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and the computational methods used. The book’s five chapters are divided into two 
sections. Section 1, “Modeling and Formulations of Inverse Problems”, discusses new 
approaches in the modeling and formulation of inverse problems in some physical 
systems. Chapter 1 formulates the initial statement of the inverse problem. Chapter 2 
introduces recent applications of the Ensemble Kalman Filter to inverse problems, 
known as ensemble Kalman inversion. The subject of Chapter 3 is the evaluation 
of gradients in inverse problems where spatial field parameters and geometry 
 parameters are treated separately.

Section 2, “Some Computational Aspects”, concerns mathematical methods of solving 
some inverse problems. Chapter 4 reviews individual solutions for the tomographic 
problem, including strategies for removing deficiencies of the ill-posed problem by 
using truncated singular value decomposition and the L-curve technique. Chapter 5 
discusses the least norm of the solution to some system of quaternion matrix equations 
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Chapter 1

Introductory Chapter: Some
Preliminary Aspects of Inverse
Problem
Ivan I. Kyrchei

1. Introduction

Physical research in science can be divided into two groups. The first is that when by
complete description of a physical system, we can predict the outcome of some mea-
surements. This problem is called the modelization problem or the forward problem.
The second group of research consists of using the actual result of some observations to
infer the values of the parameters that characterize the system. It is the inverse problem,
which starts with the causes and then calculates the effects. The importance of inverse
problems is that they tell us about physical parameters that we cannot directly observe.

2. Primary equations of inverse problem

The inverse problem is that one wants to determine the model parameters p that
produce the observed data or measurements d. F stays for some measurement operator
that maps parameters in a functional spaceP, typically a Banach or Hilbert space, to the
space of dataD, typically another Banach or Hilbert space.

d ¼ Fp for p∈P and d∈D: (1)

Solving the inverse problem amounts to finding point(s) p∈P from knowledge of the
data d∈D such that Eq. (1) (or its approximation) holds. In the case of a measurement,
operator is linear and there is a finite number of parameters, Eq. (1) can be written as a
linear system, where F is the matrix that characterizes the measurement operator, andP
and d∈D are corresponding vector spaces. Such inverse problem is called linear.

Inverse problems may be difficult to solve for at least two different reasons:

1.Different values of the model parameters may be not consistent with the data;

2.Discovering the values of the model parameters may require the exploration of a
huge parameter space.

If it is acquired enough data to uniquely reconstruct the parameters, then the
measurement operator can be injective, which means

F p1
� � ¼ F p2

� � ) p1 ¼ p2 for all p1, p2 ∈P: (2)

3



When F is injective, one can construct an inversion operator F�1 mapping the
range of F to a uniquely defined element P. In the case of a linear inverse problem,
F�1 is an inverse matrix. Further, the main features of the inverse operator are
characterized by stability estimates that quantify how errors in the available mea-
surements translate into errors in the reconstructions. It can be expressed as follows:

∥p1 � p2∥P ≤ α∥F p1
� �� F p2

� �
∥D: (3)

Where α : ℝþ ! ℝþ stay for an increasing function, such that α 0ð Þ ¼ 0. This
function gives an estimate of the reconstruction error ∥p1 � p2∥P based on the error in
the data ∥F p1

� �� F p2
� �

∥D. When the reconstructed parameters are acceptable, for
instance when α xð Þ ¼ Cx for some constant C, then the inverse problem is called well-
posed. When the reconstruction is contaminated by too large a noisy component, then
the inverse problem is ill-posed.

Injectivity of F means satisfying the two conditions for a well-posed problem
suggested by Jacques Hadamard [1], Existence and Uniqueness of solutions. Eq. (3) is
the third Hadamard’s condition, which is Stability of the solution or solutions.

Typically, inverse problems are ill-posed. Even when we have a linear inverse prob-
lem with invertible matrix F, it gives an ill-posed problem that can be solved by using
the Moore-Penrose inverse matrix [2, 3] and least squares solutions inducted by it.

The goal of many experiments is to infer a property or attribute from data that is
indirectly related to the unknown quantity. Parameter estimation problems usually
satisfy the first criterion of well-posed problems, since something is responsible for
the observed system response. Instead, they violate the third criterion and” almost”
violate the second criterion because many different candidate solutions exist that,
when substituted into the measurement model, produce very similar data. The condi-
tion of stability is often violated, because the inverse problem is represented by a
mapping between metric spaces, but inverse problems are often formulated in infinite
dimensional spaces. Therefore, limitations to a finite number of measurements, and
the practical consideration of recovering only a finite number of unknown parameters
may lead to the problems being recast in discrete form. In this case, the inverse
problem is typically ill-conditioned and a regularization can be used. One of the most
famous regularizations is the Tikhonov regularization [4]. The idea of Tikhonov
regularization may be introduced as follows. In its simplest form, it consists in
replacing the Eq. (1) with the second kind of equation

F ∗Fpþ αp ¼ F ∗ d (4)

where α is a positive parameter. It leads to that the problem of solving Eq. (4) is
well-posed.

Unlike parameter estimation, inverse problems often violate Hadamard’s first
criterion since an optimal design outcome may be specified that cannot possibly be
produced by the system. On the other hand, the existence of multiple designs (solu-
tions) that produce an acceptable outcome violates the second criterion. From these, it
follows inverse problems that are mathematically ill-posed due to an information
deficit. In the parameter estimation case, the measurements barely provide sufficient
information to specify a unique solution, and in some cases, the data could be
explained by an infinite set of candidate solutions. Information from measurement
data and prior information can be combined through Bayes’ equation to produce
estimates for the Quantities-of-Interest (QoI). In this approach, the measurements, d,
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and the QoI, x∈P, are interpreted as random variables that obey probability density
functions (PDFs). The PDFs are related by Bayes’ equation

P xjdð Þ ¼ P djxð Þ
P dð Þ Ppr xð Þ (5)

where P djxð Þ is the likelihood of the observed data occurring for a hypothetical
parameter x, accounting for measurement noise and model error (“likelihood PDF”),
Ppr xð Þ defines what is known before the measurement takes place about a hypothetical
parameter x, (“prior PDF”), P xjdð Þ is the posterior PDF, which defines what is known
about x from both the measurements and prior information, and P dð Þ is the evidence,
which scales the posterior so that it satisfies the law of total probabilities.

Therefore, “the most general theory is obtained by using a probabilistic point of view,
where the a priori information on the model parameters is represented by a probability
distribution over the”model space”. A priori probability distribution is transformed into the
a posteriori probability distribution, by incorporating a physical theory (relating the model
parameters to some observable parameters) and the actual result of the observations (with
their uncertainties)” [5].

Author details

Ivan I. Kyrchei
Pidstrygach Institute for Applied Problems of Mechanics and Mathematics, NASU,
Lviv, Ukraine

*Address all correspondence to: ivankyrchei26@gmail.com

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

5

Introductory Chapter: Some Preliminary Aspects of Inverse Problem
DOI: http://dx.doi.org/10.5772/intechopen.109583



References

[1] Hadamard J. Lectures on Cauchy’s
Problems in Linear Partial Differential
Equations. New Haven: Yale University
Press; 1923 (Reprinted by Dover, New
York, 1952)

[2] Moore EH. On the reciprocal of the
general algebraic matrix. Bulletin of the
American Mathematical Society. 1920;
26(9):394-395. DOI: 10.1090/
S0002-9904-1920-03322-7

[3] Penrose R. On best approximate
solution of linear matrix equations.
Proceedings of the Cambridge
Philosophical Society. 1956;52(1):17-19.
DOI: 10.1017/S0305004100030929

[4] Tikhonov AN, Arsenin VY. Solution
of Ill-Posed Problems. Washington:
Winston & Sons; 1977. ISBN 0-470-
99124-0

[5] Tarantola A. Inverse Problem Theory
and Methods for Model Parameter
Estimation. Philadelphia: SIAM; 2005.
ISBN 0-89871-572-5

6

Inverse Problems - Recent Advances and Applications



Chapter 2

A Review of the EnKF for
Parameter Estimation
Neil K. Chada

Abstract

The ensemble Kalman filter is a well-known and celebrated data assimilation
algorithm. It is of particular relevance as it used for high-dimensional problems, by
updating an ensemble of particles through a sample mean and covariance matrices. In
this chapter we present a relatively recent topic which is the application of the
EnKF to inverse problems, known as ensemble Kalman Inversion (EKI). EKI is used
for parameter estimation, which can be viewed as a black-box optimizer for
PDE-constrained inverse problems. We present in this chapter a review of the
discussed methodology, while presenting emerging and new areas of research, where
numerical experiments are provided on numerous interesting models arising in
geosciences and numerical weather prediction.

Keywords: ensemble Kalman filter, Kalman filter, inverse problems, parameter
estimation, data assimilation, optimization

1. Introduction

Inverse problems [1–3] are a class of mathematical problems which have gained
significant attention of recent. Simply put, inverse problems are concerned with the
recovery of some parameter of interest from noisy unstructured data. Mathematically
we can express an inverse problem as the recovery of u∈X from noisy measurements
of data y∈Y, expressed as

y ¼ G uð Þ þ η, (1)

where G : X ! Y is the forward operator, and η � N 0, Γð Þ is some form of
additive Gaussian noise. SpecificallyN 0, Γð Þ denotes a normal distribution with mean
0 and variance Γ. Commonly the covariance can be taken to be some form of the
identity, i.e. Γ ¼ γ2I, where γ ∈ is some constant and I is the identity. Inverse
problems are of high interest due to the amount of relevant problems that arise in
wide variety of applications, most notably geophysical sciences, medical imaging and
numerical weather prediction [4–6]. The classical approach to solving inverse prob-
lems, which is the theme of this chapter, is to construct a least-squares functional, and
the solution is represented as a minimizer of some functional of the form

7



u ∗≔argmin
u∈X

1
2
∥y� G uð Þ∥2Γ þ λR uð Þ, (2)

where λ>0 is a regularization parameter and R uð Þ is some regularization term,
usually required to prevent the overfitting of the data. A common example is
Tikhonov regularization, i.e. R uð Þ ¼ 1

2 ∥u∥
2. Traditional methods for solving (1)

include optimization schemes such as the Gauss–Newton method, or Levenburg–
Marquardt method which require derivative information of G, which can prove costly
and cumbersome. Therefore a motivation for solving inverse problems is to provide
gradient-free optimizers which can reduce this computational burden, while attaining
a good level of accuracy. The methodology that we motivate, which alleviates these
issues, is that of ensemble Kalman inversion (EKI). EKI can be viewed as the applica-
tion of the ensemble Kalman filter (EnKF) to inverse problems, which is a natural way
to solve inverse problems given the connections between data assimilation and inverse
problems. The EnKF is a Monte-Carlo version of the celebrated Kalman filter, which is
more favorable in high-dimensions. It operates by updating an ensemble of particles
through sample mean and covariances. In particular we will take the viewpoint of EKI
which acts as PDE-constrained derivative-free optimizer. Therefore EKI can be
viewed as a black-box solver where no derivative information is required. Since this
method was proposed for inverse problems, it has seen wide applications to various
engineering-based applications, as well as developments related to both theory and
methodology. In this chapter we discuss some of these keys concepts and insights,
while briefly mentioning particular directions with EKI.

The general outline of these chapter is as follows. In Section 2 we provide the
necessary background material, which covers the basics of EKI with some intuition
and motivation We will discuss the algorithm in both the usual discrete-time setting,
but also the continuous-time setting. This will lead onto Section 3 where we discuss
one recent direction which is that of regularization theory, and its application to EKI.
Furthermore we will also discuss how EKI can be extended to the notion of sampling
in statistics within Section 4. Other, less-developed, directions are provided in Section
5. Numerical experiments are provided in basic settings in Section 6 on a number of
basic differential equations, before providing some future remarks and a conclusion in
Section 7.

2. EKI: background material

In this section we provide the background material related to the understanding
and intiution of EKI. This will begin with a discussion on the ensemble Kalman filter,
and how it connections with EKI. We will then present EKI in its vanilla form, which
is a discrete-time optimizer, before discussing its connections with various existing
methods. Finally we will extend the original formulation to the setting of continuous-
time where we aim to provide a gradient flow structure of the resulting equations.

2.1 Kalman filtering

The ensemble Kalman filter (EnKF), is a popular methodology based on the cele-
brated Kalman filter (KF), which was originally developed by Rudolph Kalman in the
1960s [7, 8]. The Kalman filters initial aim was to solve a recursive estimation problem

8
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from dynamics processes and systems. Specifically the KF aims to merge data with
model, or signal, dynamics where both equations have the form

unþ1 ¼ Ψ unð Þ þ ξn, ξnf gn∈ℤþ � N 0, Σð Þ, (3)

ynþ1 ¼ H unþ1ð Þ þ ηnþ1, ηnþ1
� �

n∈ℤþ � N 0, Γð Þ: (4)

Here unf gn∈ℤþ is our signal which is updated through a forward operator
Ψ : m ! m, which when combined with noise, provides the update unþ1. Our data is
denoted as ynþ1 which is produced by sending our updated signal through the operator
H : m ! m, where m>m, which is known as observational operator. Our initial
conditions for the system are given as u0 � N m0, C0ð Þ. This area of recursive estima-
tion, in this setup, became to be known as data assimilation [9, 10].

In particular in the linear and Gaussian setting, where the dynamics and noise are
Gaussian, the KF updates state using the first two moments, which we know are the
mean and covariance. Assume that the state-space dimension is d∈Rþ, then the cost
of the KF has complexity O d2

� �
. For high-dimensional examples this can be an issue,

therefore an algorithm that was developed to alleviate this is the EnKF, a Monte Carlo
version, proposed by Evensen [11, 12].

The EnKF operates by replacing the true covariance by a sample covariance and

mean and updates an ensemble of particles u jð Þ
n , with 1≤ j≤ J particles, using these

moments combined with information from the data. The EnKF can be split into a two-
step procedure, which is the prediction step

û jð Þ
nþ1 ¼ Ψ u jð Þ

n

� �
þ ξ jð Þ

n , m̂nþ1 ¼ 1
J

XJ

j¼1

u jð Þ
nþ1,

Ĉnþ1 ¼ 1
J � 1

XJ

j¼1

u jð Þ
nþ1 � m̂nþ1

� �
u jð Þ
nþ1 � m̂nþ1

� �T
,

(5)

and update step

Knþ1 ¼ Ĉnþ1HT HĈnþ1HT þ Γ
� �

,

u jð Þ
nþ1 ¼ I � Kjþ1H

� �
û jð Þ
nþ1 þ Knþ1y

jð Þ
nþ1,

y jð Þ
nþ1 ¼ ynþ1 þ η

jð Þ
nþ1,

(6)

where Knþ1 represents the Kalman gain matrix and ξ jð Þ
n and η

jð Þ
nþ1 are i.i.d. Gaussian

noise. In the EnKF context our prediction step defines a sample mean and covariance
from our signal. From this in the analysis step we define our Kalman gain through

our sample covariance, which updates our signal, which is given by u jð Þ
nþ1. This is

aided by aiming to minimize the discrepancy of the data y jð Þ
nþ1 and the quantity H uð Þ.

To better understand this discrepancy, there is an alternative approach of looking at
the EnKF is through a variational approach, where we consider the follow cost
function

In uð Þ≔ 1
2
y jð Þ
nþ1 �H uð Þ
���

���
2

Γ
þ 1
2
u� û jð Þ

nþ1

���
���
2

Ĉnþ1

, (7)
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for which we aim to minimize, which is defined as the updated mean

m̂nþ1 ¼ argmin
u

In uð Þ: (8)

This minimization procedure relies on the updated covariance Ĉnþ1 which is
dependent entirely on û jð Þ. As described in the prediction step and update step of
filtering, a mapping is presented between distributions. As we related the distribu-
tions in the filtering setting, for each step, we can do so similarly for the EnKF, i.e.

u jð Þ
n

n oJ

j¼1
↦ u jð Þ

nþ1

n oJ

j¼1
, u jð Þ

nþ1

n oJ

j¼1
↦ û jð Þ

nþ1

n oJ

j¼1
: (9)

With the EnKF, compared to KF, the computational complexity associated with it
is O Jdð Þ, where one usually assumes J < d, therefore implying the reduction in cost.

2.2 EnKF applied to inverse problems

Since the formulation of the EnKF, there has been a huge interest from practitioners
in various applicable disciplines. Most notably this has been within numerical weather
prediction, geophysical sciences and signal processing related to state estimation. In
this chapter our focus is on the application of the EnKF to inverse problems, namely to
solve (1). We now introduce this application which is known as ensemble Kalman
inversion (EKI), which was introduced by Iglesias et al., motivated from Li et al., [13]
as a derivative-free optimizer for PDE-constrained inverse problems.

As with the EnKF, we are concerned with updating an ensemble of particles, for
which now we modify notation with n now denoting the iteration count. Given an

initial ensemble u jð Þ
0

n o
, our aim is to learn a true underlying unknown u†. To do so, as

done with the EnKF, we first define our sample mean and covariance matrices

u jð Þ
n ¼ 1

J

XJ

j¼1

u jð Þ
n , u jð Þ

n ¼ 1
J

XJ

j¼1

G u jð Þ
n

� �
,

Cuu
n ¼ 1

J � 1

XJ

j¼1

u jð Þ
n � u

� �
u jð Þ
n � u

� �T
, Cup

n ¼ 1
J � 1

X
u jð Þ
n � u

� �
G u jð Þ

n

� �
� G

� �T
:

(10)

which we can through the update equation

u jð Þ
nþ1 ¼ u jð Þ

n þ hCup hCpp þ Γð Þ�1 y jð Þ
n � G u jð Þ

n

� �� �
, (11)

y jð Þ
n ¼ yþ η jð Þ

n , (12)

where y represents our true data and h>0 denotes a step size related to the level of
discretization. Figure 1 provides a pictorial description of the EnKF, which has been
described above.

The update equation of EKI (11) is of interest as it coincides with the update
formula for Tikhonov regularization for linear statistical inverse problems. Namely if
we consider R uð Þ ¼ 1

2 ∥u∥
2
C0
, then the update formula, in the linear G �ð Þ ¼ G and

Gaussian setting is given as

10
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uTP ¼ uþ CG ∗ GCG ∗ þ Γð Þ�1 y� Guð Þ, (13)

where G ∗ denotes the derivative of the operator G. This connection is of relevance
and was discussed in [14], where it was shown that taking the limit as J ! ∞, it was
shown that u ! uTP. This is of interest as the minimizing the regularized functional
(13) is equivalent to the following maximization procedure in statistics

u≔argmax
u∈X

ℙ ujyð Þ: (14)

known as the MAP formulation, where ℙ ujyð Þ ¼ ℙ yjuð Þℙ uð Þ denotes the posterior
distribution. This connection is discussed in [15]. Therefore this provides some insight
into EKI and its connection with other known existing methodologies in inverse
problems. An important entity to discuss is a property that EKI inherits, which is the
subspace property. It is given by the following lemma.

