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Preface

Probability theory is a branch of statistics that employs mathematical methods of 
collection, organization, and interpretation of data, with applications in practically 
all scientific areas. When working with probability theory, we analyze random 
phenomena and assess the likelihood that an event will occur. This book, Applied 
Probability Theory - New Perspectives, Recent Advances and Trends, discusses some 
fundamental aspects of probability theory and explores its use to solve a large array 
of problems.  Chapters address such topics as complex probability, the stability of 
algorithms in statistical modeling, the non-homogeneous Hofmann process, 
and more.

Each time I work in the field of mathematical probability and statistics I find plea-
sure in tackling the knowledge, theorems, proofs, and applications of the theory. 
Each problem is a riddle to be solved and I become relieved and extremely happy 
when I reach the riddle’s solution. This proves two important facts: first, the power 
of mathematics and its models to deal with such kinds of problems and second, 
the power of the human mind to understand such problems and tame the wild 
concepts of randomness, probability, stochasticity, uncertainty, chaos, chance, and 
non-determinism.

I chose the word paradigm for this branch of mathematical sciences after consulting 
the influential book The Structure of Scientific Revolutions by Thomas Kuhn, in which 
the author used the term to describe a set of theories, standards, and methods that 
together represent a way of organizing knowledge, that is, a model or a way of view-
ing the world. Kuhn stated in his thesis that revolutions in science occur when an 
older paradigm is reexamined, rejected, and replaced by another, just like Einstein’s 
theories of special and general relativity that dethroned Newtonian mechanistic 
theory, or quantum mechanics that replaced the classical theories of electromagne-
tism and thermodynamics when probing the micro-world. What about probability 
and statistics? We can affirm that their set of theories and methods developed across 
the centuries have defined for us a way to view the world and a model to understand 
and deal with such concepts as randomness, chance, stochasticity, chaos, probability, 
and so on. Hence, the definition of a paradigm suits very well this discipline of 
knowledge and this methodology of thinking. This justifies my usage of this term 
in my two chapters of this book.

I hope that after reading this book you will recognize my amazement and wonder at 
the power of the theory of probability and statistics to deal with randomness, as well as 
my excitement to delve into the depths of a very profound field in mathematics. Thus, 
to convey my impression of wonder I cite the following words of Albert Einstein:

“The most incomprehensible thing about the universe is that it is comprehensible…”



IV

Furthermore, although I have taught courses on probability and statistics at the 
university level for many years, I consider myself a beginner in this branch of knowl-
edge; in fact an absolute beginner, always thirsty to learn and discover more. I think 
that the mathematician who proves to be successful in tackling and mastering the 
theory of probability and statistics has made it halfway to understanding the mystery 
of existence revealed in a universe governed sometimes in our modern theories by 
randomness and uncertainties. The probabilistic aspect is evident in the theories of 
the quantum world, of thermodynamics, or of statistical mechanics, for example. 
Hence, the universe’s secret code, I think, is written in a mathematical language, just 
as Galileo Galilei expressed it in these words:

“Philosophy is written in this very great book which is the universe that always lies 
open before our eyes. One cannot understand this book unless one first learns to 
understand the language and recognize the characters in which it is written. It is 
written in a mathematical language and the characters are triangles, circles and other 
geometrical figures. Without these means it is humanly impossible to understand a 
word of it. Without these there is only clueless scrabbling around in a dark labyrinth.”

Some may criticize my opinion and say that the theory of probability and statistics is a 
speculative and an uncertain science dealing with approximations and uncertainties. 
That is completely true. But since this field, or paradigm, is a part of mathematics, 
it has allowed us to understand, measure quantitatively, and tame chaos, even if not 
completely and absolutely. In fact, probability theory keeps the spirit and the flavor of 
“exact” sciences through its numbers, proofs, figures, theorems, and graphs.

To conclude, I am truly astonished by the power of probability theory to deal with 
random data and phenomena, and this feeling and impression have never left me 
since the first time I was introduced to this branch of science and mathematics. I hope 
that this book will convey and share this feeling with readers.

Abdo Abou Jaoudé, Ph.D.
Notre Dame University-Louaizé,

Zouk Mosbeh, Lebanon

Chapter 1

The Paradigm of Complex
Probability and Quantum
Mechanics: The Infinite Potential
Well Problem – The Position Wave
Function
Abdo Abou Jaoudé

Abstract

The system of axioms for probability theory laid in 1933 by Andrey Nikolaevich
Kolmogorov can be extended to encompass the imaginary set of numbers and this by
adding to his original five axioms an additional three axioms. Therefore, we create the
complex probability set C, which is the sum of the real setRwith its corresponding real
probability, and the imaginary setM with its corresponding imaginary probability.
Hence, all stochastic experiments are performed now in the complex set C instead of the
real setR. The objective is then to evaluate the complex probabilities by considering
supplementary new imaginary dimensions to the event occurring in the “real” labora-
tory. Consequently, the corresponding probability in the whole set C is always equal to
one and the outcome of the random experiments that follow any probability distribu-
tion in R is now predicted totally in C. Subsequently, it follows that chance and luck in
R is replaced by total determinism in C. Consequently, by subtracting the chaotic factor
from the degree of our knowledge of the stochastic system, we evaluate the probability
of any random phenomenon in C. My innovative complex probability paradigm (CPP)
will be applied to the established theory of quantum mechanics in order to express it
completely deterministically in the universe C ¼ RþM.

Keywords: chaotic factor, degree of our knowledge, complex random vector,
probability norm, complex probability set C, position wave function

“Nothing in nature is by chance … Something appears to be chance only because of our
lack of knowledge.”

Baruch Spinoza.
“You believe in the God who plays dice, and I in complete law and order.”

Albert Einstein, Letter to Max Born
“Without mathematics, we cannot penetrate deeply into philosophy.
Without philosophy, we cannot penetrate deeply into mathematics.
Without both, we cannot penetrate deeply into anything…”.

Gottfried Wilhelm von Leibniz.
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“There are more things in heaven and earth, Horatio, than are dreamt of in your
philosophy.”

Hamlet (1601), William Shakespeare

1. Introduction

There are several names for this idealized and highly artificial potential, prominent
among them: The infinite square-well potential, the infinite potential [1–3]. However, it
is the phrase particle in an escape-proof box that is more likely to be intuitively appeal-
ing. Very simply it tells us about a particle moving inside the box as a free particle
except at the box walls, which are postulated to be impenetrable by definition. The
particle in an escape proof box is a sleek, easy-on-the-mathematics model for initiat-
ing students into quantum mechanics, with the added advantage that it is one of the
few sectors within quantum mechanics where the Schrödinger equation can be solved
analytically without resorting to approximation techniques. In the context of this
simple potential, students typically find their first very intuitive understanding of the
meaning of bound states, boundary conditions, stationary states, and energy-
momentum quantization. It is even an introduction to quantum tunneling by empha-
sizing by contrast why a particle in a box cannot tunnel out of the box! The infinite
square well is then an easy introduction to a more general understanding of the time
independent Schrödinger equation for bound states in more sophisticated potentials,
where the quantum tunneling phenomenon is exhibited. It is easy stepping-stones away
from this first potential to the more complicated structures, such as the simple har-
monic oscillator, which plays a seminal role in quantum field theory. In a clear and
present sense, the quantum adventure can fairly be said to begin with this humble but
very remarkable particle in an escape-proof box conception. However, genius in sim-
plicity is another watchword for this potential. Remarkably, from such simplicity, one
is also able to extract an enormous amount of excellent physics. Never mind that there
are no actual confining forces in the world that are infinitely strong, physicists suc-
cessfully deploy the square well potential to model complicated physics all the time,
witness the infinite square well potential, which was used by physicist Sommerfeld to
model his electron gas theory, where he construed the moving electrons as free
particles confined to an escape-proof box. And again, the particle in a box is also
deployed to model and investigate a myriad of other complex physical systems – the
Hexatriene molecule, among others, as well as in fabricated semiconductor layers. As
Cartwright notes, “Of course, this is not a true description of the potentials that are
actually produced by the walls and the environment. But is not exactly false either. It
is just the way to achieve the results in the model that the walls and environment are
supposed to achieve in reality. The infinite potential is a good piece of stage setting.”
[3] True, the particle in the escape proof-box is by definition a highly contrived and
idealized model. Consequently, this important and well-known problem in quantum
mechanics will be related to my complex probability paradigm (CPP) in order to
express it totally deterministically.

In the end, and to conclude, this research work’s first chapter is organized as
follows: After the introduction in section 1, the purpose and the advantages of the
present work are presented in section 2. Afterward, in section 3, the extended
Kolmogorov’s axioms, and hence, the complex probability paradigm with their origin
nal parameters and interpretation, will be explained and summarized. Moreover, in
section 4, we will explain briefly the one-dimensional case of the infinite square well
problem considered in this work. Additionally, in section 5, the new paradigm will be
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related to the particle in a box problem after applying CPP to the position wave
function; hence, some corresponding simulations will be done, and afterward, the
characteristics of this stochastic distribution will be computed in the probabilities sets
R, M, and C. Finally, we conclude the work by doing a comprehensive summary in
section 6, and then present in section 7 the list of references cited in the current
chapter. Furthermore, in the following second chapter, the new paradigm will be
related to the particle in a box problem after applying CPP to the momentum wave
function of the problem; hence, some corresponding simulations will be done, and
afterward, the characteristics of this stochastic distribution will be computed in the
probabilities sets R, M, and C. Also, in the following chapter, CPP will be used to
extend and verify Heisenberg uncertainty principle in R, M, and C. In addition, we
will calculate and determine the position and the momentum wave functions entro-
pies in R, M, and C.

2. The purpose and the advantages of the current publication

All our work in classical probability theory is to compute probabilities. The original
idea in this research work is to add new dimensions to our random experiment, which
will make the work deterministic. In fact, the probability theory is a nondeterministic
theory by nature, that means that the outcome of the events is due to chance and luck.
By adding new dimensions to the event in R, we make the work deterministic, and
hence, a random experiment will have a certain outcome in the complex set of
probabilities C. It is of great importance that the stochastic system, like the problem in
quantum mechanics considered here, becomes totally predictable since we will be
totally knowledgeable to foretell the outcome of chaotic and random events that occur
in nature, for example, in statistical mechanics or in all stochastic processes. There-
fore, the work that should be done is to add to the real set of probabilities R, the
contributions of M, which is the imaginary set of probabilities that will make the
event in C ¼ RþM deterministic. If this is found to be fruitful, then a new theory in
statistical sciences and prognostic, and mainly in quantum mechanics is elaborated,
this is to understand absolutely deterministically those phenomena that used to be
random phenomena in R. This is what I called “The Complex Probability Paradigm
(CPP),” which was initiated and elaborated in my 19 previous papers [4–22].

To summarize, the advantages and the purposes of this current work are to:

1.Extend the theory of classical probability to encompass the complex numbers
set, hence to bond the theory of probability to the field of complex variables and
analysis in mathematics. This mission was elaborated on and initiated in my
earlier 19 papers.

2.Apply the novel probability axioms and CPP paradigm to quantum mechanics,
specifically to the infinite potential well problem.

3.Show that all nondeterministic phenomena like in the problem considered here
can be expressed deterministically in the complex probabilities set C.

4.Compute and quantify both the degree of our knowledge and the chaotic factor
of the wave function position and momentum distributions and CPP in the sets
R, M, and C.
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5.Represent and show the graphs of the functions and parameters of the
innovative paradigm related to quantum mechanics.

6.Evaluate all the characteristics of the wave function position and momentum
distributions.

7.Demonstrate that the classical concept of probability is permanently equal to
one in the set of complex probabilities, hence, no randomness, no chaos, no
ignorance, no uncertainty, no nondeterminism, and no unpredictability exist in:

C (complex set) ¼ R (real set) þM (imaginary set).

8.Calculate the problem entropies inR,M, and C, and show that there is no
disorder and no information loss nor gain inCPP but conservation of information.

9.Verify and extend Heisenberg uncertainty principle in R to M and C.

10.Prepare to implement this creative model to other topics and problems in
quantum mechanics. These will be the job to be accomplished in my future
research publications.

Concerning some applications of the novel founded paradigm and as future work,
it can be applied to any nondeterministic phenomenon in quantum mechanics. And
compared with existing literature, the major contribution of the current research work
is to apply the innovative paradigm of CPP to quantum mechanics and to express it
completely deterministically. The next figure displays the major purposes of the
complex probability paradigm (CPP) (Figure 1).

3. The complex probability paradigm

3.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising [4–22]. Let E
be a collection of elements {E1, E2, … } called elementary events, and let F be a set of
subsets of E called random events [23–27]. The five axioms for a finite set E are:

Figure 1.
The diagram of the complex probability paradigm applied to quantum mechanics major purposes and goals.
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Axiom 1: F is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A nonnegative real number Prob(A) called the probability of A, is
assigned to each set A in F. We have always 0 ≤ Prob(A) ≤ 1.
Axiom 4: Prob(E) equals 1.
Axiom 5: If A and B have no elements in common, the number assigned to their
union is:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ

hence, we say that A and B are disjoint; otherwise, we have:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ

And we say also that: Prob A∩Bð Þ ¼ Prob Að Þ � Prob B=Að Þ ¼ Prob Bð Þ � Prob A=Bð Þ
which is the conditional probability. If both A and B are independent then:
Prob A∩Bð Þ ¼ Prob Að Þ � Prob Bð Þ.

Moreover, we can generalize and say that for N disjoint (mutually
exclusive) events A1,A2,… ,Aj,… ,AN (for 1≤ j≤N), we have the following
additivity rule:

Prob ⋃
N

j¼1
Aj

 !
¼
XN
j¼1

Prob Aj
� �

And we say also that for N independent events A1,A2,… ,Aj,… ,AN (for 1≤ j≤N),
we have the following product rule:

Prob ⋂
N

j¼1
Aj

 !
¼
YN
j¼1

Prob Aj
� �

3.2 Adding the imaginary part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let Pm ¼ i� 1� Prð Þ be the probability of an associated complementary
event in M (the imaginary part or universe) to the event A in R (the real part
or universe). It follows that Pr þ Pm=i ¼ 1, where i is the imaginary number with
i ¼ ffiffiffiffiffiffi�1

p
or i2 ¼ �1.

Axiom 7:We construct the complex number or vector Z ¼ Pr þ Pm ¼ Pr þ i 1� Prð Þ
having a norm Zj j such that:

Zj j2 ¼ P2
r þ Pm=ið Þ2:

Axiom 8: Let Pc denote the probability of an event in the complex probability
set and universe C, where C ¼ RþM. We say that Pc is the probability of an
event A in R with its associated and complementary event in M such that:

Pc2 ¼ Pr þ Pm=ið Þ2 ¼ Zj j2 � 2iPrPm and is always equal to 1:

We can see that by taking into consideration the set of imaginary probabilities
we added three new and original axioms and consequently the system of axioms
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defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers and realm [28–65].

3.3 A concise interpretation of the original CPP paradigm

To summarize the novel CPP paradigm, we state that in the real probability universe
R the degree of our certain knowledge is undesirably imperfect, and hence, unsatisfac-
tory, thus we extend our analysis to the set of complex numbers C, which incorporates
the contributions of both the set of real probabilities, which isR and the complemen-
tary set of imaginary probabilities, which isM. Afterward, this will yield an absolute
and perfect degree of our knowledge in the probability universe C ¼ RþM because
Pc = 1 constantly and permanently. As a matter of fact, the work in the universe C of
complex probabilities gives way to a sure forecast of any stochastic experiment, since in
C we remove and subtract from the computed degree of our knowledge the measured
chaotic factor. This will generate in universe C a probability equal to 1
(Pc2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc). Many applications which take into
consideration numerous continuous and discrete probability distributions in my 19
previous research papers confirm this hypothesis and innovative paradigm [4–22]. The
Extended Kolmogorov Axioms (EKA for short) or the Complex Probability Paradigm
(CPP for short) can be shown and summarized in the next illustration (Figure 2):

4. One-dimensional case of the infinite potential well problem

The simplest form of the particle in a box model considers a one-dimensional
system [1, 2]. Here, the particle may only move backward and forwards along a
straight line with impenetrable barriers at either end. The walls of a one-dimensional
box may be seen as regions of space with an infinitely large potential energy. Con-
versely, the interior of the box has a constant zero potential energy. This means that

Figure 2.
The EKA or the CPP diagram.
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no forces act upon the particle inside the box and it can move freely in that region.
However, infinitely large forces repel the particle if it touches the walls of the box,
preventing it from escaping. The potential energy in this model is given as:

V xð Þ ¼ 0 xc � L
2
< x< xc þ L

2
∞ otherwise

8<
:

where L is the length of the box, xc is the location of the center of the box and x is
the position of the particle within the box. Simple cases include the centered box
(xc ¼ 0) and the shifted box (xc ¼ L

2) (Figure 3).

5. The infinite potential well problem in quantum mechanics and the
complex probability paradigm (CPP) parameters

In this section, we will relate and link quantum mechanics to the complex probabil-
ity paradigmwith all its parameters by applying it to the infinite potential well problem
and by using the four CPP concepts which are: the real probability Pr in the real
probability setR, the imaginary probability Pm in the imaginary probability setM, the
complex random vector or number Z in the complex probability set C ¼ RþM, and
the deterministic real probability Pc also in the probability set C [1–22, 66–99].

5.1 The position wave function and CPP: The position wave function solution

In quantum mechanics, the wave function gives the most fundamental description
of the behavior of a particle; the measurable properties of the particle (such as its
position, momentum, and energy) may all be derived from the wave function. The
wave function ψ x, tð Þ can be found by solving the Schrödinger equation for the system:

iℏ
∂

∂t
ψ x, tð Þ ¼ � ℏ2

2m
∂
2

∂x2
ψ x, tð Þ þ V xð Þψ x, tð Þ

where ℏ ¼ h
2π is the reduced Planck constant, m is the mass of the particle, i is the

imaginary unit, and t is time.

Figure 3.
The barriers outside a one-dimensional box have infinitely large potential, while the interior of the box has a
constant zero potential.
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Inside the box, no forces act upon the particle, whichmeans that the part of the wave
function inside the box oscillates through space and time in the same formas a free particle:

ψ x, tð Þ ¼ A sin kxð Þ þ B cos kxð Þ½ �e�iωt

where A and B are arbitrary complex numbers. The frequency of the oscillations
through space and time is given by the wave number k and the angular frequency ω,
respectively.

⇔ψn x, tð Þ ¼ A sin kn x� xc þ L
2

� �� �
e�iωnt xc � L

2
< x< xc þ L

2
0 elsewhere

8<
:

where kn ¼ nπ
L .

The unknown constant A may be found by normalizing the wave function, so that
the total probability density of finding the particle in the system is 1. It follows that:

Aj j ¼
ffiffiffi
2
L

r

Thus, Amay be any complex number with an absolute value
ffiffiffiffiffiffiffiffi
2=L

p
; these different

values of A yield the same physical state, so A =
ffiffiffiffiffiffiffiffi
2=L

p
can be selected to simplify.

5.2 The position wave function probability distribution and CPP

In classical physics, the particle can be detected anywhere in the box with equal
probability. In quantum mechanics, however, the probability density for finding a
particle at a given position is derived from the wave function as f xð Þ ¼ ψ xð Þj j2 . For
the particle in a box, the wave function position probability density function (PDF)
for finding the particle at a given position depends upon its state and is given by:

f xð Þ ¼ ψ xð Þj j2 ¼
2
L
sin 2 kn x� xc þ L

2

� �� �
xc � L

2
< x< xc þ L

2
0 otherwise

8<
:

Thus, for any value of n greater than one, there are regions within the box for which
f xð Þ ¼ 0, indicating that spatial nodes exist at which the particle cannot be found.

Therefore, the wave function position cumulative probability distribution function
(CDF), which is equal to Pr Xð Þ in R is:

Pr Xð Þ ¼ F xj
� � ¼ Prob X ≤ xj

� � ¼
ðxj

�∞

ψ xð Þj j2dx

¼

ðxj

xc�
L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>><
>>>>>>:
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And the real complementary probability to Pr Xð Þ in R, which is Pm Xð Þ=i is:

Pm Xð Þ=i ¼ 1� Pr Xð Þ ¼ 1� F xj
� � ¼ 1� Prob X ≤ xj

� � ¼ Prob X > xj
� �

¼ 1�
ðxj

�∞

ψ xð Þj j2dx ¼
ðþ∞

xj

ψ xð Þj j2dx

¼
1�

ðxj

xc�
L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

¼
ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

Consequently, the imaginary complementary probability to Pr Xð Þ in M, which is
Pm Xð Þ is:

Pm Xð Þ ¼ i 1� Pr Xð Þ½ � ¼ i 1� F xj
� �� � ¼ i 1� Prob X ≤ xj

� �� � ¼ iProb X > xj
� �

¼ i 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5 ¼ i

ðþ∞

xj

ψ xð Þj j2dx

¼
i 1�

ðxj

xc�
L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
666664

3
777775

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>>>>>>><
>>>>>>>>>:

¼
i

ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
666664

3
777775

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>>>>>>><
>>>>>>>>>:
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Furthermore, the complex random number or vector in C ¼ RþM, which is
Z Xð Þ is:

Z Xð Þ ¼ Pr Xð Þ þ Pm Xð Þ ¼ Pr Xð Þ þ i 1� Pr Xð Þ½ � ¼ F xj
� �þ i 1� F xj

� �� �

¼ Prob X ≤ xj
� �þ i 1� Prob X ≤ xj

� �� � ¼ Prob X ≤ xj
� �þ iProb X > xj

� �

¼
ðxj

�∞

ψ xð Þj j2dxþ i 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5 ¼

ðxj

�∞

ψ xð Þj j2dxþ i
ðþ∞

xj

ψ xð Þj j2dx

¼

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dxþ i 1�

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
6664

3
7775 xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

¼

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dxþ i

ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
664

3
775 xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

Additionally, the degree of our knowledge, which is DOK Xð Þ is:

DOK Xð Þ ¼ Pr Xð Þ½ �2 þ Pm Xð Þ=i½ �2 ¼ Pr Xð Þ½ �2 þ 1� Pr Xð Þ½ �2

¼ F xj
� �� �2 þ 1� F xj

� �� �2 ¼ Prob X ≤ xj
� �� �2 þ 1� Prob X ≤ xj

� �� �2

¼ Prob X ≤ xj
� �� �2 þ Prob X > xj

� �� �2

¼
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5
2

þ 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5
2

¼
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5
2

þ
ðþ∞

xj

ψ xð Þj j2dx

2
64

3
75
2

¼

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
64

3
75
2

þ 1�
ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
64

3
75
2

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>>>><
>>>>>>:

¼

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
64

3
75
2

þ
ðxcþL

2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
64

3
75
2

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>>>><
>>>>>>:
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Moreover, the chaotic factor, which is Chf Xð Þ is:

Chf Xð Þ ¼ 2iPr Xð ÞPm Xð Þ

¼ 2iPr Xð Þ � i 1� Pr Xð Þ½ � ¼ �2Pr Xð Þ 1� Pr Xð Þ½ � ¼ �2F xj
� �

1� F xj
� �� �

¼ �2Prob X ≤ xj
� �

1� Prob X≤ xj
� �� � ¼ �2Prob X≤ xj

� �
Prob X > xj

� �

¼ �2
ðxj

�∞

ψ xð Þj j2dx� 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5

¼ �2
ðxj

�∞

ψ xð Þj j2dx�
ðþ∞

xj

ψ xð Þj j2dx

¼
�2

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx� 1�

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
6664

3
7775 xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

¼
�2

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx�

ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

In addition, the magnitude of the chaotic factor, which is MChf Xð Þ is:

MChf Xð Þ ¼ Chf Xð Þj j ¼ �2iPr Xð ÞPm Xð Þ ¼ �2iPr Xð Þ � i 1� Pr Xð Þ½ �

¼ 2Pr Xð Þ 1� Pr Xð Þ½ � ¼ 2F xj
� �

1� F xj
� �� �

¼ 2Prob X ≤ xj
� �

1� Prob X ≤ xj
� �� � ¼ 2Prob X ≤ xj

� �
Prob X > xj

� �

¼ 2
ðxj

�∞

ψ xð Þj j2dx� 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5 ¼ 2

ðxj

�∞

ψ xð Þj j2dx�
ðþ∞

xj

ψ xð Þj j2dx

¼
2
ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx� 1�

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
6664

3
7775 xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:

¼
2
ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx�

ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx xc � L

2
< xj < xc þ L

2

0 otherwise

8>>>>>>><
>>>>>>>:
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Finally, the real probability in the complex probability universe C ¼ RþM
which is Pc Xð Þ is:

Pc2 Xð Þ ¼ Pr Xð Þ½ � þ Pm Xð Þ=i½ �f g2 ¼ Pr Xð Þ½ � þ 1� Pr Xð Þ½ �f g2 ¼ F xj
� �� �þ 1� F xj

� �� �� �2

¼ Prob X ≤ xj
� �þ 1� Prob X ≤ xj

� �� �� �2 ¼ Prob X ≤ xj
� �þ Prob X > xj

� �� �2

¼
ðxj

�∞

ψ xð Þj j2dxþ 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5

8<
:

9=
;

2

¼
ðxj

�∞

ψ xð Þj j2dxþ
ðþ∞

xj

ψ xð Þj j2dx

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ψ xð Þj j2dx
8<
:

9=
;

2

¼

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dxþ 1�

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

2
64

3
75

8><
>:

9>=
>;

2

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>><
>>>>:

¼
ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dxþ

ðxcþL
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

8><
>:

9>=
>;

2

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>><
>>>>:

¼
ðxcþL

2

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

8><
>:

9>=
>;

2

xc � L
2
< xj < xc þ L

2

0 otherwise

8>>>><
>>>>:

¼ 12 xc � L
2
< xj < xc þ L

2
0 otherwise

8<
: ¼ 1 xc � L

2
< xj < xc þ L

2
0 otherwise

8<
:

¼ Pc Xð Þ

And, Pc Xð Þ can be computed using CPP as follows:

Pc2 Xð Þ ¼ DOK Xð Þ � Chf Xð Þ ¼ Pr Xð Þ½ �2 þ Pm Xð Þ=i½ �2 � 2iPr Xð ÞPm Xð Þ
¼ Pr Xð Þ½ �2 þ 1� Pr Xð Þ½ �2 þ 2Pr Xð Þ 1� Pr Xð Þ½ � ¼ Pr Xð Þ þ 1� Pr Xð Þ½ �f g2

¼
ðxj

�∞

ψ xð Þj j2dxþ 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5

8<
:

9=
;

2

¼
ðxj

�∞

ψ xð Þj j2dxþ
ðþ∞

xj

ψ xð Þj j2dx

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ψ xð Þj j2dx
8<
:

9=
;

2

¼ 12 xc � L
2
< xj < xc þ L

2
0 otherwise

8<
: ¼ 1 xc � L

2
< xj < xc þ L

2
0 otherwise

8<
:

¼ Pc Xð Þ

And, Pc Xð Þ can be computed using always CPP as follows also:

Pc2 Xð Þ ¼ DOK Xð Þ þMChf Xð Þ ¼ Pr Xð Þ½ �2 þ Pm Xð Þ=i½ �2 þ �2iPr Xð ÞPm Xð Þ½ �
¼ Pr Xð Þ½ �2 þ 1� Pr Xð Þ½ �2 þ 2Pr Xð Þ 1� Pr Xð Þ½ � ¼ Pr Xð Þ þ 1� Pr Xð Þ½ �f g2

¼
ðxj

�∞

ψ xð Þj j2dxþ 1�
ðxj

�∞

ψ xð Þj j2dx
2
4

3
5

8<
:

9=
;

2

¼
ðxj

�∞

ψ xð Þj j2dxþ
ðþ∞

xj

ψ xð Þj j2dx

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ψ xð Þj j2dx
8<
:

9=
;

2
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¼ 12 xc � L
2
< xj < xc þ L

2
0 otherwise

8<
: ¼ 1 xc � L

2
< xj < xc þ L

2
0 otherwise

8<
:

¼ Pc Xð Þ

Hence, the prediction of all the wave function position probabilities of the random
infinite potential well problem in the C ¼ RþM is permanently certain and per-
fectly deterministic.

