
Updates on
Software Usability

Edited by Laura M. Castro

Edited by Laura M. Castro

Updates on Software Usability is a collection of high-quality contributions for
developers and non-developers alike. Beyond the preliminaries, the book is

organized into two other parts: “Designing for Usability” and “Testing for Usability”.
The chapters in the second section, “Designing for Usability”, offer valuable insights

and practical guidance to take into account during the early stages of product
conception and development. On the other hand, the chapters in the third section,
“Testing for Usability”, reflect and formalize software usability’s evaluation and

validation processes. These two complementary views on the subject make this book
a balanced and comprehensive volume, which the reader will undoubtedly find both

interesting and useful.

Published in London, UK

© 2023 IntechOpen
© ktsimage / iStock

ISBN 978-1-80356-635-1

U
pdates on Soft

w
are U

sability

Updates on
Software Usability
Edited by Laura M. Castro

Published in London, United Kingdom

Updates on Software Usability
http://dx.doi.org/10.5772/intechopen.102281
Edited by Laura M. Castro

Contributors
Josef Pavlíček, Petra Pavlíčková, Robert Strohmaier, Gerhard Sprung, Sandra Schadenbauer, Alexander
Kurt Nischelwitzer, Steve McKeever, Luiza Fabisiak, Barbara Jagielska, Laura M. Castro

© The Editor(s) and the Author(s) 2023
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2023 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Updates on Software Usability
Edited by Laura M. Castro
p. cm.
Print ISBN 978-1-80356-635-1
Online ISBN 978-1-80356-636-8
eBook (PDF) ISBN 978-1-80356-637-5

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

6,300+
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

170,000+
International authors and editors

185M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Meet the editor

Dr. Laura M. Castro is a professor at the University of A
Coruña, Spain, where she has been lecturing for more than
fifteen years. Apart from being a coordinator of several under-
graduate courses on software architecture and software testing,
she is currently the president of the Institutional Chair for
Open Science Promotion through Software (CICAS). Her most
recent research interests focus on the automatic validation of

distributed systems. She has supervised three Ph.D. theses and acted as principal
investigator for several European projects. She is also actively involved in dissem-
ination activities, in particular the visibility of women in STEM, as a member of
the Association for Computing Machinery’s Council on Women in Computing
(ACM-W) Europe.

Preface XI

Section 1
Preliminaries 1

Chapter 1 3
Introductory Chapter: Why Usability Matters
by Laura M. Castro

Section 2
Designing for Usability 7

Chapter 2 9
Designing “Landing Page” for Websites Based on the User Experience:
Review, Analysis, and Interpretation
by Luiza Fabisiak and Barbara Jagielska

Chapter 3 29
Managing Quantities and Units of Measurement in Code Bases
by Steve McKeever

Section 3
Testing for Usability 49

Chapter 4 51
Usability Testing Methods and Usability Laboratory Management
by Josef Pavlíček and Petra Pavlíčková

Chapter 5 87
Usability Testing of Mixed Reality Scenarios: A Hands-on Report
by Robert Strohmaier, Gerhard Sprung, Alexander Nischelwitzer
and Sandra Schadenbauer

Contents

Preface

This book is an update to the book Software Usability, which was published only a
couple of years ago. Why is it that we need an update so soon? The good news is that
it is not a matter of the knowledge, techniques, or tools becoming obsolete, which is
something that does sometimes happen in the tech world. Rather, it is a sign that the
reflections, efforts, and work in this area are still expanding. This is good news as
society adopts more and more software for both professional and personal uses.

In this updated volume, we have broadened the perspectives from which software
usability is considered. That is, the book considers developers and technology makers
as users of software tools themselves. Even if very knowledgeable, self-confident, and
autonomous learners, developers are some of the most intensive software users there
are! Still, a significant part of this book’s content focuses on the process of making
software for the people.

This volume includes a collection of high-quality contributions to software usability
for developers and non-developers alike. While presenting novel research and experi-
ences, the book is also suited for the general reader. It is designed to disseminate new
ideas, making them accessible to people who might not be software makers but who are
undoubtedly software users.

Dr. Laura M. Castro
Department of Computer Science and Information Technologies,

University of A Coruña,
A Coruña, Spain

1

Section 1

Preliminaries

1

Section 1

Preliminaries

3

Chapter 1

Introductory Chapter:
Why Usability Matters
Laura M. Castro

1. Introduction

1.1 Usability and software development

Despite what it may seem at times in the context of software development
nowadays, usability is a rather old term. It was first defined in 1998 by the
International Standards Organization as part of ISO 9241-11: 1998. At the time,
usability was defined as “the degree to which a software can be used by specified
consumers to achieve quantified objectives with effectiveness, efficiency, and satisfaction
in a quantified context of use” [1].

It took two decades to review this document, two decades in which software and
people interact with software, have changed enormously, and continues to change
[2]. The ISO 9241-11:1998 is now superseded by ISO 9241-11:2018 [3], but the defini-
tion of usability has changed very little: “extent to which a system, product or service
can be used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.” So, it would seem that, even if we have moved
from orange/green monochrome monitors attached to very limited hardware in large
companies’ offices to ubiquitous high-resolution pocket-fitting devices, the main
concerns should still be three: effectiveness, efficiency, and satisfaction.

The paradox about software is that applications and systems have become tools for
other disciplines, and thus are being used to determine how they approach usability.
In other words, as architects, engineers, and even fashion designers, use 3D models,
AR, and VR, to test their creations, software is allowing them to improve user experi-
ence in fields from architecture [4] to food packaging [5]. The number of publications
in these fields that have to do with usability shows a similar trend, same as the general
interest in usability, according to people’s online searches (see Figure 1 and Table 1).

Thus, we could argue that the usability of software products is somewhat a key to
usability in many (and increasing) aspects of our daily lives.

Figure 1.
Global searches related to “usability” (source: Google Trends).

Updates on Software Usability

4

Last but not least, although almost all the time usability is about the user, software
developers are heavy users of software themselves, specifically software development
tools and applications. However, even if “programmers are users too” [6], there is
comparatively far less research in their direction.

2. The side-effects of usability

The ill effects of bad usability depend highly on the context and purpose for
which software is used. Of course, there is no comparison between angry users
that turns to other social networks or music streaming platforms, and the health-
threatening consequences of usability failures [7, 8]. However, bad software usability
might affect, as stated in the previous section, any field that uses software as a tool,
even archaeology [9].

While rating the severity of usability failures [10] is a sensible afterward approach
to what was not detected before, same as in software testing, the efforts that pay off the
most are those aimed to prevent usability failures from happening in the first place [11].

Something that cannot possibly be quantified is the harm done to the whole
software development industry as a whole, and to the regard in which society holds
technology and technology makers, when usability issues slip through to the final
users, the regular citizens [12].

3. Conclusions and challenges ahead

Quoting Melvin Kranzberg, “Technology is not positive, nor negative, nor neutral”
[13]. A biased development team, organization, and societal context… will most
likely produce biased software. No team produces unusable software on purpose, but
rather fails to understand what usability means to their users, in terms of its three key
components: effectiveness, efficiency, and satisfaction.

Unsuited (biased and unusable) technology is not only a cause for unhappy
people, but it may also lead to failed projects and economic losses. From a higher-level
perspective, it may even perpetuate stereotypes and hinder the empowerment of
minorities and underrepresented groups. Ultimately, the unsuitability of technology
delays innovation and progress.

Computer Science Architecture1 Engineering Food2

20223 825 25 452 25

2021 1203 45 605 17

2020 1268 24 575 14

2019 1398 29 725 13

2018 1124 25 509 14

2017 1096 36 474 15
1Taken as part of the “Arts and Humanities” category in SCOPUS.
2Taken as part of the “Agricultural and Biological Sciences” category in SCOPUS.
3We include 2022, even if it is still ongoing at the time of writing this chapter.

Table 1.
Number of scientific papers related to usability (data source: SCOPUS).

Introductory Chapter: Why Usability Matters
DOI: http://dx.doi.org/10.5772/intechopen.109241

5

Author details

Laura M. Castro
Universidade da Coruña, A Coruña, Spain

*Address all correspondence to: lcastro@udc.es

So far, the most effective ways of fighting biases in technology that we know are:
(a) being aware of said biases, in all their shapes and forms, and (b) strive to have
as much diverse development teams and organizations. From the perspective of
usability, we can work toward the construction of more inclusive, thoughtful ways of
interacting with software by carefully analyzing the individuals and societal non-
functional requirements, and being aware of the influence of cultural and geographi-
cal differences in the three key pillars: effectiveness, efficiency, and satisfaction.

The future ahead comes with unprecedented challenges: the myth of the digital
natives was debunked [14, 15], but will the digital divide with senior citizens [16]
really fade away as generations of developers age themselves? Or will new technolo-
gies appear once again, and will the software development industry stumble on the
same ineffective, inefficient, and dissatisfactory stone?

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Updates on Software Usability

6

[1] ISO 9241-11:1998 Ergonomic
requirements for office work with visual
display terminals (VDTs)—Part 11:
Guidance on usability [Internet]. 1998.
Available from: https://www.iso.org/
standard/16883.html

[2] Eischen K. The Social Impact of
Informational Production: Software
Development as an Informational
Practice. UC Santa Cruz: Center for
Global, International and Regional
Studies. 2002. Available from: https://
escholarship.org/uc/item/9rp0c3w4

[3] ISO 9241-11:2018 Ergonomics of
human-system interaction — Part 11:
Usability: Definitions and concepts
[Internet]. 2018. Available from: https://
www.iso.org/standard/63500.html

[4] Bittencourt MC, do Valle Pereira D,
Lúcia V, Júnior WP. The usability of
architectural spaces: Objective and
subjective qualities of built environment
as multidisciplinary construction.
Procedia Manufacturing. 2015;3:6429-
6436. DOI: 10.1016/j.promfg.2015.07.919

[5] Goswami B. The Role of Food Packaging.
Chapter of the Book: Global Challenges and
Innovation in Science and Management.
Delhi: KAAV Publications; 2019

[6] Myers BA, Ko AJ, LaToza TD,
Yoon YS. Programmers are users too:
Human-centered methods for improving
programming tools. In Computer.
2016;49(7):44-52. DOI: 10.1109/
MC.2016.200

[7] Alnosayan N, Chatterjee S,
Alluhaidan A, Lee E, Feenstra LH.
Design and usability of a heart failure
mHealth system: A pilot study. JMIR
Human Factors. 2017;4(1). DOI: 10.2196/
humanfactors.6481

[8] Johnson ME, Willey N. Usability
failures and healthcare data
Hemorrhages. IEEE Security &
Privacy. 2011;9(2):35-42. DOI: 10.1109/
MSP.2010.196

[9] Traviglia A. Archaeological usability
of hyperspectral images: Successes
and failures of image processing
techniques. BAR International Series.
2006;1568:123-130

[10] Sauro J. Rating the Severity of
Usability Problems [Internet]. 2013.
Available from: https://measuringu.com/
rating-severity

[11] Horgan JR, Mathur AP. Software
testing and reliability. In: Lyu MR, editor.
The Handbook of Software Reliability
Engineering. New York: McGraw-Hill;
1996. pp. 531-565

[12] Lauesen S. IT project failures,
causes and cures. IEEE Access.
2020;8:72059-72067. DOI: 10.1109/
ACCESS.2020.2986545

[13] Kranzberg M. Technology and
History: “Kranzberg’s Laws”. Technology
and Culture. 1986;27(3):544-560.
DOI: 10.2307/3105385

[14] Bennett S, Maton KA, Kervin L. The
'digital Natives' Debate: A Critical Review
of the Evidence. 2008. Available from:
https://ro.uow.edu.au/edupapers/1149

[15] The digital native is a myth. Nature.
2017;547(380). DOI: 10.1038/547380a

[16] van Dijk JAGM. Digital divide
research, achievements and
shortcomings. Poetics. 2006;34(4-5):221-
235. DOI: 10.1016/j.poetic.2006.05.004

References

Section 2

Designing for Usability

7

Chapter 2

Designing “Landing Page” for
Websites Based on the User
Experience: Review, Analysis, and
Interpretation
Luiza Fabisiak and Barbara Jagielska

Abstract

The primary web design method is user experience-based “landing page” web
design. It enables you to expand the reach of a particular company, institution, or
application. It aims to present ́ the most relevant information on the owner’s website. A
simple approach, such as split A/B testing, can provide reliable data because it
includes an appropriate set of alternatives. This article provides an overview, analysis,
and interpretation of the results obtained. It presents good and bad practices of
existing landing pages. The approach showed optimal solutions in aggregate, seg-
mented, and individual site users.

Keywords: UX, user experience, landing page, Adobe creative suit, website,
webpage, A/B tests, CTA, dark patterns

1. Introduction

Nowadays, when creating a brand, or a product, one should take proper care of its
advertising and kind of image. You need to clearly define the vision - what the product
will be associated with, whether it is good enough and whether there will be demand
for it. In the online world, achieving such a goal is much simpler than in the past - you
can set up a website to present your offer. However, there are challenges involved -
competition is even more significant than ever. You need to be original and, at the
same time, follow current trends and outlined guidelines. It is necessary to exist and
prove that life with our product will turn out to be simpler, more functional, and
easier to use. A landing page was created to understand our clients and know their
needs to encourage them to buy or make a specific profit. This page contains all
critical information about the potential customer while offering relevant product
information. Creating a catchy landing page requires a wealth of knowledge in the
fields of user experience, web architecture, marketing, and analysis of the data col-
lected by the owner. This study aims to analyze and interpret the perception of
website landing page prototypes and their templates created with Adobe software by
users of different age groups based on user experience.

9

2. Overview of methodologies and techniques for creating a landing page
based on user experience

A landing page, otherwise known as a landing page, allows you to expand the reach
of a particular company, institution, or application. Its purpose is to present the most
relevant information on the owner’s website. Users are redirected to a landing page
when they click on a link, advertisement, newsletter, or even online shopping. Thus, it
is a page to which one is redirected - usually from other portals. However, one can also
be redirected within a given system, site, or application - for example, to another tab,
such as purchasing or signing up for a mailing list. Profit is the key word - a landing
page is supposed to provide profit - in the form of financial, more observers, more
demand for a particular product, or simply visitors to the site [1].

A landing page is directly related to concepts such as Google Ads, Google Analyt-
ics, or at least the user experience itself - its task is to gather information from users -
or, more specifically, to motivate them to perform the actions on the page. For
example, registering on a website, signing up for a newsletter, or purchasing a specific
product or service [2]. The task of a landing page is to attract as many users as possible
to act. For this reason, tools such as Google Ads and Google Analytics are needed to
control, and analyze users’ data, track their movements inside the site and advertise to
get them to the landing page. Google Ads and Google Analytics are undoubtedly some
of the more critical user experience tools - with them, you can improve the content
found on portals or web vortals.

A landing page has several essential elements that must be present on it. Among
the most critical components of a properly executed landing page are:

• Clarity - little scrolling on the page, focus on the primary purpose,

• Simplicity - the least amount of text and elements is advisable,

• Visual appeal - corresponding to the basics of color scheme and typography on
websites,

• Catchy and short CTA (call-to-action), i.e., a call to action - for example, “Create
an account” instead of “Create an account on our site today.”

Like any website, a landing page should also be fast, mobile-friendly, and secure
[3]. The landing page can be divided into:

• Sales Landing Page - for selling goods, services,

• Lead Generation - for collecting customer data,

• Coming Soon - to inform about the event that will happen/product that will be on
sale,

• Click Through - to direct to another page.

A landing page is an excellent tool for market research, competition, and
analysis [4].

10

Updates on Software Usability

2.1 Methodologies for creating and elements of UX-oriented landing pages

Google Ads and Google Analytics play a significant role in landing page design.
Thanks to them, the portal owner, or UX designer, can create the ideal marketing
persona or document for the prospects who use a given site. Thanks to these tools,
we can find out who is interested in the content appearing on a page. We can find
out, for example - where the person is from, their age, education, or employment.
Of course, these are not the only supporting tools. Based on this information, an
experienced UX designer can determine a prospect’s motivations and concerns.
What influences their decisions, what their typical day looks like, or what goal they
want to achieve by using the service are additional information that can infer from
this information [5].

2.1.1 CTA, or call to action

A vital landing page element is the so-called CTA button or calls to action button. It
is usually located in a prominent place in the very center of the site. It should stand out
from other elements. This button is supposed to convey clear and precise information -
what will happen when the user clicks on it? The information should be short, concise,
striking, and simple in its message.

2.1.2 Graphic interface and typography of the landing page

The essence of most websites, including landing pages, is their design. The char-
acteristic elements of a landing page, for example, are the CTA mentioned in Section
2.1.1. However, a call to action is not the only element of a landing page.

Limited text is a must. Fineness and detail are by no means advisable when
designing such a page. What matters is the quick transmission of the essential infor-
mation. Usually, it is the first seconds of the reception of a given site that determines
the attraction of the viewer’s attention [6].

The text is naturally connected with the font, size, type, or placement. Typography
is an essential aspect of a landing page. The placement of typography depends mainly
on the background and the page’s image. In addition, it is a good idea to vary the size
of fonts for headings and buttons versus the page content itself. Line spacing is also
crucial, as well as line width - the maximum width is about 70 characters,
corresponding to the width of A4-sized text [7]. The text must also contrast well so
that it is easy to read. At most, the site should have two fonts - for example, headlines
and text. It is also good practice to choose “standard” fonts - ones that the user has
probably seen before (e.g., Helvetica or Arial).

Testimonials or customer logos are an exciting element that may or may not appear
on our landing page. Testimonials are short videos usually containing a customer’s
opinion about our product. In it, he expresses his experience with it. They help and
encourage a potential future observer of our site to make a purchase. Logos of known
or existing customers, on the other hand, will inspire confidence that our product is
made reliably and that someone is already using it. Any certificates, awards, or prizes
in competitions can also be an additional asset [8]. Another confidence-inspiring
element can be to show your contact information, such as your phone number, email,
or business address.

11

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

2.1.3 Dark patterns

Dark patterns are deliberate practices that various companies or institutions use to
achieve certain benefits, usually marketing or financial [9]. While these practices are
legally legal, they are hardly ethical solutions. Therefore, it is quite a risky user
experience practice.

These are online behaviors designed to manipulate viewers into doing something
they do not necessarily want to do, such as joining an unsolicited newsletter to access
a particular website or read an article.

Dark patterns can include, for example, bait and switch, forced disclosure, roach
motel, forced continuity, friend spam, misdirection, sneak into the basket, confirm
shaming, trick questions, privacy Zuckering, triggering fear, and disguised advertise-
ments [10]. In Figure 1, you can see a typical example of a dark bait and switch
pattern. This is one of the more commonly used dark patterns. It deceives the viewer
by displaying several links, buttons, or redirection options on a given area of the
website. In this situation, the user is often misled and does not necessarily click on the
link they wanted. Clicking on another can, for example, download an unwanted
program or, as in the example below, update your computer system.

Dark patterning is very controversial among the design community or web archi-
tects. Undoubtedly, they can bring a lot of benefits to a given site. However, it can also
harm it. Viewers can easily be discouraged by such practices and thus abandon visiting
a particular site. Equally, many corporations use them for their profits, but many
abandon them for the sake of ethics and certain unwritten norms [12].

2.2 Examples of good and bad practices in landing page design

A landing page is also a website, so creating it should be guided by existing design
principles. The fundamental rules are user experience, esthetics, Gestalt principles,
limited color palette, fit for mobile devices, security, and typography [13]. However,
the landing page has a couple of elements that need special attention - these are what
distinguish it from other tabs on a given website.

Figure 1.
Example of recipient deception, bait, and switch [11].

12

Updates on Software Usability

2.2.1 Good practices

One of the correct practices is a header that precisely indicates the value - the button
should be above the fold. This element should be the most visible element on the page.

Another important aspect is the form - how long it should be and whether it
collects only the most relevant user information. For example - an irrelevant piece of
information will be the user’s ownership of animals if you have a stock market
website. From the perspective of meeting a business objective, you need to make sure
that it is of sufficient length and that it does not also collect sensitive data from the
recipient. Many users may become discouraged and not visit the site in question. The
collection of sensitive data must be justified and explained [14].

Simple design is undoubtedly a trend in recent years in the design of all kinds of
web pages. However, designing a landing page also has another use - it focuses only on
its most crucial element - conversion, i.e., acquiring contact and then profit (e.g.,
selling a product, joining a mailing list). Distracting the viewer with an overly creative
and colorful page is not advisable [15].

From a marketing perspective, page load time is essential for a landing page.
According to a Google study, only 15% of respondents met the goal of loading a page in
no more than 5 seconds [16]. This is an essential factor as it affects the final audience.

Another good practice in landing page design is a graphic or video showcasing our
site’s product. This is a very modern trend that can become a factor in attracting even
more watchers. Interest in the product is one aspect, but if it is shown in an attractive,
interesting, creative way - it will attract more takers. Recently, a very commonly used
scheme is videos that stretch across the entire screen resolution, but you must remember
to optimize these videos. They can slow down a given page a lot [14]. Often an adequately
selected graphic is called a “hero shot.” If the photo, the graphic, supports the message,
the intention of the page, and fits the offer - it means that it was chosen correctly [8].

Critical practice is customer feedback - very often, we check the observations and
ratings of others on a product. Their insights can warn against a potentially unsuc-
cessful purchase or encourage us to make a good investment. It’s worth posting them
somewhere in the middle or end of our landing page - an essential and good practice
but not the most important one from a marketing perspective [17].

Concise and understandable is the key to a well-executed landing page. The page
should convey as little content as possible, which at the same time will be overflowing
with helpful information. It is worth operating with the so-called “language of bene-
fits” - what the user will gain by owning the product and what conveniences accom-
pany the purchase. The creation of a personal document allowed the creation of more
targeted content by understanding consumer needs [18].

2.2.2 Malpractices

Placing navigation at the top of our website can discourage the user - he will
quickly change our site to another one. Any buttons should be in the center of our
subpage. The lack of user interaction makes our landing page just an ordinary website.
Conversion is a critical element of a landing page and should not forget - it is not only
an unfair practice but also considerable negligence.

Complicated design only distracts the potential user. The recipient will most often
abandon the use of our site without reading the information on it.

If the page takes too long to load, it will easily discourage a prospective buyer
from doing anything. If the page does not load quickly, the recipient may assume that

13

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

the services offered by the owner will not be of very high quality either, or perhaps
will not reach him. It is, therefore, worth optimizing this page.

A mismatched ad on the landing page will confuse any viewer. The user needs to
know that they have come to the right place. Hence the ad must contain the same
message. Raising doubts in observers is not advisable [17].

3. Landing page prototypes

They made four pairs of prototype landing pages to test users’ general knowledge of
web design and user experience. In each of the five pairs of landing page prototypes, you
can see the differences between versions A and B. For simplicity, version A is at the top
of a given pair - version B at the bottom. The prototypes were made so that in some of
the pairs, the differences were already apparent when first looking at them. In others, the
differences are only apparent on closer inspection. The prototypes presented were also
arranged the same way in the survey - as the first set varies the most. Thanks to this
procedure, it was also possible to differentiate the approach of the respondents - whether
they focused their attention on the general, the whole, or the details of the pairs of
prototypes. A pair of prototypes that differed little would define the respondents’
approach to focusing only on the details. The landing page prototypes differed in typog-
raphy, color scheme, overall visual aspect, as well as on the quality of the selected images,
and a modern approach in design such as neomorphism, in which 2D or 3D elements
take on a background color giving the impression of being very uniform, even merged.

