
Response Surface 
Methodology 

Research Advances and Applications

Edited by Palanikumar Kayarogannam

Edited by Palanikumar Kayarogannam

Response surface methodology (RSM) is the statistical and mathematical technique 
that lays its foundation of quality in any experiment and it aims to optimize the 

response. RSM is mainly used for modeling and optimization of process parameters. 
This book discusses advances in RSM and its applications. Chapters discuss topics 

such as cyclic generators for Box–Behnken Designs, the application of RSM for 
product design, and potential applications of RSM in manufacturing, food processing, 

the fine arts, and more.

Published in London, UK 

©  2023 IntechOpen 
©  ihor lishchyshyn / iStock

ISBN 978-1-83880-288-2

Response Surface M
ethodology - Research A

dvances and A
pplications





Response Surface 
Methodology - Research 

Advances and Applications
Edited by Palanikumar Kayarogannam

Published in London, United Kingdom



Response Surface Methodology - Research Advances and Applications
http://dx.doi.org/10.5772/intechopen.102317
Edited by Palanikumar Kayarogannam

Contributors
Sheriff Lamidi, Nurudeen Olaleye, Yakub Bankole, Aishat Obalola, Emmanuella Aribike, Idris Adigun, 
Nam-Ky Nguyen, Mai Phuong Vuong, John J. Borkowski, Sawsan Mahmood, Ali Ali, Wissam Zam, Ayhem 
Darwesh, Julio Romero-Noguera, Nuria Pérez-Villares, Fernando Bolívar-Galiano, Rafael Bailón-
Moreno, Samuel K. Kalu Otisi, Chigoziri N. Nnaemeka Njoku, Aysun Sagbas, Asif Ahmad, Shahnawaz 
Alam, Meenu Sharma, Palanikumar Kayaroganam

© The Editor(s) and the Author(s) 2023
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2023 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Response Surface Methodology - Research Advances and Applications
Edited by Palanikumar Kayarogannam
p. cm.
Print ISBN 978-1-83880-288-2
Online ISBN 978-1-83880-299-8
eBook (PDF) ISBN 978-1-83880-463-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

6,300+ 
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

171,000+
International  authors and editors

190M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

 

CL
AR

IVATE ANALYTICS

IN D E X E D





Meet the editor

Prof. Dr. Palanikumar is a professor and principal at Sri Sai 
Ram Institute of Technology, India. He is involved in teaching, 
research, development, and innovations in the field of higher 
technical education. He received the National-Visvesvaraya 
Best Teacher Award from the All India Council for Technical 
Education (AICTE), Government of India, in 2021. He is listed 
among the world’s top 2% of materials researchers by Stan-

ford University, USA. He has published more than 450 papers and 30 patents in 
engineering and technology. Dr. Palanikumar’s areas of interest include statistical 
techniques, modeling and optimization, total quality management, composite 
materials, machining, and additive manufacturing.





Preface XI

Section 1
Introduction to Response Surface Methodology 1

Chapter 1 3
Introductory Chapter: Response Surface Methodology
by Palanikumar Kayarogannam

Section 2
Applications of Response Surface Methodology 7

Chapter 2 9
Application of Central Composite Design with Design Expert v13 in Process 
Optimization
by Chigoziri N. Njoku and Samuel K. Otisi

Chapter 3 43
Applications of Response Surface Methodology (RSM) in Product Design, 
Development, and Process Optimization
by Sheriff Lamidi, Nurudeen Olaleye, Yakub Bankole, Aishat Obalola,  
Emmanuella Aribike and Idris Adigun

Chapter 4 63
Perspective Chapter: Cyclic Generation of Box-Behnken Designs and New 
Second-Order Designs
by Nam-Ky Nguyen, John J. Borkowski and Mai Phuong Vuong

Section 3
Modeling and Optimization Using Response Surface Methodology 81

Chapter 5 83
Analysis and Optimization of Bead Geometry by Using Response Surface 
Methodology
by Asif Ahmad, Shahnawaz Alam and Meenu Sharma

Contents



II

Chapter 6 113
Analysis and Optimization of Process Parameters in Wire Electrical  
Discharge Machining Based on RSM: A Case Study
by Aysun Sagbas

Chapter 7 133
Optimization of Baker’s Yeast Production on Grape Juice Using Response  
Surface Methodology
by Sawsan Mahmood, Ali Ali, Ayhem Darwesh and Wissam Zam

Chapter 8 157
Response Surface Model Applied to Fine Arts: The Case of the Restoration  
of Paintings
by Julio Romero-Noguera, Nuria Pérez-Villares,  
Fernando Bolívar-Galiano and Rafael Bailón-Moreno

Preface

Response surface methodology (RSM) is used to predict and optimize process 
parameters in science, engineering, and technology problems. Its applications are 
not limited to these areas, however; RSM has been used in many fields, including 
medicine, pharmaceuticals, and even the arts. This book explores the use of RSM 
for modeling and optimization in a variety of disciplines.

The book includes eight chapters with case studies to illustrate relevant concepts. 
Chapter 1 provides an introduction to the topic and basic experimental design 
methods. Chapter 2 discusses the application of central composite design and its 
effects on RSM. Chapter 3 highlights the application of RSM in product develop-
ment and design. Chapter 4 discusses cyclic generators for Box–Behnken designs 
and develops new second-order designs. Chapters 5–8 examine modeling and 
optimization using RSM. Chapter 5 analyzes and optimizes bead geometry param-
eters in the welding process. Chapter 6 presents a case study on electrical discharge 
machining and uses RSM to optimize the process parameters. Chapter 7 discusses 
the selection of optimal conditions for baker’s yeast for the production of grape 
juice. Finally, Chapter 8 applies RSM to fine arts and the restoration of paintings. 

This volume is a useful resource for those interested in RSM and who wish to use it 
in new and innovative research. 

Palanikumar Kayarogannam
Department of Mechanical Engineering, 

Sri Sai Ram Institute of Technology,
Chennai, India
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Chapter 1

Introductory Chapter: Response 
Surface Methodology
Palanikumar Kayarogannam

1. Introduction

The development of empirical models and optimization is the focus of the 
mathematical and statistical methodologies, which is called as the response surface 
methodology (RSM). In RSM, the experiment optimizes a response (output variable) 
that is sensitive to many factors. As a result of it, study designs will accomplish these 
aims (input variables). Many trials are conducted using different variables, and the 
best variables are selected to accomplish the goals successfully.

RSM is the first model to incorporate observed responses [1]. Afterward, the 
numerical experimentation-based modeling technique are emerged. Also, several 
possible errors exist in the solution. Insufficient convergence of iterative methods, 
rounding mistakes, and a discrete representation of a continuous physical event are all 
potential sources of numerical noise in computer experiments. If the measurements 
are inaccurate in a scientific experiment, the conclusions will be affected at the end. 
If the measurements are inaccurate, then the findings of a physical experiment will 
be inaccurate [2–5], at last. As a result of it, the RSM methodology adopts the position 
where errors occur at random. When used for design optimization, RSM reduces the 
need for high-priced analytical approaches like the computational fluid dynamics 
(CFD) analysis.

For the purpose of optimizing designs, many researchers have discussed the use 
of RSM. For example, the optimum surface roughness on machining is optimized by 
determining the optimum cutting speed (x1) and feed (x2). It is observed that cutting 
speed and feed affect the surface roughness:

 ( )= + ε1 2y x ,xf  (1)

where ε denotes experimental error due to back ground noise, manual error, etc.
RSM is graphically displayed in either a two- or three-dimensional plot known as 

contour plot, and it is interpreted in two different ways. When all the factors are held 
at constant except for the xi and xj coordinates, the resulting curves are called con-
tours. It specifies the highest reaction on each form’s surface. Figure 1 shows the steps 
in RSM, which clearly shows how the optimization is carried out by RSM.
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2. Approximate model function

The relationship between the response and a nonresponse variable is unclear. First, 
RSM determines the best near model. Further the vast majority of models used in 
practice are polynomials of low order (first or second order). When a structure of the 
model has curvature, it includes the interaction effects and square effects. This model 
is observed as:

 β β β β ε
= = <

= + + + ∑ +∑ ∑ ∑2
0

1 1

k k

i i ii i ij i j
i i i j

y x x x x  (2)

Variety of work has been carried out in response surface modeling. This degree 
of usefulness is quantified by the goodness-of-fit metric. Sensitivity data is used to 
reduce the number of computer simulation analyses for model fitting, though it is not 
always readily available or affordable.

Some of the important methods used for RSM are as follows:

• Design of experiments: RSM relies mainly on design of experiments, abbrevi-
ated as DoE [1]. This method is mainly developed to fit the models for physical 
experiment data. Also, it is used for numerical experiment data.

• Full factorial design: It is necessary to do a full factorial analysis [6] for creating 
approximate model in establishing the relationship between the design variables.

• Central composite design (CCDs): CCDs are considered, as the first-order 
designs with an extra center and axial points in order to estimate the tuning 
parameters of second-order models,

Figure 1. 
Response surface methodology.
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• D-optimal designs: The experimental points provide the most reliable estima-
tions of the response model coefficients using quadratic models considering the 
D-optimality criterion [7].

• Taguchi’s contribution to experimental design: Taguchi has used the orthogo-
nal arrays for designing the experiment. Taguchi’s design allows for fewer testing 
than a full factorial design.

Other approaches like [8–10] are also considered by some researchers. It is clearly 
known that RSM is an important method in statistical design, and it is applied for 
different kind of experiments. Research advances are carried out in different fields of 
Engineering, Science, and Technology [11]. The application of RSM in the different 
fields is innumerable. Hence, RSM method finds its applications in textile industry, 
food industries, chemical industries, mechanical industries, pharmaceutical indus-
tries, etc. By using proper design of experiments, the modeling and optimization are 
carried out without cumbersome efforts.

3. Conclusion

RSM is very much useful for analyzing and optimizing the experimental and 
numerical responses. It has got close approximations of both experimental and 
numerical results by choosing the correct method of experimentation. The best 
plans for experiments have the experimental locations dispersed around the area of 
interest. Recently, many new plans are implemented for analyzing the data. In spite 
of computer-based many modeling and optimization techniques are developed, RSM 
is an indispensable method and is used for modeling and optimization in the field of 
Science, Engineering, and Technology.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 2

Application of Central Composite
Design with Design Expert v13
in Process Optimization
Chigoziri N. Njoku and Samuel K. Otisi

Abstract

This chapter is focused on the study application of central composite design, in
response surface methodology. We have reviewed this concept and applied it to
optimize Biodiesel yield from transesterification of methanol and vegetable oil with a
catalyst derived from eggshell using design expert 13. This optimization was carried
out with reaction conditions of reaction time, methanol to oil ratio, catalyst loading,
and reaction temperature. Data used as an instance was collected and analyzed from
the work of Tshizanga et al. and the result obtained for a randomized experiment
showed at a 95% confidence level that all the factors affected the product’s output.
About 91% yield was obtained and operating parameters were optimized at a temper-
ature of around 61%. Methanol to oil ratio of 22.13, and catalyst loading of around 3.7
wt%. This chapter provided a step-by-step guide on how to carry out this experiment
using design expert 13, a reduced Quadratic model with a significant P-value of 0.0325
shows the model is significant, as indicated by an f-value of 3.57. An F-value might be
caused by noise only in 3.25% of cases. The run was reduced to 18 compared to the 20
runs originally used by Tshizanga et al.

Keywords: response surface methodology (RSM), central composite design (CCD),
design of experiment (DOE), design expert

1. Introduction

It has always proven difficult to quickly select an appropriate experimental
design, which can simply explicate many response factors. This sometimes leads to
a quadratic surface model. CCD can be a choice for this kind of model. An exper-
imental design called the central composite design (CCD) concept has emerged and
has been very handy as part of the optimization process and search for the ideal
product from ongoing batches. In statistics, a central composite design is an exper-
imental kind of design, helpful in response surface methodology, for creating a
second-order (quadratic) model for the response variables without having to use a
complete three-level factorial experiment [1]. After performing the designed experi-
ment, linear regression is deployed, sometimes iteratively, to obtain results. Coded
Variables are frequently utilized when creating this design Most optimizations are
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done by screening all the potential variables [2]. Here, all the possible independent
factors are first identified, and these factors are further improved before response
surface methodology can finally be used to establish relationships between one or
more process variables and their responses. The Central composite design is some-
times referred to as Box-Wilson central composite design and it has been chosen
among researchers due to its accuracy.

2. Key terms in central composite design

Some important keywords will be mentioned throughout this chapter. This is to
equip the readers with the terminology to understand fully the concept of Response
surface methodology.

Response surface: These are the related variables. It involves a two or three-
dimensional plot of the results of experimental data. Response surface methodology
(RSM) is used to describe the use of experimental designs that give response surfaces
from which information about the experimental system is deduced [3].

Factor: This can also be called the parameter or predictor. It is an entity that
controls an outcome. The output Change is brought about by the manipulation or
tweak of the input factor (s). They can be set and reset at different levels depending
on the needs and conditions that affect the experiment.

Levels of the factors: The Design of experiments is named by the number of
levels chosen for a factor, it could be a two or three-level design. It signifies the
value of a factor that is prescribed in an experimental design. Levels could be
high, mid, or low (three-level design) and only high and low (two-level design) is
often coded as +1(high), 0(mid), and � 1(low). Selecting levels for an experiment
often requires field experience. For example, for a three-level experiment,
selecting the levels in a reactor would require some previous experience to decide
30°C(�1), 40°C (0) and 50°C (1) are suitable for low-level, mid-level, and high
level respectively.

Blocking: This tool is used to eradicate the effects of external disturbances and in
the process improve the efficiency of experimental design. External disturbances
cause different forms of variations. The main goal is to arrange similar experiments
runs into one group, so that the whole group becomes a homogeneous unit. For
example in the transesterification reaction, A researcher is attempting to increase the
yield of Biodiesel through Mean Absolute Errors (MAE). factors were considered for
the initial experiment trials, which might have some impact on the yield. It is decided
to study each factor in a two-level setting (i.e. a low value and a high value). Six
experimental trials are chosen by the experimenter, but only four trials are possible to
run per day. Here, each day can be handled separately as a different block [4].

Response: This is the result of the effect of an experiment, which is observed on
account of changing the values of the predictors. For example the Yield, Selectivity, or
Conversion of a reactant in a reactor.

Design of experiment (DOE): This is a statistical approach that involves plan-
ning, analyzing, conducting, and interpreting data obtained from experiments [3].

Randomization:While designing and running an experiment, there are several
factors in the form of external disturbances often known as noise factors, which may
influence how the experiment turns out. For example, variations in the quality of the
raw material due to seasonal change, variations in the temperature, and their effects
on the overall reaction yield may affect the result and such factors are difficult to

10
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control. Randomization is one of the methods to remove or reduce such errors occur-
ring due to uncontrollable factors. Randomization helps in calculating the cumulative
impact of the external disturbances if present in the process [3].

Model: This is an equation expressing the relationship between responses and the
factors under study or investigation. Here the outcome can be denoted as a function of
the experimental factors. For example, a model that has only one parameter x could be
expressed as;

y ¼ f xð Þ þ ℇ (1)

For two parameters model, it could represent as;

y ¼ f x1, x2ð Þ þ ℇ (2)

For the n parameters model, consider the following equation;

y ¼ f x1, x2 … ::xnð Þ þ ℇ (3)

The function, f xð Þ denotes the relationship between the parameters and the
response (y) with the residuals (ε) and is depicted through a polynomial equation.
Three different models are described:

Linear model: This is the simplest polynomial model that contains only linear
terms and describes only the linear relationships between the variables and the
responses. A linear model with two factors x1, x2 are expressed as:

y ¼ b0 þ b1x1 þ b2x2 þ ℇ (4)

Or can generally be represented as;

y ¼ b0 þ
Xk
i¼1

bixiþ ℇ (5)

Here, y is the outcome, bi is the model coefficients, b0 is the model intercept, i is
the factor number from i to k, and xi is the independent variables.

Interaction model: The interaction model holds some extra terms that depict inter-
actions between various variables if any. For a two-factor, It is denoted as;

y ¼ b0 þ b1x1 þ b2 x2 þ b12 x1x2 þ ℇ (6)

Or generally as;

y ¼ b0 þ
Xk
i¼1

bixiþ
Xk¼1

i¼1

Xk
j¼iþ1

bijxixjþ ℇ (7)

bo, b i, and bij are the regression or the model coefficients for intercept, linear, and
interaction terms, respectively, and xi, and xj are reaction factors.

Quadratic model: Quadratic terms are introduced in the model to help ascertain the
optimal value. It helps to identify curvature that exists in the model. This model for
two factors and interaction can be represented below:

11
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y ¼ b0 þ b1x1 þ b2 x2 þ b12 x1x2 þ b11x12 þ b22x22 þ ℇ (8)

or generally a;

y ¼ b0 þ
Xk
i¼1

bixiþ
Xk
i¼1

biixiþ
Xk¼1

i¼1

Xk
j¼iþ1

bijxixjþ ℇ (9)

bo, b i, bii, and bij are the model coefficient for intercept, linear, quadratic, and
interaction terms, respectively, and xi, and xj variables.

Note: The Symbol ℇ, in the model for eqs. (1) to (9) represents the residuals and the
linear and interaction models are used during the screening stage.

Effects: This is often regarded as the coefficient of the variables, it can be distin-
guished from the main effects; which involve the factor’s coefficient in the first-order
model. Interaction effect; It is the coefficient of the products of linear terms. Quadratic
effect; which denotes the coefficient of the square of the linear terms.

Replication: Replication means repeating the entire experiment or a part of it,
under different operating conditions. It helps to obtain a projection of the experimen-
tal errors and to understand and estimate more specifically the factors and their
interaction.

3. Response surface methodology for optimization design

The primary goal 0f optimization design is to minimize unfavorable or undesired
outputs or maximize the desired outputs. Sometimes, simple linear and interaction
models are not enough to provide a brilliant picture of the process. For this study, our
goal is to increase the Biodiesel Yield from the transesterification of methanol and
vegetable oil using a catalyst derived from the eggshell. The experiment has already
been done and data is provided in this reference [4]. We will be using the information
from this work to provide a thorough examination of central composite design in
process optimization. The variables are reaction temperature, methanol-to-oil ratio,
and catalyst weight. If these entities are positioned inside the region in which the
experiment is to be conducted, we need a mathematical model that can represent
curvature so that it has a local optimum. The best model is the quadratic model as
shown in (eq. 9), which contains linear terms for all factors, squared terms for all
factors, and products of all pairs of variables. Response surface designs are generally
used for fitting quadratic models. A full factorial design with three levels for each
input variable is one such design. Due to the excessive number of runs, that is not
necessary to fit the model. It is typically not a good design. The CCD and Box–
Behnken designs are the two most common designs generally used in response surface
modeling although only central composite designs are explored in detail. In these
types of designs, the variables take on three or five distinct levels, but not all combi-
nations of these values appear in the design. The steps in CCD for Optimization are
outlined below:

Preliminary stage: Here, the following steps are done:

• Choosing the factors and desired levels

• Determination of the Counts of experimental runs

12
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• Calculation of alpha (α) and the axial values

• Selecting the response variables

• Carrying out the experiments

• Model selection

Analysis stage: At this stage, the following are done:

• ANOVA is conducted where the F-test and Lack of fitness are used to test for
significance, Adjusted and predicted R2 are also determined at this stage.

• Next, the model equation is built

• Comparing values predicted (from the model) and actual values

• Using 2D and 3D contour plots or graphs to visualize the response(s).

Decision-making stage: Here, the predicted and actual values are compared to
determine the residuals using some useful parameters such as Adjusted R-Square,
Mean Absolute Error (MAE), or Mean Square Error (MSE) is employed to assess the
model performance and if okay with the result we can proceed to the final stage but if
not we go back to the preliminary stage to see how we can adjust the model.

Optimization stage: At this stage, the model is ready to be deployed for the
optimization process, design expert version 13 is very handy for this entire process, all
we need is to specify the required values. The detail on how to determine the CCD
components will be done later in this chapter.

4. Box: Behnken design (BBD)

The box design can adapt to the response surface full quadratic model [5]. BBD has
no incorporated factorial or fractional factor designs, such as CC. In this design, the
treatment combinations are at the midpoints of the edges of the cube and the center as
shown in Figure 1. BBD is a rotatable design and needs three levels for each factor.
BBD should be considered for experiments with more than two factors, and when it is
expected that the optimum is known to lie in the middle of the factor ranges. A, B, and
C represent factors A, B, and C respectively.

5. Central composite design

Central composite design (CCD): This is a unique kind of response surface design
that can fit a full quadratic model. It is comprised of factorial also known as fractional
factorial design with a center point attached to a group of stars or axial points. Using
the included axial points is an effective method for calculating the coefficients of a
second-degree polynomial for the factors [6]. A CCD can be denoted as a square (for
two factors design) or a cube (for a three factors design) having corners, which
represent the levels (high and low represented as +1, �1 respectively), a star or axial

13
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points along the axes at or outside the square helps to account for the curvature and a
center point at the origin. The general model for a two-factor full factorial CCD is
represented graphically in Figure 2 below.

Figure 3 displays a three-factor lay out for a CCDmade up of a full factors factorial
that forms the cube where each side is coded �1 and + 1 just like in Figure 2 above.
The Stars stand for axial points and alpha is the distance from the edge of the cube to
the stars.

6. Types of central composite design

There are three types of CCD namely:

• Circumscribed Central Composite Design (CCC)

• Inscribed Central Composite Design (CCI)

• Face-Centered Central Composite Design (CCF)

The CCC is a type of CCD in which the location of the axial points forms new
extremes from the already attained levels of the factorial factors. The new extremes
are determined by a value called alpha (distance between the new extreme and the
edges of the factorial points) making it up to 5 levels. It is often determined to achieve
a rotatable design [7].

The CCI type is a modified form of CCC. The axial points are scaled to be within
the limits of the factorial factor [8]. The CCI is also a rotatable type and has 5 levels
just like the CCC.

Figure 1.
A representation of box–Behnken design.
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For the CCF, the axial points correspond to the center points for each side of the
cube in Figure 3 above (three factors designs) and they are non-rotatable [9]. It has
only 3 levels. Figure 4 below provides more insight into this type of CCD.

7. Determining the components of central composite design

Before starting the CCD optimization process, we need to provide a walk-through
on how to calculate all the required parameters to build the model.

Figure 2.
A visual depiction of the CCD model for determination of total runs for all experiments for two factors full
factorial design. K in the model is the number of factors, C is the replicated central points that help to eliminate
pure error and N is the experiment runs required for the design.

Figure 3.
A graphical representation of three factors in a full factorial design.
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8. Calculating the number of experiment runs

To design a CCD experiment for two levels (+1 and � 1 levels of factors) full
factorial design is represented by 2k, then the axial points as represented by Figure 2
are given as 2 k, let C represent the center points and n, the number of times the
experiment is repeated to eliminate errors. Then the total number of experiment runs
is given as:

N ¼ 2k þ 2kþ nC (10)

Where k is the number of factors selected for the experiments. For our case, we
have three (3) factors, i.e. Temperature, methanol-ratio, catalyst weight, and 4 repe-
titions. By substituting k = 3, C = 1, and n = 4 (i.e. 4 repetitions), then N = 18 runs.
Luckily, design expert 13 will automatically generate this value once the number of
factors and repetitions are provided. Keep in mind the number of center points can
also be adjusted by clicking the options button on the software, in this case, we will
just use.

9. Calculating alpha (α)

As can be seen that immediately after the factors, n, and C are provided the alpha
is automatically calculated, this is because the minimum parameters to calculate it has
been specified, now it will be shown how the program generates this value. As has
been discussed earlier Alpha is the distance between the new extreme axial points and
the edge formed from the factorial levels. Now the following equation will calculate
this α value for any factor.

α ¼ 2k
� �1=4

(11)

For our case, k is 3, and therefore α = 1.68179 which is in line with the value
created by the software. Consider the Table 1 below for k from 2 to 5 factors and their
corresponding values.

Figure 4.
Three types of central composite Design6.
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10. Calculating axial values

Before determining the axial points, the table below shows the factors levels and
center points that will be used to compute the axial points. The center points are coded
as 0, while low and high levels are designated as �1 and + 1 respectively. Also keep in
mind that the experiment has already been performed and data provided from the
work of (Table 2) Tshizanga et al., [4].

To compute the Axial values, the first thing to do is to find the α that can be added
or subtracted from the factor levels (low and high) and the center points. Adding α to
factor levels can be coded as + α (higher axial value) while subtracting α from the
mean factor levels is however coded as – α (lower axial value). These additional two
coded values (+α and – α) are axial and they make the factors up a total of 5. The two
equations are given below:

þα ¼ X þ α x
High level� Low level

2

� �
(12)

α ¼ X– α x
High level� Low level

2

� �
(13)

Where α can be found using (eq. 11) although calculated as 1.68179 and X is
given by:

Low levelþ centre pointþHigh levelð Þ=k (14)

And k is the number of variables, in this case, k is 3. At this point let us get our
hands dirty with calculating the values for these 3 factors.

For Temperature:

X1 ¼ 60þ 65þ 70
3

¼ 65

Factor (k) Alpha (α)

2 1.41421

3 1.68179

4 2

5 2.37841

Table 1.
Factors and corresponding α values.

Factors Symbols Low level (�1) Centre point (0) High level (+1)

Temperature (°C) X1 60 65 70

Methanol to Oil ratio X2 15:1 22.5:1 30:1

Catalyst Weight (wt%) X3 2.0 3.5 5

Table 2.
Experimental ranges of the independent variable.
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þα ¼ 65þ 1:68179 x
70� 60

2

� �
¼ 73:4090°C(app. To 4 d.p)

�α ¼ 65– 1:68179 x
70� 60

2

� �
¼ 56:5911°C

For Methanol-Oil ratio:

X2 ¼ 15þ 22:5þ 30
3

¼ 22:5 22:5 : 1ð Þ

þα ¼ 22:5þ 1:68179 x
30� 15

2

� �
¼ 35:1134 35:1134 : 1ð Þ

�α ¼ 22:5– 1:68179 x
30� 15

2

� �
¼ 9:8866 9:8866 : 1ð Þ

For Catalyst weight:

X3 ¼ 2þ 3:5þ 5
3

¼ 3:5

þα ¼ 3:5þ 1:68179 x
5� 2
2

� �
¼ 6:0227 wt%

�α ¼ 3:5– 1:68179 x
5� 2
2

� �
¼ 0:9773 wt%

Currently, we have succeeded and step by step discussed how the software gener-
ated the alpha (α) and axial values as the components of the CCD, below is a table
including these axial points (Table 3).

Upon specifying the required parameters for the CCD model the software will
generate a table where the experiment will now be conducted to enable determining
the response for each experiment run. For this case study, our response is biodiesel
yield which can be determined from methyl ester and waste vegetable oil weight using
the following equation:

Yield %ð Þ ¼ Weight Biodieselð Þ
Weight Oilð Þ x 100 (15)

Table 4 factors’ coded values organized in the standard order.

Factors Symbols Lower axial
point (�α)

Low
level
(�1)

Centre
point (0)

High
level
(+1)

Higher axial
point (+α)

Temperature (°C) X1 56.5911 60 65 70 73.4090

Methanol to Oil ratio X2 9.8866 15:1 22.5:1 30:1 35.1134

Catalyst Weight (wt%) X3 0.9773 2.0 3.5 5 6.0227

Table 3.
Experimental ranges of independent variables including calculated axial (star) values.
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Immediately after we fill up the required CCD components, the design expert will
provide a table for coded levels of factors. This is being used to use as a guide to
specifying the actual values and their corresponding responses. The experiment will
be repeated four (4) times instead of 6 times (as done by the original researchers) to
reduce the experiment runs. The two results will be compared after the optimization
stage. Table 4 shows the coded factors, and Table 5 shows the actual values and their
responses after experimenting in the laboratory.

At this point, we can now replace the coded values with the actual values from the
previous calculations. The factor columns were generated with a particular pattern,
but it’s beyond the scope of this chapter, to learn more about this we recommend
reading “RSM simplified by Anderson and Whitcomb” [10].

11. Results and analysis

Note:When entering the values for the methanol to oil ratio in design expert, you
can ignore all the 1’s, since the value of Oil concerning Methanol is always a unit for all
the experiment runs.

We can now delve into understanding the data collected to build the model,
perform analysis, and finally carry out the optimization. All these steps will be done in
design expert software.

