphasizes to change the names of the identifiers to create
confusion while reading the code, and the reversing tools are able to create
new names for the variables and classes by using characters. Then, the
reverser can use the refactor function to create meaningful names.

Table 1.
Current obfuscation limitation.
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Following sections discuss the hybrid obfuscation encryption in detail:

3.1 Unicode approach

In the Java language, each character or symbol is represented using Unicode, which
creates a possibility of changing the form of the code while reading. This technique is
used in the source file. If this file is stolen, there will be no way to read it. The thief has
to translate any Unicode to understand the meaning and figure out the code. The
compiler is able to read Unicode and produce output. Combining Unicode with other
encoding techniques in the source file makes it stronger. Table 2 presents examples of
Unicode [26].

0x0030 0 0x0044 D 0x0051 Q 0x0064 d 0x0071 q

0x0031 1 0x0045 E 0x0052 R 0x0065 e 0x0072 r

0x0032 2 0x0046 F 0x0053 S 0x0066 f 0x0073 s

0x0033 3 0x0047 G 0x0054 T 0x0067 g 0x0074 t

0x0034 4 0x0048 H 0x0055 U 0x0068 h 0x0075 u

0x0035 5 0x0049 I 0x0056 V 0x0069 i 0x0076 v

0x0036 6 0x004A J 0x0057 W 0x006A j 0x0077 w

0x0037 7 0x004B K 0x0058 X 0x006B k 0x0078 x

0x0038 8 0x004C L 0x0059 Y 0x006C l 0x0079 y

0x0039 9 0x004D M 0x005A Z 0x006D m 0x007A z

0x0041 A 0x004E N 0x0061 a 0x006E n 0x0A09 ਉ

0x0042 B 0x004F O 0x0062 b 0x006F o 0x0A0A ਊ

0x0043 C 0x0050 P 0x0063 c 0x0070 p 0x2190  
0x0A17 ਗ 0x2157 ⅗ 0x2175 vi 0x217F m 0x2191 ↑

0x0A18 ਘ 0x2158 ⅘ 0x2176 vii 0x2180 ↀ 0x2192 !
0x0A19 ਙ 0x2159 ⅙ 0x2177 vii 0x2181 ↁ 0x2193 ↓

0x0AA ਚ 0x215A ⅚ 0x2178 ix 0x313A ㄺ 0x33E1 ㏡

0x0A1B ਛ 0x215B ⅛ 0x219E ↞ 0x313B ㄻ 0x33E2 ㏢

0x1227 ሧ 0x215C ⅜ 0x219F ↟ 0x313C ㄼ 0x33E3 ㏣

0x1228 ረ 0x215D ⅝ 0x21A0 ↠ 0x313D ㄽ 0x33E4 ㏤

0x1229 ሩ 0x215E ⅞ 0x21A1 ↡ 0x313E ㄾ 0x33E5 ㏥

0x122A ሪ 0x215F ⅟ 0x21A2 ↢ 0x313F ㄿ 0x33E6 ㏦

0x122B ራ 0x2160 I 0x21A3 ↣ 0x3140 ㅀ 0x33E7 ㏧

0x122C ሬ 0x2161 II 0x21A4 ↤ 0x3141 ㅁ 0x33E8 ㏨

0x122D ር 0x2162 III 0x21A5 ↥ 0x3142 ㅂ 0x33E9 ㏩

0x122E ሮ 0x2163 IV 0x21A6 ↦ 0x3143 ㅃ 0x33EA ㏪

0x2125 ℥ 0x2164 V 0x311D ㄝ 0x33A2 ㎢ 0x33EB ㏫

0x2126 Ω 0x2165 VI 0x311E ㄞ 0x33A3 ㎣ 0xA000 ꀀ

0x2127 ℧ 0x2166 VII 0x311F ㄟ 0x33A4 ㎤ 0xA001 ꀁ
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In this approach, a Unicode transformation was used to rename the system key-
words. The purpose of this renaming is to make the code in the source file more
complicated. In this case, when reading the source file, the attacker will not be able to
recognize the actual meaning of the code. This approach is very beneficial because in
case of stealing the source file, the reader is not able to recognize the actual meaning of
the code. He has to translate the whole code to understand the purpose of the code.
However, even if the Unicode is easy to translate, the keywords of the system do not
have muchmeaning, because the classes and variables in the functions andmethods are.

3.2 String encryption approach

In this approach, a mathematical equation with a character field and loops were used
to encode the strings in the source file. The encoding of the strings causes confusion
while decompiling. The reversing tool is not able to translate the symbols generated by
the mathematical equation; moreover, the compiler cannot translate the symbols that
were converted to bytecode during compilation. The purpose of string encoding is to
create a chaos stream in the source file and in the reverse file after decompiling [27].
The advantage of string encoding is that the mathematical formula used to create the
chaos stream that can be used N times in the source code, and multiple (X) sets of
mathematical equations can be used in the same source file. The more the chaos streams
are created in the source file, the more the confusion is created during decompiling. The
mathematical equations used in the source file were derived from the concept that Java
programming language provides a function that can be used to convert the mathemat-
ical equation characters into different symbols. Normally, the equation contains a fixed
value to ensure accurate output [28]. For the proposed technique, the value for the
equation is two which will assigned to (P). There is other two values in the equation that
are the values of (Y) and (Z). The values of (Y) and (Z) have to be carefully declared
and assigned to produce the accurate output.

If the value of Y is 17 then the value of Z is 2.
If the value of Y is 19 then the value of Z is 4.
If the value of Y is 16 then the value of Z is 1.
According to the above conditions, if the value of (Y) increases by one value, then

the value of (Z) has to increase by one as well. The assigned value of (P) is 2, it can be
changed as well to increment by one, and then the value of (Y) has to decrease by
three values in order to get the calculation right for accurate output. The final result of
calculating the three values have to be always 17; therefore, the value of (P) is fixed

0x0030 0 0x0044 D 0x0051 Q 0x0064 d 0x0071 q

0x2128 ℨ 0x2167 VII 0x3120 ㄠ 0x33A5 ㎥ 0xA002 ꀂ

0x2129 ℩ 0x2168 IX 0x3121 ㄡ 0x33A6 ㎦ 0xA003 ꀃ

0x212A K 0x2170 i 0x3122 ㄢ 0x33A7 ㎧ 0xA004 ꀄ

0x212B Å 0x2171 ii 0x3123 ㄣ 0x33A8 ㎨ 0xA005 ꀅ

0x2130 ℰ 0x2172 iii 0x3124 ㄤ 0x33A9 ㎩ 0xA006 ꀆ

0x2131 ℱ 0x2173 iv 0x3125 ㄥ 0x33AA ㎪ 0xA007 ꀇ

0x2132 Ⅎ 0x2174 v 0x3126 ㄦ 0x33E0 ㏠ 0xA008 ꀈ

Table 2.
Uniocode characters.
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but it can decrease by one value, to increase the value of (Y) by one value as well. To
prevent errors, the value of (P) was fixed at 2. The values of (Y) and (Z) can be
increased and decreased accurately to allow using more mathematical equations in the
source file. The final equation is:

Char ¼ V
2þ Y þ Z

: (3)

3.3 Mathematical equation to encrypt strings

The equation that was used to encrypt the strings in the source code is associated
with beneficial attributes, and (Y) indicates the ideal (best) value of the considered
attribute among the values of the attribute for different alternatives, and the fixed and
best value for the equation is 2; this value will not be changed. In the case of beneficial
attributes for instance, those of which higher values are desirable for the given appli-
cation, (Y) indicates the higher value of the attribute, and the highest value which will
be used for the equation is 17 [29].

Lower values are desired for the given application, and (Z) indicates the lower value
of the attribute. (Z) indicates the lowest value of the considered attribute among the
values of the attribute for different alternatives, and the lowest value which will be used
is 2. In the case of beneficial attributes, (Z) indicates the lower value of the attribute.
In the case of non-beneficial attributes, (Y) indicates the higher value of the attribute
[30]. Following equation presents the string encryption transformation:

Char ¼ V
2þ Y þ Z:

(4)

3.4 Identifiers renaming to junk obfuscation

The main purpose of junk renaming is to create complicated code that is difficult to
read and understand and make sense out of it. Junk renaming is used to confuse the
reversing tool which leads to incorrect analysis and thus produces incorrect codes.
Junk conversion provides the ability to create a variety of languages during the devel-
opment of the software to protect it. The class file contains the junk code after
compiling the source file. After using junk conversion, the converted code in the
class file is converted back to junk code, which increases protection. Applying this
feature means compromising some of the software quality factors that are readable
code and manageable size. These features are compromised to increase the security of
the code.

4. Hybrid obfuscation of encryption

Java development is based on object orientation, while the compiler executes the
application based on components, unlike structured programs developed with the C
programming language. Therefore, code obfuscation will not be a problem when
compiling to machine language or bytecode. To use this hybrid obfuscation technique,
certain steps must be followed. The first step is to use Object Junk Renaming Obfus-
cation [31–35]. This conversion must be done first to avoid confusion and errors when
the obfuscation process is running. The second step is to encrypt strings. This
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technique must be performed second to have smooth conversion without errors. The
last step is the Unicode renaming technique for obfuscation. Performing the hybrid
obfuscation technique increases the security level of the code where reversing is
nearly impossible. Table 3 presents a sample of code after merging three approaches
of obfuscation and after reversing.

There is possibility to change names to junk and can be used for any purposes such
as emails, login, and so on. With this logic, the hybrid obfuscation encryption can be
used to write encrypted letters and create a whole system using only junk code.
Table 4 presents names before and after obfuscation. Every time the obfuscated name
is copied or used, it changes automatically.

The string encryption makes the obfuscation technique more effective in terms of
securing the code, as it contains so many symbols that help to confuse the decompiler
while parsing and analysis. Figure 5 presents the framework of the proposed hybrid
obfuscation encryption (Figure 6).

Obfuscated code After reversing

\u0066\u006F\u0072\u0028 \u0069\u006E\u0074
\u046D01101: ÌÆÁÆ¾Ì¼ˬÆܜ“ ˷Á¾Ë°¬¤Î¬ ´Ë ˬ°¤¾¸
ÁÜ¤° É°¯ ÁÁܚ ܜ Ü ÉÁ¼d d°2¤¸μ¼Õ |Æ ¸É¤Î¤ ?μ°°¤μ É°¯
ܜÁÁܚ Ü ۴ ? ܡܜܚܕ þ ? ?”.toCharArray\u0028\u0029
\u0029

BufferedWriter out = new BufferedWriter
(new FileWriter(de7, true));
Char c010101c[] = “\255\276 \313 \255 \306
\310\313\306\265\276\260 “.toCharArray();
int. 0908 = c010101c.length;
for(int d9 = 0; d9 < 0908; d9++)

\u0076\u006F\u0069\u0064龜\u00 28\u0029\u007B
\u0066\u006F\u00 72\u0028\u0069\u006E\u0074ѭ01 1
靖\u003A”¤¼ ÀÌ¾Ë ȅ¬ ?ÀÈμË”\u00 2E\u0074\u006F
\u0043\u0068\u00 61\u0072\u0041\u0072\u0072\u00 61
\u0079\u0028\u0029\u0029\u00 7B\u0053\u0079\u0073
\u0074\u00 65\u006D\u002E\u006F\u0075\u00 74
\u002E\u0070\u0072\u0069\u006E\u0074\u0028\u0028
\u0063\u0068\u0061\u0072\u0029\u0028ѭ011靖\u002F
\u0032\u002B\u0031\u0037\u002D\u0032\u0029\u0029
\u 003B\u007D \u0053\u0079\u0073\ u0074\u 0065
\u006D\u002E\u006F \u0075\u007 \u002E\u0070\u0072
\u0069\u006E\u0074\u0028”\n”\u 0029\u003B癩
\u003D更\u002E\u0 06E\u0065\u0078\u0074\u0044\u0
06F\u0075\u0062\u006C\u0065\u0028\u0029\u003B裸
\u003D裸\u002 B癩\u003B\u0066\u006F\u0072\u0 028
\u0069\u006E\u0074 ѭ011精\u 003A” ࠥÌÆÆ¬¾Ë˭¤ɡ¤¾ ࠥ
¬”\u002E\ u0074\u006F\u0043\u0068\u0061
\u0072Array\u0028\u0029\u0029\u007B\u0053\u0079
\u0073\u0074\u 0065\u006D\u002E\u006F\u0075\u
0074\u002E\u0070\u0072\u0069\u 006E\u0074\u0028
\u0028\u0063\u 0068\u0061\u0072\u0029\u0028ѭ011精
\u002F\u0032\u002B\u0031\u0037\u002D\u0032\u0029
\u0029\ u003B\u007D\u0053\u0079\u0073\ u0074\u0065
\u006D\u002E\u006F\u0075\u0074\u002E\u0070\u0072
\u0069\u006E\u0074\u0028”\n”\u0029\u003B\u0053
\u0079\u0073\u0074\u0065\u006D\u002E\u006F\u0075
\u0074\u002E\u0070\u0072\u0069\u006E\u0074\u0028
裸u0029\u003B\u007D\u0076 \u006F\u0069 \u0064 契

\u0028\u0029\u007 B

After reversing the class file which contains
full code

package bankencrypt;
// Referenced classes of package
bankencrypt:
// F9A4
public class Bankencrypt
{
public Bankencrypt()
{
}
public static void main (String args[])
{
F9A4 A461 = new F9A4();
A461.F907();
A461.F908();
A461.F909();
A461.F90A();

}
}

Table 3.
Obfuscated code before and after reversing.
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Figure 5.
Reversing hybrid obfuscation.

Figure 6.
Hybrid obfuscation encryption framework.

Name After obfuscation

Asma mahfoud ÉÁ¼d d°2¤¸μ¼Õ

Java hacker \"v¤Î¤\"2¤¨¸¬Æ

Kesava ¸É¤Î¤

hi 3´

keep it real μË Æ¤°

Nur ÌÆܜ

Table 4.
Names before and after obfuscating.
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5. Empirical evaluation of the hybrid obfuscation

Four reversing tools were used to test the effectiveness of the technique and
to determine how much can the reversing tool uncover and read from the
obfuscated code. Four reversing tools were used for this experiment; the tools
are CAVAJ, JAD, DJ, and JD. The parameters are distributed among the reversing
tools based on their behavior toward the obfuscated code. For instance, JD only
tested the identifiers names because it has the ability to reveal the entire code;
therefore, there was no need to test the rest of parameters. Figure 7 presents
experiment design.

5.1 Testing with CAVAJ

CAVAJ as reversing tool for Java class file is used to determine the ability of it to
read the code after obfuscating. Figure 8 presents the results of CAVAJ testing.

5.2 Testing with Java decompiler (JD)

DJ Reversing tool is used to determine the ability to reverse Java class file that
contains hybrid obfuscated technique. The test will determine if the tool is able to read
the obfuscated code, and how much can the tool read and discover. Figure 9 presents
the output after reversing.

Figure 7.
Experiment design.
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5.3 Testing with JAD

After installing JAD, prompt command is used to find the Java class file, then the
file is opened in command, and the file name.jad is typed to reverse the file. Figure 10
presents the result of reversing.

First and second classes test for output correctness and reversed code error:
The tool was not able the code after obfuscation with hybrid technique, and it has

presented errors while reading and just revealed the Unicode without the ability to
read the identifiers.

First and second classes test for methods and classes and identifiers:

Figure 8.
Reversing result of CAVAJ.

Figure 9.
Reversing result of JD.
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Based on Figure 11, the tool was not able to get a meaning of the encrypted strings
and identifiers; in fact, it has changed the names further which can be considered for
the another level of protection. This way the reverser will not be able to read the code
or get a meaning of it, and also the name of the Java file was encrypted to mislead the
reverser if the source file is stolen. Figure 12 presents the form of the Java file name
after encryption.

5.4 Testing to Decompiler java (DJ)

DJ reversing tool Java is a tool that reverses the class file. This tool is used to
determine the ability to reverse Java class file that contains hybrid obfuscated

Figure 10.
Reversing result with JAD.

Figure 11.
JAD reversing result for methods and identifiers.
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technique. The test will determine if the tool is able to read the obfuscated code, and
how much can the tool reveal. Figure 13 presents the reversing result of reversing the
class file of output correctness.

First class test/output correctness.
The tool was not able to read the first-class test to reveal the code. Therefore, there

is no code to test its correctness. This is promising results of having hybrid obfuscation
technique. An error message is appeared to define syntax error.

Second class test/identifiers.
According to Figure 14, the tool was not able to read the code after obfuscation.

This results the proof that using hybrid obfuscation is more beneficial than just
applying one technique.

6. Conclusion

The hybrid obfuscation technique was effective to protect the code. The reversing
tools were not able to read and translate the encrypted strings. Renaming to junk in
the obfuscation technique was effective as the reversing tool has converted the junk to
a series of random numbers and symbols. The reversing tool was able to read the

Figure 12.
File name after encryption.

Figure 13.
Reversing result with DJ.
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system keywords only. Furthermore, the reversing tool has added methods and
preprocessors while parsing the file. The reversing tool was not able to analyze the
obfuscated code to get appropriate output. This means that the hybrid
obfuscation technique is effective to protect the source file from prohibited reverse
engineering. Third objective of this research was successfully met; according to the
experimentation, a series of junk and chaos was created after reversing the
obfuscated code.

The extreme chaos was generated due to the merge of string encryption and
renaming approaches in one source file which has led to confusion while reversing
as the reversing tool was not able to translate or read or analyze the code. To
summarize the results of the experiments that were conducted before and after
obfuscation, we calculate the lines of code (LOC) of original file before and
after reversing, calculate the total errors appeared during running the reversed
file before and after obfuscation, and then find the difference to determine the
strength.

Based on the results of the reversing tools, they were not able to discover fully
functioning code; in all cases, the reversing tools have generated a series of chaos and
random numbers and symbols while attempting to translate the obfuscated code. The
code that was generated from the reversing tools did not provide an output, and there
was always an error while trying to compile the obfuscated code after reversing.

Table 5. The summary of errors occurred for the four tested cases.

Figure 14.
Identifiers test.

Reversing
tool

Testing component Reversed file before hybrid
technique

Reversed file after hybrid
technique

CAVAJ Compiled reversed code
error test

Zero 6

De-Crypt String test 1

JAD Output correctness 7
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7. Future work

The number and type of obfuscators we used for our research were fairly small.
Future work could explore a wider variety of noncommercial and research obfuscators
to provide a broader picture of protection possibilities. Due to time constraints, we
were also not able to take advantage of all commercial obfuscators that we had access
to. In the future, more commercial obfuscators and reversing tools can be used for the
sake of this research. The proposed hybrid obfuscation technique can be further used
for games and mobile applications to protect financially from being illegally reversed.

The technique can be developed with C/C++ programming language instead of
Java, as Java is closer to the hardware level and communicate with it easily due to the
pointer feature it has. Having the technique implemented with C/C++ is an advantage
which makes the tool stronger for more defensive.

The technique can be as an added tool in the programming environment such as
NetBeans or eclipse where programmer can customize which part of the code to be
encrypted and which approach to use. Programmer has full freedom to mix and match
encryption approaches in the code to increase security. Having such encryption tool
prevents errors while encryption and saves time.

The proposed technique’s concept can be used in any programming language to
what fits its requirements and mechanisms and also opens an opportunity to have an
option to insert different verbal languages, such as Arabic, Chinese, or any other
language, for the sake of encryption to increase the level of security.

Reversing
tool

Testing component Reversed file before hybrid
technique

Reversed file after hybrid
technique

Compiled reversed code
error test

100

Methods and classes
correctness test

22

DJ Output correctness test 0

JD Identifiers names test 0

Table 5.
Error summary.
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Chapter 5

Extended Intuitionistic Fuzzy Line
Graphs: Theory and Properties
Venkata Naga Srinivasa Rao Repalle, Keneni Abera Tola
and Maamo Abebe Ashebo

Abstract

The introduction of fuzzy set theory was given by Zadeh. The introduction of
fuzzy graph theory was given by Kauffman. Later the structure of fuzzy graph was
developed Rosenfeld. The traditional fuzzy set cannot be used to completely describe
all the evidence in problems where someone wants to know in how much degree of
non-membership. Such a problem got the solution by Atanassov who introduced
intuitionistic fuzzy set which described by a membership, a non-membership and a
hesitation functions. An intuitionistic fuzzy set is used to solve problems involving
uncertainty and imprecision that can’t be handled by a traditional fuzzy set. This
chapter introduced the interval-valued intuitionistic fuzzy line graphs (IVIFLG) and
explored the results related to IVIFLG. As a result, many theorems and propositions
related to IVIFLG are developed and supported by proof. Moreover, some remarkable
isomorphic properties, strong IVIFLG, and complete IVIFLG have been investigated,
and the proposed concepts are illustrated with the examples.