Lemma 1.1 Let A be the linear span of the initial ensemble u jð Þ
0

n oJ

j¼1
, then we

that blacku jð Þ
n

n oJ

j¼1
∈A for all n∈ℕ.

The essence of the subspace property states that the updated ensemble of particles
is spanned by the initial ensemble. This is important, because it provides a justification
on the performance, whether the initial ensemble is a good choice or not. Therefore it
can act as an advantage or a disadvantage.

2.3 Continuous-time formulation

The original representation of EKI, as shown in (11), is a discrete-time iterative
scheme similar to other optimization methods. However it is of interest to under-
stand EKI in a continuos-time setting, which was considered by Schillings et al.
[16, 17]. This is primarily for two reasons; (i) firstly that one can understand more
easily how the dynamics of (11) and (12) behaves, and secondly (ii) it provides

Figure 1.
Dynamics of the ensemble Kalman filter, split into the prediction and update steps.
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new numerical schemes for EKI, which is specific in the continuous-time setting.
In order to derive such equations, as usual we require to take the step-size to zero,
i.e. h ! 0. Once we do this, we have the following set of stochastic differential
equations

du jð Þ

dt
¼ Cuw uð ÞΓ�1 y� G u jð Þ

� �� �
þ Cuw uð Þ

ffiffiffiffiffiffiffiffi
Γ�1

p dW jð Þ

dt
, (15)

with W jð Þ denoting independent cylindrical Brownian motions. By substituting the
form of the covariance operator, we see

du jð Þ

dt
¼ 1

J

XJ

k¼1

G u kð Þ
� �

� G, y� G u jð Þ
� �

þ
ffiffiffi
Γ

p dW jð Þ

dt

* +

Γ

u kð Þ � u
� �

: (16)

For this we take our forward operator G �ð Þ ¼ A� to be bounded and linear. Using
this notion and by substituting our linear operator A in (16) we have the following
diffusion limit

du jð Þ

dt
¼ 1

J

XJ

k¼1

A u kð Þ � u
� �

, y� Au jð Þ
D E

Γ
u kð Þ � u
� �

: (17)

By defining the empirical covariance operator

C uð Þ ¼ 1
J � 1

XJ

k¼1

u kð Þ � u
� �

⊗ u kð Þ � u
� �

, (18)

and taking Γ ¼ 0 we can express (17) as

du jð Þ

dt
¼ �C uð ÞDuΦ u jð Þ; y

� �
,

Φ u; yð Þ ¼ 1
2
∥Γ�1=2 y� Auð Þ∥2:

(19)

Thus we note that each particle performs a preconditioned gradient descent
for Φ �; yð Þ where all the gradient descents are preconditioned through the
covariance C uð Þ. Since our covariance operator C uð Þ is semi-positive definite we
have that

d
dt

Φ u tð Þ; yð Þ ¼ d
dt

1
2
∥Γ�1=2 y� Auð Þ∥2 ≤0: (20)

In the context of EKI this is of interest as it is a first result providing some
indication of the dynamics, which was not achievable through the discrete-time
update formula (11). Indeed given the gradient flow structure, we are able to see that
the EKI abides by a usual optimization function, with the dynamics following the
direction of the negative gradient, or in other-words towards to minimizer of Φ. Since
the continuous-time formulation was derived, there has been different works deriving
further analysis, most notably with recent success on the nonlinear setting, and other
well-known results. This can be found in [18].
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3. Regularization

In this section we discuss the role of regularization in EKI. We will begin with an
introduction into iterative regularization schemes, that have been used before
discussing Tikhonov regularization, Lp and particular adaptive choices.

As briefly discussed regularization is an important tool in optimization, and
inverse problems aimed at preventing the over-fitting, or influence, of the data. We
refer the reader to various pieces of literature that give a concise overview on this
[19, 20]. The over-fitting of data can cause issues in inverse problems, such as the
divergence of the error, therefore careful consideration is needed to prevent this. A
cartoon representation of this is given in Figure 2.

To initiate this chapter, there are two main forms of regularization one can apply
for inverse problems. The first is related to iterative regularization, where the regular-
ization is included within the iterative scheme. This can be included directly such as
the form

u jð Þ
nþ1 ¼ u jð Þ

n þ hCup hCpp þ αnΓð Þ�1 y jð Þ
n � G u jð Þ

n

� �� �
, (21)

or in the presence of a discrepancy principle of the form

∥Γ�1 y� u jð Þ
n

� �
∥2 ≤ϑη, ϑ∈ 0, 1ð Þ, (22)

which controls the error between the updated ensemble and the true unknown.
The discrepancy principle acts as a stopping rule if the error becomes big, and the the
modified update formula contains a sequence of numbers αnf gn∈ℕ aimed at also
preventing the overfitting of the data. This sequence is chosen in such a way that is
related to a discrepancy principle. Specifically for EKI this has been considered in
numerous work by Iglesias et al. [21, 22].

However more recent work has considered regularization through the least-
squares functional (LSF) (2). For EKI the first known form to consider this, is
Tikhonov regularization which has the penalty form of R uð Þ ¼ 1

2 ∥u∥
2
C0
. This form of

regularization is a natural choice, as it very well-known and understood but can view
viewed as a Gaussian form of regularization, which smoothes the problems. In the

Figure 2.
The figure presents two simulations of EKI as the iterations increase. The black curve represents what we aim to
achieve, however in certain situations the data is commonly overfitted. Therefore this can cause a divergence in the
relative error, as shown by the dashed red curve.
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context of EKI this makes sense, as commonly one assumes Gaussian dynamics. The
work of Chada et al. [23] first developed this extension, which was done by modifying
(1) to the following

y ¼ G uð Þ þ η1,

u ¼ η2,
(23)

where η1 � N 0, Γð Þ,η2 � N 0, λ�1C0
� �

:.
Now we introduce z,η and the mapping F : X � X↦Y � X as follows:

z ¼ y
0

� �
, F uð Þ ¼ G uð Þ

u

� �
, η ¼ η1

η2

� �
, (24)

and

η � N 0, Σð Þ, Σ ¼ Γ 0

0 λ�1C0

� �
: (25)

Therefore our inverse problem is now reformulated at

z ¼ F uð Þ þ η: (26)

now from this we can modify EKI to include the above setup, for which we refer to
it as Tikhonov ensemble Kalman inversion (TEKI), which takes the following form

u jð Þ
nþ1 ¼ u jð Þ

n þ hBup hBpp þ Γð Þ�1 z jð Þ
n � F u jð Þ

n

� �� �
, (27)

where we have now modified covariance matrices Bup,Bpp. From this inclusion, the
authors of [23] were able to show that analytically, the subspace property still holds,
while other such results as observability and controllability and the ensemble collapse.
More importantly through the numerical simulations, it was shown that one can
prevent the over-fitting phenomenon.

Since this work a number of useful extensions have been considered, such as its
understanding in the continuous-case, as well as the new variants in the discrete-time
setting [24]. Two recent developments on this have been firstly on the extension to Lp

regularization [25, 26], which is to motivate reconstructing edges or lines, where the
LSF is modified to

Φ u; yð Þ≔ 1
2
∥y� G uð Þ∥2Γ þ λ∥u∥p, p≥ 1: (28)

Finally another direction is related to producing adaptive strategies for TEKI. Adaptive
regularization schemes are of importance, as choosing a correct choice of the regulariza-
tion parameter λ>0 can have a big impact on the reconstruction. Therefore thinking
adaptively allows one to evolve the parameter over the iteration count, now denoted as λn.
The work ofWeissmann et al. [27] provides these developments in an adaptive fashion.

4. Ensemble Kalman sampling

Although the EKI has been introduced through the application of the EnKF to
inverse problems and hence sequential sampling method, the trending viewpoint of
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EKI lies in optimization. So far, we have seen its motivation from the gradient flow
structure in the continuous-time formulation in Section 2.3 and the representation as
SDE. For applying EKI as a consistent sampling method, we would instead of taking
the limit t ! ∞ rather consider the limit t ! 1. For linear forward models EKI is
consistent with the posterior distribution, however, it is known to be not consistent
with the Bayesian perspective in the nonlinear setting [28].

Building up on this fact, the motivation behind the ensemble Kalman sampler [29]
is to modify the time-dynamical system of EKI in a way such that the limiting
distribution for t ! ∞ corresponds to the posterior distribution. We will start the
discussion with an introductory example.

Example 1.1 Let π ∗ be a pdf of the form π ∗ xð Þ∝ exp �Φ uð Þð Þ with
Φ uð Þ ¼ 1

2 ∥y� G uð Þ∥2Γ þ ∥u∥2C, i.e. π ∗ corresponds to the posterior pdf under Gaussian
prior assumption π0 ¼ N 0, Cð Þ. We consider the Langevin diffusion given by

dut ¼ ∇u log π ∗ utð Þdtþ
ffiffiffi
2

p
dWt, u0 � π0, (29)

where Wtð Þt≥0 denotes a Brownian motion in X ¼ nu . The evolution of the
distribution ρt of the state ut can then be described through the Fokker–Planck equa-
tion

∂ρt ¼ ∇ � ρt∇ log π ∗ð Þ þ Δρt, ρ0 ¼ π0, (30)

where under certain assumptions on Φ the underlying Markov process utð Þt≥0 is
ergodic and its unique invariant distribution is given by π ∗ [30]. Taking the Fokker–
Planck eq. (30) into account the convergence to equilibrium can be described through

the Kullback–Leibler (KL) divergence KL ¼ ÐXq1 xð Þ log q1 xð Þ
q2 xð Þ
� �

dx [31]. Assuming a

log -Sobolev inequality (e.g. satisfied for log -concave π ∗ ), it follows that

KL ρtjπ ∗ð Þ≤ exp �λtð ÞKL ρ0jπ ∗ð Þ (31)

for some λ>0 [32].

4.1 Interacting Langevin sampler

The interacting Langevin sampler has been introduced, motivated by the
preconditioned gradient descent method, as interacting particle system represented
by the coupled system of SDEs

du jð Þ
t ¼ C utð Þ∇u log π ∗ u jð Þ

t

� �
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C utð Þ

p
dWt, j ¼ 1,… ,J, (32)

initialized through an i.i.d. sample u jð Þ
0 � π0. The idea of preconditioning with C utð Þ

instead of a fixed preconditioning matrix C∈nu�nu is motivated through the
corresponding mean-field limit. In the large particle limit, the corresponding SDE is
given as

dut ¼ C ρtð Þ∇u log π ∗ utð Þdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C ρtð Þ

p
dWt, u0 � π0, (33)

where the macroscopic mean and covariance operator are defined as
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m ρð Þ ¼
ð

X
xρ xð Þdx, C ρð Þ ¼

ð

X
x�m ρð Þð Þ⊗ x�m ρð Þð Þdx: (34)

This connects the interacting Langevin system to its origin Langevin diffusion (29).
Hence, in the long-time limit the preconditioning matrix will formally be given by the
covariance operator corresponding to the stationary distribution (assuming it exists).

The resulting modified Fokker–Planck equation is given by

∂ρt ¼ ∇ � ρtC ρtð Þ∇ log π ∗ð Þ þ Tr C ρtð ÞD2ρt
� �

, ρ0 ¼ π0: (35)

Assuming that C ρtð Þ≥ αId and the target distribution of the form
π ∗ uð Þ∝ exp �Φ uð Þð Þ, Φ uð Þ ¼ 1

2 ∥y� G uð Þ∥2Γ þ λ∥u∥2C0
, to be log -concave, the solution

ρt of (35) converges exponentially fast to equilibrium

KL ρtjπ ∗ð Þ≤ exp �λtð ÞKL ρ0jπ ∗ð Þ, (36)

for some λ>0 [29], Proposition 3.1. Furthermore, through the preconditioning
with the sample covariance the resulting scheme remains invariant under affine
transformations [33].

4.2 Ensemble Kalman sampler

One of the attractive features of the EnKF as well as of EKI is its derivative-free
implementation. The basis of the ensemble Kalman sampler (EKS) is to build a
modified interacting Langevin sampler avoiding to compute derivatives. Let

π ∗ uð Þ∝ exp � 1
2 ∥y� G uð Þ∥2Γ � ∥u∥2C0

� �
, then the interacting Langevin system is given by

du jð Þ
t ¼ �C utð ÞDG u jð Þ

t

� �T
Γ�1 G u jð Þ

t

� �
� y

� �
� C utð ÞC�1

0 u jð Þ
t dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C utð Þ

p
dWt,

j ¼ 1,… ,

J:

(37)

Motivated by the approximation Cuw uð Þ≈C uð ÞDG u jð Þ� �T
the EKS is then formu-

lated as the solution of the system of coupled SDEs

du jð Þ
t ¼ �Cuw utð ÞΓ�1 G u jð Þ

t

� �
� y

� �
� C utð ÞC�1

0 u jð Þ
t dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C utð Þ

p
dWt, j ¼ 1,… ,J:

(38)

We note that the approximation Cuw uð Þ≈C uð ÞDG u jð Þ� �T
is exact for linear forward

models and hence, the EKS coincides with the interacting Langevin sampler in the
linear setting. However, for nonlinear forward models the approximation of deriva-
tives is only accurate in case the particles are close to each other. Since in the applica-
tion of EKS the particles are aiming to represent a distribution, the particles are not
expected to be close to each other. This fact suggests to formulate a localized version
of the preconditioning sample covariance matrix, incorporating more weights on
particles close to each other, but reducing the weight between particles far away.

Therefore, we define the distance-dependent weights between particle u jð Þ
t and u ið Þ

t
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wji
t ¼

exp � 1
2γ ∥u

jð Þ
t � u ið Þ

t ∥2D
� �

PJ
l¼1 exp � 1

2γ ∥u
jð Þ
t � u lð Þ

t ∥2D
� � , (39)

for scaling parameters γ >0 and symmetric positive-definite matrix D∈nu�nu .

The localized (mixed) sample covariance matrix around particle u jð Þ
t is the defined as

C u jð Þ
t

� �
¼
XJ

i¼1

wji
t u ið Þ

t � u jð Þ
t

� �
⊗ u ið Þ

t � u jð Þ
t

� �
,

Cuw u jð Þ
t

� �
¼
XJ

i¼1

wji
t u ið Þ

t � u jð Þ
t

� �
⊗ G u ið Þ

t

� �
� G

jð Þ
t

� �
,

(40)

with localized mean

u jð Þ
t ¼

XJ

i¼1

wji
t u

ið Þ
t , G

jð Þ
t ¼

XJ

i¼1

wji
t G u ið Þ

t

� �
: (41)

The localized EKS then reads as

du jð Þ
t ¼ �Cuw u jð Þ

t

� �
Γ�1 G u jð Þ

t

� �
� y

� �
� C u jð Þ

t

� �
C�1
0 u jð Þ

t dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C u jð Þ

t

� �r
dWt, j ¼ 1,… ,J:

(42)

While the original EKS shows promising results for nearly Gaussian target
distribution, the considered localized variant helps to extend the scope to multimodal
target distributions [34]. Other such related work has aimed to provide further
understandings of the EKS. This has included the derivation of providing mean field
limits and, but also providing various generalizations [33, 35].

5. Other directions

As we have discussed some of the more recent developments in EKI, we now focus on
other, more smaller, extensions. In this section we will discuss these each in turn, which
will include machine learning, understanding EKI in the context of nonlinear inverse
problems, and finally applications related to engineering such as geophysical sciences.

5.1 Applications in machine learning

The developments of machine learning methodologies has seen a significant
increase in the last decade, which have been produced to solve problems related to
health-care, imaging, and decision processes. In particular much of the these devel-
opments has been to due the advancements in optimizaion theory. As a result,
ensemble Kalman methods can be viewed as a natural class of algorithms to be directly
applied, as they are derivative-free optimizers.

The first work aimed at characterizing this connection was [36] which demon-
strated this. The authors motivated EKI as a replacement to SGD where they initially
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applied it to supervising learning problems. Given a dataset xj, yj
n oN

j¼1
assumed to be

i.i.d. samples from a particular distribution, then given the Monte Carlo approxima-
tion one has the minimization procedure

argmin
u

Φs u; x, yð Þ,

Φs u; x, yð Þ ¼ 1
N

XN
i¼1

L G u xj
�� �, yj

� �
þ λ

2
∥u∥2C0

,
� (43)

where L : Y � Y ! þ, is some positive-definite function. In other words, one is
trying to learn xj from the labeled data yj. Supervised learning is used for common ML
applications such as image classification and natural language processing. Another
related application is that of semi-supervised learning, which aims to learn xj from
some of the data yj where do not have access to all of it. This modified the least squares
functional given in (43).

Another interesting direction has been the inclusion of EKI for training and learn-
ing neural networks [37]. This builds upon the previous work discussed, but with a
number of modifications. In particular what the authors show is that they are able to
prove convergence of EKI to the minimizer of a strongly convex function. They apply
their modified methodology to a nonlinear regression problem of the form

F θð Þ ¼ Aθ þ ε sin Bθð Þ, (44)

where θ is the parameter of interest and F θð Þ is the objective functional of interest.
This was also extended to the likes of image classification problems, specifically the
well-known MNIST handwritten data set.

A final and more recent direction of EKI and ML, was the work of Guth et al. [38],
which provided a way of solving the forward problem, within EKI.

5.2 Extensions to nonlinear convergence analysis

A major challenge with EKI, and the EnKF in general, is establishing convergence
analysis and properties in the nonlinear setting. As it is well known in the linear and
Gaussian setting, as the the number of particles N ! ∞, the EnKF coincides with the
KBF. However in the nonlinear setting it is has been challenging to derive any such
results rigorously. Some ongoing and recent work has aimed to bridge the connections
between EKI and nonlinear dynamics. The first paper that provided some form of
analysis was the work of Chada et al. [24] which considered a specific form of EKI, in
the discrete-time setting.