Std Run Factor 1 A:
Temperature (0C)

Factor 2
B:Methano-Oil r…

Factor 3 C:Catalyst
Weight wt%

Response 1
Biodiesel Yield %

1 3 �1.000 �1.000 �1.000

2 15 1.000 �1.000 �1.000

3 11 �1.000 1.000 �1.000

4 4 1.000 1.000 �1.000

5 2 �1.000 �1.000 1.000

6 12 1.000 �1.000 1.000

7 17 �1.000 1.000 1.000

8 8 1.000 1.000 1.000

9 7 �1.682 0.000 0.000

10 1 1.682 0.000 0.000

11 16 0.000 �1.682 0.000

12 14 0.000 1.682 0.000

13 13 0.000 0.000 �1.682

14 6 0.000 0.000 1.682

15 9 0.000 0.000 0.000

16 18 0.000 0.000 0.000

17 5 0.000 0.000 0.000

18 10 0.000 0.000 0.000

Table 4.
Factors’ coded values organized in the standard order.
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12. Understanding the data

The reason for this is basically to understand the relationship that exists in the
data. In a more statistical sense, we need to know if there is a strong correlation
between the variables and the response. If to some extent there exists an intra-
correlation among the factors then one of them has to be removed because it will
eventually harm the model. Design expert has provided a wonderful dashboard where
we can carefully learn more about the data we have collected and make some sense of
it. At the left of the software, we will see the information part of it. The summary,
graphs columns, and evaluation subsections are the places to dig the nuggets from
the data.

In the summary section we will see the summary statistics of the data, i.e. the
number of experiment runs, type of designs and model, minimum, maximum, mean,
standard deviations of the responses, and Ratio of maximum to minimum response
values (Table 6).

We have seen that the mean response is quite far away from the minimum and
maximum response, this is the primary reason for building this model to test the
statistical significance of this result. If we are okay with the significance we can go
ahead with the model built in the evaluation tab (Table 7).

Std Run Factor 1 A:
Temperature (0C)

Factor 2
B:Methanol-Oil

ratio

Factor 3 C:Catalyst
Weight wt%

Response 1
Biodiesel Yield %

1 3 60 15 2 69.29

2 15 70 15 2 35.2

3 11 60 30 2 73.39

4 4 70 30 2 10.66

5 2 60 15 5 61.29

6 12 70 15 5 50.23

7 17 60 30 5 71.48

8 8 70 30 5 22.06

9 7 56.591 22.5 3.5 62.18

10 1 73.409 22.5 3.5 79

11 16 65 9.88655 3.5 42.68

12 14 65 35.1134 3.5 39.5

13 13 65 22.5 0.977311 66.52

14 6 65 22.5 6.02259 74.04

15 9 65 22.5 3.5 80.46

16 18 65 22.5 3.5 89.35

17 5 65 22.5 3.5 90.98

18 10 65 22.5 3.5 89.52

Table 5.
Actual factors’ values arranged in the standard order after the experiment.
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Moving over to the graphs column section, there are scatter plots, histograms, and
Box-plots. To make the most sense of this data, the scatter plot is most handy since it
tells how the factors are correlated to each other, the drop-down at the top left helps to
select the factors to show scatter plots or the correlations plots at the bottom to help
display correlations as values between�1 and 1 (blue to red). Values close to �1 show a
strong negative correlation and values close to +1 show a strong positive correlation.
Nowwewill go ahead and display the scatter plots of each factor and the response under
the factor that mostly affects the biodiesel yield in Figures 5–7 respectively.

The plots have shown that temperature mostly negatively affects yield. The corre-
lation plot in Figure 7 confirmed this claim since the box with the most blueish color
lies between the temperature and Biodiesel columns. As described in the correlation
plot in Figure 8 from design expert software.

Finally, this section provides a unique tab called evaluation, where the model
name is selected and all their parameters are shown. In this case, a quadratic model has
been selected by the software which is the best for CCD. There are two tabs i.e. the
results and graphs where the model parameters are evaluated.

In the model tab, the model terms are related to the Significant factor, Variance
Inflation Factor, R-Squared, and Power of the model as shown in the table below.

12.1 Model terms

Power calculations are performed using response type “Continuous” and
parameters:

Response Name Units Observations Minimum Maximum Mean Std. Dev. Ratio

R1 Biodiesel Yield % 18.00 10.66 90.98 61.55 23.49 3.53

Table 7.
Summary statistics of the response.

Figure 5.
A scatterplot of temperature vs. biodiesel yield.
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Delta = 2, Sigma = 1.
Power is evaluated over the �1 to +1 coded factor space. Standard errors should be

similar to each other in a balanced design. Lower standard errors are better.
The ideal VIF value is 1.0. VIFs above 10 should cause concern. VIFs above 100

should cause alarm, indicating coefficients are poorly estimated due to multicol-
linearity.

Figure 6.
A scatterplots of methanol/oil ratio against biodiesel yield.

Figure 7.
A scatterplots of catalyst weight against biodiesel yield.
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Ideal Rᵢ2 is 0.0. High Rᵢ2 means terms are correlated with each other, possibly
leading to poor models. If the design has multilinear constraints, then multicol-
linearity will exist to a higher extent. This inflates the VIFs and the Rᵢ2, rendering
these statistics useless. Use FDS instead.

The Power Calculation is the estimated chance to find a significant effect out of the
current evaluation model. Power depends on the size and structure of the design, the
signal-to-noise ratio (number of standard deviations) for the effect, and the model eval-
uated. The Options button on theModel tab allows the user to define three signal-to-noise
ratios that define the number of standard deviations to use. If the power is not large
enough (80% or more) for a reasonably sized effect, then the design is underpowered. As
can be seen in Table 8, we may consider removing the interaction terms since they have
lower power. This will be done after analyzing the model and the p-value is higher than
0.05. This means they have affected the performance of the model. Power is an inappro-
priate tool to evaluate response surface designs. Use prediction-based metrics provided in
this program via Fraction of Design Space (FDS) statistics. Click on the Graphs tab to find
the FDS graph. More information about FDS is available in the Help. Be sure that the
model you selected contains only terms you expect to be significant (Table 9).

Figure 8.
Correlation plots of all the relationships that exist in the data.

Term Standard Error* VIF Ri
2 Power

A 0.2706 1 0.0000 91.4%

B 0.2706 1 0.0000 91.4%

C 0.2706 1 0.0000 91.4%

AB 0.3536 1 0.0000 72.2%

AC 0.3536 1 0.0000 72.2.%

BC 0.3536 1 0.0000 72.2%

A2 0.2634 1.01827 0.0179 99.9%

B2 0.2634 1.01827 0.0179 99.9%

C2 0.2634 1.01827 0.0179 99.9%

Table 8.
Model parameters.
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12.2 Leverage

The leverage data as shown in the table above is the potential for a design point to
influence the fit of the model coefficients, based on its position in the design space.
Leverages approaching or at 1 indicate that point will influence the model. A leverage
of 1 means the model must exactly fit the observed value. A good design avoids
leverages approaching 1. A design for the same model but having more runs will tend
to have a lower leverage for each point.

Watch for leverages close to 1.0. Consider replicating these points or make sure
they are run very carefully.

The Graphs tab contains the FDS, Perturbation, interactions, Contour, Cube, and
3D Surface Plots to help understand the data and the model parameters.

12.3 FDS graph

The FDS graph is used to compute the volume of the design space that has
predicted variance less than or equal to the specified value. The fraction of the design
space is calculated as this volume divided by the entire volume of the design space.

Run Leverage Space Type

1 0.6073 Axial

2 0.6698 Factorial

3 0.6073 Axial

4 0.6698 Factorial

5 0.1663 Center

6 0.6073 Axial

7 0.1663 Center

8 0.1663 Center

9 0.6698 Factorial

10 0.6698 Factorial

11 0.6698 Factorial

12 0.6693 Factorial

13 0.1663 Center

14 0.1663 Center

15 0.6073 Axial

16 0.6698 Factorial

17 0.6698 Factorial

18 0.1663 Center

19 0.6073 Axial

20 0.6073 Axial

Average 0.5000

Table 9.
Leverage.
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The goal is to make a single plot that shows the cumulative fraction of the design space
on the x-axis (from zero to one) versus the prediction variance on the y-axis.

For exploration and optimization, we advise an FDS score of at least 0.8, or 80%,
and for stability and robustness testing, such as showcasing the design space for
quality by design (QbD) work, 100%. Options for assessing the FDS in relationship to
four different error categories are provided by the FDS Graph tool, i.e. Mean, predic-
tion intervals, Difference between pairs of Observations, and Tolerance. We are using
the Mean error type since the aim of this experiment is to find the optimized factor
settings for specific response goals. Figure 9 below is the visualization for the FDS
graph.

There are three parameters: delta, sigma, and alpha for each type of error and a
fourth parameter is Proportion for the Tolerance type of error.

delta specifies the maximum acceptable half-width (margin of error) of the
respective interval for the Mean, Pred, and Tolerance error types. One best way to
find the delta is to answer the question, “plus or minus how much is an acceptable
estimate?”

sigma is an estimate for the standard deviation that will appear on the ANOVA. It
can be obtained from previous work with this system, work from a similar system, or
outright guessing. A smaller sigma can be entered to enhance the FDS if the
unexplained nuisance fluctuation can be reduced during the experiment.

Alpha is the used significance level throughout the statistical analysis. Our default is
0.05 or 5%. It is a type I error acceptable risk. FDS rises as alpha increases. The critical
value is calculated using alpha/2 for two-sided intervals and alpha for one-sided intervals.

Proportion is only used for the Tolerance type of error. It is the percentage of the
individual outcomes that must fall within the tolerance range. Building a larger design
and raising the delta will boost the FDS score, reducing the sigma, increasing the
alpha, and/or decreasing the Proportion [11, 12].

Figure 9.
FDS graph.

26

Response Surface Methodology - Research Advances and Applications



12.4 Interaction

When the reaction varies depending on the settings of two elements, there has
been an interaction. They will display two non-parallel lines, showing that one ele-
ment has an impact on them and depends on the level of the other. Figure 10 displays
the standard error of the design with interactions of the model parameters.

13. Analysis

In the Analysis Section in design expert, select no transform in the configure tab
and start the analysis using the button at the button. The interface should appear like
Figure 11 below.

You can take advantage of the advanced options button to customize the model
like changing from coded to actual factors for factors coding (It is not recommended
though).

13.1 Fit summary

The regression calculations to fit all of the polynomial models to the chosen answer
are started when the Fit Summary button is clicked. All model terms’ effects are
calculated by the program. It produces statistics such as p-values, lack of fit, and R-
squared values for comparing the models. The fit summary output is shown on screen
in a report which can also be printed and/or copied to another application detected,
The “Suggested” model will be highlighted and noted by the program. On the Model
panel, this is set as the default model. We Look for the following (Table 10):

• A high-order model explains significantly more of the variation that is in the
response (p-value small).

Figure 10.
Std error of the design with interactions of the model parameters.
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• Insignificant lack of fit (p-value >0.10).

• Adjusted R-squared and predicted R-squared have a reasonable level of
agreement (within 0.2 of each other).

Note: Aliased Models should entirely be avoided.

13.2 Sequential model sum of squares

Table 11 shows the sum of squares, degree of freedom, mean square, F-value, and
p-value of the design model. The Sequential Model Sum of squares is the sum of the
squared deviations from the mean for each model. The SS for the Mean is calculated
first, followed by the Blocks (if applicable), Linear model, Quadratic model, Special
Cubic, Cubic, Residuals, and Total.

For each source, the sum of squares divided by the degrees of freedom yields the
mean square. This is used to compute the F-value for the models.

Figure 11.
Starting the analysis.

Response 1: Biodiesel Yield

Source Sequential p-value Lack of Fit p-value Adjusted R2 Predicted R2

Linear 0.4974 0.0082 �0.0302 �0.3670

2FI 0.7771 0.0060 �0.1914 �1.6146

Quadratic 0.0279 0.0157 0.4440 �0.9458 Suggested

Cubic 0.0635 0.0354 0.8292 �6.2531 Aliased

Table 10.
Fit summary.
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The F-value is used to test the significance of adding new model terms to those
terms already in the model. For instance, the meaning of the linear terms remains
tested after removing the effect of the average and the blocks. Then, the significance
of the quadratic terms is tested after removing the average, block, and linear effects.
And so on. Select the polynomial with the highest order and where the additional
terms are significant and the model is not aliased.

13.3 Model summary statistics

R-squared is the correlation coefficient for the model. It should be close to one. We
recommend using the Adjusted R-squared for DOE evaluation.

The amount of variation that can be explained by the model is shown by the
adjusted R-squared. This is the R-squared value after adjusting for how many terms
are in the model relative to the number of design points. The Model summary statis-
tics is shown in Table 12.

Predicted R-Squared is calculated from the PRESS statistic, this represents the
amount of variation in new data explained by the model. A negative Predicted R-
squared means that the overall mean is a better predictor than this model.

Focus on the model maximizing the Adjusted R2 and the Predicted R2.

13.4 Lack of fit tests

The data for the Lack of fit Test is shown above in Table 13. This is the p-value
associated with the Lack of Fit calculation for this model. The best model should have
an insignificant p-value. A typical cutoff would be a p-value >0.10 to conclude an
insignificant lack of fit.

The selected model should have an insignificant lack of fit.

13.5 ANOVA for quadratic model

Table 14 is the Anova data which is used to test for the significance of the result
obtained. Model Probability (a.k.a. p-value) is the probability that the model F statis-
tic is at least the computed value even though the truth is there are no factor effects
(the data produced false effects). Probabilities less than the acceptable risk (alpha, by
default 0.05) are deemed significant and indicate that there is a model effect. Values
greater than the alpha risk suggest no significant effect.

Source Sum of Squares df Mean Square F-value p-value

Mean vs. Total 68182.63 1 68182.63

Linear vs. Mean 1421.30 3 473.77 0.8337 0.4974

2FI vs. Linear 726.96 3 242.32 0.3687 0.7771

Quadratic vs 2FI 4775.31 3 1591.77 5.19 0.0279 Suggested

Cubic vs. Quadratic 2076.83 4 519.21 5.51 0.0635 Aliased

Residual 376.84 4 94.21

Total 77559.86 18 4308.88

Table 11.
Modeling sequentially, sum of squares.
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The degree to which the model fits the data is measured by lack of fit. A strong lack
of fit (p < .05) is an undesirable property because it shows that the model does not fit
the data well. It is desirable to have little lack of fit (P > 0.1).

The model is not significant in comparison to the noise, according to the model’s
F-value of 2.51. The likelihood of noise causing an F-value this large is 10.49%.

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS

Linear 23.84 0.1516 �0.0302 �0.3670 12818.28

2FI 25.64 0.2291 �0.1914 �1.6146 24517.49

Quadratic 17.51 0.7383 0.4440 �0.9458 18246.34 Suggested

Cubic 9.71 0.9598 0.8292 �6.2531 68014.21 Aliased

Table 12.
Model summary statistics.

Source Sum of Squares df Mean Square F-value p-value

Linear 7886.78 11 716.98 31.11 0.0082

2FI 7159.83 8 894.98 38.83 0.0060

Quadratic 2384.52 5 476.90 20.69 0.0157 Suggested

Cubic 307.68 1 307.68 13.35 0.0354 Aliased

Pure Error 69.15 3 23.05

Table 13.
Lack of fit tests.

Source Sum of Squares df Mean Square F-value p-value

Model 6923.57 9 769.29 2.51 0.1049 not significant

A-Temperature 1218.74 1 1218.74 3.97 0.0813

B-Methanol-Oil ratio 140.27 1 140.27 0.4573 0.5179

C-Catalyst Weight 62.29 1 62.29 0.2031 0.6642

AB 561.12 1 561.12 1.83 0.2132

AC 165.07 1 165.07 0.5382 0.4841

BC 0.7564 1 0.7564 0.0025 0.9616

A2 836.53 1 836.53 2.73 0.1372

B2 4358.27 1 4358.27 14.21 0.0055

C2 859.23 1 859.23 2.80 0.1327

Residual 2453.67 8 306.71

Lack of Fit 2384.52 5 476.90 20.69 0.0157 significant

Pure Error 69.15 3 23.05

Cor Total 9377.24 17

Table 14.
Anova for quadratic model.
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Model terms are considered significant when the P-value is less than 0.0500. B2 is
a significant model term in this situation. The model terms are not significant if the
value is greater than 0.1000. Model reduction may enhance the model if it has a lot of
unnecessary terms (except those needed to maintain hierarchy).

The significance of the lack of fit is indicated by the lack of fit F-value of 20.69. A
significant Lack of Fit F-value can only be caused by noise in 1.57 percent of cases. A
significant lack of fit is undesirable, we want the model to fit.

A negative Predicted R2 as shown in the Fit Statistics data in Table 15 implies that
the overall mean may be a better predictor of your response than the current model. In
some cases, a higher-order model might be more accurate.

Adeq Precision: The ratio of signal to noise is measured by Adeq Precision. A ratio
of at least 4 is preferred. Your ratio of 4.822 shows an adequate signal. This model can
be used to navigate the design space.

14. Decision

From the ANOVA result, it is obvious the model cannot be deployed like this, we need
to tweak it a bit before using it for optimization, or else the solutions provided by it will be
misleading. Now we will remove the interaction terms from the model since they have
lower power (see Table 8). We will only repeat the ANOVA section after this change
(Table 16).

14.1 ANOVA for reduced quadratic model

The model is significant, as indicated by the model’s F-value of 3.57 The likelihood
of noise producing an F-value this large is only 3.25.

Model terms are considered significant when the P-value is less than 0.0500. In this
case, B2 is a crucial model term in this instance. Model terms are not significant if the
value is higher than 0.100. Model reduction may enhance your model if it has a large
number of unnecessary terms (excluding those necessary to maintain hierarchy).

The Lack of Fit F-value of 16.87 implies the Lack of Fit is significant. There is only
a 2.02% chance that a Lack of Fit F-value this large could occur due to noise. A
significant lack of fit is not okay – we want the model to fit. But there is a little bit
more improvement than before. So we can work with this model (Table 17).

14.2 Fit statistics for RQM

A negative Predicted R2 implies that the overall mean may be a better predictor of
your response than the current model. In some cases, a higher-order model may also
predict better.

Fit Statistics

Std. Dev. 17.51 R2 0.7383

Mean 61.55 Adjusted R2 0.4440

C.V. % 28.46 Predicted R2 �0.9458

Adeq Precision 4.8223

Table 15.
Fit statistics.
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Adeq Precision measures the signal-to-noise ratio. A ratio greater than 4 is desir-
able. Our ratio of 5.459 indicates an adequate signal. This model can be used to
navigate the design space. And there is an improvement in the Adjusted R2 using this
reduced Quadratic Model.

14.3 Coefficients in terms of coded factors

The coefficient estimate data in Table 18 represents the estimated coefficient and
shows the anticipated change in response for each unit change in the factor value. The
intercept in an orthogonal design is the overall average response of all the runs. The
coefficients are adjustments around that average based on the factor settings. The
VIFs are 1 when the factors are orthogonal; Multi-collinearity is indicated by VIFs that
are more than 1, and the higher the VIF, the more severe the correlation of
components VIFs of fewer than 10 are generally acceptable.

14.4 Final equation in terms of coded factors

You can apply the equation in terms of coded factors in Table 19 to make pre-
dictions about the response for given levels of each factor. By default, the factors’ high
levels are coded as +1 and their low levels as �1. By comparing the factor coefficients,
the coded equation can be used to determine the relative importance of the elements.

Source Sum of Squares df Mean Square F-value p-value

Model 6196.61 6 1032.77 3.57 0.0325 significant

A-Temperature 1218.74 1 1218.74 4.21 0.0646

B-Methanol-Oil ratio 140.27 1 140.27 0.4851 0.5006

C-Catalyst Weight 62.29 1 62.29 0.2154 0.6516

A2 836.53 1 836.53 2.89 0.1170

B2 4358.27 1 4358.27 15.07 0.0026

C2 859.23 1 859.23 2.97 0.1127

Residual 3180.62 11 289.15

Lack of Fit 3111.47 8 388.93 16.87 0.0202 significant

Pure Error 69.15 3 23.05

Cor Total 9377.24 17

Table 16.
ANOVA for reduced quadratic model.

Std. Dev. 17.00 R2 0.6608

Mean 61.55 Adjusted R2 0.4758

C.V. % Predicted R2 �0.3457

Adeq Precision 5.4594

Table 17.
Fit statistics for RQM.
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14.5 Final equation in using actual factors

The equation in terms of actual factors in Table 20 can be used to make predictions
about the response for given levels of each factor. Here, the levels should be specified in
the original units for each factor. The relative importance of each item should not be
determined using this equation because the coefficients are scaled to accommodate the
units of each factor and the intercept is not at the center of the design space.

14.6 Diagnostics plots

Raw residuals and internally studentized options are also available, with externally
studentized residuals being the default. The standard errors of the residuals are different
unless all the runs in a design have the same leverage. Each raw residual represents a
different population (one for each different standard error). As a result, it is not
recommended to validate the regression assumptions using raw residuals. All of the
individual normal distributions are mapped by studentizing the residuals to a single
standard normal distribution. The default is externally studentized residuals based on a
deletion procedure since they are more sensitive to detecting issues with the analysis.
Internally Studentized residuals are also available but are less sensitive to finding such
problems. As described in the diagnostics plot in Figure 12 from design expert software.

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF

Intercept 88.05 1 8.49 69.37 106.74

A-Temperature �9.45 1 4.60 �19.57 0.6808 1.0000

B-Methanol-Oil ratio �3.20 1 4.60 �13.33 6.92 1.0000

C-Catalyst Weight 2.14 1 4.60 �7.99 12.26 1.0000

A2 �8.13 1 4.78 �18.66 2.39 1.08

B2 �18.56 1 4.78 �29.09 �8.04 1.08

C2 �8.24 1 4.78 �18.76 2.28 1.08

Table 18.
Coefficients as codified factors.

Biodiesel Yield =

+80.46

�9.45 * A

�3.20 * B

+2.13 * C

�5.54 * A2

�15.97 * B2

�5.65 * C2

Table 19.
Equation at the end using coded factors.
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Normal Probability: If the residuals follow a normal distribution, they should
follow a straight line, according to the normal probability plot. Even with typical data,
expect some scatter. Only focus on distinct patterns, such as an “S-shaped” curve,
which suggests that a response modification might lead to a more accurate analysis.

Biodiesel Yield =

�902.92058

+26.92040 * Temperature

+12.34881 * Methanol-Oil ratio

+19.01074 * Catalyst Weight

�0.221613 * Temperature2

�0.283914 * Methanol-Oil ratio2

�2.51265 * Catalyst Weight2

Table 20.
Final equation using actual factors.

Figure 12.
A diagnostics plots.
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Residuals vs. Predicted: This is a plot of the residuals versus the ascending
predicted response values. The idea of constant variance is tested. The plot needs to be
random scatter (residuals should have a constant range across the graph). This plot’s
expanding variance (“megaphone pattern”) suggests that a transformation is required.

Predicted vs. Actual: An illustration showing a graph of expected and actual
response values. The purpose is to detect a value, or group of values, that are not easily
predicted by the model.

Leverage: A measurement of each point’s impact on the model’s fit. When a point’s
leverage is 1, the model perfectly describes the observation at that location. The model
is influenced by that point. A run with more than two times the typical leverage is
generally regarded as having high leverage. There aren’t many runs like them in the
factor space. The average leverage is calculated by dividing the number of terms
among the model by the number of design runs.

14.7 Model graphs

All the model graphs which can be used to drive insights on the responses for all
input data are shown in Figures 13–18 respectively.

15. Optimization

Here, Our goal is to maximize Biodiesel Yield using the given factors in the range
(lower and upper level) summarized in Table 21 below.

Figure 13.
All factors response.
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Figure 14.
Interactions.

Figure 15.
Contour plot.
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Figure 16.
Predicted vs. actual.

Figure 17.
3D surface plot.
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15.1 Solutions

The design expert Software iterated over all the ranges of factors and found the
maximum yield. There are 100 possible solutions. However, we will select the one
suggested by the software and shown below in Table 22.

16. Conclusion

In this Chapter, we have extensively applied Central Composite design to optimize
Biodiesel Synthesis Using a Catalyst and design expert 13 has been used to provide
deep statistical analysis. A reduced Quadratic model with a significant p-value of
0.0325 was accepted since the Quadratic model has an insignificant p-value. The

Figure 18.
Cube plot.

Name Goal Lower
Limit

Upper
Limit

Lower
Weight

Upper
Weight

Importance

A:Temperature is in range 60 70 1 1 3

B:Methanol-Oil
ratio

is in range 15 30 1 1 3

C:Catalyst Weight is in range 2 5 1 1 3

Biodiesel Yield maximize 10.66 90.98 1 1 5

Table 21.
Constraints.
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model is significant, as indicated by the model’s F-value of 3.57. An F-value this large
might be caused by noise only in 3.25% of cases. The number of the experimental run
was reduced to 18 runs compared to the 20 runs used by the original experimenters
and we have also obtained a higher yield of 91% compared to the 89% obtained in the
original study.
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100 Solutions found

Number Temperature Methanol-Oil
ratio

Catalyst
Weight

Biodiesel
Yield

Desirability

1 61.818 22.128 3.760 91.007 1.000 Selected

2 62.522 21.568 3.704 90.987 1.000

3 62.223 21.803 3.668 91.064 1.000

4 61.717 21.882 3.708 91.025 1.000

5 62.126 21.973 3.759 91.052 1.000

6 62.021 21.746 3.772 91.045 1.000

7 62.295 21.826 3.807 91.013 1.000

8 62.025 22.087 3.706 91.052 1.000

9 62.183 21.870 3.759 91.055 1.000

10 62.188 22.001 3.632 91.049 1.000

Table 22.
Optimization solutions.
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Chapter 3

Applications of Response Surface
Methodology (RSM) in Product
Design, Development, and Process
Optimization
Sheriff Lamidi, Nurudeen Olaleye, Yakub Bankole,
Aishat Obalola, Emmanuella Aribike and Idris Adigun

Abstract

In this review chapter, the authors presented a systematic exposition to the
concept of Response Surface Methodology (RSM) for applications by Scientists,
Engineers, Technologists and Industries. (RSM) is an empirical model which
employs the use of mathematical and statistical techniques in relating input vari-
ables otherwise known as factors to the response. RSM became very useful due to
the fact that other methods available such as the theoretical model could be very
cumbersome to use, time-consuming, inefficient, error prone and unreliable. In
order to draw meaningful conclusions and findings, an experiment is required. In
an effort to obtain an objective conclusion (between the factors and the response),
an experimenter needs to plan and design the experiments, and analyze the results.
An approximation of the response in relation to the variables is otherwise known as
RSM. This chapter reviews RSM concept for easy understanding and adoption by
researchers. In section 2.0, the various terminologies used in RSM were defined. In
section 3.0, RSM design types were highlighted and RSM research phases exposed
in section 4.0. Section 8.0 gave some scenario applications of RSM in various fields
and section 9.0 defined the RSM research cycle process. General applications and
conclusions stated.

Keywords: response surface methodology, RSM design, optimization, RSM
applications, product design

1. Introduction

Experimentation, Data collection, Data processing, and Analysis of data are very
basic and essential to Scientists, Engineers, Technologists, and Manufacturing Indus-
tries to design, develop, improve and validate their products, processes, and opera-
tions. Response surface methodology (RSM) which is available in MINITAB and other
proprietary software is a collection of both statistical and mathematical techniques
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useful for developing, improving, and optimizing processes [1]. RSM is known to play
a pivotal role in new product design and development as well as in improving existing
ones. With response surface methodology we can determine the optimum factor
needed to produce the best result. RSM is a critical and very robust tool for data
manipulation and analysis of research data to obtain a quality result or an improve-
ment [1]. RSM could be applied by an industry that desires to manufacture a compo-
nent (from Al-Si Alloy material) with minimum surface roughness by combining
three controllable variables (cutting speed, feed rate, and, depth of cut). Because of
this, the Design of Experiments (DOE) could be used to carry out the study of the
effect of the three machining variables (cutting speed, feed rate, and depth of cut) on
the surface roughness (Ra) of Al-Si alloy [2]. With the use of response surface meth-
odology (RSM), a mathematical prediction model of the surface roughness would be
developed in terms of cutting speed, feed rate, and depth of cut. The effects of the
three process parameters on both Ra can then be investigated by using the response
surface methodology (RSM). The above approach can be adopted by any industry,
scientist, or researcher in getting better results (response) from several variables
otherwise known as factors. RSM helps to reduce the noise in an experiment,
thereby ensuring optimization. Many researchers have conducted researches on
the application of RSM or other DOE concept in which the results of their findings
have been used to develop a predictive model in several fields such as; tool life
modeling, surface roughness prediction, for monitoring and functionality or
health condition of electronic devices also for the surface roughness of Inconel
using full factorial design of experiment among other areas of applications [2–4].
The RSM looks into an adequate approximation relationship between input and
output variables and determines the best operating circumstances for a system under
study or a portion of the factor field that complies with the operating requirements
or conditions [3, 5, 6].

