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Preface

Satellite radar altimetry, with its global coverage and level of precision, is a key 
technique for observing the ocean surface and many aspects of land surfaces, over 
the last three decades. Through interdisciplinary collaboration, satellite altimetry has 
integrated the efforts of international researchers to demonstrate the technique itself, 
previous and future missions, and measurements and their accuracy, including orbit 
determination and ocean circulation models. Satellite altimetry has revolutionized 
our understanding of the Earth’s sea-level shape and its change over time, enabling 
the monitoring of natural and human-induced water mass balance change, marine 
gravity computations, high-resolution seafloor bathymetry reconstruction, a better 
understanding of plate tectonics, and more. For researchers in geodesy and geophys-
ics, oceanography, and other space and earth sciences, satellite radar altimetry is 
critical for unifying vertical height systems, regional and global geoid, gravity, and 
bathymetry modelling, and monitoring sea-level rise, vertical land motion, and ice 
sheet melting. 

This book provides a state-of-the-art overview of satellite radar altimetry technology 
and recent developments in its use. It discusses applied studies utilizing altimeter data 
to determine sea-level changes and sea-level variability, marine bathymetry modelling 
from satellite altimeter-derived gravity data and the related issue of solving terrain 
corrections for gravity reductions, as well as the possibility of using artificial intelli-
gence (AI) in monitoring Earth’s changes, including the use of satellite altimetry data.

The introductory chapter, “Satellite Altimetry – Overview”, by the editor, provides a 
geodetic review of the basic principles and formulas of satellite radar altimetry tech-
nology and corrections for the processing and application of satellite altimetry data, 
primarily in geodetic tasks. Along with the evolution of technology and guidelines for 
future development, the chapter presents selected products that open a wide area for 
future scientific and applied research in the field of geosciences.

Chapter 2, “Cyclo-Stationarity in Sea Level Variability from Satellite Altimetry 
Data and Correlation with Climate Indices in the Mediterranean Sea” by Dimitrios 
A. Natsiopoulos, Eleni A. Tzanou, and Georgios S. Vergos, deals with numerical 
experiments for the statistical analysis of Sea Level Anomaly (SLA) variations in the 
Mediterranean obtained from the exact repeat missions of Envisat, Jason-1, Jason-2, 
and Cryosat-2 data for the period between 2002 and 2016. Analysis of the empirical 
covariance functions of SLAs show that there is a significant annual variation that is 
evident for the entire period under study. This variation is in line with the thermal 
expansion of the sea due to increasing temperatures during the summer and early fall 
months and lower temperatures during winter. Moreover, the seasonal cycle can also 
be attributed to atmospheric forcing due to the variation in atmospheric pressure in 
the Mediterranean. To identify possible correlations with global and regional climatic 
phenomena that influence the ocean state, three indexes have been investigated: the 



Southern Oscillation Index (SOI), the Mediterranean Oscillation Index (MOI), and 
the North Atlantic Oscillation (NAO). 

Chapter 3, “Sea-Level Changes”, by Tarek M. El-Geziry, examines the problem of the 
rate of sea level rise (SLR) on a global and relative level using complementary mareo-
graph tide gauge measurements and satellite altimetry measurements. Numerous 
investigations have shown that the rise of the mean sea level was about 1.3 mm/year 
during the 20th century. During 2006–2018, the sea level on a global scale has risen 
as much as 3.7 mm/year, but it also changed on a relative (regional/local) level. There 
are two main reasons for this: (1) the thermal expansion of seawater due to climate 
change and global warming, and (2) the melting of ice in the Arctic and Antarctic 
regions. Both are direct consequences of climate change, which is mainly caused by 
anthropogenic activities. Additionally, vertical ground movement (subsidence/uplift) 
can affect the calculated relative SLR rates. Given that nature has changed signifi-
cantly over the last several decades, the necessity of international cooperation, public 
awareness campaigns, better monitoring tools, numerical models for simulations 
and predictions, and the further development of satellite technology such as satellite 
altimetry is specifically highlighted.

Chapter 4, “Bathymetry Estimation from Satellite Altimeter-Derived Gravity Data”, 
by Ljerka Vrdoljak and Tomislav Bašić, gives an overview of the physical problem of 
and different approaches to estimating bathymetry from satellite altimeter-derived 
gravity data. It also discusses the possibility of regional bathymetry modelling in 
the Adriatic Sea by the gravity-geologic method (GGM) in the space domain with 
a simpler algorithm, higher resolution, and satisfactory quality as compared to 
global solutions. Comparison with modern shipborne bathymetric surveys shows 
that bathymetry estimated from altimetry has a coarse spatial resolution and lesser 
accuracy, especially in coastal areas. As compared to chart soundings, all models had 
the least accuracy in the coastal area shallower than 20 m. The quality increased up to 
10% of the depth in the deepest parts of the Adriatic. Limitations of the bathymetry 
estimated from altimetry can be overcome by using more available high-quality 
bathymetry in important coastal areas.

Chapter 5, “Terrain Corrections in Gravity and Gradiometry” by Sajjad Sajjadi, 
Zdenek Martinec, and Patrick Prendergast, deals with determining the influence of 
topography in the calculation of physical parameters, especially the surface of the 
geoid, which must be defined before the calculation of the short-wave and long-wave 
components of the calculated physical parameters both from terrestrial data, where 
satellite altimeter-derived gravity data can be counted to, and from the recent satellite 
missions, that is, gravity measurements (GRACE mission) and gradiometry (GOCE 
mission). Since the corrections enter the first of three steps of the Remove–Compute–
Restore (RCR) procedure for applying the Stokes integral, this study focuses on deter-
mining these corrections. The effects formulation is introduced, and the effects are 
calculated on high-elevation topography in Ireland using Helmert’s second condensa-
tion method. Finally, the chapter examines the effects of topography on determining 
the heights of the geoid.

Chapter 6, “Artificial Intelligence Techniques for Observation of Earth’s Changes”, by 
Eman A. Alshari and Bharti W. Gawali, highlights that the art and science of measur-
ing the planet through sensors or satellites, known as remote sensing, together with 
IV

GIS technology, is essential for collecting data about the Earth. The chapter presents 
an overview of the application of AI in detecting Land Use Land Cover (LULC) 
changes on Earth. It also includes a short subsection on the use of satellite altimetry 
to monitor changes in mean sea level. The chapter provides an overview of Earth 
observation satellites and their development, reviews AI procedures (supervised and 
unsupervised methods) for LULC, highlights the fundamentals of Machine Learning 
(ML) classifiers, and presents the challenges of AI techniques for LULC classification.

Finally, I sincerely thank all the chapter authors for their excellent contributions. 

Tomislav Bašić
University of Zagreb,

Zagreb, Croatia

VXIV



GIS technology, is essential for collecting data about the Earth. The chapter presents 
an overview of the application of AI in detecting Land Use Land Cover (LULC) 
changes on Earth. It also includes a short subsection on the use of satellite altimetry 
to monitor changes in mean sea level. The chapter provides an overview of Earth 
observation satellites and their development, reviews AI procedures (supervised and 
unsupervised methods) for LULC, highlights the fundamentals of Machine Learning 
(ML) classifiers, and presents the challenges of AI techniques for LULC classification.

Finally, I sincerely thank all the chapter authors for their excellent contributions. 

Tomislav Bašić
University of Zagreb,

Zagreb, Croatia

VXV



Chapter 1

Introductory Chapter:
Satellite Altimetry – Overview
Tomislav Bašić

1. Introduction

Radar satellite altimetry is one of the basic satellite measurement techniques
intended primarily for solving global geodetic tasks by means of radar measurements
from satellites toward the Earth. Satellite altimetry ensures the collection of high-
precision global data of uniform accuracy on sea level, which enables monitoring of
the geophysical characteristics of the sea and larger water surfaces, that is, marine
topography and circulation within liquid water bodies. During the last four decades,
satellite altimetry has revolutionized geosciences, especially oceanography, geophys-
ics, and geodesy. This measurement method found its application in modeling the
shape of the Earth and the Earth’s field of acceleration of gravity, modeling the relief
of the seabed and vertical displacements of the Earth’s crust in coastal areas, and
monitoring climate phenomena and long-term climate changes. Satellite altimetry
data is distributed in the form of original measurements and products ready for use in
geosciences, most often calculated models, or calculation services. This chapter pre-
sents the fundamental principles of the radar altimetric measurement method, its
historical development, achievements, and expected improvements in technology
soon, as well as the scientific and professional results achieved so far in the develop-
ment and application of technology.

2. Evolution of technology

The concept of satellite altimetry was developed in the sixties of the twentieth
century as part of NASA’s (National Aeronautics and Space Administration) NGSP
(National Geodetic Satellite Program) initiative for the development of a space geo-
detic program and was formalized in 1969 during a conference on solid Earth and
ocean physics [1]. During that time of conceptual development, satellite altimetry’s
main goal was to determine the Earth’s shape, which today can really be considered a
limited ambition [2].

Following the timeline of technology development, the operational characteristics
of the satellite missions launched to date are given in Table 1. The variety of satellite
missions is shown regarding the height of the satellite orbits, the inclination angles of
the orbits, the coverage of the geographical area of the Earth, the distances of the
satellite paths on the Equator, and the frequency band and altimeter frequencies.
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2.1 Development phase of technology

With the launch of the Skylab satellite in 1973, the development and experimental
era of satellite altimetry began, revealing the great potential of radar altimetry.
Already in 1975, the GEOS-3 (Geodynamics Experimental Ocean Satellite) satellite
was launched, as the third satellite in the NGSP program [3]. The satellite mission
achieved measurement precision in a one-second interval of about 25 cm, which,
along with the low accuracy of determining the satellite’s orbit of about 5 m, could not
meet the requirements for application in geodetic purposes [4].

Significant progress was made during the SEASAT satellite mission, which
achieved 5-centimeter precision of altimetry measurements, and methods of deter-
mining satellite orbits and geophysical corrections applied during altimetry data
processing were significantly improved [5]. This was achieved by simultaneous
observation with different instruments from the satellite: (1) a SAR instrument (Syn-
thetic Aperture Radar), (2) a scattering meter, which was used to determine the wind
speed and direction above the water surface, (3) a multi-frequency microwave radi-
ometer, which was used for determining water surface temperature, and (4) radar
altimeter [4]. The data thus collected enabled the modeling of the circulation of ocean
waves and wind along the sea surface, the geoid model in the sea area, and the
topography of the seabed.

The last mission of the development phase, GEOSAT (GEOdetic SATellite), was
launched in 1985 with the basic goal of determining the potential of the acceleration of
gravity at sea and modeling the topography of the sea primarily for the needs of the
US Navy [6]. The success of the satellite mission is evidenced by the calculation that
the satellite mission saved the Navy in the amount of about 280 million US dollars by
replacing the long-term shipboard gravimetric measurement [7].

Practical calculations of gravity anomalies and geoid undulations from satellite
altimetry data began already during the development phase. As an example, we cite
the usage of GEOS-3, SEASAT, and GEOSAT altimetry data and ETOPO5U

Mission Orbit height
(km)

Inclination Latitude
coverage

Equator track
distance (km)

Band Frequency
(GHz)

GEOSAT 785 108° 72° 163 Ku 13.5

ERS-1/2 785 98° 81° 80 Ku 13.8

TOPEX/
POSEIDON
Jason-1/2/3
Sentinel-6

1336 66° 66° 315 Ku/C 13.6/5.3

GFO 785 108° 72° 163 Ku 13.5

Envisat 785 98° 81° 163 Ku/S 13.6/3.2

CryoSat-2 717 92° 88° 7 Ku 13.6

HY-2A/2B 964 99° 60° 90 Ku/C 13.6/5.3

SARAL/
ALTIKA

800 98° 81° 90 Ka 35

Table 1.
Operational characteristics of satellite altimetry missions.
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bathymetry data to globally determine gravity anomalies and sea surface heights in
the ocean areas, using the least squares collocation method [8, 9].

2.2 The modern and future era of technology

The 1990s represent a turning point in the application of technology, during which
significant advances were made toward operational oceanography, that is, the possi-
bility of forecasting sea level and temperature and sea currents, for which the basic
prerequisites are reliable and high-frequency measurements with altimeters that are
available in real-time. The potential of the technology was also recognized by the
European Space Agency (ESA), which defined the basic goals of future missions in the
PRARE (Precision Range and Range-Rate Equipment) project: (1) calibration of radar
altimeters within 10 cm using laser retroreflectors on Earth, (2) download and distri-
bution of measured data in real-time, and (3) automation of data processing and
development of rapidly available standardized products [10], which began to be
realized with the ERS-1 (European Remote Sensing) satellite mission. Figure 1
displays a view of the current and future altimetry constellations [11].

At the same time, NASA, and the French agency CNES (Centre National d’Etudes
Spatiales) developed and launched TOPEX/Poseidon, one of the most significant
satellite geodetic missions in history that revolutionized satellite altimetry as a tech-
nology [12, 13]. The radar altimeter of the TOPEX/Poseidon satellite, in addition to
the standard microwave frequency of about 12 GHz (Ku band), was also equipped
with another frequency in the C-band (about 5 GHz), which became the standard for
later satellite missions. This, along with the introduction of the third frequency on the
satellite’s microwave radiometer, enabled the efficient calculation of the ionospheric
correction and the removal of the influence of wind on altimetry measurements [2].
This satellite mission achieved the accuracy of the determination of the satellite’s orbit
expressed by the root mean square error of about 2.5 cm and the measurement
precision with a standard deviation of 2 cm, which achieved the estimated precision of

Figure 1.
Present and future altimetry missions [11].
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determining the sea level in the open sea by satellite altimetry of about 4 cm [14].
Considerable progress in the accuracy of satellite orbit determination was achieved
with the DORIS measuring system for tracking satellites from Earth.

During the nineties, the ERS-2 mission (the successor to ERS-1) and the GFO
(Geosat Follow-On), which succeeded the GEOSAT mission, were launched. A similar
intensity of the frequency of launching altimetry satellite missions continued in the
first years of the twenty-first century, when the JASON-1 (Joint Altimetry Satellite
Oceanography Network) mission succeeded TOPEX/Poseidon, with a four-year
period of simultaneous observation of the two satellites. JASON-1 was designed pri-
marily to determine trends in mean sea level change, or to assess the consequences of
climate change [15]. In 2002, the Envisat satellite mission was launched, which
succeeded the ERS missions, with the basic goal of enabling the creation of environ-
mental studies, the development of biological oceanography studies, and the mapping
of ice surfaces on Earth [16].

The following satellite missions are currently active [17]: CryoSat-2 (Cryogenic
Satellite), a mission created as part of ESA’s space program in 2010, HY-2a (Haiyang),
mission realized in 2011 under the leadership of CNSA (China National Space
Administration), SARAL, a mission launched in 2013 with the cooperation of ISRO
(Indian Space Research Organization) and CNES, SENTINEL-3, a mission launched in
2015 as part of ESA’s Copernicus space program with the leadership of EUMETSAT,
JASON-3, a designed in collaboration of NASA and ESA as the successor of TOPEX/
Poseidon and Jason 1/2, HY-2b (Haiyang), launched as the second in the series of
Chinese Haiyang satellites in 2018, and Sentinel-6 (previously referred to as Jason
CS), launched in late 2020, which continues the EU Copernicus and NASA program
and previous TOPEX/Poseidon and Jason 1/2/3 satellite missions.

Satellite altimetry missions of the near future should enable and improve the
efficient monitoring of the surface level of lakes, rivers, and coastal areas, forecast the
intensity of tropical cyclone disturbances, hurricanes, and enable the development of
improved models of sea changes and currents. In the future, the launch of SWOT
(Surface Water Ocean Topography) satellite mission is expected, primarily to enable
terrestrial water monitoring.

3. Principle of satellite altimetry measurement

Satellite altimetry is a method of determining the height of the sea surface in
relation to a defined geodetic reference frame (ellipsoid or geoid) based on the mea-
surement of the distance between the satellite and the instantaneous sea surface.
Distance measurement is based on the measurement of the time required for the radar
signal to travel from the satellite to the water surface and from the water surface to the
satellite, with a series of corrections necessary due to signal propagation through the
atmosphere and the influence of geophysical phenomena of water surfaces on the
reflected signal [2]. A prerequisite for determining the height of the water surface is
knowledge of the position of the satellite in a clearly defined geodetic reference
system.

3.1 Basic formulas and corrections of satellite altimetry data

The altimeter from the satellite sends a short pulse of microwave radiation of
known power toward the sea surface at regular time intervals. The pulse interacts with

4

Satellite Altimetry – Theory, Applications and Recent Advances



the rough sea surface and part of the radiation is reflected toward the altimeter. With
the known speed of the radar signal, that is, the speed of light in a vacuum c, and
neglecting refraction, the distance of the satellite from the sea surface Robs can be
calculated based on the time t required for the signal pulse to travel twice [14]. The
fundamental equation of altimetry then takes the form:

Robs ¼ ct
2

(1)

After applying the corrections, the basic equation for calculating the corrected
distance R has the form:

R ¼ Robs �
X
i

ΔRi ¼ Robs � ΔRtdry þ ΔRtwet þ ΔRiono þ ΔRdyn þ …
� �

, (2)

where the values ΔRi, i = 1… represent corrections, ΔRtdry and ΔRtwet are the
influence of the dry and wet components of the troposphere, ΔRiono is the influence of
the ionosphere, physical influences on the surface of the sea such as sea currents and
tides, motion of the Earth’s pole, solid Earth tides and the dynamics of the sea (sea
state bias) ΔRdyn.

The consequence of the latter can most often be expressed by the slope of the
waves that cause the radar signals to bounce with a small displacement, which is
related to local conditions (wind and waves). An offset correction due to sea position
is attempted to account for the difference between the scattered surface and the true
mean sea level within the altimeter footprint. The correction is a combined effect of
electromagnetic and asymmetric shifts [2].

The most common corrections and models used today in the processing of
original altimetric measurements, namely orbit, dry/wet tropospheric correction,
ionospheric correction, inverse barometric correction, Sea tides and solid Earth tides,
and geodetic reference surface can be found in example [18]. All influences on the
signal cause a delay in the return signal, so the corrections are positive amounts
(Eq. (2)). The distance estimate is variable along the satellite orbit due to changes in
sea surface topography and changes in the height of the orbit relative to the center of
the Earth.

The basic prerequisite for determining the height of the water surface based on
the measured distance from the satellite is the knowledge of the position of the
satellite flying in a predefined orbit, that is, its height hOR in a fixed geocentric
reference system. Determining the position of satellites today is done through
DORIS and SLR tracking from Earth and GNSS technology from space. The
estimated accuracy of determining the orbit of modern satellites is 1 cm. The sea
surface height (SSH), or the water surface in general, in the reference system in which
the position of the satellite is expressed (as a rule, the ellipsoidal height) can be
expressed as:

SSH ¼ hOR � R ¼ hOR � Robs þ
X
i

ΔRi: (3)

The dynamic effects of geostrophic sea currents are of primary importance for
satellite altimetry applications in oceanography [14]. Therefore, the dynamic topog-
raphy of the sea (SST; Figure 2) can be represented mathematically by the equation:
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SST ¼ SSH �N � hT � hA, (4)

where N is the undulation of the geoid, and hT and hA are the influence of sea tides
or atmospheric pressure, which are calculated from the model or corrections for the
moment of measurement. The influence of atmospheric pressure can be described by
the inverse barometric (IB) effect, that is, the direct influence of changes in atmo-
spheric pressure on the level of the water surface, whereby the level of the water
surface decreases with an increase in air pressure and vice versa. Changes in air
pressure of 100 Pa cause changes of about 1 cm in the water surface level. The average
monthly influence of atmospheric pressure on sea level in the Mediterranean area is
about 3 cm [20].

By determining the average change in SSH heights over a period, we can also
define the mean sea surface MSS. The level of the mean sea level above the geoid is
called the mean dynamic ocean topography which provides data on the magnitude of
ocean circulations. To define the MSS size, it is important to use the latest data due to
the development of radar altimeters themselves, precise calculation of orbits, geo-
physical corrections, and slow changes in ocean currents. The mean sea level is a
surface created by averaging a longer period of sea level observations lasting a
minimum of one year due to pronounced seasonal effects of sea level change, and
optimally 18.6 years due to the Earth’s nutation period [21].

The sea level can also be expressed by the sea level anomaly SLA in relation to the
mean sea surface MSS:

SLA ¼ SSH �MSS: (5)

The mean level shown on the geoid represents the topography of the sea (sea
surface topography, [22]), which is one of the basic variables in determining the
model of the shape of the Earth—the geoid.

Figure 2.
Global trend of mean sea level change based on CU data [19], adjusted by the method of least squares for the
period 1993–2012.
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3.2 Advanced altimeter processing methods

Satellite altimetry provides centimeter accuracy over the open ocean from orbits
more than 1000 km above Earth. However, the estimation of the height of the water
level is significantly less accurate in coastal and inland areas, mainly due to difficulties
in estimating tropospheric corrections, high-frequency atmospheric signals, tides, and
mostly problems related to land contamination in radar altimeter footprints [23].

Improved altimetry data in coastal areas and on land is obtained through retracking
—signal reprocessing procedures using complex algorithms. Problems related to data
processing procedures are explained in detail in Ref. [2]. Today, the most used data
processing algorithms in the coastal area are ALES (Adaptive Leading Edge
Subwaveform) and X-TRACK [24, 25]. Altimetry retrackers compare the wave strength
of return signals most often with previously known wave models, and in this way,
reconstruct measurements of water surfaces [24]). ALES+ was later designed for sea ice,
coastal and inland waters [26], while Goddard Space Flight Center (GSFC) designed
several retrackers for ice regions. Thanks to such retrackers, altimeter errors are
reduced, ensuring coverage and use of satellite altimetry in coastal zones and inland
water areas. All retracked data is available through the coastal altimetry community.

The most significant recent development in satellite altimetry technology has been
the introduction of Delay-Doppler (DD) or SAR-mode altimetry, which allows better
observation of small-scale features (below 50 km) and improved spatial resolution
along the satellite track compared to conventional pulse-limited altimeters [27]. DD
altimetry uses the Doppler effect, caused by satellite motion in the along-track direc-
tion, to improve spatial resolution in the same direction and thus enable along-track
data sampling (e.g., up to 300 m for Sentinel-3). In other words, the footprint of the
DD altimeter is reduced by an order of magnitude compared to conventional altime-
ters (from several kilometers to several hundred meters) [28]. Therefore, DD altime-
try, such as those on CryoSat-2 (SIRAL, SAR Interferometric Radar Altimeter) and
Sentinel-3 (SRAL, Synthetic Radar Altimeter), provide more and/or improved data
over the ocean, especially in sea ice areas and coastal areas.

4. Altimeter products

4.1 Sea-level change

The use of satellite altimetry data to monitor changes in the mean sea level, as a
basic geodetic task, is one of the most effective ways of monitoring climate change.
The assessment of the change in mean sea level today indicates a trend of increase of
3.1 � 0.4 mm/year (Figure 2), which is agreed upon by five leading scientific institu-
tions in the field of research: AVISO, CSIRO (Commonwealth Scientific and Industrial
Research Organisation), CU (University of Colorado Boulder), GSFC (Goddard Space
Flight Center), and NOAA, whose trend estimates are in good agreement, although
the data processing and trend calculation methods differ.

4.2 Gravity model

With satellite altimetry, it is possible to calculate the mean sea level in relation to
the geoid, which enables efficient and high-quality modeling of the geoid surface,
especially for the sea and ocean area [8, 29].
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From the satellite altimetry missions data, it is possible to reconstruct the gravity
field on water surfaces. Usually, three procedures for calculating the anomalies of the
Earth’s gravity acceleration field from altimetric data are used: (1) by applying the
least squares collocation method with altimetric data and calculated surface slopes
along the satellite path, (2) by applying the least squares collocation method with
altimetry data and calculated vertical deflections, and (3) by applying the Vening-
Meinesz formula to the vertical deflection data on water surfaces obtained from
altimetry. Figure 3 shows the global model of free air anomalies DTU15, calculated
from several altimetry missions [30].

4.3 Bathymetry

Satellite altimetry data regularly distributed over seas and oceans can be combined
with infrequent and relatively expensive depth measurements by ultrasonic depth
sounders at specific ship locations to produce bathymetric models [31]. Maps created in
this way cannot be used for precise underwater navigation, but they can indicate the
topography of the seabed, that is, larger geo-tectonic structures, such as lithospheric
plate boundaries, etc. Figure 4 shows a depth map derived from altimetry data [32].

Calculated gravity acceleration anomalies and bathymetric maps are very often
used in interdisciplinary research related to geodesy—for example, tectonophysics,
and studies on tectonic movements because they effectively reveal the boundaries of
tectonic plates and the specificities of local areas. In addition, satellite altimetry data
are successfully used for applications in oceanography and glaciology [14], but also in
multidisciplinary early warning systems, such as those predicting floods or tsunamis

Figure 3.
Altimetry-derived global ocean gravity map DTU15 [30].
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and other climate-related forecasting systems, which lead to operational oceanogra-
phy, i.e. a system of predicting sea-related variables, such as sea level, temperature,
and currents, based on long-term routine measurements and real-time observations of
the ocean and atmosphere.

In Ref. [33], the conjoint analysis of vertical land motion of the Dubrovnik area
was derived from the ESA’s Sentinel-1 InSAR data, continuous GNSS observations,
and differences in the sea-level change obtained from all available satellite altimeter
missions for the Dubrovnik area and tide gauge measurements.

5. Conclusion

Since the early nineties of the twentieth century, satellite altimetry has been
applied in various geodetic and interdisciplinary research. Satellite altimetry enables
advanced determination of the Earth’s shape by implementing a model of the acceler-
ation of the Earth’s gravity. Furthermore, satellite altimetry enables efficient, global,
and relatively frequent monitoring of changes in mean sea level as an indicator of
climate change and serves as a basis for the establishment of height systems at sea and
on land. Finally, as part of interdisciplinary research, satellite altimetry enables the
determination of global depth models, the assessment of the impact of sea level
changes, vertical movements of the Earth’s crust in coastal areas, and obtaining the
tectonic geomorphology of the seabed.

Figure 4.
Global depth model created based on altimetry data [32].
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Chapter 2

Cyclo-Stationarity in Sea Level 
Variability from Satellite Altimetry 
Data and Correlation with Climate 
Indices in the Mediterranean Sea
Dimitrios A. Natsiopoulos, Eleni A. Tzanou  
and Georgios S. Vergos

Abstract

The exploitation of altimetric datasets from past and current satellite missions 
is crucial to both oceanographic and geodetic applications. For oceanographic studies, 
they allow the determination of sea level anomalies as deviations from a static mean 
sea level. This chapter deals with numerical experiments for the statistical analysis 
of Sea Level Anomaly (SLA) variations in the Mediterranean. SLA empirical covari-
ance functions were calculated to represent the statistical characteristics of the sea 
variation for the period between 2002 and 2016. The variation of monthly SLA 
time series was investigated, and a correlation analysis was performed in terms of 
epoch-based pattern re-occurrence. To identify possible correlations with global 
and regional climatic phenomena that influence the ocean state, three indexes have 
been investigated, namely the Southern Oscillation Index (SOI), the Mediterranean 
Oscillation Index (NOI), and the North Atlantic Oscillation (NAO). Finally, Empirical 
Orthogonal Functions (EOF) and Principal Component Analysis (PCA) were applied 
to all SLA time series and for each satellite mission to extract the individual dominant 
modes of the data variability. After the analysis, the SLA field is separated into spatial 
structures (EOF modes) and their corresponding amplitudes in time, the Principle 
Components (PCs).

