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Preface

Nowadays, deep learning and reinforcement learning have become some of the hot-
test research directions in computer science. They can solve complex problems such as 
natural language processing, computer vision, medical image analysis, and more by 
training powerful neural networks. The deep learning algorithm has become one of 
the most important and promising technologies in the field of artificial intelligence. 
In addition, reinforcement learning can autonomously learn and adjust to maximize 
rewards, which is expected to solve complex sequential decision tasks, such as intel-
ligent games and robot control.

In recent years, the rapid development and widespread application of deep learning 
and reinforcement learning have created enormous commercial and social value. This 
book introduces the latest advances in the fields of deep learning and reinforcement 
learning, covering a variety of key areas like natural language processing, medicine 
analysis, and Internet of Things (IoT) device recognition.

This book consists of two sections: “Theory and Algorithms of Deep Learning and 
Reinforcement Learning” and “Applications of Deep Learning and Reinforcement 
Learning.”  Sections I and II contain two and four chapters, respectively. Section I dis-
cusses new network structures and algorithms for deep learning and reinforcement 
learning. Section II  explores new deep learning and reinforcement learning solutions 
to the challenges faced by the fields of natural language processing, medicine analysis, 
and IoT device recognition.

I would like to express my sincerest gratitude to the editors, authors, and reviewers 
who have contributed to this book.

Thank you!

Jucheng Yang, Yarui Chen, Tingting Zhao, Yuan Wang and Xuran Pan
 College of Artificial Intelligence,

 Tianjin University of Science and Technology,
Tianjin, China
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Chapter 1

Utilized System Model Using
Channel State Information
Network with Gated Recurrent
Units (CsiNet-GRUs)
Hany Helmy, Sherif El Diasty and Hazem Shatila

Abstract

MIMO: multiple-input multiple-output technology uses multiple antennas to use
reflected signals to provide channel robustness and throughput gains. It is advanta-
geous in several applications like cellular systems, and users are distributed over a
wide coverage area in various applications such as mobile systems, improving channel
state information (CSI) processing efficiency in massive MIMO systems. This chapter
proposes two channel-based deep learning methods to enhance the performance in a
massive MIMO system and compares our proposed technique to the previous
methods. The proposed technique is based on the channel state information network
combined with the gated recurrent unit’s technique CsiNet-GRUs, which increases
recovery efficiency. Besides, a fair balance between compression ratio (CR) and
complexity is given using correlation time in training samples. The simulation results
show that the proposed CsiNet-GRUs technique fulfills performance improvement
compared with the existing literature techniques, namely CS-based methods Conv-
LSTM CsiNet, LASSO, Tval3, and CsiNet.

Keywords: massive MIMO, FDD, compressed sensing, deep learning, conventional
neural network

1. Introduction

For fifth-generation wireless communication systems, the massive multiple-input
multiple-output (MIMO) system is recognized as a powerful technology.

Such a system can significantly reduce multi-user interference and offer a multi-
fold boost in cell throughput by outfitting a base station (BS) with hundreds or even
thousands of antennas in a dispersed or centralized way. Utilizing channel state
information (CSI) at base stations is the primary method for obtaining this potential
benefit (BSs). The downlink channel state information (CSI) in modern frequency
division duplex (FDD) MIMO systems (such as long-term evolution Release-8) is
collected at the user equipment throughout the training phase and transmitted back to
the BS via feedback links.
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To minimize feedback overhead, vector quantization or codeword-based tech-
niques are frequently used. The feedback quantities generated from these methods are
not permitted in a massive MIMO system since they must be scaled linearly with the
number of transmit antennas. As shown in [1], the difficulty of CSI feedback in
massive MIMO systems has inspired several studies. By using the spatial and temporal
correlation of channel state information (CSI), which describes how a signal travels
from the transmitter to the receiver and represents the combined effect of, for exam-
ple, scattering, fading, and power decay with distance, these works have primarily
concentrated on reducing feedback overhead. To minimize feedback overhead, vector
quantization or code-word-based techniques are frequently used. To minimize feed-
back overhead, vector quantization or codeword-based techniques are frequently
used. The feedback quantities generated from these methods are not permitted in a
massive MIMO system since they must be scaled linearly with the number of transmit
antennas. As shown in [1], the difficulty of CSI feedback in massive MIMO systems
has inspired several studies. By using the spatial and temporal correlation of channel
state information (CSI), which describes how a signal travels from the transmitter to
the receiver and represents the combined effect of, for example, scattering, fading,
and power decay with distance, these works have primarily concentrated on reducing
feedback overhead. To minimize feedback overhead, vector quantization or code-
word-based techniques are frequently used.

A difficult issue in wireless communications systems is channel estimate during
auto-encoding. Most of the time sent signals are reflected and scattered as they reach
the receiver. The channel moves over time as a result of the mobility of the transmit-
ter, receiver, or scattering objects. Deep learning (DL) trains massive, multilayered
neural networks using lots of training data to approximate how the human brain does
a particular activity. Channel State Information Networks (CsiNet), which we created
as CSI sensing (or encoder) and recovery (or decoder) networks, include the features
listed below in the auto-encoder system (Figure 1).

Figure 1.
Enhanced multiple-access for mmWave massive MIMO [2].
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• Encoder: CsiNet learns transformation from original channel matrices to
compress representations (codewords) through training data.

• Decoder: CsiNet learns inverse transformation from codewords to original
channels; The inverse transformation is not iterative and multiple orders of
magnitude faster than iterative algorithms. The algorithm is agnostic to human
knowledge of channel distribution and instead directly learns to use the channel
structure from training data effectively.

User equipment encodes channel matrices into codewords using the encoder; after
the codewords are returned to the BS, it uses the decoder to reconstruct the original
channel matrices. The technique can be applied as a feedback protocol in FDD MIMO
systems. The autoencoder [3] in deep learning, which is used to learn an encoding for
a set of data types for dimensionality reduction, and CsiNet are closely related. To
recreate accurate models from CS data, several deep learning (DL) architectures have
recently been designed and introduced in [4–6].

DL shows state-of-the-art performance in natural-image reconstruction,
but because wireless channel reconstruction is more difficult than image
reconstruction, it can also demonstrate that this capability is unclear. The DL-based
CSI reduction and recovery strategy is introduced in the current work. The
most significant research appears to be [7], in which a closed-loop MIMO
system implements DL-based CSI encoding. It differs from previous research that
did not consider CSI recovery by demonstrating that, as compared to current CS-
based methods, CSI can be recovered with a significantly increased reconstruction
quality by DL.

2. The structure of channel state information network (CsiNet)

The structure of CsiNet [8] according to Depth wise Separable Convolution in
feature recovery reconstruction illustrated in detail, CsiNet remarkably outperforms
the CS-based methods. Introducing the CSI network feedback process, which con-
siders a single-cell FDD massive MIMO-OFDM framework, where there is Nt (≫1)
transmit antennas at the BS and a single receiver antenna at the UE, OFDM is with Nc

subcarriers the received signal at the nth subcarrier can be communicated as:

yn ¼ ~h
H
n vnxn þ zn (1)

where ~h
H
n and ynϵ  Nt x 1 is the channel frequency response vector and the pre-

coding vector at the nth subcarrier, separately, xn represents the transmitted informa-
tion image, zn is the additive noise or obstruction and �ð ÞH is a conjugate transpose. In
the FDD system, improving feedback links through UE and BS, focus on the feedback
scheme which allows autoencoder processing, assume:

Ĥ = ~h1 … h̃Nc

h iH
ϵ N ̃c x Nt in CSI stacked in the spatial frequency domain, which

means the UE should return Ĥ to the BS through feedback links, and in the feedback
system, the total number parameter is NtNc̃, using a 2D (DFT) discrete Fourier
transform, which introducing ~H can be improved in the angular-delay domain to
reduce feedback overhead:

5
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H ¼ Fd � ~HFH
a (2)

where Fd and Fa are Nc̃ X Nc̃ and NtX Nt DFT matrices, respectively. So, consid-
ering the COST 2100 as was illustrated in [9] channel model as shown in Figure 2.
depending on a uniform linear array (ULA), H has a small fraction of significant
components. According to the delay domain, the first Nc rows of H contain values,
retain the firstNc Rows ofH and remove remaining rows. In a massive MIMO system,
the total number of feedback parameters can be reduced to N = Nc Nt. So, we design
the encoder S,

S ¼ f en Hð Þ (3)

We can convert H into a codeword M vector, where M < N, and design the
decoder inverse transformation from the codeword to H original channel.

H ¼ f de Sð Þ (4)

The European Cooperation in Science and Technology COST 2100 channel model
is a GSCM that can reproduce the stochastic properties of massive MIMO channels

Figure 2.
A plot of the strength of H ϵ ℂ32x32 [8].
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over time, frequency, and space. A multi-path component MPC is characterized in
delay and angular domains by its delay, angle of departure (Azimuth of Departure
(AoD), Elevation of Departure (EoD), and angle of arrival (Azimuth of Arrival
(AoA), Elevation of Arrival (EoA)). The MPCs with similar delays and angles are
grouped into multi-path clusters. The MATLAB implementation of C2CM supports
both single-link and multiple-link MIMO channel access indoor (285 MHz) and semi-
urban (5.3 GHz) channel scenarios. An overview of the C2CM is presented in a
detailed description of the channel model. The parameterization of the C2CM in
indoor scenarios is detailed while discussing semi-urban scenarios. On the other hand,
it gives the massive multiple-input multiple-output MIMO extensions of the C2CM;
The C2CM is implemented in MATLAB, while the semi-urban channel scenario is
implemented in [9]. Furthermore, the MATLAB implementation of C2CM with mas-
sive MIMO extensions. However, the data generated in these MATLAB
implementations are not presented as potential datasets to validate multi-path clus-
tering methods and even in the well-known clustering approaches.

3. Recurrent unit system model

3.1 The structure

It can adaptively capture capable of adaptively capturing dependencies from
lengthy data sequences without removing data from previous stages of the sequence
due to the gated recurrent unit structure [10]. This is accomplished by its gating units,
which are related to those in long short-term memory LSTMs, and which resolve the
vanishing/exploding gradient problem of conventional RNNs. These gates control the
information that should be retained or discarded at each time step. The GRU operates
like an RNN, except for its internal gating mechanisms, where sequential input data is
absorbed by the GRU cell at each time step along with memory, also known as the
hidden state [11]. The RNN cell and the following input data in the sequence are then
fed with the hidden state once more (Figure 3).

Fully gated unit
Initially, for t = 0, the output vector is h0 = 0.

zt ¼ ρg Wzxt þUZht�1 þ bzð Þ (5)

rt ¼ ρg Wrxt þUrht�1 þ brð Þ (6)

ht ¼ zt ʘ ht�1 þ 1� ztð Þ ʘ ϕh Whxt þUh rt ʘ ht�1ð Þ þ bnð Þ (7)

Were, xt input vector, ht output vector, zt update gate vector, rt reset gate vector
and W, U, and b denote matrices and vectors, respectively.

Activation functions: �ρg Original sigmoid activation, ϕh For the initial hyper-
bolic tangent, Alternative activation functions can be used, provided the ρg(x) € [0,1].

It is possible to construct alternative forms by modifying zt and rt.
GRU’s ability to hold on to long-term dependencies or memory stems from the

gated recurrent unit cell’s computations to produce the hidden state. At the same time,
LSTMs have two different states passed between the cell state and hidden state, which
carry the long and short-term memory, respectively GRUs only have one hidden state
transferred between time steps. This hidden state can hold both long-term and short-
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term dependencies at the same time due to the gating mechanisms and computations
that the hidden state and input data go through.

The GRU cell contains only two gates: The Update gate and the Reset gate; like the
gates in LSTMs, the GRU gates are trained to selectively filter out any irrelevant
information while keeping what’s useful. These gates are essentially vectors containing
values between 0 and 1, multiplying with the input data or hidden state.

A zero (0) value in the gate vectors indicates that the input or hidden state’s
corresponding data is unimportant and will, therefore, return as a zero.

On the other hand, a one (1) value in the gate vector means that the corresponding
data is essential and will be used. Reset gate: In the first step, we’ll create the Reset
gate; this gate is derived and calculated using both the hidden state from the previous
time step and the input data at the current time step (Figure 4).

Figure 3.
Gated recurrent unit, fully gated version [12].

Figure 4.
Reset gate flow [13].
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Mathematically, this is achieved by multiplying the previous hidden state and
current input with their respective weights, summing before passing the sum through
the sigmoid function.

The sigmoid function will transform the values to fall between 0 and 1, allowing
the gate to filter between the less-important and more-important information in the
subsequent steps.

Gatereset ¼ σ Winputreset � xt þWhiddenreset � ht�1
� �

(8)

When the entire network is trained through back-propagation, the weights in the
equation will be updated such that the vector will learn to retain only the valuable
features. The previous hidden state will first be multiplied by a trainable weight and
will then undergo an element-wise multiplication Hadamard product with the reset
vector. This operation will decide which information will be kept from the previous
time steps and the new inputs.

Simultaneously, the current input will also be multiplied by a trainable weight
before being summed with the reset vector’s product and the previous hidden state
above. Finally, a non-linear activation tanh function will be applied to the result to
obtain r in the equation below.

r ¼ tanh gatereset⊙ Wh1 � ht�1ð Þ þWx1 � xt
� �

(9)

Update gate: next, we’ll create the Update gate, like the Reset gate; the gate is
computed using the previous hidden state and current input data (Figure 5). Both the
Update and Reset gate vectors are created using the same formula, but the weights
multiplied with the input and hidden state are unique to each gate, which means that
each gate’s final vectors are different; This allows the gates to serve their specific
purposes.

Figure 5.
Update gate flow [13].
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gateupdate ¼ σ Winputupdate � xt þWhiddenupdate � ht�1
� �

(10)

The Update vector will undergo element-wise multiplication with the previous
hidden state to obtain u in our equation below, which will be used to compute our
final output later.

u ¼ gateupdate⊙ht�1 (11)

The Update vector will also be used in another operation later when obtaining our
final output.

The purpose of the Update gate here is to help the model determine how much of
the past information stored in the previous hidden state needs to be retained for the
future. Combining the outputs: In the last step, we will be reusing the Update gate and
obtaining the updated hidden state (Figure 6).

This time, we will be taking the element-wise inverse version of the same Update
vector (1—Update gate) and doing an element-wise multiplication with our output
from the Reset gate, r. This operation’s purpose is for the Update gate to determine
what portion of the new information should be stored in the hidden state. Lastly, the
result of the above operations will be summed with our output from the Update gate
in the previous step, u.

This will give us our new and updated hidden state; We can use this new hidden
state as our output for that time step by passing it through a linear activation layer.

ht ¼ r⊙ 1� gateupdate
� �

þ u (12)

The Reset gate determines which parts of the previous hidden state are to be
combined with the current input to propose a new hidden state, and the Update gate
determines how much of the previous hidden state is to be retained and what part of
the new proposed hidden state derived from the Reset gate is to be added to the final

Figure 6.
Final output computations [13].

10

Deep Learning and Reinforcement Learning



hidden state. This solves the Vanishing/Exploding Gradient Problem. The network
chooses which components of the previous hidden state to keep in memory while
discarding the rest when the Update gate is first multiplied with it. When it uses the
Reset gate’s inverse gate to filter the proposed new hidden state from the Update gate,
it then fills in the gaps in the information that were previously missing. The network
can maintain long-term dependencies as a result. If the Update vector values are close
to 1, the Update gate may decide to keep most of the previous memories in the hidden
state rather than recalculating or altering the hidden state entirely.

When training a recurrent neural network RNN, the vanishing or exploding
gradient problem can happen, especially if the RNN is processing lengthy
sequences or has multiple layers. The network’s weight is updated in the right direc-
tion and by the right amount using the error gradient that was calculated during
training. However, this gradient is determined using the chain rule, beginning at the
end of the network. As a result, for long sequences, the gradients will undergo con-
tinuous matrix multiplications and either disappear (vanish) or explode (explode)
exponentially.

A gradient that is too small will prevent the model from effectively updating its
weights, whereas a gradient that is too large will make the model unstable.

Due to the addictive nature of the Update gates, the long short-term memory
(LSTM) and gated recurrent units (GRUs) can keep most of the existing hidden state
while adding new content on top of it, unlike traditional RNNs that always replace the
entire hidden state content at each time step.

This prevents the additional operations from causing the error gradients to vanish
or explode too quickly during backpropagation. Utilizing alternative activation func-
tions, like ReLU, which does not result in a small derivative, is the simplest solution.
Another option is residual networks, which offer residual connections directly to
earlier layers. In a feedforward network (FFN), the backpropagated error signal
typically decreases (or increases) exponentially as a function of the distance from the
final layer. This technique is referred to as the vanishing gradient.

4. Design of the CsiNet-GRUs system model

We enhance the architecture in this chapter by considering time correlation. The
recurrent convolutional architecture that has been used to represent and reconstruct
images successfully provides references for our work. The basic idea is to extract
spatial features and inter-frame correlation using convolutional neural networks
(CNN) and recurrent neural networks (RNN), respectively. The following is a sum-
mary of our contribution to this chapter. CsiNet is extended with a gated recurrent
unit network, a common type of recurrent neural network, and a DL-based CSI
feedback protocol for FDD MIMO systems is proposed (RNN). CsiNet-GRUs is a
proposed network that modifies the CNN-based convolutional neural network
CsiNet for channel state information compression and initial recovery and uses a
gated recurrent unit technique to extract time correlation for further resolution
improvement.

CsiNet-GRUs exhibit remarkable robustness to compression ratio (CR) reduction
and enable real-time and extensible channel state information (CSI) feedback
applications without considerably increasing overhead compared with CsiNet, to
reduce feedback overhead, we can exploit the following observations: Observation 1
(angular-delay domain sparsity): Ht can be transformed into an approximately
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sparsified matrix H0
t in the angular-delay domain via 2D discrete Fourier transform

(2D-DFT) byH0
t = FdHt Fa,where Fd ∈Nc�Nc and Fa∈Nt�Nt are two DFT matrices.

First, due to limited multipath time delay, performing DFT on frequency domain
channel vectors (i.e., column vectors of Ht) can transform Ht into a sparse matrix in
the delay domain, with only the first N0

c (<Nc) rows have distinct non-zero values.
Secondly, the channel matrix is sparse in a defined angle domain by performing DFT
on spatial domain channel vectors (i.e., row vectors of Ht) If the number of transmit
antennas, Nt ! +∞, is very large. Usually, H0

t is only approximately sparse for finite
Nt which challenges conventional compressed sensing methods. Therefore, we will
propose a DL-based feedback architecture without sparsity prior constraint. We
perform sparsity transformation to decrease parameter overhead and training
complexity.

We retain the first N0
c non-zero rows and truncate H0

t to a N0
c � Nt matrix, H00

t ,
which reduces the total number of parameters for feedback to N = N0

cNt.
Observation 2 (correlation within coherence time): The user equipment motion

during communication results in a Doppler spread, time-varying characteristics of
wireless channels with the maximum movement speed denoted as v, coherence time
can be calculated as:

Δt ¼ C
2 v fo

(13)

where f0 is the carrier frequency, and c is the speed of light. The CSI within Δt is
considered correlated with one other. Therefore, instead of independently recovering
CSI, the BS can combine the feedback and previous channel information to enhance
the subsequent reconstruction.

We set the feedback time interval as δt and place T adjacent instantaneous
angular-delay domain channel matrices into a channel group, i.e.,

H00
t

� �T
t¼1 ¼ H00

1 , …H00
t , … ,H00

T

� �
(14)

The group exhibits correlation property if T satisfies 0 ≤ δt � T ≤ Δt.
In this chapter, we design an encoder, St = f en (H00

t ), at the UE to compress each

complex-valuedH00
t of H00

t

� �T
t¼1 into an M-dimensional real-valued codeword vector St

(M < N). If two real number matrices are used to represent the real and imaginary
parts of H00

t , then CR will be M=2N.
We also design a decoder with a memory that can extract time correlation from the

previously recovered channel matrices, Ĥ
00
1 ,… ,Ĥ

00
t�1 and combine them with the

received St for the current reconstruction channel, Ĥ
00
t = fde (St; Ĥ

00
1 , … , Ĥ

00
t�1),

where 1 ≤ t ≤ T. Then, inverse 2D-DFT is performed to obtain the original spatial
frequency channel matrix; the Channel state information network demonstrates
remarkable performance in CSI sensing and reconstruction. However, the resolution
degrades at low CR because it only focuses on angular-delay domain sparsity
(Observation 1) and ignores the time correlation (Observation 2) of time-varying
massive MIMO channels, the two observations are like the spatial and inter-frame
correlations of videos.

Motivated by RCNN, which excels in extracting spatial-temporal features for video
representation, we will extend CsiNet with GRU to improve CR and recovery quality
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trade-off. We will also introduce the multi-CR strategy to implement variable CRs on
different channel matrices; The proposed CsiNet-GRU is illustrated in Figure 7. with
CsiNet. Our model includes the following two steps: angular-delay domain feature
extraction, correlation representation, and final reconstruction. Each GRU has an
inherent memory unit that, for future prediction, can hold previously extracted
information for a long time. A 3 � 3 convolutional layers and an M-unit dense layer
for sensing, and a dense layer with 2N0

cNt units should be considered to facilitate
comparison with the results of the CsiNet structure given in [8] and two decoders
from RefineNet for reconstruction as shown in Figure 7, each RefineNet comprises
channel into four 3 � 3 convolutional layers with different channel sizes.

The CsiNet decoder’s output generates a sequence, and the length of every
sequence is T, which is then fed into a three-layer GRU. All low-CR CsiNet’s shown in
Figure 7. share the same network parameters, i.e., weights and bias, because
they perform the same work, which dramatically reduces parameter overhead.
Furthermore, the architecture can be easily rescaled to perform on channel groups
with different T if the value of T changes to adapt to the channel-changing speed and
feedback frequency; A low-CR CsiNet will be reused (T � 1) time instead of making
(T � 1) copies in practice. The gray blocks in Figure 7 load parameters from the
original CsiNet’s as pre-training before end-to-end training with the entire architec-
ture. This method can alleviate vanishing gradient problems due to long paths from
CsiNet’s to GRUs. We use GRUs to extend the CsiNet decoders for time correlation
extraction and final reconstruction. Gated recurrent units have inherent memory cells
and can keep the previously extracted information for a long period for later predic-
tion. In particular, the CsiNet decoders’ outputs form a sequence of length T before

Figure 7.
The structure of the proposed CsiNet-GRUs using dropout technique [14].
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being fed into three-layer GRUs. Each GRU has a 2N0
cNt; The hidden unit is the same

as the size of the output. Then the final output is reshaped into two matrices as the

final recovered Ĥ
00
t ; This allows the CR-CsiNet encoder to send to the rest T � 1.