During the creation of the prototypes, followed both good and bad design practices
to determine whether the average web user can perceive these differences and has a
basic knowledge of web design, in this case, landing pages.

The prototype presented is “Veggie’s,” whose differences are immediately apparent -
the A version has less opacity and has only one typographic font. The elements do not
generally contrast as well as in the B version. Version B additionally uses two font types -
for the informational text and a standard font for the logo and the button with the CTA.
In addition, the A version logo washes out the background color is taken from the darkest
point of the background photo, whereas in the B version, the white color contrasts with
the photo. It enhances the logo, and it is more readable.

Therefore, version B is the correct version regarding user experience and design
principles (Figure 2).

The next pair of prototypes show the hotel accommodation search service
“hotelandresortspa.eu”. The main difference in this pair is the color scheme of the two
versions - the first is dominated by purple-blue, while the second is pink. In both
versions, they are esthetically pleasing and match the background photo. According
to design rules, however, the color scheme should relate to the background photo - so
in theory, users should lean towards version A (Figure 3).

However, many users subconsciously choose solutions that feature contrast, char-
acteristic of design trends in the past. Thus, it can conclude that both are done
correctly in this pair of prototypes, but one is more in line with today’s standards.
However, it is likely that both, with a larger sample of users, would be considered
correct - depending on the user’s age, i.e., the likely seniority of Internet use and their
preference for site design (Figure 4).

The final prototype is a prototype in which current web design principles create
versions A and version B. Version B uses neomorphic elements - elements that merge
colorfully with the background elements modeled on 3D graphics (Figure 5).

14

Updates on Software Usability

Figure 3.
Second pair of prototypes.

Figure 2.
First pair of prototypes.

15

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

Figure 4.
Third pair of prototypes.

Figure 5.
Fourth Third pair of prototypes.

16

Updates on Software Usability

On the other hand, Version A is a more conservative version, probably appealing
to a larger audience in general. Version B is the version for younger users who may
have been exposed to the trend of neomorphism in many applications - it is nothing
new or revelatory for them. It is more natural. It is worth noting that in the pairs of
prototypes produced, it is impossible to determine which version is prettier clearly -
this is a very subjective evaluation of each user. However, one can be guided by
current design trends and user experience principles in such a way that one can
determine which version is better and more functional. Also, notably, it included no
dark pattern in the manufactured prototypes. Research on the manufactured proto-
types is presented in the following subsection of the paper.

4. A/B testing analysis of the created landing page prototypes and surveys

Performed A/B testing of the created prototypes and surveys for testing. The pur-
pose of A/B testing was to test the knowledge of the basic principles of website creation
websites - in this case, landing pages - of users of different age groups and their personal
preferences. The survey involved 451 users, including both men and women.

4.1 A/B tests

The user was allowed to make a single choice in the choice tests between two
versions of the prototypes - versions A and B (Figure 6).

Figure 6.
Query in the test.

17

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

The command “Choose the version of the site that you think is better” has been
specially constructed - so that the user does not suggest only one factor but the whole
and complete site. Not necessarily just the appearance but also the functionality or a
more modern approach to design. It assigned the command to each of the five pairs of
prototypes.

4.2 Survey construction

The survey for A/B testing consisted of seven questions. Each question in the
survey was mandatory and had clear answer guidelines - only one answer was always
possible. The survey did not contain open-ended questions. It avoided answers that
were not detailed enough or answers that were not relevant to the topic of the work.

The first question was a gender question, in which one could choose the “Female”
and “Male” answers.

In addition, users were divided into four age groups:

• 10-22 years old - users who have been in contact with the Internet and computers
since they were young and are mainly only familiar with the latest web design
trends;

• 23-30 years old - users whose contact with the Internet and computer most likely
began in their teenage years, having an idea of existing design trends in the early
21st century;

• 31-45 years old - users whose contact with the Internet and computer probably
began in adulthood during their teenage years, who are definitively familiar with
the design of Internet and computer content and trends of the early 21st century;

• 46+ years - users whose contact with the Internet began in adulthood are less
likely to browse the web and are unfamiliar with today’s trends and web design
standards.

The next question asked about the frequency of Internet use. The question was
asked in the form of a linear scale, from 1 to 5, where 1 - very rarely and 5 - very often.
The amount of time spent, such as the answer “5 hours a day,”was unnecessary in this
question. What mattered was the user’s subjective assessment, which made it clear
whether they had daily contact with websites.

The next question was, “Do you often pay attention to the appearance of
websites?” The answers were:

- “Yes, I pay attention to the appearance of websites; it is the most important.”

• “I pay attention to the website’s appearance, however, more to its functionality.”

• “I pay attention to the appearance of the website to a moderate degree.”

• “No, I don’t pay complete attention to it.”

Responses to this question in a later survey made it possible to divide users into
those who pay more attention to the details of the sites, the esthetics, and those who
are not influenced by the site’s appearance—also tested familiarity with the concept of

18

Updates on Software Usability

a “landing page” during the survey execution. The next question was about this term -
not everyone may have been familiar with it (Figure 7).

The next question in the survey was, “When performing A/B tests, did you pay
attention to page details?” Possible answers to mark were:

• “I looked carefully before choosing an A or B version, e.g., font size and type,
color scheme, etc.”

• “I looked at the pages more generally, holistically, seeing some differences on
them.”

• “I didn’t pay particular attention to the differences between versions A and B.”

Since users can be divided here into visual and more interested, this is a funda-
mental question for the survey. This is because some users may not have noticed any
differences between the A and B versions despite the specially selected order of pro-
totypes in the A/B tests. Others, on the other hand, may have looked all too closely for
some hidden content on the site after the first pair of prototypes without focusing on
the site.

The last question was about performing A/B tests in the past. This question was
strictly informational and did not change the subjective feelings about a particular pair
of user prototypes. One can only assume that a user who had once performed such
tests would approach the task more generally because he knew what to expect when
performing the test.

5. Analysis and interpretation of the results of A/B tests of surveys

Simplified in work where the analysis and interpretation of data, A/B testing, and a
survey through a single form via Google. This allowed us to see correlations between
users’ choices regarding their age, gender, or frequency of Internet use. The form
was divided into the A/B tests and the survey. Completed the form by 451 people,
including 180 men (39.9%) and 271 women (60,1%). 85 participants (18.8%)
were aged 10–22, 148 participants (32.8%) were aged 23–30, 111 (24.6%) were aged
31–45, and 107 participants (23.7%) were over 46 years old. For the question “Do
you often use the Internet?”, where 1 is very rarely and 5 is very often, the number of
respondents was as follows: 1–3 respondents (0.7%), 2–7 respondents (1.6%), 3–29
respondents (6.4%), 4–61 respondents (13.5%), 5–351 respondents (77.8%)
(Figure 8).

Figure 7.
Survey query for A/B testing.

19

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

About 67.6%, or 305 of those filling out the form, pay attention to the functionality
of the site, not the look of it. In contrast, as many as 17.7%, or 80 respondents, believe
that the website’s appearance is the most important thing. 11.3%, or 51 respondents,
focus only partially on the website’s appearance. The rest, or 15 people (3.3%), do not
focus on web design (Figure 9).

Of all respondents, as many as 55.2%, which equals 249 recipients, knew what a
landing page was. The rest, 44.8%, 202 recipients, did not know the term (Figure 10).

Before choosing version A or version B, A/B testing of landing page prototypes was
looked at by 274 people. They paid attention, for example, to the size of the fonts,
their type, and the color scheme of the prototypes. 37.9% of the respondents, or 171
people, looked at the prototypes more holistically. However, they noted differences
between the A and B versions. Only six individuals (1.3%) did not pay particular
attention to the differences between the A and B versions.

Of those surveyed, as many as 241 had already performed A/B tests in the
past (53.4%). The remaining 210 (46.6%) performed such tests for the first time
(Figure 11).

For each pair of prototypes, the results were as follows:

• “Veggie’s” - A version 11.5% (52 respondents), B version 88.5% (399 respondents)
(Figure 12)

Figure 8.
Survey results relative to the frequency of Internet use.

Figure 9.
Survey results relative to paying attention to website design.

20

Updates on Software Usability

Figure 11.
Survey results on prior performance of A/B tests.

Figure 12.
A/B test results for a pair of prototypes “Veggie’s”.

Figure 10.
Survey results on familiarity with the landing page concept.

21

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

The results by gender are as follows: For prototype one, 34 women chose version A
(12.5% women), and as many as 237 women chose version B (87.5% women), whereas
18 men chose version A (10% men), while version B was chosen by 162 (90% men).
This means that the results for the first pair of prototypes were very similar in percent-
age terms. There is no significant difference in gender with the first pair of prototypes.

• “hotelandresortspa.eu” - Version A 64.5% (291 respondents), version B 35.5%
(160 respondents) (Figure 13)

In this pair of prototypes, as many as 168 women chose version A (62% women)
and 103 version B (38% women). Men chose very similarly in percentage terms -
123 chose version A (68.3% of men) and 57 version B (31.7% of men).

• “homeDESIGN” - version A 86.5% (390 respondents), version B 13.5%
(61 respondents) (Figure 14)

Figure 13.
A/B test results for a pair of prototypes “music.com”.

Figure 14.
A/B test results for a pair of prototypes “homeDESIGN”.

22

Updates on Software Usability

In this pair of prototypes, there are slight differences in the choice between
versions A and B regarding gender. As many as 227 women (83.8% women) chose
version A, whereas 44 women (16.2% women) chose version B. 163 men (90.6% of
men) chose version A, while the rest (9.4% of men) - 17 men - chose version B.

• “music.com”- A version 31% (140 respondents), B version 69% (311 respondents)
(Figure 15)

In the last pair of prototypes, there were also no significant differences in the
choice between the sexes. Women chose as follows: Version A by 83 women (30.6% of
women), Version B by 188 women (69.4% of women). Among men, the results were
as follows: 57 men chose version A (31.7% of men), while version B was chosen by
123 men (68.3% of men).

Because of the respondent’s answers, the conclusion is that they prefer the appear-
ance of prototypes that conform to generally accepted design principles 36 regardless
of gender. The differences in the choices of the different versions were insignificant in
the survey.

In the entire survey, a total of only 10 people very rarely or rarely (responses with
values of 1 and 2) used the Internet. These included two men and eight women. All
users, except for one woman in the 31–45 age category, were over 46 years old
(Figure 16).

In Figure 16, we can see that three people chose “I pay moderate attention to the
site’s appearance,” Four chose “I pay attention to the site’s appearance, but more to its
functionality,” and the rest chose “No, I don’t pay attention to it at all.” In the first two
pairs of prototypes by a majority (9 out of 10 votes), these people chose version B - the
correct version in terms of user experience. In the third and fourth pairs of prototypes
between versions A and B, the scores were 5 for both versions. In the fifth pair of
prototypes, there were 4 A, and 6 B responses - the correct version here was B.

For the question “Did you pay attention to the details of the pages when doing A/B
testing?” Six respondents did not pay particular attention to the differences in the
prototypes. All of these people, except one in the 10–22 age group, were older than 46.
Only three of them knew what a landing page was, including the person in the
youngest age group.

Figure 15.
A/B test results for a pair of prototypes.

23

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

In the question “Do you often pay attention to the appearance of websites?” many
as 15 respondents do not pay attention. Only one of these people knew what a landing
page was. These people also answered the frequency of Internet use - each gave a
different answer from 1 to 5, in the same question, seven users. Interestingly - as many
as 7 of these people answered, “I looked carefully before choosing the version they
looked at before choosing version A or B, e.g., the size of the fonts and their type,
color scheme, etc.”. This indicates that they probably pay attention to the appearance
of websites daily, however.

Additionally, in the question: Paying attention in the prototype to the details
between versions A/B - 159 women (58.6% of all women) and 115 men (62.8% of all
men) said they looked at the site closely before choosing the better version.

In contrast, in the general question: The appearance of websites - 49 women (18%
of all women) and 31 men (17% of all men) believe that the look of a website is most
important.

In addition, I calculated the mean and median for the Internet frequency rubric on
a scale of 1 to 5. The mean was 4.66, while the median was 5. Thus, most users have
constant contact with websites.

6. Conclusion

The paper presents an analysis and interpretation of the perception of website
landing page prototypes and their templates created with Adobe software by users of
different age groups based on user experience. The analysis presented shows that,
depending on age, users have different preferences about the appearance of the
websites in question. It is due to contact only with the latest design trends of younger
people. Most likely, users have not all been exposed to other web design principles.
From a young age, users are present with more esthetically pleasing websites. On the
other hand, it’s somewhat of a novelty for older users.

Figure 16.
Distribution of responses for very infrequent and infrequent use of the Internet in terms of paying attention to the
appearance of websites.

24

Updates on Software Usability

Due to the respondents’ responses, the conclusion emerges that they mostly prefer
the appearance of prototypes that conform to generally accepted design principles.
The experiment shows that gender has little influence on this. It does, however, have
the age and frequency of Internet use. Most users prefer when a site is esthetically
pleasing but functional. Proved that in the age group over 46, the responses differed
the most from generally accepted design principles relative to other age groups. The
differences were up to 22%. Very often, in the 31–45 age group, the answers differed
from those of the 10–22 and 23–30 age groups. These groups have been in contact with
the Internet since childhood or teenage years. The differences here were also up to
20%. However, the responses of the 46+ age group differed the most on average in the
five pairs of prototypes to other age groups.

The appearance of websites has changed dramatically over the years. Over time,
sites have evolved both functionally and esthetically. Their main idea and concept
have changed. Nowadays, content should no longer only be understandable to the
user but also compressed to a minimum. They aim to convey the most relevant
information with as little text as possible. This analysis can also help create and
design landing pages to avoid bad practices while using good ones. Creating a
correct landing page for any user, regardless of age, is difficult. Therefore, this
work can serve as an educational resource for those beginning to design
UX-compliant websites.

Author details

Luiza Fabisiak* and Barbara Jagielska
West Pomeranian University of Technology in Szczecin, Szczecin, Poland

*Address all correspondence to: lfabisiak@zut.edu.pl

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

25

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

References

[1] Ash T, Page R, Ginty M. Landing Page
Optimization. Indianapolis: John Wiley
& Sons; 2012. p. s.4

[2] Detante. 2022. [Internet] Available
from: https://delante.pl/definicje/
landing-page/. [Accessed: 17-05-2022]

[3] Wix Blog. 2022. [Internet] Available
from: https://pl.wix.com/blog/
artykul/tworzenie-landing-pages?utm_
source=google&utm_medium=cpc&
utm_campaign= 14050035777^13386288
5908&experiment_id=^^536052956
531^^_DSA&gclid=CjwKCAjwj42UB
hAAEiwACIhADgEjBrBsVbIdEvomx
jvN_UNcGdHA3gnsgTaAkcsVIIobTPZ0
PKcUhoCBOsQAvD_BwE#viewer-9blrs.
[Accessed: 12.01.2022]

[4] Prodesigner. 2022. [Internet].
Available from: https://prodesigner.pl/
co-to-jest-landing-page/. [Accessed:
17-12-2021]

[5] Marczak. 2022. [Internet]. Available
from: https://marczak.me/efektywny-
landing-page/#mcetoc_1d5c0ebdr3.
[Accessed: 08-06-2022]

[6] Landingi. 2018. [Internet] Available
from: https://landingi.com/pl/blog/
4-techniki-optymalizacji-landing-
page-potencjalnie-szkodzace-konwersji/.
[Accessed: 17-05-2022]

[7] Raidboxes. 2019. [Internet] Available
from: https://raidboxes.io/pl/blog/
webdesign-development/typographie-
grundlagen-webfonts-tipps/. [Accessed:
24-04-2019]

[8] Damianrams. 2019. [Internet].
Available from: https://www.
damianrams.pl/landing-page/#8_
dobrych_praktyk_w_tworzeniu_
landing_page. [Accessed: 12-02-2019]

[9] Koduje. 2022. [Internet] Available
from: https://www.koduje.pl/dostepne-
materialy/dark-patterny-na-kodu-je.
[Accessed: 23-05-2022]

[10] RekinySukcesu. 2022. [Internet]
Available from: https://www.
rekinysukcesu.pl/blog/internet/dark-
patterns-czyli-ryzykowna-praktyka-ux.
[Accessed: 20-07-2022]

[11] Netsolution. 2021. [Internet] Available
from: https://www.netsolutions.com/
insights/dark-patterns-in-ux-disadvantage
s/. [Accessed: 09-07-2021]

[12] Gray CM, Kou Y, Battles B, Hoggatt
J, Toombs AL. The dark (patterns) side
of UX design. In CHI 2018 - Extended
Abstracts of the 2018 CHI Conference on
Human factors in Computing Systems:
Engage with CII (Conference on Human
Factors in Computing Systems -
Proceedings; Vol. 2018 - April).
Association for Computing Machinery.
DOI: 10.1145/3173574.3174108

[13] Gupta S, Kumaraguru P. Emerging
Phishing Trends and Effectiveness of the
Anti-Phishing Landing Page.
Birmingham, IEEE; 2014. p. s. 39

[14] Marczak. 2021. [Internet] Available
from: https://marczak.me/efektywny-
landing-page/#mcetoc_1d5c0rjic7.
[Accessed: 08-06-2021]

[15] Gofman A. Consumer driven
multivariate landing page optimization:
Overview, issues, and outlook.
Transactions on Internet Research. 2007.
p. 2. Available from: http://tir.ipsitransac
tions.org/2007/July/Paper%2003.pdf.
[Accessed: 15-12-2022]

[16] Unbounce. 2021 [Internet] Available
from: https://unbounce.com/page-
speed-report/. [Accessed: 17-05-2022]

26

Updates on Software Usability

[17] Ash T, Page R, Ginty M. Landing
Page Optimization. Indianapolis:
John Wiley & Sons; 2012. p. s.31

[18] Landingi. 2022. [Internet]
Available from: https://landingi.com/
pl/tworzenie/landing-page/.
[Accessed: 17-05-2022]

27

Designing “Landing Page” for Websites Based on the User Experience…
DOI: http://dx.doi.org/10.5772/intechopen.109240

Chapter 3

Managing Quantities and Units of
Measurement in Code Bases
Steve McKeever

Abstract

Quantities in engineering and the physical sciences are expressed as units of
measurement (UoM). If a software system fails to maintain the algebraic attributes of
a system’s UoM information correctly when evaluating expressions then disastrous
problems can arise. However, it is perhaps the more mundane unit mismatches and
lack of interoperability that over time incurs a greater cost. Global and existential
challenges, from infectious diseases to environmental breakdown, require high-
quality data. Ensuring software systems support quantities explicitly is becoming less
of a luxury and more of a necessity. While there are technical solutions that allow
units of measurement to be specified at both the model and code level, a detailed
assessment of their strengths and weaknesses has only recently been undertaken. This
chapter provides both a formal introduction to managing quantities and a practical
comparison of existing techniques so that software users can judge the robustness of
their systems with regards to units of measurement.

Keywords: units of measurement, quantities, dimension checking, unit conversion,
libraries, component based checking

1. Introduction

With ubiquitous digitalisation, and removal of humans in the loop, the need to
faithfully represent and manipulate quantities in physical systems is ever increasing
[1]. Popular programming languages allow developers to describe how to evaluate
numeric expressions but not how to detect inappropriate actions on quantities. Con-
sequently there have been infamous examples, such as the Mars Climate Orbiter [2],
where units of measurement (UoM) conversion omissions led to catastrophic
outcomes.

Humans have used local units of measurement since the days of early trade,
enhanced over time to fulfil the accuracy and interoperable needs of science and
technology. In the 19th century, James Clerk Maxwell [3] introduced the concept of a
system of quantities with a corresponding system of units. This generalisation allowed
scientists working with different measurement systems to communicate more easily,
as unit names (such as inch or metre) are treated as numeric variables and can be
interchanged through multiplication.

29

There are many ways in which manipulating physical quantities in a digital system
can be made more robust. Thereby enabling the developer to depend on an automated
validator, rather than trust, to ensure UoM are handled correctly. The software engi-
neering benefits of embracing quantity checking and automatic conversion support is
beyond dispute. It is clear from the various known UoM failures that one size does not
fit all. However, a general lack of awareness has ensured that developers often rein-
vent the wheel or forego any kind of checking. From a correctness perspective, the
optimal solution would be to natively support quantities as this allows for efficient
unit conversion and static checking. However none of the mainstream languages
provide such support, nor is that level of rigour always required. A software library
might seem to confer the desired functionality of adding a unit type to one’s preferred
language but they are inconvenient in practice, adding an extra layer to one’s code
base, and incur a performance cost. All popular programming languages have a mul-
titude of freely available quantity libraries but we argue that these are best suited to
applications in which UoM checking is required at run-time. Component based
checking and black-box testing are two lightweight methods of providing a degree of
robustness while sacrificing completeness. Component checking will only validate the
interfaces between components, while testing will ensure known examples of
methods dealing with quantities perform correctly. Neither are comprehensive.

Implicit in our presentation is that the various approaches have compromises. For
users who need a degree of robustness when using quantities in their code bases, this
discussion is very important. An approach that initially might seem suitable for a
given project, could be too costly in terms of speed, too cumbersome in terms of use or
too risky by creating an unnecessary dependency on some library. In Section 2 we
discuss early attempts to incorporate UoM checking into programming languages, and
recent attempts to incorporate quantities into modelling languages. In Section 3 we
introduce a very simple assignment language to show how the various aspects of
quantities are defined and validated. In Section 4 we discuss the various approaches to
providing quantity support in programming environments, highlighting their
strengths and weaknesses. We summarise the results of our comparative study in
Section 5, providing suggestions for developers as to which method to choose
depending on their requirements, along with enabling software users to access perti-
nent aspects of an implementation that claims UoM support.

2. Background

Dimensions are physical quantities that can be measured, while units are arbitrary
labels that correspond to a given dimension to make it relative. For example a dimen-
sion is length, whereas ametre is a relative unit that describes length. Units of measure
can be defined in the most generic form as either base quantities or derived quantities.
The base quantities are the basic building blocks, and the derived quantities are built
from these. For instance, the base quantity for time is second and that for length is
metre in the International System of Units (SI), also known as the metric system. The
SI system of measurement is based on seven base quantities for length, mass, time,
electric current, temperature, quantity, and brightness [4]. Velocity, (metre/second
ormetre� second�1), is a derived quantity made from the two base quantities. Rather
than representing UoM as a tree structure, a normal form exists which makes storage
and comparison a lot easier. Any system of units can be derived from the base units as a
product of powers of those base units: basee1� basee2 � ::: baseen , where the exponents

30

Updates on Software Usability

e1,:::,en are rational numbers. Thus an SI unit can be represented as a 7-tuple e1, :::, e7ð Þ
where ei denotes the i-th base unit; or in our case e1 denotes length, e2 mass, e3 time and
so on.

Adding units to conventional programming languages originates in the 1970s [5]
and early 80s with proposals to extend Fortran [6] and then Pascal [7]. However these
efforts were heavily syntax based and required modifications to the underlying lan-
guages, reducing backwards compatibility and thus uptake. Ada’s abstraction facili-
ties, namely operator overloading and type parameterisation, allowed for a more
versatile approach [8] to labelling variables with UoM features. With the appearance
of practical object oriented programming languages, such as C++ and Java, developers
began to implement UoM either by means of a class hierarchy of units and their
derived forms, or via the Quantity pattern [9]. This has led to a veritable explosion in
the number of UoM libraries available for all popular programming languages based
on this pattern [10].