Keywords: SLA, EOF, variance, MOI, NAO, SOI, variability, cyclo-stationarity

1. Introduction

Fluctuations in the sea level is a significant problem, as the sea level continues 
to rise dramatically [1, 2]. Regarding Europe, sea level rise is very important, as 
especially in the Mediterranean Sea, the majority of the population is concentrated 
along the coastline [3–6]. Almost 529 million citizens live around Mediterranean 
countries, with 205 million (~39%) on the northern shore and 324 million on the 
southern and eastern shores. According to existing demographic projections, this 
number can reach as high as 611 million within next three decades. By 2025, one-third 
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of the Mediterranean population will live on the northern shore and two-thirds on the 
southern and eastern shores [7].

The population growth rate in coastal areas is accelerating, and increasing 
tourism adds to the pressure on the environment mainly by increasing the vulner-
ability of coastal ecosystems. Countryside and residences are changed, affected and 
destroyed by either direct human intervention or as a byproduct of the increasing 
anthropogenic activity in coastal areas. As sea level rises, increased salinity in 
groundwater could affect access to drinking water and agricultural inputs. Flooding 
and the destruction of infrastructure in food-producing areas is a likely result of 
sea level rise. Coastal erosion with environmental, social and economic impact will 
result in repercussions that will affect large coastal population. Tourism industry 
with all its activities (hotels, transports etc), a sector that several economies depend 
on can be lost forever [8–17].

The global sea level level is rising extremely fast. Several studies during the last 
twenty years have shown that new records of sea level are set with the projections for 
the future to be even more discouraging. As a result, sea level variations with time and 
their projections are of high importance. Global tides-gauge data over the last century 
showed a rise of 18.5 cm [18], while similar studies using only tide-gauge data from 
coastal areas have been done for the Mediterranean [15, 19–21]. On the other hand, 
studies using annually averaged satellite altimetry data from various missions show a 
somewhat higher rate (3 to 7 mm) of rising than tide gauge (TG) data [22–25].

Fluctuations in water temperature, salt content and added water volume especially 
from melting glaciers contribute to the short and long-term variations. The significant 
positive trend in sea level rise rely mainly on global Earth’s temperature increase and 
on thermal expansion of Earth itself [26]. Therefore, observing the fluctuations of 
sea level along with the trends is crucial as it can be a decisive factor in coastal areas 
tracking system for their decisive management.

Satellite altimetry offer high accuracy and resolution information for sea surface 
heights for almost the last half century, increasing the in-situ sea level measurements 
from tide-gauge found both on offshore and coastal areas. Altimetry focused satel-
lites, with the low resolution mode (LRM) data from the first missions to the last 
synthetic aperture radar (SAR) observations from Cryosat-2 and Sentinel satellites 
increased the surface observations, resulting in a constant global coverage of sea. The 
concept of this technique is based on the transmission of the altimeter sensor, located 
on the bottom part of the satellite, of a microwave or laser pulse to the sea surface and 
its reflection of water. The distance between the satellite and the sea-surface is given 
by the distance formula, by multiplying the speed of light by the two-way travel time 
(see Figure 1). Taking into account the satellite altitude from a surface (ellipsoid), 
Sea Surface Heights (SSH) are available for time of the measurement. This is the main 
advantage of satellite altimetry, as it provides real time and precise information over 
seas. Moreover, the short, repeated period of the latest altimetry missions tend to 
be a very useful tool for the estimation of the sea level rise as increases the temporal 
sampling rate of sea surface heights measurements.

Many studies have been conducted in the past concerning the calculation of mean 
sea surface (MSS) models from altimetry data with of these studies presenting global 
models [27, 28] or regional ones [29–32]. Compared to other older techniques like 
tide gauge or shipborne data collection, satellite altimetry can provide high-resolu-
tion and precision information both for ocean and geophysics and several studies 
including gravity, dynamic ocean topography, circulation, temperature etc. rely on 
altimeter data [33–35].
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Based on the previously mentioned, this study aims to analyze the available 
Envisat, Jason-1, Jason-2 and Cryosat-2 data in the form of Sea Level Anomalies 
(SLAs) spanning the Mediterranean Sea. Although Mediterranean basin is nearly 
enclosed by land, mainly on the north (Europe) and on the south (Africa), variations 
of sea level can be analyzed as the altimetry data cover a very long period of repeated 
measurement ground footprints. By studying the empirical covariance functions 
computed for all altimetry missions available for this study, spanning the years from 
2002 to 2016, variations of SLAs can be further analyzed and useful conclusions 
on sea level variation can be defined. Based on this, results confirming the cyclo-
stationarity of the SLAs can be inferred and connected with climate change indices 
over the oceans. To this extent, three such indexes have been investigated, namely the 
Southern Oscillation Index (SOI), the Mediterranean Oscillation Index (NOI), and 
the North Atlantic Oscillation (NAO). Finally, the last step in this study, involves the 
Principal Component Analysis (PCA). PCA employed the data of each satellite mis-
sion separately or the whole data as well. Through this method, dominant patterns can 
be extracted, identifying thus either annual or seasonal modes, signal or noise.

2. Area under study, available data and pre-processing

As already mentioned, the area under study covers the whole Mediterranean Sea, 
from Europe to Africa on the north–south direction and from strait of Gibraltar to 
Levant on the West -East direction with four altimetry missions studied in this work, 
Envisat, Jason-1, Jason-2, and Cryosat-2. For Jason-1, data from the various phases 
of the mission have been used. These comprise of data from phase A, from 15/1/2002 
(cycle 1) to 26/1/2009 (cycle 259) resulting in a total number of 689,680 observa-
tions; data from phase B, during the period from 10/2/2009 (cycle 262) to 3/3/2012 

Figure 1. 
Principle of satellite altimetry (credit AVISO, 2021).
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(cycle 374) (512,996 observations) and from the geodetic phase (phase C), during 
the period from 7/5/2012 (cycle 382) to 21/6/2021 (cycle 425) and a total number of 
120,973 observations (see Figure 2 for the Jason −1 data distribution).

During phase A, each Jason-1 cycle consists of 254 passes, with almost 20% of 
those having available observations in the Mediterranean Sea within the satellite’s 
period of 10 days. In phase B, the new orbit was adjacent to that of Jason-2 and 
covered the oceans every 4.5 days while in phase C, the satellite was set in a drifting 
orbit to perform a geodetic, i.e., higher resolution, mapping. For Envisat satellite, 
881,657 point values (see Figure 3) compose phase A, within the period 14/5/2002 
and 22/10/2010 (cycle 6 to cycle 77) and 150,435 points phase B with cycles 95 to 113. 
The values mesh is much denser than Jason-1 and is consists of 1003 passes with four 
times less cross-track spacing at the equator (~75 to ~300 km).

The orbit of Jason-2 was the same as that of the Jason-1 and Topex/Poseidon 
satellites. Data collection started with cycle 0 on 4/7/2008, and phase A ended on 
2/10/2016 with cycle 303. This 8 year period of data collection resulted in 1,061,379 

Figure 2. 
Jason-1 data distribution. Phase A (up), B (middle) C (bottom).
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point values in the Mediterranean Sea (Figure 4). Then the second phase of the satel-
lite mission started with a new orbit until May 2017. This second phase of the mission 
is not included in our study.

The last mission used in this study, is that of the Cryosat-2 altimetry satellite. 
Cryosat-2 is the successor of Cryosat-1, whose mission was canceled after the failed 
launch on 2005. Its successor was launched in April 8, 2010 and the data collection 
started with cycle 4 on July 14 of the same year. Until cycle 73, the satellite records 
referred to low-resolution (LRM) and synthetic aperture radar (SAR) data, which 
where then succeeded by SAR and SAR interferometric (SARin) data getting closer 
to the coastline. Until the end of 2016 78 months of data have been collected with 
826,941 point values being available (Figure 5).

Figure 3. 
Envisat data distribution. Phase A (up), B (bottom).

Figure 4. 
Jason-2 data distribution.



Satellite Altimetry – Theory, Applications and Recent Advances

20

The data for this study were obtained through the Radar Altimeter Database 
System (RADS) operated by the Delft Institute for Earth-Oriented Space research 
(DEOS) was used (RADS 2011). RADS provides a platform with a large variety of 
altimetry missions. This database was chosen as the platform provides not only the 
geophysical data records, with all the necessary corrections for the altimeter data, 
but has the additional benefit that all records refer to the same ellipsoid ensuring 
that there are no reference system problems in the form of biases when combining 
data from multiple satellite missions [31, 36]. Moreover, the RADS altimetry data 
are already processed through the method of crossover adjustment for the reduction 
of radial orbit errors, while it provides a one stop point to collect multi-satellite data 
instead of retrieving them from various sources.

The platform provides the user various options for the reference surface of SLAs, 
among which that of the EGM2008 geoid [37], was chosen along with be zero-tide 
(ZT) geoid model ensuring that the tidal system is the same with the one of the alti-
metric data. RADS provide also to the user the opportunity to choose along various 
geophysical corrections and models for the systematic errors that affect the altimeter 
data quality. In this work the following selections were made:

• ECMWF for the dry tropospheric correction

• MWR (NN) for the wet tropospheric correction

• the smoothed dual-frequency model for the ionospheric correction,

• GOT4.7 for the ocean and pole tide

• the CLS Sea State Bias (SSB) model for the SSB effect.

The Inverse Barometer (IB) correction which is also provided in the geophysical 
data records, in three different types, local, global and total, was applied to the raw 
data after the aforementioned geophysical corrections. Tables 1–4 tabulates the 
statistics of the SLAs values before and after the application of total IB corrections 
total inverse barometer corrections. From these Tables, except for the minmax values 
which are obviously attributed to blunders and their locations are close to shore, it 

Figure 5. 
Cryosat-2 data distribution.



21

Cyclo-Stationarity in Sea Level Variability from Satellite Altimetry Data and Correlation…
DOI: http://dx.doi.org/10.5772/intechopen.109013

can be concluded that IB correction little affect the statistics as difference of few cm 
(~2–4) are noticed in mean and standard deviation values.

In order to remove the blunders noticed in the SLA data, a 3σ test was performed. 
The small mean values, close to a zero mean, is a good indication, that all altim-
etry data used in this work, as to being unbiased (0.7 cm (Jason-1 ph. A) to 5.1 cm 
(Jason-1 ph. C). The result of the 3σ test is that all SLA values larger than the one of 
3σ, are extracted from the final data used. Table 5 above tabulates the statistics of 
all SLAs after the 3σ removal test (see the top row of Tables 1–4 and 6 for compari-
son). In case of Jason-1, only 26,581 (~2%) of the point values were extracted from 
three phases, resulting in a reduction of 70 cm. ~1.1% of ENVISAT point values we 
removed, resulting again in a significant discount at the range of data (~1.4 m). For 
Jason-2 data, 26,851 point values were removed (~2.8%), while for Cryosat-216,294 

nr. values min max mean std

SLA 689,860 −1.817 0.880 0.007 ±0.150

SLA + total ΙΒ 689,860 −1.694 0,894 0,059 ±0.139

Table 1. 
Statistics of JASON-1 phase a data with and without total IB correction. Unit: [m].

nr. values min max mean std

SLA 120,973 −0.749 0.799 0.051 ±0.145

SLA + total ΙΒ 120,973 −1.136 0.842 0.086 ±0.137

Table 3. 
Statistics of JASON-1 phase C data with and without total IB correction. Unit: [m].

nr. values min max mean std

SLA 512,995 −1.092 1.069 0.036 ±0.160

SLA + total ΙΒ 512,995 −0.918 1.150 0.076 ±0.148

Table 2. 
Statistics of JASON-1 phase B data with and without total IB correction. Unit: [m].

nr. values min max mean std

SLA 881,612 −2.781 1.179 0.032 ±0.146

SLA + total ΙΒ 881,612 −2.727 1.304 0.078 ±0.176

Table 4. 
Statistics of ENVISAT data with and without total IB correction. Unit: [m].

nr. values min max mean std

SLA 944,941 −1.864 1.686 0.024 ±0.156

SLA + total ΙΒ 944,941 −0.441 0.441 0.061 ±0.134

Table 5. 
Statistics of Cryosat-2 data with and without total IB correction. Unit: [m].
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(~1.7%) of the data were identified as blunders. The reduction of the data range was 
similar to the other missions from ~2.2 m to 0.8 m (Table 7).

3.  Sea level anomaly variations in the Mediterranean Sea and correlation 
with global and regional climatic phenomena

As already mentioned, the present study is focused on the entire Mediterranean 
basin, within the region bounded between 30° ≤ φ ≤ 50° and − 10° ≤ λ ≤ 40°. In this 
region, the statistical characteristics of the SLA have been studied using altimetric 
observations from various satellites for the period 2002–2016. For each mission, the 
analysis presented here refers to monthly data as only data falling in the specific time 
period have been used. Each test refers to the use of the entire set of satellite passes 
for the Mediterranean Sea, so that the SLA variability will be studied in cross-track 
(2D) direction (see Figures 2–5). The computation of empirical covariance functions 
allowed the investigation of the statistical characteristics of the SLA. The equation of 
the empirical covariance function for a group of data, for our study (hSLA), under a 
known spherical distance ψ is [38]:

 ( ) { }
ψ

ψ =,, ,, ,SLA SLA SLA SLA
i j i jh h M h hC  (1)

where, M  denotes the mean value operator and ,i j  the SLA observations at two 
points in the area under study with a distance ψ . Employing Eq. 1, the empirical 
covariance functions have been estimated for all available satellite cycles. Given the 
monthly availability of data, it is implied that for each year 12 covariance functions 
have been determined. As a result, an analysis of the SLAs variances calculated 
through the covariances functions has been performed for the whole period that the 
satellite data cover in this study.

nr. values min max mean std

Jason-1 ph. A 675,041 −0.416 0.416 0.050 ±0.124

Jason-1 ph. B 504,763 −0.444 0.444 0.067 ±0.141

Jason-1 ph. C 117,443 −0.351 0.351 0.073 ±0.117

ENVISAT 871,584 −0.527 0.527 0.072 ±0.147

Jason-2 1,031,247 −0.423 0.423 0.082 ±0.123

Cryosat-2 928,647 −0.441 0.441 0.061 ±0.134

Table 7. 
Statistics of all SLAs after the 3σ. Unit: [m].

nr. values min max mean std

SLA 1,061,379 −0.783 1.168 0.047 ±0.153

SLA + total ΙΒ 1,061,379 −0.787 1.214 0.094 ±0.141

Table 6. 
Statistics of Jason-2 data with and without total IB correction. Unit: [m].
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As already mentioned in the introduction of this work, sea level variations can 
also attributed to climate episodes. Thus, three climate indexes have been studied. 
Southern Oscillation Index (SOI) reflects the sea response to El Niño/La Niña-
Southern Oscillation (ENSO) events indicating the evolution and the volume of the 
two events in the Pacific Ocean. Positive values may lead to La Niña event while on the 
contrary, negative values are probably a result of El Niño phenomena. For the compu-
tation of the value, differences of pressure between Tahiti and Darwin are taken into 
account [39–41].

The second index to be investigated was NAO, an index that provides information 
for climate variations in the North Atlantic Ocean. In the area of interest, positive 
values indicate dry winters while for the same season warmer and more wet condi-
tions can be found in other part of Europe. On the other hand, negative values 
indicate humid atmosphere in the south part of Europe and frozen air in the north. 
For the computation of index values, surface sea-level pressure difference between 
the Subtropical High and the Subpolar Low are used [42–46]. The most proper index 
for studying the correlation between the sea level and climatic phenomena is MOI 
as it refers to pressure differences between Algiers and Cairo or Gibraltar and Israel. 
In both cases, positive values indicate dry conditions in the Mediterranean mainly in 
the north-west segment while negative values are connected with cyclones and wet 
conditions in the west [47–50]. For the present study, data for these indices have been 
acquired from the Climate Research Unit of the University of East Anglia (http://
www.cru.uea.ac.uk/).

Figures 6–9 below depict the SLA variances along with the SOI, NAO and MOI 
indices for all consecutive months within each year between 2002 and 2011 for 
Jason-1 satellite, 2008 and 2016 for Jason-2, 2002 and 2012 for ENVISAT satellite 
and 2010 and 2016 for Cryosat-2 satellite. Consecutive negative values of SOI lower 
than −0.7 indicate El Niño phenomena and positive values larger than 0.7 La NiñaFor 
all missions, it can be summarized that despite the delay of ~one semester, there 
is a connection between the El Niño and the La Niña events and SLA change in the 
Mediterranean. The smallest value of SOI in early 2005 resulted in large variance in 
the summer of 2005 both on Envisat (~320 cm2) and Jason-1(~240 cm2). Moreover, 
the evolution of El Niño in Spring of next year had a faster stamp on SLA variation 
as the values are rising during Summer and Autumn (from 170 cm2 to 280 cm2 for 
Envisat and from 100 cm2 to 250 cm2 for Jason-1) [51, 52]. Similar results are found 
while studying the severe La Niña episodes during the last months of 2007, the first 
and the last of 2008 and the start of 2009. Strong La Niña during 2010–2011 and El 
Niño during 2015–2016 resulted in significant variations in SLAs. For Jason-2, the 
variance from 324 cm2 in April 2010 decreased to 98 cm2 while after El Niño the vari-
ance from 102 cm2 in September 2014 reached the 300 cm2 in February 2015 [53, 54].

The geometry and the shape of the Mediterranean along with the location of 
ENSO events result that this index is not the most proper for studying the response 
of SLA to climatic phenomena. Once the NAO is examined, the heavier relation 
between SLA and pressure can be noticed. The increasing of the index results in fast 
falls of SLA variation. This is noticed mainly during winter while during summer the 
variation in sea level due to changes in NAO values are not so instant. Same results 
are found in similar study [48] which signals that atmospheric forcing is not the 
contributing factor to the steric sea level variations in the Mediterranean during the 
summer period. Positive values of the index in early 2007, 2008, and 2011 resulted in 
a decrease of the variance, from 286 cm2 in December 2006 to 120 cm2 in July 2007, 
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and from 212 cm2 in March 2008 to 93 cm2 in July 2008 for Envisat, while negative 
values mainly in summer and autumn months increased the variance from 87 cm2 in 
September 2002 to 252 cm2 in February 2003 and from 130 cm2 in September 2010 
reached the 333 cm2 in early 2011 for Jason-1 [42, 55, 56].

Figure 6. 
ENVISAT SLA variances fluctuations from 2002 to 2012 and correlation with SOI (up), NAO (middle) and MOI 
(bottom).



25

Cyclo-Stationarity in Sea Level Variability from Satellite Altimetry Data and Correlation…
DOI: http://dx.doi.org/10.5772/intechopen.109013

To assess that, the MOI index has been investigated as well, since it should be the 
most proper measure of atmospheric forcing contribution to sea level variations in  
the Mediterranean. As it is clearly depicted in the bottom of all figures above where 
the SLA variances fluctuations and correlation with MOI is studied, this index is 

Figure 7. 
Jason-1 SLA variances fluctuations from 2002 to 2011 and correlation with SOI (up), NAO (middle) and MOI 
(bottom).
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strongly correlated with SLA values. Consecutive large values of MOI indicate high 
temperatures and decrease of SLA variances while negative values of the index are 
connected with SLA rise. These findings are noticed in all missions, for the first case 
i.e. summer 2004 for Envisat (from 247 cm2 to 153 cm2) and Jason-1 (from 192 cm2 to 
114 cm2), summer 2011 and 2012 for Jason-2 (~110 cm2 and ~ 80 cm2) and Cryosat-2 

Figure 8. 
Jason-2 SLA variances fluctuations from 2008 to 2017 and correlation with SOI (up), NAO (middle) and MOI 
(bottom).
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(~120 cm2 and ~ 110 cm2) or for negative values in early 2009 (from 138 cm2 to 
243 cm2), 2010 (from 152 cm2 to 334 cm2) for Jason-2 and in late 2012 and early 2013 
for Cryosat-2 when the variance increased from 182 cm2 to 321 cm2. However, there 
are some incidents that SLA fluctuations are not connected with MOI variances 

Figure 9. 
Cryosat-2 SLA variances fluctuations from 2008 to 2017 and correlation with SOI (up), NAO (middle) and MOI 
(bottom).
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indicating a stronger correlation with NAO for the same period, signing that currents 
in Atlantic are also connected with variances in sea level of Mediterranean.

3.1 EOF analysis

EOF analysis is a very used technique in geophysical sciences in order to study any 
possible spatial modes of variability and how they change with time. Monthly grid-
ded values of SLAs have been used to estimate the principal components of the time 
series. SLA values have been gridded to a 5 arcmin step and 172 consecutive monthly 
data were available from September 2002 to December 2016. Note that whenever 
multi-mission data have been available for a specific month, then the grid generated 
employs all available information.

The increasing trend that is noticed worldwide ~2 mm/year [18, 57] is also 
depicted in the Mediterranean (see Figure 10) in smaller or larger scales varying 
through the time or the region under study. Positive trends of 0.3 ± 0.4 mm/year 
in the Western part and 1.3 ± 0.4 mm/year in the Eastern part [19], 4.54 ± 0.3 mm/
year for the coastal areas and 4.28 ± 0.3 mm/year for the open sea were found using 
altimetry from TOPEX/Poseidon and tides-gauge data [58] and 2.44 ± 0.5 mm/
year with similar data spanning 20 years [59]. As it also depicted in Figure 10, the 
sea level trend differs but gradually increases from the Western to the Eastern part. 
More significant negative trends can be noticed in the Alboran Sea between Spain 
and Marocco (the lowest ~ − 10 mm/year) and northern to Egypt while the largest 

Figure 10. 
Mean SLA (m) (left) and sea level trend (right) (mm/y).
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positive trends are noticed in areas close to Peloponnese and the Levantine Sea (up 
to 10 cm/year). All aforementioned areas are connected with strong gyres that affect 
the sea level (Shikmona Gyre and Asia Minor Current in Levantine Sea, Western and 
Eastern Alboran Gyre in Alboran Sea) [59–64]. Similar findings are connected with 
the negative trends in the Ionian Sea [63, 65] and in the North Eastern part of Crete 
island (Ierapetra Gyre) [66, 67].

Figure 11 depicts the first EOF and first PC before removing the seasonal vari-
ability. From this Figure the annual and seasonal pattern in the SLAs are evident with 
the largest values occurring during the summer months and the smallest ones in the 
Fall. Moreover, the dominant increasing trend in the SLA is clearly depicted. After 
removing the trend and the seasonal signal, the EOF analysis was applied to the SLA 
time series for all data, in order to extract individual dominant modes of the data 
variability. The monthly SLA field is separated into spatial structures, the empirical 
orthogonal functions (EOF) and their amplitudes in time, the principle components, 
which are depicted in Figure 12. The annual signal, being 51.2% of the total variabil-
ity, presents the increase of sea level that is dominant in the whole area. Modes 3 to 6, 

Figure 11. 
First PC of SLA and first EOF before removing seasonal variability.
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despite having smaller percentages clearly depict local trends that can be attributed to 
various characteristics (different values of atmospheric pressure, entrance of ocean 
water from Atlantic Ocean, lake and river water that change salinity, etc.).

4. Conclusions

An analytical outline of the use of satellite altimetry data from the exact repeat 
missions of Envisat, Jason-1, Jason-2, and Cryosat-2 to monitor SLA variations has 
been presented. Through the empirical covariance functions of SLAs, it was found an 
important annual variation which is obvious for the whole period. This annual change 
follows the temperature. As the temperature rise, the water gets warmer and expands 
while the sea contracts when temperature decreases. This cyclo-stationary is further 
connected to changes in pressure in the sea level as it was clearly depicted in this work.

When the fluctuation of sea level is compared to meteorological phenomena, the 
El Niño and La Niña result in a slower change in the Mediterranean depending on  
the intensity of the events. NAO index is stronger connected to SLA variations during 
the late and early months of the year while MOI, as it refers to variations in pressure in 
Mediterranean is the most proper measure of atmospheric forcing contribution to sea 
level variations. Consecutive large values are connected with SLA rise while nega-
tive phases indicate decrease in variances of SLA. Finally, when the NAO and MOI 
are examined together, a correlation exists mainly during the cold months however 
this finding is not observed during the warm months indicating that circulation in 
Atlantic little affects the sea level in the Mediterranean.

Figure 12. 
First six EOF after removing seasonal variability (m).
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Chapter 3

Sea-Level Changes
Tarek M. El-Geziry

Abstract

Tide gauge records and satellite altimetry have demonstrated that the sea level is 
rising on global and relative (regional/local) scales. Globally, the rate of sea-level rise 
(SLR) in the past two decades is faster than at any time. During the most recent era, 
2006–2018, the global SLR rate was 3.7 mm/year, i.e. nearly three times faster than 
during 1901–1971 (1.3 mm/year). This is mainly attributed to two main reasons: (1) 
seawater thermal expansion due to climate change and global warming, and (2) ice 
melting of the Arctic and Antarctic regions. Additionally, the vertical land movement 
(subsidence/rise) can impact the calculated relative SLR rates. SLR is projected to 
continue if global warming will continue. SLR has a destructive impact on coastal cit-
ies, especially coastal low-lying areas. Factually, it is not only human infrastructures 
that are at risk from the SLR and coastal flooding, but also coastal environments such 
as coastal wetlands, seagrass beds, rocky shores, and sandy beaches are vulnerable to 
such a rise and flooding. This chapter aims at highlighting the SLR issue on global and 
relative scales, by using both tide gauges and altimeter tools.

Keywords: climate change, sea-level variations, sea-level rise, relative sea level, 
tide gauge, altimeter

1. Introduction

The importance of the sea-level rise (SLR) issue stems from its direct impact on 
human lives, coastal infrastructures and constructions, and the coastal environment 
not only on local and regional scales but also on a global one. Throughout this chapter, 
the problem will be discussed depending on previous research results from both global 
and relative (regional and local) points of view to adequately evaluate the problem. 
The chapter consists of five sections, including this introductory one, which introduces 
the terminologies used to study the sea-level variations, in addition to the impact of cli-
mate change on the observed sea levels. Section two focuses on the tools for measuring 
that can be used to measure sea level. Section three discusses the global SLR causes and 
impacts. Section four introduces the relative SLR problem and its impact from regional 
and local perspectives. The chapter ends with conclusions followed by the set of refer-
ences listed in the main manuscript, to which those who are interested may refer to.

