
Fixed Point Theory  
and Chaos

Edited by Guillermo Huerta-Cuellar

Edited by Guillermo Huerta-Cuellar

The field of mathematics has produced many beautiful results, and among them, fixed 
points hold great importance as they can be used to describe and explain various 

mathematical curiosities, even those of the most complex technical applications. This 
book explores some of the latest and most fascinating results on the study of fixed 

points from a scientific perspective and presents new approaches to studying them 
along with possible applications.

Published in London, UK 

©  2023 IntechOpen 
©  skrotov / iStock

ISBN 978-1-83768-435-9

Fixed Point Th
eory and C

haos





Fixed Point Theory  
and Chaos

Edited by Guillermo Huerta-Cuellar

Published in London, United Kingdom



Fixed Point Theory and Chaos
http://dx.doi.org/10.5772/intechopen.104025
Edited by Guillermo Huerta-Cuellar

Contributors
Getahun Bekele Wega, Mohamad Muslikh, Adem Kilicman, Jamnian Nantadilok, Buraskorn Nuntadilok, 
Tayebe Lal Shateri, Konstantinos Tzirakis, Guillermo Huerta-Cuellar, Hafiz Muhammad Zeeshan

© The Editor(s) and the Author(s) 2023

The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2023 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Fixed Point Theory and Chaos
Edited by Guillermo Huerta-Cuellar
p. cm.
Print ISBN 978-1-83768-435-9
Online ISBN 978-1-83768-436-6
eBook (PDF) ISBN 978-1-83768-437-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

6,400+ 
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

172,000+
International  authors and editors

190M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editor

Guillermo Huerta Cuellar earned his BSc degree from Instituto 
de Investigación en Comunicaciones Ópticas (IICO), UASLP in 
2004 and his Ph.D. from Centro de Investigaciones en Óptica 
(CIO) in 2009. He has been working at Centro Universitario 
de los Lagos, University of Guadalajara, México, since 2010. 
During this time, he also served as a visiting researcher at the 
Department of Applied Mathematics IPICYT, México (2012-

2014), the Faculty of Radiophysics, Lobachevsky State University of Nizhny 
Novgorod, Russia (2016), and had sabbaticals at St. Mary’s University, San Anto-
nio, Texas, USA (2018-2019), and IPICYT, México (2019-2020). He has edited 
three books, authored seven book chapters, and published more than 70 high-im-
pact papers. Since 2019, he has co-organized the International Meeting for Dis-
semination and Research in the Study of Complex Systems and their Applications 
(EDIESCA), which is held annually in several Mexican universities. His research 
interests include the study, characterization, dynamical behavior, and design of 
nonlinear dynamical systems such as lasers, electronics, and numerical models.





Preface XI

Section 1
Introduction 1

Chapter 1 3
Introductory Chapter: Fixed Points Theory and Chaos
by Guillermo Huerta-Cuellar and Hafiz Muhammad Zeeshan

Section 2
Contractive and Nonexpansive Mappings 9

Chapter 2 11
Coupled Fixed Points for (φ, ψ)-Contractive Mappings in Partially 
Ordered Modular Spaces
by Tayebe Lal Shateri

Chapter 3 21
Common Fixed Points of Asymptotically Quasi-Nonexpansive 
Mappings in Cat(0) Spaces
by Jamnian Nantadilok and Buraskorn Nuntadilok

Chapter 4 39
Iterative Algorithms for Common Solutions of Nonlinear Problems 
in Banach Spaces
by Getahun Bekele Wega

Section 3
Stability and Derivatives for Fixed Points 59

Chapter 5 61
On Fixed Point for Derivative of Set-Valued Functions
by Mohamad Muslikh and Adem Kilicman

Chapter 6 79
Stability Estimates for Fractional Hardy-Schrödinger Operators
by Konstantinos Tzirakis

Contents



Preface

The fixed point theory is a crucial area of study in both theoretical and applied 
mathematics. Its applications can be seen in various fields such as physics, chemistry, 
and economics, among others. In the realm of mathematics, fixed point theory finds 
applications in differential equations, game theory, and integral theory equations. 
This theory has been extensively used to solve integral equations of first-order 
differential equations for linear, nonlinear, or chaotic systems.

The current book presents recent results on the study of fixed points with different 
perspectives. The introductory chapter covers the basics of chaos and fixed points. 
Chapter 2 focuses on coupled fixed points for (ϕ, ψ)-contractive mappings in par-
tially ordered modular spaces, where the Banach contraction principle is one of the 
primary tools used to study the fixed points of contractive maps in the framework 
of modular space endowed with a partial order. Chapter 3 discusses common fixed 
points of asymptotically quasi-nonexpansive mappings in CAT(o) spaces. Chapter 4 
is devoted to the study of iterative algorithms for common solutions of nonlinear 
problems in Banach spaces. Chapter 5 explains fixed points for the derivative of 
set-valued functions. Chapter 6 examines stability estimates for fractional Hardy-
Schrödinger operators and derives Hardy-Sobolev-type improvements in fractional 
Hardy inequalities.

Guillermo Huerta-Cuellar
Centro Universitario de los Lagos,

University of Guadalajara,
Exact Sciences and Technology Department,

Guadalajara, Mexico
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Chapter 1

Introductory Chapter: Fixed Points 
Theory and Chaos
Guillermo Huerta-Cuellar and Hafiz Muhammad Zeeshan

1. Introduction

Among the systems that exhibit dynamical behavior, nonlinear and chaotic 
systems are the most intriguing, as they exhibit an enormous variety of performances 
and offer a great opportunity for technological applications. The formal study of 
chaotic systems begins with the results reported by Lorenz [1]. In this sense, the study 
and characterization of dynamical systems, especially chaotic systems, is one of the 
breakthroughs of the last century, although it is a relatively new field of research 
that is becoming increasingly important in various scientific disciplines [2–6]. In 
the case of nonlinear maps, it has been found that chaos can also arise between the 
dynamic behavior that these maps produce [7–9]. The study of fixed points could 
prepare the scientific community to investigate how to stabilize the behavior of 
multiple dynamical systems that generally exhibit nonlinear behavior, which is of 
great importance in current issues [10, 11]. The stabilization of fixed points in chaotic 
systems is one of the most interesting topics in the study of systems with chaotic 
behavior. Among the systems that have been stabilized are Lorenz, Rössler, and Chua 
[12–14]. As mentioned earlier, there are many works in which the chaotic behavior 
can be controlled by stabilizing the system’s fixed points. However, it is also possible 
to control the stabilization of the fixed points to obtain stable or multistable behavior 
of chaotic systems [15–17]. Moreover, this behavior has been studied in both integer 
and fractional-order systems [18]. Recently, Echenausía-Monroy et al. [19] presented 
an interesting method to characterize qualitative changes in the dynamical behavior 
of a family of piecewise linear systems by controlling the transition from monostable 
to multistable oscillations around different fixed points by studying the stable and 
unstable manifolds and their relation to the eigendirections.

2. A brief definition of fixed points

In the field of applied mathematics, fixed-point theory refers to an interdisci-
plinary topic that can be applied in various disciplines like economics, variational 
inequalities, approximation theory, game theory, and optimization theory, among 
other areas of interest. Fixed-point theory is divided into three major areas, as can be 
seen in Figure 1.

Topological fixed-point theory was developed by L.E.J. Brouwer in 1912 [20]. 
According to Brouwer “Every continuous function from convex compact subset K of 
a Euclidian space to K itself has a fixed point.” It has several real-world illustrations. 
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Consider a map of the country. If this map were placed anywhere in that country, 
there would always be a point on the map representing exactly that point.

One of the pioneering works about fixed points is Henri Poincaré [21], which was 
proposed as the first work about fixed points in 1886. Although the basic concept of 
metric fixed-point theory was known to others previously, the Polish mathematician 
Stefan Banach is credited with making it usable and well-known. The Banach Fixed 
Point Theorem (also known as the contraction mapping theorem or contraction 
mapping principle) is a useful tool in the study of metric spaces. It ensures the 
presence and uniqueness of fixed points of particular self-maps of metric spaces and 
gives a constructive approach to finding such fixed points [22]. The theorem is named 
after Stefan Banach (1892–1945) and was first stated by him in 1922. Banach stated 
that “Let ( ),X d  be a metric space.” A mapping →:T X X  is called Banach contrac-
tion mapping if there exists a constant [ )∈ 0,1k  (s.t)

 ( ) ( )≤ ∈, . , ,d Tx Ty k d x y forallx y X   (1)

Some fixed points theorems and different spaces were from the study and general-
ization of fixed points, as well as the Banach contraction theorem (Figure 2).

The discrete fixed-point theory came from Alfred Traski in 1955. Traski proved 
that “If F is a monotone function on a nonempty complete lattice, then the set of fixed 
points of F forms a nonempty complete lattice” [24].

But what is a fixed point? In this sense a short and comprehensive definition and 
interesting example are given next:

Figure 1. 
Fixed points components.

Figure 2. 
Contraction mapping [23].
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Let X  be a nonempty set and →:T X X  be a mapping. Then ∈x X  is known as 
fixed point of T  if =Tx x

Graphically, these are the places at which the graph of f  whose equation is 
( )=y f x , crosses the diagonal, whose equation = .y x

Let ( )= = + − −3 24 3 16,y f x x x x  then it has three fixed points 
= = − ∧ = −2, 2 4x x x  as shown in Figure 3.
A fixed point is a location that stays the same when a map, set of differential 

equations, etc. are applied to it. Informally, the area of mathematics known as fixed 
point theory aims to locate all self-maps or self-correspondences in which at least one 
element is left invariant.

• Fixed Point for single-valued mapping

The fixed point for the mapping →:S R R  defined as ( ) =
2
xS x  is distinct. 

Obviously, the only fixed point is 0.

• Fixed Point for multi-valued mapping

a. There are two fixed points in the mapping →:S R R  defined as ( ) = .S x x  The 
only fixed point, in this case, is 0 and 1.

b. There are infinitely many fixed points in the mapping →2 2:S R R  defined as 
( ) =, .T x y x  In fact, all points of −x axis  are fixed points.

A Mapping may have a unique fixed point, more than one, or infinitely many fixed 
points.

Remark: There may exist mapping which not has a fixed point.
Example: Let X  be a nonempty set. There is no fixed point in the mapping 
→:S X X  defined as ( ) = +S x x a  where ‘a’ is any constant.

Figure 3. 
Graphically representation of fixed point [25].
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Chapter 2

Coupled Fixed Points for
φ, ψð Þ-Contractive Mappings in
Partially Ordered Modular Spaces
Tayebe Lal Shateri

Abstract

The Banach contraction principle is the most famous fixed point theorem. Many
authors presented some new results for contractions in partially ordered metric
spaces. Fixed point theorems in modular spaces, generalizing the classical Banach
fixed point theorem in metric spaces, have been studied extensively by many mathe-
maticians. The aim of this paper is to determine some coupled fixed point theorems
for nonlinear contractive mappings in the framework of a modular space endowed
with a partial order. Our results are generalizations of the fixed point theorems due to
M. Mursaleen, S.A. Mohiuddine and R.P. Agarwal.

Keywords: coupled fixed point, contraction, modular space, partially ordered
modular space

1. Introduction

In 1922, Banach established the most famous fundamental fixed point theorem,
so-called the Banach contraction principle [1], which has played an important role in
various fields of applied mathematical analysis. Fixed point theory is one of the most
important theory in mathematics. The Banach contraction mapping principle has
many applications to very different type of problems arise in different branches.
Many authors have obtained many interesting extensions and generalizations
(cf. [2–8]).

The more generalization was given by Nakano [9] in 1950 based on replacing the
particular integral form of the functional by an abstract one. This functional was
called modular. In 1959, this idea, which was the basis of the theory of modular spaces
and initiated by Nakano, was refined and generalized by Musielak and Orlicz [10].
Modular spaces have been studied for almost 40 years and there is a large set of
known applications of them in various parts of analysis. For more details about
modular spaces, we refer the reader to [11, 12].

Fixed point theorems in modular spaces, generalizing the classical Banach fixed
point theorem in metric spaces, have been studied extensively by many mathemati-
cians, see [13–18].
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The author [19] has investigated some coupled coincidence and coupled common
fixed point theorems for mixed g-monotone nonlinear contractive mappings in par-
tially ordered modular spaces.

The aim of this paper is to determine some coupled fixed point theorems for
φ, ψð Þ- contractive mappings in the framework of partially ordered complete
modular spaces. Our results are generalizations of the fixed point theorems due to
M. Mursaleen, S.A. Mohiuddine and R.P. Agarwal [20]. First, we recall some basic
definitions and notations about modular spaces from [11].

Definition 1.1. Let X be a vector space over  ¼  or ℂð Þ.
A functional ρ : X ! 0, ∞½ � is said to be modular if for all x,y∈X ,
(i) ρ xð Þ ¼ 0 if and only if x ¼ 0,
(ii) ρ αxð Þ ¼ ρ xð Þ for every α∈ such that ∣α∣ ¼ 1,
(iii) ρ αxþ βyð Þ≤ ρ xð Þ þ ρ yð Þ if α,β≥0 and αþ β ¼ 1.
Definition 1.2. If in Definition 1.1, iiið Þ is replaced by

ρ αxþ βyð Þ≤ αsρ xð Þ þ βsρ yð Þ, (1)

for α, β≥0, αþ β ¼ 1 with an s∈ 0, 1ð �, then we say that ρ is an s-convex modular,
and if s ¼ 1, ρ is said to be a convex modular.

Let ρ be a modular, we define the corresponding modular space, i.e. the vector
space X ρ given by

X ρ ¼ x∈X : ρ λxð Þ ! 0 as λ ! 0f g: (2)

The modular space X ρ is a normed space with the Luxemburg norm, defined by

∥x∥ρ ¼ inf λ>0; ρ
x
λ

� �
≤ 1

n o
: (3)

Definition 1.3. We say a function modular ρ satisfies the Δ2–condition if there
exists κ>0 such that for any x∈X ρ, we have ρ 2xð Þ≤ κρ xð Þ.

Definition 1.4. Let X ρ be a modular space and suppose xnf g and x are in X ρ. Then.

i. xnf g is ρ–convergent to x and write xn !ρ x if ρ xn � xð Þ ! 0 as n ! ∞.

ii. xnf g is ρ–Cauchy if ρ xn � xmð Þ ! 0 as n,m ! ∞.

iii. A subset S of X ρ is called ρ–complete if any ρ–Cauchy sequence is
ρ–convergent to an element of S.

iv. The modular ρ has the Fatou property if ρ xð Þ≤ liminf n!∞ρ xnð Þ whenever

xn !ρ x.

Remark 1.5. iið ) A ρ-convergent sequence is ρ-cauchy if and only if ρ satisfies the
Δ2–condition. iið Þ ρ :xð Þ is an non-decreasing function, for any x∈X . Fro this, let
0< a< b, putting y ¼ 0 in iiið Þ of Definition 1.1 implies that

ρ axð Þ ¼ ρ
a
b
bx

� �
≤ ρ bxð Þ,

for all x∈X . Also, if ρ is a convex modular on X and ∣α∣ ≤ 1, then ρ αxð Þ≤ αρ xð Þ and
ρ xð Þ≤ 1

2 ρ 2xð Þ for all x∈X .

12
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We end this section with a notion of a coupled fixed point introduced by Bhaskar
and Lakshmikantham [5].

Definition 1.6. An element x, yð Þ∈X � X is called a coupled fixed point of the
mapping F : X � X ! X if

F x, yð Þ ¼ x, F y, xð Þ ¼ y:

2. Coupled fixed point theorems for nonlinear φ, ψð Þ-contractive type
mappings

In this section, we establish some coupled fixed point results by considering φ, ψð Þ-
contractive mappings on modular spaces endowed with a partial order. We assume
that ρ satisfies the Δ2-condition with κ< 1.

Let Ψ0 be the family of non-decreasing functions ψ : 0, þ∞½ Þ ! 0, þ∞½ Þ such that

X∞
n¼1

ψn tð Þ<∞, ψ�1 0f gð Þ ¼ 0f g, ψ tð Þ< t and lim
r!tþ

ψ rð Þ< t, forallt>0: (4)

The following results are generalizations of the fixed point theorems due to M.
Mursaleen, S.A. Mohiuddine and R.P. Agarwal [20] in partially ordered modular spaces.

Definition 2.1. Let X ρ, ≤
� �

be a partially ordered modular space and F : X � X !
X be a mapping. Then a map F is said to be φ, ψð Þ-contractive if there exist two
functions φ : X 2 � X 2 ! 0, ∞½ Þ and ψ ∈Ψ and there exist α, β>0 with α> β such that

φ x, yð Þ, z, wð Þð Þρ α F x, yð Þ � F z, wð Þð Þð Þ≤ψ
ρ β x� zð Þð Þ þ ρ β y�wð Þð Þ

2

� �
(5)

for all x, y, z, w∈X with x≥ z and y≤w.
Definition 2.2. Let F : X � X ! X and φ : X 2 � X 2 ! 0, ∞½ Þ be two mappings.

Then F is called φ-admissible if

φ x, yð Þ, z, wð Þð Þ≥ 1 ) φ F x, yð Þ, F y, xð Þð Þ, F z, wð Þ, F w, zð Þð Þð Þ≥ 1 (6)

for all x, y, z, w∈X .
In the following theorem, we give some requirements that a φ-admissible mapping

has a coupled fixed point.
Theorem 2.3. Let X , ≤ , ρð Þ be a complete ordered modular function space. Let F :

X � X ! X be a φ, ψð Þ-contractive mapping having the mixed monotone property of X .
Suppose that.

i. F is φ-admissible,

ii. there exist x0,y0 ∈X such that x0 ≤F x0, y0
� �

and y0 ≥ F y0, x0
� �

, also

φ x0, y0
� �

, F x0, y0
� �

, F y0, x0
� �� �� �

≥ 1 and φ y0, x0
� �

, F y0, x0
� �

, F x0, y0
� �� �� �

≥ 1,

(7)

iii. if xnf g and yn
� �

are sequences in X such that

13

Coupled Fixed Points for (φ, ψ)-Contractive Mappings in Partially Ordered Modular Spaces
DOI: http://dx.doi.org/10.5772/intechopen.108695



φ xn, yn
� �

, xnþ1, ynþ1

� �� �
≥ 1 and φ yn, xn

� �
, ynþ1, xnþ1
� �� �

≥ 1 (8)

for all n and lim n!∞xn ¼ x and lim n!∞yn ¼ y, then

φ xn, yn
� �

, x, yð Þ� �
≥ 1 and φ yn, xn

� �
, y, xð Þ� �

≥ 1: (9)

Then F has a coupled fixed point.
Proof. Let x0,y0 ∈X be such that

φ x0, y0
� �

, F x0, y0
� �

, F y0, x0
� �� �� �

≥ 1 and φ y0, x0
� �

, F y0, x0
� �

, F x0, y0
� �� �� �

≥ 1 (10)

and x0 ≤F x0, y0
� �

and y0 ≥F y0, x0
� �

. Put x1 ¼ F x0, y0
� �

and y1 ¼ F y0, x0
� �

. Let
x2,y2 ∈X be such that x2 ¼ F x1, y1

� �
and y2 ¼ F y1, x1

� �
. Continuing this process, we

can construct two sequences xnf g and yn
� �

in X such that

xnþ1 ¼ F xn, yn
� �

and ynþ1 ¼ F yn, xn
� �

n≥0ð Þ: (11)

Using the mathematical induction, we will show that

xn ≤ xnþ1 and yn ≥ ynþ1 n≥0ð Þ: (12)

By assumption, (12) hold for n ¼ 0. Now suppose that (12) hold for some fixed
n≥0. Then by the mixed monotone property of F, we have

xnþ2 ¼ F xnþ1, ynþ1

� �
≥F xn, ynþ1

� �
≥F xn, yn
� � ¼ xnþ1 (13)

and

ynþ2 ¼ F ynþ1, xnþ1
� �

≤F yn, xnþ1
� �

≤F yn, xn
� � ¼ ynþ1: (14)

Hence (12) hold for n≥0. If for some n, xnþ1, ynþ1

� � ¼ xn, yn
� �

, then F xn, yn
� � ¼

xn and F yn, xn
� � ¼ yn, and so F has a coupled fixed point. Thus we assumed that

xnþ1, ynþ1

� � 6¼ xn, yn
� �

for all n≥0. Since F is φ-admissible, we have

φ x0, y0
� �

, x1, y1
� �� � ¼ φð x0, y0

� �
, F x0, y0

� �
, F y0, x0
� �� �� �

≥ 1 (15)

hence

φ F x0, y0
� �

, F y0, x0
� �� �

, F x1, y1
� �

, F y1, x1
� �� �� � ¼ φ x1, y1

� �
, x2, y2
� �� �

≥ 1: (16)

Therefore by induction we get

φ xn, yn
� �

, xnþ1, ynþ1

� �� �
≥ 1 and φ yn, xn

� �
, ynþ1, xnþ1
� �� �

≥ 1 (17)

for all n∈. Since F is φ, ψð Þ-contractive, using (35) and (17), we obtain

ρ α xn � xnþ1ð Þð Þ ¼ ρ α F xn�1, yn�1

� �
, F xn, yn
� �� �� �

≤φ xn�1, yn�1

� �
, xn, yn
� �� �� �

ρ α F xn�1, yn�1

� �
, F xn, yn
� �� �� �

≤ψ
ρ β xn�1 � xnð Þð Þ þ ρ β yn�1 � yn

� �� �
2

� �
,

(18)
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and

ρ α yn � ynþ1

� �� � ¼ ρ α F yn�1, xn�1
� �

, F yn, xn
� �� �� �

≤φ yn�1, xn�1
� �

, yn, xn
� �� �� �

ρ α F yn�1, xn�1
� �

, F yn, xn
� �� �� �

≤ψ
ρ β yn�1 � yn
� �� �þ ρ β xn�1 � xnð Þð Þ

2

� �
:

(19)

Adding (18) and (23), we obtain

ρ α xn � xnþ1ð Þð Þ þ ρ α yn � ynþ1

� �� �
2

≤ψ
ρ β xn�1 � xnð Þð Þ þ ρ β yn�1 � yn

� �� �
2

� �
(20)

Since β< α and ψ is non-decreasing, repeating the above process, we get

ρ α xn � xnþ1ð Þð Þ þ ρ α yn � ynþ1

� �� �
2

≤ψn ρ β x0 � x1ð Þð Þ þ ρ β y0 � y1
� �� �

2

� �
(21)

for all n∈. Given ε>0 there exists N ∈ such that

X
n≥N

ψn ρ β x0 � x1ð Þð Þ þ ρ β y0 � y1
� �� �

2

� �
<

ε

2
: (22)

Let m,n∈ and α0 ∈þ be such that m> n>N and β
α þ 1

α0
¼ 1. Then we have

ρ β xn � xmð Þð Þ≤ ρ α xn � xnþ1ð Þð Þ þ ρ α0β xnþ1 � xmð Þð Þ
≤ ρ α xn � xnþ1ð Þð Þ þ κρ β xnþ1 � xmð Þð Þ
≤ ρ α xn � xnþ1ð Þð Þ þ ρ α xnþ1 � xnþ2ð Þð Þ þ α0β xnþ2 � xmð Þð Þ
≤ ρ α xn � xnþ1ð Þð Þ þ ρ α xnþ1 � xnþ2ð Þð Þ þ β xnþ2 � xmð Þð Þ
≤⋯

≤
Xm�1

i¼n

ρ α xi � xiþ1ð Þð Þ, (23)

similarly we obtain

ρ β yn � ym
� �� �

≤
Xm�1

i¼n

ρ α yi � yiþ1

� �� �
: (24)

Adding (23) and (24) we obtain

ρ β xn � xmð Þð Þ þ ρ β yn � ym
� �� �

2
≤
Xm�1

i¼n

ρ α xi � xiþ1ð Þð Þ þ ρ α yi � yiþ1

� �� �
2

≤
Xm�1

i¼n

ψn ρ β x0 � x1ð Þð Þ þ ρ β y0 � y1
� �� �

2

� �

<
ε

2
:

(25)
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Consequently

ρ β xn � xmð Þð Þ≤ ρ β xn � xmð Þð Þ þ ρ β yn � ym
� �� �

< ε (26)

and

ρ β yn � ym
� �� �

≤ ρ β xn � xmð Þð Þ þ ρ β yn � ym
� �� �

< ε, (27)

therefore xnf g and yn
� �

are cauchy sequences in complete modular space X , ρð Þ,
and so xnf g and yn

� �
are convergent in X , ρð Þ. Thus there exist x, y∈X such that

lim
n!∞

xn ¼ x and lim
n!∞

yn ¼ y:

Now from (17) and hypothesis iiið Þ, we get

φ xn, yn
� �

, xnþ1, ynþ1

� �� �
≥ 1 and φ yn, xn

� �
, ynþ1, xnþ1
� �� �

≥ 1 (28)

for all n∈. From (28) and the condition iiið Þ of the modular ρ we obtain

ρ β F x, yð Þ � xð Þð Þ≤ ρ α F x, yð Þ � F xn, yn
� �� �� �þ ρ α0β xnþ1 � xð Þð Þ

≤φ xn, yn
� �

, x, yð Þ� �
ρ α F x, yð Þ � F xn, yn

� �� �� �þ ρ α0β xnþ1 � xð Þð Þ

≤ψ
ρ β xn � xð Þð Þ þ ρ β yn � y

� �� �
2

� �
þ ρ α0β xnþ1 � xð Þð Þ

<
ρ β xn � xð Þð Þ þ ρ β yn � y

� �� �
2

þ ρ α0β xnþ1 � xð Þð Þ
(29)

similarly, we get

ρ β F y, xð Þ � yð Þð Þ≤ ρ α F y, xð Þ � F yn, xn
� �� �� �þ ρ α0β ynþ1 � y

� �� �

≤φ yn, xn
� �

, y, xð Þ� �
ρ α F y, xð Þ � F yn, xn

� �� �� �þ ρ α0β ynþ1 � y
� �� �

≤ψ
ρ β yn � y
� �� �þ ρ β xn � xð Þð Þ

2

� �
þ ρ α0β ynþ1 � y

� �� �

<
ρ β yn � y
� �� �þ ρ β xn � xð Þð Þ

2
þ ρ α0β ynþ1 � y

� �� �
:

(30)

Taking the limit as n ! ∞, we obtain

ρ β F x, yð Þ � xð Þð Þ ¼ 0 and ρ β F y, xð Þ � yð Þð Þ ¼ 0: (31)

Therefore F x, yð Þ ¼ x and F y, xð Þ ¼ y, that is F has a coupled fixed point. □
Remark 2.4. If in Theorem 2.3, we replace the property iiið Þ with the continuity of

F, then the result holds that is F has a coupled fixed point. In fact, since F is continu-
ous and xnþ1 ¼ F xn, yn

� �
and ynþ1 ¼ F yn, xn

� �
, we get

x ¼ lim
n!∞

xn ¼ lim
n!∞

F xn�1, yn�1

� � ¼ F x, yð Þ (32)
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and

y ¼ lim
n!∞

yn ¼ lim
n!∞

F yn�1, xn�1
� � ¼ F y, xð Þ: (33)

Hence F has a coupled fixed point.
As the proof of Theorem 2.3, one can prove the following theorem.
Theorem 2.5. In addition to the hypothesis of Theorem 2.3, suppose that for every

x, yð Þ, z, wð Þ in X � X , there exists s, tð Þ in X � X such that

φ x, yð Þ, s, tð Þð Þ≥ 1 and φ z, wð Þ, s, tð Þð Þ≥ 1, (34)

and assume that s, tð Þ is comparable to x, yð Þ and z, wð Þ. Then F has a unique
coupled fixed point.