Because less information is required due to channel correlation, the channel matrix
performs operations, M2 � 1 codewords (M1 > M2), are generated. The (T � 1)
codewords are all concatenated with the first codeword M1 � 1 before being fed into
the low-CR CsiNet decoder to utilize feedback information fully. Each CsiNet outputs
two matrices with size (N0

c � NtÞ as extracted features from the angular delay domain

as the final recovered Ĥ
00
t . The spatial frequency domain CSI can then be obtained via

inverse 2D-DFT. At each time step, the GRUs implicitly learns time correlation from
the previous inputs and then merge them with the current inputs to increase low CR
recovery quality.

4.1 The dropout technique

Dropout: During training, randomly selected neurons are ignored and “dropped
out.” This means that their contribution to downstream neuron activation is removed
temporally on the forward pass, and no weight updates are applied to the neuron on
the backward pass. Dropout can be implemented on any hidden layer in the network;
the visible or input layer, as well as the term “dropout,” refers to dropping out units
(hidden and visible) in a neural network. Dropout is a regularization method used
when training the network, as illustrated in Figure 8. It is possible that the input and
loop connections to the gated recurrent unit (GRU) in Figure 7 are not excluded from
activation and weight updates. Depending on the framework, the dropout regulariza-
tion Training Phase: Ignore (zero out) a random fraction, p, of nodes for each hidden
layer, training sample, and iteration (and corresponding activations). A phase of
testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training). Dropout is a regularization method used when
training the network, as shown in Figure 8. However, it does not always exclude the
input and loop connections to the gated recurrent unit (GRU) from activation and
weight updates, as shown in Figure 7. To reduce overfitting and improve the effi-
ciency of the CsiNet-GRU structure, a neural network approach is used. We stated

Figure 8.
Neural network with dropout architecture [15].
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that the effect on “downstream neurons” activation during the forward process would
be temporarily removed and that no weight update for “backward propagation to
neurons” would be applied [15].

Training Phase: Ignore (zero out) a random fraction, p, of nodes for each hidden
layer, training sample, and iteration (and corresponding activations). A phase of
testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training). Dropout is a regularization method used when
training the network, as shown in Figure 8. However, it does not always exclude the
input and loop connections to the gated recurrent unit (GRU) from activation and
weight updates, as shown in Figure 7. Depending on the framework, the dropout
regularization approach used in neural networks is used to reduce overfitting and
improve the efficiency of the CsiNet-GRU structure. We stated that the effect on
“downstream neurons” activation during the forward process would be temporarily
removed and that no “backward propagation to neurons” weight update would be
applied [15]. Training Phase: Ignore (zero out) a random fraction, p, of nodes for each
hidden layer, training sample, and iteration (and corresponding activations). A phase
of testing: Use all activations but reduce them by a factor of p. (to account for the
missing activations during training).

Some observations: Dropout forces a neural network to learn more robust features
that can be used in conjunction with the random subsets of many other neurons.
Dropout roughly doubles the number of iterations needed to converge; however, each
epoch’s training time is less, and during the testing phase, the entire network is
considered, and each activation is reduced by a factor of p. When training the network
in the proposed structure, the input and recurrent connections to the GRU unit may
not be excluded from activation and weight updates.

There are two dropout parameters in RNN layers: dropout, applied to the
first operation on the inputs, and recurrent dropout applied to the other operation on the
recurrent inputs. It is worth mentioning that interested in designing the encoder
which can transform the channel matrix into an M-dimensional vector (codeword),
where M < N. Thus, define the data compression ratio γ as γ ¼ M=2NtNcð Þ.

The encoder first extracts CSI features via a convolutional layer with two 3 � 3
filters, followed by an activation layer. A fully connected (FC) layer with M neurons is
then used to compress the CSI features to lower dimensions. The compression ratio
(CR) of this encoder can be expressed as CR ¼ 1=γ. The final reconstruction of the
CSI is performed by three 2N0

cNt unit GRUs with dropout techniques.
Moreover, adopting depth-wise separable convolutions in feature recovery reduces

the model’s size and interacts with information between channels and introducing the
delay θ as a parameter used in the encoder and decoder, i.e., θ ¼ θen, θdef g:It is worth
mentioning that H00

t are standardized with all components scaled into the [0; 1], and
this standardization is required for CsiNet.

5. COST 2100 data sets and parameters

The COST 2100 channel model is a geometry-based stochastic channel model
(GSCM) capable of reproducing the stochastic properties of multi-link multiple-input
multiple-output channels across time, frequency, and space. As a result, there is no
doubt that more advanced channel estimation methods and good measurement
campaigns for parameterization and validation are required for the successful
development and long-term use of the COST 2100 channel model. Multiple-input
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multiple-output (MIMO) is a technology that enables faster and more reliable trans-
missions over wireless channels.

The COST 2100 model simulates MIMO channels and generates training samples;
we set the MIMO-OFDM system to work on a 20 MHz bandwidth using a uniform
linear array (ULA). The parameters utilized in indoor and outdoor channel scenarios
are given in Table 1; Data sets are generated by randomly setting different start places
for indoor and outdoor scenarios and performing the simulations at CR values with
the first channel H00

1 they were compressed under 1/4. Table 1 shows the training,
validation, and testing sets; some parameters are preloaded from the CsiNet for
initialization (epochs from 500 to 1000, learning rate of 0.001, and batch size of 200),
as shown in Table 1.

We compare the proposed architecture’s performance with previous similar
modeling approaches of channel state information (CSI) with different deep learning
approaches, namely Conv-LSTM CsiNet, LASSO, TVAL3 [16], and CsiNet, utilizing
the default setup in the open-source codes of the previously mentioned techniques for
reproduction.

TVAL3 uses a minimum total variation method that provides remarkable recovery
quality and high computing efficiency, while LASSO uses simple sparse priors to
achieve good performance. In the feature extraction and recovery modules of
Convolutional-LSTM CsiNet, RNN, and depth-wise separable convolution were used.

The term “training” refers to the process of determining which parameters to use
in a given dataset. We run the modeling CsiNet-GRUs on Collaboratory (python)
according to zero configuration required, free access to GPUs, and easy sharing
training and testing of the CsiNet, Conv-LSTM CsiNet, and CsiNet-GRUs on python
colab editor.

MIMO OFDM 20 MHz bandwidth

H 32 � 32

Nt 32 Antennas

NC 1024 Subcarriers

Training samples 100,000

Validation samples 30,000

Testing samples 20,000

Epochs 500–1000

Learning rate 0.001

Batch size 200

∂t 0.04 s

T 10 s–100 s

CR 4, 16, 32, 64

Channel model Indoor scenario Outdoor scenario

Frequency, f
Speed, v
Δt

Pico, 5.3 GHz,
0.0036 km/h

30 s

Rural, 300 MHz
4.24 km/h
0.56 s

Table 1.
COST 2100 model DATA-SETS and system, parameters.
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Comparisons are made using the normalized mean square error, cosine similarity,
accuracy, and run-time in the indoor and outdoor channels, as well as the complexity
factored in. The Normalized Mean Square Error measures and reflects the mean
relative scatters.

The normalization of the MSE assures that the metric will not be biased when the
model overestimates or underestimates the predictions. So, the normalized mean
square error (NMSE) utilized for comparisons quantifies the difference between the

input Htf gTt¼1 and the output Ĥt
� �T

t¼1 in both proposed techniques CsiNet-GRUs are
given by:

NMSE ¼ 
1
T

XT
t¼1

H00
t � Ĥ

00
t

���
���
2

2
= H00

t

�� ��2
2

( )
(15)

The correlation coefficient is a statistical measure of the strength of the relation-
ship between the relative movements of two variables. The values range between�1.0
and 1.0. A correlation of �1.0 shows a perfect negative correlation, while a correlation
of 1.0 shows a perfect positive correlation.

To measure the degree of similarity between the actual channel hn, t and the
estimated channel value bhn, t of the nth subcarrier at time t, using the cosine similarity
coefficient ρ, in CsiNet-GRUs which is given as:

ρ ¼ 
1
T

1
Nc

XT
t¼1

XNc

n¼1

bhHn, thn, t
���

���
bhn, t

���
���
2
hn, tk k2

8><
>:

9>=
>;

(16)

Where bhn, t denotes the reconstructed channel vector of the nth subcarrier at time
t. ρ can measure the quality of the beamforming vector when the vector is set as

vn,t = bhn, t/ bhn, t
���

���
2
since the UE will achieve the equivalent channel bhHn, thn, t/ bhn, t

���
���
2
.

Introducing a new parameter for comparison, which calling accuracy
defining it as the ratio of the number of correct predictions to the total number
of input samples, that means accuracy is the ratio of the recovered channel vector

to the original channel vector H00
t

� �T
t¼1=H

00
1 so the accuracy in CsiNet-GRUs is

defined as:

Accuracy ¼ 
1
T

1
Nc

XT
t¼1

XNc

n¼1

bhHn, t
���

���
hn, tk k2

8><
>:

9>=
>;

(17)

6. Comparison of results with different techniques

Figures 9 and 10 show the relationship between CR and NMSE for all structures in
indoor and outdoor scenarios. Figure 9 shows that the proposed CsiNet-GRUs have
the lowest NMSE, whereas Figure 10 shows that it has the lowest NMSE among others
except for Conv-LSTM CsiNet at CR > 20. Figures 11 and 12 show the relationship
between the CR and accuracy for all structures in indoor and outdoor scenarios.
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Figure 9.
NMSE (dB) performance comparison between CS methods INDOOR scenario.

Figure 10.
NMSE (dB) performance comparison between CS methods OUTDOOR scenario.
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Figure 11.
Accuracy performance comparison between CS methods INDOOR scenario.

Figure 12.
Accuracy performance comparison between CS methods OUTDOOR scenario.
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The CsiNet-GRUs outperform the other structures, with higher accuracy observed
at lower CR values. Figures 13 and 14 illustrate the relation between the cosine
similarity (ρ) and CR in indoor and outdoor scenarios for all structures. Again, the
proposed CsiNet-GRUs outperform the other structures, and besides, it exhibits a
near-linear performance with the lowest slope.

Figure 13.
ρ Performance comparison between CS methods INDOOR scenario.

Figure 14.
ρ Performance comparison between CS methods OUTDOOR scenario.
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The performance comparison between the proposed CsiNet-GRUs to other avail-
able techniques. Where corresponding values of normalized mean square error
(NMSE), ρ, accuracy, and run-time are calculated for different values of γ for indoor
and outdoor scenarios, all techniques have better performances in the indoor scenario
than the outdoor one.

It is worth noting that channel state information network (CsiNet) techniques
significantly outperform the other CS-based methods. LASSO, TVAL3, CsiNet, and
CsiNet-GRUs continue to provide the highest cosine similarity values at low CRs,
where other CS-based methods fail. However, the proposed CsiNet-GRUs outperform
the channel state information network (CsiNet) in terms of correlation and accuracy,
as shown in Table 2. The same comparison is simulated again in terms of

γ LASSO
[17]

TVAL3
[16]

CsiNet
[8]

Conv-LSTM
CsiNet [18]

CsiNet-GRUs Dropout
Epoch/1000 [14]

Indoor NMSE
Epoch = 1000

1/4 �7.59 �8.87 �17.36 �27.5 �51.73

1/16 �2.96 �3.2 �8.65 �23 �27.3

1/32 �1.18 �0.46 �6.24 �22.3 �23.81

1/64 �0.18 �0.6 �5.84 �21.2 �22.11

ρ
Epoch = 1000

1/4 0.91 0.87 0.98 0.95 0.99

1/16 0.72 0.73 0.90 0.93 0.94

1/32 0.53 0.45 0.83 0.85 0.89

1/64 0.30 0.24 0.83 0.84 0.87

Accuracy
Epoch = 1000

1/4 0.68 0.34 0.81 0.82 0.84

1/16 0.55 0.22 0.60 0.60 0.62

1/32 0.34 0.15 0.51 0.51 0.52

1/64 0.55 0.23 0.48 0.53 0.54

Run time
Epoch = 1000

1/4 0.345 0.314 0.0001 0.0001 0.0003

1/16 0.555 0.314 0.0001 0.0001 0.0003

1/32 0.604 0.286 0.0001 0.0001 0.0003

1/64 0.708 0.285 0.0001 0.0001 0.0003

Outdoor NMSE
Epoch = 1000

1/4 �5.08 �0.9 �8.75 �10.9 �15.13

1/16 �1.09 �0.53 �4.51 �9.86 �11.91

1/32 �0.27 0.42 �2.81 �9.18 �3.02

1/64 �0.06 0.74 �1.93 �8.83 �2.05

ρ
Epoch = 1000

1/4 0.82 0.58 0.87 0.90 0.92

1/16 0.49 0.46 0.79 0.81 0.81

1/32 0.32 0.28 0.67 0.68 0.70

1/64 0.19 0.19 0.60 0.62 0.68

Accuracy
Epoch = 1000

1/4 0.66 0.54 0.68 0.70 0.71

1/16 0.45 0.22 0.49 0.49 0.51

1/32 0.20 0.20 0.36 0.36 0.38

1/64 0.18 0.15 0.26 0.26 0.27
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epoch = 1000 (1000 iterations) in terms of correlation and accuracy in the proposed
technique CsiNet-GRUs. In terms of the NMSE, the CsiNet-GRUs achieve the lowest
values of all compressed ratios (CRs), particularly when CR is low.

CsiNet-GRUs have very short run periods when compared to LASSO and TVAL3
techniques. However, when compared to the other CsiNet technique and the proposed
modeling technique, CsiNet-GRUs lose time efficiency slightly. It is worth noting that,
despite the addition of significant complexity as a result of the GRU layers, the run
time is still comparable to that of the CsiNet.

Figure 15 depicts in comparison to the other modeling techniques, the reconstruc-
tion results of the proposed technique, namely LASSO, TVAL3, CsiNet, and Conv-
LSTM CsiNet in an indoor Picocellular scenario, the figure represents the average
performance at different CRs, reflecting on the reconstructed images to use the other
techniques.

γ LASSO
[17]

TVAL3
[16]

CsiNet
[8]

Conv-LSTM
CsiNet [18]

CsiNet-GRUs Dropout
Epoch/1000 [14]

Run time
Epoch = 1000

1/4 0.2122 0.15 0.0001 0.0001 0.0003

1/16 0.2409 0.3145 0.0001 0.0001 0.0003

1/32 0.598 0.2985 0.0001 0.0001 0.0003

1/64 0.6758 0.285 0.0001 0.0001 0.0003

Table 2.
Comparison of results between the proposed framework and other available Ones (Epoch = 1000 iterations in the
proposed techniques and others previous techniques).

Figure 15.
Reconstruction images for CR in CS algorithms in an indoor scenario.

22

Deep Learning and Reinforcement Learning



Conv-LSTM, CsiNet, and CsiNet-GRUs continue to provide acceptable correlation
coefficients (ρ) at low CRs, where compressed sensing-based methods fail; it is note-
worthy that the proposed CsiNet-GRUs technique outperforms the other methods in
an indoor scenario. CsiNet-GRUs achieve the best performance among CR with indi-
cators parameters to improve accuracy, decrease NMSE, and increase correlation (ρ)
with dropout to reduce modeling system overfitting in massive multiple-input
multiple-output channels. As a result, CsiNet-GRUs outperform both CsiNet and
CS-based methods. With advanced deep learning technology, this chapter has the
potential to deploy real MIMO systems.

7. Conclusion

We developed and tested a prediction model to evaluate a real-time and end-to-
end channel state information (CSI) feedback framework in this chapter by extending
the DL-based CsiNet with GRU. By utilizing the time correlation and structure prop-
erties of time-varying massive MIMO channels, CsiNet-GRUs achieve an acceptable
trade between compressed ratio, recovery quality, accuracy, and complexity. This
chapter proposed a channel state information (CSI) feedback network by extending
the deep learning DL-based channel state information network (CsiNet) technique to
incorporate gated recurrent units (GRUs) and use the dropout method to incorporate
gated recurrent units (GRUs) and use the dropout method. The gated recurrent unit
(GRU) layers were used to extend the channel state information network CsiNet
decoders for time correlation extraction and the final reconstruction of channel state
information, whereas the dropout method was used to reduce overfitting in channel
modeling. In terms of complexity, the experiment results show that CsiNet-GRUs
achieve the best recovery quality and outperform state-of-the-art CS methods.

Appendices and nomenclature

1G The first generation
2G The second generation
3G The third generation
4G The fourth generation
5G The fifth generation
AI Artificial Intelligence
AMP Approximate Message-Passing
AoA Analysis of Alternatives
AE Autoencoder
BER Bit Error Rate
CE Channel Estimation
CNN Convolutional Neural Network
CS Compressive Sensing
CSI Channel State Information
CsiNet Channel State Information Network
CsiNet-GRU Channel State Information Network-Gated Recurrent Unit
DL Deep Learning
DNN Deep Neural Network
FDD Frequency Division Duplex
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GRU Gated Recurrent Unit
LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long Short-Term Memory
MIMO Multiple-Input Multiple-Output
mmWave Millimeter Wave
MSE Mean Squared Error
NMSE Normalized Mean Square Error
RELU Rectified Linear Unit
RNN Recurrent Neural Network
SNR Signal-to-Noise-Ratio
�ð ÞH Conjugate transpose
ρg The original is a sigmoid function
ϕh The original is a hyperbolic tangent
γ Compression Ratio
θ The delay
∂t Feedback internal
�k k2 The Euclidean norm

 Exponent
ℂ Complex numbersP

Summation
€ Element
~h
H
n

The channel frequency response vector at the nth subcarriers

ht Output vector
L θð Þ Loss Function
Nc Receiver antenna at the user equipment
Nt Transmit antenna at the base station
rt Reset gate vector
T Time sequence of the channel model
xn The transmitted information image
xt Input vector
yn The pre-coding vector at the nth subcarriers
zn The additive noise or obstruction
zt Update gate vector
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Abstract

Graph neural network (GNN) is an emerging field of research that tries to gener-
alize deep learning architectures to work with non-Euclidean data. Nowadays, com-
bining deep reinforcement learning (DRL) with GNN for graph-structured problems,
especially in multi-agent environments, is a powerful technique in modern deep
learning. From the computational point of view, multi-agent environments are inher-
ently complex, because future rewards depend on the joint actions of multiple agents.
This chapter tries to examine different types of applying GNN and DRL techniques in
the most common representations of multi-agent problems and their challenges. In
general, the fusion of GNN and DRL can be addressed from two different points of
view. First, GNN is used to influence the DRL performance and improve its formula-
tion. Here, GNN is applied in relational DRL structures such as multi-agent and multi-
task DRL. Second, DRL is used to improve the application of GNN. From this view-
point, DRL can be used for a variety of purposes including neural architecture search
and improving the explanatory power of GNN predictions.

Keywords: graph neural network, deep reinforcement learning, multi-agent,
multi-task, neural architecture search

1. Introduction

Building an intelligent system that can extract high-level representation from data
is necessary for many issues related to artificial intelligence. Theoretical and biological
arguments show that to build such systems, deep architecture models are needed that
include many layers of non-linear processing units. Before the emergence of deep
learning [1], traditional machine learning approaches depended on the representa-
tions given by feature selection or extraction that get from the data.

These methods required an expert in the domain of the subject to extract the
features manually. However, this hand-crafted feature extraction is a time-consuming
and sub-optimal process. The emergence of deep learning could quickly replace these
traditional methods because it could automatically extract the features according to
each problem. In recent years, deep learning has become the main motivation for
innovative solutions to artificial intelligence problems. This issue has been made
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possible by increasing the amount of available data, increasing computing resources,
and improving techniques in training deep networks.

Deep neural networks (DNNs) have reached remarkable achievements in the last
decade [2]. However, basic types of neural networks can only be implemented using
regular or Euclidean data. Whereas, many data in the real world have a graph struc-
ture that is a non-Euclidean data structure. This irregularity of the data structure has
led to recent advances in graph neural networks (GNNs).

GNNs [3, 4] allow the creation of a machine learning model which is taught
simultaneously to learn the representation of data with a graph structure. GNNs are
undoubtedly the most interesting issue in graph-based deep learning. GNNs can be
applied to graph-structured data for various tasks, from clustering to classification or
regression. They can also learn representation at the level of nodes, edges, and graphs.
Deep learning with graph data structure is recognized as graph representation learn-
ing, geometric deep learning, or graph embedding which seeks to learn the represen-
tation of structured information about graphs.

The purpose of graph representation is to build sets of features that show the
structure of the graph and the data in it. The main key of this method is to learn a
mapping that embeds nodes or graphs as points in a low-dimensional vector space so
that this mapping is optimized and the geometric relations in this learned space reflect
the structure of the original graph. After optimizing the built-in space, this learned
embedding space can be used as input features of the graph.

Once the size of the dataset in the input network is different from the training
history GNNs play a highly efficient role in knowledge transfer between data-oriented
structures. GNNs are inherently designed to generalize over graphs of different struc-
tures and sizes. This ability allows the GNN-based DRL agent to learn and generalize
over arbitrary network of environment topologies. Many DRL methods apply stan-
dard neural networks such as recurrent neural networks (RNNs) [5], and other neural
network structures. This issue causes poor generalization and prevents the deploy-
ment of DRL in networks, because it is hard to adjust to the dynamic changes of
network topology. In recent years, the integration of GNNs and DRL specially in
multi-agent systems has attracted much attention in graph-structured environments.

Nowadays, many systems can be viewed as multi-agent systems from a new
perspective. The cooperation of a group of agents (teamwork) in the frame of a graph
is one of the most important issues that is always raised in multi-agent systems [6],
due to increasing the ability to reach the final goal of the system and improving the
overall strategy.

