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Preface

Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a 
function in terms of trigonometric series without giving any attention to rigorous 
mathematical analysis. The integral formulas for the coefficients of the Fourier expan-
sion were already known to Leonardo Euler (1707–1783) and others. In fact, Fourier 
developed his new idea for finding the solution of heat (or Fourier) equation in terms 
of Fourier series so that the Fourier series can be used as a practical tool for deter-
mining the Fourier series solution of partial differential equations under prescribed 
boundary conditions. 

The Fourier transform originated from the Fourier integral theorem that was stated in 
the Fourier treatise titled La Théore Analytique de la Chaleur, and its deep significance 
has subsequently been recognized by mathematicians and physicists. It is generally 
believed that the theory of Fourier series and Fourier transforms is one of the most 
remarkable discoveries in mathematical sciences and it has widespread applications in 
mathematics, physics, and engineering. Both the Fourier series and Fourier transforms 
are related in many important ways. Many applications, including the analysis of 
stationary signals and real-time signal processing, make effective use of the Fourier 
transform in time and frequency domains. 

In time-frequency analysis, the Fourier transform is one of the oldest tools to dominate 
signal processing. However, due to its drawbacks in the analysis of non-stationary 
signals, different alternative transforms have gained much popularity in recent years, 
including windowed Fourier transform, fractional Fourier transform, linear canonical 
transform, quadratic-phase Fourier transform, and so on. These transforms are known 
as generalizations of the classic Fourier transform. 

The main reason for writing this book is to stimulate interactions among mathemati-
cians, computer scientists, engineers, and economists, as well as biological and 
physical scientists. The text is suitable for advanced graduate students but is primarily 
intended for post-graduate students and researchers in wavelets and their applications. 

The book begins with an elementary chapter that introduces general Fourier trans-
forms like windowed Fourier transform, fractional Fourier transform, linear canonical 
transform, and quadratic-phase Fourier transform.

Hybrid transforms are constructed by associating the Wigner-Ville distribution 
(WVD) with widely known signal processing tools, such as fractional Fourier trans-
form, linear canonical transform, offset linear canonical transform (OLCT), and their 
quaternion-valued versions. Chapter 2 summarizes research on hybrid transforms by 
reviewing a computationally efficient type of WVD-OLCT, which has simplicity in 
marginal properties compared to classic WVD-OLCT and WVD.
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IV

Quadratic-phase Fourier transform (QPFT) as a general integral transform has been 
generalized into Wigner distribution (WD) and ambiguity function (AF) to show a 
more powerful ability for non-stationary signal processing. Chapter 3 proposes a new 
version of AF associated with QPFT referred to as scaled AF. This new version of AF is 
defined based on the QPFT and the fractional instantaneous autocorrelation. 

Chapter 4 presents analytical expressions of infinite Fourier sine and cosine 
transform-based Ramanujan integrals in an infinite series of hypergeometric func-
tions using the hypergeometric technique. Moreover, as applications of Ramanujan’s 
integrals, some closed form of infinite summation formulae involving hypergeometric 
functions are derived. 

Chapter 5 is devoted to the recursive algorithms for harmonic analysis, one of which 
is the resonator-based algorithm. The approach of the parallel cascades of multiple-
resonators (MRs) with the common feedback is generalized as the cascaded-resonator 
(CR)-based structure for recursive harmonic analysis. 

Dr. Mohammad Younus Bhat
Department of Mathematical Sciences,

 Islamic University of Science and Technology,
Kashmir, India
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Chapter 1

Introductory Chapter: The
Generalizations of the Fourier
Transform
Mohammad Younus Bhat

1. Introduction

In the world of physical science, important physical quantities such as sound,
pressure, electric current, voltage, and electromagnetic fields vary with time t. Such
quantities are labeled as signals/waveforms. Exemplified by signals with examples
such as oral signals, optical signals, acoustic signals, biomedical signals, radar, and
sonar. Indeed, signals are very common in the real world. Time-frequency analysis is a
vital aid in signal analysis, which is concerned with how the frequency of a function
(or signal) behaves in time, and it has evolved into a widely recognized applied
discipline of signal processing. The signals can be classified under various categories.
It could be done in terms of continuity (continuous v/s discrete), periodicity(periodic
v/s aperiodic), stationarity(stationary v/s non-stationary), and so on. Most of the
signals in nature are non-stationary (i.e., whose spectral components change with
time) and apt presentation of such non-stationary signals need frequency analysis,
which is local in time, resulting in the time-frequency analysis of signals. Although
time frequency analysis of signals had its origin almost 70 years ago, there has been
major development of the time-frequency distribution approach in the last three
decades. The basic idea of these methods is to develop a joint function of time and
frequency, known as a time-frequency distribution, that can describe the energy
density of a signal simultaneously in both time and frequency domains. In signal
processing, time-frequency analysis comprises those techniques that study signal in
both the time and frequency domains simultaneously, using various time-frequency
representations/tools known as integral transformations. An integral transform maps
a function/signal from one function space into another function space via integration,
where some of the properties of the original function might be more easily character-
ized and manipulated than in the original function space. The integral transforms
are essentially considered from the functional analysis viewpoint and as a useful
technique of mathematical physics.

The classical Fourier transform (FT) is an integral transform introduced by Joseph
Fourier in 1807 [1], is one of the most valuable and widely-used integral transforms that
converts a signal from time versus amplitude to frequency versus amplitude. Thus FT
can be considered as the time-frequency representation tool in signal processing and
analysis. A fundamental limitation of the Fourier transform is that the all properties of a
signal are global in scope. Information about local features of the signal, such as changes
in frequency, becomes a global property of the signal in the frequency domain. In order
to circumvent these drawbacks of FT, authors in Ref. [2] introduced the generalizations
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of FT that includes short-time Fourier transform (STFT) by performing the FT on a
block-by-block basis rather than to process the entire signal at once. In spite of the fact
that STFT did much to ameliorate the limitations of FT, still in some cases the STFT
cannot track the signal dynamics properly for a signal with both very high frequencies
of short duration and very low frequencies of long duration. To overcome these draw-
backs of FT and STFT different novel generalizations of the classical Fourier transform
came into existence viz.: the fractional Fourier transform (FRFT), the Fresnal trans-
form, the linear canonical transform (LCT), the quadratic-phase Fourier transform
(QPFT), and so on. As a generalization of classical Fourier transform, the FRFT, the
LCT, the QPFT gained its ground intermittently and profoundly influenced several
branches of science and engineering including signal and image processing, quantum
mechanics, neural networks, differential equations, optics, pattern recognition, radar,
sonar, and communication systems.

2. Fourier transform and its generalizations

2.1 Fourier transform

Joseph Fourier [1] in 1822 published first work about Fourier transform, which is
an integral transform that converts a mathematical function from the time domain to
the frequency domain. Fourier transform measures the frequency component of a
given function. The Fourier transform has evolved into a widely recognized discipline
of harmonic analysis and has been successfully applied in diverse scientific and engi-
neering pursuits [3–6].

Let us begin with definition of the classical Fourier transform.
Definition 1. The FT of any signal x tð Þ∈L2 ℝð Þ is defined and denoted as

ℱ x tð Þ½ � ξð Þ ¼ x̂ ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx tð Þdt, (1)

and corresponding inversion formula is given by

ℱ�1 ℱ x tð Þ½ � ξð Þð Þ tð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
eiξtℱ x tð Þ½ � ξð Þdξ: (2)

Example 1. Consider a function x tð Þ ¼ e�αt for t≥0, α>0,

0 otherwise;

�
, then the Fourier

transform of x tð Þ is obtained as

ℱ x tð Þ½ � ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð∞
0
e�iξte�αtdt

¼ 1ffiffiffiffiffi
2π

p
ð∞
0

cos ξt� i sin ξtð Þe�αtdt

¼ 1ffiffiffiffiffi
2π

p
ð∞
0
cos ξte�αtdt� i

ð∞
0
sin ξte�αtdt

� �

¼ 1ffiffiffiffiffi
2π

p α

α2 þ ξ2
� iξ
α2 þ ξ2

� �
:
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Example 2. Consider the function

x tð Þ ¼ sin 3t for � π ≤ t≤ π,

0 otherwise:

�

Then the Fourier transform of x tð Þ is obtained as

ℱ x tð Þ½ � ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
cos ξt� i sin ξtð Þ sin 3tdt

¼ �iffiffiffiffiffi
2π

p
ðπ
�π

sin ξt sin 3tdt

¼ i3
ffiffiffi
2

p
sin ξπffiffiffi

π
p

ξ2 � 9
� � :

Next, we shall study some properties of FT.
Theorem 1 (Translation). The Fourier transform of any function x t� kð Þ is given by

ℱ x t� kð Þ½ � ξð Þ ¼ e�iξkℱ x tð Þ½ � ξð Þ: (3)

Proof. From Definition 1, we have

ℱ x t� kð Þ½ � ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx t� kð Þdt

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξ uþkð Þx uð Þdu

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξke�iξuÞx uð Þdu

¼ 1ffiffiffiffiffi
2π

p e�iξk
ð

ℝ
e�iξuÞx uð Þdu

¼ e�iξkℱ x tð Þ½ � ξð Þ:

This completes the proof. □
Theorem 2 (Modulation). The Fourier transform of any function eiξ0tx tð Þ is given by

ℱ eiξ0tx tð Þ� �
ξð Þ ¼ ℱ x tð Þ½ � ξ� ξ0ð Þ: (4)

Proof. From Definition 1, we have

ℱ eiξ0tx tð Þ� �
ξð Þ ¼ 1ffiffiffiffiffi

2π
p

ð

ℝ
e�iξteiξ0tx tð Þdt

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�i ξ�ξ0ð Þtx tð Þdt

¼ ℱ x tð Þ½ � ξ� ξ0ð Þ:

This completes the proof. □
Theorem 3 (Orthogonality relation). The Fourier transform of the functions x tð Þ and

y tð Þ in L2 ℝð Þ satisfies the following orthogonality relation
5
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ℱ x tð Þ½ �,ℱ y uð Þ½ �h i ¼ x tð Þ, y uð Þh i: (5)

Proof. We have

ℱ x tð Þ½ �,ℱ y uð Þ½ �h i ¼
ð

ℝ
ℱ x tð Þ½ � ξð Þℱ y uð Þ½ � ξð Þdξ

¼
ð

ℝ
ℱ x tð Þ½ � ξð Þ 1ffiffiffiffiffi

2π
p

ð

ℝ
e�iξuy uð Þdu

� �
dξ

¼
ð

ℝ

1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx tð Þdt

� �
1ffiffiffiffiffi
2π

p
ð

ℝ
eiξuy uð Þdu

� �
dξ

¼
ð

ℝ2
x tð Þy uð Þ 1

2π

ð

ℝ
eiξ u�tð Þdξ

� �
dtdu

¼
ð

ℝ

ð

ℝ
x tð Þy uð Þδ u� tð Þdtdu

¼
ð

ℝ
x tð Þy uð Þdt

¼ x tð Þ, y uð Þh i:

This completes the proof. □
Note: If we take x tð Þ ¼ y tð Þ, the orthogonality relation yields Plancherel’s Theorem

for the Fourier transforms that states the energy of a signal ln the time domain, is the
same as the energy in the frequency domain given as

ℱ x tð Þð Þk k ¼ x tð Þk k: (6)

Next, we show that the inverse Fourier operator is the adjoint of the Fourier
operator.

Theorem 4. Let x tð Þ and y tð Þ in L2 ℝð Þ, then

ℱ x tð Þ½ � ξð Þ, y ξð Þh i ¼ x tð Þ,ℱ�1 y½ � tð Þ� �
: (7)

Proof. We have

ℱ x tð Þ½ �, y tð Þh i ¼
ð

ℝ
ℱ x tð Þ½ � ξð Þy ξð Þdξ

¼
ð

ℝ

1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx tð Þdt

� �
y ξð Þdξ

¼
ð

ℝ
x tð Þ 1ffiffiffiffiffi

2π
p

ð

ℝ
e�iξty ξð Þdξ

� �
dt

¼
ð

ℝ
x tð Þ 1ffiffiffiffiffi

2π
p

ð

ℝ
eiξty ξð Þdξ

� �
dt

¼
ð

ℝ
x tð Þℱ�1 y½ � tð Þdt

¼ x tð Þ,ℱ�1 y½ � tð Þ� �
:

This completes the proof. □
6
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Theorem 5. Let x tð Þ and y tð Þ in L2 ℝð Þ, then

ℱ x ∗ yð Þ½ � ξð Þ ¼
ffiffiffiffiffi
2π

p
ℱ x tð Þ½ � ξð Þℱ y tð Þ½ � ξð Þ, (8)

where x ∗ y denotes the convolution of the functions x tð Þ and y tð Þ and is given by

x ∗ yð Þ tð Þ ¼
ð

ℝ
x tð Þy u� tð Þdt:

Proof. By applying definition of Fourier transform to the convolution of the func-
tions x tð Þ and y tð Þ, we obtain

ℱ x ∗ yð Þ½ � ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
x ∗ yð Þ uð Þe�iξudu

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ

ð

ℝ
x tð Þy u� tð Þdt

� �
e�iξudu

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ

ð

ℝ
x tð Þy vð Þe�iξ tþvð Þdvdt

¼ 1ffiffiffiffiffi
2π

p
ð

ℝ

ð

ℝ
e�iξtx tð Þy vð Þe�iξvdvdt

¼
ffiffiffiffiffi
2π

p 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx tð Þdt

� �
1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξvy vð Þdv

� �

¼
ffiffiffiffiffi
2π

p
ℱ x tð Þ½ � ξð Þℱ y tð Þ½ � ξð Þ:

This completes the proof. □

2.2 Windowed Fourier transform

Definition 2. Let Ψ be a given window function in L2 ℝð Þ, then the window Fourier
transform (WFT) of any function x tð Þ∈L2 ℝð Þ is defined and denoted as

VΨ x tð Þ½ � b, ξð Þ ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtx tð ÞΨ t� bð Þdt, b, ξ∈ℝ: (9)

Further, the WFT (9) can be rewritten as

VΨ x tð Þ½ � b, ξð Þ ¼ ℱ x tð ÞΨ t� bð Þ
h i

: (10)

Applying inverse FT (2), (10) yields

x tð ÞΨ t� bð Þ ¼ ℱ�1 VΨ x tð Þ½ � b, ξð Þ½ �
¼ 1ffiffiffiffiffi

2π
p

ð

ℝ
eiξtVΨ x tð Þ½ � b, ξð Þdξ (11)

Multiplying (11) both sides by Ψ t� bð Þ and then integrating with respect to db,
we get

7
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x tð Þ∥Ψ∥2 ¼ 1ffiffiffiffiffi
2π

p
ð

ℝ

ð

ℝ
eiξtVΨ x tð Þ½ � b, ξð ÞΨ t� bð Þdξdb:

Equivalently, we have

x tð Þ ¼ 1ffiffiffiffiffi
2π

p
∥Ψ∥2

ð

ℝ

ð

ℝ
eiξtVΨ x tð Þ½ � b, ξð ÞΨ t� bð Þdξdb: (12)

Eq. (12) gives the inversion formula corresponding to WFT (9).
Theorem 6 (Orthogonality relation). For any two functions x tð Þ, y tð Þ in L2 ℝð Þ, we

have following relation

VΨ x tð Þ½ � bð , ξÞ,VΨ y tð Þ½ � bð , ξÞh i ¼ ∥Ψ∥2 x tð Þ, y tð Þh i: (13)

Proof. By Definition (2), we have

VΨ x tð Þ½ � bð , ξÞ,VΨ y tð Þ½ � bð , ξÞh i

¼
ð

ℝ

ð

ℝ
VΨ x tð Þ½ � b, ξð ÞVΨ y tð Þ½ � b, ξð Þdξdb

¼
ð

ℝ

ð

ℝ
VΨ x tð Þ½ � b, ξð Þ 1ffiffiffiffiffi

2π
p

ð

ℝ
e�iξty tð ÞΨ t� bð Þdt

� �
dξdb

¼
ð

ℝ

ð

ℝ

1ffiffiffiffiffi
2π

p
ð

ℝ
eiξtVΨ x tð Þ½ � bð , ξÞdξ

� �
y tð ÞΨ t� bð Þdtdb:

(14)

By virtue of Eq. (11), (14) yields

VΨ x tð Þ½ � bð , ξÞ,VΨ y tð Þ½ � bð , ξÞh i
¼
ð

ℝ

ð

ℝ
x tð ÞΨ t� bð ÞΨ t� bð Þy tð Þdtdb

¼
ð

ℝ
x tð Þy tð Þdt

ð

ℝ
Ψ t� bð ÞΨ t� bð Þdb

¼ ∥Ψ∥2 x tð Þ, y tð Þh i:

(15)

This completes the proof. □
Next, we introduce the fractional Fourier transform as a generalization of the

classical Fourier transform.

2.3 Fractional Fourier transform

It is well known that when one performs the FT two times, the time-reverse opera-
tion is obtained. When one performs the FT three times, the inverse FT is obtained.
Furthermore, performing the FT four times is equivalent to performing an identity
operation. Now, one may think what will be obtained when the FT is performed a non-
integer number of times The fractional Fourier transform (FRFT) can be viewed as
performing the FT 2α=πf g times, where 2α=πf g can be a non-integer value. The frac-
tional Fourier transform (FRFT) has played an important role in signal processing [7]
optics [8, 9], image processing [10], and quantummechanics [11]. As a generalization of
the conventional Fourier transform (FT), the FRFT implements an order parameter

8

Time Frequency Analysis of Some Generalized Fourier Transforms



which acts on the conventional Fourier transform operator and can process time-
varying signals and non-stationary signals. With variation of the fractional parameter,
the FRFT transforms the signal into the fractional Fourier domain representation, which
is oriented by corresponding rotation angle with respect to the time axis in the counter-
clockwise direction. Using a global kernel, the FRFT shows the overall fractional Fourier
domain contents. Hence, the time-frequency representation should be extended to the
time-fractional Fourier frequency domain. Let us define fractional Fourier transform.

Definition 3. Let x tð Þ be a signal in L2 ℝð Þ, then the fractional Fourier transform of x tð Þ
is defined as

ℱα x tð Þ½ � ξð Þ ¼
ð

ℝ
Kα t, ξð Þx tð Þdt, (16)

where α is a angular parameter and Kα t, ξð Þ is the kernel of the FRFT and is given
by

Kα t, ξð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i cot α

2π

r
e
i
2 t2þξ2ð Þ cot α�iξtcscα for α 6¼ nπ,

δ t� ξð Þ for α ¼ 2nπ,
δ tþ ξð Þ for α ¼ 2n� 1ð Þπ, n∈ℤ:

8>>><
>>>:

(17)

and the corresponding inversion formula is also a FRFT with angle �α and is given
by

x tð Þ ¼ ℱ�α ℱα x tð Þ½ � ξð Þf g tð Þ ¼
ð

ℝ
ℱα x tð Þ½ � ξð ÞK�α t, ξð Þdξ: (18)

It is easy to see that, when α ¼ 0, π=2, π and 3π=2, the FRFT is reduced to the
identity operation, the FT, time-reverse operation, and the IFT, respectively.

Assuming that u tð Þ ¼ eit
2 cot α=2x tð Þ, then for α 6¼ nπ the FRFT (16) can be rewritten as

ℱα x tð Þ½ � ξð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i cot α

2π

r
eiξ

2 cot α=2 1ffiffiffiffiffi
2π

p
ð

ℝ
e�iξtcscαu tð Þ

� � (19)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i cot α

2π

r
eiξ

2 cot α=2ℱ u½ � ξcscαð Þ: (20)

It is clear from (20) that the FRFT can be viewed as a chirp-Fourier-chirp
transformation.

Next, we highlight some properties of FRFT.
Theorem 7. Let x tð Þ, y tð Þ∈L2 ℝð Þ and k, ξ0 ∈ℝ, then the FRFT satisfies following

properties:

1.Translation: ℱα x t� kð Þ½ � ξð Þ ¼ e
1
2ik

2 cos α sin α�ikξ sin αℱα x tð Þ½ � ξð Þ ξ� k cos αð Þ:

2.Modulation: ℱα eiξ0tx tð Þ� �
ξð Þ ¼ eiξ0ξ cos α�

i
2ξ

2
0 sin α cos αℱα x tð Þ½ � ξ� ξ0 sin αð Þ:

3.Orthogonality Relation: ℱα x tð Þ½ �,ℱα y tð Þ½ �h i ¼ x tð Þ, y tð Þh i:
9
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Proof. For the sake of brevity, we omit proof of translation and modulation prop-
erties and prove only orthogonality relation.