1.1 Sea-level variations

The observed sea-level variations rely on a variety of variables, including storm 
surges, astronomical (tidal) harmonic components, the seasonal cycle, interannual 
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to secular variability, and, finally, variations at geological and interglacial scales 
[1–3]. At any location and at any time (t), the observed sea level (η) is the sum of 
three elements: the mean sea level (MSL), the tidal component (X), and the residual 
component (R). This is mathematically expressed by (Eq. (1)):

 ( ) ( ) ( )η t =MSL+X t +R t   (1)

The mean sea level (MSL) is the average relative sea level over a long enough time 
to average out transients like waves and tides [4]. According to [5], the MSL is usually 
defined as the average value of the observed hourly level over at least 1 year, ideally 
more than 19 years, to average over the nodal cycle of 18.61 years in tidal amplitudes 
and phases and to average out the weather. The MSL series can be identified by 
specific titles, such as monthly MSL and annual MSL [6].

The tidal component (X(t)) is the coherent component of sea level that reacts to 
astronomical forcing directly or indirectly. Tides are thus described as the periodic 
rise and fall of a body of water caused by gravitational interactions between the Sun, 
Moon, and Earth [6]. In reality, the relative positions of the three celestial bodies 
cause the most visible variations in the magnitude of tides [7]. Tides can be repre-
sented analytically as the finite sum of harmonic constants [8] as shown in (Eq. (2)):

 ( ) φ
 ∂
 
 

∑ n n
n n

2t = A cos t +
T

X   (2)

where An is the amplitude of a harmonic component (m), Tn is the period of the 
specified harmonic component (s), and 𝜙𝜙n is the phase of the harmonic component.

The amplitudes and phases of the astronomical harmonic constituents are heavily 
influenced by the local geography [8, 9].

Approximately 390 tidal constituents were early identified [10], the most impor-
tant of which are formed by the gravitational attraction between the three celestial 
bodies: the Sun, Moon, and Earth. The main lunar semidiurnal tide component M2 is 
often the largest recognized tidal constituent. This tidal component’s tidal-producing 
force is twice as strong as that of the K1 tide, the main diurnal constituent [1]. Five 
constituents are particularly important in modeling applications: K1, O1, M2, S2, and 
N2 [7, 11–13]. This is because these constituents are important for any tidal signal 
and are adequate to compute variations in tidal levels and currents [9]. Two extreme 
tidal occurrences are associated with the regular astronomical tides: spring and neap 
tides. These tides are caused primarily by the combined gravitational influences of 
the Sun and Moon in relation to their relative positions to each other. The extreme 
gravitational force between the two celestial entities is extracted when the Moon’s 
course aligns with that of the Sun (new and full Moon phases), resulting in the spring 
tide. The neap tide, on the other hand, occurs when the Moon’s course is normal to the 
Sun’s (1st and 3rd quarter phases). Spring tides have the greatest high tides and lowest 
low tides, while neap tides have the lowest high tides and highest low tides [7].

The residual (R(t)), also known as surge, is the local shift in ocean elevation 
along a shore caused by a storm. It is calculated by subtracting the astronomic 
tidal elevation from the overall elevation and usually lasts a few hours [6]. When 
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wind-generated waves ride on top of the surge, the total instantaneous elevation may 
be much higher than the predicted surge plus the astronomic tide. This is referred to 
as a storm surge. Storm surges can be disastrous, particularly on low-lying coastlines. 
Flooding produced by storm surges has the potential to harm not only coastal struc-
tures and human infrastructures but also human lives and the ecosystem along the 
coast, such as wetlands, seagrass beds, and shorelines. The deltas are one of the most 
vulnerable areas to storm surges and flooding.

Those who are interested to get more knowledge on the fundamentals and theories 
of sea-level variations may refer to [1, 5].

1.2 Impact of climate change on observed sea level

Extensive and precise climate monitoring showed unequivocal evidence of recent 
and accelerating global warming. Climate Change is defined as a change in the 
condition of the climate that can be identified by changes in the mean and/or vari-
ability of its attributes and that lasts for an extended period (decades or longer) [14]. 
Climate change may be caused by natural processes or by ongoing human-induced 
modifications in the composition of the atmosphere/land use [14]. The effects of 
climate change will vary considerably by region on a global scale. For example, 
warming is expected to be greater over continents than over oceans and to be greatest 
in the world’s polar areas. According to [15], oceans will become increasingly acidic 
as carbon dioxide is absorbed by marine creatures and combined with water to form 
carbonic acid. This acidification can harm coral reefs and alter the ecosystems of a 
variety of fish, shellfish, and other resources on which people rely. The impact of cli-
mate change on the observed sea level can be declared in two main terms: the sea-level 
rise (SLR) and the associated flooding phenomena, e.g. storm surges. Using a com-
bination of satellite altimeter data and conventional measurements of tide gauges, 
scientists have determined that the sea level is rising worldwide and that the rate of 
rise is likely to accelerate [16]. The SLR is a significant consequence of climate change, 
both for societies and the ecosystem. The 20th century warming is very likely to have 
added considerably to the observed SLR, through the thermal expansion of seawater 
and widespread loss of land ice [17]. Climate change is expected to decrease the 
amount of water frozen in glaciers and ice caps due to increased melting and evapora-
tion. Greater melting and evaporation on the Greenland and Antarctic ice sheets are 
also expected, but this may be offset by higher precipitation [18]. Extreme high water 
levels, storm surges and coastal flooding will occur with increasing frequency (i.e. 
with reduced return period) as a result of mean SLR. Their frequency may be further 
increased if storms become more frequent or severe as a result of climate change [4].

Those who are interested in more details on climate change and the different 
theories proposed to explain this global phenomenon may refer to [19–21] in addition 
to the reports published by the Intergovernmental Panel on Climate Change (IPCC), 
e.g [17, 18].

2. Measurement of sea level

2.1 Tide gauge equipment

A tidal gauge, also known as a sea-level recorder, is a device that measures the 
change in sea level relative to a specified reference known as a “datum.” Sensors 
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continually record the water level’s height in relation to a height reference surface near 
the geoid. Tide gauges are split into two main categories:

1. Non-recording tide gauges, also known as staff or pole gauges (Figure 1), need 
an observer to record the level data regularly. A staff gauge is a simple style of 
tidal gauge used to monitor the sea level. It has a graded vertical board with a 
width of 150–250 mm and a thickness of 100 mm. Staff gauges of various heights 
are available, and the appropriate height is determined based on the conditions. 
The height markers are graduated to a minimum count of 5–10 cm. The staff 
gauge is mounted vertically at a known elevation. If it is unknown, it should be 
measured by leveling. The differences in water level are manually monitored by 
viewing the staff directly from a distance.

2.  Recording tide gauges, in which the sea level is recorded by the instrument itself. 
There are basically four types of these gauges: the floating system gauge, the 
pressure system gauge, the acoustic system gauge and the radar system gauge.

The floating system gauge, also known as stilling well tide gauge, is likely the 
most popular of all sea-level measuring techniques on a global scale (Figure 2). 
These gauges were once used at every port and were the principal technique used 
to collect sea-level data. A well’s function is to filter out the wave activity so that 
tides and longer-period processes can be correctly observed. It is most usually 
linked with having a float gauge in the well driving a pen and chart recorder or, 
more recently, a shaft encoder so that sea level height readings can be automatically 
digitized [23].

Pressure sensor gauges are fixed directly in the sea beneath the sea surface to 
monitor subsurface pressure. In the old pressure gauges such as the Water Level 
Recorder 7 (WLR7) of Aanderaa, the recorded data used to be stored in an internal 
data storage unit (DSU) (Figure 3), while in the modern gauges, the sensor is often 
connected through a cable that carries power and signal lines to an onshore control 
and logging unit (Figure 4).

Figure 1. 
Tide staff gauge in Alexandria Western Harbor [22].
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The acoustic system gauge depends on an acoustic transducer, which can be 
positioned vertically above the water surface to perform this type of measure-
ment. However, the sensor of the acoustic gauge is preferably housed inside a tube 
that offers some surface stilling and safeguards the apparatus so that it can operate 
continuously and reliably under any circumstances where the reflected signals may be 
lost.

Lastly, radar tide gauges comprise the technology and software required to trans-
form radar measurements into sea-level height. An example of this radar system is 

Figure 3. 
WLR7 and its DSU (https://www.comm-tec.com/prods/mfgs/Aanderaa/).

Figure 2. 
Alexandria Western Harbor tide gauge: the still-well (right) and the recording drum sheets (left).
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the Inexpensive Device of Sea Level (IDSL) system installed in many Mediterranean 
harbors, e.g. Alexandria Eastern Harbor in Egypt, as shown in Figure 5. The output 
signals are frequently compatible with current data recorders or can be linked to a 
communication network. They, like many modern systems, can be configured using a 
portable computer.

2.2 Altimeter approach

Since the early 1990s, altimeter measurement, the measurement of sea surface 
height from space, has produced an accurate estimate of changes in sea level every 
10 days over the open ocean, attributed to the satellite’s frequent sampling capabilities 
and global coverage [26, 27]. The European Space Agency launched its radar altimeter 

Figure 4. 
Modern pressure gauge system [24].

Figure 5. 
Radar tide gauge in Alexandria Eastern Harbor [25].
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onboard ERS-1 in 1991. It performed well, but it did not meet the standards for 
regional or global sea-level change research [28]. Due to land interference within the 
radar echo in the coastal area, this early altimeter approach built for the open ocean 
did not produce valid sea-level data within 20 km of the coast [29]. The TOPEX/
POSEIDON, which launched in 1992, heralded a new era in satellite altimetry, with 
the altimeter and orbit errors being only a few centimeters apart, resulting in sea-level 
observations that were accurate to 3–4 cm [28]. Factually, coastal altimetry has been 
developed to increase data quality closer to the shore with higher spatial resolution, to 
extend the satellite-based sea-level record toward the coast with quality comparable 
to that of the open ocean [30].

Nowadays, coastal flooding, erosion, coastline movement, maritime security, 
marine pollution, water quality, marine ecology shifts, several marine biophysical 
features, and atmospheric and oceanic drivers of change have all been effectively 
monitored using satellite altimetry [31]. The system of sea height altimeter measure-
ment is depicted in Figure 6. The main measurement delivered by a satellite altimeter 
system is the Range (R) [31], which can be calculated using (Eq. (3)):

 c×tR=
2

 (3)

where c is the speed of light and t is the travel time of the radar pulse down and up.
In practice, the satellite altitude converts the predicted range R to the instanta-

neous sea surface level (height) (Hisl). Satellite altitude, denoted as (H), is defined 
as the distance in the normal direction between the satellite center of mass and the 
reference ellipsoid, as indicated in (Eq. (4)) [22]:

 H H-= Risl  (4)

Figure 6. 
Altimeter system (https://sealevel.jpl.nasa.gov/missions/technology/).
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3. Global sea-level rise (SLR) issue

Measuring sea-level change and understanding its causes has greatly improved 
in recent years, owing mostly to the availability of new in situ and remote sensing 
measurements [32]. While the sea level has stayed nearly constant over the last 
two to three millennia, fluctuations have been recorded since the beginning of the 
industrial epoch [33]. Global sea level is rising, according to direct data from long-
term tide gauges and global satellite altimetry. Tides gauge data showed a global 
mean SLR of 1.6 to 1.8 mm/year over the 20th century [34]. Between 1993 and 2009, 
high-precision satellite altimetry implies a recent worldwide acceleration with rates 
as high as 3.4 mm/year [35]. The IPCC treated the issue of SLR as a universal concern 
caused by global climate change and greenhouse gas emissions. The IPCC included a 
chapter in each of its released reports that outlines the updated problem of SLR and 
sheds insight on the many predictions and scenarios to explore this worldwide issue. 
In its recent report [18], it is revealed that between 1901 and 2018, the global mean 
sea level rose by 0.20 m. Between 1901 and 1971, the average rate of sea level rise was 
1.3 mm/year, increasing to 1.9 mm/year between 1971 and 2006, and then to 3.7 mm/
year between 2006 and 2018. Throughout the period 1993–2019, the altimeter records 
revealed a global mean SLR rate of 3.3 mm/year [36].

Several natural phenomena contribute to global SLR [33, 37–40]: thermal expan-
sion of seawater due to ocean warming, as well as water mass input from glaciers and 
ice sheets melting. Over the last century, the global ocean has warmed faster than it has 
since the end of the previous deglacial transition (about 11,000 years ago) [18]. Between 
1992–1999 and 2010–2019, the rate of ice sheet loss accelerated by a factor of 4. Between 
2006 and 2018, ice sheets and glacier mass loss were the primary contributors to global 
mean sea-level rise [18]. Since the early 1990s, various remote sensing tools (airborne 
and satellite radar and laser altimetry; synthetic aperture radar interferometry (InSAR), 
and, since 2002, space gravimetry from the Gravity Recovery and Climate Experiment 
(GRACE) mission) have provided reliable data on the polar ice sheets’ mass balance. 
These findings revealed that mass loss in Greenland and West Antarctica is accelerated 
[41]. Indeed, ice sheets accounted for less than 15% of global SLR between 1993 and 
2003 [4]. However, their contribution has roughly doubled since 2003 [42, 43].

In addition to these natural phenomena, the anthropogenic (man-made) element 
plays a key influence on the observed SLR. Since at least 1971, human involvement has 
most certainly been the primary driver of the recent increased global SLR [18].

There is an increasing consensus that an accelerating SLR scenario due to climate 
warming will have significant impacts on the coastal zone [44]. Changes in the MSL 
can gradually alter morphological characteristics, pollute subsurface water with salt 
intrusion, and render coastal areas inhospitable or unsuitable for agriculture [45]. The 
SLR can have a harmful influence on coastal areas, causing flooding, property dam-
age, and, in some cases, loss of life [45, 46]. Storminess variations may cause addi-
tional changes in extremes [45, 47]. Historically, sea-level extremes have increased 
in lockstep with increases in the MSL in coastal sites. Using this as a foundation, one 
may relate sea-level extremes to the MSL, allowing one to predict future extremes 
and return periods [48]. Another way to assess the impact of the SLR is to determine 
the probabilistic properties of the nontidal residuals (component of storm surge 
and waves above the tidal variations). Recent studies have focused on the combined 
consequences of storm intensification, storm surge, and gradual increase in the SLR. 
On the Atlantic coasts of Europe and Canada, physical factors have been examined 
using tide/storm surge models [49–52].
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Future global SLR projections are complicated due to uncertainty in modeling 
the many contributory processes, which rely on the understanding of the processes 
that drive sea level increases as well as trustworthy data to check and calibrate 
models [40]. Although historical sea level trends are useful for planning for future 
changes, they are insufficient for estimating risk in the face of future uncertain-
ties [53]. The main components of climate-driven sea-level rise—thermal expansion, 
glaciers and ice caps, the Greenland ice sheet, and the Antarctic ice sheet—are now 
projected, though solid ice discharge (SID) from the ice sheets remains difficult 
to constrain [18]. These projections are frequently created utilizing sets of climate 
models ranging from simple climate models to intermediate complexity models, 
comprehensive climate models, and Earth System Models. These models simulate 
changes depending on a collection of anthropogenic forcing scenarios. According to 
the IPCC’s Fourth Assessment Report (AR4), the global mean sea level would rise by 
up to 60 cm by 2100 as a result of ocean warming and glacier melting [4]. This fore-
cast increased in the AR5 and AR6 to range between 52 and 98 cm by 2100 for the 
highest emissions scenario and 28–61 cm for the lowest emissions scenario [18, 54]. 
To plan for changes due to future sea levels at the local level, local forecasts of SLR 
that allow varying risk tolerances and cover a variety of periods useful for planning 
purposes are required [55].

4. Relative (Regional/Local) SLR issue

The global impact of SLR is not uniform. This is attributed to the vertical motion (rise 
or fall) of the sea surface itself and the vertical motion (rise or subsidence) of the land 
surface near the sea [38, 56]. The supply of sediments, the wave and current climatology, 
erosion, and gravitational collapse are also elements that cause variations in the observed 
coastal sea level. This change in coastal sea level is known as the relative sea-level change, 
and it can be monitored using a tide gauge at specified coastal locations. Recently, a satel-
lite that detects the motion of the sea surface relative to the center of the Earth (known 
as a geocentric measurement) has been developed as a sophisticated instrument for 
assessing the relative SLR issue. A proper assessment of the risks associated with the SLR 
requires distinguishing between global sea level and relative sea level.

Relative sea-level change is, in fact, the most essential metric for measuring the 
effects of SLR on infrastructure, property, and ecosystems. Local subsidence of the 
land causes relative SLR to be greater than global SLR in many regions of the world, 
especially around several large towns built on deltas. Relative SLR increases the 
frequency and severity of coastal flooding in low-lying locations, as well as coastal 
erosion along most sandy coasts [18]. Also, deltas, estuaries, barrier islands, and coral 
reef communities are among the most vulnerable environments to SLR.

Local changes in the ocean temperature and salinity fields can cause local sea-level 
changes via variations in the density and volume of the water columns (thermosteric 
and halosteric effects, respectively) [37, 57–60]. As a result, they cause geographi-
cal variation in the rates of sea-level rise. Land discharge fluxes may also affect the 
observed relative sea level. The input of freshwater from land into the ocean alters 
the density structure and thus the ocean circulation [61, 62]. This causes regional 
dynamical alterations in sea level on time intervals ranging from interannual to multi-
decadal [37, 61–63]. Furthermore, the movement of water mass from land to ocean 
induces an elastic response of the solid Earth, which deforms ocean basins and coastal 
morphometry, affecting the observed local sea level [37].
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Tide gauge records were used at different coastal regions to calculate the 
relative SLR rates. The relative sea-level rise rate in the Mediterranean basin 
was 1.1–1.3 mm/year for the 20th century [64], accelerated to 3.4 mm/yr. in its 
northwest region for the period 1990 to 2009 [65] and 2.4 ± 0.5 mm/yr. for the 
period 1993 to 2012 [66]. Shirman [67] observed a SLR of 10 mm/yr. off the 
Israeli coast in the Levantine Basin between 1958 and 2001. The same rate was 
found between 1992 and 2002 [68]. Relative SLR rates of 10.6 mm/yr. and 9 mm/
yr., respectively, in the Ionian Sea and the Adriatic Sea throughout the decade of 
1990–2000 were calculated [69]. The eastern Mediterranean basin had a SLR rate 
of 0.11 m/110 years, i.e. 1.1 mm/yr [70]. Using the Argo data from 2004 to 2008 
[71], investigated the steric sea-level variations in the eastern Mediterranean 
basin. The results revealed that while in the Ionian basin the total steric sea level 
change is characterized by strong annual variations (amplitude: 5.9 cm) and a 
positive trend of 17.9 ± 2.6 mm/year (2004–2008); with a dominant thermosteric 
impact, the steric sea-level change in the Levantine Sea does not show a clear trend 
over the same period. However, the thermosteric contribution is also dominant in 
the Levantine Sea. Ref [72] estimated a SLR of 1.5 mm/yr. in the analysis of tide 
gauge records from around the North Sea, with modest but not significant dif-
ferences along its different places. A SLR rate of 3.6 ± 1.6 mm/yr. was calculated 
in Malacca Strait throughout the period 1986–2013 [73]. The coastlines of the UK 
exhibited a relative SLR rate of 1–2 mm/yr. as mentioned in [74]. Off the Egyptian 
Mediterranean coast, the SLR rate has ranged between 2.0 and 3.0 mm/yr. over 
different periods [75–81].

Altimeter and satellite measurements have proven to be good tools to calculate 
the relative SLR rate. For the period 1992–2000, altimetry measurements suggested 
a rapid rising of sea level (20 mm/yr) in the Eastern Mediterranean which has been 
associated with increases in the sea surface temperature [82]. In [83] a 16-year 
altimetry data set (1992–2008) was used to investigate the sea-level variations in 
the Mediterranean Sea. The results revealed that the amplitudes of the annual cycle 
vary from 4 to 11 cm, except for a small area of value around 16 cm at the southeast 
of Crete corresponding to the Ierapetra gyre activity. With a combined analysis of 
altimetry and tide gauge data in the interval 1993–2008, the absolute sea-level rise 
and crustal motion in the Adriatic Sea were investigated [84]. In the North-Eastern 
Adriatic, most of the measurements indicated land subsidence with a rate ranging 
between −0.51 mm/yr. and −0.29 mm/yr. The absolute SLR was 1.9 ± 0.3 mm/yr. in 
the interval 1993–2008. From 1993 to 2013, the Strait of Malacca exhibited a SLR rate 
of 4.1 ± 1.9 mm/yr. as revealed by altimeter analysis [85]. Malaysian sea levels have 
been rising at a spatially variable rate ranging from 1.4 to 4.1 mm/year throughout the 
period 1993–2008 [86]. Satellite altimetry data were used to assess trends in sea-level 
rise in the Dumai Sea of Malaysia over 21 years (from 1993 to 2014). The results of the 
analysis revealed that the SLR rates ranged from 4.80 mm/year to 5.61 mm/year [83]. 
According to a preliminary examination of SLR rate near Venice, the detected trend 
by altimetry (4.25 mm/year) is less pronounced than the trends reported by mea-
surements made offshore (5.65 mm/year) and in the lagoon (5.29 mm/year) [26]. 
Along the western African region, the SLR rate was 2.15 mm/yr. throughout the 
period 2002–2018 [36]. The regional trends of SLR throughout the period 1993–2019 
(Figure 7) were depicted in [87].

Impacts from the relative SLR can be assessed and observed in many phenomena, 
such as storm surges, inundation of seawater, and flooding. Alexandria of Egypt 
is subsiding at 2 mm/yr. and even without climate change is highly vulnerable to 
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flooding and erosion, as 35% (700 km2) of the land area is below mean sea level 
[88]. A 50-cm rise in sea level could result in a loss of 13% (0.05 km2) industrial, 
8% (0.46 km2) urban area, and 1.6% (21 km2) beach area, and other physical and 
socioeconomic losses in Port Said governorate (Egypt), costing more than US$2.2 
billion [89]. The Nile Delta, Alexandria, Port Said, and Gamassa may suffer not only 
direct inundation from the SLR but also saltwater intrusion [90]. This will have a 
direct impact on groundwater resources, soil salinity, agricultural productivity, and 
quality in the coastal zone. The relative impact of mean SLR in Australia and wind 
speed in Ireland were examined [91, 92], concluding that SLR has a larger potential 
than meteorological changes to increase extreme sea levels and flooding probabili-
ties. The higher sea level resulted in increased flooding frequency in several coastal 
communities, e.g., Boston, Norfolk, and Miami Beach [93, 94]. These frequent flood 
events, often termed “nuisance flooding,” do not cause major damage but do cause 
material harm, inconvenience, and economic drag. Recently, research [94] used 
tide gauge data to calculate accumulated flooding time in 12 locations along the 
Atlantic coast and showed a significant increase in flooding duration. It is sug-
gested that flood duration is a reliable indicator for the accelerating rate of sea-level 
rise, which is often difficult to estimate on a regional scale. The trends of sea-level 
extremes due to atmospheric conditions for a period of 150 years (1951–2100), in 
the Greek seas, under a future climate scenario with highly increasing concentra-
tions of atmospheric greenhouse gases were explored [95]. The results confirmed 
that the majority of extreme events may appear primarily in winter and secondarily 
in spring. However, results showed that there is an increase in summer extremes, 
especially over southern areas due to the increase in cyclogenesis. The damage in the 
socioeconomical sector in coastal cities affected by the SLR issue typically increases 
faster than the sea-level rise itself [96]. A vulnerability map of the Egyptian 
Mediterranean coast to SLR (Figure 8) was produced in research [97]. The varying 

Figure 7. 
Regional trends in sea level over 1993 to 2019 from satellite altimetry [87].
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vulnerability classification to SLR along the Egyptian coast is mainly attributed to 
the different composition of strata over this coast and the different behavior and 
rates of land subsidence.

5. Conclusion

To conclude, the sea level has been rising globally. The sea-level rise (SLR) is mainly 
attributed to two reasons: (1) thermal expansion of seawater and (2) ice melting in 
the large ice masses on Earth. Both are direct consequences of climate change, which 
is mainly caused by anthropogenic activities since the industrial epoch. Research and 
studies have proven that the rate of increase is not uniform all over the globe and that 
the relative (regional/local) SLR is more important, to discuss the impact of the SLR 
on coastal structures, the environment, the economy, and human activities. Relative 
sea-level variations are studied using data from tide gauges and satellites, which are 
complementary tools to assess these variations. Any shortfall in the sea-level data 
recorded by gauges can be compensated by that collected from altimetry.

Analyses of tide gauge records indicate that a global mean SLR was between 1.6 
and 1.8 mm/yr. over the 20th century. This increased to 3.7 mm/yr. throughout the 
period 2006–2018. High-precision satellite altimetry suggests a recent global accel-
eration with a rate of 3.4 mm/yr. Though, this rate varies according to geographical 
location and land vertical movement around coastlines. Extreme surges, flooding, 
and seawater intrusion are expected phenomena to associate with the SLR, especially 
in low-lying coastlines.

The SLR issue has been a main topic of interest in all reports of the 
Intergovernmental Panel on Climate Change (IPCC) since its First Assessment Report 
in 1990. According to these reports, there are no solutions to control the SLR but to 
control climate change through effective adaptation and mitigation plans.

Given that nature has changed over the years and decades and is unlikely to return 
to its prehuman state anytime soon, the necessity of international cooperation, public 
awareness campaigns, better monitoring tools, numerical models for simulation and 
predictions, and the expansion of satellite technology development for marine sci-
ences are all emphasized as key future perspectives.

Figure 8. 
Vulnerability map of the Egyptian Mediterranean coast to SLR [97].
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Chapter 4

Bathymetry Estimation from
Satellite Altimeter-Derived
Gravity Data
Ljerka Vrdoljak and Tomislav Bašić

Abstract

Bathymetry underpins all marine and ocean research. It is common knowledge that
there is a global deficit of high-resolution bathymetry based on modern acoustic
techniques. Satellite altimetry enabled modeling of the global seafloor topography and
revealed new morphological features in the unmapped areas of the oceans and seas.
This chapter gives an overview of the physical problem and different approaches to
estimating the bathymetry from satellite altimeter-derived gravity data. Characteris-
tics of recent versions of frequently used global bathymetry models are presented.
Moreover, this chapter demonstrates the possibility of regional bathymetry modeling
by the gravity-geologic method in the Adriatic Sea.