Keywords: fuzzy set, interval-valued intuitionistic fuzy graph, interval-valued
intuitionistic fuzzy line graph, isomorphism, isomorphic properties

1. Introduction

Since Euler was presented with the impression of the Königsberg bridge problem,
graph theory has received recognition in a variety of academic fields, including
natural science, social science, engineering, and medical science. In the field of graph
theory, some operations such as the Wiener index of graphs, line graphs, total graphs,
cluster and corona operations of graphs, edge join of graphs, and semi-total line have
been useful. In addition, some properties of boiling point, heat of evaporation, surface
tension, vapor pressure, total electron energy of polymers, partition coefficients,
ultrasonic sound velocity, and internal energy can be analyzed in chemical graph
theory. These operations are not only useful in classical graphs but also in fuzzy
graphs and generalizations of fuzzy graphs. Because real-world problems are fre-
quently fraught with uncertainty and imprecision, Zadeh proposed fuzzy sets and
membership degrees [1]. Accordingly, Kaufman presented the concept of fuzzy
relations based on Zedeh’s work in [2]. Rosenfeld [3] assembled both Zedeh’s and
Kaufman’s work and then introduced fuzzy graphs.
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Later on, Atanassov observed that fuzzy sets (FS) did not handle many problems
with uncertainty and imprecision [4]. Based on these observations, he combined the
membership degree with the falsehood degree and presented intuitionistic fuzzy sets
(IFS) with relations and IFG, which is a generalization of FS [4–6]. It has many applica-
tions in fuzzy control, and defuzzification is the most computationally intensive part of
fuzzy control. Mordeson investigated the concept of fuzzy line graphs (FLG) for the first
time and explored both sufficient and necessary conditions for FLG to be a bijective
homomorphism to its FG. He developed some theorems and propositions [7]. Firouzian
et.al [8] introduced the notion of degree of an edge in fuzzy line graphs and congraphs.

Akram and Dudek discussed interval valued fuzzy graph (IVFG) and its properties
in [9]. Later, different classes of IVIFGs such as regular, irregular, highly irregular,
strongly irregular and neighbourly irregular IVIFGs were discussed [10]. Then,
Akram drived IVFLG from IVFG [11]. Interval-valued intuitionistic S,Tð Þ�fuzzy
graphs were introduced by Rashmanlou and Borzooei [12]. Afterward, the idea of
intuitionistic fuzzy line graph (IFLG) studied by Akram and Davvaz [13]. Further-
more, IFLG and its properties are investigated in [14].

Based on the defined concepts, we gave the definition of IVIFLG in this chapter.
Our works are novel in the following ways: (1) IVIFLG is presented and illustrated
with an example, (2) numerous theorems and propositions are developed and
proved; (3) further, interval-valued intuitionistic weak line isomorphism and
interval-valued intuitionistic weak vertex homomorphism are proposed. Readers
should refer [5, 7, 11] for notations that are not declared in this chapter.

2. Discussion

This section contains some basic definitions used to introduce IVIFLG. Throughout
this chapter we considered only simple graph.

Definition 1.1. The graph G ¼ V,Eð Þ is an intuitionistic fuzzy graph (IFG) if the
following conditions are satisfied [15]

i. σ1 : V ! 0, 1½ � and γ1 : V ! 0, 1½ � are membership and nonmembership value
of vertex set of G respectively and 0≤ σ1 vð Þ þ γ1 vð Þ≤ 1 ∀v∈V,

ii. σ2 : V � V ! 0, 1½ � and γ2 : V � V ! 0, 1½ � are membership and
nonmembership with σ2 vivj

� �
≤ σ1 við Þ∧σ1 vj

� �
and γ2 vivj

� �
≤ γ1 vj

� �
∨γ1 vj

� �
and

0≤ σ12 vivj
� �þ γ2 vivj

� �
≤ 1, ∀vivj ∈E:

Definition 1.2. The line graph L(G) of graph G is defined as any node in L Gð Þ that
corresponds to an edge in G, and pair of nodes in L Gð Þ are adjacent if and only if their
correspondence edges ei, ej ∈G share a common node v∈G.

Definition 1.3. For the given graph G ¼ V,Eð Þ with n�vertices and Si ¼
vi, ei1 ,⋯, eip

n o
such that 1≤ i≤ n, 1≤ j≤ pi and eij ∈E has vi as a vertex. Then S,Tð Þ is

called intersection graph where S ¼ Sif g is the vertex set of (S, T) and T ¼
SiSjjSi, Sj ∈ S; Si∩Sj 6¼ ∅, for i 6¼ j

� �
is an edge set of (S, T).

Definition 1.4. The line(edge) graph L Gð Þ ¼ H, Jð Þ is where H ¼
ef g∪ ue, vef g : e∈E, ue, ve ∈V, e ¼ uevef and J ¼ SeSf : e, f ∈E, e 6¼ f , Se∩Sf 6¼ ∅

� �
with Se ¼ ef g∪ ue, ve, e∈Ef g [11].
70

Coding Theory Essentials



Definition 1.5. Let G ¼ A1,B1ð Þ is an IFG with A1 ¼ σA1 , γA1

� �
and B1 ¼ σB1 , γB1

� �
be IFS on V and E respectively. Then S,Tð Þ ¼ A2,B2ð Þ is an intuitionistic fuzzy
intersection graph of G whose membership and nonmembership functions are
defined as [14]

i. σA2 Sið Þ ¼ σA1 við Þ, γA2
Sið Þ ¼ γA1

við Þ, ∀Si, Sj ∈ S

ii. σB2 Si Sj
� � ¼ σB1 vivj

� �
, γB2

SiSj
� � ¼ γB1

vivj
� �

∀SiSj ∈T:

where A2 ¼ σA2 , γA2

� �
, B2 ¼ σB2 , γB2

� �
on S and T respectively. So, IFG of the

intersection graph S,Tð Þ is isomorphic to G(means, S,Tð Þ ffi G).
Definition 1.6. Consider L G ∗ð Þ ¼ H, Jð Þ be line graph of G ∗ ¼ V,Eð Þ. Let G ¼

A1,B1ð Þ be IFG of G ∗ with A1 ¼ σA1 , γA1

� �
and B1 ¼ σB1 , γB1

� �
be IFS on X and E

receptively. Then we define the intuitionistic fuzzy line graph L Gð Þ ¼ A2,B2ð Þ of G as

i. σA2 Seð Þ ¼ σB1 eð Þ ¼ σB1 ueveð Þ,
γA2

Seð Þ ¼ γB1
eð Þ ¼ γB1

ueveð Þ, for all Se, Se ∈H

ii. σB2 SeSf
� � ¼ σB1 eð Þ∧σB1 fð Þ

γB2
SeSf
� � ¼ γB1

eð Þ∨γB1
fð Þ, ∀SeSf ∈ J:.

where A2 ¼ σA2 , γA2

� �
and B2 ¼ σB2 , γB2

� �
are IFS on H and J respectively.

The L Gð Þ ¼ A2,B2ð Þ of IFG G is always IFG.
Definition 1.7. Let G1 ¼ A1,B1ð Þ and G2 ¼ A2,B2ð Þ be two IFGs. The homomor-

phism of ψ : G1 ! G2 is mapping ψ : V1 ! V2 such that [14].

i. σA1 við Þ≤ σA2 ψ við Þð Þ, γA1
við Þ≤ γA2

ψ við Þð Þ

ii. σB1 vi, vj
� �

≤ σB2 ψ við Þψ vj
� �� �

,

γB1
vi, vj
� �

≤ γB2
ψ við Þψ vj

� �� �
∀vi ∈V1, vivj ∈E1:

Definition 1.8. The interval valued FS A is characterized by [9].

A ¼ vi, σ�A við Þ, σþA við Þ
� �

: vi ∈X
� �

:

Here, σ�A við Þ and σþA við Þ are lower and upper interval of fuzzy subsets A of X
respectively, such that σ�A við Þ≤ σþA við Þ ∀vi ∈V.

For simplicity, we used IVFS for interval valued fuzzy set.
Definition 1.9. Let A ¼ σ�A vð Þ, σþA vð Þ� �

: v∈X
� �

be IVFS. Then, the graph
G ∗ ¼ V,Eð ) is called IVFG if the following conditions are satisfied;

σ�B vivj
� �

≤ σ�A við Þ∧σ�A vj
� ��

σþB vivj
� �

≤ σþA við Þ∧σþA vj
� �

∀vi, vj ∈V, ∀vivj ∈E and where A ¼ σ�A, σ
þ
A

� �
, B ¼ σ�B , σ

þ
B

� �
is IVFS on V and E

respectively.
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Definition 1.10. Let G ¼ A1,B1ð Þ be simple IVFG. Then we define IVF intersection
graph S,Tð Þ ¼ A2,B2ð Þ as follows:

1.A2 and B2 are IFS of S and T respectively,

2.σ�A2
Sið Þ ¼ σ�A1

við Þ and σþA2
Sið Þ ¼ σþA1

við Þ,∀Si, Sj ∈ S and

3.σ�B2
SiSj
� � ¼ σ�B1

vivj
� �

, σþB2
SiSj
� � ¼ σþB1

vivj
� �

, ∀SiSj ∈T.

Remark: The given IVFG G and its intersection graph (S, T) are always isomorphic
to each other.

Definition 1.11. An interval valued fuzzy line graph (IVFLG) L Gð Þ ¼ A2,B2ð Þ of
IVFG G ¼ A1,B1ð Þ is defined as follows [11]:

• A2 and B2 are IVFS of H and J respectively, where L G ∗ð Þ ¼ H, Jð Þ

• σ�A2
Sið Þ ¼ σ�B1

eð Þ ¼ σ�B1
ueveð Þ, σþA2

Sið Þ ¼ σþB1
eð Þ ¼ σþB1

ueveð Þ,

• σ�B2
SeSf
� � ¼ σ�B1

eð Þ∧σ�B1
fð Þ, σþB2

SeSf
� � ¼ σþB1

eð Þ∧σþB1
fð Þ for all Se, Sf ∈H, SeSf ∈ J:

Definition 1.12. A graph G ¼ A,Bð Þ with underlying fuzzy set V is IVIFG if

i. the mapping σA : V ! 0, 1½ � and γA : V ! 0, 1½ � where σA við Þ ¼
σ�A við Þ, σþA við Þ
� �

and γA við Þ ¼ γ�A við Þ, γþA við Þ
� �

denote a membership degree and
non membership degree of vertex vi ∈V, receptively such that σ�A við Þ≤ σþA við Þ,
γ�A við Þ≤ γþA við Þ and 0≤ σþA við Þ þ γþA við Þ≤ 1 ∀vi ∈V,

ii. the mapping σB : V � V ⊆E! 0, 1½ � and γB : V � V ⊆E! 0, 1½ � where
σB vivj

� � ¼ σ�B vivj
� �

, σþB vivj
� �� �

and γB vivj
� � ¼ γ�B vivj

� �
, γþB vivj

� �� �
such that

σ�B vivj
� �

≤ σ�A við Þ∧σ�A vj, σþB vivj
� �

≤ σþA við Þ∧σþA vj
� ��

γ�B vivj
� �

≤ γ�A við Þ∨γ�A vj
� �

, γþB vivj
� �

≤ γþA við Þ∨γþA vj
� �

where 0≤ σþB vivj
� �þ γB þ vivj

� �
≤ 1 and ∀vivj ∈E.

In the next section, we begin the main findings of this chapter by introducing and
demonstrating examples of IVIFLG.

Definition 1.13. Consider L Gð Þ ¼ H, Jð Þ is IVIFLG of IVIFG G ¼ A1,B1ð Þ and
denoted by L Gð Þ ¼ A2,B2ð Þ whose membership and non membership function is
defined as

i. A2 and B2 are IVIFS of H and J respectively, such that

σ�A2
Seð Þ ¼ σ�B1

eð Þ ¼ σ�B1
ueveð Þ

σþA2
Seð Þ ¼ σþB1

eð Þ ¼ σþB1
ueveð Þ

γ�A2
Seð Þ ¼ γ�B1

eð Þ ¼ γ�B1
ueveð Þ

γþA2
Seð Þ ¼ γþB1

eð Þ ¼ γþB1
ueveð Þ ∀Se ∈H:
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ii. The edge set of L(G) is

σ�B2
SeSf
� � ¼ σ�B1

eð Þ∧σ�B1
fð Þ, σþB2

SeSf
� � ¼ σþB1

eð Þ∧σþB1
fð Þ

γ�B2
SeSf
� � ¼ σ�B1

eð Þ∨γ�B1
fð Þ, γþB2

SeSf
� � ¼ γþB2

eð Þ∨γþB1
fð Þ for all , SeSf ∈ J:.

Example 1.14. Given IVIFG G ¼ A1,A2ð Þ as shown in Figure 1.
From the given IVIFG we have

σA1 v1ð Þ ¼ σ�A1
v1ð Þ, σþA1

v1ð Þ
h i

¼ 0:3,0:6½ �

σA1 v2ð Þ ¼ σ�A1
v2ð Þ, σþA1

v2ð Þ
h i

¼ 0:2,0:7½ �

σA1 v3ð Þ ¼ σ�A1
v3ð Þ, σþA1

v3ð Þ
h i

¼ 0:1,0:3½ �

σA1 v4ð Þ ¼ σ�A1
v4ð Þ, σþA1

v4ð Þ
h i

¼ 0:3,0:4½ �

γA1
v1ð Þ ¼ γ�A1

v1ð Þ, γþA1
v1ð Þ

h i
¼ 0:1,0:4½ �

γA1
v2ð Þ ¼ γ�A1

v2ð Þ, γþA1
v2ð Þ

h i
¼ 0:1,0:2½ �

γA1
v3ð Þ ¼ γ�A1

v3ð Þ, γþA1
v3ð Þ

h i
¼ 0:4,0:5½ �

γA1
v4ð Þ ¼ γ�A1

v4ð Þ, γþA1
v4ð Þ

h i
¼ 0:4,0:5½ �

σB1 v1v2ð Þ ¼ σ�B1
v1v2ð Þ, σþB1

v1v2ð Þ
h i

¼ 0:2,0:5½ �

σB1 v2v3ð Þ ¼ σ�B1
v2v3ð Þ, σþB1

v2v3ð Þ
h i

¼ 0:1,0:2½ �

σB1 v3v4ð Þ ¼ σ�B1
v3v4ð Þ, σþB1

v3v4ð Þ
h i

¼ 0:1,0:1½ �

σB1 v4v1ð Þ ¼ σ�B1
v4v1ð Þ, σþB1

v4v1ð Þ
h i

¼ 0:2,0:4½ �

Figure 1.
IVIFG G.
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γB1
v1v2ð Þ ¼ γ�B1

v1v2ð Þ, γþB1
v1v2ð Þ

h i
¼ 0:1,0:3½ �

γB1
v2v3ð Þ ¼ γ�B1

v2v3ð Þ, γþB1
v2v3ð Þ

h i
¼ 0:3,0:4½ �

γB1
v3v4ð Þ ¼ γ�B1

v3v4ð Þ, γþB1
v3v4ð Þ

h i
¼ 0:3,0:4½ �

γB1
v4v1ð Þ ¼ γ�B1

v4v1ð Þ, γþB1
v4v1ð Þ

h i
¼ 0:2,0:3½ �

To find IVIFLG L Gð Þ ¼ H, Jð Þ of I such that

H ¼ v1v2 ¼ Se1 , v2v3 ¼ Se2 , v3v4 ¼ Se3 , v4v1 ¼ Se4
� �

and

J ¼ Se1Se2 , Se2Se3 , Se23Se4 , Se4Se1
� �

:

Now, consider A2 ¼ σ�A2
, σþA2

h i
and B2 ¼ σ�B2

, σþB2

h i
are IVFS of H and J respectively.

Then we have

σA2 Se1ð Þ ¼ σ�B1
e1ð Þ, σþB1

e1ð Þ
h i

¼ 0:2,0:5½ �

σA2 Se2ð Þ ¼ σ�B1
e2ð Þ, σþB1

e2ð Þ
h i

¼ 0:1,0:2½ �

σA2 Se3ð Þ ¼ σ�B1
e3ð Þ, σþB1

e3ð Þ
h i

¼ 0:1,0:1½ �

σA2 Se4ð Þ ¼ σ�B1
e4ð Þ, σþB1

e4ð Þ
h i

¼ 0:2,0:4½ �

γA2
Se1ð Þ ¼ γ�B1

e1ð Þ, γþB1
e1ð Þ

h i
¼ 0:1,0:3½ �

γA2
Se2ð Þ ¼ γ�B1

e2ð Þ, γþB1
e2ð Þ

h i
¼ 0:3,0:4½ �

γA2
Se3ð Þ ¼ γ�B1

e3ð Þ, γþB1
e3ð Þ

h i
¼ 0:3,0:4½ �

γA2
Se4ð Þ ¼ γ�B1

e4ð Þ, γþB1
e4ð Þ

h i
¼ 0:2,0:3½ �

σB2 Se1Se2ð Þ ¼ σ�B1
e1ð Þ∧σ�B1

e2ð Þ, σþB1
e1ð Þ∧σþB1

e2ð Þ
h i

¼ 0:1,0:2½ �

σB2 Se2Se3ð Þ ¼ σ�B1
e2ð Þ∧σ�B1

e3ð Þ, σþB1
e2ð Þ∧σþB1

e3ð Þ
h i

¼ 0:1,0:1½ �

σB2 Se3Se4ð Þ ¼ σ�B1
e3ð Þ∧σ�B1

e4ð Þ, σþB1
e3ð Þ∧σþB1

e4ð Þ
h i

¼ 0:1,0:1½ �

σB2 Se2Se3ð Þ ¼ σ�B1
e4ð Þ∧σ�B1

e1ð Þ, σþB1
e4ð Þ∧σþB1

e1ð Þ
h i

¼ 0:2,0:4½ �

γB2
Se1Se2ð Þ ¼ γ�B1

e1ð Þ∨γ�B1
e2ð Þ, γþB1

e1ð Þ∨γþB1
e2ð Þ

h i
¼ 0:3,0:4½ �

γB2
Se2Se3ð Þ ¼ γ�B1

e2ð Þ∨γ�B1
e3ð Þ, γþB1

e2ð Þ∨γþB1
e3ð Þ

h i
¼ 0:3,0:4½ �

γB2
Se3Se4ð Þ ¼ γ�B1

e3ð Þ∨γ�B1
e4ð Þ, γþB1

e3ð Þ∨γþB1
e4ð Þ

h i
¼ 0:3,0:4½ �

γB2
Se2Se3ð Þ ¼ γ�B1

e4ð Þ∨γ�B1
e1ð Þ, γþB1

e4ð Þ∨γþB1
e1ð Þ

h i
¼ 0:2,0:3�

Then L(G) of IVIFG G is shown in Figure 2.
Proposition 1.15. L Gð Þ ¼ A2,B2ð Þ is IVIFLG corresponding to IVIFG G ¼ A1,B1ð Þ.
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Definition 1.16. A homomorphism mapping ψ : G1 ! G2 of two IVIFG
G1 ¼ M1,N1ð Þ and G2 ¼ M2,N2ð Þ ψ : V1 ! V2 is defined as

i. σ�M1
við Þ≤ σ�M2

ψ við Þð Þ, σþM1
við Þ≤ σþM2

ψ við Þð Þ
γ�M1

við Þ≤ γ�M2
ψ við Þð Þ, γþM1

við Þ≤ γþM2
ψ við Þð Þ for all vi ∈V1:

ii. σ�N1
vivj
� �

≤ σ�N2
ψ við Þψ vj

� �� �
, σþN1

vivj
� �

≤ σþN2
ψ við Þψ vj

� �� �

γ�N1
vivj
� �

≤ γ�N2
ψ við Þψ vj

� �� �
, γþN1

vivj
� �

≤ γþN2
ψ við Þψ vj

� �� �
for all vivj ∈E1.

Definition 1.17. A bijective homomorphism ψ : G1 ! G2 of IVIFG is said to be a
weak vertex isomorphism, if

σM1 við Þ ¼ σ�M1
við Þ, σþM1

við Þ
h i

¼ σ�M2
ψ við Þð Þ, σþM2

ψ við Þð Þ
h i

γN1
við Þ ¼ γ�N1

við Þ, γþN1
við Þ

h i
¼ γ�N2

ψ við Þð Þ, γþN2
ψ við Þð Þ

h i
, ∀vi ∈V1:

A bijective homomorphism ψ : G1 ! G2 of IVIFG is said to be a weak line isomor-
phism if

σB1 vivj
� � ¼ σ�B1

vivj
� �

, σþB1
vivj
� �h i

¼ σ�B2
ψ við Þψ vj

� �� �
, σþB2

ψ við Þψ vj
� �� �h i

,

γB1
vivj
� � ¼ γ�B1

vivj
� �

, γþB1
vivj
� �h i

¼ γ�B2
ψ við Þψ vj

� �� �
, γþB2

ψ við Þψ vj
� �� �h i

∀vivj ∈E1:

If ψ : G1 ! G2 is an isomorphism that holds Definition 1.17, then ψ is called a weak
isomorphism of IVIFGs G1 and G2.