Namely the update formula is modified to

mnþ1 ¼ mn þ Cpp
n Cup

n þ h�1
n Γ

� ��1
z�H mnð Þð Þ,

Cnþ1 ¼ Cuu
n � Cup

n Cpp
n þ h�1

n Γ
� ��1

Cpu
n þ α2nΣ,

(45)

where we adopt an ensemble square root filter formulation, which is known to
perform better. As well as this we also include covariance inflation (i.e. inflation factor
of αn), and an adaptive step-size hn motivated from stochastic optimization to allow
an acceleration for the convergence. However the other underlying contribution, as
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eluded to, is that given this update form we are able to prove convergence
towards both local and global minimizers. In other words for the later, we have
the following result

λc∥mN � u ∗ ∥2 ≤ℓ mNð Þ � ℓ u ∗ð Þ≤ D
Nα , (46)

which the above result establishes polynomial convergence. We note from the
above equation, that λc is a convexity constant, ℓ is the associated loss function, D is
some constant, u ∗ is the global minimizer and α is some term, which we refer to [24],
for further details.

As one can notice, this convergence analysis was considered for the discrete-time
setting, so a natural extension from this is to the continuous-time framework. The
work of Blomker et al. [18] provide a first convergence analysis in this direction.
However given both these works, a full understanding in the nonlinear setting has not
been achieved, where considerable work is still required. Thus these papers provide a
first step in doing so, for both settings.

5.3 Engineering applications

As a final direction to discuss in detail, which is very much related to the theme of
this book, are applications in particular engineering applications. The advantage of
these ensemble Kalman methods, is that they can be viewed as a black box-solver,
therefore it is highly applicable. One particular application has been geophysical
sciences, related to recovering quantities of interest which are below the surface, or
subsurface. Examples include the inverse problem of electrical resistivity tomography
(ERT), shown below (Figure 3).

ERT is concerned with recovering, or characterizing sub-surface materials in
terms of their electrical properties, which are recorded through electrodes. It
operates very similarly to electrical impedance tomography (EIT), expect the dif-
ference being that it is subsurface. This has been also considered for learning
permeability of subsurface flow in a range of different settings which can be found
in the following papers [39, 40].

Figure 3.
Image depicting electrical resistivity tomography, where the the electric currents are recorded at the electrodes of the
subsurface material.
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Another interesting direction is related to walls, specifically quantifying uncer-
tainty in thermo-physical properties of walls. This work was conducted by Iglesias
et al. [41, 42]. Specifically the application is the inverse problem of recovering the
thermodynamic property or temperature. Similar work related to the methodology
used here has been used in resin transfer modeling [43], based on problems of moving
boundaries. This is a difficult problem to model, however it provides a first step in
doing so. Aside from these applications other particular applications include mineral
exploration scattering problems, numerical climate models and others [44–46]. It is
worth mentioning that, as of now, there is no official online software package for EKI
in general. This is currently being developed, but we emphasize to the reader that the
methodology presented, with the examples later, are not related to well known soft-
wares that are available in Matlab or Python.

As a side remark, there are more directions beyond what is discussed above.
Some others, without going into details, include developing hierarchical approaches,
incorporating constrained optimization, and connections with data assimilation
strategies [47–51].

6. Numerical experiments

In this section we provide some numerical experiments highlighting the perfor-
mance of ensemble Kalman methods for inverse problems. Specifically we will con-
sider EKI as discussed in Section 2. We will compare EKI with its regularized version
of TEKI. Both these methodologies will be tested on on two motivating inverse prob-
lems arising in geophysical and atmospheric sciences, i.e. a Darcy flow partial differ-
ential equation and the Navier–Stokes Equation.

In order to assess a comparison, we will present three different figures. (i) The first
being a reconstruction at the end of the iterative scheme; (ii) the error between the
approximate solution and the ground truth, and (iii) the data misfit. The equations
associated with each are given as.

• Reconstruction through EKI: 1J
PJ

j¼1u
jð Þ
n .

• Relative error:
∥u†�u∥2

L2

∥u†∥L2
.

• Data misfit: ∥Γ�1=2 y� G u†ð Þ∥2�
.

6.1 Darcy flow

Our first model problem is an elliptic partial differential equation (PDE), which
has numerous applications. Specifically one of them is subsurface flow in a porous
medium. The forward problem is concerned with solving for the pressure p∈H1

0 Ωð Þ,
given the permeability κ∈L∞ Ωð Þ and source function f ∈L∞ Ωð Þ, where the PDE is
given as

�∇ � κ∇pð Þ ¼ f , ∈Ω, (47)

p ¼ 0, on Ω: (48)

such that we have prescribed Dirichlet boundary conditions, and Ω ¼ 0, 1½ �2 ⊂d,
for d ¼ 2, is a Lipschitz domain. The inverse problem associated to solving p from (47)
is the recovery of the permeability κ∈L∞ Ωð Þ, from noisy measurements of p, i.e.
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y ¼ G κð Þ þ η, η � N 0, Γð Þ, (49)

where recalling that G κð Þ ¼ p. We consider 64 equidistance observations within
the domain, and on the boundary. To numerically solve (47) we employ a centered-
finite difference method with a mesh size of h ¼ 1=100. For our noisy observations we
consider Γ ¼ γI, where γ ¼ 0:01. We will use and compare EKI and TEKI, with an
ensemble size of J ¼ 50 for both methods. We will run both iterative schemes for n ¼
24 iterations. For our initial ensemble u0f gJj¼1 we consider modeling it as a Gaussian
random field, i.e. u � N 0, Cð Þ, which can be done via the Karhunen-Loève expansion

u ¼
X
k∈ℤþ

ffiffiffiffiffi
λk

p
ϕkξk, ξk � N 0, 1ð Þ, (50)

where λk, ϕkð Þ are the associated eigenvalues and eigenvectors of the covariance
operator C. There are numerous choice of covariance functions one can take, however
a popular choice is the Matérn covariance function, which provides much flexibility
for modeling. For full details on various covariance functions, or operators, we refer to
reader to [52]. The true unknown of interest is taken to be also a Gaussian random
field, but one that is smoother than that of that of the initial ensemble.

Our first set of experiments are provided in Figure 4 which shows the truth, the
reconstruction from using EKI, and that of using TEKI. As we can observe, is it clear
that both methodologies work well at learning the true unknown function. However it
is clear that the TEKI induces a smoother reconstruction, which arises from the
regularization. However, what is interesting is that if we analyze Figure 5, we notice

Figure 4.
Reconstruction plots for the Darcy flow PDE example. Left: Truth. Middle: EKI reconstruction. Right: TEKI
reconstruction.

Figure 5.
Relative errors and data misfits for the Darcy flow PDE example. We compare EKI with TEKI.
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that the relative error tends to diverge at the end with EKI, and this is due to the
overfitting of data. A motivation behind TEKI is to alleviate this. This can be seen
vividly as it tends to decrease, and for the data misfit, it remains within the noise level,
which is given as

noise level ¼ ∥ y�G u†
� �� �

∥ ¼ ∥η†∥: (51)

6.2 Navier: stokes equation

Our final test problem is a well-known PDE model arising in numerical weather
prediction which is the Navier–Stokes equation (NSE). We consider a 2D NSE defined
on a torus 2 ¼ 0, 1½ �2 with periodic boundary conditions. The aim to estimate the
velocity v≔ 0, ∞½ Þ � 2 ! 2 defined as a vector field from the scalar pressure field
p≔ 0, ∞½ Þ � 2 ! 2. The NSE is given as

∂tvþ v � ∇ð Þvþ ∇p� νΔv ¼ f , 0, ∞½ Þ � 2, (52)

∇ � v ¼ 0, 0, ∞½ Þ � 2, (53)

v ¼ u, 0f g � 2, (54)

with initial condition (54) and zero flux (53). From (52) f ∈ 0, ∞½ Þ � 
corresponds to a volume forcing, ν is the associated viscosity of the fluid. For the NSE
equation we consider a spectral Fourier solver for (52). The PDE is more challenging

Figure 6.
Reconstruction plots for the NSE PDE example. Left: Truth. Middle: EKI reconstruction. Right: TEKI
reconstruction.

Figure 7.
Relative errors and data misfits for the NSE PDE example. We compare EKI with TEKI.
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to invert than the previous example, therefore we take 100 point-wise observations.
The setup is largely the same as the previous example, where we take an initial
condition based on a Gaussian random field through the KL expansion (50). We will
aim to recover the true underlying function u† using both EKI and TEKI. The results
are obtained from the experiments are presented in Figures 6 and 7. A similar phe-
nomenon shows, where the reconstructions work well, however there is an additional
smoothness induced through the regularization in TEKI. Similarly, as we see with the
relative errors and data misfit the overfitting of the data in the end for EKI. We note
that this can be avoided depending on the prior form, its hyperparameters, the obser-
vations, and the noise. However we specify particular choices to demonstrate it can
occur.

7. Conclusion

The ensemble Kalman filter (EnKF) is a simplistic, easy-to-implement and power-
ful algorithm. This has been particularly the case in numerous data assimilation
applications for state estimation, which includes the likes of numerical weather pre-
diction, geosciences and more recently machine learning. A major advantage of the
method is that, unlike other filters such as the particle filter, it scales better in high
dimensions, and can be significantly cheaper. In this chapter we consider the EnKF
and its application to parameter estimation. Such a mathematical procedure also has
similar applications to the ones states, where one can exploit such techniques for
inverse problems. We provide a review and overview of some of the major contribu-
tions in this direction, where the resulting methodology is known as ensemble Kalman
inversion (EKI), based largely on the work of Iglesias et al. [13]. We presented various
avenues the field of EKI has taken such as regularization, extensions to sampling, and
other areas. We demonstrated how EKI can perform on two numerical examples PDE
examples.

The EKI methodology is one which builds very naturally from many different
fields, which acts a strong motivation. For example being an optimizer, one can
naturally apply optimization procedures, but also techniques from data assimilation
and uncertainty quantification. As a result, this methodology naturally brings
researchers from different fields working towards parameter estimation, and inverse
problems. This synergy of areas will hopefully ensure new emerging directions within
EKI, from a methodological, theoretical and application perspective.
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Chapter 3

Nanosatellites: The Next Big
Chapter in Atmospheric
Tomography
Gregor Moeller

Abstract

Nanosatellite technology opens up new possibilities for earth observation. In the
next decade, large satellite constellations will arise with hundreds, up to thousand of
satellites in low earth orbit. A number of satellites will be equipped with rather low-
cost sensors, such as GNSS receivers, suited for atmospheric monitoring. However,
the future evolution in atmospheric science leans not only on densified observing
systems but also on new, more complex analysis methods. In this regard, tomo-
graphic principles provide a unique opportunity for sensor fusion. The difficulty in
performing the conversion of integral measurements into 3D images is that the signal
ray path is not a straight line and the number of radio sources and detectors is
limited with respect to the size of the object of interest. Therefore, the inverse
problem is either solved linearly or iterative nonlinear. In this chapter, an overview
about the individual solving techniques for the tomographic problem is presented,
including strategies for removing deficiencies of the ill-posed problem by using
truncated singular value decomposition and the L-curve technique. Applied to dense
nanosatellite formations, a new quality in the reconstruction of the 3D water vapor
distribution is obtained, which has the potential for leading to further advances in
atmospheric science.

Keywords: GNSS, radio occultation, nanosatellites, singular value decomposition, wet
refractivity

1. Introduction

For the reconstruction of two- or three-dimensional structures from integral mea-
surements of atmospheric excess phase, e.g. as obtained from signals of the Global
Navigation Satellite Systems (GNSS), a technique called atmospheric tomography has
been invented. The basic mathematics behind was introduced by Johann Radon in
1917 and is therefore also known as the Radon transform [1]. Its first realization in
form of an axial scanning computer tomograph for cross-sectional imaging of the
human body was awarded in 1979 with the Nobel prize for medicine [2, 3]. Around
the same time, the tomography concept was utilized for applications in geosciences.
One of the very first results was communicated by [4] in 1977, who describe a three-
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dimensional inversion method for simultaneous reconstruction of seismic body wave
velocities and epicenter coordinates.

According to [5] the basic mathematical principle of tomography is described as
follows:

f s ¼
ð

S
g sð Þ � ds (1)

where f s is the integral function, g sð Þ is the object property function, and ds is a
small element of the ray path S along which the integral is determined.

In atmospheric tomography, g sð Þ is typically replaced by refractivity n, which is
connected to signal velocity vp by the constant speed of light c.

vp ¼ c
n

(2)

In vacuum n ¼ 1, in matter is n 6¼ 1, i.e. the signal is slower or faster than the speed
of light, dependent on the electric and magnetic properties of the medium. The
integral measure f s is usually replaced by excess phase1 or signal travel time which can
be converted to excess phase by multiplying with the speed of light.

One difficulty in performing the integral is that the signal path through the atmo-
sphere depends on the object properties along the signal path and is, therefore, not a
straight line. A change in atmospheric conditions leads to a change in S and integral
function f s. Another challenge is related to the distribution of the radio sources and the
number of detectors with respect to the size of the object of interest. From single satellite
missions, the distribution of integral measurements is not optimal for the reconstruction
of three-dimensional structures in an analytical way using the Radon transform. To
overcome this limitation, in atmospheric sounding the Abel transform [6], a further
simplification of the Radon transform, is generally applied. It allows for the determina-
tion of one-dimensional profiles of refractivity from measurements of excess phase,
assuming spherical symmetry. In 1965, this technique was applied to measurements of
theMariner four spacecraft to study important properties of theMartian atmosphere and
is nowadays commonly applied to GNSS phase measurements obtained from dedicated
radio occultation missions [7–9]. However, standard processing strategies based on the
Abel transform do not allow for resolving horizontal features in the atmosphere. With
the advent of nanosatellite technology, the number and distribution of signals have
significantly increased - leading to the situation that the assumptions made to derive the
Abel transform (spherical symmetry and parallel observation paths) become a limiting
factor in the analysis of space-based radio occultation observations. To overcome this
limitation, the existing observations can be stacked together to solve Eq. (1) either
linearly or iterative non-linearly [5]. A complete non-linear solution is difficult to achieve
but also not necessary for most applications in geoscience since it can be demonstrated
that the signal path is not significantly perturbed by linearization assumptions. In Section
2, common solving techniques (linear and non-linear) are presented, and in Section 3 and
Section 4, it is analyzed whether they can be utilized to reconstruct refractivity fields in
the neutral atmosphere from GNSSmeasurements of atmospheric excess phase on-board
dense nanosatellite formations.

1 In literature this quantity has been given many different names, such as atmospheric excess phase,
atmospheric phase delay or derivations thereof.
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2. Solving techniques

If f s in Eq. (1) is replaced by the atmospheric excess phase (aep) and g sð Þ by the
relation n� 1, the basic function of atmospheric tomography is obtained as follows:

aep ¼
ð

S
n � ds�

ð

S0
ds (3)

where S is the “true” signal path and S0 is the theoretical straight line signal path in
a vacuum. The second term on the right-hand side of Eq. (3) stems from the definition
of aep, describing only the atmospheric contribution to the excess phase. Strictly
speaking also the limits of the integral have to be adapted to the relevant parts in the
atmosphere, e.g. up to about 80km altitude for the neutral atmosphere.

Fermat’s principle tells us that first-order changes in the signal path cause second-
order changes in signal travel time, i.e. for small variations in the object properties, the
travel time is stationary. This principle is very beneficial since it allows to define two
simplified versions of atmospheric tomography, the so-called linear and non-linear
approach. In linear tomography, the bent signal path S is replaced by a straight line S0
and corrections to n are made by ignoring atmospheric bending. In contrast, the
iterative non-linear approach takes the signal bending into account by the definition
of the ray paths but not in the inversion of n along ds. This means after each processing
step the signal paths are re-computed, e.g. by solving the so-called Eikonal using ray-
tracing shooting techniques [10].

A numerical solution for Eq. (1) is obtained by discretizing the object of interest,
e.g. the neutral atmosphere in area elements (in two-dimensions) or volume elements
(in three-dimensions). Further, it is assumed that in each volume element the index of
refraction is constant.2 In the atmosphere, the index of refraction n is close to 1, thus it
can be replaced by refractivity N ¼ n� 1ð Þ � 106. With these adaptions Eq. (1) reads:

aep ¼
Xm

k¼1

Nk � dk (4)

where Nk is the constant refractivity and dk is the ray length in the volume element
k. Assuming l observations, indexed by j ¼ 1,2,… ,l and m volume elements (short:
voxels), indexed by k ¼ 1,2,… ,m, the individual observation equations can be com-
bined into a linear equation system. In matrix notation the resulting tomographic
equation reads:

AEP ¼ A �N (5)

where AEP is the observation vector of size l, 1ð Þ and N is the unknown vector of
size m, 1ð Þ describing the properties in each volume element k. The l, mð Þ matrix A
contains the spatial derivatives of the observations aepj with respect to the
unknowns Nk.

2 In recent works by [11] or [12] alternative parameterizations, such as a trilinear, spline or adaptive node

parameterizations are suggested for a more accurate description of the refractivity distribution without

considerably increasing the number of unknowns.
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A ¼

∂aep1
∂N1

∂aep1
∂N2

…
∂aep1
∂Nm

∂aep2
∂N1

∂aep2
∂N2

…
∂aep2
∂Nm

⋮ ⋮ ⋮ ⋮
∂aepl
∂N1

∂aepl
∂N2

…
∂aepl
∂Nm

2
666666664

3
777777775

(6)

Since Eq. (4) is linear, the partial derivatives of aep are the ray lengths (dk) in each
voxel. For linear tomography, dk is computed from the line of sight vector between
the transmitter and receiver. In the non-linear approach, the bending of the signal is
taken into account, e.g. by using ray tracing shooting techniques [13]. Therefore, a
priori information about the atmospheric state (e.g. in the form of numerical weather
forecasts) is needed. Dependent on the quality of the a priori model, additional
iterations might be necessary. After each iteration, the estimated refractivity field is
considered as input for the ray tracer. The processing is repeated until the determina-
tion of the ray path converges. This happens usually after 1–2 iterations.

2.1 The inverse problem

An analytical solution for the tomographic equation (Eq. (5)) can be found by the
inversion of matrix A.

