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Preface

“It’s time for scientists to shout about RNA therapies”
Lorna Harries (Nature 574, S15. 2019)

RNA Therapeutics - History, Design, Manufacturing, and Applications addresses recent 
advances in RNA-based drug discovery and commercialization. The design and devel-
opment of RNA drugs have resulted in several distinct classes of treatment known as 
nucleic acid therapies. Chapter 1: “Introductory Chapter: RNA Drugs Development 
and Commercialization” describes and discusses these therapies, which include an 
impressive list of mRNA, SARNA, miRNA, siRNA, RNA analogs, ribozymes, anti-
sense oligonucleotides, and CRISPR-based drugs.

The COVID-19 pandemic spurred a burst of development of mRNA vaccines, which 
culminated in rapid mRNA vaccine testing and approval for use in humans. Chapter 2 
“Prophylactic Ribonucleic Acid Vaccines to Combat RNA Viral Infections in Humans” 
discusses these vaccines, while Chapter 3 “Ribozymes as Therapeutic Agents against 
Infectious Diseases” discusses therapeutic ribozymes.  

Applications of RNA therapeutics range from infectious disease prophylaxis to 
treating cancer and chronic conditions, improving organ transplant outcomes, and 
correcting inherited mutations. Chapter 4: “A New Era of RNA Personalized Vaccines 
for Cancer and Cancer-Causing Infectious Diseases” discusses RNA therapeutics for 
various types of malignancies originatingfrom chronic viral infections or somatic 
mutations. Chapter 5: “Perspective Chapter: RNA Therapeutics for Cancers” reviews 
distinct classes of RNA therapeutics as well as examines the challenges in RNA drug 
engineering, delivery, and improvement of pharmacological effectiveness. 

The optimization of RNA-based therapeutics enables countless opportunities in 
our pursuit of achieving the goals of individualized medicine. This is particularly 
applicable to rare genetic disorders for which RNA drugs may provide a cure. As such, 
Chapter 6: “RNA Interference Applications for Machado-Joseph Disease” discusses 
applications of RNA interferences for a rare neurodegenerative disease caused by 
abnormal expansion of trinucleotide repeats in non-coding regions of RNAs. 

RNA therapeutics have significantly impacted medicine, economy, and overall public 
health and thus hold great promise to modernize health care.
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Chapter 1

Introductory Chapter: 
RNA Drugs Development 
and Commercialization
Irina Vlasova-St. Louis

1. Introduction

RNA therapeutics are chemically synthesized biomolecules with broad clinical 
applications, ranging from correcting inherited mutations to treating cancer, chronic 
conditions, improving organ transplant outcomes, and infectious disease prophylaxes 
(Figure 1).

2. Applications of RNA-based therapeutics in medicine

The development of RNA therapeutics has been an intense journey, with numer-
ous stories of success and failure. The potential, and suitability, of recently discovered 
RNAs stemmed from several Nobel Prize-winning discoveries. For example, the 
Nobel prize for messenger RNA discovery was awarded to F. Jacob, J. Monod, and A. 
Lwoff in 1965 [1]. Almost 30 years later, P. Sharp and R. Roberts were presented with 
the Nobel Prize for the discovery of alternative mRNA splicing. The idea for mRNA 

Figure 1. 
Applications of RNA-based therapeutics in medicine that are discussed in this book.
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technologies as biopharmaceuticals for infectious and oncological diseases material-
ized in the early twenty-first century. Two companies, BioNTech and Moderna, which 
were founded two years apart (in 2008 and 2010, respectively), began working on 
the commercialization of mRNA-based vaccines against flu and subsequently Ebola 
disease [2]. The COVID-19 pandemic has speeded up mRNA technologies and cul-
minated in rapid mRNA vaccine testing and approval for use in humans. RNA-based 
therapeutic vaccines (e.g., those developed to fight against SARS-CoV-2 infection) 
have been proven to be safe and effective. Several of the vaccines were approved by 
the FDA and the European Commission (EC).

An interesting formulation of double-stranded RNAs is one which activates TLR-3 
receptors. This drug is sold under the generic name Rintatolimod in South America 
and Canada. The drug is indicated for treatment of patients with chronic fatigue 
syndrome, a poorly understood complication of many viral infections [3]. RNA drugs 
have great therapeutic potential to modulate inflammatory responses and combat oxi-
dative stress to prevent tissue and organ damage during severe infections; however, 
the investigations of RNA drug utility are still at the pre-clinical stage [4, 5]. Greater 
attention has been devoted to antiviral RNA therapeutics, several of which have 
progressed to clinical phases 2 and 3, including Favipiravir (against Ebola Disease) 
and siRNA drugs for the treatment of chronic hepatitis B and HPV virus infections 
[6–8]. The anti-SARS-CoV-2 RNA analogs Ledipasvir and Remdesivir have recently 
been granted FDA approval to treat COVID-19 infection [9–11].

RNA therapies are evolving as individualized treatment solutions for cancer. In 
2006, Nobel Prize was shared by Professors A. Fire and C. Mello for their discovery 
of gene silencing by double-stranded RNA interference (RNAi) [1]. siRNAs (as well 
as miRNAs) have been tested to inhibit overexpressed genes in various malignant 
tumors, including multiple myeloma, pancreatic, and hepatocellular carcinomas [12]. 
Unfortunately, the side effects that were observed in the studies’ participants along 
with poor efficacy resulted in the termination of many studies.

Antisense Oligonucleotides (ASO) became the number one choice for therapeutic 
design in the early twenty-first century to treat cancers that resulted from oncogene 
duplication or overexpression (e.g., C-MYB, BCL, IGF1R) [13]. Several ASO therapeu-
tics have been incorporated into the conventional treatment of oncological diseases, 
including chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma 
(DLBCL), and glioblastoma [14]. More recently, RNA aptamers and raptamers have 
been tested as multifunctional RNA drugs in the field of oncology [15]. For example, 
bi-specific aptamers were designed to activate receptors on tumor-infiltrating T cells 
against cancer-associated receptors. The aptamers linked to a siRNA against the gene 
of interest can downregulate the target gene directly in tumor cells or modulate tumor 
cell immunogenicity, thus enhancing anti-tumor immune response. Aptamers conju-
gated to chemotherapeutic molecules can be delivered in a cell-specific manner (e.g., 
if designed to bind tumor oncomarkers) [15]. Such properties significantly expand the 
portfolio of malignant diseases, including cancers with immunosuppressive properties.

Human trials of non-formulated mRNA- and mRNA-based dendritic-cell cancer 
vaccines have been taking place since the mid-2000s. Several dozens of ongoing clini-
cal trials are well described in [16]. The majority of them is designed as study arms in 
combination with standard immune checkpoint therapies or individualized biologics 
to treat devastating cancers such as glioma, melanoma, prostate cancer, and non-
small-cell lung, pancreatic, and colorectal neoplasms. The future goal is to achieve 
targeted delivery, attune kinetics of mRNA expression, overcome cancer mutation 
rate, and reduce unintended host-immune reactions [17].



5

Introductory Chapter: RNA Drugs Development and Commercialization
DOI: http://dx.doi.org/10.5772/intechopen.109951

siRNA drugs has become invaluable in the field of transplantology, where life-saving 
hematopoietic stem cell transplantation is accompanied by numerous pre- and post-
transplant complications [18, 19]. One of the complications is hepatic veno-occlusive 
disease/sinusoidal obstructive syndrome (VOD/SOS), which has been successfully 
treated by the drug Defibrotide, which was formulated as a mixture of single- and 
double-stranded oligonucleotides [20]. Patients who undergo transplantation pro-
cedures are often at high risk for GVHD and acute kidney injury, which now can be 
mitigated by siRNA against p53 mRNA (Teprasiran, Quark-Pharmaceuticals) [21].

Alnylam, a U.S.-based company, is pioneering siRNA treatments against rare 
hereditary diseases. Several siRNA drugs have already been approved by the FDA and 
granted orphan drug designation [22]:

• Vutrisiran and Patisiran target TTR in patients with hereditary variant transthyretin 
amyloidosis and hereditary TTR-mediated polyneuropathy/cardiomyopathy [23, 24];

• Inclisiran was designed to knockdown PCSK9 in patients with homozygous 
familial hypercholesterolemia [25];

• Lumasiran and Nedosiran were designed to knockdown HAO1 and LDHA genes, 
respectively, to treat primary hyperoxalurias type I–III [26, 27];

• Givosiran is a siRNA drug that targets the ALAS1 gene as a treatment for acute 
hepatic porphyria (AHP) [28].

Another group of rare diseases, hemophilia A and hemophilia B, are being evalu-
ated for management with monthly subcutaneous administration of siRNA-based 
therapy fitusiran (Sanofi) [29]. Currently, novel siRNA drugs are entering clinical 
trials almost daily; information about them can be found at clinicaltrials.gov and 
ema.europa.eu/en/medicines. Many pre-clinical studies are in progress at academic 
institutions and biopharmaceutical companies [30].

S. Altman and T. Cech were awarded a Nobel prize for the discovery of catalytic 
RNAs, now named Ribozymes [1]. This diverse group of single-stranded RNAs acts as 
enzymes when folded into secondary and tertiary structures [31]. Several clinical tri-
als investigated the utility of Ribozymes in the treatment of HIV-infected individuals 
[32, 33]. Therapeutic Ribozymes were designed and tested against angiogenic factor 
VEGF1, which is often overexpressed in cancer; however, due to higher interest in the 
commercialization of RNAi-based therapies, Ribozyme trials eventually stopped.

E. Charpentier and J. Doudna received the Nobel Price for the discovery of 
CRISPR-Cas in the middle of the COVID-19 pandemic [34]. CRISPR technology, 
which was initially designed to disrupt the gene of interest for experimentation, now 
is thought to be applied to treat inherited diseases. CRISPR-Cas is becoming a great 
alternative to siRNA therapeutic applications [35].

There are estimated 5000–8000 rare monogenic diseases that can be cured by gene 
therapies, including CRISPR-Cas [36]. Commercialization of CRISPR technology 
leads to several clinical trials that utilize CRISPR-Cas9 modalities to correct muta-
tions that cause sickle cell anemia, β-thalassemia, cystic fibrosis, Duchenne muscular 
dystrophy, Huntington’s chorea, and hereditary retinal degenerative diseases [24, 37]. 
The versatility of CRISPR-Cas therapeutic applications is wide and has the potential 
to provide twenty-first-century cures to newborns. Additionally, it may even provide 
cures, preconceptionally, to families affected by the genetic disease.
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3. Conclusions

This book presents distinct classes of RNA therapeutics, ranging from single-
stranded antisense oligonucleotides (ASOs) and subclasses of RNA interferences 
(miRNAs and other RNAi) to in vitro transcribed mRNAs and RNA vaccines. 
Also presented are some of the challenges in RNA drug engineering, delivery, and 
specificity. Additionally, the improvement of pharmacological effectiveness is 
discussed.

RNA therapeutics have already had a significant impact on medicine, the econ-
omy, and overall public health. They are becoming prescription drugs, and this holds 
great promise for modernizing healthcare [38]. National Genome Research Institute 
has recently launched a genotype-first approach to trace genomic variants back to 
human disorders. Accumulated data on human genome sequencing may inevitably 
lead us to a preventive medicine mindset. Monumental breakthroughs in molecular 
biology, computational chemistry, bioinformatics, and individualized genomics, 
which undoubtedly propelled RNA therapeutics through the commercialization stage, 
are also examined in this book.
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miRNA  micro RNA
siRNA  small interfering RNA
CRISPR/Cas  clustered regularly interspaced short palindromic repeats/

CRISPR-associated
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Prophylactic Ribonucleic Acid 
Vaccines to Combat RNA Viral 
Infections in Humans
Irina Vlasova-St. Louis and Jude Abadie

Abstract

Vaccines have evolved as widely applicable and available prophylaxes against 
infectious diseases. Advances in ribonucleic acid technologies revolutionized the 
biopharmaceutical field of vaccine manufacturing. Numerous novel mRNA-based 
vaccines that have been approved by the United States and European regulatory agen-
cies are proven to be safe and effective in preventing disease. This chapter presents 
the history of RNA vaccine development in the context of preventing diseases caused 
by RNA viruses such as SARS-CoV-2, HIV, influenza, Chikungunya, Zika, RSV, 
PIV, HMPV viruses, Rabies, and Ebola. Advantages, disadvantages, and challenges 
in mRNA vaccine engineering, delivery, and safety are discussed. The formulation, 
safety, long-term effectiveness, and requirements for booster immunizations are 
presented using data from clinical trials. The results of these clinical trials highlight 
important milestones, setbacks, and ultimate advancements in vaccine development. 
mRNA vaccines have significantly impacted public health in a relatively short time, 
and they demonstrate great potential in serving as clinical public health prophylaxis 
against current and future pandemics. Future development is likely to include  
polyvalent, mosaic, and strain/lineage-specific individualized vaccines.