Response surface methodology can be better referred to as a collection of statistical
and mathematical techniques employed for product design and improvement, process
development and improvement as well as process optimization. It has major applica-
tions in the design, development, and, formulation of new products as well as in
improving existing product design. RSM is a robust tool for the design of experiments,
analysis of experimental data, and process optimization. In RSM, the response is
determined by the variables and the aim is to optimize the response [1, 7, 8]. There are
two primary experimental designs used in response surface methodology: Box-
Behnken designs (BBD) and central composite designs (CCD) [8, 9]. Recently, opti-
mization studies have also used central composite rotatable design (CCRD) and face
central composite design (FCCD) [8, 10–14].

Wong [15] employed RSM concept to carry out reliability analysis of soil slopes.
Tandjiria et al. [16] used response surface method for reliability analysis of laterally
loaded piles. Sivakumar Babu and Amit Srivastava [17] presented a study on the analysis
of allowable bearing pressures on shallow foundation using response surface method
and showed that a comparative study of the results of the analysis from conventional
solution and numerical analysis in terms of reliability indices enables rational choice of
allowable loads. For better understanding of the RSM concept in our daily life experi-
ences as described in Figure 1. Take for example we have two variables (humidity and
temperature) and we want to see the effects of these variables on human comfort. We
can name these independent variables temperature and humidity, X1 and X2 and the
response which is human comfort can be named Y. Response Surface Methodology is
useful in this case for themodeling and optimization of the situation above in which the
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response of interest (human comfort) is influenced by the variables (humidity and
temperature). In this model example, our objective is to optimize this response The
visual representation of the above is otherwise known as Response Surface Methodol-
ogy (RSM) or response surface modeling. To find the levels of temperature (X1) and
pressure (X2) for maximum human comfort (y) in the above process.

y ¼ x1, x2ð Þ þ ϵ½ � (1)

ϵ is referred to as the error term inherent in the system

1.1 The concept of RSM

The concept of Response Surface Methodology can be used to establish an
approximate explicit functional relationship between input random variables and
output response through regression analysis and probabilistic analysis can be
performed [15]. RSM involves a combination of metamodeling (i.e., regression) and
sequential procedures (iterative optimization). Response Surface Methodology (RSM)
is a collection of mathematical and statistical techniques useful for the modeling and
analysis of problems. By careful design of experiments, the objective is to optimize a
response (output variable) that is influenced by several independent variables (input
variables). A collection of mathematical and statistical methods called Response Sur-
face Methodology (RSM) can be used to simulate and analyze issues. The goal of
meticulous experiment design is to maximize a response (output variable) that is
affected by a number of independent variables (input variables). The motivation
behind this work is the applicability of the concept of RSM to many areas of scientific
research, engineering and manufacturing industries.

Figure 1.
Response surface for humidity and Temperature on human comfort.
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1.2 Objective of this present study

The applications of RSM is for product and process development are discussed
through some general and scenario applications. The chapter review presented, is
shown that with RSM we can;

i. identify the sensitive parameter that provides the greatest influence on the
response.

ii. easily take decision that will impact positively the product design and process
optimization.

iii. ensure reliability, acceptability and profitability of the product developed
and/or optimized condition.

2. Some useful terminologies

• Factors are input variables/parameters that potentially affect the response. It can
be controllable or uncontrollable, and quantitative and qualitative.

• Response is a dependent variable. It is the desired results obtained from
combining the interaction of independent variables.

• Experiment is a series of tests, called runs, in which changes are made in the
input variables to identify the reasons for changes in the output response.

• Experimenter is a person experimenting for research purposes.

• Treatment is a combination of one or more factors.

• Levels are the values a factor can take on

• Effect simply means howmuch a main factor or interaction between two or more
factors influences the response.

• Design Points: simply means the assigned values of the individual factors for
which the experiment was performed.

◦ One design point = one treatment

◦ Points are typically coded to more practical values.

◦ example. 1 factor with 2 levels – levels coded as (�1) for low level and (+1)
for high level

• Design Space is the range of values over which factors are to be varied or
adjusted [18, 19].

• Response Surface is the unknown or experimental purpose. It is the mean
response at any given level of the factors in the design space.
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RSM Design Types; The summary of the various types of design available in
response surface methodology is presented in Figure 2 according to [18].

(ii) Central Composite Design (CCD) (2 to 10 continuous factors)
(ii) Box-Behnken Design (3,4,5,6,7,9 or 10 continuous factors)
To do a visual analysis of the response surface design, the designer can use the

following visualization tool to visualize the response in RSM.

• Residual plots

• Effect plots

3. RSM research phases

RSM involves four broad phases as highlighted below.

i. Use a simulation model e.g., Minitab to fit a linear regression model to the
data points in the workspace and, find a better solution from the linear
regression model.

ii. Repeat the above process until the slope of the linear response surface
obtained from the linear regression model is approximately zero.

iii. Fit a nonlinear quadratic regression.

iv. Lastly find the optimum of this equation.

Figure 2.
Available Designs in RSM source MINITAB 20.
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4. Getting access to response surface methodology (RSM)?

MINITAB, STATISTICA, DESIGN EXPERT, etc. are software tools that can be
used for experimental design and analyze data. RSM is one of the techniques that have
been programmed in this software. Among all, MINITAB is highly rated when it
comes to the design of experiments using response surface methodology. Minitab is a
proprietary software tool, a computer program applied in statistical studies, devel-
oped in 1972. Its interface is similar to Microsoft Excel or Calc of OpenOffice, used in
universities and companies, it has specific functions focused on process management
and analysis of the Six Sigma suite. Minitab offers Quality Control tools, Experiment
Planning (DOE) e.g., RSM, Reliability Analysis, and General Statistics [18, 20].
Figure 3 shows the navigation process in Minitab 18 to access response surface
methodology interface (Table 1).

Figure 3.
Diagram showing the navigation of RSM with MINITAB software.

S/N Factors and types Responses

1. mean interactive time (uncontrollable,
quantitative)

Mean daily production rate

2. Mean service time (controllable, uncontrollable,
quantitative)

Meantime in the system for patient

3. Number of servers (controllable, quantitative) Mean inventory level

4. Reorder point (controllable, quantitative) Mean surface roughness

5. Queuing discipline, qualitative) Number of students who wait till the end of
the lecture

6. Mean winter demand time (uncontrollable,
quantitative)

Mean material removal rate

Table 1.
Some examples of Factors and Response in RSM.
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5. Advantages of RSM

The application of response surface methodology in research and industry comes
with the following advantages

i. Seamless statistical analysis

ii. Optimization of manufacturing system, process, or product.

iii. Experimental layout and design.

iv. Prediction

v. Interaction of variables is easily presented with clear curves and other visual aids.

vi. Good visualization of responses or results with the use of surface plots,
graphs, etc.

vii. Associated empirical mathematical models.

6. Some scenarios of RSM Applications

6.1 A scenario of RSM in a manufacturing process

In a quest to manufacture a component during CNC turning operation. Proper
selection of process parameters or variables (cutting speed, feed rate, and depth of
cut) for optimal surface quality (Response) must be achieved. This requires a more
methodical approach by using experimental methods and mathematical and statistical
models. The design of experiments will play a pivotal role in this regard. This will
require considerable knowledge and experience of the designer to design experiments
and analyze data. Note that the traditional design-of-experiment (DOE) technique
requires a large number of samples to be produced. To increase machining process
efficiency, strategies for optimizing machining parameters using experimental meth-
odologies as well as mathematical and statistical models have developed significantly
over time. A full factorial approach may be required to look into all potential combi-
nations to build an approximation model that can describe interactions between
design variables in this CNC turning operation. An experimental approach known as a
factorial experiment involves varying design variables simultaneously rather than one
at a time. It is necessary to define the lower and upper bounds for each of the n design
variables in the optimization problem. Then, at various levels, the permitted range is
discounted. If just the lower and upper bounds (two levels) of each variable are
defined. The experimental design is referred to as 2n full factorial if each variable is
defined at just the upper and lower boundaries (two levels). Second-order models can
be fitted using factorial designs. When a first-order model exhibits a lack of fit as a
result of the interaction between variables and surface curvature, a second-order
model can considerably enhance the optimization procedure. The goal of a meticulous
experiment design is to optimize the response. (Surface quality of the machined part)
which is influenced by several independent input variables (cutting speed, feed rate,
and depth of cut).
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6.2 A scenario of RSM in the energy industry

Due to the limited availability of high-grade coal for energy production, low-grade
coal can be employed. High ash levels and high moisture content are characteristics of
low-grade coal. With the use of the response surface methodology, the operational
parameters were optimized to generate clean coal as effectively as possible. The
impact of three independent variables, including hydrofluoric acid (HF) concentra-
tion (10–20 percent by volume), temperature (60–100oC), and time (90–180 min),
for ash reduction from the low-grade coal, was explored to attain this coal optimiza-
tion target. By utilizing the central composite design (CCD) method, a quadratic
model was presented to correlate the independent variables for maximal ash reduction
at the ideal process condition. In comparison to time and temperature, the study finds
that HF concentration was the most efficient parameter for ash reduction [16].

6.3 A scenario of RSM in extraction optimization

In order to maximize the extraction process of oil from leaves, fruits etc., it is
important to optimize the extraction parameters so as to get the best yield. RSM
concept has been used more often in recent years to optimize various oil extractions
from plant sources [17, 21].

6.4 A scenario of RSM in drinking water treatment process

Both trihalomethanes (THMs) and Natural Organic Matter (NOM) has been char-
acterized with cancer risk in drinking water According to [22]. The concept of RSM
was used for the development of water treatment technologies and optimization of
process variables in order to reduce THMs and NOM level of concentration in drink-
ing water. A model was developed to control the process. The developed models can
be effectively used to remove both THMs and NOM from drinking water.

6.5 A scenario of RSM in construction industry

The construction industry is a very germane industry in the technological
advancement of any nation. The level of research-based construction has been
improved lately. A study on the analysis of allowable bearing pressures on shallow
foundation using response surface method was conducted and showed that a compar-
ative study of the results of the analysis from conventional solution and numerical
analysis in terms of reliability indices enables rational choice of allowable loads [15].

6.6 A scenario of RSM in product development

The effect of oven parameters such as air velocity, time, temperature etc. on
formulations (sugar, water, fats, flavors, etc.,) of the quality of baked food product
can the analyzed with the application of response surface methodology [23]. RSM
model is a powerful tool to optimize the product quality (volume of baked product,
crust and crumb color, bake loss among others). The data collected through RSM can
further be used to obtain the variability of the response(s) with tested parameters
[23]. In this scenario, the results of the optimization obtained is otherwise referred to
as quality product.

RSM cycle processes is shown in Figure 4.
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1.Experimental Plan/Data collection. This is the initial stage. The planning
session precedes any other session involved in RSM modeling. In this session, all
decisions involved in the project or experiment are clearly stated and defined.
Some of the decisions under this heading include the research objective,
methodology of the research, and variables that could influence the results are
highlighted. This process takes care of all necessary information regarding the
experimental strategy [20, 24–26]. To clarify the objective of the experiment, the
objective must determine;

a. What data is to be collected?

b. How to measure it?

c. How does the data relate to processing performances and experimental
objectives?

2.Experimental Design. Experimental design can either be a conventional method
or a statistical method. The conventional method has the following features;

a. It is time-consuming.

b. Can handle one factor over time (OVAT) or one factor at a time (OFAT).

c. Interaction between two or more variables cannot be interpreted.

Figure 4.
RSM Research Cycle Process.
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Features of statistical method experimental design

i. It is otherwise known as Design of Experiment (DOE)

ii. Apply the factorial concept

iii. It makes use of modeling to predict the behaviors of process variables e.g.,
RSM

iv. The process variables could be explained through interaction plots and
graphs

v. Saves time and improves efficiency.

An experiment is designed based on the decisions during the designing or data
collection stage. The experimental design clearly states the number of experiments
and how the experiment will be carried out [20, 26, 27].

3.Conducting Experiment. The next step after the experimental design is to
experiment with the exact research parameters and, in the order, defined by the
layout for easy statistical validity. The person experimenting is called an
experimenter.

4.Analyzing the Results. The primary focus in this analysis stage is to obtain
useful information from the experiment conducted and ascertain the level of
quality or improvement recorded. In this stage, the results obtained from the
experiment conducted are analyzed. The analysis of the results is targeted toward
specific conclusions. Since we have several samples tested in each experimental
run, different analysis techniques can be selected.

5.Graphical Analysis. One of the powerful features of RM is the ability to present
results or responses using visual aids for easy interpretation or understanding.

6.Confirmation of results/Ask questions relating to the research objective. A
test can be carried out to ascertain if the actual performance of the product in-
service condition matches the improvement stated in the results. The test here
helps to determine the research gap (Figure 5).

7. General applications of RSM

i. RSM found its major application in the industry to model and design a
product. Also, to optimize the manufacturing process.

ii. RSM is capable of Data analysis, prediction, product design, and optimization
[28, 29].

iii. RSM can predict the relationship or interaction that exists between the values
of some measurable response variable(s) and those of a set of experimental
factors presumed to affect the response(s).
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iv. RSM is capable to predict the response value at various process conditions.

v. Application of RSM can be used to screen independent variables in order to
determine most significant main effect of factors among several potential ones.

vi. With RSM a non-identified interaction effect could be determined.

vii. With RSM application for optimization, one can easily identify the best factor
(s), process interaction effect, that produce the response that brings the
optimized condition. This is the real deal in parameter optimization.

viii. RSM enhances product quality, product life span and increase productivity.

Figure 5.
RSM Flow chart.
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ix. Application of response surface methodology exposes the best type of design:
CCD or BBD needed to achieve optimization.

x. RSM can predict the relationship or interaction that exists between the values
of some measurable response variables and those of a set of experimental
factors presumed to affect the response.

xi. RSM is capable to predict the response value at various process conditions.

xii. Power visual aids such as plots graphs in 2D or 3D for easy understanding of
the results.

8. Visualizing results in RSM

RSM uses a variety of surface visualization techniques according to Figures 6–11 to
visually assess how factors affect the response. When a regression model is fitted as a
result of interactions between two or more predictors, visualization better communi-
cates the experimental results or responses. Effects plots, contour plots, residual plots,
surface plots, etc. are a few examples of graphical visualization tools also known as
response surface plots. These plots aid in determining the process conditions and
desired response Values [18, 19, 27, 29–35].

Figure 6.
Figure showing standardized effect.
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Figure 7.
Central composite design.

Figure 8.
Main effect plot in RSM.
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Figure 9.
Interaction plot explored from RSM software.

Figure 10.
Residual plot for optimized point.
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9. Conclusions

In this chapter, the authors provided a detailed approach for the understanding and
implementing Response Surface Methodology (RSM) for the various professionals or
researchers who may be involved in the application of Response Surface Methodology.
In an attempt to design a product or to optimize an existing process there are several
methods that can be adopted. RSM has many advantages when compared to classical
methods. It requires fewer runs of experiments to understand the effects of all the
factors and the optimum combination of all factor input. RSM requires less time,
removes trial by error and ensure high quality results. Having presented in this chapter
the huge applications of RSM in various fields of research, it can be concluded that RSM
is a great research tool for product design, development and process optimization. The
chapter coverage is detailed enough to give the basic insight of RSM even to a novice
hearing about RSM for the very first time. However, the chapter does not cover all the
information required for mastery of the RSM concept.
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Chapter 4

Perspective Chapter: Cyclic
Generation of Box-Behnken Designs
and New Second-Order Designs
Nam-Ky Nguyen, John J. Borkowski and Mai Phuong Vuong

Abstract

Box-Behnken designs (BBDs) are three-level second-order spherical designs with all
points lying on a sphere, introduced by Box and Behnken, for fitting the second-order
response surface models. They are available for 3–12 and 16 factors. Together with the
central composite designs for the second-order model, BBDs are very popular response
surface designs, especially for 3–7 factors. This chapter introduces an algorithm to
produce cyclic generators for BBDs and similar designs, which we call cyclic BBDs
(CBBDs). The new CBBDs offer more flexibility in choosing the designs for a specified
number of factors. Comparisons between some BBDs and the new CBBDs indicate the
superiority of the new CBBDs with respect to multiple design quality measures and
graphical tools assessing prediction variance properties. A catalog of 24 new CBBDs,
which includes orthogonally blocked CBBDs for 11, 13, and 14 factors, will be given.

Keywords: circulant matrices, foldover designs, interchange algorithm, response
surface designs, spherical designs

1. Introduction

Box-Behnken designs (BBDs) are three-level response surface designs (RSDs),
introduced by Box and Behnken [1, 2], to fit a second-order response surface model

y ¼ Xβ þ ε (1)

For m factors in n runs. Here, yn�1 is a response vector; Xn�p the model matrix
having an intercept term, m main effect (ME) terms, m quadratic effect (QE) terms,

and
m
2

� �
2-factor interaction (2FI) terms; vector βp�1 of p ¼ 1þ 2mþ m

2

� �

parameters; and error vector εn�1 with zero mean and covariance matrix Iσ2. BBDs are
currently available for 3–12 and 16 factors [3]. Except for 11 factors, BBDs can be
constructed by superimposing the two-level factorial design onto treatments in each
block of a balanced incomplete block design (IBD) or partially balanced IBD. BBDs
have the following properties:

i. Each factor has the same number of runs at high (+1) and low (�1) levels;
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ii. All points lie on a sphere of the radius ρ or at the center of the design space;

iii. They are rotatable for 4 and 7 factors. Otherwise, they are near-rotatable;

iv. They can be orthogonally blocked except for 3 and 11 factors;

v. Let design D be a n�m design matrix D with m factors x1,… ,xm. Let the row
u of the model matrix X be written as 1, x2u1,… , x2um,

�
xu1,… , xum, xu1xu2,… ,

xu m�1ð ÞxumÞ, where xui is the element in row u and column i of D. The
information matrix M ¼ X0X (and its inverse) has the following form:

ð2Þ

where M11 is a square matrix of order 1þm, and M22 is a square matrix of
order mþ m

2

� �
. For a BBD, M21 ¼ 0, M12 ¼ 00 and M22 ¼ D, where D is a

diagonal matrix. Matrix M in (2) reduces to:

ð3Þ

As an example, we construct a 6-factor BBD. Consider an IBD of size v, k, rð Þ=
(6, 3, 4) for six varieties, arranged in blocks of size three, each with three replications
per variety. Superimposing a 23 factorial onto the corresponding varieties of this IBD
will result in the following 6-factor BBD without center points:

�1 �1 0 �1 0 0

0 �1 �1 0 �1 0

0 0 �1 �1 0 �1

�1 0 �1 �1 0 0

0 �1 0 0 �1 �1

�1 0 �1 0 0 �1

0
BBBBBBBB@

1
CCCCCCCCA
:

In each row, �1� 1� 1ð Þ represents the eight points of a 23 design and 0 is a
column vector of eight 0’s. Czyrski and Sznura [4] applied the 6-factor BBD in the
optimization of HPLC separation of fluoroquinolones.

Next, we examine a foldover design in 48 runs (with no center points) generated
by four cyclic generators: (�1, 0, 0, �1, 1, 0), (0, 1, 0, 0, 1, 1), (0, 0, 1, �1, 0, �1),
and (0, 0, �1, �1, 0, 1). The first generator, for example, cyclically generates six
design points:

�1 0 0 �1 1 0

0 �1 0 0 �1 1

1 0 �1 0 0 �1

�1 1 0 �1 0 0

0 �1 1 0 �1 0

0 0 �1 1 0 �1

0
BBBBBBBB@

1
CCCCCCCCA
:
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The four cyclic generators produce 24 runs. The next 24 runs are obtained by folding
over the first 24 runs (i.e., changing the signs of the factor levels). All points lie on a
sphere of radius ρ ¼ ffiffiffi

3
p

. It can be shown that these design points are also points in the
6-factor BBD. In this chapter, we call this type of design a cyclic BBD or CBBD.

Each factor of this BBD has half of its runs at the 0-level and the remaining at �1
levels. Now assume that the researchers are looking for an alternative spherical design
with fewer 0-levels and more �1 levels for each factor. This allows the experimenter
to increase the volume of the spherical design region by increasing the radius associ-
ated with CBBD points. This chapter introduces an algorithm that can generate CBBDs
of varying radii. Designs with the same number of factors and runs but with different
radii are compared with respect to D-criterion values (or d-values), variances of the
parameter estimates, and the correlation among the main (ME), quadratic (QE), and
interaction (2FI) effects. Concepts, such as rotatability, orthogonal blocking, and
spherical designs, are well-described in Box and Behnken [2] and textbooks on
response surface methodology, such as Myers et al. [5] or Box and Draper [6].

2. Calculating the elements of M of a CBBD

The design matrix D of a CBBD has the form C0
1 …C0

r 0
0� �0 where C1,… ,Cr are the

circulant matrices of order m generated by r generating vectors c1,… , cr and 0 is a
matrix containing center points. For the information matrix M to have the form in
(3), the elements D must satisfy the following conditions:

Xn
u¼1

xui ¼ 0 ∀ið Þ (4)

Xn
u¼1

xuixuj ¼ 0 i 6¼ jð Þ (5)

Xn
u¼1

x2uixuj ¼ 0 i 6¼ jð Þ (6)

Xn
u¼1

x2uixujxuk ¼ 0 i 6¼ j 6¼ kð Þ (7)

Xn
u¼1

xuixujxuk ¼ 0 i 6¼ j 6¼ kð Þ (8)

Xn
u¼1

xuixujxukxul ¼ 0 i 6¼ j 6¼ k 6¼ lð Þ (9)

where xui is the level of the factor i for run u (Cf. Appendix A of [2]). The
condition in (4) implies that D is a balanced design; that is, each column of D has the
same number of þ1 and �1. To make D balanced, we just have to restrict the sum of
the elements of the generating vectors c1,… , cr to 0. As D is constructed from the
circulant matrices, conditions (5)–(9) can be written as:

Xr

t¼1

Xm�1

i¼1

ctict iþjð Þmod m ¼ 0 1≤ j<mð Þ (10)
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Xr

t¼1

Xm�1

i¼1

c2tict iþjð Þmod m ¼ 0 1≤ j<mð Þ (11)

Xr

t¼1

Xm�1

i¼1

c2tict iþjð Þmod mct iþkð Þmod m ¼ 0 1≤ j< k<mð Þ (12)

Xr

t¼1

Xm�1

i¼1

ctict iþjð Þmod mct iþkð Þmod m ¼ 0 1≤ j< k<mð Þ (13)

Xr

t¼1

Xm�1

i¼1

ctict iþjð Þmod mct iþkð Þmod mct iþlð Þmod m ¼ 0 1≤ j< k< l<mð Þ (14)

where cti is the value of the factor i on the generating vector t. It can be seen that
there are m� 1 summations in (10) and (11), m�1

2

� �
in (12) and (13), and m�1

3

� �
in

(14). This explains why the lengths of the vectors Jq and J in Section 3 are
2 m� 1ð Þ þ 2 m�1

2

� �þ m�1
3

� �
.

3. The CBBD algorithm

Our CBBD algorithm is the generalization of the algorithm in Nguyen et al. [7] and
Pham et al. [8]. Using the results in Section 2, we present the steps of the algorithm for
generating a CBBD for m factors in n ¼ 2rmþ nc runs (where nc is the number of
center points) with points on a sphere of radius ρ, and 1

3m≤ ρ2 <m
� �

.

1.Form a matrix C of size r�m. Set 1
2 rρ

2 elements of C to 1, 12 rρ
2 to �1, and the

remaining elements to 0. For each row vector cq of C, form a vector Jq with a
length 2 m� 1ð Þ þ 2 m�1

2

� �þ m�1
3

� �
containing the sums in (10) to (14). Set

J ¼ P
Jq. Calculate f , the sum of the squares of the elements of J.

2.Search for a pair of entries in C such that swapping their positions results in the
biggest reduction in f . If the search is successful, update f and C. This step is
repeated until f ¼ 0, or f cannot be reduced further.

Remarks

1.These two steps make up one trial. Among all trials with f ¼ 0, we select the
CBBD with the highest D-criterion value, which is defined as:

d‐value ¼ 1
n
Mj j1=p (15)

for the information matrix M and the number of parameters p for the second-
order model.

2.There are situations, where there is no CBBD with f ¼ 0 for particular values of
m, ρ2 and r. In this case, we compute two values f 1 and f 2, set f 1 equal to the sum
of squares of the first 2 m� 1ð Þ þ 2 m�1

2

� �
elements of J (or the first 2 m� 1ð Þ þ
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m�1
2

� �
elements of J) and f 2 the sum of squares of the remaining elements. A

design is selected if f 1 ¼ 0, f 2 is minimum and the d-value in (15) is maximum.

3.If D is a foldover design, the sums in Eqs. (11) and (13) will be 0, and the length
of the vector Jq and J is shortened to m� 1ð Þ þ m�1

2

� �þ m�1
3

� �
.

4. BBDs and new CBBDs

Table 1 displays the quality measures of BBDs whose run sizes (excluding the two
center runs) are multiples of the number of factors m and 24 CBBDs. Table 1 does
not include two BBDs for m, ρ2ð Þ = (9, 3) and (16,4) due to their over-abundance of
0-factor levels. This table includes m (the number of factors), ρ2 (the square of the
radius), n (the run size of each BBD which includes two center points), and the quality
measures of the designs. These measures are the d-value in (15), vQ , vM, and vI (the
maximum scaled variances of the QEs, MEs, and 2FIs, respectively), rQQ , rQI, rMI, and
rII (the maximum of the absolute values of the correlations between two QEs, between
a QE and a 2-FI, between a ME and a 2FI, and between 2FIs, respectively). Note that
rQM (the correlation between a QE and a ME) and rMM (the correlation between two
MEs) for all designs in Table 1 are always zero.

Out of 24 CBBDs in Table 1, there are 15 CBBDs with f ¼ 0 using the foldover
technique with the first half-fraction being balanced with factors having the same
number of �1’s. The first half-fraction of the CBBDs for 3–7 and for 8–14 factors in
this table require four and eight cyclic generators, respectively. Like BBDs, these
CBBDs have rQI ¼ rMI ¼ rII ¼ 0. Also, like BBDs, they can be orthogonally blocked,
with each half-fraction forming a block. The four CBBDs that are identical to BBDs in
terms of quality measures are the ones for 5, 6, 7, and 12 factors. Note that for 3 and 4
factors, the CBBDs have more runs than the corresponding BBDs, and, hence, provide
more error degrees of freedom. Also, the 8-factor BBD requires many more runs
(nearly 200) than the CBBD. The BBD for 11 factors cannot be orthogonally blocked,
and BBDs for 13 and 14 factors are not available. It is necessary to mention that the
designs in Nguyen and Borkowski [9] are not the foldover CBBDs in Table 1, and as
such cannot be blocked in the same way.

There are nine CBBDs for 3–8 factors that are constructed without applying the
foldover technique to the first half-fraction. We denote these CBBDs as CBBD*s. The
CBBD* for three factors requires four cyclic generators, while all others require eight.
CBBD*s for 5–8 factors have f 1 ¼ 0 (see Remark 2 of Section 3). These designs cannot
be blocked in the same way as the CBBDs in Table 1. They can, however, be nearly
orthogonally blocked using suitable software (see [10]).

These CBBDs and CBBD*s offer additional design choices to an experimenter.
Comparisons of CBBDs and CCBD*s to the BBDs for the same number of factors and
runs indicate that they, in general, have higher d-values, smaller variances of the
estimates, and smaller rQQ (the correlation between two different quadratic effects).
Figure 1 displays the color cell plots (CCPs) of BBDs for 5–8 factors, that is, 5a, 6a, 7a,
and 8a, and the corresponding CBBD*s with ρ2 ¼ m� 1, that is, 5c, 6b, 7d, and 8f.
CCPs, proposed by Jones and Nachtsheim [11], display the magnitude of the correla-
tion between the columns of the model matrixX (in terms of the absolute values). The
color of each cell ranges from white (no or near-zero correlation) to dark (one or near-
one correlation). It can be seen from these CCPs that the information matrices M of
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the mentioned CBBD*s do not have the form in (3), but all QEs are orthogonal to all
MEs and 2FIs. Note that the BBD for 8 factors has 194 runs, while the corresponding
CBBD* has only 66 runs.

Appendices A and B display the cyclic generators of the CBBDs and CBBD*s
respectively, in Table 1.

†Each design run size n includes two center runs. All BBDs can be orthogonally blocked except BBDs for m ¼ 3, 11 factors
(3a and 11a). CBBDs require r ¼ n� 2ð Þ=2m cyclic generators. CBBD*s require r ¼ n� 2ð Þ=m cyclic generators.
‡The two BBDs for m ¼ 8, 9 (8a and 9a) appear in Box and Behnken [1].