Proposition 1.18. The IVIFLG L Gð Þ is connected graph if and only if its
corresponding IVFG G is connected graph.

Figure 2.
IVIFLG of G.
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Proof: Assume that L Gð Þ is a connected IVIFLG of the IVIFG G. First, We want to
show that necessary condition. Lets say G is disconnected IVIFG. Then there are at
least two nodes of graph G which are not joined by path, say vi and vj. If we take one
edge e in the first component of the edge set of G, then it doesn’t have any edges
which adjacent to edge e in other components. So that, the IVIFLG of graph G is
disconnected and contradicts our assumption. Therefore, the IVIFG G must be
connected. On the other hand, assume that IVIFG G is connected graph. Then, there is
a path between each pair of nodes. This implies, edges which are adjacent in graph G
are adjacent nodes in IVIFLG. As a result, every pair of nodes in IVIFLG of G are
linked by a path. Therefore, the proof finished.

Proposition 1.19. An Interval valued line graph of star graph K1,n is a complete
Interval valued graph Kn with n�vertices.

Proof: Consider the vertex v∈V K1,nð Þ that adjacent to all other vertices
ui ∈V K1,nð Þ for i ¼ 1, 2⋯, n. Now, all the vertices in IVIFLG of K1,n are adjacent. This
means, IVIFLG of K1,n is a complete graph.

Example 1.20. Suppose that the IVIFG K1,3 with V ¼ v, v1, v2, v3f g and E ¼
vv1, vv2, vv3f where

v ¼ 0:3,0:5½ �, 0:1,0:4½ �ð Þ, v1 ¼ 0:3,0:4½ �, 0:2,0:5½ �ð Þ
v2 ¼ 0:5,0:8½ �, 0:1, 0:2½ �ð Þ, v3 ¼ 0:1,0:3½ �, 0:5,0:7½ �ð Þ

e1 ¼ vv1 ¼ 0:2,0:3½ �, 0:3,0:5½ �ð Þ, e2 ¼ vv2 ¼ 0:2,0:5½ �, 0:0,0:3½ �ð Þ
e3 ¼ vv3 ¼ 0:1,0:2½ �, 0:3,0:6½ �ð Þ:

Then by definition of IVIFLG, the vertex sets of L K1,3ð Þ is V ¼ Se1 , Se2 , Se3
� �

and
Se1Se2 , Se1Se3 , Se2Se3

�
edge sets where

Se1 ¼ 0:2,0:3½ �, 0:3,0:5½ �ð Þ, Se2 ¼ 0:2,0:5½ �, 0:0,0:3½ �ð Þ,
Se3 ¼ 0:1,0:2½ �, 0:2,0:6½ �ð Þ, Se1Se2 ¼ 0:2,0:3½ �, 0:3,0:5½ �ð Þ,
Se1Se3 ¼ 0:2,0:3½ �, 0:3,0:5½ �ð Þ, Se2Se3 ¼ 0:1,0:2½ �, 0:2,0:6½ �ð Þ:

Here L K1,3ð Þ is complete graph K3 (Figure 3).

Figure 3.
Graphs of K1,3 and L K1,3

� �
.
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Proposition 1.21. Let L Gð Þ be IVIFLG of IVIFG of G. Then L G ∗ð Þ is a line graph of
G ∗ where G ∗ ¼ V,Eð Þ with underlying set V.

Proof: Given G ¼ A1,B1ð Þ is IVIFG of G ∗ and L Gð Þ ¼ A2,B2ð Þ is IVIFLG of L G ∗ð Þ.
Then

σA2 Seð Þ ¼ σ�A2
Seð Þ, σþA2

Seð Þ
h i

¼ σ�B1
eð Þ, σþB1

eð Þ
h i

,

γA2
Seð Þ ¼ γ�A2

Seð Þ, γþA2
Seð Þ

h i
¼ γ�B1

eð Þ, γþB1
eð Þ

h i
∀e∈E:

This implies, Se ∈H ¼ ef g∪ ue, vef g : e∈E, ue, ve ∈V&e ¼ uevef g if and only if e∈E:

σB2 SeSf
� � ¼ σ�B2

SeSf
� �

, σþB2
SeSf
� �h i

¼ σ�B1
eð Þ∧σ�B1

fð Þ, σþB1
eð Þ∧σþB1

fð Þ
h i

γB2
SeSf
� � ¼ γ�B2

SeSf
� �

, γþB2
SeSf
� �h i

¼ γ�B1
eð Þ∨γ�B1

fð Þ, γþB1
eð Þ∨γþB1

fð Þ
h i

∀SeSf ∈ J,

where J ¼ SeSf j Se∩Sf ∉ ∅, e, f ∈E&e ∉ f
� �

: Hence, L G ∗ð Þ is a line graph of G ∗ .
Proposition 1.22. Let L Gð Þ ¼ A2,B2ð Þ be IVIFLG of L G ∗ð Þ. Then L Gð Þ is also

IVIFLG of some IVIFG G ¼ A1,B1ð Þ iff

i. σB2 SeSf
� � ¼ σ�B2

SeSf
� �

, σþB2
SeSf
� �h i

¼ σ�A2
Seð Þ∧σ�A2

Sf
� �

, σþA2
Seð Þ∧σþA2

Sf
� �h i

,

ii. γB2
SeSf
� � ¼ γ�B2

SeSf
� �

, γþB2
SeSf
� �h i

¼ γ�A2
Seð Þ∨γ�A2

Sf
� �

, γþA2
Seð Þ∨γþA2

Sf
� �h i

∀Se, Sf ∈H, SeSf ∈ J.

Proof: Suppose both conditions ið Þ and iið Þ are satisfied. i.e.,
σ�B2

SeSf
� � ¼ σ�A2

Seð Þ∧σ�A2
Sf
� �

, σþB2
SeSf
� � ¼ σþA2

Seð Þ∧σþA2
Sf
� �

, γ�B2
SeSf
� � ¼ γ�A2

Seð Þ∨γ�A2
Sf
� �

and γþB2
SeSf
� � ¼ γþA2

Seð Þ∨γþA2
Sf
� �

for all SeSf ∈W. For every e∈E we define
σ�A2

Seð Þ ¼ σ�A1
eð Þ, σþA2

Seð Þ ¼ σþA1
eð Þ, γ�A2

Seð Þ ¼ γ�A1
eð Þ and γþA2

Seð Þ ¼ γþA1
eð Þ. Then

σ�B2
SeSf
� � ¼ σ�B2

SeSf
� �

, σþB2
SeSf
� �h i

¼ σ�A2
Seð Þ∧σ�A2

Sf
� �

, σþA2
Seð Þ∧σþA2

Sf
� �h i

¼ σ�B1
eð Þ∧σ�B1

fð Þ, σþB1
eð Þ∧σþB1

fð Þ
h i

:

γ�B2
SeSf
� � ¼ γ�B2

SeSf
� �

, γþB2
SeSf
� �h i

¼ γ�A2
Seð Þ∨γ�A2

Sf
� �

, γþA2
Seð Þ∨γþA2

Sf
� �h i

¼ γ�B1
eð Þ∨γ�B1

fð Þ, γþB1
eð Þ∨γþB1

fð Þ
h i

:

We know that IVIFS A1 ¼ σ�A1
, σþA1

h i
, γ�A1

, γþA1

h i� �
yields the properties
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σ�B1
vivj
� �

≤ σ�A1
við Þ∧σ�A1

vj
� �

σþB1
vivj
� �

≤ σþA1
við Þ∧σþA1

vj
� �

γ�B1
vivj
� �

≤ γ�A1
við Þ∨γ�A1

vj
� �

γþB1
vivj
� �

≤ γþA1
við Þ∨γþA1

vj
� �

will suffice. From definition of IVIFLG the converse of this statement is well
known.

Proposition 1.23. An IVIFLG is always a strong IVIFG.
Proof: It is straightforward from the definition, therefore it is omitted.
Proposition 1.24. Let G1 and G2 IVIFGs of G ∗

1 and G ∗
2 respectively. If the mapping

ψ : G1 ! G2 is a weak isomorphism, then ψ : G ∗
1 ! G ∗

2 is isomorphism map.
Proof: Suppose ψ : G1 ! G2 is a weak isomorphism. Then

v∈V1⇔ψ vð Þ∈V2 and

uv∈E1⇔ψ uð Þψ vð Þ∈E2:

Hence the proof.
Theorem 1.25. Let G ∗ ¼ V,Eð Þ is connected graph and consider that L Gð Þ ¼

A2,B2ð Þ is IVIFLG corresponding to IVIFG G ¼ A1,B1ð Þ. The,

1.there exists a map ψ : G! L Gð Þwhich is a weak isomorphism if and only ifG ∗ is
a cyclic graph with

σA1 vð Þ ¼ σ�A1
vð Þ, σþA1

vð Þ
h i

¼ σ�B1
eð Þ, σþB1

eð Þ
h i

,

γA1
vð Þ ¼ γ�A1

vð Þ, γþA1
vð Þ

h i
¼ γ�B1

eð Þ, γþB1
eð Þ

h i
,

such that A1 ¼ σ�A1
, σþA1

h i
, γ�A1

, γþA1

h i� �
& B1 ¼ σ�B1

, σþB1

h i
, γ�B1

, γþB1

h i� �
,

∀v∈V, e∈E.

2.The map ψ is isomorphism if ψ : G! L Gð Þ is a weak isomorphism.

Proof: Consider ψ : G! L Gð Þ is a weak isomorphism. Then we have

σA1 við Þ ¼ σ�A1
við Þ, σþA1

við Þ
h i

¼ σ�A2
ψ við Þð Þ, σþA2

ψ við Þð Þ
h i

γB1
við Þ ¼ γ�B1

við Þ, γþB1
við Þ

h i
¼ γ�B2

ψ við Þð Þ, γþB2
ψ við Þð Þ

h i

∀vi ∈V:

σB1 vivj
� � ¼ σ�B1

vivj
� �

, σþB1
vivj
� �h i

¼ σ�B2
ψ við Þψ vj

� �� �
, σþB2

ψ við Þψ vj
� �� �h i

γB1
vivj
� � ¼ γ�B1

vivj
� �

, γþB1
vivj
� �h i

¼ γ�B2
ψ við Þψ vj

� �� �
, γþB2

ψ við Þψ vj
� �� �h i

∀vivj ∈E:

This follows that G ∗ ¼ V,Eð Þ is a cyclic from Proposition 1.24.
Now let v1v2v3⋯vnv1 be a cycle of G ∗ where vertices set V ¼ v1, v2,⋯, vnf g and

edges set E ¼ v1v2, v2v3,⋯, vnv1f g. Then we have IVIFS
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σA1 við Þ ¼ σ�A1
við Þ, σþA1

við Þ
h i

¼ t�i , t
þ
i

� �

γA1
við Þ ¼ γ�A1

við Þ, γþA1
við Þ

h i
¼ f�i , f

þ
i

� �

and

σB1 viviþ1ð Þ ¼ σ�B1
viviþ1ð Þ, σþB1

viviþ1ð Þ
h i

¼ ι�i , ι
þ
i

� �

γB1
viviþ1ð Þ ¼ γ�B1

viviþ1ð Þ, γþB1
viviþ1ð Þ

h i
¼ q�i , q

þ
i

� �
,

where i ¼ 1, 2,⋯, n and vnþ1 ¼ v1: Thus, for t�1 ¼ t�nþ1, t
þ
1 ¼ tþnþ1, f

�
1 ¼ f�nþ1, f

þ
1 ¼ f�nþ1

ι�i ≤ t�i ∧t
�
iþ1,

ιþi ≤ tþi ∧t
þ
iþ1,

q�i ≤ f�i ∨f
�
iþ1

qþi ≤ fþi ∨f
þ
iþ1:

(1)

Now

H ¼ Sei : i ¼ 1, 2, ,⋯, nf g and J ¼ SeiSeiþ1 : i ¼ 1, 2, ,⋯, n� 1
� �

:

And also,

σA2 Seið Þ ¼ σ�A2
Seið Þ, σþA2

Seið Þ
h i

¼ σ�B1
eið Þ, σþB1

eið Þ
h i

¼ σ�B1
viviþ1ð Þ, σþB1

viviþ1ð Þ
h i

¼ ι�i , ι
þ
i

� �

γA2
Seið Þ ¼ γ�A2

Seið Þ, γþA2
Seið Þ

h i

¼ γ�B1
eið Þ, γþB1

eið Þ
h i

¼ γ�B1
viviþ1ð Þ, γþB1

viviþ1ð Þ
h i

¼ q�i , q
þ
i

� �

σþB2
SeiSeiþ1
� � ¼ min σþB1

eð Þ, σþB1
eiþ1ð Þ

n o

¼ min σþB1
viviþ1ð Þ, σþB1

viþ1viþ2ð Þ
n o

¼ min ιþi , ι
þ
iþ1

� �

σ�B2
SeiSeiþ1
� � ¼ min σ�B1

eð Þ, σ�B1
eiþ1ð Þ

n o

¼ min σ�B1
viviþ1ð Þ, σ�B1

viþ1viþ2ð Þ
n o

¼ min ι�i , ι
�
iþ1

� �

79

Extended Intuitionistic Fuzzy Line Graphs: Theory and Properties
DOI: http://dx.doi.org/10.5772/intechopen.110182



γþB2
SeiSeiþ1
� � ¼ max γþB1

eð Þ, γþB1
eiþ1ð Þ

n o

¼ max γþB1
viviþ1ð Þ, γþB1

viþ1viþ2ð Þ
n o

¼ max qþi , q
þ
iþ1

� �

γ�B2
SeiSeiþ1
� � ¼ max γ�B1

eð Þ, γ�B1
eiþ1ð Þ

n o

¼ max γ�B1
viviþ1ð Þ, γ�B1

viþ1viþ2ð Þ
n o

¼ max q�i , q
�
iþ1

� �

where vnþ1 ¼ v1, vnþ2 ¼ v2, ιþ1 ¼ ιþnþ1, ι
�
1 ¼ ι�nþ1, q

þ
nþ1 ¼ ιþ1 , , q

�
nþ1 ¼ q�1 , and

i ¼ 1, 2,⋯, n.ψ : V ! H is bijective map since ψ : G ∗ ! L G ∗ð Þ is isomorphism. And
also, ψ preserves adjacency. So that ψ persuades an alternative τ of 1, 2,⋯, nf g which
ψ við Þ ¼ Seτ ið Þ and for ei ¼ viviþ1 then ψ við Þψ viþ1ð Þ ¼ Seτ ið ÞSeτ iþ1ð Þ , i ¼ 1, 2,⋯, n� 1. Now

t�i ¼ σ�A1
við Þ≤ σ�A2

ψ við Þð Þ ¼ σ�A2
Seτ ið Þ

� �
¼ ι�τ ið Þ,

tþi ¼ σþA1
við Þ≤ σþA2

ψ við Þð Þ ¼ σþA2
Seτ ið Þ

� �
¼ ιþτ ið Þ,

f�i ¼ γ�A1
við Þ≤ γ�A2

ψ við Þð Þ ¼ γ�A2
Seτ ið Þ

� �
¼ q�τ ið Þ,

fþi ¼ γþA1
við Þ≤ γþA2

ψ við Þð Þ ¼ γþA2
Seτ ið Þ

� �
¼ qþτ ið Þ:

And let ei ¼ viviþ1,

ι�i ¼ σ�B1
viviþ1ð Þ≤ σ�B2

ψ við Þψ viþ1ð Þ ¼ σ�B2
Seτ ið ÞSeτ iþ1ð

� �� �

¼ min σ�B1
eτ ið Þ
� �

, σ�B1
eτ iþ1ð Þ
� �n o

¼ min ι�τ ið Þ, ι
�
τ iþ1ð Þ

n o

ιþi ¼ σþB1
viviþ1ð Þ≤ σþB2

ψ við Þψ viþ1ð Þ ¼ σþB2
Seτ ið ÞSeτ iþ1ð

� �� �

¼ min σþB1
eτ ið Þ
� �

, σþB1
eτ iþ1ð Þ
� �n o

¼ min ιþτ ið Þ, ι
þ
τ iþ1ð Þ

n o

q�i ¼ γ�B1
viviþ1ð Þ≤ γ�B2

ψ við Þψ viþ1ð Þ ¼ γ�B2
Seτ ið ÞSeτ iþ1ð

� �� �

¼ max γ�B1
eτ ið Þ
� �

, γ�B1
eτ iþ1ð Þ
� �n o

¼ max q�τ ið Þ, q
�
τ iþ1ð Þ

n o

qþi ¼ γþB1
viviþ1ð Þ≤ γþB2

ψ við Þψ viþ1ð Þ ¼ γþB2
Seτ ið ÞSeτ iþ1ð

� �� �

¼ max γþB1
eτ ið Þ
� �

, γþB1
eτ iþ1ð Þ
� �n o

¼ max qþτ ið Þ, q
þ
τ iþ1ð Þ

n o
for i ¼ 1, 2,⋯, n:

Which implies,

t�i ≤ ι�τ ið Þ, tþi ≤ ιþτ ið Þ
f�i ≤ q�τ ið Þ, fþi ≤ qþτ ið Þ

(2)
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and

ι�i ≤ min ι�τ ið Þ, ι
�
τ iþ1ð Þ

n o
, ιþi ≤ min ιþτ ið Þ, ι

þ
τ iþ1ð Þ

n o

q�i ≤ max q�τ ið Þ, q
�
τ iþ1ð Þ

n o
, qþi ≤ max qþτ ið Þ, q

þ
τ iþ1ð Þ

n o
:

(3)

Thus from the above equations, we obtain ι�i ≤ ι�τ ið Þ, ι
þ
i ≤ ιþτ ið Þ, q

�
i ≤ q�τ ið Þ and qþi ≤ qþτ ið Þ.

and also ι�τ ið Þ ≤ ι�τ τ ið Þð Þ, ι
þ
τ ið Þ ≤ ιþτ τ ið Þð Þ, q

�
τ ið Þ ≤ q�τ τ ið Þð Þ and qþτ ið Þ ≤ qþτ τ ið Þð Þ. By proceeding this pro-

cess, we get

ι�i ≤ ι�τ ið Þ ≤⋯≤ ι�τk ið Þ ≤ ι�i

ιþi ≤ ιþτ ið Þ ≤⋯≤ ιþτk ið Þ ≤ ιþi

q�i ≤ q�τ ið Þ ≤⋯≤ q�τk ið Þ ≤ q�i

qþi ≤ qþτ ið Þ ≤⋯≤ qþτk ið Þ ≤ qþi

where τkþ1 is the identity function. It follows ι�τ ið Þ ¼ ι�τ τ ið Þð Þ, ι
þ
τ ið Þ ¼ ιþτ τ ið Þð Þ, q

�
τ ið Þ ¼ q�τ τ ið Þð Þ

and qþτ ið Þ ¼ qþτ τ ið Þð Þ. Again, from Eq. (3), we get

ι�i ≤ ι�τ iþ1ð Þ ¼ ι�iþ1, ιþi ≤ ιþτ iþ1ð Þ ¼ ιþiþ1

q�i ≤ q�τ iþ1ð Þ ¼ q�iþ1, q
þ
i ≤ qþτ iþ1ð Þ ¼ q�iþ1:

This implies for all i ¼ 1, 2,⋯, n, ι�i ¼ ι�1 , ι
þ
i ¼ ιþ1 , q

�
i ¼ q�1 and qþi ¼ qþ1. Thus,

from Eqs. (1) and (2) we obtain

ι�1 ¼ ⋯ ¼ ι�n ¼ t�1 ¼ ⋯ ¼ t�n

ιþ1 ¼ ⋯ ¼ ιþn ¼ tþ1 ¼ ⋯ ¼ tþn
q�1 ¼ ⋯ ¼ q�n ¼ f�1 ¼ ⋯ ¼ f�n

qþ1 ¼ ⋯ ¼ qþn ¼ fþ1 ¼ ⋯ ¼ fþn :

As a result, the proof.
Theorem 1.26. Let G be connected simple IVIFG, then IVIFLG of G is a path graph

if and only if G is path graph.
Proof: Suppose that G is a path IVIFG with ∣V Gð Þ∣ ¼ k. Thus, G is a path Pk with

length k and ∣E Gð Þ∣ ¼ k� 1. Since the vertices set of IVIFLG L Gð Þ is an edge sets of G,
clearly L Gð Þ is a path with ∣V L Gð Þð Þ∣ ¼ k� 1 graph and ∣E L Gð Þð Þ∣ ¼ k� 2. Implies that
L Gð Þ is a path graph. On the other hand, assume L Gð Þ is a path. Then every degree of
vertex vi ∈G is can’t be greater than two. If there is a vertex vi ∈G is greater than two,
then an edge e which incident to vi ∈G would form a complete sub-graph of IVIFLG
L Gð Þ of more than two vertices. As a result, the IVIFG G must be either path graph or
cyclic. But, G can’t be the cyclic graph since a line graph of the cyclic graph is the
cyclic graph. The proof is finished.