Keywords: prophylactic vaccines, mRNA vaccines, SARNA vaccines, RNA viruses, 
SARS-CoV-2, influenza, HIV, RSV, parainfluenza type 3 virus, human Metapneumovirus, 
chikungunya, Zika virus, COVID-19, Ebola, epidemic, pandemic, clinical trials,  
genomics surveillance, public health, emergency preparedness

1. Introduction

The history of vaccines development continually demonstrates their evolution as 
prophylaxes agents against the spread of disease. For example, as demonstrated with 
annual flu immunizations, vaccinations have been key in establishing herd immunity 
and preventing outbreaks of infectious diseases. The pandemic resulting from SARS-
CoV-2 infections necessitated vaccine development in a fashion that was accelerated 
compared to standard regulatory approval processes. Biopharmaceutical companies 
initiated vaccine research and development as soon as SARS-CoV-2 sequencing data 
become available. This led to rapid and seamless transitions to clinical trials using 
conventional vaccine candidates, as well as mRNA vaccines.
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Next-generation RNA sequencing continues to evolve as the primary method pub-
lic health laboratories use to conduct genomic epidemiology surveillance. This is par-
ticularly important for novel zoonotic infections that can cross inter-species barriers 
with the potential to cause epidemics and, perhaps, pandemics. RNA viruses demon-
strate continual genetic recombination, in conjunction with the rapid accumulation 
of mutations, due to the inefficient proofreading ability of viral replicases. Therefore, 
real-time viral genotyping is of critical importance to public health during outbreaks 
resulting from virulent RNA viruses. Genotyping data became the fundamental basis 
for vaccine design. Furthermore, it provided insight into vaccine breakthroughs and 
allowed vaccine optimization through transgene sequence modifications.

The four types of conventional vaccines include live-attenuated vaccines, whole-
pathogen inactivated vaccines, toxoid vaccines, and recombinant protein vaccines 
[1]. Inactivated vaccines and live-attenuated vaccines contain the whole pathogen. 
Live-attenuated vaccines (for example, against yellow fever, chickenpox, rotavirus, 
smallpox, or combined vaccine against measles, mumps, rubella (MMR)), are pro-
duced through various attenuation procedures [2]. These vaccines are quite immuno-
genic, and they can induce long-lasting humoral (systemic or mucosal) and cellular 
immune responses. However, whole virion vaccines are costly because viruses must be 
grown in cell cultures during commercial production [3]. There is a risk of reversion 
of live attenuated vaccines to a wild form, and this is why they are contraindicated for 
immunocompromised individuals. Poliovirus, hepatitis A, influenza, and rabies are 
the most successful inactivated vaccines. They can be conveniently freeze-dried for 
transport; however, large doses of virion administration are required, which can cause 
unintended adverse events due to host immune reactions. Additionally, the inactiva-
tion process may alter immunogenic epitopes confirmation, which makes vaccines 
less effective [4]. Toxoid vaccines immunize against toxins, which are produced by 
some bacterial pathogens (e.g., tetanus).

Recombinant DNA technologies produced recombinant protein vaccines. These 
vaccines were considered safer, with fewer adverse events in clinical trials. However, 
the identification of the best immunogenic antigen and the complexity of manu-
facturing design lengthened pre-clinical studies from several years to decades [4]. 
Protein vaccines often require adjuvants or conjugates to improve immunogenicity, 
stabilizers to maintain antigen conformation, and other nanomaterials – to improve 
internalization by antigen-presenting cells (APCs) in vivo [4]. The examples of 
most recent protein vaccines are hepatitis B and human papillomavirus (HPV). 
Traditionally, the development and production of these conventional vaccine types 
have been laborious and costly; furthermore, many of them lacked the efficacy to 
attain post-market approval.

Advances in nucleic acid technologies revolutionized the biopharmaceutical field 
of vaccine manufacturing. The ability of two novel types of vaccines, mRNA and 
DNA-based, to produce protein inside the immunized organisms, opened a new era in 
vaccinology [5]. However, unlike protein vaccines that are formulated without cargo, 
the DNA and mRNA vaccines required vehicles so that they could be delivered into 
cells [6]. Upon immunization, DNA vaccines use either plasmid or viral vectors to 
deliver the transgene into cells. Various lipid nanoparticle cargos have recently been 
developed for mRNA vaccines to increase the efficiency of cytoplasmic delivery. The 
poor stability of mRNA molecules (ex vivo and in vivo) requires additional consider-
ations for formulation and storage (Table 1) [7]. Several biochemical solutions for 
RNA chemistries and lipid nanoparticle design have been proposed and thoroughly 
reviewed [8–11]. The major challenge identified for mRNA-based vaccines is achieving 
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effective in vivo translation and identifying the correct/optimal dose of immunogen 
[12]. Therefore, despite the cost-effectiveness of in vitro synthesized mRNA vac-
cines and the potential for attaining large-scale manufacturing, the formulation of 
mRNA vaccines for delivery was an obstacle for several decades that has recently been 
overcome [13]. The history of successes and failures in vaccine development against 
infections caused by RNA viruses is elucidated throughout the literature review for 
infections caused by the Ebola virus, SARS-CoV-2, rabies, Zika, HIV, influenza, and 
the respiratory syncytial virus (RSV).

2. SARS-CoV-2 RNA vaccines

Coronaviruses are enveloped and contain between 25 and 32 Kb of non-segmented 
positive-sense RNA. Before the emergence of SARS-CoV-2, coronaviruses caused 
sporadic epidemics around the world [14, 15]. As described in [16], early during 
the COVID-19 outbreak, next-generation sequencing (NGS) of SARS-CoV-2 RNA 
provided valuable data about viral genome, its molecular origin, and a deeper under-
standing of pathogenicity.

As the COVID-19 pandemic spread, the world anxiously anticipated vaccine 
countermeasures [17]. At that time, mRNA vaccine development was the scientific 

Vaccine type Advantages Disadvantages

Nonreplicating or 
non-amplifying mRNA 
vaccines

Non-viral cytosolic delivery with 
biodegradable lipo-particles
Transient translation of mRNA 
improves the safety profile
Large-scale vaccine production
Elicit cell-mediated and humoral 
immune responses
Easy to modify

RNase free conditions is required 
during manufacturing
Low temperature storage is required
Host immune response to exogenous 
mRNA results in inhibition of 
translation
Transient translation might result in 
low amount of antigen production

Self-replicating or 
self-amplifying RNA 
vaccines

Non-viral cytosolic delivery with 
biodegradable lipo-particles
Multiple rounds of replication in the 
cytoplasm (lower doses are needed)
SARNAs are presented by both major 
histocompatibility complexes 1 and 2 
(endogenous adjuvant)
Elicit humoral and functional T cell 
responses against antigen
Easy to modify

More complexed manufacturing is 
required due to two separate RNA 
formulations
Low temperature storage is required
Sensitive to RNases
Elicit innate host immune response 
which may inhibit translation

DNA-based vaccines Good thermostability
Fast internalization into cells via fusion 
mechanism
Efficient transcription of the transgene 
upon nuclear delivery
Non-replicative virus design
Transient episomal transcription from 
newer adenoviral vectors

Complexed manufacturing of viral 
particles
Low success of plasmid-based 
delivery of viral components
Risk of host genome integration and 
promoter-driven expression of host 
oncogenes
Host immune response to the vector 
upon booster

See text for references.

Table 1. 
Advantages and disadvantages of DNA and RNA-based vaccines.
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leader in our fight to end the pandemic. It is nothing short of spectacular heroism 
and scientific acuity that novel, effective mRNA vaccines were developed in less 
than 1 year and awarded emergency use authorization (EUA) in the United States. 
EUA authority allows the Food and Drug Administration (FDA) to approve medical 
products in order to diagnose, treat, or prevent life-threatening diseases during times 
or circumstances when no viable alternatives exist during public health emergencies. 
The Secretary of the US State and Human Services declared the COVID-19 public 
health emergency on January 31, 2020.

The first batch of Moderna’s mRNA-1273 was released for Phase 1 study in the 
United States in February 2020. This vaccine targeted the receptor binding domain of 
the Spike protein subunit and was encapsulated in lipid nanoparticles. The cytosolic 
delivery and temporary presence of mRNA in the cytoplasm improved the safety profile 
of these nucleic acid vaccines. To assess safety, Pfizer and BioNTech launched phases 1 
and 2 clinical trials with the mRNA vaccine during the subsequent months. The pri-
mary goal for the phase 2 trial was to achieve in vivo protein translation and induction 
of humoral immune responses upon intramuscular injection. When phases 1 and 2 were 
successfully completed, the FDA approved phase 3 in conjunction with EUA-authorized 
vaccine use [18, 19]. While perhaps not expected, it was quickly realized that mRNA 
vaccines were neither 100% effective nor 100% safe. Subsequent infections, caused by 
SARS-CoV-2 lineage Omicron, were accompanied by numerous vaccine breakthroughs. 
Fortunately, novel variants have been associated with milder diseases demonstrated by 
lower rates of morbidity and mortality. Investigational findings after showed that the 
anti-SARS-CoV-2 neutralizing antibody titers declined about six months after initial 
vaccination, which supported recommendations for a booster vaccination. Booster 
vaccines, like the initial vaccinations, were neither fully effective nor safe. Adverse reac-
tions reported among vaccinations include myocarditis, thyroiditis, systemic vasculitis, 
and vaccine-associated pulmonary immunopathology [20–22].

Another new type of vaccine known as self-amplifying RNAs (SARNA) has 
recently completed pre-clinical studies [23]. SARNAs are synthetic RNAs capable of 
in vivo self-amplification for 40 to 60 rounds, a feature supported by their delivery 
with an alphavirus replicase gene that encodes an RNA-dependent RNA polymerase 
(RdRP) [24]. SARNA and RdRP can be synthesized as two different amplicons or 
formulated as one cis-amplicon sequence in the lipid nanoparticle cargo. The ability to 
undergo several rounds of replication in vivo makes the SARNA vaccine more cost-
effective than mRNA. However, SARNAs constructs are larger than those of mRNAs, 
and that feature may adversely alter the effectiveness of delivery. This concern is 
currently being addressed in phase 1, open-labeled trial NCT05155982. The study 
design includes 8 arms in which participants are administered 25 to 50 micrograms of 
SARNA-based COVAC-1 vaccine or placebo [25]. Two other SARNA vaccine candi-
dates entered phase 2 clinical trials in the United Kingdom (randomized-controlled 
ISRCTN17072692, and NCT04758962) to assess the safety and measure the titers of 
vaccine-induced serum (IgG type) binding antibody responses to the SARS-CoV-2 S 
glycoprotein [26, 27].

Interestingly, both types of vaccines (mRNA and SARNA) elicited not only 
antigen-specific antibody responses but also antigen-specific T-cell responses, while 
SARNA elicited a stronger response at lower doses in mice [28]. A novel self-ampli-
fying messenger ribonucleic acid (SAmRNA) trial by Gritstone Bio, Inc. is recruiting 
HIV-infected individuals to assess vaccine safety. Vaccines use a codon-optimized cas-
sette covering multiple epitopes from the SARS-CoV-2 spike and non-spike proteins 
and additional T cell epitopes (NCT05435027) [29].
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In lieu of fast changes in SARS-CoV-2 lineages, a variety of RNA vaccine refor-
mulations may be needed to maintain emergency preparedness for future responses. 
A new development has recently been announced: the FDA granted emergency 
use authorizations (EUAs) to new formulations of both Pfizer-BioNTech and the 
Moderna COVID-19 vaccines. Authorized bivalent formulas, so-called “updated 
boosters” now contain two mRNA components of SARS-CoV-2 virus: the first is 
the originally approved (against lineage A of SARS-CoV-2); the second is common 
between the BA.4 and BA.5 lineages of the Omicron variant of SARS-CoV-2 [30]. 
Ongoing genomic surveillance of SARS-CoV-2 variants of concern allows real-time 
detection of immune escape mutations and prediction of vaccine breakthroughs [16].

3. Vaccines against human immunodeficiency virus infection

Human Immunodeficiency Virus (HIV) continues to present a serious global 
health threat since it made its appearance as a human-to-human transmitted patho-
gen, causing acquired immunodeficiency syndrome (AIDS) [31]. HIV1 and HIV2 
are single-stranded positive-sense RNA retroviruses that are subdivided into several 
distinct classes [16]. HIV vaccine designs appeared to be the most challenging among 
other RNA viruses, due to frequent mutations, integration into the human genome, 
and a long latency phase [16].

There were more than two dozen HIV clinical trials conducted since early the 
1990s that tested plasmid DNA-based protein vaccines as prophylactic or therapeutic 
types. These clinical trials were successful in phases 1 and 2; however, they were 
stopped in mid-phase 3 for futility by Data Safety Monitoring Board (DSMB) [32]. 
DSMB data analysis study did not find a statistically significant decrease in the 
number of HIV infections in the vaccine compared to placebo groups [33]. It was 
determined that the elicitation of humoral immune response was not robust enough 
to prevent infection or stop the progression of AIDS [34].