N ¼ A�1 �AEP (7)

The inverse A�1 exists if the determinant of A is non-zero. This requires that A is a
squared matrix l ¼ mð Þ. Otherwise, the matrix A is called singular, i.e. does not have a
matrix inverse. Unfortunately latter is the case in most atmospheric tomography
applications since the observation data, e.g. the GNSS measurements, are considered
as “incomplete”. Therefore, the matrix A has zero singular values and Eq. (7) becomes
ill-posed. In literature, several strategies are described, which allow to remove the
deficiencies of the ill-posed problem. They either try to solve the inverse problem or to
avoid it. The most prominent ones are:

• Iterative algebraic reconstruction techniques

• Truncated singular value decomposition

• Tikhonov regularization

These three techniques have been selected since they were proven in practice as
the most reliable, as described briefly in the following subsections.

2.1.1 Algebraic reconstruction techniques

The iterative algebraic reconstruction technique (ART) has been suggested in 1937
by [14] for solving linear equation systems. This technique avoids the inversion
problem and initializes the matrix A row-wise. This is very beneficial for large equa-
tion systems. Applied to Eq. (7) the ART algorithm reads:
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Niþ1 ¼ Ni þ ω

Aj, Aj
� � � aepj � AT

j , Ni
D E� �

� Aj (8)

where Aj indicates the jth row of the matrix A, Aj, Aj
� �

is the resulting inner

product and the difference aepj � AT
j , N

i
D E

is the prefit-residual from the last itera-

tion. Based on the number of traversed volume elements and the relaxation factor ω
the residual is split into multiple components and applied to Ni in order to obtain the
improved refractivity field Niþ1, which is again input for the next iteration. The
processing is stopped once Eq. (8) converges to the solution of Eq. (7) with minimal
norm if 0<ω< 2. For ground-based GNSS networks, the best results have been
obtained with a relaxation parameter of � 0:175, see [15]. Studies from [16] or [17]
manifest that the algorithms of the ART family are also very successful in
reconstructing the total electron content (TEC) in the ionosphere. Dependent on how
the discretization is done, different realizations of ART exist. For tomographic recon-
struction especially the multiplicative algebraic reconstruction techniques (MART)
and the simultaneous iterative reconstruction techniques (SIRT) are worth mention-
ing, see [18] or [19]. In contrast to the original ART algorithm, MART leads in general
to faster convergence and SIRT has the benefit of being impervious to the order of
measurements (aepj).

2.1.2 Truncated singular value decomposition

For ill-conditioned least squares problems, [20, 21] invented a general solution,
widely known as pseudo inverse or Moore-Penrose inverse Aþ. A numerical solution
for the pseudo inverse can be obtained by singular value decomposition [22]. This
requires a split of the matrix A into three components as follows:

A ¼ U � S �VT (9)

with U (l,l) and VT(m,m) as orthogonal matrices, containing the normalized left
and right singular vectors of A, respectively. Matrix S (l,m) is a diagonal matrix with
singular values sk,k arranged in descending order. By using only the non-zero diagonal
elements of S the pseudo inverse is obtained as follows:

Aþ ¼ V � S�1 �UT (10)

The 2-norm of the matrix S defines the condition number κ Að Þ. It can be
interpreted as the ratio between the largest and the smallest singular values.

κ Að Þ ¼ jsmax j
jsmin j (11)

A well-conditioned matrix has a condition number κ Að Þ near 1. The resulting
tomography solution is rather insensitive to measurement errors. A large condition
number indicates an ill-conditioned problem. According to Eq. (11), the condition
number of A improves by neglecting tiny singular values. This technique is known as
truncated singular value decomposition (TSVD), see [23]. It allows to approximate the
ill-conditioned matrix A by a matrix ~A of lower rank.
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For atmospheric tomography, [24] suggested s lim ¼ 2:8km as the threshold for sk,k,
i.e. all singular values smaller than s lim are set to zero. However, in practice an optimal
threshold for s lim can be determined using the L-curve technique [23]. Therefore, a set
of solutions is determined with varying s lim -values. For each solution, the 2-norm of
the estimated parameters is plotted against the 2-norm of the residuals. By connecting
all points in a log–log plot a concave L-shaped curve is obtained, whereby the corner
of the curve, i.e. the point of maximum curvature, defines the optimal threshold (sopt)
for singular value decomposition. Figure 1 shows an L-curve for a typical GNSS
tomography setting. In this example, the optimal solution is obtained by setting sopt to
0:032. This point was found by testing various values for s lim between 3 � 10�1 and
3 � 10�5. After each processing step, the solution norm log Nk k2 is plotted against the
residual norm log A �N �AEPk k2 and the corner point of the resulting curve is
marked as the optimal solution.

2.1.3 Tikhonov regularization

A more generalized solution to the regularization problem can be found in [25],
who describes the minimization problem as follows:

Nη ¼ arg min A �N �AEPk k22 þ η2 L N0 �Nð Þk k22
n o

(12)

where η is called the regularization parameter or Tikhonov factor and N0 is an
approximation of N. The “size” of the solution is defined by the norm L N0 �Nð Þk k2
and the “fit” by the norm of the residual vector A �N �AEPk k2. One possibility to
solve Eq. 12 is to treat it as a least squares problem. In [26] it is shown that the matrix
L can be replaced by an identity matrix I, i.e. the condition number of A is improved
by adding a small multiple of the identity to the matrix A.

~A ¼ Aþ η � I (13)

A possible solution for η can be obtained by means of singular value decomposition
(see Section 2.1.2). Thereby the elements of the diagonal matrix S are replaced by the
coefficients rk:k.

Figure 1.
Representative L-curve for a typical GNSS tomography inversion problem. The red dot indicates the corner point of
the L-curve and therewith the optimal tomography solution.
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rk,k ¼
s2k,k

s2k,k þ η
(14)

If the Tikhonov factor is defined as a sharp filter

η ¼ 1forsk,k ≥ s lim
0forsk,k < s lim

�
(15)

the resulting solution can be interpreted as smoothed TSVD solution.

2.2 The partial least squares solution

By treating Eq. (7) as a least squares problem, the basic equation of the weighted
least squares estimator reads:

N̂ ¼ AT � P �A� ��1 �AT � P �AEP (16)

where P is a weighting matrix, which allows to take the relative accuracy and
possible constraints between the observations into account. The least squares solution
N̂ is obtained by minimizing the 2-norm of the observation residuals. Thereby we
assume, that the observations are normally distributed, i.e. free of gross errors or
systematic effects.

By combining Eq. (10) with Eq. (16) the tomography solution reads:

N̂ ¼ V � S�1 �UT �AT � P �AEP (17)

where the columns of U and VT are the normalized left and right singular vectors
of AT � P �A, respectively and matrix S (l,m) is the diagonal singular value matrix as
defined in Section 2.1.2.

2.2.1 The a priori field

In Section 2, the linear and non-linear approaches have been defined to reconstruct
the GNSS signal paths through the atmosphere. While the linear approach is not
dependent on any external data, the non-linear approach requires an a priori refrac-
tivity field, e.g. derived from the standard atmosphere or numerical weather forecasts,
to reconstruct the bent signal path. Besides, the a priori field can be also utilized to
stabilize the tomographic equation system. One possibility is to treat the additional
information (N0) as absolute constraints:

N̂ ¼ N0 þV � S�1 �UT �AT � P � AEP�A �N0ð Þ (18)

In the following, this solution is called the constrained solution.
Another possibility to handle the extended equation system is to treat it as a system

of subsets with

Aext ¼
A
Ac

� �
(19)
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AEPext ¼
AEP
N0

� �
(20)

Pext ¼
P
Pc

� �
(21)

where Ac is the design matrix and Pc the weighting matrix for N0. The extended
equation system can be solved using Eq. (17), whereby A, AEP and P are replaced by
its extended complements Aext, AEPext and Pext. In principle, it provides the same
results as the constrained solution.

A third possibility would be to solve Eq. (18) separately for each observation type
using the estimates (N̂) and the variance–covariance matrix of the estimates (CovN̂N)
from the first step as a priori information for the next step. In the case of two subsets
the corresponding tomography solution reads:

N̂1 ¼ V � S�1 �UT �AT � P �AEP (22)

CovN̂N ¼ V � S�1 �UT (23)

where U, V and S are obtained by singular value decomposition of the matrix
AT � P �A. For the second (final) solution both, N̂1 and CovN̂N are introduced into the
equation system as follows:

N̂ ¼ N̂1 þV � S�1 �UT �AT
c � Pc � N0 �A0 � N̂1

� �
(24)

with S, U and V obtained by truncated singular value decomposition (see subsec-
tion 2.1.2) of the matrix AT

0 � P0 �A0 þ Cov�1
X̂X: In the following this solution is called

the partial solution. In case the matrix A is of full rank or if only one set of observa-
tions is available, the constrained solution and the partial solution provide identical
results. In the case of an ill-conditioned matrix, the partial solution has the advantage
that the eigenvalue can be computed for each subset of observations. In large equation
systems, this allows to reduce computational load since the matrix A is divided into
several parts.

2.2.2 Observation weights

Up to now, the individual observations were considered as uncorrelated and
equally accurate. However, for varying input data it might be beneficial to set up a
weighting matrix. In case the relative accuracy between observations is known, they
can be directly introduced into the equation system by defining the weighting matrix

P ¼ σ20 � Cov�1
ll (25)

where variance co-variance matrix Covll reflects the precision of the observations
on its diagonal elements (σ2n) with σ20 as the a priori variance of the unit weight. In the
case of uncorrelated observations and unit variances, the matrix Covll simplifies to an
identity matrix of size n, nð Þ.

In case no accurate information is available, a weighting model can be utilized. For
ground-based GNSS observations, an elevation-dependent weighting is common, for
satellite-to-satellite observations a weighting based on carrier-to-noise density C=N0
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seems to be more useful since the observations are usually gathered around 0deg the
elevation angle or below. For the a priori refractivity field, a height-dependent
weighting model is recommended. By focusing on the neutral atmosphere and assum-
ing that Eq. (26) is exact

N ¼ K1 � pdT þ K2 � eT þ K3 � e
T2 (26)

the theoretical standard deviation for refractivity reads3:

σN ¼ ∂N
∂T

� σT
� �2

þ ∂N
∂p

� σp
� �2

þ ∂N
∂e

� σe
� �2

þ …

" #1
2

(27)

For in-situ measurements, [27] provides theoretical standard deviations for pres-
sure p, temperature T, and water vapor pressure4 e for a wide range of meteorological
sensors. In addition, height-dependent error curves for the three meteorological
parameters can be obtained from [28]. The resulting uncertainties, assuming standard
atmospheric conditions at sea level, are listed in Table 1.

The standard deviation of refractivity is 2:39ppm, which equates to a relative
uncertainty of 0:75%. By far the largest impact (2:37ppm) is related to the uncertainty
of water vapor. Consequently, the utmost care has to be taken when measuring
humidity and temperature.

3. Observations of atmospheric excess phase

Satellite refractometric sounding of the atmosphere and the underlying inverse
problems have been under investigation since the 1960s, see [29–31]. However, it was
not until 1976 that the first radio occultation (RO) experiment was carried out to
survey the earth‘s atmosphere within the Apollo-Soyuz mission [32]. Until then, the
major problem noted was the lack in accuracy of refractometric measurements of
phase or Doppler shift [33]. This limitation has widely been overcome with the
emergence of the Global Positioning System (GPS) around the 1980s [7]. Since the
proof of concept during the GPS-MET satellite mission in 1995 various satellites have
been equipped with precise GNSS radio occultation receivers, leading to approxi-
mately 500� 600 globally distributed radio occultation profiles per day and satellite,
assuming a 32-satellite GPS constellation.

∂N
∂T ΔT ∂N

∂p Δp
∂N
∂e Δe ΔN

�0:25ppm �0:08ppm �2:37ppm �2:39ppm

Table 1.
Standard deviation of refractivity and its components, assuming a typical meteo sensor error of 0:3hPa for
pressure, 0:2K for temperature and 3% for relative humidity - computed for standard atmospheric conditions at
sea level (p ¼ 1013hPa,T ¼ 15∘C,rh ¼ 60%).

3 Assuming that the uncertainty of the refractivity constants is negligible.
4 Since water vapor pressure is usually not measured directly, it can be computed from relative humidity

and temperature.
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3.1 The observation equation

The phase that a receiver obtains from a GNSS satellite can be modeled as

Ls
r,ν ¼ ϱsr þ c � δtr � c � δts þ Δϱsr,v þ ν � nsr,v (28)

with

Ls
r,ν ... phase observation for the transmitter-receiver pair (s-r) at frequency ν

ϱsr ... geometric distance between transmitter s and receiver r

c � δtr ... correction of receiver clock at signal reception time t

c � δts ... correction of satellite clock at transmission time t � τsr

Δϱsr,v ... all delays due to propagation effects

nsr,v ... unknown integer number of cycles (carrier phase ambiguity)

The objective of refractometric sounding is to extract the atmospheric propagation
effects from the phase observations. Assuming that relativistic effects, satellite-
specific multipath effects and antenna-specific phase center corrections are known
and removed, the remaining effects in Δϱsr,v can be divided into two terms:

Δϱsr,v ¼ Δϱsr,trp þ K
TECs

r,v

f 2r
(29)

where the first term (Δϱsr,trp) describes the delay of the carrier phase in the neutral

atmosphere and the second term K TECs
r,v

f 2r

� �
the advancement of the carrier phase in

the ionosphere. The integral term TECs
r,v is the electron density along the ray path

between transmitter s and receiver r, scaled by a constant term K.
A detailed description of the individual systematic effects can be found in [34]. In

the following, special attention is given to the modeling and estimation of neutral
atmospheric effects (Δϱsr,trp) assuming that the first-order ionospheric effect (up to
99:9%) can be removed by forming an ionospheric-free linear combination LIF. Con-
dition therefore is, that the receiver tracks the GNSS carrier phase simultaneous on
two frequencies

LIF ¼ f 21 � Ls
r,1 � f 22 � Ls

r,2

f 21 � f 21
(30)

where the nominal frequencies f 1 and f 2 are defined by the satellite system fre-
quency plan (e.g. 1575:42MHz for GPS L1 and 1227:60MHz for GPS L2).

3.2 Calibration of the phase signal

For the extraction of atmospheric phase excess from phase observations, first, the
phase signal has to be calibrated. Therefore, the clock effects in Eq. (28) are elimi-
nated. This can be achieved if the occulting receiver satellite can simultaneously see an
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occulting GNSS and a non-occulting GNSS satellite. Elimination of the clock effects is
also possible if the same GNSS satellites are visible from a ground-based GNSS
receiver. In addition, one needs to precisely know the position and velocity of the
transmitting and receiving satellites. The orbits for the GNSS satellites can be obtained
from services such as the International GNSS service (see www.igs.org). The position
and velocity of the receiving satellite have to be computed using the phase measure-
ments recorded from the GNSS radio occultation receiver or from a dedicated POD
(precise orbit determination) receiver on board the receiving satellite. For further
details about the procedure of POD, the reader is referred to [35]. A more detailed
description of the calibration of the phase measurements is given in, e.g. [36]. Once
the signal is calibrated, the atmospheric phase excess can be used to set up the
observation equations for the tomographic processing. The precondition for a stable
tomography solution is, that enough overlapping observations are available. There-
fore, in the following the concept of a dense nanosatellite formation is introduced.

4. Concept of a dense nanosatellite formation

4.1 Introduction

In recent years, nanosatellite technology has become increasingly important for a
wide variety of applications, such as communication, technology demonstration,
heliophysics, astrophysics, earth science, or planetary science [37–39]. Most of the
existing mission concepts are based on the CubeSat form factor established by Pro-
fessor Bob Twiggs at the Department of Aeronautics and Astronautics at Stanford
University in late 1999. Although small satellites have existed since the very beginning
of spaceflight, the definition of the CubeSat standard “made it possible to bring
production to a level of flexibility and innovation never seen before” [40]. As of
September 2022, over 2000 nanosatellites were launched into orbit, with a record
number of 143 satellites launched on a single rocket on board the Transporter-1
mission in January 2021. In the next decade, we expect that the number of
nanosatellite launches per year will continue to rise by a factor of 4–5, leading to dense
observation networks in low earth orbit. Innovations in satellite technology, such as
miniaturized GNSS receivers [41] and intelligent processing strategies will further
boost the realization of new observation concepts based on nanosatellite technology
and the establishment of dense satellite formations in highly interesting but yet
scarcely-explored regions in the earth‘s atmosphere and beyond.

4.2 The observation geometry

The multi-frequency signals from over a hundred active GNSS satellites gathered
on board each nanosatellite allow for measuring the atmospheric state with unprece-
dented spatiotemporal resolution. For the proof of concept, we assume a formation of
four nanosatellites, injected into a polar orbit. The advantage from such a configura-
tion is that we can get simultaneous radio occultation observations that are closely
located [42]. Figure 2 shows the observation geometry together with the ray paths
through the lower 8km of the atmosphere.

The spacing between the nanosatellites is set to dM ¼ 1:9deg (approx. 230km). At
an altitude of 550km this corresponds to a temporal spacing of about 30s. Due to the
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limb-sounding geometry and high inclination of most nanosatellites, a global distri-
bution can be obtained with 500� 600 radio occultation events per nanosatellite and
day assuming a 32-satellite GPS constellation.

The angle under which the GNSS satellites are observed is constantly changing. In
order to characterize the observation geometry, we distinguish between two scenar-
ios. In the first scenario, the observation angle is close to 90deg, i.e. the RO measure-
ments are obtained in a cross-track direction. In consequence, from the four
nanosatellites, we obtain ray paths that are widely parallel to each other. In the second
scenario, the angle is close to 0deg or 180deg. This leads to RO measurements in the
flight direction or anti-flight direction. In both cases, a unique observation geometry is
obtained, in which consecutive observations overlap, as shown in Figure 2.

4.3 Tomography case study

At the time of writing, real GNSS measurements from a dense nanosatellite for-
mation were not available. Thus, for technique demonstration, a closed-loop simula-
tion was carried out using the Weather Research and Forecasting (WRF) model to
simulate the atmospheric state along the GNSS radio occultation signals shown in
Figure 2.

In the first step, the signal paths through the atmosphere were reconstructed every
500ms using ray-tracing shooting techniques [13] with a step size of 1km. For each ray
point, wet refractivity (Nw) was computed from WRF temperature (T) and water
vapor pressure (e) fields using Eq. (31)

Nw ¼ K0
2 �

e
T
þ K3 � e

T2 (31)

where the constant K0
2 is given by

K0
2 ¼ K2 � K1 �Mw

Md
(32)

Figure 2.
Left: The observation geometry for one GNSS satellite simultaneous observed by four nanosatellites in a string-of-
pearls formation. Right: The resulting radio occultation signal paths.
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with K1 ¼ 77:689 K
hPa, K2 ¼ 71:2952 K

hPa and K3 ¼ 375463 K2

hPa as the refractivity
constants and Mw and Md as the molar mass of dry air and water vapor, respectively.