Software development typically begins at a more abstract level through diagrams
and rules that focus on the conceptual model that is to be implemented. Extensions to
the Unified Modelling Language (UML) have been proposed to support quantities.
SysML, for instance, is defined as an extension of a subset of UML to support systems
engineering activities and has extensive support for quantities1. Unit checking and
conversion can be undertaken before code is generated, either through a compilation
workflow that leverages Object Constraint Language (OCL) expressions [11] or staged
computation [12]. Unless the workflow has been created specifically, declaring quan-
tities in a system specification language offers no guarantee that the UoM information
is supported in the eventual implementation. The aim of this chapter is to discuss the
various ways in which quantity information can be transferred into software and
errors detected either at compile-time or run-time. Motivated by a prior critique of
UoM libraries and a survey of scientific coders [13], we assess various approaches
based on their ease of use, execution speed, numeric accuracy, ease of integration and
coverage of unit error detection capabilities.

We lack a definitive understanding of how frequently quantity errors occur in
practice. Anecdotally we can infer that it is not negligible from experiments described
in the literature. When applied to a repository of CellML models, a validation tool [14]
found that 60% of the descriptions that were invalid had dimensionally inconsistent
units. A spreadsheet checker [15] was applied to 22 published scientific spreadsheets
and detected 3, nearly 14%, with errors. Ore [16] applied his lightweight C++ unit
inconsistency tool to 213 open-source systems, finding inconsistencies in 11% of them.
It must be noted that these figures are gleaned from post development studies and are
not representative of a quantity adhering software discipline. Thus, it seems impor-
tant to ensure UoM information existing in software models is supported in derived
implementations.

3. Validating quantities

Performing calculations in relation to quantities, dimensions and units is subtle
and can easily lead to mistakes. We shall begin by looking at a very simple language of
declarations and assignments so that we can untangle the various aspects involved in

1 https://sysml.org

31

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

managing quantities correctly. A program will consist of a sequence of UoM variable
declarations, uv, followed by a sequence of assignment statements, ustmt. Unit arith-
metic expressions, uexp, impose syntactic restrictions so that their soundness can be
inferred using the algebra of quantities.

ustmt ≔ uv ≔ uexp
uexp ≔ uv ∣ uexp1 þ uexp2 ∣ r � uexp ∣ uexp1 � uexp2

By creating a separate syntax for unit expressions we can distinguish between scalar
values, such as r, and unitless quantities in which all the dimensions are zero, such as
moisture content. Consider a simple program to calculate Newton’s second law of motion:

begin
f : float;
m : float of 5.7;
a : float of 3.2;
...
f : = m * a

end
We can use the evaluate function, E of Figure 1, with an environment consisting of

values for m and a to calculate f:

E m �a½ �½ � m↦5:7, a↦3:2f g ¼ E m½ �½ � m↦5:7, a↦3:2f g � E a½ �½ � m↦5:7, a↦3:2f g
¼ m↦5:7, a↦3:2f g mð Þ � m↦5:7, a↦3:2f g að Þ
¼ 5:7 � 3:2

As is the case in nearly all programming languages, users have to assume that the
mass (m) is given in kilograms, and the acceleration (a) is given in metres per second
per second for the assignment to be correct. The reminder of this section explores the
various aspects involved in handling quantities correctly, and how these aspects can
be automated.

3.1 Dimensions

A dimensional analysis needs to ensure that (1) two physical quantities can only be
equated if they have the same dimensions; (2) two physical quantities can only be
added if they have the same dimensions (known as the Principle of Dimensional
Homogeneity); (3) the dimensions of the multiplication of two quantities is given by
the addition of the dimensions of the two quantities. If we only consider the three

Figure 1.
Rules for evaluating expressions.

32

Updates on Software Usability

common dimensions of length, mass and time then we can capture the rules for
addition and multiplication.

l1, m1, t1ð Þ þ̂ l2, m2, t2ð Þ ¼ l1, m1, t1ð Þ, if l1 ¼ l2 ∧ m1 ¼ m2 ∧ t1 ¼ t2
l1, m1, t1ð Þ �̂ l2, m2, t2ð Þ ¼ l1 þ l2, m1 þm2, t1 þ t2ð Þ

This allows us to rewrite the rules of Figure 1 by replacing the addition and
multiplication operators to create a dimensional checker, shown in Figure 2. Scalar
multiplication does not affect the dimensions of a quantity. The dimension of mass, m,
is described as (0,1,0), while acceleration is length � time�2, or (1,0,-2) as a tuple.
Our dimensional checker will compute with dimensions and attempt to ensure all
assignments are correct. Consider our example program:

begin
f : float of (1,1,-2);
m : float of (0,1,0);
a : float of (1,0,-2);
...
f : = m * a

end
Checking would proceed as follows:

DE m � a½ �½ � m↦ 0,1,0ð Þ, a↦ 1,0,�2ð Þf g
¼ DE m½ �½ � m↦ 0,1,0ð Þ, a↦ 1,0,�2ð Þf g �̂ DE a½ �½ � m↦ 0,1,0ð Þ, a↦ 1,0,�2ð Þf g
¼ m↦ 0,1,0ð Þ, a↦ 1,0,�2ð Þf g mð Þ �̂ m↦ 0,1,0ð Þ, a↦ 1,0,�2ð Þf g að Þ
¼ 0,1,0ð Þ �̂ 1,0,�2ð Þ
¼ 1,1,�2ð Þ

and as this dimension matches fwe know that the assignment is correct. Most UoM
checkers adopt this approach, extending the checking into the statements and function
calls of typical programming language constructs. For instance, all branches of condi-
tionals and case statements must have the same dimensions, while comparison operators
can only operate on quantities of the same dimension. If the dimensions of all variables
are known at compile-time then this process can be undertaken before the program runs.

3.2 Kinds of quantities

Two values that share the same UoM might not represent the same kinds of quan-
tities (KOQ) [17]. For example, torque is a rotational force which causes an object to

Figure 2.
Dimensional analysis rules for expressions.

33

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

rotate about an axis while work is the result of a force acting over some distance.
Surface tension can be described as newtons per meter or kilogram per second
squared, and even though they equate, they represent different quantities.

We have recently developed a simple set of rules for arithmetic and function calls
that allow quantities to be named and handled safely [18]. This is not as straightfor-
ward as preserving the names of quantities throughout the program text. Multiplica-
tion will generate a new quantity so it is very likely that information is lost in
intermediate stages of a calculation. Moreover, not all quantity variables in a program
will have a name such as Torque or Work. Some might denote an entity such as length
that could be in metres or yards, while another might be a variable used to store some
temporary value. Neither of these need to be named. Using an algebraic data type, we
define named quantities as:

type quantname ¼ Named of string j No name

We can now define the rules for adding and multiplying named quantities. In both
cases we assume that the unit expression is dimensionally correct, our concern is to
define how named quantities conduct themselves. The operator ⋄ takes two named
quantities and states the conditions under which they can be summed: two named
quantities can be added together only if they represent the same entity, if one quantity is
named but the other is not then it is necessary for the result to be named, and if both
are unnamed then the result will be too:

Named n1 ⋄ Named n2 ¼ Named n1, if n1 ¼ n2
Named n ⋄ Noname ¼ Named n
Noname ⋄ Named n ¼ Named n
Noname ⋄ Noname ¼ Noname

Our comparison rules cast upwards from Noname to Named, so as to assume a
named quantity whenever possible. This is required to ensure named quantities
behave correctly. For multiplication the rules are simpler. The operator Δ takes in two
named quantities and defines how they behave over the multiplication operator. As
multiplication sums the dimensions of the two operands, the value will be different to either
and so the result will always be _Δ_ = Noname. The rules for named quantity analysis of
expressions are given in Figure 3.

Multiplication will generate a new quantity so it is very likely that information is
lost in intermediate stages of a calculation. We propose that functions, whose return
KOQ are known, are used to regain information when calculations use multiplication.

Figure 3.
Named quantity rules for unit expression.

34

Updates on Software Usability

In this manner a discipline of programming with quantities is suggested Nonetheless,
we can exemplify how our approach behaves on a simple incorrect assignment where
we try to add a value of torque to one of work:

begin
sumt : float of Named Torque;
t : float of Named Torque;
w : float of Named of Work;
...
sumt : = t + w

end
Checking would start as follows:

NE tþw½ �½ � t↦Named Torque, w↦Named Workf g
¼ NE t½ �½ � t↦Named Torque, w↦Named Workf g ⋄ NE w½ �½ � t↦Named Torque, w↦Named Workf g
¼ t↦Named Torque, w↦Named WorkÞf g tð Þ
⋄ t↦Named Torque, w↦Named Workf g wð Þ

¼ NamedTorque ⋄ NamedWork

and as we cannot proceed, we deduce that the assignment is unsafe. None of the
current methodologies for managing quantities perform this kind of quantity checking.

3.3 Systems of Units

Dimension analysis would be sufficient if only one unit system, such as the SI
system, was required. In such cases the base units of metre, gram and second could be
implicit in implementations. There are, however, two further complications. A system
of units provides a set of base units but they can be extended with prefixes. For
instance, the SI system allows lengths to be described in terms of the base unit metre
and prefixes, such as kilo- and centi-. While the Imperial system has the base unit feet
on which an inch and a yard are constructed. Consequently we need to consider
normalising values within a system of units and allow dimensionally faithful expres-
sions to evaluate correctly with different units of measurement, as shown in Figure 4.

3.3.1 Normalising within a system of units

We can extend our tuple for dimensions to include prefixes. They are used to avoid
very large or very small numeric values. Speed is typically shown in kilometres per
hour, which we could represent in our 3-tuple as ((kilometre,1),(gram,0),(hour,-1)).
This approach simplifies normalisation. A kilometre can be converted into metres by
multiplying the value by a 1000, and an hour is 3600 seconds. Consider the dimen-
sionally correct assignment below where the mass, m, is given in grams:

begin
f : float of ((metre,1),(kilogram,1),(second,-2));
m : float of ((metre,0),(gram,1),(second,0));
a : float of ((metre,1),(gram,0),(second,-2));
...
f : = m * a

end

35

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

A UoM analysis would reveal that force, f, is expected in Newtons so the value for
m needs to be divided by 1000, f:= (m/1000)*a. It is straightforward to normalise
within a given system of units by aligning the prefixes. However, we also need to take
the exponent into account. For example, the density of iron is 7.86 g/cm3, and can be
converted into kg/m3 as follows:

7:86� C gram, kilogramð Þð Þ � C centimetre, metreð Þð Þ�3

¼ 7:86� 0:001� 0:01�3

¼ 7860 kg=m3

where we assume the existence of a function C that takes in two prefixes and
returns the conversion factor.

3.3.2 Converting between two Systems of Units

A second issue is that of converting in-between two systems of units. This can be
achieved by extending the function C to convert between known systems, such as
from yards to metres and visa-versa. Consider a similar example to the Mars climate
orbiter error, here we want to calculate momentum, where p is mass times velocity, in
Newton seconds, or m�Kg�s-1. However our mass is in pounds:

begin
p : float of ((metre,1),(kilogram,1),(second,-1));
m : float of ((metre,0),(pound,1),(second,0));
v : float of ((metre,1),(gram,0),(second,-1));
...
p : = m * v

end
The function conversion, C pound, kilogramð Þ, yields 0.45 so we need to modify

the assignment so that the result will be correct, namely p := 0.45*m*v.
A naive unit conversion algorithm will convert the right hand side’s units to the left

hand side’s for each sub-expression when performing addition or multiplication, but
this is rarely the most efficient. The algorithm described by Cooper [14] is applied at
compile-time. It choose the least number of conversions by generating all possible
valid UoM conversions from a given expression, and selecting the one with the fewest
conversions. Finally, many non-SI units continue to be used in the scientific, techni-
cal, and commercial literature. Some units are deeply rooted in history and culture.

Figure 4.
Conversion within and in-between systems of units.

36

Updates on Software Usability

We use the term week rather than 168 hours. These also need to be supported through
conversion functions.

3.4 Levels of measurement

A further aspect is that of the operations that might be applicable to a given
quantity. To a physicist or applied mathematician, it is taken for granted that a
quantity is used in the same manner as a unit-independent value, and that all arith-
metic and comparative operators can be applied to it. However this is often not the
case. For instance, what operations apply to a person’s IQ? It does not makes sense to
multiply scales of intelligence or personality traits.

Stevens [19] identified four categories of scale that places limits on the type of
measurement that can be used to construct valid terms:

1.Nominal Scales represents the most unrestricted assignment of numerals. The
only operations that applies to values in a nominal scale is that of equality and
inequality, essentially numerals are only used as labels.

2.Ordinal Scales permits rank ordering. The classic example of an ordinal scale is
the scale of hardness of minerals. Most of the scales used by psychologists are
ordinal scales. Operations such as greater-than and less-than are also applicable to
ordinal scales. In the strictest sense, statistical operations involving means and
standard deviations should not to be used with these scales as they imply a
knowledge of something more than the rank order of data. This is due to the
successive intervals on the scale being unequal in size but the ‘illegal’ application
of statistical functions is often very useful, such as the average IQ of a certain
population.

3. Interval Scales are what we would consider quantitative and allow addition and
subtraction, so all the usual statistical measures are applicable. The zero point on
an interval scale is a matter of convention. Centigrade and Fahrenheit both
represent volumes of expansion, with an arbitrary zero for each scale, such that a
numerical value on one scale can be converted into a value on the other.

4.Ratio Scales are most commonly encountered in physics and include the previous
three relations, along with multiplication and division. An absolute zero is always
implied.

Currently no system employs levels of measurement checking, such that only
meaningful operations are applied to certain quantities. We suspect that this is due to
even less awareness of scale levels and an assumption that quantity checking is only
necessary for ratio scales. Hall [20] has developed a UML class diagram that captures
the inheritance relationship between the four levels, enabling operations to be restricted
to the most general of a pair of operands. As discussed with the ordinal scale, there is a
pragmatic context that needs to be considered when using levels of measurement.

3.5 Summary of quantity checking

Through the use of an illustrative expression language we have shown how to
ensure programs correctly manipulate the dimensions, the named quantities and the

37

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

UoM of values. In doing so we have raised two important issues relating to the
implementation of quantities: at what point checking and conversions can occur, and
how extensive the coverage will be. If all UoM variables are annotated, or their
annotations inferred, then both dimension checking and unit conversions can be
undertaken by the compiler. This means that programs with UoM errors will be
detected early, before the system is put in place, creating a strongly UoM typed
language. Moreover, the code can be optimised so as to have the least number of
conversions, reducing rounding errors, and increasing the accuracy of its calculations.
The technique can be extended to include assertions on allowable unit conversions. If
UoM are only known at run-time, or their design is embedded within the host lan-
guage, then dimension checking and unit conversions will be undertaken at run-time.
Programs will still manipulate UoM correctly but with a performance penalty and
errors will only be detected once running. One must also consider the annotation
burden, [21] found subjects choose a correct UoM annotation only 51% of the time
and take an average of 136 seconds to make a single correct annotation.

4. Implementing quantities

Many constructs in Software Models can be directly translated into code. A UML
class diagram can be used to build the class structure of an object oriented implemen-
tation. The situation for UoM annotations is more complex. UoM values are neither
primitive nor reference types in modern object oriented terminology. As described in
Section 3, they require an advanced checker to ensure variables and method calls are
handled soundly by the compiler.

In this Section we shall look at the four practical methods that support unit
checking of code basis. All implementation options are affected by the following three
concerns [13]: lack of awareness, cumbersome implementations and lack of support from
the given software eco-system. Software rarely lives in a vacuum so even if it has been
designed and developed with one of these methods, associated components are
unlikely to support UoM, such as legacy libraries, databases and spreadsheets.
Nonetheless as sources of data are migrated to quantity aware formats, the software
must be able to follow suit.

4.1 Native language support

Adding unit checking to conventional imperative, object-oriented and even func-
tional languages using syntactic sugaring is beyond the algorithmic scope of their
underlying type checkers. The pioneering foundational work of Wand and O’Keefe
[22] demonstrated how the simply-typed lambda calculus could be extended with
dimensions. Milner’s polymorphic type inference algorithm [23] is symbolic, so in
order to include UoM variable resolution one has to provide an equational solver based
on the theory of Abelian groups [24]. A programming language with native support
will include additional syntax for UoM and an enhanced static analyser that calculates
or infers the validity of annotations. When UoM annotations are validated prior to
compilation, errors can be detected early and generated arithmetic code can minimise
the number of conversions, mitigating round-off errors.

The only language in the 20 most popular programming languages [25] that sup-
ports units of measurement is Apple’s Swift language [26]. Microsoft’s F# [27] is a
general purpose functional language with a full implementation of UoM, including

38

Updates on Software Usability

unit variables that the static checker will seek to determine at compile-time [24]. This
property permits valid UoM programmes to be written in which not all the quantity
variables are annotated, thereby reducing the annotation burden and allowing greater
reusability. However, large software projects rarely use either Swift or F#.

4.1.1 C++ boost library

C++ is still very popular [25] and has a de facto UoM extension that exploits the
template meta-programming feature2. Consequently BoostUnits is more than just a
library as it supports a staged computation model, similar to MixGen [12], which has
the benefit of providing a language extension while still supporting backwards com-
patibility. C++ is quite unique in terms of being a popular programming language that
supports this adaptable compilation strategy. Dimensional analysis is treated as a
generic compile-time meta-programming problem, and delivers features and perfor-
mance comparable to native language support. As no run-time penalty is incurred,
BoostUnits supports UoM checking in performance-critical code. However, the sur-
vey [28] found both usability and accuracy issues with the use of this library.

4.1.2 Unit of measurement validators

Creating a new compiler feature for an existing language is contentious, non-trivial
and likely to become outmoded. An alternative static approach is to define UoM
through comments or attributes and to build a tool that attempts to perform as much
scrutiny as possible. Such a validator checks at compile-time for unit violations
without adding a new syntax or changing the run-time behaviour of the code. Figure 5
shows an example of the Unit of Measurement Validator for C# [29]. The Osprey [30]

Figure 5.
Example of unit of measurement validator for C#.

2 https://github.com/boostorg/units

39

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

system is a C front end that automatically checks for all potential quantity errors. UoM
are annotated with a $ and are modelled as types, reducing dimensional analysis to
type checking, with Gaussian elimination to resolve unspecified UoM variable
exponents. Simiarly [31] allows one to express relationships between the units of
function parameters and return values. Ensuring the validity of unit conversions can
be specified. PUnits [32] is a Java front end, or pluggable type system, that has many
additional features. It can be used in three modes: checking the correctness of a
program, solving UoM type variables, and annotating a program with units. This last
feature is the most novel and allows human inspection which is useful since having a
valid typing does not guarantee that the inferred specification expresses design intent,
and allows KOQs to be expressed. These approaches are lightweight and scalable but
they need to be supported for users to feel that they are credible. Alas few of these
tools have lifespans outside of their original research project.

4.1.3 Domain-specific languages (DSLs) with quantities

DSLs are languages specialised to a particular application domain. They are often
written in a mark-up language such as XML or JSON which facilitates their use with
general purpose languages as they can be easily parsed. They might have originally
been designed for the purpose of curation, such as CellML and SMBL where the
intention was to build biological repositories of computational models. A model will
include the constants, variables and equations denoting a particular biological system.
Thus, translating them into a programming language with the aid of a differential
equation solver means that they can be readily simulated [33]. If the DSL contains
UoM declarations then separately analysing source files can be undertaken before they
are uploaded to a repository and translated into the run-time system [14]. Quantity
checking coverage might be limited to the application domain but one can easily make
the argument that this is where the vulnerabilities would lie.

4.2 Static or dynamic library support

Adding a feature to an existing programming language is usually undertaken by
developing a library which implements the desired behaviour. It is written in terms of
the language, using advanced abstraction methods such as classes and generics, and
delivers a well-defined interface. There are many UoM libraries for all modern pro-
gramming languages [34]. The basic idea behind dimensional analysis, as shown in
Section 3.1, is relatively straightforward and familiar to scientific coders. However,
“making a physical quantity library is easy but making a good one is hard” [35]. The
reasons behind this lie in the subtleties of implementation: providing non-standard
UoM, offering many new operators, supporting conversions, creating helpful error
messages, while being efficient. These aspects are far harder to code and maintain
than a faithful implementation of the Quantity pattern [9, 36].

Experience has shown that quantity libraries add an extra layer to an existing
application through boilerplate code that is rarely idiomatic to the host language. The
Quantity pattern ensures that values are hard-wired to have a single floating point
representation, requiring further conversions to other internal formats and accuracy
issues. Poor error messages are also a frequent complaint. Certain modern languages,
such as Ruby, provide a special syntax for adding features to the language which
exploit duck typing, enabling lightweight libraries to be built. The main conclusion is

40

Updates on Software Usability

that for adoption to occur, UoM must be included in such a way that they are almost
as easy to use as standard arithmetic types [13].

The standard technique for implementing the Quantity pattern is through
exploiting overriding, making UoM checking a run-time activity. However UoM can
be implemented through static overloading, or Java generic instantiations, ensuring
compile-time checking. An example of both styles is shown in [13]. Merging the two
techniques would double the amount of notation required and significantly add to the
burden of adoption. Languages such as Python or Ruby are dynamically typed by
definition, so quantity checking will occur at run-time regardless of how UoM are
defined. Run-time support is a key reason why there are so many libraries for these
two languages when typically one would assume quantities require high-performance
executables. From a user survey of UoM libraries: “In our product line, our users may
very well have one file whose units are ‘kg �m3’, another whose units are ‘g_cc’and a third
whose units are ‘degrees Celsius’. We therefore need to be able to operate on units at run-
time, not compile-time” [28].

An additional limitation of libraries versus a native language or a pluggable
type solution is that variables of a Quantity class can be reassigned at run-time. The 7-
tuple that represents dimensions can be modified such that a kilometre could become a
newton. Dimensional homogeneity and conversion errors can be caught by a library
implementation but to avoid such programming style errors necessitates discipline. A
dimensionally aware static checker ensures that all instances of a quantity declaration
have the same dimensions. Errors caused by this violation were found to account for
75% of inconsistencies in the study of 5.9 M lines of code [37].

Implementing UoM through a data type or a class requires values to be boxed at
run-time, incurring both speed and memory penalties. Native language solutions can
perform the checking at compile-time so that generated executables contain no fur-
ther UoM annotations and values are represented by primitive types. For scientific
applications that perform many calculations, such as matrix multiplications, this
unnecessary performance overhead is unacceptable. A UoM library might seem
attractive and undemanding initially, but the subtle burden that they inflict will often
increase the complexity of a project.

4.3 Component or Interface description support

Encapsulating implementation details, interfaces are a collection of the externally
visible entities and function signatures of a component. They are used by the compiler
to ensure access is handled correctly. Libraries, native language support and pluggable
type systems usually require all quantity variable and function declarations to have
UoM annotations, while component or interface based approaches only require cer-
tain functions to be annotated. This drastically reduces the annotation burden, sup-
ports legacy code but at the expense of robustness.

