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Preface

The concept of fuzzy logic systems came to the fore in 1965 when Prof. Lofti Zadeh 
introduced the idea of Fuzzy Sets, which were defined as a “class of objects with a 
continuum of grades of membership.” In 1973, Prof. Zadeh also introduced the use of 
linguistic variables and fuzzy algorithms, a technique that provides an approximate 
but effective way of describing system characteristics that are too complex and 
difficult to define and analyze using mathematical models. Prof. Zadeh emphasized 
that this technique played a very important role in the applications of animate rather 
than inanimate system constituents’ behaviors. In those years, the elites in the aca-
demic and scientific community did not initially appreciate the concept of linguistic 
variables. This is largely because the use of words in systems and decision analysis 
conflicts with the deep-seated tradition presented by Lord Kelvin in 1883 that gave 
high regard and respect for numbers in controls. Some critics of Prof. Zadeh’s theory 
include Prof. Rudolf Kalman and Prof. William Kahan, a man with a brilliant mind 
and an esteemed colleague of Prof. Zadeh. These critics of Prof. Zadeh were proven 
to be wrong in 1975 when E. H. Mamdami successfully presented an experiment on a 
fuzzy logic controller for a steam engine of an industrial plant. In 1985, the applica-
tion of a fuzzy logic controller was solidified when Takagi and Sugeno (TS) published 
their work, “Fuzzy identification of systems and its applications to modeling and 
control.” The TS method uses linear functions of input variables as the consequence.

The early commercial applications of fuzzy logic were successfully implemented 
in Japan. In 1987, the Sendai Namboku line began using fuzzy logic to control the 
subway train’s motion, including acceleration and stop operation. The Matsushita 
vacuums use a fuzzy logic algorithm to adjust suction power automatically. The 
Hitachi washing machines use fuzzy logic controllers based on weight load, a mixture 
of fabric, and dirt sensors to automatically set the wash cycle for efficient operation. 
The Canon camera uses fuzzy logic for its autofocus operation to measure the clar-
ity of the image. The Mitsubishi air conditioners use fuzzy logic to control the room 
temperature more efficiently than conventional units. Giant corporations like General 
Motors, Chrysler, Allen Bradley, Whirlpool, Eaton, and Boeing use fuzzy logic 
systems for efficient use of automotive transmissions, low-power refrigerators, and 
electric motors. The research on fuzzy logic has grown and flourished, particularly 
for developing applications in intelligent machines and hybrid controllers. To date, 
numerous concepts and theories have been formulated for in-depth understanding 
and advancement of fuzzy logic systems.  

This book introduces basic and advanced ideas concerning fuzzy logic systems. It is 
divided into two sections. The first section (Chapters 1–4) deals with the foundations 
of the theories and concepts of the fuzzy logic system in advancing technology. The 
second section (Chapters 5–9) deals with the applications and implementations of 
these advanced technologies for the benefit of humanity.  



IV

Chapter 1, “Review of Type-1 and Type-2 Fuzzy Numbers”, emphasizes that fuzzy 
number theory can be reduced to an argument for interval analysis. It proposes a way 
of perceiving the concept of fuzzy numbers by comparing it with round numbers.

Chapter 2, “Decoupling of Attributes and Aggregation for Fuzzy Number Ranking”, 
discusses how intuition has been used as a guiding principle for fuzzy number rank-
ing. The chapter adopts the multi-attribute decision-making framework to analyze 
such intuition.

Chapter 3, “Computing the Performance Parameters of the Markovian Queueing 
System FM/FM/1 In Transient State”, the L–R method to calculate the parameters of 
performance of the fuzzy Markovian queueing system. The calculation used is the 
arithmetic of L–R fuzzy numbers restricted to secant approximations. The member-
ship function helps represent graphically the curves of fuzzy parameters’ perfor-
mance in the three-dimensional space of a transient regime in a fuzzy environment.

Chapter 4, “Development of L-Group Theory”, shows a systematic and successful 
development of L-group theory. It provides a universal construction of a generated 
L-subgroup by using level subsets of given L-subsets. This construction allows for 
defining and studying commutator L-subgroups, normalizer of an L-subgroup, nilpo-
tent L-subgroups, solvable L-subgroups, and normal closure of an L-subgroup. The 
chapter examines all these concepts and their inter-relationships.

Chapter 5, “Fuzzy Photogrammetric Algorithm for City Built Environment Capturing 
into Urban Augmented Reality Model”, describes and uses Fuzzy Cognitive Maps 
(FCMs) as a computing framework for matching visual features in an augmented 
urban-built environment modelling process. 

Chapter 6, “PID-like Fuzzy Controller Design for Anti-Slip System in Quarter-Car 
Robot”, proposes a new methodology to control the slip of a Quarter-Car robot using 
an internal loop based on fuzzy logic inference to compute the gains of a Proportional 
Integral (PI) structure. The slip is calculated, such as the difference between the linear 
velocity given by an S-curve velocity profile, and the longitudinal speed is calculated 
according to the rotational speed of the Quarter-Car tire. 

Chapter 7, “Methodology for the Implementation of a Fuzzy Controller on Arduino, 
MATLAB™ and Nexys 4™ Platforms”, discusses a methodology to implement a fuzzy 
controller in different hardware platforms that can be used to control a process and as 
an approximator to identify non-linearities and unknown uncertainties of a system.

Chapter 8, “Performance Improvement for Fighter Aircraft using Fuzzy Switching 
LQI Controller”, discusses the switching controller designed for the stabilisation 
of high-performance aircraft, the Aero-Data Model in Research Environment 
(ADMIRE). The developed fuzzy logic switching controller has been tested and 
obtained a robust stabilisation control structure compared to a single conventional 
LQI and the switched LQI controller. 

Chapter 9, “Adaptive Neuro-Fuzzy Inference System-Based GPS-IMU Data Correction 
for Capacitive Resistivity Underground Imaging with Towed Vehicle System”, exam-
ines how the Capacitive Resistivity (CR) method utilizes GPS to create maps quickly 

V

and with less equipment and labor compared to traditional surveying. However, data 
acquisition errors can still occur due to GPS sensor accuracy, digital map quality, and 
map-matching slipups. Also, environmental factors sometimes cause GPS sensors 
to fail. Hence, reducing errors in GPS receiver accuracy is crucial for correct under-
ground utility location and map matching. This chapter uses an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to correct the latitude and longitude positions of a 
towed vehicle for underground imaging. 
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Chapter 1

Review of Type-1 and Type-2
Fuzzy Numbers
Norihiro Someyama

Abstract

We review type-1 and type-2 fuzzy numbers in this chapter, and propose one way of
perceiving the concept of fuzzy numbers by comparing with that of round numbers.
There are some definitions of fuzzy numbers, but we particularly adopt the definition
often used in fuzzy analysis. Thereby, we emphasize that fuzzy number theory can be
reduced to an argument for interval analysis. Moreover, we explain type-2 fuzzy sets
and list two specific type-2 fuzzy numbers, one is a (triangular) perfect quasi-type-2
fuzzy number and the other is a triangular shaped type-2 fuzzy number. Finally, we
mention the importance and utility of using type-2 fuzzy numbers.

Keywords: type-n fuzzy number, perfect quasi-type-2 fuzzy number, triangular
shaped type-2 fuzzy number, membership grade, level-cut set, round number

1. Introduction

A fuzzy number is a special fuzzy set, and the fact that its membership function
is unimodal (although “rest stops” along the way up and down the mountain are
allowed) and normal is particularly characteristic. The concept of fuzzy sets was
introduced by L.A. Zadeh [1] in 1965. There are some definitions of it. We see
that in Section 2.3. In each application of fuzzy numbers, you can decide which
definition is most useful and choose it on a case-by-case basis. For example, [2] is a
well-known reference that defines fuzzy numbers with an eye toward fuzzy analysis
(See also [3–6]).

1.1 Where should the concept of fuzzy numbers be used?

The concept of fuzziness or fuzzy numbers appears when we try to distinguish
between two or more things or measure something by sight or feeling. If their specific
values were required, there would be no need to force fuzziness into the discussion.

For example, coefficients appearing in differential equations can be treated as
fuzzy numbers. Let us consider the radiocarbon dating method. Equation describes
how several samples of radioactive material decay

dN
dt
¼ �λN, λ>0, (1)

3



was presented by E. Rutherford. Here N ¼ N tð Þ is the number of atoms in a
radioactive material at time t. Eq. (1) implies that the larger λ, the faster the sample
decays. λ varies with the substance, of course, and is determined experimentally by the
observer on a case-by-case basis (see, e.g., [7] for more information). This λ is set with
some mathematical basis, but in some cases it may be determined empirically, or the
accuracy of the observation equipment and the skill of the observer may be highly
dependent on it. Therefore, it seems more realistic, appropriate and effective to put
fuzziness in λ and treat it as a fuzzy number. Differential equations involving fuzzy
numbers are generally called fuzzy differential equations. To find the fuzzy solution
of a fuzzy differential equation, we can obtain the level-cut sets of the solution by
considering its level-cut sets and solving the interval equation, so we can collect them
over all levels. However, in order to do so, of course, the fuzzy differential equation
must have a (fuzzy) solution. See, e.g., Refs. [3, 6] for the existence and uniqueness of
solutions of fuzzy differential equations. Refs. [8–11] are also helpful in knowing how
to solve specific fuzzy differential equations of the type as in Eq. (1). In particular,
Ref. [8] covers elementary contents of fuzzy numbers and fuzzy differential
equations.

1.2 The aim of this chapter

We treat not only fuzzy sets / numbers, but also “fuzzy-membership-grade fuzzy
sets / numbers” in this chapter. These are usually called type-2 fuzzy sets / numbers.
In order to distinguish fuzzy sets / numbers from these, they are called type-1 fuzzy
sets / numbers with emphasis. These are defined and explained in Section 3. We can
generally consider type-n fuzzy sets / numbers, but since type-2 fuzzy sets / numbers
are used in practical applications, this chapter also deals exclusively with type-1 and
type-2 fuzzy sets/numbers.

More precisely, a type-2 fuzzy set can be said to be a fuzzy set whose membership
grades are (type-1) fuzzy numbers. For example, it is a fuzzy set such that the
membership grade at which a room feels hot is “about 0.8.” We can thus think that
type-2 fuzzy theory is the application of type-1 fuzzy number theory.

Roughly speaking, the membership function of a type-2 fuzzy set is generally in
the shape of a mountain standing above the base of a mountain type. This is because
the base is the membership function with “width.” The “width” represents the fuzz-
iness of a membership grade (see Figure 1). The red curve is the membership function
with zero fuzziness.

Figure 1.
The form of the “bottom” of a type-2 fuzzy set.

4

Advances in Fuzzy Logic Systems



Type-2 fuzzy theory is applied mainly to represent linguistic variables in reason-
ing. In the first place, Zadeh [1] introduced the concept of type-2 fuzzy sets for this
purpose in 1975. By introducing it, we can treat truth values such as “approximately
true,” “neither true nor false,” “truth unknown,” etc. This has greatly advanced the
study of reasoning (see, e.g., [12–15]). In recent years, type-2 fuzzy number theory
has been developing and is being studied in principle as well as in application. Appli-
cations to differential equation theory have also been made (see, e.g., [10, 11, 13, 16].
Type-1 fuzzy differential equation theory can be seen in Refs. [3, 6], etc. All of the
above studies benefit from the concept of type-1 fuzzy numbers. Indeed, type-2 fuzzy
theory is ultimately attributed to type-1 fuzzy theory because any type-2 fuzzy set is
represented as a “coupling” of two type-1 fuzzy sets (See Section 3 for details), and
hence, concrete computations are also done by level-cutting of type-1 fuzzy sets (see,
e.g., [17] for operations for type-2 fuzzy sets). Moreover, the utility of the type-2
fuzzy concept will be explained in Section 3.5.

Therefore, it can be said to be important to interpret the concept of fuzzy numbers
appropriately and consider fuzzy numbers whose level-cut sets are easily computed.

From the above, we see the following in this chapter:

• In Section 2, we review how fuzzy numbers are perceived, comparing
them to round numbers. Furthermore, we give a “strict” and “suitable”
definition of a (type-1) fuzzy number, which reduces its theory to interval
number theory and interval analysis [18].

• In Section 3, we meet the concept and some definitions of type-2 fuzzy sets, and
know, via some figures, that type-2 fuzzy sets / numbers are defined by type-1
fuzzy numbers. Type-2 fuzzy sets /numbers are defined by type-1 fuzzy
numbers. Furthermore, we give an example of a type-2 fuzzy number whose
level-cut sets are easily computed in Section 3.4 and find out why the type-2
fuzzy concept is necessary or what it can do.

2. Fuzzy numbers, their concept, and level-cut sets

We begin by seeing how to perceive fuzziness on numbers, that is, the concept of
fuzzy numbers in this section.

2.1 Difference between round numbers and fuzzy numbers

A fuzzy number, e.g., ~3, is often interpreted and called as “about 3.” However,
with this representation, it becomes indistinguishable from round numbers, and there
is a risk of confusion. We thus verify the difference between round numbers and
fuzzy numbers.

Let us consider the following string of positive and finite length (See Figure 2).
And, let us say that we want to know (even roughly) this length. Then, there are two
cases:

a. one is measuring, and

b. the other is eyeballing.

5
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Suppose we now have a ruler, tape measure, or other object that can measure
length. Then, we can measure the length of the string, and suppose the length is
30.2 cm. This is regarded as about 30 cm, and hence this is case a above.

On the other hand, suppose we do not have a ruler, tape measure, or other object
that can measure length. Then, we cannot measure the length of the string, so we need
to have an approximate idea of the length, for example, by eyeballing it. Let us say the
length feels like “30 cm.” Assuming that this visual measurement is perfectly correct,
the value 1 (100% confidence) is assigned to “30 cm.” The confidence level gradually
decreases as “30 cm” is shifted up or down. We thus represent the barometer of
confidence by the graph of a function. This function is called a membership function.
This is case b above. Like this, the value from 0 to 1 assigned to each value of length is
called the membership grade, often denoted by α. As just explained, the attitude of
this chapter is to believe that membership grade represents a degree of confidence.

The concept of round numbers appears in the former case, whereas that of fuzzy
numbers appears in the latter case. Indeed, if the length can be measured, there is no
need to bring in fuzziness, which complicates the discussion. In other words, the
difference between round numbers and fuzzy numbers is whether or not an “exact
value” exists. The concept of fuzzy numbers has the advantage that it comes into
effect when an “exact value” is not available and can be discussed as if it was values
out there. The concrete difference is as follows.

• Round number 3 is like 2
ffiffiffi
2
p

, 2:9, π, etc. Or, for example, the round number of
10,023 people is 10,000 people. We often call this “about 10,000 people.”

• Fuzzy number 3 is the fuzzy set F whose membership function μF : ! 0, 1½ �
such that

i. μF 3ð Þ ¼ 1,

ii. μF is monotone increasing (resp. deceasing) on x∈ �∞, 3ð Þ (resp.
x∈ 3,þ∞½ Þ),

iii. for example, μF xð Þ ¼ 0 for all x≤ 2 and x≥4.

It seems natural to us that μF is continuous, but μF can be continuous or discontin-
uous. Moreover, since any fuzzy set is given based on our subjectivity, there are any
numbers of membership functions for it. We give an example of a μF in Figure 3. It
seems more natural that μF is smooth, but μF can be a broken line as shown in
Figure 3. Such a fuzzy number is often called a triangular fuzzy number.

The above view of fuzzy numbers is somewhat imprecise and unsuitable for a
detailed mathematical discussion. So, a strict definition of fuzzy numbers is given
later.

Figure 2.
How long is this string?
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2.2 Notation of fuzzy sets

In what follows, X denotes the universal crisp set, and we write A xð Þ ¼ μA xð Þ for
the membership grade of a fuzzy set A at x∈X. Related to this, following the conven-
tions in fuzzy analysis, we write A : X ! 0, 1½ � for a fuzzy set on X.

It is well known that there exist some representations of a fuzzy set A on X:

A ¼ x, μA xð Þð Þ : x∈Xf g,
ð

x∈X
μA xð Þ=x, etc: (2)

Remark that “
Ð
” in the representation on the right side of Eq. (2) means a contin-

uous union for sets, not an integral. Moreover, “=”means a marker, not a division, and
“
Ð
” is rewritten as “

P
” if A is discrete.

2.3 Definitions of fuzzy numbers

There are several definitions for fuzzy numbers. The definition most in line with
the senses is as follows.

Definition 2.1. Let X ¼  and A : ! 0, 1½ � be a fuzzy set. A is a fuzzy number on
 if and only if A satisfies that

i. A is normal, that is, there exists x0 ∈ such that A x0ð Þ ¼ 1;

ii. A is convex, that is, A txþ 1� tð Þyð Þ≥ tA xð Þ þ 1� tð ÞA yð Þ for any x, y∈ and
t∈ 0, 1½ �;

iii. A is continuous.

An x0 such that condition i is called a core.
Note: Definition 2.1 says that when considering “about a,” the confidence level is 1

(100 %) at a∈X and decreases as the variable x∈X moves away from a to both sides.
If X ¼ , we should remove condition iii since the membership function is of course
discontinuous. In this case, such a fuzzy number is called the discrete fuzzy number.

Recall that any fuzzy set A can be established by its all level-cut sets:

A ¼ ⋃
α∈ 0, 1½ �

α A½ �α, (3)

Figure 3.
An example of a membership function of fuzzy number 3.
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where A½ �α is the α-cut set of A defined as

A½ �α ¼
x∈X : A xð Þ≥ αf g ðα∈ 0, 1�ð Þ,

supp Að Þ ¼ cl x∈ : A xð Þ>0f gð Þ α ¼ 0ð Þ:
�

Here, “supp”means “support” and cl Sð Þ denotes the closure of a crisp set S. α Aα½ � is
defined as a fuzzy set via the algebraic product operation:

α A½ �α
� �

xð Þ ¼ α � A½ �α
� �

xð Þ, x∈:

Note: There is another way to establish a fuzzy number by its α-cut sets, e.g., Ref. [4]:

A ¼ ⋃
α∈ 0, 1½ �

α ∗ ∩ A½ �α
� �

,

where α ∗ stands for a fuzzy set whose membership function is the constant
function, α ∗ xð Þ � α.

From this, it is expected that the discussion on fuzzy numbers can be reduced to
that on intervals (their level-cut sets). But for that we would need a more rigorous
definition of fuzzy numbers. We thus adopt the following definition that is often used
in fuzzy analysis, etc.

Definition 2.2. Let u : ! 0, 1½ � be a fuzzy set. u is a fuzzy number on  if and
only if u satisfies

a. u is normal, that is, u has at least one core;

b. u is fuzzy convex, that is, u txþ 1� tð Þyð Þ≥ u xð Þ∧u yð Þ for any x, y∈ and
t∈ 0, 1½ �, where ∧ represents the minimum operation;

c. u is semi-upper-continuous, that is, u½ �α ¼ x∈ : u xð Þ≥ αf g is closed for all α∈;

d. supp uð Þ is bounded.

In particular, u : ! 0, 1½ � is called a discrete fuzzy number (on ).
Definition 2.2 looses Definition 2.1 by replacing conditions ii and iii with condi-

tions b and c, respectively. In fact,

• condition b of Definition 2.2 does not allow the membership function to be
bimodal, but allows it to be non-convex (Figure 4);

Figure 4.
Disconvexity is OK.
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• condition c of Definition 2.2 allows the membership function to be a jump
function (Figure 5).

On the other hand, however, Definition 2.2 adds a new condition, D, to Definition
2.1. In fact, condition D of Definition 2.2 states that the membership function lands on
the x-axis on both sides of core a. Specifically, think of membership functions like the
C∞
0 -function

u xð Þ ¼ exp � 1
1� x2

� �
jxj< 1ð Þ

0 jxj≥ 1ð Þ,

8<
:

which is often used as an example of a test function in distribution theory; e.g.,
(Figure 6) [19].

Like the above, there are points in Definition 2.2 where the conditions are loosened
or strengthened. The reasons for doing so are discussed in the next subsection.

2.4 Correspondence between fuzzy numbers and level-cut sets

Definition 2.2 implies that u is a fuzzy number if and only if u½ �α is a bounded
closed interval for any α∈ 0, 1½ �. In fact,

• condition a says that u½ �α is not empty for any α∈ 0, 1½ �,

Figure 5.
Jump is OK.

Figure 6.
Definition 2.1 allows membership functions like the left side, but Definition 2.2 requires membership functions like
the right side.
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• condition b says that u½ �α is an interval on  for any α∈ 0, 1½ �,

• condition c says that u½ �α is closed for any α∈ 0, 1½ �,

• condition d says that u½ �α is bounded for any α∈ 0, 1½ �.

Given this, we denote

u½ �α ¼ u� αð Þ, uþ αð Þ½ �

for any α∈ 0, 1½ �. u� αð Þ are, of course, crisp numbers (or, the crisp function with
respect to α, 0, 1½ �∍α↦u� αð Þ∈). Hence, we expect that the discussion of fuzzy
number theory can be reduced to that of interval analysis, that is, level-cut theory.

Theorem 2.3 (Representation Theorem for Fuzzy Numbers, e.g. [2–4, 6]) Let
u : ! 0, 1½ � be a fuzzy number. Then, the following holds:

1. u½ �α is a non-empty bounded closed interval for any α∈ 0, 1½ �.

2. If 0≤ α1 ≤ α2 ≤ 1, then u½ �α2 ⊂ u½ �α1 .

3.For the monotone increasing and positive sequence αnf g that converges to
α∈ 0, 1ð �, one has

⋂
∞

n¼1
u½ �αn ¼ u½ �α:

Conversely, if there is a family of sets Pαf gα∈ 0,1½ � satisfying properties 1, 2 and 3
above, then there exists a unique fuzzy number u. Moreover, it follows that

u½ �α ¼ Pα

for any α∈ 0, 1ð � and
u½ �0 ⊂P0: (4)

Note: As can be seen, Eq. (4) does not guarantee equality. For example, we want to
treat fuzzy numbers u in the same way as crisp numbers if possible, so it is necessary
to define the four arithmetic operations, etc., for fuzzy numbers. To do so, we only
need to well define the operations of level-cut sets (i.e., interval numbers), which
corresponds to Pα above. It must then be satisfied that Pα ¼ u½ �α for any α∈ 0, 1½ �.
Representation Theorem and the proof of P0 ⊂ u½ �0 guarantee that the results of the
defined operations are fuzzy numbers. Eq. (3) guarantees that ∪α∈ 0,1½ �αPα is a fuzzy
set, but does not guarantee that it is a fuzzy number. For this reason, what is needed is
the representation theorem. This is detailed in, e.g., Ref. [4].

3. Type-2 fuzzy numbers: Two concrete examples

3.1 Motivation for type-2 fuzzy theory

The key to fuzzy theory is the concept of membership grades, and it is represented
by our individual degrees of confidence. However, membership grades we set may be
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ambiguous. Put another way, determining membership grades means determining the
degrees of confidence, but there is also the degree of confidence for the degree of
confidence α. For example, let us say that we are willing to accept the sentiment that
we have determined α (100α%) with a confidence level of 0.8 (80 %). These are
called fuzzy membership grades. In summary, type-2 fuzzy theory is a theory of fuzzy
sets with fuzzy membership grades.

A type-1 fuzzy set A is characterized by its membership function A : X ! 0, 1½ � for
the universal (crisp) set X, whereas a type-2 fuzzy set ~A is characterized by its
membership function ~A : X ! 0, 1½ � 0,1½ �. Here, UV denotes the set of mappings U ! V
for crisp sets U,V.

There are other advantages of type-2 fuzzy theory. See Section 3.5 for that.

3.2 Type-2 fuzzy sets and those associated with them

We begin with the definition of a type-2 fuzzy set. Type-2 fuzzy theory has many
concepts and their terms, but we prepare them required in this chapter. (There is a slight
change from the traditional definition and notation.) For example, themembership grade
of a type-2 fuzzy set is called the fuzzymembership grade of it. Unlike type-1 fuzzy sets,
type-2 fuzzy sets can be three-dimensional figures and are generally difficult to depict.

Definition 3.1. If ~A is characterized by the membership function

μ~A : I � Jx∍ x, uð Þ↦μ~A x, uð Þ∈ 0, 1½ �, (5)

~A is called a type-2 fuzzy set on X. Here, I⊂X is the universe for the primary
variable x∈X, and Jx ⊂ 0, 1½ � is the interval determined for each x∈ I. Then, I and Jx
are called the primary and secondary domains of ~A, respectively.

There are other representations of ~A:

~A ¼ x, u; μ~A x, uð Þ� �
: x∈ I, u∈ Jx

� �
,
ð

x∈ I

ð

u∈ Jx
μ~A x, uð Þ= x, uð Þ, etc: (6)

Remark that “
Ð
” in the representation on the right side of Eq. (6) means a contin-

uous union for sets, not an integral. Moreover, “=”means a marker, not a division, and
“
Ð
” is rewritten as “

P
” if ~A is discrete.

Definition 3.2. Let ~A be a type-2 fuzzy set onX. The type-1 fuzzy set for ~A appears if
x∈ I is fixed arbitrarily. It is called the vertical slice of ~A, and its membership function

νx~A : Jx ! 0, 1½ �:

is called the secondary membership function of ~A at x.
~A can be said to be characterized by νx~A as follows:

~A ¼
ð

x∈X

ð

u∈ Jx
νx~A uð Þ=u

 !
=x,

where νx~A uð Þ is the value of the secondary membership function at u, that is, the

secondary membership grade of ~A.
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Note: The concepts of vertical slices and secondary membership functions are
often treated in the same sense. Because of this, “secondary membership functions”
are sometimes also called “vertical slices.”

There are two kinds of cutting with respect to β and what is important is what to
cut with respect to β. First, the following is the cutting of vertical slices.

Definition 3.3. Let ~A be a type-2 fuzzy set on X. The crisp set

S~A xjβð Þ ¼
u∈ Jx : νx~A uð Þ≥ β
n o

ðβ∈ 0, 1�ð Þ,

cl u∈ Jx : νx~A uð Þ>0
n o� �

β ¼ 0ð Þ,

8><
>:

is called the β-cut set of the vertical slice of ~A (Figure 7).
Next, the following is the cutting of type-2 fuzzy sets.
Definition 3.4. Let ~A be a type-2 fuzzy set on X. For β∈ 0, 1½ �,

~Aβ ¼ ⋃
x∈ I

S~A xjβð Þ

is called the β-plane of ~A. In particular, ~A1 and ~A0 are called the principal (or,
principle) set and footprint (set) of ~A, respectively.

Roughly speaking, a type-2 fuzzy set can be characterized by a membership func-
tion in the form of two mountains. We use the following notation for the β-plane of ~A
because we want to make it geometrically easy to see what a type-2 fuzzy set looks
like. That is, it brings in the notion of “left- and right-sided type-1 fuzzy sets.”

Definition 3.5. If the β-plane of ~A is the interval-valued fuzzy set, there exist type-
1 fuzzy sets Aβ and Aβ. Then, we denote

~Aβ ¼ Aβ, Aβ

D E
:

Here, Aβ and Aβ are called the lower membership function (briefly, LMF) and

upper membership function (briefly, UMF) on ~A, respectively.
Definition 3.6. Let ~A be a type-2 fuzzy set on X. For each β∈ 0, 1½ �, the coupling of

α-cut sets of Aβ and Aβ is written as

~A
� �α

β
¼ Aβ

h i
α
, Aβ

� �
α

D E
, α∈ 0, 1½ �, (7)

and is called the α, βð Þ-cut set of ~A.

Figure 7.
0-cut set of the vertical slice of “about 1” as the meaning of type-2 fuzzy numbers; Figure 1 [11].
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As with type-1, we can discuss type-2 fuzzy sets as their β-planes or α, βð Þ-cut sets.
Indeed, Hamrawi found the formula that is a type-2 version of Eq. (3) as follows; we leave
the details to Ref. [20] for more information on the contents of this neighborhood.

Proposition 3.7. Any type-2 fuzzy set ~A on X satisfies

~A ¼ ⋃
β∈ 0, 1½ �

β ⋃
α∈ 0, 1½ �

α ~A
� �α

β
,

where α ~A
� �α

β
: X ! 0, αf g is a type-1 fuzzy set.

3.3 Perfect quasi-type-2 fuzzy numbers

We hereafter set X ¼ .
Hamrawi introduced the following type-2 fuzzy number, which we can call a

“triangular type-2 fuzzy number.”
Definition 3.8. ([20], Section 3.4). Let A be a type-2 fuzzy set on . A is a perfect

type-2 fuzzy number if and only if

i. UMF and LMF of FP Að Þ are equal as type-1 fuzzy numbers, and

ii. UMF and LMF of P Að Þ are equal as type-1 fuzzy numbers.

Moreover, if a perfect type-2 fuzzy number A satisfies that

iii. A can be completely determined by using its FP Að Þ and P Að Þ,

such a A is called the perfect quasi-type-2 fuzzy number (briefly, PQT2FN) on .
Definition 3.9. A PQT2FN A is triangular if and only if A½ �αβ has the α-cut set of

LMF on A:

Aβ

� �
α
¼ Lα

Aβ
, Rα

Aβ

h i
;

Lα
Aβ
¼ Xα

A1
� 1� βð Þ Xα

A1
� Lα

A0

� �
,

Rα
Aβ
¼ Yα

A1
þ 1� βð Þ Rα

A0
� Yα

A1

� �
,

Lα
A0
¼ CA � 1� αð Þ CA � LA0

� �
,

Rα
A0
¼ CA þ 1� αð Þ RA0

� CA

� �

and the α-cut set of UMF on A:

Aβ

� �
α
¼ Lα

Aβ
, Rα

Aβ

h i
;

Lα
Aβ
¼ Xα

A1
� 1� βð Þ Xα

A1
� Lα

A0

� �
,

Rα
Aβ
¼ Yα

A1
þ 1� βð Þ Rα

A0
� Yα

A1

� �
,

Lα
A0
¼ CA � 1� αð Þ CA � LA0

� �
,

Rα
A0
¼ CA þ 1� αð Þ RA0

� CA

� �
,
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where

Xα
A1
¼ CA � 1� αð Þ CA � XA1ð Þ,

Yα
A1
¼ CA þ 1� αð Þ YA1 � CAð Þ:

They are called the left principle number and right principle number of A, respec-
tively. CA denotes the core of A, that is, the crisp number A½ �11. A triangular perfect
quasi-type-2 fuzzy number is abbreviated as TPQT2FN.

Figure 8 shows

Lα
A0

≤Xα
A1

≤Lα
A0

≤CA ≤Rα
A0

≤Yα
A1
≤Rα

A0
:

In particular, the supports of A are represented by the α-cut sets of LMF and UMF
of FP Að Þ:

A0½ �α ¼ Lα
A0
,Rα

A0

h i
, A0
� �

α
¼ Lα

A0
,Rα

A0

h i
:

Also, the α-cut set of P Að Þ is given as

A1½ �α ¼ Xα
A1
,Yα

A1

h i
:

Now, recall that the triangular type-1 fuzzy number u is determined by three
information, that is, its left end l, core c and right end r:

u ¼ l; c; rh ih i:

In contrast, TPQT2FN A is determined by seven information, that is, its upper left
end LA0

, left principle number XA1 , lower left end LA0
, core CA, lower right end RA0

,
right principle number YA1 and upper right end RA0

. We then write

A ¼ LA0
,XA1 ,LA0

;CA;RA0
,YA1 ,RA0

D ED E
:

In general, any type-2 fuzzy set/number satisfies that both the principal set and the
vertical slice are type-1 fuzzy numbers as shown in Figure 9.

Figure 8.
A view of a TPQT2FN A from directly above.
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3.4 Triangular shaped type-2 fuzzy numbers

The α, βð Þ-cuts of a perfect quasi-type-2 fuzzy number can be easily obtained, but
at cost of its condition being too strict (too ideal). We want to consider a more natural
type-2 fuzzy number while still being able to easily compute the α-cuts. H. Uesu
proposed the following type-2 fuzzy number, and he and the author, et al. [11]
introduced in 2022.

Definition 3.10. Let ~A be a type-2 fuzzy set whose core is a∈ on . ~A is a
triangular shaped type-2 fuzzy number (briefly, TST2FN) on  if and only if its
principal set and secondary membership function at x are given by

~A1 xð Þ ¼ max 1�jx� aj, 0f g,

νx~A tð Þ ¼
1� ∣t� ~A1 xð Þ∣

min ~A1 xð Þ, 1� ~A1 xð Þ� � ~A1 xð Þ∈ 0, 1ð Þ� �
,

1 t ¼ ~A1 xð Þ∈ 0, 1f g� �
,

0 t 6¼ ~A1 xð Þ∈ 0, 1f g� �
,

8>>>>><
>>>>>:

respectively (Figure 10).

Figure 9.
Membership function of a perfect quasi-type-2 fuzzy number.

Figure 10.
Membership function of a triangular shaped type-2 fuzzy number with core 2; Figure 4 [11].
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Note: For any TST2FN ~A, both its left and right footprints are congruent
parallelograms of width-length 0.5 (See Figure 11). Moreover, the diagonals of
the two parallelograms constitute the principal set ~A1 of ~A (see the right sides of
Figures 11 and 12).

Even a fuzzy number by its natural definition is not suitable for application if the
computation of its level-cut sets is complex. However, a TST2FN is defined naturally
and its level-cut sets can be easily computed.

Theorem 3.11 ([11], Theorem 2.19) Let ~A be a TST2FN with core a∈. For
α, β∈ 0, 1½ �, the following holds:

~A
� �α

β
¼

a� 2� α� β

2� β
, a� β � α

β

� �
, aþ β � α

β
, aþ 2� α� β

2� β

� �� �
, 0< α≤

β

2
;

a� 2� α� β

2� β
, a� 1� α

2� β

� �
, aþ 1� α

2� β
, aþ 2� α� β

2� β

� �� �
,

β

2
< α≤ 1� β

2
;

a� 1� α

β
, a� 1� α

2� β

� �
, aþ 1� α

2� β
, aþ 1� α

β

� �� �
, 1� β

2
< α≤ 1:

8>>>>>>><
>>>>>>>:

(8)

As we can see from the two type-2 fuzzy numbers above, it may be said that a
type-2 fuzzy number is determined by

Figure 11.
Footprint set of “about 2” as the meaning of type-2 fuzzy numbers; Figure 5 [11].

Figure 12.
Principal set of “about 2” as the meaning of type-2 fuzzy numbers; Figure 6 [11].
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• what form the FP should take and

• how to connect that FP to the PS.

In case of PQT2FNs, the FP is in triangular form, and the FP and the PS are linearly
connected. In case of TST2FNs, the FP is in the shape of a parallelogram, and the FP
and the PS are curvilinearly connected.

3.5 Utility of the concept of type-2 fuzzy numbers

Type-2 fuzzy theory has an advantage. For example, as discussed in Ref. [9], there
are cases where the observer is a veteran or a newcomer to some experiment. In such a
case, the coefficients appearing in fuzzy differential equations, etc., may change
depending on the former and the latter (in case of Eq. (1), we are talking about the
value of λ). Actually, it can be considered that PS and FP of a type-2 fuzzy set
correspond, so to speak, the veteran who make no mistakes at all and the newcomer
with no experience at all, respectively. Hence, by discussing type-2 fuzzy theory, we
can have the discussion of fuzziness concluded the case of an experiment by any
observer (Veteran or not!).

Some readers may think that instead of going to the trouble of discussing type-2
fuzzy numbers, they can simply consider two type-1 fuzzy numbers and compare
them. However, doing so would result in obtaining two fuzzy numbers under separate
environments (conditions), and it would generally not make sense to compare them,
for example. In other words, depending on the nature of the research, one may wish to
compare multiple subjects under the same conditions as appropriately as possible. The
type-1 fuzzy theory of comparing by each membership function does not, however,
seem to be appropriate in general. In fact, we often establish membership functions
under unique conditions of the subjects, and hence, the subjects are compared under
different conditions. The way of this research will not give appropriate comparison
results.

Then, type-n fuzzy theory is useful in overcoming this problem. With type-n fuzzy
numbers, membership functions or level-cut sets for all objects under the same con-
ditions can be obtained simultaneously (see Eqs. (7) and (8) as the case n ¼ 2).

When comparing two objects, the number of times to obtain level-cut sets is the
same whether considering two type-1 fuzzy numbers or one type-2 fuzzy number, but
basically type-2 fuzzy numbers are more likely to be computationally expensive or
unobtainable with respect to the level-cut sets. However, it is not very effective to
consider a type-2 fuzzy number that is too convenient for us only because it is easier to
calculate. Therefore, when dealing with type-2 fuzzy numbers, we prefer to consider
something that is easy to calculate while still being in accordance with our senses. One
example of this is TST2FN, Definition 3.10. In addition, one of the applications of this
can be seen in Ref. [21].

4. Conclusions

We regarded membership grades as the “degrees of confidence” in this chapter. In
particular, Ref. [22] is well known for this same idea of literature.

Although the application aspect is important in fuzzy theory, this chapter focused
on how to recognize fuzzy numbers in the first place rather than how to apply them.
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This is because if the starting point of the discussion is iffy, so will the outcome. Fuzzy
theory is not a theory to derive fuzzy results, but the ability to approach fuzziness
mathematically (with some rigor) is the real appeal of fuzzy theory. That is, the
beginning is crucial, and this mindfulness encourages the proper application of fuzzy
numbers.

This chapter reviewed

• how to perceive and find “fuzziness,”

• that to discuss fuzzy numbers, it is sufficient to discuss their level-cut sets,

• that we should define or introduce fuzzy numbers such that their level-cut sets
are easily obtained in order to do that.

These things are common to type-n fuzzy numbers for any n∈ℕ.
We have redefined the concept of fuzzy numbers by comparing them to round

numbers. A round number is a number whose exact value is known and whose value is
replaced by a tractable number. On the other hand, a fuzzy number is a concept that
attempts to estimate its value when the exact value is (forever) unknown and deter-
mine its membership function. Even using the same word “about,” they are different
in concept itself, let alone approach. In summary, fuzzy numbers are a valid concept
for quantities that definitely exist but whose values are difficult to obtain.

Furthermore, the discussion of fuzzy numbers can be reduced to that of interval
analysis. Instead of dealing directly with fuzzy numbers, we can discuss them by
dealing with the level-cut sets, which are (nonempty bounded closed) intervals.
Hence, we want to treat fuzzy numbers whose level-cut sets are easily obtained.
Compared to type-1 fuzzy numbers, type-2 fuzzy numbers are generally more com-
plex and difficult to find for their level-cut sets, and in particular, type-2 fuzzy
numbers we should be dealing with must be easy to compute. With this in mind,
TST2FNs were introduced in Ref. [11]. The application of TST2FNs to type-2 fuzzy
differential equation theory can be also seen in [11]. If we want to know about type-2
fuzzy differential equation theory, we can also see in, e.g., [9, 16, 23].

The computation of fuzzy numbers tends to be more tedious and complicated than
that of crisp numbers. Therefore, it is not sufficient to make anything a fuzzy number
if it is an ambiguous number. It is necessary to appropriately determine what should
be regarded as a fuzzy number, even at the expense of calculation tediousness and
complexity. One criterion for such a judgment was given in this chapter.
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Chapter 2

Decoupling of Attributes and
Aggregation for Fuzzy Number
Ranking
Simon Li

Abstract

Intuition, expressed as verbal arguments or axiom formulations, has often been used
as a guiding principle for fuzzy number ranking (FNR). This chapter adopts the multi-
attribute decision making (MADM) framework to analyze such intuition with three
results. First, intuition in FNR should have involved multiple attributes, which are often
implicated in the existing ranking methods. Then, we suggest three attributes (i.e.,
representative x-value, x-value range, overall membership ratio), which can be used to
characterize the FNR intuition. Second, we decouple two issues in FNR: selection of
attributes and aggregation of values, where aggregation is concerned with the trade-off
among attributes to determine a single index for FNR. Then, the discount factors are
proposed for the attributes of range and membership ratio to model the trade-off and
formulate a ranking index. Third, the decoupling of attributes and aggregation reveals a
fundamental tension between information content and the satisfaction of the FNR
axioms. That is, if we can consider more information (in terms of attributes) as relevant
to FNR, the ranking method will likely violate some FNR axioms. However, if we
consider less information, the ranking method will be less sensitive to distinguish some
fuzzy numbers for ranking. In the end, the proposed multi-attribute approach can
provide a practical aspect to analyze and address the FNR problems.

Keywords: fuzzy number ranking, multi-attribute decision making, aggregation,
decoupling, overall membership ratio

1. Introduction

Intuition has been a criterion for researchers to evaluate and comment the ranking
results from a set of fuzzy numbers. As a pattern described by Wang and Kerre [1], a
ranking method can be criticized by yielding “counter-intuitive” results from some
examples, and thus it is motivated to develop new ranking methods (e.g., [2, 3]).
Despite of its common use, the meaning of “intuition for ranking” is somewhat
unclear. It should be related to the ranking of real numbers, which is fundamental in
our intuition. However, this alone is not sufficient for fuzzy number ranking (FNR).
Why? When we compare two real numbers: 3 and 5, we can state 5 > 3 because these
real numbers can be ordered on a single dimension, i.e., the real line. In the context of
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fuzzy sets, the membership information is added. For example, consider two ordered
pairs: (3, 0.9) and (5, 0.4), where the second elements are the membership values.
Here, we cannot straightforwardly state (5, 0.4) ≻ (3, 0.9) due to the presence of the
second dimension, membership, in the ranking consideration. Notably, in this paper,
the symbol “>” is used to compare two real numbers, while the symbol “≻” or “≽” is
used to represent the ranking relation.

Consider that a fuzzy number contains a set of such ordered pairs. We argue that
the problem structure of FNR should contain multiple dimensions to explain “intui-
tion” properly. Then, we employ the classical framework of multi-attribute decision
making (MADM) [4] for the analysis of ranking intuition. The framework of MADM
distinguishes the concepts of attributes and aggregation. Attributes are used to evalu-
ate the properties of options, and they are subject to the selection by decision makers,
who determine what properties (or information) are deemed relevant to the decision
problems. On the other hand, aggregation captures the weighting strategies (e.g.,
weighted sum) to address the trade-off consideration among the option’s properties
(or information).

In FNR, each attribute represents a single dimension for ranking consideration. In
literature, numerous attributes have been implied in the formulations of ranking
indices. For example, the approach of the maximizing and minimizing sets [3, 5, 6]
implicates the attributes that articulate the optimistic and pessimistic aspects of a
fuzzy number for ranking. In the centroid-based approach [7, 8], centroid can be
interpreted as an attribute that focuses on the “middle” aspect over the geometry of a
fuzzy number. Notably, each notion of attribute can be quantified in multiple ways.
For example, we may express the notion of “average” via the formulations of “value”
by Delgado et al. [9] or “median” by Bodjanova [10]. In addition, new ranking
methods have been proposed by adding attributes to the ranking indices. For example,
to address some non-distinguishable results from Abbasbandy and Hajjari [2], Asady
[11] and Ezzati et al. [12] formulated additional attributes (namely, the epsilon-
neighborhood and Mag’(u), respectively) in their ranking indices.

The consideration of multiple attributes for FNR is not new. In literature, some
approaches have explicitly considered multiple measures (or attributes) to describe a
fuzzy number such as value and ambiguity [9, 13, 14], mean and standard deviation
[15], average value and degree of deviation [16], expected value (in transfer coeffi-
cient) and deviation degree [17, 18], general concepts of area/mode/spreads/weights
[19–21] and extensions from the centroid concept [21–25].

Aggregation is a separate issue from the selection of attributes. It aims to handle
the given information of attributes for decision making. In literature, different aggre-
gation approaches over the same attributes have been reported. For example, aggre-
gation over the x- and y-coordinates of a centroid can be done via a distance measure
[26] or an area measure [8, 27]. The weighted sum approach has been used to aggre-
gate two attributes such as the right/left utility values [3] and the average and devia-
tion values [16]. In addition to closed-form equations, aggregation can also be done by
rules and procedures. For example, Asady [11] and Chi and Yu [23] determine the
ranking of fuzzy numbers based on the priority of two or three attributes, which
basically is a lexicographical ordering procedure ([4], pp. 77–79).

The aggregation approach can influence the ranking results since it controls the
trade-off among attributes. To illustrate, consider the earlier ordered pairs (3, 0.9)
and (5, 0.4). Suppose that two attributes are considered for ranking: real number and
membership value, and we assume “higher value ➔ higher rank” for both attributes.
Then, we can have multiple ways to aggregate these two values such as 3 + 0.9 and
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3 � 0.9, which are consistent with the “higher-the-better” direction. However, dif-
ferent aggregation functions can lead to different ranking results, e.g., (3 + 0.9)
< (5 + 0.4) and (3 � 0.9) > (5 � 0.4). Different results can be explained by the trade-
off approach implied in the aggregation functions. For example, in this case, addition
tends to give an advantage to real number, whereas multiplication allows more influ-
ence from membership value.

Based on the above discussion, the theme of this chapter is to adopt the MADM
framework, which purposely decouples attributes and aggregation for FNR. In this
way, we can compare ranking methods in view of their selections of attributes and the
formulations of aggregation functions independently. In addition, the multi-attribute
aspect can help explain the axiomatic properties of ranking methods. To avoid the
reliance on the “intuition criterion”, Wang and Kerre [1] suggested seven axioms as
reasonable properties to specify the meaning of intuition more clearly. Ban and
Coroianu [28] derived a class of ranking functions that can satisfy six of these axioms
with literature examples that can belong to this class under some conditions (e.g.,
[2, 29, 30]).

Despite of the formal work by Ban and Coroianu [28], new ranking methods
emerge continually as researchers considered this class of ranking functions did not
address two aspects. First, the development by Ban and Coroianu [28] was intended
for normalized fuzzy numbers, and some work has been developed for the non-
normalized cases (e.g., [31]). Second, their class of ranking functions cannot distin-
guish two symmetric fuzzy numbers with different spreads (e.g., for cases in Ezzati
et al., [12]). In some recent work, Dombi and Jónás [32] applied the probability-based
preference intensity index, and Van Hop [33] developed the dominant interval mea-
sure (namely relative dominant degree) for fuzzy number ranking. Their approaches
basically generalized the numerical techniques of intervals for fuzzy number ranking
without decomposing or analyzing the ranking attributes.