Now, if xc � L
2 ≤Lb Lower bound of xj

� �
,Ub Upper bound of xj
� �

≤ xc þ L
2

ðUb

Lb

2
L
sin 2 kn x� xc þ L

2

� �� �
dx ¼ 2

L

ðUb

Lb

1� cos 2kn x� xc þ L
2

� �� �

2

8>><
>>:

9>>=
>>;
dx

¼ 1
L

ðUb

Lb

1� cos 2kn x� xc þ L
2

� �� �� �
dx

¼ 1
L

x� sin 2kn x� xc þ L
2

� �� �
2kn

� �Ub

Lb

¼ 1
2knL

2knUb � sin 2kn Ub � xc þ L
2

� �� �� �(

� 2knLb � sin 2kn Lb � xc þ L
2

� �� �� �)

Thus,

ðþ∞

�∞

f xð Þdx ¼
ðxc�

L
2

�∞

f xð Þdxþ
ðxcþ

L
2

xc�L
2

f xð Þdxþ
ðþ∞

xcþL
2

f xð Þdx

¼ 0þ
ðUb¼xcþL

2

Lb¼xc�L
2

ψ xð Þj j2dxþ 0 ¼
ðUb¼xcþL

2

Lb¼xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

¼ 1
2knL

2kn xc þ L
2

� �
� sin 2kn xc þ L

2
� xc þ L

2

� �� �� �(

� 2kn xc � L
2

� �
� sin 2kn xc � L

2
� xc þ L

2

� �� �� �)

¼ 1
2knL

2knxc þ knL� sin 2knL½ �½ � � 2knxc � knL� sin 2kn 0ð Þ½ �½ �f g

¼ 1
2knL

2knL� sin 2knL½ �f g
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But kn ¼ nπ
L , so it is equal to:

1
2knL

2knL� sin
2nπL
L

� �� �
¼ 1

2knL
2knL� sin 2nπ½ �f g ¼ 1

2knL
2knL� 0f g,

where n ¼ 1,2,3,…

¼ 2knL
2knL

¼ 1

Therefore, f xð Þ ¼ ψ xð Þj j2 is a probability density function since:

1.∀x : 0≤ ψ xð Þj j2 ≤ 1, as ∀x : �1≤ sin xð Þ≤ 1⇔∀x : 0≤ sin 2 xð Þ≤ 1

2.
Ðþ∞

�∞
ψ xð Þj j2dx ¼ 1

Moreover, if Lb ¼ xc � L
2 and xc � L

2 ≤ Ub ¼ xj
� �

≤ xc þ L
2, then:

ðxj

xc�L
2

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

¼ 1
2knL

2knxj � sin 2kn xj � xc þ L
2

� �� �� �
� 2kn xc � L

2

� �
� sin 2kn xc � L

2
� xc þ L

2

� �� �� �)(

¼ 1
2knL

2knxj � sin 2kn xj � xc þ L
2

� �� �� �
� 2knxc � knL� sin 2kn 0ð Þ½ �½ �

)(

¼ 1
2knL

2knxj � sin 2kn xj � xc þ L
2

� �� �� �
� 2knxc � knL½ �

� �

¼ 1
2knL

2kn xj � xc þ L
2

� �
� sin 2kn xj � xc þ L

2

� �� �� �

Additionally, if xc � L
2 ≤ Lb ¼ xj
� �

≤ xc þ L
2 and Ub ¼ xc þ L

2, then:

ðxcþ
L
2

xj

2
L
sin 2 kn x� xc þ L

2

� �� �
dx

¼ 1
2knL

2kn xc þ L
2

� �
� sin 2kn xc þ L

2
� xc þ L

2

� �� �� �
� 2knxj � sin 2kn xj � xc þ L

2

� �� �� �)(

¼ 1
2knL

2knxc þ knL� sin 2knL½ �½ � � 2knxj � sin 2kn xj � xc þ L
2

� �� �� �)(

But kn ¼ nπ
L
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So, it is equal to:

1
2knL

2knxc þ knL� sin
2nπL
L

� �� �
� 2knxj � sin 2kn xj � xc þ L

2

� �� �� �� �

¼ 1
2knL

2knxc þ knL� sin 2nπ½ �½ � � 2knxj � sin 2kn xj � xc þ L
2

� �� �� �� �
,

where n ¼ 1,2,3,… ¼ 1
2knL

2knxc þ knL� 0½ � � 2knxj � sin 2kn xj � xc þ L
2

� �� �� �)(

¼ 1
2knL

2knxc þ knL½ � � 2knxj � sin 2kn xj � xc þ L
2

� �� �� �� �

¼ 1
2knL

2kn xc � xj þ L
2

� �
þ sin 2kn xj � xc þ L

2

� ��� �

5.3 The new model simulations

The following figures (Figures 4–38) illustrate all the calculations done above.

Figure 4.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 1.
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Figure 5.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 1.

Figure 6.
The graphs of DOK and Chf,, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 1.
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Figure 7.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 1.

Figure 8.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 1.
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Figure 9.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 2.

Figure 10.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 2.
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Figure 11.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 2.

Figure 12.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 2.
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Figure 13.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 2.

Figure 14.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 3.
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Figure 15.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 3.

Figure 16.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 3.
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Figure 17.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 3.

Figure 18.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 3.
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Figure 19.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 4.

Figure 20.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 4.
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Figure 21.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 4.

Figure 22.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 4.
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Figure 23.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 4.

Figure 24.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 5.
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Figure 25.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 5.

Figure 26.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 5.
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Figure 27.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 5.

Figure 28.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 5.
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Figure 29.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 20.

Figure 30.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 20.
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Figure 31.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 20.

Figure 32.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 20.
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Figure 33.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 20.

Figure 34.
The graph of the PDF of the wave function position probability distribution as a function of the random variable X
for n = 100.
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Figure 35.
The graphs of all the CPP parameters as functions of the random variable X for the wave function position
probability distribution for n = 100.

Figure 36.
The graphs of DOK and Chf, and the deterministic probability Pc in terms of X and of each other for the wave
function position probability distribution for n = 100.
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Figure 37.
The graphs of Pr and Pm/i, and Pc in terms of X and of each other for the wave function position probability
distribution for n = 100.

Figure 38.
The graphs of the probabilities Pr and Pm and Z in terms of X for the wave function position probability
distribution for n = 100.
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5.3.1 Simulations interpretation

In Figures 4, 9, 14, 19, 24, 29, and 34, we can see the graphs of the probability
density functions (PDF) of the wave function position probability distribution for this
problem as functions of the random variable X : �100≤X ≤ 100 for n = 1, 2, 3, 4, 5,
20, and 100.

In Figures 5, 10, 15, 20, 25, 30, and 35, we can see also the graphs and the
simulations of all the CPP parameters (Chf,MChf, DOK, Pr, Pm/i, and Pc) as functions
of the random variable X for the wave function position probability distribution of
the infinite potential well problem for n = 1, 2, 3, 4, 5, 20, and 100. Hence, we can
visualize all the new paradigm functions for this problem.

In the cubes (Figures 6, 11, 16, 21, 26, 31, and 36), the simulation of DOK and Chf
as functions of each other and of the random variable X for the infinite potential
well problem wave function position probability distribution can be seen. The thick
line in cyan is the projection of the plane Pc2(X) = DOK(X) – Chf(X) = 1 = Pc(X) on
the plane X = Lb = lower bound of X = �100. This thick line starts at the point
(DOK = 1, Chf = 0) when X = Lb = �100, reaches the point (DOK = 0.5, Chf = �0.5)
when X = 0, and returns at the end to (DOK = 1, Chf = 0) when X = Ub = upper bound
of X = 100. The other curves are the graphs of DOK(X) (red) and Chf(X) (green,
blue, and pink) in different simulation planes. Notice that they all have a minimum at
the point (DOK = 0.5, Chf = �0.5, and X = 0). The last simulation point corresponds
to (DOK = 1, Chf = 0, and X = Ub = 100).

In the cubes (Figures 7, 12, 17, 22, 27, 32, and 37), we can notice the simulation of
the real probability Pr(X) in R and its complementary real probability Pm(X)/i in R
also in terms of the random variable X for the infinite potential well problem wave
function position probability distribution. The thick line in cyan is the projection of
the plane Pc2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) on the plane X = Lb = lower bound of
X = �100. This thick line starts at the point (Pr = 0, Pm/i = 1) and ends at the point
(Pr = 1, Pm/i = 0). The red curve represents Pr(X) in the plane Pr(X) = Pm(X)/i in light
gray. This curve starts at the point (Pr = 0, Pm/i = 1, and X = Lb = lower bound of
X = �100), reaches the point (Pr = 0.5, Pm/i = 0.5, and X = 0), and gets at the end to
(Pr = 1, Pm/i = 0, and X = Ub = upper bound of X = 100). The blue curve represents
Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i = 1 = Pc(X). Notice the importance of the
point, which is the intersection of the red and blue curves at X = 0, and when
Pr(X) = Pm(X)/i = 0.5.

In the cubes (Figures 8, 13, 18, 23, 28, 33, and 38), we can notice the simulation of
the complex probability Z(X) in C ¼ RþM as a function of the real probability
Pr(X) = Re(Z) inR and of its complementary imaginary probability Pm(X) = i � Im(Z)
inM, and this in terms of the random variable X for the infinite potential well problem
wave function position probability distribution. The red curve represents Pr(X) in the
plane Pm(X) = 0, and the blue curve represents Pm(X) in the plane Pr(X) = 0. The green
curve represents the complex probability Z(X) = Pr(X) + Pm(X) = Re(Z) + i � Im(Z)
in the plane Pr(X) = iPm(X) + 1 or Z(X) plane in cyan. The curve of Z(X) starts at the
point (Pr = 0, Pm = i, and X = Lb = lower bound of X = �100) and ends at the point
(Pr = 1, Pm = 0, and X = Ub = upper bound of X = 100). The thick line in cyan is
Pr(X = Lb = �100) = iPm(X = Lb = �100) + 1, and it is the projection of the Z(X) curve
on the complex probability plane whose equation is X = Lb = �100. This projected thick
line starts at the point (Pr = 0, Pm = i, X = Lb = �100) and ends at the point (Pr = 1,
Pm = 0, and X = Lb = �100). Notice the importance of the point corresponding to X = 0
and Z = 0.5 + 0.5i, when Pr = 0.5 and Pm = 0.5i.
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5.4 The characteristics of the position probability distribution

In quantum mechanics, the average, or expectation value of the position of a
particle is given by [10]:

xh i ¼
ðþ∞

�∞

x ψ xð Þj j2dx ¼
ðxcþL

2

xc�L
2

2
L
x sin 2 kn x� xc þ L

2

� �� �
dx

For the steady state particle in a box, it can be shown that the average position is
always xh i ¼ xc, regardless of the state of the particle. For a superposition of states, the
expectation value of the position will change based on the cross term, which is
proportional to cos ωtð Þ . In the probability set and universe R, we have:

xh iR ¼ xh i ¼ xc

The variance in the position is a measure of the uncertainty in the position of the
particle, so in the probability set and universe R, we have:

Varx,R ¼ Var xð Þ ¼ x2
� �

R � xh i2R ¼
ðþ∞

�∞

x2 ψ xð Þj j2dx
8<
:

9=
;�

ðþ∞

�∞

x ψ xð Þj j2dx
8<
:

9=
;

2

¼
ðxcþ

L
2

xc�L
2

2
L
x2 sin 2 kn x� xc þ L

2

� �� �
dx

8>>><
>>>:

9>>>=
>>>;

� x2c ¼
L2

12
1� 6

n2π2

� �

In the probability set and universe M, we have:

xh iM ¼
ðþ∞

�∞

x i 1� ψ xð Þj j2
h in o

dx ¼ i
ðxcþ

L
2

xc�L
2

x 1� 2
L
sin 2 kn x� xc þ L

2

� �� �� �
dx

¼ i
ðxcþ

L
2

xc�L
2

xdx�
ðxcþ

L
2

xc�L
2

2
L
x sin 2 kn x� xc þ L

2

� �� �
dx

8>>><
>>>:

9>>>=
>>>;

¼ i
x2

2

� �xcþL
2

xc�L
2

� xh iR
( )

¼ i
xc þ L

2

� �2
2

� xc � L
2

� �2
2

" #
� xc

( )

¼ i xcL� xcð Þ ¼ ixc L� 1ð Þ

To simplify, consider here and in what follows that xc ¼ 0⇔ xh iR ¼ 0 and xh iM ¼ 0.
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Moreover,

Varx,M ¼ x2
� �

M � xh i2M ¼
ðþ∞

�∞

x2 i 1� ψ xð Þj j2
h in o

dx

8<
:

9=
;�

ðþ∞

�∞

x i 1� ψ xð Þj j2
h in o

dx

8<
:

9=
;

2

¼ i
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L
2

xc�L
2

x2 1� 2
L
sin 2 kn x� xc þ L

2

� �� �� �
dx� 0

¼ i
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L
2
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2

x2dx�
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L
2

xc�L
2

x2
2
L
sin 2 kn x� xc þ L

2

� �� �� �
dx

8>>><
>>>:

9>>>=
>>>;

¼ i
ðþ
L
2

�L
2

u2du� Varx,R

8>>><
>>>:
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>>>;

¼ i
u3

3

� �þL
2

�L
2

� Varx,R

( )
¼ i

L3

12
� L2

12
1� 6

n2π2

� �� �

¼ i
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12
L� 1� 6

n2π2

� �� �� �

In the probability set and the universe C ¼ RþM, we have from CPP:

xh iC ¼
ðþ∞

�∞

x z xð Þ½ �dx ¼
ðþ∞

�∞

x ψ xð Þj j2 þ i 1� ψ xð Þj j2
h in o

dx

¼
ðþ∞

�∞

x ψ xð Þj j2dxþ
ðþ∞

�∞

xi 1� ψ xð Þj j2
h i

dx

¼
ðxcþ

L
2

xc�L
2

x
2
L
sin 2 kn x� xc þ L

2

� �� �
dxþ i

ðxcþ
L
2

xc�L
2

x 1� 2
L
sin 2 kn x� xc þ L

2

� �� �� �
dx

¼ xh iR þ xh iM ¼ xc þ ixc L� 1ð Þ ¼ xc 1þ i L� 1ð Þ½ � ¼ 0 for xc ¼ 0

Varx,C ¼ x2
� �

C � xh i2C ¼
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�∞

x2 z xð Þ½ �dx
2
4

3
5� xh iR þ xh iM
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¼
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�∞
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2
4
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5� xh iR þ xh iM

� �2

¼
ðþ∞

�∞

x2 ψ xð Þj j2dxþ
ðþ∞

�∞

x2i 1� ψ xð Þj j2
h i

dx

2
4

3
5� xh iR þ xh iM

� �2
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¼ x2
� �

R þ x2
� �

M

� �� xh iR þ xh iM
� �2 ¼ x2

� �
R þ x2

� �
M

� �� xh i2R þ xh i2M þ 2 xh iR xh iM
h i
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h i
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� �

M � xh i2M
h i
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The following tables (Tables 1–4) compute the position distribution characteris-
tics for xc ¼ 0, L ¼ 200, and n ¼ 1,2,3,20.

Position distribution characteristics xc ¼ 0, L ¼ 200, n ¼ 2

xh iR 0

Varx,R 2.8267e+03

xh iM 0

Varx,M i�6.6384e+05

xh iC ¼ xh iR þ xh iM 0+i(0)

Varx,C ¼ Varx,R þ Varx,M � 2 xh iR xh iM 2.8267e+03+i�6.6384e+05

Table 2.
The position distribution characteristics for xc ¼ 0, L ¼ 200, and n ¼ 2.

Position distribution characteristics xc ¼ 0, L ¼ 200, n ¼ 1

xh iR 0

Varx,R 1.3069e+03

xh iM 0

Varx,M i�6.6536e+05

xh iC ¼ xh iR þ xh iM 0+i(0)

Varx,C ¼ Varx,R þ Varx,M � 2 xh iR xh iM 1.3069e+03+i�6.6536e+05

Table 1.
The position distribution characteristics for xc ¼ 0, L ¼ 200, and n ¼ 1.

Position distribution characteristics xc ¼ 0, L ¼ 200, n ¼ 3

xh iR 0

Varx,R 3.1082e+03

xh iM 0

Varx,M i�6.6356e+05

xh iC ¼ xh iR þ xh iM 0+i(0)

Varx,C ¼ Varx,R þ Varx,M � 2 xh iR xh iM 3.1082e+03+i�6.6356e+05

Table 3.
The position distribution characteristics for xc ¼ 0, L ¼ 200, and n ¼ 3.
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For n≫ 1 (large n) and with xc ¼ 0 we get:

Varx,R ! L2

12
¼ 3:3333… eþ 03,

Varx,M ! i
L2 L� 1ð Þ

12

� �
¼ i� 6:6333… eþ 05

Varx,C ! L2

12
þ i

L2 L� 1ð Þ
12

� �
� 2 0ð Þ 0ð Þ ¼ 3:3333… eþ 03þ i� 6:6333… eþ 05

6. Conclusion and perspectives

In the current research work, the original extended model of eight axioms (EKA) of
A. N. Kolmogorov was connected and applied to the infinite potential well problem in
quantummechanics theory. Thus, a tight link between quantummechanics and the
novel paradigm (CPP) was achieved. Consequently, the model of “Complex Probability”
was more developed beyond the scope of my 19 previous research works on this topic.

Additionally, as it was proved and verified in the novel model, before the begin-
ning of the random phenomenon simulation and at its end we have the chaotic factor
(Chf and MChf) is zero, and the degree of our knowledge (DOK) is one since the
stochastic fluctuations and effects have either not started yet or they have terminated
and finished their task on the probabilistic phenomenon. During the execution of the
nondeterministic phenomenon and experiment, we also have: 0.5 ≤ DOK < 1,
�0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We can see that during this entire process we
have incessantly and continually Pc2 = DOK – Chf = DOK + MChf = 1 = Pc, which
means that the simulation which behaved randomly and stochastically in the real set
and universe R is now certain and deterministic in the complex probability set and
universe C ¼ RþM, and this after adding to the random experiment executed in
the real universe R, the contributions of the imaginary set and universe M, and
hence, after eliminating and subtracting the chaotic factor from the degree of our
knowledge. Furthermore, the real, imaginary, complex, and deterministic probabili-
ties that correspond to each value of the position random variable X have been
determined in the three probabilities sets and universes, which are R, M, and C by
Pr, Pm, Z and Pc, respectively. Consequently, at each value of X, the novel quantum
mechanics and CPP parameters Pr, Pm, Pm=i, DOK, Chf, MChf, Pc, and Z are surely

Position distribution characteristics xc ¼ 0, L ¼ 200, n ¼ 20

xh iR 0

Varx,R 3.3283e+03

xh iM 0

Varx,M i�6.6334e+05

xh iC ¼ xh iR þ xh iM 0+i(0)

Varx,C ¼ Varx,R þ Varx,M � 2 xh iR xh iM 3.3283e+03+i�6.6334e+05

Table 4.
The position distribution characteristics for xc ¼ 0, L ¼ 200, and n ¼ 20.
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and perfectly predicted in the complex probabilities set and universe C with Pc
maintained equal to one permanently and repeatedly.

In addition, referring to all these obtained graphs and executed simulations
throughout the whole research work, we are able to quantify and visualize both the
system chaos and stochastic effects and influences (expressed and materialized by Chf
andMChf) and the certain knowledge (expressed and materialized by DOK and Pc) of
the new paradigm. This is without any doubt very fruitful, wonderful, and fascinating
and proves and reveals once again the advantages of extending A. N. Kolmogorov’s
five axioms of probability, and hence, the novelty and benefits of my inventive and
original model in the fields of prognostics, applied mathematics, and quantum
mechanics that can be called verily: “The Complex Probability Paradigm.”

As a future and prospective research and challenges, we aim to develop the novel
prognostic paradigm conceived and implement it in a large set of random and
nondeterministic phenomena in quantum mechanics theory.

Nomenclature

R real set of events and probabilities.
M imaginary set of events and probabilities.
C complex set of events and probabilities.
i the imaginary number where i ¼ ffiffiffiffiffiffi�1

p
or i2 ¼ �1

EKA Extended Kolmogorov’s Axioms.
CPP complex probability paradigm.
Prob probability of any event.
Pr probability in the real set R
Pm probability in the imaginary setM corresponding to the real

probability in R:
Pc probability of an event in R with its associated complemen-

tary event in M = probability in the complex probability
set C:

Z complex probability number = sum of Pr and Pm = complex
random vector

DOK = Zj j2 the degree of our knowledge of the random system or exper-
iment, it is the square of the norm of Z.

Chf the chaotic factor of Z
MChf magnitude of the chaotic factor of Z
ψ xð Þj j2 wave function position probability density function.

ϕ pð Þj j2 wave function momentum probability density function.
xh iR, xh iM, xh iC means, expectations, or averages of the wave function posi-

tion probability distribution function in R, M, and C,
respectively.

Varx,R,Varx,M,Varx,C variances of the wave function position probability distribu-
tion function in R, M, and C, respectively.

ph iR, ph iM, ph iC means, expectations, or averages of the wave function
momentum probability distribution function in R, M,
and C, respectively.

Varp,R,Varp,M,Varp,C variances of the wave function momentum probability
distribution function in R, M, and C, respectively.
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HR
x particle position entropy in the real universe R:

NegHR
x

particle position negative entropy in the real universe R:

H
R
x

particle position complementary entropy in the real universe
R:

HM
x particle position entropy in the imaginary universe M:

HC
x particle position entropy in the complex universe C:

HR
p particle momentum entropy in the real universe R:

NegHR
p

particle momentum negative entropy in the real universe R:

HR
p

particle momentum complementary entropy in the real
universe R:

HM
p particle momentum entropy in the imaginary universe M:

HC
p particle momentum entropy in the complex universe C:
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Chapter 2

The Paradigm of Complex
Probability and Quantum
Mechanics: The Infinite Potential
Well Problem – The Momentum
Wavefunction and the
Wavefunction Entropies
Abdo Abou Jaoudé

Abstract

The mathematical probability concept was set forth by Andrey Nikolaevich
Kolmogorov in 1933 by laying down a five-axioms system. This scheme can be
improved to embody the set of imaginary numbers after adding three new axioms.
Accordingly, any stochastic phenomenon can be performed in the set C of complex
probabilities which is the summation of the set R of real probabilities and the set M
of imaginary probabilities. Our objective now is to encompass complementary imagi-
nary dimensions to the stochastic phenomenon taking place in the “real” laboratory in
R and as a consequence to calculate in the sets R, M, and C all the corresponding
probabilities. Hence, the probability is permanently equal to one in the entire set
C = R þM independently of all the probabilities of the input stochastic variable
distribution in R, and subsequently, the output of the random phenomenon in R can
be determined perfectly in C. This is due to the fact that the probability in C is
calculated after the elimination and subtraction of the chaotic factor from the degree
of our knowledge of the nondeterministic phenomenon. My innovative Complex
Probability Paradigm (CPP) will be applied to the established theory of quantum
mechanics in order to express it completely deterministically in the universe
C ¼ RþM.

Keywords: degree of our knowledge, chaotic factor, complex random vector,
probability norm, complex probability set C, momentum wavefunction, imaginary
entropy, complex entropy
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1. Introduction

1.1 The momentum wavefunction and CPP

1.1.1 The momentum wavefunction probability distribution and CPP

The probability density for finding a particle with a given momentum is derived
from the wavefunction as f pð Þ ¼ ϕ pð Þj j2. As with position, the wavefunction momen-
tum probability density function (PDF) for finding the particle at a given momentum
depends upon its state, and is given by [1, 2]:

f pð Þ ¼ ϕ pð Þj j2 ¼ L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

Where ℏ ¼ h
2π is the reduced Planck constant and sinc xð Þ ¼ sin xð Þ

x is the cardinal sine
sinc function.