A component based approach seeks to add UoM information to the interface in
order to enforce unit consistency when composing components and thereby reduce
dimensional mismatch errors. There is some anecdotal evidence in the many quotes of
[28] to support this approach. Damevski [38] hypothesises that UoM libraries are too
restricting by requiring complete coverage, incurring an annotation or migration
burden. His technique performs dimensional analysis on component interfaces at run-
time, and if the calling parameters are compatible with the arguments dimensions
then unit conversions occur. Consider the C++ class Earth [38]:

41

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

class Earth {.
void setCircumference(in Metre circumference);
Metre getCircumference();

}
It assigns and queries the earth’s circumference using Metre internally but can be

called with Kilometre and the return value bound to a variable of, say, type Mile.
Unlike libraries, within the class Earth no further annotations are required, nor will
internal declarations be checked. This is a dynamic component based approach, units
are converted at run-time.

Another lightweight methodology was presented by Ore [16] which performs an
initial pass to build a table mapping attributes in C++ shared libraries to UoM. The
shared libraries have been specifically enhanced to include UoM annotations. The
table is used to disseminate UoM information into a source program and detect errors
at compile-time. The algorithm successfully exploits dimensional analysis rules for
arithmetic operators within components [39]. This is an example of a static compo-
nent based approach, and through this process of static UoM propagation checking,
manages to perform a greater coverage than Damevski’s run-time method.

A component based discipline means that the consequences of local unit mistakes
are underestimated. The analysis of local assignment expressions will not occur in
Damevski’s scheme and will be limited in Ore’s. On the other hand, checking at the
component level allows diverse teams to collaborate even if their domain specific
environments or choice of quantity systems were, to some extent, dissimilar. More
importantly, either a static or dynamic component implementation would have been
effective at correcting the Mars Climate Orbiter error.

4.4 Black-box testing

The last method that we will look at for checking quantities are managed correctly
is known as black box automated testing. This method is usually applied to detect
incorrect or missing methods, initialisation errors, interface errors and errors in data
structures. By extrapolating use cases from the requirements specification to create
unit tests, which are then systematically applied to the program, errors can be discov-
ered before the code is put into operation. In the case of UoM tests, the resulting
testing will not be comprehensive. Unit testing will focus on the correct initialisation
of variables, the UoM correctness of assignments and method calls. This approach is
also considered lightweight as no annotations are required in the program, however
creating sufficient unit tests by hand is tedious. Efforts to generate unit tests from
UML descriptions automatically [40–43], either through behavioural diagrams or
with rule based approaches, are seen to be costly and non-trivial in practice [44].

Modern agile software development practices rely heavily on manually developing
tests for enabling refactoring but also to support test driven development (TTD). Unit
testing for UoM errors does not require any extra tool support, and will not alter any
other parts of the system as shown in Figure 6, where we show the testing required
for a simple UoM based addition function. If t is true then both arguments are in
kilometres, alternatively the second argument is in miles and converted accordingly.
The two test cases capture this intention. Many developers would argue that time
spent becoming familiar with a UoM library, and updating their programs accord-
ingly, might be better spend writing unit tests: “I could use the same time to write tests
and that would really find and prevent errors and at the same time not introduce a crazy
complicated library every other developer in my team would have to deal with.” [28].

42

Updates on Software Usability

However, the UoM knowledge will be localised to each particular unit so the slight
implementation cost comes at the expense of potentially average checking.

5. Conclusions

Recent initiatives such as the FAIR data principles [46] emphasis machine-
actionability of scientific data. With greater interoperability, industrial use of compu-
tational simulations and penetration of digitalisation through cyber-physical systems;
there is an urgency to faithfully represent key properties of physical systems in code
bases [1, 47].

We have endeavoured to provide the necessary background for software users to
choose the most appropriate method for enabling quantity checking in code bases. Alas
native language support is not available for popular programming languages. This situa-
tion is unlikely to change as it would require new language definitions and expensive
compiler rewrites, with an important criteria of ensuring backwards compatibility with
existing code. Validators solve some of these issues but require assurances that tool
support will be maintained. DSL checkers are very effective for their given domain but
lack generality. It is clear that even the best libraries currently cause significant perfor-
mance issues while not being relevant for most developers. However some of the
dynamic libraries include a lightweight syntax that makes UoM annotations significantly
easier. A strength of component based techniques is that they can be undertaken at either
compile-time or run-time with little overhead. They cede UoM checking completeness
for a low annotation burden and ease of adoption. Approaches based on manual black-
box testing frameworks offer many of the benefits of static component based techniques
without requiring extra syntax. The drawback is that the UoM information will be
implanted within the unit tests and not as a form of documentation within programs.

Annotating quantities in code bases is costly for developers [21] but relatively
durable to software evolution. Refactoring does not change the external behaviour of
the software, it will rarely require quantity annotation modifications unless there are
changes to the core data structures. Techniques that manage UoM at compile-time,
such as native language support or static lightweight solutions, allow unit conversions
to be undertaken before code is created and values to be represented in unboxed form,
thus resulting in better accuracy and efficiency.

The pros and cons of UoM techniques are listed in Table 1 using features that are
relevant to users. Native language or pluggable type based techniques offer many
benefits, such as an equational UoM checker that is capable of resolving UoM type

Figure 6.
Java code and JUnit test case for simple addition of two kilometres, or kilometre and mile distances [45].

43

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

variables, and unit conversion optimisation to improve run-time behaviour. Static
component and black box based testing provide some of the benefits of static UoM
libraries with less coverage but greater versatility. This is in tune with contemporary
software development methods that favours lightweight techniques which integrate
into existing digital platforms.

Software users who require a degree of robustness have had little say over how
much validation was undertaken on their code to ensure UoM are handled correctly.
This chapter aims to inform users and developers of the various options that exist to
check that quantities are handled properly, along with the implications of these
choices with regards to their software eco-system. The needs of a reactive and
responsive on-line application, with assorted UoM input, are very different to a fully
quantity specified stand-alone safety critical application. Nonetheless software-
intensive systems are prevalent in our daily lives, with complex functionality and
strong interconnection. The need to ensure quantity values behave correctly are
greater than ever before.

Author details

Steve McKeever
Department of Informatics and Media, Uppsala University, Sweden

*Address all correspondence to: steve.mckeever@im.uu.se

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

Technique Programming
ease of use

Execution
speed

Numeric
accuracy

Ease of
integration

Unit error
detection

Native Support High Very High Excellent Low Very High

Validator High High Very Good Average Average

DSL Low High Very Good Low Average

Static Library Low Average Good Low High

Dynamic Library Average Low Good Low High

Static Component High High Very Good High Average

Dynamic Component High Average Good High Low

Black Box Testing Average High Very Good Very High Average

Table 1.
Contrasting alternative methods of implementing units of measurement in software projects, extended from [45].

44

Updates on Software Usability

References

[1] Hanisch R et al. Stop squandering
data: Make units of measurement
machine-readable. Nature. 2022;605:
222-224

[2] Arthur Stephenson, Lia LaPiana,
Daniel Mulville, Frank Bauer Peter
Rutledge, David Folta, Greg Dukeman,
Robert Sackheim, and Peter Norvig.
Mars Climate Orbiter Mishap
Investigation Board Phase 1 Report,
1999. NASA Headquarters, Washington
D.C., USA: NASA Press Release; [Last
Accessed: May 19, 2022]

[3] James Clerk Maxwell. A Treatise on
Electricity and Magnetism [Microform] /
by James Clerk Maxwell. Oxford:
Clarendon Press; 1873

[4] NIST. International System of Units
(SI): Base and Derived. 2015. [Last
Accessed: May 19, 2022]

[5] Karr M, Loveman DB. Incorporation
of units into programming languages.
Communications of the ACM. 1978;
21(5):385-391

[6] Gehani N. Units of measure as a data
attribute. Computer Languages. 1977;
2(3):93-111

[7] Dreiheller A, Mohr B,
Moerschbacher M. Programming pascal
with physical units. SIGPLAN Notes.
1986;21(12):114-123

[8] Hilfinger PN. An Ada package for
dimensional analysis. ACM Transactions
on Programming Languages and
Systems. 1988;10(2):189-203

[9] Fowler M. Analysis Patterns: Reusable
Objects Models. Boston, MA, USA:
Addison-Wesley Longman Publishing
Co., Inc.; 1997

[10] McKeever S, Paçaci G, Bennich-
Björkman O. Quantity checking through

unit of measurement libraries,
current status and future directions.
In: Model-Driven Engineering and
Software Development, MODELS
WARD. Portugal: SciTePress; 2019

[11] Mayerhofer T, Wimmer M,
Vallecillo A. Adding uncertainty and
units to quantity types in software
models. In: Software Language
Engineering, SLE 2016. NY, USA: ACM;
2016. pp. 118-131

[12] Allen E, Chase D, Luchangco V,
Maessen J-W, Steele GL Jr. Object-
oriented units of measurement. In:
Proceedings of Object-Oriented
Programming, Systems, Languages, and
Applications, OOPSLA ‘04. NY, USA:
ACM; 2004. pp. 384-403

[13] McKeever S, Bennich-Björkman O,
Salah O-A. Unit of measurement
libraries, their popularity and suitability.
Software: Practice and Experience. 2020;
51(4):711-734

[14] Cooper J, McKeever S. A model-
driven approach to automatic conversion
of physical units. Software: Practice and
Experience. 2008;38(4):337-359

[15] Antoniu T, Steckler PA,
Krishnamurthi S, Neuwirth E,
Felleisen M. Validating the unit
correctness of spreadsheet programs. In:
Proceedings of Software Engineering,
ICSE ‘04. Washington, DC, USA:
IEEE Computer Society; 2004.
pp. 439-448

[16] Ore J-P, Detweiler C, Elbaum S.
Lightweight detection of physical unit
inconsistencies without program
annotations. In: Proceedings of
International Symposium on Software
Testing and Analysis, ISSTA 2017. NY,
USA: ACM; 2017. pp. 341-351

45

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

[17] Marcus Foster and Sean Tregeagle.
Physical-Type Correctness in Scientific
Python, CoRR, arXiv; 2018

[18] McKeever S. Discerning quantities
from units of measurement. In:
Proceedings of the 10th International
Conference on Model-Driven Engineering
and Software Development -
MODELSWARD. Portugal: INSTICC,
SciTePress; 2022. pp. 105-115

[19] Stevens SS. On the theory of scales of
measurement. Science. 1946;103(2684):
677-680

[20] Hall B. The problem with
‘dimensionless quantities’. In: Proceedings
of the 10th International Conference on
Model-Driven Engineering and Software
Development - MODELSWARD.
Portugal: INSTICC, SciTePress; 2022.
pp. 116-125

[21] Ore J-P, Elbaum S, Detweiler C,
Karkazis L. Assessing the type
annotation burden. In: Automated
Software Engineering, ASE 2018. NY,
USA: ACM; 2018. pp. 190-201

[22] Wand M, O’Keefe P. Automatic
dimensional inference. In:
Computational Logic - Essays in Honor
of Alan Robinson. Cambridge
Massachusetts, USA: MIT Press; 1991.
pp. 479-483

[23] Milner R. A theory of type
polymorphism in programming. Journal
of Computer and System Sciences. 1978;
17:348-375

[24] Kennedy A. Dimension types. In:
Sannella D, editor. Programming
Languages and Systems—ESOP’94. Vol.
788. Edinburgh, U.K.: Springer; 1994.
pp. 348-362

[25] TIOBE. The Importance of Being
Earnest Index. 2022. Available from:
https://www.tiobe.com/tiobe-index/
[Last Accessed: July 6]

[26] Apple. Swift open source. 2022. [Last
Accessed: May 19, 2022]

[27] Microsoft. F# software foundation,
2020. [Last Accessed: May 19, 2022]

[28] Salah O-A, McKeever S. Lack of
adoption of units of measurement
libraries: Survey and anecdotes. In:
Proceedings of Software Engineering in
Practice, ICSE-SEIP ‘20. NY, USA: ACM;
2020

[29] Dieterichs Henning. Units of
Measurement Validator for C#. [Last
Accessed: May 19 2022]

[30] Jiang L, Zhendong S. Osprey: A
practical type system for validating
dimensional unit correctness of C
programs. In: Proceedings of the 28th
International Conference on Software
Engineering, ICSE ‘06. New York, NY,
USA: ACM; 2006. pp. 262-271

[31] Hills M, Feng C, Grigore R. A
rewriting logic approach to static
checking of units of measurement in C.
Electronic Notes in Theoretical
Computer Science. 2012;290:51-67

[32] Xiang T, Luo JY, Dietl W. Precise
inference of expressive units of
measurement types. Proceedings of the
ACM on Programming Languages. 2020;
4:1-28. (OOPSLA)

[33] Garny A, Nickerson D, Cooper J, dos
Santos RW, Miller A, McKeever S, et al.
Cellml and associated tools and
techniques. Philosophical Transactions
of the Royal Society, A: Mathematical,
Physical and Engineering Sciences. 2008;
366:3017-3043

[34] Bennich-Björkman O, McKeever S.
The Next 700 Unit of Measurement
Checkers. In Proceedings of Software
Language Engineering, SLE 2018. NY,

46

Updates on Software Usability

USA: Association for Computing
Machinery; 2018. pp. 121-132

[35] Bekolay T. A comprehensive look at
representing physical quantities in
python. Scientific Computing with
Python. Proceedings of the 11th ACM
SIGPLAN International Conference on
Software Language Engineering. 2013.
pp. 121-132

[36] Krisper M, Iber J, Rauter T,
Kreiner C. Physical quantity: Towards a
pattern language for quantities and units
in physical calculations. In: Proceedings
of Pattern Languages of Programs,
EuroPLoP ‘17. NY, USA: ACM; 2017.
p. 9:1–9:20

[37] Ore J-P, Elbaum S, Detweiler C.
Dimensional inconsistencies in code and
ROS messages: A study of 5.9m lines of
code. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS). Manhattan, NY, USA:
IEEE; 2017. pp. 712-718

[38] Damevski K. Expressing
measurement units in interfaces for
scientific component software. In:
Proceedings of Component-Based High
Performance Computing, CBHPC ‘09.
NY, USA: ACM; 2009. p. 13:1–13:8

[39] Ore J-P, Detweiler C, Elbaum S.
Phriky-units: A lightweight, annotation-
free physical unit inconsistency
detection tool. In: Software Testing and
Analysis, ISSTA 2017. NY, USA:
Association for Computing Machinery;
2017. pp. 352-355

[40] Alessandra Cavarra, Charles
Crichton, Jim Davies, Alan Hartman,
Thierry Jeron, and Laurent Mounier.
Using UML for Automatic Test
Generation. Proceedings of ISSTA. NY,
USA: ACM SIGSOFT International
Symposium on Software Testing and
Analysis; 2002

[41] Hartmann J, Vieira M, Foster H,
Ruder A. A UML-based approach to
system testing. Innovations in Systems
and Software Engineering. 2005;1:12-24

[42] Ali S, Hemmati H, Holt NE,
Arisholm E, Briand LC. Model
transformations as a strategy to
automate model-based testing-a tool and
industrial case studies. In: Simula
Research Laboratory, Technical Report
(2010-01). Norway: Technical Report,
Simula Research Laboratory and
University of Oslo; 2010. pp. 1-28

[43] Mussa M, Ouchani S, SammaneW,
Hamou-Lhadj A. A Survey of Model-
Driven Testing Techniques. Proceedings -
International Conference on Quality
Software. QSIC. 2009. Manhattan, NY,
USA: IEEE; pp. 167-172

[44] Kasurinen J, Taipale O,
Smolander K. Software test automation
in practice: Empirical observations.
Advances in Software Engineering.
2010;2010:01

[45] McKeever S. From quantities in
software models to implementation. In:
Proceedings of the 9th International
Conference on Model-Driven Engineering
and Software Development -
MODELSWARD. Portugal: INSTICC,
SciTePres; 2021. pp. 199-206

[46] Wilkinson MD, Dumontier M,
Aalbersberg IJJ, Appleton G, Axton M,
Baak A, et al. The fair guiding principles
for scientific data management and
stewardship. Scientific Data. 2016;3:1-9

[47] Selic B. Beyond mere logic: A vision
of modeling languages for the 21st
century. In: Pervasive and Embedded
Computing and Communication
Systems (PECCS). Portugal: SciTePress;
2015. p. IS09

47

Managing Quantities and Units of Measurement in Code Bases
DOI: http://dx.doi.org/10.5772/intechopen.108014

Section 3

Testing for Usability

49

Chapter 4

Usability Testing Methods and
Usability Laboratory Management
Josef Pavlíček and Petra Pavlíčková

Abstract

Usability testing of software products is of key importance nowadays. In order for
usability testing to have the desired effect, the appropriate testing methodology must
be chosen. Usability testing can be carried out using qualitative or quantitative
methods. A widely used qualitative method today is the heuristic evaluation proposed
by Jacob Nielsen. However, there are other testing methods such as cognitive
walkthrough or collaborative testing (proposed by Josef Pavlicek and R. Bock).
Although heuristic analysis has generally received a lot of attention in the current
literature, it is important to put the other methods in the right light. These provide a
significantly better view of the user’s passage through the interface under test. The
methods better simulate the environment in which the final UI will operate. The user
experience (UX) is then significantly better measurable if the participant goes through
the test scenario in a cognitive (i.e., mental model-defined) way, rather than by mere
heuristic evaluation. A significant milestone is then the cognitive-collaborative pas-
sage, where the collaborative element of the evaluators contributes to the evaluation
of the solution.

Keywords: use case, scenario, Persona, user group, usability, usability testing,
usability scenario, heuristic evaluation, cognitive walkthrough, collaborative
walkthrough, UI Lab, collaborative UI Lab, testing, remote testing, qualitative and
quantitative usability study

1. Introduction

Creating user-friendly user interfaces is a hot topic at the moment. A quality user
interface is easy to use, looks attractive, and gives the user a good user experience.
This experience is called user experience, hence the abbreviation UX [1]. In order to
design a good user interface, it is necessary to understand the user [1, 2]. The next step
is to be able to use technology to best implement the requirements. The other step is to
be able to test the user interface. The overall test is called a usability test and is subject
to a number of rules. They need to be learned. It should be understood how to learn
this knowledge. If these factors of knowledge and skills are combined, results can be
expected to go beyond user-friendliness to achieve excellent results. And that is the art
of user interface design. This chapter covers the methodology and practices one
should adopt, to become a proficient eXperience designer. And just like with mixing

51

cocktails, on the one hand, you need to follow the tried and true procedures (a
cookbook) [3, 4], so too is your inventiveness, training, and experience, which you
will only achieve with honest practice. The focus of our contribution is to teach
readers how to practice interaction design methods.

The design of user interfaces is thematically divided into the following chapters:
User Definition: In this section, authors explain the mental model of the user. Using

examples, the authors show the reader how the mental model is affected. They give
illustrative examples of how the mental model is affected. They show its influence on
the user’s decision-making. The authors describe how a user interface should behave
in order to have a positive influence on the user’s mental model.

Persona and User Groups: In this section, the authors explain which tools can be
used to get a good understanding of user behavior. In the previous section, the mental
model of the user was explained. Now, it is necessary to explain how a user with the
desired mental model can be found or, rather, how to understand the mental model of
a potential user. To do this, the archetypes of Persona user models or Focus Groups
users will be used.

Usability: In this section, the authors explain possible methods for testing the user
interface. UI testing is a challenging discipline and deserves its own chapter in the
book. Therefore, they limit themselves to the most important aspects of user interface
testing. They describe heuristic analysis and cognitive walkthrough. They show other
testing methods and their advantages.

2. User definition

First, let’s define the user. Who is a user? It is the person who uses our app and is
willing to pay for it. And because interaction designers strive to do great work and
service, they want to get paid well for it. So, they need to know how the prospective
user responds and what their needs are. In other words, you need to know the mental
model of the user (Figure 1).

2.1 Mental model

A mental model is an explanation of someone’s thought process about how some-
thing works in the real world. It is a representation of the surrounding world, the
relationships between its various parts and a person’s intuitive perception about his or

Figure 1.
Who is the user?.

52

Updates on Software Usability

her own acts, and their consequences. Mental models can help shape behavior and set
an approach to solving problems (similar to a personal algorithm) and doing tasks.

Jay Wright Forrester [4] defined general mental models as: “The image of the world
around us, which we carry in our head, is just a model. Nobody in his head imagines all the
world, government or country. He has only selected concepts, and relationships between
them, and uses those to represent the real system”

For the user-centered design (UCD), it will be useful to leave psychological theory
behind and to be more practical.

User mental model from the UCD point of view:

• Human adaptation to use machine according to gained experience.

• Shapes human perception of using machine.

• If anything is broken, user feels wrong and does not want to use the machine.

• Depends on age and gender (children are more adaptive than adults).

• Is influenced by geographical conditions.

• Is influenced by nationality.

◦ Perception of symbols (typical example).

◦ Swastika (European symbol of war. In Hinduism, the swastika is considered
an exceptionally holy and positive symbol and is therefore very often used
on all occasions).

◦ Crucifix (Christian symbol of human savior, for Romans, a method of
capital punishment).

The mental model is best modeled with the help of the so-called Persona; see
section Persona.

2.1.1 Manifestation of the mental model

• It shapes human perception toward understanding and using the user interface.

• Depends on age and gender (children and young people are logically the most
adaptive).

• Manifested, for example, in the perception of colors and symbols (there is a
strong cultural influence here—typically the perception of swastika symbols).

• If violated, the user feels uncomfortable and stupid and refuses to use the
machine (this state is to be avoided).

2.1.2 Emotions and the mental model

The mental model manifests itself in the emotions of the user (Table 1).
Now, the reader should learn how each emotion affects the user and how it affects

their evaluation of the user experience.

53

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

In general, interaction design or user-centered design (UCD) distinguishes
between low emotional load and high emotional load (Figure 2).

2.1.3 Low emotional load

It is typical in that although it affects us negatively (creates a negative feeling of
fear, anger, surprise) it is manageable and, depending on the type of software prod-
uct, acceptable. A sample of such load is “unnecessary large number of clicks,” placing
various controls in unexpected places. This load can be eliminated by learning how to
work with the application and is tolerated in applications that are complex and tech-
nologically advanced in their foundation: graphic editors, CAD systems, etc. It is
unavoidable for complex software products. Computer technological capabilities, and
legal and safety regulations can significantly affect them.

This kind of load should not occur with leisure equipment. However, the rule of
system complexity also applies here. Take the example of Tetris. The controls should
be intuitive. Contrary to a transport aircraft simulator, here the controls will be less
intuitive. The controls will therefore impose a certain mental load. However, this will
be accepted by the player. After all, controlling an aircraft is challenging

2.1.4 High emotional load

This kind of load must not appear in our solutions. It is a load that brings the user
into severe emotional states such as loss of confidence, disgust, and anger. It appears
whenever the software performs an operation that is emotionally arousing.

Emotions are generally divided into

Fear Anger Joy Sadness Confidence Disgust Expectations Surprise

Table 1.
Human beings’ emotions.

Figure 2.
Mental model schema.

54

Updates on Software Usability

For example:

• It does not save work in progress.

• The printout is not formatted correctly, even though the preview is correct.

• The work is unexpectedly terminated or, on the contrary, the task cannot be
completed (such a pattern is, e.g., the former behavior of Windows updates,
when trying to shut down the computer, the computer does not continue its
shutdown task and updates the computer for another 15 minutes … the user in
the meantime urgently needs to catch the train taking him home from work).

• Computer crash, etc.