We have

ℱα x tð Þ½ �,ℱα y tð Þ½ �h i ¼
ð

ℝ
ℱα x tð Þ½ � ξð Þℱα y tð Þ½ � ξð Þdξ

¼
ð

ℝ

ð

ℝ

ð

ℝ
Kα t, ξð Þx tð ÞKα s, ξð Þy sð Þdsdtdξ

¼
ð

ℝ

ð

ℝ
x tð Þy sð Þ

ð

ℝ
Kα t, ξð ÞKα s, ξð Þdξ

� �
dsdt

¼
ð

ℝ

ð

ℝ
x tð Þy sð Þδ t� sð Þdsdt

¼
ð

ℝ
x tð Þy sð Þdt

¼ x tð Þ, y tð Þh i:

This completes the proof. □
Since the FRFT is a generalization of the FT, many properties, applications, and

operations associated with FT can be generalized by using the FRFT. The FRFT is
more flexible than the FT and performs even better in many signal processing and
optical system analysis applications.

In the sequel, we introduce linear canonical transform, which is a generalized
version of the classical Fourier transform with four parameters.

2.4 Linear canonical transform

The linear canonical transform (LCT) introduced by Moshinsky and Quesne [12]
has a total of four parameters. It is not only a generalization of the FT, but also a
generation of the FRFT, the scaling operation. As the FRFT, the LCT was first used for
solving differential equations and analyzing optical systems. Recently, after the appli-
cations of FRFT were developed, the roles of the LCT for signal processing have also
been examined. Due to the extra degrees of freedom and simple geometrical manifes-
tation, the LCT is more flexible than other transforms and is as such suitable as well as
powerful tool for investigating deep problems in science and engineering [13–16].
Now, we shall define linear canonical transform (LCT).

Definition 4. Consider the second order matrix M2�2 ¼
a b
c d

� �
. Then the linear

canonical transform of any x tð Þ∈L2 ℝð Þ with respect to the uni-modular matrix M2�2 ¼
a b
c d

� �
is defined by

ℒM x tð Þ½ � ξð Þ ¼

ð

ℝ
KM t, ξð Þx tð Þdt b 6¼ 0

ffiffiffi
d

p
exp

cdξ2

2

� �
f dξð Þ b ¼ 0:

8>>>><
>>>>:

(21)
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where KM t, ξð Þ is the kernel of linear canonical transform and is given by

KM t, ξð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p e
i
2b at2�2tξþdξ2ð Þ, b 6¼ 0: (22)

When b 6¼ 0, the inverse LCT is given by

f tð Þ ¼ ℒM�1 ℒM x tð Þð � ξð Þ½ g tð Þ ¼
ð

ℝ
ℒM x tð Þ½ � ξð ÞKM t, ξð Þdξ

�
(23)

where the kernel KM t, ξð Þ ¼ KM�1 t, ξð Þ and M�1 denotes the inverse of matrix M.
For typographical convenience we write the matrix M ¼ a; b; c; dð Þ.
By changing the matrix parameter M ¼ a; b; c; dð Þ, the LCT boils down to various

integral transforms such as:

• When M ¼ 0, 1,�1, 0ð Þ, the LCT turns out to be Fourier transform(FT):

ℒM x tð Þ½ � ¼
ffiffiffiffiffiffi
�i

p
ℱ x tð Þ½ �:

• When M ¼ 0,�1,1,0ð Þ, the LCT turns out to be inverse Fourier transform(IFT):

ℒM x tð Þ½ � ¼
ffiffi
i

p
ℱ�1 x tð Þ½ �:

• When M ¼ cos α, sin α,� sin α, cos αð Þ, the LCT becomes the FRFT:

ℒM x tð Þ½ � ¼
ffiffiffiffiffiffiffiffi
e�iα

p
ℱα x tð Þ½ �:

• When M ¼ λ, 0, 0, 1
λ

� �
, the LCT becomes a scaling operation:

ℒM x tð Þ½ � ¼
ffiffiffi
1
λ

r
x

ξ

λ

� �
:

• When M ¼ 1, 0, β, 1ð Þ, the LCT becomes a chirp multiplication operation:

ℒM x tð Þ½ � ¼ e
i
2βξ

2
x ξð Þ:

Moreover Fresnel transform can be viewed with matrix 1, b,0,1ð Þ and the Laplace
transform can be obtained with 0, i, i, 0ð Þ.

From (21), we have for b 6¼ 0

ℒM x tð Þ½ � ξð Þ ¼
ð

ℝ
KM t, ξð Þx tð Þdt

¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p
ð

ℝ
e

i
2b at2�2tξþdξ2ð Þx tð Þdt

¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p e
i
2bdξ

2
ð

ℝ
e�

i
bξt x tð Þe i

2bat
2

� �
dt

¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p e
i
2bdξ

2
ℱ g tð Þ½ � ξ=bð Þ,

(24)

where g tð Þ ¼ x tð Þe i
2bat

2
.
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Thus, it is clear from (24), that LCT can be regarded as a chirp-Fourier-chirp
transformation.

Next, we investigate some basic properties associated with LCT.
Theorem 8. Let x tð Þ, y tð Þ∈L2 ℝð Þ and k, ξ0 ∈ℝ, then the LCT satisfies following

properties:

1.Translation: ℒM x t� kð Þ½ � ξð Þ ¼ eikcξ�
i
2k

2acℒM x tð Þ½ � ξ� akð Þ:

2.Modulation: ℒM eiξ0tx tð Þ� �
ξð Þ ¼ eidξ0ξ�

i
2bξ

2
0ℒM x tð Þ½ � ξ� bξ0ð Þ:

3.Parity: ℒM x �tð Þ½ � ξð Þ ¼ ℒM x tð Þ½ � �ξð Þ:

4.Orthogonality Relation: ℒM x tð Þ½ �,ℒM y tð Þ½ �h i ¼ x tð Þ, y tð Þh i:

Proof. To be specific, we shall only prove the translation property, the rest of the
properties follows similarly.

For any real k, we have

ℒM x t� kð Þ½ � ξð Þ ¼
ð

ℝ
KM t, ξð Þx t� kð Þdt

¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p
ð

ℝ
e

i
2b at2�2tξþdξ2ð Þx tð Þdt

¼ 1ffiffiffiffiffiffiffiffiffi
2πib

p
ð

ℝ
e

i
2b a sþkð Þ2�2 sþkð Þξþdξ2ð Þx sð Þds

¼ eikcξ�
i
2k

2ac 1ffiffiffiffiffiffiffiffiffi
2πib

p
ð

ℝ
e

i
2b as2�2s ξ�akð Þþd ξ�ak2ð Þð Þx sð Þds

¼ eikcξ�
i
2k

2acℒM x tð Þ½ � ξ� akð Þ:

This completes the proof. □
Finally, we will define quadratic-phase Fourier transform.

2.5 Quadratic-phase Fourier transform

The most neoteric generalization of the classical Fourier transform (FT) with five
real parameters appeared via the theory of reproducing kernels is known as the
quadratic-phase Fourier transform (QPFT) [17]. It treats both the stationary and non-
stationary signals in a simple and insightful way that are involved in radar, signal
processing, and other communication systems [18–25]. Here, we gave the notation and
definition of the quadratic-phase Fourier transform and study some of its properties.

Definition 5. For a real parameter set Λ ¼ a, b, c, d, eð Þ with b 6¼ 0, the quadratic-
phase Fourier transform of any signal f ∈L2 ℝð Þ is defined as

QΛ x tð Þ½ � ξð Þ ¼
ð

ℝ
KΛ t, ξð Þx tð Þdt, (25)

where kΛ t, ξð Þ is the kernel signal of the QPFT and is given by

KΛ t, ξð Þ ¼ 1ffiffiffiffiffi
2π

p e�i at2þbξtþcξ2þdtþeξð Þ, (26)
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and corresponding inversion formula is given by

x tð Þ ¼ Q�1
Λ QΛ x tð Þ½ � ξð Þð Þ tð Þ ¼

ð

ℝ
KΛ t, ξð ÞQΛ x tð Þ½ � ξð Þdξ: (27)

The novel QPFT (5) can be considered as a cluster of several existing integral
transforms ranging from the classical Fourier to the much recent special affine Fourier
transform. Nevertheless, many signal processing operations, such as scaling,shifting
and time reversal, can also be performed via the QPFT (5).

Now, we will establish some properties of the quadratic-phase Fourier transform.
Theorem 9. Let x tð Þ, y tð Þ∈L2 ℝð Þ and k, ξ0 ∈ℝ, then the QPFT satisfies following

properties:

1.Modulation: QΛ eiξ0tx tð Þ� �
ξð Þ ¼ ei c b�2ξ20�2b�1ξξ0ð Þ�eb�1ξ0ð ÞQλ x tð Þ½ � ξ� b�1ξ0

� �
:

2.Parity: QΛ x �tð Þ½ � ξð Þ ¼ QΛ0 x tð Þ½ � �ξð Þ, where Λ0 ¼ a, b, c,�d,�eð Þ:

3.conjugation: QΛ x tð Þ
h i

ξð Þ ¼ Q�Λ x tð Þ½ � ξð Þ, where �Λ ¼ �a,�b,�c,�d,�eð Þ:

4.Orthogonality Relation: QΛ x tð Þ½ �,QΛ y tð Þ½ �h i ¼ 1
b x tð Þ, y tð Þh i:

Proof. For the sake of brevity, we avoid proof. □
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Chapter 2

Hybrid Transforms
Didar Urynbassarova and Altyn Urynbassarova

Abstract

Hybrid transforms are constructed by associating the Wigner-Ville distribution
(WVD) with widely-known signal processing tools, such as fractional Fourier trans-
form, linear canonical transform, offset linear canonical transform (OLCT), and their
quaternion-valued versions. We call them hybrid transforms because they combine
the advantages of both transforms. Compared to classical transforms, they show
better results in applications. The WVD associated with the OLCT (WVD-OLCT) is
a class of hybrid transform that generalizes most hybrid transforms. This chapter
summarizes research on hybrid transforms by reviewing a computationally efficient
type of the WVD-OLCT, which has simplicity in marginal properties compared to
WVD-OLCT and WVD.

Keywords: time-frequency analysis, Wigner-Ville distribution, offset linear canonical
transform, hybrid transform, linear frequency modulated (LFM) signal

1. Introduction

The linear canonical transform (LCT) [1–4] and its generalization, the offset linear
canonical transform (OLCT) [5, 6] are introduced to study non-stationary signals
(audio, image, biomedical, linear frequency modulated (LFM) signals). OLCT has five
degrees of freedom, and LCT has three degrees of freedom, which makes them more
flexible than the well-known fractional Fourier transform (FrFT) [7] with one degree
of freedom and the Fourier transform (FT) with no freedom. Various applications of
LCT have been found in the different fields of optics and signal processing. In fact, the
properties and applications of the OLCT are similar to the LCT, but they are more
general than the LCT, thanks to its two extra parameters, which correspond to time-
shift and frequency modulation. It is proven that the Wigner-Ville distribution
(WVD) plays a major role in time-frequency signal analysis and processing.

The LFM signal is used in communications, radar and sonar systems. Conse-
quently, LFM signal detection and estimation is one of the most important topics in
engineering. The WVD and LCT/OLCT are used in LFM signal processing, but they
have their disadvantages:

• WVD does not fully exploit the phase feature of LFM signal;

• LCT/OLCT cannot gather signal energy strongly like WVD.
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This results in poor performance under a low signal-to-noise ratio for detection
and estimation. Recently, for the purpose to improve the performance of LFM signal
detection and estimation, several researchers have associated WVD with the FrFT,
LCT, and OLCT, respectively [8–27]. Results show that such transforms exploit the
advantages of both transforms, which is why we call them hybrid transforms. The aim
of this chapter is to review and summarize research on hybrid transforms by studying
WVD association with the OLCT (WVD-OLCT) definitions and properties.

2. Preliminaries

2.1 Wigner-Ville distribution

FT analysis originated long ago and is used in many areas of mathematics and
engineering, including quantum mechanics, wave propagation, turbulence, signal
analysis and processing. In spite of remarkable success, the FT analysis seems to be
inadequate for studying some problems for the following reasons:

• There is no local information in the FT analysis since it does not reflect the
change of frequency with time;

• The FT analysis investigates problems either in the time domain or in the
frequency domain, but not simultaneously in both domains.

Therefore, we see that FT is sufficient to study signals that are statistically invari-
ant over time, e.g. stationary signals. Naturally, we are surrounded by many signals:
audio, video, radar, biomedical signals, etc., all those signals are non-stationary. FT is
insufficient to do a complete analysis for such signals because it requires both time-
frequency representations of the signal. So it was necessary to define a single trans-
formation of time and frequency domains.

Historically, Eugene Paul Wigner, the 1963 Nobel Prize winner in physics, in 1932
first introduced a fundamental nonlinear transformation to study quantum correc-
tions for classical statistical mechanics in the form [28].

Wψ x, pð Þ ¼ 1
h

ð


ψ x� τ

2

� �
ψ xþ τ

2

� �
exp

ipτ
ℏ

� �
dτ, (1)

where the wave function ψ xð Þ satisfies the one-dimensional Schrödinger equation,
the quantum mechanical position x and momentum p are independent variables, and
h ¼ 2πℏ is the Planck constant. The Wigner distribution Wψ x, pð Þ has many impor-
tant properties and is found to behave as a distribution function defined on a phase
space consisting of points x, pð Þ: The most remarkable properties of the Wigner
distribution include the marginal integrals in the position and momentum domains as
follows [29, 30].

ð


Wψ x, pð Þdx ¼ φ pð Þj j2,

ð


Wψ x, pð Þdp ¼ ψ xð Þj j2,

(2)
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and the total energy of the wave function ψ in the x, pð Þ space
ð

2
Wψ x, pð Þdxdp ¼

ð


ψ xð Þj j2dx ¼ ψk k: (3)

In the context of non-stationary signal analysis, in 1948 Jean-Andre Ville indepen-
dently re-derived the Wigner distribution given in Eq. (1) as a quadratic representa-
tion of the local time-frequency energy of a signal [31]. Besides linear time-frequency
representations of a signal like the Gabor transform, the Zak transform, and the short-
time Fourier transform, the WVD (or Wigner-Ville transform (WVT)) occupies a
central position in the field of quadratic time-frequency representations and it is
recognized as a valuable method/tool for time-frequency of time-varying signals and
non-stationary random processes.

With its remarkable structure and properties, the WVD has been regarded as the
main distribution of all the time-frequency distributions and used as the classical and
fundamental time-frequency analysis tool in different areas of physics and engineer-
ing. Particularly, it has been used for instantaneous frequency estimation, spectral
analysis of random signals, detection and classification, algorithms for computer
implementation, and has a wide range of applications in vision, X-ray diffraction of
crystals, pattern recognition, radar, and sonar. Additionally, it has been applied to the
analysis of seismic data, speech, and phase distortions in audio engineering problems.

Definition 1 (WVD). If f belong to the Hilbert space L2 ð Þ, the WVD W f of signal
f is defined as [3, 29, 30].

W f t, uð Þ ¼
ð


f tþ τ

2

� �
f t� τ

2

� �
e�iuτdτ: (4)

It is easy to see that the WVD is the FT of the instantaneous autocorrelation
function

Rf t, τð Þ ¼ f tþ τ

2

� �
f t� τ

2

� �
(5)

with respect to τ:
Some main properties of WVD are summarized in Table 1. For some recent

works and surveys on the WVD, we refer readers to [3, 29, 30] and the references
therein.

2.2 Linear canonical transform

The LCT is a four-parameter a, b, c, dð Þ integral transform that was introduced in
the 1970s by Collins, and Moshinsky and Quesne to analyze optical systems and solve
differential equations [1, 2]. After the fast algorithm for calculating the discrete LCT
was proposed in [32], the LCT was widely used to process non-stationary signals. It
has been applied in radar system analysis, filter design, watermarking, phase retrieval,
pattern recognition, signal synthesis, and in other areas of engineering sciences. With
intensive research, many properties of the LCT are well studied. Transforms and
operations, such as the FT, FrFT, Fresnel transform (FRST), Laplace transform,
fractional Laplace transform, time scaling, and chirp operations are the special cases of
the LCT.
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In some works, the LCT is known under different names as the Collins formula,
Moshinsky and Quesne integrals, extended fractional Fourier transform, quadratic-
phase integral or quadratic-phase system, generalized Fresnel transform, generalized
Huygens integral [33], ABCD transform [34], and affine Fourier transform [35], etc.

Definition 2 (LCT). The LCT LA of a signal f tð Þ with matrix A ¼ a, b, c, dð Þ, where
a,b,c,d∈ are real parameters and det Að Þ ¼ ad� bc ¼ 1, is defined as [2–4]

LA f tð Þf g uð Þ ¼

ð


f tð Þ 1ffiffiffiffiffiffiffiffiffi

i2πb
p ei

a
2bt

2�1
btuþ d

2bu
2ð Þdt, b 6¼ 0,

ffiffiffi
d

p
e
i
2cdu

2
f duð Þ, b ¼ 0:

8><
>:

(6)

From the definition of LCT, we can see that, when the parameter b ¼ 0, the LCT is
a scaling transformation coupled with amplitude and quadratic phase modulation and
it is of no particular interest to our object. Therefore, without loss of generality, in this
chapter we always assume b 6¼ 0.

A detailed and comprehensive view of LCT can be found in [2, 3] and the refer-
ences therein.

2.3 Offset linear canonical transform

The OLCT is a six-parameter a, b, c, d, u0, ω0ð Þ integral transform, which has been
shown as a powerful tool and received much attention in signal processing and optics.
It is a time-shifted and frequency-modulated version of the LCT. In some works
OLCT called the special affine Fourier transform [35–37] and the inhomogeneous
canonical transform [38].

Definition 3 (OLCT). The OLCT OA of a signal f tð Þ with real parameters of matrix
A ¼ a, b, c, d, u0, ω0ð Þ, where a,b,c,d,u0,ω0 ∈ are real parameters and det Að Þ ¼ 1, is
defined as [6, 19]

OA f tð Þf g uð Þ ¼

ð


f tð ÞKA t, uð Þdt, b 6¼ 0,
ffiffiffi
d

p
ei

cd
2 u�u0ð Þ2þjω0uf d u� u0ð Þð Þ, b ¼ 0:

8><
>:

(7)

Property Formulation

Conjugation symmetry W f t, uð Þ ¼ W f t, uð Þ
Time shifting (Translation) W f 0 t, uð Þ ¼ W f t � λ, uð Þ, f 0 tð Þ ¼ f t � λð Þ

Frequency shifting (Modulation) W f 0 t, uð Þ ¼ W f t, u� u0ð Þ, f 0 tð Þ ¼ f tð Þeiu0 t

Time marginal
Ð
W f t, uð Þdu ¼ f tð Þj j2

Frequency marginal Ð
W f t, uð Þdt ¼ f̂ uð Þ

���
���
2

Energy distribution
Ð
2W f t, uð Þdtdu ¼ Ð f tð Þj j2dt ¼ f tð Þ, f tð Þh i

Moyal’s formula Ð
2W f t, uð Þ Wg t, uð Þ� �

dtdu ¼ f , gh ij j2

Table 1.
Properties of the WVD.
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where KA t, uð Þ is the OLCT kernel and expressed as

KA t, uð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
i2πb

p ei
a
2bt

2�1
bt u�u0ð Þþ d

2b u2þu20ð Þ�u
b du0�bω0ð Þð Þ: (8)

From Eq. (7) it can be seen that for case b ¼ 0 the OLCT is simply a time scaled
version of f multiplied by a linear chirp. Therefore, from now we restrict our attention
to OLCT for the case b 6¼ 0: And without loss of generality, we assume b>0 in the
following sections of this chapter.

A number of widely known classical transforms and mathematical operations
related to signal processing and optics are special cases of the OLCT. The OLCT
converts to its special cases when taking different parameters of matrix A: For exam-
ple, the OLCT with parameters a, b, c, d, u0, ω0ð Þ ¼ a, b, c, d, 0, 0ð Þ reduces to LCT;
when A ¼ cos θ, sin θ, � sin θ, cos θ, 0, 0ð Þ, it becomes the FrFT; when A ¼
0, 1, �1, 0, 0, 0ð Þ, the OLCT becomes FT; when A ¼ 1, b, 0, 1, 0, 0ð Þ, it becomes
FRST; and when A ¼ d�1, 0, 0, d, 0, 0

� �
, it becomes time scaling operation. Multipli-

cation by Gaussian or chirp function is obtained with an A ¼ 1, 0, τ, 1, 0, 0ð Þ [1].
The offset Fourier transform A ¼ 0, 1, �1, 0, u0, ω0ð Þ, offset fractional Fourier
transform A ¼ cos θ, sin θ, � sin θ, cos θ, u0, ω0ð Þ, frequency modulation A ¼
1, 0, 0, 1, 0, ω0ð Þ, and time shifting A ¼ 1, 0, 0, 1, u0, 0ð Þ are also special cases of the
OLCT. The OLCT is able to extend their properties and applications and can solve
some problems that cannot be solved well by these operations. In fact, offset versions
of FT, FrFT, and LCT are similar to the classical FT, FrFT, and LCT, but they are more
flexible than the classical ones, and mainly useful for analyzing optical systems with
prisms or shifted lenses. The OLCT has a close relationship with its special cases. So it
is practically useful to develop relevant theorems for OLCT. By developing theories
for OLCT, we can gain a deeper understanding of its special cases and transfer
knowledge from one subject to another. As a generalization of many other linear
transforms, the OLCT has found wide applications in applied mathematics, signal
processing, and optical system modeling [5, 6, 19, 34, 35, 37].