Table 1.
Quality measures of BBDs, CBBDs, and CBBD*s,†.
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Figure 1.
CCPs for BBDs and CBBD*s with ρ2 ¼ m� 1 (m ¼ 5,6,7,8).
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5. FDS plot and VDG comparisons

When assessing the prediction properties of an RSD, we want a design that will
produce predicted values Ŷ x1, … , xmð Þ with low variance for points x1, … , xmð Þ
in the design space. The prediction variance at x1, … , xmð Þ is var Ŷ x1, … , xmð Þ

� � ¼
σ2x X0Xð Þ�1x0

, where σ2 is the error variance and x is x1, … , xmð Þ expanded to contain
the m2 second-order model terms. Re-scaling by n=σ2 yields the scaled prediction
variance V x1, … , xmð Þ ¼ nx X0Xð Þ�1x0.

Although a design efficiency measure (such as the d-value) may provide useful
information regarding the overall quality of prediction, it does not provide informa-
tion regarding the distribution of the prediction variance throughout the design
region. This is addressed by studying a design’s spherical prediction variance (SPV)
properties.

Vρ is defined to be the average of the scaled prediction variance function taken over
Sρ, the sphere of radius ρ. (See [12]) Thus,

Vρ ¼ 1
ωρ

ð

Sρ
V x1, … , xmð Þ dx1 … dxm (16)

where ωρ is the surface area of Sρ. Also of interest are the minimum and maximum
scaled prediction variances defined as:

VMINρ ¼ min
x1, … , xmð Þ∈ Sρ

V x1, … , xmð Þ (17)

VMAXρ ¼ min
x1, … , xmð Þ∈ Sρ

V x1, … , xmð Þ (18)

Fraction of design space (FDS) plots and variance dispersion graphs (VDGs) will
be utilized to assess the prediction variance properties of designs in Table 1.
Giovannitti-Jensen and Myers [13] introduced the VDG, which superimposes plots of
VMAXρ, VMINρ, and Vρ against the radius ρwithin a spherical design space. Modified
VDGs that also include the SPV values of V x1, … , xmð Þ for a large set of random
points in the spherical region [9] will be presented. Note that the proportion of the
volume of the design region is small for values of ρ near-zero but increases rapidly
with increase ρ. Thus, a large proportion of the design space is associated with a
relatively small interval ρ near the design space boundary. To address this issue,
Zahran et al. [14] introduced the FDS plot of the quantiles of V x1, … , xmð Þ against the
fraction (or proportion) of the volume of the design region. Unlike single-valued
design efficiency measures, both VDGs and FDS plots allow a more thorough assess-
ment throughout the design region. For a summary of graphical methods for assessing
the prediction variance properties of RSDs, see Borkowski [15].

Before a comparison of designs using these graphical tools can bemade, a critical issue
involving factor scaling needs to be addressed. Amajor difficulty in comparing a BBD to a
CBBDor CBBD*with the same design size n is that the design spaces are not the same. For
example, consider the BBDwith m, ρ2ð Þ ¼ (5 , 2), that is, 5a. Calculation of vQ , vM, and vI
is based on the assumption that the design region includes pointswithin the 5-dimensional
hypersphere of radius

ffiffiffi
2

p
. However, for the CBBD*with m, ρ2ð Þ ¼ (5 , 4), that is, 5c, the
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calculation of vQ , vM, and vI are based on the assumption that the design region includes
points within the 5-dimensional hypersphere of radius

ffiffiffi
4

p
.

Consider the following five-factor experiment presented in Myers et al. [5]. The
response to be analyzed is rayon whiteness (RW), which is associated with fabric
quality. The experimenters believed that RW can be affected by process variables,
which include acid bath temperature in °C (temp1), percent acid concentration
(conc1), water temperature in °C (temp2), sulfide concentration (conc2), and amount
of chlorine bleach in lb./min (bleach). The experimental levels and the coded levels
x1, x2, x3, x4, x5 for the five variables are as follows:

Coded Experimental levels

Levels temp1 (°C) conc1 (%) temp2 (°C) conc2 (%) bleach (lb/min)

�1 35 .3 82 .20 .3

0 45 .5 85 .25 .4

1 55 .7 88 .30 .5

Table 2 shows the 42 design points for the BBD with ρ2 ¼ 2, the CBBD with ρ2 ¼ 3,
and the CBBD* with ρ2 ¼ 4 (designs 5a, 5b, and 5c, respectively). If any 0-factor level
is replaced with a value >0 or <0 in any of these designs, then that point is outside
that experiment’s design space. There is an important implicit assumption that the
fitted model will be appropriate when extrapolating outside the design space. This
can be dangerous because it can not only result in predictions with increased bias but
also result in larger prediction variances. Whether or not bias is introduced when
extrapolating, increasing variances will occur and can be seen in the comparison of
VDGs.

Therefore, to make comparisons between designs 5a, 5b, and 5c when choosing a
design, it is reasonable to assume that the coded factor levels of �1, 0, 1 representing
the same levels when uncoded. This will be true for all design comparisons made for
m ¼ 3,… ,11 factors in Table 1.

We begin our comparisons between designs 5a, 5b, and 5c by generating FDS plots
and VDGs over the maximum ρ2, which are seen in Figure 2. Form ¼ 5, that would be
ρ2 ¼ 4. In the VDGs, vertical reference lines are placed at ρ ¼ ffiffiffi

2
p

and ρ ¼ ffiffiffi
3

p
, which

represent the maximum ρ for points in designs 5a and 5b, respectively. The FDS plots
are based on the distribution of the SPV values for 10,000 randomly selected points in
a sphere of radius

ffiffiffi
4

p
. The 10,000 (m ¼ 4, 5, 6, 7) or 20,000 (m ¼ 8) SPV values are

also plotted in the VDGs (as suggested in [9]).
To compare the five-factor designs, the VDGs in Figure 2 should be examined over

three disjoint intervals for the radius: (i) 0,
ffiffiffi
2

p� �
, (ii)

ffiffiffi
2

p
,

ffiffiffi
3

p� �
, and (iii)

ffiffiffi
3

p
,

ffiffiffi
4

p� �
.

For (i), the maximum and average SPV is best for the BBD followed by the CBBD* 5c
and CBBD 5b. This should not be surprising because every BBD design point is withinffiffiffi
2

p
of the origin. However, for (ii) and (iii), it is clear that the CBBD* is best for

having smaller maximum, average, and minimum SPV values over ρ∈
ffiffiffi
2

p
,

ffiffiffi
4

p� �
.

These plots indicate that the BBD is best only if the experimenter does not plan to
predict the mean response at points with ρ>

ffiffiffi
2

p
(such as at �1, �1, �1,0,0ð Þ or

�1, �1, �1, �1, 0ð Þ). This seems unrealistic. As stated earlier, if any 0-factor level is
changed, then the negative consequences of extrapolation must be acknowledged.
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Predictions based on the BBD at such points are extrapolations leading to larger
SPV values. This is reflected in vQ , vM, vI

� � ¼ :198, :063, :250ð Þ for the BBD and
:031, :068, :050ð Þ for the CBBD*. These values indicate that the estimated

The first point (row) in each circulant block of five points generates the other four points cyclically. For the BBD and
CBBD, the first 20 points are folded over to form the second 20 points. Each design has two center points to form these
42-point designs.

Table 2.
Design points for the five-factor BBD, CBBD, and CBBD*.
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parameter variances associated with the CBBD* are smaller than those for the
BBD for ρ∈

ffiffiffi
2

p
,

ffiffiffi
4

p� �
. Thus, we would expect better predictions with the CBBD*.

This is supported by the VDGs and the CBBD* having the largest d-value. The CBBD
is the least desirable of the m ¼ 5 factor designs primarily due to the large vQ ¼ :208
value.

Using the comparison approach applied to the five-factor designs, we now
summarize the comparison of equal-sized designs for m ¼ 4,6,7, and 8 factors.

For the four-factor designs with n ¼ 34, the FDS plot and VDG in column 1 of
Figure 3 for the CBBD with ρ2 ¼ 3, that is, 4c, are superior to the BBD with ρ2 ¼ 2,
that is, 4b, especially over the interval

ffiffiffi
2

p
,

ffiffiffi
3

p� �
, where it has the smaller maximum,

average, and minimum SPV values. This is expected because no extrapolation occurs
over this interval for 4c, while it does for 4b. These plots indicate that design 4b is best

Figure 2.
FDS plots and VDGs for designs with 5 factors (n ¼ 42). FDS lines: blue for BBD, green for CBBD, and red for
CBBD*. VDGs include solid black lines for the minimum, average, and maximum SPV. Vertical reference lines
are plotted at

ffiffiffi
2

p
and

ffiffiffi
3

p
.
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only if the experimenter does not plan to predict the mean response at points
with ρ>

ffiffiffi
2

p
. This is reflected in the larger d-value and smaller vQ , vM, vI

� �
for

design 4b.
For the six-factor designs with n ¼ 50, the FDS plot and VDG in column 2 of

Figure 3 for the CBBD* with ρ2 ¼ 5 (design 6b) are superior to the BBD/CBBD with
ρ2 ¼ 3 (design 6a) for most of the design space. The only exception is for a small
fraction of the design space, where ρ2 is close to

ffiffiffi
5

p
and maximum SPV values are

larger for design 6b. Despite this small subregion, design 6b has the smaller
average and minimum SPV values over the interval

ffiffiffi
3

p
,

ffiffiffi
5

p� �
, which comprises

most of the spherical volume. Design 6b also has a larger d-value and smaller
vQ , vM, vI
� �

.
For seven factors, there are four designs with n ¼ 58. The FDS plots in Figure 4

indicate that the CBBD* with ρ2 = 4, that is, 7b, is the best design over a spherical
design space of radius

ffiffiffi
6

p
. The VDGs also indicate that this design has the smallest

maximum, average, and minimum SPV values for ρ>
ffiffiffi
3

p
, and based on the concen-

tration of SPV values near the maximum for any ρ, the distribution of SPV values is
highly skewed-left. The experimenter, however, must realize that beyond ρ>

ffiffiffi
4

p
,

extrapolation occurs for 7b and the experimenter is ignoring the possibility that
increased bias may exist with predictions when using the fitted model that results
from the experimental data. The VDG and FDS plot for 7c indicates that the geometry
of the design points in the design space is poor despite having ρ2 ¼ 5. This indicates
that in certain cases, a design with a larger ρ2 value does not necessarily guarantee a
better design. It is important to note, however, that this case is a rare exception. The
BBD/CBBD 7a is rotatable. Therefore, the minimum, maximum, and average SPVs are
all equal for a given radius. This is reflected in the single curve in its VDG. The VDG
for the ρ2 ¼ 5 CBBD* is truncated at SPV = 240 for scale clarity when making VDG
comparisons.

For eight factors, there are three CBBB* designs with n ¼ 66. The FDS plots in
Figure 5 suggest that the CBBD* with ρ2 = 4 (design 8e) is the best design over a
spherical design space of radius

ffiffiffi
7

p
. The VDGs also indicate that this design has

the smallest maximum and average SPV values for ρ>
ffiffiffi
3

p
. It is important to remind

the experimenter that between ρ ¼ ffiffiffi
4

p
and

ffiffiffi
7

p
, extrapolation is occurring for 8e.

Thus, although 8e appears better than 8f, there may be increased bias with any
prediction associated with using a fitted model for 8e in comparison with 8f over this
interval. Note that although the minimum SPV curve for ρ2 ¼ 7 CBBD* (design 8f) is
the lowest for ρ>

ffiffiffi
3

p
, it is associated with only a small fraction of the design space as

evidenced by the sparsity of points near the minimum. The VDG for the ρ2 ¼ 3 CBBD*
is truncated at SPV = 375 for scale clarity when making VDG comparisons.

Based on the comparisons for m ¼ 7and 8 factors, the design with the largest
d-value is not necessarily the best design when using FDS plots and VDGs as criteria.
A larger d-value does not ensure a good distribution of SPV values throughout the
design space. It should be noted that the best design based on the FDS plots and VDGs
always had the smallest vQ value. That is, those designs are associated with the
smallest estimated variances for the quadratic effects (QEs).

What is clear in these comparisons is that there exists a CBBD or a CBBD* that is
superior to every BBD of the same size based on d-values, FDS plots, and VDGs. This
is most likely due to the over-abundance of 0-factor levels in BBDs leading to poor
prediction for larger radii.
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Figure 3.
FDS plots and VDGs for designs with 4 and 6 factors. FDS lines for m ¼ 4: blue for ρ2 ¼ 2 CBBD and red for
ρ2 ¼ 3 CBBD. FDS lines for m ¼ 6: blue for ρ2 ¼ 3 BBD and red for ρ2 ¼ 5 CBBD*. VDGs include solid black
lines for the minimum, average, and maximum SPV. A vertical reference line is plotted at

ffiffiffi
2

p
for m ¼ 6 and atffiffiffi

3
p

for m ¼ 6.
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Figure 4.
FDS plots and VDGs for designs with 7 factors (n ¼ 58). FDS lines: blue for BBD/CBBD, green, magenta, and red
for CBBD*s with ρ2 ¼ 3,4,5,6, respectively. VDGs include solid black lines for the minimum, average, and
maximum SPV. Vertical reference lines are plotted at

ffiffiffi
3

p
,

ffiffiffi
4

p
and

ffiffiffi
5

p
.

76

Response Surface Methodology - Research Advances and Applications



6. Conclusions

This chapter offers the cyclic-generating approach to create new designs (CBBDs
and CBBD*s) as alternatives to existing BBDs. Our new designs offer a compromise
between the definitive screening designs [11] (where each factor has just three 0’s)
and BBDs (where the number of 0’s for each factor is more than the number of �1’s).
In addition to quality measures, FDS plots and VDGs were generated to assess the
prediction variance properties in m� 1ð Þ-dimensional spherical regions. These were
used to compare designs of equal size but with varying ρ2. The comparisons indicate
that for each number of design factors m, there exists a CBBD or CBBD* that is
superior to a BBD based on these quality measures and graphical methods. Because of
extrapolation concerns related to points extending beyond the maximum value of ρ
associated with a design, it is stressed that comparisons of BBDs to CBBDs or CBBD*s

Figure 5.
FDS plots and VDGs for designs with 8 factors (n ¼ 66). FDS lines: blue, green, and red for CBBD*s with
ρ2 ¼ 3,4,7, respectively. VDGs include solid black lines for the minimum, average, and maximum SPV. Vertical
reference lines are plotted at

ffiffiffi
3

p
and

ffiffiffi
4

p
.
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should take into account for the differences in the spherical design regions based on
differing ρ2 values. Once implemented, experimental data resulting from a CBBD or
CBBD* can be analyzed analogously to a data analysis for a BBD using currently
available statistical software. A catalog of the RSDs in Table 1, which includes 15
CBBDs and nine CBBD*s is given at the link https://designcomputing.net/cbbd/.

Appendix A. Cyclic generators for the first half-fractions of 15 CBBDs in
Table 1
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Appendix B. Cyclic generators for 9 CBBD*s in Table 1
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Chapter 5

Analysis and Optimization of Bead
Geometry by Using Response
Surface Methodology
Asif Ahmad, Shahnawaz Alam and Meenu Sharma

Abstract

Analysis of bead geometry is very important in product design and manufacturing.
Defect-free products with reliability are the demanding parameter in the
manufacturing Industry. In this study, we have analyzed and optimized bead
geometry parameters such as height of reinforcement (HOR), depth of Heat
Affected Zone (DOH), and width of Heat Affected Zone (WOH) by using Central
Composite Design (CCD) of response surface methodology (RSM). In this study,
peak current and pulse frequency are the most important process parameters for
HOR and the optimum combination obtained are (160 A, 80 A, 100 Hz, and 45%)
further HOR at this optimum was found to be 1.41 mm, which is close to 1.45 mm.
Similarly, peak current and pulse frequency are the most important process
parameter for WOH and the optimum combination obtained are (160 A, 80 A,
150 Hz, and 45%) further WOH at this optimum was found to be 1.32 mm, which is
close to 1.37 mm. Again, similarly peak current and pulse frequency are the most
important process parameter for DOH and the optimum combination obtained are
(160 A, 80 A, 100 Hz, and 45%) further DOH at this optimum was found to be
1.26 mm which is close to 1.58 mm.

Keywords: bead geometry, height of reinforcement, depth of Haz, response surface
methodology

1. Introduction

The traditional method of selecting one parameter is time taking process and
therefore not considered nowadays in the manufacturing industry, hence an optimi-
zation technique concerning the design of experiment (DOE) such as CCD of response
surface methodology (RSM) to establish an optimum condition for tensile strength. In
this study, the surface plot is used to explain the main and interaction effect of the
process parameter to identify the optimum parameter with their values. RSM is a
widely used statistical technique in process optimization [1]. RSM is a set of mathe-
matical and statistical methodologies for assessing problems in which multiple inde-
pendent factors influence a dependent variable or response, to optimize the answer.
RSM facilitates the examination of the interaction between experiment variables
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within the range under consideration, allowing for a better knowledge of the process
while lowering experiment time and cost [2, 3].

2. Steps of Response Surface Methodology

Major steps of RSM are shown in Figure 1.

2.1 Input parameters and their operating range

Based on a review of the literature and previous research, the most important
process parameters that have a greater influence on bead geometry and
mechanical properties have been identified. The butt joint was made from AISI
316 stainless steel sheets with dimensions of 100 � 75 � 4 mm by used pulsed
TIG welding [4]. This experiment's input parameters are peak current, base
current, pulse frequency, and pulse on time [2]. Input parameters with their
levels are given in Table 1. The experiment was carried out at an optimum in the
laboratory.

2.2 Design of experiment

The experimental design for this investigation is CCD and the response is mea-
sured by RSM. Examine the combined effect of four different input parameters on
bead geometry and mechanical properties to optimize the process parameter of pulse
TIG welding and drive a mathematical model. Five levels, four-parameter CCD which
include 24 = 16 factorial points plus 6 central points and 2 � 4-star points
(24 + 2*4 + 6) [2, 5], with a total of 30 experiments were made in this investigation as

Figure 1.
Flowchart representing steps of RSM.
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shown in Table 2. The framework for the four factors ranged between five levels, �γ,
α, +β, and +γ).

3. RSM statistical analysis for reinforcement height

By varying the input process parameter, CCD was used to experiment. The exper-
iment was carried out by varying the input parameters with the experimental design
CCD. The experiment was carried out using various parameter combinations, as
shown in Table 3. The CCD experiment results were fitted to the polynomial regres-
sion equation created by Design Expert Software 18.0 [2, 6].

3.1 Development and evaluation of regression equation HOR

The correlation between process parameters and output response was obtained by
using CCD The second-order polynomial regression equation fitted between the out-
put response and the input process parameter. From the ANOVA result shown in
Table 4, it has been found adequacy of the model is suitable to analyze the experi-
mental value [2, 6].

R2 = 0.99543, adjusted R2 = 0.99763.
The regression equation based on the regression coefficient of ANOVA results is

shown in Eq. (1).

HOR ¼ 1:11þ 0:0025A� 0:0275Bþ 0:0737Cþ 0:0142Dþ 0:0375AB

� 0:0406ACþ 0:0356ADþ 0:0444BC� 0:0456BDþ 0:0325CD

� 0:0824A2 � 0:0461B2 � 0:0599C2 � 0:0918D2 (1)

To obtain a statistically significant regression model p-value, if the p-value < 0.05
then the mathematical model is significant. A, C, AB, A2, and D2 are significant model
terms in this case. The model can be reduced to Eq. (2), after eliminating the insig-
nificant coefficients. After that predicted value for all the combinations of input, the
parameter is obtained as shown in Table 5.

HOR ¼ 1:11þ 0:0025Aþ 0:0737Cþ 0:0375AB� 0:0824A2 � 0:0918D2 2ð Þ

Input parameter Factor symbol Level 1 Level 2 Level 3 Level 4 Level 5

�β �γ α β γ

Peak current (I) A 140 150 160 170 180

Base current (I) B 60 70 80 90 100

Pulse frequency (Hz) C 50 75 100 125 150

Pulse on time (%) D 35 40 45 50 55

Table 1.
Independent parameters with their levels for CCD.
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3.2 Adequacy check of the mathematical model for height of reinforcement

ANOVA represents that the polynomial regression equation was significant to
represent the relationship between input parameters and output parameters. The
adequacy and significance of the established model were also elaborated by the high

Std Factor symbol Actual factor

A B C D A B C D

1 �γ �γ �γ �γ 150 70 75 40

2 β �γ �γ �γ 170 70 75 40

3 �γ β �γ �γ 150 90 75 40

4 β β �γ �γ 170 90 75 40

5 �γ �γ β �γ 150 70 125 40

6 β �γ β �γ 170 70 125 40

7 �γ β β �γ 150 90 125 40

8 β β β �γ 170 90 125 40

9 �γ �γ �γ β 150 70 75 50

10 β �γ �γ β 170 70 75 50

11 �γ β �γ β 150 90 75 50

12 β β �γ β 170 90 75 50

13 �γ �γ β β 150 70 125 50

14 β �γ β β 170 70 125 50

15 �γ β β β 150 90 125 50

16 β β β β 170 90 125 50

17 �β α α α 140 80 100 45

18 α α α α 180 80 100 45

19 α �β α α 160 60 100 45

20 α α α α 160 100 100 45

21 α α �β α 160 80 50 45

22 α α α α 160 80 150 45

23 α α α �β 160 80 100 35

24 α α α α 160 80 100 55

25 α α α α 160 80 100 45

26 α α α α 160 80 100 45

27 α α α α 160 80 100 45

28 α α α α 160 80 100 45

29 α α α α 160 80 100 45

30 α α α α 160 80 100 45

Table 2.
Design of experiment or central composite design arrangement.
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value of the coefficient of determination (R2) value of 0.99543 and adjusted R2

0.99763 for the development of the developed correlation [2, 3].
Figure 2 demonstrates that the regression model generated with Design Expert

18.0 has a good correlation between the experimental and predicted values since all of
the points are very close to the line of perfect fit or line of unit slope. Furthermore,
residuals were investigated to validate the model’s adequacy. The difference between

Std Factor symbol Actual factor Exp. value
Bead width

A B C D A B C D

1 �γ �γ �γ �γ 150 70 75 40 0.85

2 β �γ �γ �γ 170 70 75 40 0.68

3 �γ β �γ �γ 150 90 75 40 0.57

4 β β �γ �γ 170 90 75 40 0.93

5 �γ �γ β �γ 150 70 125 40 0.74

6 β �γ β �γ 170 70 125 40 0.64

7 �γ β β �γ 150 90 125 40 1.01

8 β β β �γ 170 90 125 40 0.76

9 �γ �γ �γ β 150 70 75 50 0.67

10 β �γ �γ β 170 70 75 50 1.05

11 �γ β �γ β 150 90 75 50 0.75

12 β β �γ β 170 90 75 50 0.63

13 �γ �γ β β 150 70 125 50 1.08

14 β �γ β β 170 70 125 50 0.80

15 �γ β β β 150 90 125 50 0.71

16 β β β β 170 90 125 50 1.14

17 �β α α α 140 80 100 45 0.88

18 α α α α 180 80 100 45 0.78

19 α �β α α 160 60 100 45 1.14

20 α α α α 160 100 100 45 0.81

21 α α �β α 160 80 50 45 0.67

22 α α α α 160 80 150 45 1.17

23 α α α �β 160 80 100 35 0.87

24 α α α α 160 80 100 55 0.71

25 α α α α 160 80 100 45 1.31

26 α α α α 160 80 100 45 0.92

27 α α α α 160 80 100 45 0.76

28 α α α α 160 80 100 45 1.07

29 α α α α 160 80 100 45 1.18

30 α α α α 160 80 100 45 1.45

Table 3.
CCD experimental value: HOR.
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the observed and predicted responses is referred to as the residual. This analysis was
examined using the normal probability plot of residuals [2, 5]. The normal probability
plot of the residuals shows that the errors are distributed normally in a straight line
and are insignificant as shown in Figure 3.

3.3 Perturbation plot: height of reinforcement

The perturbation plot shows the effect of all the parameters on a single plot A
perturbation plot to compare the effect of all the process parameters at the center
point on bead width is presented in Figure 4. It has been noted that HOR peak current
(A) is increasing and then HOR decreases [1, 6].

The plot also shows that the HOR decreases as the base current (B) increases
because no melting occurs during this stage. This plot shows that HOR increases as
pulse frequency (C) increases. The plot also shows that HOR increases as pulse
on-time increases (D) and then decreases [2].

3.4 Response surface plot: height of reinforcement

The 3D surface plot and 2D contour effect developed by design expert 18.0 soft-
ware represent the interaction effect between process parameters and HOR as shown
in Figures 5–10 [3].

Source Coefficient Sum of squares df Mean square F-values p-value

Model 1.11 0.7246 14 0.7246 1.10 0.0425 Significant

A 0.0024 0.0003 1 0.0003 3.003 0.047

B �0.0275 0.0181 1 0.0181 0.087 0.5331

C 0.0691 0.1307 1 0.1307 2.79 0.0115

D 0.0144 0.0044 1 0.0044 0.1028 0.7456

A � B 0.0375 0.0235 1 0.0235 0.4609 0.0498

A � C �0.0406 0.0276 1 0.0276 0.5849 0.4643

A � D 0.0356 0.0208 1 0.0208 0.4268 0.5107

B � C 0.0444 0.0328 1 0.0328 0.5729 0.4359

B � D �0.0456 0.0356 1 0.0356 0.7023 0.4123

C � D 0.0325 0.0168 1 0.0168 0.3508 0.5670

A2 �0.0824 0.1862 1 0.1862 3.98 0.0447

B2 �0.0461 0.0584 1 0.0584 1.25 0.2817

C2 �0.0599 0.0984 1 0.0984 2.10 0.1678

D2 �0.0918 0.2310 1 0.2310 4.93 0.0422

Residual 0.7025 15 0.0468

Lack of fit 0.3837 10 0.0384 0.6017 0.7691 Not significant

Pure error 0.3188 5 0.0638

Cor total 1.11 0.7230 14 0.0516 1.10 0.0425 Significant

Table 4.
ANOVA for the: HOR.
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The coefficient of the linear interactive effect of peak current and base current is
positive as given in Table 4. HOR is increased as the value of the above parameter is
increased as shown in Figure 5a of the 3D surface plot and Figure 5b of the contour
plot. HOR increases with concurrent increases in peak current and base current to

Std Factor sign Estimated value Remaining error

A B C D

1 �γ �γ �γ �γ 0.849 0.012

2 β �γ �γ �γ 0.789 �0.098

3 �γ β �γ �γ 0.722 �0.136

4 β β �γ �γ 0.812 0.134

5 �γ �γ β �γ 0.924 �0.168

6 β �γ β �γ 0.702 �0.046

7 �γ β β �γ 0.974 0.047

8 β β β �γ 0.902 �0.126

9 �γ �γ �γ β 0.832 �0.151

10 β �γ �γ β 0.915 0.146

11 �γ β �γ β 0.522 0.239

12 β β �γ β 0.755 �0.109

13 �γ �γ β β 1.037 0.059

14 β �γ β β 0.957 �0.141

15 �γ β β β 0.905 �0.179

16 β β β β 0.975 0.181

17 �β α α α 0.794 0.097

18 α α α α 0.804 �0.013

19 α �β α α 0.999 0.152

20 α α α α 0.889 �0.068

21 α α �β α 0.741 �0.060

22 α α α α 1.036 0.145

23 α α α �β 0.733 0.148

24 α α α α 0.790 �0.064

25 α α α α 1.129 0.193

26 α α α α 1.129 �0.193

27 α α α α 1.129 �0.358

28 α α α α 1.129 �0.043

29 α α α α 1.129 0.068

30 α α α α 1.129 0.333

Table 5.
CCD predicted value: HOR.
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Figure 2.
Plot of experimental vs. predicted value HOR.

Figure 3.
Normal probability plot of residual HOR.
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approximately 180�100 A, respectively, beyond which the value of HOR decreases
[2, 3]. As shown in Table 4, the coefficient of linear interactive effects of peak current
and pulse frequency is negative. As shown in Figure 6c of 3D surface plots and
Figure 6d of contour plots, HOR increases as the value of the above parameter
increases. The HOR declined beyond the peak current of 180 A and pulse frequency of
125 Hz respectively [2, 6].

As shown in Table 4, the coefficient of the linear effect of peak current and pulse
on time is positive. As shown in Figure 7e of the 3D surface plot and Figure 7f of the
contour plot, HOR increases as the value of the above parameter increases. DOP is

Figure 4.
Perturbation plot of HOR.