More fundamentally, it seems to us that if a ranking function is designed to satisfy
the axioms by Wang and Kerre [1], this ranking function will be less sensitive to the
distribution of membership values and the spreads of fuzzy numbers to determine the
ranking results. In other words, the satisfaction of these axioms is strongly influenced
by the type of information (or attributes) that is selected for FNR but it is less relevant
to the aggregation approach. The distinction between information selection and
aggregation has not been investigated for fuzzy number ranking in literature. This
chapter will use the multi-attribute aspect to analyze this issue.

After the preliminaries in Section 2, this chapter will discuss and illustrate our
selection of three attributes for FNR in Section 3 and then our aggregation approach
using the discount factors in Section 4. Section 5 will suggest some guidance for the
application of the proposed multi-attribute ranking method. Section 6 will discuss the
relation between the information content for FNR and the axiomatic properties of
ranking methods. This chapter is concluded in Section 7.

2. Preliminaries

Fuzzy number is described as a fuzzy subset of the real line  [34]. This work
considers trapezoidal fuzzy number (TrFN) as a special case of fuzzy number. Let FA
denote a TrFN with a maximum membership equal to hA, as illustrated in Figure 1.
Let x be any element of the real line, and its membership according to TrFN, denoted
as μFA

xð Þ, can be expressed in the following formulation where a1, a2, a3, a4 are real
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numbers to specify FA. As a convenient notation, FA can be expressed as a 5-tuple,
where FA = (a1, a2, a3, a4; hA).

μFA
xð Þ ¼

0 x< a1
x� a1
a2 � a1

� �
hA a1 ≤ x< a2

hA a2 ≤ x< a3
x� a4
a3 � a4

� �
hA a3 ≤ x< a4

0 x> a4

8>>>>>>>>><
>>>>>>>>>:

(1)

Let supp(FA) be the support of FA, and we have supp(FA) = {x ∈  | a1 ≤ x ≤ a4}.
Then we have the infimum and supremum of supp(FA) as inf supp(FA) = a1 and sup
supp(FA) = a4, respectively. Also, let IFA αð Þ ¼ lFA αð Þ, rFA αð Þ½ � be the α-cut interval of
FA. For α ≤ hA, the left and right bounds of the α-cut interval can be formulated as
follows.

lFA αð Þ ¼ a1 þ α

hA

� �
a2 � a1ð Þ (2)

rFA αð Þ ¼ a4 þ α

hA

� �
a3 � a4ð Þ (3)

Suppose we have two fuzzy numbers: FA = (a1, a2, a3, a4, hA) and FB = (b1, b2, b3,
b4, hB), and a constant, denoted as λ (i.e., λ∈ ). We can have fuzzy number addition
and multiplication with a constant as follows [17, 18, 34].

FA⊕FB ¼ a1 þ b1, a2 þ b2, a3 þ b3, a4 þ b4; min hA, hBf gð Þ (4)

λ � FA ¼ λ � a1, λ � a2, λ � a3, λ � a4; hAð Þ (5)

To describe some reasonable properties of ranking methods, Wang and Kerre [1]
have proposed seven axioms. Ban and Coroianu [28] have dropped one axiom by
considering a ranking (or an ordering) over a given set of fuzzy numbers. This chapter
follows the choice made by Ban and Coroianu [28]. Let F be a set of fuzzy numbers,

Figure 1.
A trapezoidal fuzzy number.
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and a ranking method determines the binary relation ≽ over F. Then, their six axioms
are summarized (without elaborating their variants) below.

Axiom 1: FA ≽ FA. for any FA∈ F.
Axiom 2: For any FA, FB∈ F, if FA ≽ FB and FB ≽ FA, then FA � FB.
Axiom 3: For any FA, FB, FC∈ F, if FA ≽ FB and FB ≽ FC, then FA ≽ FC.
Axiom 4: For any FA, FB∈ F, if inf supp(FA) ≥ sup supp(FB), then FA ≽ FB.
Axiom 5: Suppose that FA, FB, FA ⊕ FC, FB ⊕ FC are elements of F. If FA ≽ FB, then

Fa ⊕ Fc ≽ Fb ⊕ Fc.
Axiom 6: Suppose thatλ∈  and FA, FB, λ�FA, λ�FB are elements of F. If FA ≽ FB and

λ ≥ 0, then λ�FA ≽λ�FB. If FA ≽ FB and λ ≤ 0, then λ�FA≼ λ�FB.
Axioms 1 and 3 are referred to as the reflexive and transitive properties of binary

relations, respectively, for a total pre-order on F [28]. Axiom 2 defines the conditions
for the equality “�”. Axiom 4 specifies that FA is larger than or equal to FB if the lower
bound of the support of FA is larger than the upper bound of the support of FB.
Axioms 5 and 6 generally imply that the ordering of FA ≽ FB should be preserved if
they are added by the same fuzzy number FC or multiplied by the same positive
quantity λ. Notably, index-based ranking methods will satisfy Axioms 1 to 3 [1], and
this chapter will focus more on Axioms 4 to 6.

3. Three attributes for fuzzy number ranking

In this section, we characterize the comparison of fuzzy numbers through one
primary attribute and two secondary attributes. The primary measure is concerned
with the representative value of a fuzzy number on the real line, which is a common
intuition for ranking. One secondary attribute checks the range of real numbers
enclosed by a fuzzy number, which information is independent of the representative
value but can be relevant for ranking. Another secondary attribute is associated with
membership, which is concerned with the shape of a fuzzy number.

3.1 Representative x-value

Since the real line of a fuzzy number is often expressed on the x-axis, we use “x-
value” to label the values associated with the real line. As a fuzzy number encloses a
range of possible x-values, one common intuition is to identify a representative x-
value of a fuzzy number for comparison. There can be several options that are aligned
with this intuition such as the expected value [34, 35], the x-coordinate of a centroid
[36] and median [10]. In this chapter, we adopt the class of ranking indices derived by
Ban and Coroianu [28]. Let rep(FA, w) be the function to evaluate the representative
x-value of the fuzzy number FA, and its formulation is given as follows.

rep FA,wð Þ ¼ w � a1 þ 1
2
�w

� �
a2 þ 1

2
�w

� �
a3 þw � a4 (6)

where w is a weighting constant with 0 ≤ w ≤ 1. As proven by Ban and Coroianu
[28] (Theorem 39), if this function is used as a ranking index, it satisfies the six
axioms discussed in the preliminaries section. Beyond this theorem result, we can
interpret this formulation as a weighted function of a fuzzy number’s core values (a2
and a3) with a weight (1/2-w) and boundary values (a1 and a4) with a weight w. When
w = 0, only the core values are considered. Alternately, when w = 1/2, only the
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boundary values are considered. To emphasize the importance of core values (i.e., a2
and a3) through weighting, we set (1/2-w) ≥ w, and then we have 0 ≤ w ≤ 1/4.

Derived from Eq. (6), we have rep(FA, w) ≥ rep(FB, w) if the following condition is
satisfied.

w a1 þ a4ð Þ � b1 þ b4ð Þ½ � þ 1
2
�w

� �
a2 þ a3ð Þ � b2 þ b3ð Þ½ �≥0 (7)

This condition implies a weighted comparison between core and boundary values
of FA and FB. Apparently, we cannot guarantee the satisfaction of this condition if FA
and FB are partially overlapped (i.e., supp(FA) ∩ supp(FB) 6¼ ∅). Then, the value of w
can influence the ordering of rep(FA, w) and rep(FB, w). Following the discussion in
Ban and Coroianu [28], we consider the presence of w as a generalization of some
existing indices, which have implicitly pre-defined weighting factors for core and
boundary values of a fuzzy number. For example, the ranking index developed by
Abbasbandy and Hajjari [2] is an instance by setting w = 1/12. Given a ranking
problem, decision makers can consider some sensitivity analysis (e.g., evaluate the
value of w that makes rep(FA, w) = rep(FB, w)) to define the value of w for their
ranking problems.

3.2 X-value range

Another attribute is associated with the range of possible x-values of a fuzzy
number. Fuzzy numbers can have the same representative x-values with different
ranges (e.g., symmetric triangular fuzzy numbers with the same core value but dif-
ferent boundary values). Some argue that the information of range should be consid-
ered for ranking (e.g., [11]). There can be several options to quantify this intuition
such as ambiguity value [9, 13], standard deviation [15] and deviation degree [16–18].
In this chapter, we adopt the range (or size) of the α-cut interval (denoted as rng(FA,
α)), and it is formulated as follows.

rng FA, αð Þ ¼ rFA αð Þ � lFA αð Þ (8)

Figure 2 illustrates the α-cut interval of a trapezoidal fuzzy number FA., where the
lower (left) and upper (right) bounds of the α-cut interval are denoted as lFA αð Þ and

Figure 2.
Illustration of the α-cut interval.
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rFA αð Þ, respectively. The formulations of lFA αð Þ and rFA αð Þ can be found in Eqs. (2) and
(3), respectively. The value of α can be interpreted as the minimum membership
value that is deemed relevant for the ranking analysis. For example, if we set α at a
lower value, we will receive a wider interval.

Here, we suppose that a large range of possible x-values tends to yield a lower rank
because decision makers do not want high uncertainty associated with a large range.
This stated intuition of “larger range ➔ lower rank” is aligned with Wang and Luo
[6] and Nasseri et al. [37]. Also, we classify range as a secondary attribute because
some decision makers may find this attribute not necessary to their ranking problems
(e.g., ranking a set of triangular fuzzy numbers with a similar size of support). Then,
using the measure of representative x-value only could be sufficient for ranking. In
contrast, if decision makers find the information of range relevant to their ranking
problems, our suggested approach is to take the range information as a modifier to the
representative x-value. This approach will be discussed in Section 5.

3.3 Overall membership ratio

The notion of overall membership is associated with the shape of a fuzzy number,
regardless of where this shape is placed on the real line. To illustrate, consider two
comparisons in Figure 3. In Figure 3a, while FA and FB have different representative
x-values, their overall membership values should be the same due to the common
shape. In contrast, FC in Figure 3b should have higher overall membership than FD as
FC’s membership values are higher than or equal to those of FD over the common
support (note: the common support is not necessary; it just makes the comparison
easier to observe).

To capture the above idea of the overall membership of a fuzzy number, we
formulate the ratio using two areas: the shape’s area and the full membership area over
the same support. Also, we keep the concept of α-cut interval so that the decision
maker can identify the minimum level of membership that is relevant for their rank-
ing problem. Figure 4 is used to illustrate the concept of both types of area. First, the
shape’s area is considered as the area under the fuzzy number and enclosed by the α-
cut interval, as shaded by gray lines in Figure 4. Then, the full membership area is
based on the rectangle with the width of the α-cut interval and the height of 1 (i.e.,
maximum membership). Accordingly, the shape’s area (denoted as areashape) and the
full membership area (denoted as areafull) can be formulated as follows.

Figure 3.
Illustration of the concept for overall membership a) FA and FB with same membership b) FC with higher
membership than FD.
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areashape FA, αð Þ ¼
ðrFA αð Þ

lFA αð Þ
μFA

xð Þdx (9)

areafull FA, αð Þ ¼ rFA αð Þ � lFA αð Þ½ � � 1 (10)

The overall membership ratio of a fuzzy number (denoted as mem(FA, α)) can be
expressed as follows.

mem FA, αð Þ ¼ areashape FA, αð Þ
areafull FA, αð Þ (11)

Here, we suppose that higher overall membership ratio tends to yield a higher
rank. We classify (overall) membership ratio as another secondary attribute because it
may not be necessary for ranking problems with normal fuzzy numbers (e.g., if FA is a
normal triangular fuzzy number, mem(FA, 0) is always equal to 0.5). Yet, if this
information is considered relevant, Section 5 will suggest one approach to use it as a
modifying factor for ranking.

Notably, it is probably more common to apply two measures (instead of three) for
FNR in literature (e.g., [value, ambiguity] and [average value, degree of deviation] as
mentioned in Introduction). From there, they tend to integrate the information of
range and membership ratio into one measure. We choose to handle such information
in terms of two separate attributes for two reasons. First, the concepts of range and
membership ratio are relatively direct for decision makers to visualize and interpret
(thus supporting their intuition) in the comparison of fuzzy numbers. Second, range
and membership ratio can indicate independent information. For example, consider
two normal fuzzy numbers: one triangle and one trapezoid. While the trapezoid shape
always yields a higher membership ratio, the ranges of both shapes can be changed
arbitrarily, thus explaining the independence of range and membership ratio.

To demonstrate the evaluation of the three attributes, consider a fuzzy number:
FA = (1, 2, 3, 4; 1), which has a lower bound of 1 and an upper bound of 4. Its
maximum membership value is 1, which covers the range between 2 and 3 (check
Figure 1 for an illustrative reference). Suppose that α = 0 (i.e., we consider the whole
fuzzy number) and w = 1/12 (i.e., according to Abbasbandy and Hajjari [2]), we can
evaluate the values of the three attributes according to the following:

Figure 4.
Illustration of the shape’s area and full membership area.
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• Representative x-value using Eq. (6): rep FA,wð Þ = (1/12) � 1 + (1/2–
1/12) � 2 + (1/2–1/12) � 3 + (1/12) � 4 = 2.5

• X-value range using Eq. (8): rng FA, αð Þ ¼ rFA αð Þ � lFA αð Þ = 3

◦ From Eq. (2): lFA αð Þ = 1 + (0/1) � (2–1) = 1

◦ From Eq. (3): rFA αð Þ = 4 + (0/1) � (3–4) = 4

• Overall membership ratio using Eq. (11): mem FA, αð Þ ¼ areashape FA, αð Þ
areafull FA, αð Þ ¼ 2

3

◦ From Eq. (9) = areashape FA, αð Þ ¼ trapezoid’s area = (1 + 3) � 1/2 = 2

◦ From Eq. (10) = areafull FA, αð Þ ¼ 4–1½ � � 1 ¼ 3

3.4 Pareto optimality

After defining three attributes, we can rank fuzzy numbers for some cases
using the Pareto optimality principle [4]. In a less formal expression, we have
FA ≽ FB if rep(FA, w) ≥ rep(FB, w), rng(FA, α) ≤ rng(FB, α) and mem(FA, α) ≥
mem(FB, α). To examine how well these attributes can speak for the ranking
intuition, numerical examples are used in the next sub-section to check the following
situations.

• If two fuzzy numbers can be ranked based on Pareto optimality, this ranking
order should be considered “obvious” to the ranking intuition with less room for
arguments.

• If two fuzzy numbers cannot be ranked based on Pareto optimality,
decision makers can effectively use the selected attribute to explain their
arguments.

3.5 Numerical examples

The numerical cases from Bortolan and Degani [38] are employed for demonstra-
tion, and they can illustrate systematically how the selected attributes are changed
with different fuzzy numbers. While we keep the case labels from Bortolan and
Degani [38] for cross checking, we classify these cases into five groups for discussion.
Also, we follow Abbasbandy and Hajjari [2] by setting w = 1/12 to evaluate rep(FA, w).
Also we set α = 0 for rng(FA, α) and mem(FA, α) in this numerical demonstration.

Group 1: Non-overlapping, triangular fuzzy numbers
This group covers the cases of a, b, c, d and e from Bortolan and Degani [38], and

the results are shown in Table 1. By examining the Pareto optimality with the three
attributes, we can first pass the membership ratio because mem(FA, 0) is always equal
to 0.5 if FA is normal and triangular. The rankings of fuzzy numbers in cases a to d are
obvious as the fuzzy numbers with higher representative x-values have the same (i.e.,
cases a, b, d) or smaller (i.e., case c) ranges. In case e, while the fuzzy number FE3 is
ranked highest, we cannot immediately rank FE2 higher than FE1 based on Pareto
optimality only since FE2 has a larger range. Through these five cases, we want to note
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that the proposed attributes vary according to our “intuition” to interpret and rank
fuzzy numbers (e.g., check how representative x-values and ranges vary indepen-
dently in these cases).

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case a FA1 0.1 0.2 0.5

FA2 0.9 0.2 0.5

Case b FB1 0.7 0.2 0.5

FB2 0.9 0.2 0.5

Case c FC1 0.8 0.2 0.5

FC2 0.95 0.1 0.5

Case d FD1 0.2 0.2 0.5

FD2 0.4 0.2 0.5

FD3 0.7 0.2 0.5

Case e FE1 0.0083 0.1 0.5

FE2 0.6 0.2 0.5

FE3 0.9917 0.1 0.5

Table 1.
Results of comparing non-overlapping, triangular fuzzy numbers.
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Group 2: Overlapping, triangular fuzzy numbers
This group covers the cases of f, i and l from Bortolan and Degani [38], and the

results are shown in Table 2. In case f, while FF2 should be ranked higher than FF1 due
to higher representative x-value shown in Table 2, we should note that this ranking is
sensitive to the pre-set value of w. If w < 1/6 (i.e., more emphasis to the core values),
we have rep(FF2) > rep(FF1). If w ≥ 1/6 (i.e., more emphasis to the boundary values),
we have rep(FF1) ≥ rep(FF2).

In contrast, as the fuzzy numbers in case i share the same support, their ranking is
not sensitive to the value of w. Finally, the ranking in case l depends on the informa-
tion of range, and our intuition assumes that smaller range is better. Notably, our
intuition here is not universal, and some decision maker can rank a fuzzy number of
larger range higher for a positive likelihood of higher x-values. Here we are not
arguing which “intuition” (or ranking rule) is right. Instead, we want to keep the
intuition more transparent through explicit attributes so that researchers can argue
their ranking intuitions on a common ground.

Group 3: Triangular and trapezoidal fuzzy numbers
This group covers the cases of g and h from [38], and the results are shown in

Table 3. The trapezoid fuzzy numbers have a large shape, giving higher values of
range and membership ratio. The triangular fuzzy numbers in both cases have higher

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case
f

FF1 0.525 0.7 0.5

FF2 0.575 0.7 0.5

Case
i

FI1 0.8667 0.6 0.5

FI2 0.7 0.6 0.5

FI3 0.5333 0.6 0.5

Case
l

FL1 0.5 0.6 0.5

FL2 0.5 0.2 0.5

Table 2.
Results of comparing overlapping, triangular fuzzy numbers.
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representative x-values. Their triangular shapes are the same, with a shift to the right
side by 0.1 in case h. In view of Pareto optimality with three attributes, there is no
dominant fuzzy number. Yet, we can note that if FG2 ≽ FG1 in case g, we would have
FH2 ≽ FH1 in case h. It is because FH2 ≽ FG2 due to Pareto optimality and FG1 = FH1. This
note should make sense when we observe the graphical shift of triangular fuzzy
numbers from FG2 to FH2 in Table 3. This demonstrates how the three attributes can
characterize some intuitive reasoning in FNR.

Group 4: Nested fuzzy numbers.
This group covers the cases of j and k from [38], and the results are shown in

Table 4. In case j, FJ2 is created by shifting the lower bound of FJ1 to the left; FJ2 and
FJ3 share the same support with a different shape. Fuzzy numbers in case k have a
similar pattern in an opposite direction (see Table 4). By checking from the order FJ1
➔ FJ2 ➔ FJ3 or FK1 ➔ FK2 ➔ FK3, we argue that the three attributes can reasonably
capture and quantify the characteristics of these fuzzy numbers.

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case g FG1 0.3333 1 0.7

FG2 0.6 0.2 0.5

Case h FH1 0.3333 1 0.7

FH2 0.7 0.2 0.5

Table 3.
Results of comparing triangular and trapezoidal fuzzy numbers.

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case j FJ1 0.7 0.4 0.5

FJ2 0.6833 0.6 0.5

FJ3 0.5583 0.6 0.75
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Group 5: Non-normal fuzzy numbers.
Non-normal fuzzy numbers have their maximum membership less than 1 (i.e., hA

< 1). Notably, the literature of FNR often assumes normal fuzzy numbers (e.g., [28]).
By inspecting the earlier cases, we should note that the variations of membership
ratio of normal fuzzy numbers do not change much (from 0.5 for triangular to 0.7 or
0.75 for trapezoidal). Thus, it is not unreasonable if one chooses not to consider
membership ratio for comparing normal fuzzy numbers. Yet, non-normal fuzzy
numbers will open other possibilities, where the membership ratio can be an
important consideration.

This group covers the cases of n, o, p, q and r from Bortolan and Degani [38], and
the results are provided in Table 5. As shown in Table 5, the values of membership
ratio vary more significantly as some fuzzy numbers have smaller maximum mem-
bership. Consequently, the trade-off consideration can be more challenging. For
example, how should we compare FN1 and FN2 in case n with the trade-off of

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case k FK1 0.6417 0.6 0.75

FK2 0.5167 0.6 0.5

FK3 0.5 0.4 0.5

Table 4.
Results of comparing nested fuzzy numbers.

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case
n

FN1 0.2 0.4 0.5

FN2 0.8 0.4 0.4

Case
o

FO1 0.6 0.4 0.5

FO2 0.9 0.2 0.1
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representative x-value and membership ratio (similarly for case o)? While we see FP2
≽ FP1 in case p and FQ1 ≽ FQ2 in case q due to Pareto optimality, the trade-off
consideration is present in case r with different values of range.

The main theme of this section is that we need some attributes to characterize our
intuition for FNR. Otherwise, it is difficult to get a common ground for constructive
arguments. In this section, we choose three attributes to make clear our “intuition” for
FNR. Aligned with the note in Keeney and Raiffa [4], we do not claim the uniqueness
of this selection of attributes for FNR. Other researchers can propose other sets of
attributes to characterize their intuition.

4. Aggregation: proposal of a ranking index

If the Pareto optimality principle cannot rank two fuzzy numbers, trade-off con-
sideration is required to finalize the ranking decision. That is, a fuzzy number of a
higher rank must have some “weaker” aspect in terms of the three attributes but its
“stronger” aspect is sufficient to bring it to a higher rank overall. This ranking process
should involve an aggregation that combines all aspects into an overall evaluation and
then determines the ranking result. This section will propose a ranking index for
aggregation along with numerical examples.

Representative
x-value (rep)

Range
(rng)

Membership
ratio (mem)

Case
p

FP1 0.2 0.4 0.1

FP2 0.8 0.4 0.5

Case
q

FQ1 0.6 0.8 0.5

FQ2 0.6 0.8 0.1

Case
r

FR1 0.9667 0.4 0.5

FR2 0.95 0.1 0.1

Table 5.
Results of comparing non-normal fuzzy numbers.
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4.1 Discount factors and ranking index

As discussed in Section 3, representative x-values are used as the primary attribute
to rank fuzzy numbers. Then, we view the information of range and membership ratio
as secondary attributes that will “discount” the representative x-values. To illustrate,
consider a crisp number, 5, which has the representative x-value of 5, range of 0 and
membership ratio of 1. If a fuzzy number with the representative x-value of 5 has a
range larger than 0 and a membership ratio less than 1, this fuzzy number should be
ranked lower than the crisp number 5. The discount factors are intended to capture
this idea. Let Irank(FA) be the index as the discounted representative x-value of FA for
ranking, and it can be formulated as follows.

Irank FAð Þ ¼ drng FAð Þ � dmem FAð Þ � rep FA,wð Þ (12)

where drng(FA) and dmem(FA) are the discount factors associated with range and
membership ratio, respectively. To quantify these discount factors, we consider the
following conditions:

• 0 ≤ drng(FA) ≤ 1 and 0 ≤ dmem(FA) ≤ 1

• If rng(FA, α) ≥ rng(FB, α), drng(FA) ≤ drng(FB).

• If mem(FA, α) ≥ mem(FB, α), dmem(FA) ≥ dmem(FB).

Apparently, many forms of formulations can be used for the discount factors
and satisfy these conditions. In this chapter, we use a simple ratio with respect to
some reference (or extreme) values. Let rngmin be the minimum reference for range,
and memmax be the maximum reference for membership ratio. We also set that
rngmin > 0 and 0 < memmax ≤ 1. Then, the discount factors for FA can be formulated as
follows.

drng FAð Þ ¼ rngmin

rng FA, αð Þ (13)

dmem FAð Þ ¼ mem FA, αð Þ
memmax

(14)

With these discount factors, if FA has a range equal to rngmin, its discount
factor, drng(FA), is equal to 1 (i.e., no discount). A similar effect is also set for
dmem(FA). The selection of the values for rngmin and memmax depends on how
decision makers interpret the discount ratio for their ranking problems. One
suggestion is to identify the minimum range and the maximum membership
ratio from the set of fuzzy numbers to be ranked. That is, suppose that FR = {FA, FB,
FC,… } be the set of fuzzy numbers that need to be ranked in a problem. We can select
rngmin and memmax according to the following equations. Then, we can interpret the
discount ratio with respect to the “best values” among the set of fuzzy numbers in the
problem.

rngmin ¼ min rng FA, αð Þ, rng FB, αð Þ, rng FC, αð Þ…f g (15)

memmax ¼ max mem FA, αð Þ,mem FB, αð Þ,mem FC, αð Þ…f g (16)
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4.2 Overview of the ranking method

After defining the attributes in Section 3 and the ranking index in Section 4.1, this
sub-section will overview our proposed approach to rank fuzzy numbers. The proce-
dure to determine the ranking index is illustrated in Figure 5. Given a fuzzy number
FA, we first determine the values of three attributes: representative x-value, x-value
range and overall membership ratio. Then, we can evaluate the discount factors for x-
value range and overall membership ratio. In the end, we can determine the ranking
index for the given fuzzy number.

Suppose that we are tasked to rank a set of fuzzy numbers. We first determine
the ranking index for each fuzzy number. Then, we can use the index, Irank, for this
ranking task. That is, if Irank FAð Þ≥ Irank FBð Þ, we rank FA higher than FB, symbolically,
FA≽FB.

4.3 Numerical examples

As a recall from Section 3, we set w = 1/12 and α = 0 to evaluate representative x-
value, range and membership ratio. We use Eqs. (15) and (16) to obtain rngmin and
memmax and then calculate the values of the discounts and the ranking index. We
reuse the numerical examples from Section 3.5 with the cases where Pareto optimality
cannot finalize the ranking. The results are presented in Table 6.

Case e comes from Group 1 (see Table 1), where FE3 is ranked on the top per
Pareto optimality (same result from the ranking index). Between FE1 and FE2, though
FE2 should be ranked higher intuitively, trade-off is involved logically because FE2 has
a large range (reflected in its range discount of 0.5 as well). Per the ranking index, we
still have FE2≽FE1, which matches the general intuition.

Cases g and h come from Group 3 (see Table 3), where wide trapezoidal fuzzy
numbers are compared with narrow triangular fuzzy numbers. Per the ranking index,
the triangular fuzzy numbers are ranked higher mainly because of the large difference
of the range discount (1 vs. 0.2). In contrast, the difference of the membership ratio
discount is less substantial.

Cases j and k come from Group 4 (see Table 4), where two triangular fuzzy
numbers are nested in a trapezoidal fuzzy number. In both cases, the wider triangular
fuzzy numbers (i.e., FJ2 and FK2) are ranked lowest as they receive both discounts

Figure 5.
Procedure to determine the ranking index.
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(i.e., drng = dmem = 0.6667). In case j, the narrower triangular fuzzy number (FJ1) is
ranked first because its representative x-value and range can “win” over its weaker
membership ratio as compared to the trapezoidal fuzzy number (FJ3). In contrast, in
case k, the trapezoidal fuzzy number (FK1) “wins” because it has better representative
x-value and membership ratio as compared to FK3.

Cases n, o and r come from Group 5 (see Table 5). In case n, we have FN2≽FN1, as
FN2 has higher representative x-value despite lower membership ratio (associated
with the discount dmem(FN2) = 0.8). In cases o, we have FO1≽FO2 because the mem-
bership ratio of FO2 is substantially lower despite its higher representative x-value. In
case r, the trade-off between range and membership ratio is relatively close. In the
end, we have FR1≽FR2, as FR2 has a lower value of the discount from membership ratio
(i.e., dmem(FR2) = 0.2 vs. drng(FR1) = 0.25).

Notably, the judgment for ranking with trade-off can become difficult when the
trade-off among the three attributes is getting close. We argue that such difficulty is
fundamentally embedded into the problem structure of FNR, which involves multiple
dimensions of considerations. Thus, our solution strategy is not about providing the
best ranking procedure. Instead, we emphasize the importance of defining attributes
to quantify the “intuition”. Then, decision makers can explicitly explain their trade-
off considerations in the ranking process.

Fuzzy number Range discount
(drng)

Mem. discount
(dmem)

Ranking index
(Irank)

Case e FE1 = (0, 0, 0, 0.1; 1) 1 1 0.0083

FE2 = (0.5, 0.6, 0.6, 0.7; 1) 0.5 1 0.3

FE3 = (0.9, 1, 1, 1; 1) 1 1 0.9917

Case g FG1 = (0, 0.1, 0.5, 1; 1) 0.2 1 0.0667

FG2 = (0.5, 0.6, 0.6, 0.7; 1) 1 0.7143 0.4286

Case h FH1 = (0, 0.1, 0.5, 1; 1) 0.2 1 0.0667

FH2 = (0.6, 0.7, 0.7, 0.8; 1) 1 0.7143 0.5

Case j FJ1 = (0.5, 0.7, 0.7, 0.9; 1) 1 0.6667 0.4667

FJ2 = (0.3; 0.7, 0.7, 0.9; 1) 0.6667 0.6667 0.3037

FJ3 = (0.3, 0.4, 0.7, 0.9; 1) 0.6667 1 0.3722

Case k FK1 = (0.3, 0.5, 0.8, 0.9; 1) 0.6667 1 0.4278

FK2 = (0.3, 0.5, 0.5, 0.9; 1) 0.6667 0.6667 0.2296

FK3 = (0.3, 0.5, 0.5, 0.7; 1) 1 0.6667 0.3333

Case n FN1 = (0, 0.2, 0.2, 0.4; 1) 1 1 0.2

FN2 = (0.6, 0.8, 0.8, 1; 0.8) 1 0.8 0.64

Case o FO1 = (0.4, 0.6, 0.6, 0.8; 1) 0.5 1 0.3

FO2 = (0.8, 0.9, 0.9, 1; 0.2) 1 0.2 0.18

Case r FR1 = (0.6, 1, 1, 1; 1) 0.25 1 0.2417

FR2 = (0.9, 0.95, 0.95, 1; 0.2) 1 0.2 0.19

Table 6.
Ranking index results for cases with trade-off consideration.
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5. Multi-attribute ranking method in practice

5.1 General suggestions for application

As we consider that ranking methods should be dependent on a given set of fuzzy
numbers to be ranked (i.e., context-dependent), we want to discuss two types of
adjustable elements of our proposed method in practice. The first type is the selection of
attributes. Among three attributes: representative x-value, range and membership ratio,
representative x-value should be a default choice as it intuitively corresponds to the
ranking of real numbers (e.g., compare representative x-values of different fuzzy num-
bers).We suggest the class of ranking indices by Ban and Coroianu [28] (i.e., in Eq. (6))
as it satisfies the six axioms. To determine the weight, w, of this attribute, decision
makers may consider sensitivity analysis for their given set of fuzzy numbers (i.e., how
sensitive of the value of w can alter the ranking of two fuzzy numbers).

In contrast to representative x-value, the choice of range and membership ratio is
optional. The attribute of x-value range is common in literature, and other formulations
of this attribute (e.g., ambiguity and deviation degree as mentioned in Section 3.2) can
be considered as a choice by decision makers for this attribute. If the ranking problem
has fuzzy numbers of similar ranges (e.g., triangular fuzzy numbers with similar sup-
ports), we think it is legitimate not to consider range in FNR (in order to preserve some
axiomatic properties, to be discussed in Section 6). The attribute of membership ratio is
less common, and it should be more relevant for non-normal fuzzy numbers (e.g.,
normal triangular fuzzy numbers always have the same membership ratio equal to 0.5).

The second type of adjustable elements of our proposed method is the specification
of the reference values (i.e., rngmin and memmax) and the formulations of the discount
factors. Notably, our formulations of discount factors (i.e., Eqs. (13) and (14)) are
only one simple suggestion. One possible disadvantage of our discount factors is that
they can be too sensitive to the reference values. For example, if two fuzzy numbers
with the range values of 0.5 and 1 are compared, the range discount (drng) can be equal
to 0.5 for one fuzzy number, cutting half of its representative x-value. Decision
makers can consider adjusting the effects of discount factors through other formula-
tions for their problems (e.g., additional scaling component).

5.2 Applicability to specific forms

The origin of fuzzy numbers can be viewed as a generalization of crisp numbers to
describe approximate information. Consider the 5-tuple definition of a fuzzy number,
FA = (a1, a2, a3, a4; hA) as the generalized form of fuzzy numbers in this work.
Accordingly, three specific forms can be considered as follows.

• Interval: if a1 = a2, a3 = a4 and hA = 1;

• Ordered pair (an element of a fuzzy set): if a1 = a2 = a3 = a4 and hA < 1;

• Crisp number: if a1 = a2 = a3 = a4 and hA = 1.

Then, we want to investigate the reducibility property that whether a ranking
method can still be applicable if the above specific forms are considered. Table 7
shows that our proposed ranking method can be still used for these specific forms.
First, a general fuzzy number can be evaluated using the equations as listed in the first
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row of Table 7. When these equations are applied to interval, ordered pair and crisp
number, we can obtain the results that match our expectations. For example, the
representative x-value of an interval will be the midpoint of a2 and a3, and a crisp
number has no discount effect (i.e., drng = 1 and dmem = 1). In this way, our proposed
method can be used to compare fuzzy numbers with intervals or crisp numbers in the
same methodical framework.

6. Information content and axiomatic properties

Since the pioneer work by Wang and Kerre [1], researchers have examined the
axiomatic properties (i.e., the six axioms listed in Section 2) of fuzzy number ranking
methods. The intent of this section is to discuss how the information content for
ranking can influence the axiomatic properties in the context of our ranking approach.
One key message is that the satisfaction of axioms depends on the selection of infor-
mation that is deemed relevant to FNR. If more information is selected and considered
for ranking, the ranking method is more likely to violate the axioms. This message is
aligned with the topic of information basis in the analysis of the Arrow’s Impossibility
Theorem [39, 40].

6.1 Analysis of Axiom 4

Axiom 4 somewhat dictates the ranking of non-overlapping fuzzy numbers. If we
only consider representative x-values for ranking (i.e., no range, membership ratio
and discount factors), our ranking procedure will directly follow the results from Ban
and Coroianu [28], and it will thus satisfy Axiom 4. However, if range and member-
ship ratio are considered as relevant information for ranking, Axiom 4 can be violated,
and the reason is given below.

Axiom 4 only focuses on the boundary values without considering any distribu-
tional information (e.g., range and membership). When multiple attributes are con-
sidered for ranking, Axiom 4 can be violated by strengthening the distributional
aspect of the inferior fuzzy number (in view of Axiom 4). For example, we have
FO2≽FO1 in case o (see Table 5) according to Axiom 4, no matter how small of
membership ratio of FO2. However, when we consider range and membership ratio,
we obtain FO1≽FO2 (see Table 6), which violates Axiom 4. Notably, the logic of such
violation can be held whenever we deem membership ratio as relevant information
for FNR, regardless of the details of the ranking procedures.

Representative x-
value (rep)

Range
(rng)

Membership
ratio (mem)

Range discount
(drng)

Membership
discount (dmem)

Fuzzy
number

Eq. (6) Eq. (8) Eq. (11) Eq. (13) Eq. (14)

Interval (a2 + a3)/2 (a4–a1) 1 Eq. (13) 1

Ordered pair a1 (= a2 = a3 = a4) 0 hA 1 Eq. (14)

Crisp number a1 (= a2 = a3 = a4) 0 1 1 1

Table 7.
Overview of the reducibility property.
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Notably, this discussion is not about rejecting Axiom 4. Instead, we want to explain
one logical tension with Axiom 4. That is, Axiom 4 dictates some ranking of fuzzy
numbers based on their boundary values only, and this opens a chance for the infor-
mation of range and membership ratio to violate Axiom 4. Alternately, if we choose the
index class by [28], representative x-values will be the only information considered for
ranking, and the information of range (for example) will become irrelevant for FNR. In
other words, if we consider that FNR should involve trade-off with multiple attributes
in addition to representative x-value, Axiom 4 could be violated in some situations.

6.2 Dependence of rngmin and memmax

As we use reference values (i.e., rngmin and memmax) to evaluate the discount
factors (i.e., drng and dmem), the ranking index, Irank, belongs to the second class of
ranking indices according to the classification by [1]. In their axiomatic analysis, they
have identified five indices of the second class, i.e., JK(), K(), CHK(), W() and KPK(),
which all do not satisfy Axioms 5 and 6. Without listing counter-examples, Irank of the
same class follows the same conclusion because they share a common feature of these
ranking indices, i.e., use of reference values.

Why using reference values could violate Axioms 5 and 6? It is because the index
values would depend on the information that is external to the fuzzy numbers them-
selves. For example, if a fuzzy number with a very small range is added to a set of
fuzzy numbers for ranking (i.e., FR), this newly added fuzzy number will decrease
the reference value, rngmin, and thus generally decrease the range discount values
(drng) for the original set of fuzzy numbers. Then, all values of Irank would change
because of adding a new fuzzy number to the set (i.e., FR).

While it seems undesirable by setting rngmin and memmax per individual sets of
fuzzy numbers, can we simply set these two values as universal numbers that are
applicable to all ranking problems (e.g., simply set memmax = 1)? Theoretically, it is a
viable option. However, by doing so, we somehow lose our interpretation of “dis-
count” factors that are relevant to a given set of fuzzy numbers that we want to rank
in the problem. For example, it is not easy to interpret if the range of a fuzzy number,
say 5, is large or small until we know a reference for comparison (e.g., if rngmin = 1, the
range of 5 will quite large). In other words, the reference values, rngmin and memmax,
provide a numerical context as relevant information for comparison.

To close this section, we want to make a note about the historical development of
the Arrow’s Impossibility Theorem, which proves that no voting method (or social
welfare function) can satisfy a set of “reasonable” properties (or axioms) [41]. One
famous “escaping route” is the information basis approach, which classifies the infor-
mation content (or availability) for interpersonal comparisons with different axiom-
atic results [39, 40]. Back to our context, if representative x-value is taken as the only
relevant information for FNR, the results by [28] are sufficient to design a ranking
index that satisfies the six axioms in Section 2. However, if additional information is
considered for FNR, the axiomatic properties cannot be guaranteed. To us, this ten-
sion seems fundamental.

7. Conclusion

The main theme of this chapter is to use the multi-attribute approach to analyze
and address the problems of fuzzy number ranking (FNR) since numerous ranking
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methods in literature have implicated multiple attributes in their ranking intuition.
The multi-attribute approach has two phases: the selection of attributes and the
formulation of the aggregation function. The selection of attributes determines what
information is deemed relevant for FNR, and the aggregation function controls the
trade-off of the attribute values of fuzzy numbers. In this work, we propose three
attributes (i.e., representative x-value, range and membership ratio) as three possible
dimensions to evaluate a fuzzy number. In aggregation, we formulate the discount
factors for range and membership ratio to modify the representative x-value of a
fuzzy number for FNR. The proposed method has been illustrated via numerical
examples to reveal the rationale of using multiple attributes to articulate the intuition
behind FNR.

In future work, there can be two directions to consider: practice and theory. In the
practice direction, we can develop more methodical guidance toward the selection and
formulations of attributes and the aggregation procedures. In particular, we can for-
malize the ranking intuition in terms of the selected attributes and the trade-off
rationale through the aggregation approach for different FNR problems. Along this
effort, we can also compare the ranking results from this multi-attribute approach
with other FNR approaches. In the theory direction, while this chapter has initially
explored the tension between information content and the satisfaction of the FNR
axioms. This tension should call for more mathematical analyses such as classification
of information content for FNR and relaxation of axioms for expanded information
basis.

Author details

Simon Li
Department of Mechanical and Manufacturing Engineering, Schulich School of
Engineering, University of Calgary, Alberta, Canada

*Address all correspondence to: simoli@ucalgary.ca

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

43

Decoupling of Attributes and Aggregation for Fuzzy Number Ranking
DOI: http://dx.doi.org/10.5772/intechopen.109992



References

[1] Wang X, Kerre EE. Reasonable
properties for the ordering of fuzzy
quantities (I). Fuzzy Sets and Systems.
2001;118:375-385

[2] Abbasbandy S, Hajjari T. A new
approach for ranking of trapezoidal
fuzzy numbers. Computers &
Mathematics with Applications. 2009;57:
413-419. DOI: 10.1016/j.
camwa.2008.10.090

[3] Chou S-Y, Dat LQ, Yu VF. A revised
method for ranking fuzzy numbers using
maximizing set and minimizing set.
Computers & Industrial Engineering.
2011;61:1342-1348. DOI: 10.1016/j.
cie.2011.08.009

[4] Keeney RL, Raiffa H. Decisions with
Multiple Objectives: Preferences and
Value Tradeoffs. New York: John Wiley
& Sons; 1976

[5] Chen S-H. Ranking fuzzy numbers
with maximizing set and minimizing set.
Fuzzy Sets and Systems. 1985;17:113-129

[6] Wang Y-M, Luo Y. Area ranking of
fuzzy numbers based on positive and
negative ideal points. Computers &
Mathematics with Applications. 2009;58:
1769-1779. DOI: 10.1016/j.camwa.
2009.07.064

[7] Murakami S, Maeda H, Imamura S.
Fuzzy decision analysis on the
development of centralized regional
energy control system. In: IFAC
Proceedings Volumes, IFAC Symposium
on Fuzzy Information, Knowledge
Representation and Decision Analysis,
Marseille, France, 19–21 July 1983.
Vol. 16. Elsevier; 1983. pp. 363-368.
DOI: 10.1016/S1474-6670(17)62060-3.
Available from: https://www.
sciencedirect.com/journal/ifac-
proceedings-volumes/vol/16/issue/13

[8] Wang Y-J, Lee H-S. The revised
method of ranking fuzzy numbers with an
area between the centroid and original
points. Computers & Mathematics with
Applications. 2008;55:2033-2042.
DOI: 10.1016/j.camwa.2007.07.015

[9] Delgado M, Vila MA, Voxman W. On
a canonical representation of fuzzy
numbers. Fuzzy Sets and Systems. 1998;
93:125-135. DOI: 10.1016/S0165-0114
(96)00144-3

[10] Bodjanova S. Median value and
median interval of a fuzzy number.
Information Sciences. 2005;172:73-89.
DOI: 10.1016/j.ins.2004.07.018

[11] Asady B. Revision of distance
minimization method for ranking of
fuzzy numbers. Applied Mathematical
Modelling. 2011;35:1306-1313.
DOI: 10.1016/j.apm.2010.09.007

[12] Ezzati R, Allahviranloo T,
Khezerloo S, Khezerloo M. An approach
for ranking of fuzzy numbers. Expert
Systems with Applications. 2012;39:
690-695. DOI: 10.1016/j.eswa.2011.
07.060

[13] Ban A, Brândaş A, Coroianu L,
Negruţiu C, Nica O. Approximations of
fuzzy numbers by trapezoidal fuzzy
numbers preserving the ambiguity and
value. Computers & Mathematics with
Applications. 2011;61:1379-1401.
DOI: 10.1016/j.camwa.2011.01.005

[14] Chutia R, Chutia B. A newmethod of
ranking parametric form of fuzzy
numbers using value and ambiguity.
Applied Soft Computing. 2017;52:
1154-1168. DOI: 10.1016/j.
asoc.2016.09.013

[15] Zhu L, Xu R. Ranking fuzzy numbers
based on fuzzy mean and standard

44

Advances in Fuzzy Logic Systems



deviation. In: 2011 Eighth International
Conference on Fuzzy Systems and
Knowledge Discovery (FSKD).
Presented at the 2011 Eighth
International Conference on Fuzzy
Systems and Knowledge Discovery
(FSKD 2011). Shanghai: IEEE; 2011.
pp. 854-857. DOI: 10.1109/FSKD.2011.
6019703

[16] Gu Q, Xuan Z. A new approach for
ranking fuzzy numbers based on
possibility theory. Journal of
Computational and Applied
Mathematics. 2017;309:674-682.
DOI: 10.1016/j.cam.2016.05.017

[17] Chutia R. Ranking of fuzzy numbers
by using value and angle in the epsilon-
deviation degree method. Applied Soft
Computing. 2017;60:706-721.
DOI: 10.1016/j.asoc.2017.07.025

[18] Yu VF, Chi HTX, Dat LQ,
Phuc PNK, Shen C. Ranking generalized
fuzzy numbers in fuzzy decision making
based on the left and right transfer
coefficients and areas. Applied
Mathematical Modelling. 2013;37:
8106-8117. DOI: 10.1016/j.apm.2013.
03.022

[19] Dinagar DS, Kamalanathan S. A
method for ranking of fuzzy numbers
using new area method. International
Journal of Fuzzy Mathematical Archive.
2015;9:61-71

[20] Jiang W, Luo Y, Qin X-Y, Zhan J. An
improved method to rank generalized
fuzzy numbers with different left
heights and right heights. Journal of
Intelligent & Fuzzy Systems. 2015;28:
2343-2355. DOI: 10.3233/IFS-151639

[21] Thorani YLP, Rao PPB, Shankar NR.
Ordering generalized trapezoidal fuzzy
numbers using orthocentre of centroids.
International Journal of Algebra. 2012;6:
1069-1085

[22] Allahviranloo T, Jahantigh MA,
Hajighasemi S. A new distance measure
and ranking method for generalized
trapezoidal fuzzy numbers.
Mathematical Problems in Engineering.
2013;2013:1-6. DOI: 10.1155/2013/623757

[23] Chi HTX, Yu VF. Ranking
generalized fuzzy numbers based on
centroid and rank index. Applied Soft
Computing. 2018;68:283-292.
DOI: 10.1016/j.asoc.2018.03.050

[24] Rao PPB, Shankar NR. Ranking
generalized fuzzy numbers using area,
mode, spreads and weights.
International Journal of Applied Science
and Engineering. 2012;10:41-57

[25] Rao PPB, Shankar NR. Ranking
fuzzy numbers with a distance method
using circumcenter of centroids and an
index of modality. Advances in Fuzzy
Systems. 2011;2011:1-7. DOI: 10.1155/
2011/178308

[26] Cheng C-H. A new approach for
ranking fuzzy numbers by distance
method. Fuzzy Sets and Systems. 1998;
95:307-317. DOI: 10.1016/S0165-0114
(96)00272-2

[27] Chu T-C, Tsao C-T. Ranking fuzzy
numbers with an area between the
centroid point and original point.
Computers & Mathematics with
Applications. 2002;43:111-117.
DOI: 10.1016/S0898-1221(01)00277-2

[28] Ban A, Coroianu L. Simplifying the
search for effective ranking of fuzzy
numbers. IEEE Transactions on Fuzzy
Systems. 2015;23:327-339. DOI: 10.1109/
TFUZZ.2014.2312204

[29] Abbasi Shureshjani R,
Darehmiraki M. A new parametric
method for ranking fuzzy numbers.
Indagationes Mathematicae. 2013;24:

45

Decoupling of Attributes and Aggregation for Fuzzy Number Ranking
DOI: http://dx.doi.org/10.5772/intechopen.109992



518-529. DOI: 10.1016/j.indag.2013.
02.002

[30] Saeidifar A. Application of
weighting functions to the ranking of
fuzzy numbers. Computers &
Mathematics with Applications. 2011;62:
2246-2258. DOI: 10.1016/j.camwa.2011.
07.012

[31] Kumar A, Singh P, Kaur P, Kaur A.
RM approach for ranking of L–R type
generalized fuzzy numbers. Soft
Computing. 2011;15:1373-1381.
DOI: 10.1007/s00500-010-0676-x

[32] Dombi J, Jónás T. Ranking
trapezoidal fuzzy numbers using a
parametric relation pair. Fuzzy Sets and
Systems. 2020;399:20-43. DOI: 10.1016/
j.fss.2020.04.014

[33] Van Hop N. Ranking fuzzy numbers
based on relative positions and shape
characteristics. Expert Systems with
Applications. 2022;191:116312.
DOI: 10.1016/j.eswa.2021.116312

[34] Dubois D, Prade H. Operations on
fuzzy numbers. International Journal of
Systems Science. 1978;9:613-626.
DOI: 10.1080/00207727808941724

[35] Heilpern S. The expected value of a
fuzzy number. Fuzzy Sets and Systems.
1992;47:81-86

[36] Wang Y-M, Yang J-B, Xu D-L,
Chin K-S. On the centroids of fuzzy
numbers. Fuzzy Sets and Systems. 2006;
157:919-926. DOI: 10.1016/j.fss.2005.
11.006

[37] Nasseri SH, Zadeh MM,
Kardoost M, Behmanesh E. Ranking
fuzzy quantities based on the angle of
the reference functions. Applied
Mathematical Modelling. 2013;37:
9230-9241. DOI: 10.1016/j.apm.2013.
04.002

[38] Bortolan G, Degani R. A review of
some methods for ranking fuzzy subsets.
Fuzzy Sets and Systems. 1985;15:1-19

[39] Roberts KWS. Interpersonal
comparability and social choice theory.
The Review of Economic Studies. 1980;
47:421. DOI: 10.2307/2297002

[40] Sen A. The possibility of social
choice. The American Economic Review.
1999;89:349-378. DOI: 10.1257/
aer.89.3.349

[41] Arrow KJ. Social Choice and
Individual Values. 2nd ed. New Haven:
Yale University Press; 1963

46

Advances in Fuzzy Logic Systems



Chapter 3

Computing the Performance
Parameters of the Markovian
Queueing System FM/FM/1
In Transient State
Rostin Mabela Makengo Matendo, Jean Alonge W’Omatete,
Herman Matondo Mananga, Jean Pierre Mukeba Kanyinda
and Baudouin Adia Leti Mawa

Abstract

In this chapter, we utilize L–R method to calculate the parameters of performance
of fuzzy Markovian queueing system FM/FM/1 in transient regime. The technique of
calculating used is the arithmetic of L–R fuzzy numbers restricted to secant approxi-
mations. The membership function has helped us to represent graphically the curves
of fuzzy parameters of performance into the space in three dimensions in transient
regime in fuzzy environment. An illustrative example is given in the medical field to
show the relevance of this study in operational research and in particular in queueing
systems.