This issue becomes more important when the environment is complex and
dynamic. In such an environment, a purposeful agent is affected by the actions of
other agents in addition to the changes in the environment. Therefore, the environ-
ment has more dynamic states than before, and the agent must have the ability to
model the action process and the power to learn and interact with other agents. Using
classical methods in describing agents and establishing communication between them
in a multi-agent environment, due to the use of many equations, weakens the power
of expanding the network to large systems. By defining an intelligent system and
using smart modern methods in solving such problems, methods such as deep rein-
forcement learning algorithms have been proven to be useful in such environments.

Automated control problems and development in decision-making are the results
of recent advances in DRL [7]. However, existing DRL-based solutions still fail to
generalize when applied to network-related scenarios. So, when faced with a network
state that is not seen during training, the ability of the DRL agent is impaired.
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Recently, GNNs have been offered to model and operate on graphs to reach
combinatorial generalization and relational reasoning. Indeed, GNNs simplify the
learning of relations between entities in a graph and the rules for composing them. A
combination of DRL and GNN can work and optimize problems while generalizing to
unseen topologies. Specifically, the GNN used by the DRL agent is inspired by
message-passing neural networks [8].

Robotics, pattern recognition, recommendation systems, and games are some of
the subjects in which DRL has presented acceptable performance. On the other hand,
GNNs exhibit excellent efficiency in supervised learning for graph-structured data
[9]. DRLs utilize the ability of DNNs to solve sequential decision problems with RL,
and on the other hand, GNNs are new architectures that are suitable for organizing
graph-structured data in this field.

In this survey, an overview of the concepts of GNNs is prepared, and then their
relationship with reinforcement learning (RL) is explained. The rest of this chapter is
structured as follows. A short review of graph neural networks is given in Section 2.
The technical backgrounds of deep reinforcement learning concepts and multi-agent
reinforcement learning are presented in Section 3. The relation between RL and GNN
is presented in Section 4. Finally, the conclusion is provided in the last section.

2. Graph neural networks

Nowadays, many learning problems need to use graph representation to present the
complex relationship between data [10, 11]. Recently, more attention over studies on
graphmodels has been received due to the great expressive power in social science (social
networks) [12–14] and biology science (predicting protein interface and bioinformatics
analysis, knowledge graphs, modeling physics systems, and classifying diseases) [15–17].

Pairwise message passing is one of the main elements in the structure of GNNs,
such that each node in the graph frequently updates its representations by replacing
information with its neighbors until a stable balance is attended. The graph neural
network usually contains two parts: the message passing part for extraction of local
infrastructure features used around the nodes and the readout phase which is an
aggregation part to summarize the particular features of the node in a vector of
features of the graph surface.

Representing data as a graph has several advantages, such as a simplified repre-
sentation of complex problems, systematic modeling of relationships, etc. On the
other hand, working with data with a graph structure using common DNN-based
methods has its own challenges. The variable size of the unordered nodes, the uneven
structure of the graph, and the dynamic neighborhood composition make it difficult
to implement basic mathematical methods such as convolution on the graph. Graph
neural networks (GNN) as its general structure is shown in Figure 1, overcome this
defect with the help of new DNN methods in the graph structures of datasets. GNN
architectures can model structural information and node features. In the following
several well-known models of graph neural networks are introduced.

2.1 Graph convolutional network

For the first time in [18], spectral networks and local deep networks were
connected on a graph convolutional network (GCN), as a method for semi-supervised
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learning on graph-structured data. The definition of these networks is based on the
notion of convolutional neural networks, which are applied to the graphs. GCNs [19]
are learned according to the structure of the features of the neighboring nodes. In
general, the main difference between CNN and GCN is related to their data structure.
CNNs are defined in Euclidean space while GCNs work on graph structure (non-
Euclidean structure data) where the number of node connections is different and also
the nodes are unordered.

Spatial graph convolutional networks and spectral graph convolutional networks are
the two main branches of GCNs. The key idea in spectral GCN was defined by signal/
wave propagation. In spectral GCN, information is propagated along the nodes as signal
propagation. Eigen-decomposition of graph Laplacian matrix in spectral GCNs is used
for information propagation and also is used for node classification by understanding
the graph structure. Non-generalization and inefficiency of computations in spectral
graph convolutional networks are two main challenges in spectral graph convolutional
networks. GCN overcomes these problems by Chebyshev polynomials to approximate
the spectral convolution and the ChebNet network is defined [20].

2.2 Graph attention network

Graph attention network (GAT) architecture [21] is a type of GCN architecture in
which the aggregation process learns the weights between the neighboring nodes of
each node with the help of the attention mechanism. In these networks, greater
weights are applied to more important nodes and it stores the weight of the nodes. The
advantage of graph attention networks is that these networks can adaptively learn the
importance of each neighbor. However, since the attention weights between each pair

Figure 1.
Graph neural networks (GNN) framework.
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of neighbors must be calculated, the calculation cost as well as the amount of memory
occupied increases rapidly.

2.3 GraphSAGE

In graph theory, there is a concept called node embedding, which means mapping
nodes to an embedded space with dimensions less than the actual dimension of the
data defined on the nodes of the graph, in which similar nodes are embedded close to
each other, in the resulting latent space.

GraphSAGE [22] is a deductive learning technique that exploits node features to
learn an embedding function for dynamic graphs. This inductive learning approach is
scalable across graphs of different sizes as well as subgraphs within a given graph. A
new node can be embedded without retraining by the GraphSAGE approach. It uses
aggregator functions to induce new node embeddings based on node features and
neighborhoods.

In [23] a method for data-driven neighborhood subsampling is defined by a non-
linear regressor based on the real-valued importance of each node and its neighbor-
hood. This subsampling helps to embed nodes in the graph using a small set of
neighboring nodes with high importance. The regressor is learned using value-based
reinforcement learning. Here, the negative classification loss output of GraphSAGE is
used to extract this importance.

GraphSAGE-D3QN [24] presents a graph DRL method for emergency control of
undervoltage load shedding model. Feature extraction of states in this model is
designed by GraphSAGE-based method with topology variation in the training step
and then online emergency control is achieved.

2.4 Applications of GNNs

Link prediction [25], node classification [26], clustering [27] and, etc., are consid-
ered as graph analysis objectives. In the following, several common GNNs goals are
described:

Node classification: training models to classify nodes by determining the label of
samples that are shown as nodes. Usually, these problems are used in a semi-
supervised way, with only a part of the graph being labeled.

Graph classification: Graph classification is a task with real applications in social
network analysis, categorizing documents in natural language processing, and classi-
fying proteins in bioinformatics fields. Graph classification obtains a graph feature
that aids discriminate between graphs of different classes.

Graph Visualization: Visual representation of data structures and anomalies with
the help of geometric graph theory and information visualization that helps the user
understand graphs.

Link prediction: Predicting the relationship between two nodes and considering
that nodes in a network are likely to have links. An application of this approach is to
detect social interactions or suggest potential friends to users on social networks. It has
also been used in predicting criminal associations, and in recommender system prob-
lems.

Graph clustering: clustering on graphs is performed in two ways. Either clustering
is based on nodes that should be converted into different and connected groups based

33

Graph Neural Networks and Reinforcement Learning: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.111651



on the edge distances and their weights or considering the graph as objects that should
be clustered, and clusters these objects based on similarity.

3. Deep reinforcement learning

Using DNNs to solve sequential decision issues in the framework of RL led to the
emergence of deep reinforcement learning (DRL) in high-dimensional problems (see
Figure 2). Nowadays, different applications of artificial intelligence have been
enhanced with the help of DRL which includes natural language processing [28],
transportation [29], finance [30], healthcare [31], robotics [32], recommendation
systems [33], and gaming [34]. DRL can be defined as a system that maximizes the
long-term reward in a reinforcement learning problem using representations that are
themselves learned by the deep network. The outstanding success of DRL can be
considered due to the ability of this method to deal with complex problems and
provide efficient, scalable, and flexible computational methods. Also, DRLs have a
high ability to understand the dynamics of the environment and produce optimal
actions according to their interactions with the environment. When dealing with
various high-dimensional problems or continuous states, reinforcement learning suf-
fers from the problem of inefficient feature representation. Therefore, learning time is
slow and techniques should be designed to speed up the learning process. The most
significant feature of deep learning is that DNNs can discover compact representa-
tions of high-dimensional data automatically.

Combining DNNs with RL has become more attractive in recent years and it has
gently shifted the focus from single-agent environments to multi-agent ones. Working

Figure 2.
Total structure of the combination of GNNs and DRL.
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with multiple agents is inherently more complex because future rewards depend on
the joint actions of several agents and the computational complexity of the function
increases. Single-agent environments such as Atari [6], and navigation robots [35],
and multi-agent settings such as traffic light control [36], financial market trading
[37], and strategy games such as Go, StarCraft, and Dota are some examples that are
developed by DRL.

In DRL, unstructured input data from the state space are given to the network.
This input such as pixels rendered on the screen in a video game or images from a
camera or the raw sensor stream from a robot can be very large and high-dimensional.
In the output, the value of an action is determined for the agent to decide what actions
must be performed in the environment to maximize the expected rewards. Since the
RL methods are suffered from the curse of dimensions problem. DNNs can find low-
dimensional representations (and features) of high-dimensional data automatically. In
the following, the subject of DRL for the special scope of multi-agent reinforcement
learning will be expressed widely.

3.1 Multi-agent reinforcement learning

In multi-agent reinforcement learning (MARL) sets of independent agents interact
with each other to learn how to reach their goals. Large and random state spaces are a
common problem in MARL systems with dynamic environments. These challenges
include inefficient cooperation between agents, unsuitable coordination between
agent decisions, and the effect of state space size on the learning time. In recent years,
MARL applications have been used in autonomous driving, traffic light control, and
network packet delivery. Communication between agents gathers information about
the environment and the status of other agents.

Markov decision process (MDP) is a useful approach for modeling optimal
decision-making in stochastic environments such as multi-agent environments
but with different representations. The dynamics of the state and the expected
rewards change for agents according to the common action and violate the
stationarity assumption of MDP. MDP can be completely or partially observable in a
multi-agent environment. It also depends on the type of interaction, which can be
competitive, collaborative, or mixed. They perform actions sequentially or
simultaneously.

Markov game [38], represent a theoretical framework for the study of agents with
multiple interactions in a fully observable environment and can be used in competi-
tive, cooperative, and hybrid environments. A Markov game is a set of regular games
(matrix games) that agents perform repeatedly in it. Each state of the game can be
represented as a matrix representation with the payoff of each joint action. If the
agents cooperate with each other; but the actions have decentralized execution, it is
shown by a decentralized MDP.

A partially observable Markov game is a multi-agent Markov decision process in
which every agent has an individual partial observation of the environment and
takes an individual action to receive their own reward. If the agents cooperate to
optimize a single reward function according to the joint state and action, then the
problem can be modeled as a decentralized partially observable Markov decision
process (Dec-POMDP). RL in a multi-agent space is associated with several
problems. Partial observability, non-stationarity, computational complexity, and
credit allocation are among these problems. In the following, each of these aspects will
be discussed:

35

Graph Neural Networks and Reinforcement Learning: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.111651



3.1.1 Partially observable

Based on local observations in a partially observable environment, each agent
makes decisions. So, it leads to asymmetric and incomplete information among
agents, which makes the learning process difficult. Partially observable working
has been studied mainly in situations where a group of agents maximizes team
rewards through a common policy. For example, in Dec-POMDP settings, the
two main approaches are (1) centralized learning and decentralized execution
paradigm, and (2) using communication to exchange information about the
environment.

Since in Dec-POMDP the agents partially observe the state and try to maximize the
rewards in each step for all agents, the optimal solution for a Dec-POMDP model is
considered a challenge. The lack of access to the real state information in the Dec-
POMDP leads to the use of the history of observations and actions, which is compu-
tationally expensive for solving the Dec-POMDP model. Policy tree by pruning
suboptimal trees [39, 40], and a feature-based heuristic search value iteration [41]
techniques are used to solve this challenge in Dec-POMDP model.

Also, deep multi-agent reinforcement learning algorithms for Dec-POMDP models
are considered an approximate policy solution technique. Different MARL algorithms
have been represented to produce decent policies on many challenging dec-POMDP
problems [42, 43]. An independent learning approach is used in [43] where a policy
solution for each agent is updated solely based on their individual experiences.

3.1.2 Non-stationary

In a multi-agent environment, all agents simultaneously learn, interact and change
the environment. As a result, state transitions and rewards are no longer fixed, and
agents continue to adapt to the changing policies of other agents. This violates the
Markov assumption, which is problematic because most RL algorithms assume a fixed
environment to guarantee convergence. One way to deal with non-stationarity is to
learn as much as possible about the environment, e.g., through adversary modeling
and information exchange between agents [44].

To solve the non-stationarity problem the centralized critic architecture is used.
Actor-critic algorithm for this architecture includes two components. The critics’
training is centralized and has access to the observations and actions of all agents,
while the actors’ training is decentralized. Since the actor computes the policy, the
critic component can be removed during testing, and therefore the approach has fully
decentralized execution. If the actions and observations of the opponent during the
training are available, the agents do not experience unexpected changes in the
dynamics of the environment and it will lead to the stabilization of the process.

The actor-critic algorithm in [42] is used with stochastic policies to evaluate and
train agents in the StarCraft game. A single centralized critic is applied for all the
agents and a different actor for each agent is used.

Generally, considering non-stationarity in multi-agent systems does not need
centralized training approaches. Self-play is another decentralized method that
has been explored to manage non-stationarity in MARL problems. This approach
trains a neural network, using each agents’ observation as input, by playing it
against its current or previous versions to learn policies that can generalize to any
opponent.
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3.1.3 Computational complexity

As each agent is added, state-action space grows exponentially, which leads to an
increase in the time complexity of algorithms in multi-agent environments. Training a
DRL model for a single-agent needs significant sources and gets worse for several
interaction agents which leads to slow learning.

Reducing the learning complexity for goal-directed problems can be achieved by
initializing the Q-values with a good approximative function. In multi-agent prob-
lems, good approximations for a big class of problems, namely for goal-directed
stochastic games, exists [45]. These games can reflect coordination cooperative
robotics.

3.1.4 Assignment of credit

Allocation of credit to agents due to the simultaneous performance of several
agents in the environment leads to the difficulty of learning an optimal policy in the
environment. The individual contribution of an agent cannot be determined in the
joint reward signal [46]. The agent is also able to distinguish whether changes in
global reward are due to its actions or those of other agents. One way to solve this
problem is to let agents learn based on a local reward. But the agent may easily
increase his local reward, which encourages selfish behavior that may reduce overall
group performance. Several approaches are discussed which were created to deal with
these challenges.

3.2 Interaction methods between multi-agents with GNN architecture

In the most recent research, many MARL methods use GNNs to provide informa-
tion interactions between agents to complete collaborative tasks and coordinate
actions. In general, not extracting enough useful information from neighboring agents
is one of the problems of simply aggregation in GNN, which is due to ignoring the
topological relationships in the graph.

To solve this problem, Ding et al. [47] presented a method to extract useful
information from neighboring agents as much as possible in the graph structure,
which has the ability to provide feature representation to complete the cooperation
task. For this purpose, mutual information (MI) is applied for measuring the agent
topological relationships and the agent features information to maximize the correla-
tion between input feature information of neighbor agents and output high-level
hidden feature representations.

A GNN architecture for training decentralized agent policies on the perimeter of a
unit circle has been proposed in continuous action spaces [48]. In this approach,
multi-agent perimeter defense problems are solved by learning decentralized strate-
gies with GNNs. Local perceptions of the defenders are considered as inputs in the
learning framework and finally, the model is trained by an expert policy based on the
maximum matching algorithm and returns actions to maximize the number of
captures for the defender team.

The proposed framework [49] used GNNs for value function factorization in
multi-agent deep reinforcement learning. A complete directed graph is designed
by the team of agents as the nodes of the graph, and edge weights are
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determined by an attention mechanism. The introduced mixing GNN (GraphMIX)
module in this paper is responsible for factorizing the team value function into
individual per-agent observation-action value functions, and explicit credit
assignment to each agent. The centralized-training-decentralized-execution in
GraphMIX give the ability to the agents to make their decisions independently once
training is completed.

An attention mechanism in [50] is defined to adjust the weights of the edges
during an episode based on the agents’ observation-action histories. To create the
factorized state-action value function’s implicit assignment of global reward,
additional per-agent loss terms are taken from the output node embeddings of the
GNN, that divide the global reward to individual agents explicitly. Neural attention
modules have been used in the graph structures [50, 51], for applying attention
mechanisms to compute graph edge weights. These techniques are used in sentence
translation works for managing associations between structured data [52], and they
are generally used in RL [53].

Non-stationery and coordination problems can be solved naturally by centralized
learning of joint actions but it is difficult to scale, because of the exponentially grows
of the joint action space by the number of agents. To solve this challenge, conditional
independencies between agents are exploited by decomposing a global reward func-
tion into a sum of agent-local terms. Sparse cooperative Q-learning [54] is a tabular
Q-learning algorithm that learns to coordinate the actions of a group of cooperative
agents only in the states in which such coordination is necessary, encoding those
dependencies in a coordination graph. The use of these methods requires the prior
provision of dependencies between agents. To solve this problem, it is assumed that
each agent always contributes to the global reward and learns the amount of its
contribution in each state.

Coordinating graph formulation is one of the methods for determining the joint
action between agents based on the structure of interactions. In [55], Deep Implicit
Coordination Graph (DICG) architecture is introduced, which includes two
modules, one for obtaining the dynamic coordination graph structure and the other
for learning the implicit reasoning about common actions or values. DICG uses the
actor-critic structure to improve coordination for multi-agent situations. DICG is
assumed that agents can pass messages that encode their observations. The agents
use GCN to pass these messages between one another, where the adjacency matrix
for the network is learned with self-attention. Here, a new state categorization
method has been presented for centralized-training-decentralized-execution. In this
method, which is implemented in the StarCraft game, each game agent separates
information and observations of itself and its competitors and then leverages GAT to
learn the correlation and relationship among the agents.

3.3 Different methods for computing value function in MARL

This section describes different methods for calculating the Q-value function for
multi-agent environments. In MARL problems, each agent has a local and private
observation of its surrounding space that it wants to take action based on that infor-
mation. A problem that the agent may face with it is the locality of observation and
not having complete information about the environment. Another problem is the non-
stationarity of the environment because all agents in the environment are learning and
show different behaviors during training.
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To solve these problems, the simplest method is to use single-agent RL algorithms
for each agent and consider other agents as part of the environment. However, the
exponential growth of this joint action space becomes difficult with the number of
agents. The Independent Q-Learning (IQL) [56] method is based on this logic and has
a good efficiency in some multi-agent RL problems, but there is no guarantee of their
convergence. In IQL, each agent has a separate action value function based on which it
receives the local observation of the agent and then chooses its action based on it. In
such environments, RNN can also be used for the history of observation-action.

In another approach, the agents perform learning in a centralized manner and the
choice of action is also centralized. This approach is suitable for problems (such as
traffic management or traffic light management) that do not require decentralized
execution.

The third approach includes centralized training and decentralized execution. In
this approach, the agents have access to the state and complete information during the
training step, but in some environments, the learned policy must be applied in a
decentralized manner, and the agents cannot access the full state in the execution
phase. In this method, the purpose of each agent is to perform actions that maximize
their utility function (joint value function), but such decentralization can result in
sub-optimal actions [55].

Value-based methods like Value Decomposition Networks (VDN) [57], QMIX [58]
and actor-critic methods like Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [59] and Counterfactual Multi-Agent (COMA) [60] are some approaches
presented to solve these problems with training in a centralized manner and execution
in a decentralized way.

In VDN, a linear summation of all action-value functions of all agents is used to
determine separate action-value functions for each agent and learn using only a
common reward signal. Using a common reward signal, it tries to learn the
decomposed value functions for each agent and use it for decentralized execution.
QMIX generalized the VDNmethod and combines the Q-value of different agents in a
non-linear way. They use the global state as input to hyper networks to generate
weights and biases of the mixing network. The actor-critic architecture is the basis of
centralized training and decentralized execution. In this method, they use the full
state and additional information available in the training phase of the critical network
to generate a richer signal for the actor.

One of the disadvantages of the aforementioned above algorithms is that it does
not clearly obtain the underlying structure of cooperation between agents with a
graph topology. Some papers try to join MARL with graph learning. For example, a
multi-agent deep reinforcement learning based on GCN structure has been presented
[61]. Here, the decentralized decision-making is not considered by the agents and only
centralized training and centralized execution are investigated for communicating
agents with each other during the inference phase several times.

Multi-agent DDPG (MADDPG), generalizes the actor-critic algorithm into a multi-
agent policy gradient algorithm where decentralized agents learn a centralized critic
based on the observations and actions of all agents. It leads to learned policies that
only use local information and observations at execution time. This method does not
assume a differentiable model of the environment dynamics or any particular struc-
ture of the communication method between agents. It applies not only to cooperative
interaction but also to competitive or mixed interaction involving both physical and
communicative behavior. The critic is strengthened by additional information about
other agents’ policies, while local information is provided just for the actor. After
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training completion, only the local actors are used in the execution phase, acting in a
decentralized manner.

COMA is a multi-agent policy gradient-based method for cooperative multi-agent
systems that uses a centralized critic to estimate Q performance and decentralized
actors to optimize agent policies. Also, this method solves the problem of credit
assignment using a count. Unlike COMA, which uses a centralized critic for all agents,
MADDPG has a concentrated critic for each agent to have different reward functions
in competitive environments.

Recent works have been conducted based on MADDPG, R-MADDPG [62]
develops the MADDPG algorithm to the semi-observable environment by preserving
the history of previous observations in the critic module and by having an iterative
actor. M3DDPG [63] includes minimax optimization for powerful policy learning
against agents with changing strategies. Actor-Critic with mean field [64] factorizes
the Q-value function only by using interaction with neighboring agents based on
mean field theory, and the idea of dropping out can be expanded to MADDPG for
managing large input space [65].