Figure 5.
Surface plot (a), contour plot (b) of the interaction effect AB on HOR.
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increasing with simultaneously increasing in peak current and pulse on time to about
180 A and 50% respectively beyond which the value of HOR declined. Table 4 shows
that the coefficient of the linear effect of base current and pulse frequency is positive.
As shown in Figure 8g of the 3D surface plot and Figure 8h of the contour plot, HOR
increases as the value of the above parameter increases. DOP rises as peak current and
pulse on time rise to around 180 A and 50%, respectively, beyond which the value of
HOR tends to fall. Table 4 shows that the coefficient of linear interactive effects of
base current and pulse on time is negative [2]. As shown in Figure 9i of the 3D surface
plots and Figure 9j of the contour plot, BW increases as the value of the above
parameter increases. Beyond the base current of 100 A, the HOR and pulse on time
both decreased by 50%. The coefficient of the linear interactive effect of pulse fre-
quency and pulse on time is positive as given in Table 4. As the value of the above
parameter is increased, BW increases, as shown in Figure 10k of the 3D surface plot
and Figure 10l of the contour plot [1, 2]. HOR is increasing with simultaneously
increasing pulse frequency and pulse on time to about 125 Hz and 50% respectively
beyond which the value of HOR declined.

Figure 6.
Surface plot (c), contour plot (d) of the interaction effect AC on HOR.

Figure 7.
Surface plot (e), contour plot (f) of the interaction effect AD ion HOR.
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Figure 8.
Surface plot (g), contour plot (h) of the interaction effect BC ion HOR.

Figure 9.
Surface plot (i), contour plot (j) of the interaction effect BD on HOR.

Figure 10.
Surface plot (k), contour plot (l) of the interaction effect CD on HOR.
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4. Statistical analysis for depth of heat affected zone using RSM

By varying the input process parameter, CCD was used to experiment. The exper-
iment was carried out by varying the input parameters with the experimental design
CCD. The experiment was carried out using various parameter combinations, as
shown in Table 6. The CCD experiment results were fitted to the polynomial regres-
sion equation created by Design Expert Software 18.0 [2, 5].

4.1 Development and evaluation of regression equation: depth of HAZ

The correlation between process parameters and output response was obtained by
using CCD. The second-order polynomial regression equation fitted between the output
response and input process parameter. From the ANOVA result shown inTable 7, it has
been found adequacy of the model is suitable to analyze the experimental value.

R2 = 0.98346, adjusted R2 = 0.98459.
The regression equation based on the regression coefficient of ANOVA results is

shown in Eq. (3).

DOH ¼ 1:12þ 0:0087A� 0:0529Bþ 0:1225Cþ 0:0400Dþ 0:0594AB

� 0:0562ACþ 0:0563ADþ 0:0594BC� 0:0769BDþ 0:0538CD

� 0:0976A2 � 0:0095B2 � 0:0120C2 � 0:0920D2 (3)

To obtain a statistically significant regression model p-value, if the p-value < 0.05
then the mathematical model is significant. In this case, A, C, and BC2 are significant
model terms. The model reduces to Eq. (4), after eliminating the insignificant coeffi-
cients. After that predicted value for all the combinations of input parameters is
obtained as shown in Table 8.

DOH ¼ 1:12þ 0:0087Aþ 0:1225Cþ 0:0594BC2 4ð Þ

4.2 Adequacy check of the mathematical model for depth of HAZ

ANOVA represents that the polynomial regression equation was significant to rep-
resent the relationship between input parameters and output parameters. The adequacy
and significance of the established model were also elaborated by the high value of the
coefficient of determination (R2) value of 0.98346 and adjusted R2 0.98459 for the
development of the developed correlation. Figure 11 shows that the regression model
created with Design Expert 18.0 has a good correlation between the experimental and
predicted values because all of the points are very close to the line of perfect fit or line of
unit slope. Furthermore, residuals were investigated to validate the model's adequacy.
The difference between the observed and predicted responses is referred to as the
residual. The normal probability plot of residuals was used to examine this analysis
[2, 3]. The normal probability plot of the residuals shows that the errors are distributed
normally in a straight line and are insignificant as shown in Figure 12.

4.3 Perturbation plot: depth of heat affected zone

The perturbation plot shows the effect of all the parameters on a single plot.
Figure 13 shows a perturbation plot that compares the effect of all process parameters
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at the center point on bead width. It has been observed that HOR peak current (A)
increases before decreasing. The plot also shows that the HOR decreases as the base
current (B) increases because no melting occurs during this stage. This plot shows that
HOR increases as the pulse frequency (C) increases. The plot also shows that HOR
increases as a pulse on time increases (D) and then decreases [2].

Std Factor symbol Experimental value
Bead width

A B C D

1 �γ �γ �γ �γ 0.87

2 β �γ �γ �γ 0.60

3 �γ β �γ �γ 0.52

4 β β �γ �γ 0.98

5 �γ �γ β �γ 0.67

6 β �γ β �γ 0.59

7 �γ β β �γ 1.07

8 β β β �γ 0.76

9 �γ �γ �γ β 0.62

10 β �γ �γ β 1.25

11 �γ β �γ β 0.74

12 β β �γ β 0.62

13 �γ �γ β β 1.33

14 β �γ β β 0.83

15 �γ β β β 0.68

16 β β β β 1.37

17 �β α α α 0.94

18 α α α α 0.80

19 α �β α α 1.53

20 α α α α 0.92

21 α α �β α 0.74

22 α α α α 1.68

23 α α α �β 0.97

24 α α α α 0.76

25 α α α α 1.65

26 α α α α 1.05

27 α α α α 0.78

28 α α α α 1.00

29 α α α α 1.05

30 α α α α 1.16

Table 6.
CCD experimental value: depth of HAZ (DoH).
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4.4 Response surface plot: depth of heat affected zone

The 3D surface plot and 2D contour effect developed by design expert 18.0 soft-
ware represent the interaction effect between process parameters and BW as shown in
Figures 14–19.

The coefficient of the linear interactive effect of peak current and base current is
+ve as given in Table 7, DOH is increased as the value of the above parameter is
increased as shown in Figure 14a of the 3D surface plot and Figure 14b of the contour
plot. DOH rises in tandem with increases in peak and base current to around 180 and
100 A, respectively, after which the value of DOH falls. Table 7 shows that the
coefficients of linear effects of peak current and pulse frequency are negative. As
shown in Figure 15c of 3D surface plots and Figure 15d of contour plots, DOH
increases as the value of an above parameter increases. The DOH decreased after
reaching a peak current of 180 A and a pulse frequency of 125 Hz. The linear effect of
peak current and pulse on time has a positive coefficient, as shown in Table 7, and
DOH increases as the value of the above parameter increases, as shown in Figure 16e
of the 3D surface plot and Figure 16f of the contour plot [1, 2]. DOH is increasing
with simultaneously increasing in peak current and pulse on time to about 180 A and
50% respectively beyond which the value of DOH declines.

The coefficient of the linear interactive effect of base current and pulse frequency
is positive as given in Table 7. DOH is increased as the value of the above parameter is

Source Coefficient Sum of squares df Mean square F-values p-value

Model 1.12 1.26 14 0.0902 0.8929 0.5814 Significant

A 0.0087 0.0018 1 0.0018 4.71 0.045

B �0.0529 0.0672 1 0.0672 0.3801 0.4275

C 0.1225 0.3601 1 0.3601 3.56 0.0478

D 0.0400 0.0384 1 0.0384 0.6652 0.5468

A � B 0.0594 0.0564 1 0.0564 0.5583 0.4665

A � C �0.0562 0.0506 1 0.0506 0.5011 0.4899

A � D 0.0563 0.0506 1 0.0506 0.5011 0.4899

B � C 0.0594 0.0564 1 0.0564 0.5583 0.0466

B � D �0.0769 0.0946 1 0.0946 0.9359 0.3487

C � D 0.0538 0.0462 1 0.0462 0.4575 0.5091

A2 �0.0976 0.2613 1 0.2613 2.59 0.1286

B2 �0.0095 0.0025 1 0.0025 0.0244 0.8780

C2 �0.0120 0.0039 1 0.0039 0.0390 0.8462

D2 �0.0920 0.2321 1 0.2321 2.30 0.1504

Residual 1.52 15 0.1010

Lack of fit 1.19 10 0.1189 1.82 0.2639 Not significant

Pure error 0.3266 5 0.0653

Cor total 2.78 29

Table 7.
ANOVA: depth of HAZ.
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increased as shown in Figure 17g of the 3D surface plot and Figure 17h of the contour
plot. DOH rises as the base current and pulse frequency rise to around 100 A and
125 Hz, respectively, beyond which the value of DOH falls. As shown in Table 7, the
coefficient of the linear effect of base current and pulse frequency is positive. As
shown in Figure 18i of the 3D surface plot and Figure 18j of the contour plot, DOH

Std Factor sign Estimated value Remaining error

A B C D

1 �γ �γ �γ �γ 0.89 �0.01625

2 β �γ �γ �γ 0.79 �0.185

3 �γ β �γ �γ 0.70 �0.18167

4 β β �γ �γ 0.84 0.142083

5 �γ �γ β �γ 1.02 �0.3475

6 β �γ β �γ 0.69 �0.10625

7 �γ β β �γ 1.07 0.004583

8 β β β �γ 0.98 �0.21667

9 �γ �γ �γ β 0.90 �0.28

10 β �γ �γ β 1.03 0.22125

11 �γ β �γ β 0.41 0.332083

12 β β �γ β 0.77 �0.14917

13 �γ �γ β β 1.25 0.08375

14 β �γ β β 1.15 �0.315

15 �γ β β β 0.99 �0.31167

16 β β β β 1.13 0.242083

17 �β α α α 0.71 0.222917

18 α α α α 0.75 0.047917

19 α �β α α 1.19 0.337083

20 α α α α 0.98 �0.06625

21 α α �β α 0.83 �0.07708

22 α α α α 1.32 0.347917

23 α α α �β 0.67 0.317917

24 α α α α 0.83 �0.04708

25 α α α α 1.12 0.49

26 α α α α 1.12 �0.04

27 α α α α 1.12 �0.245

28 α α α α 1.12 �0.125

29 α α α α 1.12 �0.095

30 α α α α 1.12 0.015

Table 8.
CCD: predicted value.
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Figure 11.
Plot of experimental vs. predicted value DOH.

Figure 12.
Normal probability plot of residual DOH.
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increases as the value of the above parameter increases [1, 2]. DOH is increasing with
simultaneously increasing base current and pulse frequency to about 100 A and
125 Hz respectively beyond which the value of DOH decline.

Table 7 shows that the coefficient of linear effects of base current and pulse on
time is �ve. As shown in Figure 19k of 3D surface plots and Figure 19l of contour
plots, DOH increases as the value of the above parameter increases. The DOH declined
beyond the base current of 100 A and pulse on time by 50% respectively [2, 3].

Table 7 shows that the coefficient of the linear effect of pulse frequency and pulse
on time is positive. As shown in Figure 19k of the 3D surface plot and Figure 19l of
the contour plot, DOH increases as the value of the above parameter increases [2, 6].

Figure 13.
Perturbation plot of DOH.

Figure 14.
Surface plot (a), contour plot (b) of the interaction effect AB on DOH.
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Figure 15.
Surface plot (c), contour plot (d) of the interaction effect AC on DOH.

Figure 16.
Surface plot (e), contour plot (f) of the interaction effect AD on DOH.

Figure 17.
Surface plot (g), contour plot (h) of the interaction effect BC on DOH.
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DOH is increasing with simultaneously increasing pulse frequency and pulse on time
to about 100 Hz and 50% respectively beyond which the value of DOH declines.

5. Statistical analysis for the width of heat affected zone using RSM

CCD was used to experiment by changing the input process parameter. The
experiment was carried out by varying the input parameters using the experimental
design CCD. The experiment was carried out using various parameter combinations,
as shown in Table 9. The CCD experiment results were fitted to the polynomial
regression equation created by Design Expert Software 18.0 [1, 2].

5.1 Development and evaluation of regression equation: width of HAZ

The correlation between process parameters and output response was obtained by
using CCD. The second-order polynomial regression equation fitted between the

Figure 18.
Surface plot (i), contour plot (j) of the interaction effect BD on DOH.

Figure 19.
Surface plot (k), contour plot (l) of the interaction effect CD on DOH.

101

Analysis and Optimization of Bead Geometry by Using Response Surface Methodology
DOI: http://dx.doi.org/10.5772/intechopen.108513



output response and input process parameter. From the ANOVA result shown in
Table 10, it has been found adequacy of the model is suitable to analyze the
experimental value [2, 3].

R2 = 0.9697, adjusted R2 = 0.9734.
The regression equation based on the regression coefficient of ANOVA results is

shown in Eq. (5).

Std Factor symbol Exp. value
WOH

A B C D

1 �γ �γ �γ �γ 0.92

2 β �γ �γ �γ 0.68

3 �γ β �γ �γ 0.57

4 β β �γ �γ 1.11

5 �γ �γ β �γ 0.82

6 β �γ β �γ 0.67

7 �γ β β �γ 1.23

8 β β β �γ 0.93

9 �γ �γ �γ β 0.74

10 β �γ �γ β 1.13

11 �γ β �γ β 0.87

12 β β �γ β 0.70

13 �γ �γ β β 1.21

14 β �γ β β 0.95

15 �γ β β β 0.79

16 β β β β 1.40

17 �β α α α 1.02

18 α α α α 0.90

19 α �β α α 1.36

20 α α α α 0.98

21 α α �β α 0.77

22 α α α α 1.45

23 α α α �β 1.08

24 α α α α 0.88

25 α α α α 1.28

26 α α α α 1.36

27 α α α α 1.09

28 α α α α 1.15

29 α α α α 1.19

30 α α α α 1.21

Table 9.
CCD experimental value: width of HAZ (WoH).
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WOH ¼ 1:26þ 0:0079A� 0:0125Bþ 0:1108Cþ 0:0192Dþ 0:0581AB

� 0:0394ACþ 0:0463ADþ 0:0575BC� 0:0631BDþ 0:0344CD

� 0:0978A2 � 0:0453B2 � 0:0603C2 � 0:0922D2 (5)

To obtain a statistically significant regression model p-value, if the p-value < 0.05
then the mathematical model is significant. In this case, A, C, AB, and A2 are signifi-
cant model terms. The model reduces to Eq. (6), after eliminating the insignificant
coefficients. After that predicted value for all the combinations of input parameters is
obtained as shown in Table 11.

WOH ¼ 1:26þ 0:0079Aþ 0:1108Cþ 0:0581AB� 0:0978A2 6ð Þ

5.2 Adequacy check of the mathematical model for the width of HAZ

ANOVA represents that the polynomial regression equation was significant to
represent the relationship between input parameters and output parameters. The high
value of the coefficient of determination (R2) value of 0.9697 and the adjusted R2 of
0.9734 for the development of the developed correlation further elaborated the ade-
quacy and significance of the established model. Figure 20 shows that the regression

Source Coefficient Sum of squares df Mean square F-values p-value

Model 1.26 1.04 14 0.0741 1.26 0.3307 Significant

A 0.0079 0.0015 1 0.0015 5.025 0.0463

B �0.0125 0.0038 1 0.0038 0.0163 0.8042

C 0.1108 0.2948 1 0.2948 5.01 0.0408

D 0.0192 0.0088 1 0.0088 0.6498 0.7042

A � B 0.0581 0.0541 1 0.0541 0.9183 0.0353

A � B �0.0394 0.0248 1 0.0248 0.4214 0.5261

A � D 0.0463 0.0342 1 0.0342 0.5814 0.4576

B � C 0.0575 0.0529 1 0.0529 0.8986 0.3582

B � D �0.0631 0.0638 1 0.0638 1.08 0.3145

C � D 0.0344 0.0189 1 0.0189 0.3212 0.5793

A2 �0.0978 0.2624 1 0.2624 4.46 0.0419

B2 �0.0453 0.0563 1 0.0563 0.9567 0.3435

C2 �0.0603 0.0998 1 0.0998 1.69 0.2126

D2 �0.0922 0.2331 1 0.2331 3.96 0.0651

Residual 0.8830 15 0.0589

Lack of fit 0.7191 10 0.0719 2.19 0.1997 Not significant

Pure error 0.1639 5 0.0328

Cor total 1.92 29

Table 10.
ANOVA: WoH.
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model generated with Design Expert 18.0 has a good correlation between the experi-
mental and predicted values because all of the points are very close to the line of
perfect fit or line of unit slope [1, 2]. In addition, a residual investigation was carried
out to validate the model's adequacy. The difference between the observed and

Std Factor sign Estimated value Remaining error

A B C D

1 �γ �γ �γ �γ 0.93 �0.01

2 β �γ �γ �γ 0.82 �0.14

3 �γ β �γ �γ 0.80 �0.23

4 β β �γ �γ 0.92 0.18

5 �γ �γ β �γ 1.05 �0.23

6 β �γ β �γ 0.78 �0.11

7 �γ β β �γ 1.15 0.08

8 β β β �γ 1.11 �0.18

9 �γ �γ �γ β 0.94 �0.20

10 β �γ �γ β 1.01 0.12

11 �γ β �γ β 0.55 0.31

12 β β �γ β 0.86 �0.16

13 �γ �γ β β 1.19 0.02

14 β �γ β β 1.10 �0.15

15 �γ β β β 1.04 �0.25

16 β β β β 1.18 0.22

17 �β α α α 0.85 0.16

18 α α α α 0.88 0.02

19 α �β α α 1.10 0.26

20 α α α α 1.05 �0.08

21 α α �β α 0.80 �0.03

22 α α α α 1.24 0.21

23 α α α �β 0.85 0.23

24 α α α α 0.93 �0.05

25 α α α α 1.26 0.32

26 α α α α 1.26 0.10

27 α α α α 1.26 �0.17

28 α α α α 1.26 �0.11

29 α α α α 1.26 �0.07

30 α α α α 1.26 �0.05

Table 11.
CCD: predicted value.
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predicted responses is referred to as the residual. The normal probability plot of
residuals was used to examine this analysis [2, 5]. The normal probability plot of the
residuals shows that the errors are distributed normally in a straight line and are
insignificant as shown in Figure 21.

5.3 Perturbation plot: width of heat affected zone

The perturbation plot shows the effect of all the parameters on a single plot.
Figure 22 shows a perturbation plot that compares the effect of all process parameters
at the center point on bead width. WOH has been observed to increase as peak current
(A) increases, and then decreases. The plot also shows that the WOH decreases as the
base current (B) increases because no melting occurs during this stage. This plot
shows that WOH increases as the pulse frequency (C) increases. The plot also shows
that WOH increases as a pulse on time increases (D) and then decreases [2, 3].

5.4 Response surface plot: width of heat affected zone

The 3D surface plot and 2D contour effect developed by design expert 18.0 soft-
ware represent the interaction effect between process parameters and WOH as shown
in Figures 23–28. The coefficient of the linear effect of peak current and base current
is positive as given in Table 10, WOH is increased as the value of the above parameter
is increased as shown in Figure 23a of the 3D surface plot and Figure 23b of the
contour plot. Peak current and base current are both rising at the same time as WOH,

Figure 20.
Plot of experimental vs. predicted value WOH.
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Figure 21.
Normal probability plot of residual WOH.

Figure 22.
Perturbation plot of WOH.
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Figure 23.
Surface plot (a), contour plot (b) of the interaction effect AB on WOH.

Figure 24.
Surface plot (c), contour plot (d) of the interaction effect AC on WOH.

Figure 25.
Surface plot (e), contour plot (f) of the interaction effect AD on WOH.
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Figure 28.
Surface plot (k), contour plot (l) of the interaction effect CD on WOH.

Figure 26.
Surface plot (g), contour plot (h) of the interaction effect BC on WOH.

Figure 27
Surface plot (i), contour plot (j) of the interaction effect BD on WOH.
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reaching nearly 180 and 100 A, respectively, beyond which the value of WOH starts
to drop. According to Table 10, the peak current and pulse frequency's coefficient of
linear effects is both negative. WOH rises when the value of the aforementioned
parameter rises, as demonstrated in Figure 24c and d of 3D surface plots and contour
plots, respectively [2, 3]. The WOH declined beyond the peak current of 180 A and
pulse frequency of 125 Hz respectively.

According to Table 10, the coefficient of the linear relationship between peak
current and pulse on time is positive. WOH increases when the value of the afore-
mentioned parameter increases, as demonstrated in Figure 25e and f of the 3D surface
plot and the contour plot, respectively [2, 5]. WOH is increasing with simultaneously
increasing in peak current and pulse on time to about 180 A and 50% respectively
beyond which the value of WOH declines.

The coefficient of the linear effect of base current and pulse frequency is positive
as given in Table 10, WOH is increased as the value of the above parameter is
increased as shown in Figure 26g of the 3D surface plot and Figure 26h of the contour
plot. WOH rises as base current and pulse frequency increase at the same time,
peaking at roughly 100 A and 125 Hz, respectively, after which the value of WOH
begins to decrease. According to Table 10, the coefficient of linear effects for base
current and pulse on time is negative. When illustrated in Figure 27i of 3D surface
plots and Figure 27j of contour plots, WOH increases as the value of the above
parameter increases [1, 2]. The WOH declined beyond the base current 100 A and
pulse on-time 50% respectively.

The coefficient linear effect of pulse frequency and pulse on time is positive as
given in Table 10. WOH is increased as the value of the above parameter is increased
as shown in Figure 28k of the 3D surface plot and Figure 28l of the contour plot
[2, 3]. WOH is increasing with simultaneously increasing pulse frequency and pulse
on time to about 125 Hz and 50% respectively beyond which the value of WOH
declines.

6. Conclusion: Height of reinforcement

According to their greatest F-values in ANOVA Table 4, peak current and pulse
frequency are the process variables that affect the HOR the most. The optimal condi-
tions include a peak current of 160 A, a base current of 80 A, a pulse frequency of
100 Hz, a pulse on-time of 45%, and an optimal height of reinforcement that was
projected to be 1.41 mm at this optimal condition. Experiments were conducted under
these ideal conditions, as indicated in Table 12, to validate the projected optimum
values. The experimental value of 1.45 mmmatched the regression model's result very
well. The constructed regression model is thus satisfied [2].

Prediction Experiment

Level (160 A, 80 A, 100 Hz, 45%) (160 A, 80 A, 100 Hz, 45%)

HOR mm 1.41 1.45

Table 12.
Confirmatory test: HOR.
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7. Conclusion: Depth of HAZ

Peak current and pulse frequency are the most significant process parameter that
effects the DOH as indicated by their highest F-values given in the ANOVA Table 7.
The optimal conditions are a peak current of 160 A, a base current of 80 A, a pulse
frequency of 150 Hz, a pulse on-time of 45%, and an optimal HAZ depth of 1.32 mm
under this optimal condition. To verify the projected optimum values, experiments
were run under these ideal circumstances, as indicated in Table 13. The experimental
value of 1.37 mm matched the regression model's result very well. The constructed
regression model is therefore satisfied [2].

8. Conclusion: The width of HAZ

Peak current and pulse frequency are the most significant process parameter that
effects the WOH as indicated by their highest F-values given in the ANOVA Table 10.
The optimum conditions are the peak current of 160 A, the base current of 80 A,
pulse frequency of 100 Hz, pulse on-time 45%, and optimum WoH at this optimum
condition was predicted to be 1.26 mm. To validate the predicted optimum values,
experiments were carried out at these optimum conditions [2]. The experimental
value of 1.58 mm agreed closely with that obtained from the regression model as
shown in Table 14. Therefore, the regression model developed is satisfied.
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Prediction Experiment

Level (160 A, 80 A, 100 Hz, 45%) (160 A, 80 A, 100 Hz, 45%)

WOH mm 1.26 1.58

Table 14.
Confirmatory test: WOH.

Prediction Experiment

Level (160 A, 80 A, 150 Hz, 45%) (160 A, 80 A, 150 Hz, 45%)

DOH mm 1.32 1.37

Table 13.
Confirmatory test: DOH.
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Chapter 6

Analysis and Optimization of 
Process Parameters in Wire 
Electrical Discharge Machining 
Based on RSM: A Case Study
Aysun Sagbas

Abstract

In this book chapter a review and critical analysis on current research trends in 
wire electrical discharge machining (WEDM) and relation between different process 
parameters including pulse on time, pulse off time, servo voltage, peak current, 
dielectric flow rate, wire speed, wire tension on different process responses include 
material removal rate (MRR), surface roughness (Ra), sparking gap, wire lag and 
wire wear ration (WWR) and surface integrity factors was investigated. On the basis 
of critical evaluation of the available literature following conclusions are summarized. 
In addition, different modeling and optimization methods used in WEDM were 
discussed and a case study based on response surface method (RSM) including design 
of experiment (DoE) carried out to find optimal process parameters effect on surface 
roughness was conducted. In the final part of the present study was presented some 
recommendations about the trends for future WEDM researches.

Keywords: optimization, modeling, WEDM, RSM, DoE, surface quality

1. Introduction

The aim of this book chapter is to present some knowledge about the contributions 
of various researchers on WEDM process and to conduct an optimization approach 
named response surface methodology to determine the optimal process parameters. 
In addition, this book chapter is concluded by highlighting the optimal ranges of 
parameters in WEDM process for various materials and indicating the future research 
directions which will provide a reference to machine tool operators and manufacturing 
industries depending upon their demands. Moreover, this paper reviews and examines 
the various notable works in the field of WEDM and emphasis is made on optimization 
and modeling of machining parameters. The chapter also explains various advantages 
and disadvantages of different modeling and optimization methods used, and presents 
with some recommendations about trends for future WEDM researchers.

WEDM has a key role in unconventional machining method since it facilitates pro-
duction of certain materials such as zirconium, titanium and intricate shapes. Wire 
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EDM is a thermo- electrical process which material is eroded by a series of sparks 
between the work piece and the wire electrode. The part and wire are immersed in 
a dielectric fluid which also acts as a coolant [1]. In EDM process, wire movement is 
monitored quantitively to obtain three dimensional shape. EMD has been known for 
more than a half century and used to manufacture high accuracy of the workpiece 
in machining processes and metal, tool, die, etc. industries. The development of the 
WEDM process was the result of seeking a technique to machine the electrodes used 
in EDM. In the end of the 1970s, computer numerical control (CNC) system was inte-
grated with WEDM process. This integration was brought about a major evolution of 
the machining process. Moreover, the broad capabilities of the WEDM process were 
extensively exploited for any through hole machining owing to the wire, which has to 
pass through the part to be machined. It is probably the most exciting and diversified 
machine tool adopted for this industry in the last 50 years, and has various beneficial 
to use. In this process, there is no contact between electrode and work piece. Hence, 
materials of any hardness can be cut as long as they can conduct electricity. In addi-
tion, the wire does not touch the workpiece. So, physical pressure imparted on the 
workpiece is not exist, and amount of clamping pressure required to hold the work-
piece is very low [2, 3]. Schematic diagram of WEDM process is given in Figure 1.

Recently, WEDM process has been widely used in manufacturing industry such 
as metals, alloys, sintered materials, cemented carbides, ceramics and silicon because 
of making micro-parts. These different systems support WEDM process which has 
remained as a competitive and reduced cost machining option fulfilling the demand-
ing machining part requirements imposed by the short product development cycles 
and the growing cost pressures [4]. One of the most widely and commonly used and 
popular non-traditional material removal procedure which is currently often applied 
to manufacture components with complex shapes having great accuracy and preci-
sion is WEDM. Although, Wire-EDM uses a wire which acts as an electrode which is 
continuously traveling and is generally made up of thin brass, tungsten or copper, and 
is having a small diameter of 0.05–0.3 mm. Wire motion is regulated numerically to 
accomplish converted 3-dimensional shape and high precision of workpiece [5, 6]. 
Basic uses of wire electrical discharge machining incorporate extrusion tools and die, 
fixtures and gauges, models, airship and medical parts, and fabrication of stamping, 

Figure 1. 
Schematic diagram of WEDM process.
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grinding wheel form tools [7]. Moreover, WEDM has been replacing other traditional 
machining operations in many industries throughout the world namely drilling, mill-
ing, grinding, turning, taper turning, etc. The setting for the various process param-
eters required in WEDM process play crucial role in achieving optimal performance. 
The main goals of WEDM manufacturers and users are to achieve a better stability 
and higher productivity of the WEDM process. Wire electrical discharge machining 
manufacturers and users emphasize on achievement of higher machining productiv-
ity with a desired accuracy and surface finish.