Therefore, the wavefunction momentum cumulative probability distribution
function (CDF) which is equal to Pr Pð Þ in R is:

Pr Pð Þ ¼ F pj
� �

¼ Prob P≤ pj
� �

¼
ðpj

�∞

ϕ pð Þj j2dp

¼
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

And the real complementary probability to Pr Pð Þ in R which is Pm Pð Þ=i is:

Pm Pð Þ=i ¼ 1� Pr Pð Þ ¼ 1� F pj
� �

¼ 1� Prob P≤ pj
� �

¼ Prob P> pj
� �

¼ 1�
ðpj

�∞

ϕ pð Þj j2dp ¼
ðþ∞

pj

ϕ pð Þj j2dp

¼ 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

¼
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

Consequently, the imaginary complementary probability to Pr Pð Þ in M which is
Pm Pð Þ is:
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Pm Pð Þ ¼ i 1� Pr Pð Þ½ � ¼ i 1� F pj
� �h i

¼ i 1� Prob P≤ pj
� �h i

¼ iProb P> pj
� �

¼ i 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5 ¼ i

ðþ∞

pj

ϕ pð Þj j2dp

¼ i 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5

¼ i
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

Furthermore, the complex random number or vector in C ¼ RþMwhich is Z Pð Þ is:

Z Pð Þ ¼ Pr Pð Þ þ Pm Pð Þ ¼ Pr Pð Þ þ i 1� Pr Pð Þ½ � ¼ F pj
� �

þ i 1� F pj
� �h i

¼ Prob P≤ pj
� �

þ i 1� Prob P≤ pj
� �h i

¼ Prob P≤ pj
� �

þ iProb P> pj
� �

¼
ðpj

�∞

ϕ pð Þj j2dpþ i 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5 ¼

ðpj

�∞

ϕ pð Þj j2dpþ i
ðþ∞

pj

ϕ pð Þj j2dp

¼
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

þ i 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5

¼
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

þ i
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

Additionally, the degree of our knowledge which is DOK Pð Þ is:
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DOK Pð Þ ¼ Pr Pð Þ½ �2 þ Pm Pð Þ=i½ �2 ¼ Pr Pð Þ½ �2 þ 1� Pr Pð Þ½ �2 ¼ F pj
� �h i2

þ 1� F pj
� �h i2

¼ Prob P≤ pj
� �h i2

þ 1� Prob P≤ pj
� �h i2

¼ Prob P≤ pj
� �h i2

þ Prob P> pj
� �h i2

¼
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5
2

þ 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5
2

¼
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5
2

þ
ðþ∞

pj

ϕ pð Þj j2dp

2
64

3
75
2

¼
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5
2

þ 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5
2

¼
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5
2

þ
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
64

3
75
2

Moreover, the chaotic factor which is Chf Pð Þ is:

Chf Pð Þ ¼ 2iPr Pð ÞPm Pð Þ
¼ 2iPr Pð Þ � i 1� Pr Pð Þ½ � ¼ �2Pr Pð Þ 1� Pr Pð Þ½ � ¼ �2F pj

� �
1� F pj

� �h i

¼ �2Prob P≤ pj
� �

1� Prob P≤ pj
� �h i

¼ �2Prob P≤ pj
� �

Prob P> pj
� �

¼ �2
ðpj

�∞

ϕ pð Þj j2dp� 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5 ¼ �2

ðpj

�∞

ϕ pð Þj j2dp�
ðþ∞

pj

ϕ pð Þj j2dp

¼ �2
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

� 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5

¼ �2
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

�
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp
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In addition, the magnitude of the chaotic factor which is MChf Pð Þ is:

MChf Pð Þ ¼ Chf Pð Þj j ¼ �2iPr Pð ÞPm Pð Þ ¼ �2iPr Pð Þ � i 1� Pr Pð Þ½ �
¼ 2Pr Pð Þ 1� Pr Pð Þ½ � ¼ 2F pj

� �
1� F pj

� �h i

¼ 2Prob P≤ pj
� �

1� Prob P≤ pj
� �h i

¼ 2Prob P≤ pj
� �

Prob P> pj
� �

¼ 2
ðpj

�∞

ϕ pð Þj j2dp� 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5 ¼ 2

ðpj

�∞

ϕ pð Þj j2dp�
ðþ∞

pj

ϕ pð Þj j2dp

¼ 2
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

� 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5

¼ 2
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

�
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

Finally, the real probability in the complex probability universe C ¼ RþM
which is Pc Pð Þ is:

Pc2 Pð Þ ¼ Pr Pð Þ½ � þ Pm Pð Þ=i½ �f g2 ¼ Pr Pð Þ½ � þ 1� Pr Pð Þ½ �f g2

¼ F pj
� �h i

þ 1� F pj
� �h in o2

¼ Prob P≤ pj
� �

þ 1� Prob P≤ pj
� �h in o2

¼ Prob P≤ pj
� �

þ Prob P> pj
� �n o2

¼
ðpj

�∞

ϕ pÞðj j2dpþ 1�
ðpj

�∞

ϕ pÞðj j2dp
2
4

3
5

8<
:

9=
;

2

¼
ðpj

�∞

ϕ pÞðj j2dpþ
ðþ∞

pj

ϕ pÞðj j2dp

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ϕ pÞðj j2dp
8
<
:

9
=
;

2

¼

ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

þ 1�
ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

2
4

3
5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

2

¼

ðpj

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

þ
ðþ∞

pj

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

2

¼
ðþ∞

�∞

L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �

dp

8<
:

9=
;

2

¼ 12 ¼ 1 ¼ Pc Pð Þ

49

The Paradigm of Complex Probability and Quantum Mechanics: The Infinite Potential Well…
DOI: http://dx.doi.org/10.5772/intechopen.107665



And, Pc Pð Þ can be computed using CPP as follows:

Pc2 Pð Þ ¼ DOK Pð Þ � Chf Pð Þ ¼ Pr Pð Þ½ �2 þ Pm Pð Þ=i½ �2 � 2iPr Pð ÞPm Pð Þ
¼ Pr Pð Þ½ �2 þ 1� Pr Pð Þ½ �2 þ 2Pr Pð Þ 1� Pr Pð Þ½ � ¼ Pr Pð Þ þ 1� Pr Pð Þ½ �f g2

¼
ðpj

�∞

ϕ pð Þj j2dpþ 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5

8<
:

9=
;

2

¼
ðpj

�∞

ϕ pð Þj j2dpþ
ðþ∞

pj

ϕ pð Þj j2dp

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ϕ pð Þj j2dp
8<
:

9=
;

2

¼ 12 ¼ 1 ¼ Pc Pð Þ

And, Pc Pð Þ can be computed using always CPP as follows also:

Pc2 Pð Þ ¼ DOK Pð Þ þMChf Pð Þ ¼ Pr Pð Þ½ �2 þ Pm Pð Þ=i½ �2 þ �2iPr Pð ÞPm Pð Þ½ �
¼ Pr Pð Þ½ �2 þ 1� Pr Pð Þ½ �2 þ 2Pr Pð Þ 1� Pr Pð Þ½ � ¼ Pr Pð Þ þ 1� Pr Pð Þ½ �f g2

¼
ðpj

�∞

ϕ pð Þj j2dpþ 1�
ðpj

�∞

ϕ pð Þj j2dp
2
4

3
5

8<
:

9=
;

2

¼
ðpj

�∞

ϕ pð Þj j2dpþ
ðþ∞

pj

ϕ pð Þj j2dp

8><
>:

9>=
>;

2

¼
ðþ∞

�∞

ϕ pð Þj j2dp
8<
:

9=
;

2

¼ 12 ¼ 1 ¼ Pc Pð Þ

Hence, the prediction of all the wavefunction momentum probabilities of the
random infinite potential well problem in the universe C ¼ RþM is permanently
certain and perfectly deterministic.

1.1.2 The new model simulations

The following figures (Figures 1–37) illustrate all the calculations done above.

1.1.2.1 Simulations interpretation

In Figures 1, 6, 11, 16, 21, 26, 31, 36, and 37 we can see the graphs of the
probability density functions (PDF) of the wavefunction momentum probability dis-
tribution for this problem as functions of the random variable P for n = 1, 2, 3, 4, 5, 6,
7, 12, 100.

In Figures 2, 7, 12, 17, 22, 27, and 32 we can see also the graphs and the simula-
tions of all the CPP parameters (Chf, MChf, DOK, Pr, Pm/i, Pc) as functions of the
random variable P for the wavefunction momentum probability distribution of the
infinite potential well problem for n = 1, 2, 3, 4, 5, 6, 7. Hence, we can visualize all the
new paradigm functions for this problem.
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Figure 1.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 1.

Figure 2.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 1.
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Figure 3.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 1.

Figure 4.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 1.
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Figure 5.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 1.

Figure 6.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 2.
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Figure 7.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 2.

Figure 8.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 2.
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Figure 9.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 2.

Figure 10.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 2.
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Figure 11.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 3.

Figure 12.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 3.
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Figure 13.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 3.

Figure 14.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 3.
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Figure 15.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 3.

Figure 16.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 4.
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Figure 17.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 4.

Figure 18.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 4.
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Figure 19.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 4.

Figure 20.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 4.
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Figure 21.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 5.

Figure 22.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 5.
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Figure 23.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 5.

Figure 24.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 5.
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Figure 25.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 5.

Figure 26.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 6.
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Figure 27.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 6.

Figure 28.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 6.

64

Applied Probability Theory - New Perspectives, Recent Advances and Trends



Figure 29.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 6.

Figure 30.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 6.
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Figure 31.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 7.

Figure 32.
The graphs of all the CPP parameters as functions of the random variable P for the wavefunction momentum
probability distribution for n = 7.
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Figure 33.
The graphs of DOK and Chf and the deterministic probability Pc in terms of P and of each other for the
wavefunction momentum probability distribution for n = 7.

Figure 34.
The graphs of Pr and Pm/i and Pc in terms of P and of each other for the wavefunction momentum probability
distribution for n = 7.
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Figure 35.
The graphs of the probabilities Pr and Pm and Z in terms of P for the wavefunction momentum probability
distribution for n = 7.

Figure 36.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 12.
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In the cubes (Figures 3, 8, 13, 18, 23, 28, and 33), the simulation of DOK and
Chf as functions of each other and the random variable P for the infinite potential
well problem wavefunction momentum probability distribution can be seen. The
thick line in cyan is the projection of the plane Pc2(P) = DOK(P) – Chf(P) = 1 =
Pc(P) on the plane P = Lb = lower bound of P. This thick line starts at the point
(DOK = 1, Chf = 0) when P = Lb, reaches the point (DOK = 0.5, Chf = �0.5) when
P = 0, and returns at the end to (DOK = 1, Chf = 0) when P = Ub = upper bound of P.
The other curves are the graphs of DOK(P) (red) and Chf(P) (green, blue, pink) in
different simulation planes. Notice that they all have a minimum at the point
(DOK = 0.5, Chf = �0.5, P = 0). The last simulation point corresponds to (DOK = 1,
Chf = 0, P = Ub).

In the cubes (Figures 4, 9, 14, 19, 24, 29, and 34), we can notice the simulation
of the real probability Pr(P) inR and its complementary real probability Pm(P)/i in
R also in terms of the random variable P for the infinite potential well problem
wavefunction momentum probability distribution. The thick line in cyan is the
projection of the plane Pc2(P) = Pr(P) + Pm(P)/i = 1 = Pc(P) on the plane
P = Lb = lower bound of P. This thick line starts at the point (Pr = 0, Pm/i = 1) and
ends at the point (Pr = 1, Pm/i = 0). The red curve represents Pr(P) in the plane
Pr(P) = Pm(P)/i in light gray. This curve starts at the point (Pr = 0, Pm/i = 1,
P = Lb = lower bound of P), reaches the point (Pr = 0.5, Pm/i = 0.5, P = 0), and gets
at the end to (Pr = 1, Pm/i = 0, P = Ub = upper bound of P). The blue curve
represents Pm(P)/i in the plane in cyan Pr(P) + Pm(P)/i = 1 = Pc(P). Notice the
importance of the point which is the intersection of the red and blue curves at P = 0
and when Pr(P) = Pm(P)/i = 0.5.

Figure 37.
The graph of the PDF of the wavefunction momentum probability distribution as a function of the random
variable P for n = 100.
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In the cubes (Figures 5, 10, 15, 20, 25, 30, and 35), we can notice the simulation of the
complex probability Z(P) in C ¼ RþM as a function of the real probability Pr(P) =
Re(Z) inR and of its complementary imaginary probability Pm(P) = i � Im(Z) inM,
and this in terms of the random variable P for the infinite potential well problem
wavefunction momentum probability distribution. The red curve represents Pr(P) in the
plane Pm(P) = 0 and the blue curve represents Pm(P) in the plane Pr(P) = 0. The green
curve represents the complex probability Z(P) = Pr(P) + Pm(P) = Re(Z) + i� Im(Z) in the
plane Pr(P) = iPm(P) + 1 or Z(P) plane in cyan. The curve of Z(P) starts at the point
(Pr = 0, Pm = i, P = Lb = lower bound of P) and ends at the point (Pr = 1, Pm = 0,
P = Ub = upper bound of P). The thick line in cyan is Pr(P = Lb) = iPm(P = Lb) + 1 and it is
the projection of the Z(P) curve on the complex probability plane whose equation is
P = Lb. This projected thick line starts at the point (Pr = 0, Pm = i, P = Lb) and ends at the
point (Pr = 1, Pm = 0, P = Lb). Notice the importance of the point corresponding to P = 0
and Z = 0.5 + 0.5i when Pr = 0.5 and Pm = 0.5i.

1.1.3 The characteristics of the momentum probability distribution

In quantum mechanics, the average, or expectation value of the momentum of a

particle is given by: ph i ¼ Ðþ∞

�∞
p ϕ pð Þj j2dp ¼ Ðþ∞

�∞
p L

πℏ
nπ

nπþpL=ℏ

� �2
sinc2 1

2 nπ � pL=ℏð Þ� �
dp.

For the steady state particle in a box, it can be shown that the average momentum
is always ph i ¼ 0 regardless of the state of the particle. In the probability set and
universe R, we have:

ph iR ¼ ph i ¼ 0

The variance in the momentum is a measure of the uncertainty in momentum of
the particle, so in the probability set and universe R, we have:

Varp,R ¼ Var pð Þ ¼ p2
� �

R � ph i2R ¼
ðþ∞

�∞

p2 ϕ pð Þj j2dp� 0

¼
ðþ∞

�∞

p2
L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �( )

dp ¼ ℏnπ
L

� �2

In the probability set and universe M, we have:

ph iM ¼
ðþ∞

�∞

p i 1� ϕ pð Þj j2
h in o

dp ¼ i
ðþ∞

�∞

p 1� L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �( )

dp

¼ i
ðþ∞

�∞

pdp�
ðþ∞

�∞

p
L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �( )

dp

8<
:

9=
;

¼ i
p2

2

� �þ∞

�∞
� ph iR

( )
¼ i

p2

2

� �Ub

�Ub

� ph iR
( )

¼ i 0� 0f g ¼ 0
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Varp,M ¼ p2
� �

M � ph i2M

¼
ðþ∞

�∞

p2 i 1� ϕ pð Þj j2
h in o

dp� 0

¼ i
ðþ∞

�∞

p2 1� L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �( )

dp

¼ i
ðþ∞

�∞

p2dp�
ðþ∞

�∞

p2
L
πℏ

nπ
nπ þ pL=ℏ

� �2

sinc2
1
2

nπ � pL=ℏð Þ
� �( )

dp

8<
:

9=
;

¼ i
ðþ∞

�∞

p2dp� Varp,R

8<
:

9=
; ¼ i

p3

3

� �þ∞

�∞
� Varp,R

( )
! i þ∞� ℏnπ

L

� �2
( )

! þ∞

In the probability set and the universe C ¼ RþM, we have from CPP:

ph iC ¼
ðþ∞

�∞

p z pð Þ½ �dp ¼
ðþ∞

�∞

p ϕ pð Þj j2 þ i 1� ϕ pð Þj j2
h in o

dp

¼
ðþ∞

�∞

p ϕ pð Þj j2dpþ
ðþ∞

�∞

pi 1� ϕ pð Þj j2
h i

dp

¼ ph iR þ ph iM ¼ 0þ i 0ð Þ ¼ 0

Varp,C ¼ p2
� �

C � ph i2C ¼
ðþ∞

�∞

p2 z pð Þ½ �dp
2
4

3
5� ph iR þ ph iM

� �2

¼
ðþ∞

�∞

p2 ϕ pð Þj j2 þ i 1� ϕ pð Þj j2
h in o

dp

2
4

3
5� ph iR þ ph iM

� �2

¼
ðþ∞

�∞

p2 ϕ pð Þj j2dpþ
ðþ∞

�∞

p2i 1� ϕ pð Þj j2
h i

dp

2
4

3
5� ph iR þ ph iM

� �2

¼ p2
� �

R þ p2
� �

M

� �� ph iR þ ph iM
� �2

¼ p2
� �

R þ p2
� �

M

� �� ph i2R þ ph i2M þ 2 ph iR ph iM
h i

¼ p2
� �

R � ph i2R
h i

þ p2
� �

M � ph i2M
h i

� 2 ph iR ph iM
¼ Varp,R þ Varp,M � 2 ph iR ph iM

! ℏnπ
L

� �2

þ∞� 2 0ð Þ 0ð Þ

! þ∞
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The following tables (Tables 1–4) compute the momentum distribution charac-
teristics for L ¼ 200, h ¼ 1, and n ¼ 1,2,8,10000.

For n≫ 1 (large n) we get: Varp,R ¼ ℏnπ
L

� �2 ! þ∞.

2. Heisenberg uncertainty principle in R, M, and C

The uncertainties in the probability set and universeR in position and momentum
(ΔxR and ΔpR) are defined as being equal to the square root of their respective
variances in R, so that:

Momentum distribution characteristics L ¼ 200, h ¼ 1, n ¼ 1

ph iR 0

Varp,R 6.2500e�06

ph iM 0

Varp,M +∞

ph iC ¼ ph iR þ ph iM 0 + i(0)

Varp,C ¼ Varp,R þ Varp,M � 2 ph iR ph iM +∞

Table 1.
The momentum distribution characteristics for L ¼ 200, h ¼ 1, and n ¼ 1.

Momentum distribution characteristics L ¼ 200, h ¼ 1, n ¼ 2

ph iR 0

Varp,R 2.500e�05

ph iM 0

Varp,M +∞

ph iC ¼ ph iR þ ph iM 0 + i(0)

Varp,C ¼ Varp,R þ Varp,M � 2 ph iR ph iM +∞

Table 2.
The momentum distribution characteristics for L ¼ 200, h ¼ 1, and n ¼ 2.

Momentum distribution characteristics L ¼ 200, h ¼ 1, n ¼ 8

ph iR 0

Varp,R 4.0000e�04

ph iM 0

Varp,M +∞

ph iC ¼ ph iR þ ph iM 0 + i(0)

Varp,C ¼ Varp,R þ Varp,M � 2 ph iR ph iM +∞

Table 3.
The momentum distribution characteristics for L ¼ 200, h ¼ 1, and n ¼ 8.
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ΔxR � ΔpR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Varx,R

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Varp,R

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

12
1� 6

n2π2

� �s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2n2π2

L2

s
¼ ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2π2

3
� 2

r

This product increases with increasing n, having a minimum value for n ¼ 1. The
value of this product for n ¼ 1 is about equal to 0.568 ℏ which obeys the Heisenberg
uncertainty principle, which states that:

Δx� Δp≥
ℏ
2
⇔∀n≥ 1 : ΔxR � ΔpR ≥

ℏ
2

The uncertainties in the probability set and universe M in position and momen-
tum (ΔxM and ΔpM) are defined as being equal to the square root of their respective
variances in M, so that:

ΔxM � ΔpM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varx,M

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varp,M

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

L2

12
L� 1� 6

n2π2

� �� �� �s
� ffiffiffiffiffiffiffiffiþ∞
p ! þ∞

⇔∀n≥ 1 : ΔxM � ΔpM ≥ ℏ
2, in accordance with the Heisenberg uncertainty principle.

The uncertainties in the probability set and universe C = RþM in position and
momentum (ΔxC and ΔpC) are defined as being equal to the square root of their
respective variances in C, so that:

ΔxC � ΔpC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Varx,C

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Varp,C

q

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

12
1� 6

n2π2

� �
þ i

L2

12
L� 1� 6

n2π2

� �� �� �s
� ffiffiffiffiffiffiffiffiþ∞
p ! þ∞

⇔∀n≥ 1 : ΔxC � ΔpC ≥
ℏ
2, in accordance with the Heisenberg uncertainty principle.

Consequently, the Heisenberg uncertainty principle is verified in the universe R,
in the universe M, and the complex universe C.

3. The Wavefunction Entropies in R,M,and C

Another measure of uncertainty in position is the information entropy of the
probability distribution Hx which is the entropy in R and is equal to:

Momentum distribution characteristics L ¼ 200, h ¼ 1, n ¼ 10,000

ph iR 0

Varp,R 625

ph iM 0

Varp,M +∞

ph iC ¼ ph iR þ ph iM 0 + i(0)

Varp,C ¼ Varp,R þ Varp,M � 2 ph iR ph iM +∞

Table 4.
The momentum distribution characteristics for L ¼ 200, h ¼ 1, and n ¼ 10,000.
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Hx ¼ �
Xx¼þ∞

x¼�∞
ψ xð Þj j2Ln ψ xð Þj j2x0

h i
¼ �

Xx¼xcþL
2

x¼xc�L
2

ψ xð Þj j2Ln ψ xð Þj j2x0
h i

¼ HR
x ¼ Ln

2L
ex0

� �

where x0 is an arbitrary reference length [1, 2]. Take x0 ¼ 1:

⇔HR
x ¼ �

Xx¼xcþ
L
2

x¼xc�
L
2

ψ xð Þj j2Ln ψ xð Þj j2
h i

¼ Ln
2L
e

� �
¼ Ln 2Lð Þ � Ln eð Þ ¼ Ln 2Lð Þ � 1 ¼ Ln 2� 200ð Þ � 1 ¼ 4:991464547…

⇔∀x : xc � L
2 ≤ x≤ xc þ L

2 ,we have : d HR
x

� �
≥0, that means that HR

x is a
nondecreasing series with x and converging to Ln 2L

e

� �
and that also in R, chaos and

disorder are increasing with x.
The negative real entropy corresponding to HR

x inR is NegHR
x and is the following:

NegHR
x ¼ �HR

x ¼
Xx¼þ∞

x¼�∞
ψ xð Þj j2Ln ψ xð Þj j2

h i
¼

Xx¼xcþ
L
2

x¼xc�
L
2

ψ xð Þj j2Ln ψ xð Þj j2
h i

¼ �Ln
2L
e

� �

¼ 1� Ln 2Lð Þ ¼ 1� Ln 2� 200ð Þ ¼ �4:991464547…

⇔∀x : xc � L
2 ≤ x≤ xc þ L

2 ,we have : d NegHR
x

� �
≤0, which means that NegHR

x is a
nonincreasing series with x and converging to �Ln 2L

e

� �
. Therefore, if HR

x measures in
R the amount of disorder, of uncertainty, of chaos, of ignorance, of unpredictability,
and of information gain in a random system then since NegHR

x ¼ �HR
x , that means the

opposite of HR
x , NegHR

x measures in R the amount of order, of certainty, of predict-
ability, and of information loss in a stochastic system.

The complementary real entropy to HR
x in R is HR

x and is the following:

H
R
x ¼ �

Xx¼þ∞

x¼�∞
1� ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h i

¼ �
Xx¼xcþL

2

x¼xc�L
2

1� ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h i

¼ 1

In the complementary real probability set to R, we denote the corresponding real

entropy by HR
x .

The meaning of HR
x is the following: it is the real entropy in the real set R and

which is related to the complementary real probability Pm=i ¼ 1� Pr.

⇔∀x : xc � L
2 ≤ x≤ xc þ L

2 ,we have : d H
R
x

h i
≥0, that means that H

R
x is a

nondecreasing series with x and converging to 1 and that also means that in the
complementary real probability set to R, chaos and disorder are increasing with x.

In the complementary imaginary probability set M to the set R, we denote the
corresponding imaginary entropy by HM

x . The meaning of HM
x is the following: it is the
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imaginary entropy in the imaginary setM and which is related to the complementary
imaginary probability Pm ¼ i 1� Prð Þ. The complementary entropy to HR

x in M is HM
x

and is computed as follows:

HM
x ¼ �

Xx¼þ∞

x¼�∞
i 1� ψ xð Þj j2
h i

Ln i 1� ψ xð Þj j2
h in o

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

i 1� ψ xð Þj j2
h i

Ln i 1� ψ xð Þj j2
h in o

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

i 1� ψ xð Þj j2
h i

Lniþ Ln 1� ψ xð Þj j2
h in o

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

i Lniþ Ln 1� ψ xð Þj j2
h i

� ψ xð Þj j2
h i

Lni� ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h in o

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

iLniþ iLn 1� ψ xð Þj j2
h i

� i ψ xð Þj j2
h i

Lni� i ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h i

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

iLni 1� ψ xð Þj j2
h i

þ i 1� ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h i

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

iLni 1� ψ xð Þj j2
h i

� i
Xx¼xcþ

L
2

x¼xc�
L
2

1� ψ xð Þj j2
h i

Ln 1� ψ xð Þj j2
h i

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

iLni 1� ψ xð Þj j2
h i

þ iH
R
x ¼ �iLni

Xx¼xcþ
L
2

x¼xc�
L
2

1� ψ xð Þj j2
h i

þ iH
R
x

¼ �iLni
Xx¼xcþL

2

x¼xc�L
2

1�
Xx¼xcþL

2

x¼xc�L
2

ψ xð Þj j2
8<
:

9=
;þ iH

R
x

¼ �iLni xc þ L
2

� �
� xc � L

2

� �
þ 1

� �
� 1

� �
þ iH

R
x since

Xx¼xcþ
L
2

x¼xc�
L
2

ψ xð Þj j2 ¼ 1

¼ � iLnið ÞLþ iH
R
x
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From the properties of logarithms, we have: θLnx ¼ Ln xθ
� �

then iLni ¼ Lnii.
Moreover, Leonhard Euler’s formula for complex numbers gives: eiθ ¼ cos θ þ i sin θ.
Take θ ¼ π=2þ 2kπ⇔ei π=2þ2kπð Þ ¼ cos π=2þ 2kπð Þ þ i sin π=2þ 2kπð Þ ¼

0þ i 1ð Þ ¼ i, then:

ii ¼ ei π=2þ2kπð Þ� �i ¼ ei
2 π=2þ2kπð Þ ¼ e� π=2þ2kπð Þ since i2 ¼ �1, therefore:

�iLni ¼ �Lnii ¼ �Ln e� π=2þ2kπð Þ� � ¼ π=2þ 2kπ since Ln e½ � ¼ 1 and where k belongs
to the set of integer numbers Z.

Consequently,

HM
x ¼ � iLnið ÞLþ iH

R
x ¼ π=2þ 2kπð ÞLþ iH

R
x

That means that HM
x is a complex number where:

the real part is: Re HM
x

� � ¼ π=2þ 2kπð ÞL, and the imaginary part is: Im HM
x

� � ¼ HR
x .