3. Conclusion

In this chapter, we introduced interval-valued intuitionistic fuzzy line graphs
(IVIFLG) and investigated their results. In addition, we developed many theorems,
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and propositions related to IVIFLG with proof. Moreover, some remarkable properties
of isomorphic properties, strong IVIFLG, and complete IVIFLG have been investi-
gated, and the proposed concepts are illustrated with the examples.
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Chapter 6

Multi-Dimensional Codebooks for
Multiple Access Schemes
Kais Hassan, Kosai Raoof and Pascal Chargé

Abstract

The sparse code multiple access (SCMA) scheme directly maps the incoming
bits of several sources (users/streams) to complex multi-dimensional codewords
selected from a specific predefined sparse codebook set. The codewords of all sources
are then superimposed and exchanged. The shaping gain of the multi-dimensional
constellation of SCMA leads to a better system performance. The decoder’s objective
will be to separate the superimposed sparse codewords. Most existing works on SCMA
decoders employ message passing algorithm (MPA) or one of its variations, or a
combination of MPA and other methods. The system architecture is highlighted and
its basic principles are presented. Then, an overview of main multi-dimensional
constellations for SCMA systems will be provided. Afterwards, we will focus on
how the SCMA codebooks are decoded and how their performance is evaluated and
compared.

Keywords: multi-dimensional constellations, codebook design, message passing
algorithms, sparse code, code-domain

1. Introduction

The massive connectivity is one of the main requirements of the 5G telecommuni-
cation systems and beyond. One key to fulfill this objective is to allow several users to
efficiently access the same resources (frequency band for example) simultaneously,
this approach is called multiple access. Based on how the resources are shared among
multiple users, two types of multiple access could be distinguished: orthogonal multi-
ple access (OMA) and non-orthogonal multiple access (NOMA) [1].

A well-known OMA scheme is code-division multiple access (CDMA), the idea is
to divide the symbol duration into a number of time slots or chips such that the
spreading sequence associated to each user is chosen from a set of non sparse quasi-
orthogonal ones. The overall transmitted sequence is the result of the superimposition
of the symbols of all users which are spread over different chips. The number of
served users is limited to the number of available quasi-orthogonal sequences, how-
ever, the orthogonality of sequences guarantees the simplicity of the receiver since a
low complexity correlation operation is sufficient to detect the users’ symbols despite
the inter-sequence interference.
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The key difference between code-domain NOMA techniques and the CDMA is that
the spreading sequences of the former are restricted to non-orthogonal low cross-
correlation sparse sequences such that more spreading sequences of code can be used,
and consequently more users can be served simultaneously. One code-domain NOMA
scheme which had shown to achieve a promising link level performance is SCMA [2].
Traditional code-domain schemes map bits to a symbol which is selected from one-
dimensional constellation before spreading this symbol over a given low-density
spreading sequence, SCMA combines together the two steps which gives birth to the
idea of multi-dimensional constellations. The capacity to directly map the bits to some
sparse SCMA codewords belonging to multi-dimensional codebooks attracts a lot of
attention.

In this Chapter, we will present the SCMA system architecture by presenting its
basic principles and its signal model. Then, existing methods for SCMA codebook
design will be reviewed. Finally, we will explain how SCMA signal can be detected at
the receiver either using the traditional MPA or one among its variations.

2. SCMA system architecture

In the following subsections, multi-dimensional coding principles are presented
before illustrating why SCMA can be employed to provide multiple access.

2.1 Basic principles of multi-dimensional constellations

The SCMA spreads its sequence in the frequency domain over K subcarriers, these
narrow frequency bands are also called resource elements (REs). For an uplink sce-
nario, a base station (BS) serves simultaneously J separate users. The user j, so-called

also layer j, sends a K � dimensional codeword, x mð Þ
j , which represents log 2 Mj

� �
data

bits. Consequently, x mð Þ
j must be chosen from a codebook, Cj, of size Mj such that the

multi-dimensional constellation, C ¼ Cj, 1≤ j≤ J
� �

is designed to facilitate the multi-

ple access. Actually, the codewords of all users, x mð Þ
j , 1≤ j≤ J, are superimposed and

exchanged over the K REs. In fact, C collects the signatures of served users. In order to
increase the number of connected users, the codewords are designed to be sparse, i.e.
all their entries are zeros except for few ones, in other words, the number of non-zero
entries, Nj, must be lesser than the length of the codewords, K, i.e. Nj ≪K. Hence, the
jth SCMA layer can be described by its codebook sparsity degree, Nj, and the whole
SCMA system is characterized by

• df which is defined by the maximum degree of user superposition on a given RE,

• λ which denotes the overloading factor, λ is calculated by the ratio of number of
users to number of REs, i.e. λ ¼ J

K.

However, we must highlight that all the Nj non-zero entries of the codewords of Cj

are located in the same positions.
Based on the different parameters of SCMA system, especially, the size of code-

book of each user, Mj, and its codebook sparsity degree Nj, we can distinguish two
kinds of SCMA system architectures:
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i. The regular SCMA where users are treated equally, i.e. all users employ a
codebook of size M and their signals are spread over N REs,

ii. The irregular SCMA, as its name indicates, is designed such that the
codebooks are allocated differently according to the different needs of
users [3].

Figure 1 presents an example of a regular SCMA system, obviously, we have Nj ¼
2, 1≤ j≤ J and Mj ¼ 4, 1≤ j≤ J. This system is characterized by df ¼ 3 and λ ¼ 150%.
In the rest of this chapter, a simple”SCMA” will refer implicitly to regular SCMA.

The received vector for an uplink SCMA system is given by,

y ¼
XJ

j¼1
Hjx

mð Þ
j þ n, (1)

where y ¼ y1,⋯, yK
� �T and x mð Þ

j ¼ x mð Þ
j,1 ,⋯, x mð Þ

j,K

� �T
. Let us denote the channel gain

of user j on subcarrier k by hj,k, hence the matrix Hj is diagonal of dimension K � K
where hj,k, 1≤ k≤K are its diagonal entries. Finally, at the receiver, a zero-mean white
circularly complex Gaussian noise, n, with variance N0 is added; i.e.
n � CN 0,N0IKð Þ, where IK is the identity matrix of size K.

3. SCMA codebook design

The design of SCMA codebook is usually based on several steps, a description of
each one among them is given in this section. The idea is that the constellation
function, associated with each user j generates a constellation set with M alphabets of
length N. Then, the mapping matrix Vj maps the N‐dimensional constellation points
to SCMA codewords to form the codebook Cj.

Figure 1.
The encoder of a regular SCMA system: The transmitted codeword is the superposition of the codeword of each user
which is selected from its own codebook according to the log 2 Mð Þ bit to be transmitted at each time frame.
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3.1 Codebook design procedure

The description of a SCMA system begins by determining the locations of non-zero
elements of user j, 1≤ j≤ J, via the vector f j, for instance f j ¼ 1,1,0,0½ �T means that the
user j employs the first two subcarriers only to send his data, this can be also described
using another matrix, Vj, of dimension K �N, given by,

Vj ¼

1 0

0 1

0 0

0 0

2
6664

3
7775 (2)

where Vj is the mapping matrix of user j. Thus, the whole SCMA system is
described by gathering the f j vectors in one matrix F of dimension K � J such that
F ¼ f1,⋯, f J

� �
, F is called the factor graph matrix. The two matrices are related by

f j ¼ VjVT
j .

The factor graph matrix that represents the system in Figure 1 is given by,

F ¼

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

2
6664

3
7775 (3)

and the factor graph itself is depicted in Figure 2 where every circle represents a
user (so-called variable node) and every block represents a subcarrier (so-called
function node).

Thus, the matrix F is related to the codeword x mð Þ
j , in Eq. (1), by the fact that the

structure of F defines where zeros are located in the codebook from which the

codeword x mð Þ
j is selected.

Figure 2.
The matrix, F, can be translated into a factor graph. The encoder of the SCMA system illustrated in Figure 1 is
represented by this factor graph.
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As to the SCMA codebook design, it is considered as a joint optimization problem
which objective is to find both the optimum user-to-RE mapping matrices V ∗ and the
optimum multi-dimensional constellation C ∗ , hence, this problem can be defined as,

V ∗ , C ∗ ¼ argmax
V, C

D ϕ V, C; J,M,N,Kð Þð Þ (4)

where D is a design criterion and ϕ is the SCMA system as it was described above.
However, the SCMA system must be designed under the assumption that J users are
simultaneously connected, that is the system is fully loaded. In this case, the number
of users is equal to the number of possibleN-combinations among the K available REs,

i.e. J ¼ K
N

� �
. Hence, there is only one possible optimal mapping matrix solution.

Finding the optimum multi-dimensional constellation is still complex, one way to
simplify this optimization problem is to divide it into several subproblems [4]. Hence,
the multi-stage design of SCMA codebook is conducted in three main steps:

i. Firstly a constellation, Cmc, composed ofMwords of size N is designed, Cmc is
called the mother constellation,

ii. The mother constellation is considered as a seed from which user-specific
multi-dimensional constellations are generated, this requires to design user-
specific transformation matrices, Tj,

iii. The combination of the above two steps gives a set of J matrices of sizeM�N,
the mapping matrix is employed to generate, C, the set of J codebooks.

Taking into consideration the above-mentioned remarks, namely the uniqueness
of the optimal solution for the mapping matrix and the multi-stage solution for the
multi-dimensional constellation design, Eq. (3) can be rewritten as,

T ∗
j

n o
,C ∗

mc ¼ arg max
Tjf g,Cmc

D ϕ V ∗ , TjCmc
� �

; J,M,N,K
� �� �

(5)

such that the jth codebook is calculated by,

Cj ¼ V ∗
j T

∗
j C

∗
mc: (6)

In the following parts of this section, and inspired by the codebook design proce-
dure illustrated in Figure 3, we present the major keys to design the mother constel-
lation and the appropriate transformation operators.

3.2 Mother constellation design

The codebook of user J must be composed of M codewords since it encodes
log 2 Mð Þ bits, each codeword has N non-zero elements. Hence, we start by designing a
mother constellation matrix of N rows and M columns. Each row among the N ones
represents a dimension among the N dimensions of the constellation. On the other
hand, the mth column is a multi-dimensional point among the M multi-dimensional
points of the constellation. The objective of the designing process is to guarantee a
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sufficiently good distance among all the points in the set C, that is keeping the points
of the multi-dimensional constellation sufficiently far from each others such that they
can be separated and decoded at the receiver. Consequently, the mother constellation
must own a good distance profile. However, this requires to define how the distance
between two multi-dimensional points is measured, this fundamentally defines the
criterion D in eq. (4). Hereafter, the interested reader can find a list of the most
employed distance definitions in the state of the art.

3.2.1 Euclidean distance

The Euclidean distance between two constellation points, x uð Þ
i and x mð Þ

j , 1≤ u≤M,
1≤m≤M, of user i and j respectively, 1≤ i≤ J, 1≤ j≤ J, is calculated by,

dE x mð Þ
j ,x uð Þ

i

� �
¼ ∥x mð Þ

j � x uð Þ
i ∥ (7)

A classic design criterion is the minimum Euclidean distance of a multi-
dimensional constellation [5, 6], it is defined as,

d minð Þ
E ¼ min

1≤ u,m≤M

1≤ i, j≤ J

dE x mð Þ
j ,x uð Þ

i

� �n o
(8)

This criterion is more useful for evaluating the design of Cmc when all users are
observing the same fading channel coefficients over their REs.

3.2.2 Euclidean kissing number

The key here is to count the number of distinct constellation point pairs which are
separated by an Euclidean distance which is equal to the minimum Euclidean distance
between any two points of the multi-dimensional constellation.

Figure 3.
A block diagram that illustrates the different steps which are conducted to design a SCMA codebook.
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3.2.3 Product distance

The product distance between two N-dimensional complex constellation points,

x mð Þ
j ¼ x mð Þ

j,1 ,⋯, x mð Þ
j,N

� �T
and x uð Þ

i ¼ x uð Þ
i,1 ,⋯, x uð Þ

i,N

� �T
, is expressed as,

dP x mð Þ
j ,x uð Þ

i

� �
¼

Y

1≤ n≤N

x mð Þ
j,n 6¼x

uð Þ
i,n

∣x mð Þ
j,n � x uð Þ

i,n ∣ (9)

The minimum product distance of a multi-dimensional constellation is given by,

d minð Þ
P ¼ min

1≤ u,m≤M

1≤ i, j≤ J

dP x mð Þ
j ,x uð Þ

i

� �n o
(10)

This criterion is preferred when evaluating the design of Cmc in strong fading
channel case, i.e., when channel coefficients over employed subcarriers are different.

3.2.4 Product kissing number

It is the number of distinct constellation point pairs with product distance equal to
the minimum product distance.

To understand why SCMA performs well, the concept of shaping gain was intro-
duced, the idea is to measure how the inherent shape of a multi-dimensional constel-
lation, i.e. possessing additional dimensions in each constellation point or additional
degrees of freedom, results in enhancing the distancing property of the SCMA con-
stellation. We can assume that increasing the shaping gain means enhancing the
overall system performance. The shaping gain is calculated by the ratio of the mini-
mum distance between the points of multi-dimensional constellation to the minimum
distance between the points of an one-dimensional one. The two constellations must
have the same total power distributed on the same number of points. For instance, the
authors in [5, 7] proposed 4-point two-dimensional mother constellation. The quad-
rature phase shift keying constellation is chosen as the reference one-dimensional
constellation, the resulting shaping gain, which is calculated based on the Euclidean
distance, is 1.25 dB.

Several new methods to design the SCMA mother constellation were proposed in
the literature. In the following paragraphs, an overview of some interesting ones is
presented, for each method the design criterion and the employed distance definition
are highlighted.

The Euclidean distance will be intuitively the first to be used. One approach could
be to fix a minimum Euclidean distance between any two points of the multi-
dimensional constellation and to optimize another property, for instance the average
constellation energy was minimized in [5], the resulting mother constellation is called
the M-Beko. In [6], the authors proposed the M-Peng scheme which fixes the average
energy and tries to maximize the minimum Euclidean distance between any two
points of the alphabet.

Several research works aimed to reduce the number of superposing constellation
points over each subcarrier or dimension as shown in Figure 4, however the users are
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distinct on other dimensions which will allow us to efficiently decode the codewords
of each one among them [8–11]. This type of mother constellation is described as a
low-projection one since it virtually reduces the codebook size from M into Mp where
Mp is the size of the low-projected constellation. This leads to a further complexity
reduction since the later is directly related to the effective codebook size, for instance,

we can reduce the MPA complexity to M
df
p instead of Mdf . The low-projection

approach is generally associated to the product distance criterion which has to be
carefully adjusted to enhance the performance in the low signal-to-noise ratio (SNR)
zone without compromising the performance in the high SNR one.

The design of constellations or code dictionaries is well studied in the state-of-the-
art, we can mention, for example, digital modulation, CDMA, channel and source
coding. This rich literature inspired some designs of multi-dimensional constellations.
For instance, the authors in [9] proposed the T M QAM SCMA codebook whose
design is based on the quadrature amplitude modulation (QAM). The idea is to design
first two N-dimensional real constellations, then the N-dimensional complex constel-
lation is conceived by applying a shuffling method on the Cartesian product of these
N-dimensional real points. The optimization process is concluded by a rotation oper-
ation which aims at maximizing the minimum product distance of multi-dimensional
constellation. The M LQAM scheme in [10] is a hybrid one between the shuffling
method and the low-projection constellation approach. All the above-presented
mother constellation designs did not take into consideration the wireless channel
characteristics. For instance, the research work in [12, 13] derived a design criterion
from cutoff rate of MIMO systems when the channel is assumed to be Rayleigh fading,
the conceived constellation for SCMA systems is called M-Bao. In fact, the M multi-
dimensional points of the TM QAM,M LQAM andM-Bao are based on theM corners
of a log 2 Mð Þ-dimensional hyper-cube. This inspired the authors in [14] to consider
that the solution of the optimization problem in (4) is possible through an optimiza-
tion of rotation angles of a hyper-cube, this method is denoted as M HQAM.

Figure 4.
Low-projection constellation: An example of QAM SCMA constellation points of size M ¼ 4 with two non-zero
REs, labeled based on gray coding. First step rotates the constellations to ensure a maximum product distance
between symbols which enhances the detection process. The second step could better reduce the complexity of the
receiver since some constellation points collide over each RE, for instance the constellation points corresponding to
00 and 11 in the M-sized constellation collide over the first subcarrier, however, they have maximum distance over
the second one which makes them separable using Mp-QAM constellation while Mp ≤M.
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Analytical analysis showed that the complexity of MPA decoder is reduced from Mdf

to log 2 Mð Þ� �df . Two examples of 2-dimensional mother constellations with 4-
codewords are illustrated in Table 1 and Figure 5, we hope that this will help the
reader to understand the structure of a mother constellation.

Most of the above multi-dimensional constellations assume that the complex sym-
bols can be randomly selected. Some propositions try to relax constraints on the
research space by placing the constellation points of each dimension on multi-radius
concentric rings [10, 15–17]. In [10], the symbols of each low-projection complex
dimension are selected to form aM-point circular constellation, theM CQAM is based
on the signal space diversity for MIMO systems over Rayleigh fading channels and
results in a complexity reduction from Mdf to M� 1ð Þdf . The star-QAM constellation
was proposed for digital modulation with the aim of being capable of flexibly adapting
the ratios of multi-radius concentric rings. This approach was extended to multi-
dimensional SCMA codebook design [15, 16]. The idea is to construct the first dimen-
sion of mother constellation from a star-QAM constellation of size M, afterwards, the
following dimensions are deduced by applying some operations, for instance scaling
and permuting, on the first dimension. The parameters of these operations are calcu-
lated through computer search which opens the door to designing constellations with
large size and/or high dimension. An example of a constellation designed with this
approach is represented in Figure 6. In [16], it was proposed to evaluate their propo-
sition by directly applying the design criterion on the generated codewords of all
users, contrary to other methods where it is only the mother constellation which was
evaluated. The applied optimization criterion is the pairwise error probability between
any two transmitted codewords x 1ð Þ,x 2ð Þ which is given by,

 x 1ð Þ,x 2ð ÞjH
� �

¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥H x 1ð Þ � x 2ð Þð Þ∥2

2N0

s0
@

1
A: (11)

where H is the uplink channel matrix of SCMA system as defined in Eq. (1).
In [17], each dimension of the mother constellation belongs to a ring such that the

M complex points forms a uniformly spaced phase shift keying (PSK) constellation.
Several dimensions mean several PSK rings with different radius values, hence the

Codeword m T4QAM 4LQAM

x mð Þ
1 x mð Þ

2 x mð Þ
1 x mð Þ

2

1 (00) þ 3ffiffiffiffiffiffi
10
p þ 1ffiffiffiffiffiffi

10
p �

ffiffiffi
2
p

2
�

ffiffiffi
2
p

2
i

2 (01) � 1ffiffiffiffiffiffi
10
p þ 3ffiffiffiffiffiffi

10
p �

ffiffiffi
2
p

2
þ

ffiffiffi
2
p

2
i

3 (10) þ 1ffiffiffiffiffiffi
10
p � 3ffiffiffiffiffiffi

10
p þ

ffiffiffi
2
p

2
�

ffiffiffi
2
p

2
i

4 (11) � 3ffiffiffiffiffiffi
10
p � 1ffiffiffiffiffiffi

10
p þ

ffiffiffi
2
p

2
þ

ffiffiffi
2
p

2
i

Table 1.
This table presents T4QAM [9] and 4LQAM [10] mother constellations (4-codewords with 2 non-zeros
dimensions) where x mð Þ

n belongs to dimension n, i.e. x mð Þ
n is the nth entry of the mth codeword m.
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multi-dimensional constellation is an amplitude and phase shift keying (APSK) con-
stellation. In some applications, the PSK rings outperform square shaped QAM con-
stellation since they provide a limited peak of power. The authors proposed a multi-
stage optimization, the coded modulation capacity is employed as a design criterion
for the first dimension of the mother constellation, then the other ones are optimized
using permutations.

Once the mother constellation is designed, optimized and evaluated based on one
of the above-presented design criteria, the applied transformations, which are used to
generate the J codebooks, must be designed to preserve the characteristics of the
mother constellation.

3.3 Transformation operators design

The design procedure of SCMA codebooks was introduced in Figure 3. First, the
N �M mother constellation, Cmc, is designed, then the sparse codebook of SCMA
user j is constructed by applying a set of operators, Tj, on Cmc, and a mapping
matrix, Vj, as seen in eq. (5). Transforming a complex constellation can be conducted
based on typical operations such as complex conjugate, rotation operator, interleaving
and vector permutation. Several operators can be combined in some cases. Hence,
the transformation operators must be chosen carefully such that the good character-
istics of the mother constellation are conserved, their design was recently investigated
[16–18, 20].