Response Surface Methodology is an important technique to use in designing, 
formulating, developing, and analyzing for different scientific studies and various 
industrial products. It is well known optimization method involves mathematical 
and statistical techniques. In RSM approach the objective is to optimize the response 
that is influenced by several input variables. Moreover, it is effictive and useful in 
the improvement and development of existing studies and products. Also, it can be 
applied to solve the optimization problems in different industries and it is commonly 
used Biological and Clinical Science, Social Science, Food Science, and Physical 
and Engineering Sciences. In many different manufacturing industries, one of the 
important issues is whether the system includes a maximum or a minimum or a saddle 
point, which has a wide important in industry. Therefore, RSM has been increasingly 
used in different industries. In addition, in recent years more emphasis has been 
placed by the chemical and processing field for finding optimal regions where there 
is an improvement in response instead of finding the optimum response [8]. The first 
aim for response surface method is to find the optimum response effected various 
input variables. When there are constraints on the design data, then the experimental 
design has to meet requirements of the constraints. The second purpose is to evalu-
ate how the response changes in a given direction by adjusting the input and output 
variables [9, 10]. In generally, conventional data processing methods are not appro-
priate for investigating the process and product parameters. Many researchers have 
investigated the suitability of different empirical models to predict the changes in the 
quality parameters during different drying processes. Based on the function fitting 
technique, a response surface model in high dimensional space was fitted to show the 
relation between experiment inputs and output with minimum process knowledge. 
So, it could be used as an different alternative for conventional models like numerical 
simulation during optimization with a reduced computational cost and time accord-
ing to the other various optimization techniques. On the other hand, RSM-based 
models are only accurate for predicting the relationship between a limited number 
of input and output parameters. Box-Behnken and central composite design (CCD) 
commonly used in many research, both have its advantages [11–13].

In this study a predictive model (RS model) is developed and applied to optimize 
WEDM machining parameters using RSM approach. Experiments are carried out to test 
the the validity and accuracy of model and satisfactory results are obtained. The meth-
odology described here is expected to be highly beneficial to manufacturing industries 
such as aerospace, chemistry, textile, automobile and tool making, etc. industries.

2. Literature review: process modeling and optimization

Due to large number of process parameters and responses lots of researchers 
have attempted to improve the process capability. Some researchers have used dif-
ferent optimization techniques such as Taguchi technique, gray relational analysis 
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(GRA), design of experiment, artificial neural network (ANN) modeling, desirability 
approach and evolutionary algorithm. Lots of authors tried to model this process 
using the Taguchi method and response surface methodology approach [5, 14–18] 
which utilized response surface methodology coupled with gray-Taguchi technique. 
Further, Lin [19] have combined Taguchi method with the GRA to optimize the micro 
milling EDM performance. Similarly, hybrid approach of Taguchi gray has been used 
by Rajyalakshmi and Ramaiah [20] for multiple performance optimization of WEDM 
machined Inconel 825. In contrast to WEDM performance evaluation, Sharma [2] 
have used one factor at a time approach to investigate the effect of various WEDM 
control parameters on performance characteristics. Except conventional techniques 
of optimization, some evolutionary algorithm has been in literature such as genetic 
algorithm (GA), artificial bee colony (ABC), particle swarm optimization (PSO), 
teaching learning-based optimization (TLBO) and differential evolution (DE). These 
algorithms provide a global optimum solution instead of local optimum solutions. 
The parametric settings named optimal solution is found out based on optimization 
techniques like VIKOR based Harmony search algorithm and desirability function 
approach to get perfect surface finish during electrical discharge coating and electri-
cal discharge machining of AISI 1040 stainless steel and Nitinol respectively [5]. 
Further, statistical models have been developed by Kuppan et al. [21] to determine 
the relationship between EDM output responses and control parameters using 
response surface methodology. Similarly, Ramakrishnan and Karunamoorthy [22] 
have developed the mathematical model based on Box and Hunter central composite 
design to determine the effect of control parameters on EDM performance character-
istics. Further, Ramakrishnan and Karunamoorthy [23] presented an Artificial Neural 

Figure 2. 
Comparative study of published research work on WEDM [24].
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Network model to predict the WEDM performance of Inconel 718 alloy. Figure 2 
shows a brief outline of past research works.

In cutting operation, WEDM primarily employed either for trim cut [25–27] 
or rough cut [28, 29]. To the best knowledge of authors, this technique can be suc-
cessfully employed for machining of steel and steel alloys [30–33] aluminum and 
aluminum alloys, titanium and its alloys [27, 34] super alloys [35, 36] metal matrix 
composites [37, 38] green compact manufactured by powder metallurgy [39]. 
Investigations into the influences of machining input parameters on the performance 
of WEDM have been widely reported [25, 40–42]. Several attempts have been made 
to develop mathematical model of the WEDM process [39, 43–47]. In these works, 
productivity of the process and the surface roughness of the machined work piece 
are examined as measures of the process performance. Neural network models on 
material removal rate in EDM has been studied by Tsai and Wang [48] whereas Lee 
and Li [49] investigated on effects of process parameters in EDM using tungsten 
carbide as work material. Qu et al. [50] have, through examination of literature, 
concluded that research has not been directed towards EDM applications in the area 
of newly developed engineering materials and the boundaries that limit the mate-
rial removal rate (MRR). Scott, Boyina et al. [43] used a factorial design method, to 
determine the optimal combination of control parameters in WEDM considering the 
measures of machining performance as metal removal rate and the surface finish. 
Tarng and Chung [51] carried out a neural network model to estimate cutting speed 
and surface finish using input parameters such as pulse duration, pulse interval, 
peak current, open, servo reference voltage, circuit voltage, electric capacitance and 
table speed. Trezise [52] presents that essential limits on machining accuracy are 
dimensional consistency of the wire and the positional accuracy of the work table. 
Sarkar et al. [25] studied the WEDM of titanium aluminide. They also attempted to 
develop an appropriate machining strategy for a maximum process yield criterion. 
A feed forward back propagation neural network was used to model the machining 
process. Ali [53] investigated on the effect and optimization of machining parameters 
on the surface roughness in the WEDM process of AlCu-TiC-Si P/M composite. The 
optimal machining parameters were obtained by using Taguchi experimental design 
method. The variation of MRR and surface roughness with machining parameters is 
mathematically modeled by using non-linear regression analysis method. Patil and 
Brahmankar [54] examined the effect of various input parameters such as pulse on 
time, pulse off time, ignition pulse current, wire speed, wire tension and flushing 
pressure on cutting speed and surface finish of Al/SiCp by using Taguchi methods. 
Shandilya et al. [38] concluded that to achieve higher value of the average cutting 
speed, lower value of voltage and higher value of pulse-off time should be used dur-
ing WEDC of SiCp/6061 Al MMC. In the most recent work, They studied the effect of 
input process parameters on surface surface roughness during WEDM of SiCp/6061 
Al MMC. There are some researches that used traditional approach for modeling 
WEDM like Tarng [51] which utilized feed forward neural network to model and 
simulated annealing (SA) algorithm is then applied to the neural network to solve 
the optimal cutting parameters problem. Other one of them is Lin et al. [19] which 
used Taguchi method with fuzzy logic for modeling and optimization. In addition, 
Huang [30] studied Wire-EDM based on Gray relational and statistical analyses. 
Furthermore Kuriakose et al. [55] applied data mining approach. Yuan et al. [56] used 
incorporating prior model into Gaussian processes regression for WEDM process 
modeling. Also Caydas, et al. [32] used neuro-fuzzy inference system (ANFIS) to 
model this process. Besides Cheng et al. [42] utilized a neural network integrated 
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simulated annealing approach for optimizing WEDM. Kapil K. at all [57] investigated 
the cutting rate and recast layer thickness while designing the servo feed, pulse on-
time, servo voltage, and pulse off-time with the Box-Benkhen design of RSM. Kumar 
et all [45] the Box-Benkhen design of response surface methodology based and 
machine learning algorithm was applied for the WEDM process, to simultaneously 
optimize SR, MRR of CP-Ti G2 [58].

3. Case study

In this study, desired surface roughness is obtained based on four input parameters 
by creating an experimental model of AISI 4030 steel and using response surface 
methodology. This study has shown that RSM model presented here has overcome 
WEDM complex that results in satisfactory surface quality characteristics. Each 
experimental test was conducted twice and averaged as Ra mean values to acquire 
database with high confidence. Furthermore, experiments were designed using the 
method that was introduced by Box and Hunter [59]. The experimental runs were 
performed as per the central composite design which is a type of response surface 
methodology designs. Response surface methodology has been used to plan and 
analyze the experiments. CCD was used in order to fit the second order response 
in surface as well as in optimization methods for finding relation between various 
individual input parameters and reactions. Table 1 demonstrates coded value and 
actual values of individual parameters, and Table 2 shows machining conditions in 
WEDM process.

Workpiece AISI 4340

Electrode CuZn37

Workpiece dimensions (mm) 150 × 150 × 10

Table feed rate (mm/min) 8.2

Pulse interval time (s) 18

Wire diameter (mm) 0.25

Wire tensile strength (N/mm2) 900

Cut-off length (mm) 0.8

Table 2. 
Machining conditions in WEDM process.

Parameter Levels

−2 −1 0 1 2

Open circuit voltage (V) 60 120 180 240 300

Wire speed (m/min) 2 4 6 8 10

Dielectric flushing 
pressure (kg/cm2)

6 9 11 14 16

Pulse duration (ns) 10 37 50 725 900

Table 1. 
Experimental factors and factor levels.
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3.1 Process parameters used in study

The most important performance measures in WEDM are metal removal rate, sur-
face finish, and cutting width. They depend on machining parameters like discharge 
current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow 
rate. In WEDM process, it is seen that, input process parameters such as pulse-on 
time, pulse-off time, servo voltage, peak current, wire feed rate, wire tension, wire 
offset, water pressure, servo feed, wire material are having significant influence on 
process parameters named surface roughness, kerf width, material removal rate, 
wire wear rate, surface integrity aspects, etc. [3–9, 16–18]. The various input process 
parameters of WEDM and their inter-relationship is presented using Ishikawa’s cause-
effect diagram shown in Figure 3.

In this study, open circuit voltage, wire speed, and dielectric flushing pressure were 
selected as input parameters and surface roughness was selected as output parameter.

3.2 Statistical analysis and modeling using RSM

In Response surface methodology approach responses of interest is influence by 
several variables and in which the objective is to optimize these responses [59, 60]. In 
this method the effects of the noise factors have been considered. In addition, statistical 
optimization model can overcome the limitation of classical methods to obtain the opti-
mum process conditions. Predictive model (RS model), which is an analytical function, 
in predicting response surface is formulated as following polynomial function:

 ε
= = =
∑ ∑∑

1 1 1

n n n

0 i i ij i j
i i j

Y = a + a X + a X X +…+                                         (1)

where Y is the desired response, a0 is constant, ai and aij represent the coefficients 
linear, quadratic terms, respectively, X1 reveals the coded variables corresponding 
to the studied machining parameters, input variables, n is the number of the model 
parameters, ε is the random error.

Figure 3. 
Cause and effect diagram for WEDM process parameter [24].
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In this study, a predictive model was developed to reach low surface roughness in 
terms of cutting parameters for milling operations. RSM design was tested with 30 
data sets of central composite design of experiment. Surface roughness (Ra) measure-
ments were made by using Phynix TR–100 portable surface roughness tester. Surface 
roughness measurements were made by using Phynix TR–100 portable surface rough-
ness tester. To identify the significant factors for WEDM process, analysis of variance 
(Table 3) was employed by using Design Expert software.

This table demonstrates that the terms in the model have a significant effect on 
the responses. It is found that, the open circuit voltage has the most dominant effect 
on the surface roughness followed by the pulse duration and wire speed respectively. 
Goodness of fit for model generated by experimental data was evaluated and analyzed 
based on ANOVA. This includes the tests for significance of model, their coefficients 
and lack of fit model adequacy. ANOVA is used to create, access and analyze the 
experimental test data and goodness of fit model is generated afterwards. Through 
the backward elimination process, the final quadratic models of response equation in 
terms of coded factors are as follows:

 

=114+17.73X +3.27X +1.27X +3.47X +15.85X X 2.65X X 3.30X X1 4 1 1 1 42 3 2- 3-
2 2 2 2+0.91X X +8.019X X 1.36X X –0.75X –0.111X +0.15X –0.44 X4- 4 1 42 3 2 3 2 3

Y

      (2)

When the regression model above is examined, change in wire speed has signifi-
cant impact on surface roughness. In this context, as wire speed increases, increase 
in surface roughness is observed. There is a strong linear relationship between the 
surface roughness and open circuit voltage, whereas there is a weak relationship 
between dielectric flushing pressure between surface roughness. It proves the com-
plex influence of the adopted input variables on the analyzed value of the surface 
roughness. This model includes experimental test data that shows models importance, 
coefficients, and inadequacy in model fit.

In this study experimental surface roughness values were compared with surface 
roughness predicted values of the RS model. It was observed that the prediction of 
surface roughness closely agrees with that of the experimental values. Moreover, 
measured surface roughness has been correelated well with the predicted surface 
roughness values. It was also found that the RS model for the predicted values gener-
ates an average best fit percentage error of 6.83%. The involvement of process factors 
on surface roughness for WEDM process was analyzed with the help of surface graphs 
for the selected process factor combinations are presented in Figures 4–15. Figures 4 
and 5 represent interaction graphs wire speed between open circuit voltage and open 
circuit voltage between dielectric flushing pressure graphs respectively.

Figure 4 shows that at lower wire speed the effect of open circuit voltage on sur-
face roughness is statistically insignificant. However, at higher wire speed the effect 
of open circuit voltage on surface roughness is important and statistically significant. 
Similarly, with the rise in wire speed value, the lower value of open circuit results 
better surface roughness.

It is demonstrated that in Figure 5, at lower or higher open circuit value the effect 
of dielectric flushing pressure on surface roughness is very poor. Figures 6 and 7 rep-
resent interaction graphs wire speed between pulse duration and dielectric flushing 
between pulse duration graphs respectively.

As seen in Figure 6 at lower pulse duration the effect of wire speed on surface 
roughness is not statistically important, whereas, at higher pulse duration level this 
effect partly more significant. When the wire speed increases at low pulse duration 
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Source Sum of squares df Mean Square F-value p-value

Model 13,239.59 14 945.68 37.98 < 0.0001

X1- Open circuit 
volt

7211.01 1 7211.01 289.58 < 0.0001

X2- Wire speed 256.96 1 256.96 10.32 0.0058

X3- Dielectric flush. 
pr.

38.43 1 38.43 1.54 0.2332

X4- Pulse duration 288.36 1 288.36 11.58 0.0039

X1X2 4021.78 1 4021.78 161.51 <0.0001

X1X3 112.20 1 112.20 4.51 0.0508

X1X4 174.17 1 174.17 6.99 0.0184

X2X3 13.27 1 13.27 0.5328 0.4767

X2X4 1072.40 1 1072.40 43.07 < 0.0001

X3X4 29.40 1 29.40 1.18 0.2943

X1
2 15.76 1 15.76 0.6329 0.4387

X2
2 0.3427 1 0.3427 0.0138 0.9082

X3
2 0.6232 1 0.6232 0.0250 0.8764

X4
2 5.54 1 5.54 0.2223 0.6441

Residual 373.52 15 24.90

Lack of fit 318.50 10 31.85 2.89 < 0.0001

Pure error 55.02 5 11.00 < 0.0001

Cor total 13,613.11 29 < 0.0001

Table 3. 
The analysis of variance (ANOVA) on the performance of surface roughness.

Figure 4. 
Interaction graph wire speed and open circuit voltage on surface roughness.
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value surface roughness increases. Figures 7 and 8 show that the interaction graphs 
dielectric flushing pressure between pulse duration and dielectric flushing pressure 
between wire speed graphs respectively.

Figure 7 exhibits that the increasing and decreasing dielectric flushing pressure 
and pulse duration values it has no statistically significant effect on surface roughness. 
In Figures 8 and 9 they are represented the interaction graphs wire speed between 
dielectric flushing pressure and open circuit voltage between pulse duration graphs 
respectively.

Figure 5. 
Interaction graph open circuit voltage and dielectric flushing pressure on surface roughness.

Figure 6. 
Interaction graph wire speed between pulse duration on surface roughness.
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As seen in Figure 8 in case of increasing or decreasing wire speed and dielectric 
values the magnitude of the surface roughness does not change significantly in level 
of significant 5%.

Figure 9 demonstrates the variation of pulse duration and open circuit voltage 
concerning the surface roughness. It can be causes that increasing surface roughness 
with the increase in pulse duration when the open circuit increases. Similar trends 
were observed that lower pulse duration the effect of open circuit on surface rough-
ness is poorer statistically. Figures 10–15 represent 3D contour plot graphs input and 

Figure 7. 
Interaction graph dielectric flushing pressure between pulse duration on surface roughness.

Figure 8. 
Interaction graph wire speed and dielectric flushing pressure on surface roughness.
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response variables. Figures 10 and 11 represent 3D contour plot graphs wire speed 
between open circuit voltage and open circuit voltage between pulse duration graphs 
respectively.

As seen in Figure 10 it was identified that the higher wire speed with the lower open 
circuit value results better surface roughness. Moreover, when wire speed is increased in 
case of lower open circuit voltage the value of surface roughness is very poor.

Figure 11 exhibits the surface roughness decreases with an decrease in open-
circuit voltage and increase pulse duration. Also, higher pulse duration with lower 
open circuit voltage the value of surface roughness is minimum. Figures 12 and 13 

Figure 9. 
Interaction graph open circuit voltage and pulse duration on surface roughness.

Figure 10. 
Contour plot graph wire speed and open circuit voltage on surface roughness.
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represent pulse duration between dielectric flushing pressure and wire speed between 
dielectric flushing pressure 3D contour plot graphs respectively.

It was noticed from Figure 12 the lower magnitude of dielectric flushing pressure 
in case of lower wire speed value decreases surface roughness. Figures 13 and 14 
represent dielectric flushing pressure between wire speed and pulse duration between 
wire speed 3D contour plot graphs respectively.

As seen in Figure 13 if dielectric flushing pressure is increased when wire speed 
is decreased, decreasing in surface roughness is observed. It was perceived that when 
the higher value of dielectric flushing pressure in case of lower wire speed the value of 
surface roughness is very poor.

Figure 11. 
Contour plot graph pulse duration and open circuit voltage on surface roughness.

Figure 12. 
Contour plot graph pulse duration between dielectric flushing pressure on surface roughness.
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Figure 14 shows that at low wire speed with low pulse duration surface roughness 
value increases. The low values of dielectric when higher pulse duration may cause surface 
roughness also reduces. In addition, it is predictable from Figure 14, the combination of 
pulse duration and dielectric in lower range gives a good surface finish. Figure 15 repre-
sents dielectric flushing pressure between open circuit voltage 3D contour plot graph.

From Figure 15 with the increase in wire speed in case of lower open circuit 
voltage, it can be obtained lower surface roughness. Furthermore, increasing of high 
of dielectric flushing pressure in case of lower dielectric leads to decreasing surface 
roughness in WEDM process.

Figure 13. 
Contour plot graph wire speed and dielectric flushing pressure on surface roughness.

Figure 14. 
Contour plot graph wire speed and pulse duration on surface roughness.
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It is evident that, a predicted optimum surface roughness obtained from the 
response surface and contour plots by using RSM, a pulse duration of 346 (ns), open 
circuit voltage of 142 (V), wire speed of 8 (m/min) and dielectric flushing pressure of 
12 (kg/cm2) is 2.63(μm). The objective of developed model is to establish the quanti-
tative relationship between output and input control parameters. It is seen that, RSM 
model proposed here in has resolved the complex of WEDM process that results in 
satisfactory surface quality characteristics. Hence, the experimental results confirm 
that the developed model predicts effectively and the optimal process parameters 
significantly improve in the WEDM process. As a result, predicted optimum surface 
roughness was acquired. Results from the adopted design of the experiment, where 
the explanatory variables were determined independently of each other, is a desirable 
feature because it indicates the uniqueness of the prediction.

4. Conclusions and future scope

This study mainly focuses on the development of empirical model of AISI 4340 
steel in WEDM process to obtain the desired surface roughness in terms of four 
prominent input parameters using response surface methodology. In WEDM pro-
cess, optimization of the response variable is very important and essential problem 
for various scientific studies and manufacturing industries. Because WEDM is an 
expensive production process and widely used in many manufacturing process such 
as aerospace, chemistry, textile, automobile and tool making industries. The essential 
purpose of the WEDM process is to achieve an accuracy and efficiency in produc-
tion process. Several researchers have studied with different methods to improve 
the surface quality and increase the material removal rate of the WEDM process. 
However, the problem of selecting the cutting parameters in the WEDM process 
is not completely solved. Still there is lack of information about different WEDM 
wire types. Hence, more research should be done about comparing different inputs 

Figure 15. 
Contour plots graph dielectric flushing pressure and open circuit voltage on surface roughness.
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on different responses. Finally, it seems that more researches can be strength the 
capabilities of WEDM process significantly to improve the machining productivity, 
accuracy and efficiency. From literature review it is obvious that most of the research-
ers examined lots of number of process parameters at a time to model and optimize 
various responses, which may not yield accurate optimal values for the process. 
Further, most of the researchers include both academics and applicants have given 
the importance to individual and multi -response modeling and its optimization. The 
proposed RSM approach can effectively assist engineers in determining the optimal 
process parameter settings for WEDM process for individual response variable. In 
the future, many studies should be made to investigate the process capability during 
WEDM of powdered products and multi response optimization on WEDM process by 
using integrated optimization methods.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 7

Optimization of Baker’s Yeast
Production on Grape Juice Using
Response Surface Methodology
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Abstract

The purpose of this study is to complete as an example the fermentation conditions
allowing the production of Saccharomyces cerevisiae yeast biomass in large quantities
using the juice as the same carbon source. Determination of the best of five factors
affects the production of dry biomass by baker’s yeast. The optimal value of the five
factors affecting the process of biomass production by the baker’s sourdough was
determined. The experimental design was performed using CCD (Central Composite
Experimental Design), and the response surface methodology method was used to
determine the best possible amount of production of yeast and has reached (41.44 g/L)
after 12 hours of fermentation, under the following optimal conditions (temperature
(30.11°С), pH (4.75), sugar concentration (158.36 g/L), the ratio of carbon to nitrogen
(an essential nutrient for yeast growth) that is (11.9), and initial concentration of yeasts
(2.5 g/L). Three kinematic models (Monod, Verhulst, and Tessier) were also selected for
the purpose of studying the kinetic performance of S. cerevisiae yeast, and the best
results were obtained based on the Verhulst model. The Leudeking Piret model has also
been successfully used to estimate substrate during fermentation.

Keywords: Saccharomyces cerevisiae, response surface methodology, kinetic models,
assumption, statistics

1. Introduction

Fermentation is one of the oldest methods used by humans since ancient times to
preserve food and improve its organoleptic properties. More than 5000 fermented
foods and beverages are produced worldwide, from alcohol, beer, and vinegar to
cheese, yogurt, sourdough bread, olives, sausages, kimchi, and soybean paste [1].

Fermentation is simply the biochemical transformation of raw materials which is
supported by the synthesis and stabilization of bacteria which convert sugars into
simple acids, alcohols, and carbon dioxide to improve the flavor, texture, and aroma
of processing and extend the shelf life of fermented products. Goods. During fermen-
tation, many secondary metabolites including vitamins, antioxidants, and bioactive
compounds are formed by the microbial community, contributing to the nutritional
and nutraceutical value of the final product [2].
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There has also been a rapid and significant development in fermentation technol-
ogies in recent years after understanding the bio-physiology of microorganisms and
controlling it. Among this biology is the yeast, which has received more attention after
recent developments in understanding its physiology [3].

Yeasts are micro-organisms, single-celled, unicellular eukaryotes. Their shapes and
structure differ from one species to another. They are spherical or oval in shape and
their dimensions range between 5 and 30 μm in length and 3–10 m in width. The yeast
multiplies quickly and grows well in the contained environment. On sugars where
they multiply by budding or by division [4, 5]. Yeasts play vital roles in food biotech-
nology, especially in fermented products [6].

S. cerevisiae yeast is the most important type of yeast due to its use in many
industrial fields. It is used in the production of food, bread, pastries, ethyl alcohol,
beer, wine, and as well as in the production of single-cell protein and a number of
medicinal foods [7, 8].

S. cerevisiae yeast is considered to be the most important product of biotechnology
due to its widespread use in the industrial field [9].

S. cerevisiae biomass is produced by using bioreactors that contribute to controlling
growth conditions and the production is carried out according to batch or fed-batch
fermentation system [10].

Baker’s yeast industrially relies on a variety of disciplines, including variations of
different generations, times and stages of aeration, differentiation of bioreactors, and
control of the final stage of cultivation [11]. It is an aerobic process based on the
expansion of cells from pure culture to larger bioreactors by increasing the volume at
each stage of expression in the sugar medium [12].

Commercial bread yeast comes in three forms: Pressed yeast that is sold in the
form of pressed briquettes or cubes wrapped with wax paper or cellophane, and its
shelf life does not exceed one week from the date of its production due to the speed of
its corruption. Active dry yeast is sold in airtight containers and needs to be
reactivated before use, its cells are about 8–10% moisture and its shelf life ranges from
six months to a year depending on the storage temperature. The instant dry yeast
contains 4–5% moisture and its shelf life reaches more than a year and is added to the
dough directly without the need for revitalization [13].

The global yeast market is estimated to be valued at USD 3.9 billion in 2020 and is
projected to reach USD 6.1 billion by 2025 [14].

Molasses is the most used raw material in the production of Baker’s yeast, it may be
sourced from sugar beet or sugar cane, and contains about 50–55% of fermentable
sugars, some vitamins and minerals that are important in cell proliferation, also any
substance containing fermentable sugars can be used such as the date and grape
juices [15].

In the last years, the price of molasses has increased because of their use in other
industrial applications such as animal feeding or bioethanol production [16], thus
rendering the evaluation of new substrates for yeast biomass propagation a trending
topic for biomass producers’ research. New assayed substrates include molasses mix-
tures with corn steep liquor (20:80), different agricultural waste products [17], and
other possibilities such as date juice or agricultural waste sources, also called wood
molasses that can be substrate only for yeast species capable of using xylose as a
carbon source [18].

In this research, the possibility of using grape juice to produce a good yield from
the yeast was studied in this study. Grape juice was chosen because it has a chemical
composition similar to the chemical composition of molasses in terms of its good
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content of hexane-sugars and its richness with many important nutrients for the
growth of yeast cells, in addition to the fact that grape cultivation is spread in
various parts of the world, including Syria, which is one of the grape-producing
countries.

During the last war period, Syria was exposed to difficult economic conditions and
the suspension of the work of the only sugar factory in the country, and this was
accompanied by the suspension of the yeast factory and the tendency to import yeast.
So, the researchers went to study the possibility of an alternative or additional option
for molasses that supports yeast production, and this is in line with the researchers’
interest. In different parts of the world studying the possibility of using available raw
materials to support biotechnology industries and finding many options or alterna-
tives that support any vital industry. The Syrian Arab Republic is the richest country
in the Middle East in the cultivated varieties of grapes, and the number of varieties is
about 100 varieties spread across the country where the most important varieties are
spread, which are four varieties that represent 85 percent of the total grape production
(Zaini 15%, Baladi 20%, Salti 20%, and Heloani 30%). The main objective of the
present work is to study the optimization of S. cerevisiae biomass production, using
grape juice as the only source of carbon, as grape juice is a good source of carbon and
many important nutrients for the growth of yeast, and it has a chemical composition
close to the chemical composition of molasses [19].

The efforts of many researchers are directed toward improving various biological
manufacturing processes [20], including fermentation processes, with the aim to
determine the best conditions for the production of the required product, as well as
with the aim to solve the problems that may face the required manufacturing process,
reaching the highest possible production of the final product and reducing the costs of
the manufacturing process as possible [21, 22].

Several statistical experimental design methods have been used to optimize bio-
logical processes [23, 24].

These methods, including the central composite experimental design (CCD), are
characterized by reducing the number of experiments required, reducing financial
and energy costs, reducing the time required, as well as reducing the reagents and
materials required during work [25, 26].

The central composite experimental design (CCD) is one of the methods that
contributed to the improvement of a number of biological processes such as the
production of antibiotics, enzymes, organic acids, and ethanol [27, 28].

The study was conducted by selecting the best for five measurements (tempera-
ture, initial pH, sugar content in the juice, carbon to nitrogen ratio, and primary yeast)
in order to get high yields of yeast using optimization with the surface response
methodology method, we use grape juice as carbon source for cell growth and produce
S. cerevisiae at high performance, and finally predict the biomass production process
with three kinetic models.