If we put ψ tð Þ ¼ mt form∈ 0, 1½ Þ in Theorem 2.3, we obtain the following corollary.
Corollary 2.6. Let X , ≤ , ρð Þ be a complete ordered modular function space. Let F :

X � X ! X be a φ, ψð Þ-contractive mapping having the mixed monotone property of X .
Suppose that there exist α,β>0 with α> β such that

φ x, yð Þ, z, wð Þð Þρ α F x, yð Þ � F z, wð Þð Þð Þ≤ m
2

ρ β x� zð Þð Þ þ ρ β y� wð Þð Þð Þ (35)

for all x, y, z, w∈X with x≥ z and y≤w. Also if.
iið Þ there exist x0, y0 ∈X such that x0 ≤F x0, y0

� �
and y0 ≥ F y0, x0

� �
, also

φ x0, y0
� �

, F x0, y0
� �

, F y0, x0
� �� �� �

≥ 1 and φ y0, x0
� �

, F y0, x0
� �

, F x0, y0
� �� �� �

≥ 1,

(36)

iið Þ if xnf g and yn
� �

are sequences in X such that

φ xn, yn
� �

, xnþ1, ynþ1

� �� �
≥ 1 and φ yn, xn

� �
, ynþ1, xnþ1
� �� �

≥ 1 (37)

for all n and lim n!∞xn ¼ x and lim n!∞yn ¼ y, then

φ xn, yn
� �

, x, yð Þ� �
≥ 1 and φ yn, xn

� �
, y, xð Þ� �

≥ 1 (38)

Then F has a coupled fixed point.

3. Conclusion

In the present paper, nonlinear contractive mappings in the framework of a
modular space endowed with a partial order have been given, then some well-known
coupled fixed point theorems in ordered metric spaces are extended to these mappings
in modular spaces endowed with a partial order.
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Chapter 3

Common Fixed Points of
Asymptotically Quasi-Nonexpansive
Mappings in Cat(0) Spaces
Jamnian Nantadilok and Buraskorn Nuntadilok

Abstract

In this manuscript, we investigate and approximate common fixed points of two
asymptotically quasi-nonexpansive mappings in CAT(0) spaces. Suppose  is a CAT
(0) space and C is a nonempty closed convex subset of . Let T1,T2 : C ! C be two
asymptotically quasi-nonexpansive mappings, and  ¼ F T1ð Þ∩F T2ð Þ≔
x∈C : T1x ¼ T2x ¼ xf g 6¼ ∅. Let αnf g, βnf g be sequences in [0,1]. If the sequence

{xn} is generated iteratively by xnþ1 ¼ 1� αnð Þxn ⊕ αnTn
1yn,yn ¼ 1� βnð Þxn ⊕

βnT
n
2xn,n≥ 1 and x1 ∈C is the initial element of the sequence (A). We prove that

{xn} converges strongly to a common fixed point of T1 and T2 if and only if
lim
n!∞

d xn, ð Þ ¼ 0: (B). Suppose αnf g and βnf g are sequences in ε, 1� ε½ � forsome

ε∈ 0, 1ð Þ. If X is uniformly convex and if either T2 or T1 is compact, then {xn}
converges strongly to some common fixed point of T1 and T2. Our results extend and
improve the related results in the literature. We also give an example in support of our
main results.

Keywords: asymptotically quasi-nonexpansive mappings, uniformly L-Lipschitzian
mappings, fixed points, banach spaces, CAT(0) spaces

1. Introduction

Let C be a nonempty subset of a real normed linear space X. Let T : C ! C be a
self-mapping of C. Then T is said to be.

a. nonexpansive if ∥Tx� Ty∥≤ ∥x� y∥ for all x,y∈C;

b. quasi-nonexpansive if F Tð Þ 6¼ ∅ and ∥Tx� p∥≤∥x� p∥ for all x∈C and
p∈F Tð Þ where F Tð Þ ¼ x∈C : Tx ¼ xf g;

c. asymptotically nonexpansive with sequence knf g⊂ 0, ∞½ Þ if lim
n!∞

kn ¼ 1 and

∥Tnx� Tny∥≤ kn∥x� y∥ for all x,y∈C and n≥ 1;
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d. symptotically quasi-nonexpansive with sequence knf g⊂ 0, ∞½ Þ if F Tð Þ 6¼ ∅,
lim
n!∞

kn ¼ 1 and ∥Tnx� p∥≤ kn∥x� p∥ for all x∈C,p∈F Tð Þ and n≥ 1.

It is clear that a nonexpansive mapping with F Tð Þ 6¼ ∅ is quasi-nonexpansive and
an asymptotically nonexpansive mapping with F Tð Þ 6¼ ∅ is asymptotically quasi-
nonexpansive. The converses are not true in general. The mapping T is said to be
uniformly L, γð Þ-Lipschitzian if there exists a constant L>0 and γ >0 such that
∥Tnx� Tny∥≤L∥x� y∥γ for all x,y∈C and n≥ 1.

The following example shows that there is a quasi-nonexpansive mapping which is
not a nonexpansive mapping.

Example 1.1. (see [1]) Let C ¼ 1 and define a mapping T : C ! C by

Tx ¼
x
2

, if x 6¼ 0

0 , if x ¼ 0

8<
:

Then T is quasi-nonexpansive but not nonexpansive.
It is easy to see that a nonexpansive mapping is an asymptotically nonexpansive

mapping with the sequence knf g ¼ 1f g:
It is easy to see that a quasi-nonexpansive mapping is an asymptotically quasi-

nonexpansive mapping with the sequence knf g ¼ 1f g:
In 1972, Goebel and Kirk [2] introduced the class of asymptotically nonexpansive

maps as a significant generalization of the class of nonexpansive maps. They proved
that if the map T : C ! C is asymptotically nonexpansive and C is a nonempty closed
convex bounded subset of a uniformly convex Banach space X, then T has a fixed
point. In [3], Goebel and Kirk extended this result to the broader class of uniformly
L, 1ð Þ-Lipschitzian mappings with L< λ and, where λ is sufficiently near 1 (but greater
than 1).

Iterative approximation of fixed points of nonexpansive mappings and their gen-
eralizations (asymptotically nonexpansive mappings, etc.) have been investigated by
a number of authors (see, [4–21] for examples) via the Mann iterates or the Ishikawa-
type iteration.

Later, in 2001 Khan and Takahashi [22] studied the problem of approximating
common fixed points of two asymptotically nonexpansive mappings. In 2002, Qihou
[23] also established a strong convergence theorem for the Ishikawa-type iterative
sequences with errors for a uniformly L, γð Þ-Lipschitzian asymptotically
nonexpansive self-mapping of a nonempty compact convex subset of a uniformly
convex Banach space.

Recently, in 2005 Shahzad and Udomene [24] investigated the approximation of
common fixed points of two asymptotically quasi-nonexpansive mappings in Banach
spaces. More precisely, they obtained the following results.

Theorem 1.2. [24] Let C be a nonempty closed convex subset of a real Banach space X.
Let T1,T2 : C ! C be two asymptotically quasi-nonexpansive mappings with sequences
unf g, vnf g⊂ 0, ∞½ Þ such that

P∞
n¼1un <∞ and

P∞
n¼1vn <∞, and

 ¼ F T1ð Þ∩ F T2ð Þ≔ x∈C : T1x ¼ T2x ¼ xf g 6¼ ∅. Let x1 ∈C be arbitrary, define the
sequence xnf g iteratively by the iteration

xnþ1 ¼ 1� αnð Þxn þ αnTn
1yn

yn ¼ 1� βnð Þxn þ βnT
n
2xn,

(1)
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for all n≥ 1, where αnf g and βnf g are sequences in 0, 1½ �. Then.

1.∥xnþ1 � p∥≤ 1� γnð Þ∥x� p∥ for all n≥ 1,p∈, and for some sequence γnf g of
numbers with

P∞
n¼1γn <∞:

2.There exists a constant K >0 such that ∥xnþm � p∥≤K∥xn � p∥ for all n,m≥ 1
and p∈.

Theorem 1.3. [24] Let C be a nonempty closed convex subset of a real Banach space X.
Let T1,T2 : C ! C be two asymptotically quasi-nonexpansive mappings with sequences
unf g, vnf g⊂ 0, ∞½ Þ such that

P∞
n¼1un <∞ and

P∞
n¼1vn <∞, and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅.

Let αnf g, βnf g⊂ 0, 1½ �. Define the sequence xnf g as in (1) and x1 ∈C is the initial element of
the sequence. Then xnf g converges strongly to a common fixed point of T1 and
T2⇔ lim inf n!∞d xn, ð Þ ¼ 0:.

Theorem 1.4. [24] Let X be a real uniformly convex Banach space and C a nonempty
closed convex subset of X. Let T1,T2 : C ! C be two uniformly continuous asymptotically
quasi-nonexpansive mappings with sequences unf g, vnf g⊂ 0, ∞½ Þ such that

P∞
n¼1un <∞,P∞

n¼1vn <∞, and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅. Let αnf g and βnf g be sequences in ε, 1� ε½ �
forsome ε∈ 0, 1ð Þ. Define the sequence xnf g as in (1) and x1 ∈C is the initial element of the
sequence. Assume, in addition, that either T2 or T1 is compact. Then xnf g converges strongly
to a common fixed point of T1 and T2.

2. Preliminaries

In this section, we present some basic facts about the CAT(0) spaces and hyper-
bolic spaces with some useful results which are required in the sequel. The connection
between CAT(0) spaces and hyperbolic spaces presented here would help, at least for
beginners, to appreciate the main results presented in this manuscript.

2.1 CAT(0) spaces

Let X, dð Þ be a metric space. A geodesic path joining x∈X to y∈X (or, more
briefly, a geodesic from x to y) is a map ω : 0, a½ � ! X, 0, a½ �⊂R such that
ω 0ð Þ ¼ x,ω að Þ ¼ y, and d ω mð Þ, ω nð Þð Þ ¼ ∣m� n∣ for all m,n∈ 0, a½ �. In particular, ω is
an isometry and d x, yð Þ ¼ a. The image α of ω is called a geodesic (or metric) segment
joining x and y. A unique geodesic segment from x to y is denoted by x, y½ �. The space
X, dð Þ is called to be a geodesic space if every two points of X are joined by a geodesic,
and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for
each x,y∈X. If Y ⊆X then Y is said to be convex if Y includes every geodesic segment
joining any two of its points. If X, dð Þ is a geodesic metric space, a geodesic triangle
Δ a1, a2, a3ð Þ consists of three points a1,a2,a3 in X (the vertices of Δ) and a geodesic
segment between each pair of vertices (the edges of Δ). A comparison triangle for
geodesic triangle Δ a1, a2, a3ð Þ in X, dð Þ is a triangle Δ a1, a2, a3ð Þ≔Δ a1, a2, a3ð Þ in the
Euclidean plane 2 satisfying d2 ai, aj

� � ¼ d ai, aj
� �

for i,j∈ 1,2,3. Such a triangle
always exists (See [25]).

Definition 2.1. A geodesic space X, dð Þ is said to be a CAT(0) space if for any
geodesic triangle Δ⊂X and a,b∈Δ we have d a, bð Þ≤ d a, b

� �
where a,b∈Δ.
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Remark 2.2. Any complete, simply connected Riemannian manifold having
nonpositive sectional curvature is a CAT(0) space. Other examples of CAT(0) spaces
include pre-Hilbert spaces, R-trees, Euclidean buildings, and the complex Hilbert ball
with a hyperbolic metric, (see [25–27] for example).

Definition 2.3. A geodesic triangle Δ p, q, rð Þ in X, dð Þ is said to satisfy the CAT 0ð Þ
inequality if for any u,v∈Δ p, q, rð Þ and for their comparison points u,v∈Δ p, q, rð Þ,
one has

d u, vð Þ≤ d2 u, vð Þ:
For other equivalent definitions and basic properties of CAT 0ð Þ spaces, we refer

the readers to standard texts, such as ref. [25].
Note that if x,a1,a2 are points of CAT 0ð Þ space and if a0 is the midpoint of the

segment a1, a2½ � (we write a0 ¼ 1
2 a1 ⊕

1
2 a2), then the CAT 0ð Þ inequality implies

d x, a0ð Þ2 ¼ d x,
1
2
a1 ⊕

1
2
a2

� �
≤

1
2
d x, a1ð Þ2 þ 1

2
d x, a2ð Þ2 � 1

4
d a1, a2ð Þ2 (2)

The inequality (2) is called the CN inequality of Bruhat and Tits [28]. We refer
readers to some brilliant known CAT(0) space results in [29–33] and references therein.

We now collect some useful facts about CAT(0) spaces, which will be used fre-
quently in the proof of our main results.

Lemma 2.4. (See [31]) Let X, dð Þ be a CAT(0) space.

i. For x1,x2 ∈X and α∈ 0, 1½ �, there exists a unique point y∈ x1, x2½ � such that

d x1, yð Þ ¼ αd x1, x2ð Þ and d x2, yð Þ ¼ 1� αð Þd x1, x2ð Þ: (3)

We write y ¼ 1� αð Þx1 ⊕ αx2 for the unique point y satisfying (3).

ii. For x,y,z∈X and α∈ 0, 1½ �, we have
d 1� αð Þx⊕ αy, zð Þ≤ 1� αð Þd x, zð Þ þ αd y, zð Þ:

iii. For x,y,z∈X and α∈ 0, 1½ � we have

d 1� αð Þx⊕ αy, zð Þ2 ≤ 1� αð Þd x, zð Þ2 þ αd y, zð Þ2 � α 1� αð Þd x, yð Þ2:

Lemma 2.5. (See [34]) Let αnf g, βnf g be two sequences such that.

i. 0≤ αn,βn < 1,

ii. βn ! 0 and
P

αnβn ¼ ∞.

Let γnf g be a nonnegative real sequence such that
P

αnβn 1� βnð Þγn is bounded. Then
γnf g has a subsequence that converges to zero.
Lemma 2.6. (see, [17]). Let λnf g and σnf g be sequences of nonnegative real numbers

such that λnþ1 ≤ λn þ σn, ∀ n≥ 1 and
P∞

n¼1σn <∞: Then lim
n!∞

λn exists. Moreover, if there

exists a subsequence λnj

n o
of λnf g such that λnj ! 0 as j ! ∞, then λn ! 0 as n ! ∞:.
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2.2 Hyperbolic spaces

In this section, we recall some notions of hyperbolic spaces. This class of spaces
contains the class of CAT(0) spaces (See [35, 36]).

Definition 2.7. (See [36]) Let X, dð Þ be a metric space and W : X � X � 0, 1½ � ! X
be a mapping satisfying:-.

W1. d z, W x, y, αð Þð Þ≤ 1� αð Þd z, xð Þ þ αd z, yð Þ,.
W2. d W x, y, αð Þ, W x, y, βð Þð Þ ¼ ∣α� β∣d x, yð Þ,
W3. W x, y, αð Þ ¼ W y, x, 1� αð Þð Þ,.
W4. d W x, z, αð Þ, W y, w, αð Þð Þ≤ 1� αð Þd x, yð Þ þ αd z, wð Þ.
for all x,y,z,w∈X,α,β∈ 0, 1½ �: We call the triple X, d, Wð Þ a hyperbolic space.
It follows from (W1.) that, for each x,y∈X and α∈ 0, 1½ �,

d x, W x, y, αð Þð Þ≤ αd x, yð Þ,d y, W x, y, αð Þð Þ≤ 1� αð Þd x, yð Þ (4)

In fact, we can get that (see [33]),

d x, W x, y, αð Þð Þ ¼ αd x, yð Þ,d y, W x, y, αð Þð Þ ¼ 1� αð Þd x, yð Þ: (5)

Similar to (3), we can also use the notation 1� αð Þx⊕ αy for such a point
W x, y, αð Þ in hyperbolic space.

A mapping η : 0, ∞ð Þ � 0, 2ð � ! 0, 1ð � providing such a δ≔ η r, εð Þ forgiven r>0
and ε∈ 0, 2ð � is called a modulus of uniform convexity.

Definition 2.8. (See [37, 38]) Let X, dð Þ be a hyperbolic metric space. X is said to
be uniformly convex whenever δ r, εð Þ>0, for any r>0 and ε>0, where

δ r, εð Þ ¼ inf 1� 1
r
d

1
2
x⊕

1
2
y, a

� �
: d xð , aÞ≤ r, d yð , aÞ≤ r, d xð , yÞ≥ rε

� �

for any a∈X.
Note that if X is a uniformly convex hyperbolic space, then for every s≥0 and

ε>0, there exists η s, εð Þ>0 such that δ r, εð Þ> η s, εð Þ>0 for any r> s. One can see that
δ r, 0ð Þ ¼ 0. Moreover δ r, εð Þ is an increasing function of ε.

The following result is very useful which is an analog of Shu ([15], Lemma 1.3). It
can be applied to a CAT(0) space as well.

Lemma 2.9. (See [33, 39]) Let X, dð Þ be a uniformly convex hyperbolic space. Let
xnf g, yn

� �
be sequences in X and c∈ 0, þ∞½ Þ be such that

limsupn!∞d xn, að Þ≤ c,limsupn!∞d yn, a
� �

≤ c, and lim
n!∞

d 1� αnð Þxn ⊕ αnyn, a
� � ¼ c,

where αn ∈ a, b½ �, with 0< a≤ b< 1. Then lim
n!∞

d xn, yn
� � ¼ 0:.

Inspired and motivated by Shahzad and Udomene [24], the purpose of this paper is
to establish common fixed point theorems for two asymptotically quasi-nonexpansive
mappings in the setting of CAT(0) spaces. Our results significantly extend and
improve the results obtained by Shahzad and Udomene in ref. [24], as well as the
related results in the existing literature.

3. Main results

In this section, we let X denote a CAT(0) space and C be a nonempty closed
convex subset of a CAT(0) space X. Let T1,T2 : C ! C be two asymptotically quasi-
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nonexpansive mappings with sequences k ið Þ
n

n o
⊂ 1, ∞½ Þ satisfying

P∞
n¼1 k ið Þ

n � 1
� �

<∞, i ¼ 1, 2ð Þ, respectively. Put kn ¼ max k 1ð Þ
n , k 2ð Þ

n

n o
, then obviouslyP∞

n¼1 kn � 1ð Þ<∞. From now on we will take this sequence knf g for both T1 and T2.
Recall that F Tð Þ ¼ x : Tx ¼ xf g and ≔F T1ð Þ∩ F T2ð Þ ¼ x∈C : T1x ¼ T2x ¼ xf g.
Following ref. [24], we introduce the following iterative scheme in the setting of CAT
(0) space. Starting from arbitrary x1 ∈C,

xnþ1 ¼ 1� αnð Þxn ⊕ αnTn
1yn

yn ¼ 1� βnð Þxn ⊕ βnT
n
2xn,

(6)

for all n≥ 1, where αnf g and βnf g are sequences in 0, 1½ �.
Lemma 3.1. Let , dð Þ be a CAT(0) space and C a nonempty closed convex subset of X.

Let T1,T2 : C ! C be two asymptotically quasi-nonexpansive mappings and
 ¼ F T1ð Þ∩ F T2ð Þ 6¼ ∅. Let αnf g and βnf g be sequences in [0,1]. Define the sequence xnf g
by iteration (6). Then.

i. d xnþ1, pð Þ≤ 1þ γnð Þd xn, pð Þ for all n≥ 1,p∈, for some sequence of numbers
γnf g with

P∞
n¼1γn <∞.

ii. there exists a constant K >0 such that d xnþm, pð Þ≤Kd xn, pð Þ for all n,m≥ 1
and p∈.

