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Preface

Hyperspectral imaging (HSI) is an aerial imaging technology that measures the way 
an object reflects and emits light at different wavelengths. Typically, it can cover 
hundreds of bands of light in the electromagnetic spectrum, revealing the precise 
spectral properties of materials found in the region of interest. With the resulting 
data, the methodology can distinguish the subtle differences between similar objects, 
allowing it to map out and differentiate objects and materials in great detail. Due to 
its fine-grained resolution and ability to distinguish different chemical species, HSI is 
becoming a powerful tool to spatially resolve the chemistry of materials in varying 
scientific and engineering disciplines.

HSI data acquisition involves the use of an aerial detector multiplexed in two 
dimensions and, therefore, requires multiple measurements to complete one data 
acquisition cycle. The multiple measurements can be executed in two different 
ways, position scanning or wavelength scanning. Position scanning HSI acquires 
2D data of one spatial dimension and the spectral dimension, and scans across the 
other spatial dimension, whereas wavelength scanning HSI multiplexes the two 
spatial dimensions and scans across the spectral dimension. Clearly, both methods 
need time to complete a data cube acquisition. Enabling fast HSI will open doors 
to new applications where multiple constituents or spatiotemporal dynamics need to 
be resolved. A variety of snapshot techniques have been developed by invoking a 
spatial-spectral modulation scheme, such as illuminating an object with a coded light 
pattern or inserting a spectral modulation module in the HSI imaging device.

HSI is currently applied in many fields. However, we also face a new challenge in data 
processing and in how to reliably retrieve meaningful information from the high-
dimensional HSI data cubes in real-time. Recent progress in both machine-learning 
and deep-learning techniques may offer a solution to this issue. This book brings 
together a collection of five chapters offering a glimpse of the status of machine- and 
deep-learning methodological development for hyperspectral imaging applications.

Chapter 1 “Perspective Chapter: Hyperspectral Imaging for the Analysis of Seafood”, 
by Samuel Ortega et al., presents a survey of current uses of hyperspectral technology 
for seafood evaluation. The authors briefly describe the optical properties of tissue 
and offer an introduction to the instrumentation and the developmental status of HSI 
in the relevant aspects of the seafood industry.

As noted above, consistent data preprocessing and reliable feature extraction are 
the first step to meaningful information retrieval from high-dimensional data 
cubes. Chapter 2, “Useful Feature Extraction and Machine Learning Techniques for 
Identifying Unique Pattern Signatures Present in Hyperspectral Image Data”, by 
Jeanette Hariharan et al., presents a data preprocessing protocol for HSI data. The 
authors review feature extraction techniques that are useful for identifying pattern 
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signatures embedded in hyperspectral data, and discuss the best practices for 
processing and analyzing hyperspectral data using machine-learning techniques.

Accurate recording of HSI data ideally requires the data to be acquired with high 
spatial and spectral resolution. Although until now this has been a fairly lengthy 
process, deep-learning techniques have recently been developed to improve it. 
Chapter 3, “Unsupervised Deep Hyperspectral Image Super-Resolution”, by Zhe Liu 
and Xian-Hua Han reviews recent advances in deep unsupervised frameworks for 
generating high-resolution (HR) HSI, demonstrating with a universally learnable 
module that only uses low-quality observations to reconstruct the underlying 
HR-HSI. K. Priya and K.K. Rajkumar, the authors of Chapter 4, “Hyperspectral and 
Multispectral Image Fusion Using Deep Convolutional Neural Network - ResNet 
Fusion”, point out that in a convolutional neural network (CNN), each layer takes 
the output from the previous layer, and tends to lose information as the network goes 
deeper into the architecture. They implement a fusion process in a Residual Network 
(ResNet) by adding the skip connection between the convolution layers. This skip 
connection helps to extract more detailed features from the images without any 
information degradation. The authors measured the results of their ResNet fusion 
method and found that it exhibits outstanding performance compared with all 
traditional methods.

In Chapter 5, “Magnetic Scattering with Polarised Soft X-rays”, Paul Steadman and 
Raymond Fan offer an indication of the direction of future HSI development with a 
proposal for using X-rays as a powerful technique to characterize magnetic materials. 
Using diffraction, small-angle scattering and reflectivity, the authors demonstrate the 
element sensitivity and strong dependence of the X-ray polarization on both the size 
and direction of the magnetic moments theoretically and experimentally.

The use of HSI goes beyond electromagnetic waves, with other available excitation 
sources such as X-rays and electrons, and new HSI modalities can also be extended to 
nanometer scales in spatial dimensions. This book brings together diverse HSI research 
areas to provide a comprehensive overview of the current status of machine- and 
deep-learning development for hyperspectral imaging.

Jung Y. Huang
Department of Photonics,

Chiao Tung University,
Hsinchu, Taiwan, Republic of China
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Chapter 1

Perspective Chapter: Hyperspectral
Imaging for the Analysis of Seafood
Samuel Ortega, Stein-Kato Lindberg, Kathryn E. Anderssen
and Karsten Heia

Abstract

Hyperspectral imaging technology is able to provide useful information about the
interaction between electromagnetic radiation and matter. This information makes
possible chemical characterization of materials in a non-invasive manner. For this
reason, the technology has been of great interest for the food industry in recent
decades. In this book chapter, we provide a survey of the current status of the use of
hyperspectral technology for seafood evaluation. First, we provide a brief description
of the optical properties of tissue and an introduction to the instrumentation used to
capture these images. Then, we survey the main applications of hyperspectral imaging
in the seafood industry, including the quantification of different chemical compo-
nents, the estimation of freshness, the quality assessment of seafood products, and the
detection of nematodes, among others. Finally, we provide a discussion about the
current state of the art and the upcoming challenges for the application of this
technology in the seafood industry.

Keywords: hyperspectral imaging, food quality, seafood industry, spectroscopy, fish

1. Introduction

Hyperspectral imaging is a technology able to measure simultaneously both the
spectral and the spatial features of objects or materials under examination. The spec-
tral properties are produced by the interaction between the electromagnetic radiation
and the different constituents in a sample, which produces distinct absorption, reflec-
tion, and scattering effects on the incident light [1]. The aforementioned optical
properties of the different materials are related to their chemical composition and
physical properties. Hyperspectral technology for food quality inspection has two
main advantages. First is its non-invasive nature, which makes it possible to perform a
chemical analysis of the samples without the need to handle them in any way. Sec-
ondly, the measurement is very quick to perform as data can be obtained for an entire
sample in the matter of seconds. These aspects make the technology easy to integrate
with a conveyor belt, which makes it possible to analyze every sample individually.
This is preferable to random screening, where the properties of a small batch of sub-
samples are analyzed, and it is assumed that their chemical properties are the same for
the whole population.
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For these reasons, in recent years, hyperspectral imaging has awakened the interest
of many researchers for the analysis of food products. According to Scopus, the total
number of scientific articles related to studies on hyperspectral imaging for food
applications is 1305 in the past 22 years (from 2000 to 2022), with an increasing trend
in the number of publications (Figure 1).

The range of applications within the food industry is wide and has been exten-
sively covered in the literature by several literature reviews. Those studies cover a
wide range of applications including wheat-based products [2], dairy products [3, 4],
cereals [5], fruits and vegetables [6, 7], meat [8–10], or condiments [11]. Additionally,
it has also been applied to detect adulteration [12] or fraud [13].

Furthermore, other researchers have analyzed the potential of hyperspectral
imaging for food microbiology inspection [14] or for the optimization of agricultural
procedures [15].

The common motivation for all of these research efforts is to find new technologies
able to determine quality parameters on food products, with the goal of avoiding the
use of traditional characterization techniques, which are usually destructive, time
consuming, and, in certain cases, subjective.

In this book chapter, we provide a survey of the current status on the use of
hyperspectral imaging technology in the seafood industry as well as potential future
applications. It is worth noting that the workflow for the investigation of
hyperspectral imaging in this field requires an appropriate experimental design, the
use of adequate instrumentation to carry out data acquisition campaigns, the collec-
tion of reference data, and finally the image processing of the hyperspectral images.
For this reason, the research performed in this field usually requires a close multidis-
ciplinary collaboration of skilled professionals from different fields, such as biologists,
physicists, and engineers, among others.

This book chapter is organized as follows. First, a brief description of the optical
properties of different tissue constituents is provided. Second, we discuss the most
relevant factors about the instrumentation that should be considered for food inspec-
tion applications. Then, we provide a survey about the specific proposed solutions for

Figure 1.
Scientific publications related to the use of hyperspectral imaging for food applications.
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the use of hyperspectral imaging evaluation of seafood products. This survey is not
technical, and it has been focused on the goal of providing a description of the wide
range of applications that have been covered in the literature until now. We also
provide the readers with a summary table containing more specific details of the
different research works presented in this book chapter. Finally, we discuss the cur-
rent limitations of the technology and the potential future trends for hyperspectral
imaging use in the seafood industry.

2. Optical properties of biological tissue

The quantification of the chemical constituents of biological tissue is possible due
to the optical properties of light when propagating within it. The three types of
interactions between electromagnetic radiation and tissue that can be measured are
absorption, refraction, and scattering [16]. Light absorption is related to the amount
of electromagnetic radiation that is transformed into energy by tissue molecules. The
different molecules will present specific absorption peaks, which are related to the
transitions between two energy levels by light at specific wavelengths.

The absorption peaks of different biological tissue constituents in the visible and
near-infrared regions of the electromagnetic spectrum have been widely characterized
in the literature. For that reason, the absorption spectra of water, lipids, proteins,
collagen, and hemoglobin in its different oxygenation states are known [17, 18]. A
representation of those absorption peaks in the spectral range from 500 to 1600 nm is
presented in Figure 2 [19].

3. Instrumentation

Every hyperspectral acquisition system is composed of a lens, an optical element
employed to perform the spectral sampling, an electronic sensor, and a light source.
There are different types of hyperspectral systems depending on how the sampling of

Figure 2.
Absorption peaks of different tissue constituents in the spectral range from 500 to 1600 nm. Reproduced from [19];
creative commons BY 4.0; published by SPIE (2011).
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the electromagnetic spectra is accomplished. This information is beyond the scope of
this book chapter, but readers who are interested in this can refer to different reviews
on hyperspectral imaging hardware in the literature [20].

A relevant characteristic of hyperspectral imaging instrumentation that is exten-
sively mentioned in this book chapter is the spectral range. The spectral range
defines the region of the electromagnetic spectrum that a hyperspectral camera is
able to measure. In commercial hyperspectral systems, there are standard
definitions for the spectral range. Visible and near-infrared (VNIR) refers to the
spectral range from 400 to 1000 nm, while near-infrared (NIR) and short-wave
infrared (SWIR) are used for the ranges 1000–1700 nm and 1000–2500 nm,
respectively. Other key parameters in hyperspectral imaging instrumentation are
the spectral resolution and the spatial resolution, but these concepts will not be used
in this book chapter.

Although the details of hyperspectral cameras are not relevant for this book chap-
ter, the selection of the illumination type to produce the appropriate light–tissue
interactions within the sample is relevant. Using a diffuse reflectance illumination
scheme, the light is evenly delivered to the sample, and it is measured by a
hyperspectral camera after being reflected off its surface. With this illumination
mode, the interaction of light and matter is only measured from the surface of the
sample. In some cases, the diffuse light can penetrate a small distance into the sample
depending on its translucency. However, in complex and inhomogeneous samples,
this type of illumination is not enough for accurate characterization of their chemical
composition [21, 22]. For this reason, some researchers have proposed the use of
interactance (also known as transflectance) illumination, where the light is able to
penetrate deeper into the sample. This illumination mode consists of a focused light
illuminating the sample in a different spatial location to where the spectral informa-
tion is captured, allowing the hyperspectral camera to measure the light interaction
after multiple internal reflections have occurred inside the sample [23]. In the appli-
cations mentioned in this book chapter, both types of light illumination schemes are
used.

4. Applications of hyperspectral imaging in the seafood industry

4.1 Chemical composition

The analysis of the chemical composition of seafood products is important for the
determination of their overall quality or nutritional value, among others. However,
conventional chemical analysis techniques are destructive and time consuming. For
that reason, in recent years, hyperspectral imaging has been foreseen as a technology
suitable for providing a non-invasive measurement of those chemical properties.

For example, in Atlantic salmon, moisture and fat content are considered to be
closely related to the overall quality of the product. The fat content has consequences
for both the customers and the industry. For the customers, the amount of fat present
in a fresh fillet determines the flavor and texture of the product. For the industry, it is
important to quantify the amount of fat in a salmon fillet to determine its target
market. For example, the optimum fat content for smoked salmon is between 8 and
12% [24], while salmons with higher fat content and marbling are preferred for sushi
and sashimi [25, 26]. Similarly, the moisture is related to the shelf-life of seafood
products.

6

Hyperspectral Imaging - A Perspective on Recent Advances and Applications



Several research studies have been focused on non-invasive determination of
moisture and fat using hyperspectral imaging. Several authors have proposed using
NIR spectroscopy to estimate fat and moisture in Atlantic salmon. Zhu et al. obtained
accurate models using only the spectral information of the samples [27]. However, fat
content is not uniform throughout a sample, and Zhang et al. demonstrated that more
robust models for fat and moisture can be obtained if texture features extracted from
characteristic spectral bands are used as predictors [28]. Using the aforementioned
approaches, the authors not only predicted the overall fat and moisture content for
the samples but also provided their spatial distribution within the salmon fillets
(Figure 3). In a more technical approach, Dixit et al. performed a comparison between
two different hyperspectral technologies (line scan and snapshot) working in differ-
ent spectral ranges for the determination of fat in Atlantic salmon [29]. The authors
concluded that the spectral range from 670 to 950 nm was able to provide an equiva-
lent performance in the prediction of fat compared to the spectral range from 550 to
1700 nm, which may lead to the use of cheaper instrumentation for this application
due to the narrower spectral range needed.

Another important quality indicator for fish is blood content. During capture, fish
are, as a rule, drained of their blood by cutting through the gills. This is mainly done in
order to kill the fish quickly, but it also has the effect of preventing the blood from
settling in the muscle and changing its color. The appearance of a fish fillet impacts its
perceived quality, and a red hue in a whitefish fillet can be off-putting to the con-
sumer. In the case of smoked products, any remaining blood turns brown and can, for
instance, be perceived as dark spots in a smoked salmon fillet.

Skjelvareid et al. demonstrated that hyperspectral imaging can detect and quantify
blood in whitefish fillets [30]. The hemoglobin in the blood absorbs light very strongly
in a specific region of the visual spectrum and therefore stands out against the white
fish muscle. The different oxidation states of the hemoglobin can also be distinguished

Figure 3.
Spatial mapping of moisture (a) and fat (b). Reprinted by permission from springer nature customer service
Centre GmbH: Springer nature, food and bioprocess technology [27] [COPYRIGHT: Springer nature] (2013).
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by their spectral signature, which makes it possible to do a pixelwise spectral
unmixing by using the known reference spectra for the hemoglobin. An example of
the quantification of blood in Atlantic cod fillets can be observed in Figure 4.

The same method has been applied to salmon fillets as well. The pigments in the
salmon muscle absorb light in the same spectral region as the hemoglobin but with a
different spectral profile. It is therefore possible to distinguish the blood from the
pigments by taking both of them into account.

Two illumination setups are presented in the above publications. The first one is a
diffuse illumination for reflectance imaging, while the other is an interactance. The
idea is that surface reflection does not give enough information about the internal
properties of the fillet, such that the focused light source of the interactance setup is
necessary to penetrate further into the muscle. To ensure that the light recorded by
the camera has propagated through the muscle and been attenuated by it, the focused
light source is placed a certain distance from the field of view of the camera, which
reduces surface reflection in the camera field of view while providing a good signal
from the inside of the fillet [31]. This technique has also been shown to work for
quantifying blood in whole whitefish through the skin, which, at the time of writing,
is being developed into a commercial quality control method [32].

4.2 Analysis of freshness

Technologies able to non-invasively estimate the freshness of seafood products are
in demand for the industry. There are currently different techniques for the

Figure 4.
Quantification of blood in cod fillets using hyperspectral imaging. a) Calibrated color image based on diffuse
reflectance hyperspectral imaging. b) Estimated blood concentration based on diffuse reflectance hyperspectral
imaging. c) Estimated blood concentration based on interactance hyperspectral imaging [31].
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estimation of freshness in seafood products; however, such methods are labor inten-
sive and usually destructive and cannot be applied to every specimen in the product
line. The possibility of technology able to perform rapid freshness analysis for every
sample could bring to the industry new alternatives for decision making with the goal
to improve the processing and sorting of the raw materials.

Several researchers have investigated the estimation of the freshness of seafood prod-
ucts using hyperspectral imaging. Usually, the approaches followed by those researchers
consist of the utilization of spectral data together with multivariate analysis methods to
predict the values of different reference measurements related to the freshness.

A basic common reference method for the estimation of freshness is the storage
time. Some researchers have successfully estimated storage time as a freshness indi-
cator for fillets from different fish species using hyperspectral imaging, for example,
pearl gentian grouper [33], Atlantic salmon [34], and Atlantic cod [35]. Kimiya et al.
[34] and Sivertsen et al. [35] attributed the spectral changes between the different
storage times to the oxidation of hemoglobin and myoglobin proteins during the
chilled storage, which enables the successful estimation of the storage time based on
the spectral information.

The total volatile basic nitrogen (TVB-N) is often used as a biomarker of protein
and amine degradation and is considered a proxy freshness of fresh meat and fish
products [36]. TVB-N has been widely used as a reference value for freshness estima-
tion using hyperspectral imaging. In the literature, TVB-N estimation in fillets from
different species can be found, including rainbow trout [37], grass carps [38, 39], or
tilapia [40]. Figure 5 shows the spatial distribution of TVB-N values within grasp carp
fillets. All the above research presented accurate models for predicting TVB-N values
using the VNIR spectral range. However, Yu et al. demonstrated that combining the
VNIR and NIR spectral ranges resulted in improved estimations [40].

Although storage time and TVB-N methods have been the more common reference
methods for determining freshness using hyperspectral imaging, other researchers have
used alternative methods with successful results. Zhang et al. used electrical conductiv-
ity on largemouth bass fillets [41], while sensory evaluation of the shelf-life was used as
a reference method for the estimation of freshness by Khoshnoudi-Nia et al. [42].

Figure 5.
Spatial distribution of TVB-N values for freshness estimation. (a), (b) and (c) shows the TVB-N for different
fillets (8.26, 12.98, and 15.69 mg N/100 g, respectively). Reprinted from innovative Food Science & Emerging
Technologies, 21, Jun-Hu Cheng, Da-Wen Sun, Xin-An Zeng, Hong-Bin Pu, non-destructive and rapid
determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by
hyperspectral imaging [38], page 9, Copyright (2014), with permission from Elsevier.
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4.3 Quality characterization

Quality evaluation of seafood products, and food products in general, is mainly
determined by how the odor, color, and texture of the product is perceived by cus-
tomers. Traditionally, this quality evaluation has been addressed by sensory evaluation
panels, who are a group of people trained to perform a quality judgment of seafood
products. In recent years, some solutions based on hyperspectral imaging have been
investigated to produce objective measurements of these quality parameters for dif-
ferent seafood products to help the industry stakeholders optimize their production.

Texture is a significant feature for the quality perception of seafood products by
customers. For the texture evaluation, there are instruments that allow one to perform
objective measurements, which are more repeatable than the subjective opinion of a
sensory panel. However, the use of texture analyzers is time consuming and destructive.
For this reason, some researchers have proposed the use of hyperspectral imaging for the
characterization of texture features in seafood products. In those studies, the reference
texture data are usually collected using a variety of mechanical instruments able to
measure the force needed to compress or tear a sample. Wang et al. developed multivar-
iate regression models based on the spectral data from commercial crisp grass carp
(Ctenopharyngodon idellus) fillets to predict their hardness attributes using the spectral
information in the VNIR spectral range [43]. Another research study demonstrated that
the use of hyperspectral images in the SWIR spectral range is also suitable for the
estimation of texture features in rainbow trout (Oncorhynchus mykiss) fillets [44]. The
results of these studies showed high correlation between the predicted texture values
from the spectral data and the texture measurements. In another innovative study, the
authors also obtained promising models for the estimation of texture parameters of fish
by using spectral and textural data from eyes and gills [45]. This approach has the
advantage of being able to predict the texture of the fish before it is cut into fillets.

Wang et al. proposed the use of artificial neural networks together with VNIR
spectral data for the characterization of color in large yellow croaker (Larimichthys
crocea) fillets [46]. In this study, the color variations in the samples were produced by
storing the samples in different conditions and acquiring hyperspectral data. The
corresponding reference measurements used a colorimeter to quantify the color
parameters of the sample. The results of this study showed that hyperspectral imaging
is a potential tool for color characterization of samples, with some advantages over the
colorimeters. Colorimeters require point measurements, which present two main
disadvantages: there is a need for physical contact with the sample, and the measure-
ments are performed in a limited number of spots on the sample.