Keywords: bathymetry mapping, global bathymetry grids, gravity anomalies,
gravity-geologic method, regional bathymetry modeling

1. Introduction

Bathymetry is an important input parameter or a frame that supports all marine
research. Although there are global and regional initiatives to improve our under-
standing of seafloor topography [1–3], less than 25% of the world’s seas have been
mapped with high resolution that is able to identify features of a few tens of meters in
size [1]. Current global seafloor topography is estimated from altimeter data and
augmented with available grids from a variety of techniques, mainly shipborne depth
soundings [1, 2, 4–7]. As compared to modern acoustic techniques, bathymetry
derived from altimetry has a coarse spatial resolution [8]. However, the data from
altimeter missions enabled revelling of buried and unmapped features of global sea-
floor topography [4, 9]. Altimeter data supplemented the sparse shipborne soundings
and improved our knowledge of the seafloor topography by bathymetry inversion
from altimeter-derived gravity anomalies. Global marine gravity grids formed from
high-density altimeter data (e.g. [10, 11]) and digital data bases of shipborne sound-
ings (e.g. [10]) enabled estimation of global seafloor topography [11].

This chapter gives an overview of the relationship between the topography of the
seafloor and gravity. Diverse approaches to estimate the bathymetry from altimeter-
derived gravity data, in space and frequency domain, are briefly presented.
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Characteristics of frequently used global bathymetry models are depicted. Moreover,
the chapter demonstrated the possibility of regional bathymetry modeling by the
gravity-geologic method (GGM) in the Adriatic Sea. The estimated bathymetry grid
was compared to global grids in the study area, and their quality was assessed as
compared to chart soundings.

2. The relationship between depth and gravity

The depth variations of the seafloor can be observed as height variations of
mass elements of the density Δρ which is the contrast between the density of the
seafloor ρc and seawater ρw [12]. The result of the seafloor topography variation is the
disturbance in the local gravity field.

The disturbing potential T(r) due to mass element of the volume V and density
Δρ is [12]:

T rð Þ ¼ GΔρ
ð:

V

dV
jr� r0j (1)

where G is the gravitational constant, r is the coordinate vector of location, and r0 is
the coordinate vector of the center of the mass element.

The geoid undulation N is related to the disturbing potential T by Brun’s
formula [11, 12]:

N ffi 1
g0

T (2)

where g0 is the average acceleration of gravity regarding the geodetic latitude.
The gravity anomaly Δg is the vertical derivate of the disturbing potential [11, 12]:

Δg ¼ � ∂T
∂z

(3)

The east and the north component of vertical deflection represent the slope of the
geoid in x and y direction:

η ¼ � 1
g0

∂T
∂x

,ξ ¼ � 1
g0

∂T
∂y

(4)

Laplace’s equation links these quantities together [11, 12]:

∂η

∂x
þ ∂ξ

∂y
¼ � ∂Δg

∂z
(5)

Disaggregating of the computation area in Eq. (1) into discretized elements of
surface ΔΩ(r0) and regarding the Eq. (2), topography undulation N(r) is given by [12]:

N rð Þ ¼ G
g0

Δρ
X
r0
ΔΩ r0ð Þ

ðzt
zb

dz
jr� r0j (6)
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where zb i zt are depth on the bottom and top of the mass element.
In spectral domain, relationship between topography of the seafloor and gravity

anomalies is [13]:

F Δg½ � ¼ 2πG ρc � ρwð Þe�2πkd
X∞
n¼1

2πkð Þn�1

n!
F hn½ � (7)

where F[ ] is the two-dimensional Fourier transform operator, k is the wave

number; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
where kx=1/λx, a ky=1/λy, λx i λy are wavelengths at x and y

direction, and h is depth of the seafloor located at the mean sea depth d.
There are several inverse approaches to model topography of the seafloor from

altimeter-derived gravity anomalies [12].
In this study, two commonly used approaches are reviewed, Smith and Sandwell

(S&S) in frequency domain and gravity-geologic method (GGM) in space domain.

2.1 Smith and Sandwell approach (S&S)

Smith and Sandwell [4, 9, 11] suggested that a correlation between variations in
altimeter-derived gravity anomalies and topography of the seafloor can be found in
the wavelength band of 15–200 km. If variations in seafloor undulations are much
smaller than mean sea depth, Eq. (7) can be limited to the first term [11]:

G kð Þ ¼ 2πG Δρð Þe�2πkdH kð Þ ¼ Z kð ÞH kð Þ (8)

H kð Þ ¼ Z�1 kð ÞG kð Þ (9)

where G(k) is a Fourier transform of the gravity anomalies, H(k) is a Fourier
transform of the seafloor topography, and Z(k) is the isotropic transfer or the admit-
tance function.

The main steps in the S&S approach are as follows [4, 9, 11]:
The base bathymetry grid in frequency domain HB(k) is separated into low-pass

(long-wavelength) bathymetry HL(k) and high-pass (short-wavelength) bathymetry
HS(k) components using a Gaussian filter.

Gravity anomalies in the frequency domain G(k) are band-pass filtered and
downward continued using the Wiener filter W(k) to stabilize the procedure:

GBP kð Þ ¼ G kð Þ W kð Þ e2πkd (10)

The Wiener filter is composed of high-pass filter W1(k) and low-pass filter W2(k)
whose original forms are defined by Smith and Sandwell [4].

The band-passed filtered bathymetry HBP(k) is obtained by applying the filter to
base bathymetry grid in the frequency domain.

According to the admittance theory [14], the relationship between gravity and
topography is linear, so topography can be inverted from gravity by simply multiply-
ing with theoretical topography/ratio scaling factor ST = (2πGΔρ)�1 [12]. Instead of
using the theoretical value, in overlapping area, a robust regression analyse is
performed between band-passed bathymetry HBP(k) and band-passed gravity
anomalies GBP(k) to estimate the topography/ratio scaling S.

The total predicted bathymetry by S&S approach in the space domain dp(x) is
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dP xð Þ ¼ dL xð Þ þ S g xð Þ þ dS xð Þ (11)

where dL(x) and dS(x) are the spatial domain of the low-passed bathymetry HL(k)
and high-passed bathymetry HS(k), respectively, and g(x) is a spatial domain of band-
passed gravity GBP(k).

2.2 Gravity-geologic method (GGM)

Although the gravity-geologic method (GGM) was originally used to determine
the depth of a glacial sediment above the bedrock [15], it has been adopted and
utilized in recent studies to estimate the regional bathymetry from altimetry [16–20].

The observed free-air gravity anomalies at the sea surface Δg can be separated to
the referent, long-wavelength gravity Δglong caused by the distribution of masses deep
inside the Earth’s body and the residual, short-wavelength gravity field Δgshort caused
by the distribution of masses above the datum D. Datum D is usually determined as
the deepest depth.

The GGM calculates the residual field from a Bouguer slab formula using the
control soundings dj:

Δgshort jð Þ ¼ 2πGΔρ dj �D
� �

(12)

where G is the gravitational constant and Δρ is the density contrast between
seafloor and seawater.

The long-wavelength gravity field in the known points Δglong(j) is determined by
the simple subtraction:

Δglong jð Þ ¼ Δg jð Þ � Δgshort jð Þ (13)

The long-wavelength gravity is then interpolated to the unknown i-th points from
the known Δglong(j) at known j-th points. The short-wavelength gravity Δgshort(i) at
unknown i-th points is calculated by subtracting the long-wavelength gravity
Δglong(i) from the observed gravity Δg(i):

Δgshort ið Þ ¼ Δg ið Þ � Δglong ið Þ (14)

Depth at the unknown points di is determined by simple inversion of the Eq. (12):

di ¼ Δgshort ið Þ
2πGΔρ

þD (15)

3. Global bathymetry models

Global bathymetry models have been constructed based on satellite altimetry,
employing different data and techniques. Table 1 presents a summary of attributes of
recognized and frequently used global bathymetry models (recent version): (1)
DTU10BAT (Bathymetry model from Space Institute of the Technical University of
Denmark) [26], (2) ETOPO 1 (National Oceanic and Atmospheric Administration
ETOPO 1 Arc-Minute Global Relief Model) [7], (3) GEBCO 2021 (The General
Bathymetric Chart of the Ocean) [6], (4) SRTM 15+ v2.3 (Shuttle Radar Topography
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Mission: Global Bathymetry and Topography at 15 arc seconds) [5], and (5) SS v20.1
(Global topography from Scripps Institution of Oceanography) [4].

Global seafloor topography (Figure 1) relies on bathymetry estimated from
altimeter-derived gravity anomalies, employing the S&S approach in the frequency
domain adjusted for digital data processing. The base bathymetry layer is afterwards
augmented by bathymetric data from other in situ or remote sensing techniques and
existing composite bathymetry grids.

Several studies evaluated and compared available bathymetry grids on a global and
regional scale [27–30]. Differences between grids resulted from different density,
distribution and accuracy of the input bathymetry, grid misregistration, data smooth-
ing, and integration of different datasets to form the global grid [27, 30]. Quality of

DBM DTU10BAT ETOPO
1

GEBCO
2021

SRTM15+
v2.3

SS v20.1

Grid
Spacing

10–20 (Equator) 10 15″ 15″ 10

Release
Year

2010 2009 2021 2021 2020

Based
on

Altimeter-derived
gravity DTU10 and
ship depth soundings

�80°
latitude
2 arc min
SS grid
(2008)

SRTM15+ v2.2
augmented with

additional
bathymetry

Altimeter-derived
gravity and ship
depth soundings

Altimeter-derived
gravity and ship
depth soundings

Website [21] [22] [23] [24] [25]

Table 1.
Global bathymetry models relying on satellite altimetry.

Figure 1.
Global bathymetry and topography at 15 arc seconds [5].
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depth estimated from the altimeter derived gravity is related to limitations of the
altimeter technology, causing robust bathymetry due to the noise in the solution
[27, 29] and large discrepancies in coastal areas [30]. SS global bathymetry model
provided a base bathymetry layer for most of global and regional bathymetry solu-
tions. SS model reflects state of the art in marine gravity modeling [31]. Combined
with a large database of shipborne surveys at Scripps Institution of Oceanography, the
SS model is continuously upgraded and generally considered to be a reliable and up-
to-date bathymetry source [27]. However, an uneven distribution of sparse in situ
bathymetric data can result in large depth anomalies in the inversion of the seafloor
topography. On a global scale, depth uncertainty can be expected to be less than 100
meters in deep ocean areas and greater than 100 meters between the shoreline and the
continental rise [5, 28].

4. Regional bathymetry modeling: A case study of Adriatic Sea

There is an ongoing effort by the scientific community to improve bathymetry
solutions on global and regional scale [1, 2]. Base bathymetry estimated from
altimeter-derived gravity is augmented with high-quality survey grids or composite
bathymetry products. The GGM method has been successfully utilized for regional
bathymetry modeling in different marine regions [16–20, 32, 33]. The difference
between the quality of models derived from the GGM and the S&S approach is
negligible, as it is more dependent on the availability of the shipborne soundings [33].
The GGM method has an algorithm in the spatial domain, so there is no need for
transformation to a frequency domain, but the accuracy of the method depends on the
density and distribution of shipborne soundings, and the estimation of a density
contrast between the seafloor and seawater [33].

In this study, a 1/160 by 1/160 bathymetry model of the Adriatic was constructed by
the GGM method. The base model was augmented by the in situ soundings from
EMODnet network and nautical charts. The model was compared to the global solu-
tions listed in Par. 3, and the quality of the models was estimated regarding chart
soundings.

4.1 Study area and datasets

4.1.1 Study area

The Adriatic Sea (12° 30 – 20° 10 E, 39° 440 - 45° 480 N) is the most northern part of
the Mediterranean Sea connected to the Ionian Sea via the Strait of Otranto. Limits of
the Adriatic Sea and land mask were adopted from IHO and the Flanders Institute
[34, 35]. The Adriatic Sea is a shallow sea with a median depth of 100 meters [36]. By
bathymetry, the Adriatic is divided into three sub-basins: the shallowest North sub-
basin, the transitional zone of the Middle sub-basin, and the South sub-basin that
comprises the South Adriatic Pitt, the deepest part of the Adriatic with depths
extending under 1200 meters (Figure 2) [36].

4.1.2 Altimeter-derived gravity anomalies

This study explores the possibility of inverting bathymetry from altimeter-derived
gravity anomalies by the GGM method in the Adriatic Sea. Models of free-air gravity
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anomalies from the Technical University of Denmark, DTU10 model [26], and from
Scripps Institution of Oceanography, SS v. 29.1 [31] were used. General statistics of
models in the study area is presented in Table 2.

The current accuracy of gravity anomalies derived from altimeter data is around
2 � 10�5 ms�2 [31]. As presented in Figure 3c, the largest differences between models
(>40 � 10�5 ms�2) were along well-indented eastern Adriatic coast.

4.1.3 Control and check soundings

Control bathymetry was composed from EMODnet 2020 bathymetry [2] in the
western Adriatic, GEBCO One Minute Grid [37] in the south-eastern Adriatic and
soundings from nautical charts in the eastern Adriatic (Figure 4a). Control bathymetry,

Figure 2.
Adriatic Sea. (Bathymetry source [6]).

Δg DTU10
[10�5 ms�2]

SS v.29.1
[10�5 ms�2]

MIN �116.22 �135.40

MAX 115.14 129.80

MEAN �15.20 �15.65

σ 35.52 36.90

Table 2.
Statistic of gravity anomalies in the Adriatic from DTU 10 and SS v 29.1 models: minimum (MIN), maximum
(MAX), mean and standard deviation (σ).

63

Bathymetry Estimation from Satellite Altimeter-Derived Gravity Data
DOI: http://dx.doi.org/10.5772/intechopen.108511



needed for accurate modeling of the referent gravity field, consisted of 45 666 depths.
Over 3500 soundings from nautical charts were used as check soundings needed for the
estimation of a density contrast and quality control (Figure 4b). The quality of control
and check soundings was estimated to be better than 2 + 0.05% depth meter [2].

4.2 Methodology

4.2.1 Bathymetric recipe

Bathymetry was calculated in three steps:

1.The first step was constructing the base bathymetric layer. The 1 arc-minute base
bathymetric grid was estimated from gravity anomalies using the gravity-
geologic method (GGM) (Par. 2. 2).

Figure 3.
Free-air gravity anomalies over Adriatic Sea: (a) DTU10 gravity anomaly, (b) SS v29.1 gravity anomaly, and
(c) absolute difference between models [26, 31].

Figure 4.
(a) Control soundings and (b) check soundings.
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2.Differences between the control soundings and base bathymetry were derived.
Gaps between points, at a distance larger than 1 arc minute from a point, were
filled with zero values to prevent the generation of artificial morphology [5].
Differences were gridded to a model with a 1/16 arc-minute grid spacing.

3.The base bathymetry layer was re-interpolated to 1/16 arc-minute grid spacing
using a bilinear interpolation. The final bathymetry model resulted in adding the
differences to the re-interpolated base bathymetry.

4.2.2 Comparison and quality assessment of bathymetric grid

For pixel-to-pixel comparison between the calculated model of the Adriatic Sea
and available global grids in the study area, global grids were resampled to a grid
spacing of 1/16 arc-minute by bilinear interpolation. Absolute differences between the
calculated digital bathymetry model (DBM) and global models in identical points
were calculated and analyzed.

Residuals between check soundings and model were taken as a measure of model
accuracy. With the most widely used measure for quality assessment root mean
square error (RMSE), a normalized root mean square error (NRMSE) was calculated
in different depth ranges.

4.3 Result

4.3.1 Digital bathymetry model of the Adriatic Sea GGM+ DBM

Bathymetry of the Adriatic Sea was estimated from altimeter-derived gravity
anomalies by the GGM method, using a theoretical density contrast between the
seafloor topography and the seawater of 1670 kgm�3. The bathymetric model inverted
from DTU 10 gravity anomalies has the RMSE of 25.41 m, while bathymetry estimated
from SS v 29.1 gravity anomalies has the RMSE of 30.05 m. The tuning density
contrast, which minimized the RMSE of the predicted bathymetry, was estimated by a
trade-off diagram. As shown in Figure 5, a density contrast higher than 104 kgm�3

stabilized the trade-off diagram around RMSE of 14 m and a correlation (rP) of
99.60%.

Tuning density contrast of 15 000 kgm�3 was chosen to predict bathymetry by the
GGM method in the Adriatic Sea. The digital bathymetry model (DBM) derived from
DTU10 gravity anomalies (DTU10 DBM15) had the RMSE of 13.80 m. The RMSE of a

Figure 5.
Trade-off diagram for selecting a tuning density contrast in the study area for bathymetry modeling by GGM
method (a) from DTU 10 gravity anomalies and (b) from SS v.29.1 gravity anomalies.
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DBM derived from SS v 29.1 gravity anomalies (SS DBM15) was 14.0 m. Figure 6
represents 1 arc-minute DBMs of the Adriatic referring to the Mean Sea Level (MSL).
DBMs were derived from DTU10 and SS v 29.1 gravity anomalies by the GGMmethod
using the tuning density contrast of 15 000 kgm�3.

Summary statistics of DTU10 DBM15 and SS DBM15 models over study area is
presented in Table 3.

DTU10 DBM15 and SS DBM15 had a high degree of correspondence due to the equal
tuning density contrast for bathymetry inversion by the GGM method. The largest
discrepancies were in the coastal area along the eastern coast (Figure 6c). That
resulted from the differences between input gravity models.

DTU10 DBM15 bathymetric model has a slightly lower RMSE compared to SS
DBM15. Therefore, it was chosen as a base bathymetric layer to compute an enhanced
bathymetry model of the Adriatic Sea (GGM+ DBM). If possible, pixel values were
reset to the value of directly observed bathymetry. A modified Remove-Restore pro-
cedure was applied [5]. GGM+ DBM with 1/16 arc-minute grid spacing was enhanced
by the EMODnet 2020 grid in the Western Adriatic, and in the Eastern Adriatic it was
augmented with chart soundings (Figure 7).

In terms of residuals between the check soundings and predicted depth, there is a
slight improvement of the RMSE of 5% (RMSE = 13 m).

4.3.2 Comparison with global bathymetric models in the Adriatic Sea

In this section, the GGM+ DBM was compared with data from global bathymetric
grids in the Adriatic Sea: DTU10BAT [26], ETOPO 1 [7], GEBCO 2021 [6], SRTM 15+
v2.3 [5], and SS v20.1 [4]. Absolute differences between the GGM+ DBM and global
grids at mutual 15 arc seconds resolution are presented in Figure 8.

Figure 6.
Digital bathymetry models estimated from altimeter-derived gravity anomalies: (a) DTU10 DBM15, (b) SS
DBM15, and (c) absolute differences between models.

Depth[m]

DBM Max Mean Median σ

DTU 10 DBM15 1225 250 100 342

SS DBM15 1224 250 100 342

Table 3.
Summary statistics of DTU10 DBM15 and SS DBM15 digital bathymetric models (DBM): maximum depth
(Max), mean depth (Mean), median depth (Median), and standard deviation od depth (σ).
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Statistics of absolute differences between GGM+ DBM and analyzed bathymetry
models over study area are given in Table 4.

As compared to the GGM+ DBM, the DTU10BAT, and the ETOPO 1,
bathymetric models were the models with the greatest discrepancies throughout the
study area, especially along the eastern coast. SS v20.1 and SRTM15+ v2.3 showed
similar spatial distribution of absolute differences. GEBCO 2021 DBM had the best
alignment with the GGM+ DBM over the study area with the median absolute
difference of 2 meters. This is less than 1% of the average depth of the Adriatic Sea.
Generally, absolute differences along the eastern well-indented coast are larger than
along the western coast for all the models. The level of similarity and homogeneity
between models is highly influenced by the input data and methodology upon which
the grids were constructed, especially the distribution and quality of the input
bathymetry.

4.3.3 Quality assessment of bathymetric models in Adriatic Sea

Depth of the analyzed DBMs were compared to the check soundings. The RMSE of
the DBMs in the Adriatic Sea is presented in Table 5.

More recent digital bathymetric models (GEBCO 2021, GGM+ DBM, SS v20.1, and
SRTM 15+ v2.3) showed better accuracy than the older versions (DTU10BAT and
ETOPO1). Recent versions were derived from up-to-date altimetry data and/or more
dense bathymetry data.

Quality of the DBMs was compared in different depth ranges: 0–20 m, 20–50 m,
50–100 m, 100–200 m, and deeper than 200 m (Figure 9). The NRMSE was chosen as
a quality measure.

Figure 7.
Bathymetric model of the Adriatic Sea GGM+ DBM.

67

Bathymetry Estimation from Satellite Altimeter-Derived Gravity Data
DOI: http://dx.doi.org/10.5772/intechopen.108511



Figure 8.
Absolute difference between GGM+ DBM and (a) DTU10BAT, (b) ETOPO1, (c) GEBCO 2021, (d)SRTM 15+,
and (e) SS in the Adriatic.
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Generally, the lowest accuracy of the predicted depth was in the shallowest depth
range, up to 20 meters deep. The error was larger than 100% of the depth for the SS
v20.1 DBM. Lower accuracy is the result of the coarse resolution of the models and the
limitation of altimeter technology in coastal areas. As presented in Figure 9, bathym-
etry estimated from altimeter-derived gravity anomalies had better agreement with
seafloor topography in deeper seas. In marine areas in the Adriatic Sea that are over
200 meters deep, the accuracy of bathymetric estimation was up to 10% of the depth.

jΔDj MAX
[m]

MEAN
[m]

σ
[m]

MEDIAN
[m]

GGM+ DBM - DTU10BAT 686 26 39 8

GGM+ DBM – ETOPO 1 482 26 47 7

GGM+ DBM - GEBCO 2021 214 7 12 2

GGM+ DBM - SRTM15+ v2.3 562 9 18 4

GGM+ DBM - SS v20.1 585 10 19 3

Table 4.
Statistics of absolute differences between GGM+ DBM and global grids in the Adriatic.

DBM RMSE [m]

DTU10BAT 36

ETOPO1 36

GEBCO 2021 17

SRTM15+ v2.3 11

SS v20.1 16

GGM+ DBM 13

Table 5.
Quality of bathymetric models in the Adriatic Sea.

Figure 9.
Quality of bathymetric models in the Adriatic Sea in different depth ranges.
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5. Conclusion

Altimeter technology enhanced our knowledge of the seafloor topography and
revealed morphological features of the unmapped ocean areas. Widely used global
bathymetry models are calculated by the Smith and Sandwell approach (S&S) in the
frequency domain. This chapter presented the possibility of regional bathymetry
modeling by the gravity-geologic method (GGM) in the space domain with a simpler
algorithm, higher resolution, and satisfactory quality as compared to global solutions.

The digital bathymetry model of the Adriatic Sea with 1/16 arc-minute grid spacing
(GGM+ DBM) was estimated from the DTU10 model of marine gravity anomalies by
the GGM method. Density contrast between seafloor and seawater of 15 000 kgm�3,
selected from the trade-off diagram, had minimized the root mean square error
(RMSE). The model was augmented by depth soundings from the EMODnet grid in
theWest Adriatic and nautical charts in the East Adriatic. GGM+ DBM is well adjusted
to the topography of the Adriatic Sea, with the RMSE of 13 m.

As compared to modern shipborne bathymetric surveys, bathymetry estimated
from altimetry has a coarse spatial resolution and lower accuracy, especially in coastal
areas. The greatest discrepancies between the global grids and the GGM+ DBM are
along the eastern Adriatic coast due to altimetry limitation and diverse input bathym-
etry. As compared to chart soundings, all models had the lowest accuracy in the
coastal area shallower than 20 m. The quality increased up to 10% of the depth in the
deepest parts of the Adriatic. Limitations of the bathymetry estimated from altimetry
can be overcome by more available high-quality bathymetry in important coastal
areas.
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Chapter 5

Terrain Corrections in Gravity
and Gradiometry
Sajjad Sajjadi and Zdenek Martinec

Abstract

Before the computation of short-wavelength and long-wavelength components of
the geoid undulations from terrestrial data and the two latest satellite missions, i.e.
gravity (GRACE mission) and gradiometry (GOCE mission) measurements, the ter-
rain corrections must be determined. Since the corrections enter the first of the three
steps of the Remove-Compute-Restore (RCR) procedure for applying Stokes’s inte-
gral, this study focuses on determining these corrections. Formulation of the effects
introduced and the effects are computed over high elevated topography in Ireland
using Helmert’s second condensation method. Finally, the effects of topography on
geoid height determinations are presented.

Keywords: gravity, gradiometry, terrain correction, Remove-Compute-Restore
procedure (RCR), topographical effects

1. Introduction

The geoid is defined as an equipotential surface along which the Earth’s gravity
potential (W) is constant and equal to a reference value W0: This datum is chosen
such that the geoid coincides with a mean level of the oceans and can be mathemati-
cally extended over the continents. As a result of the unequal distribution of masses in
the Earth’s interior, the geoid is irregularly shaped. It describes the figure of the Earth
by a physical quantity, the gravity potential, in contrast to the idealized geometrical
figure of a reference ellipsoid. The separations between the two surfaces are called the
geoid undulation N, or geoidal heights.

The local gravity potential,Wlocal, value is derived from gravimetric Ngrav
� �

, and
geometric Ngeo

� �
geoid undulations. The geometric geoid undulations are obtained from

GNSS and leveling data. In contrast, the gravimetric geoid undulations are computed
based upon their long-wavelength components from a Global Geopotential Model
(GGM), and their short-wavelength components using the terrestrial data through the
so-called Remove-Compute-Restore (RCR) approach from gravity measurements.1

1 Gravimetry is the method of measuring gravity and the instrument used is called a gravimeter. In the past,
gravity data were exclusively provided by terrestrial surveys. Later, transportable relative gravimeters were

designed for the use on ship and airborne, however, the data accuracy was very variable and geographically

unevenly distributed. Recently, satellites gravimetry has emerged providing the global coverage of repeated

measurements. The unit of gravity is the Galileo, 1 mGal ¼ 10�5 m:s�2:
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1.1 The Remove-Compute-Restore procedure (RCR)

The RCR procedure is a method that fulfils Stokes’ requirements2 for computing
the geoid from:

• Terrestrial gravity measurements or,

• Satellites gradiometry3 measurements (e.g. GRACE, GOCE).

A gravimeter measures magnitude of gravity,

g ¼ ∣grad V∣, (1)

whereas the gradiometer measures the components of the gradient of gravity. We
will focus on the rr component of the gradiometric tensor,

Vrr ¼ grad grad Vð Þrr: (2)

1.1.1 Removing the gravitational effect of the residual topographical masses

Subtracting the gravitational effect of the residual topographical masses, δV, from
the actual anomalous gravitational potential T creates potential Th that is harmonic
outside the geoid,

Th ¼ T � δV: (3)

The gravity attraction of the residual topographical masses is then

δA≔
∂δV
∂r

(4)

at the point of the gravity measurements, and

δE≔
∂
2δV
∂r2

(5)

at point of gradiometric measurements.
To make a potential harmonic in a space above the geoid, these effects have to be

calculated and removed from the observations:

Δgh ¼ Δgobs � δA (6)

ΔVh
rr ¼ ΔVobs

rr � δE: (7)

1.1.2 Computation of the residual geoid (co-geoid)

The first step of the computation is continuing Δgh and ΔVh
rr from the surface or

satellite elevation to the geoid. This is usually performed by a harmonic downward
continuation (DWC) method [1].