Keywords: performance parameters, fuzzy Markovian queueing systems, transient
state, L–R method, computing

1. Introduction

Nowadays, in many areas of life, whether it is computer systems, communication
systems, production systems, medical or health systems or any other system of daily
life, the world is looking for the best quality of service and performance of systems.

Thus, Baynat [1] points out that “it is becoming inconceivable to build any system
without first doing a performance analysis. This analysis is related to the prior knowl-
edge of the performance parameters of the queueiting systems such as the average
number of customers in the queue and in the system; as well as the average waiting
time of customers in the queue and in the system.”

The fundamental question posed in this chapter is: “Would the L–Rmethod be able
to compute the performance parameters of the fuzzy Markovian queueing system
FM/FM/1 in transient regime?”
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In the literature browsed in fuzzy mathematics, it is well shown that fuzzy queues
are widely studied in steady state by Ning and Zhao [2], Ritha and Robert [3], Ritha
and Menon [4].

Many researches on Markovian fuzzy queueing systems and scientific papers have
been based on computing the performance parameters of Markovian fuzzy queueing
systems in steady state by the method of sluggish alpha-cuts and the L–R method, see
for example Li and Lee [5, 6]; Kao et al. [7]; Palpandi and Geetharamani [8]; Wang
et al. [9]. But, the calculation of these parameters of the system under study in
transient regime is a major preoccupation of operational researchers nowadays.

In this chapter, the novelty of our study is due to the fact that we have computed
the performance parameters of the queueing system, in the transient regime and in a
fuzzy environment where these parameters are time-dependent fuzzy functions,
whereas for all the authors presented above, the performance parameters have been
analyzed in steady state where the results obtained are real numbers.

L–R Fuzzy Mathematics plays an important role if it is widened to secant approx-
imation. This arithmetic conducts to the same results as those obtained by the most
used and well-known alpha-cut and interval arithmetic (see Mukeba; Dubois D. and
Prade [10–12]).

To achieve this, our approach is broken down as follows: The second section will
present the classical M/M/1 queueing model and give the performance parameters of
the model in a transient state The third section will recall the notions of fuzzy set,
fuzzy numbers, fuzzy number of L–R type, arithmetic of fuzzy numbers of L–R type
and triangular fuzzy number. The fourth section will be devoted to fuzzy functions.
The fifth section will give a description of the L–R method and the calculation proce-
dure. The sixth section will deal with a numerical example that uses the L–Rmethod in
transient state. The seventh section will give the conclusion of this chapter.

2. Presentation of the queueing model M/M/1 et some performance
parameters in transient state

2.1 Classical M/M/1 queueing system

Definition 1: A queueing system or M/M/1 queue is a Markovian process
unfolding in L.D.P.(Life and Death Process) with birth and death rates defined
respectively by:

λn ¼ λ, λ>0

μn ¼
μ if n>0

0 if n ¼ 0

(
8><
>:

(1)

2.1.1 Assumptions (or characteristics) of the model

• Customer arrivals follow a Poisson distribution of parameter λ;

• Service times follow an expo-negative distribution of parameter μ;
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• The system has a single server;

• Waiting room capacity is infinite;

• The system capacity is infinite;

• The service discipline is FIFO (first in first out) or PAPS (first come, first
served).

2.2 Performance parameters of the M/M/1 queue in transient state

In the literature, it is well-known that a queue is stable if and only if (cfr. [13]): λ< μ

• This condition makes it possible to determine the following performance
parameters in transient state:

~NS tð Þ ¼ ρ

1� ρ
1� e� μ�λð Þt
� �

(2)

~TS tð Þ ¼ ρ 1� e� μ�λð Þt� �

μ 1� ρð Þ ρþ 1� ρð Þe� μ�λð Þt½ � (3)

where ~NS tð Þ and ~TS tð Þ are, respectively, the average number of customers in the
system and the average waiting time in the system at time t t≥0ð Þ:.

3. Fuzzy sets, fuzzy numbers, alpha-cuts and interval arithmetic, L–R
fuzzy numbers, arithmetic of L–R fuzzy numbers, triangular fuzzy
numbers

3.1 Fuzzy sets

Definition 2: Let E be a classical set or a universe. A fuzzy subset ~A (or a fuzzy
set ~A) in E is defined by the function η~A, called membership function of ~A, from E to
the real unit interval [0,1]. η~A xð Þ is called the grade or the membership degree of x,
∀x∈ ~A (cf [11]).

Definition 3: Let ~A fuzzy set on E. The α�cut of ~A denoted ~Aα the support sup ~A
� �

,
the height h ~A

� �
and the core ~A

� �
are crisp sets defined as follows:

~Aα ¼ x∈E : η~A xð Þ≥ α
� �

(4)

sup ~A
� � ¼ x∈E : η~A xð Þ>0

� �
(5)

h ~A
� � ¼ max η~A xð Þ : x∈E

� �
(6)

core ~A
� � ¼ x∈E : η~A xð Þ ¼ 1

� �
(7)

Definition 4: A fuzzy set on a universe is said to be normal if:
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h ~A
� � ¼ 1 (8)

that is, ∃m∈ ~A : η~A mð Þ ¼ 1. In these conditions,m is calledmodal value of the fuzzy
set ~A.

Definition 5: A fuzzy set ~A on the universe E ¼  is said to be convex iff:

∀x, y∈ ~A,∀λ∈ 0, 1½ � : η~A λxþ 1� λð Þyð Þ≥ min η~A xð Þ, η~A yð Þ� �
(9)

3.2 Fuzzy numbers

Definition 6: A fuzzy set ~A on a universe E is called a fuzzy number if it satisfies
the following conditions:

1.E ¼ 

2. ~A is normal

3. ~A is convex

4.The membership function η~A is piecewise continuous

3.3 Fuzzy numbers of type L: R of L: R type

Definition 7: A fuzzy set ~A is said to be of L–R type if there exists three reals
m, a>0, b>0 and two continuous and decreasing positive functions L and R from 
in [0,1] such that: L 0ð Þ ¼ R 0ð Þ ¼1

L 1ð Þ ¼ 0, or L xð Þ>0,with lim
x!∞

L xð Þ ¼ 0 (10)

R 1ð Þ ¼ 0, or R xð Þ>0,with lim
x!∞

R xð Þ ¼ 0 (11)

η~A xð Þ ¼
L

m� x
a

� �
if x∈ m� a,m½ �

R
m� x

b

� �
if x∈ m,mþ b½ �

0 otherwise

8>>><
>>>:

(12)

The L–R representation of a fuzzy number ~A is ~A ¼ m, a, bh iL�R, m is called the
modal value of ~A. a and b are called respectively the left spread and right spread of ~A.

By convention, m,0,0h iL�R is the ordinary real number m; called also fuzzy single-
ton. The support of ~A is the open interval:
sup ~A
� � ¼�m� a,m�∪ m,mþ b ¼½ �m� a,mþ b½½ .
From the Definition (8) and the expression (12) of η~A, the support of ~A is deter-

mined by the open following interval:

sup ~A
� � ¼�m� a,m�∪ m,mþ b ¼½ �m� a,mþ b½½ (13)
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3.4 Arithmetic of fuzzy numbers of L: R Type

3.4.1 Addition and subtraction of fuzzy numbers of L: R type

According to [10], if there exists two fuzzy numbers of the same L–R type. ~A ¼
m, a, bh iL�R and ~B ¼ n, c, dh iL�R; then their sum and their difference are also fuzzy
numbers of L–R type given respectively by:

~A⊕~B ¼ mþ n, aþ c, bþ dh iL�R (14)

~A⊖~B ¼ m� n, aþ c, bþ dh iL�R (15)

3.4.2 Multiplication and division

According to [12], if there exist two fuzzy numbers of the same L–R type. ~A ¼
m, a, bh iL�R and ~B ¼ n, c, dh iL�R; then:

~A⊙~B≈ mn,mc,þna� ac,mdþ nbþ bdh iL�R (16)

~A
~B
¼ m, a, bh iL�R

n, c, dh iL�R
≈

m
n
,

md
n nþ dð Þ þ

a
n
� ad
n nþ dð Þ,

mc
n n� cð Þ þ

b
n
þ bc
n n� cð Þ

� �

L�R
(17)

The product and the quotient of two numbers of the same type L–R are obtained
by the secant approximation of Hanss [14], whose kernel and the support, for the
quotient are given by:

ker
~A
~B

 !
¼ m

n
(18)

supp
~A
~B

 !
¼ m� a

nþ d
,
mþ b
n� c

� �
(19)

3.5 Fuzzy triangular numbers

Definition 8: A fuzzy number ~A is said to be a fuzzy triangular number iff there
exists three real numbers a< b< c such that:

η~A xð Þ ¼

x� a
b� a

� �
if a≤ x≤ b

c� x
c� b

� �
if b≤ x≤ c

0 otherwise

8>>><
>>>:

(20)

Remark 1.

a. Every fuzzy triangular number is noted by: ~A ¼ a, b, cð Þ or ~A ¼ ajbjcð Þ

b. Every fuzzy triangular number of L–R type and the fuzzy L–R representation
of ~A is:
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~A ¼ a, b, cð Þ ¼ b, b� a, c� bh iL�R (21)

4. Fuzzy function

In this section, let us define, in general, a fuzzy function of one real variable as
follows:

~ψ : D! F ð Þ : x↦~ψ xð Þ (22)

where F ð Þ the set of fuzzy functions defined on .

a. Alpha-cut of ~ψ xð Þ
The α-cup representation of ~ψ xð Þ is:

~ψ xð Þα ¼ ~ψ x, αð Þ ¼ ~ψL x, αð Þ, ~ψU x, αð Þ� �
, α∈ 0, 1½ � (23)

b. Kernel of ~ψ xð Þ
The kernel of ~ψ xð Þ, also called modal of ~ψ xð Þ is defined by:

ker ~ψ xð Þα¼1
� � ¼ ~ψL x, 1ð Þ ¼ ~ψU x, 1ð Þ (24)

c. Support of ~ψ xð Þ
The support of ~ψ xð Þ is defined by:

supp ~ψ xð Þα¼0
� � ¼ ~ψ x, 0ð Þ ¼ ~ψL x, 0ð Þ, ~ψU x, 0ð Þ� �

(25)

d. Membership function of ~ψ xð Þ
The membership function of the fuzzy function ~ψ xð Þ is defined by:

η~ψ xð Þ ¼
~ψL� ��1 x, ςxð Þ if ~ψL x, 0ð Þ≤ ςx ≤ ~ψL x, 1ð Þ
~ψU� ��1

x, ςxð Þ if ~ψU x, 1ð Þ≤ ςx ≤ ~ψL x, 0ð Þ
0 otherwise

8>><
>>:

(26)

η~ψ xð Þ ¼

ςx � ~ψL x,ð Þ
~ψL x, 1ð Þ � ~ψL x, 0ð Þ if ~ψL x, 0ð Þ≤ ςx ≤ ~ψL x, 1ð Þ

~ψU x, 0ð Þ � ςx
~ψL x, 0ð Þ � ~ψL x, 1ð Þ if ~ψU x, 1ð Þ≤ ςx ≤ ~ψL x, 0ð Þ
0 otherwise

8>>>>><
>>>>>:

(27)

5. Description of the L: R method and procedure of computing

5.1 Description of L: R method

Let us consider the classical Markovian queue M/M/1 defined in Section (2.2) and
assume that the arrival rate λ and service rate μ are triangular fuzzy numbers denoted
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~λ ¼ λ1jλ2jλ3ð Þ and ~μ ¼ μ1jμ2jμ3ð Þ, respectively. In this case, these rates are imprecise (or
fuzzy) and also make the performance measures of the transient fuzzy functions and,
we note:

~ψ tð Þ ¼ ~f t,~λ, ~μ
� �

(28)

Where t is a real variable called time and ~λ and ~μ are fuzzy variables. In this case,
the queueing model becomes a fuzzy Markovian queue FM/FM/1, where FM is a fuzzy
exponential distribution.

To determine the fuzzy performance measure ~ψ tð Þ, the L–R method proceeds as
follows:

5.2 Procedure

Determine the L–R expressions of the fuzzy rates ~λ and ~μ and substitute them:

~ψ tð Þ ¼ ~f t,~λ, ~μ
� �

(29)

Apply the arithmetic of fuzzy numbers of (14)–(17) in (28) and we find:

~ψ tð Þ ¼ m tð Þ,φ tð Þ,ω tð Þh iL�R (30)

Wherem tð Þ is the modal function of ~ψ tð Þ (or the kernel of ~ψ tð Þ) and where φ tð Þ and
ω tð Þ represent respectively the left spread and right spread of ~A:.

The support of ~ψ tð Þ is:

supp ~ψ tð Þð Þ ¼�m tð Þ � φ tð Þ,m tð Þ þ ω tð Þ½ (31)

And its kernel (or modal) is:

ker ~ψ tð Þð Þ ¼ m tð Þ (32)

6. Numerical example

6.1 Statement

In a referral Hospital, an ophthalmologist doctor consults patients on odd days
each week from 10h00 to 13h30. The patients arrive there following a Poisson distri-
bution with parameter ~λ and the doctor’s consultation following an expo-negative
distribution with parameter μ The fuzzy parameters ~λ and μ are such that ~λ

~μ is approx-

imately 0.4. We note that ~ρ ¼ ~λ
~μ is the fuzzy traffic intensity. We further warn that this

traffic intensity is a triangular fuzzy number and is denoted by ~ρ ¼ 0:3j0:4j0:5ð Þ.

6.2 Questions

• Determine the following transient performance measures:

• A1. The average number of patients in the system.
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• A2. The average time of stay of patients in the system.

• B. Give the graphical representation of these performance measures.

6.3 Solution

A careful reading of our example reveals that it is a fuzzy Markovian queue noted
FM/FM/1 with a single server and infinite capacity. The fuzzy traffic intensity being
about 0.4 implies that the fuzzy rates ~λ and ~μ are about 2 and 5, respectively. By
assumption, since the fuzzy traffic intensity ~ρ is a triangular fuzzy number, the rates ~λ
and ~μ are also triangular fuzzy numbers and can be written (cf. Remark 1, item a):

~λ ¼ 1j2j3ð Þ and ~μ ¼ 4j5j6ð Þ

Thus, in fuzzy model, the rates ~λ and ~μ are fuzzy variables and the performance
measures ~NS and ~TS are fuzzy time functions defined by:

~NS tð Þ ¼ ~f 1 t,~λ, ~μ
� � ¼

~λ 1� exp � ~μ� ~λ
� �

t
� �� �

~μ� ~λ
(33)

~TS tð Þ ¼ ~f 2 t,~λ, ~μ
� � ¼

~λ� ~λ exp � ~μ� ~λ
� �� �

~μ� ~λ ~λþ ~μ� ~λ
� �

exp � ~μ� ~λ
� �

t
� �� � (34)

To evaluate these performance parameters by L–R method, we proceed as follows:

i. Let us determine the L–R expressions of fuzzy rates:

~λ ¼ 1j2j3ð Þ and ~μ ¼ 4j5j6ð Þ and we have according to (21):

~λ ¼ 2,1,1h iL�R and ~λ ¼ 5,1,1h iL�R (35)

ii. Let us substitute the expressions of (35) into (33) and (34), and use the
operations in (14)–(17) to obtain successively:

~NS tð Þ ¼
~λ 1� exp � ~μ� ~λ

� �
t

� �� �

~μ� ~λ

¼ 2,1,1h iL�R � 2,1,1h iL�R exp �Xð Þ
5,1,1h iL�R � 2,1,1h iL�R

with X ¼ � 3,2,2h iL�Rt

¼ 2� 2 exp Xð Þ, 1þ exp Xð Þ, 1þ exp Xð Þh iL�R
3,2,2h iL�R

≈
2� 2eX

3
,
2� 2eX
� �

X2
3 3þ 2ð Þ þ

1þ eX

3
� 1þ eX
� �

X2
3 3þ 2ð Þ ,

2� 2eX
� �

X2
3 3þ 2ð Þ þ

1þ eX

3
þ 2� 2eX
� �

X2
3 3þ 2ð Þ

� �

L�R

¼ 2� 2eX

3
,
7 � eX

15
,
7 � eX

3
,

� �

L�R

¼ 0:67 � 0:67e�3t,0:47 � 0:1e�3t,2:3� 0:3e�3t
� �

L�R, X ¼ �3t
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since X ¼ � 3,2,2h i tL�R ¼ �3t when we change the L–R writing of X to the α-cut
writing, with α ¼ 0 t≥0ð Þ

~TS tð Þ ¼
~λ� ~λ exp � ~μ� ~λ

� �� �

~μ� ~λ ~λþ ~μ� ~λ
� �

exp � ~μ� ~λ
� �

t
� �� �

¼ 2,1,1h iL�R � 2,1,1h iL�R exp �Xð Þ
3,2,2h iL�R 2,1,1h iL�R � 3,2,2h iL�R exp �Xð Þ� � with X ¼ � 3,2,2h iL�R ¼ �3t

¼ 2� 2eX, 1þ eX, 1þ eX
� �

L�R
3,2,2h iL�R 2� 3eX, 1þ 2eX, 1þ 2eXh iL�ReX

� �

¼ 2� 2eX, 1þ eX, 1þ eX
� �

L�R
h6þ 9eX, 5þ 8eX, 9þ 16eX > L�R

≈
2� 2eX

6þ 9eX
,

2� 2eX
� �

9þ 16eX
� �

6þ 9ð Þ 6þ 9eX þ 9þ 16eX½ � þ
1þ eX

6þ 9eX
� 1þ eX

� �
9þ 16eX
� �

6þ 9eXð Þ 6þ 9eX � 5� 16eX½ �,
�

2� 2eX
� �

5þ 8eX
� �

6þ 9eXð Þ 6þ 9eX � 5� 8eX½ � þ
1þ eX

6þ 9eX
þ 1þ eX

� �
5þ 8eX
� �

6þ 9eXð Þ 6þ 9eX � 5� 8eX½ �
�

L�R

¼ 2� 2eX

6þ 9eX
,

24þ 29eX � 23eX

6þ 9eXð Þ 15þ 25eXð Þ ,
16þ 21eX � 7e2X

6þ 9eXð Þ 1þ eXð Þ
� �

L�R

with X ¼ � 3,2,2h iL�Rt ¼ �3t and t≥0.

6.4 Supports and modals

supp ~NS tð Þ� � ¼ 0:67 � 0:67eX
� �� 0:47 � 0:1eX

� �
, 0:67 � 0:67eX
� �þ 2:3� 0:3eX

� �� �

¼ 0:2� 0:6eX, 3� eX
� �

, X ¼ �3t, t≥0

supp ~TS tð Þ� � ¼ 2� 2eX

6þ 9eX
� 24þ 29eX � 23eX

6þ 9eXð Þ 15þ 25eXð Þ,
2� 2eX

6þ 9eX
þ 16þ 21ex � 7eX

6þ 9eXð Þ 1þ eXð Þ
� �

¼ 1� 3eX

15þ 25eX
,
3� eX

1þ eX

� �
, X ¼ �3t, t≥0

ker ~NS tð Þ� � ¼ 0:67 � 0:67eX, where X ¼ �3t, t≥0

ker ~TS tð Þ� � ¼ 2� 2eX

6þ 9eX
, X ¼ �3t, t≥0

6.5 Graphical representations of ~NS tð Þ and ~TS tð Þ

The graphical representation of the fuzzy functions ~NS tð Þ and ~TS tð Þ is made from
their membership functions when their supports and modes are known. Referring to
(27), we obtain:
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• η ~Ns tð Þ t, xtð Þ ¼

xt � ~N
L
s t, 0ð Þ

~N
L
s t, 1ð Þ � ~N

L
s t, 0ð Þ

if ~N
L
s t, 0ð Þ≤ xt ≤ ~N

L
s t, 1ð Þ, t≥0

~N
U
s t, 0ð Þ � xt

~N
U
s t, 0ð Þ � ~N

U
s t, 1ð Þ

if ~N
U
s t, 1ð Þ≤ xt ≤ ~N

U
s t, 0ð Þ, t≥0

0 otherwise

8>>>>>>>>><
>>>>>>>>>:

¼

xt þ 0:6e�3t � 0:2
0:5� 0:1e�3t

if 0:2� 0:6e�3t ≤ xt ≤0:67 � 0:67e�3t, t≥0

3� e�3tð Þ � xt
2:3� 0:3e�3t

if 0:67 � 0:67e�3t ≤ xt ≤ 3� e�3t, t≥0

0 otherwise

8>>>>>><
>>>>>>:

• η~Ts tð Þ t, xtð Þ ¼

xt � ~T
L
s t, 0ð Þ

~T
L
s t, 1ð Þ � ~T

L
s t, 0ð Þ

if ~T
L
s t, 0ð Þ≤ xt ≤ ~T

L
s t, 1ð Þ, t≥0

~T
U
s t, 0ð Þ � xt

~T
U
s t, 0ð Þ � ~T

U
s t, 1ð Þ

if ~T
U
s t, 1ð Þ≤ xt ≤ ~T

U
s t, 0ð Þ, t≥0

0 otherwise

8>>>>>>>>><
>>>>>>>>>:

¼

90þ 285e�3t þ 225e�6t

24þ 29e�3t � 23e�6t

� �
xt � 6� 9e�3t � 27e�6t

24þ 29e�3t � 23e�6t
if

1� 3e�3t

15þ 25e�3t
≤ xt ≤

2� 2e�3t

6þ 9e�3t
, t≥0

� 6þ 15e�3t þ 9e�6t

24þ 21e�3t � 23e�6t

� �
xt þ 18þ 21e�3t � 9e�6t

16þ 21e�3t � 7e�6t
if
2� 2e�3t

6þ 9e�3t
≤ xt ≤

3� e�3t

1þ e�3t
, t≥0

0 otherwise

8>>>>>>><
>>>>>>>:

6.5.1 Graphics

6.5.2 Interpretation of results

Figure 1, shows that the support of the function ~Ns tð Þ is an open interval from
~N
L
s t, 0ð Þ ¼ 0:2� 0:6e�3t to ~N

U
s t, 0ð Þ ¼ 3� e�3t, t≥0ð Þ this means that the function

average number of patients in the system is a fuzzy function.
It is impossible for the curve of the fuzzy function ~Ns tð Þ to be below the curve of

~N
L
s t, 0ð Þ nor above that of ~N

U
s t, 0ð Þ. The curve of its modal function

~N
U
s t, 0ð Þ ¼ 0:67 � 0:67e�3t t≥0ð Þ, is the most likely curve for the function ~Ns tð Þ.
Similarly, Figure 2, indicates that the curve for the fuzzy function ~T

L
s tð Þ, the

average time of patients’ stay in the system, is approximately between the curves of

equations ~T
L
s t, 0ð Þ ¼ 1�3e�3t

15þ25e�3t and ~T
U
s t, 0ð Þ ¼ 3�3e�3t

1þe�3t t≥0ð Þ. In other words, the curve of
~Ts tð Þ cannot go below that of ~T

L
s t, 0ð Þ nor can it go above that of ~T

U
s t, 0ð Þ.

In the classical, we can say that the average waiting time of patients in the system is
approximately between 0.1 hours (≃ 6 min) and 3 hours (≃ 180 min).
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This means in other words that the average patient waiting time in the system
cannot go below 6 min nor above 180 min. The most likely mean patient waiting time
in the system is 0.3 hours (≃ 18 min).

7. Conclusion

At the end of this chapter related to “the calculation of the performance parame-
ters of the fuzzy Markovian queueing system FM/FM/1 in transient state by the L–R
method,” it was a question of evaluating these performance parameters of the queue-
ing system considered in transient regime by means of a method called the L–R

Figure 1.
Membership function of the fuzzy function ~Ns tð Þ average number of patients in the system at a time t t≥0ð Þ.

Figure 2.
Membership function of the fuzzy function ~Ts tð Þ average time of patients’ stay in the system at a time t t≥ 0ð Þ.
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method based primarily on the arithmetic of the fuzzy numbers of type L–R restricted
to the secant approximations.

The L–R method facilitated us to find, in transient state, the L–R representation of
the performance parameters, their support and mode as well as their membership
functions which allowed us to represent graphically the performance parameters of
the queueing model in study in the space in three dimensions. This is the originality of
this scientific work.

In this chapter, a fuzzy queue (or waiting system) analysis method called L–R
method, essentially based on the fuzzy L–R arithmetic deduced from secant approxi-
mations has been studied. The L–R representation was used to find the performance
measures of the studied model. Using this method, the fuzzy functions were com-
puted for the fuzzy expectation model FM/FM/1 and the results are found in L–R
representation. Under this representation, the fuzzy results give much more reliable
information than the relaxed alpha-cuts method which will be the subject of a future
research study. The solutions obtained show that this method has three major advan-
tages: it is short, convenient and flexible compared to other methods used in this field.

We are sure that the L–R method can still help, to obtain results of other similar
problems posed in this field in the framework of evaluating the performance param-
eters of fuzzy Markovian expectation models in transient regime.

An illustrative example was given in the medical field to show the relevance of this
study in operational research and in particular in queueing.
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Chapter 4

Development of L-Group Theory
Iffat Jahan

Abstract

In this work, we present a systematic and successful development of L-group theory.
A universal construction of a generated L-subgroup has been provided by using level
subsets of given L-subsets. This construction allows us to define and study commutator
L-subgroups, normalizer of an L-subgroup, nilpotent L-subgroups, solvable L-sub-
groups, normal closure of an L-subgroup. All these concepts and their inter-relationships
have been presented. Here we mention that in this work we also exhibit a characteriza-
tion of solvable L-subgroup with the help of a series of L-subgroups such that at each
level, the factor groups of level subgroups of their consecutivemembers are Abelian. This
allows us to introduce the notion of a supersolvable L-subgroup by using the factors of
level subgroups at each level of a subinvariant series of an L-subgroup. Also, by using
successive normal closures, we transfinitely define a series called the normal closure
series of the L-subgroup. It has been shown that it is the fastest descending normal series
containing given L-subgroup. This sets the ground for the development of subnormality
in L-group theory. In the last, we study the notion of subnormal L-subgroups.

Keywords: L-Subgroup, Generated L-subgroups, Commutator L-subgroup,
Characteristic L-subgroup, Nilpotent L-subgroup, Solvable L-subgroup, supersolvable
L-subgroup, Subnormal L-subgroup,

1. Introduction

After Rosenfeld [1] introduced his notion of fuzzy subgroups of an ordinary group,
there was a great activity in the investigations of fuzzy algebraic structures. Various
aspects of fuzzy algebra were explored. Specially in the field of fuzzy group theory,
several researchers contributed towards development [2–20]. However, the researchers
were not coherent and their studies suffered from one kind of incompatibility or the
other. In the year 1981, Liu [21] introduced his notion of normality of a fuzzy subgroup
in an ordinary group. Soon after that Wu [22] came up with an idea and just gave a hint
of pursuing studies of fuzzy subgroups of a fuzzy group by providing the definition of a
fuzzy normal subgroup in a fuzzy group. Afterwards, this idea was further taken up only
by Martinez [23, 24]. Following this approach, the theory of L-subgroups is developed in
a systematic and consistent manner in our papers [10, 25–34].

In fact, L-group theory came into existence as an answer to the problems posed by
fuzzy group theory and the theories of other fuzzy algebraic structures. The develop-
ment of fuzzy group theory was hampered mainly because of two reasons. Firstly, it
was due to some inherent problems that the analogs of some of the concepts and
results of classical group theory were not even formulated in this theory (for details,
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see Section 7, Discussion and Analysis). Moreover, various types of series such as
derived series, descending central series, normal closure series etc. could not be
formulated. Secondly, since most of the concepts studied in fuzzy algebraic structures
were generically defined, Tom Head [35] proposed his well known metatheorem
(which is based on the concept of Rep function) to extend the results of classical
algebra to fuzzy setting. Therefore, the results of fuzzy group theory became simple
instances of an application of metatheorem. Throughout the development of L-group
theory, the above two drawbacks of fuzzy group theory have been very well taken
care of (for details, see Section 7, Discussion and Analysis) and we are in a position to
put forward a theory parallel to classical group theory. Thus a consistent theory came
into existence. The subject matter discussed in this chapter, in particular; the join
problem of L-subgroups provides sufficient testimony to its success [10].

As an application and motivation, here we mention that if we replace the lattice L, in
our work by the closed unit interval 0, 1½ �, then we retrieve the corresponding version for
fuzzy group theory. Also, as an application of this theory we mention that if we replace the
lattice L by the two elements set 0, 1f g, then the results of classical group theory follow as
simple corollaries of the corresponding results of L-group theory. Moreover, this development
of L-group theory is beyond the purview of metatheorem, contrary to the development of
fuzzy group theory.

Section 2 provides a list of all the basic definitions and results regarding L-subsets
and L-algebraic substructures which are required for the development of the subse-
quent sections. For the sake of completeness, few definitions from lattice theory have
also been incorporated. In papers [10, 25–34], various concepts of L-group theory
have been explored.

Section 3 introduces the concept of a normalizer of an L-subgroup of an L-group. In
Subsection 3.1, this notion of normalizer is very carefully formulated by using the
concept of a coset by an L-point of an L-group. The normalizer of an L-subgroup in an L-
group, formulated in this work, is an L-subgroup of the given L-group. This concept of
classical group theory was left untouched during the evolution of fuzzy group theory.
Although, Mukherjee and Bhattachrya [36, 37] tried to introduce a notion of normalizer
of a fuzzy subgroup of an ordinary group, but it turned out to be a crisp subgroup of the
given ordinary group. This idea was followed by several researchers [16, 38] in the past,
but they were unable to obtain the results, presented in this work, due the fact that they
carried out their researches within the framework where the parent structure was an
ordinary group. We have shown in our work that for a normal L-subgroup of an L-
group, its left and right L-cosets are identical. Also, it has been proved that each L-subset
of an L-group commutes with every normal L-subgroup of the given L-group. In the end
of this subsection, we state certain properties and the nature of this normalizer under the
action of a group homomorphism. In Subsection 3.2, a universal construction of a gener-
ated L-subgroup by an L-set has been provided and its relationship with level subsets is
investigated. This construction along with the construction of commutator L-subsets,
studied in Section 4, allows us to define a commutator L-subgroup. In Subsection 3.3,
again by replacing the parent structure of an ordinary group by an L-subgroup, we
formulate the concept of a characteristic L-subgroup of an L-group. After obtaining the
level subset characterizations of this concept, we establish some group theoretic analogs.
Then, we construct various types of lattices and sublattices of characteristic L-subgroups.
Finally, in this section we are able to establish that a characteristic L-subgroup of a
normal L-subgroup is normal. Also, the well known property of transitivity of charac-
teristic subgroup of classical group theory is extended to the L-setting. However, the
same could not be even formulated in the works of earlier researchers [14, 39–41].
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Section 4 starts with the notion of a commutator L-subset and commutator L-sub-
group of an L-group. It is worthwhile to mention here that, earlier Gupta and Sarma [8]
extended the notion of commutator subgroups in fuzzy setting which was utilized to
formulate the concepts of descending central chain and derived chain in their further
studies [9, 10]. However, the above mentioned studies have been carried out within the
framework where the underlying group is an ordinary group. Therefore, they lost certain
compatibility with other fuzzy algebraic notions. Here, we obtain some group theoretic
analogs of commutator subgroups, we state a property of infimums of the set product of
two L-subsets which is used in the further development of the subject matter. The whole
development is justified by the level subset and strong level subset characterizations of
commutator L-subgroups. Further in this section, we introduce the concept of a
descending central chain of an L-subgroup by making the use of the notion of commuta-
tors. Then this, in turn, is used to define the notion of nilpotent L-subgroups of an L-
group. Here the concept of the trivial L-subgroup of an L-subgroup comes into play. The
members of the descending central chain are normal L-subgroups in their preceding ones
in the sense of Wu [22]. Then, we present some peculiarities of L-setting which will be
discussed in the end of this chapter. The level subset and strong level subset characteriza-
tions of these notions justify these extensions. The concept of the central chain of an L-
subgroup is also introduced with the help of the trivial L-subgroup of the given L-group
which is followed by analogs of some well known results of classical group theory. In the
end of this section, we establish a necessary and sufficient condition for the set product of
two trivial L-subgroups to be a trivial L-subgroup (see Theorem 1.81). Finally, this result
has been used very effectively to establish a sufficient condition for the set product of two
nilpotent L-subgroups to be nilpotent [31]. It has also been shown that the notion of a
normalizer of an L-subgroup, which has been introduced in Section 3, is compatible with
the notion of nilpotent L-subgroups. That is, nilpotent L-subgroup satisfies normalizer
condition [34]. On the other hand, Kim [13] also defined an ascending series of crisp
subgroups of an ordinary group to introduce his concept of nilpotent fuzzy subgroups.
However, this could not lead to any substantial progress.

Section 5 deals with solvability and supersolvability of L-subgroups. Some more
researchers [38, 42, 43] also discussed the notion solvability in the fuzzy setting. In the
studies carried out by these authors the concept of normality introduced by Liu [21] is
used. Consequently, the parent structure in their studies is an ordinary group, not a fuzzy
group. For this purpose we introduce the concepts of derived series and solvable series
with the help of the notion of commutator L-subgroups. This is possible because we use
the normality in the sense of Wu [22] rather than Liu [21]. We discuss some results
pertaining to the members of the derived central chain which are peculiarities of L-setting
(Theorem 1.84, Theorem 1.85). All these concepts are justified by their level subset and
strong level subset characterizations. Moreover, solvability is also characterized in terms
of solvable series and some group theoretic analogs are obtained. Finally, the concept of
central series is used to establish the inter connection of nilpotency and solvability of L-
subgroups. We also discuss the behavior of homomorphic and inverse homomorphic
images of solvable L-subgroups. Next, we define normal and subinvariant L-subgroups of
an L-subgroup with Abelian factors. In case when the lattice L is a dense chain, we
characterize solvability of an L-subgroup with the help of a normal series with Abelian
factors or subinvariant series with Abelian factors. This characterization motivated us to
introduce the notion of a supersolvable L-subgroup by using the factors of level subgroups
at each level of a subinvariant series of an L-subgroup. Also, commutator L-subgroup of a
supersolvable L-subgroup is shown to be nilpotent. In the last, we extend Zassenhaus
Theorem to L-setting and utilize it to establish a version of Schreier Refinement Theorem.
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Section 6 evolves the concept of conjugacy in L-group theory. Firstly, the
conjugate of an L-subgroup by an L-subgroup has been defined. The normal closure of
an L-subgroup is defined as the L-subgroup generated by its conjugate by the whole
parent L-group. Then, by using successive normal closures, we transfinitely define a
series called the normal closure series of the given L-subgroup. Earlier an attempt has
been made in [5] to define normal closure of a fuzzy group in an ordinary group. In
fact, this is the fuzzy subgroup generated by the union of all the conjugates of the
given fuzzy subgroup by crisp points. The concept of this conjugacy comes from [36].
But this idea was not found suitable enough to formulate the successive normal
closures and hence it was not found suitable to be applied in the development of
subnormal fuzzy subgroups introduced by the same author in [44]. Here, it has been
shown that the normal closure series, defined in this work, is the fastest descending
normal series containing given L-subgroup. This sets the ground for the development
of subnormality in L-group theory [10, 33]. During the course of the development of
subnormality, it has also been proved that every L-subgroup of a nilpotent L-sub-
group is a subnormal L-subgroup. Finally in order to show the reach of L-group
theory, we tackle the well known join problem of subnormal subgroups in L-setting
and solve it to the same degree of success as that of classical group theory.

2. Preliminaries

Throughout our work, the system L, ≤ ,∧,∨h i denotes a complete and completely
distributive lattice where’≤ ’ denotes the partial ordering of L, the join(sup) and the
meet(inf) of the elements of L are denoted by 0∨0 and 0∧0, respectively. We shall
denote the maximal and the minimal elements of L by 1 and 0 respectively. Moreover,
I denotes a non-empty indexing set.

The definition of a completely distributive lattice is well known in literature [45].
Let Ji : i∈ If g be any family of subsets of a complete lattice L and F denotes the set of
choice functions for Ji, i.e., functions f : I!

Q
i∈ IJi such that f ið Þ∈ Ji for each i∈ I.

Then, we say that L is a completely distributive lattice, if

^
⋁
i∈ I

Ji

( )
¼ ⋁

f ∈F

^
i∈ I

f ið Þ
( )

: (1)

The above law is known as the completely distributive law. Moreover, a lattice L is
said to be infinitely meet distributive if for every subset ai : i∈ If g of L we have

a
^

⋁
i∈ I

ai

( )
¼ ⋁

i∈ I
a
^

ai
n o

, (2)

provided L is join complete. The above law is known as infinitely meet distributive
law. The definition of infinitely join distributive lattice is dual of the above definition,
i.e., a lattice L is said to be infinitely join distributive if for every subset ai : i∈ If g of L
we have

a⋁
^
i∈ I

ai

( )
¼
^
i∈ I

a⋁aif g, (3)
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provided L is meet complete. The above law is known as infinitely join distributive
law. Both the above laws follow from the definition of a completely distributive
lattice. The dual of a completely distributive law is valid in a completely distributive
lattice whereas the infinitely meet and join distributive laws are independent of each
other. In this section, we recall some definitions and results which will be used in the
sequel. An L-subset of X is a function from X into L. The set of all L-subsets of X is
called the L-power set of X and is denoted by LX .

For an ordinary subset A of X, its characteristic function defined by:

1A xð Þ ¼ 1, if x∈A,
0, if x ∉ A;

�
(4)

is an L-subset of X representing A.
Let μ∈LX . The set μ xð Þ : x∈Xf g is called the image of μ and is denoted by μ Xð Þ or

Imμ. Let sup
x∈X

μ xð Þ ¼ a0 and inf
x∈X

μ xð Þ ¼ t0. We call a0 to be the tip of μ and t0 to be the

tail of μ. We denote the tip and tail of μ by supμ and inf μ respectively. Let a∈L.
Then, μa ¼ x∈X : μ xð Þ≥ af g is called a-level set or a-cut of μ. Moreover, μ>

a ¼
x∈X : μ xð Þ> af g is called a-strong level set (or a-strong cut) of μ. Note that μa ¼ ϕ, if

a> a0 and μ>
a ¼ ϕ, if a≥ a0. Moreover, μa ¼ X if a≤ t0 and μ>

a ¼ X if a< t0. Let Y ⊆X.
Then, we define aY ∈LX as follows:

aY xð Þ ¼ a, if x∈Y,
0, if x∈XnY:

�
(5)

In particular, if Y is singleton say yf g, then a yf g is called L-point or L-singleton and is
denoted by ay. We say that the L-point ay ∈ μ if μ xð Þ≥ a. The union ∪

i∈ I
μi and the

intersection ∩
i∈ I

μi of any family μi : i∈ If g of L-subsets of X are, respectively, defined by:

⋃
i∈ I

μi

 !
xð Þ ¼ ⋁

i∈ I
μi xð Þ and ⋂

i∈ I
μi

 !
xð Þ ¼

^
i∈ I

μi xð Þ, (6)

for each x∈X. Let η, μ∈LX . Then, η is said to be contained in μ, if we have
η xð Þ≤ μ xð Þ for each x∈X and is written as η⊆ μ or μ ⊇ η.

Theorem 1.1 Let η, θ∈LX . Then

i. η⊆ θ if and only if ηa ⊆ θa for each a∈L,

ii. η⊆ θ if and only if η>
a ⊆ θ>

a for each∈L � 1f g, provided L is a chain.

Theorem 1.2 Let μif gi∈ I ⊆Lμ. Then

i. ⋂
i∈ I

μi

 !

a

¼ ⋂
i∈ I

μið Þa forall∈L,

ii. ⋃
i∈ I

μi

 !

a

⊆ ⋃
i∈ I

μið Þa forall∈L,
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iii. ⋃
i∈ I

μi

 !>

a

¼ ⋃
i∈ I

μið Þ>a forall a∈L � 1f g, provided L is a chain;

iv. ⋂
i∈ I

μi

 !>

a

⊆ ⋂
i∈ I

μið Þ>a forall a∈L � 1f g, provided L is a chain.

Let f be a function from X into Y, and let μ∈LX and ν∈LY . Then, the image f μð Þ of
μ under f and the pre-image f�1 ηð Þ of η under f are L-subsets of Y and X respectively
defined by:

f μð Þ yð Þ ¼ ⋁
x∈ f�1 yð Þ

μ xð Þ : x∈Xf g and f�1 ηð Þ xð Þ ¼ η f xð Þð Þ: (7)

If f�1 yð Þ ¼ ϕ, then f μð Þ yð Þ ¼ 0 since the least upper bound of the empty set in L
is 0. The set product μ ∘ η of μ, η∈LS, where S is a groupoid, is an L-subset of S
defined by

μ ∘ η xð Þ ¼ sup
x¼yz

μ yð Þ∧η zð Þf g: (8)

If x cannot be factored as x ¼ yz in S, then μ ∘ η xð Þ being the least upper bound of
the empty set in L is 0.

The set LX of L-subsets of X, together with the operations of union and intersec-
tion, is a complete lattice with the partial ordering of L-set inclusion ⊆ . Its maximal
and minimal elements are 1X and 0X, respectively. Here 1X and 0X are L-subsets of X
which map each element of X to 1 and 0, respectively. Moreover, the lattice P Xð Þ of all
subsets of X can be isomorphically embedded into the lattice LX .

From now onwards, G will denote an arbitrary group with the identity element e.
We recall the definitions of an L-subgroup and a normal L-subgroup of the group G.

Definition 1.1 Let μ∈LG. Then, μ is called an L-subgroup of G if.

i. μ xyð Þ≥ μ xð Þ∧μ yð Þ for each x, y∈G,

ii. μ x�1ð Þ ¼ μ xð Þ for each x∈G.

The set of all L-subgroups of G is denoted by L Gð Þ. From the definition, it is clear
that the tip of μ is attained at the identity element of G.