For k ¼ �1 then
Re HM

x

� � ¼ �3π=2ð ÞL ¼ �4:71238898L ¼ �942:4777961… for L ¼ 200.
For k ¼ 0 then Re HM

x

� � ¼ π=2ð ÞL ¼ 1:570796327L ¼ 314:1592654… for L ¼ 200.
For k ¼ 1 then

Re HM
x

� � ¼ 5π=2ð ÞL ¼ 7:853981634L ¼ 1570:796327… for L ¼ 200,
etc.
Finally, the entropy HC

x in C = RþM is the following:

HC
x ¼ �

Xx¼xcþ
L
2

x¼xc�
L
2

Pc xð ÞLn Pc xð Þ½ �

¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

1� Ln 1½ � ¼ �
Xx¼xcþ

L
2

x¼xc�
L
2

1� 0ð Þ ¼ 0

¼ HR
x þNegHR

x

⇔∀x : xc � L
2 ≤ x≤ xc þ L

2 , we have: d HC
x

� � ¼ 0, that means that HC
x is a constant

series with x and is always equal to 0. That means also and most importantly, for the
wavefunction position distribution and in the probability set and universe
C ¼ RþM, we have complete order, no chaos, no ignorance, no uncertainty, no
disorder, no randomness, no information loss or gain but a conservation of informa-
tion, and no unpredictability since all measurements are completely and perfectly
deterministic (Pc xð Þ ¼ 1 and HC

x ¼ 0).
Similarly, we can determine another measure of uncertainty in momentum which

is the information entropy of the probability distribution Hp and which is [1, 2]:

Hp ¼ �
Xp¼þ∞

p¼�∞
ϕ pð Þj j2Ln ϕ pð Þj j2p0

h i
¼ Ln

4πℏe2 1�γð Þ

Lp0

� �
¼ lim

n!þ∞
Hp nð Þ
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Where γ is Euler’s constant and is equal to: 0.577215664901532…
For p0 ¼ 1 we can compute all the defined entropies in R, M, and C and which

are [1–30]:

HR
p ¼ �

Xp¼þ∞

p¼�∞
ϕ pð Þj j2Ln ϕ pð Þj j2

h i
¼ Ln

4πℏe2 1�γð Þ

L

� �
¼ lim

n!þ∞
Hp nð Þ

NegHR
p ¼

Xp¼þ∞

p¼�∞
ϕ pð Þj j2Ln ϕ pð Þj j2

h i
¼ �Ln

4πℏe2 1�γð Þ

L

� �
¼ � lim

n!þ∞
Hp nð Þ

HR
p ¼ �

Xp¼þ∞

p¼�∞
1� ϕ pð Þj j2
h i

Ln 1� ϕ pð Þj j2
h i

HM
p ¼ �

Xp¼þ∞

p¼�∞
i 1� ϕ pð Þj j2
h i

Ln i 1� ϕ pð Þj j2
h in o

HC
p ¼ �

Xp¼þ∞

p¼�∞
Pc pð ÞLn Pc pð Þ½ � ¼ �

Xp¼þ∞

p¼�∞
1� Ln 1½ � ¼ �

Xp¼þ∞

p¼�∞
1� 0ð Þ ¼ 0 ¼ HR

p þNegHR
p

That means also and most importantly, for the wavefunction momentum distribu-
tion and in the probability set and universe C ¼ RþM, we have complete order, no
chaos, no ignorance, no uncertainty, no disorder, no randomness, no information loss
or gain but a conservation of information, and no unpredictability since all measure-
ments are completely and perfectly deterministic (Pc pð Þ ¼ 1 and HC

p ¼ 0).
The quantum mechanical entropic uncertainty principle states that for x0p0 ¼ ℏ

then:
HR

x þHR
p nð Þ≥Ln eπð Þ ffi 2:144729886…nats, (base e in Ln gives the “natural units”

nat).
For x0p0 ¼ ℏ, the sum of the position and momentum entropies yields:
HR

x þHR
p ∞ð Þ ¼ Ln 8πe1�2γð Þ ffi 3:069740098…nats, (base e in Ln gives the “natural

units” nat).
which satisfies the quantum entropic uncertainty principle.
The following figures (Figures 38–51) illustrate all the computations done above.

4. Conclusion and perspectives

In the current research work, the original extended model of eight axioms (EKA)
of A. N. Kolmogorov was connected and applied to the infinite potential well problem
in quantum mechanics theory. Thus, a tight link between quantum mechanics and the
novel paradigm (CPP) was achieved. Consequently, the model of “Complex Proba-
bility” was more developed beyond the scope of my 19 previous research works on
this topic.

Additionally, as it was proved and verified in the novel model, before the begin-
ning of the random phenomenon simulation and at its end we have the chaotic factor
(Chf and MChf) is zero and the degree of our knowledge (DOK) is one since the
stochastic fluctuations and effects have either not started yet or they have terminated
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Figure 38.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 1.

Figure 39.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 1 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 40.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 2.

Figure 41.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 2 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 42.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 3.

Figure 43.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 3 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 44.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 4.

Figure 45.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 4 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 46.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 5.

Figure 47.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 5 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 48.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 20.

Figure 49.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 20 and for k ¼ �1,0,1 in the planes in

yellow, in cyan, and in light gray, respectively.
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Figure 50.
The graphs of HR

x ,H
R
x ,H

C
x ,NegHR

x as functions of X for n ¼ 100.

Figure 51.
The graph of HM

x ¼ Re HM
x

� �þ iIm HM
x

� �
in red as functions of X for n ¼ 100 and for k ¼ �1,0,1 in the planes

in yellow, in cyan, and in light gray, respectively.
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and finished their task on the probabilistic phenomenon. During the execution of the
nondeterministic phenomenon and experiment we also have: 0.5 ≤ DOK < 1,
�0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We can see that during this entire process we
have incessantly and continually Pc2 = DOK – Chf = DOK + MChf = 1 = Pc, that means
that the simulation which behaved randomly and stochastically in the real set and
universe R is now certain and deterministic in the complex probability set and
universe C ¼ RþM, and this after adding to the random experiment executed in
the real universe R the contributions of the imaginary set and universe M and hence
after eliminating and subtracting the chaotic factor from the degree of our knowledge.
Furthermore, the real, imaginary, complex, and deterministic probabilities and that
correspond to each value of the momentum random variable P have been determined
in the three probabilities sets and universes which are R, M, and C by Pr, Pm, Z and
Pc respectively. Consequently, at each value of P, the novel quantum mechanics and
CPP parameters Pr, Pm, Pm=i, DOK, Chf, MChf, Pc, and Z are surely and perfectly
predicted in the complex probabilities set and universe C with Pc maintained equal to
one permanently and repeatedly.

In addition, referring to all these obtained graphs and executed simulations
throughout the whole research work, we are able to quantify and visualize both the
system chaos and stochastic effects and influences (expressed and materialized by Chf
andMChf) and the certain knowledge (expressed and materialized by DOK and Pc) of
the new paradigm. This is without any doubt very fruitful, wonderful, and fascinating
and proves and reveals once again the advantages of extending A. N. Kolmogorov’s
five axioms of probability and hence the novelty and benefits of my inventive and
original model in the fields of prognostics, applied mathematics, and quantum
mechanics that can be called verily: “The Complex Probability Paradigm”.

As prospective research, we aim to develop the novel prognostic paradigm con-
ceived and implement it in a large set of nondeterministic phenomena in quantum
mechanics.
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Chapter 3

Stability of Algorithms in Statistical
Modeling
Alexander A. Kronberg and Tatiana K. Kronberg

Abstract

In this paper, we investigate algorithms stability for calculation of
multidimensional integrals using the statistical modeling methods. We considered
issues of the algorithms optimization and we give sufficient conditions for the stabil-
ity. We apply our approach to both calculation of integral from the regression func-
tion and the moments integral calculation. In all our numerical experiences, we used
the mt19937 pseudorandom number generator.

Keywords: statistical modeling, pseudorandom numbers, optimal density, integral
estimation, Monte Carlo methods

1. Introduction

One of the main problem of the statistical modeling method (the Monte Carlo
method) is the problem of quality for pseudorandom numbers. In the paper, we
consider a task of multidimensional integrals calculation by the statistical modeling
method and give sufficient conditions for the stability of this task to quality of
pseudorandom numbers. Included results of various numerical experiences with the
mt19937 pseudorandom number generator. In our work, we discuss important issues
of algorithms optimization in the statistical modeling. In particular, we apply the new
approach to the following: a task of finding of integral functionals from solution of
boundary-value problems for both the linear [1] or nonlinear [2] elliptic equations
(the estimations are given near to a boundary).

The paper is organized as follows: In Section 2, we give the sufficient conditions of
stability. Calculation of an integral of very large dimensions is discussed in Section 3.
Rare events effect is the subject of Section 4. In Section 5, we describe calculation of
integral moments. In Section 6, we apply our approach to calculate an integral of the
regression function. In Section 7, we give the conclusion of our studies.

2. Sufficient conditions of stability

Let

I ¼
ð

D
f xð Þdx (1)

89



be the Riemann integral. Here D is a domain of the s-dimensional Euclidean space
Rs. If the dimension s is large enough then we must use a statistical modeling method.
In this case, our integral has form of the mathematical expectation for a random value
η ¼ f ξð Þ=p ξð Þ:

ð

D
f xð Þdx ¼

ð

D
p xð Þ f xð Þ

p xð Þ dx ¼ E
f xð Þ
p xð Þ ¼ Eη: (2)

Here p xð Þ is a density of random variable ξ∈D. We put p xð Þ 6¼ 0 for f xð Þ 6¼ 0, and
we say that there exists integral

ð

D
∣f xð Þ∣dx:

A variance of the random value η:

σ2 ¼ varη ¼ Eη2 � Eηð Þ2 ¼
ð

D
p xð Þ f xð Þ

p xð Þ
� �2

dx� I2 ¼
ð

D

f 2 xð Þ
p xð Þ dx� I2: (3)

We estimate the mathematical expectation Eη by the sum
PN

i¼1ηi=N, where ηi are
independent realizations of the random value η. Suppose σ2 is finite, and N is large
enough; then from the classical central limit theorem, it follows that the random valuePN

i¼1ηi=N has distribution close to the normal distribution with a mathematical
expectation I, and mean-square deviation σ=

ffiffiffiffi
N

p
. This property above is useful to

estimate error, e.g., using the 3σ rule. So we have

I � 1
N

XN
i¼1

ηi

�����

�����≤
3σffiffiffiffi
N

p (4)

with probability 0,997, approximately.
Let us ηi be realizable sampling values; then the value σ is estimated as the

following:

σ2 ≈
1
N

XN
i¼1

η2i �
1
N

XN
i¼1

ηi

 !2

: (5)

Suppose Eη4 is finite and in Eq. (3) we replace the σ by its approximate value. Then
it changes the estimation of error in calculation of the integral in order of O 1

N

� �
.

In practice, when we simulate random variables ξ, we receive simulation with
some density q xð Þ instead of simulation with the origin density p xð Þ. Now, we
investigate the stability of the theoretical estimation Eq. (2). Let us consider the
following expression:

ð

D
p xð Þ f xð Þ

p xð Þ dx�
ð

D
p xð Þ q xð Þ

p xð Þ dx ¼
ð

D

f xð Þ
p xð Þ p xð Þ � q xð Þð Þdx≤

≤ ε

ð

D

∣f xð Þ∣
p xð Þ dx,

(6)
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where ε ¼ sup
x∈D

∣p xð Þ � q xð Þ∣. By I jf j=pð Þ denote the integral Ð ∣f xð Þ∣
p xð Þ dx. The both

values ε and I jf j=pð Þ provide the guaranteed proximity of the real estimation to the
theoretical one of the integral.

Example 1. The inequality Eq. (6) is reduced to the equality if D ¼
D1∪D2,D1∩D2 ¼ ∅. For x∈D1 we get p xð Þ � q xð Þ � ε>0, and f xð Þ � 0 in D2. If the
condition I jf j=pð Þ ¼ þ∞ holds, then the error of the real estimation of the integral will
be infinity for any ε>0.

Hence, a quality of pseudorandom variables (i.e., smallness of ε) does not yet
guaranties the smallness of the error in general, as the integral I jf j=pð Þ have to be both
finite and not very great in magnitude.

Suppose we simultaneously make the estimations for both I jf j=pð Þ and the origin
integral Eq. (2) using the same density p xð Þ. Then we need to ask boundedness of the

integral
Ð
D

∣f xð Þ∣
p2 xð Þ dx to get the guaranteed stability of the estimation for the integral

I jf j=pð Þ, and so on. The qualitative comparison of simulation with both densities p1 xð Þ
and p2 xð Þ can be provided not only by a magnitude of the variance estimation (here
we do not pay attention to the complexity of random values simulation) but also
magnitudes of both the integrals I jf j=p1

� �
and I jf j=p2

� �
. On the other hand we have

the Schwarz inequality:

ð

D

f xð Þ
p xð Þ p xð Þ � q xð Þð Þdx≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D
p xð Þ � q xð Þ½ �2dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D

f 2 xð Þ
p2 xð Þ dx

s
: (7)

The sufficient condition for the estimation to be stability is that
Ð
D

f 2 xð Þ
p2 xð Þ to be finite

and not very great. The Schwarz inequality is reduced to the equality if and only if

λ
f xð Þ
p xð Þ ¼ p xð Þ � q xð Þ, (8)

where λ is a real number. From the above we get

q xð Þ ¼ p xð Þ � λ
f xð Þ
p xð Þ ,ð

D
q xð Þdx ¼

ð

D
p xð Þdx� λ

ð

D

f xð Þ
p xð Þ dx:

(9)

Therefore, the equality in Eq. (7) is reached under the necessary conditionÐ
D

f xð Þ
p xð Þ dx ¼ 0, when

Ð
Dp xð Þdx ¼ ÐDq xð Þdx ¼ 1.

Example 2. The condition above is realized, e.g., if

D ¼ �1, 1½ �, D1 ¼ �1, 0½ �, D1 ¼ 0, 1½ �,
f xð Þ ¼ �1 inD1, f xð Þ ¼ 1 inD2, p xð Þ ¼ p �xð Þ:

Let us ηk be f ξð Þ=p ξð Þ½ �k. Now we consider an estimation:

Eηk ¼
ð

D
p xð Þ f xð Þ

p xð Þ
� �k

dx ¼
ð

D

f k xð Þ
pk�1 xð Þ dx, k≥ 1: (10)
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This expectation is actually estimated by the integral:
Ð
Dq xð Þ f xð Þ=p xð Þ½ �kdx:

ð

D

f k xð Þ
pk�1 xð Þ dx�

ð

D
q xð Þ f

k xð Þ
pk xð Þ dx ¼

ð

D
p xð Þ � q xð Þ½ � f

k xð Þ
pk xð Þ dx≤

≤ ε

ð

D

∣f k xð Þ∣
pk xð Þ dx:

(11)

The last integral is assumed to be a finite, and not very large. These conditions are
desirable. In Eq. (11) the equality is reached like to the Example 1.

For all cases above, the stability will be observed if ∣f xð Þ=p xð Þ∣ ≤M< þ∞ for not
very great M. From the Schwarz inequality we have:

ð

D
p xð Þ � q xð Þ½ � f

k xð Þ
pk xð Þ dx ¼

ð

D

p xð Þ � q xð Þ
pβ xð Þ � f k xð Þ

pk�β xð Þ dx≤

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D

p xð Þ � q xð Þ½ �2
p2β xð Þ dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D

f 2k xð Þ
p2 k�βð Þ xð Þ dx

s
,

(12)

where β is a real number. We get a family of proximity measures for the
distribution densities:

ð

D

p xð Þ � q xð Þ½ �2
p2β xð Þ dx: (13)

For β ¼ 0, 5 we obtain expression

χ2 p, qð Þ ¼
ð

D

p xð Þ � q xð Þ½ �2
p xð Þdx:

(14)

that is well known in the mathematical statistics.
For β ¼ �0, 5 we get

Ð
D p xð Þ � q xð Þ½ �2p xð Þdx and have the obvious inequalities

ð

D
p xð Þ � q xð Þ½ �2p xð Þdx≤ sup

x∈D
p xð Þ �

ð

D
p xð Þ � q xð Þ½ �2dx,

ð

D
p xð Þ � q xð Þ½ �2p xð Þdx≤ sup

x∈D
p xð Þ � q xð Þ½ �2

ð

D
p xð Þdx ¼ sup

x∈D
p xð Þ � q xð Þ½ �2:

In Eq. (6) the equality is satisfied if and only if

p� q
pβ

¼ λ
f k

pk�β
, p� q ¼ λ

f kpβ

pk�β
, (15)

i.e., the necessary condition is
Ð
D

f k xð Þ
pk�2β xð Þ dx ¼ 0: This is realized in the Example 2.

Let us remark that for k ¼ 1 and β ¼ 1 we have
ð

D

p xð Þ � q xð Þ
p xð Þ f xð Þdx ¼

ð

D

p� qffiffiffipp � fffiffiffipp ≤

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D

p� qð Þ2
p

dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

D

f 2

p
dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 p, qð Þ

q
� Eη2:

(16)
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We assume that integrals
Ð
D f xð Þ þ εi xð Þ½ �dx are known and the subintegral func-

tions f xð Þ þ εi xð Þ>0 close to a function f xð Þ≥0. Suppose also

1� δ1 εið Þ< f xð Þ
f xð Þ þ εi xð Þ < 1þ δ2 εið Þ,

J fð Þ � δ3 εið Þ≤ J f þ εið Þ≤ J fð Þ þ δ4 εið Þ, δj ! 0, as εi ! 0, j ¼ 1, 2, 3, 4:
ð

D
q xð Þ f xð Þ

p xð Þ dx ¼
ð

D
q xð Þ f xð ÞJ f þ εið Þ

f xð Þ þ εi xð Þ dx ¼ E η̂,

(17)

where the random value η̂ has a form:

η̂ ¼ f ξ̂
� �

J f þ εið Þ
f ξ̂
� �þ εi ξ̂

� � : (18)

Here ξ̂ is distributed with the density q xð Þ. Keeping the above factors in mind we
get the following:

J fð Þ � δ3½ � 1� δ1½ �≤ η≤ 1þ δ2½ � J fð Þ þ δ4½ �;

i. Regardless of q xð Þ, i.e., regardless of quality of a pseudorandom number
generator we have E η̂ ! J fð Þ, varη̂ ! 0, asε ! 0;

ii. All moments E η̂k of the random variable are finite.

Let we calculate
Ð
D

∣f xð Þ∣
p xð Þ dx using the density

p1 xð Þ ¼ ∣f xð Þ∣
I jf j=pð Þp xð Þ ,

then the estimation variance equals to zero.
Suppose we calculate the integral

Ð
Df xð Þdx with the density p1 xð Þ. In this case it

would be interesting to know both the values
Ð
D

∣f xð Þ∣
p1

dx and
Ð
D

f 2

p21
dx.

Proposition 1. I jf j=p1
� � ¼ I jf j=pð Þ.

Proposition 2. I f 2=p21
� � ¼ I2 jf j=pð ÞI p2ð Þ.

Now we consider the density

p2 xð Þ ¼ f 2 xð Þ
p xð ÞI f 2=p

� � :

Using the density above for the estimation of the integral
Ð
D

f 2

p dx we obtain the
estimation variance equals to zero.

Further we estimate the integral
Ð
Df xð Þdxwith the density p2: η̂ ¼ f ξ2ð Þ=p ξ2ð Þ, ξ2 is

distributed with p2 xð Þ. Suppose η ¼ f ξð Þ=p ξð Þ, ξ is distributed with p xð Þ; then
I f 2=p2
� � ¼ I f 2=p

� �
.

Proposition 3. varη ¼ var η̂.
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Proposition 4.
Ð
D

f xð Þ
p xð Þ dx

" #2
≤ volDð Þ � Ð

D

f 2 xð Þ
p2 xð Þ dx,where volD is the volume of the

domain D.

Proposition 5. If volD ¼ 1, p3 xð Þ ¼ f 2 xð Þ
I f 2ð Þ , η3 ¼ f ξ3ð Þ

p ξ3ð Þ , where ξ3 is a random variable

distributed with the density of p3 xð Þ; η4 ¼ f ξ4ð Þ
p ξ4ð Þ , where ξ4 is a random variable

distributed with the density of p xð Þ � 1, then varη3 ¼ varη4.
In actual practice normalization constants are usually unknown for both p1 xð Þ and

p2 xð Þ. But using densities close to them we can get the approximate equalities in the
Prepositions 1, 2, 3.

Now we consider

I fð Þ ¼
ð

0, 1½ �10
x1x2 … x10dx1 … dx10, (19)

where the integration domain D ¼ 0, 1½ �10 is the 10-dimensional unit cube, the
subintegral function f xð Þ is equals to x1x2 … x10: To realize algorithms of the statistical
modeling at a computer it is necessary to set a number N of realizations for random
variable η ¼ f ξð Þ=p ξð Þ, where ξ is distributed with the density p ξð Þ. In fact we realize
the discrete set of numbers ξi, i ¼ 1, … ,N, which we can consider to be realizations
of some distribution qN xð Þ.

In all our numerical computations we use the pseudorandom number generator:
generator type mt19937 [3]. For s ¼ 10, p xð Þ � 1 we have

I fð Þ ¼ 1=2ð Þ10 ≈ 9, 7656 � 10�4, I f=pð Þ ¼ I fð Þ,
I f 2=p
� � ¼ I f 2=p2

� � ¼ 1=3ð Þ10 ≈ 1, 6935 � 10�5,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ð Þ10 � 1=2ð Þ20

q
≈ 3, 998 � 10�3:

Table 1 shows the empirical estimations Î and σ̂ for I and σ, respectively. Taking
p xið Þ ¼ 3x2i over each coordinate we get

I f 2=p
� � ¼ 1=3ð Þ10, I f=pð Þ ¼ ∞, I f 2=p2

� � ¼ ∞,

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ð Þ10 � 1=2ð Þ20

q
:

The value σ is the same as one for p xð Þ � 1.

N Î σ̂

1,000,000 9, 785 � 10�4 3, 991 � 10�3

9,000,000 9, 768 � 10�4 4, 001 � 10�3

81,000,000 9, 766 � 10�4 3, 997 � 10�3

100,000,000 9, 765 � 10�4 3, 995 � 10�3

Table 1.
The results of numerical calculations for the integral Eq. (19) with the uniform density.
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For N ¼ 100000000 the computer code outputs an error because of machine zero
divide. The reason of this event is η ¼Q10

1 1= 3
ffiffiffi
α3

p
i

� ��
, where αi are the pseudorandom

numbers with the uniform density in 0, 1ð Þ [3]. If the formulas of random numbers
simulation generate division by very small numbers then such formulas are one more
source of the algorithms instability in the statistical modeling. As seen in Table 2 the
value of integral I fð Þ is successfully estimated, but the empirical estimations of σ̂ are
sufficiently different from the theoretical value σ. This result is explained by the
following: Eη4 ¼ ∞, I f=pð Þ ¼ ∞, I f 2=p2

� � ¼ ∞: Taking p xið Þ ¼ 2, 6x1,6i we obtain
σ ≈ 1, 223 � 10�3, I f=pð Þ≈0, 67556, the finite value of Eη4, and I f 2=p2

� � ¼ ∞. Although
the last estimation is infinite, but Table 3 shows that both values I fð Þ and σ̂ are
successfully calculated. The value of σ̂ is very close to σ.

3. Integrals of very large dimensions

We are coming now to the question of calculation of an integral

I fð Þ ¼
ð∞

0

…

ð∞

0

e� x1þx2þ…þxsð Þdx1dx2 … dx10 ¼ 1 (20)

with the distribution density p xð Þ ¼ λse�λ x1þx2þ…þxsð Þ. For λ≥ 2, the estimation
variance η is infinity. For 0< λ< 2, the variance will be finite. For λ> 1, we obtain
I f=pð Þ ¼ ∞ and I f 2=p2

� � ¼ ∞. However, as seen in Table 4, the results of calculations
for N ¼ 10000 allow us to make the conclusion below. If we have the pseudorandom
generator of the high quality and a good p xð Þ then we can calculate the very high
dimensional integrals.

N Î σ̂

1,000,000 9, 766 � 10�4 3, 276 � 10�3

9,000,000 9, 754 � 10�4 3, 619 � 10�3

81,000,000 9, 765 � 10�4 3, 759 � 10�3

100,000,000 Inf nan

Table 2.
The results of numerical calculations for the integral Eq. (19) with the density p xið Þ ¼ 3x2i .

N Î σ̂

1,000,000 9, 769 � 10�4 1, 212 � 10�3

9,000,000 9, 760 � 10�4 1, 220 � 10�3

81,000,000 9, 766 � 10�4 1, 223 � 10�3

Table 3.
The results of numerical calculations for the integral Eq. (19) with the density p xið Þ ¼ 2, 6x1,6i :
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4. Special integrals

Let us consider the following class of the integrals:

ð

0,þ∞½ Þs
f x1, x2, … , xsð Þdx1dx2 … dxs, (21)

We define the behavior of the subintegral function as follows: f x1, x2, … , xsð Þ to be
[label = ()]

1.close to 1 in the cube 0, a½ �s as 0< a< 1;

2.much less than unit as a< xi < b, b≥ a;

3.equil to zero as b≤ xi <∞.

Note that very often the integration of functions can be reduced to the linear
combination of the integrals similar to Eq. (21) using various replacements of variables.

Below, let us perform a theoretical and numerical analysis how to integrate a model
function from our class. The model function is assumed to be f � 1 as 0≤ xi ≤ a,
otherwise f ¼ 0. We take both distribution densities set p1 xið Þ ¼ λe�λxi , 0≤ xi <∞
and p2 xið Þ ¼ ωþ 1ð Þ 1� xið Þω, 0≤ xi < 1 to be examined. Our goal is to determine
what of two densities provides the best accuracy of the integral computation with
given model function.

If we simulate a random point ξ ¼ ξ1, … , ξsð Þwith densities p1 xið Þ ¼ λe�λxi then the
integral estimation is given by

ηs ¼
Ys
i¼1

λeλξi ,

varηs ¼ Eη2s � Eηsð Þ2 ¼ 1
λ

ða

0

eλxdx

2
4

3
5
s

� as ¼ eλa � 1
λ2

� �s
� as:

(22)

Testing the variance varηs for the extremum over λwe get the minimum condition

λaeλa � 2eλa þ 2 ¼ 0: (23)

λ s Î σ̂ σ

1,01 1000 0,999 0,320 0,324

1,01 10,000 0,995 1,39 1,31

1005 20,000 1004 0,807 0,805

1003 40,000 0,994 0,649 0,658

1001 80,000 0,991 0,605 0,661

Table 4.
The results of numerical calculations for the integral Eq. (20).
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Let A be λa; then the equation Eq. (23) is reduced to

AeA � 2eA þ 2 ¼ 0: (24)

The equation above has the unique root at A≈ 1, 593620. It follows that λmin ¼ A=a.
For such λmin the relative error with the 3σ rule is given by

3σffiffiffiffi
N

p
as

¼ 3
eA � 1
� �s

A2s � 1

 !0,5

=
ffiffiffiffi
N

p
: (25)

Suppose N ¼ 9 � 106, s ¼ 10, λ ¼ A=a; then the theoretical value of the relative
error is approximately 8, 72 � 10�3. The numerical estimation of the relative error is
approximately 8, 69 � 10�3 as a∈ 0, 1; 0, 001½ �. Thus, the numerical estimation of one
gives a good fit to the predicted value over a wide range of a.