2.2 How emotions affect SW evaluation

For the purpose of UX, it is enough to remember that the user load caused by
repetitive routines is acceptable to some extent.

Stresses affecting the user’s feelings (anger caused by the loss of important data
and work … e.g., unsaved chapters in a master’s thesis, etc.) is deeply imprinted in the
user’s memory. The latter then intuitively discriminates the solution, even if the bug is
already fixed in the next version.

2.3 Rules of UI behavior toward the user

2.3.1 Be goal (UseCases) oriented

Remember that every user goal (UseCase) that is implemented in the form of
buttons, screens, and other components should be implemented as simply as possible
and with a minimum of energy. This is the direction in which the UX rules defined by
Jacob Nielsen lead; see the Usability chapter.

2.3.2 The machine should always help

In general, it should be understood that the purpose of a machine or computer
program is always to help the human (user). If it stops helping and starts harming, it
becomes a hated monster. It is important how the machine alerts the human to a
critical condition. The relevant dialog was not meant to be hidden.

2.3.3 Don’t make a fool of me!

From the original “Don’t Make Me Feel Stupid!” It tries to suggest to designers that
good software will guide and help the user. It will not confront them with frustrating
tasks and ask them inappropriate questions (Figure 3).

2.3.4 Don’t stress the user with unnecessary questions

Recognize that software is supposed to help the user. It is supposed to anticipate
his actions, automatically assuming that the data loss is fatal (i.e., no need to ask

55

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

whether to actually save). Only when there is a real danger of data corruption by the
user’s decision, to warn him.

2.3.5 Inform me clearly about errors

Error messages are essential in UI and are very often underestimated by designers.
It is important to remember that the user is not the programmer. He is not even an
analyst and did not design the application. What is obvious to us as developers, for
example, a connection to the database crashed, is incomprehensible to the average
user. Therefore, messages like in Table 2.

Each message must be translated into the user’s language, and others cannot appear
in the UI. Thus, for example:

• MyTextEdit could not save the last edit. Check that you seem to have enough disk
space and repeat the save operation. If the failure persists, save the work to an
external disk and contact the administrator.

However, never forget Hick’s law, which says [5–8]: “The reaction time required for
the user to complete his task therefore increases with the number of available options.”
Simply put, the more objects in front of the user, the longer it takes to make a
selection.

Figure 3.
A confused user feels uncomfortable!.

Wrong error messages example

The program has performed an invalid operation and will be terminated.

An overflow has occurred at address A3453BCH122AA.

ORA-00933: SQL command not properly ended.

Table 2.
Error message example.

56

Updates on Software Usability

2.3.6 The principle of avoiding surprises

The average computer user likes not to be surprised by anything. Some parts of the
user interface should stay in the same place and not change significantly. A typical
example is the user menu. If images or icons are used, they should always have the
same expression throughout the user’s passage through the program. The user is
unnecessarily surprised and confused if the meaning of the icons changes. In that case,
he stops liking the program he is using and runs the risk of becoming frustrated with
it. Such a case leads to abandoning the program and replacing it with another more
intuitive one.

2.3.7 Restrictions on the use of icons

Let’s remember that the icon is closely related to the mental model of the user.
Under the pictogram (i.e., icon), different users can easily imagine different mean-
ings. Therefore, the use of icons in the user interface should be minimized. They
should be placed where the operation is often repeated. On the other hand, operations
that do not occur frequently should rather be supplemented with a textual descrip-
tion, hence the following rule of thumb for navigating the user interface using navi-
gation elements:

1.Textual description (absolutely clear).

2.Icon with text description (nice design, unfortunately, duplicates the
description and graphic meaning).

3.Text bubble help icon (ideal for frequently repeated operations, but has less
telling power than a text description).

4.Icon without description and bubble help (used only for chronically known
operations inherited from the operating system = minimize, maximize, move,
close = window edge operations).

5.Graphical symbols (buttons, sliders, etc., no longer belong to the primary
communication elements and are covered by the Interaction Design dimensions).

In this section, let us cite five basic principles of human-PC interaction called the
five dimensions of Interaction Design. The concept of dimensions of interaction
design was introduced in Moggridge’s book Designing Interactions [9]. Gillan
Crampton Smith [10] wrote that interaction design draws on four existing design
languages, 1D, 2D, 3D, 4D. Kevin Silver later proposed a fifth dimension, behavior
[11]. Let us quote Josef Pavlicek [3] and Kevin Silver [11]:

Words: This dimension defines interactions: words are the element that users interact
with.
Visual representations: Visual representations are the elements of an interface that
the user perceives; these may include but are not limited to “typography, diagrams,
icons, and other graphics”.
Physical objects or space: This dimension defines the objects or space “with which or
within which users interact”.

57

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

Time: The time during which the user interacts with the interface. An example of this
includes “content that changes over time such as sound, video or animation”.
Behavior: Behavior defines how users respond to the interface. Users may have differ-
ent reactions in this interface.

2.3.8 The limitations of human memory

To make the use of a computer pleasant and ergonomic for the user, it is necessary
not to rely on its memory. In addition, other important features must also be consid-
ered. Referring to the book by J. Pavlíček [3], Table 3 can be briefly explained as
common rules.

2.4 System feedback

As you go through the software, you need to communicate to the user what is
happening or what has just happened. If the user does not know or is not clear, he or
she will most likely stop using the software.

The most basic physical feedback is very important. For example, when a user
types “help,” the word “help” should appear on the screen. Physical feedback includes
all kinds of feedback, from system sounds to the sound of a mouse click to actually
highlighting text if the user clicks on it and hovers the mouse over it, for example.

If there is an operation going on in the program that requires waiting, the user
should also be informed of this. For example, an hourglass or a window with the
progress of the operation (Progress bar) is established.

You should remember: The user interface should respond to every user action.
If the user moves the mouse, the mouse cursor must move. The guidelines for your

chosen operating system (e.g., MacOS Human Interface Guidelines) describe the basic
behavior of the user interface. These should be kept in mind by every application
developer. They should be followed by the software development. The basic rules
include response time (Table 4):

Care should be taken: There are several variations of status bars. Usually for an
operation where the duration can be calculated (either you know the processing speed
or you know the number of operations to be performed), it is advisable to use a
percentage = incremental status line. Such a case is, for example, performing a search
for a text string in files on disk. If the total number of required operations is known, it

The common rule System behavior

Important
information

Alerts, warnings—should not disappear from the screen after a short time!

Data fields should be
arranged

In the order the user expects them, or as is usual on similar sites. Required fields
should be in sequence, not in skip order with optional ones.

Make the user’s job
easier

You can help, for example, by automatically formatting the phone number
“+1-250-0197-2500” instead of “+125001972500.”

Provide help and
information

Inform about where the user is, or how they got there.

If something is
wrong, inform

Inform the user with ongoing feedback. For example, breadcrumb help.

Table 3.
How to help the user.

58

Updates on Software Usability

is easy to calculate what percentage of the work has already been done by the machine
and display this information on the screen. If it is not possible to predict the
processing time (or it is not possible to show the user what percentage of the total has
already been processed—the processing time is likely to vary according to the perfor-
mance of the user’s machine), then an infinite status bar is used. This moves from
right to left. This signals the user that the operation is still being executed. A typical
case might be loading a file of unknown length from the Internet (but it is
recommended to avoid this feature if possible).

2.4.1 User attention

Techniques for gaining user attention need to be handled very carefully, especially
when designing software. Various flashing banners and pop-ups are usually
distracting. The same goes for very rich colors. Users tend to ignore overly significant
elements, and the so-called Banner Blindness phenomenon arises. Too strong elements
are ignored by users as if they were ads.

It is also advisable not to use more than four different font sizes on one page and a
maximum of three different fonts, and it is also not advisable to write only in capital
letters. Use text underlining and highlighting only rarely.

NOTE: Underlining the letters in a word is a very useful UI element. The so-called
mnemonic aids help to use shortcuts for various operations, see: CTRL + S = Save…
Unfortunately, these aids disappear from new operating systems. However,
orientation-intensive tools, where the user is expected to adapt deeply to the machine
and use abbreviations, still use them.

2.4.2 First-Time experience

This rule (confirmed by J.Pavlíček, R. Bock during the UI Studies) says that there is
a very close correlation between how the solution is given to the user (in our case
primarily software, but it can also be HW and SW = mobile phone) acts during the
first hour. If the user is still not safe in the basic user goals after the first hour of using
the solution, then his willingness to use it decreases. This is a very dangerous condi-
tion. It affects all software solutions that are not highly specialized for a given activity
and are in fact a trend issue: be it Open-Source SW, operating system, and mobile
phone programs, after the personal computer operating system.

2.4.3 Houmer Simpson Car issue

The user interface must meet a perfectly limited area of requirements. Respec-
tively, it must be specialized for primary persons. The success of the overall solution is

Response time Behavior

Less than 3 seconds The UI does not perform any informational activity.

Longer than 3 seconds and shorter than 20
seconds

UI displays an hourglass or an icon symbolizing
waiting.

Longer than 20 seconds UI displays a status bar (progress bar)

Table 4.
Response time behavior.

59

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

based on the definition of person. This is very important to realize if the people are
poorly designed, then the overall UI/UX will also be bad. If properly designed, then
the UI must best meet the requirements of the primary person. The requirements of
Persona B must allow, but it does not matter that there will be any mental burden on
the user. The requirements of a negative C person should not meet, but can only
perform as a secondary effect of other functionalities (Figure 4).

It is not possible to satisfy everyone’s requirements equally. It is never possible to
satisfy the requirements of all users. This is something to keep in mind. It is a common
mistake of beginner designers. This mistake is now in UX slang by “Houmer Simpson’s
car.” It satisfies a wide range of average users but always only partially. After all, it is
not suitable for “cottages” or “shopping.” The desire to satisfy everyone is very strong,
and this mistake manifests itself very often. Just look at the experiments of, for
example, car factories with some cars. Certainly, similar diameters can be found in
world brands. So, watch out for that.

3. Persona and user groups

In order to understand how to properly design a user interface, it is necessary to
model the future user. Then focus the user design specifically on their needs. Of
course, this depends closely on the type of product being developed and the means
available to present it to the public. If the designer is innovative enough (like Steve
Jobs with smartphones, for example), then he does not need a model user. He creates
the product and markets it through advertising and technological presentation. How-
ever, this is both very risky and very expensive. So if he is developing a more or less
traditional software product, then he should follow the established principles (be
more careful with innovation). With the help of model users, say whether such a user
exists in real life (because he wants to sell the solution). If so, he will use it for the
design. Here it is all about Personas.

Figure 4.
Homer Simpson car issue [12].

60

Updates on Software Usability

3.1 Persona

Personas are archetypes that describe the various goals and observed behavior
patterns among users. A persona encapsulates critical behavioral data in a way that
both designers and stakeholders can understand, remember, and relate to.

Personas use storytelling to engage users’social and emotional aspects, which helps
designers to either visualize the best product behavior or see why the recommended
design is successful.

A persona is a fictional character, which is used while designing an application,
website, or technology. The persona represents a fictional user of the tested applica-
tion, which has its own personality, needs, characteristics, specific approaches, and
opinions:

• It is created from the data collected during user interviews or with the use of
some other statistical methods.

• Personas are created by implementing common behavioral patterns of more users
into one fictional person.

• Using personas in creating projects puts a human face to otherwise abstract data
and allows the designers to easily understand the needs of the fictional characters.

3.2 Persona variants

The authors suggest to recognizing three types of personas:
Persona A: A is a typical user. (S)he will use all functionalities, and the system

MUST BE implemented for him/her. It is necessary to design GUIs for that person’s
business goals-derive UseCases from them! (Figure 5)

Figure 5.
Persona A can be young girl.

61

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

Persona B: B is an occasional user. The GUI is not primarily implemented for this
user. But the GUI should address his UseCases. However, these UseCases can be time-
and energy-consuming. Although he/she is not the primary user of the system, we
need to provide him/her with some ways to complete his/her business goals
(UseCases) (Figure 6).

Persona C: C is a negative persona. It is sometimes called antipersona. This user
NEVER uses the system.

In general, different kinds of model users can be created. However, the authors
recommend only the following three types. The authors consider the other variants
to be redundant. The user interface should be designed for the primary personas!
Other personas are users who do not primarily use the system. However, they
should be able to work with the system. A negative persona is a user who will
NEVER use the system. It is introduced for contrast or because of a different view
of UI functionality that should NOT be part of it. It is a view that should be avoided
(Figures 7 and 8).

3.3 User group

In some cases, the definition of Personas is somewhat complicated. Or it is not
suitable because a large number of model personas would need to be created. In this
case, it is appropriate to define the group as Persona. These are typically information
site designs. Such sites where there are a large number of user groups. A clear (and
painfully tested) example is the university website. Many requirements are mixed
here, and it is very difficult to decide who is actually the primary person.

Universities must always address:

Figure 6.
Persona B can be a boy.

62

Updates on Software Usability

• Students (young people, doctoral and postdoctoral applicants, students of the
University of the Third Age).

• Teachers, professional assistants, other roles such as accountants, PR.

• Parents and sponsors.

• State apparatus and bureaucracy.

• Industry, services, art.

• Other schools.

Figure 7.
Persona C never uses the system.

Figure 8.
Persona A example form.

63

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

Defining a persona can be challenging. Therefore, it is possible to create user
groups and label them as people on A, B, and C.

Authors personally do not recommend this method. Our practice is to make it safer
to create honest people. Personas can possibly be assigned to groups of the type
(teacher, student, and parent).

4. Usability

The term Usability is defined [13] by the international standardization organiza-
tion ISO (ISO / TR 16982: 2002 standard) as authors quote: [14] ISO/TR 16982:2002
(“Ergonomics of human-system interaction—Usability methods supporting human-
centered design”) is an International Standards Organization (ISO) standard that
provides information on human-centered usability methods that can be used for
design and evaluation. It details the advantages, disadvantages, and other factors
relevant to using each usability method. It explains the implications of the stage of the
life cycle and the individual project characteristics for the selection of usability
methods and provides examples of usability methods in context.

Applicability is also defined by Jakob Nielsen (whose principles are based here)
[1, 2]. The usability attributes are visible at the Table 5.

The above attributes are necessary in order to measure user friendliness.

4.1 UseCase and scenarios

4.1.1 UseCase

In software and systems engineering, a use case is a list of actions or event steps
typically defining the interactions between a role (known in the Unified Modeling
Language (UML) as an actor) and a system to achieve a goal. The actor can be a
human or other external system. In systems engineering, use cases are used at a higher
level than within software engineering, often representing missions or stakeholder
goals. The detailed requirements may then be captured in the Systems Modeling
Language (SysML) or as contractual statements.

Use case analysis is an important and valuable requirement analysis technique that
has been widely used in modern software engineering since its formal introduction by

The Nilesen’s usability attributes

Attribute name Explanation

Simplicity of learning to use the
system:

To learn to use a similar system faster.

Recall: To remember the way from one situation to another

Efficiency: To carry out the task quickly and efficiently

Minimum amount of errors: If encountered, inform the users on the cause and an advice how to
proceed

Satisfaction of the user: The users is convinced that the task has been successfully achieved

Table 5.
Nielsen usability attributes.

64

Updates on Software Usability

Ivar Jacobson in 1992 [15]. Use case-driven development is a key characteristic of
many process models and frameworks such as ICONIX, the Unified Process (UP), the
IBM Rational Unified Process (RUP), and the Oracle Unified Method (OUM).With its
inherent iterative, incremental, and evolutionary nature, use case also fits well for
agile development.

The creation of UseCases has evolved, and a number of derivations have emerged
since the so-called fully dressed UseCases. There is no space in this chapter to deal
with the development of UseCases. Therefore, let us skip straight to the method that
has worked well for us in designing UseCases.

UseCases are always based on the goals (user requirements) of the software. It goes
without saying that one requirement can be implemented by a different number of
UseCases. Therefore, the following rule should always be kept in mind:

A UseCase is a user’s business goal, which he wants to achieve as quickly as
possible for the least amount of effort expended.

UseCase should always be written from the user’s point of view. It is written from
the perspective of the user’s expectations!

It is necessary to distinguish between the user’s expectation and the demand.
The difference between the two words is crucial and should be in the ratio of 80

(expected) : 20 (required) in UCD and UX documents.
This is because UseCases are created (written) at a time when the form of the

application is unknown (or mostly unknown). It lacks its controls, which must be
derived from UseCases. If a button was required for every desired user action already
in the UseCase (e.g., printing a report), then it may be that the controls are designed
differently in 1000 UseCases.

There is a risk that each software analyst and designer who creates them may have
a different idea of the final implementation of the operation. Consequently, identical
operations will differ in implementation. This is another common mistake due to
improperly created UseCases.

After all, this is common today. Different parts of the applications have different
controls (although they are in accordance with the prescribed Look and Feel of the
operating system). Usually, a huge mental burden is put on the programmer in the
end, because he then has to implement it.

UseCase is therefore written in terms of user expectations, and it is necessary to
avoid defining graphical controls.

For example: the user expects to enter the name of the print report and the
number of pages, and sets the printer type. The user confirms the request (it doesn’t
say how or by what!).

Only if the user is forced to define a control for some important reason (is
limited by health-color blindness, for example), then should be used the word
demand.

4.1.2 Scenario

The opposite side of UseCases is the scenario. This is always written from the point
of view of the system and how the system satisfies the user’s requirements. So in this
example, the system will display a print report icon, a text box to enter the number of
pages, a combo button to select the printer, and a print button.

The scenario is always precise and describes the controls of the system. It is usually
written after UseCase is finished, and there exist prototypes of the screens in the form
of wireframes.

65

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

4.1.3 UseCase and scenario in UCD

Therefore, the post of writing UseCase and Scenario is generally as follows:

• First, write UseCase in terms of user expectations. Avoid defining controls.
Remember, it’s too early for that.

• Design a wired screen model for one or more pooled user targets—UseCase.

• According to expectations and wire models, implement the scenario. This will
match the look and feel of the application and describe how the system satisfies
the user’s expectations (Figure 9).

4.2 Usability testing

Usability testing is key to understanding and evaluating the quality of the designed
user interface:

• The aim is to improve or update an application.

◦ Should answer the question how and what to update.

• Measuring how human-made products meet its intended purpose.

• Observe people (personas) using the product to discover errors and areas of
improvement.

• Verifying that real users can use the system:

◦ Understanding how the real users (will) interact with the system.

◦ Identification of problems that prevent real users from using the system.

The testing procedure is as follows:
Define the usability test framework:

• Define which parties participate in the test (client, developer, user, and sample).

Figure 9.
UseCase, WireFrame, Scenario example.

66

Updates on Software Usability

• Define what is the purpose of testing, for whom is it intended, and what
hypotheses is confirmed or refuted.

• Define on which technology the test will be performed:

◦ Above the prototype.

◦ Above the existing solution.

• Define where it will be executed:

◦ On site.

◦ UI lab.

◦ Remote.

• Decide on the testing method:

◦ Without users—expert review:

1.Heuristic evaluation.

2.Cognitive walkthrough.

3.Collaborative walkthrough.

◦ With users:

1.User surveys.

2.Ethnographic observations.

3.Usability engineering.

4.Collaborative usability engineering [16, 17].

• Variants of usability testing methods:

◦ Qualitative.

◦ Quantitative.

• Define a story that explains the reason for testing.

• Define a time frame.

4.2.1 Participants’ definitions

Study participants should be primarily sponsors and stakeholders. Furthermore,
creators who learn from their mistakes. Last but not least, application designers,
software analysts, and testers should be represented.

67

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

4.2.2 Testing purpose

It is important to know the purpose of the test. The test can be done because of a
negative “First-Time Experience.” Or, on the other hand, a new system has been
created and needs to be tested. It is also possible to test only the design. The design can
take the form of paper prototypes, Lo-Fi or Hi-Fi prototypes. The following questions
should always be asked as in Table 6.

4.2.3 Testing technology

Various tools can be used for testing. The most common are prototypes. These can
be divided into two groups:

Lo-Fi prototype: This prototype requires a relatively short lead time. In the order of
hours (paper prototype and pencil sketches) or days (clickable tools in Case, such as
FIGMA). It is possible to create a large number of prototype variants. This prototype
does not address the final look. Colors and color schemes can be designed as sketches.
The prototype does not communicate with the core of the application, and there are
no technology links.

Hi-Fi Prototype: This prototype is time- and money-consuming. It simulates the
appearance of the future application. It often runs on the final platform. Look and
Feel is defined and represents the final look and feel. Very often it is part of the
implementation (clickable UI without connection to the core system).

Finished application: The last option is an already finished application. This testing
method is very efficient for agile sw development methods. It will be used when the
developer can communicate with the client. Testing is done in short iterations. Fixes
are fast. Large software products can be developed in this way (if the developer
follows the rules of agile development). It is also generally used when fixing a finished
application.

4.2.4 Testing environment

The environment in which the testing takes place is equally crucial. In general,
they can be divided into environments.

On Site: that is, in the user’s office or wherever the application is to be used. The
advantage is that there are natural and therefore realistic conditions. The user uses
learned technologies and environments to control the application. Confusions such as
“I have a different mouse,” and “The chair is not comfortable” can be avoided.

The disadvantage is that conditions may vary according to different offices. This
makes it difficult to repeat tests. It is also very difficult to use the company’s offices for
the tests. In an open-space office, other tasks than usability testing are generally
performed. The work tasks of non-participating employees can disturb the progress of
the test, and even vice versa, the test can be disturbing for non-participants.

This method is suitable for small projects or projects run according to agile
methodologies.

What and how will we test

What is the test goal? What is new in the test? What the test is not?

Table 6.
Test questions.

68

Updates on Software Usability

UI Lab: The specialized environment for usability testing is called UI Labs. Currently,
there are several types of these labs. There is probably no general classification of them at
the moment. Therefore, let us divide them here. In authors’ experience, it seems to be an
appropriate method to divide UI Labs according to the type of studies we perform. These
studies (authors discuss them in more detail below) can be carried out with a focus on:

• Participants: This is generally heuristic analysis and cognitive walkthrough

• On collaboration: Cognitive walkthrough and collaborative walkthrough [14, 16, 17]

4.3 Participant-oriented UI Lab

If the UI Lab is participant-oriented, then its architecture is subordinate to that.
The room in which the participant performs the usability test has one or two

workstations. This room is generally separated from the observer room by a one-way
transparent mirror. This is transparent from the observer room so that they can observe
the progress of the usability test. This is where the UI observers are in the front row to
record the progress of the test. Next are the programmers and application stakeholders.

This UI Lab is significantly oriented toward the individual (participant) by its
architecture. The testing method is then predominantly Jacob Nilsen = Heuristic.
Sometimes the cognitive walkthrough method is performed (Figure 10).

However, from our experience [14, 16, 17], there is a criticism of this solution as in
Table 7.

4.4 Collaboration-oriented UI Lab

I created this kind of UI Lab with Rudolf Bock as part of a research project at the
Faculty of Management and Economics of the Czech University of Life Sciences
[19, 20]. Authors call it Collaborative UI Lab. This kind of lab (covered by a national

Figure 10.
Participant-oriented UI Lab [18].

69

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

utility patent – PUV 2016-32993) actually responds to the shortcomings of the original
architecture. It allows for extensive real-time testing of processes. At the same time, it
allows to perform classical Usability testing. It also allows pair testing or interacting
(collaborative) testing. This is the innovative approach promoted by see [14, 16, 17].