Figure 5.
Two examples of 2-dimensional mother constellations, namely T4QAM [9] and 4LQAM [10], each one is
composed of 4-codewords: (a) the one-dimensional constellation of T4QAM as projected on the first dimension, (b)
the one-dimensional constellation of T4QAM as projected on the second dimension, (c) the one-dimensional
constellation of 4LQAM as projected on the first dimension and (d) the one-dimensional constellation of 4LQAM
as projected on the second dimension.
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The Euclidean distance is widely employed as a design criteria of the
mother constellation. However, preserving its distancing property is possible
by applying unitary rotation matrices [5–9, 19]. In this case, it is possible to merge
the mapping operation and the transformation one to mold a new transformed
factor graph matrix, FT. An example of a transformed factor graph matrix is
expressed as,

FT ¼

0 φ1 φ2 0 φ3 0

φ2 0 φ3 0 0 φ1

0 φ2 0 φ1 0 φ3

φ1 0 0 φ3 φ2 0

2
6664

3
7775 (12)

where φ1 ¼ ejθ1 ,φ2 ¼ ejθ2 and φ3 ¼ ejθ3 . Traditionally, θ1 ¼ 0, θ2 ¼ π
3 , and θ3 ¼ 2π

3 .
In this circumstance, the codebook of user 1, for instance, is calculated based on the
following mapping and transformation matrices,

V1 ¼

0 0

1 0

0 0

0 1

2
666664

3
777775

and T1 ¼
ejθ2 0

0 ejθ1

" #
:

Figure 6.
A SCMA codebook of size M ¼ 4 and sparsity degree N ¼ 2 can be designed, for instance, based on a four-rings
star-QAM mother constellation. Here, α and β are 2 reel design parameters.
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It is worth noting that not only non-zero entries in each row of FT are different but
also those in each column, this property is called the Latin criterion. This means that
the power variation and dimensional dependency can be controlled at the same time
without compromising the Euclidean distance profile of the multi-dimensional
mother constellation [8, 19]. Figure 7 illustrates an example of SCMA system with 6
users (J ¼ 6), their codebooks of size 4 (M ¼ 4) are generated based on T4QAM
mother constellation (which is described in Table 1) by employing unitary rotation
matrices as described in eq. (11). This figure depicts how the constellation of each user
is projected on each one between its associated two REs (N ¼ 2). More details on these
codebooks are given in Appendix A.

Multi-user codebooks generation can be further refined by optimizing
computer-designed rotation matrices instead of the unitary rotation ones [12]. Fur-
thermore, if the communication channel is assumed to be known, its phases can be
exploited to extract random rotation angles which are used to generate the codebooks
from the mother constellation. The authors in [18] combined the SCMA design with a
form of codebook encryption which can ensure the link with low complexity. The
rotation operations are not the only ones that can be employed. In [20], the transfor-
mation operator is designed based on a permutation set which is optimized to improve
the detection reliability of the first decoded user, this largely improves the perfor-
mance of SCMA receiver. The proposed design criterion tries to maximize the sum
of distances among codewords which are multiplexed on the same RE (sum of dis-
tances per dimension). The factor graph matrix, F, defines the positions of non-zero
elements of each user which are assumed to be fixed in the majority of SCMA designs
as explained in subsection 3.1. One way to design transformation operator is to dif-
ferentiate the non-zero locations according to the values of transmitted data bits
which is considered as a permutation-based SCMA scheme [21]. This permutation
approach does not suffer from a complexity overhead when compared to traditional
one, however spectral efficiency does improve. This effort was extended by combin-
ing the matrix permutation and rotation operations to define the transformation
operator as in [15, 16].

Figure 7.
An example of SCMA system with 6 users (J ¼ 6), their codebooks of size 4 (M ¼ 4) are generated based on
T4QAM mother constellation by applying unitary rotation matrices, as described in eq. (11). This figure depicts
how the constellation of each user is projected on each one between its associated two REs (N ¼ 2).
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Nevertheless, the objective is to minimize the rate of wrongly detected bits which
is also called bit error rate (BER). For a given codeword error rate the BER depends on
how codewords are labeled, hence it is obvious that choosing the appropriate labeling
is an another aspect to be studied. In [17], the labeling was optimized to adjust the
slope of the extrinsic information transfer (EXIT) chart.

The influence of the codebook design on the performance of a SCMA system is
confirmed through simulations. Figure 8 depicts the BER as a function of the SNR
with different codebooks through Rayleigh fading channel. The star-QAM based
SCMA design outperforms the other ones.

4. SCMA decoder design

It is worth mentioning that the SCMA encoder and decoder are two blocks among
other ones at, respectively, the transmitter and receiver as explained in the block
diagram illustrated in Figure 9. At the receiver side, the SCMA codewords must be
segregated or decoded, this operation is preceded by the OFDM demodulation and the
channel estimation, and followed by the deinterleaving and channel decoding.

At the transmitter, the bit to codeword mapping for each user is followed by the
superimposition of the J mapped codewords which are selected from one of the above
presented SCMA codebooks. At the receiver, the SCMA decoder aims to separate the

Figure 8.
BER as a function of SNR for SCMA system with different codebook designs: The number of orthogonal REs is 4, the
number of users is 6, and the channel fading is assumed to be Rayleigh distributed.

Figure 9.
This diagram illustrates the different essential blocks of the transmitter and receiver of SCMA system.
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superimposed codewords despite that several users are occupying the same REs as
described by the factor graph matrix. Most existing mechanisms employed for SCMA
decoders are based on MPA or one of its variations, or its combination with other
methods. In this section, we will present the basics of SCMA decoding.

4.1 Message passing algorithm

4.1.1 Traditional MPA

MPA is an iterative method based on passing some messages among concerned
nodes. The nodes are the users, which are also considered as the variables nodes
(VNs), and the subcarrier (or REs), which are also considered as the function nodes
(FNs), and the massages are the extrinsic information among nodes, this mechanism
is illustrated in Figure 2. Tha idea is that each FN calculates its outgoing message to a
given VN depending on the incoming messages received from the reminder of VNs.
The later ones will play the reciprocal role, that is each VN will reply by sending a
message which is computed based on the received messages from the rest of FNs. This
exchange among all the edges, i.e. all VNs and all FNs, is repeated at each iteration.
After a given number of iterations, the bits of each user are estimated through the log-
likelihood-rates (LLRs) of each coded bit. The MPA method is shown in Algorithm 1
and is based on three main steps: initialization, iterative message passing along edges
and decision making.

Algorithm 1: Message Passing Algorithm.

Input: y,N0,Cj, hj, j ¼ 1,⋯, J,Niter.
Estimation of the bits which were transmitted by each user. Definitions.
Users are represented by VNs, subcarriers are represented by FNs,

U kð Þ ¼ all the VNs which are connected to FNkf g, k ¼ 1,⋯,K,
R jð Þ ¼ all the FNs which are connected to VNj

� �
, j ¼ 1,⋯, J:

Step 1: Initialization.
Initially, each user expects to equally receive any codeword among the M ones:

V0
j!k x mð Þ

j

� �
¼  x mð Þ

j

� �
¼ 1

M
, j ¼ 1,⋯, J, k∈R jð Þ

Step 2: Extrinsic information exchange among VNs and FNs

t≤Niter

1.The message to be sent from FNk, k ¼ 1,⋯,K, to VNj, j∈U kð Þ, for each
codeword x mð Þ

j ∈Cj,m ¼ 1,⋯,M, is computed by,

Ut
k!j x mð Þ

j

� �
¼

X

x mð Þ
i ∣i∈U kð Þnj

exp � 1
N0

∥yk �
X
j

hj,kx
mð Þ
j,k ∥2

( ) Y
i∈U kð Þnj

Vt�1
i!k x mð Þ

i

� �

2.The message to be sent from VNj, j ¼ 1,⋯, J to FNk, k∈R jð Þ, for each codeword

x mð Þ
j ∈Cj,m ¼ 1,⋯,M, is calculated as,
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Vt
j!k x mð Þ

j

� �
¼

Q
i∈R jð ÞnkU

t�1
i!j x mð Þ

j

� �

P
x lð Þ
j ∈Cj

Q
i∈R jð ÞnkU

t�1
i!j x lð Þ

j

� � :

It is essential to normalize this message in order to guarantee the numerical stabil-
ity of MPA.

Step 3: Received bits estimation

1.The posteriori probability of each codeword for each user is represented by,

 x mð Þ
j

� �
¼

Y
k∈R jð Þ

UNiter
k!j x mð Þ

j

� �
,m ¼ 1,⋯,M, j ¼ 1,⋯, J:

2.Log-Likelihood-Rate for each coded bit, bi, 1≤ i≤ log 2 Mð Þ, is given by,

LLR bið Þ ¼ log
 bi ¼ 0ð Þ
 bi ¼ 1ð Þ

� �
¼ log

P
x mð Þ
j ∈Cjjbi¼0

n o x mð Þ
j

� �

P
x mð Þ
j ∈Cjjbi¼1

n o x mð Þ
j

� �

0
BBB@

1
CCCA

3.Finally, the value of each LLR is employed to decide on the corresponding bit as
following,

b̂i ¼
1 if LLR bið Þ≤0

0 otherwise:

�

4.1.2 Variations of MPA

Despite being a referent decoder for SCMA, the complexity evaluation of MPA
reveals that it relies on a large number of exponential calculus which are of high
complexity. With the challenge to reduce this complexity and to fit with critical
requirements of future wireless networks, several variations of MPA were proposed,
among them we present here, the Max-Log-MPA and Log-MPA methods [22].

⊛ Max-Log-MPA: It is a simplified version of MPA based on a mathematical
simplification which approximates the logarithm of a sum of exponential operations
into a maximum operation. The key purpose is to move the iterative decoding process
into logarithmic domain which eliminates the exponential terms in MPA by
employing the simplified formula of Jacobean logarithm,

log exp a1ð Þ þ … þ exp anð Þð Þ≈max a1, … , anð Þ (13)

Thus, passing numerous messages from FNs to VNs, and vice versa, will be very
less expensive in term of complexity. Based on (12), the expression of LLR bið Þ
presented in Algorithm 1 is modified as follows,
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LLR bið Þ ¼ max
x mð Þ
j ∈Cjjbi¼0

n o log  x mð Þ
j

� �� �� �
� max

x mð Þ
j ∈Cjjbi¼1

n o log  x mð Þ
j

� �� �� �
(14)

⊛ Log-MPA: The approximation of the Jacobean logarithm formula as presented in
(12) makes the Max-Log-MPA a sub-optimal solution and results in a performance
degradation. To mitigate this issue, a correction term was added by using another
Jacobean logarithm formula. The adopted approximation is given by,

log exp a1ð Þ þ … þ exp anð Þð Þ ¼ aj þ log 1þ
X

i∈ 1… nf gnj
exp �jaj � aij

� �
0
@

1
A (15)

where aj ¼ max a1, … , anð Þ. Hence, the LLRs are further updated to be as below,
rather than as in (13),

LLR bið Þ ¼ max
x mð Þ
j ∈Cjjbi¼0

n o log  x mð Þ
j

� �� �� �
þ

2
4

log 1þ
X

m0 ∈ 1…Mf gnm
exp �j log  x mð Þ

j

� �� �
� log  x m0ð Þ

j

� �� �
j

� �0
@

1
A
3
5

� max
x mð Þ
j ∈Cjjbi¼1

n o log  x mð Þ
j

� �� �� �
þ

2
4

log 1þ
X

m0 ∈ 1…Mf gnm
exp �j log  x mð Þ

j

� �� �
� log  x m0ð Þ

j

� �� �
j

� �0
@

1
A
3
5

(16)

The performance of the above-presented variations of MPA, namely MPA,
Log-MPA and Max-Log-MPA, were evaluated, Figure 10 depicts the BER as a
function of SNR through Rayleigh fading channel. The results show that the
performance of Log-MPA is near-optimum when compared to that of MPA. The
same is not valid for Max-Log-MPA, this can be explained by the correction term that
was added to Log-MPA which obviously results in a performance compensation. On
the other hand, the performance degradation of Log-MPA and Max-Log-MPA, due to
the approximation used for each method, can be neglected in the high SNR zone.
However, the Max-Log-MPA is still useful since it requires less computational effort
when compared to Log-MPA which is still sufficiently complex to be considered
challenging for energy-sensitive applications. It worth mentioning that reducing the
computation complexity of the above-mentioned decoding methods is possible
though reducing the value of df at the expense of largely constraining the codebook
design.

Generally speaking, the complexity of MPA is intimately depending on the number
of iterations which is usually one of its fixed parameters. This is not ideal since, on one
hand, increasing the number of iterations will considerably increase the complexity,
and on the other hand, not sufficiently iterating will lead to performance degradation.
Hence, finding the near-optimal number of iterations is very useful. The performance
of MPA as a function of SNR for different number of iterations is shown in Figure 11
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when the channel is assumed to be Gaussian or Rayleigh distributed. It is observed
that the BER is lesser when the number of iterations increases under the two channel
assumptions, nevertheless, beyond a certain limit, the performance improvement hits
an upper bound. The same conclusions are valid for Log-MPA and Max-Log-MPA as
reported in [22]. Therefore, a good compromise is to set the number of iterations to 4.
Another approach is to supervise the convergence rate such that the number of
iterations can be adjusted accordingly, the flexible number of iterations can be pow-
erful when the convergence rate is efficiently measured.

Figure 10.
BER as a function of SNR of MPA, log-MPA and MAX-log-MPA variations: The number of orthogonal REs is 4,
the number of users is 6, and the channel fading is assumed to be Rayleigh distributed.

Figure 11.
Evaluation of the number of iterations on MPA performance: The number of orthogonal REs is 4, the number of
users is 6, and the channel fading is assumed to be AWGN and Rayleigh distributed.
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5. Conclusions

In this Chapter, we presented the structure and basic principles of SCMA. Then,
SCMA encoder and decoder designs were reviewed through their most known tech-
niques. A simulations-based comparison among different existing approaches for
codebook design as well as for signal decoding was conducted.

Nomenclature

BER Bit error rate
BS Base station
CDMA Code-division multiple access
EXIT Extrinsic information transfer
FN Function node
LLR Log-likelihood-rate
MPA Message passing algorithm
NOMA Non-orthogonal multiple access
OMA Orthogonal multiple access
PSK Phase shift keying
QAM Quadrature amplitude modulation
RE Resource elements
SCMA Sparse code multiple access
SNR Signal-to-noise ratio
VN Variables node
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A. Appendix

To better illustrates SCMA mapping, a numerical example of complete SCMA
codebooks, as depicted in Figures 5 and 7, is provided in the following (Figure 12).

Figure 12.
The 2-dimensional codebooks with 4-codewords, generated for J ¼ 6 users, as described in Figure 7.
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Chapter 7

Polynomials Related to Generalized
Fibonacci Sequence
Manjeet Singh Teeth and Sanjay Harne

Abstract

The Fibonacci polynomials are a polynomial sequence that can be considered as a
generalization of the Fibonacci numbers. Fibonacci polynomials are defined by a
recurrence relation: Fn xð Þ ¼ xFn�1 xð Þ þ Fn�2 xð Þ, n≥ 2 where F0 ¼ 0, F1 ¼ 1. The
first few Fibonacci polynomials are F0 ¼ 0, F0 xð Þ ¼ 0, F1 xð Þ ¼ 1, F2 xð Þ ¼ x,
F3 xð Þ ¼ x2 þ 1. In this chapter, we extend the Fibonacci recurrence relation to define
the sequence {Kn} and will derive some properties of this sequence. We also define
four comparison sequences {Pn}, {Qn}, {Rn}, and {Sn} and obtain some identities with
the help of generating matrix.

Keywords: Fibonacci numbers, Fibonacci sequence, generating matrix, rabbit
problem, Polynomials

1. Introduction

The Fibonacci sequence [1] receives its name from Leonardo Pisano, known as
Fibonacci who was the most talented Italian mathematician of middle age. It is sup-
posed that he was the first mathematician who introduced the Hindu-Arabic system
of numbers to Italians. His work ‘Liber-Abaci’ (1202) is famous for this.

In the Liber Abaci, Leonardo states the famous “Rabbit Problem” for attaining the
output of this rabbit problem.

1.1 Utilization of Fibonacci sequence in the study of famous rabbit problem

“How many pairs of rabbits are born of one pair in a year?” This problem is stated
in the form: “Suppose a newly-born pair of rabbits, one male and one female, are put
in a field. Rabbits are able to mate at the age of 1 month so that at the end of its second
month a female can produce another pair of rabbits.”

Suppose that our rabbits never die and that the female always produces one new
pair (one male and one female) every month from the second month on.

Leonardo also gave the solution to this problem and obtained the sequence of
numbers as a result:

1, 1, 2, 3, 5, 8, …

This sequence is called the Fibonacci sequence. The Fibonacci sequence is defined
by the recurrence relation as,
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Fn ¼ Fn�1 þ Fn�2, n> 1

Waddilli, M.E. [2] has extended the Fibonacci recurrence relation to define the
sequence {Kn}, where,

Kn ¼ Kn�1 þ Kn�2 þ Kn�3, n> 3 (1)

where, K0,K1,K2 are given arbitrary algebraic integers.
Jaiswal, D.V. [3] has extended Fibonacci recurrence relation to define the sequence

{Q0}, where,

Qn ¼ Qn�1 þ Qn�2 þQn�3 þ Qn�4, n>4 (2)

where, Q0,Q1,Q2 are given arbitrary algebraic integers.
Harne, S. [4] has extended Fibonacci recurrence relation to define the sequence

{Dn}, where,

Dn ¼ Dn�1 þDn�2 þDn�3 þDn�4 þ Qn�5, n> 5 (3)

where, D0,D1,D2 are given arbitrary algebraic integers.
In this chapter, Teeth MS. [5] shall further extend the Fibonacci recurrence

relation [6–10] to define the sequence {Cn} and shall discuss some properties of
this sequence. We shall also consider the four comparison sequences {Pn}, {Qn},
{Rn}, and {Kn}.

2. The generalized sequence as per our propose model {Kn}

We consider the following sequence,

Cnf g ¼ C0,C1,C2,C3, … :,Cn

where, C0,C1,C2,C3,C4,C5, C0 are arbitrary algebraic integers all of which are not
zero and

Cn ¼ Cn�1 þ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5 þ Cn�6, n≥ 6 (4)

We also consider the sequence Pnf g ¼ P0,P1,P2,P3, … :,Pn:
where,

P0 ¼ C3 � C2 � C1 � C0

P1 ¼ C4 � C3 � C2 � C1

P2 ¼ C5 � C4 � C3 � C2

P3 ¼ C6 � C5 � C4 � C3

P4 ¼ C7 � C6 � C5 � C4

(5)

with,Pn ¼ Cn�1 þ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5, n≥ 5 (6)

and Qnf g ¼ Q0,Q1,Q2,Q3, … … :,Qn
where,
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Q0 ¼ C4 � C3 � C2 � C1

Q1 ¼ C5 � C4 � C3 � C2 � C1

Q2 ¼ C6 � C5 � C4 � C3 � C2

(7)

with, Qn ¼ Cn�1 þ Cn�2 þ Cn�3 þ Cn�4 (8)

and Rnf g ¼ R0,R1,R2,R3, … :,Rnwhere,

R0 ¼ C5 � C4 � C3 � C2 � C1 � C0

R1 ¼ C6 � C5 � C4 � C3 � C2 � C1

R2 ¼ C7 � C6 � C5 � C4 � C3 � C2

R3 ¼ C8 � C7 � C6 � C5 � C4 � C3

R4 ¼ C9 � C8 � C7 � C6 � C5 � C4

(9)

with,Rn ¼ Cn�1 þ Cn�2 þ Cn�3 (10)

and Snf g ¼ S0, S1, S2, S3, … :, Snwhere,

S0 ¼ C6 � C5 � C4 � C3 � C2 � C1 � C0

S1 ¼ C7 � C6 � C5 � C4 � C3 � C2 � C1

S2 ¼ C8 � C7 � C6 � C5 � C4 � C3 � C2

S3 ¼ C9 � C8 � C7 � C6 � C5 � C4 � C3

S4 ¼ C10 � C9 � C8 � C7 � C6 � C5 � C4

(11)

with, Sn ¼ Cn�1 þ Cn�2, n≥ 2 (12)

From (4) and (6) we have for n≥ 11

Pn ¼ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�3 þ Cn�4Cn�5 þ Cn�6

þCn�7 þ Cn�8 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8 þ Cn�9 þ Cn�5 þ Cn�6

þCn�7 þ Cn�8 þ Cn�9 þ Cn�10 þ Cn�6 þ Cn�7 þ Cn�8 þ Cn�9 þ Cn�10 þ Cn�11

Pn ¼ Pn�1 þ Pn�2 þ Pn�3 þ Pn�4 þ Pn�5 þ Pn�6

Now, from Eqs. (5) and (6),

P10 ¼ C8 þ C7 þ C6 þ C5 þ C4ð Þ þ C7 þ C6 þ C5 þ C4 þ C3ð Þ
þ C6 þ C5 þ C4 þ C3 þ C2ð Þ þ C5 þ C4 þ C3 þ C2 þ C1ð Þ
þ C4 þ C3 þ C2 þ C1 þ C0ð Þ þ C7 � C6 � C5 � C4ð Þ

P10 ¼ P9 þ P8 þ P7 þ P6 þ P5 þ P4

Similarly,P9 ¼ P8 þ P7 þ P6 þ P5 þ P4 þ P3

P8 ¼ P7 þ P6 þ P5 þ P4 þ P3 þ P2

P7 ¼ P6 þ P5 þ P4 þ P3 þ P2 þ P1

Hence, we have for n≥ 6

109

Polynomials Related to Generalized Fibonacci Sequence
DOI: http://dx.doi.org/10.5772/intechopen.110481



Pn ¼ Pn�1 þ Pn�2 þ Pn�3 þ Pn�4 þ Pn�5 þ Pn�6 (13)

Proceeding on similar lines, it can be shown that for n≥ 6.