Figure 3 (left) shows the resulting wet refractivity distribution in the lowest 8km
of the atmosphere, with a water vapor inversion layer at a height of approximately
2� 4km. By integration along the signal paths, the wet refractivity can be converted
into atmospheric excess phase using Eq. (4). Figure 3 (right) shows that the inversion
layer in the WRF model also propagates into the simulated observations of
atmospheric phase excess.

To reconstruct the 2D refractivity fields from the atmospheric excess phase, the area
covered by the observations was discretized in area elements with a grid size of 22 km
(horizontally) and 0.2 km (vertically). The tomographic processing itself was carried
out with the ATom software package [13]. Table 2 summarizes the major settings.

Figure 3.
Left: Weather Research and Forecasting (WRF) model derived wet refractivity fields [ppm] with the overlaying
white lines showing the tangent points of the four RO ray paths through the lower 8km of the atmosphere. Right:
The resulting atmospheric excess phase observations [m] by integration through the wet refractivity field.

Parameter Settings

Case study domain Equatorial pacific ocean (140� 150degE)

Case study period Late autumn 2006

Model resolution 22km (horizontally) � 0:2km (vertically)

Tomography software Modified version of ATom software package*

Initial field smooth WRF field

Inversion method Singular value decomposition (eigenvmin ¼ 0:01km2)

Estimation method Iterative weighted least squares adjustment

Convergence criteria RMS of weighted residuals
*https://github.com/GregorMoeller/ATom.

Table 2.
Tomography settings applied for the reconstruction of refractivity fields from (simulated) RO observations.
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The resulting refractivity fields are visualized in Figure 4. The upper left plot
shows the a priori field, a smooth WRF refractivity field, used to initialize the tomog-
raphy solution. For the computation of the smoothed field, a sliding window filter was
applied to the WRF data to remove the inversion layer and therefore, reduce the
information contained in the initial field. In the upper right plot, the actual tomogra-
phy solution is shown. By comparison with the WRF reference field (lower left plot),
the reconstruction capabilities of the tomography approach can be assessed. The
differences between the two models are shown in the lower right plot. Overall voxels,
a Root Mean Square Error (RMSE) of 0:9ppm (21:8%) and a bias of 0:03ppm was
received.

Overall, the best solution is obtained within the horizontal range (�250 km, 250 km)
in which multiple observations overlap and therefore, help to stabilize the tomography
resolution. In this core domain of the tomography model, an RMSE of 0:5ppm (9:6%)
was obtained, which is by a factor of two better than in the outer regions.

5. Conclusions and outlook

In this chapter, the basic aspects of the remote sensing of the lower earth’s atmo-
sphere using tomography radio occultation methods are addressed. My motivation
was to provide an overview about the current achievements in tomographic

Figure 4.
Top left: Smooth WRF refractivity field used to initialize the tomography solution. Top right: Estimated refractivity
field (tomography solution). Bottom left: WRF refractivity field (reference). Bottom right: Closed-loop validation
(tomography minus WRF) to assess the performance of the tomography approach.
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processing and its potential for the processing of radio occultation measurements
collected from very light-weight and power-efficient GNSS sensors onboard dense
nanosatellite formations. In a number of closed-loop validations, the expected obser-
vations have been analyzed and possible processing strategies have been evaluated.
Due to the unique observation geometry, combined processing of overlapping radio
occultation measurements using tomographic principles is possible and allows to
generate high-resolution cross-sections of the lower atmosphere. Thus, I believe that
tomography products have great potential to advance current knowledge, e.g. as a
weather analysis tool or as a complementary observation technique for water vapor
distribution, which can be assimilated into operational weather forecast systems. Once
the required sensor technology is available, not only the communication industry but
also the earth observation community will benefit from new observation concepts
based on nanosatellite technology. If the proposed observation concept is also suited
for the monitoring of the ionosphere has to be evaluated in future studies.
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Abbreviations

AEP Atmospheric Excess Phase
ART Algebraic Reconstruction Technique
ATom Atmospheric Tomography software package
GNSS Global Navigation Satellite Systems
MART Multiplicative Algebraic Reconstruction Technique
POD Precise Orbit Determination
RMSE Root Mean Square Error
RO Radio Occultation
SIRT Simultaneous Iterative Reconstruction Technique
TEC Total Electron Content
TSVD Truncated Singular Value Decomposition
WRF Weather Research and Forecasting model
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Chapter 4

Numerical Gradient Computation
for Simultaneous Detection of
Geometry and Spatial Random
Fields in a Statistical Framework
Michael Conrad Koch, Kazunori Fujisawa
and Akira Murakami

Abstract

The target of this chapter is the evaluation of gradients in inverse problems where
spatial field parameters and geometry parameters are treated separately. Such an
approach can be beneficial especially when the geometry needs to be detected accu-
rately using L2-norm-based regularization. Emphasis is laid upon the computation of
the gradients directly from the governing equations. Working in a statistical frame-
work, the Karhunen-Loève (K-L) expansion is used for discretization of the spatial
random field and inversion is done using the gradient-based Hamiltonian Monte Carlo
(HMC) algorithm. The HMC gradients involve sensitivities w.r.t the random spatial
field and geometry parameters. Building on a method developed by the authors, a
procedure is developed which considers the gradients of the associated integral eigen-
value problem (IEVP) as well as the interaction between the gradients w.r.t random
spatial field parameters and the gradients w.r.t the geometry parameters. The same
mesh and linear shape functions are used in the finite element method employed to
solve the forward problem, the artificial elastic deformation problem and the IEVP.
Analysis of the rate of convergence using seven different meshes of increasing density
indicates a linear rate of convergence of the gradients of the log posterior.

Keywords: sensitivity analysis, geometry detection, random fields, Hamiltonian
Monte Carlo, inverse problems

1. Introduction

Accurate computation of gradients, w.r.t parameters of interest, is a key aspect of
deterministic algorithms like Gauss-Newton, Levenberg–Marquardt, Occam’s inver-
sion [1] as well as statistical algorithms like Hamiltonian Monte Carlo (HMC) [2].
Common nonintrusive methods like finite differences compute the gradient by taking
differences between the response at the current model and at a perturbed model, such
methods suffer from certain drawbacks. Two types of errors stand out in particular:
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numerical error involved with truncation of Taylor’s series and round-off error
involved with finite precision arithmetic of computers [3]. For more robust analysis,
this chapter focuses on methods where the gradient is computed directly from the
analytical/numerical model by enlisting the sensitivity equations.

The type of solutions that can be obtained from inverse problems is guided by
the regularization term. When the accurate detection of the geometry of embed-
ded objects (or detection of discontinuities) is of interest, L1-norm-based differ-
ence priors have proven to be useful [4, 5]. However, special techniques need to
be used to accommodate the nondifferentiability of the L1-norm [1]. Hence, to
make use of a large library of adjoint-based inversion solvers (that use gradients
w.r.t the parameters), L2-norm-based priors which readily allow for differentia-
tion are more popular in practice. However, L2-norm regularization or Gaussian
priors in a stochastic sense only admit smooth solutions. Hence, in order to still be
able to capture discontinuities, this paper explicitly parameterizes the shape of the
boundary (or the geometry of the domain). This approach thereby considers two
sets of parameters, one related to the spatial field and the second with the geom-
etry parameters. This approach is of course only applicable when the unknown
geometry can be parameterized explicitly.

Gradients have to be computed w.r.t both spatial as well geometry parameters.
While sensitivity analysis of spatial parameters is usually straightforward, compu-
tation of the gradients w.r.t geometry parameters [6, 7] needs to be done more
carefully and consider aspects like mesh distortion. This chapter develops on the
method presented in [8] and briefly details the simultaneous spatial field and geom-
etry update within the HMC statistical framework. Similar to [8], the Karhunen-
Loève (K-L) expansion is used for discretization of the random field, with the
difference that the complete theoretical basis is considered. The complete integral
eigenvalue problem or IEVP is solved and the associated gradients are computed.
The interaction between the geometry and spatial parameters due to the domain of
definition of the IEVP is also detailed. It should be noted that the procedure detailed
above is applicable to both the direct differentiation and adjoint methods [9] of
sensitivity analysis.

The entire numerical study is done with a focus on aspects related to gradients and
not with the aim to solve the inverse problem. Nevertheless, a forward model is still
required for the computation of gradients. The chapter begins with a description of
the forward model, observation equation and the discretization of the spatial random
field in Section 2. This is followed by a brief description in Section 3 of the HMC-based
methods developed in [8, 10] for simultaneous spatial field and geometry detection.
Section 3.3 introduces the new gradients obtained when the complete IEVP is consid-
ered. It is shown how the gradients of the eigenvectors involve the computation of a
Moore-Penrose pseudoinverse. Finally, the gradient computation procedure is vali-
dated and a convergence study is done in Section 4.

2. Inversion preliminaries

2.1 Governing and observation equations

Consider a linear steady seepage flow problem defined on a domain z∈Ω⊂d,
d∈ 2, 3f g, where k zð Þ is a symmetric spatially varying hydraulic conductivity matrix,
h zð Þ is the hydraulic head, and Q zð Þ is a source term as shown in Eq. (1) below
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∇:� k zð Þ∇h zð Þ ¼ Q zð Þ: (1)

Standard Dirichlet: h ¼ h on ΓD, and Neumann: f n ¼ f :n ¼ �k∇h:n on ΓN bound-
ary conditions are applied. Following a spatial discretization of the weak form of the
PDE using the finite element method, the governing equation can be written as:

K θð Þh ¼ q, (2)

where K is the global hydraulic conductivity matrix and h and q are the nodal
hydraulic head and flux vectors respectively. The parameter vector θ ¼ 1θ, 2θ

� �
∈K

in Eq. (2), includes all the unknowns related to the inverse problem. In this study, the
unknowns are divided into two sets [8]: 1θ∈K1 , related to the spatial discretization of
a random field and 2θ∈K2 , and related to the definition of the geometry of the
domain Ω. Also, consider an observation model relating the state vector m ¼ h, qð Þ to
the discrete observations y, through a map H that is independent of θ i.e.

y ¼ Hm θð Þ þ r: (3)

The error in Eq. (3) is modeled as Gaussian r �  0, Rð Þ with a known covariance
matrix R. Parameter estimation is done in a probabilistic sense using Bayesian infer-
ence. Starting with a Gaussian prior distribution p θð Þ ¼  θj0, Σθð Þ and a likelihood
distribution p yjθ� � ¼  yjHm θð Þ, R� �

, the posterior distribution is written as:

p θjy� �
∝ p yjθ� �

p θð Þ: (4)

Except for linear Gaussian observation models, the posterior cannot be computed
analytically and is usually evaluated using MCMC sampling algorithms.

2.2 Karhunen-Loève (K-L) expansion

The parameter vector 1θ defined in Section 2.1 is associated with a continuous
hydraulic conductivity spatial random field k z, ωð Þ, where z is defined on the domain
Ω and ω belongs to the space of random events Θ. Let the expected value of the
random field be denoted as k : Ω !  and the autocovariance function C : Ω�Ω ! 
be defined as C z, z0ð Þ ¼ σ zð Þσ z0ð Þρ z, z0ð Þ. Here σ : Ω !  is the standard deviation
function and ρ : Ω� Ω ! �1, 1½ � is the autocorrelation coefficient function. The study
in this chapter is confined to Gaussian random fields that can be defined completely
by their mean and autocovariance functions.

The Karhunen-Loève (K-L) expansion method is a series expansion method for the
discretization of random fields which is based on the spectral decomposition of the
autocovariance function. It can be shown that a random field can be written as an
infinite sum [11]:

k z, ωð Þ ¼ k zð Þ þ
X∞

k¼1

ffiffiffiffiffi
λk

p
1θkϕk zð Þ, (5)

where 1θk : Θ !  are standard uncorrelated random variables, λk are the eigen-
values (always non-negative) and ϕk zð Þ are the eigenfunctions of the linear operator
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related to the covariance kernel C. They can be obtained by solving the homogeneous
Fredholm integral eigenvalue problem (IEVP) on the domain Ω:

ð

Ω
C z, z0ð Þϕk z0ð Þdz0 ¼ λkϕk zð Þ: (6)

The autocovariance function is symmetric, bounded, and positive semi-definite
and has the spectral decomposition C z, z0ð Þ ¼P∞

k¼1λkϕk zð Þϕk z0ð Þ. The
eigenfunctions are orthogonal, and in a normalized form satisfy the conditionÐ
Ωϕk zð Þϕl zð Þdz ¼ δkl, where δkl is the Kronecker delta. In the case of Gaussian
random fields, the random variables 1θk are also independent and follow the stan-
dard normal distribution.

In practice, the eigenvalues decay exponentially fast for smooth functions and
algebraically fast for non-smooth autocovariance kernels and the K-L expansion is
usually truncated after K1 terms. If the eigenvalues are arranged in descending
order such that λ1 > λ2 > … > λK1 , then accompanied by the associated
eigenfunctions, the truncated K-L expansion approximation of the random field
can be written as

k̂ z, ωð Þ ¼ k zð Þ þ
XK1

k¼1

ffiffiffiffiffi
λk

p
1θkϕk zð Þ, (7)

The truncated K-L expansion approximation is optimal in the sense that, for a
fixed number of terms K1, the mean square error over the domain is minimized [12].
A global error measure related to random field discretization is called the mean error
variance εσ and is defined as [13]:

εσ zð Þ ¼ 1
Ωj j
ð

Ω

Var k z, ωð Þ � k̂ z, ωð Þ
h i

Var k z, ωð Þ½ � dz: (8)

It can be shown that the variance of the truncated K-L expansion k̂ z, ωð Þ is:

Var k̂ z, ωð Þ
h i

¼
XK1

k¼1

λkϕ
2
k zð Þ: (9)

Using the property 1θk
1θl

� � ¼ δkl, the mean error variance can be calculated as [14]:

εσ,KL ¼ 1� 1
Ωj jσ2

XK1

k¼1

λk: (10)

The derivation for Eq. (10) assumes the random field to be
homogeneous, i.e., σ zð Þ ¼ σ. We only consider the case where the prior random
field is homogeneous and Gaussian. This assumption is for numerical convenience
and does not limit the posterior, which can be non-Gaussian and non-
homogeneous [15].
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2.3 Galerkin finite element method to solve the integral eigenvalue problem

The Galerkin Finite Element Method (FEM) is used to solve the IEVP on Ω. The
eigenfunctions are approximated with the help of the shape functions Nj : Ω !  of
the FE mesh, and is represented as:

ϕk zð Þ≈
Xn
j¼1

dkjNj zð Þ, (11)

where the coefficients dkj ∈ are unknown and n is the number of nodes in the FE
mesh. Substitution of Eq. (11) into Eq. (6), yields the residual:

r zð Þ ¼
Xn
j¼1

dkj

ð

Ω
C z, z0ð ÞNj z0ð Þdz0 � λjNj zð Þ

� �
, (12)

In the Galerkin method, the unknown coefficients are determined by making the
residual r zð Þ orthogonal to the space spanned by the shape functions i.e.

ð

Ω
r zð ÞNi z0ð Þdz0 ¼ 0∀j ¼ 1,… ,n: (13)

This results in a generalized eigenvalue problem

Bdk ¼ λkMdk, (14)

where

Bij ¼
ð

Ω
Ni zð Þ

ð

Ω
C z, z0ð ÞNj z0ð Þdz0dz and

Mij ¼
ð

Ω
Ni zð ÞNj zð Þdz: (15)

Both B and M are n� n matrices that involve integrals over the domain Ω. Hence
the actual geometry of the domain has to be considered for integration. The maximum
number of available eigenpairs is n, but in practice, the K-L expansion can usually be
truncated at K1 terms such that K1 ≪ n. As such, for computational efficiency, it is
sufficient to compute the first K1 eigenpairs only, which can be done through the
Lanczos algorithm.

3. Simultaneous geometry and spatial field detection

3.1 Hamiltonian Monte Carlo

Consider a parameter space θ∈K augmented with equidimensional momentum
variables p∈K and a joint probability distribution with density p θ, pð Þ defined over
this augmented space. If the underlying distribution over the momentum variables is
chosen to be a Gaussian: p pð Þ �  pj0, Mð Þ, where M is user-specified and
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independent of θ, then a joint probability distribution can be defined as
p θ, pð Þ ¼ p pð Þp θjy� �

. The Hamiltonian H : K � K !  is then defined as:

H θ, pð Þ ¼ � log p pð Þ � log p θjy� �
(16)

The second term on the right of Eq. (17) is generally called φ : K !  and is given
as φ θð Þ ¼ � log p θjy� �

.
The introduction of the momentum variables allows for the generation of trajecto-

ries through conservative Hamiltonian dynamics [16], which are given as:

dθ
dt
dp
dt

0
B@

1
CA ¼ 0 1

�1 0

h i ∂H
∂θ
∂H
∂p

0
BB@

1
CCA ¼ �

∂φ θð Þ
∂θ

M�1p

 !
: (17)

These dynamics are exactly reversible (provided the gradient ∂φ θð Þ
∂θ is one-to-one)

and preserve volume as Eq. (18) is just a rotation transformation in θ� p space.
Except for simple problems Eq. (18) cannot be solved analytically and is usually
solved using the leapfrog method, which is a second-order accurate numerical inte-
grator given as:

p tþ ϵ

2

� �
¼ p tð Þ � ϵ

2
∂φ θ tð Þð Þ

∂θ
, (18)

θ tþ ϵð Þ ¼ θ tð Þ þ ϵM�1p tþ ϵ

2

� �
and (19)

p tþ ϵð Þ ¼ p tþ ϵ

2

� �
� ϵ

2
∂φ θ tþ εð Þð Þ

∂θ
: (20)

Starting from a point θj, pj
� �

, these equations are applied repeatedly for L steps,
each with a step-size ϵ, to determine a transition to a new point θjþ1, pjþ1

� �
, which

lies on the same Hamiltonian level-set as θj, pj
� �

. The deterministic part of Hamilto-
nian Monte Carlo (HMC) [2] is defined by Eqs. (19)–(21). The stochastic part of
HMC comes from resampling p �  0, Mð Þ. The statistical efficiency of Hamilto-
nian Monte Carlo stems from the fact that the gradient-guided transitions can
propose new points that are “far-away” from the starting point, thereby enabling
efficient sampling of the posterior. This is in contrast to the random nature of
transitions, which suffer from the curse of dimensionality [17], in conventional
MCMC algorithms. As shown in Eqs. (19)–(21), critical to the success of HMC, is the
computation of the gradient ∂φ θð Þ

∂θ . Special attention must be paid to maintaining the
reversibility of the transitions to satisfy the detailed balance condition [18] for
MCMC algorithms. This is detailed along with the gradient computation procedure
in the following sections.