The collaborative testing lab contains two essentially semicircular tables, each
containing at least three workstations, each station containing a computer, a monitor
with a camera to capture the user’s face, headphones and microphone, and a means for
audio recording, with the tables positioned so that the center of the imaginary circle of
which the table is a part faces the other table, and furthermore, the axes of symmetry
of the two tables are parallel and offset from each other (i.e., and not identical), and
the workstation monitors are positioned on each table such that the screens are
positioned away from the other table. The central workstation of each table is
equipped with means for tracking eye movements. The laboratory shall further com-
prise at least four wide-angle cameras, at least two of which shall be positioned to
image the workstations including the monitor screens. In addition, the laboratory shall
contain at least two loudspeakers.

In a preferred embodiment, each semicircular table comprises at least five
workstations.

The speakers may preferably comprise a fixed or detachable video camera.
The laboratory may preferably be equipped with control means for the wide-angle

cameras, means for converting the video signal to a digital signal, andmeans for recording
and editing images transmitted by the cameras or sound from the microphones.

The individual elements may be connected by wires or wirelessly.
According to the presented technical solution, the laboratory allows several test

participants to solve one task at the same time. Each of them can perform and be
recorded as an individual and/or as a member of a team. This makes it possible to
include the influence of social ties in the team in the testing and thus to make the
testing closer to reality. Models focusing on team behavior can also be tested in this
way. Because participants are tested under exactly the same conditions, the predictive
value and statistical evaluation is easier and more relevant.

The semicircular shape of the tables and the placement of the monitors on them
ensure that the individual users are not dependent, but the monitors can still be
rotated so that 2–3 participants can work together if this is appropriate for the pro-
posed test. The semicircular shape of the tables further creates a sense of unity and

Advantages Disadvantages

Recorded results are well presented
and well processed.

The environment is not real. Nowadays, when it is common to
connect with colleagues via social networks and work in Open
Space offices, it is not common for a user to be alone when working
with SW.

It is well known what kind of work
the participant is doing.

A participant sitting alone (or connected to the test moderator) and
aware of his/her observations, probably puts more effort to find a
way through the system. In this case, the test is burdened by mental
error. Often self-doubt about one’s own abilities will prevent the
participant from passing a true assessment of the UI elements. This
partially limits the thinking-at-the-voice rule.

Thinking aloud means the mental
activity of the participant.

There is no real-time testing of processes (i.e., not only UI but also
usability of work processes).

Table 7.
UI Lab benefits.

70

Updates on Software Usability

coherence of the working group and also ensures equal working conditions for the
participants (Figure 11).

The layout of the lab allows for the placement of the test participants so that their
faces and their gazes are directed to the space between the tables where the facilitator/
testing guide can stand. At the same time, no one has to stand behind the participants,
so they do not feel they are looking over their shoulders.

The study facilitator has the option of communicating with study participants
individually through headphones or with all of them simultaneously (and identically)
through speakers.

In one convenient embodiment, the lab is further equipped with a removable
screen placed between the two tables. Screens can advantageously be placed on either
side of the screen. The screen allows for competitive tests to be conducted, and brings
the possibility of measuring behavior within the competitive environment and its
effect on the solution of the task.

Depending on the technical design, the lab is suitable for, for example, conducting
usability studies, collaborative usability studies, user experience testing, behavioral
research, testing of commercial products and services, media testing, test composit-
ing, and conducting test trials. Unlike previously known usability study labs, it allows
parallel testing, reducing costs and increasing the relevance of comparisons between
studies (Figure 12).

A laboratory for collaborative testing [3, 14, 16, 17, 20] characterized in that it com-
prises two substantially semicircular tables (1), each containing at least three worksta-
tions, each station containing a computer, a monitor (2) with a camera for capturing a
user’s face, a headset and amicrophone, audio recordingmeans, wherein the tables (1) are
positioned such that the center of the imaginary circle of which the table (1) is a part faces
the other table (1), and further, the axes of symmetry of the two tables (1) are parallel and
offset from each other, and the monitors (2) of the workstations are arranged on each

Figure 11.
Collaborative UI Lab [20].

71

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

table (1) such that the screens are oriented away from the other table, wherein the central
workstation of each table is provided with means (3) for tracking eye movements, and
wherein the laboratory further comprises at least two speakers and at least four wide-
angle cameras (51, 52), at least two of the cameras (52) being arranged to image the
workstations including the screens of the monitors (2).

4.5 Remote testing

This is a very modern method of usability testing today. The UI Lab environment
is replaced by the user’s workstation. In fact, today’s technology makes it possible to
largely replace the classic UI Lab. Technology such as screen recording, voice record-
ing, face capture, eye tracking (Gaze Recorder) is now commonly used. By connecting
the workstation to the Internet, using today’s On-Line technologies (Google Meets,
MS Teams, Zoom, etc.), the workstation becomes part of a virtual lab. If the fact that
the participant is not physically in the same room as the usability study facilitator can
be managed or bridged, the test can be conducted. This approach has the following
advantages as it is seen in Table 8.

4.5.1 Usability testing methods

Usability testing methods can be divided into two types: without users and with
users.

Testing without users (called expert assessment):

• Heuristic evaluations [1, 2, 21]

• Cognitive walkthrough [1–3]

• Collaborative walkthrough [3, 14, 16, 17, 20]

Figure 12.
Collaborative UI Lab description [20].

72

Updates on Software Usability

4.6 Heuristic evaluation

Jacob Nielsen defined 10 general principles of machine-human interaction that a
good user interface should support. These are general principles, which is why they
are called “Heuristic.” [1, 2, 21].

1.Visibility of system status

2.Match between system and the real world

3.User control and freedom

4.Consistency and standards

5.Error prevention

6.Recognition rather than recall

7.Flexibility and efficiency of use

8.Aesthetic and minimalist design

9.Help users recognize, diagnose, and recover from errors

10.Help and documentation

Allow us to quote them:

Visibility of system status:

• A system should not “freeze” and get unresponsive:

◦ Show the progress bar.

• Inform the user what’s going on, give a time estimate if >20 sec.

Match between system and the real world:

• Keep conventions and metaphors working:

◦ Desktop.

Remote testing benefits

No need to build an expensive UI Lab.

The participant does not have to leave his/her place of work—saves time (which is an important factor).
The participant does not have to leave his/her place of work—saves time (which is an important factor).

The participant conducts the test on his own equipment with which he is familiar (no orientation
problems = advantages as in the In Situ approach).

Table 8.
Remote testing benefits.

73

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

• Icons must behave as expected:

◦ Trash can—I can throw objects to a trash can, it can be emptied and also
searched in case of accident.

• Beware of translation errors.

User control and freedom:

• Users often choose system functions by mistake:

◦ Provide “emergency exit” from unwanted states.

• Undo.

• Allow canceling of time-consuming operations (rollback).

• Confirm actions which cannot be undone.

• Warn before action that cannot be undone.

Consistency and standards:

• Conventions of the platform should be obeyed.

◦ Windows program looks and acts as a Windows program. No other way.

• Use just system components if possible.

• System colors and fonts.

• Use same terms and names:

◦ Save vs. Write, etc.

Error prevention:

• The best error is the one which did not happen.

• User should not be able to enter an invalid value:

• Following error message does not help that much.

• If the input requires some special form, it must be explained (in-line help text, hint):

◦ Password strength/requirement.

• Highlight required fields in forms

• Confirm dialog where needed.

74

Updates on Software Usability

Recognition rather than recall:

• Only relevant objects and options are visible.

• The user is not requested to remember information.

• Give preview for visual selections (font).

• Step in a wizard (3 of 7).

• Position in a tree structure (bread crumb).

Flexibility and efficiency of use

• Provide keyboard shortcuts (accelerators).

• Accommodate both novice and power users:

◦ Functionality required by power users is mostly not needed at all by
standard users.

◦ Advanced mode.

• Keyboard shortcuts/function keys.

• Macros, templates.

• Do we really need all that controls?

Aesthetic and minimalist design:

• Show only relevant information:

◦ Each unit of information competes with all other units
of information.

• Less options mean faster action.

• Avoid useless graphics.

Help users recognize, diagnose, and recover from errors:

• Best is not to get to the point where an error message is needed.

• Plain language error messagesno code, no abbreviations, etc.

• Precise indication and constructive suggestion of a solution.

• Should educate the user that the error is not repeated.

75

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

Help and documentation:

• System should be usable without any help

• The help is a must anyway

• Minimal, easy to search

• FAQs and examples are better than plain text

• Contextual help

Nielsen heuristics are designed for expert evaluation. This means that users are
represented by experts. On the one hand, this results in fast and high-quality feedback
on the usability of the UI. However, it is to keep in mind that this work cannot be done
by a mere PC user.

4.7 Heuristic UI evaluation procedure – I/O

Focuses on the product as a whole—Table 9.

4.8 How to perform heuristic evaluation

Table 10 should be followed when performing the heuristic evaluation.
Heuristic Evaluation—report example—Table 11.
Heuristic evaluation form example
You need to find out, what precisely MDC (MyDreamCompany) can help

with:

1.Go to Google and find the MDC company.

2.Visit the main page. What does the MDC’s logo tell? (Analyze the Future)

3.What is the main message in the head banner? (Changing how the World
Thinks).

4.Your boss gives you the task to contact the MDC managing director for your
region—Asia:

a. What is his/her name?

Inputs Output

A user interface—working application, a prototype, even a screenshot List of what violates these rules

Description of the target user group(s)

Use-cases/scenarios

Table 9.
Heuristic evaluation steps.

76

Updates on Software Usability

b. How many years of experience does (s)he have?

c. What was the his/her position prior to joining IDC?

5.What is his/her Twitter contact account?

Answers form [3] (Figure 13):
Heuristic evaluation form example. Not necessarily all 10 points are included. It

depends on the focus of the test (Figure 14).

Step Action

Tutorial Explain the application to assessors (experts), provide a
scenario if needed.

Evaluation Individual experts perform the evaluation and record results
(which law has been violated and how). For the testing is used
Testing scenario:
• Scenario is a realistic situation, where a person performs a

list of tasks using the product being tested, while observers
watch and take notes:
◦ Thinking aloud.

• Use the most common or used scenarios.
• Examples:

◦ Create an account in the system.
◦ Order a pair of jeans.

Find information about a particular product.

Make Interview at the end
(likes, dislikes,
recommendation)

“Perfect!”, “I love it!” is not a proper evaluation:
• Some structure/framework needs to be defined.
• Metrics need to be defined.
• So that testers and designers of the UI can discuss the

results.
◦ Human behavior and actions are complex:

• Difficult to analyze.
• Individual difference.
The interview is important to ask (careful order is important):
• What you liked.
• What you didn’t like.
• What are the recommendations.

Priority Assessment Assess the severity of each problem.

Reporting Discuss the conclusions with the assessors and design team.

Table 10.
Heuristic evaluation procedure.

Problem found Error wiping

Violates: 4 Heuristic attribute -Consistency and Standards

Problem
statement:

Strings “Save” and “Write File” refer to the same function. The users may be confused
by this ambiguity.

Priority: Medium (Usability problem, important to be removed).

Table 11.
Report example.

77

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

4.9 Cognitive walkthrough

According to the Nielsen Norman Group, the Cognitive Walkthroughs is: [1, 2] “a
technique used to evaluate the learnability of a system from the perspective of a new user.
Unlike user testing, it does not involve users (and, thus, it can be relatively cheap to

Figure 13.
Answer form for Heuristic evaluation example [3].

Figure 14.
Result of Heuristic Evaluation example [3].

78

Updates on Software Usability

implement). Like heuristic evaluations, expert reviews, and PURE evaluations, it relies on
the expertise of a set of reviewers who, in a highly structured manner, walk through a task
and assess the interface from a new user’s point of view.”

Definition by Nielsen Norman Group [1, 2]: “A cognitive walkthrough is a task-
based usability-inspection method that involves a crossfunctional team of reviewers
walking through each step of a task flow and answering a set of prescribed questions,
with the goal of identifying those aspects of the interface that could be challenging to
new users.”

During the cognitive walkthrough, we ask ourselves the following questions:

• Will users try to achieve the right result? In other words, do users understand that
the action (step) at hand is needed to reach their larger goal?

• Will users notice that the correct action is available? In other words, is the
interactive element that achieves the step visible or easily findable?

• Will users associate the correct action with the result they’re trying to achieve?
Perhaps the right button is visible, but will users understand the label and will they
know to engage with it?

• After the action is performed, will users see that progress is made toward the
goal? Based on what occurs after the action is taken, will users know that this action
was correct and help them make progress toward their larger goal?¨

Cognitive walkthrough is considered an appropriate method for testing user inter-
faces. Unlike heuristic evaluation, which looks in depth at general principles, cogni-
tive walkthrough focuses more on the mental model of the user. That is, how the user
interface interacts with his mental model. According to the authors’ practice, the
cognitive walkthrough more closely resembles reality. Therefore, the authors prefer it
as a usability test (Figure 15).

Figure 15.
Cognitive walkthrough evaluation for Zasilkovna.cz example [3].

79

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

4.10 Collaborative walkthrough

The collaborative passage is based on collaborative elements.
When author [20] constructed a collaborative usability lab at the Czech University

of Life Sciences [19]) name HUBRU [20], also (J. Pavlicek) came up with the idea to
implement a usability study based on the model of pair programming. The overall
approach to this method is very similar to the cognitive walkthrough. The difference
in principle is that a given task is performed by a pair of participants. This method,
which authors (Pavlicek, Pavlickova et al. [14, 16, 17]) have been actively using since
2017, brings a number of benefits (Table 12).

4.11 Testing with users

It can be divided into:

4.11.1 User surveys

Potential users fill in or answer the questions in the questionnaire. The question-
naire has been prepared in advance and contains questions that are not instructional.
Typically, the correct question is: “what is the appropriate background color for the
XY application.” An incorrect question is: “is green an appropriate background color
for XY?” This question is incorrect because it mentally disqualifies green. An even
more incorrect question would be a multiple choice question: is it better A) red, B)
green, C) blue? Because one intuitively foregrounds the desired answer. Keep in mind
the following fact: we DO NOT WANT to force our hypothesis by questioning, but to
PROVE its existence. The survey should take no more than 45 min. The advantage of
this method is that it can be done remotely. The number of participants should be
more than 7 (as opposed to a qualitative usability study).

The method advantages Criticism of the method

UI/UX bugs are found faster by a pair of participants
than by an individual.

Opponents of the method blame the fact of
cooperation. Collaboration can supposedly reduce
the quality of answers. In other words, participants
try less in pairs.
Authors consider this statement to be a hypothesis
that has not been confirmed.

If the UI behavior is non-standard, the pair will
detect it faster. If the participant is not sure, he/she
can ask a colleague. However, this advice (forbidden
in classical studies) is a common help when
evaluating SW in real-world settings. Therefore, the
First Time Experience is better recognized.

By collaborating on tasks, testing can be significantly
accelerated.

The overall interview is then carried out in a group
where the synergy effect becomes apparent.

Table 12.
The collaborative walkthrough method benefits.

80

Updates on Software Usability

4.11.2 Ethnographic observations

Ethnographic observations—Table 13

4.11.3 Usability engineering

Usability engineering—Table 14

4.12 Collaborative usability engineering

Variant to usability engineering. It is again done in pairs or groups.

4.13 Variants of usability testing methods

In general, there are two basic methods of usability testing in terms of obtaining
valid data. These are qualitative (generally the more common method suitable for
Usability Labs) and quantitative. The latter is suitable for automated testing.

4.14 Qualitative

For the purpose of a qualitative usability study (usually testing with experts), five
participants are sufficient (according to the Nielsen Norman Group) [1, 2, 21].
According to Nielsen, five participants will reveal 75% of UI bugs. Increasing the
number of participants further does not yield a significant result. In authors’

Step What to do

Observe users in their environment with no intervention
and record and/or take notes.

Find out how people use the app etc.

Best if users do not know they are observed. Ethically problematic

Contextual inquiry. • Ethnographic approach.
• Shorter: approx. 2–3 h.
• Observing an experienced user of the app

and taking notes.
• To identify shortcuts, unexpected,

interesting or confused reactions.
• The participant knows about our presence.

Table 13.
Ethnographic observation.

Step What to do

Observing the users using the system in a simulated environment
(usability lab).

Wanted aspects of the real world are simulated.

Users work on predefined, but realistic tasks.

The environment should be as close to the real one as possible Same system, same monitor(s), etc.

Table 14.
Usability engineering.

81

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

experience, we prefer to recommend eight participants. The benefit of eight in ideal
cases is not in the ideal ratio to five ones. But occasionally, it happens that a partici-
pant is delayed or disturbed by a phone call, and therefore, in our practice a number of
8 is safer. Respectively, it does not bring a fundamentally higher burden, and the
result is safer (Figure 16).

4.15 Quantitative

A quantitative study is suitable for automated testing. They are generally gener-
ated from automated logs. That is, if the application collects and logs user behavior
such as button clicks and user elements. This is quite common today with, for exam-
ple, operating systems.

4.16 Define a story that explains the reason for testing

Tell the story of why the usability test is important. The story must be interesting
and motivating for the participant to take the test.

4.17 Define a time frame

You should remember that the usability test should not take more than 30–45 min.
Keep this in mind when planning scenarios. After 45 minutes, the participant will get
tired. His/her ability to concentrate decreases, and the results are not relevant.

Figure 16.
How many participants is needed? [21].

82

Updates on Software Usability

5. Summary (key results)

The principle of user interface design is a very artistic discipline. There are rules
that partially prescribe how designers should proceed and what design patterns to
follow. These are Look and Feel for different operating systems. And also, general
rules for the placement of graphic elements, as the authors have already shown. On
the other hand, there are market forces at work here. It is mandatory for a user
interface designer to adhere to the prescribed Look and Feel. This is if he wants to
place his solution in the Apple Store, for example. But at the same time, he needs to
create a solution that is visually appealing and above all new. Copying the competition
is not enough. Exclusivity is what sets it apart from the rest. Our users expect standard
behavior from our solutions (the behavior they are used to). But at the same time,
they want it to be innovative and attractive. It is called in the slang of interactional
designers “sexy design.”

So let us summarize as follows:

• Collect user requirements for future solutions.

• Define the user tasks to be achieved.

• Divide them into atomic user goals (UseCases). Each task consists of a series of
steps-user goals.

• Create personas or focus groups (these allow you to understand the mental model
of the users).

• Based on the archetypal users (personas, etc.) and user tasks and goals, design
UseCases. Always describe these from the user’s perspective.

• Start creating a specification in which you graphically represent the
system screens-wireframes—in the form of sketches. These screens will be
based on the user tasks. They will consist of individual (cumulative
UseCases).

• Write scenarios for the wireframes. Write these from the system perspective so
that they always satisfy the UseCases.

• Iterate the design process several times (e.g., three times).

• For wire models, create a Lo-Fi or Hi-Fi prototype.

• Create test scenarios from user goals.

• Based on the learned rules, conduct a usability study.

• Collect all flaws and fix the specification including the prototype.

• In the second usability test, all the shortcomings of the user interface design
should already be eliminated.

83

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

Author notes

These figures 1,3,5,6,7 are drawn by Veronika Pavlickova daughter of Petra and
Josef Pavlicek - authors of this article. These figures 2,8,9,11–15 are drawn by Petra
and Josef Pavlicek authors of this article.

Author details

Josef Pavlíček* and Petra Pavlíčková
Department of Software Engineering, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

*Address all correspondence to: josef.pavlicek@fit.cvut.cz

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

84

Updates on Software Usability

References

[1] Nielsen J. Usability Engineering
(Interactive Technologies). Morgan
Kaufmann; 1993. ISBN-10: 0125184069

[2] Nielsen J. 1994. Available from:
https://www.nngroup.com/ [Accessed:
31 May 2022]

[3] Pavlicek J. The Cookbook for
Interaction Design and Human
Computer Interaction. 2021. Available
from: https://docs.google.com/presenta
tion/d/1nbLjgEX5mS6kl_cRx6CeKuhd-
fzz-kyYn_j03vMLkH4/edit?usp=sharing
[Accessed: 31 May 2022]

[4] Jay W. Counterintuitive behavior of
social systems. Theory and Decision.
1971;2:109-140

[5] Hick WE. “On the rate of gain of
information” (PDF). Quarterly Journal
of Experimental Psychology. 1952;4(1):
11-26

[6] Cockburn A, Gutwin C, Greenberg S.
A predictive model of menu
performance (PDF). In: Proceedings of
the SIGCHI Conference on Human
Factors in Computing Systems. San Jose,
California; 2007. pp. 627-636

[7] Hyman R. Stimulus information as a
determinant of reaction time. Journal of
Experimental Psychology. 1953;45(3):
188-196

[8] Rosati L. How to design interfaces for
choice: Hick-Hyman law and classification
for information architecture. In: Slavic A,
Salah A, Davies C, editors. Classification
and Visualization: Interfaces to
Knowledge: Proceedings of the
International UDC Seminar. The Hague,
The Netherlands; 2013. pp. 125-138

[9] Moggridge B. Designing Interactions.
MIT University Press Group Ltd; 2006.
ISBN13 (EAN): 9780262134743

[10] Crampton Smith G. Available
from: https://www.linkedin.com/in/
gillian-crampton-smith-27930b/
?originalSubdomain=it [Accessed:
31 May 2022]

[11] Silver K. What Puts the Design in
Interaction Design. 2007. Available
from: https://www.uxmatters.com/mt/
archives/2007/07/what-puts-the-
design-in-interaction-design.php
[Accessed: 31 May 2022]

[12] FOX. Available from: https://www.
wired.com/2014/07/homer-simpson-
car/) [Accessed: 31 May 2022]

[13] ISO Standard. Available from:
https://en.wikipedia.org/wiki/Usab
ility#ISO/TR_16982:2002_standard
[Accessed: 31 May 2022]

[14] Pavlicek J, Rod M, Pavlickova P.
Usability evaluation of business process
modelling Standards–BPMN and BORM
Case Study. In: In the International
Conference on Advanced Information
Systems Engineering. Cham: Springer;
2021. pp. 93-104

[15] Jacobson I. Use cases—Yesterday,
today, and tomorrow. Software and
Systems Modeling. 2004:210-220.
DOI: 10.1007/s10270-004-0060-3

[16] Pavlicek J, Hronza R, Pavlickova P,
Jelinkova K. The business process models
quality metrics. In: Workshop on
Enterprise and Organizational Modelling
and Simulation. Cham: Springer; 2017.
pp. 134-148

[17] Pavlicek J, Pavlickova P. Methods for
evaluating the quality of process
modelling tools. In: Workshop on
Enterprise and Organizational Modelling
and Simulation. Cham: Springer; 2018

85

Usability Testing Methods and Usability Laboratory Management
DOI: http://dx.doi.org/10.5772/intechopen.109140

[18] Available from: https://cent.felk.
cvut.cz/courses/Y39TUR. [Accessed:
31 May 2022]

[19] Czech University of Life Sciences,
Faculty of Management and Economics.
Software Engineering Department.
Available from: https://www.pef.czu.cz
[Accessed: 31 May 2022]

[20] HUBRU. Available from: https://
katedry.czu.cz/en/hubru/home
[Accessed: 31 May 2022]

[21] Nielsen J. 1994. Available from:
https://www.nngroup.com/articles/
ten-usability-heuristics/ [Accessed:
31 May 2022]

86

Updates on Software Usability

87

Chapter 5

Usability Testing of Mixed Reality
Scenarios: A Hands-on Report
Robert Strohmaier, Gerhard Sprung, Alexander Nischelwitzer
and Sandra Schadenbauer

Abstract

We would like to share our insights in designing, preparing, preforming, and
analyzing usability tests for multiple connected augmented reality and virtual reality
applications as well as traditional mobile applications developed for a multimodal
screening tool. This screening tool is under development at the University of Applied
Sciences FH JOANNEUM in Graz, Austria. Several researchers from the departments
of health studies and applied computer sciences are working closely together to estab-
lish a tool for early diagnosis of cognitive impairments to contribute to the manage-
ment of dementia. The usability of this screening tool was evaluated by ten therapists
paired with ten clients as testing group 1 and two usability experts in a separate test
(group 2). In this chapter, we would like to describe why we use observed summative
evaluation using the co-discovery method followed by post-task questionnaires for
the first testing group. We are going to discuss the reasons for performing the cognitive
walkthrough method as co-discovery with usability experts of testing group two as
well. Furthermore, we describe how we use camera recordings (traditional cameras,
360-degree cameras), screen recording, and special tailor-made software to experience
the screening process through the user’s eyes.