4. Combination of graph neural networks and reinforcement learning

Recently, combining GNNs with reinforcement learning for graph-structured
problems is a powerful tool in modern deep learning [66]. Combinatorial optimization
[67], transportation problems [68], and manufacturing and control [69] are interest-
ing applications in these fields.

Figure 3 shows the total structure of the combination of GNNs and DRL. The local
observation of agents is encoded by MLP for low-dimensional input or CNN for visual
input into the feature vector which is shown in the embedded layer. The attention

Figure 3.
Schematic structure of deep reinforcement learning agent.
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network usually represents to define the edge weights as the strength of the connec-
tion in the coordination graph between each agent and its neighbors. In the next step,
the graph convolution layer is applied to perform message passing and information
integration across all agents. Finally, the deep Q-network is used to approximate the
Q-value function. By considering the maximum output of the Q-network the next
action for the agents is determined.

The embedding layer contains an encoder for n observations o1, o2, … , onf g of n
agents. The outputs of the encoder include embedding vectors Ei for i ¼ 1::n as follows:

Ei ¼ Encoder oi, θEð Þ (1)

In the local attention Layer, the attention weights for two agents i and j in the
graph are calculated using embedding vectors as:

Atij ¼
exp Attention Ei, Ej,Wa

� �� �
Pn

k¼1 exp Attention Ei, Ek,Wað Þð (2)

where the attention network is parametrized by the weight matrix Wa.
Message passing and information integration across all agents are expressed in a

graph convolution layer as follows:

H lþ1ð Þ ¼ σ ~D
�1

2 ~A ~D
�1

2H lð ÞWc
lð Þ

� �
(3)

where H lð Þ is the feature matrix of convolution layer l, ~A ¼ Aþ IN, and
~Dii ¼

P
j
~Aij.

The predicted Q̂ in Q-network is verified by θ parameter. The general objective for
each minibatch in the training step is to minimize the loss function as:

Lθ ¼ 1
b

X
t
yt � Q̂ st, at, θpredict

� �
(4)

where b is the batch size, and yt ¼ rtþ1 þ γmax
atþ1

Q stþ1, atþ1, θtarget
� �

in time step t is

the target of Q value function for state s and action a with reward r.
In general, the combination of GNN and DRL can be addressed from two different

points of view. From one perspective, GNN is used to advance the formulation and
performance of DRL and specifically, when GNN has been used for relational DRL
problems. The successful modeling for this relationship can be defined among (1)
different agents in a multi-agent deep reinforcement learning (MADRL) framework,
and (2) different tasks in multi-task deep reinforcement learning (MTDRL) frame-
work [70].

From another perspective, DRL can be used to progress the performance of GNN.
DRL is used to improve the explanatory power of GNN predictions, Neural Architec-
ture Search (NAS) [71], and design adversarial examples for GNN. NAS is the process
of automatically searching for the optimal architecture of a particular neural network
to solve a problem, which includes finding the number of layers, the number of nodes
in the layer, etc. In GraphNAS [72], the RL algorithm helps to search in the graph
neural architectures. GraphNAS represents a search space for covering sampling

41

Graph Neural Networks and Reinforcement Learning: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.111651



functions, aggregation functions, and gated functions. To define the architecture of a
graph neural network a recurrent network is used to create variable-length strings.
Auto-GNN [73] is defined in the predefined search space by RL-based controllers.
This architecture is applied in the hidden dimension, attention head, attention func-
tion, activation function, and aggregate function.

Identifying the subgraph that can have the most impact on the prediction process
in GNN is one of the problems in generating explanations for GNN predictions, and in
[74], DRLs are used for this improvement. Here, a DRL-based iterative graph gener-
ator is used the most important node for a prediction as a seed node is selected and
then adds edges to generate the explanatory sub-graphs.

Learning a sub-graph generation policy with a policy gradient is done by mutual
information of predictions and the distribution of predictions according to the
explanatory sub-graph. This method achieves better performances from the point of
view of the qualitative and quantitative similarity between the generated sub-graphs
and the ground truth explanations.

Another application of DRL is to add or remove existing edges during adversarial
attacks on GNNs [75, 76]. RLS2V [77] is a framework that uses DRL to learn structural
changes in graphs, which is used to develop strategies for adversarial attacks on
GNNs. Since GNNs are vulnerable to adversarial attacks that corrupt or poison the
data used to train them. Q-learning and structure-to-vector-based attack methodology
are learned to modify the graph structure. The purpose of DRL is to perform an attack
aimed at evading detection during classification.

4.1 Multi-agent deep reinforcement learning

Multi-agent deep reinforcement learning needs coordination to efficiently solve
certain works. Due to the size of joint action spaces, fully centralized control is often
infeasible in these problems. The coordination graph-based method allows reasoning
about the joint action based on the structure of interactions.

The coordination graph (CG) is introduced by Guestrin et al. [78], where a method
for joint value estimation is presented that allows explicit modeling of the locality of
interactions and formal reasoning about given joint actions. CG is a way to factorize a
complex multi-agent Q-function. Rather than having a single joint Q function which
would depend on the joint action of all agents, one could use a hypergraph to decom-
pose this Q-function into a sum of Q functions across the edges, where each edge
denotes a much lower dimensional Q function. Then finding the minimizing joint action
can be done by passing messages along the edges of the coordination in a hypergraph.

MAGNet [79] represents policies for multi-agent environments based on relevant
graphs and message-passing mechanisms. Here, the graphs are static and constructed
based on heuristic rules. Multiple agents in the DGNmodel [80] are shown as nodes of
a graph and relationships between them are learned as the observation encoder mod-
ule in the environment. In the next step, by a convolutional kernel module, a multi-
head point generation attention is defined to extract relational features between each
agent and its neighbors in the local region. Q network module receives the extracted
features of the former step to use them for determining the strategy which ultimately
leads to cooperation between agents. In order to create an effective strategy in coop-
eration between agents, joint training between the encoder and Q network is done
sequentially. This paper proves that GCN increases strongly cooperation among
agents. This model is investigated in a grid-world platform MAgent.
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Inspired by this idea [80], a model is presented in [81] that controls the connected
autonomous vehicles (CAVs) as multi-agents by GNN and RL for cooperation
between them. Information transfer for connected autonomous vehicles attains
through the onboard sensors of nearby human-driven vehicles (HDVs) as local infor-
mation and also from other connected autonomous vehicles the global information is
obtained via connectivity channels. This information helps to define the graph struc-
ture. Within the local network, information passes from HDVs to CAVs. From the
global network, all the CAVs can share knowledge including locally sensed informa-
tion and their own information. Here, the environment contains a variable number of
agents and makes a dynamic length output that matches with CAVs driving opera-
tions. Due to the variable number of agents, it is difficult to use joint training for each
agent with its distinct Q network. Also, joint training is not scalable because by
increasing the number of agents, the number of parameters for distinct Q networks
will grow exponentially. One efficient method for solving these challenges is to apply a
shared centralized Q network for all agents to determine their actions. Using the
combination of GCN and deep Q network can have collaborative and safe controlling
for lane-changing decisions in different traffic.

4.2 Multi-task deep reinforcement learning

MTDRL prepares a learning framework for coordinating and exploiting common-
alities between multiple tasks in order to learn data efficiency, and robustness policies
with improved efficiency, and generalization. Compatible state-action spaces are the
main assumption in a MTDRL process such as the same dimensions of states and
actions across multiple tasks. This issue is supported by GNNs due to capable of
processing graphs with arbitrary sizes.

One of the applications of GNN in a MTDRL is in continuous control environments
that use the features of each element of the MuJoCo agent to construct input graphs
[82]. Each actuator has obtained the information from local sensors. A shared modular
policy is defined as a global policy for each agent’s actuators. Each limb of the MuJoCo
agent is considered as a state with features containing positions, rotation, velocity, etc.
that implements its independent policy to optimize joint reward function.

A framework in [83] is proposed to learn a job-shop scheduling problem (JSSP) by
GNN and RL. The GNN section contains the creation of a graph from spatial features
of the element of the job-shop problem and the RL section considers it as sequential
decision-making by proximal policy optimization method (PPO) as a scheduling
process.

5. Conclusion

In this survey, we tried to summarize about GNNs and RL and their relations. We
had an overview of the challenges inherent in graph neural networks and multi-agent
environments. Since, learning in collaborative multi-agent environments with
dynamic, non-deterministic, and large state space has become a very important chal-
lenge in applications. Among these challenges, we can mention the effect of the size of
the state space on the duration of learning, as well as the inefficient cooperation and
the lack of proper coordination in decision-making between the agents. Also, when
using reinforcement learning algorithms with the graph structure, the models will face
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challenges such as the difficulty of determining the appropriate learning goal and the
long convergence time caused by trial and error-based learning. So, the integration of
these methods leads to more realistic scenarios and more effective solutions to real-
world problems. Researchers in this field have a significant impact on the progress of
the combination of GNNs and DRL by providing newer models and architectures.
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Chapter 3

IoT Device Identification Using
Device Fingerprint and Deep
Learning
Prashant Baral, Ning Yang and Ning Weng

Abstract

The foundation of security in IoT devices lies in their identity. However,
traditional identification parameters, such as MAC address, IP address, and IMEI, are
vulnerable to sniffing and spoofing attacks. To address this issue, this paper proposes a
novel approach using device fingerprinting and deep learning for device identifica-
tion. Device fingerprinting is generated by analyzing inter-arrival time (IAT), round
trip time (RTT), or IAT/RTT outliers of packets used for communication in networks.
We trained deep learning models, namely convolutional neural network (CNN) and
CNN + LSTM (long short-term memory), using device fingerprints generated from
TCP, UDP, ICMP packet types, ICMP packet type, and their outliers. Our results show
that the CNN model performs better than the CNN + LSTM model. Specifically, the
CNN model achieves an accuracy of 0.97 using the IAT device fingerprint of ICMP
packet type, and 0.9648 using the IAT outlier device fingerprint of ICMP packet type
on a publicly available dataset from the crawdad repository.

Keywords: Internet of Things, deep learning, device identification, security,
device fingerprinting

1. Introduction

IoT is used in varied industries including automobile, manufacturing, agriculture,
and medicine, etc. With the increase in the usage of IoTs in varied fields, the data
transfer between edge devices over the network has also increased. While IoT bridges
the gap between the digital and physical world, compromised IoT devices can bring
dangerous consequences. Wireless networks are more at risk than wired networks.
Frames are encrypted in wireless communication, but the management and control
frames are not encrypted as per IEEE 802.1 standards. This causes the wireless device
identity prone to spoofing and denial of service attacks. Node forgery, once the
adversaries get hold of the security credentials, can cause a major security threat.

Adversaries may use a compromised node to send incorrect data. For example, if
an IoT device sending the temperature in the industry gets compromised, it will ruin
the product, and the owner must bear a great loss. Many cryptography techniques,
such asWEP andWPA, can be easily compromised. IP address, MAC address, or IMEI
number could be used for device identification, but there are scenarios where these
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addresses got spoofing [1]. The gravity of the impact the breach in IoT has on varied
fields is substantial, and we need to come up with an appropriate security mechanism
to reduce the risk of data being compromised by IoT device forgery.

Different metrics can be used for device identification such as IP address, MAC
address, IMEI address, and other network parameters such as transmission time,
transmission rate, inter-arrival time, and medium access time. Comparisons of differ-
ent metrics for device identification are in Table 1. The parameters, such as MAC
address and IP address, are easier to spoof, so the study has been made on finding out
the important parameters that can distinguish the devices. In [2], transmission time,
transmission rate, inter-arrival time, and medium access time have been compared.
IAT and transmission time outperform the other parameters in device identification.

In this paper, we worked on the deep learning approach for device identification.
Device fingerprint is created from the parameters extracted during the communica-
tion of a device with router. This device fingerprint is used to train the deep learning
model and device identification.

We fingerprint a device using IAT, RTT, and its outliers and feed them to deep
learning models for device identification. These parameters are easier to extract and
are not spoofed that easily after creating the device fingerprint with them.
Timestamps (from which IAT and transmission time are extracted) are generated at
the receiver side, which makes it harder to sniff and spoof. The adversaries need to
change their own behavior to get a hand on these parameters. IAT and RTT are
varied for different devices due to different CPU configuration and clock frequency.
IAT and RTT depend on cache configurations, data cache, instruction cache, clock
frequency, busses, and NIC card. These hardware configurations have an impact on
the packet transfer rates. The attackers might try to emulate the signature using
different techniques such as (1) introduce delays in packets, (2) change the data
rate, and (3) make a customized operating system. Even while considering such
techniques for an attack, an attacker is not successful in emulating the device.
The attacker must consider a spoofing a signature along with hiding its original
signature.

We use deep learning to extract knowledge from the data. It allows us to better
understand the system model and simulate. CNN learns the semantic in the images
and patterns in the image graph. Similarly, LSTM is recognized as a good algorithm for
the classification of time series data. We use these two deep learning algorithms for
the classification of devices. In earlier research, mathematical tools such as Mann-
Whitney U-Test were used, but these algorithms require much time invested in

Metrics/
Parameters

MAC address IP address Transmission time Inter-arrival time

Spoofing Easy easy difficult difficult

Property Hardware network hardware and
software

hardware and
software

Privacy concerns Low low high high

Header generation sender wireless
card

sender wireless
card

receiver wireless
card

receiver wireless
card

Table 1.
Comparison of parameters for fingerprinting.
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preprocessing of data. The machine learning approach also requires us to prepare
structured data before feeding it to ML algorithms.

Deep learning algorithms have an advantage over these consequences as it learns
through the unstructured data while going through each layer in deep learning algo-
rithms. The key factor for using deep learning is its time for making a prediction. Deep
learning has its parameters calculated while training, which is why, when we provide
our fingerprint of the device, the prediction is made quickly. This would take more
time if we had used ML or any other mathematical tools.

We use the dataset generated from our own setup, as well as a publicly available
dataset for training the model. We use TCP, UDP, ICMP packets, ICMP packets, and
outliers of those packets for creating the device fingerprint. A newmethod [3] of device
identification by collecting the information of the device to generate a fingerprint of the
hardware, which can be used for device identification has been introduced. They use
four different types of packets, namely probe request, ping, TCP, and UDP packets, to
generate IAT graphs and have lower accuracy using CNN for classification.

In our work, we fingerprint two devices: Samsung A20 and Samsung J5 Prime. We
plot IAT and RTT of the packets (probe request for IAT and ping for RTT) of each
device and used those as datasets and feed them to deep learning models for device
identification. We also use the publicly available dataset from the crawdad repository
[4] introduced by Radhakrishnan et al. [5] to verify our results. This dataset provides
the IAT information collected actively and passively from different wireless devices
using wire side observations in a local network. They captured traffic from 30 differ-
ent devices including iPads, iPhones, netbooks, Google phones, IP cameras, Kindles,
and IP printers, etc., from various applications and protocols such as TCP, UDP,
Skype, ICMP, SCP, and Iperf. Our main contribution consists of:

• use parameters extracted from wireless communication to create a unique
signature/fingerprint of hardware.

• different parameters (IAT and RTT) for creating unique signatures, which are
separately used for training deep learning models.

• compared how well deep learning algorithm was in classification using different
metrics.

• considered outliers in IAT graph to observe if it does better classification.

The remainder of the paper is organized as follows. Section 2 briefly discusses
related work. Section 3 describes the device fingerprinting, setup, methods for
extracting data, and creating image graphs, and preparation of datasets are also
discussed in this section. This dataset is fed to deep learning models described in
Section 4 for classification of device. Experimental results are presented in Section 5,
and the paper is concluded in Section 6.

2. Related work

The use of IP address, MAC address, and IMEI number for device identification
brings significant risks of critical information, and the device itself is compromised.
This alerts the researcher to produce a flexible and effective technique for
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device identification [1, 6, 7]. For example, a new stack [1] for the identity of
IoT is proposed as it differs from the traditional identity of network devices and
survey on attribute-based authentication for the identity of IoT devices.

Neumann et al. [2] surveys different features of the MAC layer such as transmis-
sion rate, transmission time, and inter-arrival time, and evaluated them on two
criteria for effectiveness, fingerprint similarity at different time, and fingerprint
dissimilarity of two different devices. In [2], authors use the IAT packets from wire-
less devices for creating digital fingerprints and created a histogram where each bin
specifies the frequency of IATs in a specified range. Here, histogram is the fingerprint
used for the classification of the the device and used to identify known and unknown
devices from the database. The author tested the scenario where a malicious user tries
to emulate the known device by introducing delay to the packets. The author con-
cluded that different software and hardware make it difficult to emulate the hard-
ware. In [2], authors use a passive approach for fingerprinting and, Radhakrishnan
et al. [5] extended the work [2] using active approach for device fingerprinting. In the
passive approach, we just observe the wireless communication to/from the device and
use the important features of packets. Instead, in the active approach, we inject the
signal to get a response from the device to get useful features. Sandhya et al. [8] used
CNN but considered all types of packets flowing from devices to AP for device
classification. This might be practical, but a lower accuracy of 86% may be
problematic from a security point of view.

In [5], the author used a ping application to communicate between a device on
campus. In [9], the author used IAT of probe request to fingerprint the device and
used Mann-Whitney U-test for the analysis if two samples are of the same distribu-
tion. Miettinen [10] used 23 features such as ICMP, TCP, HTTP, and size from
different layers (data link layer, transport layer, network layer, and application layer,
etc.). The work collects these features of 23 for 12 packets and used a random forest
algorithm for classification. The accuracy for 17 out of 27 was obtained 95% and 50%
for the rest devices (10).

Robyns et al. [11] introduce the idea of noncooperative MAC layer fingerprinting,
which does not require cooperation with the device as it uses some adversary nodes at
the monitoring station to capture and monitor the bits of MAC frames without the
user’s permission. This hampers the privacy of the user but provides security from
attacks from outside. The accuracy, when used for classification of 50 to 100 devices,
was between 67–80%, but the accuracy decreases rapidly from 33–15% when device
numbers were increased.

Kohno et al. [12] used the clock skew for fingerprinting devices. The work mea-
sured the timestamp by time difference of the time stamps using the traces from
Tcpdump. The work considered the scenario where IP addresses were changed during
data collection. Maurice [13] used a probe request and response for fingerprinting, but
the results were not that promising for similar devices. Cunche et al. [14] used probe
request from an AP and in response got the list of wireless networks. The work used
this vulnerability to identify people from the list of networks connected. Francois
et al. [15] made use of behavioral fingerprinting and automatically disconnects the
device, which has suspicious activity and asks it to reconnect based on the behavioral
fingerprint. Sun et al. [16] use the fingerprinting method for localization of devices
connected to Wi-Fi AP indoor or outdoor.

Xu [1] studied the challenges and opportunities in digital fingerprinting for both
wired and wireless devices. The author extracted the features from the physical and
MAC layers such as clock skew, IAT, transmission time, SSID, and frequency. The
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work concluded IAT and transmission time as good parameters for device
classification based on accuracy.

Kulin et al. [17] used different algorithms such as k-NN, decision tree, logistic
regression, and neural networks for device classification using publicly available
datasets. The performance of k-NN, decision tree, and logistic regression was good, but
neural networks performed poorer than other classification algorithms with an average
precision of 0.47 and recall value of 0.46. It is a common understanding that neural
networks should perform better than others, but this was not the case in this work.

3. Device fingerprinting

We set up the devices in the lab for extracting the information about the devices.
First, we set up Raspberry Pi as a router. Next, we use Samsung A20 and Samsung J5
Prime as an edge device (target IoT devices). Wireless communication between the
edge devices and router was recorded. In the sniffing applications, Wireshark captures
the packets incoming and outgoing on Raspberry Pi. These captured packets are used
to calculate IATs/RTTs of packets and plot IAT, RTT, and IAT outlier graphs. These
graphs are used as datasets to train and test the model. Python program is used to plot,
label, and split the dataset. A split training set trains the deep learning model, and the
testing dataset validates it. Our overall methodology is depicted in Figure 1 and
explained in detail in a subsection of this section and Section 4.

3.1 Our setup

Our setup has Raspberry Pi as a router and phones as the edge devices. Raspberry
Pi (acts as a router) broadcasts an access point. The packets sent from edge devices are
captured at the router side, which has a packet sniffing tool installed. Wireshark is
installed in Raspberry Pi which inspects, deciphers, and keeps track of all incoming
and outgoing packets to/from it. As there might be many packets coming to the
router, we use the filter to find the required packet. We collected the data in two ways:
1. Probe request and response and 2. Ping request and response.

Probe requests are the packets broadcast by wireless devices, which consist of
supported data rates and their capabilities. The access point receives these requests
and responses with packets consisting of SSID, supported data rates, and encryption
type, etc. We used a sniffing tool, Wireshark, to passively sniff the packets at the
router level and use those packets for making IAT graphs.

Ping sends the ICMP echo request packet to any device on the network and waits
for the response from the target device. In our setup, we ping the edge device, and the
edge device responds to the router. This packet communication of ICMP is passively
observed and recorded by Wireshark. This data is used for making RTT graphs.

3.2 Analysis of data and create image graph

The data collected by a sniffing tool and must be processed to obtain IAT and RTT.
We obtain data using a snipping tool in Raspberry Pi. These data are timestamps of
incoming and outgoing packets. We process timestamps to calculate the IAT and RTT
of the packet.

After we obtain the value of IAT and RTT of packets, we write a Python program
to plot the graph and download it. IAT and RTT graph is plotted as a line graph of 100

57

IoT Device Identification Using Device Fingerprint and Deep Learning
DOI: http://dx.doi.org/10.5772/intechopen.111554



IATs/RTTs. The plot of IAT and RTT is shown in Figures 2–4. We use IAT and RTT
separately for device identification.

3.3 Preparation of data

The image obtained by plotting the graph must be labeled before we use that data
for training and testing the model based on different metrics. We label the data using
Python. For two phones, 0 represents Samsung A20 and 1 represents Samsung Prime.
We split the total images into training data and testing data. For each IAT and RTT,
we use 75 images for training and 30 for testing for each device (total 150 for training
and 60 for testing). After creating an image and labeling it, we apply CNN and
CNN + LSTM algorithms for image classification.