Now we discuss the use of the density p2 xið Þ ¼ ωþ 1ð Þ 1� xið Þω. First, we estimate
the second moment of a random value ηs:

Eη2s ¼
1� 1� að Þ1�ω

1� ω2

" #s
: (26)

The parameter ω is chosen to be A=a; then the expression above is rewritten as
follows

Eη2s ¼
1

1� A2=a2
1� 1� að Þ1�A=a
� �� �s

: (27)

Let us consider Eη2s as a ! 0:

lim
a!0

Eη2s ¼ lim
a!0

a2

a2 � A2 1� 1� að Þ1�A=a
� �� �s

¼

¼ � lim
a!0

a2

A2 1� 1� að Þ 1� að Þ�A=a
� �� �s

¼ � lim
a!0

a2

A2 1� 1� að Þ 1� að Þ�1=a
h iA� �� �s

¼

¼ � lim
a!0

a2

A2 1� 1� að ÞeA� �� �s
¼ � lim

a!0

a2

A2 1� eA
� �� �s

� eA � 1
� �

A2 a2
� �s

:

(28)

Comparison between Eqs. (22) and (28) allows to make the following conclusion.
If w is chosen to be A=a then the asymptotics of variances, as a ! 0, are the same in
the densities set of p1 xið Þ, p2 xið Þ. In the numerical simulation the relative accuracy of
≈ 8, 68 � 10�3 is reached as N ¼ 9 � 106, s ¼ 10,ω ¼ A=a, a∈ 0, 01; 0, 001½ �.

Let us turn now to the integral

I fð Þ ¼
ð

0, 1½ �10
f x1, x2, … , x10ð Þdx1dx2 … dx10, (29)
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where

f x1, x2, … , x10ð Þ ¼ 1, 0≤ xi ≤ 1=4,

0, otherwise:

�
(30)

We put p xð Þ � 1; then I fð Þ ¼ I f=pð Þ ¼ I f 2=p
� � ¼ 1=4ð Þ10 ≈ 9, 5367 � 10�7: For

N ¼ 640000 all realizations are turned out to be equal to zero, i.e., q640000 xð Þ ¼ 0 as
0≤ xi ≤ 1=4. In this case, we have

ð

0, 1½ �10
p xð Þ f xð Þ

p xð Þ dx�
ð

0, 1½ �10
q640000

f xð Þ
p xð Þ dx ¼ 1=4ð Þ10 � 0 ¼ 1=4ð Þ10: (31)

In accordance with N, the realizations numbers of ηi are turned out to be equal to 1
as N ¼ 810000; equal to 3 as N ¼ 4000000; equal to 15 as N ¼ 16000000.

We now take p xið Þ ¼ ωþ 1ð Þ 1� xið Þω in the unit cube 0, 1½ �10 ω> 1ð Þ. Such choice
provides the gross realizations of points in 0, 1=4½ �10 and as consequence, we get
benefit in quality of random values (simultaneously, we have decrease of the estima-
tion variance, and as consequence decrease of the statistical error with the 3σ rule.)
Table 5 shows the calculations results for N ¼ 9000000. Note that σ̂ reaches the
minimum as ω ¼ 5. In this case, we have p̂ xð Þ ¼ 6 1� xð Þ5, I f=p̂ð Þ ¼ I f 2=p̂

� �
≈ 3, 49 �

10�11: Making the more detailed research for both ω ¼ 5 and the theoretical value
σ ≈ 5, 83 � 10�6 we get the results represented in Table 6. If the function

w Î rule “3σ”

3 9, 53 � 10�7 8, 61 � 10�9

4 9, 58 � 10�7 6, 36 � 10�9

5 9, 55 � 10�7 5, 82 � 10�9

6 9, 55 � 10�7 6, 49 � 10�9

7 9, 51 � 10�7 8, 06 � 10�9

Table 5.
The results of numerical calculations for the integral Eq. (29) at various ω values.

N Î σ̂

640,000 9, 61 � 10�7 6, 15 � 10�6

810,000 9, 56 � 10�7 6, 00 � 10�6

1,000,000 9, 51 � 10�7 5, 91 � 10�6

4,000,000 9, 52 � 10�7 5, 74 � 10�6

16,000,000 9, 55 � 10�7 5, 84 � 10�6

Table 6.
The results of numerical calculations for the integral Eq. (29) at ω ¼ 5.

98

Applied Probability Theory - New Perspectives, Recent Advances and Trends



f x1, x2, … , x10ð Þ close to some constant in 0, 1=4½ �10 and small out of this interval then
we can advise to use p̂ ¼ 6 1� xð Þ5 to calculate the integral in 0, 1½ �10.

5. Moments calculation

We are now concerned with the following issue: to find the kth moments of a
random value τ with the distribution density p xð Þ:

Eτk ¼
ðb

a

xkp xð Þdx: (32)

In fact we have realizations of the random value ξ with a distribution density q xð Þ.
With p xð Þ replaced by q xð Þ in Eq. (32) we get an error

ðb

a

xkp xð Þdx�
ðb

a

xkq xð Þdx ¼
ðb

a

xk p xð Þ � q xð Þ½ �dx: (33)

Suppose b ¼ ∞ and ξmax are the maximum value of the random variable over the
all realizations for fixed N; then value of ξmax gives shift

Ð∞
ξmax

xkp xð Þdx that increases
both monotonically and without limit. The condition q xð Þ ¼ 0 as x> ξmax determines
the lower limit of the last integral.

Many solutions of the boundary-value problems for the elliptic and parabolic
Equations [4, 5] have a form of the expectations for the random value moments.
Meaning of these expectations is the first exit time of the Wiener process trajectories
to the domain boundary.

Let a domain be the three-dimensional ball with the radius r ¼ 1 and the Wiener
trajectories start from the ball center; then a function of distribution of the first exit
time for the Wiener trajectory is, in particular, given by [5].

F tð Þ ¼ 1þ 2
X∞

k¼1

�1ð Þk exp �k2π2t=2
� �

, t∈ 0,þ∞½ Þ: (34)

From the above, we obtain the distribution density:

p tð Þ ¼ 2
X∞

k¼1

�1ð Þkþ1μk2 exp �μk2t
� �

, μ ¼ π2=2: (35)

Assuming τ is distributed with this density and calculating the expectation of the
kth moment we get

Eτk ¼
ð∞

0

tkp tð Þdt: (36)

In Table 7, we put the calculations results for N ¼ 1000000. The kth moment
expectation can be represented in a form.
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Eτk ¼
ð∞

0

q xð Þtk p tð Þ
q tð Þ dt, (37)

where q tð Þ is some density in 0,∞½ Þ. Taking q tð Þ ¼ λ exp �λtð Þ, for λ ¼ π2=2 we get
that the number of realizations ξi > 1 will be almost twice as small as in the case of the
modeling with the original p tð Þ. In this situation we should obtain degradation of the
estimation for the high moments. The calculations results with q tð Þ for N ¼ 1000000
are represented in Table 8. However, in realizations at a computer we get the obvious

Moment Simulation Theory

1 3, 304 � 10�1 3, 333 � 10�1

2 1, 553 � 10�1 1, 556 � 10�1

3 9, 848 � 10�2 9, 841 � 10�2

4 8, 076 � 10�2 8, 063 � 10�2

5 8, 291 � 10�2 8, 193 � 10�2

6 9, 843 � 10�2 9, 969 � 10�2

7 1, 319 � 10�1 1, 414 � 10�1

8 2, 070 � 10�1 2, 293 � 10�1

9 4, 518 � 10�1 4, 182 � 10�1

10 7, 286 � 10�1 8, 474 � 10�1

11 9, 021 � 102 4, 251 � 103

12 1, 183 � 103 1, 637 � 104

13 8, 389 � 103 6, 634 � 104

Table 7.
The results of numerical calculations for the moments by the first way.

Moment Simulation

5 8, 188 � 10�2

6 1, 013 � 10�1

7 1, 468 � 10�1

8 2, 247 � 10�1

9 3, 950 � 10�1

10 8, 283 � 10�1

18 2, 833 � 103

19 1, 056 � 104

20 5, 118 � 104

Table 8.
The results of numerical calculations for the moments by the second way.
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improvement in quality of the moments estimation for all k from 5 to 20. Consider the
choice of modeling strategy with regards to the variance. Suppose ξ and η be estima-
tions of the statistical modeling for a value J, i.e., Eξ ¼ Eη ¼ J with the variances of
σ21 ξð Þ, σ22 ηð Þ and the realizations of ξ ¼ ξ1 þ … þ ξNð Þ=N, η ¼ η1 þ … þ ηNð Þ=N. It
would seem that for σ1 ξð Þ< σ2 ηð Þ the real estimation of ξ will be occurred close to the
origin value of J. But this statement does not need to be always true. Without loss of
generality it can believed that J ¼ 0. Additionally, if N is large enough then ξ, η are
chosen be normal random variables with N 0, σ1ð Þ and N 0, σ2ð Þ, respectively. The
following theorem holds.

Proposition 6. Let ξ, η be normal random variables, and ξ � N 0, σ1ð Þ, η � N 0, σ2ð Þ
then P ξj> jηjð Þ ¼ 2

π arctan σ1
σ2
:

Proof:

Pjξ>jηj ¼ 1
σ1

ffiffiffiffiffi
2π

p
ð0

�∞

e
� y2

2σ2
1 dy

1
σ2

ffiffiffiffiffi
2π

p
ðy

0

e
� x2

2σ2
2 dxþ 1

σ2
ffiffiffiffiffi
2π

p
ðyj j

0

e
� x2

2σ2
2 dx

8><
>:

9>=
>;
þ

þ 1
σ1

ffiffiffiffiffi
2π

p
ð∞

0

e
� y2

2σ2
1 dy

1
σ2

ffiffiffiffiffi
2π

p
ðy

0

e
� x2

2σ2
2 dxþ 1

σ2
ffiffiffiffiffi
2π

p
ðyj j

0

e
� x2

2σ2
2 dx

8><
>:

9>=
>;

¼

¼ 2
σ1

ffiffiffiffiffi
2π

p
ð∞

0

e
� y2

2σ2
1 dy

2
σ2

ffiffiffiffiffi
2π

p
ðy

0

e
� x2

2σ2
2 dx

8<
:

9=
; ¼ 4

2πσ1σ2

ð∞

0

e
� y2

2σ2
1 dy �

ðy

0

e
� x2

2σ2
2 dx:

Using Taylor expansion

e
� y2

2σ2
2 ¼

X∞
n¼0

�1ð Þn y2n

2nσ2n2 n!
,

we get

ðy

0

X∞
n¼0

�1ð Þn x2n

2nσ2n2 n!
dx ¼

X∞
n¼0

�1ð Þn y2nþ1

2nþ 1ð Þ2nσ2n2 n!
,

ð∞

0

X∞
n¼0

�1ð Þn y2nþ1

2nþ 1ð Þ2nσ2n2 n!
e
� y2

2σ2
1 dy ¼

X∞
n¼0

�1ð Þn 1
2nþ 1ð Þ2nσ2n2 n!

ð∞

0

y2nþ1e
� y2

2σ2
1 dy ¼

¼
X∞
n¼0

�1ð Þn 1
2nþ 1ð Þ2nσ2n2 n!

� 2
nþ1σ2nþ2

1 n!
2

: ∗ð Þ

Note that the last equality is obtained with the help of the formula:

ð∞

0

x2nþ1e�px2 dx ¼ n!
2pnþ1 , p>0:

In our case, p is 1
2σ21
. We continue the equalities chain which is broken at (*):
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∗ð Þ ¼
X∞
n¼0

�1ð Þn 1
2nþ 1ð Þ

σ2nþ2
1

σ2n2
¼
X∞
n¼0

�1ð Þn σ21
2nþ 1ð Þ

σ1
σ2

� �2n

¼

¼ 2
π

X∞
n¼0

�1ð Þn σ1=σ2ð Þ2nþ1

2nþ 1
¼ 2

π
arctan

σ1
σ2

:

For the k-moment calculation we take

qk tð Þ ¼ λkþ1tke�λt

k!
, λ ¼ π2

2

and get the results shown in Table 9.

6. Integral from the regression function

Now, we consider the issue of calculation of an integral

ð

D

f xð Þdx, (38)

where the function f xð Þ has no an analytical expression. Suppose there exists a
random variable ξ x,wð Þ such that its expectation is equals to Eξ x,wð Þ ¼ f xð Þ for some
fixed x. The random variable ξ x,wð Þ may be realized neither as result of the physical
measurements or some calculations (e.g., using the modeling statistical method). In
this case the optimal density is given by [6].

Moment Simulation

1 3, 297 � 10�1

2 1, 556 � 10�1

3 9, 842 � 10�2

4 8, 066 � 10�2

5 8, 194 � 10�2

6 9, 968 � 10�2

7 1, 414 � 10�1

8 2, 293 � 10�1

9 4, 181 � 10�1

10 8, 474 � 10�1

18 4, 251 � 103

19 1, 637 � 104

20 6, 634 � 104

Table 9.
The results of numerical calculations for the moments by the third way.
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p xð Þ ¼ f xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d xð Þ þ λ

p , (39)

where d xð Þ is the variance of the random variable ξ x,wð Þ. Note that one should
use the optimal density from [1] if complexity in calculations (experimental
measurements) is much different from each other for any x. We determine the
parameter λ from the condition

Ð
D
f xð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ
p

dx ¼ 1: Really in practice, we find a

priori or a posteriori approaches to both f xð Þ and d xð Þ. By f xð Þ and d xð Þ denote these
approaches. Then the approach to the optimal p xð Þ will look like

p xð Þ ¼ f xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d xð Þ þ λ

q and
ð

D

f xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d xð Þ þ λ

q dx ¼ 1: (40)

The parameter λ is often turned out to be find enough complicity [6]. If the domainD
is the interval 0,H½ � for small H then it is suppose to use the quasioptimal density p xð Þ.

Example 3. We now consider the following issue: Suppose f xð Þ ¼ x, d xð Þ ¼
1=x, D ¼ 0,H½ �. The optimal density is given by

p xð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=xþ λ

p ¼ x
ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
ffiffiffi
x

p þ 1
p � c � x3=2: (41)

We take the quasioptimal density in the form p xð Þ ¼ 5H5=2x3=2=2: In this case, for
p xð Þ � 1 the estimation variance of the random value η ¼ f x,wð Þ=p xð Þ:

varη ¼
ðH

0

d xð Þp xð Þdxþ
ð1

0

f 2

p xð Þ dx� I2 (42)

is equals to ∞. Taking p xð Þ ¼ 2x=H2 we get varη ¼ 2=H: But if the function f xð Þ
was precisely known for the same density p xð Þ then varη ¼ 0: If we choose the
quasioptimal density p xð Þ ¼ 5H5=2x3=2=2 then the estimation variance of η is equals to
17H4=12þ 4= 15Hð Þ. For H ! 0 the variance behaves approximately as 4= 15Hð Þ. It is
much the better than 2=H. For H ¼ 1 the estimation variance with the density p xð Þ ¼
2x=H2 is equals to 2, and the estimation variance with the quasioptimal density p xð Þ is
equals to 101/60.

Suppose we practically realize calculation of the integral Eq. (38) with d xð Þ ¼ 1=x;
then one should discard the interval 0, δ½ � and to calculate

ÐH
δ f xð Þdx because of the

values ∣ξ x,wð Þ∣ can be the intolerably large. Also one should replace f xð Þ by f̂ xð Þ:

f̂ xð Þ ¼ 0, 0≤ x≤ δ,

x, δ< x≤H:

�
(43)

The shift is
Ðδ
0
xdx ¼ δ2=2 and choosing δ � 1=

ffiffiffiffi
N4

p
we get the total error δ2=2þ

3σ=
ffiffiffiffi
N

p
of oder O 1=

ffiffiffiffi
N

p� �
.

In applications the estimation variance for the integral functionals (e.g., field
flow calculation neither across the arc or the surface) from the solutions of the
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boundary-value problems for both the linear [1] or nonlinear [2] elliptic equations is
of interest. For the above variance is d xð Þ � B=x2, f xð Þ≈ a0 þ a1xþ a2x2 þ … , where
x is the distance to the domain boundary. Suppose f xð Þ≈ a1xþ a2x2 þ … ; then the
optimal density is given by

p xð Þ ¼ a1xþ a2x2 þ …ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=x2 þ λ

p : (44)

The quasioptimal density has the form p xð Þ ¼ 3x2=H3 for small H in 0,H½ �. In
applications, this case is of our main interest. Taking δ ¼ 1=

ffiffiffiffi
N4

p
like in the Example 3

we get the asymptotics of decrease for the total error as O 1=
ffiffiffiffi
N

p� �
.

Suppose d xð Þ � B=x2, f xð Þ≈ a0 þ a1xþ a2x2 þ … , and a0 6¼ 0 then there is no
density kind of p xð Þ ¼ wþ 1ð Þxw, x∈ 0,H½ � with the finite variance. The density
p xð Þ ¼ ∣f xð Þ∣= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d xð Þ þ λ
p

will be give the estimation with the infinity variance. Instead

of calculation of the integral
ÐH
0
f xð Þdx we will be calculate the integral

ÐH
δ

f xð Þdx. For
this integral we already can choice the quasioptimal density with the finite variance of
the estimation: p xð Þ ¼ 2x= H2 � δ2

� �
. For δ � O lnN=

ffiffiffiffi
N

p� �
the total error will have the

asymptotics O lnN=
ffiffiffiffi
N

p� �
.

Example 4. Suppose d xð Þ ¼ 1=x2, f xð Þ ¼ 1, H ¼ 1; then the asymptotics of the
variance with the quasioptimal density has kind of �2, 5 � ln δð Þ.

In conditions of Example 4, choice of the optimal density in the form

p xð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , x∈ δ, 1½ � (45)

yields the following result: the estimation variance will have asymptotics
�2 � ln δð Þ for δ ! 0.

Remark. If we know that a value of f xð Þ in the interval 0, δ½ � close to the number
f 0, then in Eq. (43) to use

f̂ xð Þ ¼ f 0, 0≤ x≤ δ,

x, δ< x≤H,

�
(46)

more efficiently and also to take
ÐH
0
f xð Þdx≈ f 0δþ

ÐH
δ

f xð Þdx:

7. Conclusion

In the paper we describe the sufficient conditions of the stable calculations for the
multidimensional integrals by the Monte Carlo method. We get the results of numer-
ous numerical computations using the mt19937 pseudorandom number generator.
The article results can be also useful in the practical solution of the boundary value
problem, for both the elliptic and parabolic equations. The earlier suggested approach
to the optimal choice of the density [1, 6] often needs to solve a complicated second-
ary task. In the paper we suggest the approach to choice of the quasioptimal densities
that is of considerable interest in applied problems solution.
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Chapter 4

Some Results on the
Non-Homogeneous Hofmann
Process
Gerson Yahir Palomino Velandia
and José Alfredo Jiménez Moscoso

Abstract

The classical counting processes (Poisson and negative binomial) are the most
traditional discrete counting processes (DCPs); however, these are based on a set of
rigid assumptions. We consider a non-homogeneous counting process (which we
name non-homogeneous Hofmann process – NHP) that can generate the classical
counting processes (CCPs) as special cases, and also allows modeling counting
processes for event history data, which usually exhibit under- or over-dispersion. We
present some results of this process that will allow us to use it in other areas and
establish both the probability mass function (pmf) and the cumulative distribution
function (cdf) using transition intensities. This counting process (CP) will allow other
researchers to work on modelling the CP, where data dispersion exists in an efficient
and more flexible way.

Keywords: mixed Poisson Process, Hofmann process, variance-to-mean ratio,
transition intensity

1. Introduction

In ref. [1], Hofmann introduced a new class of infinitely divisible mixed Poisson
process (MPP), this broader class of CP allows obtaining other CCP by simply modi-
fying or choosing its parameters, as well as Poisson, negative binomial, Poisson-Pascal
among other distributions (see [2]). The family of distributions defined by Hofmann
has been used in many types of applications of modelling and simulation studies that
include topics such as accident models [3].

In this chapter, we analysed the event of number process N tð Þ, t≥0f g and used a
broader CP, which is based on the Hofmann process. The appeal of this CP is that,
analogous to the family of frequency distributions, it allows to generate several known
CP. Through an NHP, we can generate the following as special cases: the Poisson
counting process (PCP), the negative binomial counting process (NBCP) and the
Poisson-Pascal process among other CCPs, and this allows us to obtain models for CP
with under- or over-dispersion. The NHP was introduced by Hofmann [1] and has
been used by other researchers [3–5]. Some properties of the NHP found by Walhin
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[2] are presented in this chapter, and we used the transition intensities to describe
additional properties of the NHP.

The objective of this chapter is to present a unified view of related results on the
NHP. The chapter is organised as follows: in Section 2, we present the NHP; in Section
3, we present some statistical properties, such as pmf and probability generating
function (pgf), and formulas for the mean and variance are derived; in Section 4, we
present various approaches for the NHP using CCP; in Section 5, we present other
properties for NHP; finally, conclusions are presented.

2. Basic concepts of the NHP

Let us take N tð Þ as the number of events that occurs in the time interval 0, tð � with
t>0 and N 0ð Þ ¼ 0. The probability of n events occurring in this time interval is
denoted by

Pn tð Þ ¼ P N tð Þ ¼ n½ �, n ¼ 0, 1, 2, … (1)

According to Dubourdieu [6], an MPP N tð Þ : t≥0f g is a PCP with rate Λ, where
the non-negative random variable Λ is called a structure variable. The MPP has been
studied by several authors [7–9].

When Λ is a continuous random variable with probability density function (pdf),
f λð Þ, we can find probability by

 P N tð Þ ¼ njΛ½ �½ �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl} ¼
ð∞

0

P N tð Þ ¼ njΛ ¼ λ½ � f λð Þdλ

P N tð Þ ¼ n½ � ¼
ð∞

0

e�λt λtð Þn
n!

f λð Þdλ:
(2)

For n ¼ 0 and t>0 we have

P0 tð Þ ¼
ð∞

0

e�λt f λð Þdλ, (3)

The higher order derivatives of the last expression with respect to t are

P nð Þ
0 tð Þ ¼ dn

dtn
P0 tð Þ ¼ �1ð Þn

ð∞

0

λne�λt f λð Þdλ: (4)

By substituting (4) into (2) we get

Pn tð Þ ¼ tn

n!
�1ð ÞnP nð Þ

0 tð Þ
h i

, n≥ 1 (5)

The expressions (3) and (5) characterize an MPP with a continuous structure
variable Λ. According to Hofmann [1], for the construction of examples, a special
structure function is generally assumed, and from this the pmf is calculated by (3),
(5). In most cases, this leads to formally complicated expressions. In ref. [1], Hofmann
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presents a CP called Hofmann process as an option to model the event number process
given by (2) and whose general expression for (3) is as follows:

P0 tð Þ ¼ exp �θ tð Þf g θ tð Þ ¼
ðt
0
λ τ; að Þdτ (6)

where P0 tð Þ is a completely monotonic function1. And λ τ; að Þ is a function of
three parameters: a≥0, q>0 and κ≥0, which is a function infinitely divisible and
given by

λ τ; að Þ ¼ q
1þ κ τð Þa ∀τ>0: (7)

Although λ τ; að Þ depends on three parameters, we use this notation given that the
parameter a provides various CCPs. We denote the NHP by H a, q, κð Þ, if the pmf of
N tð Þ satisfies the expressions (5) and (6).

Using the expression (7), we get by integrating that

θ tð Þ ¼
ln 1þ κtð Þq=κ
h i

if a ¼ 1
q

κ 1� að Þ 1þ κtð Þ1�a � 1
h i

if a 6¼ 1

8><
>:

(8)

By substituting (8) into (6)

P0 tð Þ ¼
1þ κtð Þ�q

κ if a ¼ 1

exp � q
κ � 1� að Þ 1þ κtð Þ1�a � 1

h i� �
if a 6¼ 1

8><
>:

(9)

Remark 1.1: If in the expression (9) for a ¼ 1 we take the limit as κ ! 0, we have:

lim
κ!0

1þ κtð Þ�q
κ ¼ e�qt, (10)

and the last expression agrees with the adequate P0 tð Þ of a PCP with rate qt.

3. Basic properties of the NHP

Theorem 1.2: Let N tð Þ be an NHP then

i. The pgf of the process is given by

GN z; tð Þ ¼
1þ κ 1� zð Þtð Þ�q=κ if a ¼ 1

exp � q
κ 1� að Þ 1þ κ 1� zð Þtð Þ1�a � 1

h i� �
if a 6¼ 1

8><
>:

(11)

1 We say that a function g tð Þwith t∈ℝþ is completely monotonic if it has derivatives g nð Þ tð Þ for all n∈ℕ and

its derivatives have alternating signs, i.e., if �1ð Þng nð Þ tð Þ≥0, t>0:
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Note that GN z; tð Þ ¼ P0 1� zð Þtð Þ with 0≤ z< 1.

ii. The pmf of N tð Þ, for t fixed, satisfies the following recursive formula:

Pnþ1 tð Þ ¼ tλ t; að Þ
nþ 1

Xn
i¼0

aþ i� 1

i

� �
κt

1þ κt

� �i

Pn�i tð Þ (12)

where P0 tð Þ ¼ GN 0; tð Þ is given by (9) and

P nþ1ð Þ
0 tð Þ ¼ λ t; að Þ

Xn
j¼0

n
j

� �
�1ð Þjþ1 Γ aþ jð Þ

Γ að Þ
κ

1þ κt

� �j

P n�jð Þ
0 tð Þ

iii. If a ¼ 1 the Pn tð Þ satisfies the recurrence relation

Pnþ1 tð Þ
Pn tð Þ ¼ �t

nþ 1
P nþ1ð Þ
0 tð Þ
P nð Þ
0 tð Þ

¼ qþ κn
1þ κt

t
nþ 1

: (13)

iv. The process N tð Þ has a mean and variance given by

 N tð Þ½ � ¼ qt and Var N tð Þ½ � ¼ 1þ aκtð Þ N tð Þ½ � (14)

Proof:
See details in [2] or [10].
Note that from (14) we have that if q 6¼ 0 then:

lim
t!∞

 N tð Þ½ �
t

¼ q: (15)

It is possible from (14) to calculate the measure based on the variance-to-mean
ratio (VMR) introduced by [11]:

ID tð Þ ¼ Var N tð Þ½ �
 N tð Þ½ � ¼ 1þ aκt: (16)

As ID tð Þ> 1, then using the criterion of the VMR, we have that the NHP is an over-
dispersed CP and hence is an option for modelling over-dispersion in count data.

Using the expression (11), in Table 1, we present the functions for qt and κt that
allow to obtain some CP. We consider the CCPs studied in [10], which are special
cases of NHP when a ¼ 1 since this reduces to the Panjer counting process (see [12]).
In addition, we consider other processes, such as the Neyman Type A process intro-
duced by [13], the Poisson Pascal process introduced by [14] and the Pólya-Aeppli
process introduced by [15].