Proof: (i). Taking p∈. Let yn ¼ 1� βnð Þxn ⊕ βnT
n
2xn. From (6) and by using

Lemma 2.4(ii) we get

d xnþ1, pð Þ ¼ d 1� αnð Þxn ⊕ αnTn
1yn, p

� �

≤ 1� αnð Þd xn, pð Þ þ αnd Tn
1yn, p

� �

≤ 1� αnð Þd xn, pð Þ þ αnknd yn, p
� �

¼ 1� αnð Þd xn, pð Þ þ αnknd 1� βnð Þxn ⊕ βnT
n
2xn, p

� �

≤ 1� αnð Þd xn, pð Þ þ αnkn 1� βnð Þd xn, pð Þ þ βnd Tn
2xn, p

� �� �

≤ 1� αnð Þd xn, pð Þ þ αnkn 1� βnð Þd xn, pð Þ þ βnknd xn, pð Þ½ �
¼ 1� αn þ αnkn � αnknβn þ αnβnk

2
n

� �
d xn, pð Þ�

≤ 1þ αnkn þ αnβnk
2
n

� �
d xn, pð Þ�

¼ 1þ γnð Þd xn, pð Þ (7)

where γn ¼ αnkn þ αnβnk
2
n with

P∞
n¼1bn <∞:

i. We know that 1þ x≤ exp xð Þ, for all x≥0. Notice that for any n,m≥ 1,

d xnþm, pð Þ ≤ 1þ bnþm�1ð Þd xnþm�1, pð Þ
≤ exp bnþm�1ð Þd xnþm�1,p

� �

≤ exp bnþm�1 þ bnþm�2ð Þd xnþm�2,p
� �

⋮

≤ exp
Xnþm�1

k¼n

bk

 !
d xn, pð Þ:

(8)

26

Fixed Point Theory and Chaos



Taking K ¼ exp
P∞

k¼nbk
� �

: Then 0<K <∞, we obtain

d xnþm, pð Þ≤Kd xn, pð Þ (9)

where p∈: This completes our proof.
Theorem 3.2. Let , dð Þ be a complete CAT(0) space and C a nonempty closed

convex subset of X. Let T1,T2 : C ! C be two asymptotically quasi-nonexpansive mappings
(T1 and T2 need not be continuous), and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅. Let αnf g, βnf g be
sequences in [0,1]. From arbitrary x1 ∈C, define the sequence xnf g by iteration (6). Then
xnf g converges strongly to a common fixed point of T1 and T2 if and only if limn!∞

d xn, ð Þ ¼ 0:

Proof: The necessary conditions are obvious. We shall only prove the sufficient
condition. By Lemma 3.1, we have d xnþ1, pð Þ≤ 1þ γnð Þd xn, pð Þ for all n≥ 1 and p∈:
Therefore,

d xnþ1, ð Þ≤ 1þ γnð Þd xn, ð Þ:

Since
P∞

n¼1γn <∞ and lim inf n!∞d xn, ð Þ ¼ 0, from Lemma 2.6 we deduce that
lim
n!∞

d xn, ð Þ ¼ 0. Next, we show that the sequence xnf g is Cauchy. Since

lim
n!∞

d xn, ð Þ ¼ 0, given any ε>0, there exists a positive number N0 such that

d xn, ð Þ< ε
4K for all n≥N0, where K >0 is the constant in Lemma 3.1(2). So we can

find q∈ such that d xN0 , qð Þ≤ ε
3K. Again by Lemma 3.1(2), we have that

d xnþm, xnð Þ ≤ d xnþm, qð Þ þ d xn, qð Þ
≤Kd xN0 , qð Þ þ Kd xN0 , qð Þ
¼ 2Kd xN0 , qð Þ< ε:

(10)

for all n≥N0 andm≥ 1. This implies that xnf g is Cauchy and so is convergent since 
is complete. Hence, xnf g is a Cauchy sequence in a closed convex subset C of a CAT(0)
space , therefore, it must converge to a point in C. Let lim

n!∞
xn ¼ q0:

Now, lim
n!∞

d xn, ð Þ ¼ 0 yields that d q0, ð Þ ¼ 0. Since the set of fixed points of

asymptotically nonexpansivemappings is closed, we have q0 ∈. This completes our proof.
Lemma 3.3. Let , dð Þ be a CAT(0) space and C a nonempty closed convex subset

of X. Let T1,T2 : C ! C be two uniformly continuous asymptotically quasi-
nonexpansive mappings, and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅. Let αnf g and βnf g be sequences
in ε, 1� ε½ � forsome ε∈ 0, 1ð Þ. From arbitrary x1 ∈C, define the sequence xnf g by
iteration (6). Then

lim
n!∞

d xn, Tn
2xn

� � ¼ lim
n!∞

d xn, Tn
1xn

� � ¼ lim
n!∞

d xn, Tn
1yn

� � ¼ 0: (11)

Proof: Let p∈. Then, by Lemma 3.1(1) and Lemma 2.6 lim
n!∞

d xn, pð Þ exists. Sup-
pose lim

n!∞
d xn, pð Þ ¼ r. If r ¼ 0, then by the continuity of T1 and T2 the conclusion

follows. Now suppose r>0. We claim

lim
n!∞

d xn, Tn
1yn

� � ¼ lim
n!∞

d xn, Tn
1xn

� � ¼ lim
n!∞

d xn, Tn
2xn

� � ¼ 0: (12)
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From yn ¼ 1� βnð Þxn ⊕ βnT
n
2xn. Since xnf g is bounded, there exists R>0 such that

xn � p,yn � p∈BR 0ð Þ for all n≥ 1. Using Lemma 2.4(iii), we have that

d yn, p
� �2 ¼ d 1� βnð Þxn ⊕ βnT

n
2xn, p

� �2

≤ 1� βnð Þd xn, pð Þ2 þ βnd Tn
2xn, p

� �2 � βn 1� βnð Þd xn, Tn
2xn

� �2

≤ 1� βnð Þd xn, pð Þ2 þ βnk
2
nd xn, pð Þ2 � βn 1� βnð Þd xn, Tn

2xn
� �2

≤ 1þ βn k2 � 1
� �� �

d xn, pð Þ2 ≤ d xn, pð Þ2:

(13)

Again by Lemma 2.4(iii), it follows that

d xnþ1, pð Þ2 ¼ d 1� αnð Þxn ⊕ αnTn
1yn, p

� �2

≤ 1� αnð Þd xn, pð Þ2 þ αnd Tn
1xn, p

� �2 � αn 1� αnð Þd xn, Tn
1yn

� �2

≤ 1� αnð Þd xn, pð Þ2 þ αnk
2
nd xn, pð Þ2 � αn 1� αnð Þd xn, Tn

1yn
� �2

:
(14)

Equivalently

αn 1� αnð Þd xn, Tn
1yn

� �2 ≤ 1þ αn k2n � 1
� �� �

d xn, pð Þ2 � d xnþ1, pð Þ2

≤ 1þ k2n � 1
� �� �

d xn, pð Þ2 � d xnþ1, pð Þ2

¼ d xn, pð Þ2 � d xnþ1, pð Þ2:
(15)

Summing up the first m term of the above inequality, we get

Xm
n¼1

αn 1� αnð Þd xn, Tn
1yn

� �2 ≤ d x1, pð Þ2 � d xmþ1, pð Þ2 <∞ (16)

for all m≥ 1: Now (16) implies that

X∞
n¼1

αn 1� αnð Þd xn, Tn
1yn

� �2 <∞: (17)

Since 0≤ αn 1� αnð Þ< 1, d xn, Tn
1xn

� �2 ! 0 as n ! ∞. Therefore, we obtain

lim
n!∞

d xn, Tn
1yn

� � ¼ 0: ∗ð Þ (18)

Since T1 is asymptotically quasi-nonexpansive, we can get that
d Tn

1yn, p
� �Þ≤ knd yn, p

� �
for all n∈ℕ. From (13), we have that

lim sup
n!∞

d Tn
1yn, p

� �
≤ r: (19)

Similarly, we get

lim sup
n!∞

d Tn
2xn, p

� �
≤ r: (20)

One can see that
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lim sup
n!∞

d xn, pð Þ≤ lim
n!∞

d xn, pð Þ ¼ r: (21)

Since T1 is asymptotically quasi-nonexpansive, we get

d xn, pð Þ ≤ d xn, Tn
1yn

� �þ d Tn
1yn, p

� �

≤ d xn, Tn
1yn

� �þ knd yn, p
� �

:
(22)

Taking the limit inferior to above inequality and from (18), we obtain

r≤ lim inf
n!∞

d yn, p
� �

: (23)

On the other hand, by Lemma 2.4(ii) we have

d yn, p
� � ¼ d 1� βnð Þxn ⊕ βnT

n
2xn, p

� �

≤ 1� βnð Þd xn, pð Þ þ βnd Tn
2xn, p

� �

¼ 1þ βn kn � 1ð Þð �d xn, pð Þ½
(24)

which implies

lim sup
n!∞

d yn, p
� �

≤ r: (25)

This gives

lim
n!∞

d 1� αnð Þxn ⊕ αnTn
2xn, p

� � ¼ r: (26)

Using (20), (21), (26), and Lemma 2.9, we obtain

lim
n!∞

d xn, Tn
2xn

� � ¼ 0: ∗ð Þ (27)

From (23) and (25), we obtain

lim
n!∞

d yn, p
� � ¼ r: (28)

On the other hand, consider

d xnþ1, pð Þ ¼ d 1� αnð Þxn ⊕ αnTn
1yn, p

� �

≤ 1� αnð Þd xn, pð Þ þ αnknd yn, p
� �

:
(29)

This implies

lim
n!∞

d 1� αnð Þxn ⊕ αnTn
1yn, p

� � ¼ r: (30)

From (19), (21), (30), and by Lemma 2.9, we also obtain

lim
n!∞

d xn, Tn
1yn

� � ¼ 0: (31)

Next, we show lim
n!∞

d xn, Tn
1xn

� � ¼ 0:.
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Consider

d xn, yn
� �

≤ d xn, 1� βnð Þxn ⊕ βnT
n
2xn

� �

≤ 1� βnð Þd xn, xnð Þ þ βnd xn, Tn
2xn

� �! 0 as n ! ∞
(32)

and

d Tn
1xn, xn

� �
≤ d Tn

1xn, T
n
1yn

� �þ d Tn
1yn, xn

� �
:

(33)

Since T1 is uniformly continuous and d xn, yn
� �! 0 as n ! ∞, it follows from (32)

and (33) that

lim
n!∞

d Tn
1xn, xn

� � ¼ 0: ∗ð Þ

Our proof is finished.
Theorem 3.4. Let , dð Þ be a CAT(0) space and C a nonempty closed convex subset of

. Let T1,T2 : C ! C be two uniformly continuous asymptotically quasi-nonexpansive
mappings, and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅. Let αnf g and βnf g be sequences in ε, 1� ε½ �
forsome ε∈ 0, 1ð Þ. From arbitrary x1 ∈C, define the sequence xnf g by the recursion (6).
Assume, in addition, that either T2 or T1 is compact. Then xnf g converges strongly to some
common fixed point of T1 and T2.

Proof: By Lemma 3.3, we have

lim
n!∞

d xn, Tn
1xn

� � ¼ 0 ¼ lim
n!∞

d xn, Tn
2xn

� �
(34)

and also

lim
n!∞

d xn, Tn
1yn

� � ¼ 0: (35)

If T2 is compact, then there exists a subsequence Tnk
2 xnk

� �
of Tn

2xn
� �

such that
Tnk
2 xnk ! p as k ! ∞ for some p∈C and so Tnkþ1

2 xnk ! T2p as k ! ∞. From (34), we
have xnk ! p as k ! ∞. Also, by (35) we get that Tnk

1 ynk ! p as k ! ∞. Consider

d xnkþ1, xnk
� � ¼ d 1� αnk

� �
xnk ⊕ αnkT

nk
1 ynk , xnk

� �

≤ d xxk , T
nk
1 ynk

� �
:

(36)

From (35) and (36), it follows that xnkþ1 ! p as k ! ∞. Again, from (35), we have
Tnkþ1
1 ynk ! T1p.
Next, we show that p∈. Notice that

d p, T2pð Þ≤ d p, xnkþ1
� �þ d xnkþ1, T

nkþ1
2 xnkþ1

� �

þd Tnkþ1
2 xnkþ1, T

nkþ1
2 xnk

� �
þ d Tnkþ1

2 xnk , T2p
� � (37)

Since T2 is uniformly continuous, taking the limit as k ! ∞, and using (34) we
obtain that p ¼ T2p and so p∈ F T2ð Þ: Notice that
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d p, T1pð Þ≤ d p, xnkþ1
� �þ d xnkþ1, T

nkþ1
1 xnkþ1

� �

þd Tnkþ1
1 xnkþ1, T

nkþ1
1 xnk

� �
þ d Tnkþ1

1 xnk , T1p
� �

:
(38)

Letting k ! ∞, we also obtain that p ¼ T1p and hence p∈F T1ð Þ. Therefore p∈.
Hence, by Lemma 2.6, xn ! p∈, since lim

n!∞
d xn, pð Þ exists. If T1 is compact, then

essentially the same arguments as above our result follow. This completes the proof.
We give the following example in support of our main results.
Example 3.5. Let  ¼ 1: and C ¼ 0, 1½ �, a closed convex subset of  and define

T1,T2 : C ! C by

T1x ¼
x
2

, if x∈ 0,
1
2

� �

0 , if x∈
1
2
, 1

� �

8>>><
>>>:

and

T2x ¼
x , if x∈ 0,

1
2

� �

1
2

, if x∈
1
2
, 1

� �
:

8>>><
>>>:

Then, T1,T2 are asymptotically quasi-nonexpansive but not nonexpansive with
 ¼ 0f g 6¼ ∅. For

d Tn
1x, T

n
1y

� �
≤

1
2n

d x, yð Þ≤ d x, yð Þ,∀x,y∈ 0,
1
2

� �
:

And

d Tn
1x, T

n
1y

� � ¼ 0≤ d x, yð Þ,∀x,y∈ 1
2
, 1

� �
:

Hence, T1 is asymptotically quasi-nonexpansive. Similarly, we can show that T2 is
asymptotically quasi-nonexpansive.

Define a sequence xnf g as in (6) by starting from arbitrary x1 ∈C,

xnþ1 ¼ 1� αnð Þxn þ αnTn
1yn

yn ¼ 1� βnð Þxn þ βnT
n
2xn,

(39)

for all n≥ 1, where αnf g and βnf g are sequences in 0, 1½ �. Taking αn ¼ 1
2 ¼ βn:

Next, we construct a sequence xnf g. Starting from x1 ¼ 1, we get

y1 ¼
1
2
x1 þ 1

2
T2x1 ¼ 1

2
1ð Þ þ 1

2
T2 1ð Þ ¼ 1

2
1ð Þ þ 1

2
1
2

� �
¼ 3

4
,
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we get

x2 ¼ 1
2
x1 þ 1

2
T1y1 ¼

1
2

1ð Þ þ 1
2
T1

3
4

� �
¼ 1

2
þ 1
2

0ð Þ ¼ 1
2
¼ 0:5:

y2 ¼
1
2
x2 þ 1

2
T2
2x2 ¼

1
2

1
2

� �
þ 1
2
T2
2

1
2

� �
¼ 1

4
þ 1
2

1
2

� �
¼ 1

2
,

we get

x3 ¼ 1
2
x2 þ 1

2
T2
1y2 ¼

1
2

1
2

� �
þ 1
2
T2
1

1
2

� �
¼ 1

4
þ 1
2

1
8

� �
¼ 5

16
¼ 0:3125:

y3 ¼
1
2
x3 þ 1

2
T3
2x3 ¼

1
2

5
16

� �
þ 1
2
T3
2

5
16

� �
¼ 5

32
þ 1
2

5
16

� �
¼ 5

16
,

we get

x4 ¼ 1
2
x3 þ 1

2
T3
1y3 ¼

1
2

5
16

� �
þ 1
2
T3
1

5
16

� �
¼ 5

32
þ 1
2

5
128

� �
¼ 45

256
¼ 0:1757:

y4 ¼ 1
2
x4 þ 1

2
T4
2x4 ¼ 1

2
45
256

� �
þ 1
2
T4
2

45
256

� �
¼ 45

512
þ 1
2

45
256

� �
¼ 45

256
,

we get

x5 ¼ 1
2
x4 þ 1

2
T4
1y4 ¼ 1

2
45
256

� �
þ 1
2
T4
1

45
256

� �
¼ 45

512
þ 1
2

45
4096

� �
¼ 765

8192
¼ 0:0933:

Proceeding in a similar method, we will get a sequence xnf g that converges to 0,
the common fixed point of T1 and T2, that is, we obtain the sequence

1,
1
2
,
5
16

,
45
256

,
765
8192

,… ,xn ! 0:

Corollary 3.6. Let  be a CAT(0) space and C a nonempty compact convex subset of
X. Let T1,T2 : C ! C be two uniformly continuous asymptotically quasi-nonexpansive
mappings, and  ¼ F T1ð Þ∩F T2ð Þ 6¼ ∅. Let αnf g and βnf g be sequences in ε, 1� ε½ �
forsome ε∈ 0, 1ð Þ. From arbitrary x1 ∈C, define the sequence xnf g by iteration (6).
Assume, in addition, that either T2 or T1 is compact. Then, xnf g converges strongly to some
common fixed point of T1 and T2.

Corollary 3.7. Let  be a CAT(0) space and C a nonempty compact convex subset of
. Let T : C ! C be two uniformly continuous asymptotically quasi-nonexpansive map-
pings with sequences knf g⊂ 0, ∞½ Þ such that

P∞
n¼1kn <∞. Let αnf g and βnf g be sequences

in ε, 1� ε½ � forsome ε∈ 0, 1ð Þ. From arbitrary x1 ∈K, define the sequence xnf g by the
iteration

xnþ1 ¼ 1� αnð Þxn ⊕ αnTnyn
yn ¼ 1� βnð Þxn ⊕ βnT

nxn,
(40)

with n≥ 1: Then, xnf g converges strongly to some fixed point of T.
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Corollary 3.8. Let X be a Hibert space and C a nonempty closed convex subset of X.
Let T1,T2 : C ! C be two uniformly continuous asymptotically quasi-nonexpansive map-
pings, and  ¼ F T1ð Þ∩F T2ð Þ≔ x∈K : T1x ¼ T2x ¼ xf g 6¼ ∅. Let αnf g and βnf g be
sequences in ε, 1� ε½ � forsome ε∈ 0, 1ð Þ. From arbitrary x1 ∈C, define the sequence xnf g
by the iterative scheme (6). Assume, in addition, that either T2 or T1 is compact. Then, xnf g
converges strongly to some common fixed point of T1 and T2.

4. Conclusions

In this chapter, we establish strong convergence results for two asymptotically
quasi-nonexpansive mappings T1,T2 in the setting of CAT(0) spaces via the sequence
xnf g generated iteratively by arbitrary x1 ∈C, xnþ1 ¼ 1� αnð Þxn ⊕ αnTn

1yn, yn ¼
1� βnð Þxn ⊕ βnT

n
2xn,n≥ 1: We obtained the following results:-.

a. Lemma 3.1, an extension of Theorem 1.2 (See [24], Theorem 3.1).

b. Theorem 3.2, it is proved that the sequence xnf g converges strongly to a
common fixed point of T1 and T2 if and only if lim

n!∞
d xn, ð Þ ¼ 0: (Note that T1

and T2 need not be continuous). This theorem extends and improves Theorem
1.3 (See [24] Theorem 3.2).

c. Lemma 3.3, it is proved that

lim
n!∞

d xn, Tn
2xn

� � ¼ lim
n!∞

d xn, Tn
1xn

� � ¼ lim
n!∞

d xn, Tn
1yn

� � ¼ 0:

This lemma extends and improves Theorem 3.3 in [24].

d. Theorem 3.4, it is proved that If T1,T2 : C ! C be two uniformly continuous
asymptotically quasi-nonexpansive mappings. Suppose, in addition, that either
T2 or T1 is compact. Then, xnf g converges strongly to some common fixed point
of T1 and T2. This theorem significantly extends and improves Theorem 1.3 (See
[24], Theorem 3.4).

As consequence, we obtain Corollaries 3.6, 3.7, and 3.8. All of our results remain
true for the subclass of asymptotically nonexpansive mappings.

Acknowledgements

The authors would like to thank the referee for his/her useful comments on the
improvement of this chapter. The second author wishes to thank the faculty of Science
of Maejo University for moral support in the writing of this manuscript.

Competing interests

The authors declare that they have no competing interests.

33

Common Fixed Points of Asymptotically Quasi-Nonexpansive Mappings in Cat(0) Spaces
DOI: http://dx.doi.org/10.5772/intechopen.107186



Author details

Jamnian Nantadilok1*† and Buraskorn Nuntadilok2†

1 Faculty of Science, Department of Mathematics, Lampang Rajabhat University,
Lampang, Thailand

2 Faculty of Science, Department of Mathematics, Maejo University, Chiang Mai,
Thailand

*Address all correspondence to: jamnian2010@gmail.com

†These authors contributed equally.

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

34

Fixed Point Theory and Chaos



References

[1] Dotson WG Jr. Fixed points of quasi-
nonexpansive mappings. Australian
Mathematical Society A. 1972;13:167-170

[2] Goebel K, Kirk WA. A fixed point
theorem for asymptotically
nonexpansive mappings. Proceedings of
the American Mathematical Society.
1972;35:171-174

[3] Goebel K, Kirk WA. A fixed point
theorem for transformations whose
iterates have uniform Lipschitz constant,
Polska Akademia Nauk. Instytut
Matematyczny. Studia Mathematica.
1973;47:135-140

[4] Chidume CE. Iterative algorithms for
nonexpansive mappings and some of
their generalizations. In: Agarwal RP,
et al, editors. Nonlinear Analysis and
Applications: to V. Lakshmikantham on
His 80th Birthday. Vol. 1, 2. Dordrecht:
Kluwer Academic; 2003, pp. 383-429

[5] Chidume CE, Ofoedu EU, Zegeye H.
Strong and weak convergence theorems
for asymptotically nonexpansive
mappings. Journal of Mathematical
Analysis and Applications. 2003;280(2):
364-374

[6] Fukhar-ud-din H, Khan SH.
Convergence of iterates with errors of
asymptotically quasi-nonexpansive
mappings and applications. Journal of
Mathematical Analysis and Applications.
2007;328:821-829

[7] Ghosh MK, Debnath L. Convergence
of Ishikawa iterates of quasi-
nonexpansive mappings. Journal of
Mathematical Analysis and Applications.
1997;207(1):96-103

[8] Ishikawa S. Fixed points by a new
iteration method. Proceedings of the
American Mathematical Society. 1974;
44:147-150

[9] Khan SH, Hussain N. Convergence
theorems for nonself asymptotically
nonexpansive mappings. Computers &
Mathematics with Applications. 2008;
55(11):2544-2553

[10] Mann WR. Mean value methods in
iteration. Proceedings of the American
Mathematical Society. 1953;4:506-510

[11] Petryshyn WV, Williamson TE Jr.
Strong and weak convergence of the
sequence of successive approximations
for quasi-nonexpansive mappings.
Journal of Mathematical Analysis and
Applications. 1973;43:459-497

[12] Qihou L. Iterative sequences for
asymptotically quasi-nonexpansive
mappings. Journal of Mathematical
Analysis and Applications. 2001;259(1):1-7

[13] Qihou L. Iterative sequences for
asymptotically quasi-nonexpansive
mappings with error member. Journal of
Mathematical Analysis and Applications.
2001;259(1):18-24

[14] Rhoades BE. Fixed point iterations
for certain nonlinear mappings. Journal
of Mathematical Analysis and
Applications. 1994;183(1):118-120

[15] Schu J. Weak and strong
convergence to fixed points of
asymptotically nonexpansive mappings.
Bulletin of the Australian Mathematical
Society. 1991;43(1):153-159

[16] Senter HF, Dotson WG.
Approximating fixed points of
nonexpansive mappings. Proceedings of
the American Mathematical Society.
1974;44:375-380

[17] Tan KK, Xu HK. Approximating
fixed points of nonexpansive mappings

35

Common Fixed Points of Asymptotically Quasi-Nonexpansive Mappings in Cat(0) Spaces
DOI: http://dx.doi.org/10.5772/intechopen.107186



by the Ishikawa iteration process.
Journal of Mathematical Analysis and
Applications. 1993;178(2):301-308

[18] Wang L. Strong and weak
convergence theorems for common fixed
point of nonself asymptotically
nonexpansive mappings. Journal of
Mathematical Analysis and Applications.
2006;323(1):550-557

[19] Yang L. Modified multistep iterative
process for some common fixed point of
a finite family of nonself asymptotically
nonexpansive mappings. Mathematical
and Computer Modelling. 2007;
45(9–10):1157-1169

[20] Zhou H, Agarwal RP, Cho YJ, Kim
YS. Nonexpansive mappings and
iterative methods in uniformly convex
Banach spaces. Georgian Mathematical
Journal. 2002;9(3):591-600

[21] Zhou HY, Cho YJ, Kang SM. A new
iterative algorithm for approximating
common fixed points for asymptotically
nonexpansive mappings. Fixed Point
Theory and Applications. 2007;2007:10

[22] Khan SH, Takahashi W.
Approximating common fixed points of
two asymptotically nonexpansive
mappings. Scientiae Mathematicae
Japonicae. 2001;53(1):143-148

[23] Qihou L. Iteration sequences for
asymptotically quasi-nonexpansive
mapping with an error member of
uniform convex Banach space. Journal of
Mathematical Analysis and Applications.
2002;266(2):468-471

[24] Shahzad N, Udomene A.
Approximating common fixed points of
two asymptotically quasi-nonexpansive
mappings in Banach spaces. Fixed Point
Theory and Applications. 2006:1-10.
DOI: 10.1155/FPTA/2006/18909

[25] Bridson M, Haefliger A. Metric
Spaces of Non-Positive Curvature.
Berlin: Springer; 1999

[26] Brown KS. Buildings. New York:
Springer; 1989

[27] Goebel K, Reich S. Uniform
Convexity, Hyperbolic Geometry, and
Nonexpansive Mappings. New York:
Marcel Dekker, Inc.; 1984

[28] Bruhat F, Tits J. Groupes réductifs
sur un corps local. I. Données radicielles
valuées. Institut des Hautes études
Scientifiques. 1972;41:5-251 (in French)

[29] Amnuaykarn K, Kumam P,
Nantadilok J. On the existece of best
proximity points of multi-valued
mappings in CAT(0) spaces. Journal of
Nonlinear Functional Analysis. 2021:1-14

[30] Dhompongsa S, Kirk WA, Panyanak
B. Nonexpansive set-valued mappings in
metric and Banach spaces. Journal of
Nonlinear and Convex Analysis. 2007;8:
35-45

[31] Dhompongsa S, Panyanak B. On Δ-
convergence theorems in CAT(0)
spaces. Computers & Mathematcs with
Applications. 2008;56:2572-2579

[32] Nantadilok J, Khanpanuk C. Best
proximity point results for cyclic
contractions in CAT(0) spaces.
Computers & Mathematcs with
Applications. 2021;12(2):1-9

[33] Nanjarus B, Panyanak B.
Demicloesed principle for asymptotically
nonexpansive mappings in CAT(0)
spaces. Fixed Point Theory and
Applications. 2010:14. DOI: 10.1155/
2010/268780

[34] Sastry KPR, Babu GVR.
Convergence of Ishikawa iterates for a
multi-valued mapping with a fixed

36

Fixed Point Theory and Chaos



point. Czechoslovak Mathematical
Journal. 2005;55:817-826

[35] Kirk WA. Fixed point theory for
nonexpansive mappings II.
Contemporary Mathematics. 1983;18:
121-140

[36] Leustean L. A quadratic rate of
asymptotic regularity for CAT(0)
spaces. Journal of Mathematical Analysis
and Applications. 2007;325(1):386-399

[37] IbnDehaish BA, Khamsi MA,
Khan AR. Mann iteration process for
asymptotic pointwise nonexpansive
mappings in metric spaces. Journal of
Mathematical Analysis and Applications.
2013;397:861-868

[38] Fukhar-ud-din H, Khan AR, Akhtar
Z. Fixed point results for ageneralized
nonexpansive map in uniformly convex
metric spaces. Nonlinear Analysis. 2012;
75:4747-4760

[39] Fukhar-ud-din H, Khamsi MA.
Approximating common fixed points in
hyperbolic spaces. Fixed Point Theory
and Applications. 2014;2014:113

37

Common Fixed Points of Asymptotically Quasi-Nonexpansive Mappings in Cat(0) Spaces
DOI: http://dx.doi.org/10.5772/intechopen.107186





Chapter 4

Iterative Algorithms for Common
Solutions of Nonlinear Problems in
Banach Spaces
Getahun Bekele Wega

Abstract

The purpose of this manuscript is to construct an iterative algorithm for
approximating a common solution of variational inequality problem and g-fixed point
problem of pseudomonotone and Bregman relatively g-nonexpansive mappings,
respectively, and prove strong convergence of a sequence generated by the proposed
method to a common solution of the problems in real reflexive Banach spaces. The
assumption that the mapping is Lipschitz monotone mapping is dispensed with. In
addition, we give an application of our main result to find a minimum point of a
convex function in real reflexive Banach spaces. Finally, we provide a numerical
example to validate our result. Our results extend and generalize many results in the
literature.