Figure 1.
Methodology.
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We use the dataset of IAT from crawdad, which was developed by Ulugac et al.
[4]. The dataset is the collection of IATs of different devices. We use four devices: two
iPad and two Dell notebooks for the verification of models. First, we use ICMP
packets for generating the IAT graph. Since we are comparing the classification using
a single packet type, multiple packet types, and an outlier, we also use TCP, UDP, and
ICMP packets for generating the IAT graph and outliers. We plot a graph using 100

Figure 2.
IAT graph from our setup.

Figure 3.
IAT graph from verification dataset.
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IATs. As in our setup, we similarly label zero for Dell notebook1, one for Dell note-
book2, two for ipad1, and three for ipad2 and split it into a training and testing
dataset.

4. Deep learning model for classification

We use a convolutional neural network (CNN) and a combination of a
convolutional neural network and long short-term memory (CNN + LSTM) for device
classification. Since we are using the image of time series data, we consider CNN due
to its large breakthrough in image recognition. Moreover, CNN is very cost-effective
due to the reduced number of parameters without losing the quality. Furthermore,
due to the recognition of LSTM for time series data and our consideration of
converting time series data to images and using the image for classification, we
experiment if the combination of CNN + LSTM could give better results than CNN
alone.

4.1 Convolutional neural network for device classification

The created image is colored, but for this classification problem, we convert the
image into grayscale and reduce the image size to 256 * 256. Initially, it was 800 * 800.
Then we split the labeled data into training and testing datasets and use the training
set to train the CNN model. Our CNN model has the first convolution layer with 32
filters and a kernel size of 5 * 5. The input size of this layer was set to 256 * 256 * 1.
Next, we use max-pooling with stride length 2; this helps in reducing the parameters
by selecting the maximum from four (2 in x-direction and 2 in the y-direction). The
next convolution layer in our model has 64 filters and a kernel size of 3 * 3. The input

Figure 4.
RTT graph from our setup.
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to this layer is set by Keras. We again use max-pooling with stride length 2. The third
convolution layer has 128 layers and a kernel size of 2 * 2, and we max-pooled with a
stride length of 2 for this layer as well. For all these convolution layers, we use
Rectified linear Unit (ReLU) as an activation function. Next, we use a flattened layer
and two dense layers with 128 and 64 nodes followed by a dense layer with four nodes
with softmax as activation function. Figure 5 shows the model summary of CNN. The
model is compiled using categorical cross-entropy for calculation of loss and Adam as
the optimizer. We use both IAT and RTT data for training the CNN model and check
how good was its classification using different metrics. Furthermore, we use an outlier
of IAT data for classification. While training for different datasets, the number of
nodes and epochs is changed.

4.2 Combination of CNN and LSTM for device classification

We combine CNN and LSTM using the concept of TimeDistributed layer. We
provide n images at a time to the first TimeDistributed convolution layer; this applies

Figure 5.
CNN model summary.
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the same filter to the n images. We use the same three identical CNN layers but
TimeDistributed. This is illustrated in Figure 6. The input to the first layer is n * 256 *
256 *1. Another input size is managed by Keras. This model has an additional LSTM
layer with 32 nodes after CNN layers. The output of Maxpool2D is flattened to get one
single vector. This is a feed to LSTM and a dense layer. Figure 7 shows the model

Figure 6.
CNN + LSTM model.

Figure 7.
CNN + LSTM model summary.

62

Deep Learning and Reinforcement Learning



summary of CNN + LSTM. LSTM makes use of chronological data and previous frame
data to find what is useful in prediction. The model is compiled using categorical
cross-entropy for calculation of loss and Adam as the optimizer. We use a combina-
tion of CNN and LSTM and observe how good the prediction the model can make.
While training for different datasets, the number of nodes and epochs is changed.

4.3 Metrics for model evaluation

Evaluation of the model is an important task in data science. We need to make sure
our model is not overfitted. Overfitting is a modeling error in statistics, which occurs
due to the model aligning too closely to the limited data points. There are different
techniques to prevent overfitting. Some of the techniques that we use are: reduce
learning rate and dropout Layer. While training the model, we can monitor the
validation accuracy and if it does not increase for a certain epoch, we reduce the
learning rate by a certain factor. Below is the snippet of reducing learning rate where
we monitor the validation loss and reduce the learning rate by a factor of 0.1 when for
3 consecutive epochs validation loss is increased.

tf.Keras.callbacks.ReduceLROnPlateau(monitor = “val.
loss,” factor = 0.1,patience = 3,verbose = 0, andmin lr = 1e-6).
Similarly, the dropout rate can be specified to the layer as the probability of setting

each input to the layer to zero. Below is the code for adding the dropout layer. The rate
is set to 0.3, which drops 0.3 of input units.

model.add(Dense(128, activation = ‘relu’)).
model.add(Dropout(0.3)).
The most common metric used for the evaluation of the algorithm is classification

accuracy. Classification accuracy is equal to the number of correct predictions made
divided by the total number of predictions made.

In our case, we use categorical cross-entropy for the calculation of loss, which
makes the use of the probability of belonging to a class for the calculation of loss.

Classificationloss ¼ �
Xoutputsize

i¼1

yilogf sð Þi (1)

Where, yi is the class and f sð Þi is the probability of belonging to that class. We also
need to control the number of times we train the model. This is called epoch. Too
much training can result in network overfitting to the training data. While training a
model for certain epochs if validation error increases but the training loss decreases or
remains constant, we can conclude that our model is overfitting as shown in Figure 8.

5. Results

Our setup has the phone Samsung A20, and Samsung Prime communicating with
Raspberry Pi. As Section 3.2, we created the IAT graph using probe request and
response from these devices to Raspberry Pi and prepared the data for feeding to CNN
and evaluated the model. We trained the CNN model as in Section 4. A for 10 epochs
and obtained the accuracy of 1.00 and loss of 0.0021 on training data. Accuracy in the
validation dataset was 1.00 and loss of 0.0021. Using the IAT graph for classification
and CNN + LSTM model and running for 30 epochs, the accuracy and loss were 1 and
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0.0015 in the training dataset and 1 and 0.0011 in the validation dataset. Similarly, we
created the RTT graph using ping as in Section 3.2 and trained for 10 epochs while
feeding to CNN and 40 epochs while feeding to CNN + LSTM and achieved 100%
accuracy in classification in both.

We used the dataset of IAT from crawdad, which was developed by Ulugac et al.
[4] for verification. We used ICMP packets used by two Dell notebooks and two iPads
communicating in the local area network. Using CNN for classification and running
for 10 epochs, we achieved the accuracy of 1 and loss of 1.4 * 10–4 in the training
dataset. We achieved an accuracy of 0.97 and a loss of 0.1326 in the validation dataset.

Figure 8.
Model loss.

Figure 9.
Accuracy using IAT(ICMP) as parameter from verification dataset using CNN.
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Figures 9 and 10 show the learning curve of the CNN model. Using CNN + LSTM for
classification and running for 35 epochs, we achieved an accuracy of 0.9463 and a loss
of 0.1906 in the training dataset. We achieved an accuracy of 0.9060 and a loss of
0.3115 in the validation dataset. Figures 11 and 12 show the learning curve of the
CNN + LSTM model.

Figure 10.
Loss using IAT(ICMP) as parameter from verification dataset using CNN.

Figure 11.
Accuracy using IAT(ICMP) as parameter from verification dataset using CNN + LSTM.
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After analyzing the IAT graph, we found that there is a regular pattern of outliers
and considered if the outliers in the IAT graph can better classify a device using these
deep learning algorithms. We utilized the outliers in the IATs of the verification
dataset for four devices: two Dell notebooks and two iPads. There lies inter-burst
latency between the IAT packets, and we utilize these for classification. We plotted
the outlier graph for four devices considering their own threshold for each. We
plotted outlier graphs and used CNN and CNN + LSTM algorithms for classification.
We used the same CNN configurations ranging from convolution layers, input size,
activation function, and number of layers, etc., for the classification using the IAT
outlier graph. We ran the model for 10 epochs. We achieved the accuracy and loss of
0.9981 and 0.0079 and validation accuracy and loss of 0.9648 and 0.1397, respec-
tively. Figures 13 and 14 show the learning curve of the CNN model using an outlier
dataset for training. We also used the same CNN + LSTM configurations ranging from
convolution layers LSTM layer, activation function, and number of layers, etc., for the
classification using the IAT outlier graph. We ran the model for 15 epochs. We
achieved the accuracy and loss of 0.9870 and 0.0520 and validation accuracy and loss
of 0.9574 and 0.1422, respectively. Figures 15 and 16 show the learning curve of the
CNN + LSTM model using an outlier dataset for training.

To validate the improvement of classification using single type packets (ICMP/
probe request) in our work, we also classified the devices using TCP, UDP, and ICMP
packet types from the same dataset of IAT from crawdad for classification as in [8].
The IAT graphs generated for these packet types were together used for training and
testing the model. We trained the CNN model for 16 epochs and put the dropout layer
after flattened layer to prevent overfitting. We used 18,000 training images and 6000
testing images and obtained an accuracy of 0.9656 and a loss of 0.0894; the validation
accuracy and validation loss were 0.9290 and 0.3073, respectively. Figures 17 and 18

Figure 12.
Loss using IAT(ICMP) as parameter from verification dataset using CNN + LSTM.
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show the learning curve of CNN model using image graphs of IAT generated using
TCP, UDP, and ICMP packet types from the verification dataset.

Again, for this different type of packet, we considered the outliers and classified
them using the outliers of IAT. We trained the CNN model for 20 epochs and put the

Figure 13.
Accuracy using IAT(ICMP) outlier graph from verification dataset using CNN.

Figure 14.
Loss using IAT(ICMP) outlier graph from verification dataset using CNN.
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dropout layer after flatten layer to prevent overfitting. We used 5440 training images
and 1700 testing images and obtained an accuracy of 0.8888 and a loss of 0.2704; the
validation accuracy and validation loss were 0.8504 and 0.4344, respectively.

Figure 15.
Accuracy using IAT (ICMP) outlier graph from verification dataset using CNN + LSTM.

Figure 16.
Loss using IAT (ICMP) outlier graph from verification dataset using CNN + LSTM.
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Figures 19 and 20 show the learning curve of the CNN model using image outlier
graphs of IAT generated using TCP, UDP, and ICMP packet types from the
verification dataset.

Figure 17.
Accuracy using IAT (TCP, UDP, ICMP) as parameter from verification dataset using CNN.

Figure 18.
Loss using IAT (TCP, UDP, and ICMP) as parameter from verification dataset using CNN.
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5.1 Comparison of models and parameters for IAT outlier graphs and IAT graphs
from verification dataset

The summary of the model and parameters is shown in Table 2. When we used
IAT graphs, the validation accuracy is 0.97 for CNN, which is better than

Figure 19.
Accuracy using IAT(TCP, UDP, and ICMP) outlier graph from verification dataset using CNN.

Figure 20.
Loss using IAT(TCP, UDP, and ICMP) outlier graph from verification dataset using CNN.
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CNN + LSTM, in which case the validation accuracy is 0.9060. When we used the IAT
outlier graph, the validation accuracy is 0.9648 for CNN and 0.9574 for CNN + LSTM.
We observe that classification accuracy is similar in the case of CNN irrespective of
the IAT graph or IAT outlier graph used in classification, but in the case of
CNN + LSTM, the accuracy is lower, while using IAT graph for classification than IAT
outlier graph.

We noticed that the results of the combination of CNN and LSTM cannot
outperform the CNN alone model. The first reason is that the input of LSTM is a
flattened version of CNN’s output instead of a specific time series; therefore, the time
dependence captured by LSTM may not reflect the relationship among input images.
The second reason is that the used LSTM layer in the experiments has a small output
size. In this case, some valuable information may be lost.

6. Conclusion

In this work, we classified devices using two parameters, namely inter-arrival time
(IAT) and round-trip time (RTT), and two deep learning algorithms, namely CNN
and a combination of CNN and LSTM. We used the IAT and RTT image graph as
device fingerprint and model using two deep learning algorithms. We captured the
packets using the packet snipping tool at Raspberry Pi(router) for two different
setups. IAT and RTT were recorded for each device by snipping tool in real time. The
security threat posed by adversaries once they forge the IoT device makes device
identification a fundamental problem. The dynamic parameters that we used depend
on hardware and software (CPU cache, data cache, and clock frequency, etc.), which
makes it harder for intruders to create the fingerprint of a device. We used deep
learning to extract the knowledge from data. The widespread recognition of CNN as a
good algorithm for image classification encouraged us to use it. Moreover, as LSTM
has made its name for the classification of time series data, we used a combination of
CNN and LSTM because we were using an image graph of time series data for training
the model. Our approach can be used to detect the malicious user if we store the
fingerprint and match the fingerprint of the device trying to connect to the network
before allowing it to connect. Our approach brings the alternative of using IMEI, IP
and MAC address, cryptography security, and a digital certificate for device
identification, which are prone to spoofing.

We used two different parameters and obtained good accuracy in our real setup.
We also verified our model using the dataset available in public for a single ICMP
packet and were able to achieve validation accuracy of 0.97 for CNN and 0.9060 for
CNN + LSTM. We compared two deep learning algorithms for device identification.

Model/Parameters IAT graphs
(ICMP)

IAT Outlier
graphs (ICMP)

IAT graphs (TCP,
UDP, ICMP)

IAT outlier graphs
(TCP, UDP,

ICMP)

val. Acc val. Loss val. Acc val. Loss val. Acc val. Loss val. Acc val. Loss

CNN 0.97 0.1326 0.9648 0.1397 0.9290 0.3073 0.8888 0.2704

CNN + LSTM 0.9060 0.5541 0.9574 0.1422 — — 0.81 0.51

Table 2.
Performance of models in terms of validation accuracy and validation loss using verification dataset.
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Both models were good when we used a dataset that was generated from our setup,
but while using the dataset from crawdad, CNN was more accurate in classification
than CNN + LSTM. We further used IAT outlier graphs for classification and achieved
validation accuracy of 0.9648 for CNN and 0.9574 for CNN + LSTM. To validate the
improvement in classification accuracy using ICMP packet, we also classified the
devices using TCP, UDP, and ICMP packet types from the verification dataset. We
achieved good accuracy in using a single ICMP packet type for classification.

We collected RTT data in our setup and achieved good accuracy in classification.
In the future, we can collect RTT data in a real scenario with many devices and use it
for classification.

Acknowledgements

This work is supported in part by the US National Science Foundation under Grant
CC-2018919. Beside NSF grant support, Dr. Yang’s work is also supported in part by
the new hire startup fund from Southern Illinois University Carbondale.

Conflict of interests

The authors declare that there are no conflicts of interest regarding the publication
of this article.

Author details

Prashant Baral1†, Ning Yang2 and Ning Weng3*

1 Advanced Micro Devices, Inc., Austin, TX, USA

2 Information Technology Program in the School of Computing, Southern Illinois
University Carbondale, IL, USA

3 School of Electrical, Computer, and Biomedical Engineering, Southern Illinois
University Carbondale, IL, USA

*Address all correspondence to: nweng@siu.edu

†These authors contributed equally.

© 2023 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

72

Deep Learning and Reinforcement Learning



References

[1] Xu Q, Zheng R, Saad W, Han Z.
Device fingerprinting in wireless
networks: Challenges and opportunities.
IEEE Communications Surveys &
Tutorials. 2015;18(1):94-104

[2] Neumann C, Heen O, Onno S. An
empirical study of passive 802.11 device
fingerprinting. In: 2012 32nd
International Conference on Distributed
Computing Systems Workshops. Macau,
China: IEEE; 2012. pp. 593-602

[3] Bratus S, Cornelius C, Kotz D, Peebles
D. Active behavioral fingerprinting of
wireless devices. In: Proceedings of the
First ACM Conference on Wireless
Network Security. New York, NY, USA:
ACM; 2008. pp. 56-61

[4] Uluagac AS. “A. selcuk uluagac,
crawdad dataset gatech/fingerprinting
(v. 2014-06-09). 2014. Available from:
https://crawdad.org/gatech/
fingerprinting/20140609.

[5] Uluagac AS, Radhakrishnan SV,
Corbett C, Baca A, Beyah R. A passive
technique for fingerprinting wireless
devices with wired-side observations. In:
2013 IEEE Conference on
Communications and Network Security
(CNS). Washington, D.C., USA: IEEE;
2013. pp. 305-313

[6] Hamad SA, ZhangWE, Sheng QZ,
Nepal S. Iot device identification via
network-flow based fingerprinting and
learning. In: 2019 18th IEEE International
Conference on Trust, Security and Privacy
In Computing and Communications/13th
IEEE International Conference on Big
Data Science and Engineering (TrustCom/
BigDataSE). Rotorua, New Zealand: IEEE;
2019. pp. 103-111

[7] Mazhar N, Salleh R, Zeeshan M,
Hameed MM. Role of device

identification and manufacturer
usage description in iot security: A
survey. IEEE Access. 2021;9:41
757-41 786

[8] Aneja S, Aneja N, Islam MS. Iot
device fingerprint using deep learning.
In: 2018 IEEE International Conference
on Internet of Things and Intelligence
System (IOTAIS). Bali, Indonesia: IEEE;
2018. pp. 174-179

[9] Desmond LCC, Yuan CC, Pheng TC,
Lee RS. Identifying unique devices
through wireless fingerprinting. In:
Proceedings of the First ACM
Conference on Wireless Network
Security. New York, NY, USA: ACM;
2008. pp. 46-55

[10] Miettinen M, Marchal S, Hafeez I,
Asokan N, Sadeghi A-R, Tarkoma S. Iot
sentinel: Automated device-type
identification for security enforcement
in iot. In: 2017 IEEE 37th International
Conference on Distributed Computing
Systems (ICDCS). Atlanta, USA: IEEE;
2017. pp. 2177-2184

[11] Robyns P, Bonné B, Quax P,
Lamotte W. Noncooperative 802.11 mac
layer fingerprinting and tracking of
mobile devices. Security and
Communication Networks. 2017;2017:
1-21

[12] Kohno T, Broido A, Claffy KC.
Remote physical device fingerprinting.
IEEE Transactions on Dependable and
Secure Computing. 2005;2(2):93-108

[13] Maurice C, Onno S, Neumann C,
Heen O, Francillon A. Improving 802.11
fingerprinting of similar devices by
cooperative fingerprinting. In: 2013
International Conference on Security
and Cryptography (SECRYPT).
Reykjavik, Iceland: IEEE; 2013. pp. 1-8

73

IoT Device Identification Using Device Fingerprint and Deep Learning
DOI: http://dx.doi.org/10.5772/intechopen.111554



[14] Cunche M. I know your mac address:
Targeted tracking of individual using
wi-fi. Journal of Computer Virology and
Hacking Techniques. 2014;10(4):219-227

[15] François J, State R, Engel T, Festor O.
Enforcing security with behavioral
fingerprinting. In: 2011 7th International
Conference on Network and Service
Management. Paris, France: IEEE; 2011.
pp. 1-9

[16] Sun L, Chen S, Zheng Z, Xu L.
Mobile device passive localization based
on ieee 802.11 probe request frames.
Mobile Information Systems. 2017;2017:
1-10

[17] Kulin M, Fortuna C, De Poorter E,
Deschrijver D, Moerman I. Data-driven
design of intelligent wireless networks:
An overview and tutorial. Sensors. 2016;
16(6):790

74

Deep Learning and Reinforcement Learning



Chapter 4

MultiRes Attention Deep Learning
Approach for Abdominal Fat
Compartment Segmentation and
Quantification
Bhanu K.N. Prakash, Arvind Channarayapatna Srinivasa,
Ling Yun Yeow, Wen Xiang Chen, Audrey Jing Ping Yeo,
Wee Shiong Lim and Cher Heng Tan

Abstract

Global increase in obesity has led to alarming rise in co-morbidities leading to
deteriorated quality of life. Obesity phenotyping benefits profiling and management
of the condition but warrants accurate quantification of fat compartments. Manual
quantification MR scans are time consuming and laborious. Hence, many studies
rely on semi/automatic methods for quantification of abdominal fat compartments.
We propose a MultiRes-Attention U-Net with hybrid loss function for segmentation
of different abdominal fata compartments namely (i) Superficial subcutaneous adi-
pose tissue (SSAT), (ii) Deep subcutaneous adipose tissue (DSAT), and (iii) Vis-
ceral adipose tissue (VAT) using abdominal MR scans. MultiRes block, ResAtt-Path,
and attention gates can handle shape, scale, and heterogeneity in the data. Dataset
involved MR scans from 190 community-dwelling older adults (mainly Chinese,
69.5% females) with mean age—67.85 � 7.90 years), BMI 23.75 � 3.65 kg/m2.
Twenty-six datasets were manually segmented to generate the ground truth. Data
augmentations were performed using MR data acquisition variations. Training and
validation were performed on 105 datasets, while testing was conducted on 25
datasets. Median Dice scores were 0.97 for SSAT & DSAT and 0.96 for VAT, and
mean Hausdorff distance was <5 mm for all the three fat compartments. Further,
MultiRes-Attention U-Net was tested on a new 190 datasets (unseen during train-
ing; upper & lower abdomen scans with different resolution), which yielded accu-
rate results. MultiRes-Attention U-Net significantly improved the performance over
MultiResUNet, showed excellent generalization and holds promise for body-profil-
ing in large cohort studies.

Keywords: MultiRes attention, deep learning, fat compartments, abdomen,
subcutaneous fat compartments, visceral fat
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1. Introduction

Obesity is a globally growing epidemic which has affected more than 2 billion
adults, and many teens (18 years plus) are overweight, of which 650 million are obese
[1]. Anthropometric measurements, waist-to-hip ratio, body mass index (BMI), waist
circumference, does not explicitly distinguish fat mass, and quantity of fat present in
visceral, and subcutaneous compartments. Literature, highlights that accumulation of
fat leads to insulin resistance, oncologic and cardiovascular diseases [2–4] affecting
the quality of life. Hence, body composition analysis to determine the amount of
adipose and muscle tissue is of medical importance for obesity risk analysis. Magnetic
resonance imaging (MRI) and computed tomography (CT) can characterize fat and
non-fat tissues [5]. Among the imaging modalities, MR is more efficient in tissue
characterization compared to CT for quantification of body fat volume [6, 7]. By
quantifying different fat compartments from the imaging scans, we can perform body
composition analysis. Manual quantification of fat and muscle volumes from the
imaging scans is tedious and time-consuming, leading to loss clinical man-hours.