2. Material and methods

2.1 Origin and reactivation of the yeast S. cerevisiae

The yeast used in this study is a commercial yeast from the sigma company, it is a
dry powder form of S. cerevisiae (ATCC20408/S288c). This yeast needs to be
reactivated before use with a suitable nutrient medium Yeast Peptone Glucose Agar
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(YPGA) consisting of 20 g/L agar, 10 g/L yeast extract, 10 g/L glucose, 10 g/L
peptones with a pH 6, with incubated at 30°С for 24 h.

2.2 Preparation of grape juice

The Baladi grape (Figure 1) was chosen and it is one of the varieties available
in Syria. Its production reaches 20% of the grape production. It is a local variety that is
distinguished by the size of its large clusters and has a single conical shape, and the
grains are spherical in shape, with a large size, a yellowish-white color, and a thin
crust in a light pink color. The pulp is flaky, has a good taste, and has a distinctive
flavor, one of the late-ripening varieties, and it is one of the famous and luxurious
table varieties, suitable for remote transportation and long winter storage.

The grape is obtained from local markets. The grape berries were removed from
their clusters and cleaned and washed with warm water. The juice was extracted by
breaking and pressing in a doubly folded cloth, then the juice was pasteurized at 85°С
for 3 minutes.

2.3 Preparation of culture medium based on grape juice and inoculums

The juice resulting from the above preparation was supplemented with mineral
salts: 0.44 g of magnesium sulphate, 12.70 g of urea, and 5.30 g of ammonium
sulphate. Finally, the medium was placed in 250 mL deltas at a volume of 100 mL per
well and sterilized at 120° C for 20 min. The preculture was obtained by inoculating
two colonies of Saccharomyces cerevisiae yeast in 250 mL flasks containing 100 mL of
juice as mentioned above. Pre-cultures were incubated at 30°C for 3 h and then used
as inoculum for potassium biomass production [29].

Figure 1.
The Baladi grape.
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2.4 Statistical design of experiments

2.4.1 Factor selection and organization of experiments

Five independent variables were selected (temperature, initial pH, concentration
of sugars in grape juice, the ratio of carbon to nitrogen, and initial concentration of
yeasts).

In a previous study, carried out by Naser and Abdelrahman [30], with the aim of
determining the optimal conditions for producing baker’s yeast using sugar cane
molasses and achieving the best yield and lowest production cost, the best results were
obtained when using the concentration of sugars within the range (14–18) %, Yeast
inoculum level 2 to 3 g/L, agitation speed between 150 r.p.m. and 200 r.p.m., adding
(40–50) % urea and ammonium sulfate at pH = 5.

In another study by Muhammad et al. [31], the baker’s yeast production process
was improved and the effect of various physical and chemical factors on the produc-
tion of yeast cells was evaluated. The optimal conditions were determined to obtain
the maximum possible growth of yeast cells at a concentration of sugars equal to
100 g/L, the agitation speed at 150 r.p.m., at pH = 4.5, and T = 28°С.

Optimization of baker’s yeast production using date juice as the sole carbon source
using the response surface methodology method has been studied by Ali et al. [32] and
the study showed the success of using date juice in obtaining a good yield of the yeast
biomass at the initial conditions of the fermentation process (sugar concentration
70.93 g/L, temperature 32.9°С and pH 5.35).

A study carried out by Taleb et al. [33] showed that the use of ammonium sulfate
and urea as a source of nitrogen during the production of break’s yeast by (50–50) %
contributed to improving production yield by more than 36%, and adding thiamine
vitamin at a concentration of 0.6 had a positive role in improving production by more
than 6%.

A study by Sokchea et al. [34] indicated that the best amount of biomass for yeast
is obtained when the ratio between the concentration of glucose and nitrogen (C/N)
used during the fermentation process is equal to 10.

After reviewing previous studies, the lower and upper levels of studied variables
were selected, Table 1 shows the lower and upper levels of studied variables.

A program Minitab 19 software was used to optimize the Baker’s yeast production
The CCD matrix is composed of a complete factorial design, 32 cube points, eight
center points in a cube, 10 axial points, and four center points in axial design variable
at a distance of α = 2.366 and two-level factorial. Each experiment was carried out
twice and the average value is used.

variables Lower level (�1) Upper level (+1)

X1 = Temperature (°С) 25 35

X2 = Initial pH 3 6

X3 = Concentration of sugars (g/L) 100 200

X4 = The ratio of carbon to nitrogen 8:1 15:1

X5 = Initial concentration of yeasts (g/L) 2 3

Table 1.
The lower and upper levels of studied variables.
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2.4.2 Effect estimation

The real values X have been calculated according to Eq. (1).

X ¼ x� x
˚

� �
=△x (1)

Where, X is the coded value for the independent variable, x, is the natural value,
x0, is the natural value at the center point, and ΔX is the step change value (the half of
the interval (�1 + 1)).

Regression Equation in Uncoded Units:

Yi ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4 þ β5X5 þ β11X1
2 þ β22X2

2 þ β33X3
2

þ β44X4
2 þ β55X5

2 þ β12X1X2 þ β13X1X3 þ β14X1X4 þ β15X1X5

þ β23X2X3 þ β24X2X4 þ β25X2X5 þ β34X3X4 þ β35X3X5 þ β45X4X5

(2)

Yi is the predicted response (the Biomass production (g/L). The calculation of the
effect of each variable and the establishment of a correlation between the response Yi
and the variables X were performed using a Minitab 19 Statistical Software (Minitab,
Inc., State College, PA, USA) [32].

2.5 Statistical analysis

The statistical analysis was performed using (ANOVA), in order to validate the
square model regression. It included the following parameters: coefficient of determi-
nation R2; Fisher test (F); p-value and Student test (t); and the statistical significance
test level was set at (probability <0.05) [32].

2.6 Validation of biomass production in optimum medium

After completing the optimization of the production of baker’s yeast in grape juice,
the optimum values obtained, and representative of the fermentation conditions were
confirmed by conducting an experiment.

The experiment was carried out on 250 mL shake flasks and the agitation speed
was 200 r.p.m. To do this, 100 mL of grape juice was seeded with 11 mL of the yeast
pre-culture and the pH of the medium was adjusted to the obtained value of 4.75.
Shake flasks were sterilized at 120°С for 20 min and incubated at 30°С (optimum
Value) for 12 h.

2.7 Analytical methods

2.7.1 Determination of total reducing sugars

1 ml of the sample is taken after filtering it and placed in a glass tube, then 98%
sulfuric acid and 0.6 mL of 5% (w/v) phenol were added and mixed well after which it
is left at room temperature for 30 minutes, the absorbance is measured using a
spectrophotometer (Analytik Jena- specord 200uv-vis spec.) at a wavelength of
490 nm, the concentration of the reducing sugar is calculated depending on the
calibration curve, which was formed between different concentrations of standard
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solutions of glucose and between the absorbance values corresponding to each
concentration [35].

2.7.2 Determination of biomass concentration

1 ml of the sample is taken and subjected to a centrifugation process for 5 minutes
at 5000 r.p.m., after which the supernatant is collected on the surface and washed
twice with water and then placed in a drying oven at 105°С, the drying continues until
the weight is stable [36].

2.7.3 Determine the fermentation power of the obtained yeast

6.75 g of the sugar-phosphate mixture was mixed with 75 ml of calcium sulfate
solution in the beaker. Then add 0.893 g of dry baker’s yeast. Stir well to disperse the
yeast. Then the fermentation power was measured using fermentometer (RHEO
FERMENTOMETER F4) [37].

2.8 Modeling

In order to fit the experimental data, three kinetic models (Monod, Verhulst, and
Tessier) were chosen.

Monod kinetic model is a substrate concentration-dependent, Verhulst kinetic
model is an unstructured model that depends on biomass, and Tessier is an unstruc-
tured model for a substrate concentration-dependent [32].

The Kinetic parameters (μmax, Ks, and Xm), were determined after obtaining the
curve fitting method of each model performed using Excel software (2016 Microsoft
Corporation), and the results showed in Table 2, [38].

2.9 Profile prediction of biomass and substrate concentration

The integration of the Verhulst model was used (Eq. (3)), in order to predict the
experimental profile of biomass of S. cerevisiae during time [32].

X ¼ x0 ∗
exp

μ
m

∗ t� �
= 1� x0=xmð Þ ∗ 1� exp

μ
m

∗ t� �� �
(3)

Kinetic
Models

Equations Linearized form Symbols

Monod
model

μ = μmax*
(s/(s + ks))

(1/μ) = (ks /μmax) +
(1/s) + (1/ μmax)

μ: is the specific growth rate (h�1).
μmax: is the maximum specific growth

rate (h�1).
KS: is the half-saturation constant (g/L).

S: is the concentration in limiting
substrate (g/L).

X: is the biomass concentration (g/L).
Xm: is the Maximum biomass

concentration (g/L).

Verhulst
model

μ = μmax*
(1-x/xm)

μ = μmax-(μmax/xm)*x

Tessier
model

μ = μmax*
(1-exp�k

s
*s)

ln(μ) = (1/ks)*s + ln(μmax)

Table 2.
Unstructured kinetic models to determine the kinetic parameters. [32].
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The substrate model (Leudeking Piret) as described below (Eq. (4)) was also
applied to predict an experimental profile for total reducing sugars consumption by
S. cerevisiae during the time fermentation.

�ds=dt ¼ p ∗ dx=dtð Þ þ q ∗ x (4)

Where (p = 1/yx/s) and q is a maintenance coefficient (q = μmax/yx/x0.) Eq. (4) is
rearranged as follows:

�ds ¼ p ∗dxþ q
ð
x tð Þ ∗dt (5)

Substituting Eq. (3) in Eq. (5) and integrating with initial conditions (S = S0; t = 0)
give the following Equation:

S ¼ s0 � p x0 exp
μ
m

∗ t=1� x0=xmð Þ ∗ 1� exp μm ∗ tð Þ� �

�q ∗ xm=μmð Þ ∗ ln 1� x0=xmð Þ ∗ 1� exp μm ∗ tð
(6)

3. Results and discussion

The improvement of dry yeast biomass production was studied by determining the
optimum values of the following factors (temperature, initial pH, concentration of
sugars in grape juice, the ratio of carbon to nitrogen, and initial concentration of yeasts)
that have their influence on the production process using the central composite experi-
mental design, and the central composite design for biomass production in Table 3.

Ammonium sulfate and urea were added as a source of nitrogen in a ratio of (50–
50) %, taking into account the achievement of the specified ratio between carbon and
nitrogen for each experiment, and the agitation speed used during fermentation was
200 r.p.m.

Using the results obtained in diverse experiments, the correlation gives the influ-
ence of temperature (x1), initial pH (X2), total sugar concentration (X3), the ratio of
carbon to nitrogen (x4), and initial concentration of yeasts (x5) on the response. This
correlation is obtained by Minitab 19 software and expressed by the following second-
order polynomial (Eq. (7)).

Y ¼ �261:1þ 8:96 Tþ 16:10 pHþ 0:353 Cþ 6:55 C=Nþ 49:8 X

� 0:1527 T ∗T� 1:769 pH ∗ pH� 0:001414 C ∗C

� 0:3025 C=N ∗C=N–9:30 X ∗Xþ 0:0316 T ∗ pHþ 0:00096 T ∗C

þ 0:0206 T ∗C=N� 0:117 T ∗Xþ 0:00414 pH ∗C� 0:0390 pH ∗C=N

� 0:165 pH ∗Xþ 0:00163 C ∗C=Nþ 0:0096 C ∗X� 0:016 C=N ∗X

(7)

Table 4 shows the coefficient regression corresponding with t and p-values for all
the linear and the analysis of variance (ANOVA), quadratic, and interaction effects of
parameters tested. A positive sign in the t-value indicates a synergistic effect, while a
negative sign represents an antagonistic effect of the parameters on the biomass
concentration [39].
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Run Actual Values (Yi): Biomass (g/L)

Temperature
(°С)

Initial
pH

Concentration
of sugars (g/L)

The ratio
of

carbon
to

nitrogen

Initial
concentration
of yeasts (g/L)

experimental
Value

Predicted
Value

01 35.00 6.000 200.0 8.000 2.000 22.41 23.0429

02 25.00 6.000 200.0 15.000 2.000 20.81 23.1708

03 25.00 3.000 100.0 15.000 2.000 20.01 19.6875

04 25.00 6.000 200.0 15.000 3.000 21.54 24.1742

05 25.00 3.000 200.0 8.000 2.000 19.18 18.5480

06 35.00 6.000 200.0 15.000 3.000 23.02 25.4896

07 25.00 6.000 200.0 8.000 2.000 20.02 21.9975

08 25.00 3.000 100.0 15.000 3.000 19.91 20.2285

09 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

10 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

11 35.00 3.000 200.0 8.000 3.000 18.91 19.0818

12 25.00 3.000 200.0 15.000 2.000 19.71 20.5400

13 35.00 3.000 100.0 15.000 2.000 18.84 20.2692

14 35.00 3.000 100.0 8.000 3.000 17.73 17.4531

15 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

16 35.00 6.000 100.0 15.000 3.000 18.76 21.4784

17 35.00 3.000 200.0 8.000 2.000 17.79 18.6446

18 25.00 6.000 100.0 15.000 2.000 20.11 21.0771

19 35.00 6.000 100.0 8.000 2.000 20.23 21.1317

20 25.00 6.000 100.0 15.000 3.000 20.81 21.1218

21 35.00 6.000 100.0 8.000 3.000 20.91 20.1139

22 35.00 3.000 200.0 15.000 2.000 22.07 22.0803

23 25.00 6.000 100.0 8.000 2.000 21.06 21.0451

24 25.00 6.000 200.0 8.000 3.000 21.92 23.1122

25 35.00 6.000 200.0 15.000 2.000 23.07 25.6599

26 25.00 6.000 100.0 8.000 3.000 20.61 21.2010

27 35.00 3.000 200.0 15.000 3.000 21.41 22.4063

28 25.00 3.000 200.0 15.000 3.000 20.67 22.0397

29 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

30 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

31 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

32 35.00 6.000 100.0 15.000 2.000 23.00 22.6074

33 35.00 3.000 100.0 8.000 2.000 21.11 17.9747

34 35.00 3.000 100.0 15.000 3.000 21.93 19.6364
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3.1 Model summary

S: represents the standard deviation of the distance between the data values and
the fitted values, the lower the value of S, the better the model describes the response.
R-sq (R2): is the percentage of variation in the response that is explained by the model,
the higher the R2 value, the better the model fits your data. R2 is always between 0%
and 100%. R-sq (adj): Adjusted R2 is the percentage of the variation in the response
that is explained by the model. R-sq (pred): Predicted R2 is calculated with a formula
that is equivalent to systematically removing each observation from the data set,
estimating the regression equation, and determining how well the model predicts the
removed observation. The value of the predicted R2 ranges between 0% and 100%. By
referring to the values obtained in the current study for these parameters, we find that
the current study model is acceptable.

Run Actual Values (Yi): Biomass (g/L)

Temperature
(°С)

Initial
pH

Concentration
of sugars (g/L)

The ratio
of

carbon
to

nitrogen

Initial
concentration
of yeasts (g/L)

experimental
Value

Predicted
Value

35 25.00 3.000 200.0 8.000 3.000 20.27 20.1589

36 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

37 30.00 4.500 150.0 11.500 2.500 40.45 38.5060

38 35.00 6.000 200.0 8.000 3.000 22.03 22.9839

39 25.00 3.000 100.0 8.000 2.000 20.17 18.8368

40 25.00 3.000 100.0 8.000 3.000 20.91 19.4890

41 30.00 4.500 150.0 11.500 2.500 40.45 43.9227

42 41.83 4.500 150.0 11.500 2.500 23.81 22.8190

43 30.00 4.500 150.0 11.500 3.683 33.02 31.1860

44 30.00 4.500 268.3 11.500 2.500 32.17 26.3327

45 30.00 4.500 150.0 11.500 1.317 31.56 30.6159

46 18.17 4.500 150.0 11.500 2.500 24.07 22.2828

47 30.00 4.500 150.0 11.500 2.500 40.45 43.9227

48 30.00 4.500 150.0 11.500 2.500 40.45 43.9227

49 30.00 8.049 150.0 11.500 2.500 30.94 24.7659

50 30.00 0.951 150.0 11.500 2.500 15.11 18.5059

51 30.00 4.500 150.0 11.500 2.500 40.45 43.9227

52 30.00 4.500 31.7 11.500 2.500 18.87 21.9291

53 30.00 4.500 150.0 3.219 2.500 19.11 21.1956

54 30.00 4.500 150.0 19.781 2.500 30.03 25.1663

Table 3.
The central composite design for biomass production.
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The examination of Table 4 shows that all coefficient regression of the quadratic
terms are statistically significant p ≤ 0.05 and negatively affect the biomass produc-
tion (Figure 2). In contrast, the interaction terms (T, C/N, X, T* pH, T*C, T*C/N,
T*X, pH *C, pH *C/N, pH *X, C*C/N, C*X, C/N*X) are statistically not significant
p > 0.05, and the interaction terms (pH, C, T*T, pH * pH, C*C, C/N*C/N, X*X) are
significant with p ˂0.05 and have a synergistic effect on the response.

It is known that the F-value with a low probability p-value indicates a high signif-
icance of the regression model [40].

Looking at the analysis of variance (ANOVA), the study shows that the model is
important as the F-value had a low probability p-value (p = 0.000), and the resulting
value of R2 was equal to 92.9% and this indicates that only 7.1% of the variance is not
explained by the model and therefore there is a good agreement between the model
and the experimental data [41]. Figure 3 shows the fit between the model and exper-
imental data of cell growth.

By reviewing previous studies, Bennamoun et al. [42] used response surface
methodology in order to improve and optimization of the medium components,

Term DF Adj SS Adj MS Coef SE Coef T-Value P-Value VIF P-Value

T 1 0.55 0.555 0.113 0.447 0.25 0.802 1.00 0.802

pH 1 75.60 75.595 1.323 0.447 2.96 0.006 1.00 0.006

C 1 37.41 37.408 0.931 0.447 2.08 0.045 1.00 0.045

C/N 1 30.42 30.415 0.839 0.447 1.88 0.070 1.00 0.070

X 1 0.63 0.627 0.120 0.447 0.27 0.789 1.00 0.789

T*T 1 869.04 869.040 �3.818 0.381 �10.03 0.000 1.01 0.000

pH * pH 1 945.05 945.046 �3.981 0.381 �10.46 0.000 1.01 0.000

C*C 1 745.29 745.295 �3.536 0.381 �9.29 0.000 1.01 0.000

C/N*C/N 1 818.56 818.560 �3.705 0.381 �9.74 0.000 1.01 0.000

X*X 1 322.63 322.625 �2.326 0.381 �6.11 0,000 1.01 0.000

T* pH 1 1.80 1.800 0.237 0.519 0.46 0.651 1.00 0.651

T*C 1 1.84 1.838 0.240 0.519 0.46 0.648 1.00 0.648

T*C/N 1 4.17 4.169 0.361 0.519 0.69 0.492 1.00 0.492

T*X 1 2.76 2.755 �0.293 0.519 �0.56 0.576 1.00 0.576

pH *C 1 3.08 3.081 0.310 0.519 0.60 0.554 1.00 0.554

pH *C/N 1 1.34 1.341 �0.205 0.519 �0.39 0.696 1.00 0.696

pH *X 1 0.49 0.493 �0.124 0.519 �0.24 0.813 1.00 0.813

C*C/N 1 2.60 2.605 0.285 0.519 0.55 0.587 1.00 0.587

C*X 1 1.84 1.838 0.240 0.519 0.46 0.648 1.00 0.648

C/N*X 1 0.02 0.025 �0.028 0.519 �0.05 0.958 1.00 0.958

S R-sq R-sq(adj) R-sq(pred)

2.93825 92.85% 88.16% 69.22%

Table 4.
Estimated regression coefficients of t and p and analysis of variance (ANOVA).
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which enhance the polygalacturonase activity of the strain Aureobasidium pullulans,
and they got good results (a very low p-value (0.001) and a high coefficient of
determination (R2 = 0.9421), the results confirm the importance and success of using
this method.

A previous study by Boudjema, Fazouane-Naimi, and HellaL [27] showed the
success of using the experimental design method in the study of the production of
Saccharomyces cerevisiae DIV13-Z087°СVS using sweet cheese serum, as it confirmed a
high significance of the regression model, and the results showed a good agreement
with experimental data (a low probability p-value ≤0.000 and a good correlation
coefficient (R2 = 0.914%).

The optimization of the response Yi (Biomass production) and the prediction of
the optimum levels of (temperature, initial pH, concentration of sugars in grape juice,
the ratio of carbon to nitrogen, and initial concentration of yeasts) were obtained. This
optimization resulted in surface plots (Figure 4), the figure shows that there is an
optimum, located at the center of the field of study.

In addition, the use of the Minitab optimizer will give exact values of the optimum
operating conditions of the process Figure 5.

Figure 5 shows the maximum biomass production by Saccharomyces cerevisiae
(41.444 g/L) corresponding to values of temperature (30.11°С), pH (4.75), sugar
concentration (158.36 g/L), the ratio of carbon to nitrogen (11.9), initial yeast con-
centration (2.5 g/L). The amount of urea was 6.65 g/L and the amount of ammonium
sulfate used was 6.65 g/L, so that the concentration of added urea and ammonium
sulfate was (50–50)% and the required C/N ratio was achieved, and the stirring speed
was equal to 200 r.p.m. during the fermentation process. Jiménez-Islas et al. [36]
obtained the highest cell concentration of S. cerevisiae ATCC 9763 (7.9 g/L) after 26 h

Figure 2.
Variable effect signification on biomass production.
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when the strain grew at 30°С and pH 5.5, so we note that our study gave a good result
in achieving the greatest possible production of baker’s yeast.

The validation of the baker’s yeast biomass concentration and total reducing sugar
consumption, over time fermentation, at optimized conditions, are presented in
Figure 6.

At the beginning of the fermentation process, the concentration of the resulting
biomass increases and is associated with the consumption of sugar. After 12 hours of
the fermentation process, the sugar concentration has reached a very low level, and
this is associated with a decrease in yeast production.

The same results were obtained by Ali et al. [32] where they study the optimization
of Baker’s Yeast production on Date extract using Response Surface Methodology
(RSM), and the resulting yeast was equal to 40 g/L.

The measured fermentation power of the yeast obtained in this study from grape
juice was 480 ml, so this is considered to have good fermentation capacity and is
suitable for industrial use. The acceptable fermentation strength of yeast is not less
than 350 ml according to the COFALEC (2012): General characteristics of dry baker’s
yeast.

Depending on the Monod model, the curve fitting of cell growth is formed (1/μ
versus 1/S) and shown in Figure 7. Figure 8 shows the resulting graph according to
the Verhulst model (μ versus X), and in Figure 9 the graphical curve is formed
according to the growth of the Tessier model (μmax and Ks).

The kinetic parameters of growth of Saccharomyces cerevisiae using different kinetic
models according to the curve fitting method are presented in Table 5.

The results obtained from the modeling process appear as follows: the Monod
model gave a good value for the parameter R 2 equal to 0.94, which indicates that it is
an acceptable model for studying the kinetic performance of a strain S. cerevisiae, and

Figure 3.
The fit between the model and experimental data of cell growth.
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Figure 4.
Surface plot for the effect of different parameters on biomass production.

Figure 5.
Values of optimal conditions on biomass production.
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the values of each of the maximum specific growth rate (μmax) and is the half-
saturation constant (Ks) were evaluated as 0.254 h�1 and 291.99 g/L, respectively,
which are good values indicating rapid growth of cells Yeast. Tessier’s model gave the
lowest value for R 2 compared to the Monod and Verhulst models, where it was 0.81.
Whereas the Verhulst model gave the highest value for the parameter R 2 which

Figure 6.
The biomass production, and total reducing sugar consumption over time at optimized conditions.

Figure 7.
The line weaver Burk linear plot fitting the experimental data using the Monod kinetic model.

Figure 8.
A plot fitting the experimental data using the Verhulst kinetic model.
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reached 0.99, also gave a high value for the maximum specified growth rate reached
1.0765 h�1, and the highest possible amount was obtained from the concentration of
yeast according to the Tessier model reached 38.26 g/L. As a result, the Verhulst model
is the best model for studying and controlling the kinetic behavior of a yeast strain
S. cerevisiae.

A residual plot is a chart used to assess the quality of a regression fit. Examination
of the remaining squares will help determine if the least-squares assumptions are ever
met. When these assumptions are met, least squares regression typically yields an
inaccurate estimation coefficient with minimal variance. The 4-in-1 residual plot
displays four residual plots in a graph window. This configuration can be useful for
comparing plans to determine if the Verhulst model meets the criteria for analysis.
The remaining sections of the figure are:

• Histogram - indicates if the data is biased or outliers are contained in the data.

• Normal probability plot - indicates whether the data conforms to the normal
distribution, whether other changes are affecting the response, or whether the
content of the data.

• Residuals versus fitted values - indicates if the difference is continuous, if there is
a nonlinear relationship, or if outliers are present in the data.

• -Residuals versus order of the data - indicates whether there is an impact on data
due to the time or order of data collection.

Figure 9.
A plot fitting the experimental data using the Tessier kinetic model.

Kinetic models Parameters of estimation

R2 KS (g/L) μmax (h�1) Xm

Monod 0.94 291.99 0.254 —

Verhulst 0.99 — 1.0765 38.26

Tessier 0.81 22.7 0.0036 —

Table 5.
Kinetic parameters of Saccharomyces cerevisiae growth and substrate utilization using unstructured models.
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Minitab provides the following residual plots in Figure 10.
Examination of the remains indicates that there is nothing to complain about. The

normal performance of the remaining sections does not seem to have much differ-
ence. There is nothing surprising here and it seems acceptable.

The kinematic models describe the growth rate of microorganisms based on bio-
mass and substrate concentration and are useful because they help engineers design
and control biological processes, including the Verhulst model which describes the
experimental data obtained on the growth rate of yeast cells, where it describes the
logarithmic growth of cells and shows that the first six hours of fermentation were
during the initial cell growth phase, then the logarithmic growth phase began, which
is characterized by a doubling of the number of yeast cells and an increase in the
growth rate.

A profile of biomass and total reducing sugar concentration during fermentation
time is compared to the values predicted by the equations model obtained in
Figures 11 and 12.

During the fermentation, values of biomass between predicted and experimental
data were approximately the same. And for total reducing sugar concentration, the
values obtained by the Leudeking Piret model were identical to the predicted values,
where the values (p = 1/yx/s, q = μ/yx/x0) were 3.81 g/g and 0.065 1/h, respectively.

On the basis of these results, good correlation coefficients showed that the pro-
posed Verhulst model and the Luedeking Piret model were adequate to explain the
development of the biomass production process in grape juice.

This study confirmed that the Logistic equation for the growth and the Leudeking
Piret kinetic model for substrate utilization were able to fit the experimental data, and

Figure 10.
Residual plots for response.
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the same result was obtained by Kara Ali et al. [43] Where they used the logistic
empirical kinetic model and Leudeking Piret model and they obtained good agreement
with the experimental data.

Finally, what distinguishes this study from previous studies is the dependence on
grape juice as a source of carbon with the aim of producing biomass from dry yeast,
which researchers had not previously studied. The work has been done with a lot of
numerical and experimental analysis.

This study will present an additional successful option for the production of yeast
that commonly uses molasses. The improvement of the initial conditions of fermen-
tation also contributed to the highest possible yield of yeast and good economic value.
The fermentation power of the yeast was also good, so this study can be practically
applied with the aim of producing a good mass of baker’s yeast and using this yeast in
various industrial and food fields.

4. Conclusion

The central composite design (CCD) proposed in this study seems pertinent to
describe the optimum biomass production of Saccharomyces cerevisiae. A second-order

Figure 11.
The comparison between predicted and experimental data for biomass production of baker’s yeast.