Numerous recombinant DNA-based vaccines were tested against several immuno-
genic epitopes (e.g., HIV protease, gag, env, gp120/140, or reverse transcriptase pro-
teins) [35–37]. Various routes of administration (mucosal, intradermal, intravenous, 
and intramuscular) were also tested [33], and intramuscular injections were found to 
be the most efficacious. Recombinant DNA-based HIV vaccines generated only mod-
est HIV-specific T cell and humoral responses, and that was insufficient for protection 
[38, 39]. Research studies on therapeutic vaccines continue to be performed. The 
randomized, double-blind, placebo-controlled dose escalation trimer-4571 vaccine 
(against HIV envelope protein) in combination with alum adjuvant has been the most 
widely reviewed study [40].

Ongoing challenges in HIV vaccine development include frequent HIV virus 
mutations that can lead to a glycan shield that covers HIV immunogens prompting 
Scripps Research Institute and Moderna’s team to design a trimeric mRNA vaccine 
against HIV/AIDS (NCT05217641). The study focuses on recruiting participants 
who will be immunized with various doses of a modified trimeric vaccine composed 
of mRNA against glycan shields, CD4KO, and gp151 [41, 42]. Another phase 1 trial 
(NCT05001373) evaluates the safety and immunogenicity of two mRNA vaccine 
types after intraperitoneal administration. That trial aims to detect antigen-specific 
epitopes on CD4+ T cells and B cells in peripheral blood and in the germinal centers 
of secondary lymphoid organs [43]. Both mRNA trials are designed to induce Broadly 
Neutralizing Antibodies (BNAbs) in HIV-uninfected adult participants [44].
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Different studies’ interpretations differ in opinion with respect to the benefits and 
ability of HIV vaccines in activating endogenous single/double-stranded RNA sensing 
molecular machinery [45, 46]. It has been shown that in patients with advanced HIV 
infection, the immune system functions in absence of a sufficient amount of cytokine 
interferon-gamma (IFNG), and the innate immune branch often exhibits exagger-
ated responses to antigenic stimulation [47, 48]. Clinically, such responses are seen in 
the form of immune reconstitution inflammatory syndrome (IRIS) toward persistent 
antigens from previously treated opportunistic infections [49, 50]. Because they are 
not specific, vaccines can cause exaggerated systemic innate immune responses that 
lead to adverse events in immunocompromised individuals through activation and 
overexpression of TLR 3,7,8 OAS1–11, MDA1–5, IRFs, IFI, type 1 interferon genes, and 
the components of the inflammasome [49–52]. Adequate levels of interferon-gamma 
are necessary to establish appropriate virus-specific cytotoxic lymphocyte responses 
after therapeutic vaccination [53, 54]. IFNG is primarily produced by mature CD4+ T 
helper cells, which demonstrates low counts in immunocompromised individuals [55]. 
Therefore, the response to vaccines that are supplemented with adjuvants can be unpre-
dictable [55]. The NCT04177355 trial evaluates the safety and immunogenicity of the 
HIV1BG505SOSIP.664gp140 vaccine in healthy HIV-uninfected adults [56]. This vac-
cine is formulated in combination with TLR-7/8 agonists and alum adjuvant (inflamma-
some activator). Yet, the safety of the vaccine/agonist/adjuvant combinations is needed 
to be assessed in HIV-infected populations to demonstrate clinical utility.

The major disadvantage of in vitro-transcribed mRNA vaccines is the unstable 
nature of mRNA molecules which often leads to their degradation by intracellular 
enzymes ribonucleases (i.e., RNases) [57]. mRNA synthesized by in vitro preparations 
can generate a small percentage of double-stranded RNAs that trigger activation of 
pathogen-associated molecular pathways through induction of interferon response 
genes [11]. The end result is enhanced mRNA degradation and a decrease in antigen 
production [58]. This is the main reason why formulations that used naked mRNA 
were unsuccessful [55]. Additionally, the poor thermal stability of mRNA vaccines 
requires product refrigeration. Those logistical constraints can present with problems 
during the distribution of the product in resource-limited settings (Table 1).

Perhaps the vaccine formulation for prophylactic and therapeutic vaccination should 
be different as the goal of the latter is to prevent the infection via various routes, and the 
former is to control localized viral replication. Researchers remain hopeful that novel 
self-amplifying vaccine formulations will lead to effective mosaic anti-HIV vaccines 
that completely interrupt HIV transmission and prevent subsequent infection [11].

4. Influenza vaccines

Influenza viruses are negative-sense, enveloped, segmented single-stranded RNA 
viruses that are encapsidated by nucleoproteins [59]. Several approved influenza 
vaccines were developed through recombinant DNA technology. These vaccines are 
reformulated annually based on predicted hemagglutinin (HA) and neuraminidase 
(NA) gene mutations (drifts and shifts). Constructs are delivered with baculovirus 
vector into host cells and recombinant HA protein is manufactured as a vaccine [60]. 
Influenza type A HA is subdivided into heterosubtypic groups 1–18, and influenza 
B - into 9. Several vaccines from four main biopharmaceutical companies are cleared 
by FDA: Fluad Quadrivalent and Flucelvax Quadrivalent are inactivated vaccines 
(Seqirus), Fluarix Quadrivalent is also inactivated vaccine (GlaxoSmithKline 
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Biologicals), and Flublok Quadrivalent is a recombinant influenza vaccine (Protein 
Sciences Corporation).

Many more vaccines are in clinical trials measuring primary outcomes as the 
humoral immune protection against surface viral proteins of seasonal avian influenza 
strains/subtypes/groups [61].

Pre-clinical trials in 2009 tested DNA plasmid carriers that contained genes that 
express viral antigens [62]. The poor success of those DNA-based vaccines may have 
been due to inefficient delivery of nucleic acids to cell nuclei and subsequent failure of 
DNA amplification in those target cells. Replication-competent and non-replicating 
adenoviral vectors offered improved delivery platform for influenza vaccines and 
achievement of systemic and mucosal immunity [63, 64]. As for mRNA and self-
replicating RNA vaccines, they are delivered into the cytoplasm of cells but do not 
require nuclear translocation [65]. When formulated into lipid nanoparticles, RNA 
vaccines are efficiently delivered into the cytoplasm.

The first human clinical influenza mRNA-based trial employed a non-chemically 
modified mRNA construct, where the intent was to induce antibody titers against 
multivalent targets of four different influenza strains [66]. ModernaTX, Inc. is in 
recruitment of participants to evaluate modified mRNA-1647 to assess sero-responses 
in comparison to adjuvanted inactivated, quadrivalent seasonal influenza vaccine [67]. 
Subsequent vaccine goals include the development of multiplexed vaccine candidates 
into one dose of SARS-CoV-2, respiratory syncytial virus, or other formulations. Pfizer 
led a clinical research study of six SARNAs preparations of hemagglutinin antigens 
that were designed against four influenza strains. The proportion of participants 
achieving hemagglutination inhibition titers for each strain had been measured in the 
context of secondary outcomes [68]. It remains to be established if RNA vaccines will 
provide long-term protection with an established frequency of booster administration.

The global initiative on sharing all influenza data (GISAID) established the first 
repository of shared influenza sequences in 2006. GISAID has been instrumental for 
WHO and National Influenza Centers in providing bi-annual recommendations on 
strain selection for influenza vaccines [69]. Moreover, GISAID provides bioinformat-
ics workspaces like FluSurver to allow scientists to perform assessments of the posi-
tions of novel mutations, changes in antigenic properties or glycosylation, and even 
predict viral susceptibility to drugs [70]. The geographical assessment of currently 
circulating strains can be visualized, as well as the phylogeny of current clades and the 
molecular clock of viral evolution (Figure 1a, b) [70]. For present strains of epidemi-
ological importance, the frequency projections of currently circulating A/H3N2 clades 
are calculated from a fitness model based on the current frequency and estimated 
fitness [71]. The strain fitness is estimated by a combination of antigenic novelty and 
mutational load. Antigenic novelty is based on inferred measurements of antigenic 
advance from hemagglutination inhibition assay [71]. Mutational load is calculated 
by the number of amino acid mutations each strain carries at putative non-epitope 
sites relative to its most recent ancestor from the previous season (see Figure 1 and 
pull down menus under Black “X” in: https://www.gisaid.org/epiflu-applications/
influenza-genomic-epidemiology/).

a. Real-time tracking of influenza A/H1N1 evolution.

Top left: Rectangular phylogenetic tree of influenza A/H1N1 shows color-coded 
clades (by genotype). The black line represents linear regression of divergence. 
Black X represents an interactive drop-down menu with information about the date, 
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specific nucleotides changes, amino acid changes, calculated divergence score, and 
potential vaccine selection. Top right: geographical distribution of A/H1N1 clades.

Bottom: Molecular clock representation of clades divergence since 2013, with an 
estimated rate of 3.7x10−3 substitutions per site per year.

b. Real-time tracking of influenza A/H3N2 evolution.

Top left: Rectangular phylogenetic tree of influenza A/H3N2 shows color-coded 
clades (by genotype). The black line represents linear regression of divergence. Black 
X represents interactive drop-down menu with information about the date, specific 
nucleotides changes, amino acid changes, calculated divergence score, and potential 
vaccine selection. Top right: geographical distribution of A/H3N2 clades.

Bottom: Molecular clock representation of clades divergence since 2013, with an 
estimated rate of 4.06x10−3 substitutions per site per year.

As more and more public health laboratories upload the sequencing results to 
GISAID, the global real-time tracking of influenza became possible. As a result, RNA 
vaccines can be re-designed just in a few days, and produced in just a few weeks.
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5. Respiratory syncytial virus vaccines

The human respiratory syncytial virus (RSV) is a negative-strand RNA,  
enveloped, non-segmented virus of the order Mononegavirales, genus Pneumovirus 
and family Paramyxoviridae [72]. The human respiratory syncytial virus rep-
resents a significant public health burden in two main populations that includes 
young children and older adults. Previously, only passive immuno-prophylaxis 
with neutralizing antibodies was considered minimally protective against severe 
disease. The RSV-live attenuated vaccines did not prevent subsequent RSV disease 
[73]. Moreover, whole-virus inactivated vaccines were associated with enhanced 

Figure 1. 
Visualization of influenza phylogeny, geographical distribution, and divergence of clades.
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respiratory disease in the lungs, presenting with monocytic eosinophilic pulmonary 
inflammation on histologic evaluation [74].

Despite the diversity of antigens, human RSV infection produces some serotypes 
that can be divided into two antigenic subgroups, with the RSV A being more diverse 
than B subgroup [75]. Elucidation of the atomic structure in conjunction with the 
identification of the fusion (F) glycoprotein was of critical importance for vaccine 
development and clinical trials. Unfortunately, these protein vaccines did not meet 
clinical expectations in robustness for preventing subsequent disease progression 
[76]. The development of a new generation of RSV-F protein, stabilized in the 
perfusion conformation, allowed GlaxoSmithKline and Medimmune to launch four 
phase-3 clinical trials testing pregnant mothers and infants [77]. Within 6 months 
after immunization, these vaccines were found to be protective against severe lower 
respiratory tract infections in infants and mothers [77].

An RSV-targeting recombinant virus-like particle vaccine trial (NCT04519073) 
conducted in Belgium demonstrated promising preliminary results of increased 
titers of micro-neutralizing antibodies against RSV A and B [78]. Additionally, 
a Phase 3 randomized, observer-blinded study evaluated the safety, tolerability, 
and immunogenicity of the mRNA-1345 (RSVictory) vaccine targeting RSV 
(NCT05127434) [79]. The vaccine was successfully tested in adults ≥50 years of age 
when administered alone or when co-administered with inactivated quadrivalent 
influenza vaccine (Afluria®) [80]). Outcome data will evaluate the percent of 
participants with sero-responses, who are defined by a ≥ 4-fold increase in RSV-A 
neutralizing antibody titer between one and six months after vaccination. This 
study has been conducted by ModernaTM, and the main outcome goal is to achieve 
long-term immunity to both infections. These vaccines are yet to show reliable 
prophylactic and therapeutic efficacy.

6.  Combination vaccines against parainfluenza type 3 virus (PIV3)  
and human Metapneumovirus (HMPV)

Like RSV, PIV is also a negative-strand RNA virus from the Paramyxoviridae 
family and Paramyxovirinae subfamily. Bi-directional high-throughput RNA 
sequencing technology elucidated several types of parainfluenzas (1–5), with PIV3 
as most predominant [81]. Another, more recently identified member of the order 
Mononegavirales, family Paramyxoviridae, subfamily Pneumovirinae is a human 
metapneumovirus (HMPV) [82]. HMPV became a part of infectious disease genomic 
surveillance after development of whole-genome tiled amplicon sequencing technol-
ogy. This methodology allowed the identification of two major phylogenetic subtypes 
of HMPV, each containing two sublineages (A1, A2, B1, B2) [83, 84]. The use of this 
new knowledge in vaccine manufacturing led to multi-viral vaccine research and 
development.