Keywords: common solution, Bregman relatively g-nonexpansive, g-fixed point,
monotone mapping, pseudomonotone mapping, variational inequality

1. Introduction

Let E be a real Banach space with its dual space E ∗ . Let C be a nonempty, closed,
and convex subset of E. A mapping G : C ! E ∗ is said to be monotone provided that
for all points p and q in C,

Gp�Gq, p� qh i≥0: (1)

It is called α-strongly monotone if there exists a positive real number α such that
for all points p and q in C,

Gp� Gq, p� zh i≥ Gp�Gqk k2: (2)

We remark that α-strongly monotone is α�1�Lipschitz monotone mapping. A
mapping G : C ! E ∗ is called pseudomonotone mapping provided that for all points p
and q in C,

Gp, p� qh i≥0 implies Gq, p� qh i≥0: (3)
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From inequalities (1)-(3) above, we can observe that the class of pseudomonotone
mappings contains the classes of monotone and α-strongly monotone mappings. Let
G : C ! E ∗ be a mapping. The variational inequality problem (VIP) introduced by
Hartman and Stampacchia [1] in 1966 is mathematically formulated as the problem of
finding a point z in C such that for all points p in C,

Gz, p� zh i≥0: (4)

We denote the solution set of problem (4) by VIP C, Vð Þ. This problem contains, as
special cases, many problems in the fields of applied mathematics, such as mechanics,
physics, engineering, the theory of convex programming, and the theory of control.
Consequently, considerable research efforts have been devoted to methods of finding
approximate solutions of variational inequality problems in several directions for
different classes of mappings (see, e.g., [2–10]).

Several authors have also studied, different iterative algorithms for approximating
a common solution of VIP and fixed point problem of Lipschitz monotone and
nonexpansive mappings, respectively (see, e.g., [4, 7, 11–15]).

In 2003, Takahashi and Tododa [13] introduced an iterative algorithm for finding a
common solution for VIP and fixed point problem of α-strongly monotone and
nonexpansive mappings, respectively, in Hilbert spaces setting. Under certain condi-
tions, they proved that the sequence generated by their proposed method converges
weakly to a common solution.

In 2005, Iiduka and Takashi [3] studied an iterative scheme for finding a common
solution of VIP and fixed point problem of α-strongly monotone and nonexpansive
mappings, respectively, in Hilbert spaces setting. They proved that the sequence
generated by their proposed scheme converges strongly to a common solution pro-
vided that the control sequences satisfy appropriate conditions.

In 2016, Zhang and Yuan [16] established an algorithm for approximating a com-
mon solution of VIP and fixed point problem for a finite family of α-inverse strongly
monotone and nonexpansive mappings, respectively, in the Hilbert spaces setting.
They proved strong convergence of the sequence proposed by their method.

In space, more general than Hilbert spaces, Tufa and Zegeye [17] introduced an
iterative algorithm for approximating a common solution of VIP and fixed point
problem of Lipschitz monotone and relatively nonexpansive mappings, respectively
in real 2-uniformly convex and uniformly smooth Banach spaces. They proved that
the sequence generated by their algorithm converges strongly to a common
solution of the problems. A mapping T : C ! E ∗ is said to be relatively nonexpansive
if F Tð Þ 6¼ ∅, ϕ z, Tuð Þ≤ϕ z, uð Þ ∀ u∈C, z∈ F Tð Þ and F̂ Tð Þ ¼ F Tð Þ, where F Tð Þ, is the
set of fixed points of T and F̂ Tð Þ is the set of asymptotical fixed point of T.

Recently, Wega and Zegeye [18] introduced an iterative scheme for approximating
a common solution of VIP and g-fixed point problem (GFP) of Lipschitz monotone
and Bregman relatively g-nonexpansive mappings, respectively in real reflexive
Banach spaces and obtained strong convergence results. A mapping T : C ! E ∗ is said
to be Bregman relatively g-nonexpansive (BRGN) if F Tð Þ 6¼ ∅,
Dg z, Tuð Þ≤Dg z, uð Þ ∀ u∈C, z∈F Tð Þ and F̂g Tð Þ ¼ Fg Tð Þ, where Fg Tð Þ, is the set of
g-fixed points of T and F̂g Tð Þ is the set of asymptotical g-fixed point of T, where g is a
convex function of E satisfies certain conditions. A point z in C is said to be g-fixed
point of T provided that Tz ¼ ∇ gz.
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Motivated and inspired by the above results, it is our purpose in this book chapter
to construct an iterative algorithm, which converge strongly to a common element of
the set of VIP solutions of continuous pseudomonotone and the set GFPP of BRGN
mappings in real reflexive Banach spaces. In addition, we give an application of our
main result to find a minimum point of a convex function and provide a numerical
example to validate our main result. Our results extend and generalize many results in
the literature.

Now, we recall some definitions that we will need in the sequel.
Hereafter in this paper let E be a real reflexive Banach space with its dual space E ∗ ,

C be a nonempty, convex and closed subset of E and let G be a family of proper, lower
semi-continuous and convex functions on E.

Let g be an element of G. The domain of g, dom g, is given by dom g ¼
p∈E : g pð Þ<∞f g, the Fenchel conjugate of g at p ∗ , g ∗ p ∗ð Þ, is given by g ∗ p ∗ð Þ ¼

sup p ∗ , ph i � g pð Þ : p∈E and p ∗ ∈E ∗f g, the subdifferential of g at p, ∂g pð Þ, is given
by ∂g pð Þ ¼ p ∗ ∈E ∗ : g qð Þ≥ g pð Þ þ p ∗ , q� ph i, ∀p∈Ef g, the right-hand derivative of
g at u in the direction of q, g0 p, qð Þ, is given by:

g0 p, qð Þ ¼ lim
s!0þ

g pþ sqð Þ � g pð Þ
s

, (5)

and the gradient of g, at p is a linear function, ∇ g, is given by ∇g pð Þ, qh i ¼ g0 p, qð Þ.
The function g is called:

i. Gâteaux differentiable at p element of E if the limit in (5) exists for any q in E
as s ! 0.

ii. Gâteaux differentiable if it is Gâteaux differentiable at every element u in
int domg.

iii. Uniformity Fréchet differentiable on C if the limit as s ! 0 in (5) attained
uniformly for p∈C and kqk ¼ 1.

iv. Strongly coercive if lim kpk!∞
g pð Þ
kpk ¼ ∞.

Gâteaux differentiable function g is called Legendre if g ∗ is Gâteaux differentiable,
both int dom g and int dom g ∗ are nonempty, dom ∇ g ¼ int dom g and
dom ∇ g ∗ ¼ int dom g ∗ .

Remark 1.1 ∇ g ∗ ¼ ∇ gð Þ�1 (see, [19]) provided that g is Legendre function and

the gradient of Legendre function g defined by g uð Þ ¼ uk kp
p is coinciding with the

generalized duality map, that is, ∇g ¼ Jp, where 1< p, q<∞ð Þ and q is a conjugate of
p (see, e.g., [20]).

The Bregman distance with respect to g (see, e.g., [21]) is a function Dg :

dom g � int dom g ! 0, ∞½ Þ defined by:

Dg q, pð Þ ¼ g qð Þ � g pð Þ � ∇g pð Þ, q� ph i, (6)

where g is Gâteaux differentiable. The Bregman projection with respect to g at p in
int dom g onto C is denoted by Pg

Cp defined by Dg Pg
Cp, p

� � ¼ inf Dg q, pð Þ : ∀q∈C
� �

.
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Remark 1.2 We note that the Bregiman distance is not distance in the usual sense.
However, it has the following properties (see, e.g., [22–24]):

i. The three point identity:

Dg p, qð Þ þDg q, wð Þ �Dg p, qð Þ ¼ ∇ g wð Þ � ∇ g qð Þ, p� qh i (7)

for all q∈ dom g and p, w∈ int dom g.

ii. The four point identity:

Dg q, pð Þ þDg q, zð Þ �Dg w, pð Þ þDg w, zð Þ � ∇ g zð Þ � ∇ g pð Þ, q�wh i, (8)

for all q, w∈ dom g and p, z∈ int dom g.
Lemma 1.3 Let g be a totally convex and Gáteaux differentiable on int domg. Let

p∈ int domg. Then, the Pg
c from E onto C is a unique point with the following

properties [25]:

i. h∇ g pð Þ � ∇ g zð Þ,q� z≤0 if and only if z ¼ Pg
Cp, ∀q∈C.

ii. Dg p, qð Þ≥Dg q, Pg
Cp

� �þDg Pg
Cp, p

� �
, ∀q∈C.

Let g be a Legendre and Vg : E� E ∗ ! 0, ∞½ Þ be a function defined by:

Vg p, p ∗ð Þ ¼ g pð Þ � p ∗ , ph i þ ∇ g ∗ q ∗ð Þ,∀p∈E,p ∗ ∈E ∗ : (9)

Then, Vg is nonnegative which satisfies (see, e.g., [26])

Vg p, p ∗ð Þ ¼ Dg p, ∇ g ∗ p ∗ð Þð Þ (10)

and

Vg p, p ∗ð Þ≤Vg p, p ∗ þ q ∗ð Þ � q ∗ , ∇ g ∗ p ∗ð Þ � ph i, (11)

for all p∈E and p ∗ ∈E ∗ .
Lemma 1.4 If g is lower, convex, semi-convex proper function, then g ∗ is a weak ∗

lower semi-convex and proper function and hence, we have

Dg w, ∇ g ∗
XN
i¼1

si∇g pi
� � ! !

≤
XN
i¼1

siDg w, pi
� �

, (12)

for all w in E, where pi
� �

⊆E and sif g⊆ 0, 1ð Þ with
PN

i¼1si ¼ 1 [27].
A Gâteaux differentiable function g is called.

i. Uniformly convex function (see, [28]), provided that for all p and q dom g
s∈ 0, 1½ �, we have

g spþ 1� sð Þqð Þ≤ sg pð Þ þ 1� sð Þg pð Þ � 1� sð Þsϕ kp� qkð Þ, (13)

where ϕ is a function that is increasing and vanishes only at zero.
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i. Strongly convex with constant α>0 for all u and q elements of domg (see, [29])

∇ g pð Þ � ∇ g pð Þ, p� qh i≥ α p� qk k2: (14)

ii. Totaly convex if νg p, sð Þ ¼ inf p∈E:kp�qk¼sf gDg q, pð Þ>0, for all p∈E and s>0.

We note that g is uniformly convex if and only if g is totally convex on bounded
subsets of E (see, [25], Theorem 2.10 p. 9). Moreover, the class of uniformly convex
function functions contains the class of strongly convex functions.

Lemma 1.5 Let E be a Banach space and r>0 be a constant. Let g : E !  be a
continuous convex function that is uniformly convex on bounded subsets of E. Then,

g
Xn

k¼0

βkuk

 !
≤
Xn

k¼0

βkg ukð Þ � βiβjρr kui � ujk
� �

, (15)

∀0≤ i,j≤ n, uk ∈Br, βk ∈ 0, 1ð Þ with
Pn

k¼0βk ¼ 1, where ρr is the gauge of uniform
convexity of g [30].

Lemma 1.6 Let g be a total convex Gâ teaux differentiable such that dom g ¼ E.
Then, for each x ∗ ∈E ∗ 0f g,~y∈E,x∈Hþ and ~x∈H�, it holds that

Dg ~x, xð Þ≥Dg ~x, zð Þ þDg z, xð Þ, (16)

where z ¼ argminy∈HDg y, xð Þ and H� ¼ y∈E : x ∗ , y� ~yh i≤0f g, H ¼
y∈E : x ∗ , y� ~yh i ¼ 0f g and Hþ ¼ y∈E : x ∗ , y� ~yh i≥0f g.

2. An iterative algorithm for a common solution of variational inequality
and g�fixed problems

In this section, let E be a real reflexive Banach space with its dual space E ∗ . LetC be a
nonempty, closed, and convex subset of E. Let g : E ! �∞, þ∞ð �∈G be a uniformly
Fr̂echet differentiable Legendre which is bounded, uniformly convex, and strongly
coercive on bounded subsets of E. We denote the family of such functions by G Eð Þ.

In the sequel, we shall make use of the following assumptions.
Assumption:

A1) Let l∈ 0, 1ð Þ, μ>0 and β∈ β, β
h i

⊂ 0, 1
μ

� �
.

A2) Let αnf g⊂ 0, cð Þ with the properties lim n!∞αn ¼ 0 and
P∞

n¼1αn ¼ ∞,
where c>0.

Algorithm 1: For any x0,v∈C, define an algorithm by.

Step 1. Compute

yn ¼ ∇ g ∗ ∇ gxn � βGxn
� �

and d yn
� � ¼ xn � Pg

Cyn: (17)

If d yn
� � ¼ 0 and ∇ gxn � Txn ¼ 0, then stop and xn ∈Ω. Otherwise,
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Step 2. Compute pn ¼ xn � τnd yn
� �

,

where τn ¼ ljn and jn is the smallest nonnegative integer j satisfying

Gxn �Gpn, d yn
� �� �

≤ μDg Pg
Cyn, xn

� �
: (18)

Step 3. Compute

an ¼ Pf
Pn
∇ g ∗ ∇ gxn � βGpn

� �
,

rn ¼ ∇ g ∗ ηn,1∇ gxn þ ηn,2Txn þ ηn,3∇ gun
� �

,

xnþ1 ¼ Pg
C∇ g ∗ αn∇ gvþ 1� αnð Þ∇ grn

� �
,

0
BB@ (19)

where g∈G Eð Þ, Pn ¼ p∈C : Gpn, p� pn
� � ¼ 0

� �
, un ¼ Pg

Can and
ηn,i
� �

⊂ ε, 1½ Þ⊂ 0, 1ð Þ, for i ¼ 1,2,3 such that
P3

i¼1ηn,i ¼ 1, ∀n≥0.
Step 4. Set n≔ nþ 1 and go to Step 1.

We shall need the following Lemmas in the sequel.
Lemma 1.7 Assume that xnf g and yn

� �
are sequences generated by Algorithm 1.

Then, the search rule in Step 2 is well defined.
Proof: Since l∈ 0, 1ð Þ and G is continuous on C, we have

Gxn �Gpn, d yn
� �� �! 0 (20)

as j ! ∞. On the other hand, the fact that Dg Pg
Cyn, xn

� �
>0, there exists a nonneg-

ative integer jn satisfying the inequality in Step 2, and the claim holds.
Lemma 1.8 Assume that xnf g and yn

� �
are sequences generated by Algorithm 1.

Then, we have:

Gxn, d yn
� �� �

≥
1
β
Dg Pg

Cyn, xn
� �

(21)

Proof: From (17), we have:

∇ gyn ¼ ∇ gxn � βGxn, (22)

which implies:

∇ gxn � ∇ gyn ¼ βGxn: (23)

Thus, from (23), (17), and (7), we get:

Gxn, d yn
� �� � ¼ 1

β
∇ gxn � ∇ gyn, xn � Pg

Cyn
� �

(24)

¼ 1
β

Dg Pg
Cyn, xn

� �þDg xn, yn
� ��Dg Pg

Cyn, yn
� �� �

(25)

≥
1
β
Dg Pg

Cyn, xn
� �

, (26)

and hence the assertion hold.
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Lemma 1.9 Suppose the assumption (A1) holds. Let G : C ! E ∗ be a continuous

pseudomonotone mapping. Then, Gpn, xn � pn
� �

≥ τn 1
β � μ
� �

Dg Pg
Cyn, xn

� �
. In

particular, if d yn
� � 6¼ 0, then Gpn, xn � pn

� �
>0.

Proof: Using Step 2 of the algorithm we know that

Gpn, xn � pn
� � ¼ Gpn, xn � xn � τnd yn

� �� �� �
(27)

¼ τn Gpn, d yn
� �� �

: (28)

On the other hand, from (18), we have:

Gxn �Gpn, d yn
� �� �

≤ μDg Pg
Cyn, xn

� �
(29)

which implies that

Gpn, d yn
� �� �

≥ Gxn, d yn
� �� �� μDg Pg

Cyn, xn
� �

: (30)

From (30) and Lemma 8, we get:

Gpn, d yn
� �� �

≥
1
β
� μ

� �
Dg Pg

Cyn, xn
� �

: (31)

Combining (28) and (31), we obtain:

Gpn, xn � pn
� �

≥ τn
1
β
� μ

� �
Dg Pg

Cyn, xn
� �

, (32)

and the proof is complete.
Theorem 1.10 Suppose the Assumptions (A1) and (A2) hold. LetG : C ! E ∗ andT :

C ! E ∗ be continuous pseudomonotone and BRGNmappings, respectively, withΩ ¼
VI C, Gð Þ∩Fg Tð Þ 6¼ ∅. Then, the sequens xnf g generated by Algorithm 1 is bounded.

Proof: Let x ∗ ¼ Pg
Ω vð Þ and wn ¼ ∇ g ∗ αn∇ gvþ 1� αnð Þ∇ grn

� �
. We note that

from Lemma 1.3 (i), we obtain

u� x ∗ , ∇ gv� ∇ gx ∗h i≤0,∀u∈Ω: (33)

Now, for each n≥0, define the sets: P�
n ¼ p∈C : Gxn, p� xnh i≤0f g, Pn ¼

p∈C : Gxn, p� xnh i ¼ 0f g, and Pþ
n ¼ p∈C : Gxn, p� xnh i≥0f g. Let x ∗ ∈Ω, from

definition of G, we have Gx ∗ , y� x ∗h i≥0, which implies that Gy, y� x ∗h i≥0 for all
y∈C, and hence, x ∗ ∈P�

n for all n≥0. Moreover, from Lemma 9, we have
Gpn, xn � pn
� �

>0, which implies that xn ∈Pþ
n and xn ∉ P�

n for all n≥0. Now, from
Lemma 1.6, we get:

Dg x ∗ , anð Þ þDg an, xnð Þ≤Dg x ∗ , xnð Þ: (34)

Since un ¼ Pg
Can, from Lemma 1.3, we get:

Dg x ∗ , unð Þ þDg un, anð Þ≤Dg x ∗ , anð Þ: (35)

Substituting (35) into (34), we obtain:
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Dg x ∗ , unð Þ þDg un, anð Þ þDg an, xnð Þ≤Dg x ∗ , xnð Þ, (36)

which implies that

Dg x ∗ , unð Þ≤Dg x ∗ , xnð Þ �Dg un, anð Þ �Dg an, xnð Þ: (37)

Using the same techniques of proof of Theorem 3.2 pp. 64 of [18] from (19), (9),
(10), and Lemma 1.5, we get:

Dg x ∗ , rnð Þ≤ ηn,1Dg x ∗ , xnð Þ þ ηn,2Dg x ∗ , ∇ g ∗Txnð Þ þ ηn,3Dg x ∗ , unð Þ (38)

�ηn,1ηn,2ρ
∗
r k∇ gxn � Txnk
� �

: (39)

From inequalities (37) and (39) above and assumption on T, we get:

Dg x ∗ , rnð Þ≤ ηn,1Dg x ∗ , xnð Þ þ ηn,2Dg x ∗ , xnð Þ þ ηn,3Dg x ∗ , unð Þ (40)

≤Dg x ∗ , xnð Þ � ηn,3 Dg un, anð Þ þDg an, xnð Þ� �
(41)

�ηn,1ηn,2ρ
∗
r k∇ gxn � Txnk
� �

(42)

≤Dg x ∗ , xnð Þ: (43)

Now, from (19), Lemma 1.3 (ii), Lemma 1.4, and (44), we obtain:

Dg x ∗ , xnþ1ð Þ≤Dg x ∗ , ∇ g ∗ αn∇ gvþ 1� αnð Þ∇ grn
� �� �

(44)

≤ αnDg x ∗ , vð Þ þ 1� αnð ÞDg x ∗ , xnð Þ (45)

≤ max Dg x ∗ , vð Þ, Dg x ∗ , xnð Þ� �
, (46)

and by induction, we get:

Dg x ∗ , xnð Þ≤ max Dg x ∗ , vð Þ, Dg x ∗ , x0ð Þ� �
: (47)

Hence, the sequence Dg x ∗ , xnð Þ� �
is bounded. Thus, by Lemma 7 in ref. [31], the

sequence xnf g is bounded and so are anf g, unf g, rnf g, Gpn
� �

, and Txnf g.
Theorem 1.11 Suppose the Assumptions (A1) and (A2) hold. Let G : C ! E ∗ and

T : C ! E ∗ be continuous pseudomonotone and BRGN mappings, respectively with
Ω ¼ VI C, Gð Þ∩Fg Tð Þ 6¼ ∅. Then, the sequens xnf g generated by Algorithm 1 con-
verge strongly to an element x ∗ ¼ Pg

Ω vð Þ.
Proof: From Theorem 1.10 above, we know that the sequence xnf g is bounded. Let

x ∗ ¼ Pg
Ω vð Þ. Now, using the same techniques of proof of Theorem 2 of ref. [32], we get:

Dg x ∗ , xnþ1ð Þ≤ 1� αnð ÞDg x ∗ , xnð Þ þ αnk∇ gv� ∇ gx ∗ kkxn � wnk (48)

þαn ∇ gv� ∇ gx ∗ , xn � x ∗h i: (49)

Furthermore, from (19), Lemma 1.3 (ii), and Lemma 1.4, we have:

Dg x ∗ , xnþ1ð Þ≤Dg x ∗ , ∇ g ∗ αn∇ gvþ 1� αnð Þ ∇ grn
� �� �

(50)

≤ αn Dg x ∗ , vð Þ þ 1� αnð Þ Dg x ∗ , rnð Þ: (51)
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Thus, from (51) and (43), we get:

Dg x ∗ , xnþ1ð Þ≤ αn Dg x ∗ , vð Þ þ 1� αnð Þ Dg x ∗ , xnð Þ (52)

� 1� αnð Þ ηn,3 Dg un, anð Þ þDg an, xnð Þ� �
(53)

� 1� αnð Þηn,1ηn,2ρ ∗
r k∇ gxn � Txnk
� �

, (54)

Now, to complete the proof we use the following two cases:
Case 1. Assume that there exists n0 ∈ℕ such that the sequence Dg x ∗ , xnð Þ

is decreasing for all n≥ n0. It then follows that the sequence Dg x ∗ , xnð Þ
converges, and hence, Dg x ∗ , xnð Þ �Dg x ∗ , xnþ1ð Þ ! 0 as n ! ∞. Thus, from (53),
we obtain:

lim
n!∞

Dg un, anð Þ þDg an, xnð Þ� � ¼ 0, (55)

and

lim
n!∞

ρ ∗
r kTxn � ∇ gxnk ¼ 0:
�

(56)

Hence, from (55) and Lemma 2.4 of [33] p. 15, we get:

lim
n!∞

kun � ank ¼ lim
n!∞

kxn � ank ¼ 0: (57)

From (56) and property of ρ ∗
r , we obtain:

lim
n!∞

kTxn � ∇ gxnk ¼ 0: (58)

From (58) and the fact that ∇ g ∗ is uniformly continuous on bounded subsets of
E ∗ , we obtain:

lim
n!∞

k∇ g ∗Txn � xnk ¼ 0: (59)

Moreover, from (19) and Lemma 1.4, we get:

Dg xn, wnð Þ ¼ Dg xn, ∇ g ∗ αn ∇ gvþ 1� αnð Þ ∇ grn
� �� �

(60)

≤ αn Dg xn, vð Þ þ 1� αnð Þ Dg xn, rnð Þ (61)