2.4 Previous results

With the development of the FrFT, Lohmann in [8] and Almeida in [9] investi-
gated the relationship between the WVD and the FrFT. They show that the WVD of
the FrFTed signal can be seen as a rotation of the WVD in the time-frequency plane.
In this direction, based on the properties of the FrFT, the LCT, and the WVD, Pei and
Ding [10] investigated and discussed the relations between the common fractional
and canonical operators. The WVD associated with the LCT, named LCWD, denoted
as WDA, given in [10] is useful for the separation of multi-component signals. It is
defined as [10, 18].

WDA u, vð Þ ¼
ð


LA uþ τ

2

� �
LA u� τ

2

� �
e�ivτdτ, (9)

where LA uð Þ is the LCT of signal f tð Þ with parameter matrix A ¼ a, b, c, dð Þ:
Unlike the definition of LCWD, Bai et al. obtained generalized type of WVD in the

LCT domain, named WVD-LCT (or WDL), denoted as WDLf , by substituting FT

kernel e�iuτ with LCT kernel 1ffiffiffiffiffiffiffi
i2πb

p ei
a
2bτ

2�1
bτuþ d

2bu
2ð Þ [11].
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WDLf t, uð Þ ¼
ð


f tþ τ

2

� �
f t� τ

2

� � 1ffiffiffiffiffiffiffiffiffi
i2πb

p ei
a
2bτ

2�1
bτuþ d

2bu
2ð Þdτ: (10)

The WVD-LCT generalizes the LCWD and WVD. It is easy to see that the WVD-
LCT is the LCT of the instantaneous autocorrelation function Rf t, τð Þ with respect to τ

WDLf t, uð Þ ¼ LA Rf t, τð Þ� �
: (11)

Also, in [11] authors derived the main properties and applications of the WVD-
LCT in the LFM signal detection. Uncertainty principles for the WVD-LCT were
studied in [13, 25]. Song et al. presented WVD-LCT applications for quadratic fre-
quency modulated signal parameter estimation in [14]. Convolution and correlation
theorems for WVD-LCT are obtained in [16]. In [26] authors proposed a new method
of instantaneous frequency estimation by associating the WVD with the LCT, which
has a higher capacity for anti-noise and a higher estimation accuracy than WVD.
Zhang unified LCWD and WVD-LCT [20], and then presented its special cases with
less parameters [21, 22]. Urynbassarova et al. presented the WVD associated with the
instantaneous autocorrelation function in the LCT domain, named WL, which has
elegance and simplicity in marginal properties and affine transformation relationships
compared to the WVD [17]. Similar to this in [27] Xin and Li proposed a new
definition ofWVD associated with LCT, and its integration form, which estimates two
phase coefficients of LFM signal simultaneously and effectively suppresses cross
terms for multi-component LFM signal. In [19] introduced the WVD association with
the OLCT (WVD-OLCT), which is a generalization of the WVD-LCT and its special
cases. Recently, in order to study higher dimensions, WVD associations with the
quaternion LCT/OLCT were studied in [39–42], and WVD in the framework of
octonion LCT was proposed by Dar and Bhat [43].

3. Definition

The WVD given in Eq. (4) can be re-written as

W f t, uð Þ ¼
ð


fℱ tþ τ

2

� �
fℱ t� τ

2

� �
dτ, (12)

where fℱ equals to f tð Þ multiplied with FT kernel e�iut: By substituting FT kernel
e�iut with OLCT kernel (Eq. (8)), we will get the following definition of the WVD in
the OLCT domain, named WOL, denoted as WOLf , which is the type of the
WVD-OLCT.

Definition 4 (WOL). The WOL WOLf of signal f for the parameter matrix A ¼
a, b, c, d, u0, ω0ð Þ is defined as follows [18]

WOLf t, uð Þ ¼ 1
2π bj j

ð


f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bτ u0�uð Þdτ:

The WOL is reduced to the WL, when A ¼ a, b, c, d, 0, 0ð Þ,

WOL a, b, c, d, 0, 0ð Þ
f t, uð Þ ¼ WLf t, uð Þ: (13)
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Obviously, when the parameter matrix has the special form A ¼ 0, 1, �1, 0, 0, 0ð Þ,
the WOL is reduced to the WVD

WOL 0, 1, �1, 0, 0, 0ð Þ
f t, uð Þ ¼ W f t, uð Þ: (14)

It is clear from Eq. (13) and Eq. (14) that the WOL is a generalization of the WL
and the WVD.

4. Properties

Bellow we list some basic properties of the WOL.
Conjugation symmetry property.
The conjugation symmetry property of the WOL is expressed as

WOLf t, uð Þ ¼ WOLf t, uð Þ: (15)

Proof. From the Definition 4, we have

WOLf t, uð Þ ¼
ð


f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bτ u0�uð Þdτ

¼
ð


f tþ τ

2

� �
f t� τ

2

� �
e
ia
b �τð Þte

i
b �τð Þ u0�uð Þdτ,

(16)

let �τ ¼ τ0, then we will arrive at

WOLf t, uð Þ ¼
ð


f tþ τ0

2

� �
f t� τ0

2

� �
e
ia
bτ0te

i
bτ0 u0�uð Þdτ0

¼ WOLf t, uð Þ:■
(17)

This property shows that the WOL is always a real number.
Time marginal property.
The time marginal property of the WOL is given as

ð


WOLf t, uð Þdu ¼ f tð Þj j2: (18)

Proof.

ð


WOLf t, uð Þdu ¼ 1

2π bj j
ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bτ u0�uð Þdτdu

¼ 1
2π bj j

ð


f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τ

ð


e�

i
buτdu

� �
dτ

¼
ð


f tþ τ

2

� �
f t� τ

2

� �
e
ia
2bτ

2
e
i
bu0τδ τð Þdτ

¼ f tð Þj j2: ■

(19)
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Frequency marginal property.
The frequency marginal property of the WOL is given by

ð


WOLf t, uð Þdt ¼ f̂ uð Þ

���
���
2
: (20)

Proof.

ð


WOLf t, uð Þdt ¼ 1

2π bj j
ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte�

i
b u�u0ð Þτdτdt

¼ 1
2π bj j

ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
2b t2þtτþτ2

4�t2þtτ�τ2
4

� �
e�

i
b u�u0ð Þ tþτ

2þτ
2�tð Þdτdt

¼ 1
2π bj j

ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
2b tþτ

2ð Þ2e� ia
2b t�τ

2ð Þ2e� i
b u�u0ð Þ tþτ

2þτ
2�tð Þdτdt:

(21)

Let ω ¼ tþ τ
2 and let υ ¼ t� τ

2 , then above equation reduces to the final result

ð


WOLf t, uð Þdt ¼ 1

2π bj j
ð

2
f ωð Þf υð Þeia2bω2

e�
ia
2bυ

2
e
i
bu0 ω�υð Þe�

i
bu ω�υð Þdωdυ

¼ f̂ uð Þ
���

���
2
: ■

(22)

Energy distribution property.
The energy distribuition property of the WOL is given as

ð

2
WOLf t, uð Þdtdu ¼

ð


f tð Þj j2dt: (23)

Proof.

ð

2
WOLf t, uð Þdtdu ¼ 1

2π bj j
ð

3
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte�

i
b u�u0ð Þτdτdtdu

¼ 1
2π bj j

ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τ

ð


e�

i
buτdu

� �
dτdt

¼
ð


f tð Þj j2dt: ■

(24)

Moyal’s formula.
The Moyal’s formula of the WOL is presented as

ð

2
WOLf t, uð ÞWOLg t, uð Þdtdu ¼ f , gh ij j2: (25)
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Proof.

ð

2
WOLf t, uð ÞWOLg t, uð Þdtdu ¼

¼ 1
2π bj j

ð

4
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τe�

i
buτ

� 1
2π bj j g tþ τ0

2

� �
g t� τ0

2

� �
e�

ia
bτ0te�

i
bu0τe

i
buτ0dτdτ0dtdu

¼ 1
2π bj j

ð

3
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τe�

i
buτdτ

� 1
2π bj j

ð


g tþ τ0

2

� �
g t� τ0

2

� �
e�

ia
bτ0te�

i
bu0τe

i
buτ0dτ0dtdu

¼ 1
2π bj j

ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τdτ

�
ð


g tþ τ0

2

� �
g t� τ0

2

� �
e�

ia
bτ0te�

i
bu0τdτ0dt

1
2π bj j

ð


e
i
bu τ0�τð Þdu

¼ 1
2π bj j

ð

2
f tþ τ

2

� �
f t� τ

2

� �
e
ia
bτte

i
bu0τdτ

ð


g tþ τ0

2

� �
g t� τ0

2

� �
e�

ia
bτ0te�

i
bu0τδ τ � τ0ð Þdτ0dt

¼ 1
2π bj j

ð



ð


f tþ τ

2

� �
f t� τ

2

� �
g tþ τ

2

� �
g t� τ

2

� �
dt

� �
dτ:

(26)

Now, we make the change of variable μ ¼ t� τ
2 , and come to

ð

2
WOLf t, uð ÞWOLg t, uð Þdtdu ¼ 1

2π bj j
ð


f μþ τð Þg μþ τð Þdτ

ð


f μð Þg μð Þdμ

� �

¼ 1
2π bj j f , gh ij j2: ■

(27)

Property Formulation

Conjugation symmetry WOLf t, uð Þ ¼ WOLf t, uð Þ
Time shifting WOLf 0 t, uð Þ ¼ WOLf t � λ, u� aλð Þ, f 0 tð Þ ¼ f t � λð Þ

Frequency shifting WOLf 0 t, uð Þ ¼ WOLf t, u� u1bð Þ, f 0 tð Þ ¼ f tð Þeiu1 t

Time marginal
Ð
WOLf t, uð Þdu ¼ f tð Þj j2

Frequency marginal Ð
WOLf t, uð Þdt ¼ f̂ uð Þ

���
���
2

Energy distribution
Ð
2WOLf t, uð Þdtdu ¼ Ð f tð Þj j2dt

Moyal’s formula Ð
2WOLf t, uð Þ WOLg t, uð Þ� �

dtdu ¼ 1
2π bj j f , gh ij j2

Table 2.
Properties of the WOL.
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Some main properties of WOL are summarized in Table 2. The comprehensive
view on the WOL can be seen in [17, 18].

5. Conclusion

In this chapter, we thoroughly revised research on hybrid transforms, which are
constructed by associating WVD with well-known signal processing tools, such as
FrFT, LCT, and OLCT. The WVD-OLCT generalizes most hybrid transforms, and the
WOL is its special type. It is proven that hybrid transforms have better output in
detection and estimation applications. Since the idea of associating two transforms is
novel, it needs deep theoretical analysis and lacks diverse applications. Interested
readers can develop hybrid transforms into quaternion and octonion algebra. These
studies may be helpful in color image processing.
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Chapter 3

Scaled Ambiguity Function
Associated with Quadratic-Phase
Fourier Transform
Mohammad Younus Bhat, Aamir Hamid Dar,
Altaf Ahmad Bhat and Deepak Kumar Jain

Abstract

Quadratic-phase Fourier transform (QPFT) as a general integral transform has
been considered into Wigner distribution (WD) and Ambiguity function (AF) to
show more powerful ability for non-stationary signal processing. In this article, a
new version of ambiguity function (AF) coined as scaled ambiguity function associ-
ated with the Quadratic-phase Fourier transform (QPFT) is proposed. This new
version of AF is defined based on the QPFT and the fractional instantaneous auto-
correlation. Firstly, we define the scaled ambiguity function associated with the
QPFT (SAFQ). Then, the main properties including the conjugate-symmetry,
shifting, scaling, marginal and Moyal’s formulae of SAFQ are investigated
in detail, the results show that SAFQ can be viewed as the generalization of
the classical AF. Finally, the newly defined SAFQ is used for the detection of
linear-frequency-modulated (LFM) signals.

Keywords: ambiguity function, quadratic-phase Fourier transform, Moyal’s formula,
modulation, linear frequency-modulated signal

1. Introduction

The Fourier transform is indeed an indispensable tool for the time-frequency
analysis of the stationary signals. Due to its success stories FT has profoundly
influenced the mathematical, biological, chemical and engineering communities
over decades, but FT can not analyze non-stationary signals as it can not provide any
valid information despite the localization properties of the spectral contents. FT only
allows us to visualize the signals either in time or frequency domain, but not in both
domains simultaneously. In Refs. [1–3], Castro et al. introduced a superlative gener-
alized version of the Fourier transform(FT) called quadratic-phase Fourier trans-
form(QPFT), which not only treats uniquely both the transient and non-transient
signals in a nice fashion but also with non-orthogonal directions. The QPFT is
actually a generalization of several well known transforms like Fourier, fractional
Fourier and linear canonical transforms, offset linear canonical transform whose
kernel is in the exponential form.
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Many researches have been carried on quadratic-phase Fourier transform(see
[4, 5]). With the fact that the QPFT is monitored by a bunch of free parameters, it has
evolved as an effective tool for the representation of signals. A notable consideration
has been given in the extension of the Wigner distributions to the classical QPFT and
its generalizations. More can be found in Refs. [6–9].

On the other hand, the classical ambiguity function (AF) and Wigner distribution
(WD) are the basic parametric time-frequency analysis tools, evolved for the analysis
of time-frequency characteristics of non-stationary signals [10–14]. At the same time,
the linear frequency-modulated (LFM) signal, a typical non-stationary signal, is
widely used in communications, radar and sonar system. Many algorithms and
methods have been proposed in view of LFM. The most important among them are
the AF and WD [10, 13, 15–19], defined as the Fourier transform of the classical
instantaneous autocorrelation function ω tþ τ

2

� �
ω ∗ t� τ

2

� �
for t and τ, (superscript ∗

denotes complex conjugate) respectively. It is well known that the AF offers perfect
localization (localized on a straight line) to the mono-component LFM signals but
cross terms appear while dealing with multi-component LFM signals as they are
quadratic in nature. However these cross terms become troublesome if the frequency
rate of one component approaches other. This drawback of AF gave rise to a series of
different classes of time- frequency representation tools (see [20–27]). In Ref. [28],
authors used fractional instantaneous auto-correlation ω tþ k τ

2

� �
ω ∗ t� k τ

2

� �
found in

the definition of fractional bi-spectrum [29], which is parameterized by a constant
k∈þ to introduced a scaled version of the conventional WD. Later Dar and Bhat
[30] introduced the scaled version of Ambiguity function and Wigner distribution in
the linear canonical transform domain. They also introduced scaled version of Wigner
distribution in the offset linear canonical transform [31–35], hence provides a novel
way for the improvement of the cross-term reduction time–frequency resolution and
angle resolution.

Keeping in mind the degree of freedom corresponding to the choice of a factor k in
the fractional instantaneous auto-correlation and the extra degree of freedom present
in QPFT, we introduce a novel scaled ambiguity function in the quadratic-phase
Fourier transform domain (SAFQ), which gives a unique treatment for all classical
classes of AF’s. Hence, it is good to study rigorously the SAFQ which will be effective
for signal processing theory and applications especially for detection and estimation of
LFM signals.

1.1 Paper contributions

The contributions of this paper are summarized below:

• To introduce a scaled ambiguity function associated with the quadratic-phase
Fourier transform.

• To study the fundamental properties of the SAFQ, including the conjugate
symmetry, time marginal, non-linearity, time shift, frequency shift, frequency
marginal, scaling and Moyal formula.

• To show the of advantage of the theory, we provide the applications of the
proposed distribution in the detection of single-component and bi-component
linear-frequency-modulated (LFM) signal.
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1.2 Paper outlines

The paper is organized as follows: In Section 2, we gave a brief review of QPFT and
introduce AF associated with it. The definition and the properties of the SAFQ are
studied in Section 3. In Section 4, the applications of the proposed distribution for the
detection of single-component and bi-component LMF signals is provided. Finally, a
conclusion is drawn in Section 5.

2. Preliminary

In this section, we gave the definitions of the Quadratic-phase Fourier transform
(QPFT), the ambiguity function associated with QPFT and the scaled ambiguity
function which will be needed throughout the paper.

2.1 Quadratic-phase Fourier transform (QPFT)

For a given set of parameters of Ω ¼ A, B, C, D, Eð Þ,B 6¼ 0 the quadratic-phase
Fourier transform any signal ω tð Þ is defined by [1–3]

QΩ ω½ � uð Þ ¼
ð


ω tð ÞKΩ t, uð Þdt, (1)

where the quadratic-phase Fourier kernel KΩ t, wð Þ is given by

KΩ t, uð Þ ¼
ffiffiffiffiffiffiffi
B
2πi

r
e At2þBtuþCu2þDtþEuð Þ, A,B,C,D:E∈: (2)

2.2 Ambiguity function in the quadratic-phase fourier domain (AFQ)

Authors in Refs. [7, 8] defined the AF associated with the LCT, using the same
procedure we can define the AF associated with QPFT (AFQ) as

AFQΩ
ω tð Þ τ, uð Þ ¼

ð


ω tþ τ

2

� �
ω ∗ t� τ

2

� �
KΩ τ, uð Þdt, (3)

2.3 Scaled ambiguity function

For a finite energy signal the scaled Ambiguity function (SAF) is defined as Ref. [30].

SAFω tð Þ τ, uð Þ ¼
ð


ω tþ k

τ

2

� �
ω ∗ t� τ

2

� �
e�iutdt, (4)

where k∈þ the set of positive rational numbers.

3. Scaled ambiguity function associated with quadratic-phase fourier
transform (SAFQ)

In this section, we shall introduce the notion of the scaled Ambiguity function
associated with QPFT followed by some of its basic properties.
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3.1 Definition of the scaled AFQ

Thanks to the scaled AF, we obtain obtain different expressions for the SAFQ as
follows:

SAFω tð Þ τ, uð Þ ¼
ð


ω tþ k

τ

2

� �
ω ∗ t� k

τ

2

� �
e�iutdt

¼
ð


ω tþ k

τ

2

� �
e�iu2 tþkτ2ð Þω ∗ t� τ

2

� �
e�iu2 t�kτ2ð Þdt

¼
ð


ωu tþ k

τ

2

� �
ω̂ ∗
u t� k

τ

2

� �
dt,

(5)

where

ωu tð Þ ¼ ω tð Þe�iu2t and ω̂u tð Þ ¼ ω tð Þeiu2t: (6)

On replacing the Fourier kernel in (6) with the QPFT kernel, we obtain

ωΩ
u tð Þ ¼ ω tð ÞKΩ t,

u
2

� �
and ω̂Ω

u tð Þ ¼ ω tð ÞKΩ t, � u
2

� �
: (7)

Thus, we obtain a new version of scaled AF associated with the QPFT by replacing
ωu tð Þ with ωΩ

u tð Þ and ω̂u tð Þ with ω̂Ω
u tð Þ in (5), i.e.,

SAFΩ
ω tð Þ τ, uð Þ ¼

ð


ωΩ
u tþ k

τ

2

� �
x̂Ωu

∗
t� k

τ

2

� �
dt

¼
ð


ω tþ k

τ

2

� �
KΩ tþ k

τ

2
,
u
2

� �
ω ∗ t� k

τ

2

� �
K ∗

Ω t� k
τ

2
,
�u
2

� �
dt

¼ B
2π

ð


ω tþ k

τ

2

� �
ω ∗ t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt:

(8)

With the virtue of above equation we have following definition.
Definition 3.1. The scaled Ambiguity function associated with quadratic-phase Fourier

transform of a signal 0ω tð Þ0 in L2 ð Þ with respect the real parameter set Ω ¼
A, B, C, D, Eð Þ,B 6¼ 0 is defined as

SAFΩ
ω tð Þ τ, uð Þ ¼ B

2π

ð


ω tþ k

τ

2

� �
ω ∗ t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt, (9)

where k∈þ.
It is worth to mention that if we change the parameter Ω ¼ A, B, C, D, Eð Þ in the

Definition 3.1, we have the following important deductions:

i. When the parameter Ω ¼ A=2B, �1=B, C=2B,0,0ð Þ is chosen and multiplying
the right side of (9) by �1, the SAFQ (9) yields the scaled ambiguity function
associated with linear canonical transform [30]:
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SAFΩ
ω tð Þ τ, uð Þ ¼ 1

2πB

ð


ω tþ k

τ

2

� �
ω ∗ t� k

τ

2

� �
ei

1
B Akτ�uð Þtdt: (10)

ii. For the set Ω ¼ cot ζ=2, �cscζ, cot ζ=2,0,0ð Þ,ζ 6¼ 2π and multiplying the
right side of (9) by �1 the SAFQ (9) yields the novel scaled AF associated
with fractional Fourier transform:

SAFζ
ω tð Þ t, uð Þ ¼ 1

2π sin ζ

ð


ω tþ k

θ

2

� �
ω ∗ t� k

τ

2

� �
ei k cot ζτ�ucscζð Þtð dt: (11)

iii. When the parameter is choosen as Ω ¼ 0,1,0,0,0ð Þ is chosen, the scaled AFQ
(4) boils down to the classical scaled AF given in Ref. [30]. In addition of
above if we take k ¼ 1, it reduce to classical Amniguity function.