2 No masses outside the geoid, and the measurements are referred to the geoid.
3 Gravity gradiometry is the study of variations in the acceleration due to gravity. It is the measurement of

the rate of change of gravitational acceleration called gravity gradient is the spatial. The unit of gradient is

the Eötvös, 1 E
�
¼ 10�9m=s2=m:
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Assuming that the data have been continued down to the geoid, the two basic
requirements are met and the computation of the geoidal heights can now be carried
out. However, the computation gives the height Nh of the equipotential surface of Th

that is called co-geoid.

Nh ¼ R
4πγQ

ð

Ω0

ΔghS ψð ÞdΩ, (8)

where ψ is the spherical solid angle between the computation point and an inte-
gration point and S ψð Þ is the Stokes’s function ([2], p. 104) integrated over the full
solid angle Ω0

S ψð Þ ¼ 1
sin ψ

2
� 6 sin

ψ

2
þ 1� 5 cosψ � 3 cosψ ln sin

ψ

2
þ sin 2 ψ

2

� �
: (9)

Likewise, the heights of the co-geoid can be determined from gradiometric data as

Nh ¼ R2

4πγQ

ð

Ω0

ΔVh
rrKrr ψð ÞdΩ, (10)

where the kernel Krr ψð Þ is the Green’s function as given by Martinec [3]

Krr ψð Þ ¼ �3þ 6 sin
ψ

2
þ 1� 3 cosψð Þ ln sin ψ

2

1þ sin ψ
2

� �
: (11)

1.1.3 Adding the contribution of the topography to the solution

Finally, the heights of the geoid will be obtained by adding the difference δN
shown in Figure 1 which is called the primary indirect effect on geoid.

To find the expression for δN, we start with geoidal height N is derived from
Bruns’ formula

N ¼ T
γQ

, (12)

where γQ is the normal gravity on a reference ellipsoid. Substituting for T from
Eq. (60) we obtain Eq. (3)

Figure 1.
co-geoid and geoidal heights.
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N ¼ Th þ δV
γQ

: (13)

Applying Bruns’ formula to the undulation of the co-geoid, Nh ¼ Th=γQ , the
geoidal height N is

N ¼ Nh þ δN, (14)

where

δN ¼ δV
γQ

, (15)

and δV must be taken at a point on the geoid Pg.
GRACE and GOCE are the two latest satellite missions for precise, long-

wavelength geoid determination from gravity and gradiometry measurements,
respectively. Prior processing GRACE and GOCE data, the terrain corrections have to
be determined.

The RCR procedure for gravity and gravimetry is summarized in Figure 2.
It shows the motivation for correcting the data by the effects of the topographical

masses. These are the direct topographical effects δA computed at surface or satellite

Figure 2.
Summary of the RCR procedure for gravity and gradiometry.
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altitude, the direct topographical effect on gradiometry δE computed at satellite alti-
tude and the indirect topographical effect on geoid δN computed on the geoid.

In the intervening period of the theory of physical geodesy, a wide range of
methods have been developed, e.g. Airy-isostatic reduction method [4], Residual
Terrain Model (RTM) scheme [5], Helmert’s first and second method of condensation
[4, 6–8]. The choice of each method is area-dependent, and the correlation between
the spatial resolution of DEMs, and the elevation of computation points or data
surrounding the computation points show the most suitable spatial resolution of
DEMs that provide intended geodetic accuracies. This is investigated numerically over
high elevated topography in Ireland using Helmert’s second condensation method.

The next section is devoted to express them mathematically and prepare them for
numerical realization.

2. Topographical effects

The term terrain effect is used to express the gravitational effects of topographical
masses on gravity anomalies, deflection of the vertical and other observed quantity. It
can be classified according to a location of anomalous masses. Topographical effects are
the direct influence of the visible topography in mountainous areas; isostatical effects
account for a hypothesized isostatic compensation, whilst the residual terrain model
(RTM) effects account for short-wavelength topographic irregularities referring
topographic elevations to a smooth mean elevation surface, which may be defined, for
instance, by spherical harmonic expansion of topographic heights.

2.1 Topographical masses and the Bouguer plate

2.1.1 Topographical masses

The topographical masses are the masses outside the geoid and below the topo-
graphical surface. The gravitational potential Vt generated by the topographical
masses is

Vt r,Ωð Þ ¼ G
ð

Ω0

ðrt Ω0ð Þ

r0¼rg Ω0ð Þ

ϱ r0,Ω0ð Þ
L r,ψ , r0ð Þ r

02dr0dΩ0: (16)

where G is the Newton’s gravitational constant, G ¼ 6:67 � 10�11m3:kg�1:s�2,
ϱ r0,Ω0ð Þ is the mass density inside the Earth’s interior located at P0 r0,Ω0ð Þ,L r,ψ , r0ð Þ is
the distance between P and P0 and ψ is the angular distance between the geocentric
directions Ω ¼ ϑ,φð Þ and Ω0 ¼ ϑ0,φ0ð Þ, see Figure 3, i.e. ψ Ω,Ω0ð Þ is the spherical solid
angle between P and P0,

cosψ ¼ cos ϑ cos ϑ0 þ sin ϑ sin ϑ0 cos φ� φ0ð Þ: (17)

The argument notation in L r,ψ , r0ð Þ is used to emphasize the fact that L depends on
radial distances r and r0, and the angular distance ψ :

L r,ψ , r0ð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � 2rr0 cosψ þ r2

q
: (18)
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To abbreviate notations, we introduced the symbol ~L�1 r,ψ , r0ð Þ for an indefinite
radial integral of the Newton kernel,

~L�1 r,ψ , r0ð Þ≔
ð

r0

r02

L r,ψ , r0ð Þ dr
0: (19)

Assuming that the density of the topographical masses does not vary in radial
direction, that is ϱ r0,Ω0ð Þ ¼ ϱ Ω0ð Þ, and substituting Eq. (19) in Eq. (16), the Newton’s
volume integral for the gravitational potential Vt becomes

Vt r,Ωð Þ ¼ G
ð

Ω0

ϱ Ω0ð Þ ~L�1 r,ψ , r0ð Þ
���
rt Ω0ð Þ

r0¼rg Ω0ð Þ
dΩ0: (20)

2.1.2 Bouguer plate

The Bouguer plate, used as an approximate model in gravity and gravity anomaly
computations accounts for the bulk of topographical effects.

In Cartesian geometry Figure 4a, the topography around the gravity station P is
approximated by an infinite plate of thickness HP and the masses between the geoid
and the Earth’s surface have a constant density ϱ equal to mean topographical density
ϱ0 ¼ 2670kg:m�3.

In spherical geometry Figure 4b, the Bouguer plate is regarded as a spherical layer
of thickness HP and density ϱ0: The gravitational potential of the spherical Bouguer
layer is

VB r,Ωð Þ ¼ Gϱ0

ð

Ω0

~L�1 r,ψ , r0ð Þ
���
rt Ωð Þ

r0¼rg Ωð Þ
dΩ0: (21)

Figure 3.
Spherical coordinates of the computation point P r,Ωð Þ, an integration point P0 r0,Ω0ð Þ, the distance L and solid
angle ψ between P and P0.
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For evaluating this integral, the geoid is approximated by a sphere of radius R

rg Ωð Þ ¼ R so rt Ωð Þ ¼ RþH Ωð Þ: (22)

For R we consider the mean radius of the Earth, R = 6371 km. The integral Eq. (21)
can be evaluated analytically, e.g. Wichiencharoen [9],

VB r,Ωð Þ ¼

4πGϱ0
1
r

R2H Ωð Þ þ RH2 Ωð Þ þ 1
3
H3 Ωð Þ

� �
, r≥ rt Ωð Þ,

2πGϱ0 RþH Ωð Þð Þ2 � 2
3
R3

r
� 1
3
r2

� �
,R≤ r≤ rt Ωð Þ,

4πGϱ0 RH Ωð Þ þ 1
2
H2 Ωð Þ

� �
, r≤R:

8>>>>>>>>><
>>>>>>>>>:

(23)

2.1.3 Terrain roughness

Since the actual Earth’s surface deviates from the Bouguer sphere, there are defi-
ciencies and abundances of topographical masses with respect to the mass of the
Bouguer plate Figure 5. These contribute to the topographical potential Vt through the
term VR as

Vt r,Ωð Þ ¼ VB r,Ωð Þ þ VR r,Ωð Þ: (24)

Figure 4.
The Bouguer plate in Cartesian and spherical geometry. (a) Infinite Bouguer plate. (b) Spherical Bouguer layer.

Figure 5.
Roughness of the terrain.

81

Terrain Corrections in Gravity and Gradiometry
DOI: http://dx.doi.org/10.5772/intechopen.109894



The terrain roughness term VR is expressed by the Newton integral

VR r,Ωð Þ ¼ Gϱ0

ð

Ω0

~L�1 r,ψ , r0ð Þ
���
rt Ω0ð Þ

r0¼R
� ~L�1 r,ψ , r0ð Þ

���
rt Ωð Þ

r0¼R

� �
dΩ0: (25)

2.2 Compensated masses and the Helmert condensation layer

2.2.1 Compensation of the gravitational effects of topographical masses

The equipotential surfaces of Vt undulate by several hundreds of meters with
respect to a level ellipsoid. The fact that the known undulations of the geoid are much
smaller than those induced by potential Vt indicates that there must exist a compen-
sation mechanism which reduces the gravitational effect of topographical masses [10].

As the masses are compensated in some way [2], we can introduce the gravitational
potential of compensated masses Vc as an approximation of the topographical potential
Vt: The difference between Vt and Vc is called the residual topographical potential δV:

δV≔Vt � Vc: (26)

Two extremely idealized isostatic compensation models (see Figure 6) were pro-
posed to approximate the effect of topographical abundances from surface gravity
observations.

The Pratt-Hayford model was outlined by J.H Pratt in 1854 and put into a mathe-
matical form by J.F Hayford. According to Pratt, the mountains have risen from the
underground somewhat like a fermenting dough [2, sect.3]. The topographical
masses are compensated by varying density distribution within the layer of a constant
thickness D = 100 km under the geoid and a density ϱc Ωð Þ.

Figure 6.
topography and compensation layers of Pratt-Hayford and Airy-Heiskanen models ([2], Fig 3.16).
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The Airy-heiskanen model, proposed by G.B Airy in 1855 and formulated for geo-
detic purposes by W.A Heiskanen, assumes that the mountains are floating on a fluid
lava of higher known density ϱ1 (somewhat like an iceberg floating on water), so that
the higher the mountain, the deeper it sinks [2, sect.3]. The topographical masses are
compensated by varying thickness t Ωð Þ of a compensation layer which surface is
situated at T ¼ 30 km deep. The density of the compensation layer is considered
constant and equal to the density difference ϱc ¼ ϱ1 � ϱ0 >0ð Þ:

2.2.2 Helmert condensation layer

In the limiting case, the topographical masses may be compensated by a thin mass
layer located on the geoid (somewhat like a glass sphere made over very thin but very
robust glass [2]). As shown Figure 7, the topographical masses are condensed as a
surface mass layer on the geoid. This kind of compensation is called Helmert 2nd
condensation [11] approximating the actual potential of the topographical masses Vt by
the potential of a single layer Vc described by Newton’s surface integral as

Vc r,Ωð Þ ¼ GR2
ð

Ω0

σ Ω0ð ÞL�1 r,ψ ,Rð ÞdΩ0, (27)

where σ Ωð Þ is a surface density of Helmert’s condensation layer, and L�1 is the
reciprocal distance 1/L. Analogously to Eq. (24), we can rewrite Eq. (27) as

Vc r,Ωð Þ ¼ Vσ,B r,Ωð Þ þ Vσ,R r,Ωð Þ, (28)

where

Vσ,R r,Ωð Þ ¼ GR2
ð

Ω0

σ Ω0ð Þ � σ Ωð Þ½ �L�1 r,ψ ,Rð ÞdΩ0: (29)

The symbol Vσ,B r,Ωð Þ denotes the gravitational potential of a spherical layer with
density σ Ωð Þ and radius R,

Vσ,B r,Ωð Þ≔GR2σ Ωð Þ
ð

Ω0

L�1 r,ψ ,Rð ÞdΩ0, (30)

that may be evaluated analytically by

Vσ,B r,Ωð Þ ¼ 4πGσ Ωð ÞR
2

r
, r>R,

4πGσ Ωð ÞR , r≤R:

8<
: (31)

Figure 7.
Helmert condensation layer of density σ.
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The condensation density σ Ωð Þ can be chosen in a variety of ways. For this study, it
will be chosen as in Martinec and Vaníček and Martinec [10] such that the principle of
conservation of topographical masses [9] is respected. Assuming that

VB r,Ωð Þ ¼ Vσ,B r,Ωð Þ for r ¼ rt Ωð Þ, (32)

and substituting Eqs.(23) and (31) into (32), we find

σ Ωð Þ ¼ ϱ0τ Ωð Þ, (33)

with

τ Ωð Þ ¼ H Ωð Þ 1þH Ωð Þ
R

þH2 Ωð Þ
3R2

� �
: (34)

Thus, Eq. (29) will be written

Vσ,R r,Ωð Þ ¼ Gϱ0R
2
ð

Ω0

τ Ω0ð Þ � τ Ωð Þ½ �L�1 r,ψ ,Rð ÞdΩ0: (35)

2.3 Indirect topographical effect

2.3.1 Indirect topographical effect on potential

The primary indirect topographical effect is the residual potential δV ¼ Vt � Vc

evaluated at a point Pg R,Ωð Þ on the geoid. Considering Eq. (24) for the topographical
potential Vt, Eq. (28) for the condensation potential Vc and replacing r by R, we may
split δV into two terms as

δV R,Ωð Þ ¼ δVB R,Ωð Þ þ δVR R,Ωð Þ, (36)

where the Bouguer term and the terrain roughness term are respectively given by

δVB R,Ωð Þ ¼ VB R,Ωð Þ � Vσ,B R,Ωð Þ, (37)

δVR R,Ωð Þ ¼ VR R,Ωð Þ � Vσ,R R,Ωð Þ: (38)

The subtraction of Eqs. (23) and (31) at r≤R leads to

δVB R,Ωð Þ ¼ �2πGϱ0H Ωð Þ 1þ 2
3
H Ωð Þ
R

� �
, (39)

and the subtraction of Eqs. (25) and (35) gives

δVR R,Ωð Þ ¼ Gϱ0

ð

Ω0

~L�1 R,ψ , r0ð Þ
���
rt Ω0ð Þ

r0¼R
� ~L�1 R,ψ , r0ð Þ

���
rt Ωð Þ

r0¼R

�

�R2 τ Ω0ð Þ � τ Ωð Þ½ �L�1 Rð ,ψ ,RÞ�dΩ0:
(40)

Therefore, substituting Eqs. (39) and (40) in Eq. (36), we obtain the expression of
the primary topographical indirect effect on potential:
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δV R,Ωð Þ ¼ �2πGϱ0H
2 Ωð Þ 1þ 2

3
H Ωð Þ
R

� �

þGϱ0

ð

Ω0

~L�1 R,ψ , r0ð Þ
���
rt Ω0ð Þ

r0¼R
� ~L�1 R,ψ , r0ð Þ

���
rt Ωð Þ

r0¼R

�

�R2 τ Ω0ð Þ � τ Ωð Þ½ �L�1 Rð ,ψ ,RÞ�dΩ0:

(41)

The unit of this effect is m2:s�2:

2.3.2 Indirect topographical effect on the geoid

To correct the geoidal heights N by this effect, δV is divided by the normal gravity
γQ (see Eq. (15)),

δN R,Ωð Þ ¼ δV R,Ωð Þ
γQ

, (42)

which is the primary indirect effect on the geoid. Where the normal gravity can be
taken as the mean value of the gravity of the Earth γQ ¼ 9:81 m:s�2: The unit of δN is
meters.

2.3.3 The secondary indirect topographical effect (SITE) on gravity

This effect is expressed by means of the Primary Indirect Topographical Effect
(PITE) on gravity, δVPg , at a point on the geoid multiplied by 2/R,

δS Ωð Þ ¼ 2
R
δVPg Ωð Þ: (43)

The unit of this effect is mGal.
Notice that the radial derivative of the Newton surface and volume integrals,

which is required for computing δA Ωð Þ, is

∂
~L�1 r,ψ , r0ð Þ

∂r
¼

ð

r0
r02

∂L�1 r,ψ , r0ð Þ
∂r

dr0, (44)

and using the derivation of uαð Þ0 ¼ αu0uα�1 in Eq. (18),

∂L�1 r,ψ , r0ð Þ
∂r

¼ � r� r0 cosψ

r02 � 2rr0 cosψ þ r2
� �3=2 , (45)

where substituting the expression (45) in (44), the analytical expression is
given by,

∂
~L�1 r,ψ , r0ð Þ

∂r
¼ 3r2cosψ þ r r0 � 6 cosψ2r0

� �þ cosψr02
� �

L�1 r,ψ , r0ð Þ
þr 3cosψ2 � 1

� �
ln∣L r,ψ , r0ð Þ � r cosψ þ r0∣þ C:

(46)

85

Terrain Corrections in Gravity and Gradiometry
DOI: http://dx.doi.org/10.5772/intechopen.109894



2.4 Direct topographical effect (DTE)

2.4.1 Direct topographical effect on surface gravity

Differentiating the residual topographical potential δV with respect to r and eval-
uating the result at the point on the topography Pt rt Ωð Þ,Ωð Þ, we obtain the gravita-
tional attraction caused by the direct topographical effect on surface gravity:

δA r,Ωð Þ ¼ ∂δV r,Ωð Þ
∂r

����
r¼rt Ωð Þ

: (47)

Substituting for δV from Eq. (26), we can write

δA r,Ωð Þ ¼ At r,Ωð Þ � Ac r,Ωð Þ, (48)

where

At r,Ωð Þ ¼ ∂Vt r,Ωð Þ
∂r

����
r¼rt Ωð Þ

and Ac r,Ωð Þ ¼ ∂Vc r,Ωð Þ
∂r

����
r¼rt Ωð Þ

, (49)

are the radial components of the gravitational attraction induced by the topo-
graphical and compensated masses a the point on the Earth’s surface, respectively.
Considering Eq. (24) for At and Eq. (28) for Ac, the attraction change δA may be split
into two terms

δA r,Ωð Þ ¼ δAB r,Ωð Þ þ δAR r,Ωð Þ, (50)

where δAB represents the Bouguer term and δAR the terrain roughness term.
Let us start with the determination of the Bouguer term

δAB r,Ωð Þ ¼ AB r,Ωð Þ � Aσ,B r,Ωð Þ, (51)

where

AB r,Ωð Þ ¼ ∂VB r,Ωð Þ
∂r

����
r¼rt Ωð Þ

and Aσ,B r,Ωð Þ ¼ ∂Vσ,B r,Ωð Þ
∂r

����
r¼rt Ωð Þ

: (52)

Subsituting the radial derivative of Eq. (23) at r≥ rt Ωð Þ for AB

∂VB r,Ωð Þ
∂r

¼ �4πGϱ0
1
r2

R2H Ωð Þ þ RH2 Ωð Þ þ 1
3
H3 Ωð Þ

� �
, (53)

similarly, the radial derivative of Eq. (31) at r>R for Aσ,B

∂Vσ,B r,Ωð Þ
∂r

¼ �4πGσ Ωð ÞR
2

r2
: (54)

Using Eqs. (33)–(34) for σ Ωð Þ, we obtain δAB r,Ωð Þ ¼ 0: Consequently, the direct
topographical effect δA only consists of the terrain roughness contribution δAR that is
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δAR r,Ωð Þ ¼ AR r,Ωð Þ � Aσ,R r,Ωð Þ, (55)

where

AR r,Ωð Þ ¼ ∂VR r,Ωð Þ
∂r

����
r¼rt Ωð Þ

and Aσ,R r,Ωð Þ ¼ ∂Vσ,R r,Ωð Þ
∂r

����
r¼rt Ωð Þ

: (56)

Substituting the radial derivations of Eq. (25) for AR and Eq. (35) for Aσ,R into
Eq. (55), we obtain the expression of the direct topographical effect on surface
gravity as

δA r,Ωð Þ ¼ Gϱ0

ð

Ω0

�∂
~L�1 r,ψ , r0ð Þ

∂r

�����
rt Ωð Þ

r0¼R

2
4

�R2 τ Ω0ð Þ � τ Ωð Þ½ � ∂L
�1 r,ψ ,Rð Þ

∂r

�

r¼rt Ωð Þ
dΩ0:

(57)

2.4.2 Direct topographical effect on satellite gravity

Differentiating δV with respect to r and evaluating the result at the point of
measurement on satellite r ¼ rsat Ωð Þ,Ωð Þ, we obtain the change of the gravitational
attraction caused by the direct topographical effect on satellite gravity

δA r,Ωð Þ ¼ ∂δV r,Ωð Þ
∂r

����
r¼rsat Ωð Þ

: (58)

Analogically to the direct topographical effect on surface gravity Eq. (57), where
the radius of the computation point is r ¼ rt Ωð Þ, the direct topographical effect on
satellite gravity will be:

δA r,Ωð Þ ¼ Gϱ0

ð

Ω0

∂
~L�1 r,ψ , r0ð Þ

∂r

�����
rt Ω0ð Þ

r0¼R

� ∂
~L�1 r,ψ , r0ð Þ

∂r

�����
rt Ωð Þ

r0¼R

2
4

�R2 τ Ω0ð Þ � τ Ωð Þ½ � ∂L
�1 r,ψ ,Rð Þ

∂r

�

r¼rsat Ωð Þ
dΩ0,

(59)

where rsat Ωð Þ, is:

rsat Ωð Þ ¼ RþHsat, (60)

and Hsat is the flying altitude of the satellite4 which performs the gravity
measurements. For instance, the value of Hsat Ωð Þ for the satellite GRACE is Hsat Ωð Þ ¼
400 km.

4 Note that the same formula applies to air-borne gravity measurements, replacing the radius of

computation by r ¼ RþHplane where Hplane is the flying altitude of the plane performing gravity

measurement.
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2.4.3 Direct topographical effect on gradiometry

Differentiating δV twice with respect to r and evaluating the result at the point of
measurement on satellite r ¼ rsat Ωð Þ,Ωð Þ, we obtain the rr component of the gradient
of gravity caused by the direct topographical effect on gradiometry and Eq. (5)
becomes

δE r,Ωð Þ ¼ ∂
2δV r,Ωð Þ

∂r2

����
r¼rsat Ωð Þ

: (61)

Substituting for the residual topographical potential δV from Eq. (26), we can
write

δE r,Ωð Þ ¼ Vt
rr r,Ωð Þ � Vc

rr r,Ωð Þ, (62)

where

Vt
rr r,Ωð Þ ¼ ∂

2Vt r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

and Vc
rr r,Ωð Þ ¼ ∂

2Vc r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

, (63)

are the rr components of the gradiometric tensor induced by the topographical and
compensated masses a the point at satellite altitude, respectively. Considering Eq. (24)
for Vt

rr and Eq. (28) for Vc
rr, δE may be split into two terms

δE r,Ωð Þ ¼ δEB r,Ωð Þ þ δER r,Ωð Þ, (64)

where δEB represents the Bouguer term and δER the terrain roughness term.
Let us start with the determination of the Bouguer term

δEB r,Ωð Þ ¼ VB
rr r,Ωð Þ � Vσ,B

rr r,Ωð Þ, (65)

where

VB
rr r,Ωð Þ ¼ ∂

2VB r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

and Vσ,B
rr r,Ωð Þ ¼ ∂

2Vσ,B r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

: (66)

Taking the radial second derivative of Eq. (23) at r≥ rt Ωð Þ for VB
rr

∂
2VB r,Ωð Þ

∂r2
¼ 8πGϱ0

1
r3

R2H Ωð Þ þ RH2 Ωð Þ þ 1
3
H3 Ωð Þ

� �
, (67)

the radial second derivative of Eq. (31) at r>R for Vσ,B
rr

∂
2Vσ,B r,Ωð Þ

∂r2
¼ 8πGσ Ωð ÞR

2

r3
, (68)

and using Eqs. (33)–(34) for σ Ωð Þ, we obtain δEB r,Ωð Þ ¼ 0. Consequently, as for
the direct topographical effect on gravity δA, the direct topographical effect on
gradiometry δE only consists of the terrain roughness contribution δER that is
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δER r,Ωð Þ ¼ VR
rr r,Ωð Þ � Vσ,R

rr r,Ωð Þ, (69)

where

VR
rr r,Ωð Þ ¼ ∂

2VR r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

and Vσ,R
rr r,Ωð Þ ¼ ∂

2Vσ,R r,Ωð Þ
∂r2

����
r¼rsat Ωð Þ

: (70)

Therefore, differentiating VR (Eq. (25)) and Vσ,R (Eq. (35)) twice with respect to r
for AR and Aσ,R, respectively, we obtain the expression for the direct topographical
effect on gradiometry

δE r,Ωð Þ ¼ Gϱ0

ð

Ω0

∂
2 ~L�1 r,ψ , r0ð Þ

∂r2

�����
rt Ω0ð Þ

r0¼R

� ∂
2 ~L�1 r,ψ , r0ð Þ

∂r2

�����
rt Ωð Þ

r0¼R

2
4

�R2 τ Ω0ð Þ � τ Ωð Þ½ � ∂
2L�1 r,ψ ,Rð Þ

∂r2

�

r¼rsat Ωð Þ
dΩ0:

(71)

Here Hsat is the flying altitude of the satellite which takes the gradiometry mea-
surements. For instance, the satellite GOCE with Hsat Ωð Þ ¼ 250 km.

2.5 Computations of the topographical effects

2.5.1 The integral Newton kernels for numerical computation

The distance L r,ψ , r0ð Þ, defined Eq. (18), can be written with the form
ffiffiffiffi
X

p
, where

X is the rational function

X ¼ ax2 þ bxþ c, where x ¼ 1, a ¼ 1, b ¼ �2r cosψ , c ¼ r2: (72)

Thus, we can write the Newton kernel ~L�1 r,ψ , r0ð Þ Eq. (19) with the form
ð

x2ffiffiffiffi
X

p dx: (73)

To solve this integral, we use the following equations Gradshteyn and Ryzhik [12]

ð
x2dxffiffiffiffi

X
p ¼ x

2a
� 3b
4a2

� � ffiffiffiffi
X

p
þ 3b2 � 4ac

8a2

ð
dxffiffiffiffi
X

p (74)

ð
dxffiffiffiffi
X

p ¼ 1ffiffiffi
a

p ln∣2
ffiffiffiffiffiffi
aX

p
þ 2axþ b∣þ C, (75)

for a>0 and where C is a constant value.
Replacing Eq. (75) and “our” notations in Eq. (74), we obtain the analytical expression:

~L�1 r,ψ , r0ð Þ ¼ 1
2

3rcosψ þ r0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � 2rr0 cosψ þ r2

q
þ

�

þr2 3 cos 2ψ � 1
� �

ln j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � 2rr0 cosψ þ r2

q
� r cosψ þ r0

� �
j
�
þ C

(76)
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Hence, the analytical expression ~L�1
a r,ψ , r0ð Þ from the list of integrals of

Gradshteyn and Ryzhik [12]

~L�1
a r,ψ , r0ð Þ ¼ 1

2
3rcosψ þ r0ð ÞL rð ,ψ , r0Þþ½

þr2 3 cos 2ψ � 1
� �

ln jL rð ,ψ , r0Þ � r cosψ þ r0j�þ C1 r,ψð Þ,
(77)

where C1 r,ψð Þ a “constant” which may depend only on the variables r and ψ . The

computation of δN uses the expression of ~L�1
a r,ψ , r0ð Þ.