Definition 1.2 Let μ∈L Gð Þ. Then, μ is said to to be normal L-subgroup of G if
μ xyð Þ ¼ μ yxð Þ for each x, y∈G.

It is well known that the intersection of an arbitrary family of L-subgroups of a
group is an L-subgroup of the given group. Hence we have the following definition:

Definition 1.3 Let μ∈LG. Then, the L-subgroup of G generated by μ, denoted by
μh i, is defined as the smallest L-subgroup of G which contains μ, i.e.,

μh i ¼ ∩ ν : μ⊆ ν, ν∈L Gð Þf g: (9)

The set L Gð Þ is a complete lattice under the ordering of L-set inclusion where
themeet’∧’ and join’∨’ of an arbitrary family ηif gi∈ I in L Gð Þ are defined, respectively, by:
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∧
i∈ I

ηi ¼ ⋂
i∈ I

ηi

 !
and ⋁

i∈ I
ηi ¼ ⋃

i∈ I
ηi

* +
: (10)

Let η, μ∈LG such that η⊆ μ. Then, η is said to be an L-subset of μ. The set of all
L-subsets of μ is denoted byLμ:Moreover, if η, μ∈L Gð Þ such that η⊆ μ, then η is said to be
an L-subgroup of μ. The set of all L-subgroups of μ is denoted by L μð Þ. Here wemention
that the set L μð Þ of all L-subgroups of μ is a complete sublattice of the lattice L 1Gð Þ.

Next, we provide level subset and strong level subset characterizations of an
L-subgroup of an L-group.

Theorem 1.3 Let η∈Lμ. Then,

i. η∈L μð Þ if and only if each non-empty level subset ηa is a subgroup of μa,

ii. η∈L μð Þ if and only if each non-empty strong level subset η>
a is a subgroup of

μ>
a provided L is a chain.

The following results discuss homomorphic image and pre-image of an L-subgroup:
Theorem 1.4 Let η∈L μð Þ and f : G! H be a group homomorphism. Then, f ηð Þ is

an L-subgroup of f μð Þ.
Theorem 1.5 Let η, μ∈L Hð Þ with η∈L μð Þ and f : G! H be a group homomor-

phism. Then, f�1 ηð Þ is an L-subgroup of f�1 μð Þ.
Let η∈L μð Þ be such that η is non-constant and η 6¼ μ. Then, η is said to be a proper

L-subgroup of μ. Clearly, η is a proper L-subgroup of μ if and only if η has distinct tip
and tail and η 6¼ μ.

Definition 1.4 Let η∈L μð Þ. Then, η is said to be a trivial L-subgroup of μ if its chain
of level subgroups contains only ef g and G:.

Definition 1.5 Let η∈L μð Þ. Then, define an L-subset ηa0t0 of μ as follows:

ηa0t0 yð Þ ¼ a0, if y ¼ e,
t0, if y 6¼ e;

�
(11)

where a0 ¼ η eð Þ and t0 ¼ inf η. Clearly, ηa0t0 is a trivial L-subgroup of μ and is called
the trivial L-subgroup of η.

From now onwards, we denote μ as an L-subgroup of G and where there is no
likelihood of any confusion, we shall not mention the underlying group G. We shall
call the parent L-subgroup μ to be simply an L-group.

Now, we study the notion of normal L-subgroups of an L-group and its related
properties. In the course of development, we obtain the analogs of certain results of
classical group theory for normal L-subgroups of an L-group.

Definition 1.6 Let η∈Lμ. Then, η is said to be a normal L-subset of μ if

η y�1xy
� �

≥ η xð Þ∧μ yð Þ for each x, y∈G: (12)

The set of all normal L-subsets of μ is denoted by NLμ. Moreover, if η∈L μð Þ, then η
is said to be a normal L-subgroup of μ. The set of all normal L-subgroups of μ is
denoted by NL(μ). The following result follows immediately by the definition of
normal L-subsets:

Theorem 1.6 Let ηif gi∈ I ⊆NLμ be any family. Then,
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i. ⋂
i∈ I

ηi ∈NLμ,

ii. ⋃
i∈ I

ηi ∈NLμ:

Next, we provide level subset and strong level subset characterizations of normal
L-subsets and normal L-subgroups of an L-group.

Theorem 1.7 Let η∈Lμ. Then,

i. η∈NLμ if and only if each non-empty level subset ηa is a normal subset of μa,

ii. η∈NLμ if and only if each non-empty strong level subset η>
a is a normal

subset of μ>
a provided L is a chain.

Theorem 1.8 Let η∈L μð Þ. Then,
i. η∈NL μð Þ if and only if each non-empty strong level subset ηa is a normal
subgroup of μa,

ii. η∈NL μð Þ if and only if each non-empty strong level subset η>
a is a normal

subgroup of μ>
a provided L is a chain.

The following results deal with the homomorphic image and pre-image of a normal
L-subgroups:

Theorem 1.9 Let η, μ∈L Gð Þ such that η∈NL μð Þ and f : G! H be an onto group
homomorphism. Then, f ηð Þ is a normal L-subgroup of f μð Þ.

Theorem 1.10 Let H be a group and μ, η∈L Hð Þ be such that η∈NL μð Þ. Let f : G!
H be a group homomorphism. Then, f�1 ηð Þ is a normal L-subgroup of f�1 μð Þ.

The notion of sup-property was introduced by A. Rosenfeld [1] in order to extend
certain results of classical group theory to fuzzy setting. Thereafter, this technique
was employed by researchers in various fields of fuzzy algebraic substructures [46].

Definition 1.7 Let η∈Lμ. Then, η is said to have sup-property if for each non-empty
subset A of G, there exists a0 ∈A such that ∨

a∈A
η að Þ ¼ η a0ð Þ. The set of all L-subsets of

μ possessing sup-property is denoted by Lμ
s .

3. Generated L-subgroup, normalizer and characteristic L-subgroup of an
L-group

The significance of the notions of normalizers, generated subgroups and charac-
teristic subgroups can be found in any standard text in the classical group theory. In
this section, we study these concepts within the framework of L-setting.

3.1 Normalizer of an L-group

One of the key notions ‘normalizer of a subgroup’ of classical group theory was left
untouched during the evolution of fuzzy group theory. The notion of normalizer of an
L-subgroup of an L-group has been introduced in [26] which, in essence, is compara-
ble with its classical counterpart. This subsection commences with the definition of a
coset of an L-subgroup by an L-point.
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Definition 1.8 Let η∈L μð Þ. Then for ax ∈ μ, left (right) coset of η in μ is defined as
the set product ax ∘ η η ∘ axð Þ.

The following is immediate:
Let η∈L μð Þ. Then, for each ax ∈ μ and z∈G

ax ∘ η zð Þ ¼ a∧η x�1z
� �

, η ∘ ax zð Þ ¼ a∧η zx�1
� �

; (13)

i.e. ax ∘ η ¼ η ∘ ax for each ax ∈ η:
The characterization of an L-subgroup in terms of L-points is obtained in a way

similar to classical group theory.
Theorem 1.11 Let η∈Lμ. Then,

η∈L μð Þ if  and only if ax ∘ by�1 ∈ η for eachax, by ∈ η: (14)

We can characterize the normality of an L-subgroup of a given L-group in terms of
these ‘cosets’ as follows. We observe here that in case of normal L-subgroup, the left
coset and the right coset by an L-point are identical.

Theorem 1.12 Let η∈L μð Þ. Then,

η∈NL μð Þ if  and only if ax ∘ η ¼ η ∘ ax for each L‐point ax ∈ μ: (15)

Clearly for η∈L μð Þ, η∈NL ηð Þ. Also, we observe that for ax, by ∈ μ,

ax ∘ by ¼ a∧bð Þxy: (16)

Some further characterizations of normal L-subgroups are given below:
Theorem 1.13 Let η∈L μð Þ. Then, the following are equivalent:

i. η∈NL μð Þ,
ii. ax ∘ η ¼ η ∘ ax for each ax ∈ μ,

iii. ax ∘ η ∘ ax�1 ⊆ η for each ax ∈ μ,

iv. ax ∘ by ∘ ax�1 ∈ η for each ax ∈ μ and by ∈ η.

The following fact is well known:
If μ∈LX, then μ ¼ ∪

x∈X
μ xð Þð Þx

� �
.

This immediately yields:
Theorem 1.14 Let η, θ∈LG. Then, η ∘ θ ¼ ∪

x∈G
η xð Þð Þx ∘ θ

� � ¼ ∪
x∈G

η ∘ θ xð Þð Þx
� �

:

Hence we have that each L-subset of μ commutes with every normal L-subgroup of μ.
Theorem 1.15 Let η∈NL μð Þ. Then, η ∘ θ ¼ θ ∘ η for each θ∈Lμ.
The notion of normalizer which was so far introduced and discussed in fuzzy

group theory is a crisp subset (subgroup) of the given parent group G. Moreover, this
normalizer turns out to be the intersection of normalizers of all the level subsets
(subgroups) of the fuzzy subgroup in question. Another drawback of this normalizer
is that each member of a certain equivalence class of fuzzy subgroups of a fuzzy group
has the same normalizer. This phenomenon arises due to the fact that the studies,

69

Development of L-Group Theory
DOI: http://dx.doi.org/10.5772/intechopen.110387



carried out by these researchers are for the fuzzy subgroups of an ordinary group.
Here we demonstrate, how we can introduce the concept of a normalizer which is not
an ordinary subgroup but an L-subgroup itself and satisfies most of the properties of
the notion of the normalizer of an ordinary subgroup of a group. Firstly, we present
the construction of this notion in the following:

Theorem 1.16 Let η∈L μð Þ. Define an L-subset δ of G as follows:

δ ¼ ⋃
ax ∈ μ

ax : ax ∘ η ¼ η ∘ axf g: (17)

Then, δ is the largest L-subgroup of μ such that η is a normal L-subgroup of δ. Here
δ is called the normalizer of η and is denoted by N ηð Þ: Moreover, it turns out that
N ηð Þ eð Þ ¼ μ eð Þ.

This immediately leads us to the following result:
Let η∈L μð Þ. Then, η∈NL μð Þ if and only if N ηð Þ ¼ μ.
On the other hand, if we replace the parent L-group μ by 1G, then we have:
Theorem 1.18 Let η∈L Gð Þ. Then, f ηð Þ is an normal L-subgroup of G if and only if

N ηð Þ ¼ 1G.
As a consequence, we recover the classical result:
Theorem 1.19 Let H be a subgroup of G. Then, x∈N Hð Þ if and only if

1H ∘ 1x ¼ 1x ∘ 1H.
Below we provide some more properties related to the normalizer so defined:

Theorem 1.20 Let η, θ∈L μð Þ. Then

i. N ηð Þ∩N θð Þ⊆N η∩ θð Þ,

ii. N ηð Þ∩N θð Þ⊆N η ∘ θð Þ provided η ∘ θ∈L μð Þ.

Now, the following results reflect the behavior of this normalizer under the action
of a group homomorphism. We start with:

Theorem 1.21 Let f : G! K be a group homomorphism and x∈G. If y∈K, then
the set of all preimages of ‘yf xð Þ’ is precisely the set of all elements of the form ‘ux’
where f uð Þ ¼ y.

Theorem 1.22 Let f ðvÞ be a group homomorphism and η, θ∈Lμ. Then,
f η ∘ θð Þ ¼ f ηð Þ ∘ f θð Þ.

Moreover,
Theorem 1.23 Let f : G! K be a group homomorphism and ν∈L Kð Þ.If θ∈Lν, then

f�1 θ ∘ bf xð Þ
� � ¼ f�1 θð Þ ∘ bx.
The above results are helpful in establishing the following:
Theorem 1.24 Let f : G! K be a group homomorphism. Then, for μ∈L Gð Þ and

ν∈L Kð Þ

i. f N ηð Þð Þ⊆N f ηð Þð Þ for each η∈L μð Þ,

ii. f�1 N θð Þð Þ⊆N f�1 θð Þ� �Þ for each θ∈L νð Þ.

3.2 Generated L-subgroup of an L-group

Firstly, we recall the following results for generating an L-subgroup by a given
L-subset from [25] and study its relationship with other notions of L-group theory.
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Theorem 1.25 Let η∈Lμ. Let a0 ¼ ∨
x∈G

η xð Þf g and define an L-subset η̂ of G by

η̂ xð Þ ¼ ∨
a≤ a0

a : x∈ ηah if g: (18)

Then, η̂∈L μð Þ and η̂ ¼ ηh i. Moreover, ηh i eð Þ ¼ ∨x∈G η xð Þf g.
The above theorem is used to establish the following:
Theorem 1.26 Let η∈NLμ. Then, ηh i∈NL μð Þ.
In the following, we demonstrate the significance of sup-property in the studies of

L-group theory:
Theorem 1.27 Let η∈Lμ

s . Then, define an L-subset η̂ of G by

η̂ xð Þ ¼ ∨
a∈ Imη

a : x∈ ηah if g: (19)

Then, η̂∈L μð Þ and η̂ ¼ ηh i. Moreover, η̂ possesses sup-property and Im η̂⊆ Im η:
The following result is an immediate consequence of the above theorem:
Theorem 1.28 Let η∈Lμ

s . If a0 ¼ ∨
x∈G

η xð Þf g, then for each b≤ a0, ηbh i ¼ ηh ib.
The following example will demonstrate that the condition of sup-property is

crucial and can not be removed from the above result:
Example 1: Let Z be the group of integers under addition, and let 2nh i be the

subgroup of Z generated by 2n, where n is a fixed positive integer. Then the direct
product Z � Z contains subgroups

2rh i � 2sh i for  each r, s ¼ 0,1,2, … (20)

Define the following L-subset of Z � Z where L is the closed unit interval ordered
by usual ordering of real numbers:

μ xð Þ ¼
0 if x∈Z � Z � 2h i � Z,
3
4

if x∈ 2h i � Z:

8<
: (21)

η xð Þ ¼

0 if x∈ x∈Z � Z � 2h i � Z,
1
2

1� 1
2n

� �
if x∈ 2nh i � Z � 2nþ1

� �� Z, where n ¼ 1,2,3, …

0 if x∈ 0h i � Z � 0h i � 2h i,
3
4

1� 1
4n

� �
if x∈ 0h i � 2nh i � 0h i � 2nþ1

� �
, where n ¼ 1,2,3, …

3
4

if x ¼ 0, 0ð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(22)

Here A � B means usual set difference.Clearly, η⊆ μ, η 6¼ μ and μ∈L Gð Þ. Observe
that η does not possess sup-property and for t ¼ 1

2,

0h i � 2h i ¼ η1
2

D E
⊂ ηh i1

2
¼ 0h i � Z: (23)

Moreover,
Theorem 1.29 Let η∈Lμ and a0 ¼ ∨

x∈G
η xð Þ. If L is a chain, then η>

a

� � ¼ ηh i>a for

each a< a0.
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3.3 Characteristic L-subgroup of an L-group

The notion of a characteristic subgroup of a group has been extended to the fuzzy
setting by many researchers in the past. However in all these attempts, the parent
group in question is an ordinary group rather than a fuzzy group. Here in this section,
we firstly introduce the notion of a characteristic L-subset of an L-group. Then, we
introduce the notion of a characteristic L-subgroup of an L-group in a manner similar
to that of a normal L-subgroup of an L-group introduced earlier. After providing its
characterization in terms of level subsets, we provide some group theoretic analogs to
establish this notion. We also prove that the set of characteristic L-subsets (sub-
groups) is closed under arbitrary intersections (see [27]).

Definition 1.9 Let η∈Lμ with tip a0. Then, η is said to be a characteristic L-subset
of μ if

η Txð Þ≥ η xð Þ for each T ∈A μað Þ and for each a≤ a0; (24)

where A μað Þ is the group of automorphisms of μa. We denote the set of all
characteristic L-subsets of μ by CLμ.

It is easy to see that μ is a characteristic L-subset of itself.
Theorem 1.30 Let η∈Lμ with tip a0. Then, η∈CLμ if and only if ηa is a character-

istic subset of μa for each a≤ a0.
The set of all normal L-subsets of the L-group μ is denoted by NLμ. The following

results are immediate:
Theorem 1.31 Let η∈CLμ. Then, η∈NLμ.
Theorem 1.32 Let η∈CLμ with tip a0. Then,

T ηjμað Þ ¼ η∣μa forall T ∈A μað Þ; where a≤ a0: (25)

The set of all L-subsets of μ possessing sup-property is denoted by Lμ
s . The follow-

ing result has been discussed in the fuzzy setting in [27]:
Theorem 1.33 Let η, θ∈Lμ

s . Then, η∪ θ and η∩ θ∈Lμ
s provided L is a chain.

Now, since the meet and the join operations in Lμ are defined to be the intersection
and the union of L-subsets respectively, the set Lμ

s constitutes a sublattice of L
μ

provided L is a chain.
It is easy to observe that if L is a chain, then any L-subgroup of an L-group with

finite range possesses sup-property. The situation, however, in the case of infinite
range is varied and interesting (see [46]). Also, we see the role of sup-property when
L is not a chain. Here we present a generalization of the notion of sup-property in
order to obtain certain results. The following characterization of sup-property forms
the basis of our generalization:

Theorem 1.34 Let η∈Lμ. Then, η possesses sup-property if and only if each non-
empty subset of Imη is closed under arbitrary supremum.

Definition 1.10 A non-empty subset X of a lattice L is said to be supstar if every
non-empty subset A of X contains its supremum. That is, if supA ¼ a0, then a0 ∈A.

By the definition, it is clear that every subset of a supstar subset is again a supstar
subset. Now, define:

Definition 1.11 Let ηif gi∈ I ⊆Lμ be an arbitrary family. Then, ηif gi∈ I is said to be a
supstar family if ∪

i∈ I
Imηi is a supstar subset of L. In particular, a pair of L-subsets η and

θ is said to be jointly supstar if the set η, θf g is a supstar family.
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The following results are obtained by using the notions of sup-property and
supstar family:

Theorem 1.35 Let η∈Lμ. Then, η has sup-property if and only if Imη is a supstar
subset of L.

Theorem 1.36 Let ηif gi∈ I ⊆Lμ be a supstar family. Then,

i. ηi possesses sup-property for each i∈ I,

ii. ⋃
i∈Ω

ηi possess sup-property, where Ω⊆ I.

Moreover, we have:
Theorem 1.37 If ηif gi∈ I ⊆Lμ is a maximal supstar family, then ηif gi∈ I is a complete

lattice under the ordering of L-set inclusion.
In order to study the lattice theoretic behavior of characteristic L-subsets, have the

following:
Theorem 1.38 Let ηif gi∈ I ⊆CLμ. Then,

i. ⋂
i∈ I

ηi ∈CLμ,

ii. ⋃
i∈ I

ηi ∈CLμ provided ηif gi∈ I is a supstar family.

In view of Theorem 1.31, CLμ ⊆NLμ ⊆Lμ. By Theorem 1.6, NLμ is closed under
arbitrary unions and intersections. Hence NLμ is a complete sublattice of Lμ. Further
by Theorem 1.38, CLμ is closed under arbitrary intersections with the greatest element
μ. Thus CLμ is a lower complete sublattice of Lμ and is a complete lattice in its own
right. Moreover, if both CLμ and NLμ are supstar families and the lattice L is a chain,
then by Theorem 1.31 and Theorem 1.36, CLμ ⊆NLμ ⊆Lμ

s . By Theorem 1.38, CLμ is
closed under arbitrary unions with the least element identically zero function. So CLμ

is an upper complete sublattices of NLμ. Similarly by Theorem 1.6 and Theorem 1.36,
NLμ is an upper complete sublattices of Lμ

s .
On the other hand, we discuss the behavior of set products of L-subsets when the

given lattice is a chain or the two L-subsets are jointly supstar.
Theorem 1.39 Let η, ν∈Lμ. Then,

i. η ∘ νð Þ>a ¼ η>
a ν>

a for each a∈L � 1f g, provided L is a chain,

ii. η ∘ νð Þa ¼ ηaνa for each a∈L, provided η and ν are jointly supstar.

This helps us in establishing the following:
Theorem 1.40 Let η, θ∈CLμ be jointly supstar. Then, η ∘ θ∈CLμ.
Below we study the notion of a characteristic L-subgroup of an L-group and its

related properties:
Definition 1.12 Let η∈L μð Þ. Then, η is said to be a characteristic L-subgroup of μ

if η∈CLμ. We denote by CL μð Þ the set of all characteristic L-subgroups of μ.
Clearly, an L-group μ is a characteristic L-subgroup of itself. The following

theorem characterizes the notion of a characteristic L-subgroup in terms of its
level subsets:
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Theorem 1.41 Let η∈L μð Þ. Then, η∈CL μð Þ if and only if ηa is a characteristic
subgroup of μa foreach a≤ η eð Þ.

Moreover, we have the following results:
Theorem 1.42 Let η∈CL μð Þ. Then, η∈NL μð Þ.
Theorem 1.43 Let η∈CL μð Þ. Then,

T ηjμað Þ∣ ¼ η∣μa forall T ∈A μað Þ; where a≤ η eð Þ: (26)

Theorem 1.44 Let η, θ∈CL μð Þ be jointly supstar. Then, η ∘ θ∈CL μð Þ.
Theorem 1.45 Let θ∈NL μð Þ and η∈CL θð Þ. Then, η∈NL μð Þ.
In classical group theory, it is well known that the property of being a characteris-

tic subgroup is transitive, and a characteristic subgroup of a normal subgroup of a
group is a normal subgroup. However, the same could not even be formulated in the
work of earlier researchers who have defined the notion of a characteristic fuzzy
subgroup of an ordinary group in various ways. However, these pleasing features of
classical group theory are retained in our studies.

Theorem 1.46 Let θ∈CL μð Þ and η∈CL θð Þ. Then, η∈CL μð Þ.
Let us denote by CLs μð Þ the set of all characteristic L-subgroups of μ, each member

of which possesses sup-property. In classical group theory, the subgroup generated by
a characteristic subset of a group is a characteristic subgroup. Below we provide its
counterpart in L-group theory:

Theorem 1.47 Let η∈CLμ and possesses sup-property. Then, ηh i∈CLs μð Þ.
Now, we exhibit that the set of all normal L-subgroups and the set of all charac-

teristic L-subgroups each member of which possesses sup-property, constitute
sublattices of the lattice of L-subgroups of a given L-group.

Theorem 1.48 The set NL μð Þ is a complete sublattice of L μð Þ:.
In the following results the lattice L is a chain:
Theorem 1.49 The set Ls μð Þ of all L-subgroups of μ each member of which pos-

sesses sup-property, is a sublattice of L μð Þ.
Theorem 1.50 The set NLs μð Þ of all normal L-subgroup of μ each member of which

possesses sup-property, is a sublattice of Ls μð Þ and hence of L μð Þ.
Theorem 1.51 The set CLs μð Þ of all characteristic L-subgroups of μ each member of

which possesses sup-property, is a sublattice of NLs μð Þ and hence of L μð Þ.
The following diagram provides the lattice structure of the sublattices of the lattice

L Gð Þ provided the lattice L is a chain (Figure 1):
If Lt μð Þ denotes the set of all L-subgroups of μ each member of which has the same

tip t, where t∈ Im μ, then the following result is easy to verify:
Theorem 1.52 The set Lt μð Þ is a sublattice of L μð Þ.
Moreover, we have:
Theorem 1.53 The lattice L μð Þ is a disjoint union of its sublattices Lt μð Þ. That is

L μð Þ ¼ ⋃
t∈ Im μ

Lt μð Þ.
As the intersection of two sublattices is a sublattice of the given lattice, the

following results are immediate:
Theorem 1.54 The set Lnt μð Þ of all normal L-subgroups of μ with the same tip t, is a

sublattice of Ln μð Þ and hence of L μð Þ.
In the following results the lattice L is a chain:
Theorem 1.55 The set Lst μð Þ of all L-subgroups of μ with the same tip t and

each member of which possesses sup-property, is a sublattice of Ls μð Þ and hence
of L μð Þ.
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Theorem 1.56 The set Lnst μð Þ of all normal L-subgroups of μ with the same tip t and
each member of which possesses sup-property, is a sublattice of Lnt μð Þ and Lst μð Þ and
hence of L μð Þ.

The following lattice diagram shows the inter-relationship of the above discussed
sublattices, where the lattice L is a chain (Figure 2):

Theorem 1.57 The set Lcst μð Þ of all characteristic L-subgroups of μ with the same tip
t and each member of which possesses sup-property, is a sublattice of NLst μð Þ and
hence of L μð Þ provided the lattice L is a chain.

Now, let us consider an arbitrary lattice L. Let L ∗ μð Þ denote a subclass of the lattice
L μð Þ consisting of all the supstar families. Then, L ∗ μð Þ is a complete sublattice of L μð Þ.
Now if CL ∗

st , CL
∗
s μð Þ, NL ∗

s μð Þ, L ∗
s μð Þ, NL ∗

st μð Þ and L ∗
st μð Þ denote the set of all supstar

families of L-subsets in CLst, CLs μð Þ, NLs μð Þ, Ls μð Þ, NLst μð Þ and Lst μð Þ respectively,
then it follows that

CL ∗
st ⊆NL ∗

st ⊆L ∗
st ⊆L ∗

s μð Þ and CL ∗
st ⊆CL ∗

s ⊆NL ∗
s ⊆L ∗

s μð Þ; (27)

are sublattices of L μð Þ. Note that L ∗
s μð Þ⊆Ls μð Þ. Moreover, we mention that it is not

known whether CL μð Þ is a sublattice of NL μð Þ. We leave this question as an open
problem and below we describe the inter-relationship of above discussed lattices,
simply under the set inclusion, where the lattice L is taken to be a chain (Figure 3).

4. Commutator L-subgroup and nilpotent L-subgroup of an L-group

The class of nilpotent groups constitutes an important class in the studies of group
theory. In fact, nilpotent groups are very near to Abelian groups and they are always
solvable. They arise in the studies of Galois theory as well as in the classification of
groups. In the investigation of nilpotent groups and solvable groups, the notion of
commutator and commutator subgroups play very significant role. Therefore, we start
with notion of commutator L-subgroups.

Figure 1.
The lattice structure of sublattices of the lattice L Gð Þ.
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4.1 Commutator L-subgroup of an L-group

In this subsection, we study the notion of a commutator in L-setting [28, 29] by
using the notion of infimums of L-subsets. In fact, we also discuss here how infimums
of L-subsets play an effective role in the development of the theory of L-subgroups.

Definition 1.13 Let η, θ∈Lμ. Then, the commutator of η and θ is an L-subset η, θð Þ
of G defined as follows:

η, θð Þ xð Þ ¼ ∨ η yð Þ∧θ zð Þf g, if x ¼ y, z½ � for somey, z∈G,
inf η∧ inf θ, if x 6¼ y, z½ � foranyy, z∈G:

�
(28)

The commutator L-subgroup of η, θ∈Lμ is defined as the L-subgroup of G gener-
ated by η, θð Þ. It is denoted by η, θ½ �. Thus, η, θ½ � ¼ η, θð Þh i. Moreover,
η, θ½ � eð Þ ¼ η eð Þ∧θ eð Þ.

In general, if ηif gni¼1 ⊆Lμ, then we write η1, η2, η3, … , ηnð Þ ¼ η1, η2ð Þ, η3ð Þ, … , ηnð Þ
and η1, η2, η3, … , ηn½ � ¼ η1, η2½ �, η3½ �, … , ηn½ �. Moreover, it follows that
inf η1, η2, η3, … , ηnð Þ ¼ inf η1∧ inf η2∧…∧ inf ηn. Also,
η1, η2, η3, … ηn½ � eð Þ ¼ η1 eð Þ∧η2 eð Þ∧…∧ηn eð Þ.

Figure 2.
Inter-relationship of the sublattices of L μð Þ.
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In the following, we present some extensions of the results of classical group
theory with certain deviations and peculiarities:

Theorem 1.58 Let η, θ∈Lμ and η⊆ θ. Then, η, σ½ �⊆ θ, σ½ � for each σ ∈Lμ.
Theorem 1.59 Let η, θ∈Lμ. Then, η, θ½ � ¼ θ, η½ �.
Theorem 1.60 Let η, θ∈Lμ. Then,

inf η∧ inf θ≤ inf η ∘ θ≤ inf η∨ inf θ: (29)

Theorem 1.61 Let η, θ∈NL μð Þ and σ ∈L μð Þ: If either η and θ or θ and σ have the
same tails, then

σ ∘ η, θ½ �⊆ η, θ½ � ∘ σ, θ½ �, (30)

Figure 3.
Inter-relationship of various sublattices of L μð Þ under ordinary set inclusion.
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and moreover, if η eð Þ ¼ σ eð Þ, then the equality holds.
Theorem 1.62 Let η, θ∈NL μð Þ. Then,

η, θ½ �∈NL μð Þ and η, θ½ �⊆ η∩ θ: (31)

Theorem 1.63 Let η, θ∈Lμ and f : G! K be a group homomorphism. Then,
f ηh ið Þ ¼ f ηð Þh i and f η, θ½ �ð Þ ¼ f η, θð Þð Þh i:

Theorem 1.64 Let η, θ∈CLμ be jointly supstar. Then, η, θ½ �∈CLs μð Þ.
Theorem 1.65 Let η, θ∈Lμ and f : G! K be a homomorphism. Let inf η ¼ inf f ηð Þ

and inf θ ¼ inf f θð Þ. Then, f ηð Þ, f θð Þ½ � ¼ f η, θ½ �ð Þ.
Theorem 1.66 Let f : G! H be a homomorphism and ν∈L Hð Þ. Let λ, σ ∈Lν and

inf λ ¼ inf f�1 λð Þ, inf σ ¼ inf f�1 σð Þ. Then, f�1 λð Þ, f�1 σð Þ� �
⊆ f�1 λ, σ½ �ð Þ.

Theorem 1.67 Let η, θ∈L μð Þ be such that η and θ are jointly supstar. Then,
the commutator η, θð Þ and hence the commutator L-subgroup η, θ½ � possess
sup-property.

Note that, a≤ inf η if and only if ηa ¼ G. Moreover, if a≤ inf η∧ inf θ, then the
level subsets ηa, θa and η, θð Þa coincide with G and hence η, θð Þa 6¼ ηa, θað Þ.

Theorem 1.68 Let η, θ∈L μð Þ. If a0 ¼ η eð Þ∧θ eð Þ and a≰ inf η∧ inf θ, then

i. η, θ½ �a ¼ ηa, θa½ � for each a≤ a0, provided η and θ are jointly supstar.

ii. η, θ½ �>a ¼ η>
a , θ>

a

� �
for each a< a0, provided L is a chain.

In general, let ηif gni¼1 ⊆L μð Þ. If a0 ¼ η1 eð Þ∧η2 eð Þ∧…∧ηn eð Þ and a≰ inf ηi for each i,
then

i. η1, η2, η3, … , ηn½ �a ¼ η1ð Þa, η2ð Þa, η3ð Þa, … , ηnð Þa
� �

for each a≤ a0, provided
ηif gni¼1 is a supstar family.

ii. η1, η2, η3, … , ηn½ �>a ¼ η1ð Þ>a , η2ð Þ>a , η3ð Þ>a , … , ηnð Þ>a
� �

for each a< a0, provided
L is a chain.

4.2 Nilpotent L-subgroup of an L-group

We begin this subsection with the concept of a descending central chain of an
L-subgroup by making use of the notion of commutators. Then, this in turn has been
used to define nilpotent L-subgroups [28]. Throughout this subsection, G would
denote a group which is not perfect.

We start with the definition of a descending central chain of an L-subgroup η of an
L-subgroup μ.

Take Z0 ηð Þ ¼ η, Z1 ηð Þ ¼ Z0 ηð Þ, η½ �. And in general, for each i, define

Zi ηð Þ ¼ Zi�1 ηð Þ, η½ �: (32)

The following result is an immediate consequence of the above definition:
Theorem 1.69 Let η∈L μð Þ. Then for each i,Zi ηð Þ⊆Zi�1 ηð Þ.
Here we provide the definition of a descending central chain.
Definition 1.14 Let η∈L μð Þ. Then, the chain
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η ¼ Z0 ηð Þ ⊇ Z1 ηð Þ ⊇ ⋯ ⊇ Zi ηð Þ ⊇ ⋯ (33)

of L-subgroups of μ is called the descending central chain of η.
It is worthwhile to note that as η∈NL ηð Þ, in view of Theorem 1.62, Zi ηð Þ is a

normal L-subgroup of η for each i. Moreover, if η∈L μð Þ, then Zi ηð Þ∈NL μð Þ.
Now, we are in a position to formulate the definition of a nilpotent L-subgroup of

an L-group.
Definition 1.15 Let η∈L μð Þ with tip a0 and tail t0 and a0 6¼ t0. If the descending

central chain

η ¼ Z0 ηð Þ ⊇ Z1 ηð Þ ⊇ ⋯ ⊇ Zi ηð Þ ⊇ ⋯ (34)

terminates finitely to the trivial L-subgroup ηa0t0 , then η is known as a nilpotent
L-subgroup of μ. More precisely, η is said to be nilpotent of class c if c is the least
non-negative integer such that Zc ηð Þ ¼ ηa0t0 . In this case, the series

η ¼ Z0 ηð Þ ⊇ Z1 ηð Þ ⊇ ⋯ ⊇ Zc ηð Þ ¼ ηa0t0 (35)

is called the descending central series of η. If it is a nilpotent L-subgroup of μ, then
we simply write η is nilpotent. Clearly, the tip and tail of the members Zi ηð Þ of
descending central series coincide with the tip and the tail of the trivial L-subgroup ηa0t0 .

Next, we provide some results pertaining to the member ‘Zi ηð Þ’ of the descending
central chain which are peculiarities of L-setting.

Theorem 1.70 Let η∈L μð Þ and possesses sup-property. Then for each i,

ImZi ηð Þ⊆ Imη∪ inf ηf g: (36)

Theorem 1.71 Let η∈L μð Þ and possesses sup-property. Then for each i,

i. Zi ηð Þ possesses sup-property.

ii. Zi ηð Þ and η are jointly supstar.

The following result justifies the naturality of the extension of the notion of
descending central chain:

Theorem 1.72 Let H be a subgroup of G. Then for each i, Zi 1Hð Þ ¼ 1Zi Hð Þ.
For further justification of these notions, we provide the level subset and strong

level subset characterizations of the members of descending central series.
Theorem 1.73 Let η∈L μð Þ and possesses sup-property. Then for each a≰ inf η and

a≤ η eð Þ, Zi ηað Þ ¼ Zi ηð Þð Þa for each i.
Theorem 1.74 Let L be a chain and η∈L μð Þ. Then for each a, where inf η≤ a< η eð Þ,

Zi η>
a

� � ¼ Zi ηð Þð Þ>a for each i.
Finally, we obtain the level subset and strong level subset characterizations for

nilpotent L-subgroups.
Theorem 1.75 Let η∈L μð Þ and possesses sup-property. Then, η is a nilpotent

L-subgroup of μ of nilpotent length at most n if and only if ηa is a nilpotent subgroup
of μa of nilpotent length at most n for each a �≤ inf η and a≤ η eð Þ.

Theorem 1.76 Let η∈L μð Þ and L be a chain. Then, η is a nilpotent L-subgroup of μ
of nilpotent length at most n if and only if η>

a is a nilpotent subgroup of μ>
a of

nilpotent length at most n, for each a, where inf η≤ a< η eð Þ.
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The following result immediately follows from the above results:
Theorem 1.77 A subgroup H of a group of G is nilpotent if and only if 1H is a

nilpotent L-subgroup of 1G.
Next, we provide the definition of a central chain and use it to characterize

nilpotent L-subgroups.
Definition 1.16 Let η∈L μð Þ with tip a0 and tail t0. Then, the chain

η ¼ η0 ⊇ η1 ⊇ … ⊇ ηn ⊇ … (37)

of L-subgroups of μ is called a central chain of η, if for each i, ηi�1, η½ �⊆ ηi: If a0 6¼ t0
and there exists a positive integer m such that ηm ¼ ηa0t0 , where ηa0t0 is the trivial L-
subgroup of η with tip a0 and tail t0, then

η ¼ η0 ⊇ η1 ⊇ … ⊇ ηm ¼ ηa0t0 (38)

is known as a central series of η. It follows that ηi and η have identical tips and also,
identical tails for each i. Moreover, the following is easy to verify:

i. ηi�1, η½ �⊆ ηi if and only if ηi x, y½ �ð Þ≥ ηi�1 xð Þ∧η yð Þ for each i,

ii. ηi ∈NL ηð Þ for each i:

Now, we are in a position to study the notion of a nilpotent L-subgroup by making
use of the concept of a central chain. The results are as follows:

Theorem 1.78 Let η∈L μð Þ be a proper L-subgroup of μ. Then, η is nilpotent if and
only if η has a central series.

Theorem 1.79 Let η∈L μð Þ and θ be a proper L-subgroup of η such that η and θ have
the common tail t0. If η is nilpotent, then θ is also nilpotent.

The notion of set product is an extension of the notion of product of complexes in
classical group theory. The following two results provides a necessary mechanism for
the set product of two nilpotent L-subgroups of μ to be nilpotent:

Theorem 1.80 Let η, η1, … , ηnþ1 ∈NL μð Þ having identical tails.
If ηi ¼ η for k + 1 distinct values of i where 0≤ k≤ n, then η1, η2, … , ηnþ1

� �
⊆Zk ηð Þ:

Theorem 1.81 Let η and θ be trivial L-subgroups of μ. Then, the set product η ∘ θ is
also a trivial L-subgroup of μ defined by

η ∘ θ xð Þ ¼ η eð Þ∧θ eð Þ if x ¼ e,
infη∨infθ if x 6¼ e,

�
(39)

if and only if infη∨infθ< η eð Þ∧θ eð Þ.
The final result of this subsection provides a sufficient condition for the set

product of two nilpotent L-subgroups to be nilpotent.
Theorem 1.82 Let η, θ∈NL μð Þ with common tails t0, such that t0 < η eð Þ∧θ eð Þ and

inf η ∘ θ ¼ t0. If η and θ are nilpotent of classes c and d respectively, then η ∘ θ is a
nilpotent L-subgroup of μ of class at most cþ d.

5. Solvable and supersolvable L-subgroups of an L-group

The significance of the notion of solvability in classical group theory is beyond
doubt. The studies pertaining to the notion of solvability and supersolvability frequently
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occur in the literature. The application of solvability in Galois Theory is established.
Also, the application of nilpotency and solvability are well known in Lie groups.

5.1 Solvable L-subgroups of an L-group

In this subsection, we study the notion of derived series of an L-subgroup of an
L-group in the same fashion as in classical group theory (see [29]). Here, also, G
would denote a group that is not perfect.

Let η∈L μð Þ. We define inductively the following sequence of L-subgroups of μ:

η 0ð Þ ¼ η and η ið Þ ¼ η i�1ð Þ, η i�1ð Þ
h i

for each i: (40)

The following result is immediate:
Theorem 1.83 Let η∈L μð Þ. Then, η ið Þ ⊆ η i�1ð Þ.
We study the concept of solvable L-subgroups of an L-group like its classical

counterpart. For this purpose, we introduce the concept of a derived chain of an
L-subgroup as follows:

Definition 1.17 Let η∈L μð Þ. Then, the chain

η ¼ η 0ð Þ ⊇ η 1ð Þ ⊇ ⋯ ⊇ η ið Þ ⊇ ⋯ (41)

of L-subgroups of η is called the derived chain of η. Clearly, the tip of η ið Þ coincides
with η eð Þ. Also, η ið Þ ∈NL ηð Þ. Moreover, if η∈ NL μð Þ, then η ið Þ ∈ NL μð Þ.

Now, we are in a position to formulate the definition of a solvable L-subgroup of
an L-group.

Definition 1.18 Let η∈L μð Þ with tip a0 and tail t0 and a0 6¼ t0. If the derived chain

η ¼ η 0ð Þ ⊇ η 1ð Þ ⊇ ⋯ ⊇ η ið Þ ⊇ ⋯ (42)

terminates finitely to the trivial L-subgroup ηa0t0 , then η is known as a solvable
L-subgroup of μ. If m is the least non negative integer such that η mð Þ ¼ ηa0t0 , then the
series

η ¼ η 0ð Þ ⊇ η 1ð Þ ⊇ ⋯ ⊇ η mð Þ ¼ ηa0t0 (43)

is called the derived series of η and m is said to be the solvable length of η. If η is a
solvable L-subgroup of μ, then we simply write η is solvable. Clearly, the tip and tail of
the members η ið Þ of derived series coincide with the tip and the tail of the trivial
L-subgroup ηa0t0 .

Next, we provide some results pertaining to the member’η ið Þ’ of the derived chain
which are peculiarities of L-setting.

Theorem 1.84 Let η∈L μð Þ and possesses sup-property. Then,

Im η ið Þ ⊆ Im η∪ inf ηf g: (44)

Theorem 1.85 Let η∈L μð Þ and possesses sup-property. Then,

i. η ið Þ possesses sup-property,
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ii. η ið Þ and η are jointly supstar.

The following result justifies the naturality of the extension of the notion of
derived chain:

Theorem 1.86 Let H be a subgroup of G. Then for each i, 1Hð Þ ið Þ ¼ 1H ið Þ .
For the justification of these notions, we also provide the level subset and strong

level subset characterizations of the members of derived series.
Theorem 1.87 Let η∈L μð Þ and possesses sup-property. Then, for each a≰infη and

a≤ η eð Þ, η ið Þ� �
a ¼ ηað Þ ið Þ for each i.

Theorem 1.88 Let L be a chain and η∈L μð Þ. Then for each a, where inf η≤ a< η eð Þ,
ηi
� �>

a ¼ η>
a

� �i.
Finally, we obtain the level subset and strong level subset characterizations for

solvable L-subgroups.
Theorem 1.89 Let η∈L μð Þ and possesses sup-property. Then, η is a solvable L-

subgroup of μ of solvable length at most n if and only if ηa is a solvable subgroup of μa
of solvable length at most n for each a≰ inf η and a≤ η eð Þ.

Theorem 1.90 Let η∈L μð Þ and L be a chain. Then, η is a solvable L-subgroup of μ of
solvable length at most n if and only if η>

a is a solvable subgroup of μ>
a of solvable

length at most n for each a, where inf η≤ a< η eð Þ.
In view of the above results, the following is immediate:
Theorem 1.91 A subgroupH of a group of G is solvable if and only if 1H is a solvable

L-subgroup of 1G.
Now, we provide the definition of a solvable series and use it to characterize

solvable L-subgroups.
Definition 1.19 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. If ηa0t0 is

the trivial L-subgroup of η, then a series

η ¼ η0 ⊇ η1 ⊇ ⋯ ⊇ ηn ¼ ηa0t0 (45)

of L-subgroups of η is said to be a solvable series for η, if for each i

ηi�1, ηi�1½ �⊆ ηi: (46)

It follows that for each i, ηi and η have identical tips as well as identical tails.
Moreover, the following is easy to verify:

ið Þ ηi�1, ηi�1½ �⊆ ηi if  and only if ηi x, y½ �ð Þ≥ ηi�1 xð Þ∧ηi�1 yð Þ for each i,

iið Þ ηi ∈NL ηi�1ð Þ for each i:

The following is characterization relates the concept of solvability with that of
solvable series:

Theorem 1.92 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. Then, η is
solvable if and only if η has a solvable series.

The above characterization helps us in obtaining the following:
Theorem 1.93 Let η, θ∈L μð Þ be proper L-subgroups having identical tails. If η is a

solvable L-subgroup and θ⊆ η, then θ is also solvable.
Our next result establishes the fact that every nilpotent L-subgroup is solvable.
Theorem 1.94 Let η∈L μð Þ be a proper L-subgroup. Then, every central series of η

is a solvable series.
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In classical group theory, every nilpotent group is solvable. We obtain the same
result in L-setting:

Theorem 1.95 Let η∈L μð Þ be a proper L-subgroup. If η is nilpotent, then η is also
solvable.

The nature of image and pre-image of a solvable L-subgroup under a group
homomorphism is ascertained in the following results:

Theorem 1.96 Let f : G! H be a group homomorphism and η∈L μð Þ. Let
inf η ¼ inf f ηð Þ. If η is solvable, then f ηð Þ is also solvable.

Theorem 1.97 Let f : G! H be a group homomorphism having solvable kernel and
ν∈L Hð Þ. Let ρ∈L νð Þ and inf ρ ¼ inf f�1 ρð Þ. If ρ is solvable, then f�1 ρð Þ is also
solvable.

So far in our studies, we have not dealt with normal series and subinvariant series
in L-setting. Here we introduce these concepts and utilize them to characterize solv-
able L-subgroups (see [32]). We start with:

Definition 1.20 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. Then, a
sequence λ0, λ1, … , λn of L-subgroups of μ is said to be a normal (subinvariant) series
of η if

η ¼ λ0 ⊇ λ1 ⊇ … ⊇ λn ¼ ηa0t0 (47)

and λi ∈NL μð Þ λi ∈NL λi�1ð Þð Þ for each i.
Remark: If λ0, λ1, … , λn is a normal (subinvariant) series of η, then λi eð Þ ¼ η eð Þ ¼ a0

and inf λi ¼ inf η ¼ t0 for each i.
Definition 1.21 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. Then, a

normal (subinvariant) series λ0 ¼ η ⊇ λ1 ⊇ … ⊇ λn ¼ ηa0t0 of η is said to be a normal

(subinvariant) series with Abelian factors if for each i, the factor group λi�1ð Þa
λið Þa is Abelian

for each t0 < a≤ a0.
The following theorem extends a famous result of classical group theory pertaining

to the notion of solvability to L-setting:
Theorem 1.98 Let L be a dense chain and η∈L μð Þ be a proper L-subgroup with tip

a0 and tail t0. Then, the following are equivalent:

i. η is solvable,

ii. η has a normal series with Abelian factors,

iii. η has a subinvariant series with Abelian factors.

Below we propose a definition of supersolvable subgroups in L-setting:
Definition 1.22 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. Then, η

is said to be a supersolvable L-subgroup if η has a normal series λ0 ¼
η ⊇ λ1 ⊇ … ⊇ λn ¼ ηa0t0 such that each factor group λi�1ð Þa

λið Þa for each a, where t0 < a≤ a0,
is cyclic.