3.2 Properties of the scaled AFOL

In this subsection, we investigate some general properties of the scaled AFQ with
their detailed proofs. These properties play vital role in signal representation. We shall
see the differences between the scaled versions and conventional ones.

Property 3.1 (symmetry property) For ω tð Þ∈L2 ð Þ, then scaled AFOL of the
signals ω ∗ tð Þ and P ω tð Þ½ � have the following forms

SAFΩ
ω tð Þ ∗ τ, uð Þ ¼ SAFΩ0

ω tð Þ �τ, �uð Þ (12)

where Ω0 ¼ �A:� B, C, �D, �Eð Þ:
and

SAFΩ
P ω tð Þ½ � τ, uð Þ ¼ �SAFΩ

ω tð Þ �τ, �uð Þ, (13)

where P ω tð Þ½ � ¼ ω �tð Þ and Ω ¼ A, B, C, �D, �Eð Þ.
Proof. From Definition 3.1, we have

SAFΩ
ω tð Þ ∗ τ, uð Þ

¼ B
2π

ð


ω ∗ tþ k

τ

2

� �
ω t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω tþ k

�τð Þ
2

� �
ω ∗ t� k

�τð Þ
2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω tþ k

�τð Þ
2

� �
ω ∗ t� k

�τð Þ
2

� �
� ei 2 �Að Þk �τð Þþ �Bð Þ �uð Þf gtþ �Dð Þk �τð Þþ �Eð Þ �uð Þ½ �dt

¼ SAFΩ0
ω tð Þ �τ, �uð Þ, where Ω0 ¼ �A:� B, C, �D, �Eð Þ:

which prove (12).
Now, we move forward to prove (13)
From (9), we have
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SAFΩ
P ω tð Þ½ � τ, uð Þ

¼ B
2π

ð


Pω tþ k

τ

2

� �
Pω ∗ t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω �t� k

τ

2

� �
ω ∗ �tþ k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω �t� k

τ

2

� �
ω ∗ �tþ k

τ

2

� �
ei 2Ak �τð ÞþB �uð Þf g �tð Þþ �Dð Þk �τð Þþ �Eð Þ �uð Þ½ �dt

¼ � B
2π

ð


ω υþ k

�τ

2

� �
ω ∗ υ� k

�τ

2

� �
ei 2Ak �τð ÞþB �uð Þf gυþ �Dð Þk �τð Þþ �Eð Þ �uð Þ½ �dυ

¼ �SAFΩ
ω tð Þ �τ, �uð Þ, Ω ¼ A, B, C, �D, �Eð Þ:

which completes the proof. □
Property 3.2 (Time shift). The SAFQ of a signal ω t� λð Þ can be expressed as:

SAFΩ
ω t�λð Þ τ, uð Þ ¼ eiλ 2AkτþBuð ÞSAFΩ

ω tð Þ τ, uð Þ: (14)

Proof. From (9), we obtain

SAFΩ
ω t�λð Þ τ, uð Þ ¼ B

2π

ð


ω t� λþ k

τ

2

� �
ω ∗ t� λ� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt:

Setting t� λ ¼ s, we have from last equation

SAFΩ
ω t�λð Þ τ, uð Þ ¼ B

2π

ð


ω sþ k

τ

2

� �
ω ∗ s� k

τ

2

� �
ei 2AkτþBuð ÞsþDkτþEu½ �ds

¼ eiλ 2AkτþBuð Þ B
2π

ð


ω sþ k

τ

2

� �
ω ∗ s� k

τ

2

� �
e
i
b akτ�uð Þsþku0τ�u du0�bw0ð Þ½ �ds

¼ eiλ 2AkτþBuð ÞSAFΩ
ω tð Þ τ, uð Þ:

Which completes the proof of (14). □
Property 3.3 (Frequency shift). The SAFQ of a signal ω tð Þeivt can be expressed as:

SAFΩ
ω tð Þeivt τ, uð Þ ¼ eivkτSAFΩ

ω tð Þ τ, uð Þ (15)

Proof. From (9), we have

SAFΩ
ω tð Þeivt τ, uð Þ ¼ B

2π

ð


ω tþ k

τ

2

� �
eiv tþkτ2ð Þω ∗ t� τ

2

� �
e�iv t�kτ2ð Þ

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω tþ k

τ

2

� �
ω ∗ t� τ

2

� �
eivkτ

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ eivkτ
B
2π

ð


ω tþ k

τ

2

� �
ω ∗ t� τ

2

� �

�ei 2AkτþBuð ÞtþDkτþEu½ �dt
¼ eivkτSAFΩ

ω tð Þ τ, uð Þ:
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Which completes the proof □
Property 3.4 (Non-linearity). Let ω tð Þ ¼ ω1 tð Þ þ ω2 tð Þ be in L2 ð Þ, then we have

SAFΩ
ω tð Þ τ, uð Þ ¼ SAFΩ

ω1 tð Þ τ, uð Þ þ SAFΩ
ω2 tð Þ τ, uð Þ þ SAFΩ

ω1,ω2
τ, uð Þ þ SAFΩ

ω2,ω1
τ, uð Þ
(16)

Proof. From Definition 3.1, we have

SAFΩ
ω tð Þ τ, uð Þ

¼ B
2π

ð


ω1 þ ω2ð Þ tþ k

τ

2

� �
ω1 þ ω2ð Þ ∗ t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω1 tþ k

τ

2

� �
þ ω2 tþ k

τ

2

� �� �h

ω1
∗ t� k

τ

2

� �
þ ω2

∗ t� k
τ

2

� �� �i
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ω1 tþ k

τ

2

� �
ω1

∗ t� k
τ

2

� �
þ ω2 tþ k

τ

2

� �
ω2

∗ t� k
τ

2

� �h

þω1 tþ k
τ

2

� �
ω2

∗ t� k
τ

2

� �
þ ω2 tþ k

τ

2

� �
ω1

∗ t� k
τ

2

� �i

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ SAFΩ
ω1

τ, uð Þ þ SAFΩ
ω2

τ, uð Þ þ SAFΩ
ω1,ω2

τ, uð Þ þ SAFΩ
ω2,ω1

τ, uð Þ:

Thus completes the proof. □
Property 3.5 (Frequency marginal property). The frequency marginal property of

SAFQ is given by

ð


SAFΩ

ω tð Þ τ, uð Þdτ ¼ 1
k
QΩ ω tð Þ½ � u

2

� �
Q ∗Ω ω tð Þ½ � �u

2

� �
(17)

Proof. From Definition 3.1, we have

ð


SAFΩ

ω tð Þ τ, uð Þdτ ¼ B
2π

ð

2
ω tþ k

τ

2

� �
ω ∗ t� τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dtdτ:

Making change of variable tþ k τ
2 ¼ s, above equation yields

ð


SAFΩ

ω tð Þ τ, uð Þdτ ¼ B
πk

ð

2
ω sð Þω ∗ 2t� sð Þei 4A s�tð ÞþBuf gtþ2D s�tð ÞþEu½ �dsdt:

Now setting 2t ¼ sþ v, we get
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ð


SAFΩ

ω tð Þ τ, uð Þdτ

¼ B
2πk

ð

2
ω sð Þω ∗ vð Þei 4A s�sþv

2ð Þ�Buf g sþv
2ð Þþ2D s�sþv

2ð ÞþEu½ �dsdv

¼ B
2πk

ð

2
ω sð Þω ∗ vð Þei 2A s�vð ÞþBuf g sþv

2ð ÞþD s�vð ÞþEu½ �dsdv

¼ B
2πk

ð

2
ω sð Þω ∗ vð Þei A s2�v2ð ÞþBu sþv

2ð ÞþD s�vð ÞþEu½ �dsdv

¼ B
2πk

ð


ω sð Þei As2þBs u

2ð ÞþC u
2ð Þ2þDsþE u

2ð Þ
� �

ds

�
ð


ω ∗ vð Þe�i Av2þBv �u

2ð ÞþC �u
2ð Þ2þDvþE �u

2ð Þ
� �

dv

¼ 1
k

ð


ω sð Þ

ffiffiffiffiffiffiffi
B
2iπ

r
ei As2þBs u

2ð ÞþC u
2ð Þ2þDsþE u

2ð Þ
� �

ds

�
ð


ω vð Þ

ffiffiffiffiffiffiffi
B
2iπ

r
ei Av2þBv �u

2ð ÞþC �u
2ð Þ2þDvþE �u

2ð Þ
� �

dv

" # ∗

¼ 1
k

ð


ω sð ÞKΩ s,

u
2

� �
ds
ð


ω vð ÞKΩ v,

�u
2

� �
dv

� � ∗

¼ 1
k
QΩ ω tð Þ½ � u

2

� �
Q ∗Ω ω tð Þ½ � �u

2

� �
:

Which completes the proof. □
Property 3.6 (Scaling property). For a signal ~ω tð Þ ¼ ffiffiffi

σ
p

ω σtð Þ the SAFQ has the
following form:

SAFΩ
~ω tð Þ τ, uð Þ ¼ SAFΩ0

ω tð Þ στ,
u
σ

� �
, (18)

where Ω0 ¼ A
σ2 , B, C,

D
σ , σE

� �
.

Proof. From (9), we have

SAFΩ
~ω tð Þ τ, uð Þ ¼ σB

2π

ð


ω σtþ σk

τ

2

� �
ω ∗ σt� σk

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt:

Setting σt ¼ η, above equation yields

SAFΩ
~ω tð Þ τ, uð Þ

¼ σB
2π

ð


ω σtþ σk

τ

2

� �
ω ∗ σt� σk

τ

2

� �
ei 2AkτþBuð ÞησþDkτþEu½ �: dη

σ

¼ σB
2π

ð


ω σtþ σk

τ

2

� �
ω ∗ σt� σk

τ

2

� �
ei 2A

σ2
k στð ÞþBu

σ

� �
ηþDkτþEu

� �
:
dη
σ

¼ B
2π

ð


ω σtþ σk

τ

2

� �
ω ∗ σt� σk

τ

2

� �
ei 2A

σ2
k στð ÞþB u

σð Þ
� �

ηþD
σk στð ÞþσE u

σð Þ
� �

:dη

¼ SAFΩ0
ω tð Þ στ,

u
σ

� �
,
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where Ω0 ¼ A
σ2 , B, C,

D
σ , σE

� �
.

This proves (18). □
Property 3.7 (Moyal formula). The Moyal formula of the SAFQ has the following form:

ð



ð


SAFΩ

ω1 tð Þ τ, uð Þ SAFΩ
ω2 tð Þ τ, uð Þ

h i ∗
dτdu ¼ B

2πk
jhω1 tð Þ, ω2 tð Þij2: (19)

Proof. From (9), we have

ð



ð


SAFΩ

ω1 tð Þ t, uð Þ SAFΩ
ω2 tð Þ t, uð Þ

h i ∗
dtdu

¼ B
2π

� �2ð



ð



ð



ð


ω1 tþ k

τ

2

� �
ω ∗
1 t� k

τ

2

� �
ω ∗
2 t0 þ k

τ

2

� �
ω2 t0 � k

τ

2

� �

�ei 2AkτþBuð ÞtþDkτþEu½ �e�i 2AkτþBuð Þt0þDkτþEu½ �dτdt0dtdu

¼ B
2π

� �2ð



ð



ð



ð


ω1 tþ k

τ

2

� �
ω ∗
1 t� τ

2

� �
ω ∗
2 tþ k

τ

2

� �
ω2 t� k

τ

2

� �

�ei 2AkτþBuð Þ t�t0ð Þdτdudtdt0

¼ B
2π

ð



ð



ð


ω1 tþ k

τ

2

� �
ω ∗
1 t� τ

2

� �
ω ∗
2 tþ k

τ

2

� �
ω2 t� k

τ

2

� �

�ei2Akτ t�t0ð Þ B
2π

ð


eiBu t�t0ð Þdu

� �
dτdtdt0

¼ B
2π

ð



ð



ð


ω1 tþ k

τ

2

� �
ω ∗
1 t� τ

2

� �
ω ∗
2 tþ k

τ

2

� �
ω2 t� k

τ

2

� �

�ei2Akτ t�t0ð Þδ t� t0ð Þdt0dτdt

¼ B
2π

ð



ð


ω1 tþ k

τ

2

� �
ω ∗
1 t� τ

2

� �
ω ∗
2 tþ k

τ

2

� �
ω2 t� k

τ

2

� �
dτdt

By making the change of variable s ¼ tþ k τ
2 , we have

ð



ð


WA,k

ω1 tð Þ t, uð Þ WA,k
ω2 tð Þ t, uð Þ

h i ∗
dτdu ¼ B

kπ

ð



ð


ω1 sð Þω ∗

1 2t� sð Þω ∗
2 sð Þω2 2t� sð Þdsdt

Now taking 2t� s ¼ v, we obtain

ð



ð


WA,k

ω1
t, uð Þ WA,k

ω2
t, uð Þ

h i ∗
dτdu ¼ B

2πk

ð



ð


ω1 sð Þω ∗

1 vð Þω ∗
2 sð Þω2 vð Þdsdv

¼ B
2πk

ð


ω1 sð Þω ∗

2 sð Þdx
� � ð


ω ∗
1 vð Þω2 vð Þdv

� �

¼ B
2πk

jhω1 tð Þ, ω2 tð Þij2:

Thus completes the proof. □
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4. Applications of the scaled AFQ

In engineering the most important research topics is the detection of LFM signals
as they are widely used in communications, information and optical systems. In this
section our main goal is to use scaled AFQ in detection of one-component and bi-
component LFM signals, respectively.

• One component LFM signal: A one-component LFM signal is chosen as

ω tð Þ ¼ ei ϑ1tþϑ2t2ð Þ (20)

where ϑ1 and ϑ2 represent the initial frequency and frequency rate of ω tð Þ, respec-
tively. Then, we obtain the SAFQ of a signal ω tð Þ as shown in the following theorem.

Theorem 4.1 The SAFQ of ω tð Þ ¼ ei ϑ1tþϑ2t2ð Þ can be presented as

SAFΩ
ω tð Þ τ, uð Þ ¼ ei k ϑ1þDð ÞτþEu½ �δ 2k ϑ2 þ Að Þτ þ Bu½ �: (21)

Proof. By Definition 3.1, we have

SAFΩ
ω tð Þ τ, uð Þ

¼ B
2π

ð


ω tþ k

τ

2

� �
ω ∗ t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ei ϑ1 tþkτ2ð Þþϑ2 tþkτ2ð Þ2
� �

e�i ϑ1 t�kτ2ð Þþϑ2 t�kτ2ð Þ2
� �

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ei ϑ1tþϑ1kτ2þϑ2t2þϑ2tkτþϑ2k

2τ2
4

� �
e�i ϑ1t�ϑ1kτ2þϑ2t2�ϑ2tkτþϑ2k

2τ2
4

� �

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ei ϑ1kτþ2ϑ2tkτþ 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ei k ϑ1þDð ÞτþEu½ �
ð


ei 2k ϑ2þAð ÞτþBu½ �tdt

¼ ei k ϑ1þDð ÞτþEu½ �δ 2k ϑ2 þ Að Þτ þ Bu½ �,

(22)

□
From above Theorem, we can conclude that the that the SAFQ of a one-component

signal (20) are able to generate impulses in τ, uð Þ plane at a straight line
Buþ 2k ϑ2 þ Að Þτð Þ ¼ 0 and is dependent on the scaling factor k and the parameter
Ω ¼ A, B, C, D, Eð Þ. Therefore, the SAFQ can be applied to the detection of one-
component LFM signals and is very useful and effective as there is choice of selecting
the scaling factor k and the parameter Ω.

• Bi-component LFM signal: Consider the following bi-component LFM signal
ω tð Þ it is well known that the bi-component LFM signal can be expressed by the
summation of two single component LFM signals, i.e.,

ω tð Þ ¼ ω1 tð Þ þ ω2 tð Þ, (23)
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where ω1 tð Þ ¼ ei ξ1tþη1t2ð Þ η1 6¼ 0ð Þ, ω2 tð Þ ¼ ei ξ2tþη2t2ð Þ η2 6¼ 0ð Þ and η1 6¼ η2: Now using
the non-linearity property (8), the SAFQ of the signal ω tð Þ given in (23) can be
computed as follows:

SAFΩ
ω tð Þ τ, uð Þ ¼ SAFΩ

ω1 tð Þþω2 tð Þ τ, uð Þ

¼ SAFΩ
ω1 tð Þ τ, uð Þ þ SAFΩ

ω2 tð Þ τ, uð Þ þ SAFΩ
ω1 tð Þ,ω2 tð Þ τ, uð Þ þ SAFΩ

ω2 tð Þ,ω1 tð Þ τ, uð Þ

¼ ei k ξ1þDð ÞτþEu½ �δ 2k η1 þ Að Þτ þ Bu½ �
þei k ξ1þDð ÞτþEu½ �δ 2k η2 þ Að Þτ þ Bu½ � þ SAFΩ

ω1 tð Þ,ω2 tð Þ τ, uð Þ þ SAFΩ
ω2 tð Þ,ω1 tð Þ τ, uð Þ:

The first two terms in last equation stands for the auto-terms of one-component
signals, whereas the rest represent the cross terms that are given by

SAFΩ
ω1 tð Þ,ω2 tð Þ t, uð Þ

¼ B
2π

ð


ω1 tþ k

τ

2

� �
ω ∗
2 t� k

τ

2

� �
ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ei ξ1 tþkτ2ð Þþη1 tþkτ2ð Þ2
� �

e�i ξ2 t�kτ2ð Þþη2 t�kτ2ð Þ2
� �

ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ð


ei ξ1tþξ1kτ2þη1t2þη1k

2τ2
4þη1tkτ

� �
e�i ξ2t�ξ2kτ2þη2t2þη2k

2τ2
4�η2tkτ

� �

�ei 2AkτþBuð ÞtþDkτþEu½ �dt

¼ B
2π

ei
η1�η2

4 k2τ2þξ1þξ2þ2D
2 kτþEu½ �

ð


ei η1�η2ð Þt2ei Buþk η1þη2þ2Að Þτþ ξ1�ξ2ð Þ½ �tdt

¼ B
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π η1 � η2ð Þp ei

η1�η2
4 k2τ2þξ1þξ2þ2D

2 kτþEu½ �e�i
Buþk η1þη2þ2Að Þt� ξ1�ξ2ð Þ½ �2

4 η1�η2ð Þ ,

similarly

SAFΩ
ω2 tð Þ,ω1 tð Þ t, uð Þ

¼ 1
kb

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π η2 � η1ð Þp ei

η2�η1
4 k2τ2þξ1þξ2þ2d

2 kτ�Eu
� �

e
�i

Buþk η2þη1þ2Að Þt� ξ2�ξ1ð Þ½ �2
4 η2�η1ð Þ :

Hence the SAFQ of a bi-component signal ω tð Þ ¼ ω1 tð Þ þ ω2 tð Þ is given by

SAFΩ
ω tð Þ τ, uð Þ ¼ SAFΩ

ω1 tð Þþω2 tð Þ τ, uð Þ
¼ ei k ξ1þDð ÞτþEu½ �δ 2k η1 þ Að Þτ þ Bu½ �
þei k ξ1þDð ÞτþEu½ �δ 2k η2 þ Að Þτ þ Bu½ �

þB
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π η1 � η2ð Þp ei

η1�η2
4 k2τ2þξ1þξ2þ2D

2 kτþEu½ �e�i
Buþk η1þη2þ2Að Þt� ξ1�ξ2ð Þ½ �2

4 η1�η2ð Þ

þ 1
kb

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π η2 � η1ð Þp ei

η2�η1
4 k2τ2þξ1þξ2þ2d

2 kτ�Eu
� �

e
�i

Buþk η2þη1þ2Að Þt� ξ2�ξ1ð Þ½ �2
4 η2�η1ð Þ :

(24)
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It is clear from (24) a that the first two auto-terms are able to generate impulses
which the cross terms cannot generate, and therefore, although the existence of cross
terms has a certain influence on the detection performance, but the bi-component
LFM signal still can be detected. This indicates that the scaled AFQ is also useful and
powerful for detecting bi-component LFM signals. Moreover for an adequate value of
k and matrix parameter Ω, the scaled AFQ benefits in cross-term reduction while
maintaining a perfect time-frequency resolution with clear auto terms angle
resolution.