Keywords: usability, user centered design, augmented reality, virtual reality,
mixed reality, cognitive walkthrough, co-discovery, observation

1. Introduction

During this chapter we are going to discuss a usability study of a mixed reality sce-
nario. Within the next pages, relevant literature is shown and insights into our ideas
during planning of the usability study are given. As well as the subject of the test, the
multimodal mixed reality scenario is going to be presented. In every section we tried
to point out what is, in general, to do at a specific step or task during the usability
processes. As well, we try to describe how we have done something (highlighted by
the words “In our case”) and, if applicable, we try to give suggestions, i.e., what can
be improved (highlighted by the words “Potential for improvement”).

First, we are going to clarify basic terms to establish a common understanding of
the material at hand.

Updates on Software Usability

88

When it comes to classifying an application into the areas of augmented reality
(AR), virtual reality (VR), and mixed reality (MR), Vogel et al. gives a good overview
of how these techniques are seen in different disciplines [1].

1.1 Augmented reality (AR)

In our remarks, we refer to the definitions of Azuma [2] and the virtuality con-
tinuum of Milgram [3]. AR has to fulfill the following three points:

• Virtual objects and virtual aid enrich the real environment
 The virtual objects and virtual aid have to be connected closely with the real
environment. Virtual aid can be interpreted as visible content such as 3D models
as well as invisible services like a digital tape measure to measure distances in the
real environment.

• Anchored in real space
 In our point of view, it is important that virtual objects and services are anchored
to the real environment. This connection has to be stable and must not change
during the use of the application.

• Updates in real time
 All kinds of interactions should be computed in real-time. Furthermore,
reactions to actions have to be rendered in real-time or, at least, with a minimal
delay.

1.2 Virtual reality (VR)

Virtual reality can be seen as a completely virtual environment, where users are
isolated from the real world and experience 3D models, spatial audio, and other
digital content as well as other sensory stimuli. Ideally, the real world cannot be
recognized at all. No real-world image, no real-world acoustic signal, no real-world
smell, and no real-world tactile stimuli. Regarding the used hardware, this can be
established completely or partly. Whereas using just a VR headset and moving within
an environment like a therapist’s treatment room, the immersion in the virtual envi-
ronment is lesser. Regarding Milgram, we also tend to categorize our VR applications
in the area of the virtual environment [4].

1.3 Mixed reality (MR)

Mixed reality is described as everything between the real and the virtual environ-
ment [3]. In addition, some major hardware and software companies tried to use this
term to fit their hardware and software. In the following paragraphs, we are going to
explain the elements of the conducted usability tests. All of them together are consid-
ered by us to be a mixed reality scenario.

1.4 Other important terms

Besides technical terms, during this chapter, we use many terms related to
usability testing as well as terms related to the research project named SCOBES-AR
(description of the project follows in the next section), itself. Therefore, within this

89

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

section, we are going to clarify the meanings of the most important terms. In the case
of any confusion about the used terms later on, please refer to this section.

• Usability test
Structured process to assess how usable a computer-based system is.

• Usability method
 Determines how a usability test must be carried out. E.g., heuristic evaluation or
thinking aloud can be seen as a usability method.

• Usability study
 If multiple usability tests are carried out to answer the same questions about the
behavior of the users or the functionality of the product, we refer to this as a
usability study.

• Expert (Usability expert)
A person who possesses profound knowledge about usability.

• Facilitator
 A usability expert, who is in charge of planning, conducting, and analyzing
usability tests.

• Observer
 A person with at least basic knowledge about usability assists the facilitator during
usability tests. They are mainly in charge of observing the tests and taking notes.

• Participant
 A person who takes part in usability tests in the role of a user. This person must
be recruited out of the target group(s) of the product to be tested. In our case,
both therapists who are using the screening tool, as well as their clients being
screened, can be participants in our usability study.

• Screening tool
 A set of different screenings to, in our case, test physical and cognitive abilities in
healthy persons.

• Screening
 Activities to assess a person’s abilities within a special scope (e.g. cognitive
health, physical health).

• Task
One step in screening.

• Therapist
 A health professional who offers some kind of health-related service. Therapist
can utilize the screening tool developed by us.

• Client
 A client takes advantage of a health-related service, provided by a therapist. They
can be screened by a therapist.

Updates on Software Usability

90

1.5 The Project SCOBES-AR

Cognitive impairments like dementia are a tremendous challenge for affected
persons, their relatives, and for a country’s health system. To detect cognitive impair-
ments at a very early stage might bring a lot of advantages for people and for admin-
istration. Therefore, we are working on a multimodal screening tool (MST) to detect
cognitive impairments early. After identifying suitable screenings, we try to advance
these screenings by digitalizing them [5].

To accomplish these goals, we have developed multiple digital applications. Some
of them fit into the area of AR, some of them into VR and others are simple digital
applications running on smartphones and tablet computers. All AR, VR, and tradi-
tional digital apps form the digital screening tool. We see this combination as a mixed
reality scenario. This is the reason for using the term MR in the title of this chapter.
More information about the constituent applications, whether they are AR, VR, or
just digital, is given in the next section.

2. Elements of the usability tests

This chapter’s main focus lies on usability and usability test methods.
Nevertheless, a short overview of the single applications which together make up the
screening tool is given within this section.

Overall, the screening tool consists of several screenings. At the beginning of
each screening, anamnestic data is collected with the help of questionnaires pre-
sented on websites. Those questionnaires are not subject to the usability test. We
tried to focus on the AR, VR, smartphone and tablet applications, and the process
they are used (see Figure 1).

During the whole process, therapists have to take care of clients, they have to
start the right software at the right time, prepare the proper hardware and, in case of
malfunctions, they have to troubleshoot. Because of that, handling the hardware is
also subject of the usability tests.

With the application running on the tablet computer, therapists have to log into the
client using a quick response (QR) code. Then, they can start and stop the screenings
described below. They can also visually monitor everything the client sees in the AR
and VR headsets. They are able to monitor and annotate the screenings (see Figure 2).

After this short description of the application used by the therapists, we are going
to introduce the screenings, which are the subject of the usability tests (see Figure 1).

Figure 1.
Process of all screenings.

91

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

2.1 Trail making test AR (TMT-AR)

Cognitive parameters are assessed during a process where clients have to select
numbers and letters in ascending order [6, 7]. In the traditional form of the screening,
these numbers are printed on a sheet of paper and pinpointed with a pencil, or the test
is executed on a computer system.

In our case, numbers and letters are shown in virtual spheres, which are super-
imposed over the real world with the help of AR techniques. To accomplish this, the
client wears a smartphone mounted in a Haori AR headset. To select single spheres, a
flic2 button [8] is used. This can be seen in Figure 3.

2.2 Dual task assessment (DTA)

Gait parameters are measured by having the client walk a distance of 10 meters
several times. If this screening were to be conducted traditionally, the distance would
be marked on the floor. Therapists would use a stopwatch to measure elapsed time
and would count the steps of the clients [9].

Figure 2.
Therapist during screening (monitoring and annotation).

Figure 3.
Smartphone mounted in Haori headset worn by the client.

Updates on Software Usability

92

In our case, the client also wears a smartphone mounted in a Haori AR headset. A
custom smartphone application utilizes AR techniques to measure distance, time, and
footsteps.

2.3 Reaction test

During the traditional screening, reaction times of clients are measured by the
talent diagnosis system (TDS) using the method “match 4 point” [10, 11].

In our case, a smartphone application is used to show visual stimuli. Depending on
the stimulus, the client has to push the corresponding flic2 button. This application is
just a smartphone app. No AR or VR techniques are used here.

2.4 ETAM mobility

The Erlangen test of activities of daily living in persons with mild dementia or
mild cognitive impairment (ETAM) is carried out traditionally with printed pages.
For the “mobility” element of this screening, clients are shown traffic scenes printed
on paper. They have to argue about what people in these scenes are allowed to do [12].

In our case, clients wear an Oculus Quest 2 VR headset and find themselves within
virtual environments, displayed as spherical 360-degree videos of traffic situations.
Clients are able to look in all directions and have to interact with the system to decide
where to go, when, and why (Figure 4).

2.5 ETAM finances

At this screening, the client’s abilities regarding recognition of prices and mental
arithmetic are measured. Traditionally the client has to decide which products to buy
using a very simple fake catalog of a grocery store (Figure 5). In addition, money for a
shopping list has to be calculated exactly with real currency units [12].

In our case, clients accomplished these tasks in a virtual shop wearing the Oculus
Quest 2 VR headset.

After introducing the project SCOBES-AR and the single screenings of the screen-
ing tool, we’d now like to give an overview of some promising usability methods to
test its user-friendliness.

Figure 4.
ETAM mobility.

93

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

3. Selection of suitable usability testing methods for AR and VR

Based on usability literature and our experiences we have preselected several
usability testing methods. Those will be discussed, especially regarding their use in
AR, MR, and VR settings, within this section. After reading the following paragraphs
it will be clear which methods we have chosen and why.

At the beginning of every usability study, the selection of suitable usability testing
methods takes place. Usability testing methods mostly originated during the rise of
desktop software and websites. Nowadays the amount of AR and VR applications
increases steadily. In tandem, attempts to test their usability become increasingly
common. A good point to start from is recent papers and articles, in which usability
studies of AR applications [13, 14] and of VR applications [15, 16] are presented or
compared. Here, it is essential to know how traditional usability tests work. Authors
like Barnum [17] and Nielsen [18] as well as practical guides [19] should be consid-
ered, before applying or adapting a usability method.

In our point of view, feedback from real users is essential to develop a meaningful
product. Additionally, the detailed feedback of experts is needed, when real users
cannot imagine what could be improved and how this could be achieved. In this case,
well-experienced usability experts are very valuable. Hence, we designed two usabil-
ity studies. The first is with methods suitable for real users and the second just to get
feedback from usability experts.

During the next paragraphs, we would like to give a short overview of promising
usability testing methods for this need. Along with this overview, we focus on the
differences of the traditional method and the usage for AR, VR or MR.

3.1 Heuristic evaluation

According to Nielsen, heuristic evaluation is an expert tool, wherein usability
professionals analyze a product regarding a set of 10 heuristics. Those heuristics
cover a large amount of usability factors. Analyzing a product with this 10-point
list determines if the product is giving proper feedback to the users, is oriented
along real-world metaphors, provides helpful error dialogs, and many other
aspects [18, 20, 21].

Figure 5.
ETAM finances - view from inside VR headset.

Updates on Software Usability

94

Those 10 heuristics are suitable for traditional desktop applications and websites.
But, when it comes to other domains, some of them might not be suitable for the task
at hand. For this reason, different researchers tried to adapt the heuristics for their
own use. When it comes to VR, Sutcliffe and Gault came up with 12 heuristics [22]
whereas Rusu et al. tried to introduce 16 heuristics [23] followed by a 9- point catalog
of Murtza, Monroe, and Youmans [24]. When analyzing AR applications, Gale et al.
suggest a 26 points catalog [25] and Endsley et al. compare different approaches [26].

Some of the recently developed heuristics are comparable with some of the 10
heuristics developed by Nielsen. Showing the system status to users, giving appropri-
ate feedback, and helping to recover from errors are some points that are still impor-
tant nowadays. Additionally, the newer heuristics are influenced mainly by factors
of the AR and VR hardware like comfort of wearing the hardware and the immersion
into a realistic (AR) or virtual (VR) environment.

Conducting a heuristic evaluation in the domains of AR, VR, and MR is challeng-
ing. A key factor in this challenge is considering the product to be tested and which
heuristics to choose or how to alter some existing catalog of heuristics.

In our case, we have analyzed existing heuristics for AR and VR products.
However, those heuristics were not suitable for us. As the process of developing a
custom set of heuristics seemed to be out of the scope of the project, we rejected the
idea of using heuristic evaluation.

3.2 Co-discovery

Evaluating products with two persons at the same time might be a very good idea.
If two people are needed for the product or service, it is a good idea, to also test the
usability with two people. This method can also be combined with other methods [17].

Furthermore, if the AR, MR, or VR product has to be operated by two people,
co-discovery can also be used in such a scenario [14].

In our case, the method of co-discovery is a perfect match. Since as the scenario of
our project consists of two people, the therapist and the client, who are working closely
together, we decided to use co-discovery. We were also in favor of combining co-discov-
ery with another method. These thoughts are described in the following paragraphs.

3.3 Thinking aloud

Following the thinking-aloud method, users must fulfill several tasks using a
product. The product can be a physical object like a coffee machine or desktop soft-
ware, or a website. The participants of the usability test are encouraged to think aloud
and verbalize their mental models while interacting with the product [17, 18]. This
enables deep insights into the usability of the product. Usability experts observe the
completion of the tasks and the thoughts of the users. For documentation, the whole
process is often filmed. By inviting 3 to 5 users, the main usability issues can be found.
While this method can be seen as a cheap method it is very unnatural for participants
to think out loud [18].

When it comes to AR, MR, and VR settings, this method also seems to be very
promising. Interacting with virtual objects in real or virtual worlds while verbalizing
thoughts seems to be a good solution. For example, Boulder et al. used the thinking-
aloud method when comparing usability tests of a car infotainment system in an MR
scenario and in a real scenario [27]. Thinking aloud might work in a broad range of
AR, MR, and VR scenarios. On the other hand, the limitations of the method have to

95

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

be considered. For example, if speech recognition is used to interact with the product,
thinking aloud is inappropriate and may lead to accidental input. It must also be con-
sidered that thinking aloud produces a cognitive load on the side of the participants
which can influence the results of a usability study.

In our case, it is crucial to get direct feedback from real users. Thinking aloud
appeared to be a promising approach to accomplish this. But, as far as clients must
carry out physical and especially cognitive screenings, we have seen huge problems
in the thinking-aloud method. As well, usability tasks in addition to the tasks of the
screening would be overwhelming for the clients and the therapists. Because of these
reasons we did not apply this method to our usability studies.

3.4 Observation

The aim of observations is to study the users working with a product in a natural
environment while not interrupting or disturbing them. Besides taking notes to
gather qualitative feedback, videos can be recorded to analyze the observations. In
some cases, the users can be interrupted to answer questions. According to Nielsen,
three or more users have to be observed to get meaningful results [17, 18].

Because of the simple and product-independent setup, observations can also be
conducted when evaluating AR [14, 28], MR, and VR products. Gaining qualitative
feedback and impressions of the usage under normal conditions seems to be very
promising.

In our case, observation fulfilled our requirements. It combines the view of real
users doing everything which is needed for the real screenings without any influences
of usability methods. Therefore, we applied this usability test method together with
the co-discovery method. Therapist and client can perform a screening under realistic
conditions while being observed to gather meaningful results regarding the usage of
the different software applications and the process itself.

3.5 Questionnaires

Questionnaires can help to get structured feedback from participants before,
during, and after a usability test. How many questionnaires to use and what they look
like, is mostly defined by the product to be tested and the current stage of the product
lifecycle. Questionnaires can be answered by the participants before (pretest), during
(posttask) and after (posttest) a usability test. Whereas pretest questionnaires often
aim to get more background information about potential users, posttask question-
naires relate directly to the completion of single tasks. Finally, posttest questionnaires
are closely related to the goals of the full usability test [17, 19, 29].

When it comes to analyzing VR applications, VRUSE is an early attempt to provide
a set of 100 questions structured in 10 parts [30]. Rather than answering the VRUSE
questions within a Microsoft Excel spreadsheet, Putze et al. suggests implementing
the questionnaires directly into the VR application. Here the questions are displayed
within the virtual world, and they can be answered by using the VR controller, which
is also used for the main application [16].

When using this approach in VR or AR persons with sight impairment must be
considered. Besides, the implementation of a questionnaire into AR or VR software
needs more resources as handling it like a traditional questionnaire.

Questionnaires can also be applied for AR applications. A good point to start
research in this area is the overview provided by Pranoto et al. [14].

Updates on Software Usability

96

In our case, we have decided to use questionnaires after each usability observation
to figure out if the perception of the usability test facilitator matches the self-percep-
tion of the participants. Considering the target groups and the duration of the whole
screening process, we tried to come up with a simple and rather short questionnaire.
We’ve analyzed the VRUSE questionnaire [30] and selected the following important
aspects for the project SCOBES-AR:

1. Functionality

2. User input

3. Help and user manual

4. System output

5. Hardware

6. Immersion

According to these considerations we composed a set of questions. For each
screening, the questions looked similar. This enabled us to draw conclusions between
screenings. Because of the small sample of 10 therapists and 10 clients as partici-
pants, documentation was done in Microsoft Excel. This sample size is too small to
draw conclusions from the questionnaires itself. However, in combination with the
documentation of the observations, the questionnaires are able to help us to better
understand what participants did and why they did it.

3.6 Cognitive walkthrough

When it comes to analyzing whether users are able to interact with a system in a
proper manner, a cognitive walkthrough can be conducted. Inspecting especially the
learnability of a system, action sequences are analyzed by usability experts. To be
successful, the experts need information about the users of the system, and typical
tasks for the system must be prepared. During the usability test, four main questions
are being considered:

• Will the user try to get the right result?

• Will the user notice that the right action is available to them?

• Will the user associate the correct action with the expected result?

• When the right action is taken, will the user see progress being made toward the
intended outcome?

Based on this analysis, suggestions were made on how to improve usability [17, 21, 31].
The main key is, whether using it for traditional digital products or AR or VR

products, to make sure that the experts understand the users. This might be solved
by personas and empathy maps, which can be created on the basis of focus groups
[17–19, 31].

97

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

This method can just as well be used in AR, MR, and VR scenarios. The method may
be altered slightly, but also can be utilized as described for other digital products [14, 15].

In our case, the expert view regarding those questions was exactly what we
needed. To take into account the fact that at a real screening therapist and client work
in pairs, we applied the cognitive walkthrough in form of a co-discovery.

After this discussion of usability methods, we are going into detail. Within the
next section, the most important steps in preparing the usability studies are detailed.
Please be aware, that more details can be found in usability literature.

4. Preparation phase

During this chapter, we explain the most important steps in designing a usability
study. We will cover mainly the steps we have used for our study design and mention
some other methods in short. Additionally, we will describe our lessons learned while
designing the study for the mixed reality scenario.

4.1 Important documents

Usability experts suggest writing a guideline document for every usability test.
Every consideration should be documented within this guideline. As well, all consid-
erations during planning phase can be documented here.

Most times also a general data protection regulation (GDPR) [32] consent is
needed where participants agree to the computation of their private data. Depending
on the type of study and individual regulations in different countries, other docu-
ments like a data management plan and others might also be needed. Country
depended regulations [33] must be met [17].

In our case: We’ve written an independent guideline for each usability study. Apart
from goals, ideas, and to-do lists, the exact timetables of the usability tests were
especially useful. Very helpful as well as contacting a law expert when it comes to
documents relating GDPR. This step is strongly recommended.

4.2 What is the aim of the usability study?

The most important step in preparing the tests is to identify the aim(s) of the
usability tests. Depending on the aim(s), different usability testing methods are
suitable and different kinds of participants must be recruited. Also, the methods of
documentation and presentation vary [17].

In our case: We wanted to see how clients and therapists handle the software and
how they interact with each other. The typical usability of the software and the overall
screening process had to be evaluated.

4.3 Recruitment of participants

Next should be considered whether the real users out of the target group(s)
should be involved in the usability test, or if usability experts should analyze the
product(s). Enough time for recruiting participants should be planned. Regarding the
sample size, this step can take a long time. The number of participants strongly varies
depending on the usability test method. For detailed information please have a look at
the literature within chapter 3: Selection of Suitable Usability Testing Methods [17].

Updates on Software Usability

98

In our case: We wanted both the expert view and insights from the target groups.
Therefore, we conducted two usability studies. The first study was conducted with 10
therapists and 10 clients, who worked together in pairs. The second study took place
with two usability experts, one of them took over the role of the therapist and the
other the role of the client.

It is good practice to inform participants during recruitment on the phone about
what will happen during the usability tests (e.g., if they will be recorded with video
cameras and microphones) and especially about GDPR. If this is not done in the worst
case a participant shows up and does not agree to be recorded. In this case, the test
ends before it begins, and the time of every person involved is wasted. Some of our
participants stated at the beginning of the tests that they feel a little bit uncomfortable
when being filmed. However, every participant agreed to sign the GDPR document. If
they would not be informed beforehand, during the recruitment phase, some of them
maybe would refuse to cooperate right at the beginning of the test.

4.4 Selection of the usability test personnel

The consideration about who should lead and observe the usability tests should be
taken right at the beginning of the planning phase. Deep knowledge of usability test-
ing is strongly needed especially for the facilitator. Ideally, the whole of the usability
personnel contributes during the planning phase. As well it should be decided who is
responsible for analyzing the findings after the usability tests [17].

In our case: We have decided to run the tests with just one person. Aside from other
reasons, limited resources led us to this decision. This means the facilitator was in
charge of all interactions with the participants, doing observations during the usability
tests, and handling the hardware. Doing so can be described as possibly stressful for the
facilitator. However, it is feasible. Simply ensure that this person is very well prepared
and can handle hardware and malfunctions of the hardware in proper time by themself.

Potential for improvement: If two or more participants work together on a usabil-
ity test at the same time, each one should be observed by one distinct observer. The
facilitator might take on the role of one observer in such a scenario. Activities like
preparing documents or preparing the hardware and product(s) used in the usability
test can be shared between those persons. In any case, observing the participants
should be shared. Focusing on one participant while taking notes has a huge poten-
tial in increasing the quality of the notes whilst also reducing the time spent during
analysis of the notes after.

4.5 Defining the usability test methods

The aim(s) of the usability study and the product to be tested has a huge impact on
choosing the right testing method. Also, choosing more than one testing method can
lead to improved results. Because of the variety of available testing methods and the
novelty of testing methods for AR and VR this selection process is described in detail
in chapter 3: Selection of Suitable Usability Testing Methods.

4.6 Defining the tasks

After deciding these details, the tasks of the usability studies and/or the questions
of the questionnaires must be defined. Depending on the selected testing method(s)
and the product to test, the tasks that the participants of the usability study have to

99

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

accomplish are very different. Always keep the aim(s) of the study in mind when it
comes to creating the tasks.