4.4 Detection of nematodes

Parasites in fish are a significant problem for seafood producers and consumers,
presenting both quality and health concerns. Typically, the presence of parasites in
products leads to rejection of the product by both purchasers and sellers. Parasites, such
as Anisakis simplex and Pseudoterranova decipiens, are commonly present in whitefish
fillets [47]. Today, every single fillet is inspected by transillumination on candling tables
[48], and nematodes are removed manually. The detection rate using candling tables has
been reported as low as 23% in a recent study by Mercken et al. [49]. Manual screening
for parasites is an expensive operation previously reported to account for half of the
production cost for Pacific cod from the Bering Sea and the Gulf of Alaska [50]. Several
different instrumental methods have been evaluated for nematode detection:
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fluorescence [51], ultrasonic waves [52], X-ray and computer tomography [31], and
multispectral imaging [53]. The first conceptualization on the use of spectroscopic
techniques for nematode detection was proposed by Pau et al. in 1991, where the spectral
differences between the parasites and the fish muscle were shown [54]. The chemical
differences between nematodes and fish muscle were documented by Stormo et al. [55],
and a later work discussed the impact of selecting a limited number of wavelengths
based on such chemical differences [56]. In Sigernes et al., the authors developed a
custom spectral imager targeting a wide variety of seafood industry applications [57]. In
that work, the authors showed as a proof of concept that the spectral information can be
potentially used to identify nematodes in fish samples. Using the same instrumentation,
Heia et al. conducted the first research study on the detection of nematodes with
hyperspectral images [58]. Using the transmittance illumination mode, this work served
as a proof of concept to show the potential of spectral imaging for nematode detection.
The goal of using transillumination was to be able to detect nematodes deeply embedded
in the fish flesh. However, this preliminary work was limited by a low number of
samples and ideal laboratory conditions. With the goal of making the system more
suitable for an industrial setting, Sivertsen et al. further investigated this research line.
First, a transillumination setup based on a commercial hyperspectral camera with a
higher number of samples was evaluated [59]. However, despite the promising results in
the detection of nematodes, the transmittance setup still presented obstacles for imple-
mentation in industry, for example, a low imaging speed and challenges regarding the
optimization of the light conditions. For those reasons, in a subsequent study, Sivertsen
et al. proposed for the first time the use of interactance hyperspectral imaging for the
detection of nematodes [60]. In this work, the authors were able to satisfy industrial
needs for fast acquisition and processing of the images. However, although the detection
rate of nematodes was comparable with the humanmanual inspection, the detection rate
was still low and the false positive rate too high to meet industrial requirements.

In an ongoing research project funded by the Norwegian Seafood Research Fund
(FHF), entitled Commercial Nematode Detection in Whitefish Fillets (901614), a solu-
tion is being developed to perform nematode detection using hyperspectral imaging.
The project is being conducted by the Norwegian Institute of Food, Fisheries and
Aquaculture Research (Nofima) and Maritech, a company commercializing a
hyperspectral solution for seafood inspection called Maritech Eye™. In the previous
approaches, only the spectral information from the nematodes and the fish muscle
was exploited. In this project, a solution based on a deep learning neural network,
where both the spatial and the spectral features of the data are utilized to detect the
nematodes, is proposed. Figure 6 shows the manual annotation of the nematodes as
well as the automatic detection of the nematodes using hyperspectral image analysis
with a deep neural network. The experiment to demonstrate the feasibility of this
approach was tested under industrial conditions in a cod production factory belonging
to the company Maredeus (Portugal). The results of the proposed approach were
accurate, with a high detection rate and almost no false positives. In addition, the
system was able to operate at industrial speed (400 mm/second), including both the
image acquisition and the data analysis, which would make it possible to use this
approach as an industrial solution for the detection of nematodes.

4.5 Identification of different species

Another challenge for seafood production lines is the automatic sorting of different
species when they are processed simultaneously. Additionally, the use of imaging
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technologies able to identify different fish species is attractive both for the consumer
and for the industry, since they can help to mitigate fraud in fish mislabeling [61]. In a
research study performed by Chauvin et al., the authors evaluated the potential of the
spectral information of fillets from different species in order to correctly classify them
[62, 63]. A total of 22 fish species were recorded using diffuse reflectance illumination
(VNIR and SWIR spectral ranges) and fluorescence excitation (VIS). Using this data,
different supervised classifiers based on the spectral data from the different species
were trained. The results obtained in this study suggest that the combination of
spectral channels from the different spectral ranges and imaging modalities improve
the classification compared to single-mode data (i.e., only VNIR, only SWIR, or only
fluorescence). Finally, the authors investigated reducing the number of spectral bands
needed for species identification without compromising on the performance of the
classifier. The outcome of this research was a selection of 7 spectral bands that can be
potentially used for the identification of species. This finding paves the way for the
future development of cheap instruments based on LED illumination using such
specific wavelengths to perform the species sorting.

Beyond the seafood industry, hyperspectral imaging has also been investigated for
species identification with the goal of using this technology as a complementary tool
to existing molecular and morphological techniques for faunal biodiversity assess-
ment. Kolmann et al. performed a study in South American fish species that are
difficult to distinguish even under controlled conditions: piranhas and pacus (both
from the family Serrasalmidae) [64]. The authors were able to successfully discrimi-
nate between 47 different species and subspecies, using only their spectral informa-
tion (Figure 7). The outcomes of this study demonstrated hyperspectral imaging as a
potential technology for biodiversity screening.

4.6 Damage detection

One of the main pretreatments applied to freshwater fish is scale removal; how-
ever, methods to do this can produce damage to the product. With the goal of better
characterizing the damages caused by the different physical scale removal methods,
Wang et al. proposed the utilization of VNIR spectral data as a tool to visualize such

Figure 6.
Manual annotation of nematodes (blue) and automatic prediction (yellow) of their location on cod fillets based on
hyperspectral image analysis.
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damages [65]. The results of this study were positive, showing an accurate identifica-
tion of the damaged areas based only on the spectral information.

Another type of damage occurs when fish are caught. Jensen et al. proposed the use
of a catch damage index based on VNIR hyperspectral information to characterize the
catch damage when different trawling strategies are used [66]. The method is based
on the estimation of the residual blood in fish muscle by using constrained spectral
unmixing [30]. Using this application of hyperspectral image processing, it was pos-
sible to conduct an experiment to evaluate the effect of different trawling strategies on
fish damage.

4.7 Detection of contamination agents

Plastic contamination in marine environments leads to the ingestion of
microplastics by fish. There is evidence that indicates that microplastics intake causes
harmful effects to fish health [67]. In recent years, research has shown an increasing
trend in the presence of microplastics in seafood products [68]. However, the
methods to accurately quantify the presence of microplastics are complex and expen-
sive, which complicates the experimental trials required to quantify the effect of this
problem. For this reason, Zhang et al. proposed the use of hyperspectral imaging in the
range from 900 to 1700 nm for the identification of microplastics [69]. With the goal
of training a supervised classifier based on the spectral information, the intestinal tract
contents of different fish were contaminated with plastic polymers of different chem-
ical composition, size, and color. Then, the accuracy of the proposed methodology was
evaluated, both in prepared samples and in fish samples from three different species.
The results of this experiment indicated that hyperspectral imaging can be a suitable
technology to detect the presence of microplastics in the intestinal tract of fish.
However, the precision in the detection is affected by the size of the plastic particles,
which makes it necessary to increase the dataset to improve the machine learning
models to improve the detection of small plastic particles.

Figure 7.
Comparative spectral signatures from four different body regions of a pacu (Myloplus schomburgkii) (right) and
a piranha (Serrasalmus geryi) (left). Reproduced from [64]; creative commons BY 4.0; published by springer
nature limited (2021).
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From the food safety perspective, the detection of harmful microorganisms pre-
sent in fish is a relevant topic. With the goal of developing imaging technologies for
the detection of Enterobacteriaceae contamination in Atlantic salmon (Salmo salar)
flesh, He et al. investigated the use of the NIR spectra for monitoring the presence of
such bacteria [70]. After capturing hyperspectral images of salmon contaminated with
Enterobacteriaceae at different storage periods, the authors were able to quantify the
presence and severity of the bacterial contamination. It is worth noticing that
hyperspectral imaging technology is not able to measure the bacteria presence by
itself; however, there are differences between the spectra from contaminated and
non-contaminated salmon flesh.

4.8 Applications in aquaculture

Aquaculture production has significantly grown during the past 20 years [71]. This
is mainly due to the increasing demand for seafood products, together with the goal of
the seafood industry to increase productivity. Thus, there is a current demand for
novel information and digital technologies that can be applied in aquaculture to
improve the productivity of fish farms [72]. Nowadays, the use of hyperspectral
imaging technologies in aquaculture is limited to a few contributions.

In Atlantic salmon (S. salar) farming, the transition from juvenile freshwater fish
(parr) to seawater adapted fish (smolt) is called smoltification. Smoltification involves
changes in the morphology, physiology, and biochemistry of juvenile salmon. From a
fish farmer perspective, it is important to monitor the smoltification process for two
principal reasons. On the one hand, an incomplete smoltification process at the time
the salmon is transferred to seawater leads to poor salmon welfare and an increased
risk of mortality. On the other hand, a late transition to seawater generates negative
consequences for the farmer since the production chain is not optimized, which
induces economic losses. With the goal of providing the aquaculture industry with a
solution to this problem, Svendsen et al. studied the relationship between the spectral
information and the physiological changes in juvenile salmons [73]. After analyzing
more than 300 fish from three different farms, the authors were able to perform an
accurate discrimination between parr and smolt with high sensitivity and specificity.
The classification was performed using a machine learning classifier (Support Vector
Machine) using only three specific spectral channels.

Salmon lice (Lepeophtheirus salmonis) are parasites that live on salmonid fishes. The
salmon lice represent a huge problem for both farmed and wild salmon because they
can produce severe fin damage, bleeding, and open wounds in the host. Salmon
affected by these parasites are likely sensitive to other pathogens, leading to increased
sickness. Therefore, salmon lice are a problem that generates negative effects in salmon
welfare and leads to significant economic losses for the farmers and suffering for the
fish. Early warnings for lice could help farmers to take action to eliminate the infesta-
tion. However, the identification and counting of these parasites are challenging tasks
even for skilled staff. With the goal of providing an automatic solution to this problem,
Pettersen et al. conducted an experiment where underwater hyperspectral imaging was
applied for the detection of salmon lice [74]. First, the authors recorded and charac-
terized the spectral signature of different salmon lice subtypes in laboratory condi-
tions, in both air and underwater conditions. Finally, they tested the method to identify
the different lice subtypes in salmon using the underwater hyperspectral imaging
system. Although the research suggested underwater hyperspectral imaging as a
promising technology for the detection of salmon lice in sea cages, it can be considered
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as a proof of concept, and more research needs to be performed to optimize the
instrumentation for use as a final product in aquaculture farms.

The use of hyperspectral imaging has also been applied in an indirect manner with
the goal to improve the quality of the fish feed in aquaculture. Marine fishmeal
powder is added as protein supplement in fish feed in aquaculture, but recently, the
adulteration of this product with cheaper alternatives with lower nutritional value has
become a common trend. To address this fraud, Kong et al. proposed the use of NIR
hyperspectral imaging and convolutional neural networks for the identification of
adulterants in marine fishmeal [75].

The aforementioned examples suggest that hyperspectral imaging technology can
contribute to improvements in aquaculture in the near future.

5. Summary table

In this section, we provide a summary of the main research works that have been
covered in this book chapter. In Table 1, the information about each research work is
specified. This information includes the type of application, the fish species, the type
of samples, the number of specimens, the illumination modality, the spectral range,
and the image-processing method used to retrieve information from the hyperspectral
images.

Application Fish Species Sample Type N Illum. Spectral
Range

Processing
Method

Ref.

Chemical
composition
(fat and
moisture)

Atlantic
Salmon

Fillets 5 DR 900–1700 nm PLSR [27]

Chemical
composition (fat
and moisture)

Atlantic
Salmon

Fillets 10 DR 900–1700 nm Optimal Band
Selection, Texture
Feature Extraction,

Multivariate
Regression
Algorithms

[28]

Chemical
composition
(fat)

Atlantic
Salmon

Fillets 45 DR 550–1700 nm
470–630 nm
670–950 nm

PLSR [29]

Chemical
composition
(blood)

Atlantic Cod Homogenized
samples

9 IA 430–1000 nm Constrained
Spectral Unmixing

[30]

Freshness
estimation
(storage time)

Pearl
Gentian
Grouper

Fillets 22 DR 900–1700 nm PLSR [33]

Freshness
estimation
(storage time)

Atlantic
Salmon

Fillets 48 IA 400–1000 nm PLSR [34]

Freshness
estimation
(storage time)

Atlantic Cod Fillets 49 IA 400–1000 nm PLSR [35]
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Application Fish Species Sample Type N Illum. Spectral
Range

Processing
Method

Ref.

Freshness
estimation
(TVB-N)

Grass Carp Fillets 30 DR 400–1000 nm PLSR, Optimal
Band Selection

[38, 39]

Freshness
estimation
(TVB-N)

Tilapia Fillets 40 DR 400–1000 nm
900–1700 nm

Spectral data
fusion,

Multivariate
Regression
Algorithms

[40]

Freshness
estimation
(sensory
analysis)

Largemouth
Bass

Fillets 20 DR 400–1000 nm PLSR, Optimal
Band Selection

[41]

Freshness
estimation
(sensory
analysis)

Rainbow
Trout

Fillets 40 DR 430–1010 nm Multivariate
Regression
Algorithms

[42]

Texture
characterization

Crisp Grass
Carp

Fillets 15 DR 400–1100 nm Multivariate
Regression
Algorithms

[43]

Texture
characterization

Rainbow
Trout

Fillets 80 DR 1000–2500 nm PLSR [44]

Texture
characterization

Crucian
Carp

Fillets and
Whole Fish

84 DR 900–1700 nm PLSR, Spectral and
Textural Feature

Extraction

[45]

Color
characterization

Large
Yellow
Croaker

Fillets 15 DR 400–1000 nm Artificial Neural
Networks

[46]

Nematode
detection

Atlantic Cod Fillets 8 IA 350–950 nm PLS-DA [58]

Nematode
detection

Atlantic Cod Fillets 40 IA 400–1000 nm Fisher
Discriminant Ratio

[59]

Nematode
detection

Atlantic Cod Fillets 43 IA 400–1000 nm Custom local
calibration, Fisher
Linear Classifier

[60]

Identification of
species

22 Different
Species

Fillets 133 DR
FL

419–1007 nm
438–718 nm
842–2532 nm

Artificial Neural
Networks, Band
selection methods

[62]

Identification of
species and
subspecies

Piranhas
and Pacus

Live fish 176 DR 325–1075 nm Adaptative
Coherence
Estimator

[64]

Damage
characterization
(scale removal)

Fresh Carp Whole fish 50 DR 387–1024 nm Decision Trees,
Self-Organizing

Maps

[65]

Damage
characterization
(catch damage)

Atlantic Cod Whole Fish 600 IA 400–1000 nm Constrained
Spectral Unmixing

[66]
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6. Conclusions

In this book chapter, we have surveyed the main applications of hyperspectral
imaging for seafood industry-related problems. The main goal in most of the research
carried out in this field is to provide an alternative to the expensive, time-consuming,
and invasive reference methods that are currently employed for the characterization
of seafood products. Additionally, the advantage of hyperspectral technology is its
applicability to industrial production chains, where the analysis can be performed
individually for every sample, which can lead to the optimization of production and
decision making for the industry.

Although the application field of this technology is wide and promises to address
actual problems for both the industry and the consumers, there are still challenges that
must be carefully investigated in the upcoming years.

As far as the instrumentation is concerned, there are still uncertainties about which
type of illumination (diffuse reflectance or interactance) is more appropriate for each
application. Additionally, there is no strict criterion for the selection of the most
adequate spectral range for each application. In this sense, more comparative research
should be carried out in order to have clearer arguments on which spectral range
should be used for different applications.

The number of processing methods used to extract information from hyperspectral
data is huge and diverse. An appropriate evaluation of these methods should be
carefully carried out to gain a better understanding of their limitations and advantages
for each scenario. Additionally, most of the methods covered in the literature are
based exclusively on the spectral information, while the spatial information is usually
underrated. However, the trend in hyperspectral image analysis in other fields is to try
to exploit simultaneously both the spatial and the spectral features of the data, espe-
cially with the rise of sophisticated deep learning architectures to this end [76, 77].

Application Fish Species Sample Type N Illum. Spectral
Range

Processing
Method

Ref.

Detection of
microplastics

Sea Bass
Redeye
Mullets

Goosefishes

Internal
organs

20 DR 900–1700 nm SVM classification [69]

Detection of
bacteria
contamination

Atlantic
Salmon

Fillets 30 DR 900–1700 nm PLS, Optimal Band
Selection

[70]

Smoltification
monitoring

Atlantic
Salmon

Live Fish 314 DR 400–1000 nm SVM classification [73]

Salmon lice
detection

Atlantic
Salmon

Live Fish 7 DR 370–800 nm PLS-DA, SAM [74]

N: Number of samples, Illum: Illumination Mode (DR: Diffuse Reflectance, IA: Interactance, FL: Fluorescence). PLSR:
Partial Least Squares Regression, SVM: Support Vector Machines, PLS-DA: Partial Least Squares Discriminant
Analysis, SAM: Spectral Angle Mapper.

Table 1.
Summary table.
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Regarding the future of this research line, the upcoming challenges should be
focused on the transfer of knowledge to industry, where this technology could be
employed to improve production chains and decision making. In this sense, commer-
cial products consisting of industrial-grade spectral imaging systems have been
recently launched, such as the QMonitor (QVision AS, Oslo, Norway) or the Maritech
Eye (Maritech Systems AS, Molde, Norway). Both systems are based on interactance
illumination mode. The QMonitor is a multispectral NIR system, while the Maritech
Eye is a hyperspectral system in the VNIR spectral range. These devices have been
proven to be useful for different food quality applications [78–82] and are currently
used in food industry production facilities.
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Chapter 2

Useful Feature Extraction and
Machine Learning Techniques for
Identifying Unique Pattern
Signatures Present in Hyperspectral
Image Data
Jeanette Hariharan, Yiannis Ampatzidis,
Jaafar Abdulridha and Ozgur Batuman

Abstract

This chapter introduces several feature extraction techniques (FETs) and machine
learning algorithms (MLA) that are useful for pattern recognition in hyperspectral
data analysis (HDA). This chapter provides a handbook of the most popular FETs that
have proven successful. Machine learning algorithms (MLA) for use with HDA are
becoming prevalent in pattern recognition literature. Several of these algorithms are
explained in detail to provide the user with insights into applying these for pattern
recognition. Unsupervised learning applications are useful when the system is pro-
vided with the correct set of independent variables. Various forms of linear regression
assay adequately solve hyperspectral pattern resolution for identifying phenotypes.
K-means is an unsupervised learning algorithm that is used for systematically dividing
a dataset into K number of pattern groups. Supervised and unsupervised neural
networks (NNs) are used to discern patterns in hyperspectral data with features as
inputs and in large datasets where little a priori knowledge is applied. Other super-
vised machine learning procedures derive valuable feature detectors and descriptors
through support vector machine. Several methods using reduced sets for extracting
patterns from hyperspectral data are shown by discretized numerical techniques and
transformation processes. The accuracy of these methods and their usefulness is
generally assessed.

Keywords: pattern signature, hyperspectral data, data reduction, power spectral
density, biomarker

1. Introduction

Hyperspectral imaging and data analysis have recently received considerable
attention since the representative data is ultra-high resolution and informative [1–7].
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Hyperspectral data is collected by using a precision imaging device which emits
light energy at wavelengths below, within, and above the visible range. Other cameras
such as RGB (Red-Green-Blue sensitive filters) and multispectral, have more limited
sets of data. These passive sensors only collect one to five reflective values from
ambient light that is present (Figure 1). It then scans each pixel location sequentially
for reflectance values from each wavelength of light emitted. Each wavelength is
spaced about 2–5 nms. Apart. The data collected for each pixel in an image then
represents the complete spectrum returns for the hyperspectral bands presented
(see Figures 2–4). Within this data, patterns of information exist that have never
been detected before, thus allowing the explorer to glean relevant and new highlights
from this collected data set.

Figure 1.
Various camera operational bands.

Figure 2.
Multispectral comparison with hyperspectral (Dr. Nicholas M. Short, Sr. – Public domain).
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Figure 3.
Hyperspectral imaging process (NASA – Public domain).

Figure 4.
Hyperspectral imaging analysis.
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Hyperspectral cameras use a line scanning sensor (mostly, push broom type),
that emits light at varying frequencies and then collects the reflected signal
through a narrow slit. The narrower the slit, the higher the resolution of the
camera, until it begins interfering with the light wave signal itself. The reflected
light enters the slit and coincides with a concave mirror (Figure 5, M1) where the
light is collimated. M1 redirects the collimated light from the scan to the optical
grating. Here the light is divided or dispersed into its component frequencies. M2
acts to expand the beams and redirect the light to a reimaging lens array in the
sensory unit.

The hyperspectral camera can be embedded on UAVs (e.g., Figure 6) to enhance
aerial views for many image pursuits for agriculture, marine studies, search and
rescue, surveillance, military activities, and construction site safety and manage-
ment. Once hyperspectral images are stored, the data can be acquired per pixel per
wavelength to reconstruct the image or study the reflected signatures. For instance,
in agriculture, crops in a region can be surveyed by studying the map of the pure
signature spectrum (Figure 7). Other pattern recognition algorithms can be used to
understand how normal spectrums represent specific species of plants. Detecting
plant diseases and stress factors in early stages of disease development is essential for
selective and effective management of crop production. Through other data
analysis procedures, such as feature extraction, statistical prediction, and reduced
signature spectrums, pinpointing where the spectrums differ between a range of
normal signatures and abnormal feature spectrums will reveal variations in the
species [3, 8, 9]. Realizing how these spectrums differ because of diseases, abiotic
stressors, nutritional deficiencies, or other factors, will give more useful information
to the farmers.

Figure 5.
Hyperspectral imaging hardware operation.
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Figure 6.
Hyperspectral imaging device as payload on UAV.

Figure 7.
Hyperspectral imaging of agricultural landscape (image credit: Geospatialworld.net).
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The focus of this chapter is on extrication of features and pattern recognition
algorithms that can be used in hyperspectral data analysis to obtain useful infor-
mation. Common preprocessing and analysis applications include normalization
and derivative spectra enhancement using finite differencing [10], complex step
derivative [11], and derivative spectral shape equation [9]. Wavelet Transform has
been used and compared to derivative spectra enhancement and shown to be very
successful in spectral regions of interest; it is becoming more commonly used as
an alternative to spectral derivative methods [12]. Polynomial interpolations are
also used to smooth the (spectral) data and better represent enhanced spectra.
Multivariate analysis can be used to gain a better understanding of spectral vari-
ance between feature data [2, 4]. Recently, autonomous ground and unmanned
aerial vehicles with hyperspectral camera payloads have been used to collect data
for agricultural purposes [13, 14]. Along with this method of data collection, deep
and transfer learning artificial intelligence applications have been developed for
pest and plant stress detection [5, 6]. These techniques required a high-quality
training dataset for accurate development of the prediction models [5].