5. Conclusion

Motivated by degree of freedom corresponding to the choice of a factor k in the
fractional instantaneous auto-correlation and the extra degree of freedom present in
QPFT, we proposed novel scaled AFQ. First, we studied the fundamental properties
of the proposed distributions, including the time marginal, conjugate symmetry,
non-linearity, time shift, frequency shift, frequency marginal, scaling, inverse and
Moyal formula. Finally to show the of advantage of the theory, we provided the
applications of the scaled AFQ in the detection of single-component and
bi-component linear- frequency-modulated (LFM) signal.
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Chapter 4

Analytical Expressions of Infinite
Fourier Sine and Cosine
Transform-Based Ramanujan
Integrals RS,C(m, n) in Terms of
Hypergeometric Series 2F3(�)
Showkat Ahmad Dar and M. Kamarujjama

Abstract

In this chapter, we obtain analytical expressions of infinite Fourier sine and cosine
transform-based Ramanujan integrals,

RS,C m, nð Þ ¼
ð∞
0

xm

�1þ exp 2π
ffiffiffi
x

pð Þ
sin

cos
πnxð Þdx,

in an infinite series of hypergeometric functions 2F3 �ð Þ, using the hypergeometric
technique. Also, we have given some generalizations of the Ramanujan’s integrals
RS,C m, nð Þ in the form of integrals denoted by I ∗S,C υ, b, c, λ, yð Þ,JS,C υ, b, c, λ, yð Þ,
KS,C υ, b, c, λ, yð Þ and IS,C υ, b, λ, yð Þ. These generalized definite integrals are expressed in
terms of ordinary hypergeometric functions 2F3 �ð Þ, with suitable convergence conditions.
Moreover, as applications ofRamanujan’s integralsRS,C m, nð Þ, someclosed formof infinite
summation formulas involving hypergeometric functions 1F2, 2F3 �ð Þ, and 0F1 are derived.

Keywords: generalized hypergeometric function, infinite Fourier sine and cosine
transforms, Ramanujan’s integrals, Fox-Wright psi hypergeometric function,
hypergeometric series

1. Introduction

Naturally, we call a function”special” when the function, just as the logarithm, the
exponential and trigonometric functions (the elementary transcendental functions),
belongs to the toolbox of the applied mathematician, the physicist, or the engineer.
This branch of mathematics has a good history with great names such as Gauss, Euler,
Fourier, Legendre, and Bessel. This chapter includes definitions, namely infinite Fou-
rier sine and cosine transforms, Pochhammer’s symbol and related results, generalized
Gauss hypergeometric function and its special cases, Fox-Wright hypergeometric
function and its convergence conditions, Hypergeometric form of elementary
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functions, Gauss-Legendre multiplication formula and infinite series decomposition
identity. In the literature [1–6], the analytical expressions of the Fourier sine and
cosine transforms of xυ�1n exp bxð Þ � 1ð Þ are available in terms of Riemann’s zeta
function, the Psi function (Digamma function), hyperbolic function and Beta
function. The analytical solution of the following infinite Fourier sine and cosine
transforms based Ramanujan integrals ([7], p. 85, eq. (49) last line):

RS,C m, nð Þ ¼
ð∞
0

xm

�1þ exp 2π
ffiffiffi
x

pð Þf g
sin

cos
πnxð Þdx, (1)

are not given for all positive rational values of n and non-negative integral values ofm.

2. Definitions and preliminaries

2.1 Fourier sine and cosine transforms

The infinite Fourier sine and cosine transforms of g xð Þ over the interval 0, ∞½ Þ are
defined by

FS,C g xð Þ; bð Þ ¼
ð∞
0
g xð Þ sin

cos
bxð Þdx ¼ GS,C bð Þ, b>0ð Þ: (2)

For example, if y>0, 0< Re υð Þ< 2 for Fourier sine transform of x�υ and y>0,
0< Re υð Þ< 1 for Fourier cosine transform of x�υ, then the infinite Fourier sine and
cosine transforms of x�υ ([3], p. 68) are given by

ð∞
0
x�υ sin

cos
xyð Þdx ¼ yυ�1Γ 1� υð Þ

sin

cos

υπ

2

� �
(3)

Further, if b>0, �1<ℜ sð Þ< 1 for Fourier sine transform and b>0, 0<ℜ sð Þ< 1
for Fourier cosine transform, then the infinite Fourier sine and cosine transform of
xs�1 are given by [3, 5, 8].

ð∞
0
xs�1 sin

cos
bxð Þdx ¼

Γ sð Þ
sin

cos
πs
2

� �

bs
: (4)

Moreover, if ℜ μð Þ> � 2 for Fourier sine transform and ℜ μð Þ> � 1 for Fourier
cosine transform, then we can prove the following integral by using Maclaurin’s
expansion of exp �axξ

� �
and term by term integrating with the help of the result (4)

ð∞
0
xμ exp �axξ

� � sin

cos
xyð Þdx ¼ y�μ�1

X∞
ℓ¼0

� a
yξ

� �ℓ 1
ℓ!

Γ μþ 1þ ξℓð Þ
sin

cos

π

2
μþ ξℓð Þ

n o
:

(5)

where 0< ξ< 1, a>0 and y>0. The conditions ℜ μð Þ> � 2 and ℜ μð Þ> � 1 stated
in the integrals (5) follows from the theory of analytic continuation [5, 8]. We have
also verified the conditions ℜ μð Þ> � 2 and ℜ μð Þ> � 1, using Wolfram Mathematica
software.
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2.2 Generalized gauss hypergeometric function

A natural generalization of the Gauss hypergeometric function 2F1 zð Þ is the gener-
alized hypergeometric function pFq zð Þ with p numerator parameters α1,… ,αp and q
denominator parameters β1,… ,βq defined by [9].

pFq
α1, … , αp;

β1, … , βq;
z

 !
¼
X∞
n¼0

α1ð Þn … αp
� �

n

β1ð Þn … βq

� �
n

zn

n!
, (6)

where αj ∈ j ¼ 1, … , pð Þ, βj ∈n�
0 j ¼ 1, … , qð Þ and p, q∈0. Then the

hypergeometric pFq zð Þ function in (6) converges absolutely for ∣z∣<∞ when p≤ q and
for ∣z∣< 1 when p ¼ qþ 1. Furthermore, if we set,

ω≔
Xq

j¼1

βj �
Xp

j¼1

αj

 !
, (7)

it is known that when p ¼ qþ 1 the function pFq zð Þ is absolutely convergent for
∣z∣ ¼ 1 if ℜ ωð Þ>0, conditionally convergent for ∣z∣ ¼ 1 (z 6¼ 1) if �1<ℜ ωð Þ<0 and
divergent for ∣z∣ ¼ 1 if ℜ ωð Þ≤ � 1.

2.3 Hypergeometric form of elementary functions

The important special cases of pFq zð Þ include (for example) the binomial series
1F0 zð Þ given by [9].

1� zð Þ�a¼1F0
a;
;
z

� �
¼
X∞
n¼0

að Þn
n!

zn, (8)

where ∣z∣< 1, a∈.
Elementary trigonometric functions ([10], p. 44, eq. (9) and eq. (10)) are given by

cos z¼0F1

;
1
2
;

�z2

4

0
@

1
A, (9)

sin z ¼ z0F1

;
3
2
;
�z2

4

0
@

1
A: (10)

Lommel function ([10], p. 44, eq. (13)) is given by

sμ,υ zð Þ ¼ zμþ1

μ� υþ 1ð Þ μþ υþ 1ð Þ 1F2

1;
μ� υþ 3

2
,
μþ υþ 3

2
;
�z2

4

0
@

1
A, (11)

where μ� υ∈n �1, �3, �5, �7, …f g.
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Struve function ([10], p. 44, eq. (16)) is given by

Hυ zð Þ ¼ 2 z
2

� �υþ1

ffiffiffi
π

p
Γ υþ 3

2

� � 1F2

1;
3
2
, υþ 3

2
;
�z2

4

0
@

1
A: (12)

Modified Struve function ([10], p. 45, eq. (17)) is given by

Lυ zð Þ ¼ 2 z
2

� �υþ1

ffiffiffi
π

p
Γ υþ 3

2

� � 1F2

1;
3
2
, υþ 3

2
;
z2

4

0
@

1
A: (13)

2.4 Pochhammer’s symbol

Here λð Þυ λ, υ∈ð Þ denotes the Pochhammer’s symbol (or the shifted factorial,
since 1ð Þn ¼ n!Þ is defined, in general, by [10].

λð Þυ ≔
Γ λþ υð Þ
Γ λð Þ ¼ 1, υ ¼ 0; λ∈n 0f gð Þ

λ λþ 1ð Þ… λþ n� 1ð Þ, υ ¼ n∈; λ∈ð Þ:

�
(14)

Algebraic property of Pochhammer symbol:

λð Þmþn ¼ λð Þm λþmð Þn ¼ λð Þn λþ nð Þm: (15)

2.5 Gauss-Legendre multiplication formula

For every positive integer m ([10], p. 22, eq. (26)), we have

λð Þmn ¼ mmn
Ym
j¼1

λþ j� 1
m

� �

n
;m∈,n∈0: (16)

From the above result (16) with λ ¼ mz, it can be proved that

Γ mzð Þ ¼ 2πð Þ 1�mð Þ
2 mmz�1

2

Ym
j¼1

Γ zþ j� 1
m

� �
, (17)

where z 6¼ 0,� 1
m ,� 2

m ,:… ;m∈.
The eq. (17) is known as Gauss-Legendremultiplication formula for Gamma function.

2.6 Legendre’s duplication formula

When we put m ¼ 2 in the eq. (17), we get

ffiffiffi
π

p
Γ 2zð Þ ¼ 22z�1Γ zð ÞΓ zþ 1

2

� �
, 2z∈n�

0 , (18)

which is known as Legendre’s duplication formula.
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2.7 Infinite series decomposition identity

An infinite series decomposition identity ([11], p. 193, eq. (8)) is given by

X∞
ℓ¼0

Ω ℓð Þ ¼
XN�1

j¼0

X∞
ℓ¼0

Ω Nℓþ jð Þ
( )

, (19)

where N is an arbitrary positive integer. Put N ¼ 4 in the above eq. (19), we get

X∞
ℓ¼0

Ω ℓð Þ ¼
X3
j¼0

X∞
ℓ¼0

Ω 4ℓþ jð Þ
( )

, (20)

¼
X∞
ℓ¼0

Ω 4ℓð Þ þ
X∞
ℓ¼0

Ω 4ℓþ 1ð Þ þ
X∞
ℓ¼0

Ω 4ℓþ 2ð Þ þ
X∞
ℓ¼0

Ω 4ℓþ 3ð Þ, (21)

provided that all involved infinite series are absolutely convergent.

2.8 Fox-Wright psi function of one variable

A natural generalization of the hypergeometric function pFq zð Þ is the Fox-Wright
psi function of one variable with p pairs of numerator parameters α1, A1ð Þ,… , αp, Ap

� �

and q pairs of denominator parameters β1, B1ð Þ,… , βq, Bq

� �
, defined by [12, 13].

pΨq

α1, A1ð Þ, … , αp, Ap
� �

;

β1, B1ð Þ, … , βq, Bq

� �
;

z

2
4

3
5 ¼

X∞

k¼0

Γ α1 þ kA1ð Þ…Γ αp þ kAp
� �

Γ β1 þ kB1ð Þ…Γ βq þ kBq

� � zk

k!
, (22)

¼ 1
2πρ

ð

L

Γ ζð ÞQp
i¼1Γ αi � Aiζð Þ

Qq
j¼1Γ βj � Bjζ

� � �zð Þ�ζdζ, (23)

where ρ ¼ ffiffiffiffiffiffi�1
p

,z∈; parameters αi, βj ∈; coefficients Ai, Bj ∈ ¼ �∞, þ∞ð Þ in
case of series (22) (or Ai, Bj ∈þ ¼ 0, þ∞ð Þ in case of contour integral (23)),
Ai 6¼ 0 i ¼ 1, 2, … , pð Þ,Bj 6¼ 0 j ¼ 1, 2, … , qð Þ. In eq. (22), the parameters αi, βj and
coefficients Ai, Bj are adjusted in such a way that the product of Gamma functions in
numerator and denominator should be well defined.

Suppose:

Δ ∗ ¼
Xq

j¼1

Bj �
Xp

i¼1

Ai

 !
, (24)

δ ∗ ¼
Yp

i¼1

jAij�Ai

 ! Yq

j¼1

jBjjBj

 !
, (25)

μ ∗ ¼
Xq

j¼1

βj �
Xp

i¼1

αi þ p� q
2

� �
, (26)

and
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σ ∗ ¼ 1þ A1 þ … þ Ap
� �� B1 þ … þ Bq

� � ¼ 1� Δ ∗ : (27)

Then we have the following convergence conditions of (22) or (23).
Case (1): When contour Lð Þ is a left loop beginning and ending at �∞, then pΨq �½ �

given by (22) or (23) holds the following convergence conditions.

i. When Δ ∗ > � 1, 0< ∣z∣<∞, z 6¼ 0.

ii. When Δ ∗ ¼ �1, 0< ∣z∣< δ ∗ .

iii. When Δ ∗ ¼ �1,∣z∣ ¼ δ ∗ , and ℜ μ ∗ð Þ> 1
2.

Case (2):When contour Lð Þ is a right loop beginning and ending at þ∞, then pΨq �½ �
given by (22) or (23) holds the following convergence conditions.

i. When Δ ∗ < � 1, 0< ∣z∣<∞,z 6¼ 0.

ii. When Δ ∗ ¼ �1, ∣z∣> δ ∗ .

iii. When Δ ∗ ¼ �1,∣z∣ ¼ δ ∗ , and ℜ μ ∗ð Þ> 1
2.

Case (3): When contour Lð Þ is starting from γ � i∞ and ending at γ þ i∞ where
γ ∈ ¼ �∞, þ∞ð Þ, then pΨq �½ � is also convergent under the following conditions.

i. When σ ∗ >0, ∣arg �zð Þ∣< π
2 σ

∗ , 0< ∣z∣<∞,z 6¼ 0.

ii. When σ ∗ ¼ 0, arg �zð Þ ¼ 0, 0< ∣z∣<∞,z 6¼ 0 such that�γΔ ∗ þℜ μ ∗ð Þ> 1
2 þ γ.

iii. When γ ¼ 0, σ ∗ ¼ 0,arg �zð Þ ¼ 0, 0< ∣z∣<∞,z 6¼ 0, such that ℜ μ ∗ð Þ> 1
2.

In the available literature [7, 14–18] on Ramanujan’s Mathematics, the analytical
expression of Ramanujan’s integrals RS,C m, nð Þ are not given. Therefore, the main
object of this chapter is to evaluate the representation of RS,C m, nð Þ in an ordinary
hypergeometric function 2F3 �ð Þ. Also, our contribution to Ramanujan’s Mathematics is
determined by the result in [19, 20]. Here in this chapter, we generalize Ramanujan’s
integrals RS,C m, nð Þ in the following forms:

I ∗S,C υ, b, c, λ, yð Þ ¼
X∞

k¼0

Θ kð Þ
k!

ð∞
0
xυ�1e� λbþckð Þ ffiffixp sin

cos
xyð Þdx,

JS,C υ, b, c, λ, yð Þ ¼
ð∞
0
xυ�1e�bλ

ffiffi
x

p
rΨs

α1, A1ð Þ, … , αr, Arð Þ;
β1, B1ð Þ, … , βs, Bsð Þ; e�c

ffiffi
x

p� �
sin

cos
xyð Þdx,

KS,C υ, b, c, λ, yð Þ ¼
ð∞
0
xυ�1e�bλ

ffiffi
x

p
rFs

α1, … , αr;

β1, … , βs;
e�c

ffiffi
x

p� �
sin

cos
xyð Þdx,

IS,C υ, b, λ, yð Þ ¼
ð∞
0
xυ�1 �1þ exp b

ffiffiffi
x

p� �� ��λ sin

cos
xyð Þdx,
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where Θ kð Þf g∞k¼0 is a fixed sequence of the arbitrary real or complex numbers.
Moreover, we also show how the main general theorem given below applies to
obtaining new interesting results by suitable adjustments in parameters and variables.

3. Ramanujan’s integrals

The analytical solution of the following integral of Ramanujan ([7], p. 85, eq. (49)
last line):

RC m, nð Þ ¼
ð∞
0
xm

cos πnxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx, (28)

is not given for all positive rational values of n and non-negative integral values ofm.
For particular values of m and n in Ramanujan’s integral RC m, nð Þ, the following

three integrals are given by ([7], p. 86, eq. (50)):

RC 1, 1=2ð Þ ¼
ð∞
0

x cos πx
2

� �
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 13� 4π
8π2

, (29)

RC 1, 2ð Þ ¼
ð∞
0

x cos 2πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 1
64

1
2
� 3
π
þ 5
π2

� �
, (30)

RC 2, 2ð Þ ¼
ð∞
0

x2 cos 2πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 1
256

1� 5
π
þ 5
π2

� �
: (31)

The following theorem is proved by Ramanujan ([7], p. 76, 77, eq. (10 and 100)).
Theorem 1.3.1. Let n be real and positive. Then if

RC 0, nð Þ ¼ Φ nð Þ ¼
ð∞
0

cos πnxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx, (32)

and

ϒ nð Þ � 1
2πn

¼
ð∞
0

sin πnxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ RS 0, nð Þ, (33)

then

RC 0, nð Þ ¼ Φ nð Þ ¼ 1
n

ffiffiffiffiffiffiffiffiffiffi
2
n

� �s
ϒ

1
n

� �
� ϒ nð Þ, (34)

and

ϒ nð Þ ¼ 1
n

ffiffiffiffiffiffiffiffiffiffi
2
n

� �s
Φ

1
n

� �
þΦ nð Þ, (35)

For particular values of n, some values of Ramanujan’s integral ([7], p. 85 (eq. 48))
are given below
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RC 0, 1ð Þ ¼ Φ 1ð Þ ¼
ð∞
0

cos πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 2� ffiffiffi
2

p

8
, (36)

RC 0, 2ð Þ ¼ Φ 2ð Þ ¼
ð∞
0

cos 2πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 1
16

, (37)

RC 0, 4ð Þ ¼ Φ 4ð Þ ¼
ð∞
0

cos 4πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 3� ffiffiffi
2

p

32
, (38)

RC 0, 6ð Þ ¼ Φ 6ð Þ ¼
ð∞
0

cos 6πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 13� 4
ffiffiffi
3

p

144
, (39)

RC 0, 1=2ð Þ ¼ Φ
1
2

� �
¼
ð∞
0

cos πx
2

� �
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 1
4π

, (40)

RC 0, 2=5ð Þ ¼ Φ
2
5

� �
¼
ð∞
0

cos 2πx
5

� �

�1þ exp 2π
ffiffiffi
x

pð Þf g dx ¼ 8� 3
ffiffiffi
5

p

16
: (41)

By calculation of (7) and (9), we get the following infinite fourier sine transform of
�1þ exp 2π

ffiffiffi
x

pð Þ
ð∞
0

sin πnxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ 1
n

ffiffiffiffiffiffiffiffiffiffi
2
n

� �s
Φ

1
n

� �
þΦ nð Þ � 1

2πn
: (42)

For special values of n ¼ 1,2, 12 in the above eq. (16) and using Φ 1ð Þ,Φ 2ð Þ and Φ 1
2

� �
,

we get after simplification the following three results:

RS 0, 1ð Þ ¼
ð∞
0

sin πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ π
ffiffiffi
2

p � 4
8π

, (43)

RS 0, 2ð Þ ¼
ð∞
0

sin 2πxð Þ
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ π � 2
16π

, (44)

RS 0, 1=2ð Þ ¼
ð∞
0

sin πx
2

� �
�1þ exp 2π

ffiffiffi
x

pð Þf g dx ¼ π � 3
4π

: (45)

4. Main general theorems on infinite Fourier sine and cosine transform

In this section, we give some generalizations of the infinite Fourier sine and cosine
transform-based Ramanujan integrals RS,C �ð Þ in the form of infinite series of
hypergeometric functions 2F3 �ð Þ. Moreover, we denote these generalizations by I ∗S,C �ð Þ,
JS,C �ð Þ, KS,C �ð Þ and IS,C �ð Þ [21, 22].

Theorem 1.4.1. Suppose Θ kð Þf g∞k¼0 is a fixed sequence of arbitrary real or complex
numbers and satisfy the conditions ℜ υð Þ> � 1,c>0,y>0; λ>0,b>0 or λ<0, b<0ð Þ.

then we have

I ∗S,C υ, b, c, λ, yð Þ ¼
X∞

k¼0

Θ kð Þ
k!

ð∞
0
xυ�1e� λbþckð Þ ffiffixp sin

cos
xyð Þdx,

(46)

56

Time Frequency Analysis of Some Generalized Fourier Transforms



¼ y�υ
X∞

k¼0

Θ kð Þ
k!

X∞
ℓ¼0

�1ð Þℓ λbþ ckð ÞℓΓ υþ ℓ
2

� �

yℓ
2 ℓ!

sin

cos
υπ

2
þ ℓπ

4

� �
, (47)

Now replacing ℓ by 4ℓþ j, after simplification we get

I ∗S,C υ, b, c, λ, yð Þ ¼ y�υ
X∞

k¼0

Θ kð Þ
k!