¼ αn Dg xn, vð Þ þ 1� αnð Þ ηn,1Dg xn, xnð Þ þ ηn,2Dg xn, ∇ g ∗Txnð Þ� �
(62)

þ 1� αnð Þ ηn,3Dg xn, unð Þ þ ηn,4Dg xn, vnð Þ� �
(63)

Thus, from Lemma 2.4 of [33] p. 15, (57), (59), and (61), we get:

lim
n!∞

DG xn, wnð Þ ¼ 0, (64)

which implies that

lim
n!∞

kxn � wnk ¼ 0: (65)
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Now, since xnf g is bounded in C there exists u∈C and a subsequence xnk
� �

such
that xnk

� �
converges weakly to u and

limsup
n!∞

xn � x ∗ , ∇ gv� ∇ gx ∗h i ¼ lim
k!∞

xnk � x ∗ , ∇ gv� ∇ gx ∗� �
: (66)

From (58) and definition of T, we have u∈ Fg Tð Þ.
Next, we prove that u∈VI C, Gð Þ. Since an ∈Pnthen we can get:

0 ¼ Gpnk , ank � pnk

D E
(67)

¼ Gpnk , ank � xnk
D E

þ Gpnk , xnk � pnk

D E
(68)

which implies that

Gpnk , xnk � pnk

D E
¼ Gpnk , xnk � ank
D E

≤ kGpnkkkxnk � ankk: (69)

From (57), (69) and the fact that the sequence Gpn
� �

is bounded, we get:

lim
k!∞

Gpnk , xnk � pnk

D E
¼ 0: (70)

Now, we prove

lim
k!∞

kPg
Cynk � xnkk ¼ 0: (71)

From (70), Lemma 1.9 and Lemma 2.4 of [33] p. 15, we get:

lim
k!∞

τnkkPg
Cynk � xnkk ¼ 0: (72)

First, consider the case when liminf k!∞τnk >0. In this case, there is a constant
τ>0 such that τnk ≥ τ>0 for all k∈ℕ. Thus, we have:

kPg
Cynk � xnkk ¼ 1

τnk
τnkkPg

Cynk � xnkk ≤
1
τ
τnkkPg

Cynk � xnkk: (73)

Thus, from (72) and (73), we obtain:

lim
k!∞

kPg
Cynk � xnkk ¼ 0: (74)

Second, we consider the case when liminf k!∞τnk ¼ 0. In this case, we take a

subsequence nkj
n o

of nkf g, if necessary, we assume without loss of generality that

lim
k!∞

τnk ¼ 0 and lim
k!∞

kxnk � Pg
Cynkk ¼ a>0: (75)

Consider p0nk ¼ 1
l τnkP

g
Cynk þ 1� 1

l τnk
� �

xnk . Then, from (75), we have:
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lim
k!∞

kxnk � p0nkk ¼ lim
k!∞

1
l
τnkkxnk � Pg

Cynkk ¼ 0: (76)

From the search rule in Step 2 and the definition of p0nk , we get:

Gxnk � Gp0nk , xnk � Pg
Cynk

D E
> μDg Pg

Cynk , xnk
� �

: (77)

Using (76), (77), and Lemma 2.4 of [33] p. 15, and the fact that G is uniformly
continuous on bounded subsets of C, we obtain:

lim
k!∞

kPg
Cynk � xnkk ¼ 0,

which is a contradiction to (75). Therefore, the equality in (71) holds. Combining
Lemma 1.3 and 17, we get:

Gxnk , z� Pg
Cznk

� �
≥ ∇ gxnk � ∇ gPg

Cynk , z� Pg
Cynk

D E
,∀z∈C, (78)

which implies that

Gxnk , y� xnk
� �

≥ Gxnk , P
g
Cynk � xnk

D E
(79)

þ ∇ gxnk � ∇ gPg
Cynk , z� Pg

Cynk

D E
,∀z∈C: (80)

Thus, from (80), (78) and the fact that ∇ g is uniformly continuous, we obtain:

liminf
k!∞

Gxnk , z� xnk
� �

≥0,∀z∈C: (81)

Moreover, let ξkf g be a sequence of decreasing numbers such that ξkf g ! 0 as
k ! ∞ and w be an arbitrary element of C. Using inequality (81), we can find a large
enough Nk such that

Gxnk , w� xnk
� �þ ξk ≥0,∀k≥Nk: (82)

From (82) and the fact that Gxnk 6¼ 0, we get:

Gxnk , ξkdk þw� xnk
� �

≥0,∀k≥Nk, (83)

for some dk ∈C satisfying Gxnk , dk
� � ¼ 1. In addition, from the definition of G and

inequality (83), we have:

G wþ ξndkwð Þ, wþ ξkdkw� xnk
� �

≥0,∀k≥Nk, (84)

which implies that

Gw, w� xnk
� �

≥ Gw�G wþ ξkdkwð Þ, wþ ξkdkw� xnk
� �

(85)

�ξk Gw, dkh i,∀k≥Nk, (86)
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Since ξk ! 0 as k ! ∞ and G is continuous, then from inequality (86), we obtain:

Gw, w� uh i ¼ liminf
k!∞

Gw, w� xnk
� �

≥0,∀w∈C: (87)

Thus, u∈VI C, Gð Þ, and hence, u∈Ω. It follows Lemma 1.3 (i), that

limsup
n!∞

xn � x ∗ , ∇ gv� ∇ gx ∗h i ¼ lim
k!∞

xnk � x ∗ , ∇ gv� ∇ gx ∗� �
(88)

¼ u� x ∗ , ∇ gv� ∇ gx ∗h i≤0: (89)

Therefore, from (49), (65), (89), and Lemma 2.5 of [34] p. 243, we conclude that
Dg x ∗ , xnð Þ ! 0 as n ! ∞. Hence, by Lemma 2.4 of [33] p. 15, xn ! x ∗ as n ! ∞.

Case 2. Suppose that there exists a subsequence nif g of nf g such that

Dg x ∗ , xnið Þ<Dg x ∗ , xniþ1ð Þ,∀i∈ℕ: (90)

Then, by Lemma 3.1 of [35] p. 904, there exists a nondecreasing sequence mkf g in
the set of natural numbers such that mk ! ∞ as k ! ∞, Dg x ∗ , xmk

� �
≤Dg x ∗ , xmkþ1

� �
and Dg x ∗ , xkð Þ≤Dg x ∗ , xmkþ1

� �
for all k elements of the set of natural numbers. Thus,

from (53), we obtain:

lim
k!∞

kumk � amkk ¼ lim
k!∞

kTxmk � ∇ gxmk
k ¼ 0: (91)

Moreover, following the methods in Case 1 above, we get:

lim
k!∞

kxmk � wmkk, (92)

and

limsup
k!∞

h xmk � x ∗ , ∇ gv� ∇gx ∗� �
≤0: (93)

In addition, from (49) and inequality (90) above, we obtain:

Dg x ∗ , xmk

� �
≤ kxmk � rmkk∇ gv� ∇ gx ∗ k (94)

þ xmk � x ∗ , ∇ gv� ∇gx ∗� �
: (95)

Therefore, from (92), (93), and (95), we obtain lim k!∞Dg x ∗ , xmk

� � ¼ 0. But from
inequality (53), we obtain that lim k!∞Dg x ∗ , xmkþ1

� � ¼ 0, which implies that
lim k!∞Dg x ∗ , xkð Þ ¼ 0. Thus, by Lemma 2.4 of [33] p. 15 xk ! x ∗ as k ! ∞.

We remark that the proof of Theorem 11 provides the following result for a
common point in the solution set of VIP and the set of g�fixed point of continuous
monotone and BRGN, mappings, respectively.

Theorem 1.12 Suppose the Assumptions (A1) and (A2) hold. Let G : C ! E ∗ and
T : C ! E ∗ be continuous monotone and BRGN mappings, respectively with Ω ¼
VI C, Gð Þ∩Fg Tð Þ 6¼ ∅. Then, the sequens xnf g generated by Algorithm 1 converge
strongly to an element x ∗ ¼ Pg

Ω vð Þ.
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If in Algorithm 1, we put C ¼ E, then Pg
C is reduced to the identity mapping in E

and VI C, Gð Þ ¼ G�1 0ð Þ. Thus, we get the following Algorithm 2 for a common point
in the set of zeros and the set of g�fixed point of continuous pseudomonotone and
BRGN mappings, respectively.

Algorithm 2: For any x0,v∈E, define an algorithm by.

Step 1. Compute

yn ¼ ∇ g ∗ ∇ gxn � βGxn
� �

and d yn
� � ¼ xn � yn: (96)

If d yn
� � ¼ 0 and ∇ gxn � Txn ¼ 0, then stop and xn ∈Ω. Otherwise,

Step 2. Compute pn ¼ xn � τnd yn
� �

,
where τn ¼ ljn and jn is the smallest nonnegative integer j satisfying

Gxn �Gpn, d yn
� �� �

≤ μDg yn, xn
� �

: (97)

Step 3. Compute

un ¼ Pf
Pn
∇ g ∗ ∇ gxn � βGpn

� �
,

rn ¼ ∇ g ∗ ηn,1∇ gxn þ ηn,2Txn þ ηn,3∇ gun
� �

,

xnþ1 ¼ ∇ g ∗ αn∇ gvþ 1� αnð Þ∇ grn
� �

,

0
BB@ (98)

where g∈G Eð Þ, Pn ¼ p∈C : Gpn, p� pn
� � ¼ 0

� �
, and ηn,i

� �
⊂ ϵ, 1½ Þ⊂ 0, 1ð Þ, for

i ¼ 1,2,3 such that
P3

i¼1ηn,i ¼ 1, ∀n≥0.
Step 4. Set n≔ nþ 1 and go to Step 1.

Corollary 1.13 Suppose the Assumptions (A1) and (A2) hold. Let G : E ! E ∗ and
T : E ! E ∗ be continuous pseudomonotone and BRGN mappings, respectively with
Ω ¼ G�1 0ð Þ∩Fg Tð Þ 6¼ ∅. Then, the sequens xnf g generated by Algorithm 2 converge
strongly to an element x ∗ ¼ Pg

Ω vð Þ.
If in Algorithm 2, we put T ¼ ∇ g, the identity mapping in E, then we get the

following corollary for zero point of continuous pseudomonotone.
Corollary 1.14 Suppose the Assumptions (A1) and (A2) hold. Let G : E ! E ∗ be a

continuous pseudomonotone mapping with G�1 0ð Þ 6¼ ∅. Then, the sequens xnf g
generated by Algorithm 2 converge strongly to an element x ∗ ¼ Pg

G�1 0ð Þ vð Þ.

2.1 Application to convex minimization problem

In this section, we apply Corollary 1.14 to find the minimum point of the convex
function in Banach Spaces.

Let f : E !  be a convex smooth function. We consider the problem of finding a
point z∈E such that

f zð Þ ¼ min
x∈E

f xð Þf g: (99)

According to Fermat’s rule, this problem is equivalent to the problem of finding
z∈E such that
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∇ fz ¼ 0, (100)

where ∇ f is a gradient of f . We note that ∇ f is monotone mapping (see, e.g.,
[36, 37]) and hence pseudomonotone mapping.

Now, if in Algorithm 2, we assumeG ¼ ∇ f , then we obtain the following Algorithm
3 for the minimum point problem of convex functions in real reflexive Banach spaces.

Algorithm 3: For any x0,v∈E, define an algorithm by.

Step 1. Compute

yn ¼ ∇ g ∗ ∇ gxn � β∇ fxn
� �

and d yn
� � ¼ xn � yn: (101)

If d yn
� � ¼ 0, then stop and xn ∈Ω. Otherwise,

Step 2. Compute pn ¼ xn � τnd yn
� �

,
where τn ¼ ljn and jn is the smallest nonnegative integer j satisfying

∇ fxn � ∇ fpn, d yn
� �� �

≤ μDg yn, xn
� �

: (102)

Step 3. Compute

un ¼ Pf
Pn
∇ g ∗ ∇ gxn � β∇ fpn

� �
,

rn ¼ ∇ g ∗ ηn∇ gxn þ 1� ηnð Þ∇ gun
� �

,

xnþ1 ¼ ∇ g ∗ αn∇ gvþ 1� αnð Þ∇ grn
� �

,

0
BB@ (103)

where g∈G Eð Þ, Pn ¼ p∈C : ∇ fpn, p� pn
� � ¼ 0

� �
, and ηn ⊂ ϵ,1½ Þ⊂ 0, 1ð Þ,∀n≥0f .

Step 4. Set n≔ nþ 1 and go to Step 1.

The method of proof Theorem 1.11 provides the proof of the following theorem of
finding the minimum point of a convex function in reflexive Banach spaces.

Theorem 1.15 Suppose the Assumptions (A1) and (A2) hold. Let f : E !  be a
convex smooth function with ∇f is continuous and Ω ¼ z : f zð Þ ¼ min x∈Ef xð Þf g 6¼ ∅.
Then, the sequens xnf g generated by Algorithm 3 converge strongly to an element
x ∗ ¼ Pg

Ω vð Þ.

2.2 Numerical example

In this section, we provide a numerical example to explain the conclusion of our
main result. The following example verifies the conclusion of Theorem 1.11.

Example 1.16. Let E ¼  be with the standard topology. Define g :  ! , by
g xð Þ ¼ x2

2 , then g ∗ x ∗ð Þ ¼ x ∗ 2

2 and ∇ g xð Þ ¼ x ¼ ∇ g ∗ x ∗ð Þ ¼ x ∗ , where x ¼
x1, x2, x3ð Þ∈. Let C ¼ x∈ : kxk≤ 1f g. Let G,T : C !  be defined by

G x1, x2, x3ð Þ ¼ x1, x2, x3ð Þ 1:8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

q� �
and T x1, x2, x3ð Þ ¼ x1, x2, x3ð Þ

5 , then G

is continuous pseudomonotone mapping and T is BRGN mapping with Ω ¼
VI C, Gð Þ ¼ 0f g ¼ Fg Tð Þ 6¼ ∅. Now, if we assume v ¼ v1, v2, v3ð Þ ¼ 0,0:5,0:5ð Þ, αn ¼
1

nþ10, ηn,1 ¼ ηn,2 ¼ 0:001þ 1
nþ1000 and ηn,3 ¼ 0:998� 2

nþ1000, l ¼ 0:8, μ ¼ 0:9 and λ ¼ 1
for all n≥0, and take different initial points x0 ¼ 0, 1, �1ð Þ, x00 ¼ 1:2233,2, �1:4532ð Þ
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and x0
0
0 ¼ 1,2,3ð Þ, then in all cases the numerical example result usingMATLAB provides

that the sequence xnf g, generated by Algorithm 1 converges strongly to x ∗ ¼ 0,0,0ð Þ
(see, Table 1). In addition, we have sketched the error term kxn � x ∗ k for each initial
point. From the sketch, we observe that kxn � x ∗ k ! 0 as n ! ∞ (see, Figure 1).

3. Conclusions

In this, manuscript, we introduced an iterative method for approximating a com-
mon solution of VIP of continuous pseudomonotone and GFPP of BRGN mappings
and proved strong convergence of the sequence generated by the method to a

n xn xn xn

0 0:0000,1:0000, �1:0000ð Þ 1:2233,2:0000, �1:4532ð Þ 1:0000,2:0000,3:0000ð Þ
1 0:0000,0:2379,0:1881ð Þ �0:1729,0:1325,0:9238ð Þ 0:0195,0:0622, �0:8500ð Þ
10 0:0000,0:0335,0:0228ð Þ �0:0868,0:0280,0:0797ð Þ 0:0110,0:0269, �0:2428ð Þ
100 0:0000,0:0058,0:0040ð Þ �0:0134,0:0049,0:0026ð Þ 0:0019,0:0047,0:0024ð Þ
200 0:0000,0:0030,0:0021ð Þ �0:0069,0:0025,0:0014ð Þ 9:8943e�04,0:0024,0:0012ð Þ
300 0:0000,0:0020,0:0014ð Þ �0:0046,0:0017,9:1348e�04ð Þ 6:6775e�04,0:0017,8:4377e�04ð Þ
400 0:0000,0:0016,0:0011ð Þ �0:0035,0:0013,6:9030e�04ð Þ 5:0352e�04,0:0013,6:3737e�04ð Þ
500 0:0000,0:0012,8:5023e�04ð Þ �0:0028,0:0010,5:5401e�04ð Þ 4:0389e�04,0:0010,5:1207e�04ð Þ

⋮ ⋮ ⋮

↓ ↓ ↓

0,0,0ð Þ 0,0,0ð Þ 0,0,0ð Þ
The sequence xnf g, generated by Algorithm 1 converges strongly to x ∗ ¼ 0, 0, 0ð Þ.

Table 1.
Convergence of the sequence xnf g generated by Algorithm 1 for different choices of x0.

Figure 1.
The graph of kxn � x ∗ k versus number of iterations with different choices of x0.
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common solution in real reflexive Banach spaces. In addition, we gave an application
of our main result to find a minimum point of convex functions in real reflexive
Banach spaces. Finally, a numerical example that supports our main result is
presented. Our results extend and generalize many results in the literature. In partic-
ular, Theorem 1.11 extends the results in [3, 4, 7, 13, 16, 17, 38] from real Hilbert
spaces to real reflexive Banach spaces. Moreover, Theorem 1.11 extends the classes of
mappings in Theorem 3.1 of Tufa and Zegeye [17] and Theorem 3.2 of Wega and
Zegeye [18] from Lipschitz monotone mapping to continuous pseudomonotone map-
pings in reflexive real Banach spaces.
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Chapter 5

On Fixed Point for Derivative of
Set-Valued Functions
Mohamad Muslikh and Adem Kilicman

Abstract

In this article, we showed the existence of a fixed point for the derivative of
interval-valued functions. The investigation of the existence of such fixed points
utilizes the common fixed point concepts for two mappings. Under the condition of
compatibility of the hybrid composite mappings in the sense of the Pompei-Hausdorff
metric the existence of a fixed point for the derivative is shown. Some examples to
support the usability of the result of this study are also given.

Keywords: common fixed point theorem, set-valued maps, compatible mappings,
differentiable maps, interval-valued functions

1. Introduction

E. Dyer in [1] conjectured that f and g must have a common fixed point in 0, 1½ � if
f g tð Þð Þ ¼ g f tð Þð Þ for each t∈ 0, 1½ �. In 1967, W.M. Boyce [2] replied in his paper that
Dyer’s question is negative as well as an answer from Husein [3] and Singh [4].
However, many researchers are curious about conjecture. In 1976, G Jungck [5] shows
the existence of the common fixed point for two mappings by the commuting map-
ping method in general metric spaces. Since then the common fixed point research
had quickly grown. In development, some of the researchers not only involved two
mappings (single-valued mappings) but also they are more than it is [6]. In fact, some
involve the set-valued mapping forms [7, 8].

In progress, the composition mappings are discussed not only between fellow of
single-valued mappings or set-valued mappings but also its combination (mixed
compositions between of single-valued and set-valued mappings). Since then several
authors have studied common fixed point theorems for such mapping in different
ways ([9–11] and references therein).

Itoh et al. [12] introduce “commute” term of hybrid composite functions in
1977. By this properties, they have proven common fixed point theorems in
topological vector spaces. In 1982, Fisher [13] has introduced common fixed
point theorems for commuting mappings in the sense of the other in metric spaces.
Then Imdad [14] mentioned the properties fFx⊆Ffx as “quasi-commute” to
distinguish with the latter term. Whereas two commuting mappings F and f are
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weakly commuting, but in general two weakly commuting mappings do not
commute as it is shown in Example 1 of [15].

In 1989, Kaneko [16] introduced the concept of “compatible” by using the
Hausdorff metric and proved the existence of a common fixed point theorem by the
concept. In 1993, Jungck [17] introduced the same things but used the concept of
“δ-compatible” mappings in metric spaces and proved some common fixed point
theorems for δ-compatible mappings.

Regarding the fixed point for derivatives has been observed by M. Elekes at all in
[18]. In his paper, he shows the compositions of two functions derivatives have fixed
points. This result is an affirmative answer to a question of K. Ciesielski, whether the
composition of two derivatives on interval closed has a fixed point? The fixed point
for a function is usual but for its derivatives is another something. Here have we the
quadruplets X, x, f , f 0

� �
. How do these problems? By the device of commutativity and

compatibility between the function and its derivatives, the author shows that the
function derivatives of the real-valued function have a fixed point [19].

Motivated by the results mentioned above, in this article, we introduced the
existence theorem of a fixed point for gh-derivative of the interval-valued function. To
this work, we used hybrid composite mappings involving gh-derivative under the
compatibility conditions.

2. gh-Differences

Suppose X, dð Þ is a metric spaces. The collection of all non-empty subsets of X is
denoted by P0 Xð Þ. Whereas, the notation B Xð Þ (resp. CB Xð Þ, K Xð Þ and KC Xð Þ) is the
collection of all non-empty bounded (resp. closed-bounded, compact and compact-
convex) subsets of X.

In 1905, In his PhD thesis [20], Pompeiu defined the notions of e0cart between two
sets. Hausdorff [21] studies the notion of set distance in the natural setting of metric
spaces and with a small modification (the the sum is replaced by the maximum).

Let X, dð Þ be a metric spaces and A,B⊂X. The Hausdorff distance between A and B
is a distance function H : P0 Xð Þ � P0 Xð Þ ! þ which is defined as

H A, Bð Þ ¼ sup d A, Bð Þ, d Bð , AÞf g, (1)

where d A, Bð Þ ¼ supa∈Ad a, Bð Þ. Certainly value that d A, Bð Þ 6¼ d B, Að Þ. The dis-
tance functions H to be a metric on the collection of all non-empty closed-bounded
subset of X, CB Xð Þ. The metric spaces CB Xð Þ, Hð Þ is called a complete metric spaces if
the metric space X is a complete.

Suppose I ð Þ ¼ I ¼ a�, aþ½ �ja�, aþ ∈, a� < aþf g. In [22], R.E. Moore et al.
introduced an absolute value of the interval J ¼ x�, xþ½ � asfollows.

kJk ¼ max jx�j, jxþjf g: (2)

For a given interval I ¼ a�, aþ½ � define the width, midpoint and radius of I,
respectively, by

w Ið Þ ¼ aþ � a�,m Ið Þ ¼ 1
2

a� þ aþð Þ,and r Ið Þ ¼ 1
2

aþ � a�ð Þ≥0, (3)
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so that a� ¼ m Ið Þ � r Ið Þ and aþ ¼ m Ið Þ þ r Ið Þ. Thus the interval notasion I ¼
a�, aþ½ � can be written as the pair I ¼ m Ið Þ; r Ið Þð Þ:.

The Pompeiu-Hausdorff distance on I ð Þ defined as

H I, Jð Þ ¼ max ja� � b�j, jaþ � bþj� �
, (4)

where I ¼ a�, aþ½ � and J ¼ b�, bþ
� �

. The pair I ð Þ, Hð Þ is a complete and separa-
ble metric space.

In 1967, M. Hukuhara [23] introduced the difference (h-difference) between U

and V defined as U �h V ¼ W if and only if U ¼ V þW for each U,V,W ∈KC k� �
.

An important properties of the Hukuhara difference is that U �h U ¼ Θf g and

U þ Vð Þ �h V ¼ U. The Hukuhara difference is unique, but it does not always exists.
The Hukuhara difference had generalized by Markov in [24]. He defined is

following as

U �gh V ¼ W⇔ að ÞU ¼ V þW or bð ÞV ¼ U þ �1ð ÞW: (5)

Furthermore, Hukuhara difference generalized is called the gh-difference.
Both the equation U ¼ V þW and the equation V ¼ U þ �1ð ÞW can simulta-

neously holds. It is clear that h-difference is part of gh-difference. Therefore, the gh-
difference is often said to be a generalization of the h-difference. The gh-difference of
two intervals in I ð Þ always exists.

Proposition 1. Suppose I ¼ a�, aþ½ � and J ¼ b�, bþ
� �

are intervals in I ð Þ. The gh-
difference of two intervals I and J always exists and

I �gh J ¼ a�, aþ½ � �gh b�, bþ
� � ¼ c�, cþ½ � (6)

where c� ¼ min a� � b�ð Þ, aþ � bþ
� �� �

and cþ ¼ max a� � b�ð Þ, aþ � bþ
� �� �

.

In [25, 26] defined H I, Jð Þ ¼ kI �gh Jk for each I,J ∈ I ð Þ. An immediate property of
the gh-difference for I,J ∈ I ð ÞÞ is

H I, Ið Þ ¼ 0⇔ I �gh J ¼ 0⇔ I ¼ J (7)

It is also well known that I ð Þ, Hð Þis complete metric space.

2.1 gh-Derivative of set-valued functions

The mapping F : X ! P0 Yð Þ is called set-valued functions where the maps
F xð Þ∈P0 Yð Þ for each x∈X. The function f : X ! Y is said to be selection of F if
f xð Þ∈F xð Þ for all x∈X. We say that a point z∈X is a fixed point of F if z∈ F zð Þ.