3.1 NHP is infinitely divisible

The following relationships are identical to those of [16] which characterize infi-
nitely divisible pmf:

110

Applied Probability Theory - New Perspectives, Recent Advances and Trends



Theorem 1.3: The pmf Pn tð Þf g with P0 tð Þ>0 is infinitely divisible if and only if
satisfies that

nþ 1ð ÞPnþ1 tð Þ ¼
Xn
i¼0

ri tð ÞPn�i tð Þ for t fixed:

where the quantities rn tð Þ with n∈ℤþ are nonnegative.
Proof: See details in [16].
Corollary 1.3.1: The pmf Pn tð Þf g of the NHP is infinitely divisible.
Proof:
By multiplying (12) by nþ 1ð Þ we get

nþ 1ð ÞPnþ1 tð Þ ¼
Xn
i¼0

tλ t; að Þ aþ i� 1

i

� �
κt

1þ κt

� �i

Pn�i tð Þ:

We denote

ri t; að Þ ¼ qt
aþ i� 1

i

� �
κtð Þi

1þ κtð Þaþi i ¼ 0, 1, … , n: (17)

Note that ri t; að Þ≥0, which allows to conclude that Pn tð Þ is infinitely divisible.
The following relationship is given by [17]: all log-convex distributions are infi-

nitely divisible but not all log-concave distributions are infinitely divisible.
Theorem 1.4: Let N tð Þ be an infinitely divisible ℤþ-valued random variable with

pmf Pn tð Þ. Then

 N tð Þ½ � ¼
X∞
i¼0

ri t; að Þ (18)

Counting process P0 1� zð Þt½ � Functions

qt κt

Classical
(a = 1)

Poisson exp � 1� zð Þγtf g, κ ! 0 γt 0

Negative binomial (or Pólya) δ
δþ 1�zð Þt
h iγ

, δ>0
γ
δ t

t
δ

Geometric δ
δþ 1�zð Þt

t
δ

t
δ

Other
(a > 1)

Neyman Type A exp γ exp z� 1ð Þδtf g � 1½ �f g, a ! ∞ γδt δt
a�1

Poisson-Pascal exp γ 1þ 1� zð Þδtð Þ� a�1ð Þ � 1
h in o

a� 1ð Þγδt δt

Pólya-Aeppli
exp � 1�zð Þγt

1� 1� 1þδtð Þ�1½ �z
� �

, a ¼ 2
1þ δtð Þγt δt

Source: own elaboration

Table 1.
Functions qt and κt for some CCPs.
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Proof:
We know that the expectation of N tð Þ it is given by

 N tð Þ½ � ¼
X∞
n¼1

nPn tð Þ ¼
X∞
m¼0

mþ 1ð ÞPmþ1 tð Þ

¼
X∞
m¼0

Xm
i¼0

ri t; að ÞPm�i tð Þ

Now, by interchanging the order of summation, we get

 N tð Þ½ � ¼
X∞
i¼0

X∞
m¼i

ri t; að ÞPm�i tð Þ ¼
X∞
i¼0

ri t; að Þ
X∞
m¼i

Pm�i tð Þ

¼
j¼m�i

X∞
i¼0

ri t; að Þ
X∞
j¼0

Pj tð Þ ¼
X∞
i¼0

ri t; að Þ:

which completes the proof.

4. NHP in terms of CCPs

In this section, we present various approaches for the NHP using CCP.

4.1 NHP as a non-homogeneous pure birth process

We use logarithmic differentiation to find the derivative of (5) and we get

Pn0 tð Þ
Pn tð Þ ¼ n

t
þ P nþ1ð Þ

0 tð Þ
P nð Þ
0 tð Þ

Then

Pn0 tð Þ ¼ n
t
Pn tð Þ þ P nþ1ð Þ

0 tð Þ
P nð Þ
0 tð Þ

Pn tð Þ (19)

From (5), we obtain

n
t
Pn tð Þ ¼ � �1ð Þn�1

n� 1ð Þ! t
n�1P nð Þ

0 tð Þ ¼ �1ð Þn�1

n� 1ð Þ! t
n�1P nð Þ

0 tð Þ �P n�1ð Þ
0 tð Þ

P n�1ð Þ
0 tð Þ

 !

¼ � P nð Þ
0 tð Þ

P n�1ð Þ
0 tð Þ

Pn�1 tð Þ

By substituting in (19), we have

Pn0 tð Þ ¼ � P nð Þ
0 tð Þ

P n�1ð Þ
0 tð Þ

 !
Pn�1 tð Þ � �P nþ1ð Þ

0 tð Þ
P nð Þ
0 tð Þ

 !
Pn tð Þ: (20)
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We denote

λn t; að Þ ¼ �P nþ1ð Þ
0 tð Þ
P nð Þ
0 tð Þ

¼ � d
dt

ln �1ð ÞnP nð Þ
0 tð Þ

h i
: (21)

In ref. [18], Lundberg shows that this corresponds to the transition intensities.
Then from (20) and (21), we can derive the following system of Kolmogorov differ-
ential equations that must be satisfied by the NHP:

P0
0 tð Þ ¼ �λ0 t; að ÞP0 tð Þ

P0
n tð Þ ¼ λn�1 t; að ÞPn�1 tð Þ � λn t; að ÞPn tð Þ for n≥ 1:

(22)

By notation, we denote λ0 t; að Þ ¼ θ0 tð Þ ¼ q
1þκtð Þa : With initial conditions

P0 0ð Þ ¼ 1 and Pn 0ð Þ ¼ 0 ∀n≥ 1 (23)

Using the method given in ref. [18], we find that the solution of (22) is given by

Pn tð Þ ¼
ðt
0
λn�1 τ; að ÞPn�1 τð Þ exp �

ðt
τ
λn�1 ν; að Þdν

� �
dτ for n≥ 1:

From the system of equations given in (22), we have that the NHP is a non-
homogeneous pure birth process (NHPBP), which agrees with the definition given by
Seal in ref. [19]. So, if N tð Þ satisfies (6), then N tð Þ is an NHPBP with transition
intensities given by (21).

4.2 NHP as MPP

The list of equivalences provided by Lundberg in ref. [18] is satisfied by the NHP
defined in (6), which is presented in the following theorem:

Theorem 1.5: Let N tð Þ be an NHP with marginal pmf, given by (5) and transition
intensities, given by (21). Then:

i. λn t; að Þ satisfy λnþ1 t; að Þ ¼ λn t; að Þ � λ0n t; að Þ
λn t; að Þ for n ¼ 0, 1, …

ii. Pn tð Þ and λn t; að Þ satisfy the relation

Pn tð Þ
Pn�1 tð Þ ¼

t
n
λn�1 t; að Þ for n ¼ 1, 2, … (24)

Proof:

i. By finding the derivative of function (21) with respect to t, we obtain

λ0n t; að Þ ¼ � P nþ2ð Þ
0 tð ÞP nð Þ

0 tð Þ � P nþ1ð Þ
0 tð ÞP nþ1ð Þ

0 tð Þ
P nð Þ
0 tð Þ

� �2

2
64

3
75

¼ �P nþ2ð Þ
0 tð Þ

P nþ1ð Þ
0 tð Þ

P nþ1ð Þ
0 tð Þ
P nð Þ
0 tð Þ

þ �P nþ1ð Þ
0 tð Þ
P nð Þ
0 tð Þ

 !2

¼ �λnþ1 t; að Þλn t; að Þ þ λn t; að Þ½ �2
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By dividing by λn t; að Þ, we have

λ0n t; að Þ
λn t; að Þ ¼ λn t; að Þ � λnþ1 t; að Þ (25)

ii. By substituting (21) into (13), we get:

Pn tð Þ
Pn�1 tð Þ ¼

�1ð Þn
n! tnP nð Þ

0 tð Þ
�1ð Þn�1

n�1ð Þ! t
n�1P n�1ð Þ

0 tð Þ
¼ � t

n
P nð Þ
0 tð Þ

P n�1ð Þ
0 tð Þ

¼ t
n
λn�1 t; að Þ,

which completes the proof. □
In ref. [7], it is proved that the above three statements are equivalent.
Corollary 1.5.1: Let N tð Þ be an NHP with transition intensities given by (21), then

Pn tð Þ
P0 tð Þ ¼

Yn
j¼1

tλj�1 t; að Þ
j

(26)

Proof:
Note that

Pn tð Þ
P0 tð Þ ¼

Yn
j¼1

Pj tð Þ
Pj�1 tð Þ :

Substituting (24) in the above expression completes the proof.
Corollary 1.5.2: Let N tð Þ be an NHP with transition intensities given by (21), then

Yn�1

j¼0

λj t; að Þ ¼ �1ð Þn P
nð Þ
0 tð Þ
P0 tð Þ n≥ 1: (27)

Proof:
From (21), we get

Yn�1

j¼0

λj t; að Þ ¼
Yn�1

j¼0

�P jþ1ð Þ
0 tð Þ
P jð Þ
0 tð Þ

 !
¼ �1ð Þn P

nð Þ
0 tð Þ
P0 tð Þ :

This finishes the proof of Corollary.
The following additional properties set in ref. [9] are also satisfied by NHP:
Proposition 1.6: Let N tð Þ; t≥0f g be an NHP and Λ the continuous structure

variable of the MPP. Then:

1. The transition intensities are such that

 ΛjN tð Þ ¼ n½ � ¼ λn t; að Þ: (28)

and

Var ΛjN tð Þ ¼ n½ � ¼ �λ0n t; að Þ: (29)

2. The mean of N tð Þ is given by

 N tð Þ½ � ¼ t Λ½ �: (30)
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3. The mean of Λ is given by

 Λ½ � ¼ �P0
0 0ð Þ: (31)

Proof:
1. From (2), taking the expected value of Λ, conditioning on N tð Þ, we get

 ΛjN tð Þ ¼ n½ � ¼
ð∞

0

λe�λt λtð Þn f λð Þ
n!P N tð Þ ¼ n½ � dλ ¼

nþ 1
t

Pnþ1 tð Þ
Pn tð Þ : (32)

By substituting (24) into (32), we have

 ΛjN tð Þ ¼ n½ � ¼ λn t; að Þ:

Analogously, we can show that

 Λ2jN tð Þ ¼ n
� � ¼

ð∞

0

λ2e�λt λtð Þn f λð Þ
n!P N tð Þ ¼ n½ � dλ ¼

nþ 2ð Þ nþ 1ð Þ
t2

Pnþ2 tð Þ
Pn tð Þ : (33)

By substituting (24) into (33), we have

 Λ2jN tð Þ ¼ n
� � ¼ λnþ1 t; að Þλn t; að Þ:

Then the conditional variance of Λ, given that N tð Þ ¼ n, is

Var ΛjN tð Þ ¼ n½ � ¼ λnþ1 t; að Þλn t; að Þ � λ2n t; að Þ,

and substituting Eq. (25) into the above yields the result.

2. We use the law of total expectation to find the expected value

 Λ½ � ¼   Λðj jN tð Þ ¼ nÞ½ � ¼
X∞
n¼0

 Λj jN tð Þ ¼ nð ÞP N tð Þ ¼ n½ �

¼
X∞
n¼0

λn t; að ÞPn tð Þ

By substituting (24) into the above expression, we get

 Λ½ � ¼
X∞
n¼0

nþ 1
t

Pnþ1 tð Þ ¼
X∞
j¼0

rj t; að Þ
t

¼ 1
t
 N tð Þ½ �:

And the proof is completed.

3. The pgf of N tð Þ is defined as

GN z; tð Þ|fflfflfflffl{zfflfflfflffl} ¼
X∞
n¼0

znPn tð Þ ¼
X∞
n¼0

zn
ð∞

0

λtð Þn
n!

e�λtf λð Þdλ

P0 1� zð Þt½ � ¼
ð∞

0

X∞
n¼0

zλtð Þn
n!

" #
e�λtf λð Þdλ ¼

ð∞

0

eλ z�1ð Þtf λð Þdλ

¼ MΛ z� 1ð Þt½ �:

(34)
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We make z ¼ 0 in the above expression and we have

P0 tð Þ ¼ MΛ �tð Þ

Now, if we differentiate both sides with respect to t, we obtain

P0
0 tð Þ ¼ �M0

Λ �tð Þ

We complete the proof by substituting t ¼ 0 in the above expression. □
According to Walhin and Paris in ref. [20], the intensity of the stochastic process

N tð Þ in the period t, tþ 1½ � is

 N tþ 1ð Þ �N tð ÞjN tð Þ ¼ n½ � ¼  ΛjN tð Þ ¼ n½ �:

The moment generating function of the process will uniquely determine the dis-
tribution of the process, on comparing expression (34) with P0 1� zð Þt½ � given for a ¼
1 and as shown in Table 1, we find the particular cases: the PCP if Λ � δγ λð Þ (i.e. has a
degenerate cdf at λ ¼ γ), the NBCP if Λ � Γ γ, δð Þ and the Geometric Counting Process
if Λ � exp δð Þ.

5. Additional properties

In this Section, we will introduce several other properties of the NHP.

5.1 Other expressions for Pn tð Þ in terms of λn t; að Þ

Theorem 1.7: Let N tð Þ be an NHP with transition intensities given by (21), then

Pn tð Þ ¼ Qn tð Þ � Qnþ1 tð Þ for n≥ 1,

where Q0 tð Þ is Heaviside’s step function and

Qnþ1 tð Þ ¼
ðt
0
λn v; að ÞPn vð Þdv: (35)

Proof:
We write the expression (22) as

d Pn τð Þ½ �
dτ

¼ λn�1 τ; að ÞPn�1 τð Þ � λn τ; að ÞPn τð Þ for n≥ 1:

By integration of the above expression with respect to τ between 0 and t, we get

ðt
0
d Pn τð Þ½ � ¼

ðt
0
λn�1 τ; að ÞPn�1 τð Þdτ �

ðt
0
λn τ; að ÞPn τð Þdτ

Pn τð Þ t
0 ¼ Qn tð Þ � Qnþ1 tð Þ for n≥ 1:
��

(36)

Since Pn 0ð Þ ¼ 0, ∀n≥ 1, so the proof is completed.
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Corollary 1.7.1: Let N tð Þ be an NHP with transition intensities given by (21), then

P N tð Þ> n½ � ¼ Qnþ1 tð Þ for n≥0 (37)

Proof: The proof consists of a direct calculation

P N tð Þ> n½ � ¼ 1� P N tð Þ≤ n½ �

¼ 1�
Xn
j¼0

Pj tð Þ ¼ 1� P0 tð Þ �
Xn
j¼1

Pj tð Þ

Using the previous result:

P N tð Þ> n½ � ¼ 1� P0 tð Þ �
Xn
j¼1

Qj tð Þ � Qjþ1 tð Þ
h i

¼ 1� P0 tð Þ � Q1 tð Þ �Qnþ1 tð Þ� � (38)

Note that

Q1 tð Þ ¼
ðt
0
λ0 v; að ÞP0 vð Þdv ¼ �

ðt
0
P0
0 vð Þdv ¼ �P0 vð Þjt0 ¼ 1� P0 tð Þ

Replacing Q1 tð Þ in (38) the proof is completed.
The expression (37) allows to calculate the cdf of an NHP.
Corollary 1.7.2: The function Qnþ1 tð Þ satisfies the following condition:

lim
t!∞

Qnþ1 tð Þ ¼ 1 for n≥0: (39)

Proof:
From (37), we get

lim
t!∞

Qnþ1 tð Þ ¼ lim
t!∞

1�
Xn
j¼0

Pj tð Þ
" #

:

As we have for n≥ 1 : Pn ∞ð Þ ¼ 0, and using the above relationship

lim
t!∞

Qnþ1 tð Þ ¼ 1� lim
t!∞

P0 tð Þ:

For example, from expression (9) when a ¼ 1, we have:

P0 tð Þ ¼ 1þ κtð Þ�q
κ for

q
κ
>0 (40)

and we take the limit as t ! ∞, we get:

lim
t!∞

Qnþ1 tð Þ ¼ 1� lim
t!∞

1þ κtð Þ�q
κ ¼ 1: □

Proposition 1.8: Let N tð Þ be an NHP with transition intensities given by (21),
then
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exp �
ðtþh

t

λn v; að Þdv
8<
:

9=
; ¼ P nð Þ

0 tþ hð Þ
P nð Þ
0 tð Þ

for h≥0: (41)

Proof:
By substituting (28) into (40), we have

exp �
ðtþh

t

λn v; að Þdv
8<
:

9=
; ¼ exp

ðtþh

t

P nþ1ð Þ
0 vð Þ
P nð Þ
0 vð Þ

dv

8<
:

9=
;

¼ exp
ðtþh

t

d ln P nð Þ
0 vð Þ

� �h i
8<
:

9=
;

¼ exp : ln P nð Þ
0 vð Þ

h i
tþh
t

�����

)
¼ P nð Þ

0 tþ hð Þ
P nð Þ
0 tð Þ

:

(

Corollary 1.8.1: Let N tð Þ be an NHP. If the probability that no event occurs in a
small interval of length h is denoted by P0 t, tþ hð Þ, that is P0 t, tþ hð Þ ¼
P N tþ hð Þ �N tð Þ ¼ 0ð Þ, then

P0 tþ hð Þ ¼ P0 tð Þ � P0 t, tþ hð Þ for t, h≥0: (42)

Proof:
According to Lundberg in [18]:

P N tþ hð Þ ¼ 0jN tð Þ ¼ 0ð Þ ¼ exp �
ðtþh

t

λ0 uð Þdu
8<
:

9=
; (43)

where λ0 tð Þ denotes the intensity function associated with the time-dependent (or
nonstationary) PCP. If we make n ¼ 0 in (40), then we obtain

P0 t, tþ hð Þ ¼ exp �
ðtþh

t

λ0 v; að Þdv
8<
:

9=
; ¼ P0 tþ hð Þ

P0 tð Þ (44)

Thus,

P0 tþ hð Þ ¼ P0 tð Þ � P0 t, tþ hð Þ for t, h≥0:

The expression obtained in (41) may be interpreted as if no event occurred, then
the NHP has independent increments.

Lemma 1.9: Let N tð Þ be an NHP with transition intensities given by (21). Then this
CP satisfies

Xm
j¼0

λ0j t; að Þ
λj t; að Þ ¼ λ0 t; að Þ � λmþ1 t; að Þ for all m≥0: (45)

118

Applied Probability Theory - New Perspectives, Recent Advances and Trends



Proof:
From (25), we have

λ0j t; að Þ
λj t; að Þ ¼ λj t; að Þ � λjþ1 t; að Þ for all j≥0: (46)

Thus, (44) turns out the mth partial sum of a telescoping series and from here

Xm
j¼0

λ0j t; að Þ
λj t; að Þ ¼ λ0 t; að Þ � λmþ1 t; að Þ for all m≥0:

Now, using the above lemma, we will prove the following proposition:
Proposition 1.10: Let N tð Þ be an NHP with marginal pmf given by (5), then Pn tð Þ

satisfies that

i. Process with time-dependent increments

lim
h!0

Pn,nþ1 t, tþ hð Þ
h

¼ λn t; að Þ

ii. The probability that no event occurs in t, tþ hð � is

P0 t, tþ hð Þ ¼ 1� hλ0 t; að Þ þ o hð Þ (47)

iii. The probability that one event occurs in t, tþ hð � is

P1 t, tþ hð Þ ¼ hλ0 t; að Þ � o hð Þ (48)

iv. Faddy’s conjecture2: If the transition intensities be an increasing sequence
with n, i.e,

λ0 t; að Þ< λ1 t; að Þ< … < λn t; að Þ, for any fixed t (49)

then Var N tð Þ½ �> N tð Þ½ �, this last inequality is reversed for a decreasing
sequence.

Proof:
i. As theNHP is anMPP then, according to Lundberg in [18], for 0≤ u< v, i≤ j,
N tð Þ satisfies:

P N vð Þ ¼ j j N uð Þ ¼ ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pi,j u, vð Þ

¼ j
i

� �
u
v

� �i
1� u

v

� �j�i Pj vð Þ
Pi uð Þ (50)

Replacing the expression Pn tð Þ given in (12), when κ 6¼ 0, we obtain in (49)
that the transition probabilities for the NHP are:

2 See [21].
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Pi,j u, vð Þ ¼
j

i

 !
u
v

� �i
1� u

v

� �j�i Pj vð Þ
Pi uð Þ

¼
j

i

 !
u
v

� �i v� u
v

� �j�i

�1ð ÞjvjP jð Þ
0 vð Þ

j!

�1ð ÞiuiP ið Þ
0 uð Þ

i!

2
6664

3
7775

¼ u� vð Þj�i

j� ið Þ!
P jð Þ
0 vð Þ

P ið Þ
0 uð Þ

¼
Yj�i

m¼1

v� u
m

λmþi�1 u; að Þ
h i

exp �
ðv

u

λj w; að Þdw
8<
:

9=
;:

(51)

We complete the proof of the theorem by the following steps: Rewrite the product in
(50) by replacing all instances of i ¼ n, j ¼ nþ 1, u ¼ t and v ¼ tþ h, and we make the
limit as h approaches zero. Then the transition intensities given by (21) represent the
instantaneous transitions probabilities of the NHP.

ii. Certainly, the function given by (9) is continuous for t≥0 and also analytic,

due to P nð Þ
0 tð Þ, exists for all n≥ 1. Then it is possible to express P0 tþ hð Þ

through a Taylor series as follows:

P0 tþ hð Þ ¼
X∞
m¼0

hm

m!
P mð Þ
0 tð Þ: (52)

By substituting the expression for themth derivative of P0 tð Þ obtained given by (27) in
(51), we have:

P0 tþ hð Þ ¼ P0 tð Þ þ
X∞
m¼1

hm

m!
�1ð Þm

Ym�1

j¼0

λj t; að Þ
 !

P0 tð Þ
" #

: (53)

Notice that P0 tþ hð Þ satisfies (41), then (52) is similar to:4

P0 tð Þ � P0 t, tþ hð Þ ¼ P0 tð Þ 1þ
X∞
m¼1

�1ð Þm hm

m!

Ym�1

j¼0

λj t; að Þ
 !" #

(54)

Let n ¼ m� 1 then:

P0 t, tþ hð Þ ¼ 1þ
X∞
n¼0

�1ð Þnþ1 hnþ1

nþ 1ð Þ!
Yn
j¼0

λj t; að Þ
 !

¼ 1� h
X∞
n¼0

�hð Þn
nþ 1ð Þ!

Yn
j¼0

λj t; að Þ
 ! (55)

From the expansion of the first terms of (54), we get:

P0 t, tþ hð Þ ¼ 1� hλ0 t; að Þ þ o hð Þ (56)
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where

o hð Þ ¼
X∞
n¼1

�hð Þnþ1

nþ 1ð Þ!
Yn
j¼0

λj t; að Þ:

The last function satisfies that lim
h!0

o hð Þ=h ¼ 0 ([21, 22]).

iii. From (55) and the fact P0 t, tþ hð Þ ¼ P N tþ hð Þ �N tð Þ ¼ 0ð Þ, we obtain

P N tþ hð Þ �N tð Þ>0ð Þ ¼ 1� P0 t, tþ hð Þ: (57)

Given that the NHP N tð Þ is an NHPBP and assuming that we have in a small time
interval, then there will be only two cases: there is a birth or not in that period. Thus,

P N tþ hð Þ �N tð Þ>0ð Þ ¼ P N tþ hð Þ �N tð Þ ¼ 1ð Þ ¼ P1 t, tþ hð Þ:

Then, from (56), we obtain:

P1 t, tþ hð Þ ¼ hλ0 t; að Þ � o hð Þ, (58)

provided that h is infinitesimal.

iv. According to Steutel et al. in ref. [16], a non-degenerate distribution Pn tð Þf g is
log-convex if and only if Pn tð Þ>0 for all n≥0 and Pnþ1 tð Þ

Pn tð Þ
n o

is a nondecreasing

sequence. By assumption

Pn tð Þ
Pn�1 tð Þ <

Pnþ1 tð Þ
Pn tð Þ for some n≥ 1 (59)

By substituting (5) into (58)

tn

n!
�1ð ÞnP nð Þ

0 tð Þ
h i

tn�1

n� 1ð Þ! �1ð Þn�1P n�1ð Þ
0 tð Þ

h i <
tnþ1

nþ 1ð Þ! �1ð Þnþ1P nþ1ð Þ
0 tð Þ

h i

tn

n!
�1ð ÞnP nð Þ

0 tð Þ
h i

1
n

� P nð Þ
0 tð Þ

P n�1ð Þ
0 tð Þ

 !
<

1
nþ 1

�P nþ1ð Þ
0 tð Þ
P nð Þ
0 tð Þ

 !

1
n
λn�1 t; að Þ <

1
nþ 1

λn t; að Þ

,

we know 1< nþ1
n for all n. Hence, we have the following:

λn�1 t; að Þ< nþ 1
n

λn�1 t; að Þ< λn t; að Þ: (60)

Thus, we obtain that (48) is satisfied and, therefore, the conjecture holds.
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The expression (48) allows to identify under- or over-dispersion of a CP, then we
can classify the process according to the fixed criteria given in (16).

Corollary 1.10.1: If a 6¼ 0 and N tð Þ is an NHP, then it does not have independent
increments.

Proof:
From theorem 1.5, we know that an NHP is an MPP. According to McFadden in

ref. [9], if N tð Þ, t≥0f g is a CP with independent increments, then its transition
intensities satisfy that λ0 t; að Þ ¼ λ1 t; að Þ, but by expression (48), we get

λ0 t; að Þ ¼ q
1þ κtð Þa 6¼

aκ
1þ κt

þ q
1þ κtð Þa ¼ λ1 t; að Þ if a 6¼ 0 (61)

And therefore, N tð Þ is a CP that does not have independent increments.
This was to be expected since that MPP has stationary increments but does not

meet the condition of independent increments (see [23]).

6. Conclusions

In this chapter, we studied the NHP presenting some of its properties indicating
that it is a good option for modelling CP regardless of the fact that it presents under-
or over-dispersion.

Using transition intensities, we found some properties of the NHP and provided
explicit analytic expressions for its pmf and cdf.
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Chapter 5

Probability to Be Involved in a 
Road Accident: Transport User 
Socioeconomic Approach
Saúl Antonio Obregón Biosca, José Luis Reyes Araiza  
and Miguel Angel Pérez Lara y Hernández

Abstract

Road education is one of the most relevant issues focused to reduce traffic accidents, 
so it is important to analyze the driver’s behavior on the roads. International research 
has found evidence for a relationship between socioeconomic characteristics and 
traffic accidents. In this sense, the chapter shows a methodology to estimate the 
probability to be involved in a road accident, considering the road education and 
the socioeconomic characteristics of the population of a specific region, taking the 
Santiago de Querétaro city (in México) as a study case. Through a logit model estima-
tion and a survey applied to pedestrian, cyclist, motorcyclist, car driver, and freight 
driver allow us to determine which socioeconomic variables and road education are 
significant to determine the probability of being involved in a road accident.