Hyperspectral Imaging is gaining widespread use in drone applications for agri-
culture and water safety. Agricultural applications include landscaping crop regions,
analysis of crop health, understanding nutritional status of plants, harvest studies,
flowering index, growth cycles comparison, trait discrimination, breeding informa-
tion, and soil performance. Associated AI and machine learning applications are the
mainstay of these informational systems. In water quality analysis, various
hyperspectral algorithms such as partial least-squares, fully connected neural net-
works with backpropagation (FCNN-BP), Support vector machine (SVM) and Ran-
dom Forest (RF) procedures have been successfully used and compared for
quantitative investigation [15]. Other assessments have been implemented using FETs
and AI for detecting water contamination in rivers [16], forest fire assessment, and
automated drone team hyperspectral fusion.

Machine learning algorithms usually require some preprocessing of the data.
Segmentation and feature extraction often use spatial filters, Laplacian of Gaussian
with orientation filters [17], and other traditional methods that detect spectral dis-
continuities or similarities to adequately obtain prediction models for patterns.
Gradient magnitude algorithms form ridges at high valued pixels, noted as water-
sheds, that are used to segment regions. Adaptive thresholding is applied to image
data that has nonuniform background. This thresholding approach calculates local
thresholds based on specified properties of pixel neighborhoods to segment regions
of interest.

Active contours are another avenue of interest in obtaining features. Snakes were
developed [18] as parametric curves that uncover boundary regions by minimizing an
energy function. This optimization works well with hyperspectral data since it is
relational to the spectra and energy reflected. Level sets use iterative solutions to find
intersecting boundaries between features by optimizing a formulated level set equa-
tion. Using active contours, segmented bounded regions of interest can be brought to
the forefront and presented as features in ML algorithms.

Features can be categorized as being primarily applicable to boundaries, regions,
coded areas, spectral features or whole images. These are not mutually exclusive and
can be used as feature map sections for convolutional neural networks. Hyperspectral
signatures of various region features are often used to train neural networks and as
inputs to MLA. Features in unsupervised learning environments are realized by the
system.
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A branched diagram of popular MLAs is given by Figure 8. Supervised and
unsupervised methods have their own distinct advantages and are dependent
on the context of the application. This chapter reviews some useful methods in
both categories and clarifies some of the subtle differences between these two
types of algorithms. Other useful techniques for MLAs, such as fuzzy logic
and quadratic nonlinear methods are depicted in the diagram of Figure 8. The
reader is encouraged to explore these other methods and compare and contrast
how these techniques can be used efficiently to enhance machine learning
purposes.

Detecting plant diseases and stress factors in early stages of disease development is
essential for selective and effective management of crop production. Laboratory anal-
ysis of plant samples for disease detection is time-consuming and labor-intensive. For
that reason, several disease detection methods have been developed utilizing
advanced and sophisticated hyperspectral data analysis approaches [3, 8, 9] and
MLAs. These unique applications will be reviewed.

The rest of the chapter is divided into sections for:

i. Preprocessing methods that are used in hyperspectral data analysis

ii. FETs for supervised MLAs

iii. FETs for unsupervised machine learning

iv. Innovative methods for hyperspectral signature analysis in agriculture

v. Best practices for working with hyperspectral data and machine learning

Figure 8.
Machine learning algorithms: Categories of methods to be considered when applying ML to hyperspectral data
enhancement of soil data intensity range.
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2. Preprocessing methods for hyperspectral data analysis

Preprocessing of hyperspectral data involves numerical and statistical methods to
filter noise and vibration more generally, as well as radiative transfer and empirical
models used for airborne applications [19]. Some preprocessing methods include
normalization of data, data smoothing, intensity transformation, histogram matching
and histogram equalization, adaptive histogram equalization, correlation and convo-
lution using spectral or spatial filters, and the use of fuzzy sets. This section reviews
the most common and useful preprocessing methods for general purpose applications
in hyperspectral data processing.

2.1 Normalization of hyperspectral data

Normalizing data taken from using similar sensors and similar methods is a com-
mon practice for purposes of understanding and clarifying data. This ensures the
integrity of data presented for analysis, prediction and classification. It also provides
some smoothing of the data using a standard normal variate transformation. The
Standard Normal Variate (SNV) transformation is counter the effects of skewness of
the data related to the reflectance spectra. The SNV was found to reduce error in the
approximation which could be due to interferences caused by scattering and particle
size differences. The probability distribution function that can be used for this stan-
dard normal variance transformation is given by

f xð Þ ¼ 1
σ
ffiffiffiffiffi
2π
p e�ζ (1)

Where

ζ ¼ x� μð Þ2
2σ2

represents the SNV with mean, μ = 0, and standard deviation, σ = 1.
Other distributions can be used for normalizing the data, if the camera manufac-

turer recommends or if there are other anomalies in the data that need to be taken into
consideration. For example, if the data is non-Gaussian, the Z-score standardization
can be used to force the data into standard normal distribution. Z-score standardiza-
tion involves using the data mean and standard deviation to adjust all level points in
the data such that

xii ¼ xi � μ

σ
(2)

Then thexii values can be used as normally distributed data.

2.2 Hyperspectral data smoothing

After transforming the data into the SNV domain, the next steps might include
resolving the data by curve fitting to smooth the spectral data enough so as to be able
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to reliably calculate the finite difference approximations or other numerical analysis of
the data. A convolution method, such as the Savitzky–Golay Filter (SGF, [20]) can be
used to approximate the spectra of the data.

For each pixel location, i, of the data, a signal spectrum of the data can be
smoothed by:

Si ¼
X
N

cNf i þ nC (3)

Where.
Si = smoothed pixel value per wavelength.
N = pixel neighborhood.
cN ¼ Coefficient of curve fit:
f i ¼ pixel value at each wavelength
nC ¼ center pixel value per wavelength
Determining the coefficients can be done by a box filter, applying Gaussian

smoothing for the data set, or other filtering methods. For the SGF, the data is point
transformed by polynomial approximation and the coefficients are found by a least
square fit.

SGF takes into consideration the order (n) of the polynomial to which the data is
being fitted, and the size of the window (m) inscribing the real data points which are
being incorporated for the smoothing at each data point.

The SGF conversion process at the pixel level can be described by:

y ið Þ ¼
Xk
n¼0

anin ij j≤m (4)

Where
y(i) = transformed output of Savitzky–Golay filter
n = term number of polynomials
an ¼ coefficients of polynomial
k ¼order of polynomial fit
To obtain the values of the nþ 1 coefficients, a least squares criterion is used for

solving Eq. (4). By taking the partial derivative of the wrt an and setting the result
equal to zero to minimize the error:

∂

∂an

Xm
i¼�m

y ið Þ � sið Þ2
" #

¼ 0 (5)

Using Eq. (4) at i = 0 the first term can be found. Then using back-substitution and
the criterion Eq. (5), the higher coefficients can be found

An example (Figure 9) shows the smoothing effect of the SGF applied to a sample
hyperspectral signal in real-time data.

2.3 Intensity transformations

Intensity transformations can be used for data that is skewed because of back-
ground or foreground attenuations or ambient light interference. Stretching or
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compressing the value range of pixels that are converted to data values can be done
with point transformation functions. The curves used for transformation can be
gamma, exponential, power law, adaptive, piecewise linear, etc. The domain trans-
form technique uses an operator for each pixel location:

f x, yð Þ ¼ T I x, yð Þ½ � (6)

s ¼ T rð Þ (7)

Where
s ¼ Intensity of f x, y

� �
r ¼ Intensity of Image data
These types of image transformations are sometimes called “mappings” since they

use a point to point mapping of the data to express hidden quality features that
misrepresented the original data. Common transforms are the gamma, power, loga-
rithmic, contrast stretching, and exponential mapping.

2.4 Histogram equalization

For hyperspectral images that are digitized by special mapping of the spectral to
intensity domains, histogram matching functions can be applied to obtain image data

Figure 9.
Filter smoothing of hyperspectral Spectrum via Savitzky-Golay filter.
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that is uniformly distributed on an interval [0,I]. A histogram of image data is defined
by Eq. (8).

h rkð Þ ¼ nk (8)

where
rk ¼ the kth intensity represented by the mapping
nk ¼ #of pixels in image whose intensity is rk
For an image that is M x N pixels:

XI

k¼0
h rkð Þ ¼ MN (9)

We can then obtain an expression for the probability of the occurrence of a pixel of
intensity level rk by dividing the histogram by the number of pixels in the image:

p rkð Þ ¼ h rkð Þ
MN

¼ nk
MN

(10)

Then the sum of (10), which is one.

XI

k¼0
p rkð Þ ¼ 1 (11)

The cumulative distribution function can be found for an intensity value, rk, as:

 rkð Þ ¼
Xk
i¼0

p rið Þ (12)

By using the transformation expression given in Eq. (7) to remap the intensity
value of a pixel of ri intensity to si intensity by a scalar:

sk ¼ T rkð Þ ¼ κ
Xk
i¼0

p rið Þ (13)

Where κ represents the maximum range of intensities (for integer values, Max
(range)-1).

An example of the usefulness of hyperspectral data histogram equalization is
shown in Figure 10. A hyperspectral landscape image of a section of the bison
basin is shown in Figure 10(left). The image shows the hyperspectral mapped data
before histogram equalization and afterwards (Figure 10-right). The spread of the
image forested area is washed out since the degree of green is saturated by the
equalization. However, the biocrust map is more enhanced by the allowance of the
greater spread in the lower and higher spectra pixel intensity region (refer to
Figure 11).
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3. Feature extraction techniques for supervised machine learning

In order to find regions of interests or embedded patterns in the data, feature
extraction methods for hyperspectral data is used to reduce the learning time and
amount of data necessary for MLAs. When there is a priori knowledge in data, it is
useful to extract this information so that the MLA used for pattern recognition is built
on worthwhile information. In ordinary image data, finding lines, edges and corners is
usually an advantageous effort since locating areas with sharp transitions is quite often
associated with a pattern feature descriptor. With hyperspectral data, a more common
application designed by Lowe [17] is scale-invariant feature transforms (SIFT).

Figure 10.
Biocrust data (left) before histogram equalization; (right) after histogram equalization; note enhancement of soil.

Figure 11.
Biocrust data (left) before histogram equalization; (right) after histogram equalization; note the broadening of the
intensity range after equalization.
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There have been many adaptions of this SIFT transform over the years, but the
robustness of this algorithm to find patterns in embedded frame data, real-time
advancing frame data (such as moving target or moving platform), and for maximally
stable extremal regions has become the supreme standard method used for keypoints
feature extraction.

The first item that this transform addresses is scale invariance. By applying Gauss-
ian filters to a stack of image(s) and increasing the smoothing byknσ for each image
that is stacked up to an octave (n = 4), these stacks of images are transformed by

σ ¼ σ1

σ2 ¼ 2σ1

σn ¼ 2σn�1 (14)

To find the keypoints, a difference operation is performed as given by Eq. (15):

L x, y, σð Þ ¼ ℊ x, y, kσð Þ � ℊ x, y, kσð Þ½ �⋇Iðx,yÞ (15)

Where
L x, y, σð Þ ¼ Laplacian operator
ℊ x, y, σð Þ ¼ Gaussian transformed images
I(x,y) = original image data
After this Laplacian of Gaussian operation is performed on the octave stacked

smoothed image data, the extrema regions of the data begin to emerge. This scale-
invariant region become the keypoint features of the data.

To build more robustness into this algorithm, invariance to rotation and other
affine transformations are accounted for by applying orientation invariant gradient
directional operators at the keypoints extracted from Eq. (13). These operators are 42

directional histogram matrices where each rotational element is 22.5 degrees
differenced and weighted about bins that are multiples of 45o. After correlating this
directional filter at the keypoints, keypoint descriptors are indicated and also used as
feature directives for the keypoint features. With this collection of extrema data
labeled as features, any number of machine learning methods can now be applied with
the feature keypoints and descriptors provided as inputs.

The SIFT method was applied for soil biocrust data taken from US geological
society biocrust data. Three band Electro-Optical (EO) imaging system - collected on
June 2, 2018 using a Ricoh GR II camera (18.3 mm lens) mounted on 3DR Solo quad-
rotor aerial vehicle (9:45 AM MDT) were collected [21].

The data before and after the SIFT procedure was applied is given in Figure 12.
After applying a fully connected neural network with two layers, backpropagation
and labeling the data, the supervised MLA was able to locate nine distinct areas of the
terrain, including the two areas of biocrust.

4. A feature extraction technique for unsupervised machine learning

While many variations for linear discriminant analysis (LDA) exist, the focus on
K-means and K-medoids has gotten less attention. The main emphasis of these
methods is to use clustering of data traits to classify features. Clustering algorithms are
vital knowledge acquisition tools [22]. Numerical clustering algorithms generally use a
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Euclidean distance measure or geometric distance such as derived by cosine angle to
classify new data that is provided to the system. K-medoids rather than calculate
cluster centers by distance, it places data points or exemplars as data centroids and
classifies by maximizing similarities (or by contrast minimizing dissimilarities) in data
point features. The tested classification is given a goodness of fit parameter to test the
choice for the number of clusters (mostly uses a “silhouette” function). If this figure
of merit is best for a particular data set, the data is placed in the least dissimilar cluster
until all data points are accounted for with the least change in the cost (or minimal
dissimilarity). The algorithm consists of the following two layers – the “build” and the
“swap”

In BUILD:

1.Apply a priori points to be the exemplars for the optimal number of clusters
given by the silhouette function

2.Associate the rest of the data set to its closest cluster medoid

In SWAP: (while Cost is decreasing)

1.For each cluster, Swap the medoid, m, with data point, d

a. Calculate the cost function

b. When the cost function is minimal, identify the mmin and dmin

2.Swap mmin and dmin for each cluster until overall cost is minimized.

An application using k-medoids for selecting a set of data features from a
hyperspectral image to be associated with decreased nitrogen (Figure 13) in an

Figure 12.
Hyperspectral image data with features extracted by SIFT.
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avocado plant was used to observe the classification pattern that would occur. The
cluster associated with nitrogen deficient plants form a specific spectral signature in
the hyperspectral data cube. Using this algorithm provided nearly 97% accuracy for
random selected leaves of this signature compared to healthy and less nitrogen-
deprived avocado plants as can be seen in Figures 14–17.

The model “build”mode is given by the first five iterations in Figure 14 and shows
how the model converges to the minimal cost analysis (minimum error hyper param-
eters). Swap mode continues in iterations 3–30. Figure 15 shows the overall metrics
for this algorithm. It took �166 K swap configurations for convergence. The distance
metric used for identifying data point similarity was a Chebyshev distance metric. It
also used a weighted function for decision by squared inverse. Figure 16 shows the
cluster classification plot of the signature data points. The validation confusion matrix
of Figure 17 resolves the classification accuracy [23].

Figure 13.
Healthy avocado (left); nitrogen deficient (right).

Figure 14.
Model convergence.
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5. Innovative methods for hyperspectral analysis in agriculture

The method of finite differencing has been found to work well with hyperspectral
data to find dissimilarities in first and second derivative metrics. Using this determin-
istic method, it is reasonable to find regions-of-interest where the derivative max-min
and inflections differ between spectral signature data (Figure 18). These are key
features that can be shown on a parallel coordinates plot. These 2-D patterns that
emerge in high dimensional data can help discern features and provide useful pre-
dictors for classification purposes.

Figure 15.
K-medoid model metrics.

Figure 16.
K-medoid cluster plot.
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Figure 17.
K-medoid validation confusion matrix.

Figure 18.
Parallel coordinates plot – Shows areas of discrimination in finite differences.
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Other methods such as Karhounen-Loeve expansion of the data will provide dis-
cernment as to where the data has the highest variance [24]. If these points are used as
input features to neural networks, supervised learning will enhance the prediction
model convergence and accuracy.

6. Best practices for working with hyperspectral data and machine
learning

When working with hyperspectral data for machine learning, minimizing the
amount of data in the signature content is the first order of business. Doing so without
losing important feature data is the goal of precision feature extraction techniques.
Preprocessing of the data enhances the features to gain a clear understanding of
pattern properties.

There are many areas of machine learning to explore (Figure 8), to discover the
best solution for the context of the problem at hand. Incorporating several models and
contrasting and comparing them will bring the best comprehension to what the data is
revealing.

Decide what type of information is at the forefront of the problem presented and if
unsupervised or supervised learning with feature extraction methods are appropriate.

Designing an accurate set of predictors, features, classifier methods and training
data are the most important areas to consider when using machine learning with
hyperspectral data. Determining which machine learning technique provides the most
accurate solution for classifying data will help build a solution database that can be
used for diagnostic purposes. Data fusion in the post processing area can be used with
the classified features to acquire exclusive signatures. These unique pattern identifiers
can then be stored in a database and used for identification and diagnostic purposes. A
flowchart of best practices of data preprocessing and feature extraction procedures is
given in Figure 19.

7. Conclusions

This chapter presents an overview of preprocessing and feature extraction
methods that are useful when working with hyperspectral data. Examples are shown

Figure 19.
Best practices for Hyperspectral Data Preprocessing & Feature Extraction Procedures for use in machine learning
(ML).
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for applications of these methods using supervised, unsupervised machine learning
techniques and neural networks. Emphasis is placed on the context of the problem,
development of accurate features and training sets, enhancement to features using
weighting functions and decision parameters, and realizing reduced data signatures
through preprocessing and feature map expansion.

A branched diagram of the various supervised and unsupervised methods that are
popular in machine learning was given in Figure 8. This chapter provided a summary
of selected techniques given in Figure 8 as well as provided insights on preprocessing
for enhanced machine learning success. Through correct use of feature extraction in
building the training and test data sets, machine learning algorithms can provide more
accurate results. Machine learning is usually part of an embedded systems as shown in
Figure 19. This chapter has provided insights into the aspects of feature extraction for
enhanced machine learning success, and has examined some of the best algorithms to
produce reliable machine learning results for use in diagnostic databases, robotics,
factory automation, and other applications where decision and classification are nec-
essary processes.
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Chapter 3

Unsupervised Deep Hyperspectral
Image Super-Resolution
Zhe Liu and Xian-Hua Han

Abstract

This chapter presents the recent advanced deep unsupervised hyperspectral (HS)
image super-resolution framework for automatically generating a high-resolution
(HR) HS image from its low-resolution (LR) HS and high-resolution RGB
observations without any external sample. We incorporate the deep learned priors of
the underlying structure in the latent HR-HS image with the mathematical model for
formulating the degradation procedures of the observed LR-HS and HR-RGB
observations and introduce an unsupervised end-to-end deep prior learning network
for robust HR-HS image recovery. Experiments on two benchmark datasets validated
that the proposed method manifest very impressive performance, and is even better
than most state-of-the-art supervised learning approaches.

Keywords: deep learning, unsupervised learning, hyperspectral image,
super-resolution, generative network

1. Introduction

Hyperspectral images (HSI) feature hundreds of bands with extensive
spectral qualities that are helpful for a range of visual tasks, such as computer vision
[1], mineral exploration [2], medical diagnosis [3], remote sensing [4], and so on.
Due to technology restrictions, it is harder to capture high-quality HSI, and the
acquired HSI has substantially lower resolution. As a result, super-resolution (SR) has
been applied to obtain a HR-HSI, but it is a challenge because of texture blurring and
spectral distortion problems at high magnifications. Thus, researchers frequently
combine high-resolution PAN and low-resolution HSI [5] to achieve SR tasks. In
recent years, it is a trend to fuse a high-resolution multispectral/RGB (HR-MS/RGB)
image and a low-resolution hyperspectral (LR-HS) image for generating a
high-resolution hyperspectral (HR-HS) image, which is called hyperspectral image
super-resolution (HSI-SR). The HSI-SR methods are classified into two primary
categories based on reconstruction principles: conventional mathematical model-
based methods and deep learning-based approaches in a supervised/unsupervised
manner. The following sections go into further information about each of these
categories.
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1.1 Mathematical model-based methods

Since HSI-SR is typically an inverse problem, a mathematical model-based
approach yields a solution space that is far bigger than the actual result needed. In
order to tackle this issue, mathematical model-based HSI-SR constrains the
solution space using hand-crafted prior knowledge, regularizes the mathematical
model, and then optimizes the model by minimizing the reconstruction errors.
This method aims at establishing a mathematical formulation that simulates the
transformation of HR-HS images into LR-HS and HR-RGB images. This process is
extremely difficult, and direct optimization of the formed mathematical model
might result in very unreliable solutions, as the known variables in the LR-HS/
HR-RGB images under consideration are significantly less than the unknown
variables to be estimated in the latent HR-HS images. In order to narrow the set
of possible solutions, existing approaches often utilize a variety of priors to modify
the mathematical model.

Based on prior knowledge of various structures, three categories of mathematical
model-based HSI-SR methods can currently be distinguished: spectral unmixing-
based methods [6], sparse representation-based methods [7], and tensor
factorization-based methods [8]. For spectrum unmixing-based methods, Yokoya
et al. [9] proposed a coupled non-negative matrix decomposition approach (CNMF),
which alternatively unmixes LR-HS images and HR-RGB images to estimate HR-HS
images. Later, Lanaras et al. [6] proposed a similar framework to jointly unmix the
two input images by decoupling the initial optimization problem into two constrained
least square problems. Dong et al. [7] incorporated alternating multiplication method
(ADMM) techniques for solving the spectra unmixing model. Additionally, the sparse
representation is frequently used as an alternative mathematical model for HSI-SR. In
this model, the underlying HR-HS image is recovered by first learning the spectral
dictionary from the LR-HS image under consideration, and then calculating the sparse
coefficient of the HR-RGB image. Inspired by the existed spectral similarity of the
neighboring pixels in the latent HS image, Akhtar et al. [10] proposed to perform
group sparse and non-negativity representation within a small patch, while Kawakami
et al. [11] applied a sparse regularizer for the decomposition of spectral dictionaries.
Moreover, the tensor factorization-based method demonstrated that it could be used
to resolve the HSI-SR problem. He et al. [8] factorized the HR-HS image into two low-
rankness constraint matrices and achieved great super-resolution performances,
which were motivated by the intrinsic low dimensionality of the spectrum space and
the three-dimensional structure of the HR-HS image.