X3
j¼0

�1ð Þj λbþ ckð Þj Γ υþ j
2

� �

y
j
2 j!

sin

cos

υπ

2
þ jπ

4

� �

�2F3
Δ 2;

2υþ j
2

� �
;

Δ ∗ 4; 1þ jð Þ;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4
0
B@

1
CA,

(48)

¼ y�υ
X∞

k¼0

Θ kð Þ
k!

X3
j¼0

�1ð ÞjΓ υþ j
2

� �

j!

sin

cos

υπ

2
þ jπ

4

� �
λbffiffiffiyp

 !j

�
λbþc
c

� �
k

λb
c

� �
k

( )j

2F3
Δ 2;

2υþ j
2

� �
;

Δ ∗ 4; 1þ jð Þ;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4
0
B@

1
CA,

(49)

¼
Γ υð Þ

sin

cos

υπ

2

� �

yυ
X∞

k¼0

Θ kð Þ
k! 2F3

υ

2
,
υþ 1
2

;

1
4
,
1
2
,
3
4
;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA

�
λbð ÞΓ υþ 1

2

� � sin

cos

υπ

2
þ π

4

� �

yυþ1
2

X∞

k¼0

Θ kð Þ
k!

λbþc
c

� �
k

λb
c

� �
k

( )

�2F3

2υþ 1
4

,
2υþ 3

4
;

1
2
,
3
4
,
5
4

;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA

þ
λbð Þ2Γ υþ 1ð Þ

sin

cos

υπ

2

� �

2yυþ1

X∞

k¼0

Θ kð Þ
k!

λbþc
c

� �
k

λb
c

� �
k

( )2

�2F3

υþ 1
2

,
υþ 2
2

;

3
4
,
5
4
,
3
2

;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA

�
λbð Þ3Γ υþ 3

2

� � sin

cos

υπ

2
þ π

4

� �

6yυþ3
2

X∞

k¼0

Θ kð Þ
k!

λbþc
c

� �
k

λb
c

� �
k

( )3

�2F3

2υþ 3
4

,
2υþ 5

4
;

5
4
,
3
2
,
7
4

;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA:

(50)
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Our result (30)or (31) or (32) is convergent in view of the convergence condition
of pFq �ð Þ series, when p≤ q, and ∀∣z∣<∞.

Proof: The result (29) is obtained by the application of the integral (49) [with
substitutions μ ¼ υ� 1, a ¼ λbþ ck, ξ ¼ 1

2] in the R.H.S. of eq. (28). Also, we calculate
the results (30) to (32) by using the infinite series decomposition identity (20) and
(21) and algebraic properties of Pochhammer’s symbols.

4.1 Analytical expressions of infinite Fourier sine and cosine transforms

Theorem 1.4.2. Analytical expressions of the infinite Fourier sine and cosine transforms
of xυ�1e�bλ

ffiffi
x

p
rΨs �½ � holds true for ℜ υð Þ> � 1; c>0,y>0; λ>0,b>0 or λ<0, b<0ð Þ then

we have

JS,C υ, b, c, λ, yð Þ ¼
ð∞
0
xυ�1e�bλ

ffiffi
x

p
rΨs

α1, A1ð Þ, … , αr, Arð Þ;
β1, B1ð Þ, … , βs, Bsð Þ; e�c

ffiffi
x

p� �
sin

cos
xyð Þdx,

(51)

¼ y�υ
X∞

k¼0

Γ α1 þ kA1ð Þ…Γ αr þ kArð Þ
Γ β1 þ kB1ð Þ…Γ βs þ kBsð Þk!

X3
j¼0

�1ð Þj λbþ ckð Þj Γ υþ j
2

� �

y
j
2 j!

�

�
sin

cos

υπ

2
þ jπ

4

� �
2F3

Δ 2;
2υþ j
2

� �
;

Δ ∗ 4; 1þ jð Þ;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA,

(52)

Here the parameters αi, βj ∈ and coefficients Ai, Bj ∈ ¼ �∞, þ∞ð Þ;Ai 6¼
0 i ¼ 1, 2, … , rð Þ, Bj 6¼ 0 j ¼ 1, 2, … , sð Þ and rΨs �½ � is the Fox-Wright psi function of
one variable subject to suitable convergence conditions derived from conditions
discussed in case (1) or case (2) or case (3) of the function pΨq �½ � given by (22) and (23).
When N is positive integer then Δ N; λð Þ denotes the array of N parameters given by
λ
N , λþ1

N ,… , λþN�1
N . When N and j are independent variables then the notation Δ N; jþ 1ð Þ

denotes the set of N parameters given by jþ1
N , jþ2

N ,… , jþN
N . When j is dependent variable

that is j ¼ 0,1,2,3,… ,N � 1, then the asterisk inΔ ∗ N; jþ 1ð Þ represents the fact that the
(denominator) parameters N

N is always omitted (due to the need of factorial in denom-
inator in the power series form of hypergeometric function) so that the set Δ ∗ N; jþ 1ð Þ
obviously contains only N � 1ð Þ parameters ([10], Chap. 3, p. 214).

Proof: Let us consider Θ kð Þ ¼ Γ α1þkA1ð Þ…Γ αrþkArð Þ
Γ β1þkB1ð Þ…Γ βsþkBsð Þ k ¼ 0,1,2,3, …ð Þ in the eqs. (28)

and (30), then after evaluation we get integral expressions (33) involving the Fox-
Wright Psi function in the form of infinite series of an ordinary 2F3 hypergeometric
function (34).

Theorem 1.4.3. Analytical expressions of the infinite Fourier sine and cosine transforms
of xυ�1e�bλ

ffiffi
x

p
rFs �ð Þ holds true for ℜ υð Þ> � 1; c>0,y>0; λ>0,b>0 (or λ<0,b<0) then

we have

KS,C υ, b, c, λ, yð Þ ¼
ð∞
0
xυ�1e�bλ

ffiffi
x

p
rFs

α1, … , αr;

β1, … , βs;
e�c

ffiffi
x

p� �
sin

cos
xyð Þdx, (53)
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¼ y�υ
X∞

k¼0

α1ð Þk… αrð Þk
β1ð Þk … βsð Þk k!

X3
j¼0

�1ð Þj λbþ ckð Þj Γ υþ j
2

� �

y
j
2 j!

sin

cos

υπ

2
þ jπ

4

� �

�2F3

Δ 2;
2υþ j
2

� �
;

Δ ∗ 4; 1þ jð Þ;

�1
64y2

λbð Þ λbþc
c

� �
k

λb
c

� �
k

( )4

0
BB@

1
CCA,

(54)

where the parameters αi, βj ∈ i ¼ 1, 2, … , rð Þ, j ¼ 1, 2, … , sð Þ and r≤ sþ 1.
Proof: If A1 ¼ … ¼ Ar ¼ B1 ¼ … ¼ Bs ¼ 1 in (33) and (34), then we get the above

integral expressions involving generalized hypergeometric function in the form of
infinite series of an ordinary 2F3 hypergeometric function (36).

Corollary 1.4.4. An infinite Fourier sine and cosine transforms of
xυ�1 �1þ exp b

ffiffiffi
x

pð Þf g�λ holds true for ℜ υð Þ> � 1; λ>0,b>0 and y>0 then we have

IS,C υ, b, λ, yð Þ ¼
ð∞
0

xυ�1

�1þ exp b
ffiffiffi
x

pð Þf gλ
sin

cos
xyð Þdx, (55)

¼ y�υ
X∞

k¼0

λð Þk
k!

X∞
ℓ¼0

�1ð Þℓ λbþ bkð ÞℓΓ υþ ℓ
2

� �

yℓ
2 ℓ!

sin

cos
υπ

2
þ ℓπ

4

� �
, (56)

¼ y�υ
X∞

k¼0

λð Þk
k!

X3
j¼0

�1ð Þj λbþ bkð Þj Γ υþ j
2

� �

y
j
2 j!

sin

cos

υπ

2
þ jπ

4

� �
�

�2F3

Δ 2;
2υþ j
2

� �
;

Δ ∗ 4; 1þ jð Þ;

�1
64y2

λbð Þ λþ 1ð Þk
λð Þk

� �4

0
BB@

1
CCA,

(57)

¼

Γ υð Þ
sin

cos

υπ

2

� �

yυ
X∞

k¼0

λð Þk
k! 2F3

υ

2
,
υþ 1
2

;

1
4
,
1
2
,
3
4
;

�1
64y2

λbð Þ λþ 1ð Þk
λð Þk

� �4

0
BB@

1
CCA

�
λbð ÞΓ υþ 1

2

� � sin

cos

υπ

2
þ π

4

� �

yυþ1
2

X∞

k¼0

λþ 1ð Þk
k! 2F3

2υþ 1
4

,
2υþ 3

4
;

1
2
,
3
4
,
5
4
;

�1
64y2

λbð Þ λþ 1ð Þk
λð Þk

� �4

0
BB@

1
CCA

þ
λbð Þ2Γ υþ 1ð Þ

sin

cos

υπ

2

� �

2yυþ1

X∞

k¼0

λþ 1ð Þk
� �2

λð Þk k! 2F3

υþ 1
2

,
υþ 2
2

;

3
4
,
5
4
,
3
2
;

�1
64y2

λbð Þ λþ 1ð Þk
λð Þk

� �4

0
BB@

1
CCA

�
λbð Þ3Γ υþ 3

2

� � sin

cos

υπ

2
þ π

4

� �

6yυþ3
2

X∞

k¼0

λþ 1ð Þk
� �3
k! λð Þk
� �2 2F3

2υþ 3
4

,
2υþ 5

4
;

5
4
,
3
2
,
7
4
;

�1
64y2

λbð Þ λþ 1ð Þk
λð Þk

� �4

0
BB@

1
CCA,

(58)
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Proof: If we consider Θ kð Þ ¼ λð Þk and c ¼ b in (28), which yields

IS,C υ, b, λ, yð Þ ¼
ð∞
0
xυ�1e� λbð Þ ffiffixp X∞

k¼0

λð Þk
k!

e� bkð Þ ffiffixp
( )

sin

cos
xyð Þdx: (59)

Upon the use of binomial expansion (52) in the above eq. (41), then we get after
evaluation (37). The results (38) to (40) are derived from (29) to (32) by putting
Θ kð Þ ¼ λð Þk and c ¼ b.

Corollary 1.4.5. Analytical expressions of the Ramanujan’s integrals RS, C m, nð Þ holds
true for non-negative integer m and positive rational number n [21, 22].

RS,C m, nð Þ ¼
ð∞
0

xm

�1þ exp 2π
ffiffiffi
x

pð Þf g
sin

cos
πnxð Þdx,

¼ nπð Þ�m�1
X∞

k¼0

X∞
ℓ¼0

1
ℓ!

� 2π þ 2πkð Þffiffiffiffiffiffi
nπ

p
� �ℓ

Γ mþ 1þ ℓ
2

� � sin

cos

mπ

2
þ ℓπ

4

� �
,

(60)

¼ nπð Þ�m�1
X∞

k¼0

X3
j¼0

1
j!

� 2π þ 2πkð Þffiffiffiffiffiffi
nπ

p
� �j

Γ mþ 1þ j
2

� � sin

cos

mπ

2
þ jπ

4

� �
�

�2F3

Δ 2;
2mþ jþ 2

2

� �
;

Δ ∗ 4; 1þ jð Þ;

�π2

4n2
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA,

(61)

¼
m!

sin

cos

mπ

2

� �

nπð Þmþ1

X∞

k¼0
2F3

mþ 1
2

,
mþ 2

2
;

1
4
,
1
2
,
3
4

;

� π2

4n2
2ð Þk
1ð Þk

� �4

0
BBB@

1
CCCA

�
3
2

� �
m

sin

cos

mπ

2
þ π

4

� �

πð Þm nð Þmþ3
2

X∞

k¼0

2ð Þk
1ð Þk

� �
2F3

2mþ 3
4

,
2mþ 5

4
;

1
2
,
3
4
,
5
4

;

�π2

4n2
2ð Þk
1ð Þk

� �4

0
BBB@

1
CCCA

�
2ð Þ mþ 1ð Þ!

sin

cos

mπ

2

� �

πð Þm nð Þmþ2

X∞

k¼0

2ð Þk
1ð Þk

� �2

2F3

mþ 2
2

,
mþ 3

2
;

3
4
,
5
4
,
3
2

;

�π2

4n2
2ð Þk
1ð Þk

� �4

0
BBB@

1
CCCA

þ
5
2

� �
m

sin

cos

mπ

2
þ π

4

� �

πð Þm�1 nð Þmþ5
2

X∞

k¼0

2ð Þk
1ð Þk

� �3

2F3

2mþ 5
4

,
2mþ 7

4
;

5
4
,
3
2
,
7
4

;

�π2

4n2
2ð Þk
1ð Þk

� �4

0
BBB@

1
CCCA,

(62)
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Proof: The results (42) to (44) are obtained from (37), (38), (39) and (40) by
putting υ ¼ mþ 1,b ¼ 2π, λ ¼ 1 and y ¼ nπ.

5. Closed form infinite summation formulas

We have derived some closed forms of infinite summation formulas involving
hypergeometric functions 0F1, 1F2, and 2F3 [21, 22].

X∞

k¼0
1F2

1 ;

1
4
,

3
4
;

�π2

4
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75 πffiffiffi

2
p
X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�π2

4
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75

þ π2ffiffiffi
2

p
X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

4
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75 ¼ π

ffiffiffi
2

p � 4
8

,

(63)

X∞

k¼0
1F2

1 ;

1
4
,

3
4
;

�π2

16
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75� π

2

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�π2

16
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75

þ π2

4

X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

16
2ð Þk
1ð Þk

� �4

0
B@

1
CA

2
64

3
75 ¼ π � 2

8
,

(64)

X∞

k¼0
1F2

1 ;

1
4
,

3
4
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5� π

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ2π2
X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ π � 3

8
:

(65)

X∞

k¼0
2F3

1,
3
2

;

1
4
,

1
2
,

3
4
;

� π2
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

� 3π
2

X∞

k¼0

2ð Þk
1ð Þk

� �
1F2

7
4

;

1
2
,

3
4
;

� π2
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

þ5π2
X∞

k¼0

2ð Þk
1ð Þk

� �3

1F2

9
4

;

5
4
,

3
2
;

� π2
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775 ¼ 1

32
4π � 13ð Þ,

(66)
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X∞

k¼0
2F3

1,
3
2

;

1
4
,

1
2
,

3
4
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

� 3π
4

X∞

k¼0

2ð Þk
1ð Þk

� �
1F2

7
4

;

1
2
,

3
4
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

þ 5π2

8

X∞

k¼0

2ð Þk
1ð Þk

� �3

1F2

9
4

;

5
4
,

3
2
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775 ¼ π2

16
3
π
� 1
2
� 5
π2

� �
,

(67)

X∞

k¼0

2ð Þk
1ð Þk

� �
2F3

7
4
,

9
4

;

1
2
,

3
4
,

5
4
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

� 16
5

X∞

k¼0

2ð Þk
1ð Þk

� �2

2F3

2,
5
2

;

3
4
,

5
4
,

3
2
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775

þ 7π
6

X∞

k¼0

2ð Þk
1ð Þk

� �3

2F3

9
4
,

11
4

;

5
4
,

3
2
,

7
4
;

�π2

16
2ð Þk
1ð Þk

� �4

0
BB@

1
CCA

2
664

3
775 ¼ π2

60
5
π
� 5
π2

� 1
� �

,

(68)

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

� π2

4
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

�2
ffiffiffi
2

p X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

�π2

4
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þπ
X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

4
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼

ffiffiffi
2

p � 1
4

,

(69)

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

�2
X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

�π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ π

2

X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ 1

4
,

(70)
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X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�π2

64
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

�
ffiffiffi
2

p X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

�π2

64
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ π

4

X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

64
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ 3

ffiffiffi
2

p � 2
4

,

(71)

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�π2

144
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

� 2
ffiffiffi
3

p

3

X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

�π2

144
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ π

6

X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�π2

144
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ 13

ffiffiffi
3

p � 12
12

,

(72)

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

�4
X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ2π
X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

� π2
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ 1

8π
,

(73)

X∞

k¼0

2ð Þk
1ð Þk

� �
0F1

;

1
2
;

�25π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

�2
ffiffiffi
5

p X∞

k¼0

2ð Þk
1ð Þk

� �2

1F2

1;

3
4
,

5
4
;

�25π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5

þ 5π
2

X∞

k¼0

2ð Þk
1ð Þk

� �3

0F1

;

3
2
;

�25π2

16
2ð Þk
1ð Þk

� �4
0
@

1
A

2
4

3
5 ¼ 8

ffiffiffi
5

p � 15
100

:

(74)

Proof: When m ¼ 0 with n ¼ 1,2, 12 in the eqs. (42) to (44) and comparing with the
eqs. (17), (18), and (19), we get the results (46), (47) and (48) respectively. In view
of the hypergeometric functions (70), (71) and (72), we can express the above results
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(46) to (48) in terms of cosine, sine and Lommel functions. Our results (46) to (48)
are convergent in view of the convergence condition of pFq �ð Þ series, when p≤ q, and
for all ∣z∣<∞.

Similarly, we derive (49) to (51) by putting m ¼ 1, n ¼ 1
2; m ¼ 1, n ¼ 2 and m ¼

2, n ¼ 2 in the eqs. (42) and (44) and finally comparing with (3), (4) and (5). When
m ¼ 0 with n ¼ 1,2,4,6, 12 ,

2
5 in the eqs. (42) and (44) and comparing with (10) to (15),

we get the rest of results (52) to (57) respectively. In view of the hypergeometric
functions (53), (54) and (55), we can express the above results (52) to (57) in terms of
cosine, sine and Lommel functions. Our results (49) to (57) are convergent in view of
the convergence condition of pFq �ð Þ series, when p≤ q, and for all ∣z∣<∞.

6. Concluding remarks

We have derived analytical expressions of the infinite Fourier sine and cosine
transforms related to Ramanujan’s integrals as an infinite sum of ordinary
hypergeometric functions 2F3, with suitable convergence conditions. Moreover, as
applications of Ramanujan’s integrals RS m, nð Þ, some closed form infinite summation
formulas associated with hypergeometric functions 1F2, 2F3 and 0F1 are evaluated. It is
hoped that other such integrals can also be evaluated in a similar way. We conclude by
remarking that various new results and applications can be obtained from our general
theorem by appropriate choice of the parameters υ,λ,b,c,y and fixed sequence
Θ kð Þf g∞k¼0 in I ∗C υ, b, c, λ, yð Þ.
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Chapter 5

Perspective Chapter:
Cascaded-Resonator-Based
Recursive Harmonic Analysis
Miodrag D. Kušljević

Abstract

It is well known that recursive algorithms for harmonic analysis have better
characteristics in terms of monitoring the change of the spectrum in comparison to
methods based on the processing of blocks of consecutive samples, such as, for exam-
ple, discrete Fourier transform (DFT). This property is particularly important when
applying spectral estimation in real-time systems. One of the recursive algorithms is
the resonator-based one. The approach of the parallel cascades of multiple resonators
(MR) with the common feedback has been generalized as the cascaded-resonator
(CR)-based structure for recursive harmonic analysis. The resulting filters of the CR
structure can be finite impulse response (FIR) type or the infinite impulse response
(IIR) ones as a computationally more efficient solution, optimizing the frequency
responses of all harmonics simultaneously. In the case of the IIR filter, the unit
characteristic polynomial present in the FIR filter is replaced with an optimized
characteristic polynomial of the transfer function. Such a change does not lead to an
increase in computing requirements and changes only the resonator gain values. By
using a conveniently linearized iterative algorithm for stability control purpose, based
on the Rouche’s theorem, the iterative linear-programming-based or the constrained
linear least-squares (CLLS) optimization techniques can be used.

Keywords: cascaded-resonator (CR)-based filter, constrained linear least squares
(CLLS), discrete Fourier transformation (DFT), Taylor-Fourier transformation
(TFT), harmonic analysis, IIR filter, linear programming (LP), multiple-resonator
(MR)-based filter

1. Introduction

In recent years, a lot of various algorithms for harmonic analysis have been pro-
posed in the literature. Good surveys of some techniques are presented in Refs. [1, 2].
The discrete Fourier transform (DFT)-based method, as a mainstream approach, is
widely used for harmonic analysis, thanks to its low computational burden, especially
with the fast Fourier transform (FFT). However, errors arise when the power system
is operating at off-nominal frequency, especially under dynamic conditions.
Harmonic estimates under oscillating conditions were recently proposed in several
studies. A huge volume of papers has been written on harmonics tracking in power
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systems. The focus of recent literature has been on preprocessing and postprocessing
methods for fixed-sample-rate algorithms surrounding a core DFT (or similar) analy-
sis with a fixed number of samples [3, 4].