The gh-derivative for an interval-valued function, expressed in terms of the dif-
ference quotient by gh-difference, has been first introduced in 1979 by S. Markov. A
very recent and complete description of the algebraic properties of gh-derivative can
be found in [27].

Definition 1 Let F : a, b½ � ! I ð Þ be an interval-valued function and suppose
t0,t0 þ h∈ a, bð Þ. The gh-derivative F0

gh t0ð Þ∈ I ð Þ defined as
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F0
gh t0ð Þ ¼ lim

h!0

F t0 þ hð Þ �gh F t0ð Þ
h

: (8)

If the limit, lim h!0
F t0þhð Þ�ghF t0ð Þ

h exists and satisfies Eq. (6), then F is said differen-
tiable in the sense of generalized Hukuhara difference or gh-differentiable at a point
t0 ∈ a, bð Þ. The set-valued F0

gh is called a generalized Hukuhara derivative.
Theorem 1.1 If interval-valued functions F : a, b½ � ! I ð Þ is a gh-differentiable at a

point p∈ a, bð Þ then F is continuous at p.
Proof:

lim
x!p

F xð Þ �gh F pð Þ ¼ lim
x!p

F xð Þ �gh F pð Þ
x� pð Þ x� pð Þ

" #

¼ lim
x!p

F xð Þ �gh F pð Þ
x� pð Þ

" #
lim
x!p

x� pð Þ
� �

¼ F0
gh pð Þ � 0 ¼ 0:

So F is continuous at the point p∈ a, b½ �.
Theorem 1.2 [26] Let F : a, b½ � ! I ð Þ be an interval-valued functions and

F xð Þ ¼ f xð Þ, g xð Þ½ �, where f ,g : a, b½ � ! . F is gh-differentiable on a,bð ) if and only if
f and g are differentiable on a, bð Þ and

F0
gh xð Þ ¼ min f 0 xð Þ, g0 xð Þ� �

, max f 0 xð Þ, g0 xð Þ� �� �
,

for all x∈ a, bð Þ.
This means that

F0
gh xð Þ ¼ f 0 xð Þ, g0 xð Þ� �

if f 0 xð Þ< g0 xð Þ,
g0 xð Þ, f 0 xð Þ� �

if f 0 xð Þ< g0 xð Þ

(

for all x∈ a, bð Þ.

3. Common fixed point

Definition 2 Suppose X, dð Þ is a metric space, E⊂X, F : E ! B Xð Þ is a set-valued
mapping and f : E ! X is single-valued mapping.

i. F and f are said to quasi commute if fFx⊆ Ffx for each x∈E

ii. F and f are said to commute if fFx ¼ Ffx for each x∈E

iii. F and f are said to slightly commute if fFx∈B Xð Þ for each x∈E and
δ fFx, Ffxð Þ≤ max δ fx, Fxð Þ, diam Fxð Þf g

iv. F and f are said to weakly commute if fFx∈B Xð Þ for each x∈E and
δ fFx, Ffxð Þ≤ max δ fx, Fxð Þ, diam fFxð Þf g.
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Suppose X, dð Þ is a metric space. The mapping f ,g : X ! X is a single-valued
function or function and F,G : X ! B Xð Þ is a set-valued function. For each x,y∈X, we
used the notation as follows.

M F, fð Þ ¼ max d fx, Fxð Þ, d fy, Fyð Þ, d fx, Fyð Þ, d fy, Fxð Þ, d fx, fyð Þf g: (9)

and

N F, fð Þ ¼ max d fx, fyð Þ, d fx, Fxð Þ, d fy, Fyð Þ, 1
2
d fx, Fyð Þ þ d fy, Fxð Þ½ �

� �
:

(10)

and

M F, G, f , gð Þ ¼ max d fx, gyð Þ, δ fx, Gyð Þ, δ gy, Fxð Þf g: (11)

The following is the existence of common fixed point theorem that result by B.
Fisher [13].

Theorem 1.3 Suppose X, dð Þ is a complete metric space, F : X ! B Xð Þ is a set-
valued mapping and f : X ! X is a single-valued mapping satisfying the inequality

δ Fx, Fyð Þ≤ cM F, fð Þ (12)

for all x,y∈X, where 0≤ c< 1. If.

A. f is continuous,

B. F Xð Þ⊆ f Xð Þ, and

C.F and f are commute,

then F and f have a unique common fixed point.
B. Fisher also shown the same with assumes the continuity of F in X instead of the

continuity of f [28].
The following theorem is generalization of Theorem 1.3 that has been resulted by

M Imdad et al. [14].
Theorem 1.4 Suppose X, dð Þ is a complete metric space, F : X ! B Xð Þ is a set-

valued mapping and f : X ! X is a single-valued mapping satisfying the inequality

δ Fx, Fyð Þ≤ψM F, fð Þ

for all x,y∈X, where ψ : 0, ∞½ Þ ! 0, ∞½ Þ is a nondecreasing, right continuous and
ψ tð Þ< t, for all t>0. If this following is satisfied

A. the function f is continuous,

B. the image of F Xð Þ is a subset of f Xð Þ,

C. the set-valued F and single-valued f are weakly commute, and

D.∃ x0 ∈X such that sup δ Fxn, Fx1ð Þ : n ¼ 0, 1⋯f g< þ∞,
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then F and f have a unique common fixed point on X.
Theorem 1.5 Suppose X, dð Þ is a complete metric space, F : X ! B Xð Þ is a set-

valued mapping and f : X ! X is a single-valued mapping satisfying the inequality

δ Fx, Fyð Þ≤ψM F, fð Þ (13)

for all x,y∈X, where ψ : 0, ∞½ Þ ! 0, ∞½ Þ is a non-decreasing, right continuous and
ψ tð Þ< t, for all t>0. If this following is satisfied

A. the set-valued mapping F or the single-valued mapping f are continuous,

B. the image F Xð Þ is a subset of the image f Xð Þ,

C. the set-valued F and the singel valued f are slightly commute, and

D.∃ x0 ∈X such that sup δ Fxn, Fx1ð Þ : n ¼ 0, 1⋯f g< þ∞,

then F and f have a unique common fixed point on X.
In the other context, Kaneko and Sessa in [16] introduce the “compatibility” term

for the set-valued mapping F and the single-valued mapping f defined as follows:
Definition 3 Let X, dð Þ be a metric spaces. Suppose that F : X ! CB Xð Þ is a set-

valued mapping and f : X ! X is a single-valued mapping. The mappings F and f is
called compatible if the composition fFx∈ CB Xð Þ and the sequence H Ffxn, fFxn

� �!
0 whenever xnf g is sequence in X such that fxn ! t∈B∈ CB Xð Þ and Fxn ! B∈ CB Xð Þ.

By using such the notion obtained the following theorem and lemma [16].
Theorem 1.6 Suppose X, dð Þ is a complete metric space, F : X ! CB Xð Þ is a set-

valued mapping, and f : X ! X is a single-valued mapping satisfying the inequality

H Fx, Fyð Þ≤ cN F, fð Þ (14)

for all x,y∈X, where 0≤ c< 1. If this following is satisfied.

A. the set-valued mapping F and the single-valued mapping f are continuous,

B. the image F Xð Þ is a subset of the image f Xð Þ, and

C. the set-valued F and the single-valued f are compatible,

then there exists a point z∈X such that f zð Þ∈F zð Þ.
Lemma 1 Let X, dð Þ be a metric spaces. Suppose that F : X ! CB Xð Þ and f : X ! X

are a compatible. If fw∈Fw for some w∈X, then Ffw ¼ fFw.

4. Fixed point for derivative

In this discussion, we shall make frequent use of the following Lemmas.
Lemma 2 [29] Let X, dð Þ be a metric spaces. If C,D∈K Xð Þ and c∈C, then there

exists the points d∈D such that d c, dð Þ≤H C, Dð Þ.
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Lemma 3 (Lemma 1 [4]) Let ψ : 0, ∞½ Þ ! 0, ∞½ Þ be a real function such that non-
decreasing, right continuous on 0, ∞½ Þ.

lim
n!∞

ψn tð Þ ¼ 0:

if and only if for every t>0 and ψ tð Þ< t.
In this result, we found that Lemma 1 also conversely holds provided its values of

mapping are compact sets.
Lemma 4 Let X, dð Þ be a metric spaces and the set-valued F : X ! K Xð Þ is a

continuous on X. If there exists single-valued f : X ! X is continuous on X such that
fw∈Fw for some w∈X, then the mappings F and f are compatible.

Proof: Since Fx∈K Xð Þ for each x∈X and f is continuous, the composition
fFx∈K Xð Þ for all x∈X. Suppose that the sequence xnf g on X such that the sequence
of sets Fxn converges to K ∈K Xð Þ and the sequence function fxn converges to z∈K. In
this case, we choose z∈X such that fz∈Fz. Since F and f are continuous, we obtained

lim
n!∞

H Ffxn, fFxn
� �

≤ lim
n!∞

H Ffxn, Fz
� �þH Fz, fzf gð Þ þH fzf g, fFxn

� �� �

¼ H Fz, Fzð Þ þH Fz, fzf gð Þ þH fzf g, fKð Þ
¼ 0:

The pairs F and f are proved as compatible by Definition 3.
By using the Lemma 4 we obtain the theorem as follows:
Theorem 1.7 Let X, dð Þ be a complete metric space, F : X ! K Xð Þ be a continuous.

Suppose there exists f : X ! X is continuous on X such that F Xð Þ⊆ f Xð Þ and for all
x,y∈X satisfying the inequality

H Fx, Fyð Þ≤ cN F, fð Þ, (15)

where 0≤ c< 1. Then fz∈ Fz for some z∈X if and only if the pairs F and f are
compatible.

Proof: Let x0 ∈X be an arbitrary. Since F Xð Þ⊆ f Xð Þ, we choose the point x1 ∈X
such that fx1 ∈Fx0. If c ¼ 0, then

d fx1, Fx1
� �

≤H Fx0, Fx1ð Þ ¼ 0:

Since Fx1 is compact (hence closed), we obtain fx1 ∈Fx1.
Now we assume c 6¼ 0. By Lemma 2 for each ε ¼ 1ffiffi

c
p > 1 there exists a point y1 ∈ Fx1

such that

d y1, Fx1
� �

≤H Fx1, Fx0ð Þ< εH Fx1, Fx0ð Þ:

Choose x2 ∈X such that y1 ¼ fx2 ∈Fx1 and so on. In general, if xn ∈X there exists
xnþ1 ∈X such that yn ¼ fxnþ1 ∈Fxn and

d yn, fxn
� �

< εH Fxn, Fxn�1ð Þ

for each n≥ 1. By the inequality (10) for each n∈ℕ we have
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d fxnþ1, fxn
� �

< εH Fxn, Fxn�1ð Þ≤ cffiffi
c

p N F, fð Þ ¼ ffiffi
c

p
N F, fð Þ

<
ffiffi
c

p
max fd fxn, fxn�1

� �
,d fxn, Fxn
� �

,d fxn�1, Fxn�1
� �

,

1
2

d fxn, Fxn�1
� �þ d fxn�1, Fxn

� �� �g:
<

ffiffi
c

p
max fd fxn, fxn�1

� �
,d fxn, fxnþ1

� �
,d fxn�1, fxn
� �

,

1
2
d fxn�1, fxnþ1

� ��g:
<

ffiffi
c

p
max fd fxn, fxn�1

� �
,d fxn, fxnþ1

� �
,d fxn�1, fxn
� �

,

1
2

d fxn�1, fxn
� �þ d fxn, fxnþ1

� �� �g:
¼ ffiffi

c
p

max d fxn�1, fxn
� �

, d fxn, fxnþ1

� �� �
:

¼ ffiffi
c

p
d fxn�1, fxn
� �

Since
ffiffi
c

p
< 1, the sequence fxn

� �
is a Cauchy sequence on the complete metric

space X. Therefore, it converges to a point z∈X. Likewise Fxnf g is a Cauchy sequence
on the complete metric space (K Xð Þ,H), hence it converges to a set K ∈K Xð Þ. As a
result

d z, Kð Þ≤ d z, fxn
� �þ d fxn, K

� �
≤ d z, fxn
� �þH Fxn�1, Kð Þ:

Certainly that d z, Kð Þ ¼ 0 by d z, fxn
� �! 0 and H Fxn�1, Kð Þ ! 0 as n ! ∞. This

implies z∈K since K is a compact set. Since F and f are compatible, we have

d fz, Fzð Þ ¼ lim
n!∞

d fz, Fzð Þ≤ lim
n!∞

d fz, ffxn
� �þ d ffxn, Fz

� �� �

≤ lim
n!∞

d fz, ffxn
� �þH fFxn, Fz

� �� �

≤ lim
n!∞

d fz, ffxn
� �þH fFxn, Ffxn

� �þH Ffxn, Fz
� �� �

¼ d fz, fzð Þ þH Fz, Fzð Þ
¼ 0:

So fz∈Fz. Conversely, it’s clear by Lemma.
Remark 1 Theorem 1.7 is a special occurrence of results obtained by H Kaneko and

S Sessa [16]. Certainly the provisioning should be satisfied as in Theorem 3.
This result modify of Theorem 1.5 by substituting compatibility with respect to

Hausdorff metric on K Xð Þ for slight commutativity at once improvement Theorem 1.6
in finding common fixed point for the mapping of the hybrid composite.

Theorem 1.8 Let X, dð Þ be a complete metric space, F : X ! K Xð Þ be a set-valued
mapping and f : X ! X be a single-valued mapping satisfying the inequality

H Fx, Fyð Þ≤ψN F, fð Þ (16)

for all x,y∈X, where ψ : 0, ∞½ Þ ! 0, ∞½ Þ is a nondecreasing, right continuous and
ψ tð Þ< t, for all t>0. If this following is satisfied

A. the set-valued mapping F and the single-valued mapping f are continuous,
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B. the image F Xð Þ is a subset of the image f Xð Þ,

C. the pairs F and f are compatible, and

D.∃ x0 ∈X such that sup H Fxn, Fx1ð Þ : n ¼ 0, 1⋯f g< þ∞,

then F and f have a unique common fixed point on X.
Proof: This proof is the same as Theorem 5 in [14]
Example 1 Let X ¼ 0, 3½ � with usual metric. Let F xð Þ ¼ 0, x2½ � and f xð Þ ¼ 2x2 � 1

for each x∈ 0, 3½ �. Its clear that the image F Xð Þ ¼ F 0, 3½ �ð Þ ¼ 0, 9½ �⊂ f 0, 3½ �ð Þ ¼
�1, 17½ � ¼ f Xð Þ and the both F and f are continuous on 0, 3½ �. If the sequence xn ! 1,

then Fxn ! 0, 1½ � ¼ K and fxn ! 1∈K. We know that Ffxn ¼ 0, 2x2n � 1
� �2h i

and

fFxn ¼ �1, 2x4n � 1
� �

so that we obtained

H Ffxn, fFxn
� � ¼ ∣4x4n � 6x2n þ 2∣ ! 0

since xn ! 1. It is clear sup H Fxn,Fx1 : n ¼ 0,1,⋯ð g ¼ 9< þ∞f . Since F and f are
continuous, we have

lim
xn!1

Ffxn ¼ F 1ð Þ ¼ 0, 1½ � ¼ K, and lim
xn!1

fxn ¼ 1 ¼ f 1ð Þ:

This means 1 ¼ f 1ð Þ∈ F 1ð Þ ¼ K.
Remark 2 Simple examples above prove that the condition of the continuity of the

both mappings F and f is important in Theorem 4 other than the other requirements.
However, in general the common fixed point theorems for hybrid composite map-
pings only required one of the mappings F or f is continuous. In our opinion, such case
it can be used if the set K is a singleton.

The following main result is a discussion of the existence of a fixed point for the
derivative of an interval-valued function.

Theorem 1.9 Suppose that F : a, b½ � ! I ð Þ is a continuously gh-differentiable on
a, bð Þ such that there exists f : a, b½ � !  and fx∈F0

gh xð Þ for all x∈ a, b½ � satisfying the
inequality

H Fx, Fyð Þ≤ψN F, fð Þ (17)

for all x,y∈ a, b½ �, where ψ : 0, ∞½ Þ ! 0, ∞½ Þ is a non-decreasing, right continuous,
and ψ tð Þ< t, for all t>0. If this following is satisfied.

A. the image F a, b½ �ð Þ is subsets of the image f a, b½ �ð Þ,

B. the pairs F and f are compatible, and

C.∃ x0 ∈ a, b½ � such that sup H Fxn, Fx1ð Þ : n ¼ 0, 1⋯f g< þ∞,

then the gh-derivative F0
gh has a unique fixed point.

Proof: From hypothesis (C), suppose H Fxs, Fxtð Þ≤H Fxs, Fx1ð Þ þH Fxt, Fx1ð Þ≤M
so that

sup H Fxs, Fxtð Þ : s, t ¼ 0,1,2⋯f g ¼ M< þ∞: (18)
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Suppose that N ∈ℕ such that for each ε>0

ψNL< ε (19)

by Lemma 3.
Let x0 ∈ a, b½ � be an arbitrary. Since F a, b½ �ð Þ⊆ f a, b½ �ð Þ, we choose the point

x1 ∈ a, b½ � such that y1 ¼ fx1 ∈Fx0. In general, if xn ∈X there exists xnþ1 ∈X such that
yn ¼ fxn ∈Fxn�1. By applying inequality (11) to term H Fxm, Fxnð Þ we have for m,n≥N:

H Fxm, Fxnð Þ ≤ψ max fd fxm, fxn
� �

,d fxn, Fxn
� �

,d fxm, Fxm
� �

,n
1
2

d fxn, Fxm
� �þ d fxm, Fxn

� �� �g
≤ψ max fH Fxm�1, Fxn�1ð Þ,H Fxn�1, Fxnð Þ,H Fxm�1, Fxmð Þ,
1
2
H Fxn�1, Fxmð Þ þH Fxm�1, Fxnð Þ½ �g

≤ψ max fH Fxm�1, Fxn�1ð Þ,H Fxn�1, Fxnð Þ,H Fxm�1, Fxmð Þ,
1
2
H Fxn�1, Fxm�1ð Þ þH Fxm�1, Fxmð Þ½ �,

1
2
H Fxm�1, Fxn�1ð Þ þH Fxn�1, Fxnð Þ½ �g

¼ ψ max H Fxm�1, Fxn�1ð Þ, H Fxn�1, Fxnð Þ, H Fxm�1, Fxmð Þf g

(20)

By iterating (14) above as much asN times, we deduce for eachm,n>N as follows:

H Fxm, Fxnð Þ ≤ ψ max H Fxr, Fxsð Þ,H Fxr, Fxtð Þ,
n

H Fxs, Fxkð Þ : m� 1≤ r; t≤ n; n� 1≤ s; k≤m
o

≤ ψ2 max fH Fxr, Fxsð Þ,H Fxr, Fxtð Þ,
H Fxs, Fxkð Þ : m� 2

≤ r; t≤ n; n� 2≤ s; k≤mg≤⋯
≤ ψN max fH Fxr, Fxsð Þ,H Fxr, Fxtð Þ,

H Fxs, Fxkð Þ : 4 m�N
≤ r; t≤ n; n�N ≤ s; k≤mg≤ψNM< ε,

(21)

by inequality (13).
Accordingly the sequence Fxnf g is a Cauchy sequence on the complete metric

spaces I ð Þ, Hð Þ so that converges to an interval J ∈ I ð Þ. The sequence of single-
valued functions fxn

� �
is also a Cauchy sequence on  hence it converges to a point

z∈. We have

∣z� J∣ ≤ ∣z� fxn∣þ ∣fxn � J∣ ≤ ∣z� fxn∣þH Fxn�1, Jð Þ, (22)

as n ! ∞, ∣z� J∣ ¼ 0. This means, z∈ J since J ∈ I ð Þ. By compatibility of F and f ,
we obtain

lim
n!∞

H Ffxn, fFxn
� � ¼ 0: (23)
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By using inequality (11), we have

H Ffxnþ1, Fxn
� �

≤ψ max fd f 2xnþ1, fxn
� �

,d f 2xnþ1, Ffxnþ1

� �
,d fxn, Fxn
� �

,

1
2

d f 2xnþ1, Fxn
� �þ d fxn, Ffxnþ1

� �� �

≤ψ max fd fFxn, fxn
� �

,d fFxn, Ffxnþ1

� �
,d fxn, Fxn
� �

,

1
2

d fFxn, Fxn
� �þ d fxn, Ffxnþ1

� �� �

≤ψ max fd fFxn, Ffxn
� �þ d Ffxn, Fxn

� �þ d Fxn, fxn
� �

,

d fFxn, Ffxn
� �þ d Ffxn

� �
,fxnÞ þ d fxn, Ffxnþ1

� �
,

d fxn, Fxn
� �

,
1
2

d fFxn, Fxn
� �þ d fxn, Ffxnþ1

� �� �

≤ψ max fd fFxn, Ffxn
� �þ d Ffxn, Fxn

� �þ d Fxn, fxn
� �

,

d fFxn, Ffxn
� �þ d Ffxn, fxn

� �þ d fxn, Ffxnþ1

� �g
≤ψ max fH fFxn, Ffxn

� �þH Ffxn, Fxn
� �þ d Fxn, fxn

� �
,

H fFxn, Ffxn
� �þ d Ffxn, fxn

� �þ d fxn, Ffxnþ1

� �g
≤ψ max fH fFxn, Ffxn

� �þH Ffxn, Fxn
� �þ d Fxn, fxn

� �
,

H fFxn, Ffxn
� �þH Ffxn, Fxn�1

� �þH Fxn�1, Ffxnþ1

� �g

since f 2xnþ1 ∈ fFxn and ψ are non-decreasing. Since the pairs F and f are
compatible, we obtain

H Fz, Jð Þ ≤ψ max 0þH Fz, Jð Þ þ d J, zð Þ, 0þ 2H Fz, Jð Þf g

≤ψ max H Fz, Jð Þ, 2H Fz, Jð Þf g

≤ 2ψH Fz, Jð Þ:

Since ψ tð Þ< t for all t>0, we have H Fz, Jð Þ ¼ 0. This means Fz ¼ J. Since the pairs
F and f are compatible and F is continuously differentiable on a, b½ � (hence continu-
ous), we have

lim
n!∞

H Fz, fJð Þ ¼ lim
n!∞

H Ffxn, fFxn
� � ¼ 0: (24)

So Fz ¼ fJ. Since z∈ J, f zð Þ∈ f Jð Þ, consequently

f zð Þ∈F zð Þ ¼ f Jð Þ ¼ J: (25)

Since f ∈ F0
gh and F0

gh is continuous, the function f is continuous. Of course, the

sequence f 2xn
� �

converges to the point fz and the sequence of set fFxn
� �

converges to
a set fJ. Since the limit

lim
n!∞

H Ffxn, fJ
� �

≤ lim
n!∞

H Ffxn, fFxn
� �þH fFxn, fJ

� �� � ¼ 0, (26)
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the sequence of set Ffxn
� �

also converges to a set fJ.
Since f 2xnþ1 ∈ fFxn and using inequality (11), we get

∣f 2xnþ1 � fxnþ1Þ∣ ≤H fFxn, Fxn
� �

≤H fFxn, Ffxn
� �þH Ffxn, Fxn

� �

≤H fFxn, Ffxn
� �þ ψ max f∣f 2xn � fxn∣,∣f

2xn � Ffxn∣,

∣fxn � Fxn∣,
1
2

f 2xn � Fxn
�� ��þ jfxn, Ffxnj
� �g:

For n ! ∞, it allows from hypothesis the part B (compatibility) and the Eq. (19)
we obtain

∣fz� z∣ ≤0þ ψ max fz� zj j, fz� fJj j, z� Jj j, 1
2
jfz� Jj þ jz� Fzj½ �

� �

≤ψ max jfz� zj, 0, 0, 1
2
0þ 0½ �

� �

≤ψ ∣fz� z∣:

It implies z ¼ fz. Meaning the point z is a fixed point of f . This allows z ¼ fz∈F zð Þ
since the Eq. (19) and hence z is also a fixed point of F0

gh by z ¼ fz∈F0
gh zð Þ.

Let u is another common fixed point of F and f . By inequality (11), we have that

H Fz, Fuð Þ ≤ψmax fz� fuj j, fz� Fzj j, fu� Fuj j, 1
2

fz� Fuj j þ fu� Fzj j½ �
� �

:

≤ψmax H Fz, Fuð Þ, 0, 0, 1
2
H Fz, Fuð Þ þH Fu, Fzð Þ½ �

� �
:

¼ ψmax H Fz, Fuð Þf g:

¼ ψH Fz, Fuð Þ:

It implies that H Fz, Fuð Þ ¼ 0. Since d z, uð Þ≤H Fz, Fuð Þ ¼ 0, we have z ¼ u. Thus
the fixed point z is unique. This completes the proof.

Remark 3 To get a common fixed point through the hybrid composite mapping
usually contains at least two mappings in its hypothesis. This study shows enough one
mapping in its hypothesis. In this case, the mapping given must be differentiable (Theo-
rem 1.9). In addition, the continuity of function is not needed explicitly stated in its
hypothesis. Thus this result is more simple than the results reached by past researchers.