Despite some advancements in handcrafted prior, HSI-SR performance tends to be
inconsistent and can cause severe spectral distortion due to the under-representation
of handcrafted prior, depending on the content of the image under investigation.

1.2 Deep learning-based methods

Hyperspectral super-resolution is a hot field of research in hyperspectral imaging,
as it can improve low-resolution images in both the spatial and spectral domains,
turning them into high-resolution hyperspectral images. HSI-SR is a classic inverse
problem, and deep learning has a lot of promise for resolving it. Depending on
whether a training dataset is provided, supervised and unsupervised learning are the
two approaches used in deep learning-based HSI-SR. A labeled training dataset is
necessary for supervised learning in order to create a function or model from which

54

Hyperspectral Imaging - A Perspective on Recent Advances and Applications



subsequent data is fed in order to generate accurate predictions. But a labeled training
dataset is not necessary for unsupervised learning.

1.2.1 Deep supervised learning-based methods

Different vision tasks have been successfully resolved by DCNNs. As a result,
DCNN-based methods have been suggested for HSI-SR tasks, which eliminate the
requirement to investigate various manually handcrafted priors. With the LR-HS
observation only, Li et al. [12] presented an HSI-SR model by combining a spatial
constraint (SCT) strategy with a deep spectral difference convolutional neural net-
work (SDCNN). Han et al. [13] utilized three straightforward convolutional layers in
the groundbreaking HS/RGB fusion work, whereas later work utilized more advanced
CNN architectures, such as ResNet [14] and DenseNet [15], in an effort to attain more
robust learning capabilities. By resolving the Sylvester equation using a fusion frame-
work, Dian et al. [16] first provided an optimization technique, and then they inves-
tigated a DCNN-based strategy to enhance the initialization results. Further, Han et al.
[17] proposed a multi-layer, multi-level spatial, and spectral fusion network that
successfully fused existing LR-HS and HR-RGB images. In order to investigate an MS/
HS fusion network and optimize the suggested MS/HS fusion system, Xie et al. [18]
employed a low-resolution imaging model and spectral low-level knowledge of
HR-HS images. In order to solve HS image reconstruction difficulties effectively and
accurately, Zhu et al. [19] researched the progressive zero-centric residual network
(PZRes-Net), a lightweight deep neural network-based system. All the DCNN-based
methods mentioned above take training with a large number of pre-prepared training
instances that contain not only LR-HS and HR-RGB images but also the corresponding
HR-HS images as labels, that is, the set of training triples, despite the fact that the
reconstruction performance was significantly improved.

1.2.2 Deep unsupervised learning-based methods

Although HS images are difficult to obtain in the real world, deep learning net-
works for HSI-SR require a lot of hyperspectral images as training data. It is rather
challenging to collect good quality HSIs due to hardware restrictions, and the resolu-
tion of the acquired HSIs is relatively low. For supervised learning, which needs big
training datasets to succeed, this is an unsolvable problem. As a result, unsupervised
learning is one of the key research areas. Unlike supervised learning, unsupervised
learning does not require any HR-HS image as a ground-truth image and uses only
easily accessible HR-MS/RGB images and LR-HS images to generate HR-HS images.

It is well known that the corresponding training triplets, especially the HR-HS
images, are extremely hard to be collected in real applications. Thus, the quality and
amount of the collected training triplets generally become the bottleneck of the
DCNN-based methods. Most recently, Qu et al. [20] attempted to solve the HSI super-
resolution problem in an unsupervised way and designed an encoder-decoder archi-
tecture for exploiting the approximate low-rank prior structure of the spectral model
in the latent HR-HS image. This unsupervised framework did not require any training
samples in an HSI dataset and could restore the HR-HS image using a CNN-based end-
to-end network. However, this method needed to be carefully optimized step-by-step
in an alternating way, and the HS image recovery performance was still not enough.
Liu et al. [21] proposed an unsupervised multispectral and hyperspectral image fusion
(UnMHF) network using the observations of the under-studying scene only, which
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estimates the latent HR-HS image with the learned encoder-decoder-based generative
network from a noise input and can only be adopted to the observed LR-HS and HR-
RGB image with the known spatial downsampling operation and camera spectral
function (CSF). Later, Uezato et al. [22] exploited a similar method for unsupervised
image pair fusion, dubbed a guided deep decoder (GDD) network for the known
spatial and spectral degradation operation only. Thus, the UnMHF [21] and GDD [22]
can be categorized into the non-blind paradigm, and lack of generalization in a real
scenario. Zhang et al. [23] proposed two steps of learning methods via modeling the
common priors of the HR-HS image in a supervised way and then adapting to the
under-studying scene for modeling it’s specific prior in an unsupervised manner. In
addition, the unsupervised adaptation is capable of learning the spatial degradation
operation of the observed LR-HS image but can only deal with the observed HR-HS
image with known CSF, and thus it would be categorized as a semi-blind paradigm for
possibly learning the spatial degradation operations only in the observed LR-HS
image. Moreover, Fu et al. [24] exploited an unsupervised hyperspectral image super-
resolution method using the designed loss function formulated by the observed LR-HS
and HR-RGB images only and integrated a CSR optimization layer after the HSI super-
resolution network to automatically select or learn the optimal CSR for adapting to the
target RGB image possibly captured by various color cameras, which is also divided
into the semi-blind paradigm for possibly learning the spectral degradation operation:
CSF only. Further, the unsupervised adaptation subnet in ref. [23] and the method
[24] utilize the under-studying observed images only instead of the requirement of
additional training samples for guiding the network training, which achieved impres-
sive performance as an unsupervised learning strategy. However, these learning
methods based on the under-studying observed images only are easy to drop into a
local solution, and the final prediction heavily depends on the initial input of the
network. Our method is also formulated in this unsupervised learning paradigm, and
we are going to clarify the distinctiveness of our method in the next sub-section.

2. The proposed unsupervised learning-based methods

In this section, we first describe the problem formulation in the HSI-SR task and
then present the proposed deep unsupervised learning-based method.

2.1 Problem formulation

Let us consider image pairs: a LR-HS image X ∈Rw�h�L, where w and h are the
width and height, and a HR-RGB image Y ∈RW�H�3, where w and h are the width and
height of Y and Z, respectively. A HR-HS image Z ∈RW�H�L, where L is the number of
spectral channels in the HR-HS image, is what we are trying to reconstruct for HSI-SR.
The following formula can be used to represent the degradation between the HR-HS
target image and the observed images: X and Y.

X ¼ k spað Þ⊗Z spað Þ↓þ nx,Y ¼ Z ∗C Specð Þ þ ny, (1)

where ⊗ stands for the convolution operator, (Spa)↓ for the spatial domain
downsampling operator, and k(Spa) for the two-dimensional blur kernel in the spatial
domain. Three one-dimensional spectral filters C(Spec) constitute the spectral
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sensitivity function of RGB cameras, which translates L spectral bands to RGB bands.
The additive white Gaussian noise (AWGN) with noise level σ is represented by nx
and ny. We rephrase the degenerate model as a matrix formulation to quantify the
problem, that is,

X ¼ DBZ þ nx,Y ¼ ZCþ ny, (2)

where B is the spatial blur matrix, D is the downsampling matrix, and C is
the transformation matrix representing the spectral sensitivity function (CSF).
According to Eqs. (1) and (2), a general HSI-SR task should evaluate k(Spa) (or B),
(Spa)↓ (or D), and C(Spec) (or C) from observed image pairs X and Y, which
makes it very complicated to obtain the latent Z. It is a challenging problem that has
rarely been studied in the HSI-SR task. Therefore, the general solution is to assume
that the blur kernel type and spectral sensitivity function (CSF) of the RGB camera
are known and to approximate them by some mathematical operations in the
application. The current study followed to the previous setting in principle, but
we also investigated whether it was possible to reconstruct HR-HS images without
knowing the kind of CSF or the blur kernel beforehand as a generic solution for a
specific scenario.

Let us begin by defining the generic formula of the HSI-SR task generally. The
maximum a posterior (MAP) framework is the foundation formula of the majority of
classical approaches.

Z ∗ ¼ argmax
Z

Pr ZjX, Y, B, Cð Þ ¼ argmax
Z

Pr B, Cð Þ X, YjZð ÞPr Zð Þ, (3)

where Pr(Z) performs prior modeling of latent HR-HS images and Pr(B,C)(X,Y|Z) is
the likelihood of the fidelity term corresponding to the known kernel type and CSF
matrix. With regard to the latent HR-HS image Z, which we define as
� log Pr B, Cð Þ X, YjZð Þ� �

, it is specifically assumed that the reconstruction errors of the
fidelity terms X and Y are independent Gaussian distribution in general. The prior
modeling of HR-HS images is subjected to the regularization requirement
� log Pr Zð Þð Þ ¼ ϕ Zð Þ. The reconstruction model of the MAP-based HSI SR in Eq. (3)
can be redefined using the following formula.

Z ∗ ¼ argmin
Z

αβ1∥X �DBZ∥2F þ 1� αð Þβ2∥Y � ZC∥2F þ λϕ Zð Þ, (4)

where ∙k kF represents the Frobenius norm. It is generally necessary to introduce
normalization weights, such as β1 ¼ 1=N1 and β2 ¼ 1=N2, where N1 and N2 are
multiples of the number of pixels and spectral bands in LR-HS and HR-HS images,
respectively. This is because HR-RGB and LR-HS images have different numbers of
elements. In addition, we further modify the contribution of these two reconstruction
errors using the hyperparameter α 0≤ α≤ 1ð Þ. On the other hand, the trade-off adjust-
ment parameter is λ. We have experimentally developed appropriate prior parameters
as regularization term ϕ(Z) in order to obtain a robust solution. Numerous prior
restrictions have been present. The employed priors, however, are often manually
determined and fall short of adequately describing the intricate structure of HR-HS
images. Furthermore, the established priors should vary depending on the details of
the situation being studied, and choosing the suitable priors for a specific scenario is
still an art.
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The DCNN method is one of the most recent deep learning-based HSI-SR tech-
niques. It effectively captures prospective HS image features (common prior) in a
fully supervised learning manner utilizing previously trained training samples (exter-
nal datasets). Particularly supervised deep learning methods seek to learn joint CNN
models by minimizing such loss functions given $N$ trainable triples.

Xi, Yi, Zið Þ i ¼ 1, 2, ⋯, Nð Þ:

θ ∗ ¼ argmin
θ

XN
i

∥Zi � FCNN Xi, Yið Þ∥2F, (5)

where FCNN stands for a DCNN network transform with θ learning parameters.
In contrast to directly searching in the ground-truth image space Z, these
approaches are trained to extract the optimal parameters θ* of the network, and
they are able to identify common prior variables concealed in the training samples
utilizing the powerful and effective DCNN modeling capabilities. The underlying
HR-HS images for each observation (Xt,Yt) in the research can be simply rebuilt
as: Ẑt ¼ Fθ ∗

CNN Xt, Ytð Þ after learning the network parameters θ*. Although these
supervised deep learning methods have shown encouraging results, it is necessary to
provide a substantial training dataset that includes LR-HS, HR-RGB, and HR-HS
images—all of which are particularly challenging to gather in HSI-SR tasks—in order
to learn a good model.

2.2 The overview motivation

Recent deep learning-based HSI-SR techniques have demonstrated that DCNNs
perform well and are capable of accurately capturing the underlying spatial and
spectral structure (joint prior information) of potential HS images. The training labels
(HR-HS images) for these algorithms, which are typically performed in a fully super-
vised way and need large-scale training datasets containing LR-HS, HR-RGB, and HR-
HS images, are challenging to gather. Numerous studies on natural image generation
(DCGAN [25]) and its variations have demonstrated that high-resolution, high-
quality images with specific features and attributes can be produced from noisy
random input data without the supervision of high-quality ground-truth data. This
indicates that originating from a random initial image and scanning the parameter
space of a neural network can capture the inherent structure (a prior) of possible
images with certain features. DIPs [26] have also been utilized to properly perform a
number of natural image restoration tasks, including image separation, blurring, and
super-resolution extraction, using just the degraded version of a scene to guide them.
This unsupervised paradigm is used in the current study, which tries to learn the
precise spatial and spectral structure (a prior) of HR-HS latent images from degraded
data (LR-HS and HR-RGB images).

The spatial and spectral structure of the underlying HR-HS image Z was specifi-
cally modeled using the generative neural network Gθ (θ is a network parameter that
must be learnt). The fusion-based HSI-SR model can be rebuilt as follows by
substituting Z with Gθ in Eq. (4) and deleting the regularization term ϕ(Z) connected
with the prior acquired automatically by the generative network.

θ ∗ ¼ argmin
θ

αβ1∥X �DBGθ Zinð Þ∥2F þ 1� αð Þβ2∥Y � Gθ Zinð ÞC∥2F, (6)
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where Gθ(Zin)i is the i-th component of the HR-HS estimation and Zin is the input
to the generative neural network. Eq. (6) tries to explore the parameter space of the
generative neural network Gθ by leveraging the powerful modeling capability to
generate a more reliable HR-HS image, instead of directly searching the exceedingly
vast, non-uniquely determined raw HR-HS space.

To solve the above unsupervised HSI-SR task, there are still several issues to be
needed to elaborately address: (i) How to design the generative network’s architecture
so that both spectral correlations and low-level spatial statistics can be effectively
modeled during training. (ii) What kind of input to the generative network should be
employed so that the local minimization point can be avoided. (iii) How to implement
an end-to-end learning framework for incorporating different degradation operations
(blurring, downsampling, and spectral modification) following the generative net-
work. In the next sections, we embody the solutions to the aforementioned issues.

2.3 Architecture of the generative neural network

Generative neural networks Gθ can be implemented using arbitrary DCNN archi-
tectures. A generative neural network Gθ is required to offer acceptable modeling
skills due to the diversity of information, including potentially significant structures,
rich textures, and complicated spectra in HR-HS images. It has been demonstrated
that various generative neural networks have a great deal of promise for producing
high-quality natural images [Pix2pix and others], for example, in adversarial learning
settings [27]. In this study, a multi-level feature learning architecture is employed,
along with simplified encoder-decoder features and an encoder-decoder architecture
that allows for feature reuse via skip connections between the encoder and the
decoder. Figure 1 shows a thorough representation of a generative neural network.

Five blocks compensate the encoder and decoder, and they both learn representa-
tive features at various scales. To reuse the extracted detailed features, the output of
each of the 5 encoder-side blocks is straight-through forwarded to the corresponding
decoder. A maximum clustering layer with a 2 � 2 kernel is used to reduce the size of
the feature map between encoder blocks, and an upconversion layer is used to double

Figure 1.
Conceptual diagram of the proposed unsupervised deep HSI-SR.
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the size of the feature map between decoder blocks for recovery. Each block is
comprised of three convolutional layers that each follow the RELU activation func-
tion. Finally, the HR-HS images are estimated using the convolutional output layer.
The training state of the generative neural network cannot be estimated or guided in
an unsupervised learning environment as there is no ground-truth HR-HS image. The
assessment criteria listed in Eq. (6) are then generated using the observed HR-RGB
and LR-HS images.

2.4 Input data to the generative neural network

We classify the input data into two types. The first is a noisy input with a random
perturbation added to check the robustness, corresponding to the deep unsupervised
fusion learning (DUFL) model; in particular, to contrast with the addition of random
perturbation, we also perform experiments without random perturbation, that is,
the DUFL+ model. The second input data is the fusion context of fused observations
HR-RGB and LR-HS, which corresponds to the deep self-supervised HS image
reconstruction (DSSH) framework.

2.4.1 The noise input

The deep image prior network (DIP) [26] was developed to get low spatial statis-
tics using inputs of uniformly distributed noise vectors generated at random. Never-
theless, because the noise vectors are chosen at random, DIP has a limited ability to
discover spectral and spatial correlations and is more challenging to tune. Motivated
by the DIP, we proposed a deep unsupervised fusion learning (DUFL) model, in
which a common generative neural network is trained to generate target images with
predetermined features; typically, a randomly selected noise vector based on a distri-
bution function (for example, Gaussian or uniform distribution) is used as input to
ensure that the generated images have enough diversity and variability. The observed
degradation (LR-HS and HR-RGB images) of the corresponding HR-HS images is
required for our HSI-SR task. Therefore, it makes sense to determine the best network
parameter space for searching a given HR-HS image as the previously sampled noise
vector Z0

in. However, a constant noise input could lead to a local minimum in the
generative neural network. As a result, the HR-HS image’s estimate is inaccurate.
Therefore, it is suggested to disturb the fixed initial input with a small randomly
generated noise vector in each training step to avoid the local minimum condition. For
a training step, the input vector i-th can be represented as follows:

Zi
in þ Z0

in þ Δni, (7)

where Δ stands for the interference level (small scale value) and ni is the noise
vector randomly sampled in the ith training. The final estimated HR-HS image uti-
lized for prediction is the fixed noise vector Z ∗ ¼ Gθ Z0

in

� �
, which is created by feeding

perturbed inputs into a neural network with coefficient Gθ.
This deep unsupervised fusion learning model employs noise vectors produced at

random and sampled from a uniform distribution as input to provide low-level spatial
statistics. But this research is less effective at identifying spectral and spatial correla-
tions and is more challenging to optimize due to random noise vectors. We propose
a solution to this issue in the next section. In the next part, we substitute observed
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LR-HS and HR-RGB images for entirely artificial noise. Additionally, we approximate
the degradation operation using two distinctive convolutional layers that can be
applied as learning or fixed degradation models for a variety of real-world scenarios.

2.4.2 The fusion context

To deal with the mentioned problems, we improved the DUFL model above. The
underlying prior structure of HR-HS images is reflected by an internally designed
network structure in the deep self-supervised HS image reconstruction (DSSH)
framework, which also learns the network parameters exclusively using observed LR-
HS and HR-RGB images. In the proposed DSSH framework, we use the observed
fusion context in network learning to gain insight into specific spatial and spectral
priorities given the observed images: X reflecting hyperspectral properties of the
underlying HR-HS image although with lower spatial-resolution, and Y showing the
high-resolution spatial structure although with fewer spectral channels. To be more
specific, we utilize an upconversion layer to first transform the LR-HS image to the
same spatial dimension as the HR-RGB image before merging them, as seen below.

Z0
in ¼ Stack UP Xð Þ, Yð Þ: (8)

A simple fused context can be used as input, but this generally results in local
minimum convergence. To train a more reliable model in this section that takes into
account specific spatial and spectral priors, we add additional perturbations. The
model is then represented as follows:

Zi
in ¼ Z0

in þ λμ, (9)

where λ is a small number indicating the intensity of the perturbation and μ is a
sample of a 3D tensor generated at random from a uniform distribution equal to the
connection context Z0

in. In this section, λ is set at 0.01 and reduced by half every 1000
steps throughout the training phase. The perturbation is applied to the generative
network Gθ during each training phase.

Our suggested approach is capable of using any DCNN architecture for the Gθ

generative network construction. Potential HR-HS images frequently have compli-
cated spectra, expressive patterns, and rich textures, all of which demand the full
modeling power of the generative network Gθ. Significant advancements have been
achieved in generating higher natural images [28], and several generative architec-
tures have been presented, for instance in adversarial learning situations [29].

2.5 Degradation modules

2.5.1 Non-blind degradation module

We apply degradation operations to get approximations of the LR-HS and HR-RGB
images from the HR-HS images predicted by the generative network in order to
provide evaluation criteria for training the network. However, this part of the net-
work is removed and cannot be included in an integrated training system if only
mathematical operations are utilized to approximate the degraded model. In this
work, after constructing the backbone, we approximate the degradation model as a
conventional learning system utilizing two parallel blocks. To specifically accept
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blurred and downsampling transformations, we modified the conventional deep
convolutional layers. We apply the same kernel to various spectral bands in the
depth-wise convolution layer and set the step space expansion coefficients and bias
terms to “false” since the identical blurring and downsampling operations are applied
to each spectral band in a real scene. The blurring and downsampling transformations’
equations are written as follows:

X̂ ¼ f SDW Gθ Zinð Þð Þ ¼ kSDW ⊗Gθ Zinð Þ Spað Þ
↓, (10)

where the convolution layer’s specific depth performs the role of f SDW ∙ð Þ. To be
more precise, we refer to the same kernel that was used in the depth-wise convolution
layer to convolve Gθ Zinð Þ in the HR-HS images generated with each channel
independently as kSDW ∈R1�1�s�s. False bias is accomplished by using conventional
two-dimensional mathematical convolution and nearest downsampling operations to
transform the spatial expansion factor of f SDW Gθ Zinð Þð Þ. If the spatially degraded blur
kernel is known, we simply set the values to be trained as false values and initialize the
weights of each layer based on the known kernel. Similar to this, we simply automat-
ically learned kernel weights of 1*1 during the network training phase or assigned
kernel weights of f Spe ∙ð Þ based on the known RGB camera CSF. Additionally, we
employ a conventional convolution kernel with output channels of $3$ and a kernel
size of 1*1to implement the spectral transform. We similarly set the stride to 1 and the
bias term to false, as shown in the following expression.

Ŷ ¼ f Spe Gθ Zinð Þð Þ ¼ kSpe ⊗Gθ Zinð Þ Speð Þ
↓, (11)

where the activity of the spectral convolution layer is indicated by f Spe ∙ð Þ. The
detailed spectra of the obtained HR-HS images are transformed into degenerate RGB
images using the convolution kernel kSpe ∈RL�3�1�1. Additionally, the kernel of kSpe
minimization that needs to be trained has the same dimension as the C(Spec) that
represents the spectrum sensitivity function of an RGB sensor, allowing us to approx-
imate it in our joint network. These two modules can be used concurrently in our
integrated learning model by employing the mentioned framework.