2.5.2 First radial derivative of the Newton kernel

The radial derivative of the Newton kernel gives

∂
~L�1 r,ψ , r0ð Þ

∂r
¼

ð

r0
r02

∂L�1 r,ψ , r0ð Þ
∂r

dr0: (78)

By Eq. (18), since

uαð Þ0 ¼ αu0uα�1,

we readily get

∂L�1 r,ψ , r0ð Þ
∂r

¼ � r� r0 cosψ

r02 � 2rr0 cosψ þ r2
� �3=2 : (79)

By substituting the expression (79) in (78), and integrating the equation, we obtain
the analytical expression

∂
~L�1
a r,ψ , r0ð Þ

∂r
¼ 3r2cosψ þ r r0 � 6 cosψ2r0

� �þ cosψr02
� �

L�1 r,ψ , r0ð Þ
þr 3cosψ2 � 1

� �
ln∣L r,ψ , r0ð Þ � r cosψ þ r0∣þ C2 r,ψð Þ:

(80)

The computation of δA uses the expression of ∂ ~L�1
a r,ψ , r0ð Þ=∂r.

2.5.3 Second radial derivative of the Newton kernel

Expression of ∂2 ~L�1
a =∂r2 emphasizes the second radial derivative of the Newton

kernel, which has to be derived two times.

∂
2 ~L�1 r,ψ , r0ð Þ

∂r2
¼

ð

r0
r02

∂
2L�1 r,ψ , r0ð Þ

∂r2

� �
dr0 (81)

where

∂
2L�1 r,ψ , r0ð Þ

∂r2
¼ ∂

∂r
∂L�1 r,ψ , r0ð Þ

∂r

� �
(82)
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To obtain the second derivative of L�1 r,ψ , r0ð Þ, we derive over r, its first deriva-
tive, Eq. (79), using the property

u
v

� �
¼ u0v� uv0

v2
: (83)

We finally obtain:

∂

∂r
∂L�1 r,ψ , r0ð Þ

∂r

� �
¼ � 1

r02 � 2rr0 cosψ þ r2
� �3=2 þ

3 r� r0 cosψð Þ2

r02 � 2rr0 cosψ þ r2
� �5=2 (84)

Including Eq. (84) in Eq. (81), the second derivative of ~L�1 r,ψ , r0ð Þ gives the
followed integral:

∂
2 ~L�1 r,ψ , r0ð Þ

∂r2
¼

ð

r0
� r02

r02 � 2rr0 cosψ þ r2
� �3=2 þ

3r02 r� r0 cosψð Þ2

r02 � 2rr0 cosψ þ r2
� �5=2 dr0 (85)

After deriving a second time the reciprocal distance L�1 and integrating this equa-
tion, we obtain the analytical expression

∂
2 ~L�1

a r,ψ , r0ð Þ
∂r2

¼ 3r3cosψ
� þ r2 1� 12 cos 2ψ

� �
r0

þ2r cosψ 6 cos 2ψ þ 1
� �

r02 þ 2 1� 4 cos 2ψ
� �

r03
i
L�3 r,ψ , r0ð Þ

þ 3 cos 2ψ � 1
� �

ln∣L r,ψ , r0ð Þ � r cosψ þ r0∣þ C3 r,ψð Þ,

(86)

where

L�3 r,ψ , r0ð Þ ¼ r02 � 2rr0 cosψ þ r2
� ��3=2

: (87)

The computation of δE uses the expression of ∂2 ~L�1
a r,ψ , r0ð Þ=∂r2.

3. Numerical studies

The determination of topographical effects from DEMs is a very time-consuming
process, particularly when computations are required for large areas, such as a country
or a continent. With a fine grid resolution, for instance, 50 m Quadratic Grid Resolu-
tions (QGR) a unified spatial data structure, computations are beyond what a multi-
processor computer can accomplish within a reasonable time-frame for an area such as
Ireland. Numerical investigations have resulted that increasing the spatial resolution of
DEM by a factor of two increases CPU computational time by a factor of fourteen.

Although the computational time is a factor to be taken into account, it is less
important since it is the spatial resolution of DEM which is critical for improving
accuracy required when a precise geoid is determined.

The Fast Fourier Transform (FFT), which relies on linearization and series expan-
sions of the non-linear terrain effect integrals, provides a reduction in computational
time by several orders of magnitude, compared to space domain integration methods
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[13]. In the FFT, the higher-order terms of the radially integrated Newton kernel
expressed by the Taylor series expansion are neglected. In addition, the reciprocal
distance 1/L is approximated by the planar distance 1=ℓ0 i.e. ℓ0 ¼ L R,ψ ,Rð Þ [14],
Eq. (15)], which is a sufficiently good only if ℓ0 >H Ω0ð Þ. This condition is violated for
computing topographical effects in rough terrain.

3.1 The study area

Topographical effects in high elevated topography in Ireland are computed from
50 m QGR, Ireland with a relatively flat terrain surrounded by the ocean. The study
area is 1∘ � 0:7∘ limited between longitudes �5:8∘ and �6:8∘ and latitudes 52:7∘ and
53:3∘: A map of topographic heights of the study areas is presented in Figure 8a, and
the distribution of topography in meters, counted in the percentage of the number of
points in 50 m QGR is demonstrated in histograms Figure 8b.

3.2 The bound of integration area

The gravitational potential of Topographic Masses of finite thicknesses behaves
like the potential of a thin layer when it is observed from a larger distance. This is
explained by the behavior of integration kernels generating the potential of the grav-
itational potential Vt r,Ωð Þ and Vc r,Ωð Þ: Figure 9 illustrates the behavior of the two
kernels for the determination of PITE and DTE relative to maximum elevation in
Ireland, which is the Carrauntoohil elevation of 1039 m [15]. In the determination of
the primary indirect topographical effect, when the angular distance Ψ between the
computation point and integration point increases, the integration kernel,

Kc
pite R,ψ ,Rð Þ ¼ R2 τ Ω0ð Þ

L R,ψ ,Rð Þ
� �

(88)

generating the potential of Helmert’s condensation layer Vc r,Ωð Þ approaches the
integration kernel

Kt
pite R,ψ ,H Ω0ð Þð Þ ¼ ~L�1 R,ψ , r0ð Þ

���
RþH Ω0ð Þ

r0¼R
(89)

Figure 8.
Topographic heights over Co-Wicklow Ireland Figure 8a and distribution of elevations in meter, counted
in percentage of the number of points from 50 m2 DEM. (a) Topography - County Wicklow Ireland.
(b) Distribution of topography.
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generating the gravitational potential Vt R,Ωð Þ: Thus, the differences between two
kernels Kt

pite � Kc
pite ¼ δKpite decrease (see Figure 9-PITE kernel). In determination of

DTE Eq. (57) a similar decrease occurs for the difference between two kernels
Kt

dte � Kc
dte ¼ δKdte

� �
, when the integration kernel

Kc
dte H Ωð Þ,ψ ,Rð Þ ¼ R2τ Ωð Þ ∂L

�1 r,ψ ,Rð Þ
∂r

, (90)

generating the potential of Helmert’s condensation layer Vc r,Ωð Þ approaches the
integration kernel

Kt
dte H Ωð Þ,ψ ,H Ω0ð Þð Þ ¼ ∂

~L�1 r,ψ , r0ð Þ
∂r

�����
RþH Ω0ð Þ

r0¼R

, (91)

generating the gravitational potential Vt r,Ωð Þ of the TMs (see Figure 9-DTE). This
also means that the magnitudes of δKpite or δKdte are largest in the immediate neigh-
borhood of the computation point.

The choice of varying angular distance and fixing the elevation of integration point
to 1039 m and computation point to 1 m or vice versa, enables us to determine the
most attainable differences (maximum or minimum) between the kernels in question.

Figure 9.
The behavior of Kt and Kc in the dependence of varying the angular distance ψ in the determination of PITE and
DTE in Ireland. The elevation of computation and integration point are fixed to 1039 m and 1 m respectively.
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Furthermore, a numerical examination of δKpite and δKdte, controlled by varying
topographic height H Ω0ð Þ at a fixed angular distance ψ ¼ 0:0001∘, in the immediate
neighborhood of the computation point shows that the larger the height of the inte-
gration point, the larger the difference between these kernels, and therefore the
topographical effects are stronger (see Figure 10).

Eqs. (36) and (57) assume the compensation is strictly local, which means δA Ωð Þ
consists of the terrain roughness contribution only. The longitudinal profiles (see
Figure 11) show that the Bouguer components of PITE have a larger contribution to
topographical effects than the terrain roughness components. Since DTE does not
contain a Bouguer component, the correlation between DTE and DEM is in general
smaller than that for PITE.

3.3 Direct topographical effect on gravity

3.3.1 On the Earth’s surface - residual effect δAsurf

The computation of the residual direct topographical effect on gravity on the
Earth’s surface δAsurf uses Eq. (57). Table 1 shows the minimum, mean, maximum and
root mean square (rms) of δAsurf in mGal.5

Due to the low elevation of topography in the test area (maximum 920 m), δAsurf is
small. Numerical investigation with different grid resolutions shows that the flatter
and lower the terrain, the smaller the reduction of the surface gravity observations in
the remove step of the RCR procedure is. And a sparse griding reduces values of δA,
so using as finer griding as possible is recommended.

Since the residual effect δA is rather small, we compared it with the total effect to
estimate the efficiency of reduction by the Helmert condensation using the following
expression

Figure 10.
Magnitudes of ∣δKpite∣ and ∣δKdte∣ in an immediate neighborhood ψ ¼ 0:0001∘ð Þ of the computation point with
H Ωð Þ ¼ 1 and varying height of integration point.

5 Unit of gravity: 1 mGal ¼ 10�5m:s�2.
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At r,Ωð Þ ¼ Gϱ0

ð

Ω0

∂
~L�1 r,ψ , r0ð Þ

∂r

�����
rt Ω0ð Þ

r0¼R

, (92)

where r ¼ rt Ωð Þ (see Table 1). The total direct topographical effect on gravity At
surf

which is the case when the Helmert condensation is not employed, is larger in ampli-
tude than the residual effect δAsurf , and mostly negative. The values of At

surf are
prevailingly distributed around 0 mGal in flat areas and are highly correlated with the
topography.

Figure 11.
Correlation between topographical effects and elevation of topography from 50m2 QGRs.

Min Mean Max rms

Topographic Heights (m) 0 58.600 920.000 �200:000

δAsurf (mGal) �17.4 0.006 5.7 �0:7

δAt
surf (mGal) �27.5 �0.6 2.6 �1:5

Table 1.
Direct topographical effect δA on gravity.
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3.3.2 At satellite altitudes—residual effect δAsat

The computation of the residual direct topographical effect on satellite gravity
δAsat uses Eq. (59) for rsat ¼ rGRACE ¼ Rþ 400 km:.

The residual effect on gravity δAsat computed at satellite altitude is of the order of
10�5 mGal, that is significantly smaller in comparison with δAsurf which is of the order
of 10’s to 100’s of mGals (see Table 2). The total direct topographical effect on satellite
gravity At

sat also uses Eq. (92) for r ¼ rGRACE: Comparing the residual effect δAsat with
the total effect At

sat, we see that the total effect At
sat has a long-wavelength feature.

This shows that the gravitational signal of the topography is attenuated when going to
satellite altitudes in such a way that short wavelengths of the gravitation are attenu-
ated faster than long wavelengths. The fact that the total effect At

sat is of the order of
10’s of mGals and the residual effect δAsat almost vanishes shows that the compensa-
tion of the masses by the Helmert condensation is an efficient way to process satellite
gravity data. However, this is not the case for surface gravity data. Note that a coarser
griding does not affect the results of At

sat:

3.4 Direct topographical effect on gradiometry—residual effect δE

The computation for the direct topographical effect on gradiometry δE uses
Eq. (71) for rsat ¼ rGOCE ¼ Rþ 250 km: Table 3 shows the minimum, mean, maxi-
mum and rms values of δE in Eötvös.6 The values of δE given in Table 3 are of the

order of 0.1 m E
�
: The coarser topographical griding does not affect the results of the

topographical effect δE on gradiometry. Even though δE has tiny values, these are still
slightly correlated with the topography. As the measuring accuracy of the second

derivatives by the GOCE gradiometer is 10 mE
�
, the effect of δE should still be taken

into account in the RCR procedure, especially in mountainous area.

Min Mean Max rms

δAsat (10�4 mGal) �3.1 �0.002 138.9 �6:7

δAt
sat (mGal) �0.87 �0.74 �0.51 �0:8

Table 2.
Direct topographical effect δA on satellite gravity.

Min Mean Max rms

δE m E
�� � �2.13 �0.00001 0.7 �0:10

Vt
rr E

�� �
0.01 0.7 0.11 �0:02

Table 3.
Direct topographical effect δE on gradiometry.

6 unit of gradiometry: 1∘E ¼ 10�9m=s2=m:
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The total direct topographical effect Vt
rr on gradiometry is computed by

Vt
rr r,Ωð Þ ¼ Gϱ0

ð

Ω0

∂
2 ~L�1 r,ψ , r0ð Þ

∂r2

�����
rt Ω0ð Þ

r0¼R

, (93)

where r ¼ rGOCE: Table 3 shows that the values of Vt
rr are two orders in magnitude

larger than δE: The fact that the total effect Vt
rr is much larger in amplitude than the

residual effect δE shows that the compensation of the masses by the Helmert conden-
sation is again an efficient way to process satellite gravity gradient data as well as the
satellite gravity data. The distribution of the total effect Vt

rr between the maximum
and minimum values is much more homogeneous compared to the distribution of the

residual effect δE with most values around 0E
�
:

3.5 Topographical effect on geoid heights

3.5.1 The effect of PITE on geoid heights

The primary indirect topographical effects on the geoid height determination are
computed by Eq. (42),

δN R,Ωð Þ ¼ δV R,Ωð Þ
γQ

:

Figure 12b illustrates the effect of PITE in a high elevated topography at 50 m grid
resolution.

3.5.2 The effect of DTE on geoid heights

The direct topographical effects on geoid heights, δD, are computed by applying
Stokes’ integral to DTE as a known function f Ωð Þ distributed in the near-zone spher-
ical cap Cψ0

δDℓ,ψ0 Ωð Þ ¼ R
4π

ð

Cψ0

f ℓ Ω0ð ÞSℓ ψð ÞdΩ0, (94)

Figure 12.
Illustration of DTE and PITE on geoid undulation for High elevated topography in Ireland at 50 meter grid
resolutions. (a) Effects of DTE on geoid undulation. (b) Effects of PITE on geoid undulation.
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where δDℓ,ψ0 is a higher-degree (presented as superscript ℓ) correction to the geoid
height, Cψ0

is a spherical cap of radius ψ0 (for this study ψ0 ¼ 1� is chosen) and Sℓ ψð Þ
is the spheroidal Stokes function, [16]. The effect of DTE on geoid heights is also
presented in Figure 12a.

4. Conclusions

The RCR procedure for gravity and gravimetry is summarized in Figure 2. It
shows the motivation for correcting the data by the effects of the topographical
masses. These are the direct or indirect topographical effects computed at surface or
satellite altitude. This study summarized the field corrections for the determinations
of geoids by terrestrial data or the latest satellite missions. The integral of newton
presented in Sec:2.1.1 in the form of the gravitational potential of topography Eq. (16),
proves necessary to the expression of topographical effects. It made it possible to
understand the observations made either ∂V=∂r or second derivatives ∂2V=∂r2: Fur-
thermore, make it possible to fulfil the conditions necessary to determine a model of
geoids whose centimetre precision is required.

Presentation of the RCR method allowed us to understand the interest in determin-
ing the effects of topographic masses in order to correct gravimetric and gradiometric
measurements and to be able to apply the calculations to determine a geoid model.

In order to express the effects, we need to know the topographic masses defined by
their height and density. We have seen that Newton’s integral for determining the
geoid allows expressing the effects. The topography effects on the satellite measure-
ments are calculated in a way similar to the effects on ground measurements.

The effects of topographic masses have much less impact on gravity measurements
at the satellite level than on ground measurements.

Computing topographical effects for large areas is a very time-consuming process.
Increasing the resolution of sampled DEM by a factor of 2 (e.g. from 100 m to 50 m
quadrangle) increases the number of data by a factor of 4, and it increases the
computational time by a factor of approximately 14. Thus, it is suggested to restrict
the integration area to a small area of radius ψ0 around the computation point.

A sparse grid size, particularly in rugged areas, is not sufficient to express the
irregularities of the terrain and thus does not reveal properly the contribution to
geoidal height due to terrain height variations.

With a tiny grid step size, the magnitude of the Bouguer component becomes
comparable with that of the terrain roughness component, which reduces the correla-
tion between DTE and PITE. Since DTE does not contain a Bouguer component, the
correlation between DTE and DEM is generally smaller than that for PITE.

Numerical investigation shows that the Bouguer components of PITE have a larger
contribution to topographical effects than the terrain roughness components.

Numerical examination of Kernel’s, controlled by varying topographic height at a
fixed angular distance, in the immediate neighborhood of the computation point,
shows that the larger the height of the integration point, the more significant the
difference between these kernels, and therefore, the topographical effects are more
substantial.

Comparing the results with different grid sizes shows (not shown here) an
improvement in computation accuracy. Contrary to our expectations, it is not the case
for calculations at satellite altitudes, so griding can be reduced, and a more refined
grid does not change a long-wavelength feature of Vt

rr:
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Chapter 6

Artificial Intelligence Techniques
for Observation of Earth’s Changes
Eman A. Alshari and Bharti W. Gawali

Abstract

This chapter discusses the primary components that contribute to the observation
of Earth’s changes, including Land Observation Satellites, land classification tech-
niques and their stages of development, and Machine Learning Techniques. It will
give a comprehensive summary of the development stages of high-resolution satel-
lites. It also details land classification with artificial intelligence algorithms. It will also
give knowledge of classification methodologies from various Fundamentals of
Machine Learning Classifiers: Pixel-based (PB), Sub-pixel-based (SPB), Object-based
(OB), Knowledge-based (KB), Rule-based (RB), Distance-based (DB), Neural-based
(NB), Parameter Based (PB), object-based image analysis (OBIA). It includes several
different classifiers for LULC Classification. This chapter will include two applications
for land observation satellites: The first is land use and land cover change observation
with a practical example (study land use and land cover classification for Sana’a of
Yemen as a case study from 1980 to 2020). The second application is satellite altimetry
monitoring changes in mean sea level. The most significant contributions of it are the
integration of these components. This chapter will be crucial in helping future
researchers comprehend this topic. It will aid them in selecting the most appropriate
and effective satellites for monitoring Earth’s changes and the most efficient classifier
for their research.

Keywords: earth changes observation (ECO), machine learning (ML),
high-resolution satellites, artificial intelligence (AI), land use land cover (LULC),
land observation satellites (LOS)

1. Introduction

The art and science of measuring the planet earth through sensors or satellites are
known as remote sensing, which, together with GIS technology, become an essential
aid in collecting data about the Earth. The overall purpose of image collection is to
naturally classify all pixels in an image into land cover groupings or subjects. In LULC
categorization, their unique Artificial Intelligence approaches play a key role. There-
fore, the work is interesting for this book. The work represents an overview of the
application of artificial intelligence in detecting Land Use Land Cover (LULC)
changes on Earth. This chapter reviews Earth observation satellites and their devel-
opment, brings synthetic intelligence procedures for Land Use Land Cover
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(supervised and unsupervised methods) and fundamentals of ML classifiers, and ends
with the challenges of AI techniques for LULC classification and conclusion [1].

The land has become a gigantic and immense resource of economic that cannot be
underestimated in any region, where Earth Changes Observation led to serving the
country’s economic, political, and social needs. Understanding land changes is vital for
land resource management and assessing the technology’s potential, where LULC
change detection assists policymakers in understanding the dynamics of environmen-
tal change to ensure long-term growth. As a result, LULC feature identification has
become an essential research topic, necessitating the development of a robust and
reliable LULC classification [2].

Land use cover is necessary to make up the land’s physically present and visible
surface components [3] which allow researchers to investigate landscape patterns and
features, which are essential to understanding land size, location, and condition of the
size, structure, and state of the ecosystem [4]. The importance of land classification
stems from using a specific piece of land that may be linked to significant price
differences, necessitating a well-defined land categorization. The price (development)
of land underneath houses, for example, may be drastically different from the price
(impact) of agricultural land [5]. As a result, remote sensing and geographic informa-
tion systems (GIS) have become essential aid in collecting data about the Earth, and
It’s considered critical for risk assessment and monitoring land degradation and con-
servation [6, 7].

It is possible to collect data across large geographical areas and define natural
qualities or physical items on the ground. Analyzed surface areas and objects
regularly, tracked their changes over time and combined this data [8] by several
decision support systems relying on remote sensing for land use and land cover
(LULC) detection [9]. As considered, Artificial intelligence (AI) is a technique
solid and active in studying and developing computers or computational systems
that can accomplish tasks that would need human intelligence in this field.
According to the innovative operation, artificial intelligence algorithms play an
essential part in LULC, where these classifiers for LULC classification can be split into
different classes. Arrangement strategies are divided into two categories. The first
category is traditional machine learning (complex classification) (unsupervised and
semi-supervised, supervised), contemporary machine learning, and based
knowledge discovery are examples of challenging classes. The second category is soft
classification [10].

AI is useful because it enables software to execute human-like functions like
reasoning, planning, communication, and perception more effectively, efficiently,
and at a lower cost [11]. Quantum computing has much potential for improving AI
and machine learning algorithms. Although the technology is currently out of reach
for most people, Microsoft, Amazon, and IBM are making quantum computing
resources and simulations available via cloud models [12].

2. Satellites for land observation

Earth changes observation is a ground photography scanning system that collects,
stores, analyses, and displays land photographs using remote sensors at regular inter-
vals [13]. Earth changes observation is used to detect changes in land cover over time
and monitor and analyses changes in the natural and built environments through the
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land’s physical, computational, and biological systems, among other things, according
to the Land Observation Group [7].

Land observation satellites are satellites designed to view the Earth from orbit and
are used for various reasons, including mapping, environmental monitoring, meteo-
rology, and other applications. They typically include remote sensors and wireless
devices. Ground imaging satellites, which capture photos from satellites, are the most
frequent type [8].

The spread of satellite launches in most technologically advanced countries has led
to a new shift, in general, exploring land uses, land cover, and earth changes observa-
tion [14]. So the increasing need to continue developing remote sensing satellites to
monitor the ground and know the current limitations to launch a revolution in space
and technological development requires a careful study of the capabilities and chal-
lenges. This study will provide a comprehensive survey in this field to find valuable
details [15].

2.1 Types of land observation satellites

The resolution of an image refers to the potential detail provided by the imagery.
Resolution refers to the smallest size an object or element can be represented in an
image. Higher resolution means that pixel sizes are smaller, which provides more
details. Then Figures 1 and 2 show the types of resolution of Land Observation
Satellites (LOS) with some significant features [15].

2.2 Development of land observation satellites (LOS)

The spatial resolution was the fundamental distinction between high-resolution
and low- and medium-resolution satellites. The higher spatial resolution
(0.5–1.5 m/pxl) elevates the image qualities - from an unexpectedly detailed image
due to the length units to a ratio of pixel values that provides the user with greater
precision. It is also surrounded by the latest Optical technologies onboard the high-
resolution satellites for remote sensing in addition to a high visit (≤ one day), which
allows for observing the current conditions of the Earth’s surface [16]. Another great

Figure 1.
Types satellites of land changes detection.
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feature of high-definition satellites for commercial data is the assignment of a dedi-
cated mission in terms of the ability to commission a high-resolution satellite to take a
new photo. Always the reason why HRSI has a unique characteristic is that it is clearly
and publicly commercially based data (here applied to the saying: you get for what
you pay [17]. The fact that high-resolution satellites are commercial offers them the
following advantages:

• Filtering the image to 100% of the region covering your use case.

• Get free samples, and a sneak peek.

• Instant access to the pricing because it is determined automatically.

• Three working days to receive the image.

• When used offline, high-resolution photos can be processed directly in the
browser, avoiding FTP and downloading high-resolution satellite images for
further analysis. It saves time, effort, storage space, and the cost of specialized
tools.

The literature describes the benefits of high-resolution satellites, quick delivery,
and fine details [18]. After the appearance of high-resolution satellites was removed,
this section presents an overview of the high-resolution expected. The following are
details on the development of (LOS) in Tables 1 and 2: (1) from 1999 to 2010, the first
generation. (2) 2010–2015, the second generation. (3) 2015–2020 third generation (4)
The Future—Fourth Generation 2020 As stated in the references [19], the data was
gathered from a variety of credible and recent sources. The investigations indicated
that new and exciting breakthroughs would arise. Many satellites with high spatial
accuracy will occur in the next century’s early years. The inaccuracy of high-resolution
spatial image data is better, but it is also more expensive [20]. However, there is still a
demand for medium-resolution satellites because of the benefits that commercial
satellites have and lack [21]. They’re also less priced and arrive faster. It was also
mentioned that the launch of more remote sensing satellites with higher accuracy than
currently available will have increased. Tables 1 and 2 [22] provide details on
high-resolution satellite launches.