Human subfamilies (Paramyxovirinae and Pneumovirinae) are known to cause 
hospital-acquired infections, infections in young and elderly adults, and pneumonia 
in immunocompromised individuals [85]. Antiviral medication or vaccinations 
against these globally spread viral infections, including multiple re-infections that 
occur throughout life, did not exist until recently. Two clinical trials conducted 
by Moderna TX are recruiting participants to assess the safety, reactogenicity, and 
Immunogenicity of the mRNA-1653 vaccine. This is a combined design against PIV 
and HMPV, which will be tested in healthy adults (NCT03392389) and children 12 
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to 59 months of age (NCT04144348) [86, 87]. If these trials are successful, other 
Paramyxoviridae infections can be targeted with the same polyvalent vaccine design.

7. Chikungunya and dengue viruses’ vaccine trials

Chikungunya, Dengue, and Zika viruses are transmitted by mosquitos of the Aedes 
genus. These infections had little attention in Western World prior to travel-related 
epidemics spreading from tropical countries of equatorial Africa, South America, 
India, or the Polynesian region.

The mosquito-borne Chikungunya fever is caused by RNA arbovirus that belongs 
to the alphavirus genus of the family Togaviridae. Patients usually present with rela-
tively mild disease; however, debilitating chronic arthritis has been reported in some 
patients who recover from the infection [88].

Phase 1 and 2 clinical trials of Chikungunya virus-like recombinant protein vac-
cines (aluminum hydroxide-adjuvanted) have been completed [89–91]. One study, 
conducted by Emergent BioSolutions (PXVX0317) reported promising results related 
to satisfactory safety outcomes and sufficient neutralizing antibody titer responses 
(NCT0348369; NCT03992872) [92]. Phase 3 was initiated in August 2022, and the 
focus was to test PXVX031 in adults ≥65 years of age [93].

DNA-based vaccines have been designed and tested (based on mumps and rubella 
viral vectors), but those vaccines failed to demonstrate long-term immunogenicity 
[94]. Two years before the COVID-19 pandemic, Moderna launched the first Phase 
1 trial of the mRNA-1388 vaccine and subsequently the second trial of mRNA-1944 
[95, 96]. Although these trials were interrupted by the COVID-19 pandemic, prelimi-
nary results showed favorable tolerability of mRNAs in healthy volunteers. mRNA-
1388 is a prophylactic vaccine that consists of a single mRNA encoding the full native 
structural polyprotein (C-E3-E2-6k-E1 peptides). This polyprotein is naturally 
processed into C and E structural viral proteins that assemble into viral-like particles 
before being released from cells [97]. mRNA-1944 encodes the heavy and light 
chains of the Chikungunya antibody formulated in proprietary lipid nanoparticles 
and can be used as biotherapeutics [97]. More information about these vaccines and 
trial designs can be found in the archives of the United States Security and Exchange 
Commission reports [97].

Sequencing of the full 10 kB Chikungunya virus genome is important for epi-
demiological investigation and genomic surveillance; however, few Public Health 
Laboratories are pursuing these investigations [98]. Understanding genetic diversity 
and rates of de novo mutations will allow estimates of higher and lower fitness of cir-
culating variants (those that have sufficient fitness to cause epidemics and those that 
can be naturally purified during transmission bottlenecks) [98, 99]. Similar analogies 
can be made with the 10.7-kB ribonucleic acid virus Dengue. The incidence of Dengue 
disease is increasing globally and is attributed to the exportation of the disease from 
tropical countries via tourism and inefficient mosquito controls. Significant concerns 
about the spread of this emerging disease, as well as potential solutions are elucidated 
in comprehensive reviews on dengue vaccine development [100–103]. The develop-
ment of effective vaccines and mandatory vaccination of international travelers has 
already proven to be the most effective way in preventing the transmission of vector-
borne diseases like yellow fever [104]. Thus, vaccination certificates may be required 
in the future for travelers as a condition of entry to specific countries, and this would 
facilitate safer international travel.
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8. Zika virus vaccines

Zika is an eleven-kilobases-long single-stranded positive-sense RNA virus. Zika’s 
genome encodes for one open-reading frame, which is translated into 20 functional 
proteins. There are seven nonstructural and 13 structural proteins, including pre-
membrane, envelope, and capsid. Like most flaviviruses, Zika is transmitted by mos-
quitos. Intercontinental travel has facilitated Zika virus spread out of Africa, as well as 
it is being spread from human to human via sexual contact. Pregnancy, in conjunction 
with gestational Zika infection, is strongly associated with microcephaly and other 
congenital abnormalities in newborns. Preventing congenital Zika infections has been 
the subject of vaccine research in animal models [105].

Pre-clinical Zika studies with the modified-nucleoside mRNA vaccines have been 
designed to target the envelope and pre-membrane proteins [106]. Recently initiated 
Moderna’s phase 1 and 2 human clinical trials have shown a near 90% seroconver-
sion rate in adult participants after booster vaccination [107]. Phase 2 of this study 
is expected to be completed in 2024, with the primary outcome measure focusing on 
systemic reactogenicity while reducing adverse events, and achieving measurable 
serum-neutralizing antibodies against Zika virus [108].

Various formulations of SARNA vaccine studies in animal models have been com-
pared with the efficacy of DNA and mRNA vaccines [109]. SARNAs have shown to be 
more effective in smaller doses compared to the other vaccines. One reason is attrib-
uted to the double-stranded SARNA being able to induce innate immune interferon 
type 1/2 responses, which serve as an endogenous adjuvant. This has been proposed 
to eliminate the administration of a second dose that is required for mRNA vaccines. 
In comparison, the second and third exposures to DNA vaccines elicit host immune 
response against the vectors that contain the vaccines’ DNA (Table 1). Conversely, 
this is not known side-effect for mRNA or SARNAs because the majority of those vac-
cines are encapsulated into non-immunogenic neutral or charged lipid nanoparticles 
[110]. Seventy other DNA, RNA, and conventional Zika-vaccine studies are currently 
registered with clinicaltrials.org in the assessment of safety and preliminary efficacy 
(phases 1 and 2). Future studies are required to demonstrate which vaccine could be 
more robust, providing longer-lasting immunity against Zika infection.

9. Rabies virus vaccines

The rabies virus is an RNA virus transmitted through mammalian vectors. The 
genome of the rabies virus encodes 5 proteins (N, P, M, G, and L), and the sequencing 
of the single-stranded RNA genome classified the viral structure within the Lyssavirus 
family. Due to the neurotropic properties of the virus and a lack of effective treatment, 
rabies exposure, if not immediately addressed, is lethal in humans and other mammals 
within three weeks from infection [111]. Furthermore, vaccine portfolios have not sig-
nificantly advanced, and that may be in part due to the endemic and sporadic nature of 
the disease. While DNA vaccines against rabies have been developed, they have proven 
to be poorly immunogenic in humans [112]. Thus, conventional types of inactivated 
rabies virus vaccines (RabAvert, Rabipur, Imovax, etc.) are most common for vaccina-
tion of individuals in specific professions who are at high risk of rabies exposure [111].

mRNA rabies vaccines CureVac and CV7201 entered phase 1 clinical trial in 
order to assess their safety and reactogenicity [113, 114]. These mRNA vaccines also 
encode rabies virus glycoprotein G and have shown promise to be safe and effective 
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as a pre- and early post-exposure prophylactic vaccine for humans (NCT03713086; 
NCT02241135). Several novel self-amplifying RNA (SARNA) have been tested in 
combination with diverse nanoparticle formulations. Preclinical studies of proprietary 
cationic nanoemulsion-formulated glycoprotein G-encoding self-amplifying RNA 
(RG-SAM [CNE]) showed that the vaccine was well tolerated following multiple intra-
muscular injections in animals [112]. The rabies SARNA is a virus glycoprotein G RNA 
that showed promising results in phase 1 clinical studies through protecting neutraliz-
ing antibody responses (IgM and IgG) against viral glycoprotein. SARNA vaccines are 
well tolerated and cause mild side effects comparable to those in conventional vaccines 
trial (GlaxoSmithKline, NCT04062669) [115]. Establishing clinical efficacy is the next 
step for this type of SARNA vaccines, as they hold great promise to become valuable 
pre-exposure prophylactics. SARNA technology offers distinct advantages because 
they are highly amenable to mass- in vitro- transcription in GMP-level facilities.

10. Ebola virus disease vaccines

Ebola is a single-stranded, negative-sense RNA virus that causes the Ebola virus 
disease. Ebola is subdivided into five immunologically different subspecies based on 
surface envelope glycoprotein spikes and the virion proteins of nucleocapsid [116]. 
UCSC Genome Browser and GISAID contain the most comprehensive genomic 
information on Ebola subspecies sequence variations and phylogeography [117, 118].

More than four dozen vaccine trials were initiated after the Ebola outbreak 
of 2014 [119]. At least half of them were DNA-based transgenes, delivered with 
non-replicative viral vectors like Venezuelan equine encephalitis virus, human 
replication-defective adenovirus, recombinant chimpanzee adenovirus type 3, modi-
fied vaccinia strain Ankara, or Kunjin replicon virus-like particle vaccine. The other 
vaccine trials utilized replicative vectors, including human parainfluenza virus type 
3-based vaccine, recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV), 
recombinant rabies virus, or recombinant cytomegalovirus. All of these vaccines were 
designed against envelope spike glycoproteins [120].

The first Ebola vaccine (rVSV-ZEBOV, Merk) was approved in the United States 
in 2019 and had been used in the 2018 Ebola epidemic in the Democratic Republic of 
the Congo as part of clinical trials. Subsequently, it had been used under criteria for 
compassionate use that included children and pregnant women [121]. rVSV-ZEBOV 
showed the ability to generate protective immunity in a form of anti-glycoprotein 
immunoglobulin G antibody titers that lasted at least 2 years of observation [122]. 
Several other DNA-based vaccines are being tested by Inovio Pharmaceuticals via 
routes of prime intramuscular injection with subsequent boost electroporation [123]. 
Electroporation is less invasive; however, it requires a specialized medical device 
to deliver brief electrical pulses during intradermal gene transfer [124]. Challenges 
remain with DNA vaccine platforms. These challenges include immune response to 
viral vectors after booster vaccination, safety concerns about replication-capable viral 
cargo (e.g., human genome integration), and slow optimization of antigen sequences 
to make multivalent vaccines against all sub-strains of the Ebola virus (Table 1).

mRNA vaccines can respond to these challenges quicker because the manu-
facturing process and formulations allow multi-sequence delivery and, therefore, 
avoids safety issues associated with booster immunization. The lipid nanoparticle 
(LNP) encapsulation technology and the design of glycoprotein mRNA with post-
transcriptional modifications have the potential to exhibit durable immune responses 
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in pre-clinical and phase 1 studies [125]. Due to lower doses requirement, and lower 
cost, SARNA vaccines may have a higher potential to rapidly respond to future Ebola 
outbreaks. Like DNA vaccines, SARNAs are stable and can be delivered intradermally 
via electroporation. Non-human primate experiments showed that SARNA induces 
sufficient protective responses against Ebola after a single primed immunization 
[126]. Future expectations are that SARNA vaccines will be successfully delivered 
with electroporation (intradermal) and will not require boost immunization.

11. Future directions

Epidemics caused by genetically recombined or mutated RNA viruses will con-
tinue to evolve and pose health threats locally and globally. Because of this, RNA vac-
cinology will continue to strive to develop new manufacturing processes to improve 
RNA transcript stability by incorporating modified synthetic nucleotides during in 
vitro transcription, optimizing delivery formulations, and adjusting the adjuvants’ 
potency. Additionally, next-generation viral genotyping conducted by CDC and 
Public Health Laboratories will provide real-time pathogen surveillance data for rapid 
modifications and manufacturing of RNA vaccines. Mosaic vaccines against multiple 
viral strains or multi-pathogen vaccines are a goal that needs to be achieved to prevent 
pandemics, epidemics, and endemic infections.
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Chapter 3

Ribozymes as Therapeutic Agents 
against Infectious Diseases
Bao Chi Wong, Umama Shahid and Hock Siew Tan

Abstract

Ribozymes, also known as RNA enzymes, are catalytic RNA molecules capable of 
cleaving specific RNA sequences, leading to decreased expression of targeted genes. 
Recent studies suggest their role in cancer therapeutics, genetic diseases and retroviral 
infections. This book chapter will focus on ribozymes acting as therapeutic agents 
against infectious diseases caused by viral and bacterial pathogens. Firstly, we will 
introduce a brief history of ribozymes and a general overview of ribozymes and their 
characteristics. Next, different types of ribozymes will be explored regarding their 
targets and mechanisms of action. After that, ribozymes specific to viral and bacterial 
infections will be explored. We will briefly discuss the current status of ribozymes as 
therapeutic agents. Finally, the roadblock and challenges ribozymes face before being 
developed into therapeutic agents—such as their delivery and efficacy issues—will be 
discussed.