Anatomically, the subcutaneous adipose tissue compartments (superficial: SSAT
and deep: DSAT) are separated by thin fascia, whereas the visceral adipose tissue
(VAT) is found in-between internal and external abdominal boundaries. VAT is
around the internal organs and discontinuous whereas SAT (SSAT+DSAT) is contin-
uous. Fat depots are irregular in shape, lack texture, and vary across abdominal profile
as demonstrated in Figure 1making it a challenging medical image segmentation task.
Several semi-automated methodologies have been developed to reduce time and
reduce bias [8–12]. These methodologies are less reliable and offer low accuracy as
they depend on expert knowledge for fine-tuning image parameters.

Deep learning for image segmentation [13] has found many applications in medical
image analysis and one such application is abdominal fat compartment segmentation.
Several fat quantification studies use single contrast DIXON MR scan and 2D/3D U-
Net architecture [14, 15] for SAT and VAT segmentation. Enhancement versions of
Standard U-Net such as Competitive Dense Fully Convolutional Network (CDFNet),
nnUNet, and Dense Convolutional Network (DCNet), which can handle complex
image features, have been used for adipose tissue segmentation [16–18]. Attention
gate model [AG] in 2D and 3D U-Net [19] has gained popularity in adipose tissue
segmentation task as AG focuses on target structures of varying shapes and sizes by
suppressing irrelevant regions and highlighting useful salient features [20, 21].
Ibtehaz et al. proposed a MultiRes block to address multiscale issues and ResPath to

Figure 1
Illustration of fat depots of SSAT (red), DSAT (green), and VAT (blue) varying shape, size across the abdominal
profile.
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reduce adverse learning of features which might lead to a false prediction by skip
connection of U-Net [22].

1.1 Study proposition

In our previous work on adipose fat depot segmentation, we had proposed patch-
based 3D-ResUNet Attention [23] for fat depot segmentation, The patch-based
framework failed to handle (i) different body compositions like lean, and moderately
obese due to fixed patch sizes, and (ii) generalize to unseen abdominal region seg-
mentation due to cataphoric forgetting of network, anatomical differences, and class
imbalance. Figure 2 illustrates a few failed cases from our previous work. Hence to
overcome these drawbacks, we focused on the enhancement of MultiResUNet [23] by
proposing a MultiRes-Attention U-Net architecture, with

i. a hybrid loss function to handle class imbalance, and

ii. attention gates for focused learning and improved prediction accuracy.

In this study, we also compare the performance of the proposed architecture
against standard U-Net and MultiResUNet.

2. Materials and methods

2.1 MR data acquisition

Data sets of 190 elderly Asians (aged >50 years, residing within the community)
who participated in characterization of early sarcopenia to assess functional decline

Figure 2
Illustration of failed cases of our previous work on patch-based 3D-ResUNet attention vs. proposed architecture.
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study was used in our study [24]. The MR abdominal scans were acquired using a 3D
modified breath-hold T1-weighted Dixon sequence. Subjects were advised a 20 s
breath hold during the scans. The scans were performed on a 3T Siemens Magnetom
Trio MRI scanner with TR/TE/FA/Bandwidth: 6.62 ms, 1.225 ms, 100, and 849 Hz/
pixel, respectively. The study group consisted of mainly Chinese (91.6%) ethnicity
having mean age was 67.85 � 7.90 years, BMI 23.75 � 3.65 kg/m2, and predominantly
female (69.5%) subjects. As the study subjects were elderly, many had common
comorbidities such as hypertension, diabetics, and hyperlipidemia. National
Healthcare board reviewed the cohort study with written consent from all subjects.

Data set can be considered as heterogeneous as it included (i) subjects from
different ages (ii) scans covering different anatomical regions—thoracic, lumbar, and
sacral (iii) variations in fat accumulation in different compartments based on body
composition and (iv) acquisitional variations like—image dimensions, slice thickness,
breathing/motion artifacts, etc.

Manual (radiology experts) ground truths were generated in 26 data sets out of 190
scans covering L1-L5 regions. The data with ground truths were subjected to MR-
acquisition based data augmentation to scale the number from 26 to 130 to create
training data sets.

2.2 Fat segmentation

A 3-stage segmentation framework was envisaged to quantify abdominal fat
depots (i) Preprocessing stage which included (a) arm region removal, (b) data
augmentation to increase the number of data sets, and (c) conversion of 3D MR
images into 2D slices; (ii) Segmentation stage—“MultiRes-Attention U-Net” architec-
ture for segmentation of abdominal regions into SSAT/DSAT/VAT (three class)
regions and (iii) Postprocessing stage—image reconstruction 2D to 3D and fat depot
quantification.

2.3 Preprocessing

All the training/testing data were subjected to quality check to assess motion
artifacts originating from breathing, and fat-water swaps. Auto-check was developed
to ensure training dataset slices match with the marked ground-truth slices. Arm
region artifacts were removed automatically using the projection method [21]. Four
different data augmentations were performed once before training these included (i)
Random Noise (ii) Random Ghosting (iii) Random Bias Field (iv) Blur augmentation
[23] to increase the total number of datasets. Finally, 3D MR scans were converted to
2D slices for training/testing the proposed deep learning architecture.

2.4 MultiRes-attention U-Net

In standard deeper convolutional network, input data goes through multiple con-
volutions to obtain salient spatial features leading to vanishing gradient problem. The
architectures like ResNet [25] adopt summation of connect of all preceding feature
maps leading to high memory demanding network. DenseNet [26] introduces “dense
connections”, where each layer in the network is connected to every other layer,
instead of only connected to previous layers as in standard network architecture but
fail to handle multi-scale issue. To handle multi-scale issue of fat depots which vary in
shape, size, and improve semantic segmentation which is memory efficient.
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We proposed MultiRes-Attention U-Net which is a modified version of
MultiResUNet with attention which contains (i) MultiRes block, (ii) ResAtt-Path, and
(iii) Attention gate model.

2.5 MultiRes block

Two sequential convolutional layers at each level in U-Net [24] are substituted
with a proposed MultiRes block (similar to dense block in denseNet [26]) with the
residual path, (as in ResNet [25]) as shown in Figure 3. multiRes block contains
Inception-like modules with parallel convolution filters of 3�3, 5�5, and 7�7 to
capture spatial features from different scales. However, they are not memory effi-
cient. To reduce the memory, we factorized a large filter into a sequence of 3�3 filters
with a gradual increase in the number of filters at each layer as shown in Figure 3.

2.6 ResAtt-path

Skip connections of standard U-Net are modified as ResAtt-Path by including
non-linear convolution filters of 3�3 and a residual path with 1�1 filters. The
number of convolution filters (3�3) reduces in each level of the encoding section of
U-Net as shown in Figure 4. These ResAtt-Path overcomes the drawback of U-Net
short connections by merging of low and high levels features at the decoder.

Figure 3.
Proposed MultiRes-attention U-Net architecture with MultiRes Block, ResAtt-path and attention gate block at the
decoder to aggregate attention features.

Figure 4.
Description of (a) MultiRes block, (b) ResAtt-path and (c) attention gated block of MultiRes-attention U-Net
architecture.
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The ResAtt path connects the U-Net encoder at each level to the attention modules in
the decoding section of U-Net.

2.7 Self-attention

Soft attention gates (AGs) proposed by Oktay et al. [20] assist the model to focus
on regions of interest by suppressing irrelevant location-based feature activations.
AGs ensure that only salient spatial information is carried across skip connection
which improves the network performance in false positives reduction. Soft attention
gates (AGs), as shown in Figure 3(c), and illustrated in Eq. (1) contains two inputs (i)
Ip—lower-level block input and, (ii) IR—ResAtt-Path from the proposed skip connec-
tion layer. Ip input is fed into 1�1 convolution filter for upsampling to match the
dimensions of the inputs as illustrated in Eq. (2). The dimension matched inputs
xattention and xupsampled are combined and passing through a ReLU activation function
and sigmoid activation functions to yield a coefficients with values between 0 and 1.

Finally, these coefficients are upsampled through trilinear interpolation to gener-
ate the soft attention feature map. Which is then multiplied by the ResAtt-Path’s skip
connection to produce the final output as shown in Eq. (3)

xattention ¼ Soft Attention Ip, IR
� �

(1)

xupsampled ¼ Upsample Ip
� �

(2)

output ¼ ConvBlock concat xattention, xupsampled
� �� �

(3)

2.8 Loss function

Segmentation model performance not only depends on the architecture of the
network but also on the choice of the loss function [27] particularly in the scenario
where there is a high-class imbalance. As we observed imbalance in SSAT, DSAT, and
VAT distributions, we identified focal dice loss function as an appropriate loss func-
tion that handles class imbalance issues. The focal dice loss incorporates the focal loss
where γ ¼ 0:5 Eq. (4) and dice loss Eq. (5) together making it a robust loss function
for the imbalanced class problems. It makes use of weighted components for each
class based on their representation.

Focal loss ¼ � 1� ρtð Þγ log ρtð Þ (4)

Dice loss ¼ 1� dice coefficient ¼ 1–
2 ∗ A∩Bð Þ
Aþ B

(5)

2.9 Post processing

Fat sub-region volumetric analysis & sub-region volume percentage is computing
using Eqs. (6) and (7)

Vr ¼ TPssat þ TPdsat þ TPvatð Þ ∗ Ir ∗ 1000 (6)

where TPssat,TPdsat,TPvat correspond to predicted voxel count of SSAT, DSAT and
VAT classes & Ir corresponds to each subject’s voxel resolution. Sub-regions volumes
percentage is computed using Eq. (7), where TPi is the true positive volume of class i,
and

P
TPv is the total volume of the fat region.

80

Deep Learning and Reinforcement Learning



%Vc ¼ TPiP
TPv

∗ 100 (7)

2.10 Training parameters

Single contrast fat-only 3D MR Dixon scans were converted to 2D slices for training
(approximately 8000, 2D slices). Training was conducted on ubuntu 18.04 LTS operat-
ing system with NVIDIA Titan X GPU card with code written using TensorFlow frame-
work [28] with hyperparameters of MultiRes-Attention U-Net is shown in Table 1.

2.11 Performance analysis

Multiclass Dice ratio (DR) & Hausdorff distance were two performance matrices
used to evaluate the fat subregions segmentation which comprising of SSAT, DSAT
and VAT regions.

The similarity between predicted and ground truth segmentation results is assessed
by measuring the overlap using multiclass Dice score as illustrated in Eq. (8).

DSIk ¼
P

Ipred Igt ¼¼ k½ � ¼¼ kð Þ ∗ 2:0P
Ipred Ipred ¼¼ k½ � ¼¼ kð Þ þP

Igt Igt ¼¼ k½ � ¼¼ kð Þ (8)

where DSIk is the subclass DSI value ranging between 0 and 1, where 1 means
complete overlop of subregion, Ipred is the predicted output, Igt is the ground truth,
and k is the number of classes.

Hausdorff Distance (HD) measures as the distance between two compact non-
empty subsets of a metric space [30]. In order to find similarity between predicted
(Pred) and ground truth (GT) HD measure between two closed and bounded subsets
A and B of a given metric space M is defined as.

HD Pred,GTð Þ ¼ max h Pred,GTð Þ, h GT,Predð Þð Þ (9)

h Pred,GTð Þ ¼ max dist αPred,GTð Þð Þ (10)

dist αPred,GTð Þ ¼ min μ αPred,GTð Þð Þ (11)

Training parameters Value

Number of filters at each levels of U-Net 16,32,64,128,256

Epochs 150

Optimizer ADAM [29]

Learning rate 0.00001

Loss function Focal dice loss

Weighted decay 2e-6

Dropout 0.05

Patience 15

Table 1
Illustrating the hyperparameters values in training MultiRes-attention U-Net.
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where HD Pred,GTð Þ is the direct distance between Predicted region and ground
truth, dist αPred,GTð Þ is the distance from point to region GT and μ α,GTð Þ is a point
distance in the metric space. The smaller HD(Pred,GT) indicates better segmentation
accuracy i.e., less mismatch area.

3. Results

Accurate fat depot segmentation plays a significant role in evaluating fat distribu-
tion which can be used as biomarkers to assess metabolic syndrome and obesity.
Table 2 illustrates the training and testing Dice statistical index (DSI) (Mean � SD)
for MultiRes-Attention U-Net, MultiResUNet, and standard U-Net’s 3-class (Class 1:
Superficial Fat, Class 2: Deep-Superficial Fat, Class 3: Visceral fat) segmentation
accuracies with trained on focal dice loss functions.

Dice score (Table 1) indicated that all the models show improved segmentation
accuracy when trained under focal dice loss function.

4. Discussion

The removal of the arm region is an important step in pre-processing as it contains
SAT, which may interfere with automatic segmentation. MR-based data augmentation
techniques were used to increase the training samples and improve the generalization of
the model. In this study, we have proposed a MultiRes-attention U-Net for the segmen-
tation of the three abdominal fat compartments namely superficial subcutaneous fat,
deep subcutaneous fat and visceral fat.. Algorithm took about 5 s to accurately segment
and quantitate all the 3 different fat compartments thus reducing the time significantly.
This enables the usage of our algorithm for clinical routines and large clinical trials.

Based on Table 1, the proposed algorithm performs better and provides a more
accurate segmentation output than MultiResUNet due to the introduction of the AG
module. Introduction of the attention module improved the identification of significant

DSI score for training (focal dice loss) SSAT DSAT VAT

U-Net 0.9090�0.023 0.8727�0.035 0.8048�0:113

MultiResUNet 0.9751� 0:021 0.9732� 0:023 0.9679� 0:017

MultiRes-Attention U-Net 0.9877�0.022 0.9852�0:024 0.9758�0:022

DSI Score for Testing SSAT DSAT VAT

U-Net 0.9071�0.020 0.8660�0.043 0.7426�0:140

MultiResUNet 0.9706�0:030 0.9657 � 0:035 0.9586� 0:017

MultiRes-Attention U-Net 0.9781�0.029 0.9718�0:0349 0.9711�0:015

Hausdorff Dist SSAT HD (mm) DSAT HD (mm) VAT HD (mm)

U-NET 4.8385 � 0.023 4.5830 � 0.4202 5.5176 � 0.113

MultiResUNet 4.232 � 0.121 4.323 � 0.3242 4.332 � 0.765

MultiRes-Attention U-Net 4.132 � 0.868 4.199 � 0.656 4.223 � 0.133

Table 2.
Performance comparison of models.
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features such as fascia boundary and smaller VAT components around the spine and
preventing the network from learning false positive information. Focal dice loss func-
tion was found to be more appropriate in improving the overall segmentation results
compared to cross-entropy (CE) loss and dice. Experimental results showed that focal-
dice loss function could handle inherent class imbalance (amount of SSAT/DSAT/VAT
in different slices) where cross-entropy or dice loss functions failed. The mean focal
dice loss DSI for the test dataset was about 97.81% for SSAT, 97.18% for DSAT, and
97.11% for VAT, which is a significant improvement by 7%, 11%, and 23% respectively
when compared to standard U-Net results. AHD of the proposed architecture is slightly
better than MultiResUNet and when compared to standard U-Net, it is significantly
better for 3 classes (SSAT, DSAT, and VAT). In addition, the model was able to separate
SAT into SSAT and DSAT in lean subjects (broken or invisible fascia) and obese subjects
(multiple fasciae). As shown in Figure 5, the model was also able to differentiate
between VAT and bones, especially in the spine and pelvic regions. Further, MultiRes-
Attention U-Net was tested on a new 190 data sets (unseen during training; upper &
lower abdomen scans with different resolution) as illustrated in Figure 6 which yielded
accurate results for SSAT and DSAT but had few false positives in sacrum region VAT.

Figure 5.
Shows comparison of predicted results of U-Net, MultiResUNet, and MultiRes-attention U-Net (loss function:
Focal dice) on low-medium and high-fat subjects.

Figure 6.
Illustration of the predicted result of MultiRes-attention U-Net on a few selected samples of new 190 data sets
(unseen during training; upper & lower abdomen scans with different resolution).
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5. Conclusion

In this study, we propose MultiRes-Attention U-Net with hybrid loss function for
segmentation of superficial and deep subcutaneous adipose tissue (SSAT & DSAT),
and visceral adipose tissue (VAT) from abdominal MR scans. MultiRes block, ResAtt-
Path, and attention gates can handle shape, scale, and heterogeneity in the abdominal
data. Model performance is also dependent on the loss function, especially when there
is data imbalance. In this research work, focal dice loss function compared to cross-
entropy (CE) loss and dice were found to be more appropriate in improving the
overall segmentation results. The proposed pipeline contains pre-processing, data
augmentation, and automatic segmentation of fat compartments and fat quantifica-
tion. The proposed algorithm takes less than 5 s for segmentation and quantification of
3 fat compartments are provided more generalizable results where the model was able
to separate SAT into SSAT and DSAT in lean subjects (broken or invisible fascia) and
in obese subjects (multiple fasciae) and also differentiate small VAT tissue from bones
making it feasible for use in large clinical trials and clinical routine.

Author details

Bhanu K.N. Prakash1*, Arvind Channarayapatna Srinivasa1, Ling Yun Yeow1,
Wen Xiang Chen2, Audrey Jing Ping Yeo3, Wee Shiong Lim3 and Cher Heng Tan2

1 Bioinformatics Institute (BII), Agency of Science, Technology and Research
(A*STAR), Singapore, Republic of Singapore

2 Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore,
Republic of Singapore

3 Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore,
Republic of Singapore

*Address all correspondence to: bhanu_prakash@bii.a-star.edu.sg

© 2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

84

Deep Learning and Reinforcement Learning



References

[1] Web page: who news: https://www.
who.int/news-room/fact-sheets/deta
il/obesity-and-overweight.

[2] Tremmel M, Gerdtham UG, Nilsson
PM, Saha S. Economic Burden of
Obesity: A Systematic Literature Review.
International Journal of Environmental
Research and Public Health. 2017 Apr 19;
14(4):435. DOI: 10.3390/ijerph14040435

[3] Brons C, Grunnet LG. Mechanisms in
endocrinology: Skeletal muscle
lipotoxicity in insulin resistance and type
2 diabetes: A causal mechanism or an
innocent bystander? European Journal of
Endocrinology. 2017;176:R67-R78.
DOI: 10.1530/EJE-16-0488

[4] St-Pierre J, Lemieux I, Vohl MC,
Perron P, Tremblay G, Despres JP, et al.
Contribution of abdominal obesity and
hypertriglyceridemia to impaired fasting
glucose and coronary artery disease. The
American Journal of Cardiology. 2002;
90:15-18

[5] Chan JM, Rimm EB, Colditz GA,
Stampfer MJ, Willett WC. Obesity, fat
distribution, and weight gain as risk
factors for clinical diabetes in men.
Diabetes Care. 1994;17:961-969

[6] Seabolt LA, Welch EB, Silver HJ.
Imaging methods for analyzing body
composition in human obesity and
cardiometabolic disease. Annals of the
New York Academy of Sciences. 2015;
1353:41-59. DOI: 10.1111/nyas. 12842

[7] Baum T, Cordes C, Dieckmeyer M,
Ruschke S, Franz D, Hauner H, et al. MR-
based assessment of body fat distribution
and characteristics. European Journal of
Radiology. 2016;85:1512-1518.
DOI: 10.1016/j.ejrad.2016.02.013

[8] Schar M, Eggers H, Zwart NR,
Chang Y, Bakhru A, Pipe JG. Dixon

water-fat separation in PROPELLER
MRI acquired with two interleaved
echoes. Magnetic Resonance in
Medicine. 2016;75:718-728.
DOI: 10.1002/mrm.25656

[9] Positano V, Gastaldelli A, Sironi AM,
Santarelli MF, Lombardi M, Landini L.
An accurate and robust method for
unsupervised assessment of abdominal
fat by MRI. Journal of Magnetic
Resonance Imaging. 2004;20:684-689.
DOI: 10.1002/jmri.20167

[10] Demerath EW, Ritter KJ,
Couch WA, Rogers NL, Moreno GM,
Choh A, et al. Validity of a new
automated software program for visceral
adipose tissue estimation. International
Journal of Obesity. 2007;31:285-291

[11] Kullberg J, Angelhed JE, Lonn L,
Brandberg J, Ahlstrom H, Frimmel H,
et al. Whole-body T1 mapping improves
the definition of adipose tissue:
Consequences for automated image
analysis. Journal of Magnetic Resonance
Imaging. 2006;24:394-401.
DOI: 10.1002/jmri.20644

[12] Chew J, Yeo A, Yew S, Tan CN, Lim
JP, Hafizah Ismail N, et al. Nutrition
Mediates the Relationship between
Osteosarcopenia and Frailty: A Pathway
Analysis. Nutrients. 2020 Sep 27;12(10):
2957. DOI: 10.3390/nu12102957

[13] Kn BP, Gopalan V, Lee SS, Velan SS.
Quantification of abdominal fat depots
in rats and mice during obesity and
weight loss interventions. PLoS One.
2014;9:e108979. DOI: 10.1371/journal.
pone.0108979

[14] McBee MP, Awan OA, Colucci AT,
Ghobadi CW, Kadom N, Kansagra AP,
et al. Deep Learning in Radiology.