It has been established earlier, that L-subgroups of nilpotent L-subgroups and
solvable L-subgroups are nilpotent and solvable respectively. It is well known that the
class of supersolvable groups is also closed under the formation of subgroups in
classical group theory. Here, we extend this property of supersovability to L-group
theory.

83

Development of L-Group Theory
DOI: http://dx.doi.org/10.5772/intechopen.110387



Theorem 1.99 Let η∈L μð Þ be a proper L-subgroup with tip a0 and tail t0. Let
θ∈L ηð Þ be such that η and θ have identical tips and also identical tails. If η is
supersolvable, then θ is also supersolvable.

The nilpotency of the commutator of a supersolvable subgroup is also retained in
L-setting. The result is as follows:

Theorem 1.100 Let L be an upper well ordered chain and η∈L μð Þ be a proper
L-subgroup with tip a0 and tail t0. If η is supersolvable, then the commutator
L-subgroup η, η½ � is nilpotent.

5.2 Zassenhaus theorem and Schreier refinement theorem

In the earlier subsection, we have already introduced the concept of a normal
(subinvariant) series of an L-subgroup of an L-group. In classical group theory, two
normal series of a group are said to be equivalent if it is possible to set up a one to one
correspondence between the factors of two series such that the paired factors are
isomorphic. This is obtained by a certain type of factorization of a group into factor
groups. Then, a generalization of second isomorphism theorem which is called
Zassenhaus Theorem is used to establish this fact. Here in L-setting for the equiva-
lence of two normal (subinvariant) series, we consider the factorization of each level
of the L-subgroups in the spirit of classical group theory. Then, we extend Zassenhaus
Theorem to L-setting and utilize it to establish a version of Schreier Refinement
Theorem.

Below we extend the definitions of a refinement of a normal (subinvariant) series
and equivalent normal (subinvariant) series (see [32]):

Definition 1.23 Let η∈L μð Þ with tip a0 and tail t0 such that a0 6¼ t0. A normal
(subinvariant) series of η

η ¼ θ0 ⊇ θ1 ⊇ θ2 ⊇ … ⊇ θm ¼ ηa0t0 (48)

is said to be a refinement of a normal (subinvariant) series of η

η ¼ η0 ⊇ η1 ⊇ η2 ⊇ … ⊇ ηn ¼ ηa0t0 (49)

if η0, η1, η2, … , ηn is a subsequence of θ0, θ1, θ2, … , θm.
Definition 1.24 Let η∈L μð Þ with tip a0 and tail t0 such that a0 6¼ t0. Then, two

normal (subinvariant) series η ¼ η0 ⊇ η1 ⊇ η2 ⊇ … ⊇ ηn ¼ ηa0t0 and η ¼
θ0 ⊇ θ1 ⊇ θ2 ⊇ … ⊇ θm ¼ ηa0t0 of an L-subgroup η are said to be equivalent if for each
fixed a≤ a0, the factors of the series

ηa ¼ η0ð Þa ⊇ η1ð Þa ⊇ η2ð Þa ⊇ … ⊇ ηmð Þe ¼ ef g (50)

can be put in one to one correspondence with the factors of the series

ηa ¼ θ0ð Þa ⊇ θ1ð Þa ⊇ θ2ð Þa ⊇ … ⊇ θmð Þe ¼ ef g (51)

in such a way that the paired factors are isomorphic.
Now, we extend Zassenhaus Theorem to L-setting:
Theorem 1.101 (Zassenhaus Theorem) Let η, θ∈L μð Þ: Let η1 ∈NL ηð Þ and

θ1 ∈NL θð Þ. Then,
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η∩ θ1ð Þ ∘ η1⊲ η∩ θð Þ ∘ η1 and η1 ∩ θð Þ ∘ θ1⊲ η∩ θð Þ ∘ θ1: (52)

Also, there is an isomorphism such that

η∩ θð Þa η1ð Þa
η∩ θ1ð Þa η1ð Þa

ffi η∩ θð Þa θ1ð Þa
η1 ∩ θð Þa θ1ð Þa

for each a≤ a0; (53)

where a0 ¼ η1 eð Þ∧θ1 eð Þ:
The following theorem provides an extension of Schreier Refinement Theorem to

L-setting:
Theorem 1.102 (Schreier Refinement Theorem) Let L be an upper well ordered chain.

Then, every two normal series of an L-subgroup have refinements that are equivalent.

6. Normal closure and subnormal L-subgroups of an L-group

The study of a normal closure is important in classical group theory. The concept
arises due to the fact that certain subgroups of a group are away from being normal. It
is the the smallest subgroup containing a given subgroup which is normal in the
group. This notion leads to some refined concepts in classical group theory such as
normal closure series and subnormality.

6.1 Normal closure series and subnormality

In order to define a suitable notion of normal closure in L-setting which can be
used to introduce the notion of subnormality, we start with the following (see [30]):

Definition 1.25 Let η∈L μð Þ. Define an L-subset μημ�1 of G as follows:

μημ�1 xð Þ ¼ ⋁
x¼zyz�1
y, z∈G

η yð Þ∧μ zð Þf g for each x∈G: (54)

We call the L-subset μημ�1, conjugate of η in μ. Clearly, η⊆ μημ�1 ⊆ μ. Moreover,
∨

x∈G
μημ�1 xð Þ� � ¼ η eð Þ and μημ�1 xð Þ ¼ μημ�1 x�1ð Þ for each x∈G. The normal closure

of η in μ is defined as the L-subgroup of μ generated by the conjugate μημ�1. It is
denoted by ημ. Thus ημ ¼ μημ�1

� �
.

The above defined notion satisfies the characteristic properties of a normal closure
and retains the usual group theoretic relationship with the concepts of commutator
subgroups and set product in L-setting. The result are as follows:

Theorem 1.103 Let η∈L μð Þ. Then, ημ is the least normal L-subgroup of μ
containing η.

Theorem 1.104 Let η∈L μð Þ. Then, μ, η½ � ∘ η∈L μð Þ.
Theorem 1.105 Let η, θ∈L μð Þ. Then,

i. η, θ½ �⊆ ημ ∩ θμ,

ii. ημ ¼ η ∘ η, μ½ �:
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Before we embark on the study of normal closure series and subnormality in L-
setting, we generalize notion of conjugacy and provide the definition of a conjugate of
an L-subset by an L-subset (see [10, 33]).

Definition 1.26 Let η, θ∈Lμ. Define an L-subset θηθ�1 of G as follows:

θηθ�1 xð Þ ¼ ⋁
x¼zyz�1

η yð Þ∧θ zð Þf g for each x∈G: (55)

We call the L-subset θηθ�1 the conjugate of η by θ. Clearly, θηθ�1 ⊆ μ: Hence the
L-subgroup θηθ�1

� �
∈L μð Þ and is denoted by ηθ.

Following theorem is instrumental in the development of this subsection:
Theorem 1.106 Let η, θ∈L μð Þ. Then,

i. η⊆ θηθ�1 provided η eð Þ⩽ θ eð Þ,

ii. ⋁
x∈G

θηθ�1 xð Þ� � ¼ θηθ�1 eð Þ ¼ η eð Þ∧θ eð Þ,

iii. θηθ�1 xð Þ ¼ θηθ�1 x�1ð Þ for each x∈G,

iv. θηθ�1 gxg�1ð Þ≥ θηθ�1 xð Þ∧θ gð Þ for each x, g∈G:

Firstly, we discuss here some properties of conjugate of L-subsets where the L-
subsets in question are L-subgroups. The significance of such properties have already
been shown in classical group theory for establishing certain properties of ith normal
closure of a subgroup of a group.

Theorem 1.107 Let θ⊆ γ and η eð Þ ¼ θ eð Þ. Then,
Let η, θ, γ ∈L μð Þ.

ηγð Þθ ¼ ηγ, (56)

ηθ
� �γ ¼ ηγ, (57)

ηθ ∘ η ¼ ηθ: (58)

Theorem 1.08 Let η, θ, γ ∈L μð Þ be such that γ eð Þ ¼ η eð Þ ¼ θ eð Þ: Then, ηθ
� �γ ¼ ηγ ∘ θ.

Theorem 1.09 Let η, θ∈L μð Þ and ηθ ¼ η: Then, η ∘ θ∈L μð Þ.
In order to introduce the notion of subnormality of an L-subgroup of an L-group,

we define a descending series. For η∈L μð Þ, define a series of L-subgroups of μ
inductively as follows:

η0 ¼ μ, η1 ¼ ημ, η2 ¼ ηη1 , … , ηi ¼ ηηi�1 … (59)

By Theorem 1.103, η1 is the smallest normal L-subgroup of μ containing η and η2 is
the smallest normal L-subgroup of η1 containing η and so on.Thus, we have

η⊆⋯⊲ηiþ1⊲ηi⊲⋯⊲η1⊲η0 ¼ μ: (60)

This inductively defined series is known as the normal closure series of η in μ and
we call ηi the ith normal closure of η in μ. It is easy to verify that ηi eð Þ ¼ η eð Þ for each i.

Theorem 1.110 Let η, θ∈L μð Þ such that η eð Þ ¼ θ eð Þ: Let ηi be the ith normal closure
of η in μ and ηθi ¼ ηi: Then, ηiþ1 ∈NL ηi ∘ θð Þ:
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Now, define the notion of a subnormal L-subgroup of an L-group as follows:
Definition 1.27 Let η∈L μð Þ and ηi be the ith normal closure of η in μ. If there exists

a non negative integer m such that

ηm ¼ η⊲ηm�1⊲⋯⊲η0 ¼ μ, (61)

then η is known as a subnormal L-subgroup of μ with defect m. We shall denote a

subnormal L-subgroup η of μwith defectm by η ⊲
m
μ. If η is a subnormal L-subgroup of

μ, then we shall write η is subnormal in μ.
Remark: Obviously m equals 0 if η ¼ μ and m ¼ 1 if η∈NL μð Þ and η 6¼ μ.
The following theorem shows that the normal closure series is the fastest

descending normal series [33]:
Theorem 1.111 Let η∈L μð Þ and

η⊆⋯⊲ηiþ1⊲ηi⊲⋯⊲η1⊲η0 ¼ μ (62)

be the normal closure series of η. If there exists a descending series γ0 ¼
μ, γ1, … , γi … of L-subgroups of μ such that

η⊆ …⊲γiþ1⊲… γ1⊲γ0 ¼ μ, (63)

then ηi ⊆ γi:
Following is the definition of a subnormal series of an L-group:
Definition 1.28 Let η∈L μð Þ. A finite series θ0 ¼ μ, θ1, θ2, … , θm ¼ η of L-subgroups

of μ such that

η ¼ θm⊲θm�1⊲…⊲θ0 ¼ μ (64)

is said to be a subnormal series of η:.
We shall describe the notion of a subnormal L-subgroup through the notion of above

defined subnormal series. The following result inter-connects these two concepts:
Theorem 1.112 Let η∈L μð Þ: Then, η is a subnormal L-subgroup of μ having defect

m if and only if η has a subnormal series

η ¼ γm⊲…⊲γiþ1⊲… γ1⊲γ0 ¼ μ, (65)

of length m and m is the smallest length of such a subnormal series.
The results given below are established with the help of the above theorem:
Theorem 1.113 Let η be a subnormal L-subgroup of μ with defect m.

i. Let θ∈L μð Þ: Then, η∩ θ is a subnormal L-subgroup of θ with defect c where
c≤m: In particular, η is a subnormal L-subgroup of λ where λ∈L μð Þ such that
η⊆ λ with defect c where c≤m,

ii. Let θ∈NL μð Þ: Then, η ∘ θ is a subnormal L-subgroup of μ with defect c where
c≤m:

It can be seen easily that the intersection of any finite set of subnormal L-sub-
groups is again subnormal. More generally:

Theorem 1.114 Let θi : i∈ If g be a family of subnormal L-subgroups such that
defect of θi is mi where mi ≤m: Then, ∩

i∈ I
θi is a subnormal L-subgroup of μ with

defect c where c≤m.
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Our next result determines the transitivity of the notion of subnormality.
Theorem 1.115 Let η, θ∈L μð Þ such that η is a subnormal L-subgroup of θ with

defect m and θ is a subnormal L-subgroup of μ with defect n. Then, η is a subnormal
L-subgroup of μ with defect mþ n.

The following theorem establishes that the subnormality in L-setting is also
preserved under the action of a homomorphism and its inverse image:

Theorem 1.116 Let η∈L μð Þ and f : G! K be a group homomorphism. Then,

i. if η is a subnormal L-subgroup of μ with defect n, then f ηð Þ is a subnormal
L-subgroup of f μð Þ with defect m where m≤ n,

ii. if η is a subnormal L-subgroup of μ with defect n, then f�1 ηð Þ is a subnormal
L-subgroup of f�1 μð Þ with defect m where m≤ n, provided that the group
homomoirphism f is onto.

6.2 Subnormal L-subgroups and nilpotency

In this subsection, we characterize subnormal L-subgroups by the usual group
theoretic subnormality of the level subsets of the given L-subgroups. We shall refer
this as a level subset characterization of subnormality. Then, this characterization is
used to establish that when the lattice L is an upper well ordered chain, then every
L-subgroup of a nilpotent L-group is subnormal. For this purpose, we need to develop
a necessary mechanism (see [10, 33]). Here, we present:

Theorem 1.117 Let η∈L μð Þ be such that μ and η are jointly supstar. Then,

Im ημ ⊆ Im μημ�1
� �

⊆ Imμ∪ Imη: (66)

More generally we have:
Theorem 1.118 Let η∈L μð Þ be such that μ and η are jointly supstar. Then, for each i

Im ηiþ1 ⊆ Im ηiηη
�1
i

� �
⊆ Imμ∪ Imη, (67)

where ηi is the ith normal closure of η in μ.
Theorem 1.119 Let η∈L μð Þ be such that μ and η are jointly supstar. Then for each i,

i. η and ηi are jointly supstar.

ii. if η∈L μð Þ and μ and η be jointly supstar, then the L-subset ηiηη�1i possesses
sup-property

Below, we discuss the level subsets and strong level subsets of the normal closure
of η in μ.

Theorem 1.120 Let η∈L μð Þ: Then,
i. ημð Þa ¼ ηað Þμa for each a≤ η eð Þ, provided μ and η aresupstar,

ii. ημð Þ>a ¼ η>
a

� �μ>
a for each a< η eð Þ, providedL is a chain.

Theorem 1.121 Let η∈L μð Þ be such that η and μ are jointly supstar. Then, η is
subnormal having defect at most n if and only if each level subset ηa is subnormal
having defect atmost n where a≤ η eð Þ.
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Theorem 1.112 Let G be a group and H be its subgroup. Then, H is a subnormal
subgroup of G if and only if 1H is a subnormal L-subgroup of 1G.

The strong level subset characterization of subnormal L-subgroup can be obtained
easily.

Theorem 1.123 Let L be chain and η∈L μð Þ. Then, η is subnormal having defect at
most n if and only if each strong level subset η>

a is subnormal having defect atmost n
where a< η eð Þ.

Theorem 1.124 Let L be an upper well ordered chain. Let η∈L μð Þ and η be nilpo-
tent having tip a0 and tail t0 and a0 6¼ t0. If θ∈L ηð Þ and has the tail t0, then θ is a
subnormal L-subgroup of η.

In a forthcoming paper [10], we develop a mechanism in order to tackle the join
problem for subnormal L-subgroup and we prove that:

Theorem 1.125 Let η and θ be subnormal L-subgroups of μ. Let η eð Þ ¼ θ eð Þ and
η ∘ θ∈L μð Þ. Then, the following are equivalent:

i. η ∘ θ is subnormal in μ,

ii. ηθ is subnormal in μ,

iii. η, θ½ � is subnormal in μ.

7. Discussion and analysis

The subject matter discussed in this work presents a systematic and compatible
theory of L-subgroups(fuzzy subgroups). In this work, firstly we replace ordinary
fuzzy subsets by lattice valued fuzzy subsets. This puts our work beyond the purview
of Tom Head’s metathoerem [35]. This is contrary to the situation of fuzzy group
theory, where the results which are obtained, become simple instances of application
of metatheorem. Secondly, throughout our work, we have replaced the parent struc-
ture of an ordinary group by an L-subgroup which is called an L-group. In order to
carry out our studies successfully, we need to use the notion of normality of a fuzzy
subgroup in a fuzzy group defined byWu [22] rather than the notion of normality of a
fuzzy subgroup in a group introduced by Liu [21]. Without following this approach,
we can not construct various types of series of L-subgroups, such as the subinvariant
series, normal closure series, subnormal series or derived series: even the results of
classical group theory such as a characteristic subgroup of a normal subgroup of a
group is a normal subgroup of the given group or the property of transitivity of
characteristic subgroup can not be formulated and extended to the L-setting. By
following Wu’s normality, we have successfully extended the above results to the
L-setting. Moreover, we have proved that the commutator L-subgroup of an L-group
is a characteristic L-subgroup. Furthermore, we proved that a commutator L-sub-
group of a supersolvable L-subgroup is nilpotent. Thus an application of Wu’s nor-
mality establishes a very high degree of compatibility among various notions studied
in L-group theory.

Another deviation in our work from the work of earlier researchers in fuzzy group
theory is the construction of the trivial L-fuzzy subgroup. This is a proper
fuzzification of the notion of trivial subgroup of an ordinary group and it makes
possible a successful study of various types of series, arising while dealing with the
notions of nilpotency, solvability, supersolvability, subnormality etc.. While defining
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a trivial L-subgroup, the notion of infimum of an L-set comes into play. So is the case
at various other places in our investigations where the infimum of an L-subgroup
plays a significant role. This is due to the fact that we are carrying out our investiga-
tions in an L-group rather than an ordinary group and we use Wu’s normality in place
of Liu’s normality. There are several peculiarities of L-setting which involves the
notion of infimum of L-subgroups. For example Theorem 1.60 states that the infimum
of the set product of two L-subsets lies in between the meet and the join of the
infimums of given L-subsets. This result has been used in Theorem 1.81 wherein we
have obtained a necessary and sufficient condition for the set product of two trivial
L-subgroups of an L-group to be a trivial L-subgroup. This result is instrumental in
establishing a sufficient condition for the set product of two nilpotent L-subgroups to
be nilpotent. Moreover, the role of infimum (tail) of L-subgroups is displayed while
dealing with homomorphic and inverse homomorphic images of commutator and
solvable L-subgroups. To show that the the concepts of nilpotency, solvability and
supersolvability are closed under the formation of subgroups, the notion of infimum is
again helpful. The infimums (tails) of all the members of almost all the series discussed
in our work are identical with the tails of their respective trivial L-subgroups.

Last but not the least, another pleasing feature of our study is the formation of
lattices of normal L-subgroups and characteristic L-subgroups of an L-group. In
the process, the notion of sup-property has played a very significant role. We obtain
a characterization of sup-property by using the notion of image set of the given
L-subset. This characterization of sup-property forms the basis for our
generalization. This gave rise to the notions of supstar family of L-subsets and jointly
supstar L-subsets. The notion of image of an L-subset is intimately related with the
above mentioned concepts. Theorem 1.36 shows that each member of supstar family
possesses sup-property. Further, in Theorem 1.70, a relationship has been established
between the image of ith members of descending central series of an L-subgroup and
the image of the given L-subgroup. A similar relationship has been obtained in
Theorem 1.84 and Theorem 1.120.

These concepts are subsequently used in the development of L-group theory. A
co-ordinated approach between all these concepts paved a way for a successful
development of L-group theory.

8. Conclusion

It has been said earlier that L-group theory developed in [10, 25–34] is a very rich
generalization of classical group theory. For if we replace the lattice L by the closed
unit interval L, then we retrieve fuzzy group theory. Moreover, if we replace L by the
two elements set {0,1}, we obtain results of classical group theory as simple corollaries
of corresponding results of L-group theory.

In view of this development we suggest the researchers, working in the areas of
other fuzzy algebraic structures to shift their studies to lattice valued fuzzy sets
(L-subsets). Also, in order to obtain consistency, the parent structure of classical
algebra should be replaced by the corresponding fuzzy algebraic structures.

For those who are involved in active research in these areas, we propose here few
research problems: The formation of quotient structure in fuzzy algebraic structures
has been a problem child since its very inception. Its proper formulation is still
awaited. We invite the researchers to construct a quotient of L-group μ by a normal
L-subgroup in μ in the sense of Wu [22]. The second problem which is likely to be
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tackled more easily is related to nilpotent L-subgroups of an L-group which is
discussed in the present work, that is, the investigation of nilpotency by upper central
series. The upper central series is not yet formulated in the theory of L-subgroups.

Finally, to mention the further richness of this generalization, we emphasize that
here we study the group theoretic properties of posets of subgroups of a group or in
particular chains of subgroups of a group rather than properties of a single subgroup.
This way, L-group theory provides us a new language and a new tool for the study of
the classical group theory. The classical group theory has been founded on abstract
sets and therefore the language used for its development is formal set theory. On the
other hand, L-group theory expresses itself through the language of functions. The
functions which are lattice valued. Therefore the approach adopted in the studies of
L-group theory can be looked upon as a modernization of the approach of classical
group theory.
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Chapter 5

Fuzzy Photogrammetric Algorithm
for City Built Environment
Capturing into Urban Augmented
Reality Model
Igor Agbossou

Abstract

Cities are increasingly looking to become smarter and more resilient. Also, the use
of computer vision takes a considerable place in the panoply of techniques and algo-
rithms necessary for the 3D reconstruction of urban built environments. The models
thus obtained make it possible to feed the logic of decision support and urban services
thanks to the integration of augmented reality. This chapter describes and uses Fuzzy
Cognitive Maps (FCM) as computing framework of visual features matching in aug-
mented urban built environment modeling process. It is a combination of the
achievements of the theory of fuzzy subsets and photogrammetry according to an
algorithmic approach associated with the ARKit renderer. In this experimental
research work, part of which is published in this chapter, the study area was confined
to a portion of a housing estate and the data acquisition tools are in the domain of the
public. The aim is the deployment of the algorithmic process to capture urban envi-
ronments built in an augmented reality model and compute visual feature in
stereovision within FCM framework. The comparison of the results obtained with our
approach to two other well-known ones in the field, denotes the increased precision
gain with a scalability factor.

Keywords: fuzzy cognitive maps, fuzzy sets, photogrammetry, urban augmented
reality model, fuzzy stereovision matching constraints

1. Introduction

The use of advanced scientific computation methods and techniques is classic in
geography, land use and regional planning [1–8]. Indeed, the study and analysis of
geographical spaces such as cities for example, which themselves have acquired the
qualification of complex system [1, 2, 5, 9–14] are an illustration of this classic usage
[15–24]. Among these scientific computational approaches is also fuzzy inference
logic [21, 22, 25, 26]. As part of the research work reported in this chapter, we relied
on the scientific achievements of fuzzy inference systems [27–30] to integrate into our
methodological approach Fuzzy Cognitive Maps (FCM) [31–34] in the process of
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visual features matching computation. It’s applied through the collection of captured
photography of urban built environment to build an augmented urban reality model
[35–40].

Thereby, thematic analyzes of built urban environments require the acquisition of
3D urban landscape data, street furniture and several other real visual data. The data
to be processed are bi-dimensional (2D) images captured from the tri-dimensional
(3D) scene. The objects in 3D are generally composed of related parts that joined from
the whole object. In computer graphics, we usually use a specialized software, for
instance, Maya [41] or Blender [42, 43] to interactively create models or procedural
3D modeling [44–48] which creates a mathematical representation of a 3D object. It is
common to use a few photographs as references and textures to generate models using
a modeling tool. When it comes to 3D modeling and urban spaces [49–51], the more
systematic introduction of photographs as input to generate a photorealistic 3D model
of a built environment is called « Image-based Modeling” [52] and can generate
models for objects physically existing. More importantly, such a modeling process can
be automated, and therefore can be scaled up for applications [52]. More fundamen-
tally, how to recover the lost third dimension of objects from a collection of 2D images
is one of the main objectives of computer vision [53] and the technical challenge
resolved in this work. Fortunately, the relations in 3D are preserved in 2D [42, 44,
45, 47, 54]. Hence, we can exploit this fact by considering specific and basic elements
which are related to other elements in the 2D images. Those specific and basic ele-
ments are stereo correspondence features: epipolar [55], similarity [56], smoothness
[57], ordering [58] and uniqueness [59].

Indeed, the use of photogrammetry, which is a technique that consists of taking
measurements in a scene, using the parallax obtained between images acquired from
different points of view, proves to be an excellent approach for producing captures
that conform to the reality [53]. To better manage the parallax during the 3D recon-
struction, we combined fuzzy classification algorithm [8, 60, 61] to the photogram-
metric processing within the framework of the well-established soft computing
technique called Fuzzy Cognitive Map (FCM) [62–67]. Our Fuzzy Photogrammetric
Algorithm Kernel (FPAK) applied to 3D reconstruction from images precisely
becomes the meeting point of computer graphics and vision, with the finalized 3D
representation of urban built environment.

The rest of the chapter is organized as follows: Section 2 presents background of
FCM and its mathematical formalization we adopted [22]. Section 3 expose the core of
this chapter: materials and methods. Section 4 presents with the experimental results
obtained. The conclusion of the chapter puts lights on the future.

2. FCM background

Well-developed modeling methodology for complex systems that allow to describe
the behavior of a system in terms of concepts, Fuzzy Cognitive Maps (FCM) are
powerful tools for modeling dynamic systems that was introduced by Kosko [32, 68,
69]. The resulting model describes expert knowledge (semantic concepts and/or
computed values for example) of complex systems with high dimensions and a variety
of factors. The scientific community is expressing a growing interest about the theory
and application of FCMs in complex systems, and their validity and usefulness has
been proved in various fields [22, 62–67, 70, 71]. FCMs are fuzzy causality

98

Advances in Fuzzy Logic Systems



backpropagation approach of modeling which combine fuzzy logic, nonlinear com-
puting, semantic and neural networks.

2.1 Theoretical foundation of FCM

FCMs are fuzzy signed directed graphs with feedback. They are appropriate to
encode knowledge thanks to concepts organized and causally linked to each other
with weightings. Each concept is materialized by a network node. Different FCM
networks have been used as a decision modeling tool under different approaches
[63–67, 72]. FCMs are based on the theory of fuzzy logic and fuzzy subsets, thus
improving the ability of cognitive maps to present and model qualitatively and quan-
titatively dynamic nonlinear systems. So, FCM is a soft computing modeling tech-
nique used for dynamic causal knowledge acquisition and process reasoning. Under its
most general approach, each concept represents an entity, a state, a variable, or a
feature of the system. An FCM embeds the topology of a fuzzy signed direct graph and
a nonlinear neural networks feedback dynamic [26, 33, 61]. Concepts are equivalent to
neurons which state value is not binary but belongs to a fuzzy subset. The value wij of
the directed edge from causal concept Ci to concept Cj measures how much Ci causes
Cj. Value wij belongs the fuzzy causal interval [�1, +1], wij = 0 indicates no causality;
wij > 0 indicates causal increase, this means that Cj increases as Ci increases and vice
versa, Cj decreases as Ci decreases; wij < 0 indicates causal decrease or negative
causality. Cj decreases as Ci increases and Cj increases as Ci decreases.

Depending on the direction and size of this effect, and on the threshold levels of
the dependent concepts, the affected concepts may subsequently change their state as
well, thus activating further concepts within the network. Because FCMs allow feed-
back loops, newly activated concepts can influence concepts that have already been
activated before. As a result, the activation spreads in a nonlinear fashion through the
FCM net until the system reaches a stable limit cycle or fixed point.

2.2 FCM representation

To illustrate the description made above of FCMs, we will consider one, composed
of 5 concepts and 10 causality links in total as shown in Figure 1. Concepts variables
are represented by nodes, such as C1, C2, C3, C4 and C5.

In the relation C1 ➔ C2, C1 is said to impact C2. So, C1 is the causal variable,
whereas C2 is the effect variable, and the intensity of the causality is expressed by the
value of w12. Also, in the relation C2 ➔ C1, C2 is said to impact C1, and the intensity of
the causality is expressed by the value of w21. Each concept is characterized by a

Figure 1.
Simple fuzzy cognitive map model illustration.
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number Ai that results from its computed value through the transformation of the real
value of the hole system’s variables.

There are 3 possible types of causal relationships between concepts:

• wij > 0 which indicates positive causality between two concepts.

• wij < 0 which indicates negative causality between two concepts.

• wij = 0 which indicates the absence of causality between two concepts.

The value of wij indicates how strongly concept Ci influence concept Cj. The sign of
wij indicates whether the relationships between concept Ci and Cj is direct or inverse.
The direction of causality indicates whether concept Ci causes concept Cj or vice versa.
These parameters must be considered when a value is assigned to weight wij.

2.3 Mathematical formalization of FCM

The operation of FCMs is based on an inferential process whose dynamics can be
formalized mathematically. A FCM model acts as a network of threshold or continu-
ous concepts [64, 66, 68, 69]. At this level, they differ from a simple neural network
because they are based on extracting knowledge from experts [33, 64, 73] and do not
require a data input layer. The nonlinear structure of each concept is expressed during
the dynamics of the whole system through backpropagation [74, 75]. Then, the value
Ai

t + 1 for each concept Ci at each time step is calculated [22, 65, 74] by the following
general rule:

Atþ1
i ¼ f

k1
Xn

j¼1
j6¼i

WjiAt
j þ k2At

i

0
BB@

1
CCA (1)

The k1 expresses the influence of the interconnected concepts in the configuration of
the new value of the concept Ai and k2 represents the proportion of the contribution of
the previous value of concept in the computation of the new value. This formulation
assumes that a concept links to itself with a weight wii ¼ k2. Namely, At

i and Atþ1
i are

respectively the values of concept Ci at times t respectively t + 1. wji is the weight of the
interconnection from concept Cj to concept Ci and f is a threshold function defined in
Eq. (2). The unipolar sigmoid function is the most used threshold function [57, 65, 67]
where λ > 0 determines the steepness of the continuous function f. For the purposes of
this research, the value of λ is fixed at unity, i.e. 1. The sigmoid function ensures that the
calculated value of each concept will belong to the interval [0,1].

f xð Þ ¼ 1
1þ e�λx

(2)

3. Materials and methods

Physical based rendering 3D simulation of large-scale urban built environment
processes is one of greatest challenges of modern computing techniques in urban
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studies and regional planning [17, 39, 47, 50]. In fact, urban systems are naturally
complex by own [1–5, 14]. Simulation allows us to understand the reasons and effects
of events and situations in a real system. Moreover, it allows us to predict the results
of actions on future states of the system. The level of detail [15, 39, 45, 50] between
simulation results and real system behavior depends on the model used. More-precise
models with large data may reflect reality in a more-precise manner; however, the
complexity directly influences the time required to compute model changes.

3.1 Urban study area

The model created in this study covers a portion of a new housing estate under
construction in the town of Belfort in France. The area of the development project for
building individual houses has 25 plots of 600 to 900 m2. Figure 2 provides an
overview of the area called “Jardins du MONT”.

Indeed, it is a real estate program whose architecture of the houses is contempo-
rary, of high quality and of superior range located less than 10 minutes by car, bus, or
bike from the city center of Belfort. We are also less than 10 minutes’ walk from the
heart of the “Techn’Hom” business park (GE, Alstom...), one of the economic lungs of
the town, with an exceptional view of Belfort, its fortifications and the surroundings,
all integrated in a green, calm and privileged urban setting.

The general framework of our research work includes 3D spatial analysis, the
temporal evolution of new housing estates and the deployment of smart cities, with
scientific tools in artificial intelligence. Also, it seemed legitimate to us to take an
interest in this portion of the city under construction to experiment with our approach
which is the subject of this chapter: create an augmented reality scene model of the
built environment through the combination of photogrammetry [76–81] and fuzzy
modeling techniques.

3.2 Sensor for data acquisition

In addition to the question of costs, the spatial scale of the data to be collected as
well as the expected quality dictate the choice of tools to be preferred. There are

Figure 2.
Urban study area “Jardins du MONT”, Belfort (France).
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several tools for Geodata collection [38, 49]: Total Stations, Global Navigation Satellite
System (GNSS) receivers, Light Detection and Ranging (LiDAR) scanner, Static Ter-
restrial Laser Scanning (STLS), Airborne Laser Scanning (ALS), Helicopter Laser
Scanning (HLS), Mobile Laser Scanning (MLS), Drone, Tablets and Smartphones. As
part of this experimental study, we use portable and mobile sensor which
smartphones are equipped with. And for good reason, the sensors of these modern
devices perfectly meet the requirements relating to the acquisition of data for photo-
grammetry [82]. Range (or depth) data is crucial for understanding and working with
the 3D scene projected onto a 2D plane forming an image. There are multiple ways to
obtain such information [83–87], either using a depth sensor or estimating depth. A
depth sensor is a device that provides the distance from the sensor to an element in the
scene, although it is possible to collect distance information using two or more RGB
cameras from a scene.

Due to its following features: wide color capture for photos and live photos, lens
correction, retina flash, auto image stabilization, burst mode, etc. we used the iPhone
13 Pro Max as a sensor for acquiring images to feed the model. Figure 3 illustrates it.

3.3 Data collection principles and quality requirements

When capturing images for augmented reality, we use a large part of the image
sensor. To be more precise, it’s an area of 3840 � 2880 pixels on the iPhone 13 Pro.
Then, we use a process called binning [88, 89]. It works as follows: Binning takes a
region of 2�2 pixels, averages the pixel values, and writes back a single pixel. This has
two significant advantages. First, image dimensions are reduced by a factor of two, in
this case, it downscales to 1920 � 1440 pixels. As a result of this, each frame consumes
way less memory and processing power. This allows the device to run the camera at up
to 60 frames per second and frees up resources for rendering. Secondly, this process
offers an advantage in low light environments, where the averaging of pixel values
reduces the effects of sensor noise.

Images captured by a camera are geometrically warped by small imperfections in
the lens. To project from the 2D image plane back into the 3D world, the images must
be distortion corrected, or made rectilinear. Lens distortion is modeled using a one-
dimensional lookup table of 32-bit float values evenly distributed along a radius from
the center of the distortion to a corner, with each value representing a magnification
of the radius. This model assumes symmetrical lens distortion [88].

Capturing scenes with iPhone is a computer vision technology that one can lever-
age to easily turn images of real-world objects into detailed 3D models. We begin by

Figure 3.
iPhone 13 pro max used as sensor for data acquisition.
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taking photos of the urban built environment from various angles with an iPhone. To
photograph all the area with the ability to match landmarks between images we must
move the camera around, taking photographs from different angles at different
heights.

To ensure landmarks matching between overlapping photographs, camera settings
must be consistent as possible from shot to shot. Figure 5 illustrates a sample of
captured data. The reading direction of the photos is indicated there: start-end.

The number of pictures need to create an accurate 3D representation varies
depending on the quality of the pairs of photographs making up the sequences in the
collection, the complexity and size of the built environment. In addition, adjacent
shots must have substantial overlap. So, we position sequential images, so they have a
70% overlap or more (0.7 ≤ overlap ≤0.9) as illustrated in Figure 4. Anything less
than 50% overlap between neighboring shots, and the 3D reconstruction process may
fail or result in a low-quality augmented reality model [15, 52]. Doing an aperture
setting narrow enough to maintain a crisp focus is recommended [53, 58]. The spatial
precision between the pairs of images and the chromatic density of the textures are a
guarantee of the quality of the images collected for the 3D reconstruction of built
urban environments. Accordingly, key factors ensuring good quality of input data
[15, 52, 53, 58, 90] are summarized in Table 1.

Our photographic database is made up of 800 photos taken in compliance with the
overlap constraints to feed the model. The entire collection is organized into 799
image pairs. A first step consists in sorting the truly calibrated image pairs according
to the constrained constraints of the stereovision image matching.

3.4 Image matching in stereovision within FCM framework

The image matching in stereovision [89, 91–94] is the process of identifying the
corresponding points in two images that are cast by the same physical point in the tri-
dimensional space. This can be carried out pixel by pixel or identifying significant
features in the images, such as edges, regions or interest points.

Hence, the stereo correspondence problem can be defined in terms of finding pairs
of true matches, namely, pairs of edge segments in two images that are generated by

Figure 4.
Ideal overlap to respect when capturing built environment.
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the same physical edge segment in space. These true matches generally satisfy some
constraints:

1.epipolar, given two segments one in the left image and a second in the right one,
if we slide one of them along a horizontal direction, i.e. parallel to the epipolar
line, they would intersect (overlap) (Figure 4);

Figure 5.
Sample of captured urban built environment dataset

Factor Description Fuzzy threshold value

Range or depth Distance between camera and scene Low

Sensor quality The resolution of de sensor High

Overlap Superposition rate between two consecutive photographs 0.7 ≤ overlap ≤0.9

Image texture Texture and texture variance High

Table 1.
Key factors affecting photogrammetric input images quality.
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2.similarity, matched edge segments have similar properties or attributes;

3.smoothness, disparity values in a given neighborhood change smoothly, except at
a few depth discontinuities;

4.ordering, the relative position among two edge-segments in the left image is
preserved in the right one for the corresponding matches;

5.uniqueness, each edge-segment in one image should be matched to a unique
edge-segment in the other image.

A large parallax factor value causes the background to move more slowly com-
pared to the foreground. A small value makes the foreground and background move at
a similar pace. The parallax effect becomes more apparent as the value of parallax
factor increases.

According to FCM framework, causal concepts and their activation levels, the
system receives as inputs a pair of stereo images left, Il and right Ir. This pair is
processed to extract edge segments and their attributes; each pair of extracted features
vectors (!

Il
,!

Ir
Þ is to be matched, the vectors!

Il
and!

Ir
come from Il and Ir respec-

tively. For each pair (!
Il
,!

Ir
Þ the attribute difference vector!

x
is computed. In this

approach, a pair of edge attributes (!
Il
,!

Ir
Þ defines a causal fuzzy concept Ci,. The

Eq. (1) is applied and the initial activation level at the iteration t = 0 is derived from
!
x
as follows in Eq. (3):

A0
i ¼

1
1þ k!

x
k (3)

where k!
x
k is defined as the Euclidean norm. This implies the application of the

similarity Gestalt’s principle. Hence, our FCM structure is built with as many concepts
as pairs of edge attributes, from Li and Lr, are available. The algorithm is synthesized
as follows in Table 2.

The correspondence results within the pairs for each of the characteristics are
recorded in Table 3 in number of pairs according to the number of iterations:

It is noted that from iteration n°20 the results remain stable. To test the consolida-
tion of these, we have pushed the number of iterations to 35 without any disruption of
stability.

In view of these results of this correspondence calculation phase, only the 744 pairs
of photographs respecting the five constraints (epipolar, similarity, smoothness
ordering and uniqueness) have been selected to now feed the scene of the augmented
urban reality model.

4. Experimental results

We present in this section, the first significant results of the construction of an
Urban Augmented Reality (UAR) scene model resulting from the combination of
photogrammetry and fuzzy modeling techniques for future analyses. In our

105

Fuzzy Photogrammetric Algorithm for City Built Environment Capturing into Urban Augmented…
DOI: http://dx.doi.org/10.5772/intechopen.110551



incremental validation process, we rely on two major works [64, 87, 93, 95] to assess
the performance of our method and its robustness for large-scale deployment.

4.1 The urban augmented reality model scene

Based on the 744 image pairs, the total number of photographs therefore amounts
to 745. The prodigiously increased computing capacities of mobile devices open
opportunities for augmented reality applications. The FPAK we developed a enables
the conversion of urban built environment photos into Urban Augmented Reality
(UAR) model as illustrated with Figure 6. To achieve AUR, we use the kernel in
conjunction with Apple ARKit [96] and RealityKit [97] frameworks. The use of
RealityKit framework let implement high-performance 3D simulation and rendering.
It leverages information provided by the ARKit framework to seamlessly integrate
virtual urban built environment into the real world. In turn, the kernel mainly focuses
on considering the imprecision of blind spots inherent in the overlapping of shots
during the acquisition of photographs to be used as raw materials for the work of

Number of iterations Epipolar Similarity Smoothness Ordering Uniqueness

10 788 791 685 778 746

15 790 792 734 783 767

20 791 796 744 785 779

25 791 796 744 785 779

30+ 791 796 744 785 779

Table 3.
Image matching in stereovision within FCM framework results.

1. Initialization Load each concept with its activation level At¼0
i through the Eq. (3);

Set:
δ = 0.05, the minimum value of change in classification approach
tmax = 50, maximum of iterations
α = 0.9, which is the limit indicator of concepts looping in the q network.
nc: integer, the number of concepts from a total of q representing pairs of edge
attributes that change their activation level at each iteration. The activation
mechanism is that defined in Eq. (1)

2. FCM process t = 0
while (t < tmax and nc/q < α) {

t t þ 1; nc 0
for (each concept Ci) {
update At

i according to Eq. (1)

if jAtþ1
i � At

i j> α
� � f
nc ncþ 1
}

}
}

3. Output The activation levels At
i for all concepts updated.

Table 2.
Process of image matching in stereovision within FCM framework.
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implementing augmented reality scenes. In addition, it provides a flexible architecture
that fosters the development augmented reality applications about research in theo-
retical and quantitative geography like UAR.

4.2 Datasets and input quality analytics

The quality of data (accuracy, precision, and resolution) taken by sensors as
smartphones is determined by many factors related to both the capture technique and
the physical environment. Ideal physical conditions should favor diffused and homo-
geneous lighting and all protruding urban objects should have enough space around
them. In addition, when taking photos, special attention should be paid to the follow-
ing object/environment characteristics: sufficient texture detail and minimal reflective
surfaces.

To select from the entire set of photographic data, the images meeting these
criteria as well as those set out in Table 1, a valuation of the threshold values (high,
and low) based on a fuzzy set as shown in Figure 7.

To ensure the quality of the input data, the input image quality sorting process
consisted of sifting through the 1028 raw images captured for the entire study area.
Indeed, the 800 photos organized in 799 pairs to constitute the input database are the
result of the application of this cleaning process. Also, although variations in the
quality of photogrammetric data are attributable to factors beyond the control of the
operator, several steps can be taken to increase the likelihood that the data collected
will achieve the desired quality. The following three points of vigilance are in order: 1)
Consider the expected data collection conditions (e.g., weather, lighting), the quality
of the camera and the lens. 2) Using the target range and camera specifications,
calculate the desired spacing between successive frames to ensure adequate overlap.
The interval [0.7–0.9] is the optimum since the value of 0.7 already gives excellent
results. 3) After data collection, review and remove any poor quality/blurry images by
manual or automatic means.

Figure 6.
Experimental UAR model for 3D spatial analysis.

Figure 7.
Fuzzy set assigned to input image quality factor.
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4.3 Performance analytics and originality

To evaluate and measure the performance of our FPAK approach associated with
the ARKit rendering engine, the results obtained are compared with two other
approaches [64, 87, 93, 95] on the same basis of the five constraints referenced in
Table 2.

The first comparison model is the Deterministic Simulated Annealing (DSA)
metaheuristics optimization algorithm. In Pajares and Cruz [95], this strategy for
stereovision matching was exploited with satisfactory results. It is a comprehensive
approach belonging to the category of methods that incorporate explicit
smoothing assumptions and determine all disparities simultaneously by applying a
energy minimization process. The limits of this approach are felt when the input
database exceeds 82 pairs of stereo images and whose convergence is only reached
after 30 iterations [87].

The second comparison model is based on the so-called relaxation labeling
approach (RELB). This is a technique proposed by Rosenfeld et al. [98] to account for
uncertainty in sensory data interpretation systems and to find the best matches. It uses
contextual information as an aid to the classification of a set of interrelated objects by
allowing interactions between possible classifications of related objects. In the
stereovision paradigm, the problem is to assign unique labels (or matches) to a set of
features in an image from a given list of possible matches.

The objective is to assign to each feature (edge segment) a value
corresponding to the disparity in a way consistent with certain predefined
constraints according to probabilities assigned to the five constraints in the studies
[64, 93]. Here, the maximum number of input image pairs is increased to 90 for
convergence from the 35th iteration. The results of performance comparison are
synthetized in Table 4.

Although pioneering works [64, 87, 93, 95] have paved the way for the fuzzy
modeling of the constraints inherent in image matching in stereovision applications,
the originality of our work is assessed at three distinct levels. First, our method fits
perfectly with a professional rendering engine such as ARKit. Second, the five con-
straints are modeled as concepts within the framework of FCMs. And third, the
calculations did not require additional models as in the case of the DSA or RELB based
approach. In doing so, the entire modeling chain constituted a fuzzy inference system.

5. Conclusion and future directions

Computer-vision-based API (Application Programming Interface) such as ARKit
enable landscape and urban physical feature capture on mobile devices like iPhone
with a physically based rendering. They open new possibilities for applications, such
as Virtual Geographic Environment (VGE) modeling for 3D spatial analysis. In this
chapter, we explored one process of capturing urban built environment into an Urban
Augmented Reality Model (UARM) and urban layouts according to the well-
established soft computing framework Fuzzy Cognitive Map (FCM). It’s a novel
application of FCM which let us verify the performance and the robustness of our
approach as compared to other existing methods.

Moreover, visualization of the urban development plan using UAR model gives
one of the best augmented spatial models for urban planning simulation and 3D spatial
analysis. In fact, the paradigm of augmented reality simplifies the process of project
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planning, measurement computations, design updates, collection of on-site architec-
ture environment, safety training, etc.

Although UAR model uses multiple tools, it is the best visual aid to get
walkthroughs for analyzing the virtual urban development plans. There are specific
issues like high computational complexities, networking requirements and storage
complexities to be considered. However, in practice, the limitations regarding techni-
cal issues can be overcome (to possible extents) as a scope for future research. The
proposed method can further enhance the level of understanding of urban built
environment by incorporating cloud computing services. We could realize uploading
as well as synchronization of information contained in connected devices which feed
smart cities.

Thus, the Architecture, Engineering, Construction, and Facility Management
(AEC/FM) designs and construction site 3D visuals can be accessible, examinable, and
modifiable from any location, irrespective of the location.

Users from different locations can collaborate with each other by accessing these
cloud UARM services. The incorporation of cloud UARM for BIM’s (Building Infor-
mation Modeling) 3D visualization of construction layouts does elicit further investi-
gation.