Qn ¼ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7
þCn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8
þCn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8 þ Cn�9
þCn�5 þ Cn�6 þ Cn�7 þ Cn�8 þ Cn�9 þ Cn�10

Qn ¼ Qn�1 þQn�2 þ Qn�3 þQn�4 þ Qn�5 þ Qn�6, n≥ 6

(14)

Proceeding on similar lines it can be shown that for n≥ 6

Rn ¼ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7
þCn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8
þCn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8 þ Cn�9

Rn ¼ Rn�1 þ Rn�2 þ Rn�3 þ Rn�4 þ Rn�5 þ Rn�6, n≥ 6

(15)

Proceeding on similar lines it can be shown that for n≥ 6

Sn ¼ Cn�2 þ Cn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7
þCn�3 þ Cn�4 þ Cn�5 þ Cn�6 þ Cn�7 þ Cn�8, n≥ 6

Sn ¼ Sn�1 þ Sn�2 þ Sn�3 þ Sn�4 þ Sn�5 þ Sn�6, n≥ 6

(16)

Thus, the four sequences {Pn}, {Qn}, {Rn}, and {Sn} are special cases of sequence
{Cn} and all obtained by taking different initial values [11, 12].

On taking,

C0 ¼ C1 ¼ C2 ¼ 0,C3 ¼ C4 ¼ 1,C5 ¼ 2

C0 ¼ C1 ¼ 0,C2 ¼ 1,C3 ¼ 0,C4 ¼ 1,C5 ¼ 2

C0 ¼ 0,C1 ¼ 1,C2 ¼ C3 ¼ 0,C4 ¼ 1,C5 ¼ 2

C0 ¼ 1,C1 ¼ C2 ¼ C3 ¼ 0,C4 ¼ 1,C5 ¼ 2

C0 ¼ C1 ¼ C2 ¼ C3 ¼ 0,C4 ¼ 1,C5 ¼ 2

(17)

0,0,0,1,1,2,4,8,16,32,63, … Jn, …

0,0,1,0,1,2,4,8,16,31,62, …Kn, …

0,1,0,0,1,2,4,8,15,30,59, …Ln, …

1,0,0,0,1,2,4,7,14,28,56, …Mn, …

0,0,0,0,1,2,3,6,12,24,48, …Nn, …

Here, we find that

Kn ¼ Jn�1 þ Jn�2 þ Jn�3 þ Jn�4 þ Jn�5

Ln ¼ Jn�1 þ Jn�2 þ Jn�3 þ Jn�4

Mn ¼ Jn�1 þ Jn�2 þ Jn�3
Nn ¼ Jn�1 þ Jn�2
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Hence, we say that {Jn} is Cn type sequence, while {Kn} is Pn type sequence, and
{Ln} is Qn type sequence, while {Mn} is Rn type sequence, and {Nn} is Sn type
sequence.

2.1 Linear sums and some properties

We have derived simple properties [2, 13, 14] of the sequences {Cn}, {Pn}, {Qn},
{Rn}, and{Sn}, expressing each of the terms C6,C7,C8, … :,Cnþ5C6, as the sum of its
six preceding terms, as given in (4) adding both sides we obtained on

Simplification:

Xn
i¼0

Ci ¼ 1
5

Cnþ5 � Cnþ3 � 2Cnþ2 � 3Cnþ1 þ Cn � C5 � C3 � 2C2 � 3C1 � 4C0ð Þf g

(18)

On using (4), (5), (7), (9), and (12), we get

Xn
i¼0

C6i ¼
X6n�1
i¼0

Ci þ C0 (19)

Xn
i¼0

C6iþ2 ¼
X6nþ1
i¼0

Ci þ P0 (20)

Xn
i¼0

C6iþ3 ¼
X6nþ2
i¼0

Ci þQ0 (21)

Xn
i¼0

C6iþ4 ¼
X6nþ3
i¼0

Ci þ R0 (22)

Xn
i¼0

C6iþ5 ¼
X6nþ4
i¼0

Ci þ S0 (23)

Xn
i¼0

C6iþ6 ¼
X6nþ5
i¼0

Ci þ S1 � C0ð Þ (24)

Xn
i¼0

C6iþ5 ¼
X6nþ4
i¼0

Ci þ R1 � C0ð Þ (25)

Xn
i¼0

C6iþ4 ¼
X6nþ3
i¼0

Ci þ Q1 � C0ð Þ (26)

Xn
i¼0

C6iþ3 ¼
X6nþ2
i¼0

Ci P1 � C0ð Þ (27)

2.2 Property of sequence {Jn�2}

Theorem: For the sequence {Jn} we have,
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Jn Jnþ1 Jnþ2

Jnþ1 Jnþ2 Jnþ3

Jnþ2 Jnþ3 Jnþ4

Jnþ3 Jnþ4 Jnþ5

Jnþ4 Jnþ5 Jnþ6

Jnþ5 Jnþ6 Jnþ7
Jnþ3 Jnþ4 Jnþ5

Jnþ4 Jnþ5 Jnþ6

Jnþ5 Jnþ6 Jnþ7

Jnþ6 Jnþ7 Jnþ8

Jnþ7 Jnþ8 Jnþ9

Jnþ8 Jnþ9 Jnþ10

������������������

������������������

¼ �1ð Þnþ1 (28)

Proof: Consider the determinant –

Δ ¼

1 1 1

1 0 0

0 1 0

1 1 1

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

������������������

������������������

The value of this determinant is 1, we have

Δ2 ¼

2 2 2

1 1 1

1 0 0

2 2 2

1 1 1

0 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

������������������

������������������

Now, by mathematical induction,

Δn ¼

Jnþ1 Knþ1 Lnþ1

Jn Kn Ln

Jn�1 Kn�1 Ln�1

Mnþ1 Nnþ1 Jn

Mn Nn Jn�1

Mn�1 Nn�1 Jn�2
Jn�2 Kn�2 Ln�2

Jn�3 Kn�3 Ln�3

Jn�4 Kn�4 Ln�4

Mn�2 Nn�2 Jn�3

Mn�3 Nn�3 Jn�4

Mn�4 Nn�4 Jn�5

������������������

������������������

Now, writing Mnþ1 ¼ Jn þ Jn�1 the R.H.S. can be written as the sum of two deter-
minants, one of which is zero, Therefore,
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Δn ¼

Jnþ1 Knþ1 Lnþ1

Jn Kn Ln

Jn�1 Kn�1 Ln�1

Mnþ1 Jn�1 Jn

Mn Jn�2 Jn�1

Mn�1 Jn�3 Jn�2
Jn�2 Kn�2 Ln�2

Jn�3 Kn�3 Ln�3

Jn�4 Kn�4 Ln�4

Mn�2 Jn�4 Jn�3

Mn�3 Jn�5 Jn�4

Mn�4 Jn�6 Jn�5

�����������������

�����������������

Now, writing Mnþ1 ¼ Jn þ Jn�1 þ Jn�2, the R.H.S. can be written as the sum of
three determinants, two of which are zero. Therefore,

Δn ¼

Jnþ1 Knþ1 Lnþ1

Jn Kn Ln

Jn�1 Kn�1 Ln�1

Jn�2 Jn�1 Jn

Jn�3 Jn�2 Jn�1

Jn�4 Jn�3 Jn�2
Jn�2 Kn�2 Ln�2

Jn�3 Kn�3 Ln�3

Jn�4 Kn�4 Ln�4

Jn�5 Jn�4 Jn�3

Jn�6 Jn�5 Jn�4

Jn�7 Jn�6 Jn�5

������������������

������������������

Now, writing Lnþ1 ¼ Jn þ Jn�1 þ Jn�2 þ Jn�3Ln + 1, the R.H.S. can be written as the
sum of four determinants, three of which are zero. Therefore,

Δn ¼

Jnþ1 Knþ1 Jn�3

Jn Kn Jn�4

Jn�1 Kn�1 Jn�5

Jn�2 Jn�1 Jn

Jn�3 Jn�2 Jn�1

Jn�4 Jn�3 Jn�2
Jn�2 Kn�2 Jn�6

Jn�3 Kn�3 Jn�7

Jn�4 Kn�4 Jn�8

Jn�5 Jn�4 Jn�3

Jn�6 Jn�5 Jn�4

Jn�7 Jn�6 Jn�5

����������������

����������������

Now, writing Knþ1 ¼ Jn þ Jn�1 þ Jn�2 þ Jn�3 þ Jn�4 the R.H.S. can be written as the
sum of five determinants, four of which are zero. Therefore,

Δn ¼

Jnþ1 Jn�4 Jn�3

Jn Jn�5 Jn�4

Jn�1 Jn�6 Jn�5

Jn�2 Jn�1 Jn

Jn�3 Jn�2 Jn�1

Jn�4 Jn�3 Jn�2
Jn�2 Jn�7 Jn�6

Jn�3 Jn�8 Jn�7

Jn�4 Jn�8 Jn�8

Jn�5 Jn�4 Jn�3

Jn�6 Jn�5 Jn�4

Jn�7 Jn�6 Jn�5

�����������������

�����������������

On arranging, we get
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Δn ¼

Jnþ1 Jn Jn�1

Jn Jn�1 Jn�2

Jn�1 Jn�2 Jn�3

Jn�2 Jn�3 Jn�4

Jn�3 Jn�4 Jn�5

Jn�4 Jn�5 Jn�6
Jn�2 Jn�3 Jn�4

Jn�3 Jn�4 Jn�5

Jn�4 Jn�5 Jn�6

Jn�5 Jn�6 Jn�7

Jn�6 Jn�7 Jn�8

Jn�7 Jn�8 Jn�9

�����������������

�����������������

Putting, n-9 = m or n = m + 9 and substituting all the Δ’s, we obtain,

�1ð Þmþ9 ¼

Jmþ10 Jmþ9 Jmþ8

Jmþ9 Jmþ8 Jmþ7

Jmþ8 Jmþ7 Jmþ6

Jmþ7 Jmþ6 Jmþ5

Jmþ6 Jmþ5 Jmþ4

Jmþ5 Jmþ4 Jmþ3
Jmþ7 Jmþ6 Jmþ5

Jmþ6 Jmþ5 Jmþ4

Jmþ5 Jmþ4 Jmþ3

Jmþ4 Jmþ3 Jmþ2

Jmþ3 Jmþ2 Jmþ1

Jmþ2 Jmþ1 Jm

����������������

����������������

Rearranging the determinant and replacing m with n we get the required result (28)

2.3 Generating matrix {Cn}

In this section, we will obtain some identities with the help of generating matrix,
we consider the matrix,

T½ � ¼

1 1 1

1 0 0

0 1 0

1 1 1

0 0 0

0 0 0
0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

����������������

����������������

(29)

By mathematical induction, we can show that:

T½ �n ¼

Jnþ1 Knþ1 Lnþ1

Jn Kn Ln

Jn�1 Kn�1 Ln�1

Mnþ1 Nn�1 Jn

Mn Nn�2 Jn�1

Mn�1 Nn�3 Jn�2
Jn�2 Kn�2 Ln�2

Jn�3 Kn�3 Ln�3

Jn�4 Kn�4 Ln�4

Mn�2 Nn�4 Jn�3

Mn�3 Nn�5 Jn�4

Mn�4 Nn�6 Jn�5

����������������

����������������

(30)

where n≥ 5
and
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Cn,Cn�1,Cn�2,Cn�3,Cn�4,Cn�5½ � ¼ T½ �n C5,C4,C3,C2,C1,C0½ �, n≥ 5 (31)

On using (30) and (31), we get:

CnþP

CnþP�1

CnþP�2
CnþP�3

CnþP�4

CnþP�5

����������������

����������������

¼

Jnþ1 Knþ1 Lnþ1

Jn Kn Ln

Jn�1 Kn�1 Ln�1

Mnþ1 Nn�1 Jn

Mn Nn�2 Jn�1

Mn�1 Nn�3 Jn�2
Jn�2 Kn�2 Ln�2

Jn�3 Kn�3 Ln�3

Jn�4 Kn�4 Ln�4

Mn�2 Nn�4 Jn�3

Mn�3 Nn�5 Jn�4

Mn�4 Nn�6 Jn�5

����������������

����������������

Cn

Cn�1

Cn�2
Cn�3

Cn�4

Cn�5

����������������

����������������

From this we obtain:

CnþP ¼ JPþ1Dn þ KPþ1Dn�1 þ LPþ1Dn�2 þMPþ1Dn�3 þNPþ1Dn�4 þ JPþ1Dn�5 (32)

Let us now consider the matrix [W], which is the transpose of the matrix [T] in,

W½ � ¼ T½ � ¼

1 1 0

1 0 1

1 0 0

0 0 0

0 0 0

1 0 0
1 0 0

1 0 0

1 0 0

0 1 0

0 0 1

0 0 0

����������������

����������������

It can be shown that the sequence

C4,P5,Q5, ,R5, S5,C5 … :,Cn�1,Pn,Qn, ,Rn, Sn,Cn (33)

is generated by matrix [W]

Cn,Pn,Qn,Rn, Sn,Cn�1½ � ¼ W½ �n�5 C5,P5,Q5,R5, S5,C4½ �, n≥ 5 (34)

On using (33) and (34), we get

CnþP,PnþP,QnþP,RnþP, SnþP,CnþP
� �

¼ W½ �P Cn,Pn,Qn,Rn, Sn,Cn�1½ �

¼

JPþ1 JP JP�1

KPþ1 KP KP�1

LPþ1 LP LP�1

JP�2 JP�3 JP�4

KP�2 KP�3 KP�4

LP�2 LP�3 LP�4

MPþ1 MP MP�1

NPþ1 NP NP�1

JP JP�1 JP�2

MP�2 MP�3 MP�4

NP�2 NP�3 NP�4

JP�3 JP�4 JP�5

������������������

������������������

Cn

Pn

Qn

Rn

Sn

Cn�1

������������������

������������������
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CnþP ¼ JPþ1Cn þ JPPn þ JP�1Qn þ JP�2Rn þ JP�3Sn þ JP�4Cn�1

PnþP ¼ KPþ1Cn þ KPPn þ KP�1Qn þ KP�2Rn þ KP�3Sn þ KP�4Cn�1

QnþP ¼ LPþ1Cn þ LPPn þ LP�1Qn þ LP�2Rn þ LP�3Sn þ LP�4Cn�1

RnþP ¼ MPþ1Cn þMPPn þMP�1Qn þMP�2Rn þMP�3Sn þMP�4Cn�1

SnþP ¼ NPþ1Cn þNPPn þNP�1Qn þNP�2Rn þNP�3Sn þNP�4Cn�1

Application:
We can introduce generalized Fibonacci n-step polynomials. Based on generalized

Fibonacci n-step polynomials, we can define a new class of square matrix of order n
and we can state a new coding theory called generalized Fibonacci n-step theory.

3. Discussion

Mathematics has enormous potential for solving the various problems of daily life.
The Fibonacci polynomials are a polynomial sequence that can be considered as
generalization sequences worked upon by many mathematicians earlier like as
Atanassov [11], Harne & Parihar [4], and Georgiev and Atanassov [8] in accordance
with our findings. The chapter has wider acceptance for the fruitful study of various
case studies as illustrated in the current citation, which is well supported by the earlier
studies too.

4. Conclusions

There are many known identities for the Fibonacci recursion relation. We define
the sequence {Cn} and its four comparison sequences {Pn}, {Qn}, {Rn}, and {Sn}. We
drive linear sum properties of comparison sequence. We also derive generating matrix
for the sequence {Cn}.
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Chapter 8

Information Encoding for Flow
Watermarking and Binding Keys
to Biometric Data
Boris Assanovich, Iryna Korlyukova and Andrei Khombak

Abstract

Due to the current level of telecommunications development, fifth-generation
(5G) communication systems are expected to provide higher data rates, lower latency,
and improved scalability. To ensure the security and reliability of data traffic gener-
ated from wireless sources, 5G networks must be designed to support security pro-
tocols and reliable communication applications. The operations of coding and
processing of information during the transmission of both binary and non-binary data
in nonstandard communication channels are described. A subclass of linear binary
codes is considered, which are both Varshamov-Tenengolz codes and are used for
channels with insertions and deletions of symbols. The use of these codes is compared
with Hidden Markov Model (HMM)-based systems for detecting intrusions in net-
works using flow watermarking, which provide high true positive rate in both cases.
The principles of using Bose-Chadhuri-Hocquenhgem (BCH) codes, non-binary
Reed-Solomon codes, and turbo codes, as well as concatenated code structures to
ensure noise immunity when reproducing information in Helper-Data Systems are
considered. Examples of biometric systems organization based on the use of these
codes, operating on the basis of the Fuzzy Commitment Scheme (FCS) and providing
FRR < 1% for authentication, are given.

Keywords: linear codes, Varshamov-Tenengolz codes, non-binary turbo codes,
Reed-Solomon codes, concatenated codes, flow watermarking, biometric system

1. Introduction

Engineers and researchers around the world have been using various error correc-
tion codes (ECCs) for almost a century to provide communication and combat noise in
information channels. In addition to communication, ECCs have found many other
uses, including watermarking and intrusion detection, cryptography, and information
security. Digital watermarking is the process of embedding a digital code into some
public data. Today, this technology is widely used not only in multimedia processing
but also in network traffic monitoring. In this case, the input patterns, which are easily
identified when the watermarked flows cross an observation point, allow the creation of
a mechanism to scan the network for the harmful activity. This procedure finds appli-
cations both for securing network connections and intrusion detection in them.
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On the other hand, when providing secure access to any data, it becomes necessary
to use user verification by analyzing his password, which requires ensuring the reli-
ability of its storage. To solve this problem, biometric methods of organizing secure
access to the system are widely used, that reduce the risks of storing passwords, which
have long been a weak point in security systems. This chapter will discuss some types
of the ECС and how they can be used to help ensure the security and reliability of
information.

In recent years, the technique of applying the ECC has been undergoing changes
due to the use of machine learning (ML) methods and, in particular, deep learning
(DL). A good review of the recent advancements in DL-based communication was
made by Qin et al. [1], where the authors described the use of this technique for
channel modeling, modulation recognition, and improvement of decoding methods.
In recent papers, the authors have considered in more detail the DL methods for
decoding known codes [2] and, moreover, for constructing an ECC based on intelli-
gent methods [3]. Despite the increasing use of the ML technique for ECC, it is
important to understand both the principles of describing known ECC based on
algebraic constructions that lead to elegant decoding algorithms and their application
in non-standard communication channels.

The rest of the chapter is organized as follows. First, we present the basic
encoding-decoding principles of the binary and non-binary ECC used for substitution
and symbol insertions and deletions errors in Section 2. Then we discuss the flow
watermarking techniques for intrusion detection in Section 3. In Section 4, we
describe the use of various ECC types in biometric systems (BSs) for solving the
problem of authentication and present our conclusion in Section 5.

2. Error-correcting codes

2.1 Linear codes

At the present stage of the ECC theory and technology development, more and
more complex code structures attract our attention. Although coding algorithms are
becoming more complex and require powerful computing resources, in recent years,
researches have increasingly turned to known codes and mathematical descriptions
developed for them. Such codes, for example, are linear codes, which have useful
properties and can be used in non-standard data transmission channels applications.

There are many good tutorials about error-correcting codes (for example, see
[4, 5]), so only the necessary definitions are used in the entire chapter. We define a
code C of block length n over an alphabet q is a subset of qn, together with a one-to-one
encoding which maps a message setM to a code set C. The main goal of encoding is to
increase the resilience of the messages to errors, where |C| denotes the number of
elements in a set or the code cardinality.

We start from the description of linear code. A linear q-ary code of length n and
dimension k is a linear subspace C with dimension k of the vector space with dimen-
sion n, whose elements are the elements of the field GF(q) The description of the
properties of linear codes will be done on the example of binary codes, whose symbols
are the elements of a field GF(2) = {0;1} which is a code alphabet.