Keywords: ribozymes, therapeutic agent, antiviral, antibacterial, infectious diseases

1. Introduction

Proteins have always been the undefeated champions in most stories that any 
molecular biologist has to tell. A classic textbook elaborates extensively on these 
molecules, their structures, localisations and functions, followed by an essential 
section on enzymes. The Central Dogma of Molecular Biology states that deoxy-
ribonucleic acid (DNA) precedes protein. DNA encodes important information, 
is converted into ribonucleic acid (RNA) and finally translated into the master 
molecule, protein [1]. So, in principle, proteins cannot exist without nucleic acids. 
However, the precursor here, i.e. DNA, is not even capable of replicating, much less 
forming a protein by itself, because it is found in a double-stranded form and hence 
is functionally inert. Therefore, DNA requires something capable of catalysing these 
reactions. Biologists have tried to explore the players involved in this phenomenon 
for years until a relatively recent discovery of catalytic RNAs by Thomas Cech and 
Sidney Altman proposed a possible explanation [2].

In 1978, Thomas Cech (University of Colorado) and his team decided to study 
RNA splicing, a considerably new field at the time. To explore RNA processing, they 
started working with a ciliated protozoan, Tetrahymena thermophila. Ribosomal 
RNA was chosen owing to its abundant amount in the selected system [3]. The 26S 
rRNA gene in Tetrahymena includes an intron of about 400 nucleotides, which must 
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be removed before the gene product can localise and function as required. However, 
they observed a 9S RNA fragment (approximately 400 nucleotides) in all their 
phenol-based nuclear extractions, leading them to assume the possibility of protein 
contamination in the nuclear extracts, which was responsible for the splicing of this 
intron. Extreme efforts were made to remove/denature the protein that was thought 
to be either contaminant or strongly attached to the RNA molecules. The samples 
were subjected to high salt concentrations and exposed to high temperatures (both 
being something that a protein does not like), but splicing was observed, nonethe-
less. This result hinted that no protein could be present/responsible for the process-
ing. However, this was not enough evidence. Kruger et al. described the cloning of 
the Tetrahymena rRNA gene in the Escherichia coli plasmid, followed by its in vitro 
transcription in their 1982 article [4]. The rRNA thus transcribed was also capable 
of excising the intron itself, proving that it was, in fact, a self-splicing molecule and 
did not require any protein for the processing. In the same year, Cech and his team 
released an article explaining the actual working of rRNA self-splicing where they 
showed that a GTP was required as a co-factor [5]. A detailed mechanism of self-
splicing will be explained later in this chapter.

The discovery of self-splicing RNA molecules raised consciousness in the molecu-
lar biology world. Where one set of researchers dismissed it by calling the finding 
‘not a big deal’, others started investigating the possibility of more reactions that 
were catalysed by RNA. Sidney Altman, Norman Pace and their respective teams 
studied ribonuclease P, an enzyme responsible for tRNA processing. Ribonuclease P 
is an interesting molecule since 80% of its content is RNA, and only 10% is protein. 
Initially, the RNA part of ribonuclease P was considered leftover contamination from 
protein purification with no significance. However, both teams demonstrated that 
reactions could occur without the protein section of ribonuclease P, proving that the 
RNA component catalysed the cleavage [6]. In 1989, Cech and Altman shared a Nobel 
prize in chemistry for demonstrating the catalytic activity of RNA. Many terms were 
coined for these special RNA molecules, now named Ribozymes (Ribonucleic acids 
that act as enzymes). Though not as common in vertebrates, RNA catalysis is now 
known to be widely spread amongst bacteria, viruses, some lower eukaryotes and 
even plants. One is also found in humans [7]. The naturally occurring ribozymes are 
reported to aid in reactions such as Ribosyl 2’-O mediated cleavage [8], RNA cleavage 
and ligation [9], DNA cleavage and ligation [10], etc. In addition, researchers world-
wide are generating artificial ribozymes through combinatorial screening of random 
RNA sequences, which has increased the catalytic repertoire to an even larger range, 
including phosphorylation [11], acyl transfer reaction [12] and an amazing RNA poly-
merase ribozyme capable of polymerising complex RNA structures such as aptamers, 
ribozymes and even tRNA, amongst others [13].

2. General characteristics of ribozymes

Catalytic RNAs, like proteins, form a 3-D structure to be functionally sound 
for catalysis. Metal ions such as K+ or Mg2+ are required for the proper folding of 
ribozymes to recompense for the high negative charge of the oligonucleotides [14]. 
Ribozymes typically contribute to self-targeted reactions (such as self-cleavage, self-
splicing, ligation and template-directed polymerisation) except for one, i.e. RNase 
P (involved in the processing of tRNA) [15]. RNA has a limited range of chemical 
functionalities with just four similar nucleotides as building blocks. Despite this, 
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RNA can catalyse phosphoryl transfer reactions by about a million-fold, if not more 
[16]. Generally, naturally occurring ribozymes catalyse these reactions by attacking 
sugar 2′ or 3′-hydroxyl on a phosphodiester linkage. This nucleophilic attack involves 
activation of the nucleophile, stabilisation of an electronegative transition state and 
stabilisation of the leaving group.

Ribozymes can be categorised into two categories based on their size and whether 
a ribozyme uses its sugar -OH group to target the 3′ phosphodiester bond or requires 
an exogenous nucleophile [15]. The first group is the small ribozymes (approximately 
35–155 nucleotides) that utilise 2′-hydroxyl of an adjacent nucleotide for the nucleo-
philic attack. The second group is the large ribozymes (approximately 200–3000 
nucleotides) that attack using exogenous groups such as water, hydroxyl group from 
a mononucleotide or even a distantly located nucleotide from the same stretch [17]. 
Ribozymes perform phosphoryl transfer reactions using two main mechanisms, 
which are acid-base catalysis (seen in hammerhead, hairpin and glmS ribozymes) 
and metal-ion-assisted catalysis (seen in RNase P, group I, group II introns, HDV 
ribozymes) [17].

2.1 Small self-cleaving ribozymes

In general, small self-cleaving ribozymes act on the same strand, i.e. act in cis 
and hence, have a single catalytic turnover. These classes work on general acid-base 
catalysis. They use adjacent nucleobases or external co-factors as the general base or 
acid. The base takes a proton from the 2′-hydroxyl group, thereby increasing oxygen’s 
nucleophilicity, which can then attack the nearby phosphorous. As a result, a transi-
tion state is formed. On the other hand, 5′-oxygen gets protonated by a general acid 
leading to the release of leaving group and thus the formation of 2′,3′-cyclic phos-
phate and a free 5′-hydroxyl group (Figure 1) [18]. Below are the different classes of 
small self-cleaving ribozymes.

With a size of about 40–50 nucleotides, the hammerhead ribozyme is, by far, 
the most extensively studied. Originally found in plant viroids and satellites, they 
are a widely spread class of self-cleaving RNAs known to catalyse the conversion 

Figure 1. 
Mechanism of catalysis in ribozymes: Ribozymes perform reversible nucleophilic reactions. (A) General Acid-
Base catalysis. The general base (blue) deprotonates the 2′-hydroxyl in the cleavage reaction (or the 5′-hydroxyl 
in the reversed ligation reaction). The general acid (red) donates a proton to the 5′-oxyanion leaving group for 
cleavage (or the 2′oxyanion for ligation). A trigonal bipyramidal phosphorane is formed in the transition state 
(shown in the centre). B) RNA metalloenzymes. Large ribozymes, including RNase P and self-splicing introns, 
catalyse the phosphodiester bond breakdown via metal-ion catalysis. The figure is a representative group I intron 
where three metal ions bind to the transition state to bring about catalysis.
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of their trimeric and dimeric forms into monomeric RNAs [19]. They are made 
up of three helical regions (Stem I, II, III), which are variable and a universally 
conserved junction sequence made up of three single strands (Figure 2) [20]. 
Hammerhead ribozymes cleave after an NUH [21] or NHH [22] triplet, where N 
can be any nucleotide, and H is any nucleotide except guanosine. They utilise N1 
of G12 from stem II in their catalysis as a nucleophile. It forms a hydrogen bond 
with 2′ hydroxyl of C17 [23]. Some studies report that a divalent metal cation helps 
activate G12. Stabilisation of G8 occurs due to its base pairing with G3 [24]. Earlier, 
the 2′-hydroxyl group of G8 was thought to be the acid in this acid-base catalysis. 
However, a recent study reports that Mn2+-bound water is the general acid during 
cleavage [25].

Hairpin ribozymes, like hammerhead ribozymes, are also found in plants’ 
satellite viruses such as the tobacco ringspot (best studied), chicory yellow mottle 
and Arabis mosaic virus also catalyse the self-cleavage of multimeric RNA [26]. They 
comprise four stems that, when aligned, resemble a hairpin (Figure 2). A10 and G11 
and A24 and C25 assemble as a ribose zipper and form a catalytic centre. The general 
base, in this case, is G8 (stem B), and A38 a (stem A) acts as a general acid, respec-
tively. Rigorous in vitro selection of active mutants has shown that hairpin ribozymes 
prefer G at the +1 position of their cleavage site. N*GUY emerged as the best agreed-
upon cleavage site, where N is any nucleotide, G is guanine, U is uracil and Y is any 
pyrimidine [27]. Later studies showed that substrates with G*GUN, G*GGR (R is any 
purine) and U*GUA could also be cleaved but with a considerably lower catalytic 
activity [28]. A crowded environment near the hairpin ribozymes increases their 
activity by stabilising the active conformation [29].

Hepatitis delta virus-like ribozymes are self-cleaving ribozymes present in the 
genomic strand and the complementary/anti-genomic strand found in Hepatitis delta 
virus (HDV) (a single-stranded RNA virus that infects mammalian hepatocytes) 
[30]. These ribozymes also catalyse a transesterification reaction through a nucleo-
philic attack by a 2′ hydroxyl on the adjacent phosphate and result in the formation 
of a 2′–3′ cyclic phosphates and the release of 5′ hydroxyls. Their structure consists 
of five paired regions of helices, which, when coaxially aligned, are stacked over 
each other (P1 over P1.1 and P4; P2 over P3). Single-stranded joining strands link 
these helices. Crystallography reveals that they assume an extremely stable structure 
resembling a double pseudoknot. HDV-like ribozymes cleave at the first guanosine 
residue at the base of the P1 helix [31].

The glucosamine-6-phosphate synthase (glmS) ribozyme is found in several 
Gram-positive bacteria in the 5’ UTR region of the glmS gene [32]. It regulates the 
expression of glutamine-fructose-6-phosphate transaminase and is the only known 
ribozyme which requires glucosamine-6-phosphate (GlcN6P) as a co-factor [33]. 
The glmS ribozyme comprises three parallel helices stacking each other (P1 on P3.1, 
P4 on P4.1 and P2.1). It also forms a core resembling a double pseudoknot. P3 and P4 
are not essential for catalysis. However, they provide structural stability and enhance 
the activity of ribozymes. The P2.2 forms the binding site for GlcN6P, and the cor-
rect folding of P2.2 brings the ribozyme into active conformation [34]. A co-factor is 
required for the protonation of the 5′ oxygen leaving group, activation of the 2′-oxy-
gen nucleophile and charge stabilisation [35].

Largest nucleolytic RNA with a length of ~150 nucleotides, the Varkud Satellite 
(VS) ribozymes are found in certain strains of Neurospora and help in the replication 
of single-stranded RNA [15]. VS ribozymes comprise seven helices (1–7), forming 
a three-way junction (2-3-6, 3-4- and 1-7-2). The inner loops of stem 1 act as their 
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cleavage site, while stems 6 and 1 harbour the catalytic centre [36]. A kissing loop 
forms between GUC in stem 1 and GAC in stem 5 to form an active site, bringing the 
cleavage site to the catalytic centre. The residues A756 and G638 act as the general 
acid and base, respectively. Additionally, Mg2+ is reported to interact with scissile 
phosphate and activate G638 [37].

Hatchet ribozymes are one of the bioinformatically revealed ribozymes, and 
very little is known about them. They comprise four stems (P1–P4). P1 and P2 are 
linked with highly conserved residues, whereas internal loops (L2 and L3) connect 
the other three stems [38]. X-ray crystallography reveals that they appear as pseudo 

Figure 2. 
Consensus secondary structures ribozymes. A, U, G and C represent adenine, uracil, guanine and cytosine. N 
represents any nucleotide. R stands for any purine and Y for any pyrimidine. The black arrows show the cleavage 
site, orange-coded nucleotides represent conserved bases near the cleavage sites, and the solid line shows a variable 
stretch of nucleotides.
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symmetrical RNA and form long-range interactions of conserved residues near 
scissile phosphate. The cleavage site is located at the 5′ end of the P1 stem. N7 of G31 
acts as the general base to deprotonate the 2′-OH of C (−1) for nucleophilic attack. In 
addition, Mg2+ is required for proper folding and catalysis [39].