85

MultiRes Attention Deep Learning Approach for Abdominal Fat Compartment Segmentation…
DOI: http://dx.doi.org/10.5772/intechopen.111555



Academic Radiology. 2018 Nov;25(11):
1472-1480. DOI: 10.1016/j.
acra.2018.02.018

[15] Grainger AT, Krishnaraj A,
Quinones MH, Tustison NJ, Epstein S,
Fuller D, et al. Deep learning-based
quantification of abdominal
subcutaneous and visceral fat volume on
CT images. Academic Radiology. 2021;
28(11):1481-1487. DOI: 10.1016/j.
acra.2020.07.010 Epub 2020 Aug 6

[16] Nandakumar G, Srinivasan G, Kim
H, Pi J. Comprehensive End-to-End
Workflow for Visceral Adipose Tissue
and Subcutaneous Adipose Tissue
quantification: Use Case to improve MRI
accessibility. In: 2020 IEEE 20th
International Conference on
Bioinformatics and Bioengineering
(BIBE), Cincinnati, OH, USA, 2020.
pp. 1060-1064. DOI: 10.1109/
BIBE50027.2020.00179

[17] Estrada S, Lu R, Conjeti S, Orozco-
Ruiz X, Panos-Willuhn J, Breteler MM,
et al. FatSegNet: A fully automated deep
learning pipeline for adipose tissue
segmentation on abdominal Dixon MRI.
Magnetic Resonance in Medicine. 2019;
83:1471-1483

[18] Nowak S, Theis M, Wichtmann BD,
Faron A, Froelich MF, Tollens F, et al.
End-to-end automated body
composition analyses with integrated
quality control for opportunistic
assessment of sarcopenia in CT.
European Radiology. 2022 May;32(5):
3142-3151. DOI: 10.1007/s00330-021-
08313-x

[19] Küstner T, Hepp T, Fischer M,
Schwartz M, Fritsche A, Häring HU, et
al. Fully Automated and Standardized
Segmentation of Adipose Tissue
Compartments via Deep Learning in 3D
Whole-Body MRI of Epidemiologic
Cohort Studies. Radiol Artif Intell. 2020

Oct 28;2(6):e200010. DOI: 10.1148/
ryai.2020200010

[20] Oktay O, Schlemper J, Folgoc LL,
Lee MJ, Heinrich MP, Misawa K, et al.
Attention U-Net: Learning where to look
for the pancreas. ArXiv abs/1804.03999.
2018

[21] Kafali SG, Shih SF, Li X, Chowdhury
S, Loong S, Barnes S, et al. 3D Neural
Networks for Visceral and Subcutaneous
Adipose Tissue Segmentation using
Volumetric Multi-Contrast MRI. Annual
International Conference of the IEEE
Engineering in Medicine & Biology
Society (EMBC). 2021 Nov;2021:3933-
3937. DOI: 10.1109/EMBC46164.2021.
9630110

[22] Ibtehaz N, Rahman MS.
MultiResUNet: Rethinking the U-Net
architecture for multimodal biomedical
image segmentation. Neural Networks:
The Official Journal of the International
Neural Network Society. 2020;121:74-87

[23] Bhanu PK, Arvind CS, Yeow LY,
Chen WX, Lim WS, Tan CH. CAFT: a
deep learning-based comprehensive
abdominal fat analysis tool for large
cohort studies. MAGMA. 2022 Apr;35
(2):205-220. DOI: 10.1007/s10334-021-
00946-9

[24] Ronneberger O, Fischer P, Brox T.
U-Net: Convolutional networks for
biomedical image segmentation.
ArXiv 1505.04597. 2015

[25] He F, Liu T, Tao D. Why ResNet
works? Residuals generalize. IEEE
Transactions on Neural Networks and
Learning Systems. 2020;31:5349-5362

[26] Cao Y, Liu S, Peng Y, Li J.
DenseUNet: Densely connected UNet for
electron microscopy image
segmentation. IET Image Processing.
2020;14:2682-2689

86

Deep Learning and Reinforcement Learning



[27] Sudre CH, Li W, Vercauteren T,
Ourselin S, Cardoso MJ. Generalised dice
overlap as a deep learning loss function
for highly unbalanced segmentations. In:
Deep Learning in Medical Image
Analysis and Multimodal Learning for
Clinical Decision Support. Springer;
2017. pp. 240-248

[28] Braiek HB, Khomh F. TFCheck : A
TensorFlow Library for Braiek, Houssem
Ben and Foutse Khomh. TFCheck : A
TensorFlow Library for Detecting
Training Issues in Neural Network
Programs. In: 2019 IEEE 19th
International Conference on Software
Quality, Reliability and Security (QRS).
2019. pp. 426-433

[29] Kingma DP, Ba J. Adam: A method
for stochastic optimization.
ArXiv 1412.6980. 2015

[30] Andreev A, Kirov N. Hausdorff
distances for searching in binary text
images. Serdica Journal of Computing.
2009;3(1):23-46

87

MultiRes Attention Deep Learning Approach for Abdominal Fat Compartment Segmentation…
DOI: http://dx.doi.org/10.5772/intechopen.111555





Chapter 5

Deep Learning for Natural
Language Processing
Yuan Wang, Zekun Li, Zhenyu Deng, Huiling Song
and Jucheng Yang

Abstract

With the constantly growing number of topical or sentiment-bearing texts and
dialogs on the Web, the demand for automatic language or text analysis algorithms
continues to expand. This chapter discusses about advanced deep learning techniques
for classical and hot research directions in the field of natural language processing,
including text classification, sentiment analysis, and task-oriented dialog systems. In
text classification, we focus on tasks of multi-label text classification and extreme
multi-label text classification, which allow for automatically annotates the texts with
the most relevant labels. In sentiment analysis, we look into aspect-based sentiment
analysis that makes automatic extraction of fine-grained sentiment information from
texts, and multimodal sentiment analysis that classifies people’s opinions or attitudes
from multimedia data through fusion techniques. In dialog system, we introduce how
deep learning techniques work in pipeline mode and end-to-end mode for task-
oriented dialog system. In this chapter, the rapidly evolving state of the research on
the three topics is reviewed. Furthermore, trends in the research on deep learning for
natural language processing are identified, and a discussion about future advances is
provided.

Keywords: deep learning, text classification, sentiment analysis, task-oriented dialog
system, tasks and models

1. Introduction

Deep learning becomes increasingly important due to the fast growing of internet
contents and the urgent needs of big data in natural language processing (NLP).

The text classification task is one of the most fundamental scenarios in natural
language processing (NLP), where the user enters the text and the model divides the
input text into defined categories. Text classification tasks can be divided into multi-
class text classification, multi-label text classification, hierarchical text classification
and extreme multi-label text classification. In the multi-class text classification set-
tings, there are two or more label categories in the label set, and each sample has only
one relevant label. In the multi-label text classification (MLTC) settings, a sample may
have one or more relevant labels. The hierarchical text classification is a special multi-
class text task or multi-label task, where the labels have a hierarchical relationship
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between them. The extreme multi-label text classification task (XMTC) is annotating
the most relevant labels for the text from a large label set with millions, or even
billions, of labels. It is a limitation of traditional models that words are treated as
independent features out of context. Deep learning methods have had great success in
other related fields by automatically extracting context-sensitive features from raw
text. Text classification techniques can be applied into problem classification [1], topic
classification [2], and emotion classification [3]. Text classification tasks can be
divided into the recommendation system domain, the legal domain, and the ad place-
ment domain depending on the target domain. In the field of recommendation sys-
tems, predicting how much a user prefers a particular item. In the legal field, MLTC
questions are used to predict the final outcome of bills. In the field of ad placement,
personalized ads are tailored to users by inferring their characteristics and personal
interests on social media.

Sentiment analysis refers to mining people’s opinions and emotional attitudes
toward various matters through modal information such as texts and images. In the
early days, sentiment analysis was mainly used to analyze user reviews of products
sold online, and thus confirm user preferences for purchasing products. With the
popularity of self-publishing nowadays, sentiment analysis is more often used to
identify the sentiment analysis of topic participants, to mine the value of topics, and to
analyze related public opinion. Sentiment analysis has important application value for
both society and individuals.

The dialog system relies on deep learning technology to act as an assistant to talk or
chat with people to people. Task-oriented dialog system is used to solve specific
problems in specific fields, such as movie ticket reservation, restaurant table reserva-
tion, etc. Because of its huge commercial value, it has attracted more and more
people’s attention.

This chapter is organized as follows: Section 2 discusses advancement in text
classification, Section 3 outlines the sentiment analysis, Section 4 presents the
task-oriented dialog system, and finally, Section 5 concludes the chapter.

2. Advancement in text classification

2.1 Multi-label text classification

There are three problems in MLTC settings. The process of obtaining comprehen-
sive supervisory information is time-consuming and labor-intensive. The lack of the-
oretical support for the interpretability aspect of deep learning is also an issue that
needs to be addressed. Modeling label dependencies is a major difficulty (Figure 1).

Multi-label text classification includes text pre-processing, text representation
work using feature engineering, and classifier. Text pre-processing is a series of
processes on the original text including word segmentation, cleaning, normalization,
and so on. Text representation processes words into vectors or matrices so that
computers can process them. Feature engineering is divided into heuristics, machine

Figure 1.
Deep learning in multi-label text classification.
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learning-based methods, and deep learning-based methods. Deep learning-based
approaches can be divided into text-based representations [4] and interactive repre-
sentations [4] based on text and labels, depending on whether the model introduces
labels information to represent the text.

2.1.1 Text representation

Deep learning-based approaches can be divided into text-based representations [4]
and interactive representations [4]. Text-based representations focus on converting
text into machine-understandable form for subsequent natural language processing
tasks. Interactive representations, on the other hand, focus on modeling dialog history
and context to better understand the current dialog by considering different sentences
in the dialog history and changes in user intent. It should be noted that text-based and
interactive representations are not mutually exclusive but can be used in combination.
In some tasks, text-based representations can be used first to convert individual texts
into representation vectors, and then considered in conjunction with interactive rep-
resentations to take into account contextual information for more accurate and com-
prehensive text comprehension and processing. For text-based representations,
TextCNN [5] applies convolutional neural networks and uses multiple kernels of
different sizes to extract key information in sentences. For interactive representations,
LEAM [6] establishes the semantic interaction matrix between texts and labels to
obtain the attention weight, so as to obtain the most relevant labels.

2.1.2 Deep learning models

Deep learning-based text representation works to automatically acquire textual
information, including word vector models and neural network models.

Word vector models based on distributed representations map vectors in high-
dimensional space to low-dimensional space, alleviating the problem of feature spar-
sity. Commonly used word vectors include static word vectors word2vec [7], global
vectors for word representation (Glove) [8], dynamic word vector models such as
embedding from language models (ELMo) [9], and bidirectional encoder representa-
tions from transformers (BERT) [10] models. Word2vec can further subdivided into
CBOW [7] and skip-gram. The input to the CBOW [7] is a vector of neighboring
words of a central word, and the output is a vector of words of that central word. The
input to the skip-gram model is a vector of central words, and the output is a vector
representation of the surrounding words of that central word. This is generally better
than CBOW. Glove [8] statistical co-occurrence matrix and sliding window, taking
into account both local and global information. Firstly, the co-occurrence matrix is
constructed by using the corpus, and secondly, the relationship between the word
vector and the co-occurrence matrix is constructed. ELMo [9] has a three-layer struc-
ture, with the first layer being the word2vec or Glove, and the next two layers being
the two bidirectional long- and short-term memory (Bi-LSTM) extracting word con-
textual features to effectively solve the problem of multiple meanings of words. BERT
uses transformer as the main framework for capturing bidirectional relations in utter-
ances and constructs mask language model and next sentence prediction as targets for
multi-task training in terms of training tasks.

Common neural network models include convolutional neural networks (CNN)
[11], recurrent neural network (RNN) [12], long- and short- term memory network
(LSTM) [1], and attention mechanisms [13]. CNN sets different convolutional kernels
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to extract local contextual information of the text and deepens the multi-layer
convolutional and pooling layers to capture deeper textual information. In detail, the
input layer obtains low-dimensional word vectors. The convolution layer extracts the
local information of the text and the pooling layer reduces the feature dimension and
prevents overfitting. Finally, the text and label dimensions are unified by the fully
connected layer. The softmax layer is normalized to obtain the probability. RNN uses
time series memory history information to obtain a representation of text content
information by accepting text sequences of arbitrary length and generating a fixed-
length vector. Gradient vanishing or explosion prevents RNN from effectively learn-
ing long-term dependencies and correlations. LSTM, in order to solve the problem of
RNN on long-term dependency, adds forgetting gates, input gates, and output gates
units to RNN to avoid gradient vanishing or explosion. The methods above assign the
same weight to words and cannot distinguish the importance of words. Inspired by
human attention, the attention mechanism is introduced to focus on key information
and key contents, making it easy for models to focus on the weighted part and
improve the classification accuracy. The attention mechanisms are usually divided
into three categories, namely local attention, global attention, and self-attention
mechanisms. Global attention considers entire text of words, assigning weights
between 0 and 1 to obtain the text representation. Local attention assigns a weight of
either 0 or 1 to each word, discarding some irrelevant items directly. Self-attention
assigns weights based on the interaction of input words, which has advantage of
parallel computing in long text classification.

In conclusion, both word vector models and neural network models are important
components of deep learning-based text representation techniques, and they each
have their own advantages and can be selected according to the needs of specific tasks.
Word vector models focus more on the static representation of words, while neural
network models are better able to capture the dynamic information of the context.
Word vector models are relatively fast to train, while neural network models usually
require larger computational resources and longer training time. Neural network
models may perform better on some complex tasks, but for some simple tasks, word
vector models are effective enough.

2.2 Extreme multi-label text classification

Extreme multi-label text classification learns a classifier that labels the most rele-
vant subset of labels for a document from a very large set of labels. The main challenge
is the millions of labels, features, and training points. The current research architec-
tures in extreme multi-label text classification can be divided into four main catego-
ries, namely one-vs-all models, embedding-based models, tree-based models, and
deep learning models. Due to the high computational costs brought by large-scale
labels, the existing MLTC techniques have difficulty solving the XMTC problem. It
can be seen that the extreme label text classification task is trapped in a large label
space and feature space, leading to two pressing problems. The first problem is the
power-law distribution, where long-tailed labels have very little data associated with
them, making it difficult to obtain dependencies between labels, presenting data
sparsity and scalability in extreme text classification work. The second problem is that
computation is expensive, and the same results can be obtained at less cost using data
augmentation techniques. One-vs-all models train a separate classifier for each label
on the entire datasets. The one-vs-all models usually classifies well and with high
accuracy; however, it assumes that the individual labels are independent of each other
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and uncorrelated, resulting in a cost that grows linearly with the number of labels.
Embedded models typically use the relationships between labels to map labels from a
high-dimensional space to a low-dimensional space using a linear matrix mapping
approach as a way to reduce the total number of parameters in the model and reduce
the training time required for the model. The limitation of the embedding method is
that it ignores the correlation between input and output, resulting in an unaligned
embedding of the two. Tree-structured models are trained to produce instance or
labeled trees to make predictions, such as decision trees, random forests, Hoffman
trees, etc. Traditional tree-based approaches can harm performance due to large tree
height and large cluster size.

All three types of models mentioned above are based on bag-of-words representa-
tions of text, where words are treated as independent features out of context and
cannot capture deep semantic information. In contrast, deep learning models can
automatically extract implicit contextual features from raw text for extreme multi-
label text classification.

Typical work, such as XML-CNN [14], first explored the application of deep
learning to XMTC, proposing a series of CNN models for XMTC, modeling
convolutional neural networks and dynamic maximum pooling layers to extract
semantic features of text, and introducing hidden bottleneck layers to reduce model
parameters and accelerate training; however, XML-CNN [14] cannot capture the most
important subtext of each label. Therefore, AttentionXML [15] solves this problem
with two techniques. Firstly, a multi-label attention mechanism is introduced to
capture the most relevant parts of text for each label. Secondly, a shallow and wide
probabilistic label tree is built to handle millions of labels. Lightxml [16] adopts BERT
as an encoder for text and obtains a better text representation, which is the state-
of-the-art extreme multi-label text classification model. DeepXML [17] designed a
framework to decompose XMTC into four subtasks using this framework. These four
subtasks are optimized by selecting different components to generate a series of
algorithms, including Astec [17], DECAF [18], GalaXC [19], and ECLARE [20]. Astec
[17] needs to use label clustering to obtain intermediate feature representations.
DECAF [18] jointly learn model parameters and feature representation to get label
metadata. GalaXC [19] introduces a label attention mechanism to make more accurate
predictions based on the multi-resolution embedding of nodes given by the graph.
ECLARE [20] allows collaborative learning using label-label correlations.

In summary, one-vs-all models are simple and intuitive and can be used flexibly
with a variety of binary classification algorithms but ignore the correlation between
labels, which may lead to inaccurate classification. Embedding-based models capture
semantic information but do not directly model the correlation between labels. Tree-
based models are able to handle high-dimensional and nonlinear data and can capture
correlations between nested features and labels. Deep learning models are capable of
learning complex feature representations and contextual correlations and are suitable
for large-scale data and complex tasks.

3. Advancement in sentiment analysis

This section will introduce the aspect-based sentiment analysis (ABSA) and mul-
timodal sentiment analysis in the sentiment analysis task, which is a classical task in
the field of natural language processing, and we will mainly introduce the deep
learning techniques for sentiment analysis since they have better performance than
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the past machine learning methods and are the mainstream methods in the field of
sentiment analysis.

3.1 Aspect-based sentiment analysis

The concept of ABSA was first introduced in 2010 by Thet et al. [21], and further,
Liu [22] gave a definition of viewpoint in 2012; sentiment analysis and opinion mining
refers to the field of research that analyzes people’s opinions, sentiments, evaluations,
attitudes, and emotions from written language. From 2014 to 2016, SemEval, an
international semantic evaluation conference, has included the ABSA task as one of its
subtasks and provided a series of benchmark datasets [23, 24], which have all been
manually annotated. In recent years, the aspect-based sentiment analysis task has
been receiving attention from many scholars, especially after the rapid application of
deep learning and other related technologies in the fields of data mining, information
retrieval, and intelligent question and answer. Therefore, research related to aspect-
based sentiment analysis based on deep learning has also continued to achieve break-
throughs [25–29], and the ABSA task has gradually become one of the popular
research topics in the field of NLP (Figure 2).

The advantage of aspect-based sentiment analysis is mainly that text sentiment
analysis is fine-grained. Coarse-grained sentiment analysis can often only capture one-
sided single sentiment tendency and cannot analyze detail from each attribute level. A
review text often contains sentiment views for different evaluation objects, for exam-
ple, “the service of this restaurant is good, but the taste is bad.” The text of this review
evaluates the two aspects of “service” and “taste” separately, and the document-level
and sentence-level sentiment analysis cannot mine each aspect separately. Therefore,
aspect-based sentiment analysis is needed for re view texts that contain multiple
aspects [30, 31].

Sentiment analysis methods based on deep learning can be divided into fourmain
types: sentiment analysis methods with a single neural network, sentiment analysis
methods with a hybrid neural network, sentiment analysis with the introduction of
attention mechanisms, and sentiment analysis using pre-trained models.

The main methods for sentiment analysis of single neural networks are introducing
a series of neural network models [32, 33] (e.g., CNN, RNN, etc.). CNN is mainly used
to extract local features of text data, abstract low-dimensional vectors into vector

Figure 2.
The working effect of ABSA.
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representations with high-level semantics after operations such as convolutional
pooling, and then process the coded representations and output the results. Lu et al.
[34] made full use of syntactic relations and sentiment dependency information and
proposed an aspect-gated graph convolutional network (AGGCN) to implement
aspect-based sentiment analysis work. Liang et al. [35] made full use of the depen-
dency syntactic knowledge and designed a dependency-embedded graph
convolutional network applied to end-to-end sentiment analysis. Wang et al. [36]
proposed a new unified location-aware convolutional neural network (UP-CNN) to
solve the problem of difficult to fully utilize aspect location information.

In ABSA tasks, attention mechanisms have received a lot of attention and have
been actively used in aspect-based sentiment analysis tasks because of the different
importance of information in different parts of the text for aspect-based sentiment
analysis tasks, and attention mechanisms have ability to adaptively identify key
information and enhance attention to it [37–40]. Liao et al. [41] use a two-way
transformer-based RoBERTa model to extract features from text and aspect word
strings and use a cross-attention mechanism to add attention to the most relevant
features for a given aspect category.

3.2 Multimodal sentiment analysis

With the rapid development of information and network technology and the
widespread use of mobile terminals, people are gradually showing a trend of diversi-
fying the content they publish. The messages they publish for different events and
topics are no longer limited to a single text form, but tend to publish multimodal
content combining text and images to express their feelings and opinion aspect-based.
This situation and trend have attracted academic attention to multimodal sentiment
analysis research, and by analyzing the sentiment tendency implied by these multi-
modal data, it has great application value in box office prediction, product marketing,
political election, product recommendation, mental health analysis, etc. Therefore,
multimodal sentiment analysis has become a hot research topic in recent years
[42, 43]. Multimodal sentiment analysis is the process of combining documents that
describe the same thing in different forms (e.g., sound, image, text, etc.) to enrich our
perception of the thing and analyze the sentiment it expresses. The term modality is
generally associated in academic research with the sensory modalities that represent
our primary communication and sensory channels, and when a research question or
data set contains multiple modalities, it is characterized as a multimodal task or
multimodal data set. In general, academics have focused on (but not limited to) three
modalities: (1) natural language, both spoken and textual, (2) visual signals, often
represented by images or videos, and (3) acoustic signals, such as intonation and
audio. Multimodal learning is a dynamic multidisciplinary field that is breaking new
ground in many tasks such as multimodal sentiment analysis, cross-modal retrieve,
image caption, audiovisual speech recognition, and visual question and answer, visual
speech recognition, and other tasks (Figure 3).