Example 2 Let F xð Þ ¼ x2 � xð Þ, x½ �, be an interval-valued function for all x∈ 0, 2½ �.
It is clear F is gh-differentiable on 0, 2ð Þ with derivative

F0
gh xð Þ ¼

2x� 1ð Þ, x½ � if 0≤ x≤ 1,

x, 2x� 1ð Þ½ � if 1≤ x≤ 2:

(

In this case, we can take the selector f xð Þ ¼ 2x� 1ð Þ∈Fgh xð Þ for all x∈ 0, 2½ �. We
obtain the image
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F 0, 2½ �ð Þ ¼ � 1
4
, 1

� �
∪ 1, 2½ � ¼ � 1

4
, 2

� �
⊂ �1, 2½ � ¼ f 0, 2½ �ð Þ:

This means that the condition in Theorem 4 part (A) is satisfied.
If the sequence xn ! 1, then Fxn ! 0, 1½ � ¼ K and fxn ! 1∈K. First, we start with

the formula Ffxn ¼ 2xn � 1ð Þ2 � 2xn � 1ð Þ, 2xn � 1ð Þ
h i

and

fFxn ¼ 2 x2n � xn
� �� 1, 2xn � 1ð Þ� �

, we obtain

H Ffxn, fFxn
� � ¼ ∣2x2n � 4xn þ 2∣ ! 0

since xn ! 1. Thus F and f are compatible. It is clear that
sup H Fxn, Fx1ð Þ : n ¼ 0, 1, ⋯f g ¼ 3< þ∞. Since F is continuously gh-differentiable
on 0, 2ð Þ, then implies that F and f are continuous on 0, 2ð Þ (see Theorem 1.1). Hence
we have

lim
xn!1

Ffxn ¼ F 1ð Þ ¼ 0, 1½ � ¼ K, and lim
xn!1

fxn ¼ 1 ¼ f 1ð Þ:

Certainly 1 ¼ f 1ð Þ∈F 1ð Þ ¼ K. Since f xð Þ∈ F0
gh xð Þ for all x∈ 0, 2½ �, we obtain

1 ¼ f 1ð Þ∈F0
gh 1ð Þ ¼ 1. Thus the point z ¼ 1 is a unique fixed point of F0

gh.
Furthermore, if f ∈F, then we have the following.
Corollary 1 Suppose that F : a, b½ � ! I ð Þ is a continuously gh-differentiable on

a, bð Þ such that there exists f : a, b½ � !  and fx∈F xð Þ for all x∈ a, b½ �. If the function
f and the derivative F0

gh satisfies the inequality

H F0
ghx, F

0
ghy

� �
≤ψN F0

gh, f
� �

for all x,y∈ a, b½ �, where ψ : 0, ∞½ Þ ! 0, ∞½ Þ is a nondecreasing, right continuous,
and ψ tð Þ< t, for all t>0 and satisfies the condition.

A. the image F0 a, b½ �ð Þ is subsets of the image f a, b½ �ð Þ,

B. the pairs F0 and f are compatible, and

C.∃ x0 ∈ a, b½ � such that sup H Fxn, Fx1ð Þ : n ¼ 0, 1⋯f g< þ∞,

then F0
gh has a unique fixed point on X.

Example 3 Let X ¼ �2, 2½ � with usual metric. Let F : �2, 2½ � ! I ð Þ with the
formula

F xð Þ ¼
xþ sin xþ 1

2

� �� �
, x

� �
if � 2≤ x≤ � 1

2
,

x, xþ sin xþ 1
2

� �� �� �
if � 1

2
≤ x≤ � 2:

8>>>><
>>>>:

It is clear that F is gh-differentiable on �2, 2ð Þ by Theorem 1.2 with derivative
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F0
gh xð Þ ¼

1, 1þ cos xþ 1
2

� �� �� �
if � 2≤ x≤ 1,

1þ cos xþ 1
2

� �� �
, 1

� �
if 1≤ x≤ 2:

8>>>><
>>>>:

If we choose f xð Þ ¼ x∈F xð Þ for all x∈ �2, 2½ �, then we obtain

F0
ghX ¼ F0

gh �2, 2½ �ð Þ ¼ 1, 2½ �∪ 0:198,1½ � ¼ 0:198,2½ �⊂ �2, 2½ � ¼ f �2, 2½ �ð Þ ¼ fX:

This means the condition in Corollary 1 part (A) is satisfied. If the sequence
xn ! 1, then F0

gh xnð Þ ! 1f g ¼ K and fxn ! 1∈K. First, we start with the formula

F0
ghfxn ¼ F0

gh xnð Þ ¼ 1þ cos xn þ 1
2

� �� �
, 1

� �
∪ 1, 1þ cos xn þ 1

2

� �� ��
and

f F0
gh xnð Þ ¼ F0

gh xnð Þ ¼ 1þ cos xn þ 1
2

� �� �
, 1

� �
∪ 1, 1þ cos xn þ 1

2

� �� ��
, we obtain

H F0
ghfxn, f F

0
ghxn

� �
¼ 0:

Thus F and f are compatible. Since F is continuously gh-differentiable on �2, 2ð Þ,
this implies that F and f are continuous on �2, 2ð Þ (see Theorem 1.1). Hence we have

lim
xn!1

F0
ghfxn ¼ F0

gh 1ð Þ ¼ 1f g, and lim
xn!1

fxn ¼ 1 ¼ f 1ð Þ:

Consequently, 1 ¼ f 1ð Þ∈F0
gh 1ð Þ ¼ 1f g.

5. Conclusions

The existence of a fixed point for the derivative of set-valued mappings can be
obtained by using the method of the compatibility of the hybrid composite mappings
in the sense of the Pompei-Hausdorff metric.
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Chapter 6

Stability Estimates for Fractional
Hardy-Schrödinger Operators
Konstantinos Tzirakis

Abstract

In this chapter, we derive optimal Hardy-Sobolev type improvements of fractional
Hardy inequalities, formally written as Lsu≥ w xð Þ

xj jθ u
2 ∗�1, for the fractional Schrödinger

operator Lsu ¼ �Δð Þsu� kn,s u
xj j2s associated with s-th powers of the Laplacian for

s∈ 0, 1ð Þ, on bounded domains in n: Here, kn,s denotes the optimal constant in the
fractional Hardy inequality, and 2 ∗ ¼ 2 n�θð Þ

n�2s , for 0≤ θ≤ 2s< n: The optimality refers
to the singularity of the logarithmic correction w that has to be involved so that an
improvement of this type is possible. It is interesting to note that Hardy inequalities
related to two distinct fractional Laplacians on bounded domains admit the same
optimal remainder terms of Hardy-Sobolev type. For deriving our results, we also
discuss refined trace Hardy inequalities in the upper half space which are rather of
independent interest.

Keywords: fractional Laplacian, hardy-Sobolev inequalities, Schrödinger operator

1. Introduction

Fractional Laplacian operators have attracted considerable attention in various
areas of pure and applied mathematics, see for instance [1] and the review articles
[2–4]. Such non-local operators appear naturally in several branches of the applied
sciences to model phenomena where long-range interactions take place, in fluid
dynamics, quantum mechanics, biological populations, materials science, finance,
image processing, and game theory, to name a few, for example, [5–16]. They have a
prominent interest from a mathematical point of view, arising in analysis and partial
differential equations (pdes), geometry, probability, and financial mathematics, see
for instance [17–22].

For 0< s< 1, the fractional Laplacian �Δð Þs of a function f in the Schwartz space
of rapidly decaying C∞ functions on n, is defined as a pseudodifferential operator
(e.g., [1, 23, 24])

�Δð Þsf ¼ F�1 ξj j2s F fð Þ
� �

, ∀ξ∈n, (1)

where, F f denotes the Fourier transform of f defined by

79



F f ξð Þ ¼ 1

2πð Þn=2
ð

n
e�iξ�xf xð Þdx:

It can be shown that the operator �Δð Þs can be equivalently defined as the singular
integral operator (see for instance [1], Proposition 3.3])

�Δð Þsf xð Þ ¼ c n, sð ÞP:V:
ð

n

f xð Þ � f yð Þ
x� yj jnþ2s dy

≔ c n, sð Þ lim
ε!0þ

ð

jx�yj> εf g

f xð Þ � f yð Þ
x� yj jnþ2s dy, ∀x∈n,

(2)

where

c n, sð Þ ¼ s4s

πn=2
Γ nþ2s

2

� �
Γ 1� sð Þ (3)

and Γ stands for the usual Gamma function defined by Γ sð Þ ¼ Ð∞0 ts�1e�tdt: Notice
that, if s< 1=2, then the integrand exhibits an integrable singularity, thus the principal
value (P:V:) may be dropped. Moreover, by a change of variable, we can avoid the
principal value and transform the singular integral in (2) as

�Δð Þsf xð Þ ¼ 1
2
c n, sð Þ

ð

n

2f xð Þ � f xþ yð Þ � f x� yð Þ
yj jnþ2s dy:

We caution the reader to take into account the conventional value imposed for the
constant c n, sð Þ when comparing different definitions for fractional Laplacian. Here,
we fix the value (3) so that the singular integral representation (2) accords with the
characterization (1) as a Fourier multiplier operator, and notice that lim s!1� �Δð Þsf ¼
�Δf and lim s!0þ �Δð Þsf ¼ f : Note that the definition (1) allows for a wider range of
the fractional Laplace’s exponents s, while the expression (2) is defined for s< 1: We
point out that the characterization via Fourier transform is reduced to the standard
Laplacian as s ! 1, which, however cannot be defined by the pointwise expression
(2). Let us also remark that from the definition in the Schwartz space it is possible to
extend �Δð Þs by duality in a large class of tempered distributions; see, for example
[25]. For a further discussion on the fractional Laplacian and the associated fractional
Sobolev spaces we refer the readers to ([1], §§2–3]).

In the literature, other characterizations for �Δð Þs are also used, that turn out to be
equivalent to the definitions (1), (2). A further discussion on the different definitions
of the fractional Laplacian on n and a proof of their equivalence can be found in [26].
Each of these equivalent characterizations allows for different approaches for the
related problems, and in our context, we exploit a characterization realizing the
nonlocal operator via an appropriate extended local problem (see Section 3), where
local pdes techniques can be applied.

Regarding the corresponding quadratic form for �Δð Þs,

�Δð Þsf , fð Þ≔
ð

n
f �Δð Þsf dx ¼

ð

n
ξj j2s F fð Þ2 ξð Þ dξ

we have (see Aronszajn-Smith [27], page 402)
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ð

n
ξj j2s F fð Þ2 ξð Þ dξ ¼ c n, sð Þ

2

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy: (4)

We consider the homogeneous fractional Sobolev space _H
s
nð Þ, defined as the

completion of C∞
0 nð Þ with respect to

∣∣f jj _Hs
nð Þ ≔

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy: (5)

The sharp fractional Sobolev inequality, associated to �Δð Þs, states that

Sn,s
ð

n
fj j2 ∗

s xð Þ dx
� �2=2 ∗

s

≤
ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, ∀f ∈ _H

s
nð Þ, (6)

where 2 ∗
s ¼ 2n

n�2s , and the best constant

Sn,s ¼
22sπsΓ nþ2s

2

� �

Γ n�2s
2

� � Γ n
2

� �
Γ nð Þ
� �2s=n

is achieved in _H
s
nð Þ, exactly by the multiples, dilates, and translates of the

function 1þ xj j2
� � 2s�nð Þ=2

; see [28, 29]. Sobolev inequality (6) yields the continuous

embedding _H
s
nð Þ↪L2 ∗

s nð Þ, which is sharp within the framework of Lebesgue
spaces, in the sense that the embedding fails for any other Lebesgue subspace. In

terms of Lorentz spaces, this embedding reads as _H
1
nð Þ↪L2 ∗

s ,2
∗
s nð Þ, which admits

an extension within the whole Lorentz space scale L2 ∗
s ,p nð Þ, p≥ 2: As a matter of fact,

the embeddings for p> 2, follow from the continuous inclusions L2 ∗
s ,2 nð Þ↪L2 ∗

s ,p nð Þ,
and the continuous embedding

_H
s
nð Þ↪L2 ∗

, 2 nð Þ, (7)

which, in turn, follows from the fractional Hardy inequality

kn,s
ð

n

f xð Þj j2
xj j2s dx≤

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy: (8)

Indeed, one can derive (7) from (8), by the fact that under radially decreasing
rearrangement the _H

s
nð Þ norm does not increase [30] and the left hand side of (8)

does not decrease, while the Lorentz quasinorm ∣∣ � jjL2 ∗s ,2 is invariant and proportional
to the left hand side of (8).

In this sense, Hardy’s inequality (8) is stronger than Sobolev’s inequality (6). The
value

kn,s ¼
2πn=2Γ 1� sð ÞΓ2 nþ2s

4

� �

sΓ2 n�2s
4

� �
Γ nþ2s

2

� �
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is the best possible constant in (8). It is well known that the best constant kn,s in (8) is
not attained in _H

s
nð Þ, yet no Lp improvement is possible in _H

s
nð Þ, as demonstrated

by testing with suitable perturbations of the solution xj j2s�n
2 , of the corresponding

Euler–Lagrange equation.
An application of Hölder’s inequality together with (6) and (8), yield the following

Hardy-Sobolev inequality:

Λn,θ,s

ð

n

fj j2 ∗ θð Þ

xj jθ dx≤
ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, f ∈C∞

0 nð Þ, (9)

where 2 ∗ θð Þ ¼ 2 n�θð Þ
n�2s , 0≤ θ< 2s: The best constant in (9), contrary to the border-

line case (8) i.e. θ ¼ 2s, is achieved in _H
s
nð Þ; cf. [31].

In view of (3)–(4), inequality (8) is equivalent to

hn,s
ð

n

f 2 xð Þ
xj j2s dx≤

ð

n
ξj j2s F fð Þ2 ξð Þ dξ, ∀f ∈ _H

s
nð Þ, (10)

with the sharp constant

hn,s ¼ 4sΓ2 nþ 2s
4

� �
=Γ2 n� 2s

4

� �
: (11)

The dual form of (10), formulated in terms of Riesz integral operator, is a special
case of Stein-Weiss inequalities [32], and the best constant hn,s is identified by Herbst
[33]; see also Beckner [34], Yafaev [35].

By Hardy-Littlewood and Pólya-Szegö type rearrangement inequalities, it suffices
to prove (10) for radial decreasing f ; see Almgren and Lieb [30] where it is shown
that (4) does not increase if f is replaced by its equimeasurable symmetric
decreasing rearrangement. Then, we will show that the inequality is equivalent to
a convolution inequality on the multiplicative group þ equipped with the Haar
measure 1

r dr.
In particular, (10) is equivalent to the following doubly weighted Hardy-

Littlewood-Sobolev inequality of Stein-Weiss [32].

ð

n

ð

n

f xð Þ
xj js

1

x� yj jn�2s
f yð Þ
yj js dxdy ≤ Cn,s

ð

n
f xð Þj j2 dx, (12)

with sharp constant

Cn,s ¼
πn=2Γ2 n�2s

4

� �
Γ sð Þ

Γ2 nþ2s
4

� �
Γ n�2s

2

� � :

Since we can assume that f is radial, we set f xð Þ ¼ f rð Þ, and x ¼ rx0, y ¼ ρy0 where
∣x0∣ ¼ ∣y0∣ ¼ 1: Regarding the convolution integral of the left side in (12), we employ
polar coordinates to get
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ð

n

ð

n

f xð Þ 1
xj js

1

x� yj jn�2s
1
yj js f yð Þ dxdy ¼

ð∞

0

ð∞

0

ð

∣x0∣¼1

ð

∣y0∣¼1

f rð Þ rn�1

rs
1

rx0 � ρy0j jn�2s
ρn�1

ρs
f ρð Þ dσ x0ð Þdσ y0ð Þdrdρ ¼

ð∞

0

ð∞

0

ð

∣x0∣¼1

f rð Þrn=2
h i 1

r2s�n
2

K r, ρð Þ 1

ρ
2s�n
2

f ρð Þρn=2
h i

dσ x0ð Þ dr
r
dρ
ρ

(13)

where dσ denotes n� 1ð Þ-dimensional Lebesgue integration over the unit sphere
n�1 ¼ x0 ∈n : jx0j¼ 1f g, and we set

K r, ρð Þ≔
ð

∣y0∣¼1

1

rx0 � ρy0j jn�2s dσ y0ð Þ: (14)

Notice that K r, ρð Þ in (14) is independent of x0 ∈n�1: To show this independence,
we may assume r ¼ 1, ρ ¼ τ, or more generally, to use the variable τ ¼ ρ=r and then it
suffices to show that

K τð Þ≔
ð

∣y0∣¼1

1

x0 � τy0j jn�2s dσ y0ð Þ

is independent of x0 ∈n�1: Indeed, take an arbitrary z0 ∈n�1: Then there exists a
rotation R such that z0 ¼ Rx0 and we denote by RT its transpose. Performing the
change of variables w0 ¼ RTy0, we get

ð

∣y0∣¼1

1

z0 � τy0j jn�2s dσ y0ð Þ ¼
ð

∣w0∣¼1

1

x0 � τw0j jn�2s dσ w0ð Þ ¼ K τð Þ,

since ∣detR∣ ¼ 1 and ∣Rv1 � Rv2∣ ¼ ∣v1 � v2∣, for every v1, v2 ∈n: Since K r, ρð Þ is
independent of x0 ∈ n�1 we have

ð

n�1
K r, ρð Þdσ x0ð Þ ¼ K r, ρð Þ

ð

n�1
1dσ x0ð Þ ¼ K r, ρð Þ 2π

n=2

Γ n
2

� � : (15)

Moreover, in (14), we can choose x0 to be the first direction unit vector in n
, that

is ê1 ¼ x1, x2,⋯, xnð Þ with x1 ¼ 1, x2 ¼ x3 ¼ ⋯ ¼ xn ¼ 0, hence

K r, ρð Þ ¼
ð

∣y0∣¼1

1

r2 � 2rρy1 þ ρ2
� �n�2s

2
dσ y0ð Þ

thus

1

r2s�n
2

K r, ρð Þ 1

ρ
2s�n
2
¼
ð

∣y0∣¼1

1

r
ρ � 2y1 þ ρ

r

� �n�2s
2

dσ y0ð Þ
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and substituting (15) into (13), we get

ð

n

ð

n
f xð Þ 1

xj js
1

x� yj jn�2s
1
yj js f yð Þ dxdy ¼ 2πn=2

Γ n
2

� �
ð∞
0

ð∞
0
h rð Þ ψ

r
ρ

� �
h ρð Þ dr

r
dρ
ρ

(16)

where

h rð Þ≔ f rð Þrn=2 and ψ τð Þ ¼ ψ
1
τ

� �
¼
ð

∣y0∣¼1

1

τ � 2y1 þ 1
τ

� �n�2s
2

dσ y0ð Þ:

As for the right side of the fractional integral inequality (12), we use again polar
coordinates to get

ð

n
f xð Þj j2 dx ¼ 2π

n
2

Γ n
2

� �
ð∞
0
h rð Þj j2 dr

r
: (17)

Finally, substituting (16), (17) in (12), we conclude that the fractional Hardy
inequality (10) is written equivalently as the convolution inequality

ð∞
0

ð∞
0
h rð Þ ψ

r
ρ

� �
h ρð Þ dr

r
dρ
ρ

≤Cn,s

ð∞
0
h rð Þj j2 dr

r
: (18)

Inequality (18) is a convolution inequality on the multiplicative group þ
equipped with the Haar measure 1

r dr, and using the sharp Young’s inequality for
convolution on certain noncompact Lie groups, we recover the sharpness of the
constant and the non-existence of extremals for the fractional Hardy inequality (10).

2. Fractional hardy-Sobolev inequalities on bounded domains

In the sequel, we will discuss Hardy type inequalities for fractional powers of
Laplacian associated with bounded domains, and, more precisely, defined for func-
tions satisfying homogeneous Dirichlet boundary or exterior conditions. So hereafter
let us fix a bounded domain Ω⊂n, with n> 2s:

In opposition to the case of the whole of n, distinct definitions of such non-local
operators have been introduced as mathematical models in various applications. In
particular, we consider two of the most commonly used operators of this type, which
are the so-called spectral Laplacian (see e.g. [36–38] and references therein) and the
Dirichlet (also referred to as restricted or regional or integral, see e.g. [39, 40], and
references therein). Both operators are deeply associated with the theory of stochastic
processes. They can be characterized as generators of a 2sð Þ-stable Lévy process with
jumps resulting from two consecutive modifications of Wiener process, the subordi-
nation and the stopping (killing the process when leaves the domain), which reflect
the homogeneous Dirichlet-type boundary (or exterior) conditions. Depending on
which of these modifications is first applied, we take two different stochastic pro-
cesses and their corresponding infinitesimal generators.

The Dirichlet fractional Laplacian Next, we will discuss improved versions of
fractional Hardy inequalities, involving sharp Sobolev-Hardy type correction terms.
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We begin with the Dirichlet fractional Laplacian which we again denote by �Δð Þs:We
merely extend any function f ∈C∞

0 Ωð Þ in the entire n by defining f xð Þ ¼ 0, for any
x ∉ Ω, and then we define �Δð Þsf as the standard fractional Laplacian on the whole
space, acting on the extension of f to n: More precisely, we define

�Δð Þsf ¼ F�1 ξj j2s F fð Þ
� �

, ∀ξ∈n:

The Dirichlet fractional Laplacian can be equivalently characterized as the singular
integral operator (2) for the c n, sð Þ given in (3).

Passing from n to a bounded domain Ω, containing the origin, inequality (8) is
still valid with the same best possible constant

kn,s
ð

Ω

f 2 xð Þ
xj j2s dx≤

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, ∀f ∈Hs

0 Ωð Þ, (19)

where Hs
0 Ωð Þ is the homogeneous fractional Sobolev space, defined as the comple-

tion of the functions in C∞
0 Ωð Þ, extended by zero outside Ω, with respect to the norm

(5). Clearly the constant kn,s can not be achieved in Hs
0 Ωð Þ, and various improved

versions of (19) have been established by many authors, which amount to adding Lp

norms of u or its fractional gradients in the left hand side.
In particular, Frank, Lieb and Seiringer have shown among others in [40], that for

any 1≤ q< 2 ∗
s ≔ 2n= n� 2sð Þ and any bounded domain Ω⊂n there exists a positive

constant c ¼ c n, s, q, Ωj jð Þ such that

ks,n

ð

Ω

f 2 xð Þ
xj j2s dxþ c

ð

Ω
f xð Þj jq dx

� �2=q

≤
ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, f ∈C∞

0 Ωð Þ:

(20)

Using the Dirichlet to Neumann mapping for the representation of the fractional
Laplacian [39] (see Section 3 for details), a partial extension of (20) has been obtained
in [41], replacing the remainder term with the p�norm of a fractional gradient, p< 2.

An improvement involving a 2-norm of a fractional gradient, has been
obtained in [42], using the following representation of the remainder term ([40],
Proposition 4.1),

kn,s
ð

n

f 2 xð Þ
xj j2s dx�

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy

¼ c n, sð Þ
ð

n

ð

n

υ xð Þ � υ yð Þj j2
x� yj jnþ2s

1

xj jn�2s
2

1

yj jn�2s
2

dx dy

(21)

with the ground state substitution

υ xð Þ ¼ f xð Þ xj jn�2s
2 : (22)

We point out that the exponent q in (20) is strictly smaller than the critical
fractional Sobolev exponent 2 ∗

s and the inequality fails for q ¼ 2 ∗
s : In [43] we have

shown that introducing a logarithmic relaxation we can have a critical Sobolev
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improvement of (19). More precisely, it has been shown the existence of a positive
constant C, depending only on n and s, such that for f ∈Hs

0 Ωð Þ,

kn,s
ð

Ω

f xð Þj j2
xj j2s dxþ C

ð

Ω
X

2 n�sð Þ
n�2s

∣x∣
D

� �
f xð Þj j 2n

n�2s dx
� �n�2s

n

≤
ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy,

(23)

where D ¼ supx∈Ω∣x∣ and

X rð Þ ¼ 1� ln rð Þ�1, 0< r≤ 1:

Moreover, the weight X
2 n�sð Þ
n�2s cannot be replaced by a smaller power of X: We

emphasize that inequality (23) involves the critical exponent but contrary to the
subcritical case, that is (20), it has a logarithmic correction. However inequality
(23) is sharp in the sense that inequality fails for smaller powers of the logarith-
mic correction X: This result may be seen as the fractional version of (see
[44, 45])

n� 2ð Þ2
4

ð

Ω

f xð Þj j2
xj j2 dxþ cn

ð

Ω
f xð Þj j 2n

n�2X
2 n�1ð Þ
n�2 ðjxj=DÞ dx

� �n�2
n

≤
ð

Ω
∇fj j2 dx, (24)

in the sense that (23) reduces to (24) when s ! 1�.
Moreover, in [43] we have shown, for some constant C>0,

kn,s
ð

Ω

f xð Þj j2
xj j2s dxþ C

ð

Ω
X2 ∣x∣

D

� �
f xð Þj j2dx≤

ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, (25)

where the weight X2 cannot be replaced by a smaller power of X:
Let us notice that contrary to the Hardy-Sobolev inequalities obtained in [46],

where the Hardy potential entails the distance to the boundary, the Hardy-Sobolev
inequalities involving the distance from the origin, miss the critical-Sobolev exponent
by a logarithmic correction which cannot be removed. Let us also emphasize that our
results cover the full range s∈ 0, 1ð Þ, in contrast to the case involving the distance
from the boundary, where Hardy inequalities associated with the spectral and
Dirichlet fractional Laplacians fail within the range 0< s< 1=2:

In view of (23) and (25), we can apply Hölder inequality to get the following
Hardy-Sobolev improvement of (19).