Twister ribozymes are widely spread among many species of bacteria and 
eukaryotes [40]. They are made up of five stems (P1–P5) and internal loops held 
together by two pseudoknots. Twister ribozymes cleave folding-dependently, where 
central pseudoknot opens and closes at variable Mg2+ concentration [41]. These 
cations help position the phosphate oxygen at the U-A cleavage site and stabilise the 
transition stage to form an intermediate. Guanine is a conserved residue at the cleav-
age site. It acts as a general base in the general acid-base catalysis, whereas an adenine 
residue plays as the general acid. The active site comprises at least 10 conserved 
nucleotides, harbouring scissile phosphate between A and U joining P1 [42].

Twister sister ribozymes are highly similar to twister ribozymes in sequence and 
secondary structure. The only difference is that they do not have a double pseudoknot 
interaction. Long-range interactions that bring conserved nucleotides closer to the 
core are mediated by Mg2+ cations [43]. C62 and A63 flank the cleavage site on the 
internal loop between P1 and P2. Hydrogen bonds (N1H of G5, inner-sphere water of 
Mg2+ and phosphate oxygen) keep the scissile phosphate in its place [44]. The sub-
strate specificity of these ribozymes has not been studied in detail yet.

Pistol ribozymes were discovered bioinformatically through comparative 
genomic analysis to search hammerhead and twister ribozymes-related sequences. 
Pistol ribozymes consist of three helical stems (P1–P3) connected by three loops 
(loops 1–3) and one pseudoknot. P1 and pseudoknot form a stacked structure [45]. N1 
of G40 acts as a general base, and A32 acts as a general acid. Crystallography shows 
that Mg2+ cations have a significant role in catalysis. All information on this ribozyme 
is limited; some studies suggest that residues at positions 32 and 40 might affect the 
substrate specificity [46].

Hovlinc ribozymes are a recently discovered class of ribozymes that came up in 
a genome-wide search of human catalytic RNAs [47]. Although very little is known 
about hovlinc ribozymes, structure analysis shows that their catalytic core comprises 
two stem loops and two pseudoknots. They are pH-dependent and require divalent 
cations where their activity was shown to be highest in the presence of Mn2+ (Mn2+ > 
Mg2+ > Ca2+) [48]. Further studies will be required to properly reveal its characteristic 
folding, cleavage site, catalytic centre and functioning.

2.2 Large ribozymes

These are often called ‘true catalysts’ because they can act on a substrate in a trans 
manner and thus have a catalytic turnover. In contrast to the small self-cleaving ribo-
zymes, large catalytic RNAs act as metalloenzymes [7]. Metal ions are usually found 
in the active sites of these ribozymes and form inner-sphere complexes with oxygen 
atoms of the RNA (Figure 1).

Introns are intervening noncoding regions between a gene’s exon (coding regions). 
When a gene is transcribed, the pre-RNA thus formed undergoes removal, i.e. 
splicing all the introns to obtain mature RNA [49]. Naturally found in bacteria and 
bacteriophages, nuclear rRNA genes and chloroplast DNA, Group I introns are self-
splicing in nature and can excise themselves without a protein enzyme [50]. These can 
migrate and insert themselves at different positions of the host genome, thus acting 
as mobile genetic elements [51]. Although widespread, the group I ribozymes have 
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very less sequence similarity. However, they all can fold into a conserved secondary 
structure with 10 paired segments (P1–P10). The catalytic core comprises P3, P4, P6 
and P7 [9]. The intron is spliced from the pre-RNA by a two-step transesterification 
reaction. First, 3′ hydroxyl makes a nucleophilic attack on a guanosine co-factor at the 
5′ splice site. The exon-intron phosphodiester bond is cleaved, and guanosine forms 
a 3′,5′-phosphodiester bond at the 5′ ends of the intron. Finally, a nucleophilic attack 
of now free 3′ hydroxyl of the 5′ at the 3′ splice site to form the ligated exons results 
in the release of an intron with the nonencoded guanosine. The intron is circularised 
by making a nucleophilic attack with its highly conserved 3′ terminal guanosine at a 
phosphodiester bond of C-15 or C-19. Each step is fully reversible and follows the SN2 
reaction mechanism [52].

The self-splicing group II introns are widespread amongst the mRNA, tRNA 
and rRNA genes of plant and fungal mitochondria and chloroplasts (including 
algae and protists) [51]. The secondary structure of Group II introns was initially 
revealed via computational modelling and phylogenetic comparisons. They are 
composed of six helices (I–VI) radiating from a centrally located wheel [53]. Out of 
the six helical domains present, only I and V are crucial for their activity. Domain 
V, the most variable region, harbours the active site. A conserved Adenosine residue 
is present in the domain, which initiates the splicing reaction. 2′-Hydroxyl of 
adenosine performs the nucleophilic attack and forms a structure known as a lariat, 
which contains 3′–5′ and 2′–5′ phosphodiester bonds at the adenosine branch site. 
Following this, free 3′-hydroxyl of 5′ exon makes a nucleophilic attack at the 3′ 
splice site resulting in ligated exons and spliced out intron (as a lariat). Though not 
common, a nucleophilic attack may sometimes be initiated by water, resulting in a 
linear intron [54].

RNase P is a widespread enzyme processing tRNA precursors [55]. It is known 
to exist in a ribonucleoprotein complex consisting of about 350–400 nucleotide long 
RNA stretch and about 14kDa of small protein subunit [56]. Though protein moiety 
is important for catalysis in vivo, the RNA component is enough in vitro. The reaction 
occurs at a high salt concentration, and protein was assumed to promote RNA enzyme 
and substrate interaction. However, studies have shown that the protein component 
of RNase P plays a significant role in site specificity and turnover [57]. No high 
sequence conservation is observed in RNase P across different organisms. However, 
they all can fold into a similar secondary structure [56]. RNase P from E. coli M1 RNA 
consists of 18 paired helices, but RNase P from Bacillus subtilis lacks P6, P13, P14, P16 
and P17 but contains a few extra helices (P5.1, P10.1, P15.1 and P19). Despite these 
differences, comparative analyses of RNase P secondary structure have deduced a 
catalytic core composed of P1–P5, P7–12 and P15. This ribozyme uses water to make a 
nucleophilic attack [58].

In eukaryotic cells, intron removal occurs through a ribonucleoprotein complex 
called spliceosomes. These complexes are not preformed; five RNAs and about 100 
proteins assemble directly into a spliceosome on their substrate [59]. Splicing events 
can be divided into four main reaction steps: assembly, activation, catalysis and 
disassembly [60, 61]. The catalytic centre of spliceosomes highly resembles Group II 
introns, and even the splicing mechanism is quite like the latter [62].

The ribosome is a protein translating machinery formed by 30S and 50S subunits 
in bacteria and 40S and 60S subunits in eukaryotes, respectively [63]. The larger 
subunit contains the peptidyl transferase centre (PTC), which forms peptides by join-
ing amino acids. X-ray crystallography and electron microscopy have elucidated two 
main reactions involved in protein synthesis: aminolysis to form peptide bonds and 
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peptidyl hydrolysis to release protein after synthesis. The catalysis does not occur via 
nucleobase-mediated catalysis, rather is mediated by 2′-hydroxyl of tRNA [64]. Both 
these reactions occur in the PTC, known to be made completely of RNA [65].

3. Ribozymes as antiviral and antibacterial infection alternatives

The potential of ribozymes as therapeutic agents has been explored from other 
perspectives, including cancer and inherited diseases. Ribozymes downregulate  
the expression of the target gene(s) through the cleavage of mRNA transcripts. If the 
expression of a gene could lead to pathogenesis, then the downregulation of that gene 
expression via ribozymes can be performed as a therapeutic option. Previous studies 
have selected a few important genes responsible for viral replication as targets. By 
decreasing the viral replication, the application of ribozymes will inevitably treat the 
viral infection.

Multiple viruses have been used as targets in antiviral ribozyme research, includ-
ing the human immunodeficiency virus (HIV), herpes simplex virus (HSV) and 
human cytomegalovirus. Different types of ribozymes were used, demonstrating 
their potential to be used as therapeutic agents in both in vitro and in vivo conditions 
(Table 1). There are different strategies for studying the efficiency of antiviral ribo-
zymes. If a target gene is shortlisted and the cleavage site is determined, the ribozyme 
can be designed rationally. If the cleavage site is undetermined, the potential target 
cleavage site can be screened to discover any region exposed to the ribozyme for easy 
binding. Another method is to use a library of ribozymes to find any ribozymes with 

Target Ribozyme Design Delivery References

Herpes simplex virus (HSV)

Thymidine kinase RNase P In vitro 
selection

Endogenous—Retrovirus [66]

Infected-cell 
polypeptide 4 (ICP4)

RNase P 
(M1GS)

In vitro 
selection

Endogenous—Retrovirus [67]

Latency-associated 
transcript (LAT)

Hammerhead Rational 
design

Endogenous—Adenovirus [68]

Human cytomegalovirus

Capsid assembly 
protein (AP) and 
protease (PR)

RNase P 
(M1GS)

Rational 
design

Endogenous—Retrovirus [69]

Assembly protein 
(mAP) and M80

RNase P 
(M1GS)

Rational 
design

Endogenous—Retrovirus 
(in vitro); hydrodynamic 
transfection (murine)

[70]

M80.5 and protease RNase P 
(M1GS)

Rational 
design

Endogenous—Salmonella [71]

Immediate early 
proteins 1 and 2

RNase P Screening 
of target 
sites

Endogenous—Retrovirus [72]

Assemblin (AS) RNase P 
(M1GS)

In vitro 
selection

Endogenous—Retrovirus 
(in vitro); hydrodynamic 
transfection (murine)

[73]
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high binding or cleavage activity towards the target virus. Finally, two main delivery 
methods exist for introducing ribozymes into the system. While some studies propose 
the potential of ribozymes as therapeutic agents for viral infections, there is still a 
distinct lack of ribozymes that successfully passed their pre-clinical or clinical trials.

To our best knowledge, there are currently no studies on using ribozymes to cleave 
specific target genes in bacteria to treat bacterial infections. Instead, Felletti et al. [85] 
successfully cleaved the bacterial 3′-untranslated region (UTR) using twister ribo-
zymes, affecting the expression of the gene downstream. By designing the ribozymes 
specific to the 3′-UTR of essential bacterial genes, these ribozymes have potential as 
antibacterial agents.

Target Ribozyme Design Delivery References

Human immunodeficiency virus 1 (HIV-1)

Vpr and tat region Hammerhead Rational 
design

Endogenous—Retrovirus [74]

Glycoprotein (gp41) Hammerhead Rational 
design

Exogenous [75]

Tat region RNase P In vitro 
selection

Endogenous—Retrovirus [76]

Glycoprotein (gp41) Hammerhead Rational 
design

Endogenous—Plasmid [77]

Influenza A virus

Conserved regions 
of Influenza A virus 
mRNA

Hepatitis 
delta virus 
ribozyme

Rational 
design

Endogenous—Plasmid [78]

Conserved RNA 
secondary structure 
motifs

Hammerhead Rational 
design

Endogenous—Plasmid [79]

Sindbis virus

Within the 26S 
subgenomic RNA

Hairpin Rational 
design

Endogenous—Plasmid [80]

Genomic RNA Hairpin Screening 
of target 
sites

Endogenous—Plasmid [81]

Chikungunya virus

Conserved genomic 
sequences among 100 
strains

Hammerhead Rational 
design

Endogenous—Retrovirus 
(in vitro); piggyBac vector 
(mosquito)

[82]

Hepatitis C virus

5′ UTR of HCV 
genome

M1GS 
ribozyme

Rational 
design

Exogenous [83]

SARS virus and mouse hepatitis virus (MHV)

SARS and MHV 
consensus sequences

Chimeric 
DNA-RNA 
hammerhead

Rational 
design

Exogenous [84]

Table 1. 
Examples of antiviral ribozymes.
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4. Current status of ribozymes

As of 2022, only four clinical trials are registered on ClinicalTrials.gov for using 
ribozymes as therapeutic agents (Table 2). Among these four, three clinical trials are 
targeted towards human immunodeficiency virus (HIV), while the other ribozyme is 
targeted towards kidney cancer.