Keywords: traffic accidents, probability, road education, socioeconomic level, 
transport modes, logit

1. Introduction

The present chapter shows one of the most relevant issues regarding the area of 
road safety since according to the WHO, road accidents are among the ten leading 
causes of death in the world [1]. “In Mexico, it is estimated that between 70% and 
90% of traffic accidents are attributed to the driver, with human errors and driver 
offenses in traffic regulations as the two main contributing factors” [2].

Shell [3] exposes “Improving road education involves an analysis of human behav-
ior, where both classroom instruction on safety issues, laws and regulations, vehicle 
operation, and those factors affecting driving are combined.” It is for these reasons 
that “the vast majority of road education exams have focused on accidents” [4]. The 
factors in these studies include age, income, and driver’s attitude.

In relation to the implementation of any road safety system, Ker et al. [5] and 
Mackay and Tiwari [6] acknowledge that human errors should be minimized in order 
to significantly improve road safety. In the circumstances of drivers, traffic safety 
policies recently implemented have been focused on improving their traffic behavior 
[7], particularly to endorse a better attitude when using roads [8–10]. Nonetheless, 
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Mirzaei et al. [7] reported that while many drivers show a positive safety attitude 
in regards to traffic, there are specific circumstances that may induce a poor traffic 
performance from some of these road users. Therefore, the authors inform us about 
the need to illuminate such situations, containing any potential cultural aspects. For 
the diverse groups of road users, Factor et al. [11, 12] proposed a theoretical model 
to analyze the influence that some social and cultural characteristics of these groups 
have on traffic safety, reporting that road safety differs in cultural and social features, 
including lifestyles and attitudes.

This study analyzed together the socioeconomic and road knowledge characteris-
tics of these users to determine the probabilities of being involved in a road accident. 
This issue arises from the research that has been done [3], which informs us that 
those who have knowledge of road education are less likely to be involved in accidents 
or to carry out traffic violations. Whereas Factor et al. [12], using a logistic regres-
sion, found a relationship between socioeconomic status and presence in traffic 
accidents, as to say there is a direct correlation between higher level of education and 
greater socioeconomic status, which lowers the probability of being involved in a 
road accident.

It is worth mentioning that the present research aims to develop a methodology 
to create, step by step, a model that determines which socioeconomic variables 
and road education are significant to determine the probability of being involved 
in a road accident, which was applied to a case study in the city of Santiago 
de Querétaro.

This is why it is important to analyze the behavior of drivers on public roads since 
one of the main factors of road accidents is the lack of education and knowledge that 
these users may have about road safety. Not only does lack of knowledge influence 
road safety but also social factors, such as differing cultures, social behavior, the age 
of a driver, and the socioeconomic status of the drivers. This is an explanation as to 
the importance of doing the study because knowing these aspects that were previ-
ously mentioned, are all aspects that can attribute to a driver’s performance when 
operating a vehicle.

2. Background

When examining the number of road mishaps as a meaning of a given country’s 
economic level, Xu et al. [13] concluded that “road users’ income is a determining fac-
tor for road safety.” Concurring to its 2013 Global Status Report on road safety, such 
a conclusion is also reached by the World Health Organization, as low- and middle-
income countries show higher traffic death rates when associated with high-income 
economies. Additional authors also report this cause–effect relationship [12, 14–16]. 
Overall, these authors claim that a low per capita income is a decisive factor for 
traffic crashes.

These accidents affect different social areas, and for this reason the subject of 
road education is a responsibility that belongs to a whole society, which encompasses 
pedestrians, cyclists, motorcyclists, drivers of vehicles, passengers, and transporta-
tion. Improving road education involves an analysis of human behavior, where both 
classroom instruction on safety issues, laws and regulations, vehicle operation, and 
those factors affecting driving, as well as vehicle driving practice are combined with 
a trained instructor [3]. It is for these reasons that the vast majority of road education 
exams have focused on accidents [4].
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Regarding age, on the other hand, much of the road safety literature focuses on 
high-risk drivers, often being young, low-income men with low education [17]. It is 
recognized that older people appear to be more safety-conscious [18].

In terms of income, it should be noted that per capita income has been identified 
as a determinant of overall injury mortality [19]. Based on research conducted by 
Zmud and Arce [20, 21], it is ensured that lower-middle income groups may be at 
increased risk of occupant motor vehicle injuries. Attitude is a very important factor 
in road education, which also predicts longitudinally an unsafe driver [22].

2.1 Multi-criteria models for the decision-making process

For this process, three decision-making models are discussed that are based 
on the manipulation of the simple related data that provide the means to develop 
indicators in a systematic way [23]. These decision-making criteria represent a 
multi-criteria approach, which must be compared with other processes of several 
criteria such as the qualification model, the hierarchical analytical process (AHP), 
and the multiple attribute utility theory. The AHP method is a method that has been 
applied to deal with problems in different areas, matching the sentences of intan-
gible qualitative criteria with tangible quantitative criteria [24]. The AHP method 
was initially developed by Saaty [25], with the objective of determining the relative 
importance of a set of alternatives in a multi-criteria decision problem. There are 
three main steps in the AHP: design of the hierarchy, a prioritization procedure, and 
the calculation of the results.

3. Methodology

Recent road safety research focuses on the need to improve the “behavior” of driv-
ers [7]. In this sense, we did not give the task of evaluating 5 (five) road users, such as 
pedestrian, cyclist, motorcyclist, vehicle driver, and freight truck driver.

The study consisted of an evaluation of the previously mentioned users deter-
mined by a sample size as a significant representation; this evaluation was applied 
through a questionnaire designed for each type of user, which was divided into two 
parts; the first containing information such as general data, socioeconomic level, age 
and origin of acquired knowledge and accident, second is designed with information 
such as regulations or recommendations, traffic signals, current situation in road 
safety and human factors, infrastructure, courtesy and urbanity and applied situa-
tions. It should be noted that because each questionnaire was designed by user type 
there are variants in some questions.

This research also has an important message for society and aims to contribute 
knowledge on the subject as well as to help in the reduction of traffic accidents in our 
country. For the execution of this project, we will be using the five steps of methodol-
ogy to conduct this investigation, we will also describe each of these steps:

3.1  Step 1: knowledge of the context of the variables to be evaluated and their 
development

The main objective of this stage consists of bounded problems for which the 
fundamental parameters can be defined. For this activity, some elements are incor-
porated in the analysis and are obtained from a review of global, national, and local 
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literature in relation to safety education programs and driving tests. As a result of this 
analysis, a list of specific questions involving six common variables around which two 
or three user-related questions are written is based on the comparative analysis of the 
necessary knowledge. Each question was obtained through a review of the literature, 
the resulting number of questions for each of the users of the infrastructure is as 
follows: 24 for drivers of vehicles, 24 for freight conductors, 24 for motorcycle users, 
21 for bicycle users, and 21 for pedestrians.

3.2 Step 2: structuring the questionnaire and evaluation

Within this stage, once the questions were established in the context of the 
selected variables two parallel processes will be carried out: the planning for the 
execution of the survey and the establishment of the weighting factors for the sur-
vey questions. The AHP method will be selected for this process, as it represents a 
structured and computerized process in which comparisons are made on a peer basis, 
which provides some evidence regarding the assessments made by experts of the 
Mexican Institute Transport (IMT) and the Autonomous University of Querétaro 
(UAQ ). To obtain the reason scales of the AHP methodology, we compared the set of 
peer evaluations for each question. The peer comparison was as follows: 1 = equal,  
3 = moderate, 5 = strong, 7 = very strong, and 9 = extreme.

3.3 Step 3: experimental design and sample size for survey operation

In this step, we will determine the size of the sample of users of the road 
examined which is calculated according to the number of inhabitants of the area 
[26] and the means of transport chosen by the users, as reported by Obregón and 
Betanzo [27].

 
( )

α
α

∗ ∗
=

∗ − + ∗ ∗

2

2 21
N Z p q

n
d N Z p q

  (1)

Where N is the total number of inhabitants in the area (804 663 de Santiago de 
Queretaro), Zα = 1.96 (for a reliability 95%), p = expected proportion (in this case 5% 
= 0.05), q = 1 - p (in this case 1- 0,05 = 0,95), and d = precision (can be 1% to 3%; 2% 
was selected).

According to Eq. (1), 207 individuals were needed. This sample size considers 
individuals using the different means of transportation listed in Table 1, where it can 
be observed that freight vehicle, motorcycle, and bicycle users were the least frequent 
road users, with 1%, 1%, and 0.7%, respectively. To increase the reliability of these 
users, the sample size was increased to 20, for each of these modes. The number of 
validated questionnaires was 254.

The specific public areas for applying the survey were selected as a function of the 
type of transport infrastructure user: (1) public spaces, in which people spend at least 
10 minutes completing some paperwork; (2) spaces around public schools, in which 
students move; and (3) recreational areas, in which users have more time to respond 
the survey (e.g. malls and public parks).
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3.4 Step 4: database processing

In this process, we will compile the database obtained through the questionnaires 
applied to each user evaluated. Subsequently, this database will be analyzed to know 
the socioeconomic and road users’ knowledge. In the following graph (see Figure 1), 
the analysis of the variables of road education performed with the results obtained 
by the surveys in each one of the evaluated users is shown. This shows that the users 
that resulted with the lowest road knowledge in general are freight drivers (FD) and 
vehicle drivers (VD), unlike cyclists (C) who obtained the highest level of knowledge. 
At the same time, we can observe that the motorcyclists (M) obtained a low rating in 
regulation and recommendations (R&R); in contrast, the pedestrian (P) proved to 
have low knowledge in courtesy and urbanity (C&U).

The rest of the variables of road education by its initials are classified in the fol-
lowing form: traffic signals (TS), current situation in road safety and human factor 
(CRS&HF), infrastructure (Infra), and applied situations (AS).

3.5 Step 5: the probabilistic model

In the literature, the use of Logit models has been reported to estimate the prob-
ability of accidents [7, 28]. In this sense, the present research project estimated the 
presence of road accidents using Logit models. These models are estimated using the 
commercial software NLOGIT version 5, which was used for the same objective by 
Tay [29]; who mentions that binary regression models are adequate techniques to 
predict a binary dependent variable as a function of predictor variables.

Due to its ease in its estimation, the logit transformation is one of the most used in 
studies, this conducive search of a model of choice is more comfortable analytically, 
and the result was the binary logit model. This is under the assumption that εn is logisti-
cally distributed [29]; and the probability of choosing alternative i is given by Eq. (2).

 
( ) ( )µ− −

=
+

1

1 in jn
n V V
P i

e   (2)

Freight 
vehicle

Car Motorcycle Bicycle Walk Rest Total

Distribution of 
users by mean 
of transport 
(%)

1.00 32.50 1.00 0.70 10.10 54.00 100

Percentage of 
sample size 
per type of 
infrastructure 
user

1 33 1 1 10 54 100

Estimated 
sampled

5 148 5 3 46 246 453

Total sampled 20 148 20 20 46 0 254

Table 1. 
Sample and user distribution by transport means in Santiago de Querétaro. Own elaboration by the distribution 
data from Ref. [27].
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For this model, the dependent variable P(i), is a probability (between 0 and 1) 
that cannot be observed; only the choices of each individual are observed and these 
are variables (0 and 1).

4. Results and discussion

This section describes the logit models estimated to determine which socioeco-
nomic and road education variables are significant to determine the probability of 
being involved in a road accident considering the means of transport used in their 
mobility. Depending on the mode of transport, the survey asks the user if they have 
been in a traffic accident in their life and during the last 12 months. Subsequently, 
each of the models obtained from each analyzed user is described. It should be 
noted that the first model (Model 1) was analyzed requesting the user if he has been 
involved in a traffic accident in his life. Unlike the second model (Model 2), which 
represents if you have been in a traffic accident in the last 12 months.

4.1 Freight driver

Two models were analyzed, in the first model, it can be seen that the significant 
variable is the income. Unlike Model 2, the most significant variable turned out to be 
the years with the driver’s license (YDL) that the user has. It is worth mentioning that 
the variable that resulted most significantly in freight driver to determine the prob-
ability of being involved in a road accident is theincome (0.8345) (Table 2).

4.2 Vehicle driver

The first two models were analyzed, showing the following variables that are 
significant: if the user has a driver’s license (DL) and the age at which the road 

Figure 1. 
Road education grade of each user.
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knowledge was obtained (ARK). In Model 2, the most significant variables were age 
(Age) and income (Income). It should be noted that the variable that resulted most 
significantly in vehicle drivers is driver’s license (2.4749) (Table 3).

4.3 Motorcyclist

Two models were analyzed in Model 1, we can see the following variables that 
are significant: the level of road knowledge (LRK) and the courtesy and urban-
ity (C&U) that the user has. In Model 2, only a significant variable was obtained, 
which is the years with a driver’s license (YDL) that the user has. It is worth men-
tioning that the variable that was most significant in motorcyclists to determine 
the probability of being involved in a road accident is the courtesy and urbanity 
(27.5462) (Table 4).

Model 1 Model 2

Coef SE Coef Coef SE Coef

Intercept −3.7912* 2.0713 -21.4281 · 16.6554

(−1.830) (−1.287)

Income 0.8345* 0.4865 — —

(1.715) —

YDL — — −0.7845 · 0.6018

— (−1.304)

Note: ***, **, *, · = significance at 1, 5%, 10%, and 15% level.

Table 2. 
Logit model, freight driver probability to be involved in a traffic crash.

Model 1 Model 2

Coef SE Coef Coef SE Coef

Intercept −1.2401* 0.6994 −2.9609** 1.1795

(−1.773) (−2.510)

Age — — −0.8669*** 0.2815

— −3.079

Income — — 0.4208** 0.1791

— (2.349)

DL 2.2472*** 0.6498 2.4749** 1.0788

(3.458) (2.294)

ARK −0.4100** 0.1866 — —

(−2.197) —

Note: ***, **, *, = significance at 1, 5%, and 10% level.

Table 3. 
Logit models, vehicle driver probability to be involved in a traffic crash.
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4.4 Cyclists

For this user, only one model was analyzed, due to the fact that the data obtained 
show that they were not involved in an accident in the last 12 months. In the follow-
ing model, the following variables were found to be significant: income (Income) 
and courtesy and urbanity (C&U) that these users may have on the infrastructure. 
It should be mentioned that the variable that was most significant in cyclists is the 
courtesy and urbanity of users (−18.9062) (Table 5).

4.5 Pedestrian

As we analyzed Model 1, we can see the following variables that were significant: 
age (Age) and applied situations of users (AS). In contrast to Model 2, the most 
significant variables were the income (Income), level of road knowledge (LRK) they 
believe they have, and the age at which they obtained road knowledge (ARK). The 
significant variables that influence the probability of the pedestrian being involved in 
a traffic accident are applied situations (−10.2266) and the age at which they obtained 
road knowledge (−1.2199) (Table 6).

Model 1 Model 2

Coef SE Coef Coef SE Coef

Intercept −5.9537 · 3.7085 −4.8979 · 3.6383

(−1.605) (−1.346)

LRK 1.0178 · 0.7227 — —

(1.408) —

YDL — — −0.4753 · 0.2785

– (−1.707)

C&U 27.5462 · 17.581 — —

(1.567) —

Note: ***, **, *, · = significance at 1, 5%, 10%, and 15% level.

Table 4. 
Logit models, motorcyclist probability to be involved in a traffic crash.

Model

Coef SE Coef

Intercept 0.9418 · 1.9526

(0.482)

Income 0.5037 · 0.3304

(1.524)

C&U −18.9062 · 13.2425

(−1.428)

Note: ***, **, *, · = significance at 1, 5%, 10%, and 15% level.

Table 5. 
Logit model, cyclist probability to be involved in a traffic crash.
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5. Conclusions

The chapter shows how the statistical logit probability model can characterize the 
effect of socioeconomic and educational factors on the population and the probability 
of being involved in a traffic accident. The overall result for the population surveyed 
identify both the level of road education and the income of the users’ infrastructure. 
The significant variables that influence the probability of the user being involved in a 
traffic accident by transport mode are as follows:

Amongst freight drivers, it was found that the most significant variables influ-
encing the probability of being involved in a road accident are income and years 
with a driver’s license. Vehicle drivers, age (Age), income (Income), if you have a 
driver’s license (DL), and the age at which you gained road knowledge (ARK) were 
found to be the most significant variables to determine the probability of being in a 
road accident. It was found that for motorcyclists the factors were the level of road 
knowledge (LRK) they were considered to have, years of driver’s license (YDL) 
and Courtesy and Urbanity (C&U) as being the most significant variables for these 
users. For cyclists, it was found that income as well as courtesy and urbanity were 
the most significant variables. On the other hand, for pedestrians, it was found that 
the income, age, level of roadway knowledge that they considered to have, the age 
at which they obtained road knowledge, and the situations applied were the most 
significant variables.

In the case of motorized means of transport, the following aspects should be 
considered; age of users, socioeconomic characteristics, age and origin of acquired 
knowledge, and courtesy and urbanity. In the case of nonmotorized means of trans-
port, the aspects to be taken into account are age, socioeconomic characteristics, age 
and origin of acquired knowledge, courtesy and urbanity, and the situations applied 
in this way.

Model 1 Model 2

Coef SE Coef Coef SE Coef

Intercept −1.286* 0.6501 −6.0174* 3.2642

(−1.859) (−1.843)

Income — — 0.8987* 0.4893

— (−1.837)

Age 0.5841** 0.2457 — —

(−2.377) —

LRK — — 1.139* 0.6655

— (−1.712)

ARK — — −1.2199* 0.685

— (−1.781)

AS −10.2266* 5.358 — —

(−1.909) —

Note: ***, **, *, · = significance at 1, 5%, 10%, and 15% level.

Table 6. 
Logit model, pedestrian probability to be involved in a traffic crash.
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Chapter 6

Quantifying Risk Using Loss
Distributions
Retsebile Maphalla, Moroke Mokhoabane, Mulalo Ndou
and Sandile Shongwe

Abstract

Risk is unavoidable, so quantification of risk in any institution is of great impor-
tance as it allows the management of an institution to make informed decisions. Lack
of risk awareness can lead to the collapse of an institution; hence, our aim in this
chapter is to cover some of the ways used to quantify risk. There are several types of
risks; however, in this chapter, we focus mainly on quantification of operational risk
using parametric loss distributions. The main objective of this chapter is to outline
how operational risk is quantified using statistical distributions. We illustrate the
application of parametric loss distributions’ risk quantification using “Taxi claims
data” which seems to best fit one of the loss distributions and fully illustrate how to
quantify this specific data. More importantly, we also illustrate how to implement
quantification of risk for two other scenarios: (i) if we assumed the underlying distri-
bution is unknown and use the nonparametric empirical distribution approach, and
(ii) when using the generalized extreme value (GEV) distribution approach. The
latter two scenarios were not the main objective but were done in an effort to compare
our results with some of the more commonly used techniques in real-world risk
analysis scenarios.

Keywords: risk quantification, loss distributions, parametric, nonparametric,
value-at-risk

1. Introduction

The topic presented in this chapter serves to give novice risk readers an idea of
how institutions quantify their operational risks using parametric loss distributions.
For various financial institutions, risk is classified into different components. Firstly
though, risk is defined as the probability of an event and the potential loss. Put
differently, [1] defined risk as a condition in which there is a possibility of an adverse
deviation from the desired outcome that is expected or hoped for. Secondly, [2] pro-
vides an excellent account of four main categories of financial risks (more applicable
in the banking sector), i.e. credit risk, market risk, operational risk, and others. For
more discussion on some of the latter mentioned risks, see [3]‘s Chapter 7 and the
corresponding tools and techniques discussed in [3]‘s Chapter 8. In this chapter, we
are focusing mainly on the quantification of operational risk.
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There have been multiple instances in the previous century of many big multina-
tional firms experiencing total collapse due to a lack of risk control. For instance,
employees may embezzle funds from the firm, rogue employees may make
unauthorized deals, etc. For best examples of the latter, see Chapter 1 of [2] and
Chapter 20 of [3]. Note though, in the South African context, the best example for
poor operational risk management are Steinhoff, Hullett, Venda Building Society
(VBS) mutual bank, Eskom, South African Airways (SAA) and more recently the
Capitec bank computer systems failure during a peak period of the month in 2022. It is
worth mentioning that a variety of sources have indicated that, in most instances,
losses incurred due to operational risk normally would originate from poor manage-
ment practices, outsourcing nonstrategic activities, or external factors.

In this chapter, a study on operational loss data will be conducted. We hope to
determine the loss distribution that best fits the data by performing goodness-of-fit
tests to the proposed models and estimating the parameters using appropriate statis-
tical methods so that it can be possible to forecast or quantify the loss to be
anticipated.

To date, financial institutions are making it a norm to manage their exposure to
different types of risks, see [4]. Quantification of risk is of great importance, a proper
evaluation of risk in any financial institution is an uncertainty problem that may easily
lead to the bankruptcy of that firm and would consequently become a major concern
for national and international financial regulatory bodies. This research work is com-
piled to contribute to the improvement of the quantification of operational risk using
the loss distribution approach (LDA). According to [5], operational risk is the proba-
bility of loss resulting from insufficient or unsuccessful internal processes, people, and
systems or from external events. Consequently, in the next section, we review the five
most common parametric loss distributions namely: Pareto, Burr, gamma, Weibull,
and log-normal distributions. These loss distributions are reviewed mainly in the
aspect of quantification of operational risk.

This topic is applicable to a wide variety of fields as all institutions face some
certain type of risk which if left unnoticed and unmanaged, could lead to total collapse
of the firm or the worldwide economy (as seen in the last two global financial crises—
the domino effect). Operational risk is quantified in several institutions; according to
[6], this is done because we cannot predict the future for certain, but we can prepare
and anticipate it. Risk quantification gives us an insight into what we can anticipate.
Quantification of risk is done in several financial institutions, e.g. banks, universities,
insurance companies, etc. The limitation of our research is as follows: it is applicable in
scenarios when the underlying operational loss data fits (or almost fits) the loss
distributions considered here (i.e. Pareto, Burr, gamma, Weibull, and log-normal
distributions). In the event of the data not passing the goodness-of-fit tests for any of
the latter distributions, then in the concluding section (i.e. Section 4), we shall list
different alternatives approaches that the readers need to consider.

Note that the field of risk identification and quantification has become more
important as globalization is expanding. To date, different financial institutions are
realizing the importance of quantifying risk to avoid huge losses that may even result
in bankruptcy. The aspect of risk quantification is pivotal in making the best business
decisions.

Therefore, the rest of the chapter is structured as follows: in Section 2, we review
several publications that have covered operational risk using different loss distribu-
tions. Moreover, we take note of various approaches that were used to quantify risk
exposure. Next, in Section 3, we use a dataset to illustrate quantification of risk using
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loss distributions. Given that this research work is a continuation of previous litera-
ture studies, in Section 4, we provide some concluding remarks and offer several
possible future research topics.

2. Literature review

2.1 Introduction

The three major classes of financial risks and their corresponding definitions are
defined as follows:

• Market risk is the risk inherent from exposure to capital markets; see [3]. For
instance, if some event led to insurance companies paying out large claims or
banks are being exposed to risk due to an adverse movement in the stock market.

• Credit risk arises when losses are observed due to the inability of a debtor to
perform an obligation in accordance with agreed terms; see [2].

• Operational risk is the risk of loss resulting from inadequate or failed internal
processes, people, or systems or external events; see [7].

Note that [8] argued that the probability of an operational risk event increases with
many personnel and with a greater transaction volume. The latter is also based on the
study by [9] who investigated the effect of bank size on operational loss amounts and
deducted that, on average, for every unit increase in bank size, operational losses are
predicted to increase by approximately a fourth of a root of that. Note that there are
different classes of operational losses that the financial industry must be aware of; see [2]:

i. high frequency and high magnitude

ii. high frequency and low magnitude

iii. low frequency and low magnitude

iv. low frequency and high magnitude.

Category (i) has been argued that it is not feasible/implausible in the financial indus-
try, with (ii) and (iii) are unimportant and can often be both prevented. However,
category (iv) tends to cause themost devastation loses, with the best example being the
1995 Barings Bank’s collapse (also portrayed in themovie “Rogue Trader”). Consequently,
banksmust be extremely cautious of these types of losses as they tend to cause bankruptcy
inmany financial institutions. Low-frequency/high-severity operational losses can be
extreme in size when they are compared to the rest of the data. If you construct a
histogram of the loss distribution, the low-frequency/high-severity operational losses
events would be placed in the far-right end,which often referred to as “tail event”. Due to
operational loss, data exhibit such tail events.We say that the data are heavy-tailed.

In different fields that use “Data Science” techniques (e.g. insurance, banks, etc.),
different types of distributions are used to model data due to the different products
that are offered by several financial institutions. These financial institutions are
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increasingly measuring and managing their exposure to different types of risks; see
[4]. A proper evaluation of risk in any financial institution is an uncertainty problem
that may easily lead to a bankruptcy of that firm and consequently is a major concern
for national and international financial regulatory bodies.

It is important to mention that risk data from different products offered by finan-
cial institutions (e.g. micro-insurance, re-insurance, investment, savings, stock
exchange, etc.) are distributed differently; see for instance [10]. Consequently, a
thorough understanding of a variety of distributions is a must for an inspiring data
scientist. According to [2], the most applied basic distributions in quantifying opera-
tional risk are those that are skewed to the right (right-tailed). There are two main
ways to categorize the right-tailed loss distributions, i.e. parametric and nonparamet-
ric approaches. More specifically, in this chapter, we will consider the following most
common parametric loss distributions: (i) exponential, (ii) gamma, (iii) Weibull, (iv)
Pareto, (v) Burr, and (vi) log-normal. It is worth mentioning that these are not the
only existing loss distributions, for example, a combination of two of the above, i.e.
the composite Weibull-Pareto distribution in the context of risk is discussed in [11].

The next subsections discuss the following: Section 2.2 provides some distribu-
tional properties of the considered parametric loss distributions. More importantly,
Section 2.2 provides the literature review of some publications that applied the con-
sidered distributions in the context of risk analysis. Next, Section 2.3 gives a brief
discussion on nonparametric loss distributions (seldomly used), and Section 2.4 dis-
cusses some well-known methods of quantifying risk. Section 2.5 discusses other types
of risks that use the LDA. Finally, Section 2.6 gives some concluding remarks.

2.2 Parametric loss distributions

A summary of some publications that discussed parametric loss distribution’s
application in operational risk is provided in Table 1. This table was constructed with
an effort to easily identify which type of loss distributions is discussed in these
separate publications. The corresponding loss distribution function properties are
listed in Table 2 with the expressions adopted from [12, 13] and Chapter 6 of [2].

Note that when the different parameters in Table 2 are varied, the distributions
tend to vary significantly, especially in the tail area. The latter will be illustrated in
detail in the next section.