3.2 Parameter update using the mesh moving method

The leapfrog equations determine an update in θ� p space. In particular, the
update from θ tð Þ ! θ tþ ϵð Þ in Eq. (20), defines not only a new realization of the
random field, but also a new domain, i.e., Ω 2θ

� �
. Without loss of generality, consider a
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domain in 2D discretized such that Z 2θ
� �

∈2 is the nodal coordinate vector of all the
nodes of the finite element mesh. Let Zv

2θ
� �

∈2 represent a subset of this vector that
includes only the node coordinates at the piping zone boundary. Koch et al. [10] show
that the computation of the gradient ∂φ θð Þ

∂θ , by analytical methods [6], ultimately

involves the computation of the gradient of the nodal coordinate vector ∂Z θð Þ
∂θ .

Computation of the nodal coordinate vector gradient requires the definition of
a differentiable map which is additionally reversible and one-to-one, to satisfy the
detailed balance condition of MCMC. One such map proposed in [10], is to update
from an arbitrarily fixed reference domain Ωref 2θref

� �
, defined by an arbitrary

parameter 2θref . Let Zref 2θref
� �

∈n�2 be the nodal coordinate vector on the
discretized domain Ωref and Zref

v
2θref
� �

∈nv�2 represent a subset of this vector that
includes only the coordinates of the nv nodes at the piping zone boundary. The
nodal coordinates Zv

2θ
� �

and Zref
v

2θref
� �

can be determined explicitly if 2θ and 2θref

are known respectively. Following the update, 2θ tð Þ ! 2θ tþ εð Þ, Zv
2θ tþ εð Þ� �

is
available, and an artificial elastic deformation problem can be set up from the
arbitrary known reference domain Ωref 2θref

� �
to the current domain Ω 2θ tþ εð Þ� �

.

The prescribed displacements uref
v ∈nv�2 for the elastic deformation problem are

given as:

uref
v ¼ Zv

2θ tþ εð Þ� �� Zref
v

2θref
� �

: (21)

The entire mesh is moved and the new nodal coordinates can be determined as:

Z 2θ tþ εð Þ� � ¼ Zref 2θref
� �þ uref , (22)

where uref ∈n�2 represents the displacement of all the nodes from the reference
domain to the current domain.

The displacements in the elastic deformation step can cause distortions in the
mesh, especially in regions where large deformation is expected, i.e., near the piping
zone boundary. To maintain a good mesh quality for computation purposes, a mesh
moving method [19] is used. The simple idea is to scale the elastic modulus Eref

e of each
element (in the reference domain) with the determinant of the Jacobian Jrefe

�� �� in the
elastic deformation step:

~E
ref
e ¼ Eref

e 1= Jrefe

�� ��� �χref
, (23)

where χref is an arbitrary positive scaling parameter. The Poisson’s ratio of the
reference domain νref is also chosen arbitrarily. The performance of the algorithm
has been shown [20] to be invariant to the choice of these reference parameters.
The net effect of such scaling is that small elements become rigid and larger
elements become more flexible. Hence, if the reference domain mesh is
constructed carefully such that small elements are placed in regions where large
distortion is expected, i.e., near the piping zone, and larger elements are placed in
regions of less expected distortion, the method is expected to yield a good mesh
quality in the elastic deformation stage. The map in Eq. (23) is differentiable and
helps determine ∂Z θð Þ

∂θ .
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3.3 Gradient computation

Analytical methods for the computation of the gradient are intrusive and involve
gradients of the steady seepage flow forward solver. From the definition of
φ θð Þ ¼ � log p θjy� �

, it is apparent that the computation of ∂φ θð Þ
∂θ requires the computa-

tion of ∂m
∂θ ¼ ∂h

∂θ ,
∂q
∂θ

� �
. These terms can be computed by taking the derivative of Eq. (2)

and is given as:

∂K
∂θ

hþK
∂h
∂θ

¼ ∂q
∂θ

: (24)

Given standard boundary conditions, this equation can be solved to obtain ∂h
∂θ and

∂q
∂θ, provided

∂K
∂θ is known.

Following the standard procedure in FEM, the hydraulic conductivity matrix at the
element level Ωe in the current domain is given as:

Ke ¼
ð

Ωe

GTk̂ θ, zð ÞG Jej jdξ, (25)

where k̂ represents the hydraulic conductivity spatial field obtained from the
truncated K-L expansion, G contains the derivatives (w.r.t z) of the shape functions
Nj described earlier in Section 2.3, Jej j is the determinant of the Jacobian matrix
associated with the isoparametric transformation ξ1, ξ2ð Þ ! z1, z2ð Þ and Ωe is the
region occupied by the parent element related to the isoparametric transformation.
The gradient of Ke with respect to the spatial parameters 1θ can be computed as:

∂Ke

∂
1θ

¼
ð

Ωe

GT ∂k̂
∂
1θ

G Jej jdξ, (26)

where the gradient of the hydraulic conductivity field w.r.t 1θ is easily obtained by
differentiating Eq. (7) and is given as:

∂k̂
∂
1θj

¼
ffiffiffiffi
λj

q
ϕj, (27)

The gradient of Ke w.r.t the geometry parameters 2θ can be written as [6]:

∂Ke

∂
2θ

¼
ð

Ωe

∂GT

∂
2θ

k̂G Jej j þGTk̂
∂G
∂
2θ

Jej j þGTk̂G
∂ Jej j
∂
2θ

þGT ∂k̂
∂
2θ

G Jej j
 !

dξ: (28)

Formulas for the calculation of the gradients ∂G
∂
2θ and

∂ Jej j
∂
2θ can readily be found in

literature [6]. It is clear from Eq. (6) that the computation of the eigenvalues
and eigenfunctions depends on the definition of the domain Ω 2θ

� �
. Hence, the

gradient ∂k̂ θ, zð Þ
∂
2θ will involve the gradients of the eigenvalues and eigenvectors and

is written as:
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∂k̂
∂
2θ

¼
XK1

j¼1

1
2
ffiffiffiffi
λj

p ∂λj

∂
2θ

ϕj þ
ffiffiffiffiffi
λq

q ∂ϕj

∂
2θ

 !
1θj: (29)

The gradient of the eigenvalues and eigenvectors of the generalized eigenvalue
problem in Eq. (14) w.r.t. 2θ are written as [21]:

∂λj

∂
2θ

¼ dT
j

∂B
∂
2θ

� λj
∂M
∂
2θ

 !
dj, (30)

∂dj

∂
2θ

¼ λjM� B
� �† ∂B

∂
2θ

� λj
∂M
∂
2θ

 !
dj � 1

2
dT
j
∂M
∂
2θ

dj

 !
dj: (31)

As dj lies in the null space of λjM� B, the inverse λjM� B
� ��1 cannot be computed

and a generalized inverse called the Moore-Penrose pseudoinverse ∙ð Þ† is employed. In
this study, the Moore-Penrose pseudoinverse is calculated by first carrying out an
SVD of the matrix λjM� B and then eliminating the smallest singular values below a
tolerance level. This is then followed by taking a standard inverse of the SVD.

Considering the same mesh that is used for the solution of the steady seepage flow
problem to be used for the discretization of the random field, the gradients of the
matrices B and M at an elemental level in isoparametric space are given as:

∂Bij

∂
2θ

¼
ð
Ωe

Ni

ð

Ωe

C z, z0ð ÞNj
∂ Je z0ð Þj j
∂
2θ

, Je z0ð Þj j þ Je zð Þj j ∂ Je z0ð Þj j
∂
2θ

 !
dξ0dξ

þ
ð
Ωe

Ni

ð

Ωe

∂C z, z0ð Þ
∂
2θ

 !
Nj Je zð Þj j Je z0ð Þj jdξ0dξ,

(32)

∂Mij

∂
2θ

¼
ð

Ωe

NiNj
∂ Je zð ÞÞj j

∂
2θ

dξ: (33)

In this study, the squared exponential autocorrelation coefficient function has been
used, i.e.,

ρ z, z0ð Þ ¼ exp
� z� z0j j2

l2c

 !
, (34)

where lc is the correlation length of the random field. Assuming σ zð Þ ¼ σ z0ð Þ ¼ σ,
the gradient of the autocovariance function C z, z0ð Þ w.r.t 2θ is given as:

∂C z, z0ð Þ
∂
2θ

¼ � 2

l2c

∂z
∂
2θ

� ∂z
∂
2θ

 !T

z� z0ð Þ
0
@

1
AC z, z0ð Þ: (35)

This completes the definition of all the terms required to compute the HMC
gradient

∂φ θð Þ
∂θ

:
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4. Numerical implementation and results

4.1 Observation data

A seepage zone containing a piping region of length l and width w, shown in
Figure 1, is chosen to generate synthetic observations for inversion. A steady seepage
flow problem is solved on the domain defined by l ¼ 0:15 m and w ¼ 0:05 m. The left
and right boundaries marked in blue are Dirichlet boundaries and the top and bottom
boundaries are no-flow Neumann boundaries. Linear shape functions are used in the
FE solution of the forward problem. Ten sets of observations (hydraulic head and total
outward normal flux) are made by increasing the hydraulic head at the left boundary
as shown by point A in Figure 2. The hydraulic head at the right boundary is fixed at
0. The corresponding hydraulic head recorded at observation points B, C, D, and E are
shown in Figure 2. The total outward normal flux from the right boundary is summed
and also shown on the right in Figure 2. Observation data is generated assuming a
constant hydraulic conductivity field, i.e., ktrue zð Þ ¼ 0:001 m/s. The standard devia-
tion of the observation noise for the hydraulic head data and outward normal flux data
is taken to be 1 and 5% respectively.

4.2 Inversion setup

Considering a log-normal hydraulic conductivity field k zð Þ, inversion is carried out
on the Gaussian field ~k zð Þ ¼ log k zð Þ � ˘k½ �, where ˘k is a lower bound taken as 10�5

m/s. The log-normal construction enables a convenient choice of the standard devia-
tion of the random field which is chosen as σ zð Þ ¼ 1. The correlation length of the

Figure 1.
Discretized seepage domain containing piping zone, used to obtain observation data, i.e., hydraulic head h data at
points B, C, D and E, and total outward normal flux data q from the boundary marked in blue on the right. The
hydraulic head is constant on the left boundary. The number of nodes in the discretization is 3943.
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random field is assumed to be known and is taken to be equal to the length of the
largest dimension of the domain i.e. lc ¼ 0:4m.

A preliminary assessment of the eigenvalues obtained by solving the generalized
eigenvalue problem in Eq. (14) reveals that the K-L expansion can be truncated at
K1 ¼ 12 terms. The eigenvalues are found to decay by approximately 3� 104 times.
This enables the determination of the number of terms in the spatial parameter vector
1θ ¼ θ1, … , θ12ð Þ. As mentioned in Section 3.2, once the geometry parameterization
2θ ¼ 2θ1, 2θ2

� � ¼ θ13, θ14ð Þ is known (see Figure 3(a)), an explicit function Zv
2θ
� �

can
be constructed as:

z1vj ¼ L1�2θ1þ j�1ð Þ
2θ1

n1 � 1
L2�2θ2

 !
, (36)

z2vj ¼
L1�2θ1

L2�2θ2þ j�1ð Þ
2θ2

n2 � 1

 !
: (37)

Eqs. (37) and (38) can be readily differentiated to obtain ∂Zv
∂θ , which can be used to

compute other gradients ∂Z
∂θ,

∂φ
∂θ etc. This completes the definition of the parameter

vector.
As all updates are designed to take place from an arbitrary reference domain as

mentioned in Eq. (23), the study of the convergence properties requires a focus on the
reference mesh. The reference domain is arbitrarily chosen as the true domain used to
generate the observations. Seven different reference configuration meshes with 128,
306, 497, 1038, 1476, 1860, and 3018 nodes are considered for the study of the
convergence properties. Three of these meshes are shown in Figure 3. The artificial
elastic properties selected for the mesh moving method are Eref ¼ 25 MPa, νref ¼ 0:25
and χref ¼ 1. To reduce mesh distortion during the mesh moving stage, all the refer-
ence meshes have a unique construction, i.e., smaller elements (which behave rigidly)
are placed close to the piping zone boundary and larger elements (which are more
flexible) are placed further away.

Figure 2.
Observation data generated from numerical seepage flow experiment. Data at each time t is obtained by solving a
new seepage flow experiment with an input hydraulic head at the left boundary represented by A.

61

Numerical Gradient Computation for Simultaneous Detection of Geometry and Spatial Random…

DOI: http://dx.doi.org/10.5772/intechopen.108363



4.3 Inversion and convergence analysis

There are no analytical solutions to verify the correctness of the gradient
computation procedure mentioned in Section 3. Hence, for verification purposes,
a short inversion analysis is done using HMC, where i ¼ 150 samples are drawn
from the posterior. The number of leapfrog steps is variable and drawn from a
Gaussian L �  5, 2ð Þ. The prior for the parameters are chosen as 1θ � N 0, I12ð Þ
and 2θ � N 0, 0:1I2ð Þ. The results presented in Figure 4 correspond to inversion
done considering the reference mesh shown in Figure 3(b). The potential
energy φ decreases rapidly in the first 20 steps and thereafter HMC begins the
exploration of the region of the high posterior probability. Prior experience
leads the authors to consider the performance of HMC to be appropriate and
as such, is an indirect indicator that the gradient computation procedure is
correct.

In order to study the convergence properties, suitable error measures are required.
The rate of convergence of the truncated KL expansion of the prior random field, for a
fixed number of parameters K1 ¼ 12, is determined through the relative mean error
variance [14]:

εVar,rel ¼
εσ,KL � εσ,analytic
�� ��

εσ,analytic
: (38)

Figure 3.
(a) Parameterizations of the piping zone boundary. Discretization of the reference domain defined by
2
θ
ref
1 ,

2
θref2

� �
¼ 0:15 m, 0:05 mð Þ with (b) 307 (c) 1476 and (d) 3018 nodes. Red dots indicate the position of

observation points.
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The analytical mean error variance εσ,analytic cannot be computed for squared
exponential type autocorrelation coefficient functions (Eq. (35)) and is calculated
numerically using the fine mesh containing 3943 nodes, as shown in Figure 1. The
relative error is computed for the seven different meshes mentioned in Section 4.2 and
plotted in a log–log plot in Figure 5. A closer look at Eq. (10) indicates that the mean
error variance is dependent only on the cumulative sum of the K1 eigenvalues. As the
eigenvalues are arranged in descending order, the relative error of the largest eigen-
value λ1ð Þ is also shown in Figure 5. The corresponding relative error measure can be
written in a generalized manner as:

Figure 4.
Results from HMC showing (a) Decrease in potential energy as HMC progresses towards the high posterior
probability region and samples of (b) θ13 and (c) θ14. The dashed lines represent the true values of the parameters
used to generate the observations.

Figure 5.
Convergence of relative errors for different variables for a fixed number of terms K1 ¼ 12 in the K-L expansion.
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ελ1 ¼
λ1 � λ1analytic
�� ��

λ1analytic
: (39)

Other error measures can be computed in a similar manner just by replacing λ1
with the relevant variable. Finally, the relative error of the gradient of the largest
eigenvalue w.r.t the geometry parameters ∂λ1

∂
2θ is also shown in Figure 5. To compute

the error related to the gradient, one mesh moving step is carried out, where the mesh

is moved from the reference domain
2
θ
ref
1 ,

2
θ
ref
2

� �
¼ 0:15 m, 0:05 mð Þ to an arbitrary

domain defined by 2θ1, 2θ2
� � ¼ 0:16 m, 0:04 mð Þ. The same linear shape functions are

used for discretization of the random field, the mesh moving method and the solution
of the forward problem. The same realization of the parameter vector 1θ is used to
generate the random field in all the cases. A least squares fit of the relative error plots
with a first-order polynomial reveals a linear convergence rate between �2.5 and � 5.
Linear rates of convergence for εVar,rel, using linear FEM, are also observed by Betz
et al. [14].

Finally, the rate of convergence of the gradient of the potential energy function
w.r.t the spatial parameter related to the largest eigenvalue θ1, and the two geometry
parameters θ13 and θ14 is plotted in Figure 6. The convergence rates of the different
gradients are almost parallel to each other. Once again, the slope of each plot is

Figure 6.
Convergence of relative errors of potential energy gradients for a fixed number of terms K1 ¼ 12 in the K-L
expansion.
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determined by a least squares fit with a first-order polynomial. Each plot shows a
linear convergence rate with a slope of approximately �2.7.

5. Conclusions

This paper details the numerical procedure for the computation of gradients in
probabilistic inverse problems involving the simultaneous estimation of spatial fields
and geometry. The method is analytical (in the sense of [6]), intrusive and involves
the computation of gradients of the forward problem. Emphasis is laid upon the
calculation of gradient of eigenvalues and eigenvectors involved with the truncated K-
L expansion method for discretization of the random field. The eigenvalues and
eigenvectors are obtained by solving a generalized eigenvalue problem on a defined
domain. This implies that as the geometry parameters are updated, the domain is
updated and the generalized eigenvalues and eigenvectors change. Computation of the
gradient of the eigenvectors w.r.t the geometry parameters involve the computation
of a generalized inverse.