Two clinical trials were conducted for OZ1, a ribozyme designed to target the 
overlapping region between two essential genes. The multifunctional viral protein R 
(vpr) is involved in host infection, immune system evasion and infection persistence 
[86]. The tat protein is also involved in viral replication, enhancing the efficiency of 
viral expression [87]. The ribozyme OZ1 is a hammerhead ribozyme encoded within 
a Moloney murine leukaemia gammaretroviral vector LNL6 [74]. By cleaving the 
overlapping region in the vpr and tat gene, the ribozyme could inhibit the replica-
tion of HIV-1. A phase I clinical trial was conducted by delivering the OZ1 ribozyme 
through a retroviral vector to the mature CD34+ hematopoietic cells [74]. It was 
determined that the gene expression of ribozyme was detected within the patients, 
demonstrating that the ribozyme OZ1 can be maintained. Another Phase I study was 
done using a similar delivery vector to CD4+ T lymphocytes, demonstrating similar 
results whereby the cells can express the ribozyme long term [88]. A Phase II clini-
cal trial (NCT00074997) was conducted with OZ1 ribozymes targeting the CD34+ 
hematopoietic cells. They did not achieve their primary efficacy endpoint as the mean 

Title of clinical trial Ribozyme Target gene Disease NCT number Time

An Efficacy and Safety 
Study of Autologous 
Cluster of Differentiation 
34 (CD34+) 
Hematopoietic Progenitor 
Cells Transduced With 
Placebo or an Anti-Human 
Immunodeficiency Virus 
Type 1 (HIV-1) Ribozyme 
(OZ1) in Participants With 
HIV-1 Infection

OZ1 vpr/tat HIV-1 NCT00074997 2002–
2008

Long Term Follow-Up 
Study of Human 
Immunodeficiency 
Virus Type 1 (HIV-1) 
Positive Patients Who 
Have Received OZ1 Gene 
Therapy as Part of a 
Clinical Trial

OZ1 vpr/tat HIV-1 NCT01177059 2004–
2017

Gene Therapy in HIV-
Positive Patients With 
Non-Hodgkin’s Lymphoma

L-TR / Tat-neo Tat, Rev 
mRNA

Non-Hodgkin 
lymphoma, 
HIV 
infections

NCT00002221 2001 
– N/A

RPI.4610 in Treating 
Patients With Metastatic 
Kidney Cancer

ANGIOZYME VEGF-1 Kidney 
cancer

NCT00021021 2001–
2004

Table 2. 
Clinical trials of ribozymes registered on ClinicalTrials.gov. All trials were completed in phase 2 trials.
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plasma HIV-1 viral load difference was lower but not significantly different from the 
placebo. However, no serious adverse events were linked to OZ1 gene transfer, indicat-
ing that using the retroviral vector to perform this gene therapy is safe, albeit with low 
efficacy. A second Phase II clinical trial (NCT01177059) was performed with the same 
group of patients from the previous trials to investigate the long-term effect of the 
ribozymes. There was no serious adverse effect on the participants due to the treat-
ment. The OZ1 and the retroviral vector LNL6 marking analysis showed that they 
were only detected in a few participants. Unfortunately, there are no further studies 
on this ribozyme, perhaps due to its low efficiency in the human system.

Another Phase II clinical trial (NCT00002221) also investigated the usage of 
ribozymes against HIV. In this trial, a retrovirus containing two ribozyme sequences 
named L-TR/Tat-neo that target the tat and rev region of the virus RNA was used. Like 
the tat protein, the rev protein is also essential for viral replication [89]. The ribozymes 
were delivered to the participants of the clinical trials through ex vivo retroviral modi-
fied CD34+ stem cells. However, no results have been provided for this clinical trial.

Finally, RPI.4610 (ANGIOZYME), a ribozyme that targets vascular endothelial 
growth factor receptor 1 (VEGF1) was used to treat patients with metastatic kidney 
cancer. VEGF is an angiogenesis-promoting molecule, and when its preRNA is 
cleaved, it can inhibit angiogenesis and tumour growth [90–92]. Clinical trials with 
ANGIOZYME have demonstrated that it is well tolerated. However, due to its lack of 
efficacy, this drug could not proceed with further development [93].

5. The roadblock to commercialisation

While ribozymes have the potential to be one of the alternatives to treat infectious 
diseases, it cannot be denied that there are still multiple roadblocks before they can be 
developed as marketable drugs. Like other nucleic-acid therapeutics, ribozymes’ chal-
lenges include selecting the appropriate ribozyme type and target mRNA sequence, 
delivery to the target site, efficiency in vivo and potential side effects as therapeutic drugs.

5.1 Selection of target and ribozymes

There is a wide variety of genes to choose from within the target pathogen, be 
it virus or bacteria, which can be used as a ribozyme target. The selection of these 
targets would thus depend on the aim of the ribozyme. An antiviral ribozyme may 
target the mRNA of genes important for viral replication, while an antibacterial 
ribozyme to decrease antibiotic resistance may target antimicrobial resistance genes 
(AMR) instead. More importantly, the cleavage site within the mRNA transcript must 
be carefully determined for the best cleavage efficiency. Designing sequence-specific 
ribozymes can be done through rational design or by in vitro selection.

To design a ribozyme that targets a specific gene, it needs a target-specific 
sequence that leads the ribozyme to the target mRNA transcript and cleaves it. 
Different ribozymes have different target cleavage sites due to their structural variety. 
For instance, hammerhead ribozymes have an NUH or NHH sequence specificity. In 
comparison, hairpin ribozymes catalyse site-specific reversible cleavage on the 5’ side 
of a GUC triplet [94]. Another criterion to consider is the accessibility of the cleavage 
site to the ribozymes. RNAs can fold to specific three-dimensional structures; multi-
ple methods exist to study these structures [95]. One of them is the usage of dimethyl 
sulfate (DMS), a chemical that can covalently modify both purines and pyrimidines 
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that are accessible [96, 97]. Through DMS probing and footprinting, it is possible to 
detect the RNA secondary and even tertiary structure, determine the potential region 
most accessible to DMS modification and presumably ribozyme binding.

On the other hand, Zhang et al. used a random pool of ribozymes to find acces-
sible target sites [81]. As we progress into the post-genomic era, some may look 
towards in-silico analysis and bioinformatics to determine the best cleavage site, 
shortlisting a few for wet lab validation. RiboSoft [98] and RiboSubstrates [99] are 
some web applications that allow a comprehensive ribozyme design. Unfortunately, 
these two websites are not maintained. RNAiFold is another web server used to design 
a hammerhead ribozyme through computational design with experimental valida-
tion, showing that this method can be used for synthetic ribozymes [100].

Other than rational design, another method to obtain specific and efficient ribozymes 
is through an in vitro selection process using a ribozyme library [101]. Multiple studies 
have used this process to identify ribozymes with high cleavage efficiency. A putative 
self-cleaving hairpin ribozyme library was used whereby ribozymes that successfully 
bind and cleave a target sequence were identified [102]. Not only does this method allows 
the identification of effective target sites within the target mRNA, but it can also identify 
the most efficient ribozyme for a particular target site. The in vitro selection was used by 
Maghami et al. [103] to identify efficient trans-acting adenylyl transferase ribozymes that 
can label specific RNA sites. The ribozymes developed can be modified to target other 
RNA sequences by changing the sequence-specific region of the ribozymes. This method 
can be modified to different types of ribozymes and towards different targets.

Finally, it is worth noting that while the discovery of ribozymes is not recent, there 
is still undiscovered land in this field. Firstly, ribozyme variants may provide higher 
efficiency in their catalytic activity, which can be discovered through in vitro selection 
from a random pool of ribozymes. Deep sequencing of a ribozyme library [104] or a 
high-throughput analysis [105] can help elucidate novel ribozymes and their proper-
ties. Secondly, new types of ribozymes are continually being discovered and studied. 
A new RNA polymerase ribozyme discovered can also act as a reverse transcriptase 
enzyme [106]. In contrast, a type of novel ribozyme called hatchet ribozyme was 
reported in 2019 [38], while a pseudoknot-type hammerhead ribozyme was studied in 
2020 [19]. These discoveries demonstrate that new ribozymes with improved poten-
tial still continuously emerge in recent times.

5.2 Stability and delivery of ribozymes

Like most nucleic acids, Ribozymes are vulnerable to nuclease attacks by the host 
cells. An unmodified ribozyme would be rapidly degraded and would not be effec-
tive when exposed to nuclease-rich fluids and tissues. Additionally, some ribozymes 
require co-enzymes or a certain concentration of metal ions for sufficient stability 
and efficiency. For example, the glmS ribozyme-riboswitch requires the presence of 
the intracellular small molecule co-enzyme GlcN6P for effective catalysis [107]. On 
the other hand, divalent metal ions, such as magnesium ions, are generally required 
by ribozymes to form a tertiary structure or catalytic activity [108]. Certain modifica-
tions or delivery vectors are needed to ensure their efficiency in vitro and in vivo.

Ribozymes can be modified to improve their stability and resistance towards 
nucleases. Some modifications include using locked nucleic acids (LNAs) [109], 
cholesterol [83], nanoparticles [110], or low-molecular-weight polyethyleneimine 
[111]. Modifications to the ribozyme tertiary structure or interactions can improve 
their stability. For instance, a tertiary interaction between a GAAA tetraloop and a 
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tetraloop receptor within a hammerhead ribozyme showed higher activity even under 
low magnesium conditions [75]. Another method of modification is to simply con-
duct an in vitro selection to determine which variants of ribozymes can remain effec-
tive. An RNase P ribozyme from in vitro selection showed a higher cleavage efficiency 
than the wild-type ribozyme. This variant was used towards the thymine kinase [66] 
and major transcription activator ICP4 [67] or the herpes simplex virus, as well as the 
assembly (AS) of murine cytomegalovirus [73]. A coenzyme-independent variant 
of glmS ribozyme was also successfully isolated through in vitro selection [112]. This 
variant contains the wild-type structure that can catalyse the cleaving reactions 
effectively with the presence of divalent cations alone. These studies demonstrate that 
it is feasible to develop variants of known ribozymes and modify their requirements 
for co-enzymes or increase their efficiency.

There are two ways to deliver the ribozymes into the cells: exogenous delivery (as 
preformed ribozymes) or endogenous delivery (as ribozyme genes). The preformed 
ribozymes can be delivered through electroporation or lipofection for exogenous 
delivery. A ribozyme stabilised by GAAA tetraloop and its receptor motif was trans-
fected into human HeLa cells using Lipofectamine 2000 and showed effective target 
gene silencing [75]. A chimeric DNA-RNA hammerhead ribozyme was transfected 
using a polyethylenimine reagent into the cells [84]. Due to the vulnerability of 
ribozymes within the biological system, exogenous delivery relies on modifications 
that improve the stability of ribozymes. Other studies utilise endogenous delivery. In 
endogenous delivery, the ribozymes are introduced through ribozyme genes car-
ried within plasmids or expression vectors. These plasmids can then be introduced 
through transfection to the cells, allowing the cells to express the ribozyme within the 
cytoplasm. The ribozymes can then catalyse the intended cleavage reaction within 
the cells [80, 81]. Besides plasmids, the ribozyme genes can be inserted in retroviral-
derived or adeno-associated viral-derived vectors (refer to Table 1: Delivery). 
While unsuccessful, the clinical trials of multiple ribozymes using Moloney murine 
leukaemia virus retroviral vector LNL6 demonstrated its feasibility as delivery agents 
of ribozymes [113]. Endogenous delivery also benefits from modifications aiming 
to improve ribozyme stability. Peng et al. used a novel scaffold RNA to stabilise the 
ribozyme structure, improving its catalytic activities [114]. However, modifications 
performed on the ribozymes require further investigation. Czapik et al. showed that 
modifications such as adding a hairpin motif to the hammerhead ribozyme decreased 
their catalytic activity compared with the unmodified ribozymes [79].

The delivery methods of ribozymes are not limited to these traditional methods. 
Rouge et al. successfully transfected ribozymes into cancer cells without auxiliary 
transfection agents using the spherical nucleic acid (SNA) architecture to stabilise the 
ribozymes [110]. The ribozyme, targeted towards a gene involved in chemotherapeutic 
resistance of solid tumours, increased the sensitisation of the cancer cells towards 
therapy-mediated apoptosis. On the other hand, an attenuated strain of Salmonella 
that contains the expression vector encoding the ribozymes was used to deliver these 
ribozymes to mice [71]. The success of Salmonella-mediated oral delivery of the ribo-
zymes introduced an alternative delivery method other than those mentioned before.

5.3 The efficiency of ribozymes under in vivo conditions

It is easily shown that they can cleave their target mRNA transcripts in vitro 
through the direct cleavage of RNAs or in vitro studies. However, it is not as simple 
to translate these data from in vitro conditions to in vivo. Multiple studies have used 
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animal models to prove the potential therapeutic use of ribozymes, and they have 
successfully demonstrated that in models such as rats and rabbits. Nevertheless, there 
are still some challenges before the ribozymes can be used in the human body.