The performance assessment is still in progress. So, for detecting a possible bias of
over- and underestimation of the five concepts of image matching due to ARKit, we
are investigating two metrics: Mean Absolute Error (MAE) and the non-parametric
Spearman’s Rank Correlation Coefficient (SRCC).

Author details

Igor Agbossou
Laboratoire ThéMA UMR 6049, Institut Universitaire de Technologie Nord
Franche-Comté, Université de Franche-Comté, Belfort, France

*Address all correspondence to: igor.agbossou@univ-fcomte.fr

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

110

Advances in Fuzzy Logic Systems



References

[1] Batty M. Cities and Complexity.
Cambridge: MIT Press; 2005

[2] Batty M, Torrens P. Modelling and
prediction in a complex world. Futures.
2005;37:745-766

[3] Benenson I, Torrens P.
Geosimulation: Automata-Based
Modelling of Urban Phenomena.
Chichester: Wiley; 2002

[4] Berrou JL, Beecham J, Quaglia P,
Kagarlis MA, Gerodimos A. Calibration
and validation of the legion simulation
model using empirical data. In: Aldau
WN, Gattermann P, Knoflacher H,
Schreckenberg M, editors. Pedestrian
and Evacuation Dynamics. New York:
Springer Verlag; 2007. pp. 155-166

[5] Portugali J. Self-Organization and the
City. New York: Springer-Verlag; 2000

[6] Ioannides YM, Zabel JE. Interactions,
neighborhood selection and housing
demand. Journal of Urban Economics.
2008;63:229-252

[7] Couclelis H. The certainty of
uncertainty: GIS and the limits of
geographic knowledge. Transactions in
GIS. 2003;7:165-175

[8] Biswajeet P, editor. Spatial Modeling
and Assessment of Urban Form Analysis
of Urban Growth: From Sprawl to
Compact Using Geospatial Data.
Switzerland: Springer; 2017. p. 331. DOI:
10.1007/978-3-319-54217-1

[9] Dicken P, Lloyd PE. Location in
Space: Theoretical Perspectives in
Economic Geography. New York: Harper
and Row; 1990

[10] Goodchild M. GIScience ten years
after ground truth. Transactions in GIS.
2006;10:687-692

[11] Longley PA, Goodchild MF, Maguire
DJ, Rhind DW. Geographic Information
Systems and Science. 2nd ed. Wiley and
Sons: Chichester; 2005

[12] Longley PA, Singelton AD. Social
deprivation and digital exclusion in
England. In: CASA Working Paper, 145.
London: UCL Centre for Applied Spatial
Analysis; 2008

[13] Morrissey K, Clarke G, Hynes S,
O’Donoghue C. Accessibility modelling.
In: Bavaud F, Mager C, editors.
Handbook of Theoretical and
Quantitative Geography, FGSE,
Lausanne, Switzerland: University of
Lausanne; 2009. p. 457

[14] Pumain D, Sanders L, Saint-Julien T.
Villes et auto-organisation. Paris:
Economica; 1989

[15] Anders K-H. Level of detail
generation of 3D building groups by
aggregation and Typification.
International Cartographic Conference.
Vol. 2. 2005. Available from: https://cite
seerx.ist.psu.edu/document?repid=re
p1&type=pdf&doi=1f8df00d63c3008b
90c68f32cdf498765c9d776d

[16] Batty M. Visually-Driven Urban
Simulations: Exploring Fast and Slow
Changes in Residential London, CASA,
Working Papers Series. Vol. 164.
London: UCL; 2011

[17] Bazzanella L, Caneparo L, Corsico F,
Roccasalva G, editors. Future Cities and
Regions. Simulation, Scenario and
Visioning, Governance and Scales. New
York, Heidelberg: Springer; 2011

[18] Bittner T, Donnelly M, Winter S.
Ontology and semantic interoperability.
In: Prosperi D, Zlatanova S, editors.

111

Fuzzy Photogrammetric Algorithm for City Built Environment Capturing into Urban Augmented…
DOI: http://dx.doi.org/10.5772/intechopen.110551



Large-Scale 3D Data Integration:
Challenges and Opportunities. Boca
Raton, FL: CRC Press; 2005

[19] Bucher B, Falquet G, Clementini E,
Sester M. Towards a typology of spatial
relations and properties for urban
applications. Usage, Usability, and
Utility of 3D City Models. 2012. p. 11.
DOI: 10.1051/3u3d/201202010

[20] Gallagher J, Gill LW, Mcnabola A.
Numerical modelling of the passive
control of air pollution in asymmetrical
urban street canyons using refined mesh
discretization schemes. Building and
Environment. 2012;56:232-240

[21] Raufirad V, Heidari Q, Ghorbani J.
Comparing socioeconomic vulnerability
index and land cover indices:
Application of fuzzy TOPSIS model and
geographic information system.
Ecological Informatics. 2022;72:101917.
DOI: 10.1016/j.ecoinf.2022.101917

[22] Agbossou I. Fuzzy cognitive maps-
based modeling of residential mobility
dynamics: GeoComputation approach.
Plurimondi. 2017;17:169-190

[23] Agbossou I, Provitolo D,
Frankhauser P. Expérimentation par
voie informatique de la mobilité réside
ntielle, XVème Journées de Rochebrune.
In: Rencontres interdisciplinaires sur les
systems complexes naturels et artificiels.
Rochebrune, Megève, France. CD Rom;
2008. pp. 1-13

[24] Agbossou I. Cerner le contexte spatia
l par les voisinages dans les modèles ce
llulaires en géographie. In: Rencontres
interdisciplinaires sur le contexte dans
les systèmes complexes naturels et
artificiels, Jan 2010. Megève, France;
2010

[25] Marsala C, Bouchon-Meunier B.
Entropies et ensembles flous

intuitionnistes. In: LFA 2019 -
Rencontres francophones sur la Logique
Floue et ses Applications. Alès, France:
Cépaduès; 2019. pp. 143-148

[26] Coletti G, Bouchon-Meunier B.
Fuzzy Similarity Measures and Measure
ment Theory. In: IEEE International
Conference on Fuzzy Systems 2019
(FUZZ-IEEE 2019). New Orleans,
United States: IEEE; 2019

[27] Abbasi F, Allahviranloo T,
Abbasbandy S. A new attitude coupled
with fuzzy thinking to fuzzy rings and
fields. Journal of Intelligent & Fuzzy
Systems. 2015;29:851-861

[28] Abbasi F, Abbasbandy S, Nieto JJ. A
new and efficient method for elementary
fuzzy arithmetic operations on pseudo-
geometric fuzzy numbers. Journal of
Fuzzy, Set Valued Analysis. 2016;2:
156-173

[29] Allahviranloo T, Mikaeilvand N. Non
zero solutions of the fully fuzzy linear
systems. Journal of Computational and
Applied Mathematics. 2011;10(2):
271-282

[30] Jetter AJ, Kok K. Fuzzy Cognitive
Maps for futures studies. Amethodological
assessment of concepts andmethods,
Futures. 2014;61:45-57, DOI: 10.1016/j.
futures.2014.05.002.

[31] Liu ZQ, Satur R. Contextual fuzzy
cognitive map for decision support in
geographic information systems. IEEE
Transactions on Fuzzy Systems. 1999;7
(5):495-507

[32] Kosko B. Fuzzy Cognitive Maps.
International Journal of Man-Machine
Studies. 1986;24:65-75

[33] Kosko B. Neural Networks and
Fuzzy Systems: A Dynamical Systems

112

Advances in Fuzzy Logic Systems



Approach to Machine Intelligence. NJ:
Prentice Hall; 1992

[34] Xirogiannis G, Stefanou J, Glykas M.
A fuzzy cognitive map approach to
support urban design. Expert Systems
with Applications. 2004;26(2):257-268.
DOI: 10.1016/S0957-4174(03)00140-4

[35] Unity Real-Time Development
Platform. 3D, 2D VR & AR Engine.
Available from: https://unity.com/
[Accessed: November 19, 2021]

[36] blender.org—
Homeoftheblenderproject—
Freeandopen3Dcreationsoftware,
Available from: https://www.blender.
org/ [Accessed: September 12, 2021]

[37] Verma JK et al. Advances in
Augmented Reality and Virtual Reality,
Studies in Computational Intelligence.
Springer; 2022. DOI: 10.1007/978-981-
16-7220-0_2

[38] Karthikeyan OVGSK, Padmanaban
S, editors. Smart Buildings
Digitalization. Case Studies on Data
Centers and Automation. Abingdon,
Oxon, OX14 4RN: CRC Press; 2022.
p. 314. DOI: 10.1201/9781003240853

[39] Verma JK, Paul S, editors. Advances
in Augmented Reality and Virtual
Reality. Singapore: Springer; 2022.
p. 312. DOI: 10.1007/978-981-16-7220-0

[40] Quan L. Image-Based Modeling.
London: Springer; 2010. DOI: 10.1007/
978-14419-6679-7

[41] Kuldip A, Dibyendu G. Nature
inspired prototype Design of Collision
Avoidance Aircraft System and Design
of a pair of wing flaps in Autodesk Maya
software. Procedia Computer Science.
2016;89:684-689. DOI: 10.1016/j.
procs.2016.06.036

[42] Naiman JP. AstroBlend: An
astrophysical visualization package for
blender. Astronomy and Computing.
2016;15:50-60. DOI: 10.1016/j.
ascom.2016.02.002

[43] Pelayo P et al. CubeSat landing
simulations on small bodies using
blender. Advances in Space Research.
Volume 70, Issue 3 Elsevier, 2022. DOI:
10.1016/j.asr.2022.07.044

[44] Lars K, Leif K. Interactive modeling
by procedural high-level primitives.
Computers & Graphics. 2012;36(5):376-
386. DOI: 10.1016/j.cag.2012.03.028

[45] Johannes E et al. Procedural
modeling of architecture with round
geometry. Computers & Graphics. 2017;
64:14-25. DOI: 10.1016/j.cag.2017.
01.004

[46] Andrew RW et al. Volumetric
procedural models for shape
representation. Graphics and Visual
Computing. 2021;4:200018. DOI:
10.1016/j.gvc.2021.200018

[47] Gustavo A et al. Procedural
modeling applied to the 3D city model of
bogota: A case study. Virtual Reality &
Intelligent Hardware. 2021;3(5):423-433.
DOI: 10.1016/j.vrih.2021.06.002

[48]Mudit G et al. O-2 | development of a
3D modeling tool for procedural
planning of ductal stenting. Journal of
the Society for Cardiovascular
Angiography & Interventions. 2022;
1(3):100052. DOI: 10.1016/j.
jscai.2022.100052

[49] Biljecki F, Ledoux H, Stoter J.
Generating 3D city models without
elevation data. Computers, Environment
and Urban Systems. 2017;64:1-18

[50] Peeters A, Etzion Y. Automated
recogni- tion of urban objects for

113

Fuzzy Photogrammetric Algorithm for City Built Environment Capturing into Urban Augmented…
DOI: http://dx.doi.org/10.5772/intechopen.110551



morphological urban analysis.
Computers, Environment and Urban
Systems. 2012;36(6):573-582

[51] Goetz M, Zipf A. OpenStreetMap in
3D – Detailed insights on the current
situation in Germany. In: Proceedings of
the AGILE’2012 Inter- National
Conference on Geographic Information
Science. Avignon: AGILE Digital
Editions; 2012. pp. 288-292

[52] Kim T-H et al. Smart city and IoT.
Future Generation Computer Systems.
2017;76:159-162. DOI: 10.1016/j.
future.2017.03.034

[53] Yonghuai L et al., editors. 3D
Imaging, Analysis and Applications.
Second ed. Switzerland: Springer; 2022.
DOI: 10.1007/978-3-030-44070-1

[54] BoonsukW, Gilbert SB, Kelly JW. The
impact of three interfaces for 360- degree
video on spatial cognition. In: Conference
on Human Factors in Computing Systems
— Proceedings. New York, USA: ACM
Press; 2012. pp. 2579-2588

[55] Puyun L et al. A linear pushbroom
satellite image epipolar resampling
method for digital surface model
generation. ISPRS Journal of
Photogrammetry and Remote Sensing.
2022;190:56-68. DOI: 10.1016/j.
isprsjprs.2022.05.010

[56] Remya R, Nirmala M. A novel
similarity metric for image filtering.
Optik. 2022;271:169977. DOI: 10.1016/j.
ijleo.2022.169977

[57] Tahereh B et al. Edge preserving
range image smoothing using hybrid
locally kernel-based weighted least
square. Applied Soft Computing. 2022;
125:109234. DOI: 10.1016/j.
asoc.2022.109234

[58] XiangW et al. A novel reversible
image data hiding scheme based on pixel

value ordering and dynamic pixel block
partition. Information Sciences. 2015;310:
16-35. DOI: 10.1016/j.ins.2015.03.022

[59] Owen Saxton W. The image and
diffraction plane problem: uniqueness,
Reprinted from Advances in Electronics
and Electron Physics, Supplement 10,
1978. In: Hÿtch M, Hawkes PW, editors.
Advances in Imaging and Electron
Physics. Vol. 214. London: Elsevier;
2020. pp. 87-104. DOI: 10.1016/bs.
aiep.2020.04.004

[60] Deepak G, Aditya K, Ashish K,
Oscar C, editors. Soft Computing for
Data Analytics, Classification Model, and
Control. Switzerland AG: Springer;
2022. p. 165. DOI: 10.1007/978-3-030-
92026-5

[61] Dadios EP, editor. Fuzzy Logic –
Algorithms, Techniques and
Implementations. London, UK, London,
UK: InTech; 2012

[62] Allahviranloo T, Perfilieva I, Abbasi
F. A new attitude coupled with fuzzy
thinking for solving fuzzy equations.
Soft Computing. 2018;22(9):3077-3095

[63] Abbasi F, Allahviranloo T.
Computational procedure for solving
fuzzy equations. Soft Computing. 2021;
25:1-15. DOI:10.1007/s00500-020-
05330-8

[64] Pajares G, de la Cruz JM. Fuzzy
cognitive maps for stereovision
matching. Pattern Recognition. 2006;39
(11):2101-2114. DOI: 10.1016/j.patcog.
2006.04.003

[65] Adeleke O, Jen T-C. A FCM-
clustered neuro-fuzzy model for
estimating the methane fraction of
biogas in an industrial-scale bio-digester.
Energy Reports. 2022;8(Supplement 15):
576-584. DOI: 10.1016/j.egyr.2022.10.265

114

Advances in Fuzzy Logic Systems



[66] Hosseinpour M, Ghaemi S,
Khanmohammadi S, Daneshvar S. A
hybrid high-order type-2 FCM improved
random forest classification method for
breast cancer risk assessment. Applied
Mathematics and Computation. 2022;
424:127038. DOI: 10.1016/j.amc.2022.
127038

[67] Senthilkumar N et al. Minimally
parametrized segmentation framework
with dual metaheuristic optimisation
algorithms and FCM for detection of
anomalies in MR brain images.
Biomedical Signal Processing and
Control. 2022;78:103866. DOI: 10.1016/j.
bspc.2022.103866

[68] Kosko B. Hidden patterns in
combined and adaptive knowledge
networks. International Journal of
Approximate Reasoning. 1988;2:377-393

[69] Kosko B. Adaptive inference in
fuzzy knowledge networks. In: Dubois
D, Prade H, Yager RR, editors. Readings
in fuzzy sets for intelligent systems. San
Mateo: Morgan Kaufman; 1993

[70] Eden C, Ackermann F, Brown I,
Eden C, Ackermann F. Making Strategy:
The Journey of Strategic Management.
London: SAGE; 2006

[71] Eden C, Ackermann F, Cropper S.
The analysis of cause maps. Journal of
Management Studies. 2007;29:309-324

[72] Axelrod R. Structure of Decision:
The Cognitive Maps of Political Elites.
Princeton, NJ: Princeton University
Press; 1976

[73] Kowalski RM, Leary MR. The Social
Psychology of Emotional and Behavioral
Problems: Interfaces of Social and
Clinical Psychology. États-Unis,
American Psychological Association;
1999

[74] Papageorgiou E, Stylios CD,
Groumpos PP. Active Hebbian learning

algorithm to train fuzzy cognitive maps.
International Journal of Approximate
Reasoning. 2004;37(3):219-249

[75] Papageorgiou E, Stylios CD,
Groumpos PP. Fuzzy cognitive map
learning based on nonlinear Hebbian
Rule. In: Gedeon TD, Fung LCC, editors.
AI 2003: Advances in Artificial
Intelligence. AI 2003. Lecture Notes in
Computer Science. Vol. 2903. Berlin,
Heidelberg: Springer; 2003. DOI:
10.1007/978-3-540-24581-0_22

[76] Wang Y, Liqiang Z, Takis
Mathiopoulos P, Deng H. A gestalt rules
and graph-cut-based simplification
framework for urban building models.
International Journal of Applied Earth
Observation and Geoinformation. 2015;
35(Part B):247-258. DOI: 10.1016/j.
jag.2014.09.012

[77] Fang Y, Zhang X, Yuan F, Imamoglu
N, Liu H. Video saliency detection by
gestalt theory. Pattern Recognition.
2019;96:106987. DOI: 10.1016/j.
patcog.2019.106987

[78] Xue T, Owens A, Scharstein D,
Goesele M, Szeliski R. Multi-frame
stereo matching with edges, planes, and
superpixels. Image and Vision
Computing. 2019;91:103771. DOI:
10.1016/j.imavis.2019.05.006

[79] Szeliski R. Computer Vision:
Algorithms and Applications, Texts in
Computer Science. London: Springer;
2011. DOI: 10.1007/978-1-84882-935-0

[80] Lopes A, Souza R, Pedrini H. A
survey on RGB-D datasets. Computer
Vision and Image Understanding. 2022;
222:103489. DOI: 10.1016/j.cviu.2022.
103489

[81] Scharstein D, Briggs AJ. Real-time
recognition of self-similar landmarks.
Image and Vision Computing. 2001;19

115

Fuzzy Photogrammetric Algorithm for City Built Environment Capturing into Urban Augmented…
DOI: http://dx.doi.org/10.5772/intechopen.110551



(11):763-772. DOI: 10.1016/S0262-8856
(00)00105-0

[82] Cherdo L. The 8 Best 3D Scanning
Apps for Smartphones and IPads in 2019.
2019. Available from: https://www.
aniwaa.com/buyers-guide/3d-scanners/
best-3d-scanning-apps-smartphones/
[Accessed: May 12, 2022]

[83] Wang D. The time dimension for
scene analysis. IEEE Transactions on
Neural Networks. 2005;16(6):1401-1426

[84] Li Z, Yan H, Ai T, Chen J.
Automated building generalization
based on urban morphology and gestalt
theory. International Journal of
Geographical Information Science. 2004;
18(5):513-534. DOI: 10.1080/
13658810410001702021

[85] Reimer LM, Weigel S, Ehrenstorfer
F, Adikari M, Birkle W, Jonas S. Mobile
motion tracking for disease prevention
and rehabilitation using apple ARKit. In:
Hayn D, Schreier G, Baumgartner M,
editors. Studies in Health Technology
and Informatics. Amsterdam, The
Netherlands: IOS Press; 2021. DOI:
10.3233/SHTI210092

[86] Zhou X, Leonardos S, Hu X,
Daniilidis K. 3D shape estimation from
2D landmarks: A convex relaxation
approach. In: Proceedings of the 2015
IEEE Conference on Computer Vision
and Pattern Recognition (CVPR),
Boston, MA, USA, 7–15 June 2015.
Boston, MA, USA: IEEE; 2015. pp. 4447-
4455. DOI: 10.1109/CVPR.2015.7299074

[87] Javier Herrera P, Pajares G, Guijarro
M, Ruz JJ, de la Cruz JM. Combining
support vector machines and simulated
annealing for stereovision matching with
fisheye lenses in forest environments.
Expert Systems with Applications. 2011;
38(7):8622-8631. DOI: 10.1016/j.
eswa.2011.01.066

[88] Liu Y, Wang W, Xintao X, Guo X,
Gong G, Huaxiang L. Lightweight real-
time stereo matching algorithm for AI
chips. Computer Communications. 2022;
199:210-217. DOI: 10.1016/j.
comcom.2022.06.018

[89] Yuan W, Meng C, Tong X, Li Z.
Efficient local stereo matching algorithm
based on fast gradient domain guided
image filtering. Signal Processing: Image
Communication. 2021;95:116280. DOI:
10.1016/j.image.2021.116280

[90] Wilm J, Aanæs H, Larsen R, Paulsen
RR. Real Time Structured Light and
Applications. Kgs. Lyngby: Technical
University of Denmark (DTU), 2016
(DTU Compute PHD-2015; No. 400);

[91] Scharstein D, Szeliski R. A taxonomy
and evaluation of dense two-frame
stereo correspondence algorithms.
International Journal of Computer
Vision. 2002;47(1):7-42

[92] Hirschmuller H, Scharstein D.
Evaluation of stereo matching costs on
images with radiometric differences.
IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2008;31(9):
1582-1599

[93] Pajares G, de la Cruz JM, López-
Orozco JA. Relaxation labeling in stereo
image matching. Pattern Recognition.
2000;33(1):53-68. DOI: 10.1016/S0031-
3203(99)00036-9

[94] Ma X-L, Yuan R-Y, Zhang L-B, He
M-Y, Zhang H-L, Xing Y, et al.
Augmented reality autostereoscopic 3D
display based on sparse reflection array.
Optics Communications. 2022;510:
127913. DOI: 10.1016/j.
optcom.2022.127913

[95] Pajares G, de la Cruz JM. On
combining support vector machines and
simulated annealing in stereovision

116

Advances in Fuzzy Logic Systems



matching. IEEE Transactions on
Systems, Man, and Cybernetics. Part B,
Cybernetics. 2004;34(4):1646-1657.
DOI: 10.1109/tsmcb.2004.827391

[96] Dive into the world of augmented
reality [Internet]. 2022. Available from:
https://developer.apple.com/
augmented-reality [Accessed: October
14, 2021]

[97] RealityKit. Simulate and render 3D
content for use in your augmented
reality apps [Internet]. 2022. Available
from https://developer.apple.com/
documentation/realitykit [Accessed:
October 15, 2021]

[98] Rosenfeld A, Hummel RA, Zucker
SW. Scene labeling by relaxation
operations. In: IEEE Transactions on
Systems, Man, and Cybernetics. Vol.
SMC-6. June 1976. no. 6. pp. 420-433,
DOI: 10.1109/TSMC.1976.4309519

117

Fuzzy Photogrammetric Algorithm for City Built Environment Capturing into Urban Augmented…
DOI: http://dx.doi.org/10.5772/intechopen.110551





Chapter 6

PID-like Fuzzy Controller
Design for Anti-Slip System in
Quarter-Car Robot
José R. García-Martínez, Edson E. Cruz-Miguel,
Juvenal Rodríguez-Reséndiz, Luis D. Ramírez-González
and Miguel A. Rojas-Hernández

Abstract

The design strategy of an adaptive Proportional-Integral-Derivative (PID)-like
fuzzy controller for an anti-slip Quarter-Car robotic system is proposed. The proposed
control system is constructed by two loops, an external one for lineal speed control
and an internal loop for current control. A motion profile is used to follow a trajectory.
The slip is computed, such as the difference between the linear velocity given by an
S-curve velocity profile and the longitudinal speed calculated according to the rota-
tional speed of the Quarter-Car tire. This difference is the input of the external control
loop. Whether the slip is significant, the slave controller must do that both velocities
go at the same speed controlling the current of the direct current (DC) motor. On the
other hand, the mathematical model of a tire coupled to the DC-motor model is
presented to simulate the system and controller response. To test the robustness of the
system, different scenarios are presented where the slip coefficient varies depending
on the work surface. Three surfaces were selected to test the performance of the
controller, dry, wet, and icy surfaces, while the system had a trajectory.

Keywords: fuzzy control, slip-control, traction controller, trajectory planning,
quarter-car robot

1. Introduction

The human being shows the difficulty in making decisions when there is imprecise
information. Fuzzy logic, developed by Lofti Asker Zadeh in 1965, allows emulating of
human reasoning and making correct decisions despite the information [1, 2]. It is
considered a flexible tool that is based on linguistic rules dictated by experts, composed
of a set of mathematical principles based on degrees of membership, whose function is
to model information [3]. This modeling is done based on linguistic rules that approx-
imate a function through the relationship between the inputs and outputs of the system.
This logic presents membership ranges within an interval between zero and one, unlike
conventional logic, in which the content is limited to two values: zero and one [4].
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Control systems, on the other hand, are an arrangement of physical components
linked or related in such a way that they command, direct or regulate the same system
or another [5]; control systems are classified as open-loop control systems and [6]
closed-loop control systems. Systems in which the output has no effect on the control
action are called open-loop control systems. Systems that maintain a given relation-
ship between the output and the reference input, comparing them and using the
difference as a means of control, are called closed-loop control systems or feedback
control systems [7, 8].

Fuzzy control is created from the combination of fuzzy logic and control systems
techniques, which can be considered an expert closed-loop system in real time,
implemented from the experience of an operator or process engineer unfamiliar with
the process. It lends itself to being easily expressed in situation-action rules instead of
differential equations [9].

Controllers based on fuzzy logic or fuzzy systems are represented by propositional
rules if-then that can provide an understandable and easy-to-use knowledge represen-
tation [10]. This can be seen as a high-level programming language, where the program
consists of conditional rules and the compiler or interpreter results in a nonlinear
control algorithm, so programming through qualitative statements, represented by of if-
then statements, to obtain a program that works in quantitative domains, provided by
signals from sensors and actuators is the basis of fuzzy control [11]. Intuitively, this
implies a loss of information, because there is no single translation from a qualitative
entity to a quantitative representation, except in some special cases.

Traction control systems (TCSs) have come to revolutionize the behavior of auto-
mobiles as we know them today; however, thanks to the performance shown in
human-crewed vehicles, it is possible to open a branch of the study of the traction
controllers for mobile robots. The implementation of traction controllers in mobile
robots seeks to improve the performance of the robots either due to energy consump-
tion or the accuracy of arrival at the desired point [12]. The energy consumption in
mobile robots depends significantly on the adhesion between the tires and the ground;
therefore, the greater the bonding, the better stability in autonomous driving pro-
duced. This can be translated into more excellent stability in the system. Traction, on
the other hand, is considered a vehicular propulsive force produced by the friction
present between the tire and the surface. The inherent friction characteristics are
nonlinear and uncertain, making TCSs have a high degree of [13] design.

In robotics, these types of systems are not relatively new but have not been fully
addressed due to the scarcity of processing tools; current advances in embedded
systems have allowed techniques from different areas to be implemented in [14]
robotics. TCSs applied to mobile robots are based on modern controllers and nonlinear
sliding mode controllers based on state observers [13–15].

Being wholly linked to friction, traction exhibits nonlinear behavior over time, so
modern controllers must append a matrix representing the approximate nonlinear
coefficients of friction to act on the control signal. In combination with traction
controllers, mobile robots allow the robot to move freely on spaces with smooth, wet,
and slippery surfaces. Traction control lets the robot wheels turn at similar speeds on
surfaces with near-zero coefficients of friction, and when an imbalance exists, the
traction controller must be activated to prevent unnecessary plant slippage, which
translates to not reaching the working path [16].

Some authors have worked on different strategies related to slip control and trac-
tion control for mobile robots. For instance, [17] introduces an adaptive control
strategy for a tracked mobile robot that compensates for the longitudinal slip to reach
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a trajectory. Another controller based on the dynamic and kinematic model with slip is
presented in [18]. [19] proposes an algorithm for optimal slip control of wheeled
robots with the trade-off between traction and energy consumption based on observ-
ing a change in a robot’s velocity on different soil surfaces. An optimal slip ratio
control using a current sensing method is presented in [20]. The controller consisted
of a fuzzy PID structure. In [21] shows a slip control for a nonholonomic wheeled
robot where the kinematic model of a differential-driven wheeled mobile robot is used
to solve the trajectory tracking problem using fuzzy and optimal fuzzy logic. The
trajectory tracking problem of a wheeled mobile robot which is actuated by two
independent electrical motors is attacked in [22]. A simple non-mode-based fuzzy
logic controller is used to reduce the tracking error provoked by the slippage.

As the reader can see, there are many works with different perspectives to attack
the slip control in other structures. Hence, this work proposes a new methodology to
control the slippery of a Quarter-Car robot using an internal loop based on fuzzy logic
inference to compute the gains of a Proportional-Integral (PI) structure. The slip is
calculated, such as the difference between the linear velocity given by an S-curve
velocity profile and the longitudinal speed calculated according to the rotational speed
of the Quarter-Car tire. This difference is the input of the external control loop.
Whether the slip is significant, the slave controller must do that both velocities go at
the same speed controlling the current of the DCmotor. The external loop controls the
angular velocity so that the linear velocity has the same magnitude. The outer loop
uses an adaptive PID-like fuzzy controller structure.

The chapter is divided into the following sections. Section 2 describes the dynamic
model of the test bench. Section 3 presents the methodology for self-tuning PID-like
fuzzy controller. In Section 4, the simulations and results of the experimentation are
presented, and, finally, in Section 5, the conclusions are given.

2. Dynamic model of one-wheel robot

This section presents the fundamental parts that compound the Quarter-Car robot
structure. Figure 1 shows the platform used for the project simulations. The platform
consists of a wheel–motor coupling that will emulate the behavior of a mobile robot

Figure 1.
One-wheel robot for control tests.
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axis when different surfaces interact. The measurements will be carried out: angular
velocity, longitudinal velocity, current, and slip. Slippage will be controlled so that the
tire does not slip and can correctly follow a trajectory.

2.1 DC motor

Direct current (DC) motors are the most common actuators within control sys-
tems. It directly provides a rotational movement, and together with the wheels, rails,
and cables, it can perform a translational action. The equivalent electrical circuit of the
armature and the free body diagram of the rotor are shown in Figure 2. It is necessary
to obtain a dynamic model that allows a correct analysis. The dynamic model of this
servo system depends on the electrical and mechanical characteristics, such as the
resistance Ra, the inductance La, the inertia J of the armature, the back electromotive
force vb, and the friction D.

From Figure 2, it is possible to derive the following equations based on Newton’s
second law for rotational motion and Kirchhoff’s second law, Eqs. (1) and (2), respec-
tively.

dωm

dt
¼ K

J
ia �D

J
ωm (1)

dia
dt
¼ ea

La
� K
La

ωm � Ra

L
ia (2)

dθm
dt
¼ ωm (3)

2.2 Tire

Tire friction models are also indispensable for accurately reproducing friction
forces for simulation purposes. A common assumption in most tire friction models is
that the normalized tire friction, Eq. (4), is a nonlinear function of the normalized

Figure 2.
Dynamic model of a DC motor.
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relative velocity between the surface and the tire (slip coefficient s) with a different
maximum.

μ ¼ F
Fn
¼ Friction force

Normal forcel (4)

Furthermore, it is understood that μ also depends on vehicle speed and
road surface conditions, among other factors. This work considers the simplified
motion dynamics of a Quarter-Car model. The system is represented by Eqs. (5)
and (6).

m _v ¼ F (5)

J _ω ¼ �rF þ u (6)

Wherem is 1
4 of the mass of the vehicle, and J and r are the inertia and radius of the

wheel, respectively. v is the linear speed of the tire, and ω is the angular speed of the
wheel, u is the acceleration or braking torque, and F is the friction force as shown in
Figure 3.

The most common tire friction models used in the literature are those of algebraic
slip/force relationships. They are defined as one-to-one maps (memory-less) between
the friction F and the longitudinal slip rate s, which is defined in Eq. (7).

s ¼
sf ¼ rω� v

v
if v> rω, v 6¼ 0 for breaking

sm ¼ rω� v
rω

if v< rω, ω 6¼ 0 for movement

8><
>:

(7)

Slippage results from the reduction in the effective circumference of the rim as a
result of surface deformation due to the tire rubber’s elasticity. This, in turn, implies
that the longitudinal velocity v will not be equal to rω. The absolute value of the
slippage is defined in the interval 0, 1½ �. When s ¼ 0, there is no slip (pure rotation),
while ∣s∣ ¼ 1 indicates total slip/skid.

Figure 3.
One-wheel system with concentrated friction.
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2.3 Slip-force models

Slip/force models aim to describe the slip movement through its force/surface
dependency mapping F sð Þ : s↦F. They can also depend on the vehicle speed v, that is,
F s, vð Þ, and vary when the characteristics of the road change.

One of the best-known models of this type is the Pacejka model [23], also known as
the “Magic Formula”. It has been shown that this model agrees adequately with the
experimental data obtained under particular conditions of constant linear and angular
velocity. Pacejka’s model is represented by Eq. (8).

F sð Þ ¼ D sin Carctan Bs� E Bs� arctan Bsð Þð Þð Þð Þ (8)

It can be seen that the Eq. (8) contains a set of parameters: B, C, D, and E. These
parameters depend on the tire’s physical properties and the vehicle’s dynamic state. In
the Eq. (8), D represents the maximum coefficient, C represents the shape coefficient
and influences the shape of the curve, B is the stiffness coefficient, and E is the
coefficient of curvature [24].

2.4 Quarter-car robot model

For the design of the traction controller, the Eqs. (1)–(3)represents the engine
dynamics, and the Eqs. (5) and (6) represent the dynamics of the wheel of a differ-
ential robot.

Figure 4 shows the interaction of the dynamic equations of the motor with the
wheel of the robot. It is observed that the relationship between the equations is the
angular velocity of the motor shaft and the longitudinal movement of the robot, as
expressed by the Eq. from (9) to the Eq. (13).

dia
dt
¼ ea

La
� K
La

ωm � Ra

L
ia (9)

Figure 4.
Block diagram of the motor-wheel system from Eqs. (9)–(13).
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dωm

dt
¼ K

J
ia �D

J
ωm � rw � Ft

GR � J (10)

dθm
dt
¼ ωm (11)

dv
dt
¼ Ft

m
(12)

dxp
dt
¼ v (13)

The slip ratio is presented in Eq. (14) and is a function of the angular velocity.

s ¼ ωb � ωf

∣ωf ∣þ tol
, tol≃0 (14)

On the other hand, rewriting the Eq. (14) as a function of the radius of the wheel
(rw) and the longitudinal velocity (v).

s ¼ ωrw � v
∣ωrw∣þ tol

, tol≃0 (15)

Where ωrw and v represent the longitudinal speed of the wheel computed
according to the radial speed times the radius of the tire and the longitudinal velocity
measured, respectively. To calculate the traction force, the Eq. (16) of Pacejka and
Sharp [23] is used.

F sð Þ ¼ D sin Carctan Bs� E Bs� arctan Bsð Þð Þð Þð Þ (16)

where B, C, D, and E are constants, s represents the slip value. Figure 5 shows the
implementation of Eqs. (15) and (16) in block diagram form.

On the other hand, if an imbalance is detected between the wheels of the robot, it
is necessary to adjust the speed of the wheel that rotates at a higher rate with the one
that turns at a lower speed [25]. To carry out this criterion, it is necessary to propose

Figure 5.
Block diagram of the motor-wheel system from Eqs. (9)–(13) for the calculation of the traction force from the
coefficient of friction.
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behavioral variables that mathematically model the speed adjustment. In order to
carry out the previous step, it is required to define a database that protects all the
behavior information. This information is the linguistic variable. In addition, the
operating range of the controller must be considered, which is translated into model-
ing the behavior in the decompensation of the wheels.

3. PID-like fuzzy controller

The design of controllers based on fuzzy logic plays an essential role in intelligent
systems due to the ease of design and implementation, which must be subject to direct
collaboration with the person in charge of monitoring the process to be controlled;
that is, the design of the controller must be based on the experience of the system
operator under certain conditions to establish the linguistic variables that the control-
ler must obey [9, 26]. The fuzzy logic is used to tune the gains of a PID structure
controller. The general form of the PID controller is depicted in Eq.(17).

u tð Þ ¼ kpe tð Þ þ ki
ðt
0
e τð Þdτ þ kd

de tð Þ
dt

(17)

This system is known as a PID-like fuzzy controller [27, 28]. The fuzzification
range for computing kp, kd, and ki gains, in its crisp value form, is selected according
to the error, rate of change in error, and the integral of error, respectively. Figure 6
depicts the structure proposed for the outer loop or master loop. The master loop
controls the longitudinal velocity according to the angular velocity.

Figure 7 presents the structure of the internal loop. It consists of a PI structure
capable of controlling the current of the tire coupled to the DC motor. Whether there
is an imbalance in the speeds, it means that there is a skid in the wheel. The current
must be reduced to equalize the angular velocity with the longitudinal one. That is the
aim of the internal structure.

Figure 8 presents a generalized form to propose the range of operation. As one can
see, the three linguistic variables contain seven linguistic values, namely negative big
(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS),
positive medium (PM), and positive big (PB). A "d" and "i" are added at the beginning
of each linguistic value to identify if they refer to the derivative or integral linguistic
variable. The linguistic values present triangular and Gaussian shapes. For the

Figure 6.
Fuzzy tuner structure.
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Figure 7.
Fuzzy tuner structure.

Figure 8.
Linguistic variables of the inputs (a) error, (b) derived of the error, and (c) integral of the error.
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linguistic variable of error and integral of error, Figure 8a and b, respectively, trian-
gular membership functions are used in the design since, according to the control
theory, the proportional and integral actions are not as susceptible to noise. On the
other hand, in the derivative error linguistic variable, Figure 8b, it is used a Gaussian
membership function as a zero value to smooth the values of the derivative gain. The
ranges of the fuzzyfication stages are �1, 1½ �, �10, 10½ �, and �5, 5½ �, for kp, kd, and ki,
respectively.

Tables 1–3 present the fuzzy associative matrices (FAM) for computing kp, kd, and
ki. The inference process corresponds to a one-to-one fuzzy relationship. Likewise, it
can be seen that four-linguistic values NM, NS, PS, and PM map to a single value S to
calculate the output value for kp. This relationship is used to ensure that the gain
values work within a suitable range of values. The value of Kp never takes the zero
value in this controller, only an almost zero (AZ) linguistic value. Generally, when the
present error is obtained, it enters the fuzzification stage and is evaluated for the rules
shown in Table 1. The range of values the proportional gain can take is shown in
Figure 9a. kp can bring any value between [1.9,9.8] and depends on the error at an
instant of time. It is important to mention that kp must not be negative for any reason.

Similar to kp, kd maps four linguistic values, namely dNM, dNS, dPS, and dPM
map to a single value S. kd can be zero (Z) according to the derivative error. The idea
of giving a zero value to kd is to reduce the oscillation caused by the slight variation of
the change in error. The range proposed for the kd gain goes from 0,1:4½ �.

e(t)/kp

NB B

NM S

NS S

ZE AZ

PS S

PM S

PB B

Table 1.
FAM of kP.

de tð Þ
dt =kd

dNB B

dNM S

dNS S

dZE Z

dPS S

dPM S

dPB B

Table 2.
FAM of kd.
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Ð
e tð Þdt=ki

iNB B

iNM M

iNS S

iZE Z

iPS S

iPM M

iPB B

Table 3.
FAM of ki.

Figure 9.
Linguistic variables for the output (a) kp, (b) kd, and (c) ki.
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ki does not present any alteration in how it computes its value. The range of
existence is 3:5,14:5½ �. The integral action eliminates the steady error; for this particu-
lar case, if ki is big enough, it compensates the error. If the error is small, the integral
of the error will also reduce its magnitude considerably.

The singleton is used as a membership function in the defuzzification phase to
reduce the computational cost when searching for the profit values. It is important to
respect this consideration since there is only one defuzzification phase in the conven-
tional fuzzy controller. In contrast, the proposal for this controller consists of three
fuzzy steps, one for each control gain. It is necessary to mention that this process is the
same for computing kd and ki. The centroid method, presented in Eq. 18, is used in the
defuzzification stage of each gain.

Kp,d,i n½ � ¼
Pn

i¼1μc zið Þ � ziPn
i¼1μc zið Þ

(18)

where μc zið Þ represents degree of membership function, and zi the position of the
singleton.

4. Simulations and results

Figure 10 shows the diagram of the model, which outputs the wheel axis’s slip,
current, and longitudinal speeds calculated from the wheel’s radius and angular
velocity. Tables 4 and 5 display the values of the parameters used for the simulation.

Figure 10.
Diagram model for simulation.

Parameter Value Units

Ra 1.41e�1 Ω

La 3e�3 H

Kτ 5.74e�3 Volt=rad

Ke 5.74e�3 N �m=Amp

b 3.97e�6 N �m � s
J 1e�4 kg �m

Table 4.
Parameters of the DC motor.
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The motor values correspond to a DC motor. Table 5 shows the values that were used
for the mechanical structure of the robot.

Assuming that the motor that is coupled to the robot’s wheel is fed at 12 V and only
the speeds and the slip are measured, we can say that the system is an open-loop
representation, whose behavior is shown in Figure 11 for each of the surfaces
presented in Table 6. In Figure 11a, it can be seen that when the tire crosses a dry
asphalt surface, the longitudinal velocity increases considerably and tries to equalize
the angular velocity. On the other hand, when the tire crosses a wet asphalt surface,
the longitudinal velocity takes longer to equal the angular velocity, as shown in
Figure 11b. Finally, the angular velocity tends to its maximum permissible value when

Parameter Value Units

GR 2.5 —

Q 0.37 —

rw 3.2e�2 m

tol 1e�10 —

m 1.14 kg

Table 5.
Parameters of the robot’s structure.

Figure 11.
Response of the Quarter-Car robot to surfaces (a) dry asphalt, (b) wet asphalt, and (c) ice.
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the tire makes contact with an ice-covered surface. In contrast, the longitudinal rate
grows negligibly as a function of time; see Figure 11c. This is because the coefficient
of friction is very close to zero, which means that the friction is zero, causing the tire
to tend to skid without moving considerably longitudinally.

The Algorithm 1 presents the way to compute the friction coefficient used for
simulation.

Algorithm 1:

Calculation of the coefficient of friction.
Función y = fcn(s)
B;
C;
D;
E;
if s<0 then
s ¼ abs sð Þ
μ ¼ �D sin Carctan Bs� E Bs� arctan Bsð Þð Þð Þð Þ

����
else
|μ ¼ D sin Carctan Bs� E Bs� arctan Bsð Þð Þð Þð Þ
end
y = μ;

The behavior of the robot as a function of longitudinal and radial speed is
presented in Figure 12, which contains the behavior over time of the difference in
rates, better known as sliding. As shown in Figure 11, the speeds of the wheel have
different magnitudes. This means that the angular speed is much more significant in
the first moments than the longitudinal speed. This behavior is without any controller,
so there is no device that regulates the speeds from the beginning of the operation.
However, in Figure 12, it can be seen that the slip tends to zero when the speeds reach
the same magnitude on dry and wet asphalt surfaces, Figure 11, while for the icy
surface, there is always a slip value, and the tire remains rotating without moving
longitudinally.

4.1 PID-like fuzzy controller results

For the design of the PID-like fuzzy controller, the methodology presented in the
section 3 was used; see Figure 13.

In order to solve the problem of different speeds, a slip controller will be designed
whose reference input is from a seven segments motion profile. The wheel–motor

Surface B C D E

Dry asphalt 19.25 1.65 0.92 0.6

Wet asphalt 15.8 1.6 0.62 0.6

Ice 9.8 1.45 0.1 0.6

Table 6.
Parameters for computing the coefficient of friction depending on the surface.
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system must ensure the same angular and longitudinal speed by following the change
in reference speed at any time. In Figure 14, the velocity profile is shown as input. It
goes through two integrators because the jerk profile is being generated, so when
integrating once, you get the reference acceleration, and the second time you get the
input velocity. The longitudinal velocity is compared concerning the motion profile.
The idea is that the rim moves according to the reference and can work with the
surfaces presented in Table 6. The difference between the reference speed and the
longitudinal speed produces the error, which is the input to the master controller. The

Figure 12.
Slip response to a 12 V input.

Figure 13.
PID-like fuzzy controllers and the Quarter-Car robot structure.

Figure 14.
Fuzzy controller.
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output of this controller is compared to the slip to generate an internal control loop to
prevent slippage.

The Quarter-Car and the control system used for the simulation are shown in
Figure 14. The diagram shows a cascade controller with a longitudinal speed master
loop and a current slave loop. Both control structures are based on fuzzy logic. For the
master loop, a self-tuning PID controller is used. This structure is shown in detail in
Figure 15. The same rules were used and the same number of linguistic values. The
difference lies in the range of operation of the linguistic variables of gains kp, kd, and
ki. These ranges were proposed from the PID controller answer from the previous
section. For the slave loop, a PI structure with self-tuning was proposed, and the same
strategy as the one mentioned above was used. Only the range of values of the input to
the internal kp and ki profit parts has been modified.

The ranges of values are smaller and are intended to compare the response of the
master controller with the slip produced by the tire and the selected surface to
evaluate.

The simulation result is shown in Figure 15, where each surface shows a similar
behavior when following the reference and where the angular and longitudinal veloc-
ities do not offer a significant displacement. This is to the slide controller function. For
example, in Figure 15, a dry asphalt surface is used, and it can be seen that the speeds
adhere to the reference. In 15–b, it can be seen that the longitudinal velocity tends to

Figure 15.
Response of the tire-motor plant to surfaces (a) dry asphalt, (b) wet asphalt y, (c) ice.
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decrease in magnitude, although the change in it is not significant. Finally, Figure 15c
shows the behavior of the angular and longitudinal velocities on an ice surface. It is
shown that the controller is reacting well, the longitudinal speed reduces its magni-
tude, and the angular speed follows the profile. The latter makes sense since the slip
functions the angular and longitudinal velocities. Therefore, the magnitude of the
velocities must be similar depending on the surface over which the plant moves.

The slip measured by the simulation is shown in Figure 16. As can be seen, there is
less slip for dry asphalt. This was to be expected since this type of surface provides a
better grip on the tires to the surface. On the other hand, we see that slip tends to
increase in magnitude when the robot’s wheel moves on a wet surface, similar to a
larger vehicle when it rains. Finally, when the surface contains ice, the landslide tends
to increase in magnitude since surfaces with ice have a minimal coefficient of friction,
causing the landslide to increase in magnitude if it is not controlled.