Figure 2.
Types of resolution satellites.
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Country Spacecraft Date Resolution

USA IKONOS 1999 1 m

QuickBird-1 2000 0.8 m

EROS-A1 2000 1.5 m

Preview-3 2001 1 m

Preview-4 2001 1 m

EROS-A 2001 1 m

Quick Bird 2001 0.61 m

WorldView-1 2007 0.5 m

WorldView-2 2009 0.5 m

GeoEye-1 2008 0.46 m

INDIA IRS-P5 2002 2.5 m

IRS-P6 2001

IRS-2A 2003 1 m

Cartosat-2 2007 0.8 m

Cartosat-2A 2008

Cartosat-1 2005 2.5 m

Russia Kometa-20 2000 2 m

Canada Radarsat2 2002 3 m radar

China/Brasil CBERS-3 2002 3 m

China/Brasil CBERS-4 2002 3 m

Japan ALOS 2002 2.5 m

France SPOT-5 2002 5 m

Taiwan, land &
ocean

ROCCAT-2 2002

DLR, Radar TerraSAR, 2004 1 m

Emirates DubaiSat-1 2009

Italy CSK-1 2007

Italy CSK-2 2007

Italy CSK-3 2008

South Korea Kompakt-2 2006

Country Spacecraft date Resolution

Canada RADARSAT-2 2007

Spain (SEOSat) 2007

USA WorldView-3 2014 3 0.4 m PAN

SkySat —1 2013 0.8 m PAN and 1.0 m MS

SkySat —2 2014 0.8 m PAN and 1.0 m MS

Alat-2A 2010 2.5 m PAN and a 10 m MS

Sentinel-1 2014
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Country Spacecraft Date Resolution

VNREDSat-1A 2013 2.5 m

CHINA Gaofen,GF1 2013

Gaofen, GF2 2014 0.8 m and a MS 3.2 m.

China-Brazil-Earth Resources-
Satellite (CBERS)-4

2014

TripleSat-1 to 3 2015

INDIA Cartosat-2B 2010

Algeria AlSat-2A 2010

Italy CSK-4 2010

Spain Deimos-2 2014

Emirates Dubai’s-2 2013

Kazakhstan (KazEOSat-1) 2014

South Korea Kompakt-3 2012

South Korea Kompakt-3A 2015

Nigeria Nigeria-2, 2011

France Pleiades-1A 2011

France Pleiades-1B 2012

France,
Azerbaijan

SPOT-6 2012

France,
Azerbaijan

SPOT-7 2014

United Kingdom,
China

TripleSat-1, —2,-3 2015

Vietnam VNREDSat-1A 2013 2.5 m PAN and 10 m MS

USA WorldView-4 2016 31 cm PAN and 1.24 m MS

SkySat —3 2016 0.8 m PAN and 1.0 m MS

SkySat —4 to —7 2016 0.8 m PAN and 1.0 m MS

SkySat �8 to �13 2017 0.8 m PAN and 1.0 m MS

EUROPEAN Alat-2B 2016 2.5 m PAN and a 10 m MS

Sentinel-1B 2016

Sentinel-2A 2015

Sentinel-2B 2017

Sentinel-3A 2016

Sentinel-3B 2018

CHINA Gaofen, GF4 2015

Gaofen, GF3 2016

Gaofen,GF5,GF6 2017

Gaofen, GF7 2018

Zhuhai 2018
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Country Spacecraft Date Resolution

SSTL-S1–4 2018 1 m PAN mode and m MS

INDIA Cartosat-2C 2016

Cartosat-2D 2017

Cartosat-2E 2017

Cartosat-2F 2018

Cartosat-3 2019 (planned)

GEO Imaging Satellite (GISAT) 2019 42 to 318 m

HRSAT 1A,
1B, and 1C

2020 (planned)

resources-3S 2019 (planned)

resources-3SA 2020 (planned)

Japan ALOS-3 2020 (planned)

Algeria Alat-2B 2016

South Korea CAS500–1 and — 2 2020 (planned)

Italy CSG-1 2019 (planned)

Italy CSG-2 2020 (planned)

United Arab
Emirates

Khalifasat 2018

Morocco Mohammed VI-A 2017

Morocco Mohammed VI-B 2018

Argentina The Aleph-1 2018

Peru Peru’s-1 2016

Canada RADARSAT, 2019

Kingdom, China SSTL-S1 2018

United Kingdom Vivid-i 1 to 5 2019

Venezuela VRSS-2 2017

MS = multispectral and PAN = panchromatic [2].

Table 1.
High-resolution optical space sensors for the first generation, 1999–2020.

Country The Spacecraft Date

USA (1HOPSat) 2020 (planned)

EUROPEAN (FLEX) 2022 (planned)

Sentinel-1C 2021 (Planned)

Sentinel-1D 2023 (Planned)

Sentinel-2C 2020 (planned)

Sentinel-2D 2021 (planned)

Sentinel-3C 2020 (planned)

Sentinel-3D 2022 (planned)
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3. AI approaches to analyze LULC

Recently, Classifiers that create exact LULC maps have been in high demand.
Dependable Information is required from remotely sensed pictures, even on high-
dimensional, complex data. Machine Learning Classifiers have a significant role in
giving good classification results. Several aspects influence the accuracy of classified
maps, including training sample size, training sample quality, thematic correctness,
classifier choice, study region size, etc. Understanding these criteria will aid in achieving
the highest classification accuracy feasible for a given need [23]. Big Data challenges
arise when classification tasks involving multiple satellite photos and features become
computationally intensive. To identify AI techniques for LULC of ML, as described in
Figure 3, this section from this chapter searched deeply for several methods that supply
a significant impetus for future readers to develop ML techniques. As stated in Table 3,
we investigated the foundations of different AI classification algorithms in this chapter.

To provide new readers knowledge about different LULC system foundations as
follows: Pixel-based (PB), Sub-pixel-based (SPB), Object-based(OB), Knowledge-
based(KB), Rule-based(RB), Distance-based(DB), Neural-based(NB), Parameter
Based(PB), object-based image analysis (OBIA). It includes several different classi-
fiers for LULC that are as follows: (Random Forst -RF, Tree Decision Classification -
TDC, Maximum Likelihood Classifier –MLC, Spectral Angle Mapper Classification -
SAM, Support Vector Machine -SVM, K-Nearest Neighbor – KNN, Minimum Dis-
tance Classification - MDC, Artificial Neural Networks - ANN, Mahalanobis, Maxi-
mum Entropy, Parallelepiped, Boosting, Normal Bayes, ISOData, and K-means) [24].

3.1 Supervised methods

Classification Supervised (human-guided): This is based on the idea that a user can
select sample pixels in an image representing different classes and then tell image

Country The Spacecraft Date

INDIA NISAR 2021 (planned)

South Korea Kompakt-7 2021 (planned)

Table 2.
High-resolution optical space sensors for the fourth generation, 2020-future [2].

Figure 3.
Types of AI techniques for LULC classification.
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processing software to use these training sites as references when classifying the rest
of the pixels in the image [25]. The user’s knowledge is used to choose training
locations (testing sets or input classes). The user defines the boundaries for how
similar they must be to group pixels together. These bounds are usually determined
using the spectral properties of the training zone, plus or minus a defined increment
(sometimes based on “brightness” or strength of reflection in specific spectral bands).
In supervised learning [26], you use well-labeled data to train the algorithm.

It signifies that certain information has already been tagged with the appropriate
response. It’s analogous to learning with a teacher or supervisor present. A supervised
learning system that learns from labeled training data can predict unexpected data
outputs. It is possible to design, scale, and deploy accurate supervised machine learn-
ing. A group of highly skilled data scientists must devote time and technical skills to
build a data science model. Data scientists must also keep their models up to date to
ensure accurate insights even if the data changes [27]. The different supervised
approaches are shown in Figure 4 [27]: classification and regression.

3.1.1 Type of supervised methods

Regression: A method for predicting a single output value using training data, for
example, uses regression to predict a property’s price based on training data. Other
input variables include location, dwelling size, and other aspects [28].

Supervised method Unsupervised method

Process In a supervised learning model, input and
output variables will be given

In an unsupervised learning model, only
input data will be given

Input data Algorithms are trained using labeled data Algorithms are used against data that is not
labeled

Algorithms
used

Support vector machine, neural network,
linear and logistics regression, random
forest, and classification trees

Unsupervised algorithms can be divided
into different categories: cluster
algorithms, K-means, hierarchical
clustering, etc.

Computational
complexity

Supervised learning is a more
straightforward method

Unsupervised learning is computationally
complex

Use of data A supervised learning model uses training
data to learn a link between input and
output

Unsupervised learning does not use output
data

Accuracy of
results

Highly accurate and trustworthy method Less accurate and trustworthy method

Real-time
learning

The learning method takes place offline The learning method takes place in real-
time

Number of
classes

The number of classes is known The number of classes is not known

Main drawback Classifying big data can be a real challenge
in supervised learning

Cannot get precise information regarding
data sorting, and the output as data used in
unsupervised learning is labeled and
unknown

Table 3.
Comparison of supervised and unsupervised methods.
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Classification: “classification” refers to categorizing output into different group-
ings. Binary type is when an algorithm splits data into two groups. The multiclass
category is choosing between more than two classifications [29].

3.2 Unsupervised methods

The model is not supervised in unsupervised learning. Instead, allowing the model
to determine what it requires would be beneficial. It mainly deals with data that has
not been labeled. Unsupervised learning algorithms allow for more complex
processing tasks than supervised learning algorithms. On the other hand,
unsupervised learning is potentially more unpredictable than natural learning systems
such as deep learning and reinforcement learning [30]. Classification Unsupervised
(according to software): This classification is based on software analysis of an image
without using user-supplied example classes. The computer uses algorithms to deter-
mine which pixels are connected and categorize them accordingly. Figure 5 [31]
shows this well.

3.2.1 Type of unsupervised method

ClusteringWhen it comes to unsupervised learning, clustering is a crucial idea. Its
primary purpose is discovering a structure or pattern in uncategorized data [31]. If
natural clusters (groups) exist in the data, clustering algorithms will analyze and find
them [32].

Associated: Associated: You can create associations between data elements in
massive databases using association rules. This unsupervised method searches exten-
sive databases for intriguing correlations between variables. For example, people who
purchase a new home are more likely to buy new furnishings [33].

3.2.2 Comparison between supervised and unsupervised methods

There are several different Supervised and Unsupervised Methods methods,
explained in Table 3 down [34]:

Figure 4.
Classification and regression from supervised techniques.

Figure 5.
Types of unsupervised techniques.
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3.3 The fundamentals of ML classifiers

3.3.1 Pixel-based classification

Pixel depiction approaches, such as the model remote recognizing image request
technique, assume that each Pixel is pure and is commonly referred to as a single land
spread type. Using this technique, distantly identifying imagery is perceived as a
collection of pixels containing alarming data. As a result, extra standard components
and their changes (for example, head sections, vegetation records, and so on) repre-
sent a pixel classifier commitment. Pixel-wise portrayal estimations can be divided
into autonomous and supervised game plans. Using single classifiers, far distinct
image is sorted into multiple classes based on the trademark groupings of the image
without the usage of ready data or primary data on the review zone [35].

3.3.2 Sub-pixel-wise based

According to pixel-wise, far from identifying picture-gathering processes, each
image pixel has only one land use kind. Regardless, such a notion is typically errone-
ous for medium and coarse objective imaging due to the unpredictability of scenes
when viewed about the spatial target of a distant identifying picture. On the other
side, using hard-plan plans decreases land use spread and helps representation accu-
racy. Because the areal degree of each land use may be precisely quantified, subpixel
collection technologies are a popular alternative. Primary subpixel depiction back-
slides displaying backslide tree analysis, and supernatural mix assessment have been
designed to address the mixing pixel issue. Overall, each Pixel receives fragmented
enrolments with the soft depiction, and the contrasting areal degree of each class may
be assessed [36].

3.3.3 Object-based classification

The spatial features of each Pixel as they relate to one another are considered while
classifying a small collection of pixels. A pixel collection would be used as a prepara-
tion model for the classification algorithm. The classification algorithm would produce
a class forecast for pixels. Object-based approaches divide images and route image
requests to things rather than pixels, resulting in picture conflicts. In picture division
approaches, mysterious, spatial, textural, and crucial information highlight picture
objects. These articles have also mastered using unnatural and other critical models.
Object-based techniques have greatly improved accuracy in multiple investigations
[37] because different picture pixels make up a geographic item.

3.3.4 Image segmentation and object-based image analysis (OBIA)

A high-level image is broken down into numerous homogeneous components, each
distinct. Image and article-based picture divisions, utilized in content-based image
recovery, clinical imaging, object revelation, and other areas, are the third and fourth
critical social events. Furthermore, Kitting and Land grebe, who later invented the
ECHO classifier, made an early picture division application in the distance differenti-
ating sector. Spatial important Information has been added to the calculations to
separate far-flung identifying images, such as region construction, Markovian pro-
cesses Jackson and Lange], watershed systems, and various evened-out computations.
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A region is generated using the region creation approach by sharply isolating each
neighboring Pixel’s features from the space’s mean. The pixels with tiny differences
are distributed throughout the area. As a result, while each zone contains spatially
coterminous and homogeneous pixels, there is evident variability at distinct
locations [38].

3.3.5 Knowledge-based

In terms of technology, the branch of artificial intelligence has improved in recent
years. Rule-based, data-driven, ensemble and reinforcement learning methods are
mentioned. The divisions and algorithms for this classification type are listed in this
section. In recent years, artificial intelligence has changed the way individuals think
about new ideas. Rule-based methodology, data-driven methodologies, ensemble
techniques, and reinforcement learning approaches are discussed. This file [39]
contains all of the order’s divisions and calculations.

3.3.6 Rule-based methodologies

Rule-based methods, which were the focus of early AI research, extract crucial
Information from vast data using master data, agreed-upon rules, and reasoning
techniques. The methodology is incredibly logical (predictable from the interaction of
rational human thinking) but lacks adaptability, making it analogous to someone born
with predetermined knowledge. The criteria cannot be updated once the model has
been established, leaving the user powerless to solve new difficulties for which no
standards have been developed. The most commonly used principle-based systems for
information disclosure from remote detecting data are master frameworks, decision
trees, and affiliation rule learning [40].

3.3.7 Distance-based

The least distance classifier (MDC) is an excellent design based on the distance
between pixels in the highlight space. It is commonly thought that highlight focuses of
the same class are grouped in component space. The mean vector governed by this
element focuses as the class’s focal point, and the covariance network represents the
scattering of encompassing focuses. Every type has its own set of estimates for focus.
The fundamental postulate of the similitude measure is that if the highlight contrasts
between two modes are below a given edge, the two modes are believed to be compa-
rable. It addresses a variety of dynamic districts by utilizing a region encompassed by
various preparation test centers and calculating test similitude using distance as the
significant criterion [37].

3.3.8 Neural based

During the learning process, a neural network structure with numerous layers of
nodes (Multilayer Perceptron) sends input observations back and forth until it reaches a
termination condition. ANNs were developed as pattern recognition and data analysis
tools replicating the brain’s neural storage and analytical functions. Nonparametric
ANN approaches, unlike statistical classification methods, do not require prior knowl-
edge of the input data distribution model. ANNs have the advantages of parallel
processing, estimating the nonlinear connection between input data and desired
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outputs, and generalizing quickly. According to multiple earlier research on the classi-
fication of multispectral pictures, ANNs outperform standard classification approaches
like maximum likelihood classifiers in terms of classification accuracy [41].

3.3.9 Parameter based

Metric approaches such as Support Vector Machines (SVM), Random Forests
(RF), and Artificial Neural Networks have all been examined with per-pixel picture
order projects (ANN). Well-known grouping strategies have been investigated
employing spatial unearthly organization procedures, such as object-based picture
inquiry, with significant increases in characterization exactness (OBIA). OBIA-based
research, on the other hand, has been limited to the VHR/HR picture files, which are
only accessible to specialists [42].

3.3.10 Clustering-based classification

Without human intervention, clustering is an unsupervised machine-learning job
that splits data into clusters or groups of related things. It accomplishes this without
informing how the groups should appear ahead of time. The technique of putting
related elements together is known as “clustering.” This unsupervised machine learn-
ing approach looks for commonalities in data points and groups them [43].

3.4 The classifiers of ML for LULC

3.4.1 The supervised classifiers

Algorithms that ‘learn’ patterns in data to predict a discrete class are known as
supervised classification approaches. Machine learning techniques are a collection of
flexible statistical prediction approaches. The supervised classification use of training
data considered representative of each parameter type or unit to be classified is
referred to following supervised classifiers:

3.4.1.1 Random Forest –RF

One of the better methods for classification is the RF algorithm. RF is capable of
accurately classifying large amounts of data. It is a learning system in which many
decision trees are built during training, and the individual trees anticipate the modal
outputs. RF is a compilation of Classification and Regression Trees created via discre-
tionary resampling on the readiness set using datasets of equal size to make up a set
known as bootstraps. Many bootstraps are used when a tree is built as the test set to
avoid joining a specific record from the first dataset. The theory botch as employing a
test set of equivalent size as the arrangement set is a measure of the botch speed of the
plan of all the test sets. The standard eliminates the need for a different test set. Each
tree’s hidden branches vote for one of two classes, and the forest forecasts which class
will receive the most votes [44], as described in Figure 6.

3.4.1.2 Tree Decision Classification: TDC

A decision tree is an informative model gathered into a decision tree and has center
points and constructed edges. The center links two inner issues: leaf center and leaf
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center points. An inside center addresses a portion of the property, whereas a leaf
center addresses a class mark. Figure 7 depicts the planned path from the internal root
center to the leaf center, which addresses the request, the fundamental standards, and
the gathering measure utilizing decision tree regions as you’d expect from a rule-based
classifier. The decision tree is straightforward to comprehend and unravel. It may be
combined with various decision techniques to form an outfit learning classifier, such
as a self-assertive woods classifier. Observe [39] that the difference between TDC &
RF is apparent in Table 4.

Figure 6.
RF system architecture [13].

Figure 7.
TDC architecture.

Decision trees Random forest

1. When decision trees grow unchecked, they
frequently suffer from overfitting.

1. Overfitting is avoided because random forests are
generated from subsets of data, and the final output is
based on average or majority ratings.

2. A single decision tree is more efficient in terms
of computing.

2. In comparison, it is slower.

3. A decision tree will create specific rules for
predictions when given a data set with
characteristics.

3. Random forest randomly selects data, creates a
decision tree, and averages the outputs. It is not based
on any formulas.

Table 4.
The difference between TDC & RF.
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3.4.1.3 Maximum Likelihood Classifier: MLC

It is one of the most often used remote sensing classification algorithms, in which a
pixel with the highest probability is categorized into the appropriate class [40]. It is
used in distant detecting order applications. The maximum likelihood classifier MLC
computation necessitates proper agent preparation of test information for each cate-
gory and a detailed assessment of the mean vector and a covariance grid. MLC is a
parametric classifier that addresses the inconstancy of courses by applying the covari-
ance grid based on the likelihood that a pixel belongs to a given class. MLC may
produce better results than other known parametric orders [37].

3.4.1.4 Spectral Angle Mapper Classification: SAM

It’s a method of comparing photo spectra to a specified range or an automated end
member, usually done with a spectrometer in a lab or the field. According to SAM, the
data has been reduced to apparent reflectance, according to SAM [41]. Figure 8 shows
a technique called Spectral Angle Mapper that maps spectral angles. In an n-D space,
where n is the number of bands, this method calculates the spectral angle between
both (the unknown and known) spectra as vectors. The size and orientation of each
vector are unique. The length of the vector represents the Pixel’s brightness, whereas
the vector’s direction represents the Pixel’s spectral characteristic [42].

3.4.1.5 Support Vector Machine: SVM

SVM is a quantifiable learning Theory-based conditional artistry grouping algo-
rithm. This method is intended to be independent of the dimensionality of the com-
ponent space [42]. The basic idea behind this arrangement is to use limited pixels to
make a choice plane that isolates the classes by enhancing the edge between them. A
choice plane separates a group of articles with varying levels of class involvement. The
chosen planes may not necessarily be straight lines, as many characterization projects
make this impracticable. Tasks that attract separate lines to distinguish various things
are known as characterization tasks. Figure 9 shows the situation [42].

3.4.1.6 K-Nearest Neighbor: KNN

KNN was a nonparametric approach utilized in statistical applications. The main
idea behind KNN is to discover a collection of k samples in the calibration dataset that
are the most comparable to unknown models (based on distance functions, for exam-
ple) [43]. The response variables (i.e., the class characteristics of the k nearest neigh-
bor) from these k samples are averaged to establish the label (class) of unknown data.

Figure 8.
Spectral angle mapper (SAM).
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As a result, the k plays a critical role in the KNN’s performance for this classifier and is
the most vital tuning Parameter for the KNN. A bootstrap technique was used to
calculate the parameter k [38].

3.4.1.7 Minimum Distance Classification: MDC

As a regulated arrangement, the spacing between pixels is in the highlight space. It
is commonly thought that highlight focuses of the same class are grouped in compo-
nent space. The mean vector governed by this element focuses as the class’s focal
point, and the covariance network represents the scattering of encompassing focuses
[39]. Every type has its own set of estimates for focus. The basic premise of the
similitude measure is that if the highlight contrasts of the two modes are below a given
edge, the models should be comparable [40].

3.4.1.8 Artificial Neural Networks: ANN

ANN Classification is learning to divide data into multiple groups by identifying
common characteristics across samples from different classes. ANN of Supervised
Learning Classification. Known class labels aid in determining whether or not the
system is operating correctly [37]. Information, hidden, and yield layer make up its
strategy [41]. The neuron receives the contribution from the left, and each piece of
information is multiplied by a weight factor. Learning occurs when the loads in the
hub are changed to reduce the gap between the yield hub actuation and the yield [42].

3.4.1.9 Mahalanobis

The Mahalanobis distance is a distance classifier that is sensitive to direction. For
each form of input data, it utilizes statistics. While Mahalanobis distance is compara-
ble to maximum likelihood classification, it is quicker since it assumes all class covari-
ance is the same. Because no precise distance cutoff value was applied during software
processing, the approach could identify all pixels to the nearest training data [43]. The
Mahalanobis distance is a useful multivariate metric for determining between two
points. It’s a helpful statistic with applications in multivariate anomaly detection,
severely unbalanced dataset classification, and one-class classification. Mahalanobis
remote learning has sparked considerable interest, see Figure 10.

3.4.1.10 Maximum entropy

Maximal Entropy is a group method to the entropy selection criterion that was first
proposed. The ensemble classifier’s predictions are used in this method. The

Figure 9.
Support Vector Machine (SVM).
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collection’s greatest Entropy determines the estimated Uncertainty measure for one
instance. (Top) Bounded domain constraint x ∈ [0.7, 1.3] for the traditional equilib-
rium entropy S eq = ln p eq (x) eq which gives a flat profile and the trajectory entropy
S FIT = ρ|∇ 2 |ρ which gives a distribution that scales as p * FIT � cos 2 ((x � μ)π/2 L).
(Bottom) Maximum entropy distribution under the constraint on the average x = μ
and variance (x � μ) 2 = σ 2 which are equivalent for the static and trajectory
information measure as p * FIT = p *, as cleared in Figure 11 [38].

3.4.1.11 Parallelepiped

A fundamental decision method is used in parallelepiped classification. The deci-
sion boundaries in an image data space form an n-dimensional parallelepiped. A
standard deviation threshold from the mean for each selected class determines the
dimensions of a parallelepiped classifier in Figure 12 [39].

3.4.1.12 Normal bayes

A Bayesian classifier’s learning module creates a probabilistic model of the charac-
teristics and uses it to predict the classification of a new example. The vector may be
used to train a Bayesian classifier. The training data can compute the covariance
matrices of the discriminant functions for the abnormal and normal classes [41].
Instead of calculating the maximum of the two discriminant functions, abnormal(x)
and standard (x), the choice was made based on the ratio gabnorm(x)/standard (x).

Figure 10.
Mahalanobis architecture.

Figure 11.
Maximam entropy.
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The unknown pattern vector is categorized as odd if the ratio is more significant than
T; it is expected, as shown in Figure 13 [40].

3.4.2 Unsupervised classifiers

Based on geophysical response similarities, unsupervised classification algorithms
can objectively classify anomalies into potentially relevant subsurface classifications.
Unsupervised classification tries to classify pixels in a remote-sensing image into
groups with similar spectral properties without human intervention. Several statistical
techniques known as “clustering,” which forms classes of pixels based on their
shared spectral signatures, are used to create variety. The following are supervised
classifiers [40]:

3.4.2.1 ISOData

It establishes equally distributed class means throughout the data space, then
repeatedly clusters the remaining pixels using minimum distance algorithms. Every
cycle, the means are recalculated, and the pixels are reclassified. Unsupervised classi-
fication with ISODATA calculates class means evenly distributed in the data space,
then clusters the remaining pixels using minimum distance approaches. Every itera-
tion recalculates the means and reclassifies pixels based on the new means. The
ISODATA algorithm is an iterative method that clusters data components into
different classes using Euclidean distance as the similarity measure [37].

Figure 12.
Parallelepiped.

Figure 13.
Bayesian classifier.
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3.4.2.2 K-means

It iterates until the best centroid is obtained by calculating the centroids. The data
points assigned cluster in the method, resulting in a minimum total squared distance
between data points and the centroid. The K-means clustering technique is utilized to
locate groupings that have not been explicitly identified in the data [41].

4. Applications for land observation satellites

4.1 LULC change observation

Understanding LULC is essential for managing land resources and evaluating the
potential technology [43]. Policymakers can use LULC change detection to under-
stand environmental change dynamics better and assure long-term growth. As a
result, LULC feature identification has become a hot topic in research, demanding the
creation of a solid and reliable LULC classification method. Land use cover is required
to make up the land’s physically existent and apparent surface components [44].
LULC data are necessary for some planning and administration activities, and it is a
critical component for illustrating and comprehending the earth as a system. It also
plays an essential role in earth-atmosphere interactions [45].

LULC items in any location are essential as a natural and socio-economic compo-
nent. LULC objects are deep data for various developmental activities on the earth’s
surface and their application to human needs in time and space. The land is crucial for
humans to carry out any development activities on the planet’s surface, such as
agriculture, settlements, and industry. LULC information in the form of maps and
statistical data is beneficial for studying land cover patterns, such as agriculture,
forestry, economic production, settlements, and environmental studies for spatial
planning, management, and land use and exploitation [46]. The LULC classification,
without a doubt, plays a critical role in the regional socio-economic development of
countries and the management of natural resources, Figure 14.

The LUCC study’s applicability may be used to develop sustainable development in
vegetation changes, quantity and quality of water resources, land resources, and
coastal management. LULC maps play a crucial and pivotal role in arranging execu-
tives and monitoring initiatives. The importance of the discovery of the change of land
use land cover LULC based on remote sensing data is the source of information to
make appropriate decisions for the benefit of the countries. Disclosure of land change
is a factor in conserving land and considering management and development [38].
LULC statistics are required for planning, business, and regulatory needs. The infor-
mation is also essential for ecological security and spatial arranging because of its
spatial nuances. Land use arrangement is indispensable because it gives information
that can be utilized to demonstrate, particularly the one managing climate. For exam-
ple, models manage environmental change and strategies improvements [39].

Land use research and analysis have become prerequisites for proposing a region’s
formative activities. In many developing countries, land assets form the foundation
for financial development at the national, regional, and local levels. Land usage and
land cover data are essential for organizers, decision-makers, and those concerned
with land asset management [39]. It enables researchers to look at landscape patterns
and features crucial to understanding land size, location, and condition, as well as the
ecosystem’s size, structure, and state. Land classification is essential because the usage
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of a particular piece of land might be connected to considerable price disparities,
necessitating a well-defined land categorization. For example, the price (develop-
ment) of land beneath dwellings may differ significantly from the price (impact) of
agricultural land [40]. It provides essential information about human use of the
terrain.