Multimodal sentiment analysis makes full use of data from different modalities for
accurate sentiment prediction. In 2016, a cross-modality consistent regression (CCR)
model was proposed in the literature [44]. The authors of this paper concluded that
the overall sentiment of text and image unimodal, as well as multimodal is the same
with respect to representation of modality, text including descriptions and captions of
images, and learning visual features using CNNs, which outperformed the unimodal
model. In the same year, work [45] proposed a tree-structured recursive neural
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networks (TreeLSTM) that use a tree structure and incorporates visual attention
mechanisms. The system builds a structured structure based on sentence parsing
aimed at aligning text words and image regions for accurate analysis and incorporates
LSTM and attention mechanisms to learn a robust joint visual text representation with
contemporaneous optimal results. In addition, the problem of image text mismatch
and defects in social media data such as spoken words, misspellings, and lack of
punctuation, pose a challenge to the task of sentiment analysis of multimodal data,
and to address this challenge, in 2017, Xu et al. constructed different multimodal
sentiment analysis networks, such as the hierarchical semantic attentional network
(HSAN) [46] and multimodal deep semantic network (MultiSentiNet) [47]. HSAN
focused on image captions and proposed a hierarchical semantic network model based
on image captions in a multimodal sentiment analysis task using image captions to
extract visual semantic features as additional information for text. MultiSentiNet, on
the other hand, extracts image features from both objects and scenes and proposes a
visual feature-guided attentional long- and short-term memory network to extract
words that contribute to the understanding of text sentiment and aggregates these
words with visual semantic features, objects and scenes. In 2018, co-memory network
[48] proposed a novel co-memory network (CoMN), which models the
interdependence between vision and text through memory networks to fully consider
the interrelationship between multimodal data. In 2020, multi-view attentional net-
work (MVAN) [49] utilizes a continuously updated memory network to obtain deep
semantic features of images and texts. The authors found that existing datasets for
multimodal sentiment analysis generally labeled only positive, negative and neutral
sentiment polarities, and lacked graphical multimodal datasets for more detailed
sentiment classification, so the authors constructed a large-scale image text multi-
modal dataset (TumEmo) based on social media multimodal data. Cheema proposed a
simple and effective multimodal neural network (Sentiment Multi-Layer Neural Net-
work, Se-MLNN) [50] model that used RoBERT to extract text features containing
contextual features and multiple high-level image features from multiple perspectives
to accurately predict the overall sentiment after fusing the features.

4. Advancement in task-oriented dialog system

This chapter introduces the task-oriented dialog system, including pipeline mode
and end-to-end mode (Figure 4).

Figure 3.
The working effect of MSA.
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4.1 Pipeline mode

Task-oriented dialog system aims to process user messages accurately and puts
forward fairly requirements for response constraints. Therefore, a pipeline method is
proposed to generate responses in a controllable way. It is mainly divided into four
parts: natural language understanding, dialog state tracking, dialog strategy learning,
and natural language generation. The natural language understanding module con-
verts the original user messages into semantic slots and classifies the domain and user
intentions. Dialog status tracking module iteratively calibrates the dialog status based
on the current input and dialog history. The dialog state includes relevant user actions
and slot value pairs. The dialog strategy learning module tracks the calibrated dialog
state according to the dialog state and decides the next action of the dialog agent.
Finally, the natural language generation module converts the selected conversation
actions into natural language for feedback to users. For example, in the movie ticket
reservation task, the agent interacts with the movie knowledge base to retrieve movie
information with specific constraints [51], such as movie name, time, cinema, etc.

4.1.1 Natural language understanding

Natural language understanding has a significant impact on the response quality of
the whole system, which converts the user generated natural language messages into
semantic slots and classified them. There are three tasks involved: domain classifica-
tion, intention detection and slot filling. Domain classification aims to determine to
which particular domain or topic the user input belongs. It categorizes the user’s text
into predefined domains, such as hotel booking, flight enquiry, weather information,
etc. By identifying the subject domain to which the input relates, it can be passed to
the appropriate processing module for further parsing. Intention detection refers to
determining the user’s intent or purpose in a particular domain. It focuses on the
purpose behind the user’s input rather than just the input text itself. For example, in
the domain of hotel booking, a user may have different intentions, such as finding a
hotel, booking a hotel, canceling a booking, etc. The goal of intent recognition is to
identify the specific intent of the user so that the system can take the appropriate
action or provide the correct response. Slot filling is the process of identifying and
extracting key information from user input that is relevant to a specific domain. Slots
are usually parameters or variables related to the intent, such as date, location, per-
son’s name, price, etc. Through slot filling, the system can capture and record the
specific information provided by the user in a particular domain. For example, in a

Figure 4.
Task-oriented dialog system.
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hotel reservation domain, slots may include check-in date, check-out date, location,
room type, etc.

Domain classification and intent detection belong to the same classification task.
The problem of domain intent and classification of dialog is solved through deep
learning, including building a deep convex network [52], which combines the predic-
tion of a prior network with the current dialog as the overall input of the current
network. In order to solve the difficulty of using depth neural networks to predict
fields and intentions, some scholars used restricted Boltzmann machines and depth
belief networks to derive the parameters of the initialized depth neural networks [53].
In order to take advantage of the advantages of recurrent neural networks (RNN) in
sequence processing, some work used recurrent neural networks as dialog encoders
and predicted intentions and domain categories [54]. Some scholars have proposed a
short text intention classification model. Due to the lack of information in a single
conversation turn, it is difficult to identify the intention of phrases. Using RNN or
CNN structure to fuse the dialog history, and obtain the context information as the
additional input of the current turn information [55]. This model has achieved good
performance in intention classification tasks. Recently, by pre-trained task-oriented
dialog BERT, this method has achieved high accuracy in intention detection tasks. The
proposed method can effectively alleviate the problem of data shortage in specific
areas.

Slot filling, also known as semantic tagging problem, is a sequence classification
problem. This model needs to predict multiple targets at the same time. Deep belief
network shows good ability in deep structure learning. Some scholars built a sequence
marker based on deep belief network. In addition to the named entity recognition
input features used in traditional markers, they also combined part of speech and
syntactic features as part of the input. Recurrent structures are beneficial to sequence
marking tasks because they can track information along past time steps to maximize
the use of sequence information. Some scholars first proposed that RNN language
models can be applied to sequence tagging rather than simply predicting words [56].
At the output end of RNN, the sequence labels corresponding to the input words are
not normal words. Some scholars further studied the impact of different recurrent
structures on slot filling tasks and found that all RNN models are superior to the
simple conditional random field method [57]. Because the shallow output representa-
tion of traditional semantic annotation lacks the ability to express structured dialog
information, the slot filling task is regarded as a template based tree decoding process
by iteratively generating and filling templates [58].

4.1.2 Dialog status tracking

Dialog state tracking (DST) is the first module of the dialog manager. According to
the entire dialog history, each turn tracks the user’s goals and relevant details, provid-
ing the strategy learning module with the information needed for decision-making.
There is a close relationship between natural language understanding and dialog state
tracking. Both of them need to fill slots of dialog information [59]. However, they
actually play two different roles. The natural language understanding module
attempts to classify current user messages, such as intention recognition and domain
recognition, and slots to which each message character belongs.

The first flow can be considered as a multi-class classification task. For multi-class
classification DST, the tracker predicts to select the correct class from multiple values.
Some scholars used RNN as a neural tracker to obtain the perception of dialog context
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[60]. The tracker finally makes a binary prediction of the current slot value pair based
on the dialog history. The second flow of neural tracker with unfixed slot names and
values attracts more attention because it not only reduces the model and time com-
plexity of DST tasks but also helps to train task-oriented dialog systems end-to-end.
Some scholars proposed the belief span, that is. the text corresponding to the dialog
context spans to a specific slot [61]. They built a two-stage CopyNet to copy and store
the slot value history storage slot in the dialog to prepare for neural response. The
belief span promotes the end-to-end training of the dialog system and improves the
tracking accuracy outside the vocabulary. Based on this, some scholars proposed the
minimum belief span, which is not scalable to generate belief state domains from
scratch when the system interacts with APIs from different sources [62]. Some
scholars proposed a trade model. The model also applies the replication mechanism
and uses a soft-gated pointer generator to generate the slot value dialog context based
on the domain slot pair and coding [63].

4.1.3 Natural language generation

Natural language generation is the last module in the pipeline mode of task-
oriented dialog system. It tries to convert the dialog actions generated by the dialog
manager into the final natural language representation. The standard flow of the
defined natural language generation module is composed of four components, and its
core components are content determination, sentence planning, and surface
implementation.

The deep learning method is applied to further enhance the NLG performance, and
the pipeline is folded into a single module. The generation of end-to-end natural
languages has made gratifying progress and is the most popular way to implement
NLG. Some scholars believed that natural language generation should be completely
data-driven and not rely on any expert rules [64]. They proposed a statistical language
model based on RNN, which uses semantic constraints and syntax trees to learn
response generation. In addition, they also used CNN re-ranked to further select
better answers. Similarly, some scholars used LSTM model to learn sentence planning
and surface implementation at the same time. Some scholars used GRU to further
improve the generation quality on multiple domains [65]. The proposed generator
always generates high-quality responses on multiple domains. To improve the adapt-
ability of the domain recurrent model, some scholars proposed to first train the
recurrent language to model the data synthesized from the data sets outside the
domain, and then fine-tune the relatively small data sets within the domain. This
training strategy has proved to be effective in human assessment [66].

4.2 End-to-end mode

In the process of building an end-to-end task-oriented dialog system, a complex
neural network model is used to implicitly represent key functions, and all modules
are integrated into one module. The research of task-oriented end-to-end neural
network model mainly focuses on training methods or model architecture, which is
the key to response correctness and quality [67]. An incremental learning framework
is proposed to train their end-to-end task-oriented system. The main idea is to estab-
lish an uncertainty estimation module to evaluate the confidence of the generated
response. If the confidence is higher than the threshold value, the response will be
accepted. If the confidence score is lower, the manual response will be introduced.
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Recent works often do not build end-to-end systems to apply in a pipeline manner.
Instead, they use complex neural models to implicitly represent key functions and
integrate modules into one. Task-oriented end-to-end neural model research focuses
on training methods or model architecture, which is the key and quality of response
correctness. Some scholars proposed an incremental learning framework to train their
end-to-end learning task-oriented system [61]. The main idea is to establish an uncer-
tainty evaluation module to evaluate the confidence of the generated appropriate
response. If the confidence score is higher than the threshold, then the response will
be accepted, while if the confidence score is very low. The agent can also use online
learning to learn from human responses. Some scholars use model agnostic meta
learning (MAML) to jointly improve adaptability and reliability [68]. In real life
online service tasks, there are only a few training samples. Similarly, some scholars
also used MAML to train the end-to-end neural model to promote domain adaptation,
which enables the model to train rich resource tasks first, and then train limited new
task data [59]. Other scholars trained an inconsistent order detection module in an
unsupervised manner [63]. The module detects whether the command discourse
generates a more coherent response.

5. Conclusions

Most existing shallow and deep learning models have structures that can be used
for text classification, including integrated approaches. BERT learns a form of lin-
guistic representation that can be used to fine-tune many downstream NLP tasks. The
main approaches are to add data, increase computational power, and design training
programs to obtain better results. The trade-off between data and computational
resources and predictive performance is worth investigating. Due to the inability to
collect data with full supervisory information, so MLTC is gradually turning to the
problem of classification with limited supervised information. Since the excellent
performance of AlexNet in 2012, deep learning has shown great potential. How to
leverage the powerful learning capabilities of deep learning to better capture the label
dependencies is key to solving MLTC tasks.

With the development of deep learning technology in the application of emotion
analysis tasks, the performance of emotion analysis has been greatly improved.
However, some tasks and scenarios still need more abundant data sets to evaluate the
model more accurately.

Although deep learning has achieved remarkable results in the dialog system, in
the pipeline mode, if accurate and fast access to user intentions is still the demand of
the industry, in the end-to-end mode, controllability, and interpretability also need to
be further studied.
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Chapter 6

Deep Learning in Medical Imaging
Narjes Benameur and Ramzi Mahmoudi

Abstract

Medical image processing tools play an important role in clinical routine in  helping 
doctors to establish whether a patient has or does not have a certain disease. To 
validate the diagnosis results, various clinical parameters must be defined. In this con-
text, several algorithms and mathematical tools have been developed in the last two 
decades to extract accurate information from medical images or signals. Traditionally, 
the extraction of features using image processing from medical data are time-con-
suming which requires human interaction and expert validation. The segmentation 
of medical images, the classification of medical images, and the significance of deep 
learning-based algorithms in disease detection are all topics covered in this chapter.

Keywords: deep learning, medical imaging, segmentation, classification, diagnosis

1. Introduction

Recently, artificial intelligence (AI) is considered as a revolution across the 
 medical field and one of the main factors of this AI revolution is deep learning (DL). 
The origin of DL and neural networks dates back to 1950. Yet, with the introduc-
tion of medically annotated big data, necessary for training, and the availability of 
high-performance computing, the recent years seem to mark a turning point for DL in 
medical imaging.

Accordingly, this branch of AI is recently applied to several healthcare problems 
such as computer-aided diagnosis, disease identification, image segmentation and 
classification, etc. Unlike classical tools, the powerful key of DL derives from the 
ability to automatically learn complex features without the need for human interac-
tion. Nevertheless, many challenges still exist in medical health including privacy 
and heterogeneity of datasets. In this chapter, we will survey the application of DL in 
clinical imaging, and we will highlight the main challenges and future directions of 
this tool.

2. Deep learning-based segmentation in medical imaging

Deep learning algorithms were used in many medical applications to solve prob-
lems with segmentation, image classification, and pathology diagnosis. The manual 
segmentation process is time-consuming for radiologists because it is typically done 
slice by slice. Furthermore, segmentation results are susceptible to inter and interob-
server variability. To address these limitations, several approaches based on active 
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contour, level set, and statistical shape modeling [1–3] have been proposed to segment 
the extent of various pathologies or anatomical geometries. All of the methods men-
tioned above, however, are still semi-automated and require human interaction [4].

With the advent of DL, a fully automated segmentation of serial medical images 
is become possible in a few seconds. Several studies in the literature reported that 
segmentation algorithms based on AI outperformed the other classical models [5, 6]. 
Convolutional neural networks (CNNs) are the most used architecture to segment 
medical images. It consists of reducing the spatial dimensionality of the original 
image data through a series of the network layers by performing convolution and 
pooling operations. Other DL architectures were also proposed for this task such as 
deep neural network (DNN), artificial neural network (ANN), fully convolutional 
network (FCN), ResNet-50, and VGGNet-16 [7–10]. Figure 1 describes the tasks 
involved in segmenting cardiac images for various imaging modalities. 

The success of DL-based medical image segmentation inspired other studies to 
reevaluate the traditional approaches to image segmentation and incorporate DL 
models into their work. Many factors have facilitated the increased use of DL. Among 
them, we can note the availability of medical data and the evolution of graphics 
processors’ performances.

Each year, large, annotated datasets were published online. These data were col-
lected during many challenges such as medical segmentation decathlon and medical 
image computing and computer aided interventions (MICCAI). Table 1 summarizes 
the largest medical images datasets available online.

Segmentation based on DL were applied in different field of medical imaging 
[12–14]. In cardiac MRI, several DL models were used to delineate the contours of the 
myocardium which represent a crucial step to compute useful clinical parameters for 
the evaluation of cardiac function [15]. DL was also applied for the segmentation of 
different types and stage of cancer. For breast cancer, the data include mammography, 
ultrasound, and MRI images [16–18]. Other DL architectures were also proposed 
in the literature to segment cervical cancer based on Magnetic Resonance Imaging 
(MRI), computed tomography (CT), and positron emission tomography (PET) scan 

Figure 1. 
Overview of cardiac image segmentation tasks for different imaging modalities [11].
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data [19]. Zhao et al. [20] proposed a new model of DL that combined U-net with 
progressive growing of U-net+ (PGU-net) for automated segmentation of cervical 
nuclei. In their study, they reported a segmentation accuracy of 92.5%. Similarly, 
Liu et al. [21] applied a modified U-net model on CT images for clinical target vol-
ume delineation in cervical cancer. In their proposed architecture, the encoder and 
decoder components were replaced with dual path network (DPN) components. The 
mean dice similarity coefficient (DSC) and the Hausdorff distance (HD) values of the 
model were 0.88 and 3.46 mm.

Although image segmentation based on DL facilitates the detection, charac-
terization, and analysis of different lesions in medical images, it still suffers from 
several limitations. First, the problem of missing border regions in medical images 
should be considered [22]. Furthermore, the imbalanced data available online could 
significantly affect the segmentation performances. In medical imaging, the col-
lection of balanced data is challenging since images related to controls are largely 

Dataset Target Modality Source

Kaggle Various diseases X-rays, MRI and 
CT

Google LLC
https://www.kaggle.com/

NIH Image Gallery Various diseases X-rays, MRI, CT, 
PET.

National Institutes of Health (NIH)
https://www.flickr.com/photos/nihgov/

ImageNet Cancer, diabetes, 
and Alzheimer’s 
disease.

Genomic data AI researchers
https://www.image-net.org/

Google Dataset 
Search

Various diseases X-rays, MRI, CT, 
PET, echography

Google
https://datasetsearch.research.google.com/

UCI Machine 
Learning 
Repository

Various diseases X-rays, MRI, CT, 
PET, echography

The National Science Foundation
https://archive.ics.uci.edu/ml/index.php

Stanford Medical 
ImageNet

Various diseases X-rays, MRI 
scans, and CT 
scans.

Stanford University
https://aimi.stanford.edu/
medical-imagenet

Open Images 
Dataset

Various diseases All medical 
Imaging 
techniques

Google in collaboration with CMU and 
Cornell Universities
https://storage.googleapis.com/openimages/
web/index.html

Cancer Imaging 
Archive

Cancer Images from a 
variety of cancer 
types

National Cancer Institute (NCI)
https://www.cancerimagingarchive.net/
access-data/

Alzheimer’s Disease 
Neuroimaging 
Initiative

Alzheimer’s disease brain scans and 
related data from 
MRI

Foundation for the National Institutes 
of Health
https://adni.loni.usc.edu/

The Microsoft 
COCO dataset

Various diseases All medical 
Imaging 
techniques

Microsoft
https://cocodataset.org/#home

MIAS dataset Various diseases Mammographic 
images

Organization of UK research groups
https://www.kaggle.com/datasets/kmader/
mias-mammography

Table 1. 
Medical images datasets available online.
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available compared to those associated with different pathologies. As a result, 
some models have been proposed to mitigate this problem. These models include 
convolutional autoencoders [23] and generative adversarial networks (GAN) [24]. 
The concept is based on the extraction of information from original images and to 
generate a similar dataset image based on linear transformation, e.g., reflection, 
rotation, translation.

3. Deep learning-based classification in medical imaging

Additionally, DL have demonstrated its superiority in the categorization of 
medical images, more notably in the distinction of various disorders. The extraction 
of key features is a step in the classification process that produces a model that can 
categorize a picture into multiple classes. To extract features using color or texture, 
several classical classifications have been dressed in the literature [25–27]. Support 
vector machines (SVMs), logistic regression, closest neighbors, etc. can be mentioned 
among them. These systems must, however, cope with other challenging problems 
related to medical imaging. First, the presence of artifacts in medical images may 
make it more difficult to categorize. Because of this, pre-processing is crucial to 
improving image quality. The second problem is the complexity of medical content 
captured by many modalities. The classification of medical images is extremely dif-
ficult because each modality has distinct characteristics.

Recently, several researchers used DL for the medical classification task and 
the results proved the accuracy of their models in comparison with the traditional 
machine learning approaches [28]. Deep learning’s key benefit is its ability to quickly 
distinguish between various structures in images without the need for manual feature 
extraction. Recent DL architectures also have the capacity to incorporate a variety of 
features gathered from many modalities to produce an effective classifier.

Yadav and Jadhav [29] used a DL algorithm based on the transfer learning of 
VGG16 to classify pneumonia from chest X rays’ images. In their study, they showed 
that the VGG16 outperformed the classical method based on SVM. The accuracy was 
0.923 for VGG16 vs. 0.776 for SVM. Similarly, Xu et al. [30] tested a deep CNN in his-
topathology images to extract new features for the classification of colon cancer. Lai 
et al. [31] proposed a new architecture that combines coding network with multilayer 
perceptron (CNMP) with other features extracted from deep CNN.

In their study, they showed an accuracy of 90.2%. Although DL achieved high 
performance in the classification of medical images, it still suffers from numerous 
limitations. The major challenge is the reduced number of annotated data needed 
for the classification of medical images. Labeling data require the intervention 
of experienced radiologists. A few solutions have been proposed to resolve this 
issue. Pujitha and Sivaswamy [32] proposed a crowd-sourcing and synthetic image 
generation for training deep neural net-based lesion detection. In their study, they 
used color fundus retinal and they proved that crowd-sourcing improves the area 
under the curve (AUC) by 25%. The generative adversarial networks (GAN) is 
also another source of generating synthetic images with annotations. Aljohan and 
Alharbe [33] proposed a new GAN to generate synthetic medical images with the 
corresponding annotations from different medical modalities. The classification of 
medical images based on DL has shown good results. However, there are still several 
issues in medical image processing that need to be addressed with the different DL 
architectures.
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4. Disease diagnosis based on deep learning

Early and precise diagnosis is crucial for the treatment of different diseases and 
for the estimation of a severity grade. The use of DL for the diagnosis of diseases is a 
dynamic research area that attracts several researchers worldwide. In fact, DL archi-
tectures have been applied to some specific pathologies such as cancer, heart disease, 
diabetes, and Alzheimer’s disease [34, 35]. The increasing number of medical imag-
ing dataset led different researchers to use deep learning models for the diagnosis of 
different diseases.

DL algorithms have proven their performances in the prediction and diagnosis of 
cancer diseases. The availability of images derived from MRI, CT, mammography, 
and biopsy helped several researchers to use these data for early cancer detection. The 
analysis of cancer images includes the detection of tumor area, the classification of 
different cancer stages, and the extraction of different characteristics for tumors [36].

Recently, Shen et al. [37] used a modified version of CNNs for the screening of 
breast cancer using mammography data. The outcomes of their study showed an AUC 
of 0.95 and a specificity of 96.1%. A CNN was also applied for the classifications of 
different kinds of cancer and the detection of carcinoma. Figure 2 depicts the entire 
image categorization process for breast cancer screening using DL architecture.

Alanazi et al. [38] applied the transfer DL model to detect brain tumor in the 
early stage by using various types of tumor data. Furthermore, another study used a 
3D deep CNN to assess the glioma grade (low or high-grade glioma). In their study, 
they reported an accuracy of 96.49% [39]. Compared to the classical algorithms, 
the different studies proved the efficiency of DL in the prediction and analysis of 
cancer. However, bigger medical data available online are needed for more adequate 
validation.

5. Conclusion

As has been shown, using medical image processing techniques in clinical practice 
is crucial for determining if a patient has a particular disease or not. The field of 

Figure 2. 
Deep learning for the screening of breast cancer [37].
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