The current measured in the simulation is shown in Figure 17. The dry asphalt
surface presents a greater magnitude of current mainly due to the coefficient of
friction since there is always a grip; that is, there is a considerable friction force. When
the tire runs on a wet surface, it tends to decrease the coefficient of friction, making
this one turn more efficiently, thus reducing the current supplied to the motor.
Finally, when the surface is ice, the current tends to decrease since the wheel will tend
to slip, which means that the amount of current that is going to be injected into the
motor is less, and in order to compensate for the speed in the wheel or on the motor
shaft.

The final position or target position is deduced from the 7-segment profile.
Figure 18 shows the position of the system with its respective reference. Table 7
displays the values of the desired and measured positions of the different surfaces.

Table 8 shows the performance of the controllers against their respective surfaces
using the root mean square error (RMSE). As can be seen, the PID controller shows a
better performance than the fuzzy controller on a dry asphalt surface. The adaptive

Figure 16.
Slip behaviour.
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Figure 17.
Current consumption.

Figure 18.
Perfil de 7 segmentos.

Reference Dry asphalt Wet asphalt Ice

450 cm 450 cm 451.05 cm 455.2 cm

Table 7.
Final position values.
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PID-like fuzzy controller starts to increase its performance when there is a change of
surface, for example, for the wet surface. Finally, better performance is appreciated
when the surface is icy since the traction controller allows longitudinal speed to be
controlled by controlling the wheel’s speed, making the latter follow the reference.

5. Conclusions

The mathematical model of the motor and the wheel are used for the traction
controller. The angular speed, longitudinal speed, current, and slip are obtained from
this model. The current is used in the slave loop, whose objective is to brake the wheel
to compensate for the angular longitudinal speed through the motor shaft. The master
loop aims to follow an S-curve velocity profile. Three different surfaces were used for
the simulations: dry asphalt, wet asphalt, and ice.

A PID controller was implemented to make the comparisons, before the surfaces
mentioned above, with the fuzzy controller. The fuzzy controller design followed the
same methodology as the one used for the motion controller. This makes the adaptive
PID-like fuzzy controller master–slave design methodology easy to reproduce. The
PID controller worked well on wet and dry asphalt surfaces, but the controller no
longer compensated for speeds when the Quarter-Car robot was presented on an icy
surface. The same gains were used for all three trials. The fuzzy controller worked well
for all three surfaces, showing robustness to changing surfaces. For future work, a
type-2 fuzzy logic controller will be implemented to prove the type reduction algo-
rithms in embedded systems in the slip control applications.
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Abbreviations

PID Proportional-integral-derivative
DC Direct current
TCS Traction constrol system
FAM Fuzzy associative matrices
NB Negative big
NM Negative medium
NS Negative small
ZE Zero
PS Positive small

Structure Dry asphalt Wet asphalt Ice

PID 0.01498 0.01673 593.9

Fuzzy controller 0.01577 0.01658 0.01913

Table 8.
Performance values.
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PM Positive medium
PB Positive big
S Small
AZ Almost zero
B Big
RMSE Root mean square error
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Chapter 7

Methodology for the
Implementation of a Fuzzy
Controller on Arduino, MATLAB™
and Nexys 4™ Platforms
Jesus de la Cruz-Alejo, Hugo Beatriz-Cuellar,
Agustin Mora-Ortega and Maria Belem Arce-Vazquez

Abstract

This chapter presents a methodology to implement a fuzzy controller in different
hardware platforms, which can be used to control a system or process. The method-
ology proposes a programming algorithm to implement a fuzzy controller on the
Arduino UNO, Arduino DUE, Nexys 4™, and MATLAB™ platforms. The program-
ming algorithm uses two control statements (IF-THEN and FOR) and the basic math-
ematical operations. The fuzzy controller was designed for two input variables, one
output variable, five fuzzy sets for each variable, and a Mamdani type structure. An
analysis of convergence time, amount of memory, and control surface is performed to
ensure that the fuzzy controller on all platforms is satisfactory. MATLAB™ is used to
compare these platforms through numerical simulations, which demonstrates the
effectiveness of the proposed methodology. The experimental results of the fuzzy
controller are a processing time of 117 milliseconds and 40% of the memory of the
Arduino UNO, a processing time of 21.275 milliseconds and 5% of the memory of the
Arduino DUE, and a processing time of 17.871 milliseconds and 40% of the memory
on the Nexys 4™. Finally, a Mean Square Error of 0.0326, 0.0643, and 0.1125 was
obtained for MATLAB™, Arduino, and Nexys 4™, respectively.

Keywords: fuzzy controller, methodology, MATLAB™, Arduino, Nexys 4™

1. Introduction

Currently, most of the processes use a control system, which provides the neces-
sary conditions and guarantees the correct operation of the process to obtain the final
product. Additionally, there is a great variety of control systems, for example, neural
networks, PID controllers, robust control, sliding modes, PLC (Programmable Logic
Controllers), fuzzy controller, among others. On the other hand, the characteristics of
the process must be analyzed to select a control system, for example, the cost of the
control system, the software or hardware used for the implementation of the control
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system, the mathematical requirements used to analyze the process, variables, types
of sensors and actuators necessary to control the process, desired precision in the
process, advantages and/or disadvantages of the control system, among other things.
Therefore, this work shows a methodology for the implementation of a fuzzy con-
troller in different software or hardware platforms, since a fuzzy controller does not
need the mathematical model of the system, uses the experience or knowledge of a
person, does not use complex mathematical equations for its implementation, and
uses linguistic explanations (low, high, hot, cold, good, bad, etc.) to define process
conditions and control action. Therefore, a fuzzy controller is one of the best options
for controlling a process. Currently, fuzzy controllers are used in a wide variety of
processes or applications; for example, modeling and simulation of the Maximum
Power Point Tracking (MPPT) in photovoltaic solar energy systems [1–5], increase the
accuracy in determining the degree of diabetes in a person [6, 7], identification of hot
spots and analysis of the intensity of flames in pipes to prevent fires [8], improve the
performance of a grid-connected wind generator system [9–11], control of the output
voltage of a Boost converter [12], generate a suitable microclimate for an agricultural
greenhouse [13], among other applications. On the other hand, the proposed method-
ology uses two control statements (IF-THEN and FOR), and the basic mathematical
operations (addition, subtraction, multiplication, and division) for the design and
implementation of the fuzzy controller stages. Therefore, the proposed methodology
uses basic programming elements, which allows the fuzzy controller to be
implemented in different software or hardware platforms. In this work, MATLAB™
and the Arduino UNO, Arduino DUE, and Nexys 4™ boards are used to show the
correct operation of the proposed methodology. Also, Fuzzy Logic Toolbox™ is used
to simulate and analyze the operation of the fuzzy controller. Finally, the structure of
the chapter is as follows, Section 2 shows the procedure to implement the fuzzy
controller in the different platforms, Section 3 shows the simulation and experimental
results of the fuzzy controller, which was implemented in the different platforms, and
Section 4 presents the conclusions.

2. Description of the methodology

The methodology proposes a programming algorithm, which allows implementing
a fuzzy controller on different hardware and software platforms, which have different
technical characteristics. In this case, MATLAB™ and the Arduino UNO, Arduino
DUE, and Nexys 4™ boards are used to show the correct operation of the proposed
methodology. The Arduino UNO board uses the ATmega328P microcontroller, which
has a 32 KB Flash memory, a 2 KB SRAM memory, and a 1 KB EEPROM memory. In
addition, this board has a 16 MHz clock speed, 14 digital input or output pins, 6 analog
inputs with a 10-bit resolution, and 8 PWM outputs, and its programming language is
based on the C/C++ language. The Arduino DUE board uses the SAM3X8E microcon-
troller, which has a 512 KB Flash memory and a 96 KB SRAM memory. In addition,
this board has a clock speed of 84 MHz, 54 digital input or output pins, 12 analog
inputs with a 12-bit resolution, 2 digital-analog converters, and 12 PWM outputs, and
its language of programming is based on the C/C++ language [14, 15]. The Nexys 4™
board model XC7A100T-1CSG324C contains two external memories, a 128Mbit cel-
lular RAM and a 128Mbit non-volatile serial Flash device. In addition, this board has a
clock speed of 100 MHz, USB ports, an Ethernet port, a micro-SD port, a micro-USB
port, a VGA port, accelerometer, temperature sensor, digital microphone, speaker
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amplifier, 16 user switches, 16 user LEDs, two 4-digit 7-segment displays, two three-
color LEDs and its programming language is VHDL [16, 17]. Additionally, the ISE
Project Navigator 14.7 software was used to program the Nexys 4™ board, and the
Arduino IDE (Integrated Development Environment) was used to program the
Arduino boards. Figure 1 shows the Arduino UNO, Arduino DUE, and Nexys 4™
boards. On the other hand, the fuzzy controller implementation is done in the
MATLAB™ Script, which is a program file that allows building a programming
algorithm and provides tools for displaying graphics in two and three dimensions.
Additionally, the MATLAB™ Script is used for the analysis, design, and simulation of
the different stages of the controller. Also, the fuzzy controller is implemented in
Fuzzy Logic Toolbox™, which is a MATLAB™ tool used to design, analyze, and
simulate a fuzzy controller. Therefore, the Fuzzy Logic Toolbox™ is used to analyze
the results obtained from the implementation of the controller on the different
platforms [18, 19]. Finally, this boards can be used to control a process, and the
selection of the board will depend on the characteristics of the process, for example,
the number of variables, sensors or actuators, the cost of the board, the cost of the
system, among other things.

2.1 Fuzzy controller design

The design of a fuzzy controller of the Mamdani type is carried out, which is made
up of the fuzzification, inference, aggregation, and defuzzification stages. On the
other hand, a fuzzy controller can use more than one input variable and can determine
more than one output variable; however, a fuzzy controller needs at least two input
variables and one output variable to function properly. If the number of input and
output variables of the fuzzy controller is increased, then the complexity of the fuzzy
controller implementation will increase. Figure 2 shows the structure of a fuzzy
controller of the Mamdani type. The design and implementation of a fuzzy controller
begins with the definition of the controlled variable of the process, for example,

Figure 1.
Board of (a) Arduino UNO, (b) Arduino DUE, and (c) Nexys 4™.

Figure 2.
Structure of a fuzzy controller of the Mamdani type.
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temperature, humidity, pressure, pH, among others. Subsequently, the input and
output variables of the controller must be defined. For this, it must be considered that
the input variables of the fuzzy controller are used to measure the state or condition of
the process, and the output variable of the fuzzy controller is the control action, which
will be used to adjust the controlled variable. Also, a universe of discourse must be
specified for each of the controller variable, which can be defined as the range of
values, where a specific value of the input or output variables can be found or
located. In other words, a universe of discourse is made up of the values that are
between the minimum and maximum values of a variable. On the other hand, a series
of linguistic values (low, high, good, bad, etc.) must be defined, which describe the
state or condition of the input and output variables of the controller. Subsequently,
within the universes of discourse of the controller variables, fuzzy sets must be
defined, which must be labeled with the name of the linguistic values. Also, the type
of fuzzy set that will be used to implement the controller must be defined. For this,
the computational load and the necessary programming elements must be considered.
Finally, these elements should be considered as the initial parameters of the fuzzy
controller [20].

The fuzzy controller should be used for a specific situation since this is the correct
way to show how to implement the fuzzy controller. Therefore, the fuzzy controller is
used to determine the tip of a food establishment, since this application is the simplest
to understand the operation of the fuzzy controller. This application will allow to
characterize the controller; that is, this application allows defining the input and
output variables of the controller, the length of the universes of discourse, type of
fuzzy sets, dimensions of fuzzy sets, among other things. In this case, the value of the
tip depends on the quality of the food and the service of the food establishment.
Therefore, a signal defined as “food” and a signal defined as “service” are used as
controller input variables, and a signal defined as “tip” is used as the controller output
variable. A universe of discourse from 0 to 100 was used for the input variables since
food and service can be evaluated with a score of 0 to 100. A universe of discussion
from 0 to 120 was used for the output variable, which represents the amount of
money from 0 to $120. However, the minimum value of the tip will be $20, and the
maximum value of the tip will be $100.

2.2 Fuzzy sets of controller variables

There is a great variety of types of fuzzy sets, which can be used for the imple-
mentation of a fuzzy controller. Figure 3 shows a triangular type of fuzzy set, which is
used to define the fuzzy sets of the input and output variables of the controller. This
type of fuzzy set uses the subtraction and division operations for its implementation in
software and hardware.

Figure 3.
Triangular fuzzy set.
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μ xð Þ ¼

0 si x≤ a
x� a
b� a

si a< x≤b

c� x
c� b

si b< x≤ c

0 si x≥ c

8>>>>><
>>>>>:

(1)

On the other hand, the accuracy of the process state measurement depends on the
number of fuzzy sets of the input variables. Similarly, the accuracy of the control
action to adjust the process depends on the number of fuzzy sets of the output
variable. Therefore, a process analysis must be performed to determine the number of
fuzzy sets for the input and output variables of the controller. In this case according to
the approximation error through simulations using five and seven, the approximation
error between five and seven was minimal. So, five fuzzy sets were defined for the
variable “food” labeled Very Bad (VB), Bad (BD), Regular (RG), Good (GD), and
Very Good (VG). Also, five fuzzy sets were defined for the variable “service” labeled
Very Bad (VB), Bad (BD), Regular (RG), Good (GD), and Very Good (VG). Also, five
fuzzy sets were defined for the output variable “tip” labeled Very Bad (VB), Bad
(BD), Regular (RG), Good (GD), and Excellent (EX). The dimensions of the fuzzy
sets depend on the importance of the control action; therefore, the length of the fuzzy
sets can be different. Finally, Figure 4 shows the dimensions of the fuzzy sets of the
variables of the fuzzy controller.

2.3 Fuzzification stage

The first stage of the fuzzy controller is fuzzification, which is used to transform a
real variable (“food” or “service”) into a fuzzy variable through the membership
functions. Fuzzification determines the fuzzy sets that indicate the state or condition
of an input variable. For this, the membership function μ(x) must be determined
using Eq. (1) [21–23]. The algorithm used to implement the fuzzification in the

Figure 4.
Fuzzy sets of the variables (a) food, (b) service, and (c) tip.
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MATLAB™ Script and on the Arduino UNO, Arduino DUE, and Nexys 4™ boards is
described below.

Eq. (1) is used to determine the μ(x) of the input variables (food or service), and IF-THEN conditional
statements are used to determine the fuzzy sets that define the condition of the input variables. FD and SV
are the value of food and service, respectively. Setfd and Setsv store the fuzzy set that indicates the state of
the input variables, Mf1 and Mf2 are the membership functions of the input variables, and a1, a2, b1, and
b2 are dimensions of a fuzzy set.

% MATLAB Script
if FD >= a1 && FD <= b1
Setfd = VB;
Mf1=(FD – a1) / (b1 – a1);
end
if SV >= a2 && SV <= b2
Setsv = VB;
Mf2=(SV – a2) / (b2 – a2);
end

// Arduino UNO/DUE
if (FD >= a1 && FD <= b1) {
Setfd =VB;
Mf1=(FD – a1) / (b1 – a1);
}
if (SV >= a2 && SV <= b2) {
Setsv =VB;
Mf2=(SV – a2) / (b2 – a2);
}

– Nexys 4™
if (FD >= a1 and FD <= b1) then
Setfd := VB;
Mf1:=((FD-a1)*(100))/(b1-a1);
end if;
if (SV>=a2 and SV<=b2) then
Setsv := VB;
Mf2:=((SV-a2)*(100))/(b2-a2);
end if;

2.4 Inference stage

The inference stage uses fuzzy rules, which represent the knowledge base of a
fuzzy controller and determine the controllability of the process. Fuzzy rules relate
the membership functions of the fuzzy sets that the input variables have. The result of
a fuzzy rule is a fuzzy set contained in the output variable obtained using the
Mamdani implication. The membership functions of the input variable fuzzy sets
indicate the state or condition of the process, and the fuzzy set of the output variable
indicates the control action for the process. Generally, fuzzy rules of the Mamdani
type have the structure shown in the Eq. (2), which are the most used for the
simulation and implementation of a fuzzy controller. The knowledge of a person can
be used, or the simulation of the process can be carried out to determine the fuzzy
rules. The inference stage determines the fuzzy sets that will be used in the
defuzzification stage. Finally, Table 1 shows the fuzzy rules that relate the member-
ship values of the fuzzification stage used to determine the inference matrix and with
it, the value of the tip [24, 25].

IF x is A AND y is B THEN z is C (2)

Service

Food VB BD RG GD VG

VB VB VB BD BD RG

BD VB BD BD RG RG

RG BD BD RG RG GD

GD BD RG RG GD GD

VG RG RG GD GD EX

Table 1.
Knowledge base or inference matrix of the fuzzy rules to determine the tip.
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Where: x and y are the input variables, z is the output variable, A and B are fuzzy
sets of the input variables, and C is a fuzzy set of the output variable.

The algorithm used to implement fuzzy rules in MATLAB™ Script and Arduino
UNO, Arduino DUE, and Nexys 4™ boards is described below.

Eq. (2) is used to declare fuzzy rules. Setfd and Setsv were defined in the fuzzification stage, and Settp
contains the result of the fuzzy rule (output fuzzy set).

% MATLAB Script
if Setfd==VB && Setsv==VB
Settp=VB;
end
if Setfd==VG && Setsv==VG
Settp =EX;
end

// Arduino UNO / DUE
if (Setfd==VB && Setsv==VB) {
Settp = VB;
}
if (Setfd==VG && Setsv==VG) {
Settp = EX;
}

– Nexys 4
if (Setfd=VB and Setsv=VB) then
Settp := VG;
end if;
if (Setfd=VG and Setsv=VG) then
Settp := EX;
end if;

Also, the inference stage must define a membership function μ(x) for the output
fuzzy set or result of a fuzzy rule. Generally, the inference method of the Mamdani type
(min-max) is used for the implementation of a fuzzy controller, which uses Eq. (3),
which selects themembership function of the input variable with theminimum value. In
this case, the IF-THEN control statement is used to determine the membership function
with theminimumvalue, which reduces the computational load and allows the inference
stage to be implemented on different platforms that cannot use the min (a, b) operation.
Finally, there are fuzzy rules that have the same result (output fuzzy set), which implies
that multiple membership functions can be associated with an output fuzzy set.

μC xð Þ ¼ min μA xð Þ, μB xð Þ, … , μM xð Þf g (3)

where: μA(x), μB(x),… , μM(x) are the membership functions of the input vari-
ables, and μC(x) is the membership function for a fuzzy set of the output variable.

The algorithm used to implement the inference method in MATLAB™ Script and
Arduino UNO, Arduino DUE, and Nexys 4™ boards is described below.

MfOut is the membership function of the output fuzzy set (result of a fuzzy rule), and the variables “Mf1”
and “Mf2” were defined in the fuzzification stage.

% MATLAB Script
if Mf1 > Mf2
MfOut = Mf2; % Mf2<Mf1
else
MfOut = Mf1; % Mf1<Mf2
end

// Arduino UNO / DUE
if (Mf1 > Mf2) {

MfOut = Mf2; // mf2<mf1
else

MfOut = Mf1; // mf1<mf2
}

– Nexys 4
if (Mf1 > Mf2) then

MfOut := Mf2; – mf2 < mf1
else

MfOut := Mf1; – mf1<mf2
end if;

2.5 Aggregation stage

The aggregation stage is used to determine and obtain the membership
functions μ(x) of the output fuzzy sets, which will be used in the defuzzification
stage. As mentioned above, the inference stage can associate multiple membership
functions to an output fuzzy set. Therefore, the aggregation stage uses Eq. (4) to
select the highest value of the membership function of the aggregation stage. In
this case, IF-THEN conditional statements were used to compare the multiple
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membership functions and obtain the highest value of the membership function.
This option reduces the computational load and allows the aggregation stage to
be implemented on different platforms, which cannot use the max (a, b)
operation [26, 27].

μC xð Þ ¼ max μC1 xð Þ, μC2 xð Þ, … , μCM xð Þð Þ (4)

where: μC(x) is the membership function of output fuzzy set, which will be used
for defuzzification, and μC1(x), μC2(x), … , μCM(x) are the membership functions
defined for the output fuzzy set.

The algorithm used to implement the aggregation stage in the MATLAB ™

Script and on the Arduino UNO, Arduino DUE, and Nexys 4™ boards is described
below.

Mftip is the membership function of the output fuzzy set, which will be used in the defuzzification, and
MfOut1, … , MfOut3 are membership functions, which were defined for an output fuzzy set.

% MATLAB Script // ArduinoUNO / DUE – Nexys 4

if MfOut1 >= MfOut2
Mftip = MfOut1;
else
Mftip = MfOut2;
end
if Mftip >= MfOut3
Mftip = Mftip;
else
Mftip = MfOut3;
End

if (MfOut1 >= MfOut2) {
Mftip = MfOut1;
else
Mftip = MfOut2;
}
if (Mftip >= MfOut3) {
Mftip = Mftip;
else
Mftip = MfOut3;
}

if (MfOut1 >= MfOut2) then
Mftip := MfOut1;
else
Mftip := MfOut2;
end if;
if (Mftip >= MfOut3) then
Mftip = Mftip;
else
Mftip = MfOut3;
end if;

2.6 Defuzzification stage

The last stage of the fuzzy controller is defuzzification, which is used to determine
a numerical value, which represents the output fuzzy sets. In this work, the
defuzzification value is determined using Eq. (5), which represents the centroid
method. The centroid method is used, since this method only requires the basic
operations of addition, subtraction, multiplication, and division for its implementa-
tion in software or hardware. The defuzzification value represents the rigid value of
the output controller, in this case, the value of the tip of the food establishment.
Finally, the defuzzification value represents the control action that must be performed
in a process [20, 28, 29].

defuzzification ¼ x1 ∗ μ x1ð Þ þ x2 ∗ μ x2ð Þ þ … þ xn ∗ μ xnð Þð Þ= μ x1ð Þ þ μ x2ð Þ þ … þ μ xnð Þð Þ
(5)

where: x1, x2, … , xn are values of the output variable (“tip”), which are found
within the fuzzy sets obtained for defuzzification, and μ(x1), μ(x2), … , μ(xn) are the
membership functions of x1, x2, … , xn.

The algorithm used to implement the defuzzification stage in the MATLAB
Script and on the Arduino UNO, Arduino DUE, and Nexys 4™ boards is described
below.
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Figure 5 shows the fuzzy set used to show the defuzzification process. Eq. (5) is used to determine
the defuzzification value. Mftip is the membership function defined in the aggregation stage, mfx is
the membership function of x, num1 and den1 are the numerator and denominator of Eq. (5),
respectively.

% MATLAB Script
Tpaso=(c - a) / 1000; x=a;
for k=1:1:1000
x = x + Tpaso;
if x >= a && x <= b
mfx = (x - a) / (b - a);
if mfx >= Mftip
mfx = Mftip;
end end
if x > b && x <= c
mfx=(c - x)/(c - b);
if mfx >= Mftip
mux= Mftip;
end end
num1=num1+(x*mfx);
den1=den1+mfx; end
% Defuzzification result
dzz=num1/den1;

// Arduino UNO / DUE
Tpaso=(c - a) / 1000; x=a;
for (k=1; k<=1000; k++){
x = x + Tpaso;
if (x >= a && x <= b){
mfx = (x - a) / (b - a);
if (mfx >= Mftip){
mfx = Mftip;
} }
if (x > b && x <= c){
mfx=(c - x)/(c - b);
if (mfx >= Mftip){
mux= Mftip;
} }
num1=num1+(x*mfx);
den1=den1+mfx; }
// Defuzzification result
dzz=num1/den1;

– Nexys 4™
Tpaso=(c - a) / 10; x = a;
for i in 0 to 10 loop
if (x >= a and x <= b) then
mux := ((x-a)*(100))/(b-a);
if (mfx >= Mftip) then
mfx := Mftip;
end if; end if;
if (x > b and x <= c) then
mux := ((c-x)*(100))/(c-b);
if (mfx >= Mftip) then
mfx := Mftip;
end if; end if;
num1 := num1+(x*mfx);
den1 := den1 + mfx;
end loop;
– Defuzzification result
dzz := num1 / den1;

2.7 Procedure for the implementation of a fuzzy controller in the process

As mentioned above, a fuzzy controller is used to control some variables of a
process; therefore, the controlled variable, the type of sensor to measure the con-
trolled variable, and the type of actuator (DC motor, stepper motor, fan, heater, etc.)
required to adjust the process must be defined. Additionally, the resolution of the
sensor (8 bits, 10 bits, 12 bits, etc.), the sampling rate of the sensor, the sensor
operating range, and the type of signal (the number of steps of a stepper motor,
minimum and maximum speed of a fan, PWM signal, etc.) required to control the
movement of the actuator must be determined to control a process using a fuzzy
controller. In this case, the sensor operating range is used to define the characteristics
of the input variables of the fuzzy controller and the working range of the actuator is
used to define the characteristics of the output variable of the controller [30]. Figure 6
shows a block diagram of a control system for a process, which uses a generic fuzzy
controller. The controller uses the error e(t) and the derivative of the error d(e(t))/dt
as input variables, the output variable is a control signal for the actuator (mvact).
Finally, a fuzzy controller does not allow an overshoot to be generated in the system

Figure 5.
Defuzzification using the centroid method.
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response like a classical controller. This is because a fuzzy controller relates the input
variables to the output variable through fuzzy rules of the IF-THEN type. So the
output response does not have oscillations in the output, and only the settling time
and rise time of the system response are short.

3. Experimental and simulation results

The analysis, design, and simulation of the programming algorithm for the fuzzy
controller were carried out in a MATLAB™ Script, which was used to perform an
analysis of its operation. Figure 7 shows the simulation of the fuzzy controller in the
MATLAB™ Script, Figure 7(a) shows the fuzzification of the “food” variable with a
score of 15, Figure 7(b) shows the fuzzification of the “service” variable with a score
of 35, and Figure 7(c) shows a defuzzification value or tip value of $31.61. Fuzzy
Logic Toolbox™ was used to determine the accuracy of the fuzzy controller, which
was implemented using the proposed methodology in the different platforms men-
tioned above. Therefore, the results of Fuzzy Logic Toolbox™ are considered as the
ideal results or correct results. The results of the fuzzy controller in the MATLAB™
Script (MS), Fuzzy Logic Toolbox™ (FLT), the Arduino UNO board (AUNO), the
Arduino DUE board (ADUE), and the Nexys 4™ board (NX4) are shown in Table 2.
The Mean Square Error (MSE) is used to as an analysis of the accuracy of the proposed

Figure 6.
Block diagram of the control of a process using a fuzzy controller.

Figure 7.
Result of (a) fuzzification of the food variable, (b) fuzzification of the service variable, and (c) defuzzification
value or tip value.
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methodology, which is summarized in Table 2. It can be seen that the fuzzy controller
implemented in the Arduino boards, Nexys 4™, and the MATLAB™ Script generate
almost the same MSE in all the examples. Also, the results show that the fuzzy
controller can estimate the optimal parameters and compensate the uncertainties and
nonlinearity of the system. As we can see, the error is minimal in the different
platforms. This is very important for the research presented here, which focuses on
the retention of experience and its subsequent instead of the mathematical model and
nonlinearities found in the system.

The MSE, which measures the error between two datasets, was used to determine
the accuracy of the proposed fuzzy controller. Eq. (6) was used to determine the MSE,
and the values of 0.0326, 0.0643, and 0.1125 were obtained for the Arduino UNO,
Arduino DUE, and Nexys 4™ boards, respectively. A high degree of accuracy is
obtained on the MATLAB™ and Arduino platforms, since their programming lan-
guage allows the use of a wide variety of variable types (integers, floating point, bit,
byte, etc.) and control statements (IF-THEN, FOR, WHILE, etc.). Finally, the preci-
sion of the Nexys 4™ board is lower, since this board does not allow the use of
floating-point numbers or real numbers.

MSE ¼ 1
n

Xn
i¼1

dni � yi
� �2 (6)

where n is the data number, dn is the desired value, and yn is the system result.
An analysis of the control surface or controllability of the process is carried out,

which is obtained from the fuzzy controller results. The control surface shows the
form, in which the process control will be performed. The control surface shows the
mapping of the input and output variables of the controller. The control surfaces for
the MATLAB™ Script, Fuzzy Logic Toolbox™, Arduino UNO board, Arduino DUE
board, and Nexys 4™ board are shown in Figure 8. We can see when achieving a
monotonic curve as Figure 8 has, means that do not exist large changes and for this,

Input variables Defuzzification (tip) Mean Square Error (MSE)

Food Service FLT MS AUNO/ ADUE NX4 MS AUNO/ADUE NX4

0 0 20.0 20.0000 20.00 20 0.0000 0.0000 0.00

10 20 28.4 28.3873 28.38 28 0.0000 0.0002 0.08

20 5 24.8 24.8278 24.83 25 0.0003 0.0004 0.02

30 40 45.4 45.3849 45.38 45 0.0001 0.0002 0.08

40 80 65.4 65.3849 65.38 65 0.0001 0.0002 0.08

50 25 40.0 40.0000 40.00 40 0.0000 0.0000 0.00

60 5 45.4 45.3849 45.38 45 0.0001 0.0002 0.08

70 95 75.2 75.1726 75.17 75 0.0003 0.0004 0.02

80 10 48.4 48.3873 48.39 48 0.0000 0.0000 0.08

90 45 71.6 71.6131 71.61 72 0.0000 0.0000 0.08

100 100 100.0 100.0000 100.00 100 0.0000 0.0000 0.00

Table 2.
Experimental results and simulation results of fuzzy controller.
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control action is smooth that means that the movement of the actuators works without
stress, since an unsmooth control action can damage the actuators in the process. The
control surface shows all the possible results of the controller; that is, the control
surface shows all the results of the variable “tip” for all possible combinations of the
variables “food” and “service.”

3.1 Characteristics of the implementation of the fuzzy controller

The amount of memory and the processing time are the most important aspects
when implementing a programming algorithm on a hardware board. Therefore, the
amount of memory and the processing time of the fuzzy controller should be ana-
lyzed. The fuzzy controller, which was implemented on the Arduino UNO board, has
a processing time of 117 ms and uses 40% of the board’s memory. The fuzzy control-
ler, which was implemented on the Arduino DUE board, has a processing time of
21.275 ms and uses 5% of the board’s memory. The fuzzy controller, which was
implemented on the Nexys 4™ board, has a processing time of 17.871 milliseconds and
uses 40% of the board’s memory.

3.2 Comparison between the methodology fuzzy controller proposed with
other works

As a comparison, the analysis of the accuracy of the fuzzy controller proposed
with different research works was taken into account, in which a fuzzy controller was

Figure 8.
Control surface of (a) Fuzzy Logic ToolboxTM, (b) MATLAB™ script, (c) Arduino boards, and (d) Nexys 4™
board.
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used. In this case, Refs. [31, 32] was used to compare the efficiency. Arduino Mega
2560 board and the Arduino UNO board are compared. Tables 3-5 show the results of
the fuzzy controller and the MSE of the data. As can be seen, the fuzzy controller
using the proposed methodology has a higher precision than the fuzzy controller
taking in consideration.

On the other hand, there are research works that use a computer to implement a
fuzzy controller and a hardware board as an interface to interconnect the
environment (physical variables) with the computer [33, 34]. This action can
increase the cost of the system and make it difficult to implement it in a process.
Table 6 shows the results of a fuzzy controller, which is implemented in MATLAB™
and used for the prediction of GSM tissue and wrinkle recovery angle of laser-
engraved denim [35]. Additionally, the results of the fuzzy controller implemented
using the proposed methodology and the MSE are shown. As can be seen, a high
degree of accuracy can be obtained in a process using the methodology proposed in
this work.

Light
intensity

Brightness (LED) Mean Square Error

Fuzzy Logic
Toolbox™

Fuzzy controller of
the Greenhouse
(Arduino Mega)

Proposed fuzzy
controller

(Arduino uno)

Arduino
MEGA

Arduino
UNO

523 450 450 450.00 0.0000 0.0000

498 455 455.85 454.93 0.3612 0.0024

78 850 850 850.00 0.0000 0.0000

57 850 850 850.00 0.0000 0.0000

218 810 808.5 809.60 1.1250 0.0800

213 820 818.4 820.00 1.2800 0.0000

693 267 269.2 266.70 2.4200 0.0450

689 276 278.9 275.64 4.2050 0.0648

801 250 250 250.00 0.0000 0.0000

688 278 281.2 277.80 5.1200 0.0200

Table 3.
Test of the light intensity of an LED using a diffuse driver.

PH Moisture
(%)

Experimental
results of the

process

Fuzzy controller
for fertilization
(MATLAB)

Proposed fuzzy
controller

(Arduino uno)

Mean Square Error

MATLAB Arduino UNO

5.3 43 0 ml 0 ml 0 ml 0.0000 0.0000

6.89 71 18 ml 18.35 ml 18.37 0.0612 0.0684

4.01 57 0 ml 0 ml 0 ml 0.0000 0.0000

7.15 59 23 ml 23.23 ml 23.31 ml 0.0264 0.0480

Table 4.
Results of the acid solution for the process using a fuzzy controller.
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4. Conclusions

In this work, a methodology was proposed to implement a fuzzy controller of the
Mamdani type on different platforms (software or hardware). The methodology is
based on the IF-THEN and FOR control statements, and mathematical operations
such as addition, subtraction, multiplication, and division, which are used to establish
each of the stages of a fuzzy controller (fuzzification, fuzzy rules, or defuzzification).
The key ideas explored are the use of programming languages such as VHDL, C++,
and MATLAB™. The operation of the fuzzy controller based on the proposed meth-
odology is tested using different examples, which are compared with the Fuzzy Logic
Toolbox™ (MATLAB™ tool). The results show that the fuzzy controller methodology
can improve the convergence of the system and improve the error properties. In
addition, the proposed methodology reduces the computational difficulty and the
computational load. Also, the procedure to implement the fuzzy controller in a pro-
cess is described. Compared to other works, the greatest contribution of this work is to
describe the elements to program and implement each of the stages of a fuzzy con-
troller in software or hardware. This will allow estimating the optimal parameters,

PH Moisture
(%)

Experimental
results of the

process

Fuzzy controller
for fertilization
(MATLAB)

Proposed fuzzy
controller

(Arduino uno)

Mean Square Error

MATLAB Arduino UNO

5.3 43 55 ml 54.68 ml 54.53 ml 0.0512 0.1104

6.89 71 0 ml 0 ml 0 ml 0.0000 0.0000

4.01 57 25 ml 25.49 ml 25.64 ml 0.1200 0.2048

7.15 59 0 ml 0 ml 0 ml 0.0000 0.0000

Table 5.
Results of the neutral solution for the process using a fuzzy controller.

Dots
Per
Inch

Pixel
Time

Fabric
weight
(GSM)

Fuzzy
controller
to predict
the GSM

Proposed
fuzzy

controller
(Arduino

uno)

Recovery
Angle

(Degree)

Fuzzy controller to
predict the angle of
recovery (Degree)

Proposed
fuzzy

controller
(Arduino

uno)

15 100 439 429 428.5105 77 75 75.00

15 150 411 409 408.8334 71 70.8 70.83

15 200 385 379 378.3335 66 64.5 64.54

20 100 400 409 408.8334 69 70.8 70.83

20 150 375 379 378.3335 65 64.5 64.54

20 200 354 348 348.1668 60 58.3 58.38

25 100 372 379 378.3335 62 64.5 64.54

25 150 345 348 348.1668 58 58.3 58.38

25 200 318 328 328.1575 52 54 54.23

Table 6.
Fuzzy controller to predict the strength values of laser-engraved denim seams.
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uncertainties, and nonlinearities of a dynamic system to control a system without the
mathematical model. Finally, simulations were shown to verify that the proposed
methodology, and the theoretical and experimental results are valid.
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Chapter 8

Performance Improvement for
Fighter Aircraft Using Fuzzy
Switching LQI Controller
Emre Kemer, Hasan Başak and Hayri Baytan Özmen

Abstract

In this work, a switching linear quadratic integral (LQI) controller based on fuzzy
logic is designed for the load-factor tracking problem of high-performance aircraft
referred to as the Aero-Data Model in Research Environment (ADMIRE). ADMIRE is
a new generation aircraft and has a wide flight operation envelope in terms of altitude
and speed. Hence, it is difficult to design a flight controller to achieve a high tracking
performance. First, the LQI controller is selected due to good tracking performance
and robustness in the model dynamics. Combining switching LQI controller and
fuzzy logic improves the transient performance of the closed-loop switched system.
The results obtained with the fuzzy switching controller have been compared with
the conventional LQI and the switching LQI in terms of robust demand tracking. The
simulation results have demonstrated that the fuzzy switching controller is superior
to the conventional LQI and switching LQI controllers due to better transient
performance and robust stability.

Keywords: fuzzy logic, switching control, LQI, load-factor tracking, fighter aircraft

1. Introduction

Conventional aircrafts have aileron, elevator, and rudder control effectors. Flight
control systems are generally developed using one control effector for each rotational
degree of freedom. The aileron is utilized to obtain a roll motion, a pitch motion is
obtained by using the elevator, and the rudder effector controls the yaw motion of the
aircraft. The control problem is the determination of the deflections of control effec-
tors that produce the desired motion specified by a flight controller that transfers the
pilot’s command given by a control stick. Three control effectors can generate desired
motions. However, modern aircrafts have more control effectors than conventional
aircrafts [1]. The design of reliable flight control systems is difficult for modern
aircrafts because these aircrafts are becoming more complicated. Also, the perfor-
mance of flight control systems must be very high and the stability of the aircraft has
demanded the development of different control systems [2]. In recent years, linear
control systems have been developed assuming that flight dynamics are linear time-
invariant about the operation points and the longitudinal dynamics are decoupled
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from lateral ones. Zhang et al. [3] proposed a mixed H2=H∞ flight controller using
enhanced linear matrix inequality, which stabilizes the aircraft system in case of
actuator loss. A gain scheduled linear quadratic regulator method is designed in [4] for
vehicle dynamics where the flight period is divided into different intervals because
flight condition varies during the flight. A proportional-integral-derivative (PID)
flight control system is investigated in ref. [5] whose performance is not satisfactory
due to uncertainties and nonlinearities of vehicle dynamics. A flight controller law is
designed based on optimal control theory in ref. [6] ensuring the reliability of aircraft
for pilot’s commands in case of all operating conditions. A resilient linear controller is
proposed by Bouvier et al. [7] for the dynamic of aircraft in the presence of a loss of
control authority. Offline reference regulators and robust control allocation flight
controllers were developed in ref. [8] for aerodynamic nonlinearities and parametric
uncertainties. Besides, nonlinear controller methods have been proposed by
researchers. For example, a nonlinear dynamic inversion control law is proposed by
Da Costa et al. [9] where the nonlinear dynamics are transformed into linear dynamics
using state or output feedback assuming timescale separation between attitude and
altitude rates. Nonlinear dynamic inversion controllers require precise knowledge of
all nonlinearities that is not possible for modern fighter aircraft [10]. Sliding mode
differentiator [11], disturbance observer-based sliding mode control [12], and distur-
bance observer-based dynamic surface controller [13] are developed considering
nonlinearities and external disturbances.

A backstepping control based on fuzzy logic system is designed in ref. [14] for
vehicle dynamics with state constraints and actuator fault. A fuzzy tracking controller
[15] was proposed to satisfy the properties of disturbance rejection in aircraft vehicles.
Takagi-Sugeno fuzzy robust controller was developed by Luan et al. [16] for the
problem of part transportation. An adaptive fuzzy controller [17] was designed for a
vehicle dynamic with input saturation.

In this chapter, we develop a control approach based on a switching control with a
fuzzy logic rule, which is evaluated in a nonlinear ADMIRE aircraft model. Combined
switching control with fuzzy logic has better tracking performance and strong
robustness for the nonlinear model of ADMIRE aircraft.

2. The ADMIRE aircraft model

The Aeronautical Research Institute of Sweden developed the ADMIRE model using
the generic aero-data model with dynamic models of an engine, actuators, atmosphere,
and sensors. The ADMIRE model has 12 states but generally, these states were reduced
to simply nonlinear dynamics of the system. The short-period longitudinal flight
dynamics governing the ADMIRE benchmark model are given as follows [18–20]:

_α

_q

����
���� ¼

Zα Zq

Mα Mq

� �
α

q

� �
þ Zδe Ztss

Mδe Mtss

� �
δe

tss

� �

nz ¼ nzα nzq
� � α

q

� �
þ nzα nzq
� � δe

tss

� �
(1)

where state variables α and q are the angles of attack and the Euler pitch rate,
respectively. The control inputs are the elevator angle, δe and throttle setting, tss,
respectively, and the output variable is load-factor, nz (Figure 1).
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3. Fuzzy switching control development

In this section, a fuzzy switching control will be developed for the ADMIRE fighter
aircraft. Figure 2 illustrates a schematic of the control structure. Here, linear quadratic
integral (LQI) control computes an optimal state feedback gain for the regulating
closed-loop system. The control law consists of the solution of the Riccati equation in
the linear-quadratic regulatory framework with the integral of the output variable.
The linearized dynamics of the aircraft at a trim condition with state-space realization
are given as:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ
y tð Þ ¼ Cx tð Þ þDu tð Þ (2)

The objective of the LQI control is to find the state feedback control law, such as

u tð Þ ¼ �K x tð ÞeI tð Þ½ �T (3)

where K is the feedback gain matrix, and eI tð Þ is the integral state for the output
variable. The optimal feedback law minimizes the quadratic performance index.

J ¼
ð∞
0

xTQxþ xTR u
� �

dt (4)

Figure 1.
ADMIRE aircraft model and control surfaces.

Figure 2.
Schematic of the control structure.
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In which Q is a positive semi-definite weight matrix, and R is a positive-definite
weight matrix.

Then, this control law guarantees that the output y tð Þ tracks the demand signal
r tð Þ. In fact, eI tð Þ is

eI tð Þ ¼
ðt
0
r τð Þ � y τð Þð Þdτ (5)

The state-space presentation of augmented dynamic is written as:

_x tð Þ
_eI tð Þ

����
���� ¼

A tð Þ 0

�C tð Þ 0

����
����
x tð Þ
eI tð Þ

����
����þ

B tð Þ
�D tð Þ

����
����u tð Þ (6)

To cover the flight envelope, the flight envelope is divided into some cells. Aug-
mented switched state-space model is given as:

_xσ tð Þ tð Þ
_eIσ tð Þ tð Þ

�����

����� ¼
Aσ tð Þ tð Þ 0

�Cσ tð Þ tð Þ 0

����
����
xσ tð Þ tð Þ
eIσ tð Þ tð Þ

�����

�����þ
Bσ tð Þ tð Þ
�Dσ tð Þ tð Þ
����

����u tð Þ (7)

The system matrices of Eq. (7) are rewritten as:

Aσ tð Þ Bσ tð Þ
Cσ tð Þ Dσ tð Þ

����
���� ¼

Ai Bi

Ci Di

����
����,i ¼ 1,… ,M (8)

where σ tð Þ is a switching rule that takes values {1, … , M}, M is the number of
subsystems. The switched control scheme is

u tð Þ ¼ �Kσ tð Þ x tð ÞeI tð Þ½ �T (9)

To design a fuzzy switching controller, ADMIRE flight envelope has been divided
into four overlapping cells as shown in Figure 3 with the dotted lines showing the
boundaries between cells. Here, the fuzzy switching control law is

u tð Þ ¼ �Kfuzzyσ tð Þ x tð ÞeI tð Þ½ �T (10)

The controller gains are designed using the data from each related cell center, and
the fuzzy switching controller is computed as follows, based on the fuzzy logic rule:

Kfuzzyσ tð Þ ¼

K1

K2

K3

K4

ρ1K1 þ ρ2K2

ρ2K2 þ ρ3K3

ρ3K3 þ ρ4K4

ρ1K1 þ ρ4K4

ρ1K1 þ ρ2K2 þ ρ3K3 þ ρ4K4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Alt≤ 1550 and Mach≤0:6,

Alt≤ 1550 and Mach≥ 1:1,

Alt≥4500 and Mach≥ 1:1,
Alt≥4500 and Mach≤0:6,

Alt≤ 1550 and Mach∈ 0:6,1:1ð Þ,
Alt∈ 1550, 4500ð Þ and Mach≥ 1:1,
Alt≥4500 and Mach∈ 0:6,1:1ð Þ,

Alt∈ 1550, 4500ð Þ and Mach≤0:6,

Alt∈ 1550, 4500ð Þand Mach∈ 0:6,1:1ð Þ,
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where ρi,i ∈ 1 4½ � aremultipliers for the related controllers as given in Figures 4 and 5.
Figure 4 illustrates fuzzy controller rules between two cells. One can see that multiplier
of the controller change linearly between active two cells, alsomultipliers of passive cells
remain zero. In addition, the change of the controller multipliers for overlapping four
cells is given in Figure 5.

4. Simulation results and discussion

This section represents simulation results and evaluates the performance of the
developed control law using MATLAB/Simulink. Three controller strategies are com-
pared in this section, which are the single LQI controller, the switched LQI controller
given in Eq. (9), and the fuzzy switching LQI controller given in Eq. (10). The single
LQI controller is designed for the data, which is taken at the center of the ADMIRE
flight envelope, whereas the switched controller is designed using the flight envelope,

Figure 3.
Flight envelope with the four overlapping cells.

Figure 4.
Fuzzy controller rules between two cells.
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which has been divided into four cells as shown in Figure 6 with the dashed lines
showing the boundaries between cells. The feedback gains of the switched controller
are computed based on the data of each cell center.

The simulation scenarios were performed to analyze the robust stability and perfor-
mance of the closed-loop system at flight conditions (Mach = {0.75, 0.9, 0.75} and
altitude = {5000, 1500, 4500} m). The pilot command is constricted such that the load-
factor Nz stays within the design limits -3 g < Nz <9 g over the flight envelope. Load-
factor demand and responses of the closed-loop system with the controllers at flight
condition of Mach = 0.75 and Alt = 5000 is illustrated in Figure 7. The load-factor
response with the single LQI is slower than the switched and fuzzy switching control-
lers. The switched controller has an oscillatory response during the switching, which is
an undesired effect during flight operation. Figure 8 gives the angle of attack and the
Euler pitch rate responses of the closed-loop system with the single LQI, switched, and

Figure 5.
Fuzzy controller rules for overlapping four cells.