2.5.2 (semi-) blind degradation module

This section focuses on automatically learning the transform parameters of the
convolutional blocks embedded in the unknown decomposition. For spatially
semi-blind, the weight parameter of kSDW in Eq. (10) can either be automatically
learned when the blur process is unknown while the weight parameter of kSpe can be
predetermined by changing to the parameter of a known CSF kernel. Thus, we can
easily extract the approximation LR-HS image from the generated HR-HS image Gθ

using a specified deep convolutional layer fSDW with a fixed kSpe convolutional kernel.
Similarly, it is adaptable to implement the opposite operation to achieve a spectrally
semi-blind process. Hence, these two modules can be learned concurrently in our
integrated learning framework as a blind degradation module. As a result, the inves-
tigated learning model is extremely adaptable and simple to fit into many real-world
scenarios. The loss function that was used to train our deep self-supervised network
can be rebuilt as follows by substituting the decomposition operation with an
improved convolutional block.
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θ ∗ , θ ∗
SDW , θ ∗

Spe

� �
¼ argmin

θ
αβ1∥X � f SDW Gθð Þ Zinð ÞÞ∥2F

þ 1� αð Þβ2∥Y � f Spe Gθð Þ Zinð ÞÞ∥2F s:t:0≤Gθ Zin ≤ 1∀i:ð
(12)

As can be observed from Eq. (12), in order to rebuild the target well, we learn the
generative network parameters rather than directly optimizing the underlying HR-HS
image. In our network optimization procedure, the generative network Gθ is trained
using only test image pairs (i.e., observed LR-HS and HR-RGB images), and no HR-HS
images are provided. This can be seen as a “zero-shot” self-supervised learning method
[30]. As a result, we refer to our model as a self-supervised learning model for HSI-SR.

3. Experiment results

3.1 Experimental settings

3.1.1 Datasets

The efficiency of the suggested method was evaluated using two benchmark HSI
datasets, namely, CAVE [31] and Harvard [32]. 32 HS images with a spatial resolu-
tion of 512 � 512 are included in the CAVE dataset, which includes various real-
world materials. The Harvard dataset includes 50 images of various natural settings,
each with a resolution of 1392/1040 pixels and 31 bands of spectral-resolution
between 420 and 720 nm. In the experiments, a part of the 1024 � 1024 sub-image
in the top left corner of the Harvard dataset’s original HS image was cropped,
resulting in a 512 � 512 -pixel image that served as the HS image’s main basis. Using
different spatial extraction factors (8 and 16) for the bicubic degradation, the
observed LR-HS images were generated from the actual HS images of the two
datasets, yielding sizes of 64 � 64 � 31 and 32 � 32 � 31. The observed HR-RGB
images were also generated by multiplying the HR-HS image by the spectral Nikon
D700 camera response function [9].

3.1.2 Evaluation metrics

The proposed method is evaluated against various state-of-the-art methods using
five widely used metrics, including root-mean-square error (RMSE), signal-to-noise
ratio (PSNR), structural similarity index (SSIM), spectral angle mapping (SAM), and
relative dimensional global error (ERGAS). The generated HR-HS image and the
ground-truth image were both acquired from the same spatial position. The recovered
HR is measured by RMSE, PSNR, and ERGAS which are quantitatively distinct from
the reference image to assess the spatial accuracy. Then, SAM offers the average
spectral angle of the two spectral vectors to show the spectral accuracy. Additionally,
SSIM was employed to evaluate how much the spatial organization of the two images
resembled one another. A greater PSNR or SSIM and a lower RMSE, ERGAR, or SAM
often indicate superior performance. Bold values mean promising results.

3.1.3 Details of the network implementation

Pytorch has adopted the suggested approach. The input noise was first set to
the same size as the HR-HS image that would be generated. Utilizing the Adams
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optimizer and a loss function based on the L2 criteria, the generated network was
trained. Initial settings for the learning rate included 1e-3 with a decrease of 0.7 per
1000 steps. Additionally, the perturbation was reduced by 0.5 every 1000 steps
after being initially set at 0.05. After 12,000 iterations, the optimization process
was terminated, and all ground-truth HR-HS images from various datasets with
various upscale factors were used. Using a Tesla K80 GPU in a training
environment, all experiments were carried out. According to our experiments, it
takes around 20 minutes to learn an image with a 512 � 512 size. Across all
experiments, we first adjusted the hyperparameter α in the loss function of Eq. (12)
to 0.5.

3.2 Performance evaluation

In the study of HS image super-resolution, there are three main paradigms:
1) traditional optimization methods that form image priors based on practical
knowledge or physical properties, 2) fully supervised deep learning methods that
learn external image priors (training algorithms), and 3) unsupervised methods that
learn image priors automatically.

3.2.1 Comparison with traditional non-blind optimization-based methods

The generalization of simultaneous orthogonal matching pursuit (G-SOMP+)
method [33], sparse non-negative matrix factorization (SNNMF) method [34], couple
spectral unmixing (CSU) method [9], non-negative structured sparse representation
(NSSR) method [7], Bayesian sparse representation (BSR) method [35], and other
optimization-based HSI-SR methods have all recently been presented. To rebuild
stable HS images, conventional optimization-based approaches often employ a variety
of hand-crafted priors. The degradation processes (spatial blurring/downsampling
and spectral transformations) are a requirement for all approaches. To automatically
learn specific priors for latent HR-HS images, we propose a deep unsupervised learn-
ing network. In cases when the degradation pattern is unknown, this can yield results
for reconstruction. First, we approximated the bicubic decomposition using the
Lanczos kernel to initialize the weights of the spatial decomposition blocks, and then
we initialized the spectral transform blocks using the CSF of the Nikon D700 camera
without learning these blocks in order to make a fair comparison. We evaluate the
efficacy of 8 and 16 spatial expansion factors, and compared results on the CAVE and
Harvard datasets are shown in Table 1. And the visualization results are shown in
Figure 2.

3.2.2 Comparison with deep non-blind learning-based methods

Deep learning-based methods have recently been thoroughly investigated in the
HSI-SR tasks, the majority of them in both fully supervised and unsupervised ways.
The unsupervised sparse Dirichlet-net (uSDN) [20], deep hyperspectral image prior
(DHP) [36], and GDD method [22] are just a few examples of works that have
attempted to use unsupervised strategies in HSI-SR tasks. Our approach comes within
the unsupervised branch of HSI-SR methods. In this part, we compare supervised and
unsupervised deep learning algorithms, such as SSF-Net [33], ResNet [14], DHSIS
[16], uSDN [20], and DHP [36]. Only 12 test images from the CAVE dataset and
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10 test images from the Harvard dataset were compared because supervised deep
learning methods need training examples to learn the model. The results of the
comparison between the CAVE and Harvard datasets are shown in Table 2, with two
spatial expansion factors: 8 and 16. It is clear from Table 2 that our proposed method
can perform noticeably better than unsupervised methods based on deep learning, as
well as better than supervised methods. And the visualization results are shown in
Figure 3.

3.2.3 Comparison with (semi-)blind methods

Our proposed method is exploited in a unified framework, which is capable of
reconstructing the HR-HS image from the observations not only with the known
spatial and spectral degradation operations but also with the unknown spatial or
spectral degradation operations or both unknown. Thus, our proposed method can be
implemented in a semi-blind setting (the unknown spatial downsampling kernel for

Figure 2.
Visualization of the DHP [36], uSDN [20], SNNMF [37], and difference images between the proposed
DUFL+ method and the ground-truth/reconstructed images in CAVE and Harvard datasets for an up-scale
factor 16.
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LR-HS image or the unknown CSF for HR-RGB image). Consequently, our suggested
solution can also be used in total blind mode (unknown spatial degradation operations
for LR-HS images and unknown CSF for HR-RGB images). The compared results
using our proposed method with semi-blind and complete-blind settings, the
state-of-the-art unsupervised semi-blind methods: UAL method [23] for spatial blind
only, and the spatial blind implementation of NSSR [7] via setting the incorrect spatial
kernel, have been given in Table 3.

3.2.4 Ablation study

We adjusted the hyperparameters α to 0.3, 0.5, and 0.7 in order to assess the
impact of various data circumstances on the loss function of the DUFL method. The
comparative results are shown in Table 4. The quantitative measurements of our
DUFL+ method, PSNR, SAM, and ERGAS, are also shown in Table 4, and they
demonstrate that the performance of overfitting is not significantly affected by the
specific assignment of the hyperparameter α. Similarly, the performance of the DSSH
reconstruction method in the ablation study was then evaluated by adjusting α
between 0 and 1.0 with an interval of 0.2, and the compared results are shown in
Table 5.

Figure 3.
Visualization of the traditional optimization-based method: CSU [9] and NSSR [7], the supervised deep learning-
based methods: DHSIS [16], and the unsupervised deep learning-based methods: uSDN [20], DHP [36], and the
proposed DSSH method in the CAVE and Harvard datasets for an up-scale factor 16.
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4. Conclusions

In order to address the super-resolution issue for hyperspectral images, we provide
an unsupervised deep hyperspectral image super-resolution framework. A deep
convolutional neural network is used to automatically learn the spatial and spectral
features of latent HR-HS images from perturbed noisy input data and the fusion
context that naturally collects a significant quantity of low-level image statistics. A
special depth-wise convolution layer is designed to achieve degenerate transforma-
tions between observations and desired targets, and this generates a universally
learnable module that only uses low-quality observations. Without requiring training
samples, the proposed unsupervised deep learning framework can efficiently take
advantage of the HR spatial structure of HR-RGB images and the detailed spectral
characteristics of LR-HS images to deliver more accurate HS image reconstruction.
We simply train the network parameters using the observed LR-HS and HR-RGB
images and a generative network structure to reconstruct the underlying HR-HS
images. Extensive research using the CAVE and Harvard datasets demonstrate
promising results in the quantitative evaluation.

Up-scale Factor α CAVE Harvard

PSNR ↑ SAM ↓ ERGAS ↓ PSNR ↑ SAM ↓ ERGAS ↓

8 0.3 42.19 5.09 0.95 43.07 2.16 0.93

0.5 42.91 4.40 0.86 41.68 2.19 1.06

0.7 42.16 4.75 0.92 41.85 2.18 1.09

16 0.3 40.74 5.71 0.55 40.95 2.90 0.66

0.5 40.75 5.87 0.54 40.79 2.70 0.62

0.7 40.42 5.64 0.58 41.90 2.48 0.52

Table 4.
Ablation results of the DUFL+ method with different weights α values of 0.3, 0.5, and 0.7 in the CAVE and
Harvard datasets for up-scale factors: 8 and 16.

Dataset CAVE

α RMSE ↓ PSNR ↑ SSIM ↓ SAM ↓ ERGAS ↓

0.0 25.98 19.97 0.631 40.02 12.50

0.2 1.52 44.99 0.990 3.24 0.67

0.4 1.45 45.45 0.991 3.16 0.63

0.5 1.46 45.35 0.991 3.13 0.64

0.6 1.49 42.26 0.991 3.15 0.66

0.8 1.47 45.20 0.991 3.13 0.66

1.0 3.33 38.36 0.961 4.73 1.51

Table 5.
Ablation results of the DSSH method with different weights α values of 0.0 to 1.0 in the CAVE and Harvard
datasets for an up-scale factor 8.
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Chapter 4

Hyperspectral and Multispectral
Image Fusion Using Deep
Convolutional Neural
Network - ResNet Fusion
K. Priya and K.K. Rajkumar

Abstract

In recent years, deep learning HS-MS fusion has become a very active research tool
for the super resolution of hyperspectral image. The deep conventional neural
networks (CNN) help to extract more detailed spectral and spatial features from the
hyperspectral image. In CNN, each convolution layer takes the input from the
previous layer which may cause the problems of information loss as the depth of the
network increases. This loss of information causes vanishing gradient problems,
particularly in the case of very high-resolution images. To overcome this problem in
this work we propose a novel HS–MS ResNet fusion architecture with help of skip
connection. The ResNet fusion architecture contains residual block with different
stacked convolution layer, in this work we tested the residual block with two-, three-,
and four- stacked convolution layers. To strengthens the gradients and for decreases
negative effects from gradient vanishing, we implemented ResNet fusion architecture
with different skip connections like short, long, and dense skip connection. We
measure the strength and superiority of our ResNet fusion method against traditional
methods by using four public datasets using standard quality measures and found that
our method shows outstanding performance than all other compared methods.

Keywords: convolution neural network, residual network, ResNet fusion, stacked
layer, dense skip connection

1. Introduction

Spectral imaging technology captures contiguous spectrum for each image pixel
over a selected range of wavelength bands in the spectrum. Thus, spectral images
accommodate more information than conventional monochromatic or RGB images.
The wide range of spectral information available in hyperspectral image brings the
spectral imaging technology into a new horizon of research for analyzing the pixel
content at macroscopic level. This tremendous change in image processing research
area makes revolutionary developments in every walks of human life in coming
future. In general, spectral images are divided into either Multispectral (<20 numbers
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of wavelength bands sampled) or Hyperspectral (>20 numbers of wavelength bands).
Multispectral image (MSI) captures a maximum of 20 spectral bands whereas
Hyperspectral image (HSI) captures hundreds of contiguous spectral bands at a time.
Due to this exciting prominence, HSI is now becoming an emerging area and at the
same time faces a lot of challenges to analyze the minute details of the pixel content in
image processing and computer vision areas [1].

Hyperspectral images (HSIs) are rich in spectral information that highly
strengthens their information storing ability. This property of HSI is enable rapid
growth in the development in many areas such as remote sensing, medical science,
food industry, and various computer vision tasks. However, hyperspectral images
capture all these bands in a narrow wavelength range, and hence it limits the amount of
energy received by each band. Therefore, the HSI information can be easily influenced
by many kinds of noises, and it leads to lower the spatial resolution of HSI [2].

Many studies have been introduced in literature so far to control the tradeoff
between the spatial and spectral resolution in the hyperspectral images. As a result of
this, many HS–MS fusion methods are evolved in the past decades to address it. The
straightforward approach of the HS–MS fusion method has become the most popular
and trending research area of image processing and computer vision. The early
approach is pansharpening-based image fusion that fuses spectral and spatial infor-
mation from low resolution multispectral (LR–MS) images with high resolution (HR)
panchromatic (PAN) images to enhance the spatial and spectral resolution of the
fused image. Subsequently, pansharpening image fusion algorithms have been
gradually extended to HS-MS image fusion [3].

In HS–MS fusion, a high spatial and spectral hyperspectral image is estimated by
fusing LR–HS image with HR–MS image of the same scene. However, the estimated
spatial and spectral data quality is highly influenced by the constraints used in the fusion
process. Recently, neural network-based methods have been widely used in many areas
to improve the HS–MS fusion quality in both spatial and spectral domains. One such
network named as convolution neural network (CNN) in deep learning (DL) performs
much better in image reconstruction, super-resolution, object detection, etc. [4].

In CNN, each layer takes the output from the previous layer, which tends to lose
information as the network goes into deeper architecture. In this work, we use
ResNet-based HS–MS fusion by adding the skip connection between the convolution
layers. This skip connection helps to map the identity of information throughout the
deep convolution network [5].

The following sections of this paper are arranged as Section 2 includes various
literature reviews of HS–MS fusion methods in both traditional and newly introduced
deep learning methods. Section 3 includes the materials and methods used in this
work. Sections 4 and 5 includes the detailed representation of problem formulation
and implementation of our work. The results and discussion of our proposed method
are discussed in Section 6, and finally, Section 7 concludes the proposed work with
future scope.

2. Review of literature

2.1 Traditional methods

Many algorithms have been proposed to enhance the spatial quality of HS images
in past decades. One such popular and attractive method is HS-MS image fusion,
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which is mainly divided into four groups: component substitution (CS), multi-
resolution analysis (MRA), Bayesian approach, and spectral unmixing (SU) [6]. The
CS and MRA methods are described under the concept of an injection framework. In
this framework, the high-quality information from one image is injected into another
[7]. Apart from these, Bayesian-based methods use probability or posterior distribu-
tion of prior information about the target image. The posterior distribution of the
target image is considered based on the given HS and MS images [8]. Later, spectral
unmixing-based HS–MS image fusion was introduced and is one of the promising and
widely used methods for enhancing the quality of HS image.

In SU method, the quality of the abundance estimation highly depends on the
accuracy of the endmembers. Therefore, any obstruction that occurs during the end
member extraction process leads to inconsistency in the abundance estimation. To
overcome this limitation, Paatero and Tapper in 1994 [9] introduced nonnegative
matrix factorization (NMF) method and it was popularized in article by Lee and
Seung in 1999 [10]. It has become an emerging tool for processing high-dimensional
data due to the automatic feature extraction capability. The main advantage of this
NMF method is that it shows a unique solution to the problem compared to other
unmixing techniques [11]. In general, NMF based on the spectral unmixing jointly
estimates both endmember and corresponding fractional abundance in a single step
are mathematically represented as follows,

Y ¼ EA (1)

Where the output matrix Y is simultaneously factorized into two nonnegative
matrix E (endmember) and A (abundance) without any prior knowledge and hence
NMF comes under an unsupervised framework [12]. Later NMF is one of the trending
methods for blind source spectral unmixing problems. NMF factorizes the input
matrix into a product of two nonnegative matrices (endmember matrix, E and abun-
dance matrix, A) by enforcing nonnegativity. So NMF method has high relevance in
SU to enhance the quality of the image by adding these constraints. Finally, SU-based
fusion is accomplished by using coupled NMF (CNMF) method to obtain enhanced
hyperspectral image with high spatial and spectral quality. The CNMF fusion
algorithm gives high-fidelity reconstructed image compared to other existing fusion
methods [13].

Yokoya et al. in 2012 [14] introduced a coupled non-negative matrix factorization
(CNMF) method, which is an unsupervised unmixing-based HS-MS image fusion.
CNMF uses a straightforward approach to unmixing and fusion processes, so its
mathematical formulation and implementation are not as complex as other existing
fusion methods. Finally, this method optimizes the solution with minimum residual
errors and reconstructs the high-fidelity hyperspectral image.

Simoes et al. in 2015 [15] introduced a super-resolution method for hyperspectral
image termed as HySure. This method formulated a new model to preserve the edges
between the objects during the unmixing-based data fusion. This method uses an
edge-preserving constraint called vector total variation (VTV) regularizer that
preserves the edges and promotes piecewise smoothness to the spatial quality of the
image.

Lin et al. in 2018 [16] introduced a convex optimization-based CNMF (CO-CNMF)
method. This method is proposed by incorporating sparsity and sum-of-squared-
distances (SSD) regularizer. To extract high-quality data from the images, this method
uses an SSD regularizer and provides sparsity by using ℓ1 -norm regularization.
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By adding these two regularization terms with two convex subproblems helps to
upgrade the performance of the existing CNMF method. However, sometimes per-
formance degradation may occur in the CO-CNMF algorithm as the noise level
increases. Therefore, it is necessary to add image denoising and spatial smoothing
constraints with this fusion method.

Yang et al. in 2019 [17] introduced a total variation and signature-based (TVSR)
regularizations CNMF method named as TVSR-CNMF. The TV regularizer is added to
the abundance matrix to ensure the images spatial smoothness. Similarly, a signature-
based regularizer (SR) is added with the endmember matrix for extracting high-
quality spectral data. So, this method helps to reconstruct a hyperspectral image with
good quality in spatial and spectral data.

Yang et al. in 2019 [18] introduced a sparsity and proximal minimum-volume
regularized CNMF method named as SPR-CNMF. The minimum-volume regularizer
controls and minimizes the distance between selected endmembers and the center of
mass of the selected region in the image to reduce the computational complexity. It
redefines the fusion method at each iteration until reaches the simplex with minimum
volume. This method improves the fusion performance by controlling the loss of cubic
structural information.

After being influenced by this work, we implemented an unmixing-based fusion
algorithm named fully constrained CNMF (FC-CNMF). This method is a modified
version of CNMF by including all spatial and spectral constraints available in the
literature. In our method, a simplex with minimum volume constraint is imposed with
the endmember matrix to exploit the spectral information fully. Similarly, sparsity
and total variation constraints are incorporated with the abundance matrix to provide
dimensionality reduction and spatial smoothness to the image. Finally, we evaluated
the quality of the fused image obtained by FC-CNMF against the methods discussed in
the literature using some standard quality measures. From these evaluations, we
understood that our method shows better performance by yielding high-fidelity in the
reconstructed images.

These traditional approaches reconstruct the high-resolution hyperspectral image
by fusing the high-quality data from hyperspectral and multispectral images. How-
ever, to improve the quality of the reconstructed images, these approaches use differ-
ent constraints such as sparsity, minimum volume simplex, and total variance
regularization, etc. The performance and quality of the reconstructed HS image are
highly influenced by these constraints and therefore our existing methods still have an
ample space to enhance the quality of HSI.

2.2 Deep learning methods

Deep learning (DL) is a subbranch in machine learning (ML) and has shown
remarkable performances in the research field, especially in the area of image
processing and computer vision recently. DL is based on an artificial neural network
that has been widely used in different areas such as super-resolution, classification,
image fusion, object detection, etc. DL-based image fusion methods have the ability to
extract deep features automatically from the image. Therefore, DL-based methods
overcome the difficulties that are faced during the conventional image fusions
methods and make the whole fusion process as easier and simple.

A deep learning-based HS-MS image fusion concept was first introduced by
Palsson et. al in 2017 [19]. In this method, they used a 3-D convolutional neural
network (3D-CNN) to fuse LR–HS and HR–MS image to construct HR-HS image.
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This method improves the quality of hyperspectral image by reducing noise and the
computational cost. In this paper, they focused on enhancing the spatial data of LR–
HS image without any changes in the spectral information and it caused the degrada-
tion of spectral data [19].

Later, Masi et al. in 2017 [20] proposed a CNN-architecture for image super-
resolution, which uses deep CNN for extracting both spatial and spectral features.
Deep CNN is used to acquire features from HSI with a very complex spatial-spectral
structure. But in this paper, authors used deep CNN with single branch CNN archi-
tecture which is difficult to extract the discriminating features from the image.

To overcome this drawback, Shao and Cai in 2018 [21] designed a fusion method
by extending CNN with depth of 3D-CNN for obtaining better performance while
fusion. For implementing this, they used a remote sensing image fusion neural net-
work (RSIFNN) that uses two CNN branches separately. One branch extract the
spectral and the other extract the spatial data from the image. In this way, this method
helps to exploit the spectral as well as spatial information from the input images to
reconstruct high spectral and spatial resolution hyperspectral image.