Generally, a binary code C is defined as a set of finite sequences (vectors)
x ¼ x1, … , xnð Þ, called codewords, encoded with the use of corresponding message
vectors b ¼ b1, … , bkð Þ from code symbols xi, bi ∈GF 2ð Þ: Linear (n,k,d)-code is
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defined by following parameters: Hamming distance between binary codewords
d(xi;xj), weight of a codeword wt(xi) and a code rate or coding efficiency k/n. Linear
codes are defined by their generator and parity-check matrices G and H, respectively,
whose columns and rows are linearly independent. Every codeword is a linear combi-
nation of rows of the generator matrix G. The minimum distance dmin = min{d(xi;xj)}
of a linear ECC and its code weight distribution define its error correction capacity t or
maximum number of symbols that can be corrected in a codeword. There is a simple
method of minimum distance decoding with syndrome that could be applied in order
to correct t or less errors in a codeword.

According to this principle, the decoder selects a codeword to minimize the Ham-
ming distance of the matched codeword relative to the received codeword y using a
reduced look-up table. This is allowed by the linear property of the code.

The decoder performs following steps: the syndrome calculation of codeword y:

S ¼ y �HT, (1)

determination of the most likely error vector e, and estimation of the possibly
transmitted codeword x ∗ . Next, the decoder selects that vector e of the smallest
weight that satisfies e �HT ¼ S . These syndrome-based decoding procedures are
linear and of low complexity, and only the second step requires a non-linear look-up
table operation. In the case of linear codes use, the so-called standard arrays are widely
applied, which make it possible to find the corresponding codeword for any received
vector.

The standard array for a binary (n,k) code is an array of size 2n�k by 2k where: (1)
the first row has the codewords with “all zeros” on the left); (2) the 1st column is a
coset leader for a coset in each row; and (3) the entry in the i-th row and the j-th
column is the sum of the i-th adjacency coset leader and the j-th codeword. However,
the linear property of the code allows the use of syndrome decoding, which is an
efficient decoding technique using a reduced look-up table.

For linear codes, it is important that the number of syndromes, 2n � k, must be
greater than or equal (for perfect codes) to the number of correctable error patterns
Pt

i¼0
n
i

� �
≤ 2n�k, which is determined by the so-called Hamming bound [4].

If we take a linear (6,3,3)-code C with codewords {(000000), (110100),
(011010), (101110), (101001), (011101), (110011), and (000111)}, obtained on the
basis of the generator matrix G ([5], pp. 357–367), then there are modification
methods to change its properties [5]. For example, the number of its codewords can be
increased or decreased. If individual codewords are removed from code set C, then a
new code С0 with the same properties can be constructed while maintaining the
minimum weight of codewords. This modified code С0 is a subcode of C.

2.2 Cyclic codes

Binary cyclic codes are block codes for which cyclic shifts of each codeword yield a
different codeword and can be efficiently encoded and decoded using shift registers
and combinatorial logic. Cyclic codes are linear codes with good properties and can be
defined by polynomials:

u xð Þ ¼ u0 þ u1xþ … þ un�1xn�1 (2)
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In such a polynomial representation, the presence or absence of the formal variable
x with a degree is determined by the coefficient and corresponds to the binary “1” or
“0” of the codeword element.

Cyclic codes have the property that all code polynomials u(x) are multiples of a
unique polynomial g(x), called the generator polynomial of the code. This generator
polynomial is completely described by its roots, which are called zeros of the code.

Sometimes, to find a generating polynomial g(x), the polynomial (xn � 1) must be
factored into its irreducible factors fi (x). Since a cyclic code is also linear, any set of
linearly independent vectors can be selected as a generator matrix. However, in this
case, a nonsystematic encoding is performed, when the message bits can appear
explicitly in any positions of a codeword. However, the encoding of codewords of a
binary cyclic code can be also systematic, if the message is processed in another way.
With this encoding, information and check symbols are clearly separated. Another
polynomial, h(x), called the parity-check polynomial, can be related to the parity-
check matrix. Generator polynomial and parity-check polynomial are connected by
g xð Þh xð Þ ¼ xn þ 1.

Then, a parity-check matrix for a cyclic code is given by using as rows the binary
vectors associated with the first n� k� 1 nonzero cyclic shifts. In the case of high-rate
cyclic (n, k) codes, say k/n > 0.5, encoding by the division of xn � k u(x) by g(x) or by
recursion with h(x), the coefficients of u(x) are in the systematic form so that the first
k coefficients are the message bits and the remaining n � k coefficients are the control
bits. However, for powerful cyclic codes correcting multiple errors, the algebraic
decoding procedure becomes much more complicated.

It should be noted that the principles of representation and encoding and decoding
of polynomial codes are based on the concepts of both simple and extended finite
fields, calculations in which can be found in a number of textbooks [5]. Below, we will
only briefly use the basic concepts.

Representatives of more powerful correction codes are the Bose-Chadhuri-
Hocquenhgem (BCH) codes that provide suitable selection of block lengths, code
rates, and correcting capacity. BCH codes are cyclic codes that are constructed by
specifying the roots of their generator polynomials, i.e., a BCH code of dmin ≥ 2td + 1 is
a cyclic code whose generator polynomial g(x) has 2td consecutive roots
αb, αbþ1, αbþ2td�1, where td is a designed capacity. Next, the generator polynomial of
the BCH (n, k, dmin) code is

g xð Þ ¼ LCM f b xð Þ, f bþ1 xð Þ, :… , f bþ2td�1 xð Þ
n o

: (3)

Here, LCM is the least common multiple. Thus, we have a code with a length of
n ¼ LCM nb, nbþ1, … , nbþ2td�1

� �
, and dimension of k ¼ n� deg g xð Þ½ � and a designed

minimum distance 2td þ 1, which in the general case can be less than the real
minimum distance.

For example, consider GF(24), p(x) = x4 + x + 1, with td = 2 and b = 1. Then,

g xð Þ ¼ LCM x4 þ xþ 1
� �

x4 þ x3 þ x2 þ xþ 1
� �� � ¼ x8 þ x7 þ x6 þ x4 þ xþ 1: (4)

We get a double-error-correcting binary BCH (15,7,5) code.
The main idea of decoding binary BCH codes is to use the elements of GF(2m) to

number the positions of a codeword that are found by solving a set of equations,
which can be obtained from the error polynomial and the zeros of the code. The most

122

Coding Theory Essentials



popular methods for decoding BCH codes include the Berlekamp-Massey (BM),
Euclid, and Peterson-Gorenstein-Zierler (PGZ) algorithms and are discussed in more
detail in [4].

2.3 Reed-Solomon codes

Reed-Solomon codes are multiple error-correcting non-binary codes that were
introduced by Irving S. Reed and Gustave Solomon in 1960. There are two main
representations of Reed-Solomon codes – the original representation and the BCH-
based representation, which is the most common, due to the fact that BCH-based
decoding is more efficient compared to the original representation decoders. In the
first case, if u xð Þ ¼ u0 þ u1xþ … þ uk�1xk�1 is given as an information polynomial,
and ui ∈GF(2m), then there are 2mk such polynomials obtained after calculating u(x)
over nonzero elements of GF(2m), which are codewords of the RS(2m � 1, k, d) code
of length 2m. If we interpret RS codes as non-binary BCH codes and the values of code
coefficients are taken from GF(2m), then zeros for a td error-correcting RS code are 2td
consecutive powers of α. Moreover, since over GF(2m) the minimal polynomials have
the form f i xð Þ ¼ x� αi

� �
, 0≤ i< 2m � 1 and for some integer b, which usually have

values of 0 or 1, we have [4]

g xð Þ ¼
Ybþ2td�1

j¼b
xþ αj
� �

, (5)

It follows from Eq. (3) that the minimum distance of RS (n, k, d) code over GF(2m)
is d ≥ n � k + 1. On the other hand, RS code satisfies singleton bound [4] with equality
d = n� k + 1, which defines it as a maximum distance separable (MDS) code. Since the
Reed-Solomon code is a linear code, it is possible to apply the classical coding
procedure using its generator matrix.

The decoding algorithms of RS codes are similar to that of binary BCH codes. As
shown above, setting the primitive powers of the root as evaluation points makes the
Reed-Solomon source code cyclic. Reed-Solomon codes in BCH representation are
always cyclic because BCH codes are cyclic. In this regard, they are characterized by
the same decoding methods as for cyclic codes. In order to choose the correct algo-
rithm that meets the requirements of the system, it is necessary to understand its
purpose, which is determined by the RS decoder operation. There are cycle decoding
evaluation algorithm, PGZ algorithm, BM algorithm, Sugiyama algorithm with
erasures and without erasures, and list decoding algorithms.

Reed Solomon code can correct not only errors but also the erasures, i.e., so-called
“lost” symbols. If ner symbols of RS code are erased and the remaining n� ner symbols
contain ne errors, the BM algorithm can find the correct codeword as long as
ner þ 2ne ≤ 2t< d. If ner ¼ 0, the decoder is used as an errors-only decoder, and if
0< ner ≤ d� 1 we can call the decoder as an error-and-erasure decoder (EED) [6].

Sudan in 1997 introduced an algorithm that allows the correction of errors beyond
the minimum distance of the code. This algorithm produces a list of codewords (it is a
list decoding algorithm) and is based on interpolation and factorization of polynomials
over GF(2m) and its extensions. The main idea of such decoding is to create a list of
possible codewords and apply a list-decoding algorithm with such characteristic as a
(ρ,L)-list, where ρ is a fractional value of the Hamming distance and L is the size of
the list. It was shown [7] that if the fraction of errors in the received information is at
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most ρ, then the transmitted codeword is guaranteed to be in the output list. Also,
note that if C is (ρ,L)-list decodable, then we can output at most L codewords for any
received codeword by Sudan algorithm. Application of this algorithm allows to correct
n� 2

ffiffiffiffiffiffi
nk
p

errors. Several years later, Guswami and Sudan improved the algorithm to
correct up to n� ffiffiffiffiffiffi

nk
p

errors [7].
The algebraic decoding methods described above are generally hard decision

decoding (HDD) methods, which means that for each symbol a hard decision is made
about its value. However, the decoder may also contain an information about the reli-
ability of symbol (for example, the demodulator’s confidence in the correctness of the
symbol), which allows to build soft decision decoders (SDDs). The advent of turbo codes
that use iterated soft decision propagation decoding techniques to achieve error correc-
tion efficiency has spurred interest in applying SDD to conventional algebraic codes.

2.4 Turbo codes

Turbo codes involve the concatenation of two recursive systematic convolutional
(RSC) codes connected serially or in parallel, and an interleaver between them. Due to
space limitations in this section, we omit the description of convolutional codes. The
iterative decoding of constituent codes starts individually, either serially or in parallel,
based on inputs derived from the channel and typically some a priori information.
Information from each data symbol propagates through the overall code structure in
time. The optimal decoding algorithm for each component code in terms of minimiz-
ing the probability of error given independent inputs is the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [8], realizing the maximum a posteriori (MAP) criterion decoding.
Then resulting symbol probabilities are used to find the log-likelihood ratio (LLR) for
q-1 candidate values when decoding them. Next [8], the most likely element is
determined by comparing each LLR value and selecting the symbol with the highest
reliability (highest LLR).

2.5 VT codes

Often, to describe and compare codes, a channel model is used in which informa-
tion is transmitted. However, in the presence of noise in the channel, symbols may be
received with errors. This type of error sometimes called the substitution error. The
influence of interference in communication channels also causes synchronization
errors associated with the insertion of additional symbols or deletion of transmitted
symbols, which are sometimes called “indels.” Therefore, there is a strong reason to
develop codes that not only correct substitution errors but also deal with “indels.”

One of the first codes to deal with synchronization errors caused by symbol
deletion was the Varshamov-Tenengol’ts (VT) codes. Below, we briefly consider this
construction.

Given a parameter a, with 0≤ a≤ n, the Varshamov-Tenegol’ts (VT) code VTa(n)
is the set of binary words x = (x1, … , xn) of length n so that the equality satisfies [9]:

Xn
i¼1

ixi � a mod nþ 1ð Þð Þ: (6)

These codes are single-error-correcting codes and optimal for a = 0 as it was
conjectured in [10] and will be discussed below.
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For example, after calculation
Pn

i¼1ixi � 0 mod7ð Þ with length n = 6, we can get
VT code set VT0(6) = {(000000), (001100), (010010), (011110), (100001),
(101101), (110011), (110100), (111111)}. Any code VT0(n) can be used to
communicate reliably over a channel that introduces at most one “indel” in a block of
length n. Levenshtein proposed a simple decoding algorithm [11] based on the defi-
ciency in checksum and weight calculation for a VT code. As an example, assume the
code VT0(6) is used and x ¼ 110100ð Þ∈VT0 6ð Þ is transmitted over the channel. If the
first bit in x is deleted and y = (10100) is received, then the new checksum is 4, and
the deficiency D = 7–4 = 3 > wt(y) = 2. The decoder must insert a binary “1” after
n-D = 3 “0’s” from the right to get a codeword (110100). Such an algorithm for
decoding VT0(n) code with deletion correction is based on a shift operation and has
low complexity.

Considering the simplicity of calculating the parameters of VT codes, we would
like to make a linear encoder for efficient mapping of binary message sequences into
codewords. For binary VT codes, such an encoder was proposed by Abdel-Ghaffar
and Ferriera [12]. They constructed a systematic encoder that maps k-bit message
sequences onto codewords in VTa(n), for k ¼ n� log 2 nþ 1ð Þ� �

, where in parenthe-
ses is rounding up to a higher integer. In addition, for these codes, the concept of a
syndrome can be used, which is found as Syn Cð Þ �Pn

i¼1 ixi mod nþ 1ð Þ .

Now we can introduce the “parity” bits denoted by tp ¼ n� k ¼ log 2 nþ 1ð Þ� �
and

use then in dyadic positions to ensure that Syn(C) = a. Therefore, the message bits can
be encoded by calculating the value of the difference between the desired syndrome
and calculated one dC ¼ a� Syn Cð Þ mod nþ 1ð Þ .

In an example, see [12] of code for n = 10 and a = 0, the parity check and
information positions can be represented, respectively, as {1, 2, 4, 8} and {3, 5, 6, 7, 9,
10}, and used to encode b = (011001) as follows: x = (x1x20x4110x801), where.

x1 þ 2x2 þ 4x4 þ 8x8¼ 0� 3 � 0þ 5 � 1þ 6 � 1þ 7 � 0þ 9 � 0þ 10 � 1 ¼ 1 mod11ð Þð .
The parity-check sequence of least lexicographic order (x1x2x4x8) = 011000 can be taken.

However, VT0(n) codes are nonlinear, and the dimension of k for obtaining linear
(n,k) codes is limited as k≤ ⌊n=2⌋ [13]. Below, we propose an algorithm for finding a
linear substitution and deletion/insertion correction code from any existed VT0(n). The
proposed algorithm is executed step by step as follows: 1) sort the codewords of the
code VT0(n) in lexicographic order; 2) find and choose k linearly independent
codewords of maximum weight while maintaining d xi;xj

� �
≥ dmin; and 3)

construct matrices G and H from C, making linear combinations of the selected VT
codewords.

Using this algorithm will allow constructing a subcode that has at least k + 1
codewords of the VT0(n) code. Obviously, the linear combination of any codeword
with itself forms a codeword (0…0), which is also belongs to the code VT0(n). By
exploiting the algorithm proposed above, the following generator and parity-check
matrixes for the modified (6,3,3)-code С0 have been constructed:

G0 ¼
1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

2
64

3
75,H0 ¼

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

2
64

3
75: (7)

Representing G0 and H0 as Eq. (5) results in a code set with an increased number of
codewords belonging to VT0(6) compared to initial code C. If we discard the elements
that are not VT0(6) codewords and the codeword (000000), and then we get a
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subcode consisting of four codewords with desired properties: {(110100), (011110),
(101101), (110011)}.

Thus, С ∗ is a linear subcode with dmin = 3, at the same time it is a VT0(6) code.
Therefore, it can be used to correct one substitution error and one “indel” error. At the
same time, the analysis showed that its code rate is reduced by about ½ compared to
the code rate of C. The proposed algorithm [14] can be applied to an arbitrary code to
find a correcting VT code, which is a subcode of a linear code. If we take a linear ECC
(8,2,5) [5 , p.378], consisting of four codewords, we can also find a linear subcode for
it, which is also the code VT0(8). Its properties of one “indel” error and two substitu-
tion errors correction are preserved. It is known that the size of any VT0(n) is about
2n=n [6], then additional properties appear, decreasing its rate to less than ½.

Recently, these codes have again attracted interest, as evidenced by the publication
[15], where an encoding method was proposed for a non-binary systematic VT code.

3. Use of error-correcting coding in flow watermarking

3.1 HMM-based model for watermark embedding and extraction

The watermark embedding algorithm aims to detect any changes in the marked
data or its integrity. The contents integrity is performed in the verification process. In
this section, we discuss the application of ECC for watermark embedding in the
context of traffic analysis (TA) used for such purposes as diagnostic monitoring,
resource management, and intrusion detection. Intrusion detection systems attempts
to detect intrusion through analyzing the network traffic with the use of watermark
tracing [16]. If the embedded watermark is both reliable and unique, it is possible to
analyze the watermarked return traffic and trace it back at intermediate nodes. This
TA approach is referred to as the “flow watermarking” (FW).

To prevent an attacker to endure and analyze the delayed packets and then to
eliminate the embedded watermarks, the developed FW schemes have to be “invisi-
ble” in the network. An example of stepping-stone detection scenario with FW is
depicted in Figure 1 where an Attacker attacks Victim hiding his identity.
Fortunately, FW can be applied for tracing back the attack source.

FW is often implemented on the basis of inter-packet-delay (IPD) schemes [17],
where watermark bits are embedded in the intermediate packet time which allows to
hide traffic artifacts from an attacker. However, in this case, the replacement of

Figure 1.
Attacker detection scenario.
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packets and packet loss can cause severe detection and decoding errors. The use of
ECC makes it possible to improve the noise immunity of FW systems.

The presence of contiguous packet merging leads to a telecommunication channel
with deletion and/or substitution errors, and the appearance of jitter-induced bursting
or splitting of packets also causes symbol insertions, which requires the appropriate
choice of coding for reliable transmission of watermarks. Figure 2 demonstrates these
phenomena. It follows from it that four packets 0, 1, 2, and 3 are sent, three packets 0,
2, and 3 are received, packet 1 is lost, and new packets 4 and 5 are added.

Most FW technologies use a carrier that modulates the transfer of watermark data.
Gong et al. [18] embedded quantization index modulation (QIM) watermarks into
IPDs and added a layer of ECC to handle watermark desynchronization and substitu-
tion errors. Authors developed a Hidden Markov Model (HMM) for channel with
dependent deletion and substitution errors using a maximum likelihood decoding
(MLD) algorithm paired with a forward-backward algorithm for the calculation of the
posterior probabilities [5]. The schematic of the proposed system can be depicted as
shown in Figure 3.

This scheme uses an Encoder and Decoder to process the incoming watermark
sequences in order to obtain the codewords x of the applied ECC. With this notifica-
tion, it is implied that the length of a watermark w and a codeword x is defined by
user and corresponds to some selected value. Further in the text, superscripts are used
to indicate the length of the sequence, and subscripts to determine the element
number in a sequence.

Due to the network artifacts described above, the additional transformations must
be performed in the encoder to improve noise immunity. For example, see [19], a
spasification procedure based on one-hot coding is implemented so that a sparse ver-
sion of w is formed, denoted as wN, where N = sn and s is the sparsification factor and
has an integer value. This procedure for a channel with the presence of insertions,
deletions, and substitutions (IDS) can also been extended for the non-binary case [20].

The s value is controlled by the density f that is the ratio of “ones” in wN:

f ¼
XN
i¼1

wN
i =N: (8)

The whole scheme uses a secret key k, known to the Encoder and Decoder, which
is added bit by bit to wN forming a binary sequence xN containing one or more
codewords.

Figure 2.
An example of IPDs distortion.
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The key used for security plays a supporting role in dealing with IDS channel
errors during decoding. For example, see [18], if w1 = ‘1’, c = 8, then xN = 10000000
and if k = 11111011 then x8 = 01111011. When one bit is dropped and y7 = 0111011 is
received, it can be supposed with a high probability that bit “1” from the second series
of bits was lost.

Next, we will consider in more detail the principle of QIM for which modulation
and demodulation are carried out by means of QIM Embedder and QIM Extractor,
respectively (see Figure 3).

To embed the watermark, the IPD flow is modified so that each IPD is converted to
an interval according to the even/odd multiplier of the quantization interval Δ/2,
depending on the value of the 0/1 bit. Formally, this can be represented as:

Iwi ¼
cΔ, if xi ¼ 0

cþ 0:5ð ÞΔ, if xi ¼ 1

�
(9)

Since packets can only be delayed by the QIM Embedder, it is possible to define the
c parameter to be the smallest integer so that the change in Iiw would slightly delay the
i-th packet. After passing the Iw sequence through the network, it is received as an
estimated IPD sequence Î and then analyzed by the QIM extractor, obtaining the
necessary information from it.