Figure 6.
Flight envelope with the four cells.
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the proposed fuzzy switching LQI controllers. One can see from the bottom plot of
Figure 8 that the Euler pitch rate response has an oscillation during switching with the
switched controller. However, the proposed fuzzy switching controller has the best
transient performance. The corresponding control inputs to the related controllers are
given in Figure 9. Elevon deflection generates values between �4 deg. and 2 deg.
Oscillations are also seen in this elevon deflection and throttle setting, tss when the
switched controller is used. Figures 10 and 11 give the indexes of the switched control-
ler and the change in the coefficients of the fuzzy switching controller, respectively.
Feedback gains K1, K2 and K4 are employed for the switched controller, but all com-
puted controller gains are used with the fuzzy switching controller. Figure 12 illustrates
the trajectory movement in the flight envelope for the different controllers.

In the second scenario, simulation is started at flight condition Mach = 0.9 and
Altitude = 1500 m. Load-factor demand and responses of the closed-loop systems are

Figure 7.
Load-factor responses of the closed-loop systems at flight condition Mach = 0.75 and alt = 5000.

Figure 8.
State variables, the angle of attack, and the Euler pitch rate responses at flight condition Mach = 0.75 and alt =
5000.
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Figure 9.
Control inputs of the single, switched, and fuzzy switching controllers at flight condition Mach = 0.75 and
alt = 5000.

Figure 10.
Index of the switched controller gains at flight condition Mach = 0.75 and alt = 5000.

Figure 11.
Varying coefficients of the fuzzy switching controller at flight condition Mach = 0.75 and alt = 5000.

166

Advances in Fuzzy Logic Systems



given in Figure 13. Closed-loop response with the single LQI controller is the slowest
amongst the controllers. Load-factor tracking response settles a larger steady-state
error than the responses of other controllers. The switched controller has an undesired
oscillatory response during the switching instances. Figure 14 gives the angle of attack
and the Euler pitch rate responses of the closed-loop system with the single LQI,
switched, and the proposed fuzzy switching LQI controllers. The angle of attack
increases at t = 20 sec for a larger demand of load-factor. Input responses of the
related controllers are given in Figure 15. Throttle setting control input is the largest
with the switched controller. The single LQI controller requires 0.288 of the throttle
setting in the second scenario. Figures 16 and 17 display the index of the switched
controller and the varying coefficients of the fuzzy switching controller, respectively.
All computed feedback gains are employed with the fuzzy switching controller,
whereas feedback gains K1, K2, and K4 are used for the switched controller. Figure 18
illustrates the trajectory movement in the flight envelope for the different controllers.

Figure 12.
Altitude responses with the different controllers at flight condition Mach = 0.75 and alt = 5000.

Figure 13.
Load-factor responses of the closed-loop systems at flight condition Mach = 0.9 and altitude = 1500 m.
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Figure 15.
Control inputs of the single LQI, switched and fuzzy switching controllers at flight condition Mach = 0.9 and
altitude = 1500 m.

Figure 16.
Index of the switched controller gains at flight condition Mach = 0.9 and altitude = 1500 m.

Figure 14.
State variables, the angle of attack, and the Euler pitch rate responses at flight condition Mach = 0.9 and altitude =
1500 m.
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Figure 17.
Varying coefficients of the fuzzy switching controller at flight condition Mach = 0.9 and altitude = 1500 m.

Figure 18.
Altitude responses with the different controllers at flight condition Mach = 0.9 and altitude = 1500 m.

Figure 19.
Load-factor responses of the closed-loop systems at flight condition Mach = 0.75 and altitude = 4500 m.
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These simulation results also demonstrate the efficacy of the proposed fuzzy
switching controller.

In the third scenario, simulation is started at flight condition Mach = 0.75 and
Altitude = 4500 m. Load-factor demand and responses of the closed-loop systems are
given in Figure 19. It is clearly seen that the switched controller is unable to stabilize
the aircraft when the controller switches. Load-factor tracking performance is suc-
cessful with the fuzzy switching controller. The switched controller drives the closed-
loop system from stability to instability shown in Figures 20 and 21. The index of the
switched controller and the varying coefficients of the fuzzy switching controller are
given in Figures 22 and 23, respectively. Figure 24 illustrates the trajectory move-
ment in the flight envelope for the different controllers. The fuzzy switching control-
ler improves the load-factor tracking performance and enhances the stability of the
aircraft.

Figure 20.
State variables, the angle of attack, and the Euler pitch rate responses at flight condition Mach = 0.75 and
altitude = 4500 m.

Figure 21.
Input responses of the single, switched, and fuzzy switching controllers at flight condition Mach = 0.75 and
altitude = 4500 m.
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Figure 22.
Index of the switched controller gains at flight condition Mach = 0.75 and altitude = 4500 m.

Figure 23.
Varying coefficients of the fuzzy switching controller at flight condition Mach = 0.75 and altitude = 4500 m.

Figure 24.
Altitude responses with the different controllers at flight condition Mach = 0.75 and altitude = 4500 m.
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5. Conclusions

In this chapter, a fuzzy switching controller for the ADMIRE aircraft model has
been developed and verification of the control scheme was conducted using
MATLAB/Simulink. Here, a switching controller is designed for the stabilization of
high-performance aircraft. To improve the switching controller performance, the
fuzzy logic rule has been defined and used to obtain a robust stabilization control
structure instead of a single conventional LQI and the switched LQI controller.

The proposed controller scheme was compared with the standard switched and the
single conventional LQI controller for load-factor tracking and robust stability under
the load-factor variations. The main conclusions of the simulation results are given as
follows:

• The proposed fuzzy switching controller provides better transient performance
rather than the single conventional LQI and the switched controllers.

• The standard switch controller drives the ADMIRE aircraft nonlinear model from
stability to instability due to switching between controllers.

• The proposed fuzzy switching controller has significant potential to improve
tracking performance.

• The proposed fuzzy switching controller is effective in increasing the stability of
the nonlinear system.

• Therefore, the proposed fuzzy switching controller can be preferred to control
complicated and nonlinear aircraft systems. Future work will involve the stability
analysis of closed-loop systems under the fuzzy switching rule.
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Adaptive Neuro-Fuzzy Inference 
System-Based GPS-IMU Data 
Correction for Capacitive 
Resistivity Underground Imaging 
with Towed Vehicle System
Elmer Dadios, Jonah Jahara Baun, Mike Louie Enriquez, 
Adrian Genevie Janairo, Ronnie Concepcion II, 
Joseph Aristotle De Leon, Kate Francisco, Andres Philip Mayol, 
Argel Bandala and Ryan Rhay Vicerra

Abstract

This study proposes the utilization of an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) to correct the latitude and longitude of Global Positioning 
System (GPS) used in locating towed vehicle system for underground imaging. 
The input used was the collected data from a developed Real-time Kinematic 
Global Positioning System sensor integrated with Inertial Measurement Unit. 
Different ANFIS models were developed and evaluated. For latitude correction, 
ANFIS model with hybrid optimization trained at 300 epochs was chosen, whereas 
for longitude correction, ANFIS model with hybrid optimization trained at 100 
epochs was selected. Both models achieved the lowest Mean Squared Error (MSE), 
the highest Coefficient of Determination (R2), and lowest Mean Absolute Error 
(MAE). Moreover, selected best ANFIS models were compared to Long Short-Term 
Memory (LSTM) and Extreme Learning Machine (ELM) models, but the results 
showed that the ANFIS models have superior performances. The selected ANFIS 
models were verified by testing on the collected actual dataset and the visualized 
map demonstrated that the corrected GPS latitude and longitude have significantly 
reduced error, indicating that the fuzzy system with neural network capabilities is 
a cost-effective and convenient method for error reduction in vehicle localization 
making it applicable to be integrated for capacitive resistivity underground imag-
ing systems.

Keywords: adaptive neuro-fuzzy inference, global positioning system, inertial 
measuring unit, underground imaging, towed vehicle
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1. Introduction

Underground imaging is a noninvasive approach for creating a subsurface area 
model by transmitting low current, high alternating voltage, and low-frequency 
waves into the ground. This method has various applications such as detecting 
minerals, finding underground materials and faults, and detecting voids [1]. One of 
the techniques used in underground imaging is the capacitive resistivity (CR) method 
[1–3], where the ground-coupled transmitter and receiver antennas are designed 
and configured in a capacitive connection to measure resistivity by determining 
the potential difference [4–6]. The design of a capacitive resistivity imaging system 
can be either a single-pair antenna system that includes a transmitter and a receiver 
unit, or a multiple-antenna system with one transmitter and multiple receiver units 
[7]. Both systems use a vehicle towing mechanism during the surveying process, as 
presented in Figure 1, allowing for the mapping and location of buried utilities [8].

Accordingly, the CR method employs map-matching (MM) algorithms that utilize 
positioning sensors, such as the Global Positioning System (GPS) in combination 
with digital maps to determine the road link on which a vehicle is traveling and to 
obtain highly accurate data for mapping. GPS-based data collection is more efficient 
than traditional surveying and mapping approaches, requiring less equipment and 
labor [9]. It offers direct information on latitude and longitude coordinates without 
the need for angle and distance measurements between intermediary points. Despite 
its widespread use, GPS has some limitations that should be considered. For instance, 
GPS units cannot always provide locations with high accuracy beyond 3 meters, which 
could be problematic for certain applications. In addition, GPS devices rely on signals 
from at least four satellites to precisely pinpoint a location, and signal blocking or 
interference, such as in urban areas or under tree canopies, can impact performance. 
GPS accuracy may also be affected in environments with high ionospheric activity, 
such as during solar flares or geomagnetic storms. Finally, raw, uncorrected GPS data 

Figure 1. 
The placement of the GPS-IMU device utilized for localization and tracking of the capacitive resistivity towed 
antenna system used for underground imaging is illustrated.
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points may only be precise up to 5 meters, and a clear view of the sky is necessary to 
receive signals from GPS satellites [10, 11]. In capacitive resistivity imaging, lowering 
GPS accuracy error is critical for finding underground utilities and performing map 
matching, however, the mapping technology used in conjunction with GPS may not 
always be up-to-date or reliable, potentially leading to navigational errors [12, 13].

One known method to overcome the inaccuracy of mapping GPS sensor data alone 
is the IMU-GPS sensor fusion. This technique combines data from a GPS receiver and an 
Inertial Measurement Unit (IMU) to improve the accuracy and robustness of navigation 
and positioning systems [14]. It provides data regarding the orientation and acceleration 
of the device, while GPS provides information about its absolute position. By integrating 
the data from both sensors, the position and orientation estimates are more precise and 
reliable than the readings obtained from each sensor separately [14, 15].

In contrast to the state-of-the-art, which typically employs more conventional 
methods for localizing and land vehicle tracking, for instance, the Kalman filter, 
fuzzy logic is considered a commonly known artificial intelligence (AI) approach. 
Researchers in [16] created a strong Kalman filter utilizing vector tracking and 
integrated it with fuzzy logic to change filter parameters to follow weak signals in 
global navigation satellite system (GNSS) receivers. Thus, the results were superior 
to the standard procedure. Following this work, a fuzzy position correction method 
for latitude and longitude data from a GPS sensor was introduced, which was imple-
mented on Field-Programmable Gate Arrays (FPGA) to speed up rectification results. 
Compared to other models, the FPGA-based approach provided a 40,000× speedup 
[17]. Combining antenna optimization techniques and sensor fusion with AI has been 
introduced to increase GPS accuracy [18]. Even when employing an inexpensive GPS 
sensor for location-based applications, this effectively computed correct latitude 
and longitude data. In another study, the authors utilized an unscented Kalman filter 
(UKF) and an unscented H-infinity (UH) filter to track ground vehicle position 
using fuzzy logic to decide which to use at any given time, lowering error by 5.6% and 
enhancing GPS accuracy [19]. Moreover, a fuzzy system model was developed [20] 
that flexibly adjusts the noisy covariance values of the extended Kalman filter (EKF) 
by combining data from GPS, an odometer, IMU, and the automobile’s mathemati-
cal framework. This results in a 49% improvement in the precision of the vehicle’s 
absolute position [20]. Similarly, Zhu et al. employed EKF to fuse data from a four-
wheeled robot’s GPS, IMU, odometers, and camera. They created a fuzzy system to 
adjust the noisy covariances of the EKF. The strategy successfully improves the robot’s 
estimation of the trajectory to be followed by 80.6% [21]. These studies suggest that 
fuzzy logic has a great potential to be utilized for land vehicle tracking and localiza-
tion, providing higher accuracy than the traditional approaches.

One type of artificial intelligence that integrates the capabilities and strengths of 
both neural networks and fuzzy logic systems is the adaptive neuro-fuzzy inference 
system (ANFIS), which is used for analyzing input–output relations, can handle inac-
curate or imperfect data and has been useful to various domains such as in pattern rec-
ognition and predictive modeling [22]. Specifically, ANFIS has also been employed in 
the localization and tracking of land vehicles and shows significant findings in different 
scenarios. The work in [23] classified direct, multipath-affected, and non-line of sight 
(NLOS) findings using raw GPS measurements with an ANFIS algorithm. The correct 
classification rates were 100, 91, and 84%, respectively. Another study proposed an 
intelligent ANFIS system that modifies the position of a vehicle based on sensor data 
and latitude/longitude. According to the results, the fuzzy system outperformed the 
unscented Kalman filter by 69.2% [24]. Another study employs ANFIS to estimate an 
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IMU’s inaccuracy over time. While it refrains from specifically addressing GPS-IMU 
incorporation, it offers details on the application of ANFIS for IMU data error estima-
tion, and the outcome implies that the ANFIS could substantially enhance the accuracy 
of inertial navigation positioning, which is important for vehicle inertial navigation in 
intricate and covert settings [25]. Research by [26] presents an ANFIS-based approach 
to categorizing everyday life events using data collected by IMU sensors. Although 
it concentrates on identifying activities rather than GPS-IMU data correction, it still 
exhibits the usage of ANFIS in sensor fusion with a total accuracy of 98.88%. The real-
time deployment of ANFIS for vehicle navigation is proposed in [27]. When evaluated 
on a vehicle, the suggested model outperforms standard methods in terms of accuracy. 
The experimental findings proved the benefits of the suggested AI-based INS/GPS 
integration strategies in terms of robustness while maintaining real-time system 
location accuracy [27]. Although ANFIS has several advantages for GPS-IMU localiza-
tion and vehicle tracking, it is vital to evaluate the potential limits and challenges of 
employing this technology. In [24, 28], the study showed that one potential limitation 
of ANFIS is that it may necessitate a huge amount of data to accurately train the model, 
and ANFIS models can be complex and hard to understand, which renders it more 
challenging to comprehend how the model works and makes decisions, particularly for 
autonomous vehicle applications. Thus, future research still requires more exploration 
of ANFIS modeling to prove its advantages and disadvantages in certain fields.

In relation to this proposed study, the main objective is to correct the GPS sensor’s 
latitude and longitude coordinates to avoid complex mathematical operations and 
achieve a comprehensive location system embedded in a towed antenna system. Thus, 
it is critical to reduce the error in the accuracy of GPS receivers, which ensures the 
correct location of underground utilities and for map matching purposes. With that, 
this study aims to propose an intelligent system-based fuzzy logic using ANFIS, which 
takes the information from Real-time Kinematics (RTK) GPS sensors with integrated 
IMU’s linear acceleration and orientation data, which corrects the capacitive resistivity 
imaging system vehicle’s absolute position according to its latitude and longitude. This 
correction uses two fuzzy systems, one for latitude and the other for longitude, which 
will be trained using the ANFIS tool. The positioning correction system will be trained 
and tested with datasets from constructed Arduino-based RTK-GPS with Integrated 
IMU. Moreover, the developed models are compared to the performance of two neural 
network models – long short-term memory (LSTM) and extreme learning machine 
(ELM) for the comparison and validation of the proposed method. This research is 
expected to provide significant benefits, including (1) facilitating the integration of 
different measurement modalities and improving the interpretation and visualization 
of the data [29] which can enhance the understanding of the subsurface properties 
being investigated in capacitive resistivity imaging (CRI) systems, (2) aid in mapping 
the precise location of the underground utility objects being surveyed by the under-
ground imaging towed antenna system, and (3) the ability to automate data acquisition 
and processing, which can save time and reduce errors and provide more precise con-
trol over the measurement process, enabling more accurate and reproducible results.

2. Materials and methods

The proposed step-by-step procedures of how to correct the collected GPS sen-
sor’s latitude and longitude coordinates used to find the position of the towed array 
vehicle in an underground imaging system are presented in Figure 2. This provides a 
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functional view of how the whole research system works. The process starts with the 
hardware circuit development of an RTK-GPS sensor with an integrated IMU sensor, 
followed by the incorporation of a developed Arduino-based GPS/IMU integrated 
navigation algorithm to complete the device needed for GPS and IMU data collec-
tion, which is conducted through actual field testing. After collecting the data, three 
prediction models were developed: ANFIS, LSTM, and ELM, while the collected 
data were trained using these three models to predict the corrected GPS latitude and 
longitude. The prediction model with the highest accuracy was selected while LSTM 
and ELM prediction models were also used to validate the performance of ANFIS and, 
thus, utilized for final model testing of collected data.

2.1 Arduino-based RTK-GPS with integrated IMU

An Arduino-based RTK-GPS with an integrated IMU is a device that combines a 
real-time kinematic (RTK) global positioning system (GPS) with an inertial mea-
surement unit (IMU) using an Arduino microcontroller. The overall block diagram 
of how the RTK-GPS is combined with the IMU sensor is presented (Figure 3) to 
comprehend the overall system architecture and information flow between various 
functional parts. The RTK-GPS utilized is a Sparkfun SMA-ZED-F9P model, which 
is the highest-quality module for high-accuracy GNSS and GPS navigation solu-
tions, including RTK, with 10 mm three-dimensional accuracy, while the utilized 
IMU sensor is GY-85 9DOF Sensor that has nine axes which are triaxial gyroscope, 
triaxial accelerometer, and triaxial magnetic field. The RTK-GPS sensor can calculate 
the satellite position and velocity and provides a GPS raw pseudo-range that is the 
pseudo-distance between the satellite and GPS receiver, and the pseudo-rate specifies 
the velocity. Through this, the RTK-GPS sensor strengthens GPS signals for exact 
locations and velocities. On the other hand, the IMU sensor performs the coordina-
tion rotation, which is the process of aligning the axes of the IMU sensor with the axes 
of the vehicle where it is mounted. It also performs altitude determination. These two 
are significant aspects of sensor fusion in localization and vehicle tracking. Then, by 

Figure 2. 
Step-by-step process of GPS sensor’s latitude and longitude coordinates correction used for the capacitive resistivity 
underground imaging system.
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utilizing mechanization equations, the accelerometer, gyroscope, and magnetometer 
in the IMU sensor module offer information on linear acceleration, angular velocity, 
and magnetic field strength along three axes, also considering the estimation errors 
present in the computation process. If IMU errors are not dealt with or assessed cor-
rectly as part of a combined GPS-IMU system, these can cause major inaccuracies in 
location, velocity, and attitude calculation. To build the system, the RTK-GPS sensor, 
IMU sensor, Secure Digital (SD) card module, and LCD monitor are connected to 
the Arduino mega board using various interfaces such as serial peripheral interface 
(SPI), inter-integrated circuit (I2C), and universal asynchronous receiver/transmitter 
(UART). Once the components are connected, necessary libraries [30] are installed, 
and the algorithm for sensor fusion is written to read data from the RTK-GPS and 
IMU, store the data on the Secure Digital (SD) card, and display the data on the LCD 
monitor in real-time. Thus, providing an output of the GPS-IMU dataset.

To show the actual electrical connections between the components in the circuit, 
the electronic circuit diagram is presented (Figure 4) to create a powerful system 
that can provide high-precision positioning data and information about the device’s 
orientation and movement.

Overall, the RTK-GPS component provides high-precision positioning data [31, 32], 
while the IMU [32–34] component provides information about the device’s orientation 
and movement. Combining these two components can produce more accurate and reli-
able data than either component alone. By combining the functionalities of the RTK-GPS 
and IMU, the device provides more accurate and reliable data than either component 
alone [34]. As a result, it is a vital tool for a broad spectrum of applications requiring 
precise location and movement data. The setup function initializes the modules, sets 
the output rate of the RTK-GPS module to 20 Hz, creates a log file on the SD card, and 
initializes the 20 × 4 LCD. The loop function reads data from the RTK-GPS module, 
converts it into a more readable format, and writes it to the log file and LCD display. The 
data logged includes the latitude, longitude, mean sea level and accuracy. In addition, the 
code was designed to read data from the IMU sensor module, which contains an acceler-
ometer, a magnetometer, and a gyroscope. The data includes acceleration, magnetic field 
strength, and angular velocity in three axes, as well as gyroscope temperature.

Figure 3. 
Block diagram of the development of Arduino-based GPS-RTK with integrated IMU for sensor fusion.
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2.2 Integrated GPS-IMU data collection

Using the Arduino-based integrated GPS-IMU device with sensor fusion algorithm, 
a total of 2521 row data of GPS latitude and longitude, triaxial accelerometer, and 
triaxial magnetometer information were collected. The device was mounted in front of 
a testing vehicle while the circuit testing was conducted, starting from a specific point 
at Lumban, Laguna, and ending at De La Salle University (DLSU) Manila Campus.

The data from RTK-GPS with an integrated IMU sensor is acquired and logged 
through the connected SD card in the Arduino, and it automatically saves all the 
collected data in Comma Separated Values (CSV) files to be able to present the data in 
tabular format and efficient data processing. To verify if the collected actual data has 
significant errors, the collected GPS latitude and longitude data from the testing route 
were plotted into a map, as seen in Figure 5 (in red pin markers). The plotting of GPS 
latitude and longitude coordinates started by converting the saved CSV file into GPS 
eXchange Format (GPX) to properly store, exchange, and map GPS location data. 
MyGeodata Cloud is used in the conversion; this is an online converter tool that allows 
users to convert CSV files to GPX format in batch. Using Google Maps, the GPX file 
containing the collected GPS latitude and longitude is imported, and the map way-
points are automatically added and plotted. For the reference GPS points of latitude 
and longitude, the reference route is extracted from Google Maps and then converted 
to a GPX file. This GPX file is also plotted in Google Maps, as seen in Figure 5 (the 
blue line), for comparison and visualization. The collected reference GPS latitude and 
longitude data were also utilized as the target output for the prediction models. Thus, 
Figure 5 clearly represents the reference GPS data in the blue line and the plotted 
collected GPS data in red pin markers. From Figure 6, it is evident that the collected 
GPS data are not close to the reference route (blue line), which shows that there are 
inconsistencies and errors with the collected GPS data. The error is too large, which 
should be corrected using the ANFIS tool.

Figure 4. 
Circuit diagram of Arduino-based GPS-RTK with integrated inertial measurement unit.
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2.3 Adaptive neuro-fuzzy inference system modeling

ANFIS, an Adaptive Neuro-Fuzzy Inference System, is an intelligent system that 
combines the capabilities of Artificial Neural Network (ANN) and Fuzzy Logic 
Inference System (FIS) to bridge the gap that exists between the two [35–37]. This is 
a well-established technique that employs relational models to represent linear and 
nonlinear relationships between input and output parameters, taking into account the 
fact that human knowledge is often fuzzy and not strictly defined [35]. The function 
of the human nervous system is depicted by the Fuzzy Inference System (FIS), which 
is supported by the Artificial Neural Network (ANN). A neuro-fuzzy component 
forms each layer of the ANFIS, which can be recognized as a feedforward ANN that 
was developed by [36]. The input variables’ activation process will take place via the 
function parameters, which are trained using an optimization method defined by the 
input membership function (MF) and then passed on to the next neuron. Following 

Figure 5. 
Mapped collected GPS data points (red pin markers) and reference route (blue line) from Lumban, Laguna to 
DLSU.

Figure 6. 
Inconsistencies and errors of collected GPS data (red pin markers) with respect to the reference route (blue line).
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this, the activation values will be identified by the fuzzy rules and sent to the output 
MF before being transferred to the output node [35].

Through ANFIS, a fuzzy system may correct several inputs at the same time, and 
these multiple inputs employed in the ANFIS model are GPS latitude, GPS longitude, 
3-axis point coordinates of the accelerometer, and 3-axis point coordinates of the mag-
netometer. Two fuzzy systems are developed in this case, one for correcting the latitude 
and the other for longitude correction. The combined GPS and IMU sensors provided 
the same data to both fuzzy systems. The data used for training and testing are collected 
data through the GPS-RTK with an integrated IMU sensor. In particular, the subcluster-
ing method was utilized for FIS generation in the two models-latitude and longitude, 
as it demonstrated the best performance during algorithm pre-evaluation. This method 
generates a Sugeno-type FIS structure that is utilized to initialize the membership func-
tion parameters (Figures 7 and 8) [38]. This method involves dividing the input space 
into several subsets, known as clusters, and identifying the optimal number of clusters 
required to represent the input space accurately [39]. Once the clusters are identified, 
the corresponding membership function parameters are initialized based on the cluster 
centers and widths. This initialization allows for faster and more accurate training of 
the ANFIS network using two different optimization methods.

Figure 7. 
Sugeno-type FIS for training the latitude ANFIS model.

Figure 8. 
Sugeno-type FIS for training the longitude ANFIS model.
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In the ANFIS tool, the range of influence was configured to 0.25 to allow the 
model to create smaller data clusters and produce more fuzzy rules. The squash factor 
is 0.6 to also create more and smaller data clusters. The acceptance ratio value is 0.25, 
which is greater than the rejection ratio value of 0.15. For each of the two models, four 
models are generated by changing the number of epochs of either 100 or 300 and 
altering the optimization methods used-hybrid, which is the combination of back-
propagation and least mean squared error method and backpropagation. The best 
model will be selected based on which has the lowest error in training and testing.

For the latitude correction ANFIS model (Figure 9), the resulting ANFIS struc-
ture has eight inputs and one output node with 21 input MF for each input, generating 
21 fuzzy rules and 389 nodes. The eight inputs represent the collected GPS latitude 
and longitude data points, the 3-axis coordinates of the accelerometer, the 3-axis 
coordinates of the magnetometer, and the reference latitude as the targeted output. 
The rest of the other latitude models followed the same structure and configuration 
of the network.

Figure 10. 
ANFIS subclustering network structure for corrected longitude prediction.

Figure 9. 
ANFIS subclustering network structure for corrected latitude prediction.
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Moreover, Figure 10 shows the resulting ANFIS structure of the longitude cor-
rection ANFIS model that has eight inputs-the collected GPS latitude and longitude 
datapoints, 3-axis coordinates of the accelerometer, and 3-axis coordinates of the 
magnetometer, and reference longitude as the target output with 32 input MF for 
each input allowing to producing of 32 fuzzy rules and 439 nodes. All the simulated 
longitude models followed the same structure and configuration of the network.

2.4  Long short-term memory (LSTM) and extreme learning machine (ELM) 
modeling

A special kind of Recurrent Neural Network that can recognize long-term depen-
dencies is known as Long Short-Term Memory Network or LSTM. LSTMs are designed 
specifically to avoid the long-term dependence problem [40]. Their behavior is set up 
to make retention of memory over time their default setting. Therefore, they perfectly 
compare time series forecasting [40]. This study employs LSTM to develop prediction 
models for latitude and longitude correction. The hyperparameters used in modeling 
are presented in Table 1. A three-layer LSTM network was simulated with different 
combinations of hidden neurons on each layer. Hidden layer 1 comprises 500, 1000, 
and 1500 hidden neurons; hidden layer 2 has 700, 500, and 300 hidden neurons, while 
hidden layer 3 shall consist of 300, 200, and 100 hidden neurons. These different 
combinations of hidden neurons were modeled with three various training epochs of 
100, 200, and 300 to generate several combinations of LSTM prediction networks. 
Moreover, the training optimizer used is “sgdm” or the Stochastic Gradient Descent 
with momentum with a set initial learning rate of 0.001, a mini-batch size of 128 to 
learn the common patterns as important features, and a gradient threshold of 1.

On the other hand, Extreme Learning Machine or ELM is also applied to generate 
prediction models. ELMs are feedforward neural networks having one or more layers 
of hidden nodes that are used to analyze data and predict values [41]. These hidden 
nodes’ parameters require no adjustment for selecting features, compression, cluster-
ing, classification, or sparse estimation [41]. To ensure lower error rates, weights 
to these concealed nodes may be assigned using the stochastic projection method, 
or these nodes can be passed down from their predecessors and not changed. In 
contrast to conventional gradient-based methods of learning for feedforward neural 
networks, ELM offers intriguing and important characteristics [42]. In comparison to 

Hyperparameters Value

Number of Hidden Neurons in Layer 1 500, 1000, 1500

Number of Hidden Neurons in Layer2 700, 500, 300

Number of Hidden Neurons in Layer 3 300, 200, 100

Number of Epochs 100, 200, 300

Training Optimizer “sgdm”

Initial Learning Rate 0.001

Mini-Batch size 128

Gradient Threshold 1

Table 1. 
Hyperparameters used in LSTM prediction modeling of latitude and longitude.
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gradient-based learning, ELM learning progresses far more quickly and performs well 
in generalization [43]. The hyperparameters used in the simulation of ELM models 
for latitude and longitude prediction are summarized in Table 2. A single-layer ELM 
is used, thus producing various models by simulating the different numbers of hidden 
neurons, which are given as 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 
while the selected activation function applied is the “radbas” or the radial basis func-
tion for good generalization and fast training.

2.5 Evaluation metrics for prediction model performance

The performance of the developed prediction models for latitude and longitude 
correction was evaluated using mean square error (MSE), root mean square error 
(RMSE), coefficient of determination (R2), and mean absolute error (MAE).

MSE calculates the average difference of squares between predicted and true 
values. MSE is used to assess the model’s quality based on predictions made across the 
entire training dataset versus the true label/output value. Lower MSE values suggest 
that the model is more accurate, and this is defined mathematically by (1):
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The average difference between expected and actual values in a dataset is 
 measured using the root mean square error (RMSE). The RMSE measures how dis-
tributed the residuals are, showing how closely the observed data clusters around the 
predicted values. Mathematically, RMSE is calculated as the square root of the MSE.

The coefficient of determination (R2) is a measure of how well the values fit in 
comparison to the original values. It calculates the percentage of the total variation 
in the variable that is dependent which can be explained by the model’s independent 
variables. The value is obtained as a percentage and ranges from 0 to 1. The greater 
the value, the better the model. It is calculated using (2).
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Finally, MAE indicates the difference between the true and predicted values, 
which is calculated by averaging the absolute difference over a given data set. It is 
typically utilized when measuring performance using continuous variable data. 

Hyperparameters Value

Number of Hidden Neurons 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Activation Function “radbas”

Table 2. 
Hyperparameters used in ELM prediction modeling of latitude and longitude.
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It returns a linear number that equalizes the weighted individual differences. The 
smaller the value, the greater the performance of the model. It is computed using (3).

 
=

−
=
∑ 

1

n
i ii
y y

MAE
n

  (3)

where n  is equal to the number of data points, iy  is the observed values, and 

iy  is 
the predicted values.

3. Results and discussion

3.1 Analysis of results of ANFIS-based GPS-IMU data correction models

Different combinations of ANFIS optimization algorithms and several epochs are 
applied to train and test the data to select the best ANFIS model for GPS latitude and 
longitude correction. The 2521 input and output data rows were divided into training, 
validation, and test data. About 55% is used as training data, 25% for validation, and 
20% for testing. The input data used are collected actual data, specifically the GPS 
latitude and longitude coordinates, 3-axis coordinates of the accelerometer, and 3-axis 
coordinates of the magnetometer, while the output data used is the extracted reference 
GPS latitude and longitude from Google Maps. The simulated models are further quan-
tified numerically using training RMSE, validation RMSE, and testing RMSE. Presented 
in Table 3 is the summary of simulated ANFIS models with different hyperparameters 
for latitude correction. Model 1 corresponds to the ANFIS latitude correction model, 
which resulted in four models known as models 1A, 1B, 1C, and 1D. In model 1A, hybrid 
optimization is applied, and after 100 epochs, the model training has stopped attain-
ing training RMSE of 0.009121, validation RMSE of 0.008567, and testing RMSE of 
0.012093. On the other hand, model 1C with the backpropagation algorithm applied 
was trained for 100 epochs, achieving training RMSE of 1.101670, validation MSE of 
1.136290, and testing RMSE of 4.383700. Similarly, model 1D with the backpropagation 
algorithm at 300 epochs obtained a low training RMSE of 1.090430, validation RMSE 
of 1.114220, and testing RMSE of 4.473100. However, model 1B with a hybrid optimiza-
tion algorithm achieved the lowest training RMSE of 0.008770, 0.008300 validation 
RMSE, and 0.011814 testing RMSE at 300 training epochs. It is evident that model 1B 
significantly exhibited the best training and test results out of the other models for GPS 
latitude correction using the simulated ANFIS tool.

Model 1 Optimization Algorithm Epochs Training 
RMSE

Validation 
RMSE

Testing 
RMSE

1A Hybrid 100 0.009121 0.008567 0.012093

1B Hybrid 300 0.008770 0.008300 0.011814

1C Backpropagation 100 1.101670 1.136290 4.383700

1D Backpropagation 300 1.090430 1.114220 4.473100

Table 3. 
Summary of simulated ANFIS models with different hyperparameters for latitude correction.
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Moreover, the summary of simulated ANFIS models for different combinations of 
hyperparameters for GPS longitude correction is presented in Table 4. In contrast to 
model 1, model 2 represents the ANFIS longitude correction model, which resulted 
in models 2A, 2B, 2C, and 2D models. Model 2C with the backpropagation algorithm 
applied was trained for 100 epochs, achieving a high training RMSE of 0.766548, 
validation MSE of 0.773640, and testing RMSE of 3.360600. But model 2D with 
a backpropagation algorithm at 300 epochs obtained the highest training RMSE 
of 0.915090, validation RMSE of 0.905851, and testing RMSE of 2.565400. With a 
hybrid optimization algorithm applied, model 1A and model 2B resulted in the lowest 
and same values of training RMSE, validation RMSE, and testing RMSE of 0.007361, 
0.007100, and 0.015321, respectively. However, based on the training results, model 
2B seems to overfit the training data and has a more complex model with higher com-
putational resources required for training because of the higher training epoch value. 
Thus, the superior performance of model 2A in correcting GPS longitude is apparent 
as it has shown significantly better training and test results than the other models.

3.2 Analysis of results of GPS-IMU data correction models using LSTM and ELM

To compare and validate the results of the simulated ANFIS models, different 
LSTM and ELM models were also simulated to achieve their best-offered models. The 
2521 input and output data rows were split into training, validation, and test data, as 
with ANFIS models. About 55% of the data is used for training, 25% for validation, 
and 20% for testing. The input data consists of actual data, particularly GPS latitude 
and longitude coordinates, accelerometer 3-axis coordinates, and magnetometer 
3-axis coordinates. In contrast, the output data is the extracted reference GPS latitude 
and longitude from Google Maps. The simulations of LSTM models for latitude and 
longitude prediction were done in MATLAB. A total of nine combinations of LSTM 
networks using the different set hyperparameters have been modeled. From the 
different combinations, the results of the best combinations of the LSTM model are 
shown in Table 5. The table shows that an LSTM network comprised of 1500–700-
300 hidden neurons for each of the three hidden layers with 300 epochs is the best 

Model 2 Optimization Algorithm Epochs Training 
RMSE

Validation 
RMSE

Testing 
RMSE

2A Hybrid 100 0.007361 0.007100 0.015321

2B Hybrid 300 0.007361 0.007100 0.015321

2C Backpropagation 100 0.766548 0.773640 3.360600

2D Backpropagation 300 0.915090 0.905851 2.565400

Table 4. 
Summary of simulated ANFIS models with different hyperparameters for longitude correction.

Parameter LSTM Network Epochs Training RMSE Validation RMSE Testing RMSE

Latitude 1500–700-300 300 0.106777 0.100347 0.101889

Longitude 1500–700-300 200 0.145039 0.149588 0.149149

Table 5. 
Results of best LSTM models for latitude and longitude correction.
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model for latitude correction among the other simulated models. This model obtained 
the least training RMSE of 0.106777, validation RMSE of 0.100347, and testing RMSE 
of 0.101889. Moreover, the best simulated LSTM model for longitude correction is 
the combination of 1500–700-300 hidden neurons for each of the three hidden layers 
with less training epochs of 200. Thus, this selected model obtained the least training 
RMSE of 0.145039, validation RMSE of 0.149588, and testing RMSE of 0.149149.

Compared to the LSTM models, Table 6 also provides the results of the highest-
performing simulated ELM models for latitude and longitude correction. From the 
results, the ELM network with 100 hidden neurons indicates the least training, vali-
dation, and testing RMSE for latitude and longitude correction. The training RMSE 
of the selected highest-performing ELM model for latitude correction is 0.72205, 
the validation RMSE is 0.78897, and its testing RMSE is 0.79802. On the other hand, 
the training RMSE of the highest-performing ELM model for longitude prediction is 
0.109437, with a validation RMSE of 0.119175 and training RMSE of 0.138129.

3.3 Comparison of results between ANFIS, LSTM, and ELM

Using 25% of the collected data as validation data for model evaluation, the 
selected best ANFIS model performance is compared to the selected highest-perform-
ing LSTM and ELM models for latitude correction which is presented in Table 7. In 
terms of MSE, the selected best ANFIS model, model 1B from Table 3, showed signifi-
cantly superior results compared to the LSTM and ELM models, which is 0.000069. 
Other evaluation metrics such as the R2 and MAE of 0.995479 and 0.000375, respec-
tively, also signify that the best ANFIS model still offers superior performance.

Furthermore, among the simulated highest-performing ANFIS, LSTM, and ELM 
prediction models for longitude correction in Table 8, the ANFIS model, which is 
model 2A from Table 4, still has the most superior performance with attained MSE, 
R2, and MAE of 0.000050, 0.997675, and 0.000042, respectively.

A scatter plot is presented to visualize the performance of the ANFIS models using 
the validation data (Figures 11 and 12) to compare further the relationship between 
the reference latitude/longitude and the predicted corrected latitude/longitude. The 
given plot is clear and concise, indicating a strong relationship between the predicted 
and response variables. The predicted latitude/longitude values are close enough to 
the reference latitude/longitude values as the points cluster around the trend line.

Parameter ELM Hidden Neuron Training RMSE Validation RMSE Testing RMSE

Latitude 100 0.072205 0.078897 0.079802

Longitude 100 0.109437 0.119175 0.138129

Table 6. 
Results of best ELM models for latitude and longitude correction.

Model MSE R2 MAE

ANFIS 0.000069 0.995479 0.000375

LSTM 0.010070 0.250617 0.006071

ELM 0.001746 0.931812 0.002186

Table 7. 
Summary of the evaluation metrics for the selected best models for GPS latitude correction.
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Therefore, the simulated ANFIS models still outperformed the LSTM and ELM 
models, which proved that these models can combine the advantageous features 
of neural networks and fuzzy logic in one framework. In giving better accuracy in 

Model MSE R2 MAE

ANFIS 0.00005 0.997675 0.000042

LSTM 0.022376 0.110682 0.001096

ELM 0.004519 0.855484 0.000425

Table 8. 
Summary of the evaluation metrics for the selected best models for GPS longitude correction.

Figure 11. 
The resulting scatter plot of the predicted corrected latitude of the selected most superior ANFIS model versus the 
reference latitude data.

Figure 12. 
The resulting scatter plot of the predicted corrected longitude of the selected most superior ANFIS model versus the 
reference longitude data.
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predicting the corrected latitude and longitude. The comparison of results also proved 
that ANFIS is a promising method for localization and tracking vehicles utilizing GPS 
and IMU data. In terms of generalization, ANFIS has demonstrated high generaliza-
tion capability, which increases its robustness and accuracy when transforming fuzzy 
sets into crisp inputs [22].

3.4  Visualization results of the actual collected dataset by applying the selected 
best ANFIS models

To confirm the robustness of the selected best models, 2521 collected actual GPS-
IMU datasets obtained from the conducted testing from Lumban, Laguna to DLSU, 
without the need of splitting the data, were used to test and visualize the ANFIS model 
performances. These actual datasets consist of the uncorrected GPS latitude and 
longitude coordinates. On the other hand, the corrected GPS latitude and longitude 
were predicted using the selected highest-performing ANFIS models (ANFIS model 1B 
for latitude and model 2B for longitude). The visualized map of the plotted actual GPS 
latitude and longitude dataset and the predicted corrected GPS latitude and longitude 
through ANFIS are presented in Figure 13. It shows that the uncorrected set of GPS 
latitude and longitude was too outlying and very distant from the predicted corrected 
output values generated by the ANFIS models. This signifies that the selected ANFIS 
models have the best performances to predict the correct GPS latitude and longitude.

The response of the predicted corrected GPS coordinates using the selected ANFIS 
models concerning the reference route and collected actual GPS coordinates are 
shown (Figure 14). The result of the plotted corrected GPS latitude and longitude 
coordinates (in green dotted line) is almost near the reference GPS coordinates (in 
blue line) compared to the collected actual GPS latitude and longitude (in red pin 
markers). According to the results, the proposed ANFIS models, that is, the fuzzy 
system combined with neural network capabilities, achieved better error reduc-
tion without the need to identify the system’s noise type, as it was trained on the 

Figure 13. 
Visualization maps of the uncorrected GPS coordinates (red pin marker) versus the predicted corrected GPS 
coordinates (green dots).



Advances in Fuzzy Logic Systems

194

data region. This makes it a more convenient and cost-effective option than other 
state-of-the-art approaches. In the given noisy collected actual dataset, the selected 
ANFIS models have been proven to address the challenging and nonlinear problems 
while minimizing complexity in computation [27]. Because ANFIS models may be 
implemented in real-time, they are well suited for applications that demand rapid 
and precise data processing, particularly suitable for the localization and tracking 
of vehicle position [27]. Integrating the ANFIS models into the capacitive resistivity 
underground imaging towed antenna system can offer great significance in mapping 
the precise location of the surveyed underground utility objects.

However, verifying further the ANFIS models’ performance requires the recol-
lection of new GPS latitude and longitude datasets and testing this new data to the 
simulated ANFIS models. This is considered as the lacking approach of this study that 
can be done for future research. Additionally, to maximize the ANFIS model perfor-
mance, it suggests retraining and adjusting the hyperparameters when tested in newly 
collected actual data. Also, the study’s results can be further evaluated by comparing 
them with other methods of sensor fusion such as the use of other machine learning 
models which will be the next direction of the paper.

4. Conclusion

The CR method utilizes GPS to create accurate maps quickly and with less 
 equipment and labor than traditional surveying. However, errors can occur due to GPS 
sensor accuracy, digital map quality, and map-matching errors. To improve accuracy, 
an IMU-GPS sensor fusion method can be used. Environmental factors can still cause 
GPS sensors to fail, so reducing errors in GPS receiver accuracy is crucial for correct 
underground utility location and map matching. The study proposes using fuzzy logic 
with ANFIS to correct the latitude and longitude of the CR vehicle’s position by inte-
grating RTK-GPS sensor data with IMU linear acceleration and magnetometer data. 
The ANFIS tool trains two fuzzy systems, one for latitude and one for longitude correc-
tion. The developed combined GPS-IMU circuit was tested by conducting field testing 
from Lumban to De La Salle University Manila Campus to collect actual GPS latitude 
and longitude, triaxial accelerometer, and triaxial magnetometer data. The study 
evaluated different ANFIS models with varying hyperparameters, and the selected 
model for latitude correction is model 1B with a hybrid optimization algorithm at 300 
training epochs. This model achieved the lowest training RMSE of 0.008770, valida-
tion RMSE of 0.008300, and testing RMSE of 0.011814 at 300 training epochs. Model 
1B showed the lowest MSE of 0.000069, highest R2 of 0.995479, and lowest MAE of 

Figure 14. 
Resulting visualization maps for comparison of the (a) reference GPS coordinates, (b) uncorrected GPS 
coordinates, and (c) corrected GPS coordinates using the ANFIS models.
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0.000375 compared to other models, proving superior results. For ANFIS longitude 
correction, model 2B was selected, and a hybrid optimization algorithm was applied at 
100 epochs, which resulted in the lowest training RMSE of 0.007361, 0.007100 valida-
tion RMSE, and 0.01532 testing RMSE. Among the four prediction models of model 2, 
model 2A achieved the lowest MSE of 0.000050, the highest R2 of 0.997675, and the 
lowest MAE of 0.000042 for longitude correction, demonstrating the best results.

The selected best ANFIS models’ performances were then validated by comparing 
them to simulated LSTM and ELM models; however, the ANFIS models still outper-
formed the two other models. The ANFIS models were also tested on the collected 
actual dataset for verification of results. The visualized map obtained from this simu-
lation test revealed that the uncorrected GPS data points were significantly distant 
from the target GPS reference values compared to the ANFIS corrected output. This 
indicates that the ANFIS models proved to combine the benefits of neural networks 
with fuzzy logic in a single structure for predicting corrected latitude and longitude 
with greater accuracy. The comparison of findings also demonstrated that ANFIS is a 
potential solution for vehicle localization and tracking using GPS and IMU data, mak-
ing it suitable to be integrated into capacitive resistivity underground imaging system 
and can be extremely useful in mapping the precise location of the investigated 
subterranean utility objects.

To further validate the ANFIS models’ performance, additional GPS latitude and 
longitude datasets must be collected and tested against the simulated ANFIS models. 
This is considered the study’s lacking strategy that can be done for future research. 
Furthermore, it suggests retraining and adjusting the hyperparameters when tested 
on newly obtained actual data to maximize the ANFIS model performance. Lastly, the 
study’s results can be further examined by comparing them to other ways of sensor 
fusion, such as the employment of other machine learning models, which will be the 
paper’s next goal.
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