Figure 12.
The comparison between predicted and experimental data for total reducing sugar consumption.
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polynomial model was developed to evaluate the quantitative effects of temperature,
initial pH, and concentration of sugars in grape juice, the ratio of carbon to nitrogen,
initial concentration of yeasts in order to discover the optimum conditions for the
biomass production from grape juice. According to the experimental results, a maxi-
mum biomass concentration of (41.444 g/L) corresponding to values of temperature
(30.11°С), pH (4.75), sugar concentration (158.36 g/L), the ratio of carbon to nitrogen
(11.9), initial concentration of yeasts (2.5 g/L), the amount of urea was 6.65 g/L and
the amount of ammonium sulfate used was 6.65 g/L, so that the concentration of
added urea and ammonium sulfate was (50–50)%, and the used agitation speed was
equal to 200 r.p.m. during the fermentation process. The fermenter power of the
obtained yeast was 470 ml. In addition, among three unstructured kinetic models, the
Verhulst model was the most suitable model to signify the baker’s yeast production on
grape juice medium.
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Chapter 8

Response Surface Model Applied 
to Fine Arts: The Case of the 
Restoration of Paintings
Julio Romero-Noguera, Nuria Pérez-Villares,  
Fernando Bolívar-Galiano and Rafael Bailón-Moreno

Abstract

Cleaning polychrome paintings and sculptures is an essential task in restoration 
treatment, since it irreversibly affects the appearance and material structure of such 
works of art. It is a completely “analogical” process consisting of removing surface 
dirt, aged varnishes or repainting (paints added to the original) based on the restor-
er’s experience and knowledge, as well as on different internationally accepted criteria 
for such interventions. In this chapter we are presenting an example of the adaptation 
of the response surface model to this field, which is complex and difficult to adapt 
to quantitative parameters and has never before been studied with this approach. 
Using the MODDE Go® experiment optimization and statistical design software, the 
effectiveness of cleaning pictorial works of art has been studied using various formu-
las composed mainly of water and a low-toxicity monoterpene: limonene. The model’s 
statistical validity is demonstrated, as well as its ability to determine the main factors 
that affect the cleaning by means of different responses (methods) to evaluate its 
effectiveness: an expert’s opinion using visible light and ultraviolet light, the amount 
of varnish removed using gas chromatography coupled with mass spectrometry, 
and the effects on color, lightness and gloss. The main influential factors were the 
concentrations of the two main components of the proposed formulations, water and 
limonene, which regulate the cleaners’ level of hydrophilia and lipophilicity, fol-
lowed by the types of pigments and type of varnish used, and aging. Using an in silico 
simulation, the proposed model also enables specific compositions to be formulated 
for different scenarios and cleaning applications that are potentially effective and 
harmless to the pictorial materials and the restorers’ health.

Keywords: cleaning, oil paintings, water, limonene, response surface

1. Introduction

Since the second half of the 20th century, works of art have been restored based on 
a fundamentally scientific perspective, using a great variety of products and methods 
for analysis that have enabled the materials to be characterized in detail, and the 
results of the restoration treatment to be experimentally proven. However, the results 
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obtained have yet to be correlated with empirical models that adequately back them, 
which has not yet been studied enough [1–8].

The approach in this study uses an innovative model that compares the nature and 
conditions of the artwork to be cleaned, the composition of the cleaner and the results 
obtained after cleaning from multiple perspectives. This involves representing the 
complex phenomenon of cleaning and stripping varnishes over oil paint by using a 
model of surface responses. This model can be simulated in silico to highlight the syn-
ergistic and antagonistic relationships among the main factors involved in cleaning of 
oil paintings: the type of varnish, degree of aging, type of oil pigment and composition 
of the cleaner. To do so, different responses (methods) have been brought together to 
evaluate the cleaning’s effectiveness: an expert’s opinion using visible and ultraviolet 
light, the amount of varnish removed using gas chromatography coupled with mass 
spectrometry, and the effects on color, lightness and gloss. The simulation will also 
allow optimal cleaning products to be developed for specific cleaning treatments.

1.1 Cleaning works of art

Cleaning is one of the fundamental treatments used in restoring paintings and 
other types of works of art, and also one of the most controversial ones, since it is the 
one that most affects their appearance. The term refers to three types of tasks [9]:

• Surface cleaning: removal of non-adhering dirt.

• Varnish cleaning: total or partial removal. Resistant, greasy dirt and the oxida-
tion of a varnish can create a layer where the two are intimately related. These 
layers can be removed together during the cleaning treatment.

• Lifting of repaints added to the original work and which it has been decided to 
remove, also known as stripping.

From classical antiquity to today, the criteria used in applying cleaning treatments 
to artworks have changed along with the development of concepts and theories as 
regards conservation and restoration.

The lack of control in using cleaning substances has led to the complete or partial 
loss of polychromy in many artworks. The substances used included highly aggressive 
products such as soap, diluted bleach and ash. Soda, urine, salt, alum, acids, ox gall, 
milk and egg yolk, for example, were also products commonly used in the 17th and 
18th centuries. Gradually, an awareness of the potential aggressiveness of some of 
these substances for paints emerged [10].

In the 20th century, a great boost was given to the theory and practice of cleaning 
cultural assets, mainly due to what had been learned from the alterations caused by 
many of the products over time, and the risk involved in using solvents. The greatest 
stimulus came from the scientific advances made after the First World War, which 
provided a wide variety of products with physical and chemical properties that 
enabled problems to be solved and new techniques developed [11]. The research 
carried out in the second half of the century then laid the foundations for more 
scientifically based restoration work, concentrating on the main solvents’ solubiliza-
tion power as regards the materials to be removed [12–15]. There is now a growing 
awareness of the danger that cleaning can bring about for the artwork’s integrity and 
the restorers’ health.
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One alternative to solvents are water-based cleaning systems that include sur-
factants and other additives in complex detergent formulas [16–18]. It is essential 
to know the composition of the detergents and the surface to be cleaned in order to 
determine the effectiveness of the detergent, but even so it is difficult to choose the 
best cleaner in each case, even for highly trained and experienced restorers.

1.2 Strata involved in cleaning paintings: dirt, varnish and painting layer

The main factors that can alter the appearance of an artwork’s color over time 
are the accumulated dirt on the surface, the darkening and yellowing of the varnish 
and oil, pigment migration, and the effects of visible and ultraviolet light. When 
the cleaning is carried out for a polychromy, there are three layers that are affected 
(Figure 1): the dirt, the layer of varnish and the underlying pictorial layer (which in 
our case study is oil paint), which can alter the artwork’s visual appearance [19]. We 
will briefly review their characteristics.

1.2.1 Dirt

The dirt that we may find on the surface of a painting is a difficult concept to 
define and varies considerably depending on the circumstances. Surface dirt is under-
stood to mean the sediments that are deposited on an artwork’s surface in multiple 
layers and bound by different forces of attraction [20]. This generally includes par-
ticles of dust, carbon and other solid materials such as sand, soil, corrosive products 
and salts. It is responsible for the grayish veil over the pictorial surface and sometimes 
causes mechanical damage or reactions with the materials within it as its components 

Figure 1. 
Strata of a standard sample: [1] varnish layer [2] oil layer, [3] preparation layer, [4] canvas.
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absorb some pollutants from the atmosphere. Non-polar surface dirt particles are 
bound together by weak intermolecular forces, and polar ones by stronger dipolar 
forces. It is usually sufficient to apply mechanical means and detersive substances in 
order to remove surface dirt [9].

Surface dirt on works of art is usually associated with fatty deposits made up of a 
complex mixture of components [21], predominantly natural lipids (triglycerides), 
which contain unsaturated fatty acids (susceptible to oxidation by air). This type of 
dirt remains attached to the surface after surface cleaning due to the greater strength 
of its molecular bonds and interactions [22]. To remove it, it is common to use organic 
solvents, which can damage the paint layer, both when it is applied and in the long term.

1.2.2 The varnish layer

A varnish is a liquid which, when applied to a solid surface, dries forming a 
transparent film with varying degrees of gloss, hardness, flexibility, and protection 
depending on its composition [12]. It is a material of prime importance in the sphere 
of artistic techniques, which must have an even finish and be transparent, stable and 
reversible, while preventing efflorescence from developing. Its main purposes in a 
work of art are for protection and esthetics [23]. The natural varnishes tradition-
ally used in painting are terpenoids, which undergo oxidation processes and other 
chemical changes that cause them to yellow and lose mechanical and optical proper-
ties [24–27]. One of the most frequent painting restoration tasks is to remove aged 
varnishes by using solvents and replace them with polymeric varnishes, generally 
acrylics, which are much more stable.

1.2.3 The pictorial layer: oil paint

Oil painting has dominated the artistic sphere since the fifteenth century until 
today due to the variety of pictorial resources it offers as regards opacity, transparency 
and chiaroscuro [28]. A layer of oil is made up of finely ground particles of pigment 
evenly dispersed in a vegetable-based drying oil.

A drying oil is a liquid vehicle or binder composed mainly of triglycerides of fatty 
acids with 16 or 18 carbon atoms: palmitic, stearic (saturated) and mainly polyun-
saturated ones. Among the unsaturated fatty acids, oleic acid (C18, one double bond), 
linoleic acid (C18, two double bonds) and linolenic acid (C18, three double bonds) 
are the most notable [29, 30]. The most widely used oils since ancient times have been 
walnut, poppy and especially flax, since they form transparent films after the drying 
process, with optimal mechanical and optical properties [31].

The oils dry by oxidation and subsequent polymerization of the triglycerides’ 
unsaturated fatty acids, until they form a relatively hard yet elastic film. After a series 
of complex chemical reactions involving processes of crosslinking, oxidation of 
unsaturated acids and the hydrolysis of glyceride bonds, a new substance is formed 
that is usually called linoxin, with very different physical and chemical properties 
from the original liquid oil, and which will not return to its initial state by any means 
[32, 33]. Although the oil film dries out to the touch in weeks, it undergoes new 
chemical reactions throughout the life of the painting [19]. Natural aging makes the 
pictorial film less flexible and causes cracking and changes in opacity.

When one intends to clean or remove a varnish from a polychrome surface, it 
has to be taken into account that the pictorial layer may be altered [34], especially 
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when glazing techniques are applied in the painting’s finishing, in which the pictorial 
medium is a fine mixture of oil, pigments and varnish, and therefore has a composition 
and polarity that closely resemble the protective varnish that is going to be removed.

Solvents can also give rise to changes in the oil’s properties and composition, fos-
tering leaching of components with a low molecular weight such as ketones, alcohols 
and dicarboxylic acids, like azelaic acid. This process affects the physical properties 
of the pictorial layer, reducing its volume, increasing its density, and making it brittle 
and opaque [23].

The type of solvent used for cleaning is decisive. It is generally thought that the 
greater the polarity of the solvent, the greater the risk of leaching [15], since the 
oxidation and hydrolysis of the initial triglycerides over time causes changes in the oil 
paint’s chemical structure, making it more polar [35]. The magnitude of the changes 
also depends on the length of exposure time. When solvents are applied repeatedly or 
in excessive amounts, they cause surface wear as pigments get washed away with the 
oily film protecting them. Finally, the nature of the pigment also influences the effect 
of the solvents on the oil. One well-known example of this is the effect of one of the 
most significant pigments in art history, lead white, which minimizes the action of 
solvents even on fairly young oil layers [19].

1.3 Oil painting cleaning treatments

1.3.1 Cleaning methods

Cleaning can be done mechanically or by means of solvents, or else by combin-
ing both approaches in mixed treatments. Mechanical cleaning is done with vacuum 
cleaners, dusters, soft paintbrushes, brushes, compressed air, rubber erasers, lasers or 
scalpels [36]. It is used for superficial cleaning and as a treatment prior to any inter-
vention in the sphere of restoration, as well as in cases of varnishes, repainting or dirt 
that is impossible to remove by other means.

Physical and chemical methods involve cleaning with solvents to soften and 
disperse or solubilize the material to be removed, forming a homogeneous mixture 
with it. This is finished off with mechanical wiping using a cotton bud or inert media 
such as cellulose pads or gels that keep the product active for longer. In the sphere of 
conservation and restoration, these procedures are carried out following internation-
ally accepted cleaning guidelines and standard solubility tests [31].

1.3.2 Solvent properties

There are two different, closely related processes in the action of solvents [37]:

• Initial softening of the substrate by swelling of its molecules’ chains.

• Subsequent dispersion or solubilization of the particles that give rise to 
dissolution.

According to the principles of thermodynamics, each type of substrate must be 
dissolved by a solvent of similar polarity. It is therefore essential for there to be chemi-
cal similarity between the molecules of the solvent and the solute, defined by the 
predominant intermolecular forces. What is commonly known as “like dissolves like” 
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therefore refers to the fact that a solvent will remove the layer of varnish and/or dirt 
when it interacts with it with the same type of intermolecular forces as those that hold 
its own molecules together. Hansen’s solubility parameters and visual diagrams such 
as the Teas triangle are often used to characterize solvents and classify them for their 
use in restoration [38–40]. Other very important factors must also be considered, 
such as the penetration capacity, volatility and retention in the artwork, not forget-
ting the toxicity values for the restorer [12].

2. Response surface model

All the above gives an idea of how enormously complicated it can be to approach 
the cleaning of artistic paintings from a scientific point of view. There are factors 
involved that are related to the material, which is chemically very complex and 
divided into three layers: dirt, varnish and the painting layer. These factors can in 
turn be subdivided into internal micro-layers with different compositions, as happens 
when a painting is repainted, in other words, when a new pictorial layer is added to an 
already finished work. Organic materials also appear, such as binders and varnishes, 
and also inorganic ones, such as many pigments. We could also distinguish between 
components that are natural or synthetic, original or added, and polar or non-polar. 
Metals can even appear if the work includes gilding or silver-plating techniques. 
Likewise, factors such as aging of the materials to be treated, deterioration agents, 
or previous restoration treatments are all very important. Lastly, when solvents are 
being applied, a single product is seldom used, since the habitual values of polarity 
required in cleaning and stripping varnishes are usually achieved by using solvent 
mixtures [37]. In restoration practices today, we should also add the frequent use of 
surfactants, chelating agents or enzymes [14, 21, 37].

Our research aims to analyze the most important factors affecting the effective-
ness of cleaning a pictorial work of art so as to be able to put forward effective 
cleaning methods with few adverse effects. Due to the number of variables present, 
we used the MODDE Go® (Umetrics) software for statistical design of experiments 
and optimization, run on a PC with a 64-bit Windows 10 operating system. An effort 
has been made to include the utmost number of factors and reduce the number of 
experiments to a minimum, while being as representative as possible of the complex 
phenomenon that we are attempting to analyze.

As a way of explaining the rationale behind this procedure, think for example 
of carrying out four experimental points of four different concentrations of five 
components of a cleaner, plus one point for each of, let us say, five pigments pres-
ent and two points for each of the factors of aging and the type of varnish. This 
would mean carrying out at least 20,480 different cleaning tests in the laboratory 
(45 × 5 × 22 = 20,480). Using statistically designed experiments, the representative 
sample has been reduced to only 72 cleaning trials. This has meant an enormous sav-
ing in time and material resources, which if an attempt had been made to carry out all 
of the theoretical tests would have made it impossible to actually do them.

The proposed response surface model uses analytical techniques (responses).
of a physical, chemical and visual nature to study the effectiveness of low-toxicity 

formulations, taking into account the main factors that influence cleaning: the 
composition of the cleaners, types of pigments and varnishes, and their aging. It also 
enables in silico simulations in order to develop optimal cleaning products for specific 
cleaning treatments depending on the characteristics of the pictorial work of art to be 
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restored. Furthermore, in future research, three-dimensional vector models can be 
developed to analyze: 1) the material and physical–chemical aspects of cleaning, 2) 
the restoration technique used, and 3) the visual appearance, which can be evaluated 
using optical methods.

Below, we explain the fundamental points in the proposed design of experiments 
and some examples of the results obtained. The full technical details of the study can 
be consulted in Bailón-Moreno et al. [41].

2.1 Preparation of samples

The proposed cleaning methods were tested on reference samples containing the 
usual layers in an oil painting: support (linen canvas), preparation, paint layer and 
protective varnish.

The preparation applied over the canvas was composed of animal glue, calcium 
sulphate (CaSO4·2H2O) and zinc white (ZnO). The oil painting was handmade 
prepared with stand linseed oil and five different pigments, one for each type of 
sample: zinc white (ZnO), lead white (PbCO3)2Pb(OH)2, cadmium yellow (CdS), 
cadmium red (3CdS·2CdSe) and cobalt blue (CoO·nSnO2). All these products were 
purchased at Manuel Riesgo, Madrid, Spain) except lead white, wich was produced 
by ourselves [42].

After a drying period of 3 months, the samples were varnished following 
two possible procedures: using a traditional terpenoid varnish composed of 
mastic resin diluted in spirit of turpentine or using an acrylic synthetic varnish 
by Lefranc & Bourgeois®. In both cases, they were allowed to dry naturally for 
12 months (Figure 2). Aged terpenoid varnishes such as mastic are affected by 

Figure 2. 
Reference samples: cobalt blue, cadmium red, cadmium yellow and lead White varnished with mastic.
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chemical processes of crosslinking and oxidation that make them more polar 
than the original ones, and more difficult to remove using solvents in cleaning 
processes.

To imitate the deterioration of a layer of old paint varnish, some of the samples 
were subjected to artificial accelerated aging by exposure to ultraviolet light [31]. The 
rest of the samples were reserved to simulate a recent painting. The varnishes and oil 
color layers were applied with a micrometric adjustable paint applicator SH-1117/100 
(Daesan CMC, South Korea).

2.2 Designing experiments. Software MODDE Go®

The model consists of a set of polynomials (one for each response), which have a 
constant value, a0, representing the mean value of the response considered. These 
terms represent the linear effects of the factors on the responses, 
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a F , quadratic 
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The model was adjusted with the MODDE Go® software from the company 
Umetrics using the Partial Least Square (PLS) technique with pseudo-components 
with non-scaled, non-centred values. Bailón-Moreno et al. [41] show the coefficients 
associated with each response, S, depending on the model proposed, the coefficient of 
determination, R2, and the coefficient Q2.

The proposed model considers the cleaning of painted artworks to be a procedure 
affected by a set of values or variables that is evaluated via a set of responses. The fac-
tors can be quantitative or qualitative, depending on whether they can be represented 
by quantity or not, and they can also be of the process or composition type. The 
factors chosen are as follows (Figure 3).

1. Quantitative composition factors: these define the composition of the cleaner, 
with different proportions of water, limonene, phenethyl alcohol, Findet ® 1214/
N23 and Glucopon® 600.

2. Qualitative process factors: type of varnish (traditional: mastic; or synthetic: 
acrylic), aging (yes or no), type of pigment in the paint layer (zinc white, lead 
white, cadmium yellow, cadmium red or cobalt blue).

The cleaning was evaluated via seven possible sets of responses: the physical 
state, the chemical analysis via gas chromatography/mass spectrometry (GC/MS), 
cleaning from the point of view of an expert’s opinion (observed with visible light 
and ultraviolet light), and also how the cleaning affects the painting from an optical 
and colorimetric point of view (color, lightness and gloss) [43, 44]. MODDE Go® 
(Umetrics), was used to establish a statistical design for experiments in keeping with 
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the response surface model put forward. It has 72 statistically representative tests, 
whose experimental conditions can be consulted in Bailón-Moreno et al. [41]. Every 
test was performed once.

2.2.1 Quantitative composition factors

These are dependent on the composition of the proposed cleaning mixtures. 
Several criteria have been used in choosing the products [14, 21, 37].

1. Correct structure of the cleaners. The cleaners must be made up of components 
that enable stable, effective compositions to be formulated. To do so, the compo-
sitions may consist of:

• One or two main solvents;

• Optionally a co-solvent;

• Optionally a surfactant with the possibility of a co-surfactant.

2. A wide variability in the mixtures’ polarity. This variability lies in the two main 
solvents, one polar and one non-polar. Since substances of very different polari-
ties cannot normally be mixed properly by themselves, it is important for there 
to be a co-solvent of intermediate polarity between the two main solvents, or else 
one or two surfactants to form an emulsion.

3. Non-toxic and low skin irritation.

4. Easily biodegradable components, in order to avoid environmental problems.

5. They should form compositions that are easy to prepare and use.

6. Industrially affordable and economical components.

7. Components that have already been tested in previous research with good 
 results.

Figure 3. 
Response surface model for cleaning oil paintings with composition factors, process factors and the responses 
studied.
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In keeping with these general requirements, five substances have been chosen. 
The proposed cleaning method is based on a mixture of two main components: one 
clearly polar, water; and the other strongly nonpolar, limonene (1-Methyl-4-(1-
methylethenyl)-cyclohexene), a hydrocarbon (monoterpene) devoid of toxicity that is 
found as the main component in the essential oils of orange, lemon and other aromatic 
plants. The relative proportion of these components marks the polarity of the mixture 
and its greater or lesser effectiveness in dissolving each type of material (Figure 4).

The formulations have been stabilized by the presence of three products: Findet® 
1214/N23 (KAO Chemicals Europe, Barcelona, Spain), comprised of a vegetable-
based narrow-range ethoxylate with a C12-C14 fatty chain and 11 moles of ethylene 
oxide; and Glucopon® 600 (BASF, Barcelona, Spain), a non-ionic surfactant of the 
alkyl polyglycoside type, specifically a lauryl glucoside with 1.3 moles of glucose.

The cleaning compositions used contain, according to the response surface model, 
variable amounts of these substances that are statistically representative in all of their 
possible cleaning formulations. The concentration ranges for each component were 
Water and limonene: from 0 to 100%, Phenethyl alcohol: from 0 to 5%, Findet ® 
1214/N23 and Glucopon® 600: from 0 to 10% [41].

Figure 4. 
Masschelein–Kleiner diagram: Solubility of natural film-forming substances and position in the triangle of the 
two main components of the proposed cleaning formulas: water and limonene. Note how there is partial overlap 
between resins and oily layers.
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2.2.2 Cleaning trials

The cleaning formulations were applied to the samples and allowed to act for 
5 minutes. Afterwards, possible residues of the formulations were eliminated by 
washing with distilled water and subsequently White spirit (Talens). The process was 
repeated three times on each sample (Figure 5).

2.2.3 Responses

The cleaning was evaluated via seven possible sets of responses: the physical 
state, the chemical analysis via gas chromatography/mass spectrometry (GC/
MS), cleaning from the point of view of an expert’s opinion (observed with visible 
light and ultraviolet light), and also how the cleaning affects the painting from an 
optical and colourimetric point of view (color, lightness and gloss). The complete 
description of the analytical study can be found in Bailón-Moreno et al. [41] 
(Figures 6–8).

3. Results and discussion

3.1 Validity of the model and most important factors

In order to confirm the validity of the model, the predicted values for the model were 
compared with the values observed experimentally for each response, achieving very 
good concordance between the values observed empirically in the 72 experiments actually 

Figure 5. 
Cleaning process of unaged mastic varnish on cadmium red oil with formulation N44.
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Figure 6. 
Photographs with UV/(left) and oblique visible light (right) of the standard sample varnished with mastic on 
cadmium red oil after cleaning with formulation N44.

Figure 7. 
Chromatogram of a standard sample composed of cadmium yellow oil and aged mastic varnish after cleaning 
with formulation N21. The peaks corresponding to the fatty acids are observed as main markers of the oil on the 
left (azelaic acid tR:7, palmitic acid tR:11.1, oleic acid tR:12.78 and stearic acid tR:13.02) and to the triterpenic 
resin acids as main resin markers on the right (ursonic acid tR:23.53, ursolic acid tR:23.97, moronic acid tR:25.99 
and oleanonic acid tR:26.37).
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carried out, and those predicted with the model. The absolute and relative errors were also 
calculated, correlating the latter with the experiments’ order of implementation (run) 
so as to discard any bias related to the way and order in which they were implemented. 
Equally, they were correlated with the value of each response, either in their observed 
values or in their predicted values, so as to also discard any possible bias [41].

MODDE Go® provides an indicator based on the relative weight of each factor 
or a combination of factors over all of the responses as a whole, called VIP (Variable 
Importance in Projection). In the oil painting cleaning model and as the most impor-
tant factors, the following stand out in order of importance:

1. Water

2. Limonene

3. Pigments (lead white is the most important) and varnishes, and their synergies 
and antagonisms

4. Synergy-antagonism between water and limonene

5. Aging

6. Quadratic terms for water and limonene

7. Complex synergies and antagonisms between aging, pigments, varnish, water 
and limonene

8. Other components in the cleaner: Findet® 1214/N23, phenethyl alcohol and Glu-
copon® 600

The main factors that affect the cleaning process with the formulations proposed 
are water and limonene, as well as their synergies, antagonisms and quadratic terms. 
The concordance between the polarity of solvents and solutes is the fundamental 
matter in cleaning polychromies. Water acts as a modulator of polarity whereas 
limonene is a moderator of non-polarity, so their proportion in mixtures is decisive in 
the cleaning effect, as predicted by the model.

Figure 8. 
Gloss measurement of reference white (left) and zinc white varnished with mastic (right).
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3.2 In silico cleaning simulations

After establishing the response surface model for cleaning varnishes on oil and 
having confirmed that the mathematical model is a good one, using the appropri-
ate computer tools it is possible to carry out computer simulations, putting forward 
unlimited cleaning scenarios and analyzing them without having to carry them out 
physically. These types of techniques are often called “in silico”, evoking the terms “in 
vivo” and “in vitro” common in the natural sciences and medicine.

The basis of these simulations has been created using the MODDE Go® 6.0 soft-
ware, which allows triangular diagrams to be obtained that visually hold thousands of 
results in which all possible combinations of cleaner compositions have been simu-
lated in silico, sweeping through all the ranges of concentrations of water, limonene, 
Findet® 1214/N23, Glucopon® 600 and phenethyl alcohol.

Figure 9 shows an example of a triangle diagram. In this example, the main sol-
vents (limonene and water) and the main surfactant (Findet 1214/N23) are located at 
the vertices of each triangle. Within a triangle, there are colored areas corresponding 
to the different responses given by each cleaner depending on the type of varnish and 
pigment. Each level corresponds to the scale of values for the response in question: 
expert opinion with ultraviolet lighting and visible light; O/V cleaning with GC-ME; 
affectation from color as a distance, dELab, in the CIELAB space; affectation from 
lightness, ∆L; and affectation from gloss, ∆G.

Figure 9. 
Example of a triangular diagram of the results from cleaning with acrylic varnish according to expert opinion 
with ultraviolet light. Aging (Yes), Varnish (Acrylic). Pigment: Cadmium Red. Glucopon® 600: 0.1%. Phenethyl 
alcohol 0.25%.
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The example in Figure 9 comes from cleaning an oil painting made using cad-
mium red as a pigment and varnished with acrylic varnish that has undergone an 
aging process. The cleaners that have been simulated contain all the possible compo-
sitions of water, limonene and Findet® 1214/N23 (up to 10%) within the established 
ranges, in this case maintaining a fixed concentration of 10% of Glucopon® 600 
(the maximum concentration established in designing experiments) and 2.5% of 
phenethyl alcohol (intermediate concentration in designing experiments). The 
response shown on the color scale is the expert’s opinion using ultraviolet light, 
UV. To help with the analysis, the bottom section of the triangle is shown, where 
the cleaner’s area of action is to be found, given the proportions of its three main 
components.

The simulations that have been carried out using this system are as follows:

1. Simulation in all ranges of the factors and for all responses. The results obtained 
are shown in triangular diagrams that enable a general “mapping” of the entire 
system to be obtained. This first approximation gives a general picture of the 
phenomenon of cleaning oil paintings, allowing us to visually find the main rela-
tionships between factors and responses.

2. Simulation for particular cases of cleaners that enable an evaluation of the com-
plex relationships between the type of varnish, aging of the paint and type of 
pigment with the two main components of the cleaning compositions, water and 
limonene, using as a basis a cleaner with Findet® 1214/N23, Glucopon® 600 and 
phenethyl alcohol in fixed amounts (10%).

3. Tests to optimize the model in order to develop cleaning formulations with spe-
cial characteristics that are optimum for performing their purpose.

4. Conclusions

1. A response surfaces model has been proposed for cleaning oil paintings with 
aqueous-based and limonene cleaning formulas using the MODDE Go® pro-
gram, and its statistical validity has been demonstrated.

2. Thanks to the model, it has been possible to simulate a multitude of cleaning sce-
narios in silico and to determine the main factors that affect the cleaning, which 
is evaluated via the responses: O/V cleaning, expert opinion using visible and 
ultraviolet light, color affected, dELab, percentage of lightness affected, ∆L, and 
percentage of gloss affected, ∆G.

3. The main factors influencing the cleaning were the concentrations with water 
and limonene as the main solvents and which regulate the cleaners’ level of 
hydrophilia and lipophilicity, followed by the type of varnish, aging and types of 
pigments. The cleaners’ other components are less relevant. In decreasing order 
of relevance, they are Findet® 1214/N23, phenethyl alcohol and Glucopon® 600.

4. The cross-synergistic and antagonistic effects between the cleaners’ components, 
the pigments, the varnish and the extent of aging have also been found to be very 
significant in cleaning.
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5. Using in silico simulation, it is possible to formulate specific compositions for dif-
ferent scenarios and cleaning applications.

6. For future research, it is proposed to develop 3-dimensional vector models that 
include, firstly, the material and physico-chemical aspects of cleaning; secondly, 
factors related to the expert restorer; and thirdly, the visual dimension that can 
be evaluated with optical methods.
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