Idea of considering a dynamic model to better estimate the fundamental and
harmonic phasors has been emerging in Refs. [4–9], and its importance has been
pointed out in Ref. [10]. In Ref. [9], the discrete Taylor-Fourier transform (TFT)
was proposed as an extension of the full DFT. The TFT by using a dynamic model
of the signal extends and improves estimations obtained by DFT [9, 11]. This trans-
formation corresponds to an FIR filter bank with a maximally flat frequency response.
Each filter in the bank has maximum flat gain around the harmonic frequency and
near-ideal attenuation around the other harmonics. This results in less distortion of
the signal and less influence of disturbances present in the signal. In this way, the
periodicity restriction assumed by the Fourier analysis is mitigated. As result, so
obtained reconstruction is more accurate than the reconstruction obtained through
DFT. When harmonics are narrow-band pass signals with spectral density confined
into the flat-gain harmonic intervals, the coefficients of the TFT provide good
estimates of the first derivatives of their complex envelopes. The digital TFT
formulation in a matrix form that facilitates its implementation with the FFT to
reduce the computational complexity of its straightforward implementation has
been given in [11].

The multiple-resonator (MR)-based recursive estimators have been introduced in
Ref. [12]. In Ref. [13], the MR-based observer structure is proposed for the imple-
mentation of TFT. Their good properties are provided by their parallel form, a recur-
sive implementation, and good sensitivity properties assured by the infinite loop gain
at the resonator frequencies [14]. Multiple zeros also provide reinforcing of the
required attenuations and zero-gain flatness at the harmonic components with a high
overall attenuation in the stopbands. For the known frequency of the periodic signal,
the estimator based on resonators with common feedback enables the estimation of
Fourier components even in cases when the sampling rate is not synchronized with
the signal frequency. Also, this harmonic analyzer shows robustness in real
conditions where there is noise and nonlinearity of the analog part of the equipment.
MR-based harmonic analysis provides better performances of the spectral estimation
than the single-resonator-based observer that corresponds to the classical DFT
estimator.

This approach has been generalized as the cascaded-resonator (CR)-based struc-
ture for harmonic analysis. In Ref. [15], the cascaded-dispersed-resonator-based
(CDR-based) structure for harmonic analysis is proposed. Although the design objec-
tives in Refs. [15, 16] are different, the design technique is the same in both cases. In
Ref. [16], the task is to replace multiple resonators with a cascade of single resonators.
In this way, for the design purpose, it is possible to use the classic Lagrange interpo-
lation technique instead of the more complex Hermitian interpolation. The condition
that the poles are distributed in a narrow band around the resonant frequencies, as
close as possible to each other, which is however limited by numerical accuracy. In
Ref. [15], the task is to arrange the poles in the cascade in such a way as to enable
optimal attenuation in the entire range around the harmonic frequencies. Practically,
the only difference is in the arrangement of the resonator poles around the harmonic
frequencies. The frequency deviation issue can be resolved by adaptive estimators
based on the actual frequency feedback. This approach has drawbacks as a stability
issue, due to an internal delay. Instead of that, usage of the external module for the
fundamental frequency estimation is proposed in Ref. [17].
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2. Cascaded-resonator-based structure harmonic analysis

Figure 1 shows the block diagram of the K-type CR-based harmonic
analyzer. The structure includes K þ 1ð Þ 2Mþ 2ð Þ resonators with poles
zm,k,m ¼ �M, … , 0, … ,Mþ 1, k ¼ 0, 2, …Kf g, placed in the 2Mþ 2 cascades each of

them having K þ 1 cascaded complex poles on the unit circle around related harmonic
frequency [13, 15, 16]. Each resonator has its belonging complex gains gm,k. A com-
plete set of resonator cascades is connected in parallel in a common feedback loop.
The gains of the transfer functions at the resonator frequencies are equal to unity due
to the infinite loop gain at these frequencies. The number of cascades (for the coher-
ent sampling) is 2Mþ 2 (M is a number of harmonics) and depends on ω1, because the
condition Mω1 < π has to be satisfied. The ω1 ¼ 2π f 1= f S, f 1 and f S are the nominal
fundamental frequency and sampling rate. The overall system order is
K þ 1ð Þ 2Mþ 2ð Þ.

We have in every mth channel of the structure, as an internal transfer function

Hm zð Þ ¼ VF
m zð Þ
E zð Þ ¼ z�1

XK

k¼0

g0m,kQk�1
i¼0 1� zm,iz�1ð Þ

, g0m,k ¼
YK

i¼k

gm,i (1)

where m ¼ �M, … , 0, … , Mþ 1, k ¼ 0, 1, … ,K, and
Qk�1

i¼0 1� zm,iz�1ð Þ ¼ 1 for
k ¼ 0. VF

m zð Þ is the total feedback signal corresponding to mth channel, composed as
the linear combination of the output of each resonator, i.e., each channel contributes

to the filter output with K þ 1 complex weights gm,k, k ¼ 0, 1, … ,K
n o

.

Figure 1.
Block diagram of the K-type CR-based harmonic analyzer.
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The closed transfer function for every channel m has the form of [15, 16].

Tm,0 zð Þ ¼ Vm,0 zð Þ
V1 zð Þ ¼ g0m,0

z�1Pm zð Þ
A zð Þ , Pm zð Þ ¼

YMþ1

n ¼ �M
n 6¼ m

YK
i¼0

1� zn,iz�1� �
, (2)

Tm,k zð Þ ¼ Vm,k zð Þ
V1 zð Þ ¼ g0m,k

z�1Pm zð ÞQk�1
i¼0 1� zm,iz�1ð Þ
A zð Þ (3)

A zð Þ ¼
YMþ1

n¼�M

YK
i¼0

1� zn,iz�1� �þ z�1
XMþ1

n¼�M

Pn zð Þ
XK

k¼0

g0n,k
Yk�1

i¼0

1� zn,iz�1� � !" #
(4)

It can be seen that all poles of the resonators are mapped to the zeros of the transfer
function Tm,0 zð Þ due to the common feedback, with the exception of the poles
belonging to the cascade of the harmonic m, which are automatically canceled by the
poles that generated them. In differentiators transfer functions Tm,k zð Þ, k ¼ 1, … ,Kf g,
k 6¼ 0ð Þ, zeros zm,i, i ¼ 0, … , k� 1f g, originated from poles in mth channel, exist
providing zero gain.

From Eq. (2), it is obvious that the filter corresponding to mth-channel provides
the maximally flatness property in the stop band around the remaining harmonic
frequencies. For small pole displacements, Δf frequency response reshaping is negli-
gible in comparison to the multiple-resonator case [16]. It is important to mention that
the lower border of Δf is limited by the computational accuracy. On the other hand,
avoiding of the multiple poles allows design by the direct usage of the classical
Lagrange interpolation formula rather than the Hermite one.

Although the characteristic polynomial of the transfer functions can be chosen in
different ways, under some conditions it is possible to choose one so that the error is
driven to zero in exactly K þ 1ð Þ 2Mþ 2ð Þ samples. This is provided by what is called a
dead-beat observer, for which the coefficients are calculated from the condition that
the observer has deadbeat settling, i.e., it finds the unknown state within at most
K þ 1ð Þ 2Mþ 2ð Þ steps. That leads to FIR filters (with A zð Þ ¼ 1) in each channel. This
way, although the structure is realized by resonators, which are IIR filters, the
resulting filters in each channel are FIR type. Figure 2 shows frequency responses of
T1,0 zð Þ ¼ g01,0z

�1P1 zð Þ (corresponding to the fundamental component) of the dead-
beat observer for the first up to the sixth order of resonator multiplicity
(K ¼ 0, 1, … , 5). It is observed that (quasi) MR structures with a higher order multi-
plicity of poles provide smaller sidelobes and thus ensure a lower sensitivity to noise
and to harmonic and interharmonic disturbances. The negative effect is the increase in
the order of the filter, which increases the group delay and response time of the filter,
as well as the numerical complexity. Due to this feature, large values of the resonator
multiplicity could be inconvenient in the control application. The case K ¼ 0 corre-
sponds to a classic DFT estimator, while the cases K >0 correspond to the TFT.

Frequency responses of zeroth-, first-, and second-order differentiator discrete
FIR filters corresponding to the transfer functions Tm,k zð Þ related to the fundamental
component (m ¼ 1, k ¼ 0, 1, 2), for K ¼ 2 and K ¼ 3 (the third- and forth-order
resonator structure) are given in Figure 3.

In order to obtain wider flatness intervals in the pass band, the feedback signals
VF

m zð Þ could be used for harmonic estimation instead of Vm,0 zð Þ [13]. The global
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transfer function of the feedback loop is a sum of the transfer functions of all K þ 1
differentiators TF

m zð Þ ¼ VF
m zð Þ=V zð Þ ¼PK

k¼0Tm,k zð Þ. The frequency responses of the
estimation of the fundamental component obtained by Vm,0 zð Þ and estimation
obtained by VF

m zð Þ are given together in Figure 4a. The good properties of the filters
corresponding to the transfer functions TF

m zð Þ are related to the phase responses.
Frequency responses have a zero phase response in the frequency bands around the
harmonic frequencies, which means that in those frequencies the group delay is equal
to zero. Bad properties are high resonant gains at the edges of bandwidths and high
sidelobes. The zero flat gains in the stop band are preserved, although their intervals
are narrowed. It should be mentioned that the peaks of the interharmonic gains and
the side lobes increase by the multiplicity of the resonators (Figure 4b).

Figure 2.
Frequency responses for T1,0 zð Þ (the zeroth differentiator of the first harmonic) for K ¼ 0, 1, … , 5 (the first- to
sixth-order resonator structure).

Figure 3.
Frequency response of the zeroth-, first-, and second-order discrete FIR filters corresponding to Tm,k zð Þ, (m ¼ 1
and k ¼ 0, 1, 2), related to the fundamental component, for f s ¼ 800Hz and f 1 ¼ 50Hz, for (a) K ¼ 2
estimator (the third-order resonator structure) and (b) K ¼ 3 estimator (the fourth-order resonator structure).
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2.1 Optimization problem statement

In order to adapt the achieved digital differentiators to their ideal frequency
responses around the harmonic frequencies, it is possible to modify the filters
transfer functions. An optimization technique is utilized to reshape frequency
responses of the filters transfer functions, avoiding resonant frequency peaks and
reducing a group delay simultaneously, that can be rather important in control
applications. The optimization task can also be different, e.g., maximization of the
selectivity.

The transfer function of the extended structure, including the compensation FIR
filter B zð Þ, for the mth component channel is as follows:

TAB
m,0 zð Þ ¼ Vm,0 zð Þ

V1 zð Þ ¼ B zð ÞTm,0 zð Þ ¼ g0m,0z
�1Pm zð Þ

h i B zð Þ
A zð Þ ¼ g0m,0z

�1Pm zð Þ
h i qBxB

1þ qAxA

(5)

where

B zð Þ ¼ b0 þ b1z�1 þ⋯þ bNB�1z� NB�1ð Þ þ bNBz
�NB ,

A zð Þ ¼ 1þ a1z�1 þ⋯þ aNA�1z� NA�1ð Þ þ aNAz
�NA ,

xB ¼ b0 b1 ⋯ bNB�1 bNB½ �T; xA ¼ a1 a2 ⋯ aNA�1 aNA½ �T; x ¼ xB
T xA

T
� �T

;

qB ¼ 1 z�1 z�2
⋯ z� NB�1ð Þ z�NB

� �
; qA ¼ z�1 z�2

⋯ z� NA�1ð Þ z�NA
� �

:

The polynomial A zð Þ does not cause any additional computation and only the poly-
nomial B zð Þ represents an additional numerical burden. Even more, in some cases, it is
possible to choose B zð Þ ¼ b0 which causes only one additional multiplication. Never-
theless, for the purposes of design, we will consider the IIR filter B zð Þ=A zð Þ as a
common compensation for the total set of FIR filters Pm zð Þ, m ¼ �M, … , 0, … , Mþ 1.

With a given weighting function W ωð Þ, the weighted Chebyshev error between
the desired and actual frequency responses is defined as follows:

Figure 4.
Frequency responses of (a) T1,0 zð Þ and TF

1 zð Þ for K ¼ 2 estimator (the third-order cascade) and (b) TF
1 zð Þ for

K ¼ 1, K ¼ 2 and K ¼ 3, related to the fundamental component, for f s ¼ 800Hz and f 1 ¼ 50Hz.
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J1 xð Þ ¼ max
ω∈Ω

W ωð Þ TAB ejω
� ��Hd ejω

� ��� �� (6)

where Hd ejω
� �

is the desired frequency response in angular frequency ω specified
in the frequency region Ω (or a union of several compact frequency bands) of the
interests and 0 ≤ ω ≤ π.

The sum of squares of absolute values of errors in NF angular frequencies as follows:

J2 xð Þ ¼
XNF

i¼1

W zið Þ TAB zið Þ �Hd zið Þ� �
(7)

where zi ¼ e jωi .
In order to minimize the error J1 xð Þ defined in Eq. (6), a new variable δ can be

introduced and the problem reformulated as follows:

minimize δ

subject to E ωið Þj j≤ δ, ωi ∈Ω, i ¼ 1, 2,⋯,NF
(8)

where E zið Þ ¼ W zið Þ TAB zið Þ �Hd zið Þ� �
, zi ¼ exp jωið Þ, for the total number NF of

points defined in Ω.
Further, it is:

W zið Þ
A zið Þj j T zið ÞB zið Þ � A zið ÞHd zið Þ�� ��≤ δ (9)

In Ref. [18], a suitable method has been described to linearize the error function
J1 xð Þ such that the design problem can be solved by the linear programming (LP)
method. However, this method neglects the denominator part A zið Þj j. In Ref. [19], the
performance of the LP method was improved by eliminating the above drawback by
using the following iterative constraints scheme:

W zið Þ
A k�1ð Þ zið Þ�� �� T zið ÞB zið Þ � A kð Þ zið ÞHd zið Þ�� ��≤ δ (10)

For the sake of notational simplicity, we denote

W zið Þ
A k�1ð Þ zið Þ�� �� T zið ÞqB

��
z¼zi

, �Hd zið ÞqA
��
z¼zi

h i
x�Hd zið Þ

���
���≤ δ (11)

The vector of unknown coefficients x is expanded with an additional variable δ, so
that the expanded vector of unknowns is obtained:

xδ ¼ x δ½ �T : (12)

The constraints defined by inequality (11) refer to the frequency ranges in which
the error optimization is performed. In addition, sometimes it is necessary to keep the
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error within predefined limits, such as for example the gains in the stopbands and/or
the transition bands:

1

A k�1ð Þ zið Þ�� �� T zið ÞqB
��
z¼zi

, �Hd zið ÞqA
��
z¼zi

h i
x�Hd zið Þ

���
���≤ li (13)

zi ¼ exp jωið Þ, i ¼ 1, 2,⋯,NG

li , i ¼ 1, 2,⋯, NG, are fixed borders of the absolute values of the set of complex
error E zð Þ along assemblies zi ¼ exp jωið Þ, i ¼ 1, 2,⋯, NG.

If one wants to ensure unity gain in harmonic frequencies, the following condition
must be met:

B zð Þ
A zð Þ

����
z¼zm

¼ 1, i:e: B zmð Þ ¼ A zmð Þ: (14)

where m ¼ �M, … , 0, … ,Mþ 1:
In a matrix form, it can be written as follows:

qmx ¼ 1: (15)

where q ¼ qB �qA
� �

, qm ¼ q
��
z¼zm

.
Complex equality constraints (15) can be written as follows

Re qm
� �

Im qm
� �

" #
x ¼ 1

0

� �
, m ¼ �M, … , 0, … ,Mþ 1: (16)

2.2 Linearization of constraints

The inequalities (11) and (13) are nonlinear. The convex semi-infinite program-
ming can be applied [20], thanks to the quadratic property of the functions. Further-
more, a convenient approximation of these inequalities by the system of the linear
ones [21–25] allows us to solve this constrained optimization problem through the LP
or the constrained linear least-squares (CLLS) optimization technique.

It is valid:

E zið Þj j ¼ E zið Þj j cos 2αiþsin 2αi
� � ¼ Re E zið Þf gcos αi þ Im E zið Þf gsin αi (17)

where αi ¼ arg E zið Þf g.
Since αi is not known a priory, the nonlinear constraints in Eq. (8) can be approx-

imated by the system of linear constraints:

Re E zið Þf gcos αi,j þ Im E zið Þf gsin αi,j ≤ δ (18)

where i ¼ 1, 2,⋯, NF. If we choose L equidistantly distributed angles then it is
αi,j ¼ αi,0 þ j� 1ð Þ2π=L, where j ¼ 1, 2,⋯, L. Figure 5 shows that approximations by
square and octagon (L ¼ 4 and L ¼ 8, respectively) allow only rough approximations.
A higher accuracy is obtained by increasing L. Herein, L ¼ 32 is used.

Let us define as following for frequency point i:
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WA zið Þ ¼ W zið Þ
A k�1ð Þ zið Þ�� �� ; gi ¼ T zið ÞqB

��
z¼zi

, �Hd zið ÞqA
��
z¼zi

h i
: (19)

Hence, Eq. (13) can be linearized and written in a matrix form

WA zið ÞA0
ix≤WA zið Þb0i þ li1L�1, i ¼ 1, 2,⋯,NG (20)

where matrix A0
i and vector b0i are given by

A0
i ¼

Re gi
� �

cos αi1 þ Im gi
� �

sin αi1
Re gi
� �

cos αi2 þ Im gi
� �

sin αi2
⋮

Re gi
� �

cos αiL þ Im gi
� �

sin αiL

2
6664

3
7775, b

0
i ¼

Re Hd zið Þ� �
cos αi1 þ Im Hd zið Þ� �

sin αi1

Re Hd zið Þ� �
cos αi2 þ Im Hd zið Þ� �

sin αi2
⋮

Re Hd zið Þ� �
cos αiL þ Im Hd zið Þ� �

sin αiL

2
66664

3
77775
:

and li is a constraint limit of the error in the point zi.
Using matrix notation, and collecting inequality linearization systems in all settled

frequency points, (20) becomes the following linear form:

A0x≤ b0 or A0 0 NGLð Þ�1
� �

xδ ≤ b0 (21)

where matrix A0 and vector b0 are given by

A0 ¼

WA z1ð ÞA0
1

WA z2ð ÞA0
2

⋮
WA zNGð ÞA0

NG

2
66664

3
77775
, b0 ¼

WA z1ð Þb01 þ l11L�1

WA z2ð Þb02 þ l21L�1

⋮
WA zNGð Þb0NG

þ lNG1L�1

2
66664

3
77775
:

In case of the (11), we have:

WA zið ÞA0
i �1L�1

� �
xδ ≤WA zið Þb0i, i ¼ 1, 2,⋯,NF (22)

or in a matrix notation

A0 �1 NFLð Þ�1
� �

xδ ≤ b0 (23)

Figure 5.
Approximation of a cycle with a square and an octagon.
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where

A0 ¼

WA z1ð ÞA0
1

WA z2ð ÞA0
2

⋮
WA zNFð ÞA0

NF

2
66664

3
77775
, b0 ¼

WA z1ð Þb01
WA z2ð Þb02

⋮
WA zNFð Þb0NF

2
66664

3
77775
:

2.3 Design (optimization) approach 1: CLLS minimization

An objective is to find a minimum of the sum of squares of absolute values of hx�
d in the assembly of the NF selected frequencies subject to the vector x

min
x

XNF

i¼1

hix� dij j2 (24)

where hi ¼ W zið Þgi= A k�1ð Þ zið Þ�� �� and di ¼ W zið ÞHd zið Þ= A k�1ð Þ zið Þ�� ��.
If we apply the following equality

hix� dij j2 ¼ Re 2 hix� dif g þ Im2 hix� dif g ¼ Cix� dik k22 (25)

where Ci ¼
Re hif g
Im hif g

� �
, di ¼

Re dif g
Im dif g

� �
, (24) can be written in a matrix form:

min
x

Cx� dk k22: (26)

where C and d include Ci and di, respectively, i ¼ 1, 2,⋯,NF.
The constrained linear least squares (CLLS) is an optimization problem that deals

with the maximization or minimization of a linear function called the objective func-
tion subject to linear constraints. Summarizing (16), (21), and (26), the CLLS problem
is formalized as follows:

min
x

1
2

Cx� dk k22 subject to Ax≤ b and
Re qm
� �

Im qm
� �

" #
x ¼

1

0

" # !
,

m ¼ �M, … , 0, …Mþ 1ð Þ
(27)

where A and b include A0 and b0, respectively, defined in (21), for all frequency
points in which the constraints are defined.

2.4 Design (optimization) approach 2: minimax optimization

The LP optimization problem can be formalized in the following way:

minimize c xδ subject to Axδ ≤ b and
Re qm
� �

0

Im qm
� �

0

" #
xδ ¼

1

0

" # !
,

m ¼ �M, … , 0, …Mþ 1ð Þ
(28)
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where c ¼ 01� NAþNBþ1ð Þ 1
� �

, and A and b include A0 and b0, respectively, for all
frequency points in which the constraints or objective functions are defined in (21)
and (23), respectively.