Besides defining the tasks, it can also be necessary to prepare additional informa-
tion. When using an expert usability method, it might be essential to present results
of personas, empathy maps, or similar tests to them.

In our case: In usability study one, we wanted the therapists and clients to act as
they do normally during such a screening. Therefore, no specific tasks were defined.
The only task was to do the screening. Therapists were introduced to the screening
tool in advance and most of them had also done several screenings before the usabil-
ity test. The clients are instructed by the therapists and do not have to have special
knowledge about the screening methods.

When it comes to the expert test, the whole story looks a little bit different. The
usability experts do not have knowledge about the screening methods. Nor do they
have domain knowledge in the field of the therapists like physical therapy, occupational
therapy, dietetics, or speech therapy. To make them familiar with the screenings, the
screening method itself and the therapeutic background were explained. Special func-
tions regarding the software were not. As well they have to be provided with detailed
information about the target groups in the form of personas and empathy maps.

Besides thinking about tasks themselves, how the task completion can be mea-
sured and evaluated has to be considered as well during the preparation phase. In our
case, we gathered qualitative data during the observation and categorized it with a
coding scheme, and prioritized them by importance and urgency (see 6.3 Notes of the
Observations and Codes).

When questionnaires will be used, the questions should be developed during the
planning phase. A scale to rate the answers must also be defined. As a scale we used a
five-level Likert scale with the following items:

Strongly disagree - Disagree - Neither agree nor disagree - Agree - Strongly agree.

4.7 Defining the documentation method(s)

Last but not least, during preparation, the documentation and analysis of the
usability studies have to be considered. It’s important to get an overview of needed
hardware and software. As well it is an important step in planning to decide, when
and where to place which camera(s). This is going to be discussed in Section 6
Documentation and Analysis.

After writing about the preparation phase, we describe in the next section, how we
have carried out the usability tests.

5. Carrying out the usability tests

Below we try to give an overview of steps, which were very important for our
usability studies. Again, like in the previous sections, more detailed information can be
found in usability literature written by Barnum [17] or Nielsen [18]. The focus of this
chapter stays on a hands-on report, where we try to show what we have done and why.

5.1 Usability study 1: observed summative evaluation

The first usability study was done in the form of an observation followed by
a posttest questionnaire. It was combined with screenings under real conditions.

Updates on Software Usability

100

10 therapists and 10 clients were recruited for the usability tests. They had been
informed about GDPR in advance and were willing to be filmed when they arrived.
Starting with an introduction to usability and the reasons for the usability study,
the facilitator activated all the video cameras and screen recorders. By clapping his
hands, the audio signal for synchronization was given. Retreated to the background,
the facilitator started taking notes. From screening to screening the facilitator had to
change the positions of the cameras. The rest of the time, he tried to be in the back-
ground not influencing the screening.

After the screenings, a posttest questionnaire was handed out, where therapists
and clients got different questions. The aim of the questionnaires was to gather
additional feedback and to better understand the actions taken by the users during
the usability test.

Potential for improvement: It might be better if every person who is to be observed
would get a distinct observer. Observing two persons at a time is possible. But more
detailed notes can be taken, if one observer can concentrate on a single user.

5.2 Usability study 2: cognitive walkthrough as a Co-discovery

As mentioned before, cognitive walkthrough was chosen as a method to gain deep
insights into the usability from experts. Because of the fact that during the screenings
therapists work in pairs with their clients, the method of co-discovery was also utilized.
So, two usability experts were invited to analyze the product using the method of a
cognitive walkthrough working in pairs, which is typical for the co-discovery method.

The agenda of the cognitive walkthrough was quite tough. All of the four screen-
ings which utilize AR and VR have to be tested by experts. The experts themselves
have profound knowledge about usability, computer science, interaction design, and
didactics. But what they do not have is knowledge about medicine, health care, and
traditional screening methods. Therefore, they must be introduced to every single
screening, while not showing them too much detail about the software before the
usability test starts. In doing this, the facilitator followed this outline, whereas 0x is a
placeholder for all 4 screenings. So those three parts are carried out 4 times in the test.

• Introduction to the project

• Introduction to the personas and empathy maps

• Introduction to screening 0x

• Carrying out screening 0x

• Discussion about the main issues during screening 0x

• Closing remarks

While the screening took place, everything was filmed by a screen recorder with
an activated microphone in the therapist’s tablet computer. Notes were taken by the
facilitator during the screenings as well as during the discussion of each screening.
During the phase of discussing a screening, the screen recording was very valuable.
Uncertainties during the discussion about what was happening before the screening
could be clarified easily.

101

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

A very important point to discuss when planning the agenda are the breaks. The
whole usability test session took us about 6 hours. It is really hard for the experts and
for the facilitator to stay focused. A coffee break, some sweets and a lunch with time
for networking were very important to stay on task.

More detailed information about the process of the cognitive walkthrough itself
can be found in the next section, where one of the usability experts outline his experi-
ences during the test.

Potential for improvement: At the beginning, special terms which are used within
the product should be presented and clarified. A small, printed dictionary might help
a lot, too, when wording is not clear.

It turned out, that during expert tests the experts also tend to give feedback about
the usability test itself. One of their suggestions was given in relation to the empathy
maps. Those should be extended to mood boards, where personas can be seen in
different situations which are important for the product. Grouping and categorizing
feelings take a very important place as well and should be designed in a proper way.

The section below is written by one of the participating usability experts and
should give insights into the perspective of the experts during the usability test.

5.3 Impressions from participating usability experts

The task was to review the usability of the dashboard application used by thera-
pists and the applications used by the clients during a screening. Furthermore, the
communication and interaction between therapists and clients have to be assessed.

Right at the beginning of the usability test, it became clear that a lot of used terms
were not clear at all. Wording is a very important point in communication.

We have to take into account a large number of different roles and needs, wishes,
and fears associated with them. The roles that we two usability experts are supposed
to assume are extremely differentiated. The introduction to the personas was essential
to conducting the cognitive walkthrough. The phase of discussing persona descrip-
tions and empathy maps took much longer than planned. The facilitator accepted
these circumstances and altered the complete test schedule on the fly. Without deep
knowledge about the target groups, the whole test might be completely senseless.
Accordingly, it is a very unusual constellation in which a conventional setup would
not have the desired success.

After studying and discussing personas and empathy maps in detail, we decided to
change roles after each screening. This decision was made because our experiences in
AR and VR methods were seen as helpful for the test settings. Also, more precise and
differentiated findings were expected. This alternation was very helpful to act and
discuss on a meta-level. Therefore, discussions not only about one single screening
were held. Moreover, the complete screening tool was present during all steps of the
usability test and was evaluated and accessed as a whole product.

6. Documentation and analysis

When it comes to taking notes using a coding scheme, recording several videos
of the observation, synchronizing all the media created during the usability tests,
and documenting and presenting the gathered and aggregated data, special usability
testing software can be very handy. Unfortunately, when using usability software,
costs emerge most times. If the budget for usability tests is severely limited, and you

Updates on Software Usability

102

are familiar with spreadsheet software like Microsoft Excel or something similar, you
can use that software to design customized observation sheets, which is shown later.
In the following section, the process of taking videos for documentation and analysis
purposes will be discussed.

6.1 Interactions in the real world

Depending on the format of documentation, different pieces of hardware, like
video cameras, microphones, and software (like special screen recorders) are needed.
If interactions in a real environment are important, digital video cameras can be used.
If interactions are distributed around in the real environment, a camera that can
record spherical 360-degree video [34–36] of a whole scene at once might prove to be
very useful [18].

In our case, we were interested in task completion in the smartphone, tablet, AR,
and VR applications. It was very important for us to see the connection between tasks
in the software and interaction in the real environment. Therefore, interactions in the
real environment were recorded by two cameras facing each other to cover the whole
test area. Additionally, we recorded spherical 360-degree video with the Ricoh Theta
Z1 [37]. For each screening, the setting, shown as an example in Figure 6, has to be
adapted a little bit.

But, recording video in the real world is not enough, when it comes to testing the
usability of AR and VR scenarios.

6.2 Seeing through the users eyes

To see what users see is essential to understand interactions of users acting in AR
and VR Applications. In the area of VR applications, screen recording software is
sufficient most of the time. Hardware like the Oculus Quest 2 allows screen recording
directly in the menu of the headset [38].

Figure 6.
Positions of the video hardware for the VR screenings.

103

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

When thinking about AR scenarios, screen recorders reach their limits. Depending
on the techniques used to superimpose the real world, screen recorders might not be
able to be used. When working with optical see-through devices like the Microsoft
Hololens a technique called spectator view comes into account. This technique allows
us to record not only the virtual objects rendered into the sight of users but rather the
whole virtual and real environment [39].

In our case, when it comes to interaction with the software, we have used
Android’s built-in screen recording tool on the therapist tablet computer. This solved
two problems at once: within this screen recording we can reconstruct when which
button was pressed by the therapist. As well, due to the fact that the therapist sees
inside the tablet software exactly what the client sees, the view through the user’s eyes
is also recorded without any further screen recording software.

After the usability tests, the video material of all cameras must be synchronized
and put together in a single video (Figure 7). A situation where this is not possible is
with spherical 360-degree videos. They need special players to be shown most times.
Synchronization of traditional recorded videos and screen videos works well with simple
audio signals like clapping hands several times. Therefore, the microphones for each
video camera and the ones connected to screen recorders must be activated. The step of
synchronization should be done, to have one single video stream to have a look at, when
the notes, which are going to be described in the next section, show interesting behavior.

6.3 Notes and codes

Before taking notes, a coding scheme should be created. As a coding scheme, we
usually see a short description (1 or 2 words) or title to help to categorize all possible
different findings during the usability observation. It can be very helpful to discuss

Figure 7.
All video-streams combined.

Updates on Software Usability

104

Figure 9.
Automatic creation of timestamps.

Figure 8.
Suggested use of excel spreadsheet for observations.

105

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

these codes with the development and usability team. Here, a pre-test is essential, to
test and alter the coding scheme if necessary. Most times it is necessary.

The structure illustrated in Figure 8 was very helpful for us. In column A the time
of day was entered automatically when the code of the observed item was entered
in the cell in column C. As well, based on the start time of the observation (cell A9)
the corresponding timecode was calculated and entered automatically in the cor-
responding cell in column B. How to accomplish these two calculations in Microsoft
Excel (Version 16.62 for Macintosh computers) is shown in Figure 9. The Timecode is
extremely important when it comes to analyzing the video recordings. As mentioned
in the section about the documentation using video an acoustic signal can be used to
synchronize the recordings. At the moment of this signal, the first code (code START)
has to be entered in column C9. From now on, the timecode of the observations is
exactly the same as the timecode of the documentation of the video recordings.

If the calculations are not executed immediately after entering the code in column
C, open Excel preferences and set in the menu calculation the calculation option to
automatic. The option “Use iterative calculation” should be activated too. Otherwise,
a warning about circular references might prohibit entering values. The appropriate
setting for both options is illustrated in Figure 10.

7. Conclusions

Analyzing usability is a challenging task, whether the item to test is a traditional
desktop application or a hardware-intensive MR scenario. Traditional usability meth-
ods, like the ones presented in this chapter, are useful and established. So, also for
new purposes like AR, VR, and MR the traditional methodologies can be very helpful,
at least as a starting point for research on new methods or to alter traditional methods
to fit the items to test.

Furthermore, seeing through the user’s eyes has a tremendous impact on usability
studies, when it comes to testing usability of AR, VR, and MR applications and sce-
narios. We were sure that it is crucial for the whole project, that therapists can exactly

Figure 10.
Calculation options.

Updates on Software Usability

106

see what clients see. But, also for the analysis of the usability studies, it was extremely
helpful to watch the screen recording of the tablet software, where the viewport of
the clients was shown. It assisted us in discussing usability issues with the experts
after each screening.

In addition to that, we must emphasize, how important it is to inform participants
during recruiting about the procedure of the usability test and, if applicable, that they
will be filmed.

Regarding the process of observing a co-discovery, we can strongly recommend
recruiting at least one observer per participant. The facilitator can take both roles,
of course, ensuring that one observer is available per participant. The needs of the
participants can, in this manner, be handled easier and observation results may be
more detailed.

Last but not least, never underestimate the importance of detailed and lively
persona descriptions. Combined with empathy maps they are a great tool, to help
someone to take over the role of users from the target group(s). And, as the usability
experts stated, empathy maps and personas can be enriched by pictures in the style of
a mood board.

Acknowledgements

We’d like to thank all of our colleagues at the University of Applied Sciences FH
JOANNEUM, who worked enthusiastically on the project SCOBES-AR and enabled
the creation of the screening tool as well as the development of the software and
the usability studies. Beginning with the project manager Wolfgang Staubmann, all
other colleagues are presented in alphabetical order: Hannes Aftenberger, Konrad
Baumann, Monica Christova, Theresa Draxler, Brigitte Loder-Fink, Bernhard
Guggenberger, Ulrike Hauser, Nina Maas, Bianca Fuchs-Neuhold, Christoph Palli,
Rene Pilz, Lucia Ransmayr, Helmut Simi, Anna Steiner, and Elisabeth Url.

As well we‘d like to thank our students Miriam Grainer, Stefan Krasser, Lukas
Bichler, Gerhard Zwitkovits and Andreas Krejan, who developed very helpful proto-
types as starting points for the screening tool.

For proofreading and important remarks, we’d kindly like to thank Skye Sprung.
Finally, we thank the Austrian Institute of Technology for providing the backend

system and securely hosting the collected data.
The project SCOBES-AR is funded by the Austrian Research Promotion Agency

(FFG) under grant number 866873.

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

107

Author details

Robert Strohmaier*, Gerhard Sprung, Alexander Nischelwitzer
and Sandra Schadenbauer
FH JOANNEUM, Institute of Business Informatics and Data Science, Graz, Austria

*Address all correspondence to: robert.strohmaier@fh-joanneum.at

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Updates on Software Usability

108

References

[1] Vogel J, Koßmann C, Schuir J,
Kleine N, Sievering J. Virtual- und
augmented-reality-definitionen
im interdisziplinären Vergleich. In:
Thomas O, Ickerott I, editors. Smart
Glasses. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2020. pp. 19-50

[2] Azuma R. A survey of augmented
reality. Presence: Teleoperators and
Virtual Environments. 1997;6(4):355-385

[3] Milgram P, Takemura H, Utsumi A,
Kishino F. Augmented reality: A class
of displays on the reality-virtuality
continuum. In: 1995 SPIE Proceedings
Vol. 2351: Telemanipulator and
Telepresence Technologies. Boston, MA.
1995. pp. 282-292

[4] Jerald J. The VR Book: Human-
Centered Design for Virtual Reality. New
York, San Rafael, California: Association
for Computing Machinery Morgan &
Claypool Publishers; 2016

[5] FH Joanneum Gesellschaft mbH.
Mixed Reality Prototype of Multimodal
Screening for Early Detection of
Cognitive Impairments in Elderly:
Protocol Development and Usability
Study [Internet]. clinicaltrials.gov; 2022.
Report No.: NCT05403814. Available
from: https://clinicaltrials.gov/ct2/show/
NCT05403814

[6] Tischler L, Petermann F. Trail making
test (TMT). Zeitschrift für Psychiatrie,
Psychologie und Psychotherapie.
2010;58(1):79-81

[7] Rasmusson DX, Zonderman AB,
Kawas C, Resnick SM. Effects of age and
dementia on the trail making test. The
Clinical Neuropsychologist. 1998;12(2):
169-178

[8] Flic 2|The Smart Button for Lights,
Music, Smart Home and More. Flic
Smart Button. 2022. Available from:
https://flic.io/

[9] Hunter SW, Divine A, Frengopoulos C,
Montero OM. A framework for secondary
cognitive and motor tasks in dual-
task gait testing in people with mild
cognitive impairment. BMC Geriatrics.
2018;18(1):202

[10] TDS Hardware 2011. 2022. Available
from: http://www.werthner.at/tds/tds-
german/tds-hardware1.htm

[11] TDS Test Stand 2011-11. 2022.
Available from: http://www.werthner.at/
tds/tds-german/tds-test1.htm

[12] Luttenberger K, Reppermund S,
Schmiedeberg-Sohn A, Book S,
Graessel E. Validation of the Erlangen
test of activities of daily living in persons
with mild dementia or mild cognitive
impairment (ETAM). BMC Geriatrics.
2016;16(1):111

[13] Merino L, Schwarzl M, Kraus M,
Sedlmair M, Schmalstieg D, Weiskopf D.
Evaluating Mixed and Augmented Reality:
A Systematic Literature Review (2009-
2019). In: 2020 IEEE International
Symposium on Mixed and Augmented
Reality (ISMAR). Porto de Galinhas,
Brazil: IEEE; 2020. pp. 438-451

[14] Pranoto H, Tho C, Warnars HLHS,
Abdurachman E, Gaol FL, Soewito B.
Usability Testing Method in Augmented
Reality Application. In: 2017 International
Conference on Information Management
and Technology (ICIMTech). Yogyakarta:
IEEE; 2017. pp. 181-186

[15] Karre SA, Mathur N, Reddy YR.
Usability Evaluation of VR Products in
Industry: A Systematic Literature Review.

Usability Testing of Mixed Reality Scenarios: A Hands-on Report
DOI: http://dx.doi.org/10.5772/intechopen.107792

109

In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing.
Limassol Cyprus: ACM; 2019. pp.
1845-1851

[16] Putze S, Alexandrovsky D, Putze F,
Höffner S, Smeddinck JD, Malaka R.
Breaking the Experience: Effects of
Questionnaires in VR User Studies. In:
Proceedings of the 2020 CHI Conference
on Human Factors in Computing
Systems. Honolulu, HI, USA: ACM;
2020. pp. 1-15

[17] Barnum CM, editor. Usability Testing
Essentials. 2nd ed. Morgan Kaufmann;
2021

[18] Nielsen J. Usability Engineering. San
Diego, CA: Academic Press; 1993

[19] Richter M, Flückiger MD. Usability
und UX kompakt. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2016

[20] Experience WL in RBU. 10 Usability
Heuristics for User Interface Design.
Nielsen Norman Group. 2022. Available
from: https://www.nngroup.com/
articles/ten-usability-heuristics/

[21] Sarodnick F, Brau H. Methoden der
Usability Evaluation: wissenschaftliche
Grundlagen und praktische Anwendung.
Bern: Huber; 2006. p. 251

[22] Sutcliffe A, Gault B. Heuristic
evaluation of virtual reality applications.
Interacting with Computers.
2004;16(4):831-849

[23] Rusu C, Munoz R, Roncagliolo S,
Rudloff S, Rusu V, Figueroa A. Usability
heuristics for virtual worlds. In: AFIN
International Conference on Advances
in Future Internet. France: Nice/Saint
Laurent du Var; 2011

[24] Murtza R, Monroe S, Youmans RJ.
Heuristic evaluation for virtual reality

systems. Proceedings of the Human
Factors and Ergonomics Society Annual
Meeting. 2017;61(1):2067-2071

[25] Gale N, Mirza-Babaei P, Pedersen I.
Heuristic Guidelines for Playful Wearable
Augmented Reality Applications.
In: Proceedings of the 2015 Annual
Symposium on Computer-Human
Interaction in Play. London United
Kingdom: ACM; 2015. pp. 529-534

[26] Endsley TC, Sprehn KA, Brill RM,
Ryan KJ, Vincent EC, Martin JM.
Augmented reality design heuristics:
Designing for dynamic interactions.
Proceedings of the Human Factors and
Ergonomics Society Annual Meeting.
2017;61(1):2100-2104

[27] Bolder A, Grünvogel SM,
Angelescu E. Comparison of the usability
of a car infotainment system in a mixed
reality environment and in a real
car. In: Proceedings of the 24th ACM
Symposium on Virtual Reality Software
and Technology. Tokyo Japan: ACM;
2018. pp. 1-10

[28] Cavalcanti VC, de Santana MI,
Gama AEFD, Correia WFM. Usability
assessments for augmented reality
motor rehabilitation solutions: A
systematic review. International Journal
of Computer Games Technology.
2018;2018:1-18

[29] Geisen E, Bergstrom JR. Usability
Testing for Survey Research.
Cambridge, MA: Morgan Kaufmann
Publisher; 2017

[30] Kalawsky RS. VRUSE—A
computerised diagnostic tool: For
usability evaluation of virtual/
synthetic environment systems. Applied
Ergonomics. 1999;30(1):11-25

[31] Barnum CM. Usability Testing and
Research. New York, N.Y: Longman; 2002

Updates on Software Usability

110

[32] Pabst M. General Data Protection
Regulation (GDPR) – Official Legal
Text [Internet]. General Data Protection
Regulation (GDPR). 2022. Available
from: https://gdpr-info.eu/

[33] Unternehmensberatung A.
Datenschutz-Grundverordnung
(DSGVO) - JUSLINE Österreich
[Internet]. 2022. Available from:
https://www.jusline.at/gesetz/dsgvo

[34] What is Samsung Gear 360
camera?. Samsung uk. 2022. Available
from: https://www.samsung.
com/uk/support/mobile-devices/
what-is-samsung-gear-360-camera/

[35] MAX 6K Waterproof 360-Degree
Action Camera | GoPro. 2022. Available
from: https://gopro.com/en/us/shop/
cameras/max/CHDHZ-202-master.html

[36] 360-degree camera RICOH THETA.
2022. Available from: https://theta360.
com/en/

[37] RICOH THETA Z1. 2022. Available
from: https://theta360.com/de/about/
theta/z1.html

[38] Oculus Quest 2. Oculus Quest 2:
Unser bisher bestes, neues all-in-one
VR-Headset | Oculus [Internet]. Oculus
Quest 2. 2022. Available from: https://
www.oculus.com/quest-2/?locale=de_DE

[39] Blog MD. How-to: Spectator View,
a new tool to help others see what you
see in HoloLens [Internet]. Microsoft
Devices Blog. 2017 2022. Available
from: https://blogs.windows.com/
devices/2017/02/13/spectator-view-new-
tool-help-others-see-see-hololens/

Updates on
Software Usability

Edited by Laura M. Castro

Edited by Laura M. Castro

Updates on Software Usability is a collection of high-quality contributions for
developers and non-developers alike. Beyond the preliminaries, the book is

organized into two other parts: “Designing for Usability” and “Testing for Usability”.
The chapters in the second section, “Designing for Usability”, offer valuable insights

and practical guidance to take into account during the early stages of product
conception and development. On the other hand, the chapters in the third section,
“Testing for Usability”, reflect and formalize software usability’s evaluation and

validation processes. These two complementary views on the subject make this book
a balanced and comprehensive volume, which the reader will undoubtedly find both

interesting and useful.

Published in London, UK

© 2023 IntechOpen
© ktsimage / iStock

ISBN 978-1-80356-635-1

U
pdates on Soft

w
are U

sability

ISBN 978-1-80356-637-5

	Updates on Software Usability
	Contents
	Preface
	Section 1
Preliminaries
	Chapter1
Introductory Chapter: Why Usability Matters

	Section 2
Designing for Usability
	Chapter2
Designing“Landing Page” forWebsites Based on the User Experience: Review, Analysis, and Interpretation
	Chapter3
Managing Quantities and Units of Measurement in Code Bases

	Section 3
Testing for Usability
	Chapter4
UsabilityTesting Methods and Usability Laboratory Management
	Chapter5
UsabilityTesting of Mixed Reality Scenarios: A Hands-on Report