2.2.1 Pareto distribution

The Pareto distribution is a very heavy-tailed distribution that takes on positive
values, and its parameter α is used to determine the size of the tail heaviness. The
Pareto distribution tail is monotonically decreasing, and this means that the tail
decreases as x increases and it becomes is thicker for values of x closer to zero. To
derive the Pareto distribution, assume that a variate x follows an exponential distri-
bution with mean β�1; furthermore, suppose that β follows a gamma distribution,
therefore the x follows a Pareto distribution; see [17]. Note that when α< 1, a very
heavy tail is encountered with the mean and variance being infinite. This means that
losses of infinite sizes are theoretically possible. The extreme heaviness of the Pareto
distribution tail makes it ideal for modeling losses of high magnitudes; see [2]. There
are also different versions of the Pareto distribution that are used in risk analysis. The
most popular of those variations is being the generalized Pareto distribution (GPD).
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The GPD is especially good while modeling data greater than a high threshold, also
known as estimation of tails of extreme losses.

2.2.2 Burr distribution

The Burr distribution is heavy-tailed, and it is skewed to the right; see [19]. The Burr
distribution is a special case of GPD described in subsection 2.2.1. It has three parame-
ters which gives it more flexibility over the traditional Pareto distribution. The Burr
distribution has an additional parameter γ and when γ ¼ 1, it reduces to a Pareto
distribution. One of the well-known uses of the Burr distribution is modeling natural
catastrophes and as a result, it is a popular distribution or model for use in the insurance
industry for pricing of premiums; see [2, 22]. The family of Burr distributions goes back
to 1941, and it is sometimes referred as the extended Pareto or beta prime distribution.
All the PDFs of the loss distributions in the Burr family have a monotonically decreas-
ing, right-skewed tails; see [15]. The Burr distribution is well recognized in probability
theory with many applications in agriculture, biology, etc., see [20].

2.2.3 Gamma distribution

The gamma distribution is a light-tailed distribution which is skewed to the right.
The gamma distribution is a two-parameter distribution that is a generalization of the
exponential distribution. It is a two-parameter probability distribution, where x is a

Publication Loss distribution

Gamma Pareto Weibull Log-normal Burr Other

[2] ✓ ✓ ✓ ✓ ✓

[4] ✓

[5] ✓

[10] ✓

[11] ✓ ✓ ✓

[12] ✓ ✓

[13] ✓ ✓

[14] ✓ ✓

[15] ✓ ✓

[16] ✓ ✓ ✓ ✓ ✓

[17] ✓ ✓ ✓ ✓ ✓ ✓

[18] ✓ ✓

[19] ✓

[20] ✓

[21] ✓

[22] ✓

Table 1.
A summary of publications discussed in this chapter and their classification according to the type of loss
distribution.
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random variable, β is a scale parameter, α is the shape parameter, and Γ ∙ð Þ is a gamma
distribution; see Table 2. The gamma distribution is said to be the generalization of
the exponential distribution because for γ ¼ 1 it becomes the exponential with param-
eter λ ¼ 1=β, and it is usually used to model time between events; see [2]. According to
[7], the gamma distribution is one of the most important loss distributions in risk
analysis because it forms the base for creating many of the popular distributions we
have. Exponential distribution is described by a density f and distribution F given in
Table 2 above, where λ represents the “failure” rate. The distribution is tractable and
has unique mathematical properties, e.g. the failure distribution is described by a
single parameter known as the mean time to failure, denoted by θ, also that the failure
rate is defined by knowing the mean life, i.e. λ ¼ 1=θ . The exponential distribution can
be used to model the time elapsed until the next event (e.g. accident); see [23].

The exponential PDF has a monotone decrease and an exponentially decreasing
and light tail. This means that when it is applied in risk analysis, the event of high
losses is given an almost zero probability; see [2]. Due to this property, [14] stated that
the exponential distribution is not used very much in operational losses, but the
constant decrease of the tail is useful for modeling lifetime data of items which have a
constant failure rate. The exponential distribution has attractive and easily under-
standable mathematical properties; thus, it is mostly used in risk analysis for devel-
oping other models.

2.2.4 Weibull distribution

Another generalization of the exponential distribution is the Weibull distribution,
and it has two parameters (see Table 2) compared to the one parameter of the
exponential distribution. The Weibull distribution has a light tail which is skewed to
the right. The additional parameter allows the Weibull distribution to have more
flexibility as well as heavier or lighter tail than the exponential distribution. That is,
the Weibull distribution has a lighter tail than exponential distribution if α< 1, equals
to the exponential distribution if α ¼ 1 and has a heavier tail than exponential distri-
bution if α> 1; see [2]. Furthermore, [2] stated that in risk analysis, the heavy-tailed
Weibull distribution is a popular model as it has been shown to be optimal for
modeling asset returns as well as used in reinsurance.

2.2.5 Log-normal distribution

A log-normal distribution is a moderately heavy-tailed distribution that is skewed
to the right. The distribution is derived by taking the natural logarithm of the data and
fitting it to the normal distribution. The distribution is right-tailed and takes on only
positive x values. The log-normal distribution, like the normal distribution, has
parameters μ and σ (see Table 2). The distribution is useful for modeling of claim
sizes. The thick tail and right skewness properties make it fit many situations. The log-
normal can also resemble the normal distribution if the α is very small, and this
property is not always desirable for analyzing risk; see [16].

2.3 Nonparametric loss distribution

In the nonparametric loss distributions (e.g. empirical distribution function), all
the data on the certain risk type is considered. In other words, we do not have to
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estimate any parameters as all the data are available (which is hardly ever the case);
see [2, 16]. According to [7], the CDF of the empirical distribution, Fn xð Þ, is given by:

Fn xð Þ ¼ 1
n
# i : xi ≤ xf g (1)

where # denotes the number of observations ≤ x, and n is the total number
observations in the sample.

Some of the advantages of nonparametric loss distributions are as follows:

• It does not assume any underlying distribution, thus letting the data speak for itself.

• It is simple and easy to understand and does not require any complicated sample
theory.

• It might be the only alternative for small sample sizes.

Below are some of the disadvantages:

• Less efficient to compute and may provide inaccurate results, especially when the
underlying distribution is known.

2.4 Risk quantification

According to [18, 24], LDA is widely used to quantify operational risk; moreover,
both [18, 24] showed that when quantifying operational risk, the PDF for an occurrence
and the frequency for that occurrence are approximated firstly for a certain risk type or
business line then later for the institution. The process of deriving these probability
distributions is done in three steps: firstly, the loss severity distribution is derived;
secondly, the loss frequency distribution is also derived; and lastly, the aggregate loss
distribution is found by compounding the severity and frequency loss distributions.

The Value-at-Risk (VaR), which is a combination of expected and unexpected
losses, is used when approximating the PDFs, and [18, 24] stated that the Capital-at-
Risk (CaR) given in Eq. (2) is just the VaR, and this value is computed for a certain
risk type cell and a certain occurrence type:

CaR i, j; αð Þ ¼ EL i, jð Þ þUL i, j; αð Þ (2)

Note that in Eq. (2), we use the indices i and j to denote a given business line and a
given event type, EL i, jð Þ is the expected loss, and UL i, j; αð Þ is the unexpected loss at
significance level α.

Another method of quantifying risk is the internal measurement approach (IMA).
According to [18], when using IMA, the business type and the event type risk are both
quantified using

CaR i, jð Þ ¼ EL i, jð Þ � γ i, jð Þ � RPI i, jð Þ (3)

where γ is the scaling factor and RPI is the risk profile index.
LDA is of great importance when computing regulatory capital, and as noted by [18],

even though LDA is such a great tool, it also has its downside. This is due to a lack of data
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and even if a bank keeps large amounts of losses data, they may still be unrepresentative
of potential extreme losses. Three of some popular approaches under LDA is the
extreme value theory (EVT), VaR, and IMA which are briefly discussed in Section 3.

Risks need to be measurable so that they can be evaluated and examined. It is ideal
to have a high-quality historical data that can be subjected to in-depth statistical
analysis. Numerous quantification models tend to lack high-quality statistical data.
The types of risk determine which quantification technique to use. In finance, the
main methods to quantify risk are as outlined below; see [2, 3]:

• Dynamic financial analysis

This simulates the enterprise’s overall risks as well as their interactions. Typically,
forecast balance sheets and projected income statements are produced as outputs
using cashflows.

• Financial Conditions Reports (FCR)

The Financial Conditions Report (FCR) displays both the current state of solvency
and potential future developments. The volume and profitability of new business as
well as any special characteristics it might have would typically be projected.

• Quantitative methods

Quantitative methods are employed for risks in insurance and underwriting, mar-
kets, and economies, such as interest rate, basis risk, and market fluctuations. Time
series and scenario analysis might be included, as well as the fitting of statistical
models and subsequent calculation of risk metrics like VaR.

• Credit risk models

Instead of measuring the risk in a credit portfolio, these models assess the credit
risk of a single entity (business or person). These may be quantified as well as
subjectively, and counterparty risk is one of them. A credit risk model’s job is to take
the state of the overall economy and the circumstances surrounding the company
under consideration as inputs and provide a credit spread as an output. In this context,
structural and reduced form models are the two main groups of credit risk models.
Based on the value of a company’s assets and obligations, structural models are used to
assess the likelihood that a default will occur.

• Asset Liability Modeling (ALM)

This approach, which is common in the insurance industry and primarily measures
liquidity and capital requirements, might be used by various types of financial
companies.

• Scenario analysis

Operational hazards and other risks that are challenging to measure, such as legal
risk, regulatory risk, agency risk, moral hazard, strategic risk, political risk, and
reputational risk, are often covered under these.
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• Sensitivity testing

It is used to change each parameter separately and measure how much the outputs
of the model fluctuate or are sensitive to different variables.

2.5 Other risks

Another risk that is quantified using LDA is credit risk, which is the estimation of
expected and unexpected loss fromcredit defaults; see [10].Note that [21] used the inverse
Gaussian distribution to quantify credit risk and used Copula functions and Laplace trans-
formation to run an algorithm that quantifies the corresponding probabilities. In this
chapter, our focus is not on credit risk. Hence, a reader whomight be interested in how the
probability distribution of defaults is quantified can go through the articles by [10, 18].

3. Methodology

3.1 Introduction

In the previous section, we outlined numerous articles and textbooks that
discussed various aspects of operational risk using loss distributions. Those articles
and textbooks formed a literature review that helped us figure out how to quantify
operational risk using loss distributions which is the main objective of our research
work. Firstly though, we provide detailed description of the EVT, VaR, and their
corresponding properties.

Under EVT approach, [2] explained that the analysis of the tail area of the distri-
bution is the main focus as well as using appropriate methods for modeling extreme
losses and their impact in insurance, finance, and quantitative risk management. We
fit classical distributions to the data, using the maximum likelihood criteria, starting
from light-tailed distributions (e.g. Weibull distribution), to medium-tailed distribu-
tions (e.g. log-normal). Under this approach, the Kolmogorov-Smirnov (KS) test and
the Anderson-Darling (AD) test are adapted to measure the distance between the
empirical and theoretical distribution functions only in the tail area, after deciding on
the desired quantile. Readers are referred to [25, 26] for the KS test and for the AD
test. Note that mean-excess plots are used to assess the validity of modeling the tails,
while the Hill method is also used to get rough estimates of the shape of the parameter
of a distribution; see [2]. In addition, [2] stated that the KS and AD tests can be used to
examine the goodness-of-fit of models that we want to fit on the data. These tests can
be used to determine which loss distribution best fits our operational loss data. These
tests use different measures of discrepancy between fitted continuous distributions
and empirical distributions. KS test is the best at measuring the discrepancy around
the median, while the AD test is good at measuring the discrepancy for the tails.

According to [2], VaR is the largest loss an investment portfolio might sustain over
a specific length of time. The time frame can be a single day, a month, a quarter, or
even an entire year. According to [2], it is the (1-α)th percentile of the loss distribution
over a desired time frame, where (1-α) is the level of confidence and practitioners
typically put it at 99.99%. Also note that [27] defined VaR as a number that indicates
how much a financial institution can lose with probability over a specific time hori-
zon, and that its measurements can be used in risk management, the assessment of
risk takers’ performance, and for regulatory requirements.
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The method of moments is a different analytical method for quantifying risk. In
this method, the mean and variance of input distributions defined at the task level are
utilized to calculate the moments of the probability distribution corresponding to the
task completion date. The major moments of work breakdown structure simulations
may be determined using this method almost instantly and precisely, and it is still
utilized in the cost risk analysis community; see [28].

Now in this methodology section, we intend to use a dataset to illustrate to readers
how to quantify real-life operational risk using loss distributions. In addition, we
intend to measure the descriptive statistics such as the mean, skewness, and kurtosis
to obtain a general idea of how each of the considered datasets are distributed. For
instance, Tables 3 and 4 below give a summary of how skewness and kurtosis are used
to give an idea of how the dataset(s) may be distributed. As indicated in [2], there are
important statistical approaches to consider when running a goodness-of-fit test to a
dataset, i.e. the KS and AD test. More importantly, the maximum likelihood estima-
tion (MLE) or method of moments shall be used to estimate the model parameters.

The pivotal role of our study is to determine the best loss distribution that fits the
considered dataset. To complete this role, we ought to compare between Pareto,
gamma, Weibull, log-normal, Burr, and exponential distributions and investigate using
specific metrics which distribution best fits our data. We are going to perform these
tasks with the help of R software (the dataset used and R codes can be requested from
the authors) using packages, such as moments and fitdistrplus. Having determined
which distribution best fits our data, we shall use the best-fitting loss distribution to
calculate the probability of loss for that specific dataset. Consequently, it may happen
that the data do not seem to fit well with any distribution; then in such an instance, we
would conclude that using a nonparametric approach would be of better benefit.

3.2 Goodness-of-fit test

Goodness-of-fit tests are useful to determine the validity of a theoretical model.
There are different types of tests that can be used to perform the goodness-of-fit test,
e.g. Kuiper, Cramer von Mises, and Pearson’s chi-square test, but in this research
work, we mainly focus on the KS and AD tests.

Skewness Data shape

Zero Asymmetry

Negative Left-tailed

Positive Right-tailed

Table 3.
Value of skewness implications.

Kurtosis Tail heaviness

Zero Equal to normal curve

Negative Lighter-tailed

Positive Heavy-tailed

Table 4.
Values of kurtosis implications.
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3.2.1 Kolmogorov-Smirnov test

This test captures the deviation or variance around the median of the data. The KS
test is computed using the maximum vertical distance between Fn xð Þ and F xð Þ, where
Fn xð Þ is the CDF of the empirical formula and F xð Þ is the CDF of the observed data.

According to [2], KS test statistic is computed as follows: let Dþ be the largest
difference between Fn xð Þ and F xð Þ and let D� be the largest value between F xð Þ and
Fn xð Þ. Then, mathematically,

Dþ ¼ supx Fn xð Þf � F xð Þg (4)

D� ¼ supx F xð Þf � Fn xð Þg: (5)

Thus, the KS statistic is calculated as:

KS ¼ ffiffiffi
n

p
max Dþ, D�gf , (6)

which can be written as,

ffiffiffi
n

p
max sup

j
n
� z jð Þ

� �
, sup z jð Þ � j� 1

n

� �� �
: (7)

where n is the number of observations, z jð Þ ¼ F x jð Þ
� �

and j ¼ 1,2,… ,n.
For hypothesis testing, the null hypothesis is that the dataset that we will use for

illustration purpose “Taxi claims” data follows the specified distribution, and the
alternative hypothesis is that the “Taxi claims” data does not follow the specified
distribution using a critical value of 5% throughout.

3.2.2 Anderson-Darling test

This test is best suited for computing discrepancies around the tails. The test is
mostly used for heavy-tailed data, and the test statistic of the AD test is given by:

AD ¼ ffiffiffi
n

p
supj Fn xð Þ � F xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F xð Þ 1� F xð Þð Þp j: (8)

The computing formula is given by:

AD2 ¼ �nþ 1
n

Xn
j¼1

1� 2jð Þ log zj
� �� 1

n

Xn
j¼1

1� 2 n� jðð Þ log 1� zj
� �

: (9)

3.3 Sensitivity analysis

In this section, we perform the sensitivity analysis of the distribution that will be
fitted to our data. The purpose of doing this is to show the effect of the different
parameters’ behavior on the tail and peak portion of the probability distribution.
When testing for the effect of a parameter, we will fix all other variables and vary the
parameter of interest.

In Figure 1, we varied λ as 0.5, 1 and 1.5. We can clearly see that at 0.5 we had a
thicker tail, while at 1.5 we observe a thin tail. Thus, the more we increase λ we obtain
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an exponential distribution with a thinner tail. In Figure 2a, β is fixed to be 2 with
α∈ 2, 4, 6f g, and we can clearly see that when α =2, the resulting gamma distribution
has thin tails; however, for large α, the distribution has thicker tail. In Figure 2b, α is
fixed and β is varied. It is observed that the gamma distribution has thin tails, when β
is small and we have thick tails for large β.

In Figure 3a, with the β fixed, for small α, the Weibull distribution has a thick tail
and a thin tail for large values of α . In Figure 3b, given that α is fixed, as β increases,
we observe thicker tails; however, for small β, we observe thin tails. For β fixed, in
Figure 4a, a small α yields a thicker tail; however, a larger one yields thin tails. Next in
Figure 4b, with α fixed; a small β yields thin tail while a large one yields thicker tails.

In Figure 5a, when α is fixed at 0.5 and γ to be 10, we varied β to be 10, 20, and 30,
and it is observed that when β is 30 there is a thicker tail and when β is 10 there is a

Figure 1.
Exponential distribution.

Figure 2.
Gamma distribution.
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thin tail. That is, when the value of β is increased, the tails become thicker, and the
opposite is true. In Figure 5b, α is fixed to be 0.5 and β to be 50, γ is varied to be 5, 10,
and 15, and it is observed that when γ is 5 there is a thicker tail and when γ is 15 there is
a thin tail. When we increase the value of γ the tails become thinner, and the opposite
is true. In Figure 5c, γ is fixed at 10 and β to be 25, α is varied to be 0.5,1, and 1.5 and
when α is 1 there is a thicker tail and when α is 1.5 there is a thin tail. When we
increase the value of α, the tails become thinner, and the opposite is true.

In Figure 6a, we fixed the mean at 1 and varied standard deviation (stdev) to be
0.5, 1, and 1.5, and it is observed that when the stdev is 1, there is a thicker tail and
when stevd is 0.5 there is a thin tail. In Figure 6b, we fixed stdev to be 1 and varied

Figure 3.
Weibull distributions.

Figure 4.
Pareto distributions.
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the mean to be 0.5, 1, and 1.5. We can clearly see that when the mean is 1.5, there is a
thicker tail and when mean is 0.5 there is a thin tail.

3.4 Analysis of Taxi claims data

Again, the Taxi claims data and R codes used to analyze the data can be obtained
from the authors on request. Table 5 provides the descriptive summary of the Taxi
claims data.

Both the calculated skewness and kurtosis are positive, thus based on the informa-
tion based on Tables 3 and 4, we can conclude that the dataset is skewed to the right
and is heavy-tailed.

Figure 5.
Burr distributions.

Figure 6.
Log-normal distributions.
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From Figure 7a, it is observed that the Taxi claims data has many extreme obser-
vations on the right tail because Figure 7b that excludes extreme values shows that the
lower quantile of the boxplot. Next, Figure 8 provides the corresponding PDF via a
histogram (see Figure 8a) and the CDF (see Figure 8b) of the Taxi claims data.

Next, we fit a gamma, Weibull, log-normal, Burr, and Pareto distributions to the
Taxi claims data. The parameter estimates and goodness-of-fit test results are
provided in Figure 9.

Mean 13232.41

Standard deviation 28415.63

Median 4500

Skewness 6.474064

Kurtosis 63.63799

Table 5.
Descriptive statistics of the Taxi claims data.

Figure 7.
Boxplot of Taxi claims data.

Figure 8.
Histogram and CDF of taxi claims data.
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From Figure 9, it is observed that the log-normal is a better fit than the other
corresponding distributions (Table 6).

It is observed that the log-normal distribution has the lowest KS and AD values out
of all the tested distributions, and we can assume that the median of our data and tail
is best explained by the log-normal distribution. Overall, we can see that the heavy-
tailed distributions, log-normal, and Pareto distribution fit our data very well, and the
thin-tailed distributions, gamma and Weibull distributions fit is poor. We can con-
clude that our data is best modeled by the log-normal distribution.

Figure 10 is the Q-Q plot for the log-normal distribution, although the log-normal
distribution was the best distribution to model the Taxi claims data according to the
AD test and the KS test, it was not good for modeling extreme losses or extreme values
(see the tails of Figure 10).

3.5 VaR sensitivity

The maximum amount that can be lost during a specific holding period with a
given level of confidence is known as VaR (i.e. value-at-risk). Four methods will be
used to determine VaR:

Figure 9.
QQ plots of the Taxi claims data fitted for different loss distribution.

Distributions Pareto Gamma Weibull Log-normal

Parameters α ¼ 1:7596
β ¼ 10600:4071

α ¼ 0:64547767
β ¼ 0:00004879

α ¼ 0:7230
β ¼ 10097:898

μ ¼ 8:5437
σ ¼ 1:3211

AD test value 338.3246 1727.9785 1040.7859 115.3129

KS test value 0.06150089 0.1356 0.0886 0.0410

Table 6.
MLE parameters and goodness-of-fit values.
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The empirical approach—it entails sorting the data from lowest to highest and
taking quantiles. Here, the focus is on the 90th, 95th, 97.5th, and 99th percentiles.

The parametric approach—it entails the use of the fitted model. Here the log-
normal was the best distribution for the Taxi claims data. Thus, to calculate the VaR,
we used a “VaRes” package on R and put in the shape and scale parameter and
computed the 90th, 95th, 97.5th, and 99th percentiles.

The stochastic approach—it entails simulating from a log-normal distribution with
shape and scale parameter found from Taxi claims data and computing the 90th, 95th,
97.5th, and 99th percentiles.

The generalized extreme value (GEV) distribution approach—it entails simulating
from the GEV distribution and computing the 90th, 95th, 97.5th, and 99th percentiles.

Table 7 and Figure 11 gives a summary of the different approaches of calculating
VaR. Note that the column “VaR0.9” in Table 7 under empirical approach can be
interpreted as follows: “we can be 90% confident that the maximum amount claimed
will be R30 616.67.” In the case of VaR0.9, it is evident that the empirical VaR are close
to the extreme value approach, and as the percentiles increase from VaR0.975 to
VaR0.99, the GEV distribution was overestimating the risk. Thus, for the Taxi claims
data, one would be more inclined to use the empirical approach because it does not
assume any underlying distribution as the log-normal distribution seem to be poor in
capturing the extreme tail component of the data. The rest of the amounts can be
interpreted in the same way for the corresponding percentage levels.

Figure 10.
Log-normal QQ-plots.

Approach VaR0.9 VaR0.95 VaR0.975 VaR0.99

Empirical approach 30616.67 52515.09 83327.03 139690.1

Parametric approach (log-normal) 27911.04 45105.2 68395.31 110980.1

Stochastic 27981.36 45163.61 68196.93 109861.3

Extreme value 30009.28 59051.74 114121.5 269268.2

Table 7.
VaR for the Taxi claims data.
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In this section, we aimed to learn how to quantify operational risk using parametric
loss distributions (i.e. exponential, log-normal, gamma, Weibull, Pareto, and Burr
distributions). As an example, for the chapter application, we fitted all the distribu-
tions to the Taxi claims data. Overall, we can conclude that out of all the distributions
fitted, the log-normal distribution seemed to be the best-fitting distribution. We also
observed some of the drawbacks of using the parametric distributions in that it tends
to fail in capturing the tail as well as the peak of the data very well and makes one
think maybe the true underlying distribution could be different from the fitted one.
This means that if a parametric distribution method is applied to quantify operational
risk, it is better to fit different distributions to the tail and the body to get better
estimates. This is evident in our data where after a certain threshold, it is observed
that the log-normal distribution underestimates the probability in the tail area; how-
ever, the GEV distribution fits better.

4. Conclusion

We have discovered that there are many methods used in quantifying operational
risk. Therefore, it is proven handy for a risk analyst or anyone that is working in the
risk analysis department of any institution to possess vast knowledge of multiple
statistical concepts, and methods to apply in any given situation as each risk requires a
different quantification approach. The Taxi claims data we have analyzed provides a
good foundation for analyzing operational risk, but it does not represent all possible
situations one might find in real life. Because Taxi claims are limited to the highest
replacement value of a Taxi; in our case, we have realized that our data does not
contain very extreme values; therefore, high losses are limited. The possibility of ruin
would likely be due to the risk class of “high frequency and low magnitude.” Using the

Figure 11.
Graphical representation of VaR.
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Taxi claim data, we have provided a good example of how operational risk may be
quantified and observed that the log-normal distribution is a better fit in this case.
Nevertheless, it failed to model the extreme values of the Taxi claims data. Hence, the
GEV distribution can be used to model those extreme values. However, in our
research work, we did not dwell much on the GEV distribution. We used four
approaches to calculate VaR in our analysis.

According to existing empirical evidence, the overall pattern of operational loss
severity data is characterized by significant kurtosis, severe right-skewness, and a
very heavy right tail caused by multiple outlying incidents. Fitting some of the com-
mon parametric loss distributions such as Weibull, log-normal, Pareto, gamma distri-
butions, and so on is one way to calibrate operational losses. One disadvantage of
utilizing these distributions is that they may not suit both the centre and the tails
perfectly. Mixture distributions may be explored in this scenario. EVT can be used to
fit a GPD to extreme losses surpassing a high predetermined threshold. The charac-
teristics of the GPD distributions which are derived using the EVT approach are very
sensitive to extreme data and the choice of threshold, which is a drawback of this
approach.

The disadvantages of using loss distributions are that they do not model well many
datasets in the presence of outliers and extreme values. Consequently, [2]‘s Chapters 7
and 8 discuss other possible replacements for the loss distributions, e.g. alpha-stable
distributions, GEV distribution, and GPD. The latter two distributions are part of EVT
family of distributions.

Overall, it appears from the literature study done for this chapter that operational
risk managers are focused on developing a model that would accurately represent the
likelihood of the tail occurrences and producing a model that would realistically
account for the probability of losses reaching a large amount is essential. Because, the
latter is important for estimating the VaR.

Since we mainly focused on parametric distributions, and it might be interesting to
use the nonparametric approach to quantify risk and some other mixture of distribu-
tions method. Therefore, this means that some of the possible additions to research
work can be looking at more complex statistical distributions with better tail capturing
ability. We also looked at multiple ways of finding VaR and from our findings, and we
noticed that the empirical approach was the better way of quantifying the Taxi claims
data’s risk—note though the conclusion reached is data-dependent, which means it
that a different conclusion will be made for a different dataset.
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