Land classification is essential because the usage of a particular piece of land might
be connected to considerable price disparities, necessitating a well-defined land

Figure 14.
Needing to Study LULC.
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categorization. For example, the price (development) of land beneath dwellings may
differ significantly from the price (impact) of agricultural land [37], where land use
research and analysis have become prerequisites for proposing a region’s formative
activities. In many developing countries, land assets form the foundation for financial
development at the national, regional, and local levels. Land usage and land cover data
are essential for organizers, decision-makers, and those concerned with land asset
management [41].

4.1.1 Materials and procedures

4.1.1.1 Sana’a study area

Sana’a is one of the largest cities in Yemen and is in the governorate of the same
name as well, and this city is the case study for this article [31]. The city of Sana’a is
located at 15°N 44°C or 15.369445 latitudes 44.1191006 with 15°220 10.0020’N and 44°
110 27.6216″E in GPS coordinates [42].

The city of Sana’a Total area is 126 km2 (49 sq. mi), and the population was
2,545,000 issued in 2017. The city has an environment of around 2200 meters above
ocean level, see Figure 1. The north-central part of Yemen it’s in a high valley that
runs from south to north [12]. With an entire space of 126 Km2 (49 sq. mi), it has a
populace of around 3,937,500 (2012). Sana’a’s precipitation is limited to 200 mm/year,
while the fading is several times higher.

The average daily sunlight-based irradiance ranges from 800 to 1400 μmol/m2,
with the month-to-month average air temperature between 22 and 30°C at low
humidity levels (35–55%). Its climatic conditions (temperature, sun-based radiation)
are ideal for wastewater treatment based on phototrophic [43], as described in
Figure 15.

Figure 15.
The location of Yemen Country in the world, Sana’a Governorate, and Sana’a City.
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4.1.1.2 Satellite data

This article used the Landsat8 Satellite Sensor (30 m) for LULC mapping &
geometrically open-source Landsat8 MSS/TM. The image was obtained from the
United States Geological Survey (USGS) of the Sana’a region, a scientific body of the
US government. The base map was created from survey photos of the SOI toposheet at
a scale of 1:50000 [44]. In this study, the data collected in 1980, 1990,2000,2010,2020
the database details created in Table 5. You can see Sana’a Region on google Maps in
Figure 16. The data set of Landsat8 Satellite Sensor (30 m) capture & selection area
study with Composite band 432 in Figure 17.

4.1.1.3 Methodology

The following diagram illustrates the essential steps of this research study in
Figure 18.

No period Satellite Sensor Resolution

1 1980 Landsat 5 (TM) 30 m

2 1990 Landsat 5 (TM) 30 m

3 2000 Landsat 7 (ETM+) 30 m

4 2010 Landsat 5 (TM) 30 m

5 2020 Landsat 8 (OLI), (TIRS) 30 m

Table 5.
Database created of images LULCC of Sana’a city.

Figure 16.
Sana’a Region in google map.
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4.1.1.4 Create database

For constructing a database of observation land changes of Sana’a’ in Yemen, the
data used in the LULC classification here are 1980,1990,2000,2010,2020 for
extracting the differences of decadal period land changes of the region, and the
composition of the database is shown in Table 5. Note Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS), Thematic Mapper (TM) Enhanced Thematic
Mapper Plus (ETM+), and Multispectral Scanner (MSS).

Figure 17.
Data set of Landsat8 with Composite band 432.

Figure 18.
Workflow diagram for proposed methodology.
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4.1.1.5 Pre-processing

It is the primary stage and essential task in the process of LULCC, the coordinate
reference system for defining and cutting the map into specific areas. The pre-
processing procedure identifies the data after it is downloaded from satellites under
remote sensing technology. The information subject to pre-processing is divided into
the images shown in WGS84 or WGS84 / UTM.

They are pre-processed to contain valid data with a geometrically calibrated
reflection often present in the upper atmosphere. The data is not overtly distributed,
but its implementation is terminated by organizations responsible for managing sat-
ellites. Figure 7 will display the pre-processing corrections for Landsat 8 satellite
images in which Band 543 in decadal time 1980,1990,2000,2010,2020.

The images cleared differences in these images map before classification.
According to the colors of the Landsat satellite, the region’s red color is vegetation, and
the white color is bare land, light gray is land area & network road, and dark gray is
built-up area. Initially, the comparison is clear how to land in Sana’a city is changed.
The data set of Landsat8 Satellite Sensor (30 m) & selection area study with Compos-
ite band 432 cleared in Figure 19.

4.1.1.6 Classification for Sana’a city land from 1980 to 2020

As input layers for model processing, there are six samples for six parameters for
creating model classes: High Land, Mountains, Land Area, Built-up, Vegetation, and
Bare Land. Note to parameters in software SAGA with these models classification in
down are seven, but in processing and results in the Parameter are six since merge
area vegetation with agriculture land. Create the samples depending on RGB color
composites of sentinel-2A images, for example, the class Vegetation (red pixels in
color composite RGB = 432), detailed changes in the region. The following details
illustrate the critical description of class input in Table 6.

4.1.1.7 Land changes

Figures 20 and 21 images indicate geomorphological changes in Sana’a in the
recent period. After 2010, that change has a role in analyzing this study. This study
showed the differences in geomorphology during the mentioned period through the
land change classification, which suggests that land use in this region is inappropriate.
A database of LULC of Sana’a was created in this work. RF classifier used with Landsat
images satellites.

Such research is necessary for developing nations because it will aid in managing
natural resources, where LUCC plays a critical role in regional economic development
and natural resource management. Destroyed the country’s infrastructure, preventing
Sana’a’s vital economic, social, environmental, health, and agricultural development.

This study shows the detailed Analysis classification for Sana’a city land from 1980
to 2020. LULCC was done in 1980, 1990,2000,2010,2020. It can find LULC classified
for Sana’a city, and the categories can be apparent in the differences in land change in
Sana’a city as shown in Figure 22.

The summary report compares built-up Areas and Land areas through 1980,
1990,2000,2010,2020. The findings revealed that the political problem began after
2010, as the built-up area decreased on a map in 2010 while the land area increased. I
was implying that the poor state of Sana’a city was caused by the war, with increasing
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Figure 19.
Data set of Landsat8, selection area study with composite band 432.

LCLU
Class

Description

High Land High Land Remote may be settlements and clans with a long history and profound loyalties.

Mountains A mountain is a raised section of the earth’s crust with steep sides and exposed bedrock.

Land Area The area in square kilometers of the land-based portions of conventional geographic regions
is called the land area, which is the population of people. Not contains buildings, maybe
streets, parks, roads or buildings crashed down, like this.

Builtup Built-up areas may be Large buildings, small buildings, settlements, transportation, land, or
places containing people like banks, schools, hospitals, etc.

Vegetation Space containing crops, fields, sparse grassland, a Temperate steppe, and a Temperate
meadow.

Bare Land Bare soil, bare rocks, and land do not contain people like the desert.

Table 6.
Description of LULC classes in the study area.
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built-up area in town resulting in a decrease in land area and the decreasing built-up
area in the city’s growing land area. Table 7 and Figure 23 show the opposite situation.

The summary report is apparent in Figure 23 to compare built-up Areas and Land
areas through 1980, 1990,2000,2010,2020. The findings revealed that the political
problem began after 2010, as the built-up area decreased on a map in 2010 while the
land area increased. Increasing built-up area in town results in a decrease in land area
and the decreasing built-up area in the city growing land area.

4.1.1.8 Results

According to the study’s findings, Table 8 shows the area and percentages of LULC
over the decadal period of Sana’a City from 1980 to 2020. All the region’s size factors
have been displayed: high land, mountains, land area, built-up area, and vegetation.
According to the findings of this study, the built-up area in 1980 was 12.17 percent,
and it rose by 34.24 percent in 1990. That is typical, and expansion will continue
because of human activity in front of increasing structures and urban development.

The built-up area was 40.15 percent in 2000, then decreased to 30.94 percent in
2010, which is not typical. The built-up area was 44.74 percent in 2020. Perhaps this is
back to political events after 2010 that led the development movement backward in all
sectors, including the economy. The remaining analysis parameters had an impact on
increasing and decreasing.

The destruction of missiles and the expansion of barren terrain are the main
reasons for the shrinking built-up area. The results of land change are mentioned in
detail in Figure 24. The area under significant land-use or land-cover classes was
calculated for 1980,1990,2000,2010 and 2020. The region’s area in 1980 was
1,867,950,000 km2, and in 2020 was 1,497,207,600 Km2. The difference between

Figure 20.
Buildings & infrastructure of Sana’a city before the conflict [3].

Figure 21.
Post-conflict images show the change of the built-up land to the destroyed land of Sana’a’s city [35].
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Figure 22.
Classified map for Sana’a over the five decades (1980–2020).

Year Builtup Area km2 % Land Area km2 %

1980 21,276 9.99% 50,965 48.14%

1990 52,590 24.69% 20,428 19.29%

2000 51,041 23.96% 95,706 9.04%

2010 40,097 18.83% 17,404 16.44%

2020 47,980 22.53% 75,069 7.09%

Total 21,298,644 100.00% 1,058,762 100.00%

Table 7.
Results are calculated for class category land Area & Built-up from 1980 to 2020.
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them is 370,742,400 km2, which means the percentage difference is 19.85% of all
geographic space of the city. During this period, there has been a persistent reduction
in land cover as woodlands expand in cropland and developed regions. Somewhere in
the range of 1980 and 2020, of the six significant LULC classes, an extensive increase
and decrease have been recorded see Table 8.

The study concluded that human factors and processes have greatly affected the
shapes of the earth’s surface in Sana’a by comparing maps for the years 1980 and the
year 2020. Human activities have affected the disappearance of many forms of the
earth’s surface that contain gains from the Yemeni civilizational heritage, such as
castles, forts, and caves, due to human activities and the work of crushers in the
mountains. It was reached to create a database for a geomorphological map of the
study area. The study recommends valuing biological and human geographical studies
to identify the processes and factors affecting the formation of the earth’s surface
forms. They benefit from planning and conducting comprehensive development pro-
jects and employing them to develop the mountainous heights in Sana’a through
building dams and parks and establishing a shelter. The importance of Benefiting from
the study of spatial analysis and choosing the optimal site through geographic infor-
mation systems to make service projects, such as planning to establish a water barrier.

4.1.1.9 Discussion

The study’s findings showed the area and percentages of LULC over the decadal
period of Sana’a City from 1980 to 2020. All the region’s size factors have been
displayed: high land, mountains, land area, built-up area, and vegetation. According
to the findings of this study, the built-up area in 1980 was 12.17%, and it rose by
34.24% in 1990. That is typical, and expansion will continue because of human
activity in front of increasing structures and urban development. The built-up area
was 40.15% in 2000, then decreased to 30.94% in 2010, which is not typical. The
built-up area was 44.74% in 2020. Perhaps this is back to political events after 2010

Figure 23.
The chart of results is calculated for class category land Area & Built-up from 1980 to 2020.
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that led the development movement backward in all sectors, including the economy.
The remaining analysis parameters had an impact on increasing and decreasing.

Regarding Sana’a, the region has progressed in urban density, built-up area, and
bare ground before 2010 and the opposite after 2010. The area under significant land-
use or land-cover classes was calculated for 1980, 1990, 2000, 2010, and 2020. The
region’s area in 1980 was 1,867,950,000 m2and in 2020 was 1,497,207,600 m2; the
difference between them is 370,742,400 m2, which means the percentage difference is
19.85% of all geographic space of the city. During this period, there has been a
persistent reduction in land cover as woodlands with attending expansion in cropland
and developed region. Somewhere in the range of 1980 and 2020, of the six significant
LULC classes, an extensive increase and decrease have been recorded.

This study tried summary of the factors and reasons potentially of the land changes
in the Sana’a region is as follows:

1.Events of the war, the asset verification revealed findings that the damage on the
ground matches evidence shown in satellite and field photographs. Furthermore,
satellite imaging can be used to quickly verify assets when analyzing large-scale
damage [24].

2.Human factors for extraction of building materials. Building houses and
residential buildings required different building materials, including gravel,

Figure 24.
Percentages LULC for decades period of Sana’a City from 1980 to 2020.
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which led to the great demand for the development of many mines on those sites
and the establishment of crushers that affected the shapes of the Earth’s surface.
They worked to drain critical natural resources, which shows human activities
and operations in the production areas in the highlands.

3.Erosion and climate factors and Occasional flash floods and potential disasters.
Several natural characteristics in several aspects characterize the study area.
Climate, one of the biological factors, played a role in the formation and change
of these manifestations. Human processes increase as the population grows,
reflected in the number of people. Construction, quarrying, and other lands in
agriculture and industry are examples of human operations and activities from
1980 to 2020, with an average consumption and conversion of building materials
of about five tons.

4.2 Satellite altimetry monitoring changes in mean sea level

The marine gravity field is primarily reliant on satellite altimetry. The accuracy
and resolution of the marine gravity field model have been significantly improved due
to the development of altimetry missions and advancements in altimeter data
processing techniques. However, recovering high-accuracy and high-resolution grav-
ity fields from satellite altimeter data continues to be a difficult task.

Since altimeter data processing techniques are crucial for obtaining precise mea-
surements of sea surface height, these upgraded approaches are then discussed and
reviewed with a focus on coastal altimetry. The difficulties in processing altimeter
data are also emphasized. The characteristics of gravity recovery methods, including
least squares collocation, the inverse Vening Meinesz formula, the inverse Stokes
formula, and the inverse Vening Meinesz formula, are also reviewed in the third
section. The most recent global marine gravity field models, altimeter data, and
processing methods are also shown.

Shipboard gravity measurements also assess the effectiveness of the current global
gravity field model. In the low-middle latitude regions, the root means square of the
difference between the shipboard gravity from the National Centers for Environmen-
tal Information and the global marine gravity model is roughly 5.10 mGal, which is
better than the outcome in high-latitude regions. The accuracy of models in the coastal
areas still has to be improved, especially within 40 km of the coastline. The
SDUST2021GRA model created by the Shandong University of Science and Technol-
ogy team also showed a fascinating performance. The difficulties in recovering the
marine gravity field from satellite altimetry are finally discussed [46].

The sensor aboard an altimetry-focused satellite delivers microwave pulses in the
radar frequency range or laser pulses in the optical or infrared spectrum to the
ground, which is reflected at the planet’s surface and collects the return signals. The
radar observation method is particularly suitable over oceans and open water on land
due to the favorable, reflecting characteristics of water. The fundamental measure-
ment is the signal’s round-trip time from the satellite to the water’s surface, which,
when multiplied by the speed of light, equals the signal’s round-trip distance. The
range, or separation between the satellite and the instantaneous sea surface, is roughly
equal to the product of the two-way travel time and the speed of light.

The satellite’s height above a global ellipsoid is calculated from its orbit about a
geocentric reference frame (e.g., the International Terrestrial Reference Frame –
ITRF).
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A laser altimeter, which works similarly to radar technology but employs light
pulses, can also determine altitude. Digital elevation models are frequently created
using laser altimetry and measuring the elevation change of ice sheets. Their mass
balance in response to global warming, satellite radar, and laser altimetry has more
recently been used to measure the water level of lakes, rivers, and floodplains on land.
Figure 25 indicates Satellite Altimetry Monitoring Changes In Mean Sea Level [48].

Sea surface height (SSH) readings from satellite altimeters are a regular source of
information for tracking ocean processes. It is difficult to completely utilize the
available altimeter observations to correctly examine minor mesoscale variations in
SSH because, below a wavelength of about 70 km, along-track altimeter measure-
ments frequently exhibit a severe decline in signal-to-noise ratio (SNR).

Although many different strategies have been put forth and used to separate noise
from measurements and detect it, no transparent methodology has evolved for sys-
tematic use in operational products. The Copernicus Marine Environment Monitoring
Service (CMEMS) offers detailed band-pass filtered data to reduce noise contamina-
tion of along-track SSH signals to best address this unresolved issue. Users looking to
reveal small-scale altimeter signals are thus left to their own devices to devise more
creative and appropriate noise-filtering solutions [49].

Here we show that an entirely data-driven strategy is effectively designed and
deployed to produce reliable estimates of noise-free sea level anomaly (SLA) signals

Figure 25.
Satellite altimetry monitoring changes in mean sea level [47].
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(Quilfen, 2021). The approach combines a discrete wavelet transform (DWT)-
inspired adaptive noise filtering technique with empirical mode decomposition
(EMD), which is used to investigate non-stationary and nonlinear processes. It is
discovered that this range of mesoscale wavelengths, between 30 and 120 km, better
resolves the pattern of SLA variability.

The denoising method, which assumes that the SLA variability is partially the
product of a stochastic process, results in a practical uncertainty variable associated
with the denoised SLA estimations and considers errors related to the local SNR as
well as process uncertainties. The measurements from the missions Jason-3, Sentinel-
3, and SARAL/AltiKa are processed and analyzed. Their energy spectrum and seasonal
distributions are defined in the small mesoscale domain over the period that is cur-
rently accessible. The SASSA (Satellite Altimeter Shortscale Signals Analysis) data set
of denoised SLA measurements for three reference altimeter missions has already
been shown to yield valuable opportunities to assess global small mesoscale kinetic
energy distributions in anticipation of the upcoming SWOT (Surface Water and
Ocean Topography) mission data (Quilfen and People, 2021) [47].

5. Challenges of AI techniques for LULC classification

Despite considerable recent progress in AI for LULC, global land-use intensity
mapping has faced significant challenges in recent years. Artificial intelligence tech-
niques have spread widely and provided many new solutions to various areas of the
natural world and the difficulties of human society. On the other hand, the challenges
of artificial intelligence techniques appeared for each field separately.

This section will identify the challenges of artificial intelligence techniques for
mapping extensively, with challenges in monitoring how the land cover is classified.
As platforms and sensors improve, new issues develop, such as high-dimensional
datasets (high spatial resolution and hyperspectral features), sophisticated data struc-
tures (nonlinear and overlapping distributions), and the nonlinear optimization
problem (high computational complexity) [29].

The complexity of multi-source data exacerbates the difficulty of developing robust
and discriminative representations from training data with AI techniques [30]. It might
be considered a diverse and significant data processing challenge. Large training samples
are necessary for supervised AI systems, generally obtained through time-consuming
and labor-intensive processes such as human interpretation of RS products and field
surveys.With little training data, developing a robust model of AI-based approaches is a
significant difficulty. Techniques for unsupervised AI must be developed.

There are a variety of AI models and frameworks that are both efficient and
accurate. Researchers are continually proposing new AI-based change detection sys-
tems at the moment. However, it is a significant task to choose an efficient one and
ensure its correctness for various applications. In practical applications, AI’s depend-
ability must be considered [31]. Some researchers have looked at these issues and
suggested viable solutions, and it will summarize them separately as follows:

5.1 Issue AI’s reliability

When using AI techniques for change detection, factors affecting the reliability of
data preparation, model training, change feature extraction, and accuracy evaluation
should be considered. The goal is to find the most plausible AI framework for
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enhancing change detection accuracy. We’ve discussed the issues and promises of AI-
based change detection systems in this section and our forecasts for the future [32].

Although many AI-based change detection systems provide the model structure,
their trainable parameters are opaque, making it difficult to comprehend why and
how they work [33]. AI reliability aims to develop methods for improving the accu-
racy and interpretability of change detection systems. As a result, it is necessary to
build change detection AI that is both resilient and interpretable [34]. Table 9
describes only the approaches that can improve the accuracy of change detection
findings from the following areas.

5.2 Issue AI without supervision

While domain knowledge can aid in constructing representations in classic
machine learning methods, AI drives the development of more powerful unsupervised
methods. Data can be used to teach unsupervised representation-learning algorithms

AI’s reliability

1 2 3

Reduce data uncertainty caused by
geometric and spectral disparities by
eliminating mistakes produced by
data sources (such as preprocessing
and radiometric correction) or
merging different data to improve
the original data’s reliability,
increasing change detection
conclusions’ dependability. A few
studies have investigated the
influence of registration and
algorithm fusion.

Improve AI model
interpretability by utilizing a
sub-modular model structure,
which can help comprehend the
overall AI model’s operation
principle by understanding the
role of each sub-module. R-
region-proposals CNN’s
component, for example, can be
regarded as a generator that
predicts object regions.

Improve the durability of AI
models by combining many
approaches and outcomes.
Ensemble learning is a good
strategy for increasing the
accuracy of the final output by
combining the findings of
multiple models.

4 5 6

Reduce noisy points and provide
accurate boundaries by including
post-processing methods such as the
Markov random field, the
conditional random field, and level
set evolution into the AI model.

To improve the sharpness of
change maps, use more suitable
detection units. Based on the
detection unit of change
detection, it may be divided into
scene level, patch or super-pixel
level, pixel level, and sub-pixel
level, from coarse to fine. In
terms of dependability, the sub-
pixel level is the best option
because it avoids the problem of
mismatched pixels in RS images.
However, it swiftly escalates the
level of computational
complexity. As a result, the best
solution is to employ separate
detection units for different land
cover types, which requires a
well-designed AI model.

To improve the representation
of change maps, detect changes
in each instance. Change maps
include binary, one-class
mappings, from–to maps, and
instance maps. Although
research is still inadequate, the
instance change map is more
realistic. Because it can provide
change information for each
instance, it indicates real-world
changes. It may also avoid the
binary map’s lack of semantic
information and the
classification system’s
restriction of the form–to map,
increasing the dependability of
the final result.

Table 9.
Directions for solutions issue AI’s reliability.
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to learn hierarchical properties. It’s feasible to make data-driven decisions with it [35].
Table 10 summarizes the aspects of unsupervised AI research.

5.3 Issue heterogeneous big information processing

Heterogeneity is a significant property of vast and heterogeneous data, and it
complicates the formulation and analysis of change detection findings. SAR, GIS data,

Unsupervised AI

1 2 3

Many researchers have not
trained efficient AI models
due to a shortage of labeled
examples in recent years.
I have put forth a lot of work
to solve these issues and have
regularly delivered excellent
outcomes.
GAN, transfer learning, and
other unsupervised AI
approaches are developing
continually.

Change detection is frequently
seen as a low-likelihood issue
due to the ambiguity of the
change location and direction
(i.e., the unaltered change map
is significantly more significant
than the change). Unsupervised
AI algorithms struggle to
address this difficulty due to a
lack of experience. Although
more study is needed to
improve performance, weakly-
and semi-supervised AI systems
are viable alternatives to
supervised AI. Nonetheless, a
pure unsupervised AI approach
to change detection should be
the ultimate goal.

One of the motivations for looking into
unsupervised AI systems is the lack of
training samples or prior knowledge.
An excAn excellent alternative strategy
is to use crowd-sourced data as a priori
knowledge. The Web 2.0 age has
arrived on the Internet (emphasizing
user-generated content, simplicity of
use, participatory culture, and end-user
interoperability). For example,
OpenStreetMap, a free wiki world
map, may provide massive annotation
data labeled by volunteers for AI model
training. Although the label precision
of specific crowd-sourced data is low,
the AI model can be trained in a weakly
supervised manner to detect changes.

Table 10.
Directions for solutions issue unsupervised AI.

Heterogeneous big data processing

1 2 3

Several AI-based change detection
systems based on heterogeneous
data have proven effective.
However, the number of studies is
small. Furthermore, spotting
changes across multiple data
sources is more important to them
than catching data fusion over
time. Data fusion theories (i.e.,
mutual compensation of several
types of data) and multi-source
data (e.g., optical RS images and
DEM) combined with AI
techniques can help improve
change detection accuracy.

Because current change detection
methods rely mainly on detecting
2D data, using 3D data to detect
changes in buildings and other
structures is also a future
research direction. Three-
dimensional reconstruction
based on oblique images or laser
point cloud data and dimensional
information integration based on
aerial imaging and ground-level
street view imagery (i.e., air-
ground integration) is two. For
recognizing 3D changes, there
are currently no sound AI
systems.

The application of the AI model is
limited since analyzing RS’s
extensive data requires many CPU
resources. Large-format data
processing, for example, is
frequently done in blocks, which
might lead to edge concerns. A
large amount of data needs many
trainable parameters in the AI
model, resulting in a lengthy
training process that uses many
computing resources. As a result,
the volume of data and the
number of trainable parameters
must be balanced. They make
developing AI-based change
detection tools more challenging.

Table 11.
Directions for solutions issue heterogeneous big data processing.

135

Artificial Intelligence Techniques for Observation of Earth’s Changes
DOI: http://dx.doi.org/10.5772/intechopen.110039



high-resolution satellite pictures, and other time and space-measured data are just a
few examples of the kind of data that RS technology may provide for change detec-
tion. These data of many sorts and formats are difficult to use due to missing values,
considerable data redundancy, and unreliability. Furthermore, the generalization
ability of current AI systems in RS data processing, particularly heterogeneous signif-
icant data processing, must be improved [36]. As a result, we believe the following
issues warrant further examination, as in Table 11.

6. Conclusions

Classifiers that create exact LULC maps are in high demand, and dependable
Information is required from remotely sensed pictures, even on high-dimensional,
complex data. Machine Learning Classifiers have a significant role in giving good
classification results. Several aspects influence the accuracy of classified maps,
including training sample size, training sample quality, thematic correctness, classifier
choice, study region size, etc. Understanding these criteria will aid in achieving the
highest classification accuracy feasible for a given need. Big Data challenges arise
when classification tasks involving multiple satellite photos and features become
computationally intensive.

In recent years, artificial intelligence techniques have spread widely and provided
many new solutions to various areas of the natural world and the difficulties of human
society. On the other hand, the challenges of artificial intelligence techniques
appeared for each field separately. This chapter identified the challenges of artificial
intelligence techniques for mapping extensively with challenges in monitoring how
the land cover is classified since advances in technologies catalyzed by machine
learning and artificial intelligence.

One challenge is the infrastructure, especially the infrastructure of the ancient
cities where roadworks were built at different times and with other materials. to face
this challenge, it may help with multispectral data technology that can identify more
objects and generate more categories. High resolution is the super-spectral for remote
sensing data available for urban areas recently. And the accuracy challenge is among
the significant challenges in this field. Where noticed was that many researchers used
satellite imagery with an accuracy of 30 cm. Also, among the challenges, the challenge
in image classification was the weak role of the analyst in the category and the possible
classification errors.

The main challenge in LULC changes using remote sensing data to provide accurate
and timely geospatial information is clarified as follows. Urban growth has long been
considered a sign of regional economic vigor. Still, its benefits increasingly negatively
impact the ecosystem and environment, including road traffic, air quality, loss of
farming area, social fragmentation, and infrastructure cost. Natural resource manage-
ment, planning, and monitoring programs depend on accurate information about the
land cover in a region. The production of a thematic map from this classification using
an image classification is one of the most common applications of remote sensing.
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