The gradients are validated through an inverse analysis using HMC. The potential
energy decreases rapidly as the Markov chain related to the geometry parameters
approaches the region of high posterior probability, indicating the correctness of the
computed gradients. Overall the rate of convergence of various quantities is observed
to be linear on a log–log plot. This means computation costs can grow exponentially to
achieve better results. While the same mesh that is used to solve the forward problem
can also be used for the Galerkin FE method-based discretization of the IEVP, the
repeated need to solve the forward problem, the mesh moving method and the
generalized eigenvalue problem at every step can be computationally prohibitive.
Elimination of any one, two or even all three of these numerical problems can
significantly improve the computational feasibility of simultaneous spatial field and
geometry detection using gradient-based stochastic samplers like HMC.
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Chapter 5

Solving and Algorithm for
Least-Norm General Solution to
Constrained Sylvester Matrix
Equation
Abdur Rehman and Ivan I. Kyrchei

Abstract

Keeping in view that a lot of physical systems with inverse problems can be written
by matrix equations, the least-norm of the solution to a general Sylvester matrix
equation with restrictions A1X1 ¼ C1,X1B1 ¼ C2, A2X2 ¼ C3,X2B2 ¼ C4, A3X1B3 þ
A4X2B4 ¼ Cc, is researched in this chapter. A novel expression of the general solution
to this system is established and necessary and sufficient conditions for its existence
are constituted. The novelty of the proposed results is not only obtaining a formal
representation of the solution in terms of generalized inverses but the construction of
an algorithm to find its explicit expression as well. To conduct an algorithm and
numerical example, it is used the determinantal representations of the Moore–Penrose
inverse previously obtained by one of the authors.

Keywords: linear matrix equation, generalized Sylvester matrix equation, Moore-
Penrose inverse

1. Introduction

Standardly, we state  and , respectively, for the complex and real numbers. Let
m�n denote the set of all m� n matrices over , and m�n

r stay for a subset of m� n
complex matrices with rank r. The rank of A is denoted by both symbols r Að Þ and
rankA. The (complex) conjugate transpose matrix of A∈m�n is written by A ∗ and a
matrix A∈n�n is said to be Hermitian if A ∗ ¼ A. An identity matrix with feasible
shape is denoted by I.

Definition 1.1. The Moore–Penrose (MP-) inverse of A∈m�n, denoted by A†, is
defined to be the unique solution X to the following four Penrose equations

AXA ¼ A, (1)

XAX ¼ X, (2)

AXð Þ ∗ ¼ AX, (3)

XAð Þ ∗ ¼ XA: (4)
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Matrices satisfying the eqs. (1) and (2) are known as reflexive inverses, denoted
by Aþ.

In addition, LA ¼ I � A†A and RA ¼ I � AA† represent a pair of orthogonal
projectors onto the kernels of A and A ∗ , respectively.

Mathematical models of physical systems with inverse problems especially those
has a finite number of model parameters can be written by matrix equations. In
particular, the Sylvester-type matrix equations have far-reaching applications in
singular system control [1], system design [2], robust control [3], feedback [4],
perturbation theory [5], linear descriptor systems [6], neural networks [7] and theory
of orbits [8], etc.

Some recent work on generalized Sylvester matrix equations and their systems can
be observed in [9–21]. In 2014, Bao [22] examined the least-norm and extremal ranks
of the least square solution to the quaternion matrix equations

A1X ¼ C1,XB1 ¼ C2, A3XB3 ¼ Cc: (5)

Wang et al. [23] examined the expression of the general solution to the system

A1X1 ¼ C1, A2X2 ¼ C3,A3X1 B3 þ A4X2B4 ¼ Cc, (6)

and as an application, the P-symmetric and P-skew-symmetric solution to

AaX ¼ Ca,AbXBb ¼ Cb:

has been established. Li et al. [24] established a novel expression of the general
solution of the system (6) and they computed the least-norm of general solution to
(6). In 2009, Wang et al. [25] constituted the expression of the general solution to

A1 X1 ¼ C1,X1B1 ¼ C2,

A2 X2 ¼ C3,X2B2 ¼ C4,

A3 X1B3 þ A4X2B4 ¼ Cc,

(7)

and as an application, they explored the P,Qð Þ-symmetric solution to the system

AaX ¼ Ca,XBb ¼ Cb,AcXBc ¼ Cc:

Some latest findings on the least-norm of matrix equations and P,Qð Þ-symmetric
matrices can be consulted in [26–30]. Furthermore, our main system (7) is a special
case of the following system

A1X1 ¼ C1,X2B1 ¼ D1,

A2X3 ¼ C2,X3B2 ¼ D2,

A3X4 ¼ C3,X4B3 ¼ D3,

A4X1 þ X2 B4 þ C4X3D4 þ C5X4D5 ¼ Cc,

(8)

which has been investigated by Zhang in 2014.
Motivated by the latest interest of least-norm of matrix equations, we construct a

novel expression of the general solution to the system (7) and apply this to investigate
the least-norm of the general solution to the system (7) in this chapter. Observing that
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systems (5) and (6) are particular cases of our system (7), solving system (7) will
encourage the least-norm to a wide class of problems.

We commence with the following lemmas which have crucial function in the
construction of the chief outcomes of the following sections.

Lemma 1.2. [31]. Let A,B, and C be given matrices over  with agreeable dimensions.
Then.

1.r Að Þ þ r RABð Þ ¼ r Bð Þ þ r RBAð Þ ¼ r A B½ �.

2.r Að Þ þ r CLAð Þ ¼ r Cð Þ þ r ALCð Þ ¼ r
A
C

� �
.

3.r Bð Þ þ r Cð Þ þ r RBALCð Þ ¼ r
A B
C 0

� �
:

Lemma 1.3. [32]. Let A, B, and C be known matrices over  with right sizes. Then

1.A† ¼ A ∗Að Þ†A ∗ ¼ A ∗ AA ∗ð Þ†:

2.LA ¼ L2
A ¼ L ∗

A ,RA ¼ R2
A ¼ R ∗

A :

3.LA BLAð Þ† ¼ BLAð Þ†, RACð Þ†RA ¼ RACð Þ†:

Lemma 1.4. [33]. Let Φ,Ω be matrices over  and

Φ ¼ Φ1

Φ2

� �
, Ω ¼ Ω1 Ω2

� �
, F ¼ Φ2LΦ1 , T ¼ RΩ1Ω2:

Then

LΦ ¼ LΦ1LF, LΩ ¼ LΩ1 �Ω†
1Ω2LT

0 LT

" #
,

RΩ ¼ RTRΩ1 , RΦ ¼
RΦ1 0

�RFΦ2Φ†
1 RF

" #
,

where Φþ
1 , Ω

þ
1 are any fixed reflexive inverses, LΦ1 and RΩ1 stand for the projectors

LΦ1 ¼ I �Φþ
1 Φ1, RΩ1 ¼ I � Ω1Ωþ

1 induced by Φ1, Ω1, respectively.
Remark 1.5. Since the Moore-Penrose inverse is a reflexive inverse, this lemma

can be used for the MP-inverse without any changes. It has taken place in ([32],
Lemma 2.4).

Lemma 1.6. [34]. Suppose that

B1XC1 þ B2YC2 ¼ A (9)

is consistent linear matrix equation. Then.

1.The general solution of the homogeneous equation

B1XC1 þ B2YC2 ¼ 0,
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can be expressed by

X ¼ X1X2 þ X3, Y ¼ Y1Y2 þ Y3,

where X1 � X3 and Y1 � Y3 are general solution to the system

B1X1 ¼ �B2Y1, X2C1 ¼ Y2C2, B1X3C1 ¼ 0, B2Y3C2 ¼ 0:

By computing the value of unknowns in above and using them in X and Y,
we have

X ¼ S1LGURHT1 þ LB1V1 þ V2RC1 ,

Y ¼ S2LGURHT2 þ LB2W1 þW2RC2 ,

where S1 ¼ Ip, 0
� �

, S2 ¼ 0, Is½ �,T1 ¼
Iq
0

� �
, T2 ¼

0

It

� �
,G ¼ B1, B2½ �, and

H ¼ C1

�C2

� �
; the matrices U,V1,V2,W1 and W2 are free to vary over :

2.Assume that Eq. (9) is solvable, then its general solution can be expressed as

X ¼ X0 þ X1X2 þ X3, Y ¼ Y0 þ Y1Y2 þ Y3,

where X0 and Y0 are any pair of particular solutions to (9).

It can also be written as
X ¼ X0 þ S1LGURHT1 þ LB1V1 þ V2RC1 ,

Y ¼ Y0 þ S2LGURHT2 þ LB2W1 þW2RC2 :

Lemma 1.7. [35]. Let A1,B1,C1,C2 be given matrices over  with agreeable sizes and
X1 to be determined. Then the system

A1X1 ¼ C1,X1B1 ¼ C2, (10)

is consistent if and only if

RA1C1 ¼ 0, C2LB1 ¼ 0, A1C2 ¼ C1B1: (11)

Under these conditions, the general solution to (10) can be established as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1U1RB1 ,

where U1 is a free matrix over  with accordant dimension.
Lemma 1.8. [36]. Let A, B, and C be known matrices over  with agreeable dimen-

sions, and X be unknown. Then the matrix equation

AXB ¼ C (12)

is consistent if and only if AA†CB†B ¼ C. In this case, its general solution can be
expressed as
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X ¼ A†CB† þ LAV þWRB, (13)

where V,W are arbitrary matrices over  with appropriate dimensions.
In [37], it is proved that (13) is the least squares solution to (12), and its minimum

norm least squares solution is XLS ¼ A†CB†.
Lemma 1.9. [25]. Let Ai,Bi,Ci, i ¼ 1, … , 4ð Þ, and Cc be given matrices over  with

agreeable dimensions, and X1,X2 to be determined. Denote

A ¼ A3LA1 ,B ¼ RB1B3,C ¼ A4LA2 ,D ¼ RB2B4,

N ¼ DLB,M ¼ RAC, S ¼ CLM,

E ¼ Cc � A3A
†
1C1B3 � AC2B

†
1B3 � A4A

†
2C3B4 � CC4B

†
2B4:

Then the following conditions are tantamount:

1.System (7) is resolvable.

2.The conditions in (11) are met and

RA2C3 ¼ 0, C4LB2 ¼ 0, A2C4 ¼ C3B2,

RMRAE ¼ 0,RAELD ¼ 0,ELBLN ¼ 0,RCELB ¼ 0:
(14)

3.The equalities in (11) and (14) are satisfied and

MM†RAD†D ¼ RAE, CC†ELBN†N ¼ ELB:

In these conditions, the general solution to the system (7) can be written as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1A

†EB†RB1 � LA1A
†CM†EB†RB1�

�LA1A
†SC†EN†DB†RB1 � LA1A

†SV1RNDB†RB1þ
þLA1 LAU1 þ Z1RBð ÞRB1 ,

(15)

X2 ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED†RB2 þ LA2LMbS
†SC†EN†RB2

þLA2LM V1 � S†SV1NN†
� �

RB2 þ LA2W1RDRB2 ,
(16)

where U1,V1,W1 and Z1 are free matrices over  with agreeable dimensions.
Since the general solutions of considered systems are expressed in terms of gener-

alized inverses, another goal of the paper is to give determinantal representations of
the least-norm of the general solution to the system (7) based on determinantal
representations of generalized inverses.

Due to the important role of generalized inverses in many application fields,
considerable effort has been exerted toward the numerical algorithms for fast and
accurate calculation of matrix generalized inverse. In general, most existing methods
for their obtaining are iterative algorithms for approximating generalized inverses of
complex matrices (some recent papers, see, e.g. [38–40]). There are only several
direct methods for finding MP-inverse for an arbitrary complex matrix A∈m�n. The
most famous is method based on singular value decomposition (SVD), i.e. if
A ¼ UΣV ∗ , then A† ¼ VΣ†U ∗ . The computational cost of this method is dominated
by the cost of computing the SVD, which is several times higher than matrix–matrix
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multiplication. Another approach is constructing determinantal representations of the
MP-inverse A†. A well-known determinantal representation of an ordinary inverse is
the adjugate matrix with the cofactors in entries. It has an important theoretical
significance and brings forth Cramer’s rule for systems of linear equations. The same is
desirable to have for the generalized inverses. Due to looking for their more applicable
explicit expressions, there are various determinantal representations of generalized
inverses (for the MP-inverse, see, e.g. [41, 42]). Because of the complexity of the
previously obtained expressions of determinantal representations of the MP-inverse,
they have little applicability.

In this chapter, we will use the determinantal representations of the MP-inverse
recently obtained in [43].

Lemma 1.10. [43,Theorem 2.2] If A∈m�n with rankA ¼ r, then the Moore-Penrose

inverse A† ¼ a†ij
� �

∈n�m possess the following determinantal representations

a†ij ¼
P

β∈ Jr,n if g A ∗Að Þ:i a ∗
:j

� ����
���
β

βP
β∈ Jr,n

A ∗Aj jββ
¼
P

α∈ Ir,m jf g AA ∗ð Þj: a ∗
i:

� ����
���
α

αP
α∈ Ir,m AA ∗j jαα

: (17)

Here Aj jαα denote a principal minor of A whose rows and columns are indexed by
α≔ α1, … , αkf g⊆ 1, … ,mf g,

Lk,m≔ α : 1≤ α1 <⋯< αk ≤mf g, and Ir,m if g≔ α : α∈Lr,m, i∈ αf g:

Also, a ∗
:j and a ∗

i: denote the jth column and the ith row of A ∗ , and Ai: bð Þ and A:j cð Þ
stand for the matrices obtained from A by replacing its ith row with the row vector
b∈1�n and its jth column with the column vector c∈m, respectively.

The formulas (17) give very simple and elegant determinantal representations of
the MP-inverse. So, for any A∈m�n

r , we have sum of all principal minors of r order
of the matrices A ∗A or AA ∗ in denominators and sum of principal minors of r order

of the matrices A ∗Að Þ:i a ∗
:j

� �
or AA ∗ð Þj: a ∗

i:

� �
that contain the ith column or the jth

row, respectively, in numerators into (17).
Note that for an arbitrary full-rank matrix A, Lemma 1.10 gives a new way of

finding an inverse matrix.

Corollary 1.11. If A∈m�n with rankA ¼ min m, nf g, then the inverse A�1 ¼
a�1
ij

� �
∈n�m possess the following determinantal representations:

a�1
ij ¼

A ∗Að Þ:i a ∗
:j

� ����
���

A ∗Aj j if rankA ¼ n,

AA ∗ð Þj: a ∗
i:

� ����
���

AA ∗j j if rankA ¼ m:

8>>>>><
>>>>>:

These new determinantal representations of the Moore-Penrose inverse have been
obtained by the developed novel limit-rank method in the case of quaternion matrices
[44] as well. This method was successfully applied for constructing determinantal
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representations of other generalized inverses in both cases for complex and
quaternion matrices (see e.g. [45–47]). It also yields Cramer’s rules of various matrix
equations [48–54].

The remainder of our chapter is directed as follows. In Section 2, we
provide a new expression of the general solution to our system (7) and discuss its
least-norm. The algorithm and numerical example of finding the anti-Hermitian
solution to (7) are presented in Section 3. (7). Finally, in Section 4, the conclusions
are drawn.

2. A new expression of the general solution to the system

Now we demonstrate the principal theorem of this section (7).

Theorem 2.1. Assume that S1 ¼ Ip1 0
� �

, S2 ¼ 0 Ip2
� �

, T1 ¼
Iq1
0

� �
, T2 ¼

Iq2
0

� �
,

G ¼ A C½ �,H ¼ B
�D

� �
, H1 ¼ LA1LA,H2 ¼ LA1S1LG,H3 ¼ RHT1RB1 ,H4 ¼ LA2LC,H5 ¼

LA2S2LG,H6 ¼ RHT2RB2 and the system (7) is solvable, then the general solution to our
system can be formed as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1A

†EB†RB1 � LA1A
†CM†EB†RB1�

�LA1A
†SC†EN†DB†RB1 þH1V1RB1 þH2UH3 þ LA1V2RBRB1 ,

(18)

X2 ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED†RB2 þ LA2LMS†SC†EN†RB2þ
þH4W1RB2 þH5UH6 þ LA2W2RDRB2 ,

(19)

where U,V1,V2,W1, and W2 are free matrices over  with allowable dimensions.
Proof. Our proof contains three parts. At the first step, we show that the matrices

X1 and X2 have the forms of

X1 ¼ ϕ0 þH1V1RB1 þ LA1V2RBRB1 þH2UH3, (20)

X2 ¼ ψ0 þH4W1RB2 þ LA2W2RDRB2 þH5UH6, (21)

where ϕ0 and ψ0 are any pair of particular solution to the system (7), V1, V2, W1,
W2, and U are free matrices of able shapes over , are solutions to the system (7).
In the second step, we display that any couple of solutions μ0 and ν0 to the system (7)
can be established as (20) and (21), respectively. In the end, we confirm that

μ ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†CM†EB† � A†SC†EN†DB†,

ν ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED† þ LA2LMS†SC†EN†RB2

are a couple of particular solutions to the system (7).
Now we prove that a couple of matrices X1 and X2 having the shape of (20) and

(21), respectively, are solutions to the system (7). Observe that

A†
1C1B1 þ LA1C2B

†
1B1 ¼ A†

1A1C2 þ LA1C2 ¼ C2,

A†
2C3B2 þ LA2C4B

†
2B2 ¼ A†

2A2C4 þ LA2C4 ¼ C4:
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It is evident that X1 having the form (20) is a solution of A1X1 ¼ C1, and X1B1 ¼
C2 and X2 having the form (21) is a solution to A2X2 ¼ C3,X2B2 ¼ C4. Now we are
left to show that A3X1B3 þ A4X2B4 ¼ Cc is satisfied by X1 and X2 given in (20) and
(21). By Lemma 1.4, we have

AS1LG ¼ A Ip1 0
� � LA �A†CLM

0 LM

" #
¼ A LA �A†CLM

� �

¼ 0 �AA†CLM
� � ¼ 0 � C�Mð ÞLM½ � ¼ 0 �CLM½ �

¼ � 0 S½ � ¼ �CS2LG,

(22)

and

RHT1B ¼
RB 0

RNDB† RN

" #
Iq1
0

" #
B ¼

RB

RNDB†

" #
B

¼
0

RNDB†B

" #
¼

0

RND I � LBð Þ

" #
¼

0

RND

" #

¼ RHT2D:

(23)

Observe that ALA ¼ 0 and by using (22) and (23), we arrive that

A3X1B3 þ A4X2B4 ¼ Cc:

Conversely, assume that μ0 and ν0 are any couple of solutions to our system (7). By
Lemma 1.7, we have

A1A
†
1C1 ¼ C1,C2B

†
1B1 ¼ C2,A2A

†
2C3 ¼ C3,

C4B
†
2B2 ¼ C4,A1C2 ¼ C1B1,A2C4 ¼ C3B2:

Observe that

LA1μ0RB1 ¼ I � A†
1A1

� �
μ0 I � B1B

†
1

� �

¼ μ0 � μ0B1B
†
1 � A†

1A1μ0 þ A†
1A1μ0B1B

†
1

¼ μ0 � C2B
†
1 � A†

1C1 þ A†
1A1C2B

†
1

¼ μ0 � LA1C2B
†
1 � A†

1C1

produces

μ0 ¼ LA1C2B
†
1 þ A†

1C1 þ LA1μ0RB1 : (24)

On the same lines, we can get

ν0 ¼ LA2C4B
†
2 þ A†

2C3 þ LA2ν0RB2 : (25)

It is manifest that μ0 and ν0 defined in (24)–(25) are also solution pair of

AX1Bþ CX2D ¼ E: (26)
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Since

AX1Bþ CX2D ¼ A3LA1μ0RB1B3 þ A4LA2ν0RB2B4

¼ A3 μ0 � LA1C2B
†
1 � A†

1C1
� �

B3 þ A4 ν0 � LA2C4B
†
2 � A†

2C3
� �

B4

¼ A3μ0B3 � A3LA1C2B
†
1B3 � A†

1C1B3 þ A4ν0B4

�A4LA2C4B
†
2B4 � A4A

†
2C3B4

¼ A3μ0B3 þ A4ν0B4 � AC2B
†
1B3 � A†

1C1B3 � CC4B
†
2B4 � A4A

†
2C3B4

¼ Cc � AC2B
†
1B3 � A†

1C1B3 � CC4B
†
2B4 � A4A

†
2C3B4

¼ E:

Hence by Lemma 1.6, μ0 and ν0 can be written as

μ0 ¼ X01 þ S1LGURHT1 þ LAV1 þ V2RB, (27)

ν0 ¼ X02 þ S2LGURHT2 þ LCW1 þW2RD, (28)

where X01 and X02 are a couple of special solutions to (26) and U,V1,V2,W1 and
W2 are free matrices with agreeable dimensions. Using (27) and (28) in (24) and (25),
respectively, we get

μ0 ¼ X10 þH2UH3 þH1V1RB1 þ LA1V2RBRB1 ,

ν0 ¼ X20 þH5UH6 þH4W1RB2 þ LA2W2RDRB2 ,

where X10 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1X01RB1 and X20 ¼ A†

2C3 þ LA2C4B
†
2 þ

LA2X02RB2 : It is evident that X10 and X20 are a couple of solutions to the system (7).
It is clear that μ0 and ν0 can be represented by (20) and (21), respectively.
Lastly, by putting U1,V1,W1, and Z1 equal to zero in (15) and (16), we conclude
that μ and ν are special solutions to the system (7). Hence the expressions (18)
and (19) represent the general solution to the system (7) and the theorem is
completed.