Yang et.al in 2019 [22] introduced a deep two-branch CNN for HS–MS fusion. This
method uses a two-branch CNN architecture for extracting spectral and spatial fea-
tures from LR–HSI and HR–MSI. These extracted features from two branches of CNN
are concatenated and then passed to the fully connected convolution layer to obtain
HR–HSI. In all the conventional fusion methods, HR–HSI is reconstructed in a band-
by-band fashion whereas in CNN concepts all bands are reconstructed jointly. There-
fore, it helps to reduce the spectral distortion that occurs in the fused image. But this
method uses fully connected layer for image reconstruction that is heavily weighted
layer and it increases the network parameters.

Chen et al in 2020 [23], introduced a spectral–spatial features extraction fusion-
CNN (S2FEF- CNN) which extracts joint spectral and spatial features by using three -
S2FEF blocks. The S2FEF method use 1D and 2D convolution network to extract
spectral and spatial features and fuse these spectral and spatial features. This method
uses fully connected network layer for dimensionality reduction, and it further
reduces the network parameters during the fusion. This method shows good results
with less computational complexity compared to all other deep learning-based fusion
method.

Although the deep learning-based fusion methods achieved tremendous improve-
ment in their implementation, however, all these methods still possess many draw-
backs [24]. As the network goes deeper, its performance gets saturated and then
rapidly degrades. This is because, in DL method, each convolution layer takes inputs
from the output of the previous layers, so when it reaches the last layer, a lot of
meaningful information obtained from the initial layers will be lost. The information
loss tends to get worse when the network is going deeper in architecture. This will
bring some negative effects such as overfitting of data and this effect is called
vanishing gradient problem [25].

Due to the vanishing gradient problem, the existing deep learning-based fusion
could not be able to extract the detailed features from high dimensional images. He
et al in ref., [26], introduced a deep network with residual learning to address the
vanishing gradient problem. In this framework, a residual block is added between the
layers to diminish the performance degradation. The networks with these concepts are
called residual networks or ResNets. Therefore, in this work, our aim is to invoke this
ResNet architecture into the standard CNN to exploit more detailed features from
both spatial and spectral data of HSI.
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3. Materials and methods

3.1 Dataset

The four real datasets such as Washington DC mall, Botswana, Pavia University,
and Indian Pines are used in this work. The Washington DC Mall dataset is a well-
known dataset captured by HYDICE sensor, which acquired a spectral range from
400 to 2500 nm have 1278�307 pixel size and 191 bands. The Botswana dataset which
is captured by Hyperion sensor acquired over the Okavango delta in Botswana, which
acquired a spectral range from 400 to 2500 nm with 1476 � 256 pixel size and
145 bands. The Pavia University dataset was captured by the reflective optics spec-
trographic imaging system (ROSIS-3) at the University of Pavia, northern Italy, in
2003. It has a spectral range from 430 to 838 nm and has a 610 � 340 pixel size and
103 bands. Finally, the dataset AVIRIS Indian Pines was captured by AVIRIS sensor
over the Indian Pines test site in northwestern Indiana, USA, in 1992. It acquired a
spectral range from 4 to 2500 μm having 512 � 614 pixel size and 192 bands [26].
All these datasets have been widely used in earlier spectral unmixing-based fusion
research.

3.2 Convolution neural networks

Convolutional neural networks (CNN) have an important role in deep learning
models. CNN specially built an algorithm that is designed to work with images to
extract deep features from the image through convolution. The convolution is a
process that applies a kernel filter across every element of an image to understand and
react to each element within the images. This concept of convolution is more helpful
during the extraction of specific features from high dimensional images. A
convolutional network architecture is composed of an input layer, an output layer,
and one or more hidden layers. The hidden layers are combination of convolution
layers, pooling layers, activation layers, and normalization layers. These layers auto-
matically detect essential features without any human supervision. So it is considered
as a powerful tool for image processing [27].

A.Convolution layer

The convolution layer is used to extract various features from the input image
with the help of filters. In convolution layer, mathematical operation is
performed between the input image and the filter with m � m kernel size. This
filter is sliding across the input image to calculate the dot product of the filter
and part of the image. This process is repeated for convolving the kernel to all
over the image and the output of the convolution operation is called a feature
map. This feature map includes all essential information about the image such as
the boundary and edges of objects etc. [28].

B. Pooling layer

The convolution layer is followed by a pooling layer, which reduces the size of
the feature map by maintaining all the essential features. There are two types of
pooling layers such as max pooling and average pooling. In Max pooling, the
largest element is taken from the feature map whereas in the average pooling
calculates the average of the element in the feature map [28].
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C.Activation function

One of the most important characteristics of any CNN is its activation function.
There are several activation functions such as sigmoid, tanH, softmax, and
ReLU, and all these functions have their own importance. The ReLU is the most
commonly used activation function in DL that accounts for the nonlinear nature
of the input data [28].

3.3 Residual network (ResNet)

A residual network is formed by stacking several residual blocks together.
Each residual block consists of convolution layers, batch normalization, and activation
layers. The batch normalization process the data and brings numerical stability by
using some scaling techniques without distorting the structure of the data. The
activation layer is added into the residual network to help the neural network to
learn more complex data. The CNN or deep learning method uses ReLU (rectified
linear unit) function in the activation layer to accommodate the nonlinearity nature
of the image data while providing the output. The residual blocks allow to flow
information from the first layer to the last layers of the network by adding residual
or skip connection strategy. Therefore, ResNet can effectively utilize features of the
input data to the output of the network and thus alleviate gradient vanishing
problems.

Let x be the input to the residual block, after processing the information x with
two-stacked convolution layers of a residual unit, obtains F(W1x), where W is the
weight given to the convolution layer. In ResNet, before giving an output of one
convolution layer F(W1x) as input of the next layer by adding the x term, which is
the input parameters of previous residual block, to provide an additional identity
mapping information called as skip connection. Therefore the general formulation of a
residual block can be represented as follows:

y ¼ F Wi xð Þ þ x (2)

Here x is an input and y is the output of the residual unit. Then y is a guaranteed
input to the next residual block. The function F(Wi x) represents the output of each
convolution layer, and Wi is the weight associated with ith residual blocks. Figure 1
uses two convolution layers for the residual unit, so the output from this residual layer
can be written as:

F xWð Þ ¼W2ReLU W1xð Þ (3)

Where ReLU represents the nonlinear activation function rectified linear unit
(ReLU), W1 and W2 are the weight associated with convolution layers 1 and 2 of the
residual block A. Deep residual networks consist of many stacked residual blocks and
each block can be formulated in general as follows:

xiþ1 ¼ F xlWlð Þ þ xi (4)

Where F is the output from residual block with l stacked convolution layer and xi is
the residual connection to the ith residual block, then xiþ1 become the output of the ith

residual block, which is calculated by a skip connection and element-wise
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multiplication. After passing through the ReLU activation layer, the output residual
network can be represented as:

y ¼ ReLU xiþ1ð Þ (5)

4. Problem formulation

A high-resolution hyperspectral image Z∈ℝL�N with L spectral band and N pixels.
The observed LR–HSI is obtained by downsampling the spatial quality of Z with a
gaussian blur factor d is represented as Yh ∈ℝL�N=d with L bands and N=d pixels.
Similarly, the observed HR–MSI is obtained by downsampling the spectral quality of Z
and it is represented as Ym ∈ℝLm�N with Lm bands and N pixels, where Lm< L [27].
Therefore, the hyperspectral image can be mathematically modeled as:

Z ¼ EAþ R (6)

Where, Z is the original referenced images, E and A are the endmember, abun-
dance matrices, and R is the residual matrix respectively.

The observed Yh and Ym are spectrally and spatially degraded versions of image Z
is further mathematically represented by:

Ym ≈ SZþ Rm (7)

Yh ≈ZBþ Rh (8)

Where B∈ℝN�N=d is a Gaussian blur filter with blurring factor d used to blur the
spatial quality of the referenced hyperspectral image Z to obtain LR–HSI, Yh. The
spectral response function, S∈ℝLm�L is used to downsampling the spectral quality of
the referenced hyperspectral image Z to obtain HR–MSI, Ym. The term Lmmeans the
number of spectral bands used in the multispectral image after downsampling. In this
work, referenced image Z is downsampled by its spectral values using standard L and
sat 7 multispectral image that contains a high-quality visual image of Earth’s surface as
HR–MSI with Lm ¼ 7 [28]. Both B and S are spared matrices containing zeros and
ones. In general, the residual matrix Rm and Rh are assumed as zero-mean Gaussian
noises in the literature, Therefore, the original CNMF method is shown as:

CNMF E,Að Þ ¼ Yh � EAhð Þk k2F þ Ym � EmAð Þk k2F (9)

However, in this work, we make use of the residual term Rm and Rh as a nonneg-
ative residual matrix to account for the nonlinearity effects in the image fusion [29].

Figure 1.
HS–MS fusion using CNN.
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Since the objective function for the original CNMF method expressed in the Eq. (9)
can be re-written as:

CNMF E,A, Rð Þ ¼ Yh � EAh þ Rhð Þk k2F þ Ym � EmAþ Rmð Þk k2F (10)

Therefore the Eq. (10) represents the proposed model of the HS–MS fusion by
including the nonlinearity nature of the image. To implement this model, we use
standard deep neural network architecture CNN and ResNet. For further enhance-
ment of the proposed method, we implemented modified architecture of ResNet with
different stacked layers and multiple skip connections.

5. Problem implementation

5.1 CNN fusion architecture

In CNN architecture, 1D CNN convolution operation is performed over the
observed HS image Yh of dimension LhxNh with Lh spectral band and Nh number of
pixels in the image with the help of filter to obtain the spectral data. In the same way,
2D CNN convolution operation is performed over the observed MS image is denoted
by Ym of dimension Lm x Nm, with Lm spectral bands and Nm number of pixels in
the image to obtain the spatial data. Finally, the high spectral component obtained
from Yh and high spatial component obtained from Ym are fused together to recon-
struct a high HR-HSI. The entire deep neural network-based HS–MS fusion is shown
in Figure 1.

In CNN architecture, the Conv1D() convolution filter with kernel size r having
weight v are used for extracting spectral data from LR–HSI, Yh are represented as
follows:

f spec ¼ Conv1D ReLU F vi Yhð Þð Þð Þ (11)

Similarly, the Conv2D() convolution filter with kernel size r � r having weight w
are used for extracting spatial data from HR–MSI, Ym image are represented as:

f spat ¼ Conv2D ReLU F wij Ym
� �� �� �

(12)

The two convolutional layers use ReLU (rectified linear unit) activation functions,
i.e., ReLU (x) = max(x, 0), to provide nonlinear mapping of data. Finally, fuse the
extracted spatial and spectral features to get high-quality reconstructed image as
shown in Eq. (4).

F ¼ ReLU f spec � f spat
� �

(13)

To implement this CNN fusion architecture, we use two convolution networks
such as 1D and 2D convolution. Both 1D and 2D convolution uses the same number of
convolution layers and kernel size. Each network uses four convolution layers with 32,
64, 128, and 256 filters. The kernel size of 3 � 3 and 1 � 3 are used for 2D CNN and 1D
CNN for extracting spatial and spectral information about the image. Therefore, the
architecture and parameters of CNN HS-MS fusion are shown in Table 1.

83

Hyperspectral and Multispectral Image Fusion Using Deep Convolutional Neural Network…
DOI: http://dx.doi.org/10.5772/intechopen.105455



In CNN, each layer takes its input as the output from the previous layer and it
introduces lose information as the network architecture goes in deeper. This problem
in deep neural network leads to overfitting of data, and it is known as vanishing
gradient problem [24]. To overcome this, we implemented HS-MS fusion using an
alternative ResNet-based network architecture. In ResNet, we introduced the skip
connection between two convolution layers. This skip connection helps to map the
identity of information throughout the deep convolution network.

5.2 Resnet fusion architecture

The ResNet fusion architecture for HS–MS fusion uses residual or skip connection
which helps to improve the feature extraction capability from the images. For imple-
mentation, we use 1D ResNet to extract the spectral features from the LR–HSI and 2D
ResNet for extracting spatial features from HR–MSI. Both 1D and 2D ResNet archi-
tecture consists of three residual blocks each having two convolutional layers and 64
filters as shown in Figure 2. A3� 3 kernel size for 2D Resnet and 1� 3 kernel size for
1D Resnet are used for extracting the spatial and spectral data from MSI and HSI. Each
residual block has ReLU activation layer to accommodate the nonlinearity constraints
included in the proposed hyperspectral image fusion model as explained in Eq. (10).
Finally, the feature embedding and image reconstruction process are performed using
another 2D CNN.

Layer Filter Kernel size Stride Padding Activation

Conv 1 Conv 1D 32 1 � 3 1 Same ReLU

Conv 2D 32 3 � 3

Conv 2 Conv 1D 64 1 � 3 1 Same ReLU

Conv 2D 64 3 � 3

Conv 3 Conv 1D 128 1 � 3 1 Same ReLU

Conv 2D 128 3 � 3

Conv 4 Conv 1D 256 1 � 3 1 Same ReLU

Conv 2D 256 3 � 3

Output layer Conv 1D 1 1 � 1 1 Same ReLU

Conv 2D 1 1 � 1

Table 1.
The Simple CNN Fusion Architecture.

Figure 2.
Residual block with two stacked layer.
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A.Spectral generative network

The spectral data from hyperspectral image Yh is extracted using 1D ResNet
connection. Initially, spectral data are extracted from LR–HSI using 1D CNN and
then mapping the residual connection r(Yh) with the stacked convolution layers.
Finally, the output from ID CNN and r(Yh) are given to the input of the next
residual block and this process is repeated for an entire residual block in the
ResNet. The entire process in 1D ResNet is shown mathematically as:

f Yhl

� � ¼ ReLU WlYhl

� �
(14)

f spec Yhl

� � ¼ f Yhl

� �þ r Yhl

� �
(15)

Therefore, output of ith residual block is represented as:

f ispec ¼ f i�1spec Yhl

� �þ ri�1 Yhl

� �
(16)

Where, Yh denotes the input LR- HSI data, i is the number of residual units
i = 1,2,3… ..I and l are the number of convolution layer l = 1,2,3… ..l. The weight of
convolution kernel is represented as W. Finally, ReLU an activation functions are
exploited to introduce nonlinearities in the output of deep network as follows:

Fspec ¼ ReLU f spec
� �

(17)

B. Spatial generative network

The spatial data from HR–MSI, Ym is extracted using 2D ResNet. Initially, spatial
data are extracted from HR–MSI using 2D CNN and then mapping the residual
connection r(Ym) with the stacked convolution layers. Finally, the output from
2D CNN to r(Ym) is given to the input of the next residual block and this process
is repeated for an entire residual block in the ResNet. The entire process in 2D
ResNet is shown mathematically as:

f Yml

� � ¼ ReLU WlYml

� �
(18)

f spat Yml

� � ¼ f Yml

� �þ r Yml

� �
(19)

Therefore, output of the ith residual block is represented as:

f ispat ¼ f i�1spat Yml

� �þ ri�1 Yml

� �
(20)

Where, Ym denotes the input HR- MSI data, i is the number of residual blocks
i = 1,2,3… ..I and l are the number of convolution layer l = 1,2,3… ..L. The weight
of the convolution kernel is represented as W. Finally, similar to spectral
extraction ReLU is exploited to introduce nonlinearities in the spatial output of a
deep network as follows:

Fspat ¼ ReLU f spat
� �

(21)
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C. Fusion of spectral-spatial data

The spectral data from LR–HSI and spatial data from HR–MSI are extracted
using ResNet with size as (1x1x Spec) and (Spat x Spat x 1). After obtaining the
spatial and spectral features, next step is to fuse this information by element-
wise multiplication.

FZ ¼ Fspec x Fspat (22)

Then, the feature embedding and image reconstruction are performed by using
ReLU activation layer. The proposed ResNet Fusion framework is shown in
Figure 3. Therefore, the final generated HR-HSI, Z can be written as:

Z ¼ ReLU FZð Þ (23)

D.Different stacked layers and skip connection

We also proposed an extension to the ResNet fusion architecture by varying the
number of stacked convolution layers (2 to 4) in the residual block to increase
the performance of the fusion using deep network. The 2-layer residual block
contains two stacked convolution l ayer followed by ReLU activation layer.
Similarly, in three-layer and four-layer residual blocks contain three and four-
stacked convolution layers followed by ReLU activation layer. In addition to this,
we utilize the ResNet fusion architecture by including different skip
connections. The skip connection helps us to regulate the flow of information to
a deeper network more effectively. For this, we use long skip and dense skip
connections as shown in Figure 4. The long skip connections are designed by
creating a connection between alternate residual layer ith and (i + 2)th along with
a short skip connection between every layer in the ResNet. In dense skip
connection, each layer i obtain an additional input from all the preceding layers.
Then, the layer i pass its own feature maps to all the subsequent layers. Using the

Figure 3.
The framework of the proposed ResNet Fusion architecture.
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dense skip connection, each layer in the ResNet receives feature maps from all
the preceding layers and that limits the number of filters and network
parameters for extracting deep features. In order to obtain high fidelity
reconstructed image, we proposed a modified version of ResNet with long and
dense skip connections shown in Figure 4.

In the Figure 4 show three Resnet architecture, having three- residual blocks
(Res Block), with three different types of skip connections. Algorithm 1 summarizes
the procedures of our proposed ResNet fusion method.

Algorithm 1: Resnet Fusion

Input: LR-Hyperspectral image Yh and HR-Multispectral image Ym

begin
1.Extract spectral features from Yh and spatial features from Ym using ResNet
2. r(Yh) Yh and r(Ym) Ym

3.For each residual block in ResNet i = 1,2,3… .I # for each residual block
4. for each convolution layer l in the residual block l = 2,3,4 # for stacked convolution layer

f Yhl

� � ¼ ReLU WlYhl

� �
f Ymlð Þ ¼ ReLU WlYmlð Þ
end for
# add the residual connection
fspec Yhl

� � ¼ f Yhl

� �
+ r Yhl

� �
fspat Ymlð Þ ¼ f Ymlð Þ + r Ymlð Þ
r(Yh) fspec Yhl

� �
r(Ym) fspat Ymlð Þ
end for

5.The extracted spectral features Fspec of size (1x1x Spec) and spatial features Fspat of size
(Spat x Spat x1) are fused together by element-wise multiplication.

6.FZ = Fspec x Fspat

7.Finally, generated HR-HSI after feature embedding and image reconstruction using relu activation
layer.

8.Z = ReLU FZð Þ
End

Output: HR- Hyperspectral image, Z

Figure 4.
Representation of short, long, and dense skip connection on ResNet.
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6. Results and discussion

In this paper, intially we implemented CNN-based fusion by extracting the spec-
tral data from LR–HSI using 1D convolution network and spectral data from HR–MSI
using 2D convolution network. These extracted spatial and spectral features are then
fused together to obtain HR–HSI. To extract more detailed features from HS and MS,
it requires deep CNN architecture. As CNN architecture become deeper, it introduced
vanishing gradient problem. To overcome this, we implemented an unsupervised
ResNet Fusion network by using skip connections. The proposed ResNet fusion
inherits all the advantages of standard CNN. In addition to this, ResNet allows the
designing of a deeper network without any performance degradation during the
feature extraction process. Therefore, the proposed ResNet Fusion architecture
extracts more discriminative features from both HSI and MSI and finally reconstruct a
high-resolution HSI by fusing these extracted high-quality features from the ResNet.

The performance of CNN and ResNet fusion method is evaluated on four bench-
mark data sets using standard quality measures namely SAM, ERGAS, PSNR, and
UIQI [30]. Further, we also compared the performance of CNN and ResNet fusion
against the baseline fusion methods namely, CNMF [9], FCN-CNMF, and S2FEF-
CNN [22]. Out of these, CNN shows better performance compared to CNMF and
FCN-CNMF. The ResNet-based fusion shows outstanding performance compared to
all other methods including CNN. The results obtained by CNN and ResNet fusion
method against the baseline methods on four benchmark datasets are shown in
Table 2. The low SAM indicates the good spectral data in the fused image and low
ERGAS shows the statistical quality of the reconstructed image. The high PSNR and

Dataset Methods CNMF FC-CNMF CNN S2FEF-CNN ResNet

Pavia university SAM 0.0633 0.0652 0.0451 0.0441 0.0409

EARGAS 0.5423 0.4502 0.4311 0.4901 0.4029

PSNR 64.4502 64.8923 65.1299 64.4915 66.1127

UIQI 0.8779 0.9316 0.9262 0.9665 0.9872

Indian pines SAM 0.5113 0.3976 0.4525 0.4118 0.3896

EARGAS 0.8733 0.6991 0.6434 0.7192 0.6170

PSNR 62.6779 63.1076 63.1311 64.8165 65.2971

UIQI 0.7988 0.8432 0.8118 0.8776 0.8991

Washington DC mall SAM 0.5609 0.5998 0.5956 0.5519 0.5171

EARGAS 0.5741 0.5034 0.4993 0.4886 0.4850

PSNR 64.09 64.12 64.19 65.11 65.1358

UIQI 0.9199 0.9409 0.9213 0.9365 0.9656

Botswana SAM 0.2541 0.2179 0.2233 0.2108 0.1908

EARGAS 0.5194 0.4989 0.5034 0.4992 0.4698

PSNR 63.1123 63.4321 63.9019 64.0116 64.8798

UIQI 0.9703 0.9772 09715 0.9827 0.9960

Table 2.
The performance evaluation of different fused algorithms on four hyperspectral datasets.
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UIQI show good spatial quality and high fidelity reconstructed image with less spec-
tral distortion. From Table 2, it is further clear that good spectral preservation is
obtained in Botswana dataset on analyzing the SAM value, which is reduced by more
than 0.02 dB. Simultaneously, significant spatial preservation is achieved in the Indian
Pine database revealed by the PSNR value increased by 1.5 dB.