Theorem 1. Let s∈ 0, 1ð Þ, 0≤ θ≤ 2s, Ω be a bounded domain in n with n> 2s: Then
there exists a positive constant C ¼ C n, s, θð Þ such that

hn,s

ð

Ω

f xð Þj j2
xj j2s dxþ C

ð

Ω

Xp θð Þ

xj jθ fj j2 ∗ θð Þdx

0
B@

1
CA

2
2 ∗ θð Þ

≤ �Δð Þsf , fð Þ,

for any f ∈C∞
0 Ωð Þ, or equivalently,

kn,s
ð

Ω

f xð Þj j2
xj j2s dxþ C

ð

Ω

Xp θð Þ

xj jθ fj j2 ∗ θð Þdx

 ! 2
2 ∗ θð Þ

≤
ð

n

ð

n

f xð Þ � f yð Þj j2
x� yj jnþ2s dx dy, (26)
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where 2 ∗ θð Þ ¼ 2 n�θð Þ
n�2s , p θð Þ ¼ 2n�θ�2s

n�2s and X ¼ X jxj=Dð Þ with D ¼ supx∈Ω∣x∣: The
logarithmic weight cannot be replaced by a smaller power of X:

The optimality of the exponent p≔p θð Þ ¼ 2 n�sð Þ�θ
n�2s of the logarithmic weight, for

the range θ∈ 0, 2s½ Þ can be deduced by the optimality of the exponent of the weight
X2, for the case θ ¼ 2s, jointly with Hölder inequality; cf. ([43], Remark), [47].

In view of (21), under the substitution (22) inequality (26) yields sharp limiting
cases of certain fractional Caffarelli-Kohn-Nirenberg inequalities established in
[48, 49].

The spectral fractional Laplacian We proceed with another reasonable approach
in defining a nonlocal operator related to fractional powers of the Laplacian on the
bounded domain Ω: We consider an orthonormal basis of L2 Ωð Þ, consisting of
eigenfunctions of �Δ with homogeneous Dirichlet boundary conditions, say
ϕ1, … ,ϕk, … , with corresponding eigenvalues

0< λ1 < λ2 ≤ λ3 ≤⋯ with λk ! ∞:

More precisely,

�Δϕk ¼ λkϕk, in Ω,
ϕk ¼ 0, on ∂Ω:

�

Then we have.

f ¼
X∞

k¼1

ckϕk where ck ¼
ð

Ω
fϕk dx:

For any 0< s< 1, the spectral fractional Laplacian, denoted hereafter by As, is
defined, similarly to the spectral decomposition of the standard Laplacian, by

Asf ¼
X∞

k¼1

λsk ckϕk, ∀f ∈C∞
0 Ωð Þ:

Notice that the operator As can be extended by approximation for functions in the
Hilbert space

H ¼ f ¼
X∞

k¼1

ckϕk ∈L2 Ωð Þ : j fj jjH ¼
X∞

k¼1

λskc
2
k

 !1=2

<∞

8<
:

9=
;:

The quadratic form corresponding to As is given by

Asf , fð Þ≔
ð

Ω
fAsf dx ¼

X∞

k¼1

λsk c
2
k:

Let us point out that, contrary to the case of the whole space n, the fractional
operators As and �Δð Þs, as they defined above on bounded domains, differ in several
aspects. For example, the natural functional domains of their definition are different,
as the definition for the Dirichlet Laplacian �Δð Þs requires the prescribed zero values
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of the functions on the whole of the exterior of the domain Ω, while the definition of
the spectral Laplacian requires only zero values on boundary (local boundary condi-
tions). They have essential differences even if we consider them as operators on a
restricted class of functions, where they are both defined, e.g. in C∞

0 Ωð Þ⊂C∞
c nð Þ: For

example, the spectral Laplacian depends on the domain Ω through its eigenvalue and
eigenfunctions. A further discussion on the differences between the operators As and
�Δð Þs can be found in [50].

The Hardy inequality corresponding to the spectral Laplacian As, involving the
distance to the origin, reads

hn,s
ð

Ω

f 2 xð Þ
xj j2s dx≤ Asf , fð Þ, ∀f ∈C∞

0 Ωð Þ, (27)

with the constant hn,s given by (11), and this constant is the best possible in the
case of 0∈Ω: Observe that the Hardy inequalities (10), (27) associated with two
distinct non-local operators share the same optimal constant. This is not the case when
the distance is taken from the boundary, where the optimal constants for the
corresponding Hardy inequalities are different, as it was shown among others in [46].

Similarly to Theorem 1, one can show that (27) may be improved by adding
a critical Sobolev norm with the same sharp logarithmic corrective weight
appearing in (26).

3. Extension problems related to the fractional Laplacians

In the following, we denote a point in nþ1 as x, yð Þ with x∈n, and y∈, and let
us set ∂nþ1

þ ¼ x, yð Þ∈nþ1 : x∈n, y ¼ 0
� �

: A fundamental property of the frac-
tional Laplacian �Δð Þs is its non-local character, which can be expressed as an opera-
tor that maps Dirichlet boundary conditions to a Neumann-type condition via an
extension problem posed on the upper half space

nþ1
þ ¼ x, yð Þ∈nþ1 : x∈n, y>0

� �
:

The realization of the fractional Laplacian by a Dirichlet-to-Neumann map is
known to Probabilists since the work [51] for any s, while for s ¼ 1 we refer to [52]. It
is also widely used in the study of PDEs since the work of Caffarelli and Silvestre [39].
The authors in [39] introduced the extended problem

div y1�2s∇u x, yð Þð Þ ¼ 0, x∈n, y>0,

u x, 0ð Þ ¼ f xð Þ, x∈n

(
(28)

and then showed that

�Δð Þsf xð Þ ¼ Cs lim
y!0þ

y1�2suy x, yð Þ,

where Cs >0 is a constant depending only on s: The dimensional independence of
Cs has been shown in ([39], Section 3.2) and its concrete expression can be found for
instance in [38, 53],
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Cs ¼ � 22s�1Γ sð Þ
Γ 1� sð Þ : (29)

The partial differential equation in (28) is a linear degenerate elliptic equation with
weight w ¼ y1�2s: Since s∈ 0, 1ð Þ, the weight w belongs to the class of the so-called
Muckenhoupt A2-weights [54], comprising the nonnegative functions w defined in
nþ1 such that, for some constant C>0 independent of balls B⊂nþ1,

Bj j�1
ð

B
w x, yð Þdxdy

� �
Bj j�1

ð

B
w�1 x, yð Þdxdy

� �
<C:

Fabes et al. [55, 56] studied systematically differential equations of divergence
form with A2-weights, therefore we can obtain quantitative properties on �Δð Þsf from
the corresponding properties of solutions of the extension problem (28).

Regarding the operators As, �Δð Þs, which are defined on bounded domains,
several authors, motivated by the work in [39], have considered equivalent definitions
by means of an extra auxiliary variable. Next we recall the associated extension
problems for these two operators.

We start with the Dirichlet Laplacian �Δð Þs in Ω, as defined in the introduction,
which is plainly the fractional Laplacian �Δð Þs in the whole space, of the functions
supported in Ω: Then following [39], the fractional Laplacian �Δð Þs is connected with
the extended problem (cf. (28))

div y1�2s∇u x, yð Þð Þ ¼ 0, in n � 0,∞ð Þ,
u x, 0ð Þ ¼ f xð Þ, x∈n:

(
(30)

In particular, the so-called 2s�harmonic extension u is related to the fractional
Laplacian of the original function f through the pointwise formula

�Δð Þsf xð Þ ¼ Cs lim
y!0þ

y1�2suy x, yð Þ, ∀x∈n, (31)

where the constant Cs is given in (29).
A Dirichlet-to-Neumann mapping characterization, similar to (30)–(31), is also

available for the spectral fractional Laplacian on Ω (see [36–38]), where the proper
extended local problem is posed on the cylinder Ω� 0,∞ð Þ in place of the upper-half
space. More precisely, for a function f ∈C∞

0 Ωð Þ, we consider the problem

div y1�2s∇u x, yð Þð Þ ¼ 0, in Ω� 0,∞ð Þ,
u ¼ 0, on ∂Ω� 0,∞½ Þ,
u x, 0ð Þ ¼ f xð Þ, x∈Ω,

8><
>:

(32)

with
Ð∞
0

Ð
Ωy

1�2s ∇uj j2dxdy<∞: Then the extension function u is related to the spec-
tral Laplacian of the original function f through the pointwise formula

Asfð Þ xð Þ ¼ Cs lim
y!0þ

y1�2suy x, yð Þ, ∀x∈Ω, (33)

where the constant Cs is given by (29).
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4. Weighted trace hardy inequality

An alternative proof of (8) and its improvement (26) may be given following local
variational techniques exploiting the characterization of [39]. In particular, using the
representation of �Δð Þs in terms of a Dirichlet to Neumann map, we consider the
proper extended local problem with test functions in C∞

0 nþ1� �
: Then we can get (8)

by applying, for the solution u ¼ u x, yð Þ of the extended problem, the following trace
Hardy inequality (cf. [57], Proposition 1)

Hn,s

ð

n

u2 x, 0ð Þ
xj j2s dx≤

ð∞
0

ð

n
y1�2s ∇uj j2 dx dy, ∀u∈C∞

0 nþ1� �
, (34)

where the constant

Hn,s ¼
2sΓ2 nþ2s

4

� �
Γ 1� sð Þ

Γ 1þ sð ÞΓ2 n�2s
4

� � (35)

is the best possible. This argumentation has been applied by Filippas, Moschini and
Tertikas [46, 58] to obtain fractional Hardy and Hardy-Sobolev inequalities involving
the distance to the boundary.

In the case of bounded domains, we have

Hn,s

ð

Ω

u2 x, 0ð Þ
xj j2s dx≤

ð∞
0

ð

n
y1�2s ∇uj j2 dx dy (36)

for any u∈C∞
0 nþ1� �

with u x, 0ð Þ ¼ 0, x �∈Ω: By a scaling argument it is clear that
(34), (36) share the same optimal constant. Then the key estimate in deriving (26)
turn out to be the sharpened versions of (34). A proof of (34) is given by the author
[57], after identifying the energetic solution ψ ¼ ψ x, yð Þ of the Euler Lagrange equa-
tions (see [57], Proposition 1)

div y1�2s∇ψð Þ ¼ 0, in nþ1
þ ,

lim
y!0þ

y1�2s ∂ψ x, yð Þ
∂y

¼ �Hn,s
ψ

xj j2s , on ∂nþ1
þ n 0f g:

8><
>:

(37)

In the following, we set

β≔
2s� n

2
:

Noticing the invariant properties of problem (37), we search for solutions of the
form

ψ zð Þ ¼ xj jβB tð Þ, x∈n, y≥0, z ¼ x, yð Þ 6¼ 0, 0ð Þ (38)

where

t x, yð Þ≔ y
∣x∣

:

90

Fixed Point Theory and Chaos



Then, by direct manipulations and a normalization, we can see that problem (37)
has a solution of the form (38) for the solution B : 0,∞½ Þ !  of the boundary
conditions problem

t 1þ t2ð ÞB00 tð Þ þ 3� 2sð Þt2 þ 1� 2sð Þ½ � B0 tð Þ þ β 2sþ n� 4ð Þ
2

tB tð Þ ¼ 0, t>0, að Þ
B 0ð Þ ¼ 1, bð Þ
lim
t!∞

t�βB tð Þ∈: cð Þ

8>>><
>>>:

(39)

Let us remark that the boundary value (39b) comes from a normalization, and it
plays no essential role in our subsequent analysis, contrary to condition (39c) which
yields a solution of (39) with the less possible singularity. Note also that the ground
state ψ ¼ ψ x, yð Þ is well defined for x ¼ 0 with y>0, by virtue of (39b). Furthermore,
it is useful to notice that (39a) is transformed into divergence form, after multiplying
by t�2s,

t1�2s 1þ t2
� �

B0 tð Þ� �0 þ β 2sþ n� 4ð Þ
2

t1�2sB tð Þ ¼ 0, t>0: (40)

Clearly, in the special instance n ¼ 3 with s ¼ 1=2, problem (39) can be solved
directly and more precisely, B tð Þ ¼ 1� 2

π arctan tð Þ: For the general case, we perform
the change of variable z ¼ �t2 and then problem (39) is reduced to the boundary
conditions problem for the hypergeometric equation, for the function ω zð Þ ¼ B tð Þ,

z 1� zð Þ d
2ω

dz2
þ 1� s� 2� sð Þz½ � dω

dz
þ β 4� n� 2sð Þ

8
ω zð Þ ¼ 0, �∞< z<0, að Þ

ω 0ð Þ ¼ 1, bð Þ
lim

z!�∞
�zð Þ�β=2ω zð Þ∈: cð Þ

8>>>><
>>>>:

(41)

For convenience of the reader, next we just record the properties of B that we
shall need, and give their proof in Section 5. See also ([57], Lemma 1) and ([59],
(42)–(48)). In the following, we use the notation g � h for real functions g, h to denote
that c1g≤ h≤ c2 g on their domain, for some constants c1, c2 >0:

It can be shown (see Section 5) that problem (39) has a positive decreasing
solution B and

B � 1þ t2
� �β=2

and B0 � �t2s�1 1þ t2
� �1

2, ∀t>0, (42)

with

tB0 � βB tð Þ ¼ O tβ�2� �
, as t ! ∞: (43)

Moreover, we have

lim
t!0þ

t1�2sB0 tð Þ ¼ �Hn,s, (44)
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with the constant Hn,s given in (35).
Moreover, in view of (38), we can see that

∇ψ � z ¼ 2s� n
2

ψ zð Þ, ∀z∈nþ1
þ n 0f g: (45)

Using (42)–(44), (45), we obtain the following uniform asymptotic behavior of
the ground state ψ ; cf. ([57], Lemma 2).

Lemma. There holds

ψ � xj j2 þ y2
� �2s�n

4
, in nþ1

þ : (46)

Moreover, for s∈ 1=2, 1½ Þ, there holds

∣∇ψ ∣ � xj j2 þ y2
� �2s�n�2

4
, in nþ1

þ :

If s∈ 0, 1=2ð Þ, then there holds

∣∇ψ ∣ � xj j2 þ y2
� ��nþ2s

4
y2s�1, in nþ1

þ :

5. Ground state

In this section we prove the properties of the function B of the ground state ψ
given in (38).

The differential eq. (41a) is a special instance of the general class of hypergeometric
equations and the relevant theory of the subsequent discussion, can be found in ([60],
§15), ([61], Chap. II) and ([62], §§2.1.2–2.1.5). In the following, we also refer to ([57], §3)
and the Appendix of [59].

We will denote by F a, b; c; zð Þ the hypergeometric function which is defined in the
open unit disk through the series ([60], 15.1.1)

F a, b; c; zð Þ ¼
X∞

k¼0

að Þk bð Þk
cð Þk

zk

k!
(47)

and then by analytic continuation into n 1,∞½ Þ: In (45) we set að Þk ¼
a aþ 1ð Þ⋯ aþ k� 1ð Þ and að Þ0 ¼ 1: It is clear that

F a, b; c; zð Þ ¼ F b, a; c; zð Þ:

We consider the hypergeometric differential equation

z 1� zð Þω00 zð Þ þ c� aþ bþ 1ð Þz½ �ω0 zð Þ � abω zð Þ ¼ 0 (48)

for complex functions ω ¼ ω zð Þ with z∈, and real parameters a, b, c satisfying
the conditions

c� a� b≥0, b>0, c>0: (49)
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By formulae ([60], 15.5.3, 15.5.4), we have the following expression for the
(general) solution of (48), defined in n 1,∞½ Þ,

ω zð Þ ¼ C1F a, b; c; zð Þ þ C2 z1�cF a� cþ 1, b� cþ 1; 2� c; zð Þ (50)

with any C1,C2 ∈: Let us next derive an explicit formula for the analytic contin-
uation of the series (47) into the domain z∈ :jzj> 1, z �∈ 1,∞ð Þf g: To this end, we
consider ∣z∣> 1 with z �∈ 1,∞ð Þ and we discriminate among four cases, depending on
n, s, as follows.

We begin with the case that all of the three numbers a, c� b, and a� b are
different from any non-positive integer m ¼ 0, � 1, � 2, … : Then by expression
([60], 15.3.7) we get

F a, b; c; zð Þ ¼ Γ cð ÞΓ b� að Þ
Γ bð ÞΓ c� að Þ �zð Þ�aF a, a� cþ 1; a� bþ 1;

1
z

� �

þΓ cð ÞΓ a� bð Þ
Γ að ÞΓ c� bð Þ �zð Þ�bF b, b� cþ 1; b� aþ 1;

1
z

� �
:

(51)

As for the case of a ¼ b 6¼ �m, ∀m ¼ 0, � 1, � 2, … , and c� a 6¼ l, for any
l ¼ 1, 2, … , we have, by ([60], 15.3.13),

F a, a; c; zð Þ ¼ Γ cð Þ �zð Þ�a

Γ að ÞΓ c� að Þ
X∞

k¼0

að Þk 1� cþ að Þk
k!ð Þ2 z�k ln �zð Þ þ 2Ψ kþ 1ð Þ � Ψ aþ kð Þ � Ψ c� a� kð Þ½ �

(52)

where we set Ψ zð Þ ¼ �γ � P∞
k¼0

1
zþk � 1

kþ1

� �
with the so-called Euler’s constant

γ ≈0:5772156649:
Let us next proceed with the case where b� a ¼ m, m ¼ 1, 2, … , and a 6¼ �k, for

any k ¼ 0,1,2, … : Firstly, if c� a 6¼ l, for any l ¼ 1, 2, … , then the formula ([60],
15.3.14) yields

F a, aþm; c; zð Þ ¼ Γ cð Þ �zð Þ�a�m

Γ aþmð ÞΓ c� að Þ
X∞

k¼0

að Þkþm 1� cþ að Þkþm

kþmð Þ!k! z�k½ln �zð Þ þ Ψ 1þmþ kð Þ þ Ψ 1þ kð Þ

�Ψ aþmþ kð Þ �Ψ c� a�m� kð Þ� þ �zð Þ�a Γ cð Þ
Γ aþmð Þ

Xm�1

k¼0

Γ m� kð Þ að Þk
k!Γ c� a� kð Þ z

�k:

(53)

Otherwise, if c� a ¼ l, for some l ¼ 1, 2, … , such that l>m, then we get from
formula ([61], (19) in §2.1.4),

F a, aþm; aþ l; zð Þ ¼ Γ aþ lð Þ
Γ aþmð Þ �zð Þ�a �1ð Þl �zð Þ�m

X∞

k¼l�m

að Þkþm kþm� lð Þ!
kþmð Þ!k! z�k

"

þ
Xm�1

k¼0

m� k� 1ð Þ! að Þk
l� k� 1ð Þ!k! z�k þ �zð Þ�m

l� 1ð Þ!
Xl�m�1

k¼0

að Þkþm 1� lð Þkþm

kþmð Þ!k! z�k�

� ln �zð Þ þΨ 1þmþ kð Þ þ Ψ 1þ kð Þ � Ψ aþmþ kð Þ � Ψ l�m� kð Þ½ �
#
:

(54)
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We conclude with the case that some of the parameters a or c� b equals a
nonpositive integer. In this case, F a, b; c; zð Þ is an elementary function of z: In partic-
ular, if a ¼ �m for some m ¼ 0,1,2, … then, ([60], 15.4.1), the hypergeometric series
in (47) is the polynomial

F �m, b; c; zð Þ ¼
Xm

k¼0

�mð Þk bð Þk
cð Þk

zk

k!
: (55)

Otherwise, if c� b ¼ �l, for some l ¼ 0,1,2, … , then from formula ([60], 15.3.3),
F a, b; c; zð Þ is given by

F a, b; c; zð Þ ¼ 1� zð Þ�a�lF c� a,�l; c; zð Þ (56)

and notice by (55) that the hypergeometric function of the right side is a polyno-
mial of degree l:

In the following, we will also use the differentiation formula ([60], 15.2.1), that is

d
dz

F a, b; c; zð Þ ¼ ab
c

F aþ 1, bþ 1; cþ 1; zð Þ: (57)

Let us now proceed to prove that B is positive and monotone, and also derive the
asymptotics (42)–(44). To simplify the presentation, we set

a1 ¼ 4� n� 2s
4

, a2 ¼ a1 � c1 þ 1 ¼ 4� nþ 2s
4

, c1 ¼ 1� s,

b1 ¼ � β

2
¼ n� 2s

4
, b2 ¼ b1 � c1 þ 1 ¼ nþ 2s

4
, c2 ¼ 2� c1 ¼ 1þ s:

For these values, and recalling the assumption n> 2s with 0< s< 1, it is easily seen
that the parameters a1, b1, c1f g and a2, b2, c2f g, satisfy the assumptions (49), so we
can apply the aforementioned formulas. The first main step is to get an explicit
expression of B tð Þ ¼ ω zð Þ: In view of (50) the general solution of (41a) is given by

ω zð Þ ¼ C1F a1, b1; c1; zð Þ þ C2 �zð Þ1�c1 F a2, b2; c2; zð Þ, z≤0, (58)

for certain constants C1,C2: We apply (41b) to (58), and take into account that
F a1, b1; c1; 0ð Þ ¼ F a2, b2; c2; 0ð Þ ¼ 1, to get that C1 ¼ 1:

The constant C2 will be determined by the condition at ∞, and to this aim we will
get an expression for ω zð Þ for z< � 1: By considering separately the cases for n, s,
corresponding to the formulas (51)–(56), which give the explicit expression for the
hypergeometric functions in (58), we get, in all instances, that

C2 ¼ �Γ c1ð ÞΓ b2ð ÞΓ c2 � a2ð Þ
Γ c2ð ÞΓ b1ð ÞΓ c1 � a1ð Þ , (59)

and the asymptotics

ω zð Þ ¼ O �zð Þ�b1
� �

, as z ! �∞: (60)

In order to determine the limit

Hn,s ≔ � lim
t!0þ

t1�2sB0 tð Þ ¼ 2 lim
z!0� �zð Þ1�sω0 zð Þ
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we differentiate (58) and using (57) we obtain

ω0 zð Þ ¼ a1b1
c1

F a1 þ 1, b1 þ 1; c1 þ 1; zð Þ � C2s �zð Þs�1F a2, b2; c2; zð Þ

þC2
a2b2
c2

�zð Þs F a2 þ 1, b2 þ 1; c2 þ 1; zð Þ

and then let z ! 0� to get

Hn,s ¼ 2 lim
z!0� �zð Þ1�sω0 zð Þ ¼ �2sC2

and taking into account (59) we obtain (44).
Let us next show that B is decreasing and positive. We first assume that 4� n�

2s<0: In this case, the positivity of B follows from the fact that if there exist t0 >0
such that B t0ð Þ ¼ 0, then since lim

t!∞
B tð Þ ¼ 0, there exists tm > t0 where B attains local

non-negative maximum or local non-positive minimum which disagree with the dif-
ferential eq. (39a). Therefore B is positive and the same argument shows that B is
decreasing.

For the case that 4� n� 2s≥0, we perform the transformation g tð Þ ¼
1þ t2ð Þb1B tð Þ which reduces (39) to the problem

t 1þ t2ð Þ2g00 tð Þ þ 1� 2sþ 3� nð Þt2½ � 1þ t2ð Þg0 tð Þ � β2tg tð Þ ¼ 0, t>0, að Þ
g 0ð Þ ¼ 1, bð Þ
lim
t!∞

g tð Þ∈: cð Þ

8>><
>>:

(61)

One can verify condition (61c) directly from the explicit formula of B tð Þ ¼ ω zð Þ:
Then, by a standard minimum principle argumentation for the boundary conditions
problem (61), we can verify that g is not negative, and as a consequence B is nonneg-
ative. Then the fact that B is monotone and positive follows from (40) together with
the negativity of the derivative of B near the origin.

To show the asymptotics for B in (42), we use conditions (39b)-(39c) taking into
account that B is positive, and to show the asymptotics of B0 in (42), we differentiate
the expression (58) exploiting (57).

To conclude, it is straightforward to show (43) by substituting the concrete
expression for B tð Þ ¼ ω �t2ð Þ through the corresponding formulas (depending on the
parameters n, s) and the B0:
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