3. IIR cascaded-resonator-based harmonic analysis

In accordance with the prevailing trends in works dealing with this issue, in the
initial works [13, 16, 22, 23, 25, 26] the resulting filters of CR structures were of the
FIR type. Later, in [27], IIR filters were used, which represent a computationally more
efficient solution [28, 29]. The unit characteristic polynomial of the transfer function
is replaced by the optimized one. Such a change does not lead to an increase in the
volume of numerical calculations and only requires a change in the gain values asso-
ciated with the resonators. Since the optimization of frequency characteristics for all
harmonics is carried out at the same time, it is possible to obtain frequency responses
of the same shape. By using a linearized iterative scheme [30] based on Rouche’s
theorem with the aim of stability control, it is possible to use iterative optimization
techniques based on LP or CLLS.

3.1 Problem statement

The task of optimization is to design a filter B zð Þ=A zð Þwhere the order of the charac-
teristic polynomialA zð Þ isNA ¼ K þ 1ð Þ 2Mþ 2ð Þ and the polynomialB zð Þ is of orderNB.

We seek to find a causal stable rational function TAB
m,0 zð Þ ¼ g0m,0z

�1Pm zð Þ
h i

B zð Þ=A zð Þ for
m ¼ �M, … , 0, … , Mþ 1 that best approximatesHd

m ejω
� �

.
In order to make the notation as simple and short as possible, let us form a virtual

transfer function so that in each bandwidth centered in mf 1 with width of f 1, i.e., for
f ∈ mf 1 � f 1=2
�

,mf 1 þ f 1=2
�
, it corresponds to the transfer function belonging to the

harmonic m. It follows:

TA zð Þ ¼ T zð Þ
A zð Þ , T zð Þ ¼ g0m,0z

�1Pm zð Þ (29)

for f ∈ mf 1 � f 1=2
�

,mf 1 þ f 1=2
�
,m ¼ �M, … , 0, … ,Mþ 1.

In addition, we define a unique transfer function

TAB zð Þ ¼ B zð ÞTA zð Þ ¼ B zð ÞT zð Þ
A zð Þ (30)

Similarly, a virtual unique desired transfer function in an angular frequency ω has
the following form [27]:

Hd ejω
� � ¼ e�j2πτ f�m f 1ð Þ= f S , for f ∈ mf 1 � f PB

�
,mf 1 þ f PB

�

0, for f ∈ mf 1 � f 1=2
�

,mf 1 � f SB
�
⋃ mf 1 þ f SB
�

,mf 1 þ f 1=2
�

(
(31)

where pass and stop bands are defined by f PB and f SB, respectively. A desired
group delay in the passband is denoted as τ.
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3.2 Stability constraint

To obtain a stable IIR filter T zð Þ, stability constraint must be imposed on the
coefficient vector xA. In [30], the more convenient stability condition which is based
on Rouche’s theorem was proposed.

Rouche’s Theorem. If f zð Þ and g zð Þ are analytic inside and on a closed contour C, and
g zð Þj j< f zð Þj j on C, then f zð Þ and g zð Þ þ f zð Þ have the same number of zeros inside C.

Let

f zð Þ ¼ zNAA zð Þ ¼ zNA þ a1zNA�1 þ⋯þ aNA�1zþ aNA , (32)

g zð Þ ¼ zNAΔ zð Þ ¼ δ0zNA þ δ1zNA�1 þ⋯þ δNA�1zþ δNA , (33)

where Δ zð Þ is the update of the characteristic polynomial A zð Þ of the transfer
function at each iteration step. Since the functions f zð Þ and g zð Þ are analytic, except at
z =∞, and have the same zeros as A zð Þ and Δ zð Þ, according to Rouche’s theorem, if the
polynomial A k�1ð Þ zð Þ in the iteration step, k� 1 has all its zeros inside a circle of radius
ρ 0< ρ< 1ð Þ with the center at the origin of the complex plane, then also the polyno-
mial in the iteration step k given by [30]

A kð Þ zð Þ ¼ A k�1ð Þ zð Þ þ αΔ kð Þ zð Þ, 0< α< 1 (34)

will retain the zeros within this circle provided that in step k the following condi-
tion satisfied

Δ kð Þ zð Þ�� ��≤ A k�1ð Þ zð Þ�� ��, zj j ¼ ρ: (35)

If (34) is included in (35), we get

�A kð Þ zð Þ � �A k�1ð Þ zð Þ
���

���≤ α A k�1ð Þ zð Þ�� �� (36)

where �A kð Þ zð Þ ¼ A kð Þ zð Þ � 1, �A k�1ð Þ zð Þ ¼ A k�1ð Þ zð Þ � 1, or in a matrix notation:

01� NBþ1ð Þ, qA
��
z¼zi

h i
x� �A k�1ð Þ zið Þ

���
���≤ α A k�1ð Þ zið Þ�� �� (37)

As for the initial value of the vector x, it is simplest to take x 0ð Þ ¼ 0, when all the
roots of the polynomial A 0ð Þ zð Þ lie within the circle of radius ρ (0< ρ <1).

If constraint (37) is applied to a sufficiently dense set of points lying on a circle of
radius ρ zj j ¼ ρð Þ, of total length NS, we get

ASx≤ bS (38)

where matrix AS
i and vector bSi are given by

AS
i ¼

01� NBþ1ð Þ;Re qA
��
z¼zi

n o
cos αi1 þ Im qA

��
z¼zi

n o
sin αi1

01� NBþ1ð Þ;Re qA
��
z¼zi

n o
cos αi2 þ Im qA

��
z¼zi

n o
sin αi2

⋮

01� NBþ1ð Þ;Re qA
��
z¼zi

n o
cos αiL þ Im qA

��
z¼zi

n o
sin αiL

2
6666664

3
7777775
,
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bSi ¼

Re �A k�1ð Þ zið Þ
n o

cos αi1 þ Im �A k�1ð Þ zið Þ
n o

sin αi1 þ α A k�1ð Þ zið Þ�� ��

Re �A k�1ð Þ zið Þ
n o

cos αi2 þ Im �A k�1ð Þ zið Þ
n o

sin αi2 þ α A k�1ð Þ zið Þ�� ��
⋮

Re �A k�1ð Þ zið Þ
n o

cos αiL þ Im �A k�1ð Þ zið Þ
n o

sin αiL þ α A k�1ð Þ zið Þ�� ��

2
6666664

3
7777775
:

Thus, the set of constraints (38) is added to the set of the above constraint condi-
tions. In this way, the iterative methods mentioned above solve the LP or CLLS
problem by taking into account constraints (38) in each iteration step. A fixed step
size α can be used, while a gradual decrease (e.g., exponential) can help the conver-
gence of the solution.

3.3 Resonators’ gains calculation

After the polynomial A zð Þ having been determined, the direct usage of the
Lagrange interpolation formula provides the closed-form formulas [26]. It should be
taken into account that these formulas are valid only in the case of single resonators. If
a quasi-MR-based analyzer is designed, the resonator poles connected to the same
harmonic should be arranged close enough to each other with a minimum distance
that is limited by numerical precision. Its lower border depends on the resonator
multiplicity and the sampling rate. A chosen displacement of 0:1 Hz allows a fair
approximation for sampling frequencies up to 6.4 kHz (M ¼ 63 for f 1 ¼ 50 Hz) and
K ¼ 5 [16].

A generalized closed-form formula for gains calculation for any K for previously
chosen polynomial A zð Þ is given as follows:

g0m,k ¼
A zð Þ � z�1Pm zð ÞPk�1

j¼0 g0m,j
Q j�1

i¼0 1� zm,iz�1ð Þ
h i

z�1Pm zð Þ Q
k�1

i¼0
1� zm,iz�1ð Þ

���������
z¼zm,k

(39)

As a final result, the designed resonator gains are as follows:

gm,k ¼ g0m,k=g
0
m,kþ1; g0m,Kþ1 ¼ 1

� �
; m ¼ �M, … , 0, … , Mþ 1; k ¼ 0, 1, … ,K:

It should be mentioned that polynomial B zð Þ can be conveniently implemented by
adding its roots as poles in additional parallel channels to the basic structure (see
Figure 1). In this case, the existing formulas for gains calculation are valid only for the
identical structure of the extension cascades (they have to consist K þ 1 resonators).
Otherwise, the formulas are not valid and need a completely new derivation.

3.4 Design example

In the next section, three demonstration examples, with frequency responses and
pole-zeros maps, of the designed K ¼ 2 type CR-based harmonic analyzer are shown,
for f S ¼ 800 Hz and f 1 ¼ 50 Hz. For a clear readability, lower values of f S ¼ 800 Hz
andM ¼ 7 are selected. The following parameters are prescribed in all three examples:
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f SB ¼ 17 Hz, lTB ¼ 1:005, W zð Þ ¼ 1, α0 ¼ 0:5, ρ ¼ 0:95, NA ¼ K þ 1ð Þ 2Mþ 2ð Þ.
x 0ð Þ ¼ 0: Other parameters were variated, depending on the chosen optimization
criteria. It should mention that a large variety of optimization scenarios is possible,
allowing design spectrum analyzers for a wide scope of different applications.

3.4.1 Example 1: flat-top passbands

The filters with a wider flatness in the pass band allow better signal tracking in the
dynamic conditions. Since it is difficult task to provide the tracking of the parameters
changes together with good attenuation in the stopband, a relatively high order of
NB ¼ K þ 1ð Þ 2Mþ 2ð Þ is settled. The desired group delay (in samples) in the passband
is τ=0.9 K þ 1ð Þ 2Mþ 2ð Þ: f PB ¼ 1:7 Hz: lPB ¼ 0:01. Obtained frequency responses
(Figure 6) show that the passband flatness is not derogated, while the selectivity and
attenuation in the stopbands are increased thanks to the zeros of the polynomial B zð Þ
which are located between the existing multiple zeros of the resonator structure that
had been obtained through the common feedback. A cost is an increased total group
delay which causes higher latency.

3.4.2 Example 2: narrow selective passbands

In this example, the requests for passband and transition bands are omitted, which
decrease a numerical burden. To obtain high selectivity, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ is
kept. The obtained frequency responses (see Figure 7) show that selectivity and
attenuation in the stopbands are increased. This is achieved thanks to the poles of the
transfer function located on a circle of radius 0:95 ( zj j ¼ 0:95) very close to the zeros
located in the harmonic frequencies, as well as the additional zeros of the polynomial
B zð Þ. Such high selectivity caused a large increase in a group delay.

Figure 6.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ, and ρ ¼ 0:95, f PB ¼ 1:7 Hz and
τ=0.9 K þ 1ð Þ 2Mþ 2ð Þ:
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3.4.3 Example 3: numerically cost-effective solution

This example is very similar to the previous one with different that now is NB ¼ 0,
which means that there is no extension to the existing resonator structure with common
feedback. Obtained frequency responses (see Figure 8) show that selectivity and atten-
uation in the stopbands are smaller than in the previous case, however, with a smaller
group delay too.

Figure 7.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ K þ 1ð Þ 2Mþ 2ð Þ, and ρ ¼ 0:95, f PB ¼ 0 Hz.

Figure 8.
(a) Frequency responses of g03,0z

�1P3 zð Þ, B zð Þ=A zð Þ and TAB
3,0 zð Þand (b) Pole-zero map of T3,0 zð Þ and B zð Þ (for

the third harmonic), for NA ¼ K þ 1ð Þ 2Mþ 2ð Þ, NB ¼ 0, and ρ ¼ 0:95, f PB ¼ 0 Hz.
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4. FIR cascaded-resonator-based harmonic phasor estimation

Instead of the common simultaneous compensation of the frequency responses for
all harmonics through the compensating filter B zð Þ placed in the front of the parallel
resonator structure, a more flexible solution is shown in Figure 9 with postprocessing
by the set of compensators Qm zð Þ designed particularly for each harmonic m. In this
case, A zð Þ ¼ 1 is chosen to allow the use of linear optimization techniques such as LP
and CLLS.

In order to obtain an algorithm that can be utilized in a wide range of signal
dynamics in a unified way and improve the frequency response, a linear combination
of the differentiators’ outputs in the cascade can be used [22, 25, 26]. The goal of this
compromised solution was to propose a tracking-mode harmonic estimation tech-
nique. In Ref. [31], it is shown that this estimation technique exhibiting maximally flat
frequency responses can be efficiently used for implementation of P-Class Compliant
PMU in accordance with IEC/IEEE Standard 60255-118-1:2018 for harmonic phasors
estimation. In this approach, the order of the resulted compensation filter was low and
equals to the pole multiplicity. In Refs. [21, 23, 24], the proposed approach was
generalized to any necessary order through the postprocessing compensation FIR
filters applied to the output signals obtained by the CR structure. The drawback of this
approach is that we have to use as many postprocessing FIR filters as there are
harmonic phasors that we need to estimate (one estimator per one harmonic phasor).
On the other hand, the advantage is that it is possible to obtain a filter bank, sur-
rounding the core CR structure, with a set of different compensation filters
corresponding to different signal dynamics.

The transfer function for every mth channel has the form of

TQ
m,0 zð Þ ¼ VQ

m,0 zð Þ
V zð Þ ¼ Tm,0 zð ÞQm zð Þ ¼ g0m,0z

�1Pm zð Þ
h i

qQxQ : (40)

Figure 9.
Block diagram of the K-type CR-based harmonic analyzer with postprocessing.
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where Qm zð Þ ¼ qm,0 þ qm,1z
�1 þ⋯þ qm,NQ�1z

� NQ�1ð Þ þ bm,NQ z
�NQ .

qQ ¼ 1 z�1 z�2 ⋯ z� NQ�1ð Þ z�NQ

h i
, xQ ¼ q0 q1 ⋯ qNQ�1 qNQ

� �T
.

Eq (40) has the same form as Eq. (5) with the following constraints: A zð Þ ¼ 1,
NA ¼ 0, xA ¼ ½�, qA ¼ ½�, x ¼ xQ , q ¼ qQ . qB is replaced by qQ , and xB by xQ : Since
NA ¼ 0, the stability constraints are not present. The desired frequency response is
related only to the actual harmonic m and does not consider the frequency responses
of the other ones.

4.1 Total vector gradient (TVG) calculation

The response time and delay of the estimator are directly correlated with the group
delay (GD) of the filter. Due to the more complex calculation of GD, it is possible to
use the gradient of the transfer function dTQ

m,0 zð Þ=dz, which is called the total vector
gradient (TVG) here. In a flat range with small amplitude changes, TVG and GD are
proportional, and optimization of one leads to optimization of the other. The first
derivative of the transfer function TQ

m,0 zð Þ is as follows:

dTQ
m,0 zð Þ=dz ¼ g0m,0 �z�2Qm zð ÞPm zð Þ þ z�1Pm zð ÞdQm zð Þ=dzþ z�1Qm zð ÞdPm zð Þ=dz� �

¼ g0m,0z
�1 Pm zð ÞdQm zð Þ=dzþ Ψm zð ÞQm zð Þ½ �

(41)

where

dQm zð Þ
dz

¼ �qm,1z
�2 � 2qm,2z

�3 �⋯�NQqm,NQ
z� NQþ1ð Þ

Ψm zð Þ ¼ �z�1Pm zð Þ þ dPm zð Þ=dz

dPm zð Þ
dz

¼ Pm zð Þ
XMþ1

i¼�M
i 6¼m

XK

k¼0

zi,kz�2

1� zi,kz�1 :

Eq. (41) can be written in a matrix form as follows:

dTQ
m,0 zð Þ=dz ¼ ψmxQ ,m: (42)

where

ψm ¼ ψm,0 zð Þ ψm,1 zð Þ ⋯ ψm,NQ�1 zð Þ ψm,NQ
zð Þ� �

,

ψm,n zð Þ ¼ g0m,0z
� nþ1ð Þ Ψm z�1� �� nz�1Pm z�1� �� �

, n ¼ 0, 1, … ,NQ :

4.2 Optimization criteria

Selections of the object and functions and constraints can be very different
depending on the optimization criteria scenario. Herein will be considered three
criteria summarized in Table 1 [21, 24]. In the first Criterion 1, the cost function in
which absolute values are minimized is the transfer function TQ

m,0 zð Þ in the stop bands.
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Weighting functionWm ωð Þ is settled to 1. The function which absolute values are kept

under settled limits is an error in the passband Em zið Þ ¼ TQ
m,0 zð Þ

���
z¼zi

� Td
m zið Þ where

Td
m zið Þ ¼ exp �jτ ωi � ωmð Þð Þ: In addition to this, a control of overshoots in the transi-

tion bands is performed.
Criterion 2 is similar with Criterion 1 with the difference that the absolute value of

the TVG in the harmonic frequency is limited, that is dTQ
m,0 zð Þ=dz

���
���
z¼zm

≤ TVGj jmax,

where TVGj jmax is a maximally allowed absolute total vector gradient. Like in Crite-
rion 1, the limitation of overshoots in the transition bands is necessary.

Criterion 3 minimizes the absolute value of the TVG in the harmonic frequency
subject to the limitation of the gain in the stopband. Similarly with the previous cases,
the limitation of overshoots in the transition bands is necessary.

Criteria Object
function

Desired
values

Frequency
range

Constrained
functions

Reference values Frequency
range

Criterion 1 TQ
m,0 zð Þ 0 Stopbands TQ

m,0 zð Þ Td
m zð Þ ¼ e�jτ ω�ωmð Þ Passband

TQ
m,0 zð Þ 0 Transition

band

Criterion 2 TQ
m,0 zð Þ 0 Stopbands dTQ

m,0 zð Þ=dz 0 Harmonic
frequency

TQ
m,0 zð Þ 0 Transition

band

Criterion 3 dTQ
m,0 zð Þ=dz 0 Harmonic

frequency
TQ
m,0 zð Þ 0 Stopband

TQ
m,0 zð Þ 0 Transition

band

Table 1.
Considered design criteria.

Figure 10.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 2, for f s ¼ 1:6 kHz,
NQ ¼ 16 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 24, 32, 48f g.
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4.3 Design example

In order to illustrate the described algorithms, examples overtaken from [21] are
shown for Criteria 2 and 3 defined in Table 1. Figures 10 and 11 show the frequency
responses of the transfer function of the third harmonic TQ

3,0 zð Þ in the case of K ¼ 2.
For Criterion 3, the maximum allowed gains in the stopband was selected as
lSBm ∈ 0:1, 0:01, 0:001f g, which corresponds to attenuations of 20, 40, 60f g dB. For
Criterion 2, the maximum value of TVGj j in the harmonic frequencies zm,
TVGj jmax ∈ 24, 32, 48f g was selected. Zoomed amplitude and TVGj j characteristics
around the harmonic frequency are shown in the inset figures at the bottom of the
figures. It can be seen that the higher value of NQ gives a smaller value of TVGj j and
wider bandwidth. It is also visible that for smaller values TVGj j sidelobes are larger,

Figure 11.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 2, for f s ¼ 1, 6 kHz,
NQ ¼ 32 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 24, 32, 48f g.

Figure 12.
Frequency responses for the basic (T3,0 zð Þ) and reshaped (TQ

3,0 zð Þ) transfer function for K ¼ 1, for f s ¼ 1, 6 kHz,
NQ ¼ 16 and (a) lSB3 ∈ 0:1, 0:01, 0:001f g and (b) TVGj jmax ∈ 16, 24, 32f g.
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which reduces robustness to interharmonics and noise. In addition, the bandwidth
increases for smaller values of TVGj j.

Figure 12 shows the frequency responses of the transmission functions T3,0 zð Þ and
TQ
3,0 zð Þ for different values of given parameters (a) lSBm and (b) TVGj jmax, in the case of

K ¼ 1. In this case, the total TVGj j is smaller than in the case of K ¼ 2. The order of
the compensation filter NQ ¼ 16 is smaller, so the bandwidth is narrower. In the case
of lSB3 ¼ 0:001, the optimization problem has no solution.

5. Conclusions

CR-based algorithms for harmonic analysis and estimation of harmonic phasors are
described in this chapter. The resulting filters for extracting harmonic signals can be
of the FIR or IIR type. Algorithms for the optimization of frequency responses are
presented and corresponding examples of synthesis are given. Linearized mathemati-
cal models were used, which enabled the use of linear optimization methods such as
LP and CLLS. When designing the IIR analyzers, a linearized iteration scheme based
on the Rouche’s theorem was used to control the stability of the system. As for the
optimization algorithms, they can potentially be improved by various modifications
such as, for example, by nesting optimization loops related to different constraint
conditions and/or objectives, and adaptation of iteration steps. It is notable that
approximating result could be obtained heuristically thanks to the characteristic posi-
tion of the pole and zeros. In addition, it seems that closed-form calculation expres-
sions derivation could be possible. On the other hand, the FIR-type algorithm
particularly optimizes frequency responses through the postprocessing compensation
FIR filters applied to the output signals obtained by the CR structure. This approach
allows the usage of a set of compensation filters corresponding to different signal
dynamics.
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