The above work is extended by introducing different stacked convolution layers in
the residual block of the ResNet. The experimental results obtained after stacked
convolution layer in the ResNet are shown in Table 3. From the SAM value in Table 3,
it is clear that the spectral information of the image is reducing as and when the
number of stacked layers in the residual block increases. The UIQI value from the
Table 3 also reveals that quality of the reconstructed image is also diminishing as the
number stacked layer increases in the ResNet. The PSNR and EARGS show a stable
performance, which ensure the spatial consistency of our proposed method. So, we
concluded that ResNet Fusion network with two-stacked convolution layer acquires
more discriminative features from the source images and guarantee the quality of the
reconstructed image on analyzing the results obtained in Table 3.

Figure 1 shown below is the visual representation of the output provided by our
proposed ResNet fusion method on four benchmark datasets against all other baseline
methods. From the figure, it is evident that ResNet Fusion with two-stacked convolu-
tion layers produces better performance in most of the areas in the image
(highlighted) of the four datasets (Figure 5).

We further extend the Resnet fusion architecture to reduce the number of param-
eters to make our proposed method more efficient and effective to handle high

Dataset Methods Number of stacked convolution layers

2 layers 3 layers 4 layers

Pavia university SAM 0.0409 0.065 0.069

EARGAS 0.4029 0.4029 0.4029

PSNR 66.1127 66.1127 66.1127

UIQI 0.9872 0.9713 0.9622

Indian pines SAM 0.3896 0.4186 0.4553

EARGAS 0.6170 0.6170 0.6170

PSNR 65.2971 65.2971 65.2971

UIQI 0.8991 0.8904 0.8801

Washington DC mall SAM 0.5171 0.5529 0.5721

EARGAS 0.4850 0.4850 0.4850

PSNR 65.1358 65.1358 65.1358

UIQI 0.9656 0.9432 0.9209

Botswana SAM 0.1908 0.1978 0.2085

EARGAS 0.4698 0.4698 0.4698

PSNR 64.8798 64.8798 64.8798

UIQI 0.9960 0.9822 0.9589

Table 3.
The performance of ResNet fusion by varying the stacked layers.
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dimensional data. For that, we used short skip, long skip, and dense skip connection to
the ResNet architecture with two-stacked convolution layers. Table 4 gives the total
number of network parameters required for this ResNet architecture in each skip
connection. From Table 4, it is clear that ResNet architecture with dense skip con-
nection provides very less network parameters compared to ResNet with short and
long skip connections.

A.Time complexity

Comparing the performance and running time of all the proposed algorithms on
four benchmark datasets are shown in Figure 6. From this figure, it is evident
that ResNet fusion with dense skip connection took very less running time and
showed good performance in reconstructing high-fidelity hyperspectral image.

Figure 5.
The ground truth and fused image of different methods using four benchmark datasets.

Architecture Number of parameters

CNN 31,586,081million

ResNet with Short Skip 8,045,825 million

ResNet with Long Skip 390,529 million

ResNet with Dense Skip 19,393 million

Table 4.
The performance of different skip connection.
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On comparing the performance and running time of ResNet with long skip and
short skip connection, long skip connection ResNet fusion architecture shows
good performance and running time than short skip connection. On evaluating
the performance and running time of all ResNet fusion architectures, ResNet
with dense skip connection outperformed compared to the other two ResNet
fusion architectures. While comparing the performance and running time, the
FCN-CNMF method showed better performance and time than CNN-based
fusion. Finally, we concluded that, ResNet with dense skip connection with less
network parameter shown highlighting performance for reconstructing good
spatial and spectral quality HR-HSI compared to all other proposed methods.
However, all our proposed methods show good in performance but the cost
incurred in terms of time is high.

B. Resnet HS-MS fusion model

The experimental analysis of our ResNet fusion architecture with various
parameters is done to build a general model for our proposed HS-MS ResNet
fusion algorithm. For this purpose, we trained the network by using cropped HSI
and MSI image pairs from each dataset. That means each dataset is cropped into
several patches and then divided into training and testing data. In the case of
Indian Pine dataset with size 610 � 340 � 103 are cropped into several patches
of size M � N � L. The patch size was M� N �L = 15 � 15 � 103 for Indian Pine
dataset showing high performance to our network model. Similarly, we create
training and testing samples for all three datasets. The patch size for Washington
Dc Mall dataset was M � N � L = 19 � 19 � 191, for Botswana dataset, were
M � N � L = 17 � 17 � 145 and for Pavia University dataset were
M � N � L = 19 � 19 � 192 gives a network model with good running time and
network parameters.

We measure the quality matrix value of our ResNet fusion by varying the
number of stacked layers and found that residual blocks, each having two-
stacked convolution layers is performing better than the others. The most
significant part of ResNet is skipped connection, which helps for the flow of
information through the network more efficiently and effectively. So, we also
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experimented with three skip connections: short skip, long skip, and dense skip
connection. From this experiment, we found that ResNet with a dense skip
connection reduces the number of network parameters to a large extent.

Finally, we built a generative ResNet model for the fusion of HS–MS image as
shown in Table 5. The ResNet fusion model uses ID and 2D convolution
networks. These two convolution networks consist of three residual blocks, each
residual block contains two convolution layers with 64 filters, 3x3 kernel size,
stride = 1, max-pooling, and padding = same. To make the information flow
accurately throughout the network, we use dense skip connection. At last, it uses
a 2D convolution to decode the reconstructed image into the original format.

7. Conclusion

In this work, we implemented HS–MS fusion on deep learning method because of
its strong ability to extract features from the image. At first, we implemented the HS–
MS fusion process in conventional CNN method. But in CNN, each layer takes the
output from the previous layer, which tends to lose information as the network goes
into deeper architecture. So we further implemented the fusion process in ResNet by
adding the skip connection between the convolution layers. This skip connection helps
to extract more detailed features from the images without any degradation problems.
Our constructed ResNet fusion architecture includes three-residual blocks, and each
block is a combination of stacked convolution layer and skip connections. Moreover,
we modify the ResNet fusion architecture with different stacked layers and found that
ResNet with two-stacked layer gives more accurate results. Finally, we extend ResNet
architecture to reduce the number of parameters by using different skip connections
like short ship, long skip, and dense skip connections. From the experimental analysis,
it is found that the ResNet- dense skip improve the performance in image reconstruc-
tion with very less network parameters and running time compared to other fusion
methods. This deep residual network helps to extract nonlinearity features with the
help of the ReLU activation layer. The experiment and performance analysis of our
algorithm is done effectively and quantitatively on four benchmark datasets. The
fusion results indicate that ResNet with dense skip fusion method shows outstanding
performance over traditional and DL methods by keeping the spatial and spectral data
to a large extent in the reconstructed image.
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Chapter 5

Magnetic Scattering with Polarised
Soft X-rays
Paul Steadman and Raymond Fan

Abstract

Soft X-ray scattering is a powerful technique for measuring magnetic materials. By
highlighting some examples using diffraction, small angle scattering and reflectivity
the element sensitivity and strong dependence of the polarisation on both the size and
direction of the magnetic moments in both single crystals and thin films will be
demonstrated.

Keywords: soft X-ray, magnetism, thin films, scattering, diffraction, reflectivity

1. Introduction

The interaction of light with magnetism was first discovered by Michael Faraday in
1845 when he observed that magnetised heavy glass would rotate the plane of
polarised light as it was transmitted [1]. A few decades later John Kerr discovered the
same magneto-optical effect but in a reflection geometry [2]. This proved the link
between optics and magnetism, theoretically explained by James Clark Maxwell [3].
Whilst these first experiments were done using optical wavelengths [4–8] the first
results using X-rays were not measured until 1972 (de Bergevin and Brunel) [9]. In
this experiment, which was built on a previous idea (Platzmann and Tzoar 1970) [9] a
laboratory X-ray source was used to measure the antiferromagnetic order in NiO.
Several days were needed to collect the weak signal from the (14

1
4
1
4) peak due to the

antiferromagnetic ordering between the main structural (charge) Bragg peaks.
This experiment was one of the first to prove that X-rays could be used to measure

magnetism and that magnetic diffraction did not have to only rely on neutron dif-
fraction. Indeed de Bergevin and Brunel neatly demonstrated that the interaction of
both the electric and magnetic parts of X-ray. Unfortunately the interaction with the
spin compared to the charge, is scaled by a relativistic factor of E1=mc2, where E1 is the
energy of the incident photon and m is the rest mass of the electron. This means that
the magnetic scattering is reduced by a factor of 100 for each electron. Since not all
electrons contribute to the magnetic signal the total magnetic signal is very weak
compared to the scattering from structural(charge) Bragg peaks.

With investment in synchrotron radiation sources in the early 1980s, such as the
SRS, Daresbury, UK or NSLS, New York, USA, the ability to separate the weak
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magnetic scattering from the noise was increased by several orders of magnitude.
With the high intensity of the synchrotron radiation and the well-defined polarisation
meant that the effects discovered by de Bergevin and Brunel, which were weak and
heavily polarisation dependent could be exploited. Magnetic scattering was now
becoming a viable contender for measuring magnetism along with neutron scattering.
The two techniques are actually very complimentary. The more bulk sensitive neutron
scattering technique compares with a relative surface sensitive X-ray technique. An
advantage of X-ray is the ability to be able to separate the spin and orbital parts of the
electron angular momentum. This advantage is made possible through the different
polarisation dependences of the scattering which had clearly been enhanced by syn-
chrotron radiation.

A big breakthrough came at the end of the 1980s when Hannon et al. [10] discov-
ered that magnetic scattering was enhanced at certain atomic resonances, in particular
those from the dipolar transitions. Similarly to non-resonant scattering the spin and
orbital parts of the electron could be separated. However, now the technique is
element sensitive. The ability to access many energies on beamlines at synchrotrons
enabled difference resonances or absorption edges to be accessed. In addition the
dipole resonances enhancement are very strong at soft X-ray energies, which cover
the L2:3 resonances of the transition metals, the M2,3 resonances of the rare earths and
the N edges of the actinides.

In this chapter we will first discuss some theoretical preliminaries for resonant
scattering, then soft X-ray diffraction followed by, small angle scattering, soft X-ray
reflectivity and element specific hysteresis curves.

2. Theoretical preliminaries

X-ray magnetic scattering can be measured on or off an atomic resonance. The
non-resonant scattering is stronger as the energy of the incident photon increases due
to the relativistic factor mentioned previously. It is possible to measure X-ray mag-
netic scattering for energies above a keV (wavelengths of Angstroms) [11]. However,
this is very weak at soft X-ray energies which are defined as energy between 100 and
2000eV (6.2 to 124 Angstroms). At both soft and hard X-ray energies magnetic
scattering is enhanced by going to a resonance where a core electron with a well-
defined spin (spin up or spin down) is transferred to the unoccupied states in the
outer electron levels (same as the Fermi energy in metals). The well-defined spin then
becomes a very sensitive probe of its environment which is short lived as it decays
back to its core level emitting a photon of equal energy to the incident one (elastic
scattering). In the dipole approximation the spin does not flip so spin is preserved
throughout this process which make it very sensitive to the magnetic moment of the
atom, since the outer electron levels is the magnetic environment. In addition the
magnetic order breaks the symmetry of the lattice, since this is a vector quantity thus
any experiment involving this resonant process i.e. X-ray absorption or X-ray scatter-
ing has strong polarisation dependence.

We will not discuss non resonant scattering but there are reviews in the literature
[12–14] as well as some of the first work by De Bergevin, Brunel, Gibbs and Blume to
name but a few [9, 12].

The amplitude of electric dipole transitions can be written as [10, 16].

f ¼ ef � eið Þ F 0ð Þ � i ef � eið Þ �MF 1ð Þ þ ef �Mð Þ ei �Mð ÞF 2ð Þ (1)
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Here ei and ef are directional vectors representing the incident and scattered
polarisation respectively, M is the magnetic moment and the coefficients F 0ð Þ, F 1ð Þand
F 2ð Þ depend on the matrix elements involved in the resonant process. The discussion of
these coefficients are out of the scope of this work and not necessary for this chapter
or our conclusions but some comments will be necessary. The first term is the reso-
nant charge scattering and has the same form as the non-resonant charge scattering
here the dot product between the polarisation vectors is simply due to experimental
geometry i.e. the position of the detector relative to the incident beam. As the detector
angle increases the dot products of the polarisation vectors components in the scat-
tering plane has a cosine dependence and therefore gets weaker. The second term is a
first order in magnetic moment. It involves a triple product with the cross product
between the two polarisation vectors dotted with the magnetic moment. This term is
related to circular dichroism in absorption. The third term is the second order in
magnetic moment and depends on the projection of each polarisation vector with the
magnetic moment. It gives raise to the linear dichroism in absorption. When referring
to the above we will refer to the reference frame shown in Figure 1. Here we define
the polarisation vectors πi and πf in the scattering plane and σi and σf perpendicular to
the scattering plane for incoming and outgoing polarisations respectively. With this in
mind and defining θi and θf as the incoming and outgoing grazing angles we can
define the following vectors.

πi ¼ πi sin θið Þiþ πi cos θið Þk (2)

σi ¼ σij (3)

πf ¼ �πf sin θf
� �

iþ πf cos θf
� �

k (4)

σf ¼ σf j (5)

With this frame of reference we would like to construct the following matrix equa-
tion where each element represents a well-defined initial and final polarisation state.

f ¼ σi ! σf πi ! σf
σi ! πf πi ! πf

 !
F 0ð Þ � i

σi ! σf πi ! σf
σi ! πf πi ! πf

 !
F 1ð Þ þ σi ! σf πi ! σf

σi ! πf πi ! πf

 !
F 2ð Þ

(6)

Figure 1.
The frame of reference used for the calculations of polarisation dependent scattering. The Greek symbols π and σ
refer to polarisation that are parallel or perpendicular to the scattering plane (plane defined by incoming and
outgoing beam) respectively. The suffixes i and f refer to the incident and scattered polarisation. The incident and
outgoing angles are represented by θi and θf respectively. A right handed set with unit vectors i, j and k is shown.
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If we assume that θi and θf are equal to θ as in specular reflectivity and use
Eqs. (2)–(5) one can rewrite the Eq. (1)

f ¼
1 0

0 cos 2θ

 !
F 0ð Þ � i

0 mi cos θ �mk sin θ

�mi cos θ �mk sin θ mj sin 2θ

 !
F 1ð Þ

þ
m2

k mk mi sin θ þmk sin θð Þ
�mk mi sin θ �mk sin θð Þ � cos 2θ m2

i tan
2θ þm2

k

� �
 !

F 2ð Þ
(7)

Where

M ¼ mîiþmĵjþmkk̂ (8)

Although this is just another version of Eq. (1) in a particular frame of reference, it
makes it easier to see that the off-diagonal components within the first order term
only depend on the magnetic moment within the scattering plane i.e. mi and mk and
the diagonal term only depends on the magnetic moment out of the scattering plane
mj. The second order term in magnetic moment is more complicated and allows
magnetic scattering in the σi ! σf channel of the matrix. The second order terms
matrix tend to be small so we will ignore this for most of the chapter but some
comments will be made on this when we discuss diffraction.

We will now apply these equations in three different situations. In the next section
we will briefly examine the subject of diffraction, then small angle scattering and
followed by a section dedicated to reflectivity measurements.

3. Diffraction

There are many exciting materials with large enough unit cells to enable the Bragg
condition to be satisfied at soft X-ray wavelengths. In addition since magnetism
lowers the symmetry of the crystal lattice, it is possible that extra diffraction peaks
will occur in between the main Bragg peaks, due to the larger magnetic unit cell. This
can help enormously with soft X-ray scattering since even if it is not possible to reach
one of the main Bragg peaks it may be possible to reach a magnetic diffraction peak.

In kinematical theory we sum up the diffraction amplitudes as follows

A Qð Þ ¼
XN�1
n¼o

f n exp iQ :rnð Þ (9)

where f n is the form factor of a particular element, q is the reciprocal lattice vector
and rn is the real space position of the atoms in the lattice. In the case where the
scattering ion is at resonance we need to replace the form factor f n with the anomalous
corrections as shown in Eq. (10).

f ! f þ f 0 þ if 00 � if m (10)

where the f is the non-dispersive atomic form factor, f 0 and f 00 are the real and
imaginary parts of the dispersion corrections to the charge scattering and f m is the
contribution from the magnetic scattering.
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3.1 Commensurate antiferromagnet

The system CoxMn1�xWO4 [17] which has many different phases one of which
is an interesting multiferroic phase at low temperatures, another is a commensu-
rate antiferromagnetic structure. The magnetic moments on the Mn atoms in this
phase align antiparallel along the a direction. The lowering of the crystal symmetry
means that the unit cell is doubled compared to the chemical unit cell. This
means that in between the chemical Bragg peaks there are peaks at “half order”
positions that are purely magnetic. This is demonstrated with a simple schematic in
Figure 2.

The antiferromagnetic phase in CoxMn1�xWO4, known as the AF4 phase, exists
in samples with x = 0.15 below 18 K. So by going to the Co or Mn L2,3 resonance and
then putting the sample and detector at the correct point in reciprocal space we
should be able to measure the Brag diffraction due to the AF4 antiferromagnetic
order. This is shown in 2 where we see the resonance enhancement appears very
clearly at the Co L3 edge at the (12 0 0) position. One of the advantages of X-ray
resonant scattering is the ability to tune and distinguish between different ele-
ments. This is nicely demonstrated in this sample where it was possible to tune to
the Co L3 and Mn L2 edges and follow their evolution with temperature. Both peaks
behave similarly and decay as expected from previous work. Whilst this demon-
strates the power of soft X-ray scattering, and X-ray scattering in general, partic-
ularly with element specificity it is worth noting the disadvantages. Firstly having
the half order peak was necessary so that there was a peak existing in reciprocal
space that could be measured i.e. where the Bragg condition could be satisfied. Also
since the Mn resonances occur at lower energy right at the limit of where the Bragg
condition could be satisfied. From this particular sample, it was only possible to
measure the (12 0 0) peak at the Mn L2 edge since the Mn L3 edge, occurring at
638.7 eV, was too low in energy.

Another tool one can use in soft X-ray scattering is polarisation analysis. By looking
at the form of Eq. (1). In particular the first order in magnetic moment, the triple
product ef � eið Þ �M involves the incoming polarisation ei, the outgoing polarisation
ef along with the magnetic momentM. This vector nature of this process means that if
one is able to define the incoming polarisation, measure the outgoing polarisation
along with its intensity then it should be possible to measure the direction of the
magnetic moment. Since there are an infinite number of solutions if the measurement
is only done using one incident polarisation, a technique known as full polarisation
analysis is used. Here several incoming polarisations are used and then the outgoing
polarisation is measured for each one. The outgoing polarisation is measured by taking

Figure 2.
A schematic demonstrating how doubling the size of the unit cell, shown on left, results in half order peaks in
reciprocal space, shown on right.
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the scattered beam and diffracting it at 90 ∘ using a special multilayer analyser. With a
specially designed detector mount the scattered beam polarisation is measured by
rotating the detector and analyser around the scattered beam. The results of doing this
at the Co L3 edge are shown in Figure 3. By fitting the ef � eið Þ �M for the outgoing
polarisations for several incoming polarisations it was possible to determine the
direction of the magnetic moments. The resonant nature of this scattering also meant
that it was possible to ascertain that the Mn and Co moments are non collinear, a
measurement that would not have been possible with other techniques. The non
collinearity, a result of competition between the Co2þ andMn2þ single ion anisotropies
furthers the understanding of the complex magnetic phase diagram of this material
(Figure 4) [18].

3.2 Incommensurate structures

In addition to commensurate magnetic lattices there are examples of magnetic
lattices that are incommensurate with the chemical structure. Such structures still
provide diffraction peaks as can easily be shown in the following example. If we take
Eq. (9) for a one dimensional lattice and add in an incommensurate modulation in the
magnetic moments similar to an example shown in [19] (see section 4.4.5) but
adapted to magnetism.

A Qð Þ ¼
XN�1
n¼o

f þ f 0 þ if 00
� �

exp iQ :rnð Þ � if m exp iQ :rnð Þ exp iqm:rnu cos q:rnð Þ� �

(11)

In this equation we have assumed a complex atomic form factor f þ f 0 þ if 00 � if m
where f is the non-dispersive form factor with the real and imaginary terms of the
dispersive form factors f 0 and f 00 respectively. There is also an additional part f m due to
the magnetic moment which includes all the magnetic terms in 1. The second order
term, however, will be assumed to be negligible. The term u is the amplitude of a wave

Figure 3.
The (12 0 0) peak of Co0:15Mn0:85WO4. On the left is shown the intensity (symbols) of the peak as one changes the
energy through the Co L2,3 resonances. Also shown are the fluorescence signals (line) as a function of energy in two
different crystalline directions. On the right is the intensity at the Co L3 and Mn L2 edge as a function of
temperature.
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which forms the incommensurate structure with a periodicity given by qm ¼ 2π=λm.
We can expand the exponential containing the modulation such that:

A Qð Þ ¼
XN�1
n¼o

f þ f 0 þ if 00
� �

exp iQ :rnð Þ � if m exp iQ :rnð Þ 1þ iQu cos qm:rn
� �þ …

� �

(12)

To first order gives.

A Qð Þ ¼
XN�1
n¼o

f þ f 0 þ if 00 � if m
� �

exp iQ :rnð Þ þ f m
Qu
2

� �
exp i Q þ qm

� �
:rn

� ��

þ exp i Q � qm
� �

:rn
� �� (13)

By writing rn ¼ an, where a is the lattice parameter of the one dimensional lattice
we can work out the summations. The modulus squared then gives us the intensity
which, in the limit of large N, yields the following.

I Qð Þ ¼ N
2π
a

� �
f þ f 0
� �2 þ f 00 � f m

� �2� �
δ Q � Gð Þ

þN
Qu
2

� �2 2π
a

� �
f m

2 δ Q þ qm � G
� �þ δ Q � qm �G

� �� �

(14)

Here the δ are the Dirac delta functions and the G are reciprocal lattice vectors
along the one dimensional lattice. This means that as well as the structural Bragg peak
Q ¼ G the modulated magnetic structure gives magnetic peaks around the Bragg peak
at Q ¼ G� qm. In this example there are only first order peaks but that is because we
only took the expansion in Eq. (12) to first order. Note that magnetic scattering is also
presence at the Bragg peak and not just on the peaks around it. This can be seen by the
f m in the factor of the Dirac delta function for the main Bragg peak.