The following QIM demodulation threshold function is used to recover the
embedded bit yi:

yi ¼
mod ⌊2Îi=Δ⌋, 2

� �
if 2Îi=Δ� ⌊2Îi=Δ⌋ ≤0:5

mod 2Îi=Δ
� �

, 2
� �

if 2Îi=Δ� ⌊2Îi=Δ⌋ >0:5

(
(10)

Consider the example in Figure 2. Here, the first two IPDs I1 and I2 are converted
into Î1, and the size of the last IPD I2 is changed and is determined as Î2. Therefore, the
result of the noise in the channel is the bit received before Packet 2, which is due to the
two intervals merging y1 ¼ x1⊕x2, and the bit inversion after receiving Packet 3,
resulting in y2 ¼ x3.

In general yi ¼
Pi

j¼rþ1xj and can take the binary values “0” or “1”, where r is the
index of the last successfully received packet before the i-th one. As can be seen from

Figure 3.
System diagram.
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Figure 2, two intervals I
_

3, I
_

4 appear resulting in the insertion of new bits into the
received watermarked data.

Obviously, in the absence of packet loss or split, the watermark bit is inverted if
the IPD jitter exceeds Δ/4. The jitter can be described by i.i.d. Laplace distributed with
zero mean. Then the jitter substitution error probability can be estimated as:

Ps ¼ 1� F Δ=4ð Þ ¼ 0:5 exp �Δ=2
ffiffiffi
2
p

σ
� �

, (11)

where F() is the Laplacian pdf and σ2 is its variance. Since packet losses leads to
merging of successive IPD, the resulting error contains both deletion and substitution
error [18]. In this model, we assume that packets are lost independently and that the
initial packet is always synchronized.

Authors in [17, 18] used the concept of drift to define the loss of bit synchroniza-
tion, which is the shift in position of some sent packet in the received flow. Using
sparse key parameters, one can determine the probabilities of IDS events in the
resulting sequence. These events were interpreted with the use of HMM and applying
the forward-backward algorithm [19], the watermark estimation posterior probabili-
ties for the maximum likelihood decoding (MLD) have been derived as.

w_ j ¼ arg max P yN0jwj
� �

, w j ∈ 0, 1f g: (12)

After calculating these probabilities for all bits of the watermark sequence, the
presence of a watermark in flow is determined based on the correlation value of the
resulting sequence and the original one. For those interested in the details of
mathematical calculations, one can refer to the original publications of the authors
mentioned above.

3.2 Use of VT codes in FW

An alternative IPD-FW scheme for embedding watermarks based on
the use of binary VT codes, which are subcodes of linear codes and exploiting
QIM, has been proposed in [14]. The scheme uses linear codes of length 6 and
8 bits with an attached marker and optional matrix interleaving to deal with bursting
errors.

Coding-decoding scheme without interleaving. As before, we assume that the water-
mark w to be embedded is a bit sequence. Next, the sequence w is divided into blocks
of bits b = (b1… bl) of length l and encoded by the chosen VT code x of length n (see
above). Then obtained codeword x is concatenated with predefined marker pattern z
of length mmaking wN, where N = n + m. In this implementation, a pattern z contains
a series of zeros, which is determined by the necessity of XOR-ing all bits of the
formed sequence wN with a secret key k, by analogy with the previous HMM-based
method. The key k used is a sparse sequence containing a binary “1” in only one
position out of all N bits. In fact, the sequence wN can be made up by the concatena-
tion of M codewords x with a marker z attached. We denote this composite sequence
as wN = w1w2 … wM, with which the composite secret key is XOR-ed, forming the
sequence xN = x1x2 … xM.

Next, the generated sequence xN enters the QIM Embedder, where modulation is
performed in the same way as described above. Then the IPD sequence Iw with
injected watermark pattern is transmitted and after traversing the network is received
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in the form of estimated sequence Î and demodulated. The result sequence yN’ is xored
with a key sequence k and serves as an input to the Decoder.

The Decoder detects markers in the wN’ sequence and separates it into codewords
of the applied VT code. As a result, the codewords derived from wN’ can contain
substitutions, insertions, and deletions. The sequence at the Encoder output xN as well
as the one that enters the Decoder yN’ in general case do not match. In addition, their
lengths may differ, which makes the decoding process difficult.

To solve the problem, it is proposed to use hybrid decoding with error correction
and the choice of one of two algorithms is depended on the number of errors in each
received codeword y [14]. The decoder-type selection is based on an estimate of the
codeword y length. If the only one “indel” is found, the Levenshtein’s decoding
algorithm [11] is used, and if the number of “indel” errors is greater than 1, the MLD
x ∗ ¼ argmax Pr x=y

� �
is applied. The syndrome decoding (see Eq. (1)) is

performed in case of the absence of “indel” errors or after they have been corrected.
For example, suppose that a sequence wN’ = 110100000.11110000 at the output of

the QIM Extractor processed with the key k = 000000000.001000000 to be decoded
using the subcode mapping C0 = {(110100), (110011), (011110), (101101)} into mes-
sage blocks b = {00, 01,10,11}. After detecting a marker and removing it, two
codewords y1 = 110100, y2 = 11010 are obtained. The syndrome calculation (Eq. (1))
of S = 0 can serve as a flag that the boundaries of the received word y1 are not
changed, there are no errors in it, or the number of errors exceeds its corrective
capacity. Therefore, it is possible to apply the Levenshtein decoding algorithm to
correct the deleted bit in the last position of y2. However, if one more bit is also
deleted, after estimating the length y2, it is necessary to proceed to use MLD decoding.

Coding-decoding scheme with interleaving. Considering the channel with bursts of
errors, the effective mechanisms for separating error bursts are the use of interleav-
ing. We consider an approach using matrix interleaving of a linear subcode of the VT
code, which simplifies the decoding process.

It was found in [21] that there is a VT code that coincides with a linear (8,2,5)
error-correcting code [5], consisting of four codewords and subcoding VT0(8). How-
ever, to perform the independent decoding of codewords from a linear VT subcode,
placed in a continuous bitstream, the boundaries of the codewords must be known.
We can implement their independent decoding by the organization of the codewords
set of linear subcode and the use of matrix interleaving.

The proposed scheme consists of several layers. However, to simplify its work, we
describe it based on the scheme in Figure 3. As before, we assume that a watermark
sequence wN is divided into segments of messages b = b1… bl and encoded by the VT
Encoder forming codewords x of length n. These codewords are written row by row
into an Q � n interleaving matrix. Next, each column is concatenated with a
predefined marker pattern, which increases the number of matrix rows. Then matrix
columns are XOR-ed with the fragments of the secret key k represented as a sparse
binary sequence with a small number of binary ones. The resulting version of wN is
then read column by column from the interleaving matrix forming a sequence xN.

In fact, xN is a supercode containing Q codewords, which is embedded in flow IPD
via QIM Embedder. Note that the elements of interleaving and deinterleaving are not
shown in the scheme of Figure 3. Further, after processing in QIM Embedder, passing
through the network, the IPD flow is demodulated in the QIM Extractor and
undergoes inverse transformations with respect to encoding (XORing with key,
marker removal, finding codeword boundaries, deinterleaving, and decoding). For
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information, various interleaving schemes and adjacent deletions correction con-
structions have been discussed in [22].

Two FWmethods have been modeled: the first one is based on HMM and the
second one uses VT codes with markers. At the same time, in the first method, the
length of the sparse sequence for FWwas 10 bits, and in the second method, it was
9 bits, considering the VT0(6) code with 3-bit marker. About 5000 packets were
generated, in which network jitters were modeled as Laplace distribution with zero
mean and a standard deviation of 10 ms. In the synthetic channel, substitution errors
followed sequentially after deletion errors, and symbol insertions were studied sepa-
rately. The detection threshold was chosen to keep false positive rate (FPR) below 1%
for all deletion probabilities. The evaluation of true positive rates (TPRs) in the detec-
tion of watermarks for two schemes with respect to different deletion probabilities Pd is
presented in Table 1.

It follows from Table 1 that the use of less complex VT coding leads to virtually the
same performance compared to HMM. From the results, the TPR value drops to 66%
when the packet loss is 20%, which is rare in a network environment. Methods using
interleaving and code (8,2,5) showed better results [21] for channels with bursting
insertion errors.

4. Application of error-correcting codes in biometrics

In recent years, there has been increasing interest in cryptographic
approaches using biometric measurements. For these purposes, many physical
methods are used: from taking fingerprints of a person to the dynamics of his gait.
The uniqueness of these characteristics allows them to be used for both
identification and authentication. However, for the verification organization, it is
required to perform the recognition procedure. A special biometric template, which is
a mathematical representation of features from the original data, is used to store
biometric characteristics.

In this section, we will focus on the processing of biometric features of a person’s
face. Face recognition is very flexible and can be performed from a distance. These
systems can be classified as follows [23]: image-based matching (whole face), feature-
based face recognition, and video-based matching. The accuracy of the user’s biomet-
ric data recognition is high. However, the security and privacy of user data may be
compromised. In this case, the concept of сancelable biometrics is applicable.

The idea of a reversible template was proposed by Ratha et al. [24]. It includes five
main features: tautology, irreversibility, accuracy, diversity, and revocability.

There are several approaches to the creation of biometric system (BS), which are
based on direct generation of a secret key from biometrics or key binding to biometric

Pd (synthetic traffic) 1% 2% 3% 10% 20%

HMM-based 1.000 1.000 1.000 0.994 —

VT code 0.999 0.999 0.999 0.995 0.666

Table 1.
TPR values for varying Pd with FPR < 1%.
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data. The widespread implementation of BS solutions is constrained by the fuzziness
of biometric data. This problem can be alleviated by applying error correction codes.
Below we will consider several BS based on the use of different methods for obtaining
biometric features and various code structures using the so-called Fuzzy Commitment
Scheme (FCS) [25].

4.1 Biometric system based on facial HOG features

The use of ECC is due to the spread of biometric measurement values, which can
be regarded as noise added to the received signal. Taking into account the signal
processing procedures for registration and verification, the generalized scheme can be
represented as shown in Figure 4.

Let us consider the operation of the BS in accordance with [26] with the only
difference that instead of local information from convolutions with Gabor kernels, the
histogram of oriented gradients (HOG) is used as features. In addition, more powerful
BCH codes are used to suppress noise due to fuzzy biometric data [27].

The principle of the scheme operation is as follows. The Preprocessor receives the
set of images of the user’s face as input, scales them, and converts color images into
gray scale ones. Next, HOG features are extracted from the images in the form of real
Y sequences, which can be represented as vectors with a dimension of 4464 elements.

The Preprocessor calculates mean μ
!
i and variance s!i for the series of biometric

data samples submitted by each i-th user, as well as the global mean μ
! for all regis-

tered users.
In addition, the reliability function Ri is calculated here for each bit p of each user

in according to the expression:

Ri,p ¼ 1
2

1þ erf μ
!
i

� �
p � μ

!� �
p

n �
g=

ffiffiffiffiffiffiffiffi
2s2i,p

q� �� �
: (13)

Figure 4.
Diagram of a biometric system.
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Based on the calculated parameters (Eq. (13)), according to Yj values, a mask is
formed containing reliable numbers of data positions in Y based on a selected threshold.
As a result, the obtained values of μ!i, μ

!, and mask information form Helper data 1 (W*)
that are written to the database (DB) before the Quantization procedure. The Quantizer
performs data binarization according to Eq. (14) forming Z sequence of length n:

Qið Þp ¼ 0, if μ
!
i

� �
p ≤ μ

!� �
p , and Qið Þp ¼ 1, if μ

!� �
p > μ

!� �
p (14)

At the same time, a codeword C and its hash value h = h(C) are formed by using
the ECC Encoder from the user secret key R. Then a Helper data 2 (W) is calculated
using the XOR operation as follows Wi = Ci⊕Zi. As a result, the enrollment procedure
is completed and the values W*, W, h(C) are entered into the database.

When implementing the user verification, one or more images are sent to the
Preprocessor, where they are converted into a sequence of real numbers Y0. Based on
W*, reliable positions are determined, Qj data values are binarized, and Z0is obtained.
Next, the values of HD2 are retrieved from the database, and operations C0i = Wi⊕Z0i
are performed. The codeword C0 is decoded by the ECC Decoder, and its hash value
h0 = h(C0) is calculated. Verification is considered successful if h(C) and h(C0) matches
and the corresponding user key R is extracted.

The OpenFace tool [28] was used to obtain the HOG characteristics of user images
containing 12 � 12 blocks of 31 histograms and written into a row vector Y of length
4464 real values. BCH codes (511,58) and (511,28) over GF(2m) were applied as ECC,
correcting td = 91 and td = 118 errors. For performance testing, the Caltech database
was used with face images of 24 users. Inter-class and intra-class distributions of the
fractional Hamming distance were obtained, which, together with the verticals of the
applied BCH codes, are shown in Figure 5.

The calculated values of false acceptance rate (FAR) and false rejection rate (FRR)
had the following values: FRR = 0, FAR = 3.5% demonstrating good performance of
the used BCH codes, allowing to choose the lengths of secret keys K1 = 58 and K2 = 28
bits. Obviously, the length of the K2 key is too small to register a large number of
users. It is clear that after binary quantization the real data are highly rounded, which
leads to significant quantization noise. To adapt to biometric real features, we further
used unquantized real data processing and non-binary turbo encoding.

Figure 5.
Inter-class and intra-class distributions.
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4.2 Application of turbo codes in biometric systems

Recently, the use of non-binary turbo codes withmodulation in a biometric system has
been studied [29]. These codes were generated from non-binary convolutional component
codes combinedwith a random interleaver. Then phase-shift keying (8-PSK)was used.
During processing, the polynomials with a codingmatrix g = [166;176] over the ringGF(8)
wereused,whichmade it possible to implement a systematic turbo codewith rate of 1/3. As
a result, a random octal secret key of length 166was encoded in turbo codewith trailing
zeros, forming the resulting 3x172matrix at the output, thatwas thenmodulated into the 8-
PSK constellation [30]. Each symbol of turbo codeXwas presented by I-Q complex
numbers giving framed datamatrix 3x344. To get biometrical face features, the Caltech
database has been used.Data from 511 real numbers obtained aftermasking procedure (see
above) to get components of 4464-element HOG vectors have been used as biometric raw
data B. Then the quantized data with the interval q = 0.19635 was normalized and linearly
mapped to the interval [0, 2pi) of angles presented then by 2 I-Q components. Hence, the
hashed value of result code block together with quantized real data is put into public DB.

At the authentication stage, the resulted codeword Y corrupted by “biometric
noise” B0 is iteratively decoded by the modified BCJR algorithm giving the user
password and a hash value. The main operations on 8-ary data blocks (vectors)
according to the principles of the BS scheme are shown in Figure 6.

Preliminary experimental estimates of FRR resulted in value FRR � 0.1%, which is
several times better than the previous scheme and known results for turbo codes [31].

A further increase in the effectiveness of BS is possible by increasing the inter-class
differences in biometric characteristics, which prompted the use of neural networks
(NNs) in this area.

In the NN-based system below, we have applied the stacked autoencoder (SAE)
structure and the concatenated ECC using RS codes.

4.3 Smiling face biometric authentication system

In the following BS [6], we consider the use of a stacked autoencoder (SAE) to
extract features from a sequence of video frames of a user smiling face in order to
authenticate him and provide the access to digital services. In contrast to the generally

Figure 6.
Vector processing of modulated real data for turbo codes.
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accepted application of binary ECC in BS, we used the non-binary Reed-Solomon codes
concatenated with the binary linear ones. The use of these codes, taking into account the
dimension of the symbols, leads to an increase in the length of their bit representation.
On the other hand, in order to neutralize “biometric noise” and correct errors, it is
necessary to increase the ECC redundancy, which reduces the encoding efficiency.

The biometric templates are created according to FCS [25] based on the equidistant
quantization of real data at the output of SAE for further processing and encoding by
concatenated RS codes. The BS uses concatenated ECC based on non-binary RS codes
and binary linear codes with the use of hard decision decoding (HDD) technique and
soft decision decoding (SDD) obtained from symbol reliability. The operation princi-
ple the proposed BS will be described based on the generalized authentication scheme
shown in Figure 4.

The Preprocessor block performs such operations as video data capturing, face
and smile detection, the smile frames extraction, image transformation and normali-
zation, and features extraction using the SAE pretrained at the registration stage. The
biometric data samples obtained from the SAE output layer form the concatenated
supervector Y = {Y1,… , YM} from several vectors Yi, where M is a number of
processed frames. At the stage of Quantization, the real data Y are converted into their
quantized versions Z producing also deviations W* of data values relative to their
mean values or centers of quantization intervals used as HD1. In the Encoder block,
the user’s password or Key R is encoded with one or more ECC codewords, depending
on the required password strength and FRR. Further, for a biometric authentication
purposes, the bit representation of the resulting codeword is XOR-ed with the
encoded version C of quantized data Z, which results in W that serves as HD2.

At the Enrollment stage, the biometric samples obtained at the SAE output using
HD1 and HD2 then are binded to the secret Key R. In addition, the h-hash value of the
codewords is calculated and stored in the biometric database DB. During verification,
the reverse process of decoupling the “auxiliary” data HD1, HD2, decoding codewords
C0, h0-hash calculation, and comparison of two hashes h and h0 are performed.

A series of experiments were carried out with SAE to get good compact biometric
features. To reduce time spent, in these experiments, the subsets of 40 subjects were
randomly selected from the entire UvA-NEMO database [32], reproducing a user
smile. Unsupervised learning results and then supervised tuning of SAE with param-
eters 127/63 in the form of histograms are shown in Figure 7 showing the significant
expansion of the inter-class distributions relative to each other.

Figure 7.
Shift of inter-class distributions during SAE training.

135

Information Encoding for Flow Watermarking and Binding Keys to Biometric Data
DOI: http://dx.doi.org/10.5772/intechopen.110202



The expected values of FAR and FRR were estimated based on the block error
probability of decoding for the uncorrectable error patterns accepted by BS. In the
evaluation, we conducted simulation experiments for different error-correcting code
structures. The results are placed in Table 2 [6].

From Table 2, it follows that reducing the RS code length makes it possible to
increase the performance of the BS in terms of the FRR parameter. Simulation exper-
iments have shown the possibility of achieving the FRR less than 1% for key lengths of
90–170 bits and demonstrated a more efficient use of RS codes compared to the
previous scheme and the results from [33] for face template protection.

For all studied schemes, privacy leakage was assessed. The calculated mutual
information between the input (output) data was significantly less than the entropy of
the ECC codewords, which actually confirms the impossibility of compromising the
user biometric data.

5. Conclusion

Despite the fact that the development of error-correcting codes was aimed at
application in communication systems, their use is also relevant in security systems,
where it is required to neutralize the noise added to the data from the environment. In
this chapter, the main code structures that have found application in the flow
watermarking for network intrusion detection, as well as in biometric authentication
systems, have been considered.

The watermarking environment model is treated as a channel with substitution,
insertion, and deletion errors. Two main code constructions were considered, first:
based on HMM with adding a synchronizing key sequence to sparse data and second:
based on the use of the modified error-correcting VT codes with a marker attachment.
Statistical and computational experiments have shown the same performance of these
schemes in terms of watermark detection TPR ≈ 1 when FPR < 1% with a simpler
implementation of the second scheme, which is slightly inferior in coding rate to the
first one. At the same time, the considered implementations of FW schemes are
invisible and sufficiently resistant to network artifacts if their relative values do not
exceed 20%.

In addition, two types of face biometric authentication systems based on HOG
structures and latent autoencoder data were considered. The fuzziness of the HOG
data was compensated by using binary BCH codes (511,58) and (511,28), which made
it possible to obtain the FRR parameter value of 3.5%. The use of non-binary turbo

Inner code Outer code FRR, % Key, bit/frames � dimension Efficiency

RS (63,15) Linear (6,3,1) 1.0 90/2 � 63(180/4 � 63) 0.119

RS (63,15) REP (3,1,1) 0.5 90/3 � 63(180/3 � 63) 0.0079

RS (31,9) REP (3,1,1) 0.5 90/6 � 31 0.0968

RS (63,21) — 0.7 126/1 � 63 0.33

RS (31,17) — 0.3 170/2 � 31 0.5

RS (31,17) REP (3,1,1) <0.1 170/6 � 31 0.1828

Table 2.
Evaluation of FRR and key size for different ECC structures.

136

Coding Theory Essentials



codes of rate 1/3 with octal data modulation provided the possibility to improve
performance up to the value of FRR = 1% with real helper data. And the use of
concatenated RS codes together with linear binary codes showed the possibility of
increasing efficiency and achieving FRR values of less than 1%. Moreover, it has been
shown that a decrease in the FRR parameter is possible, firstly, by increasing the
redundancy of the concatenated ECC, and secondly, by using the additional
information from helper data when exploiting the EED for RS codes.

Thus, the transition to efficient non-binary code structures and real-valued ECC is
a promising area of research in the field of watermarking and biometrics.
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