Remark 2.2. Due to Lemma 1.3 and taking into account LA2LM ¼ LMLA2 , we have
the following simplification of the solution pair to the system (7) that is identical for
(15)–(16) and (18)–(19) when U,U1,V1,V2,Z1,W1, and W2 disappear,

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB† � A†SC†EN†B4B†,

X2 ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†:

Comment 2.3. We have established a novel expression of the general solution to the
system (7) in Theorem 2.1 which is different from one created in [25]. With the help
of this novel expression, we can explore the least-norm of the general solution which
can not be studied with the help of the expression given in [25], which is one of the
advantage of our new expression.

Now we discuss some special cases of our system.
If B1,B2,C2 and C4 disappear in Theorem 2.1, then we gain the following conclusion.

Corollary 2.4. Denote S1 ¼ Ip1 0
� �

, S2 ¼ 0 Ip2
� �

, T1 ¼
Iq1
0

� �
, T2 ¼

Iq2
0

� �
,

G ¼ A C½ �,H ¼ B3

�B4

� �
, H1 ¼ LA1LA,H2 ¼ LA1S1LG,H3 ¼ RHT1,H4 ¼ LA2LC,H5 ¼
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LA2S2LG,H6 ¼ RHT2 and the system (6) is solvable, then the general solution to (6) can be
formed as

X1 ¼ A†
1C1 þ A†EB†

3 � A†A4M†EB†
3 � A†SC†EN†B4B

†
3 �H1Y1þ

þH2VH3 þ LA1Y2RB3 ,

X2 ¼ A†
2C3 þM†EB†

4 þ S†SC†EN† þH4Z1 þH5VH6 þ LA2Z2RB4 ,

where A,C,N,M, S are the same as in Lemma 1.6, E ¼ Cc � A3A
†
1C1B3 � A4A

†
2C3B4,

V,Y1,Y2,Z1, and Z2 are free matrices over  obeying agreeable dimensions.
Comment 2.5. The above consequence is a chief result of [32].
If A2,B2,C3,A4,B4 and C4 vanish in our system (7), then we get the following

outcome.
Corollary 2.6. Suppose that A1,B1,C1,C2,A3,B3 and Cc are given. Then the general

solution to system (5) is established by

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A3LA1ð Þ† Cc � A3A

†
1C1B3 � A3LA1C2B

†
1B3

� �
RB1B3ð Þ†þ

þ LA1LA3LA1
W1RB1 þ LA1W2RRB1B3RB1 ,

where W1 and W2 are arbitrary matrices over  with appropriate sizes.
We experience the least-norm to the system (7) in this section. By the definition

and [55], we can get the following result easily.
Lemma 2.7. Let A∈m�n,B∈n�m. Then we have.
(1) ∥Aþ B∥2 ¼ ∥A∥2 þ ∥B∥2 þ 2Re tr B ∗Að Þ½ �.
(2) Re tr ABð Þ½ � ¼ Re tr BAð Þ½ �:
Theorem 2.8. Assume that system (7) is solvable, then the least-norm of the solution

pair X1 and X2 to system (7) can be extracted as follows:

∥X1∥min ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB†�

�A†SC†EN†B4B†,
(29)

∥X2∥min ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†: (30)

Proof. By Theorem 2.1 and Remark 2.2, the general solution to (7) can be formed as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB† � A†SC†EN†B4B†

�H1V1RB1 þH2UH3 þ LA1V2RBRB1 ,

X2 ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†

þH4W1RB2 þH5UH6 þ LA2W2RDRB2 ,

where U,V1,V2,W1, and W2 are free matrices over  having executable dimen-
sions. By Lemma 2.7, the norm of X1 can be established as

∥X1∥2 ¼ ∥A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB†�

�A†SC†EN†B4B† �H1V1RB1 þH2UH3 þ LA1V2RBRB1∥
2

¼ ∥A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB† � A†SC†EN†B4B†∥2

þ∥H1V1RB1 þH2UH3 þ LA1V2RBRB1∥
2 þ J,

(31)
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where

J ¼ 2Re tr H1V1RB1 þH2UH3 þ LA1V2RBRB1ð Þ ∗ð½
A†

1C1 þ LA1C2B
†
1 þ A†EB† � A†A4M†EB† � A†SC†EN†B4B†

� ���
:

(32)

Now we want to show that J ¼ 0. Applying Lemmas 1.3, 1.4 and 2.7, we have

Re tr H1V1RB1ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB†

���

�A†SC†EN†B4B†ÞÞ� ¼ Re tr RB1V
∗
1 H

∗
1 A†

1C1 þ LA1C2B
†
1 þ A†EB†

���

�A†A4M†EB† � A†SC†EN†B4B†ÞÞ� ¼ Re tr RB1V
∗
1 LALA1 A†

1C1
���

þLA1C2B
†
1 þ A†EB† � A†A4M†EB† � A†SC†EN†B4B†ÞÞ�

¼ Re tr RB1V
∗
1 LALA1 LA1C2B

†
1

� �� �� �

¼ Re tr V ∗
1 LALA1 LA1C2B

†
1

� �
RB1

� �� � ¼ 0, (33)

Re ½tr LA1V2RBRB1ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB†

��

�A†SC†EN†B4B†ÞÞ� ¼ Re ½trðRB1RBV ∗
2 L

∗
A1

A†
1C1 þ LA1C2B

†
1

�

þA†EB† � A†A4M†EB† � A†SC†EN†B4B†ÞÞ�
¼ Re tr RB1RBV ∗

2 LA1 LA1C2B
†
1 þ A†EB† � A†A4M†EB†

���

�A†SC†EN†B4B†ÞÞ� ¼ Re tr V ∗
2 LA1 LA1C2B

†
1

���

þA†EB† � A†A4M†EB† � A†SC†EN†B4B†ÞRB1RBÞ�
¼ Re tr V ∗

2 LA1 A†EB† � A†A4M†EB† � A†SC†EN†B4B†
� �

RB
� �� � ¼ 0,

(34)

Re tr H2UH3ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M†EB†

���

�A†SC†EN†B4B†ÞÞ� ¼ Re tr H ∗
3 U

∗H ∗
2 A†

1C1 þ LA1C2B
†
1 þ A†EB†

���

�A†A4M†EB† � A†SC†EN†B4B†ÞÞ� ¼ Re tr H ∗
3 U

∗LGS ∗
1 LA1 LA1C2B

†
1

���

þA†EB† � A†A4M†EB† � A†SC†EN†B4B†ÞÞ�

¼ Re tr H ∗
3 U

∗ LA �A†CLM

0 LM

" #
I
0

� �
LA1C2B

†
1 þ A†EB†

� "

�A†A4M†EB† � A†SC†EN†B4B†Þ
!#

¼ Re tr H ∗
3 U

∗LA A†EB†
���

�A†A4M†EB† � A†SC†EN†B4B†ÞÞ� ¼ Re tr H ∗
3 U

∗LALA1C2B
†
1

� �� �

¼ Re tr RB1T
∗
1 RHU ∗LALA1C2B

†
1

� �� �
(35)

By using (33)–(35) in (32) produces J ¼ 0. Since X1 is arbitrary, we get (29) from
(31). In the same way, we can prove that (30) hold. □
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A special case of our system (7) is given below.
If B1,B2,C2, and C4 become zero matrices in Theorem 2.8, then again we get the

principal result of [20].
Corollary 2.9. Assume that system (6) is solvable, then the least-norm of the solution

pair X1 and X2 to system (6) can be furnished as

∥X1∥min ¼ A†
1C1 þ A†EB†

3 � A†A4M†EB†
3 � A†SC†EN†B4B

†
3,

∥X2∥min ¼ A†
2C3 þM†EB†

4 þ S†SC†EN†:

If A2,B2,C3,A4,B4 and C4 vanish in our system, then we get the next consequence.
Corollary 2.10. Suppose that A1,B1,C1,C2,A3,B3 and Cc are given. Then the least-

norm of the least square solution to system (5) is launched by

∥X1∥min ¼ A†
1C1 þ LA1C2B

†
1

þ A3LA1ð Þ† Cc � A3A
†
1C1B3 � A3LA1C2B

†
1B3

� �
RB1B3ð Þ†:

Comment 2.11. Corollary 2.10 is the key result of [22].

3. Algorithm with example

In this section, we construct the algorithm for finding the least-norm of the solu-
tion to (7) that is inducted by Theorem 2.8.

Algorithm 1.

1.By Lemma 1.10 find the matrices A†
i , B

†
i for i ¼ 1, … , 4, and RAi ¼ I � AiA

†
i ,

LAi ¼ I � A†
i Ai, RBi ¼ I � BiB

†
i , and LBi ¼ I � B†

i Bi for i ¼ 1, 2.

2.By Lemma 1.9 calculate the matrices A,B,C,D,M, S, and E, and by Lemma 1.10
find their MP-inverses and orthogonal projectors when it is needed.

3.Verify the consistence equalities (11) and (14). If these equalities are hold, then
we find solutions by the next steps.

4.Finally, by (29) and (30), compute the least-norm of the solution pair X1 and X2.

The following example will be considered by using Algorithm 1. Note that our goal is
both to confirm correctness of main results from Theorems 2.1 and 2.8, and to demon-
strate the technique of applying the determinantal representations of the MP-inverse
from Lemma 1.10 by using a not too complicated and understandable example.

Example 1. Given the matrices:

A1 ¼
1þ i 1� i �1þ i �1� i

�1þ i 1þ i �1� i 1� i

2i 2 �2 �2i

2
664

3
775,B1 ¼

2i �1 iþ 3

�i 1 �3� i

�1 i 1� 3i

1 �i �1þ 3i

2
666664

3
777775
,A2 ¼

i 1 �1

1 �i i

�1 i �i

�i �1 1

2
666664

3
777775
,
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B2 ¼

2� i 2i� 1 iþ 1

2iþ 1 �i� 2 i� 1

�2iþ 1 i� 2 �i� 1

iþ 2 �2i� 1 �iþ 1

2
666664

3
777775
,C1 ¼

8i �8 �8i 8

4 4i �4 �4i

2þ 4i �4þ 2i 2� 4i 4� 2i

2
664

3
775,

C2 ¼

11i 44i� 11 �44

22 22iþ 88 88i

�11i 44iþ 11 44

�22 �22i� 88 �88i

2
666664

3
777775
,A3 ¼

5iþ 2 5� 2i �2þ 5i 2iþ 5

2i� 5 5iþ 2 �2i� 5 �2þ 5i

4i 4 �4i �4

2
664

3
775,

B3 ¼

�i �iþ 2 �1

�2 �2� 4i 2i

�2i 4� 2i �2

1 1þ 2i �i

2
666664

3
777775
,A4 ¼

�2i� 3 �3iþ 2 2iþ 3

�i 1 i

�3 �3i 3

2
664

3
775,

C3 ¼

3i 3 �3 �3i

3 �3i 3i �3

�3 3i �3i 3

�3i �3 3 3i

2
666664

3
777775
,

B4 ¼

7i �i �2

�7 �3 2i

�7i i 2

7 3 �2i

2
666664

3
777775
,C4 ¼

4� 2i �2þ 4i 2þ 2i

2þ 4i �4� 2i �2þ 2i

�2� 4i 4þ 2i 2� 2i

2
664

3
775,

Cc ¼ 1
21

�1130� 502i �1344þ 612i �2798� 1250i

�1808� 688 �1398þ 834i �2942� 1538i

�1154� 946i �1488þ 624i �2654� 1394i

2
664

3
775: (36)

Let us find a solution to the system (7) with the given above matrices by
Algorithm 1.

1.Thanks to Lemma 1.10, we calculate the Moore-Penrose inverses. So,

A†
1 ¼

1
32

1� i �1� i �2i

1þ i 1� i 2

�1� i �1þ i �2

�1þ i 1þ i 2i

2
666664

3
777775
,B†

1 ¼
1
44

�11i 11i �11 11

39 41 20� i 20þ i

7 � i 1þ i 5þ 3i 3� 3i

2
664

3
775,

A†
2 ¼

1
12

�i 1 �1 i

1 i �i �1

�1 �i i 1

2
664

3
775,B†

2 ¼
1
12

1 �i i 1

�i �1 �1 i

1� i �1� i �1þ i 1þ i

2
664

3
775,

A†
3 ¼

1
80

�2i �2 2� 5i

2 �2i 5þ 2i

�2i �2 2þ 5i

2 �2i �5þ 2i

2
666664

3
777775
,B†

3 ¼
1
70

i �2 2i 1

2þ i �2þ 4i 4þ 2i 1� 2i

�1 �2i �2 i

2
664

3
775,
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A†
4 ¼ 1

69

�3þ 2i i �3

2þ 3i 1 3i

3� 2i �i 1

2
664

3
775,B†

4 ¼ 1
792

�35i �21 35i 21

47i �51 �47i 51

�52 �48i 52 48i

2
664

3
775:

Then,

A ¼ 1
2

2þ 5i 5� 2i 1þ 8i 12þ 9i

�5þ 2i 2þ 5i �8þ i �9þ 12i

4i 4 4� 8i �8þ 4i

2
664

3
775,

B ¼ 1
22

�52� 31i 10� 135i �31þ 52i

8þ 9i �10þ 25i 9� 8i

�9þ 8i �25� 10i 8þ 9i

31� 52i 135þ 10i �52� 31i

2
666664

3
777775
,

C ¼ 1
3

�11� 3i 9� 7i 6þ 4i

�1� 3i 3þ i 2i

�9þ 3 3� 9i 6

2
664

3
775,D ¼

0 �2i �2

0 �2 2i

0 2i 2

0 2 �2i

2
666664

3
777775
,

N ¼ 1
7

4þ 4i �4� 2i �10� 4i

4� 4i �2þ 4i �4þ 10i

�4� 4i 4þ 2i 10þ 4i

�4þ 4i 2� 4i 4� 10i

2
666664

3
777775
,M ¼ 1

3

�4� 2i 4� 2i 2þ 2i

�2þ 4i �2� 4i 2� 2i

0 0 0

2
664

3
775, S ¼ 0

E ¼ 1
84

19931� 108289i 236509� 68427i �108289� 19931i

110417 þ 16211i 77995þ 79015i 16211� 110417i

74624þ 106424i �138224þ 255672i 106424� 74624i

2
664

3
775:

2.Confirm that (11) and (14) are true for given matrices.

3.Finally, by (29) and (30), we find that the least-norm of the solution pair X1 and
X2 to the system (7) is following

X1 ¼ 1
365760

�11103239þ 18670545i �9851419þ 14002307i �5154373þ 3862099i �4697553þ 10234559i

26688873þ 4258681i 29888893 þ 5510501i 12048461þ 4721147i 17746081þ 5177967i

6556168þ 9656066i 5321848þ 2196342i 4452786þ 10360112i �6757414þ 7845632i

�17049264� 2930378i �26304464� 11113378i �10244698� 3367816i �7362609� 13720296i

2
666664

3
777775
,

X2 ¼ 1
1344

2052� 963i 233� 1985i �2159þ 3481i �1465� 367i

�792þ 2565i 1901� 205i 317 þ 445i �221þ 317i

171þ 585i �146þ 28i 868� 1714i 146þ 2884i

2
664

3
775:

Note that Maple 2021 was used to perform the numerical experiment.
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4. Conclusion

We have constructed a novel expression of the general solution to system (7) over
 and used this result to explore the least-norm of the general solution to this system
when it is solvable. Some particular cases of our system are also discussed. Our results
carry the principal results of [22, 32]. To give an algorithm finding the explicit
numerical expression of the least-norm of the general solution, it is used the determi-
nantal representations of the MP-inverse recently obtained by one of the authors. The
novelty of the conducted research is obtaining necessary and sufficient conditions to
exist a solution, its formal representation of by closed formula in terms of generalized
inverses, and the construction of an algorithm to find its explicit expression. A
numerical example is also given to interpret the results established in this paper.
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