Figure 4.
On the left is shown the full polarisation analysis measurement at the Co edge. For each angle of incident linear
polarisation given by χ the analysis of the polarisation was performed by rotating the detector analyser around the
scattered beam (rotation of detector analyser angle η). A value of zero is defined as perpendicular to the scattering
plane. By doing this at both the Co L3 and Mn L2 edges it was possible to measure both moments. The results are
depicted in the picture on the right where it was established that the Co and Mn moments were not parallel.
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There are many fascinating example of incommensurate magnetic structures.
Hexaferrites, an interesting materials with multiferroic properties offer interesting
properties to study with soft X-rays [20, 21]. The large unit cells of the M, Y and Z
type hexaferrites enable the Bragg condition to be satisfied even at soft X-ray energies
(particularly at the Fe and Co L2,3 edges). Incommensurate spin structures result in
easily reachable magnetic diffraction peaks which can be studied at different temper-
atures, magnetic and electric fields.

4. Small angle scattering

Another possibility to measure magnetic structures is to perform experiments in
transmission enabling the measurement of small angle scattering. Due to the strong
absorption of soft X-rays the samples have to be about a few hundred nanometres
thick or thinner. The complexity of producing the samples is a contrast to the much
simpler experimental set-up. Since the energies are quite low there is the opportunity
to study large structures such as magnetic domains. A very good example of this is the
study of the domains in FeRh with both circular and linear polarisation [22]. In this
work the domains and their evolution over time across the interesting antiferromag-
netic to ferromagnetic transition was examined. Another area that has made extensive
use of small angle scattering involves magnetic skyrmions. Magnetic skyrmions can
best be described as textures of magnetic swirls. They are caused by a balance of
magnetic anisotropy, applied field, fluctuating temperature and the Dzyaloshinskii-
Moriya interaction. The latter, caused by the electronic spins sensitivity to non-
centro-symmetric symmetry via the spin-orbit interaction causes the magnetic spins
to spiral in two dimensions (see Figure 5). The topological nature of the spin structure
means that they are robust magnetic entities which could potentially be used in
magnetic memory applications [23].

A typical phase diagram of magnetic states in a skyrmion hosting material is shown
in Figure 5. In general in the absent of magnetic field there is a helical arrangement of
spins. If a field is applied the spins start to rotate towards the applied field. At certain
values of applied field and temperature the skyrmion phase occurs. The exact values

Figure 5.
The different phases that exist in skyrmion hosting materials. On the left is shown a schematic of a phase diagram
along with pictures of the helical, conical and skyrmion phases. The corresponding diffraction patterns are shown
below for each phase.
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of temperature and magnetic field that this phases occur depends on the material and
more specifically on the exchange interaction, Dzyaloshinskii-Moriya interaction,
spin-orbit interaction and crystalline anistropy. Also shown are the typical in Figure 5
are the diffraction patterns due to the scattering from skyrmions and the competing
helical and conical phases.

The large magnetic periodicity of the skyrmion lattices, which can vary from tens
to hundreds of nanometres makes them ideal for soft X-ray diffraction. Many exper-
iments have been done on Cu2OSeO33 which, unlike some of the other B20 materials,
is insulating. Here the skyrmion lattice causes a six fold diffraction pattern around the
(0 0 1) diffraction peak. This occurs in a similar way to the commensurate antiferro-
magnet mentioned previously but the magnetic lattice is now many times larger than
the chemical unit cell of the Cu2OSeO33 (see for example [24–26]).

Another way of measuring skyrmions is to grow very thin samples and measure
the small angle scattering in transmission. The technique of small angle neutron
scattering (SANS) has already been used extensively for measuring skyrmions (e.g
[27, 28]). The hexagonal structure of the skyrmion lattice will produce a hexagonal
diffraction pattern around the (0 0 0) incident beam direction. A schematic is shown
in Figure 6.

An example of such measurements using small angle scattering is shown in
Figure 7 where skyrmions were measured on thin samples of Cu2OSeO33 [29]. Here it
was demonstrated that by field cooling (in a field of 44 mT) the skyrmion phase
existed all the way down to 23.5K. Moreover there is no anomaly at the measured
phase boundary (40K) as can be seen in the evolution of the reciprocal lattice vector
and the intensity of the diffraction peaks. The intensity was fitted with a power law
and gave a critical exponent of 0.73 which is expected for a three dimensional
Heisenberg system agreeing with previous work [30, 31].

5. Reflectivity

To avoid ambiguity reflectivity in this chapter will refer to the case of specular
reflectivity i.e. where the incoming angle is equal to the outgoing angle. A reflectivity
scan is generally performed by increasing the detector angle at twice the rate of the
sample angle although some commercial diffractometers allow the symmetric

Figure 6.
The setup for small angle scattering. The X-rays pass through an aperture and are transmitted through an
ultrathin sample. The small angle scattering is measured using a CCD camera. A schematic of the hexagonal
diffraction pattern from a skyrmion lattice is shown on the right.
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increasing of the incoming and outgoing angle by increasing the detector and X-ray
angles but keeping the sample constant.

Although it is a scattering technique like diffraction, reflectivity is different.
Whilst diffraction refers to scattering from planes of atoms, reflectivity refers to
scattering from a surface or interface or a combination of both. In many cases dif-
fraction can be described by kinematical theory where amplitudes can be summed up.
Reflectivity is often best described by optical theories using the Fresnel coefficients
for reflection from each interface. In soft X-ray reflectivity this usually works well
since the wavelengths are large enough to assume that the material is a continuum and
not discrete planes atoms (as in diffraction). However, if a Bragg condition is satisfied
during a reflectivity measurement (which would be quite common in a hard X-ray
measurement) then the optical theory will no longer adequately describe the scatter-
ing and more complicated dynamical theories are needed [32].

An example of an optical theory that works well with soft X-ray scattering involves
that of Zak et al [32–35]. It involves calculating the wave properties as it propagates
through a multilayer system. Two matrices are formulated: one that calculates the
electromagnetic waves due to the reflection and refraction at each interfaces and a
second one calculates the phase of the wave. The details are included in the references.
Although it is based on optical theory, for calculating the Kerr and Faraday rotations it
works well for soft X-rays as long as there is not have any Bragg diffraction i.e. that we
can model the films as continuous media. It is a classical equivalent of the theory
represented by Eq. (1) to first order in magnetisation.

Soft X-ray reflectivity is a very powerful technique for studying thin films and
multilayers and therefore very relevant for device applications. A good example is
exchange bias. Exchange bias occurs when a ferromagnetic is grown next to an
antiferromagnetic material. The coupling at the interface causes a unidirectional
anistropy; a hysteresis loop of the ferromagnetic material is not centred at zero applied
field but offset by a quantity known as the exchange field Hex. Discovered in 1956 by
Meiklejohn and Bean [36] the effect is still not properly understood despite being used
in read heads in the latest hard drives. IrMn3 is an antiferromagnet and the most
commonly used in spin valves in hard drives. A layer of Fe grown on top of IrMn3 is

Figure 7.
The production of metastable skyrmions. The blue line in the phase diagram (a) results in a metastable skyrmion
phase (b). (c) and (d) show the evolution of the reciprocal lattice vector Q and the intensity of the skyrmion peaks.
The solid line in d is a fit to a power law behaviour yielding a critical exponent of 0.73.
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exchange biased. The nature of the reversal process and the exchange bias field Hex

depends strongly on the structure of the antiferromagnet and therefore on its method
of preparation. IrMn3 can be prepared by molecular beam epitaxy or the more indus-
trially relevant sputtering. It is well known that when IrMn3 is grown at room tem-
perature the structure is a γ phase where the atoms are arranged randomly in a face
centred cubic structure. When it is grown with the substrate at 400°C the material
orders in the L12 structure. Here the structure can be described as having the Mn
atoms ordered in the centre of the faces giving a simple cubic structure. In addition an
Fe film grown on top of this will have a very different magnetic reversal behaviour.
The hysteresis loops are shown in Figure 8.

Figure 8.
The hysteresis curves from IrMn3. The loop for the γ disordered phase is shown on the left and that corresponding
L12 phase to the right.

Figure 9.
Reflectivity measure for the disordered γ phase of IrMn3. On the right are shown the reflectivities measured at the Fe
L3 edge (top) and Mn L3 edge at the bottom. The reflectivities were measured with incident circularly polarised
light at both helicities indicated by CN and CP in the plots. A schematic of the measurement geometry is shown at
the top right. The plot on the right is the difference between the two helicities (dichroism). A schematic of the thin
film with the thicknesses of the Fe and IrMn3 layers is shown at the bottom right.
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It can immediately be seen from Figure 8 that both hysteresis loops are exchange
biased. However, the γ phase has a sharp loop with a Hex of 150 Oe, the L12 sample is
much smoother and with a much higher Hex. Understanding the mechanisms for this
is vital for understanding exchange bias and improving spintronics devices.

By tuning to the L2,3 resonances of Mn and Fe it is possible to separate out the
magnetism from the ferromagnetic and the antiferromagnetic layer. By using circular
polarisation the technique also benefits from the significant linear component of
magnetisation in the scattering cross section. This is shown in Figure 9. On the left is
shown two reflectivities; the top one is measured at the Fe L3 resonance (sensitive to
the ferromagnet) and the bottom one is measured at the Mn L3 edge (sensitive to the
antiferromagnet). In each reflectivity opposite helicities of circular polarisation were
measured. These are designated CP and CN in the plots. At the Fe L3 edge there is a
clear difference between the two reflectivities measured at opposite helicities which is
not so apparent in the reflectivities measured at the Mn L3 edge. This is represented in
the plot of the difference on the right. Here the difference, often called the dichroism,
is measured. This is not to be confused with the magnetic circular dichroism of X-ray
absorption although it is strongly related. It is noteworthy here that whilst there is a
clear difference at the Fe edge, hardly surprising for a ferromagnetic material, there is
also a small but significant difference at the Mn edge.

To examine the magnetic signal more we could fix the sample and detector angles
at a convenient point in reciprocal space and measure the intensity as the sample goes
through a hysteresis cycle. The result of this measurement is shown in Figure 10. Here
it can clearly be seen that the signal follows the hysteresis much like that produced by
a vibrating sample magnetometer. With X-rays we have the added advantage of being
element specific which is nicely demonstrated here; by tuning to the Fe resonance we
are measuring the ferromagnetic behaviour and at the Mn resonance we are measur-
ing the antiferromagnet.

It is hardly surprising that we can measure the ferromagnet. The terms in the first
order (in magnetic moment) part of Eq. (7) show that magnetic scattering measures
the magnetic moment in several directions depending on the magnetic moment.

To show this we can write out Eq. (7) in the following way

f ¼ σCR11 0

0 πCR22

� �
þ i

σCI11 0

0 πCI22

� �
� i

0 σM12

πM21 πM22

� �
(15)

Figure 10.
Magnetic reflectivity measured during a hysteresis cycle. This was achieved by measuring at the Fe and Mn L3 edges
(Fe in black and Mn in red). On the left are shown the results from disordered γ phase of IrMn3. The corresponding
ones from the L12 ordered phase are shown on the right.
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Here we have added an imaginary term for the charge scattering to allow for the
phase change during the resonant process. The imaginary term is assumed to have the
same polarisation dependence as the real term. The magnetic term is assumed only to
have an imaginary part. We have also ignored the second order part of the equation
which we assume to be negligible. For circular polarisation we need to construct the
polarisation as two orthogonal components with a π phase difference i.e.

Pþi ¼ σi þ iπi
P�i ¼ σi � iπi

(16)

For both helicities respectively. Here the + and - refer to the different helicities of
the circular polarisation. Including now the phase factors the structure factors for both
helicities become

fþ ¼
σCR11 0

0 iπCR22

 !
þ i

σCI11 0

0 iπCI22

 !
� i

0 iσM12

πM21 iπM22

 !

f� ¼
σCR11 0

0 �iπCR22

 !
þ i

σCI11 0

0 �iπCI22

 !
� i

0 �iσM12

πM21 �iπM22

 ! (17)

With this we can work out the scattered intensity. Here we work out a general
expression with the applied magnetic field along any direction.

Iþ ¼ FTotalF ∗
Total ¼ FCF ∗

C þ FCF ∗
M þ FMF ∗

C þ FMF ∗
M

¼ σ2CR11 þ π2CR22 þ σ2CI11 þ π2CI22 þ σ2M12 þ π2M21 þ 2 σCR11σM12 � πCR22πM21ð Þ
þπ2M22 � 2πCI22πM22

I� ¼ FTotalF ∗
Total ¼ FCF ∗

C þ FCF ∗
M þ FMF ∗

C þ FMF ∗
M

¼ σ2CR11 þ π2CR22 þ σ2CI11 þ π2CI22 þ σ2M12 þ π2M21 � 2 σCR11σM12 � πCR22πM21ð Þ
þπ2M22 � 2πCI22πM22

(18)

We note here that the π phase difference in front of the magnetic terms means that
it is possible to have interference between the charge and magnetic scattering, inter-
ference terms which are linear in σM12, πM21 and πM22. Note also that these terms
change sign with helicity. However there are also quadratic terms in σM12, πM21 and
πM22. As the field is being applied in the scattering plane the πM22 terms, which only
depend on moments out of the scattering plane are small. This will work reasonably
for the disordered sample where the moments switch abruptly. If we were to ignore
the pure charge scattering terms then the two terms above can be simplified to the
following.

Iþ ¼ σ2M12 þ π2M21 þ 2 σCR11σM12 � πCR22πM21ð Þ

I� ¼ σ2M12 þ π2M21 � 2 σCR11σM12 � πCR22πM21ð Þ
(19)

We can now see that the effect of changing the helicity during a scattering
measurement of a hysteresis would resulted in the reverse the loop. However, the
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quadratic terms cannot always be ignored. Since the quadratic terms obviously do not
reverse with helicity a simple way of removing this uncertainty is to measure the
scattering during hysteresis with opposite helicities and subtract one from the other
i.e. take the dichroism of the measured hysteresis. The important result from Eq. (19)
is that there is a linear dependence on magnetic moment which reverses with helicity
explaining why we see the hysteresis curves in 10.

The hysteresis curves measured at the Fe L3 edge in Figure 10 are hardly surpris-
ing. Fe is a ferromagnetic material such that the resonant scattering process measures
a net moment. In this example the behaviour of the reflectivity nicely follows that of
the magnetometry shown in Figure 8. It also demonstrates in this case that, the second
order terms in Eq. (19) are actually quite negligible. This should not be assumed to be
a general case though. More surprising is the ability to be able to measure the magnetic
moments in the antiferromagnetic layer i.e. the IrMn3. One possibility is the second
order term in Eq. (1). Here the square dependence on the magnetic moment would
make it possible to measure the antiferromagnetism. It is exactly this term, in absorp-
tion, that is responsible for the magnetic linear dichroism that is often used to measure
antiferromagnetic materials. However, in our case this is definitely not the explana-
tion. It would be impossible for the squared dependence to give a hysteresis loop such
as those in 10 as the loop would need to have equal reflectivities at both negative and
positive saturation. More likely it is due to uncompensated moments near the inter-
face. This could be caused by uncompensated moments domain walls. However, more
fundamentally this could just be the effect of measuring the moments near an inter-
face where the moments, even in an antiferromagnetic material do not cancel out.

Measurements of the hysteresis can also be done with linear polarisation. For this
we need to work out the equivalent to Eqs. (17) and (18) for linear light. The general
result is written out in Eq. (20) for both linear out of the scattering plane σ and linear
parallel to the scattering plane π.

f ¼ σCR11 0

0 πCR22

� �
þ i

σCI11 0

0 πCI22

� �
� i

0 σM12

πM21 πM22

� �
(20)

This will give the general result for σ polarisation

I ¼ FCF ∗
C þ FCF ∗

M þ FMF ∗
C þ FMF ∗

M

I ¼ σ2CR11 þ σ2CI11 þ π2M21
(21)

Here we have simplified the equation since σ polarisation is insensitive to moments
out of the scattering plane (we are not taking into account the second order term in 1)
and also that all the magnetic scattered x-ray polarisation has flipped π polarisation in
agreement with the triple product in the first order term of 1.

For π polarisation Eq. (20) gives us something more complicated.

I ¼ FTotalF ∗
Total ¼ FCF ∗

C þ FCF ∗
M þ FMF ∗

C þ FMF ∗
M

¼ π2CR22 þ π2CI22 � 2πCI22πM22 þ π2M22 þ σ2M12
(22)

Note that Eq. (22) now has a linear and a quadratic term in the π channel as well as
a quadratic one in the σ channel. The scattering that rotates into the σ channel is only
sensitive to moments in the scattering plane (c.f. Eq. 21). The scattering into the π
channel is sensitive to moments perpendicular to the scattering plane. To make this
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more readable we can split the equation into two parts: for magnetic moments in the
scattering plane

I ¼ π2CR22 þ π2CI22 þ σ2M12 (23)

(which looks similar to Eq. (21)) and moments perpendicular to the scattering
plane.

I ¼ π2CR22 þ π2CI22 � 2πCI22πM22 þ π2M22 (24)

Results from the disordered γ phase sample using both incident linear polarisations
σ and π are shown in Figure 11. At the top is shown linear horizontal σ and the bottom
is shown π incident polarisation. The schematics next to the graphs represent the
scattering processes with the moments saturated in the four principal directions.
Firstly for σ polarisation, which is only sensitive to moments in the plane, in this case
as the moments reduce, so does the reflectivity. It reaches a minimum at the coercive
field, and then increases again. Since the dependence on magnetisation is quadratic
(see Eq. 21) the reflectivity should be equal for both negative and positive saturation.
The small difference is due to locked moments in the ferromagnetic film [37].
Whereas the σ at coercive field shows a minimum, the incident π polarised beam
shows a maximum. This is most likely due to the increase of moments and increase in
magnetic disorder out of the scattering plane which maximises the expression
represented by Eq. (23). Again there is a slight offset possibly caused by some locked
moments in the ferromagnetic film.

Figure 11.
Magnetic reflectivity hysteresis loops taken at the L3 edges of Fe on the disordered γ phase IrMn3. At the top is shown
linear horizontal and at the bottom linear vertical
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6. Note on second order term

In the equation describing the magnetic atomic form factor (Eq. (1)) there are
three terms. The last term representing the second order in magnetic moment has
been ignored up until now. It is often ignored in most studies due to the assumption
that it is small. To measure this in an experiment, particularly with the uncertainty of
the coefficients F 0ð Þ, F 1ð Þ and F 2ð Þ, requires careful exploitation of the polarisation and
vector nature of the magnetisation. For example this could be done using polarisation
analysis and then measuring magnetic dependence in the σ-σ channel where the
polarisation (defined as out of the scattering plane) does not rotate. Since the first
order term is zero for this channel any change in the scattering due to manipulation of
the moments must be from this second order term. Unfortunately, the inefficient
detection in polarisation analysis (less than 1 %) will make this very difficult. A good
estimate could also be made without polarisation analysis. Low scattering angles could
be used, where all the channels apart from the angle independent σ-σ channel would
be weak. Again this could be combined with applied magnetic field dependence so
that charge and magnetic scattering can be separated.

Whereas the first order term will provide the first order diffraction peaks from a
magnetic lattice the second order term will in addition produce second order satellites.
This can easily be demonstrated by inserting a phase factor, for a one dimensional
commensurate structure into Eq. (1). In the following we assume that the charge
scattering is a real number. Although this is incorrect it simplifies the mathematics
and does not influence the main conclusion. If we assume that both the charge and
magnetic lattice has a lattice parameter a and insert the corresponding phase factors
exp iq:na. Following this, and exactly analogous to Eq. (14), we work out the intensity
for a large number of planes N.

I ¼ N ef � eið ÞF 0ð Þ
� �2

þ ef � eið Þ �MF 1ð Þ
� �2� �

2π
a

� �
δ Q �Gð Þ

þN ef �Mð Þ ei �Mð ÞF 2ð Þ
� �2 2π

a

� �
δ 2Q �Gð Þ

(25)

Here G is a reciprocal lattice vector and δ is the Dirac delta function. Eq. (25)
shows, in the case of a commensurate structure, that the first two terms of Eq. (1) will
give peaks at the the reciprocal lattice vector Q but the second order term in magnetic
moment gives peaks at 2Q .

7. Conclusions

This chapter has summarised some of the main techniques in polarised soft X-ray
scattering: diffraction, small angle scattering and reflectivity. It has been demon-
strated that by tuning to a suitable dipole electric resonance e.g. the L2,3 edges of the
transition metals or the M4,5 edges of the rare earths, which both occur at soft X-ray
energies, scattering experiments at these energies are very sensitive to the arrange-
ments of magnetic moments in a material. In diffraction it was demonstrated, for both
commensurate and incommensurate magnetic structures, that in addition to the pow-
erful enhancement given by the resonance, the different symmetries of the charge and
magnetic lattices allow one to measure purely magnetic signals e.g. in the case of a
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commensurate antiferromagnet incommensurate helical/spiral spin structures. The
relatively new technique of small angle scattering in measuring domains and magnetic
skyrmions has been made possible by fabricating ultrathin samples making unprece-
dented advances in measuring magnetism with a relatively simple experimental setup.
The measurement of reflectivity has also been reported on. Here it was shown to be a
useful probe for complicated magnetic reversal processes in an exchange biased sys-
tem, enabling not just the measurement of the ferromagnetic layer but also the anti-
ferromagnet. Measurements with both circular and linear light enabled the probing of
the magnetic moments, particularly near the ferromagnetic/antiferromagnetic inter-
face. Circular light is shown to cause interference between charge and magnetic
scattering giving a very strong linear magnetic component. Whilst circular light is
only sensitive to moments in the scattering plane linearly polarised light is sensitive to
moments both parallel and perpendicular to the scattering plane. The sensitive
dependence on polarisation means that it is possible to use X-ray scattering as an
element specific depth sensitive vector magnetometer.
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