Ribozymes, like all enzymes, also require co-factors for their optimal function. 
One crucial co-factor is the divalent ions, such as magnesium ions. Mainly, these ions 
are required for the ribozymes to achieve the correct folding of the active site and 
their tertiary structures [108]. However, the requirements differ between ribozymes. 
For instance, magnesium is essential for the catalysis activity of hammerhead ribo-
zymes, but hairpin ribozymes do not require magnesium [77, 115].

Further research into the effects of ion concentration on the catalytic core or 
structure of the ribozymes allowed specific modifications to be made. A section of the 
ribozyme responsible for substrate-binding and tertiary stabilisation functions can be 
separated into discrete structural segments to ensure that trans-cleaving hammerhead 
ribozymes can be used in intracellular applications [116]. This separation provided 
the resulting ribozymes with an efficient catalytic activity at lower magnesium ion 
concentration. Additionally, with careful selection, ribozymes may be evolved to 
require a lower concentration of metal ions for their efficient activity in vitro and in 
vivo [117].

Finally, the efficiency of the ribozymes to cleave their targets within the in vivo 
system is also a key to the success of ribozymes as antiviral or antibacterial thera-
peutic agents. As mentioned previously, the ribozyme ANGIOZYME, while showing 
promising results in pre-clinical trial studies, did not manage to proceed further than 
Phase 2 clinical trials due to their lack of efficiency in the patients [93]. Other studies 
have also highlighted the difficulty in translating the efficiency of ribozymes from in 
vitro to in vivo. Due to their rapid degradation during in vivo conditions decreasing 
their concentration within the system, it was proposed that ribozymes are more suit-
able for acute diseases and not chronic diseases [84]. There were also significant dif-
ferences in the ribozyme efficiency in recognising and cleaving the target sequences 
when comparing in vitro and in vivo cells [77]. Due to these challenges, ribozymes’ 
development as therapeutic agents, in general, has slowed down in the past years. 
More research must be conducted to improve the feasibility of ribozymes in the in 
vivo system by focusing on their stability and efficiency to bring ribozymes back to 
the table.

6. Conclusion

Ribozymes are catalytic RNAs that can catalyse reactions similarly to protein 
enzymes. There is a wide variety of ribozymes classes with different characteris-
tics and structures, and even now, novel ribozymes are being discovered through 
research. Ribozymes have the potential to be used as therapeutic agents for infec-
tious diseases. While there is a lack of actual ribozymes for antibacterial purposes, 
multiple ribozymes are tested to successfully target viruses such as human immu-
nodeficiency virus (HIV), human cytomegalovirus and herpes simplex virus. 
Unfortunately, their uses have not been translated into real-world applications, 
mostly due to their vulnerability to nucleases in the biological system and the dif-
ficulty in translating their efficiency from the in vitro system to the in vivo system. 
However, progress has been made in improving their stability and delivery, and it is 
hoped that with more research, ribozymes can be the next therapeutic agent used for 
infectious diseases.
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Chapter 4

A New Era of RNA Personalized 
Vaccines for Cancer and  
Cancer-Causing Infectious Diseases
Ana Ayala Pazzi, Puneet Vij, Nura Salhadar, Elias George  
and Manish K. Tripathi

Abstract

RNA vaccines for cancer and cancer-causing infectious agents are recognized as 
new therapeutics and are perceived as potential alternatives to conventional vaccines. 
Cancer is a leading cause of death worldwide, and infections (certain viruses,  
bacteria, and parasites) are linked to about 15–20% of cancers. Since the last decade, 
developments in genomics methodologies have provided a valuable tool to analyze the 
specific mutations, fusions, and translocations of the driver genes in specific cancer 
tissues. The landscape of the mutations identified by genome sequencing and data 
analysis can be a vital route to personalized medicine. This chapter will discuss the 
present state of mRNA vaccine development and ongoing clinical trials in oncology.

Keywords: mRNA, therapeutics, cancer, clinical trials, vaccine

1. Introduction

Conventional vaccine approaches were adopted for infectious diseases, but the RNA 
(mRNA) vaccine developed for COVID-19 changed the vaccine development landscape, 
providing global recognition and a new alternative. Moreover, RNA vaccines consist of 
rapid development, scalability, and cell-free manufacturing [1]. RNA vaccines are the 
clinical reality and are being studied to treat cancer, diseases like HIV, influenza, and 
genetic disorders [2]. mRNA cancer vaccines have received lots of attention, and efforts 
have resulted in some rapid developments, especially in the last 5 years [3, 4].

Cancer is not an infectious disease; vaccines for cancer aim to clear active disease 
instead of preventing disease, the only exception being the recently approved vaccine 
that prevents cancers caused by the human papillomavirus (HPV) [5]. Cancer is a par-
ticularly unpredictable disease that occurs due to random genetic events, and muta-
tions are the driving force [6, 7]. Even though most potentially detrimental mutations 
are eliminated or neutral in nature, one mutation may cause a single somatic cell to 
develop an advantage over the rest, generating a pattern of amplified proliferation and 
progression that, over time, gives rise to a cancerous tumor [8]. Genome profiling pro-
vides insight into the diversity and heterogeneity within each type of cancer, which is 
a significant challenge in finding the right therapy for each patient [9, 10].
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1.1 What is mRNA?

Messenger RNA is a versatile, single-stranded molecule that mediates protein 
translation, posttranscriptionally regulates genes, and has other regulatory properties 
inside the cell [11, 12]. A mature mRNA will have a protein-encoding region, or open 
reading frame (ORF), between a start and a stop codon enclosed in a single strand 
with a 7-methyl-guanosine and untranslated region at the 5′ end and a poly-A tail 
with its respective untranslated region at the 3′ end. Both the 5′ cap and the poly-A 
tail are essential for mRNA maturation and stability, therefore heavily regulating the 
efficiency of protein translation and mRNA degradation [13, 14]. Generally, once 
the mRNA enters the cell, it has a short time to produce the protein it is encoding for 
before it starts to degrade [15]. This is a challenge when studying mRNA as a thera-
peutic delivery, especially in hereditary diseases [16, 17].

1.2 RNA therapeutics

mRNA presents a viable option for patient therapeutics comparable to existing cancer 
therapies [13, 18]. Since the inception of RNA-based cancer vaccination, many preclini-
cal and clinical studies have explored the idea of mRNA-based anticancer vaccines 
using autologous RNA-transfected dendritic cells or direct injection into the organism. 
For instance, mRNA acts outside the cell nucleus, eliminating the need to bypass this 
membrane while still being a messenger for genetic information. In the cytoplasm, the 
exogenously delivered mRNA starts protein translation, whereas DNA must reach the 
nucleus first and then be transcribed into mRNA to produce an effect in the cell  
[15  19, 20]. Additionally, mRNA does not incorporate into the genome; instead, it 
produces proteins for a short period, significantly minimizing the risk of mutations in 
the patient and long-term side effects [21]. Moreover, mRNA drugs can be manufactured 
relatively inexpensively to express any protein for virtually any disease. Multiple research 
studies conducted during the past few decades have demonstrated the curative properties 
of this technology and its ability to target various health conditions [22–25]. This is par-
ticularlytrue in the case of synthetic mRNA-based vaccines that were developed rapidly 

Figure 1. 
Key discoveries and advances in mRNA-based therapeutics. Created with BioRender.com.
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during the COVID-19 pandemic, and many years of research in RNA biology paved the 
way for this unparalleled achievement. The first mRNA vaccine approved for emergency 
use for infectious disease (COVID-19) by the FDA was created by BioNTech and Pfizer 
[26]. The candidates for the vaccine (BNT162b1 and BNT162B2) were initially identified 
in Germany and were further studied in the United States [27]. These targets were chosen 
as they encoded the spike protein of the SARS-CoV-2 virus. The delivery method for this 
vaccine consisted of lipid nanoparticles [28]. The Moderna vaccine also targeted a similar 
gene product and was delivered intramuscularly to the patient. Figure 1 shows the his-
tory of RNA and the recent development of mRNA-based COVID-19 vaccines.

2. Challenges and advantages of mRNA vaccines

The delivery of mRNA into a cell is particularly challenging due to the size of 300 
to 5000 bp, in contrast to microRNA and silencing RNA, which only go up to 5–15 bp 
in size. Additionally, instability due to charges in the molecule is another factor 
that impairs its functionality as a therapy, as it cannot penetrate the cell membrane. 
However, some cells can uptake naked mRNA, a relatively inefficient process, because 
most cells have a low rate of mRNA uptake [29, 30]. In contrast, the immature den-
dritic cell is an exception, which can take up mRNA through the macro pinocytosis 
pathway and accumulate mRNA efficiently [15].

One advantage of mRNA vaccines is a simplified development process, which only 
requires a few laboratory techniques and resources. In contrast, the production of biolog-
ics such as plasmid DNA vaccines can be time-consuming and expensive compared to 
mRNA vaccines, thereby augmenting the interest in mRNA therapeutics. However, in 
the initial stages of the study surrounding mRNA vaccines, researchers struggled to 
stabilize the product and increase its safety profile [31, 32]. Some solutions to these issues 
included chemical modification of mRNA sequences (e.g., via nucleoside manipulations) 
and packaging into nanocarriers [33, 34]. RNA-active vaccines (protamine-formulated 
mRNA vaccines) encoding six prostate cancer-specific antigens (CV9104) and five 
non-small cell lung cancer (NSCLC) tumor-associated antigens (CV9201) have been 
investigated clinically for safety, overall survival, and progression-free survival [35].

The challenges that must be overcome in the production of mRNA vaccines 
include the negative charge of the RNA (which must cross the hydrophobic cell 
membrane) and the strong immune reaction of exogenous RNA, which can cause cell 
toxicity [29, 36]. Recent research has overcome these obstacles by personalization of 
vaccines for their ability to target specific diseases [16, 37]. Moreover, once synthetic 
mRNA is translated into protein in the cytoplasm, it is subsequently degraded within 
a few minutes or hours, thereby preventing any harmful effects.

Various forms of mRNA therapy include replacement therapy (to synthesize a defec-
tive protein), vaccination, and cell therapy (which entails ex vivo transfection) [16]. 
Another challenge is that antigen presentation is often short-lived, as mRNA can be 
degraded by exogenous RNases [21]. However, this can be addressed using self-amplify-
ing RNA sequences utilized by alphaviruses, which prolong antigen expression [38].

3. Immunology of vaccination

The human immune system is comprised of innate and adaptive immune cells that 
play unique roles in eliminating a pathogen. The innate immune system serves as a 
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first-line response to a pathogen and acts via lysis or phagocytosis [39, 40]. Since it is 
possible for pathogens to evade this first-line defense, the adaptive immune system 
can prompt the activation of humoral and cell-mediated immunity (see Table 1) 
[33, 41]. Humoral immunity consists of B-cells that produce antibodies, which can 
eliminate a pathogen via various mechanisms. Antibodies may envelop the pathogen 
with their Fc (constant fragment) portions which are subsequently recognized by 
phagocytic cells [42]. Other mechanisms include the creation of immune complexes 
which trigger the complement cascade, expressing receptors on phagocytic cells and 
directly attaching antibodies to viruses via receptor binding sites [33]. Cell-mediated 

Figure 2. 
Administration of vaccine leading to immunity production steps. Macrophages and dendritic cells are phagocytic 
antigen-presenting cells (APCs). Upon vaccine administration, these APCs take up the contents of the vaccine. 
After activation of APCs by specific antigens, the migration occurs toward lymph nodes (LNs) as shown. Within 
the LNs, the antigen is presented to lymphocytes for further activation. Antigen-specific B- and T-cells then 
multiply clonally to create their progenitors by recognizing the same antigen. Long-term protection is also achieved 
by the production of memory B- and T-cells against pathogen infection. Created with BioRender.com.

Immune response Immune product Infectious agents

Humoral Immunoglobulin G Bacteria and viruses

Immunoglobulin A Microorganisms

Immunoglobulin M Bacteria

Immunoglobulin E Parasites

Cell-mediated Cytotoxic T-lymphocyte Viruses, mycobacteria, parasites

T-helper cells 1 Mycobacteria, fungi

Table 1. 
Immune response, products, and associated infectious diseases [33].
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immunity clears infected cells via cytotoxic T-cells and T-helper cells. The B- and 
T-cells of the adaptive immune system are more specific to the pathogen, and vac-
cines seek to build up this response to evade the severe consequences of infection. 
Upon infection, the innate immune system prompts B-cells and T-cells (specific to the 
virus) increase in number, thereby strengthening their degree of protection [33, 43]. 
The vaccine entry requires uptake via antigen-presenting cells, which deliver the vac-
cine to secondary lymphoid organs where T- and B-cells are produced (see Figure 2).

Once the infection has cleared, some of the B- and T-cells will undergo apoptosis, 
but some may persist and will be able to respond if re-infection of the same pathogen 

Figure 3. 
Adaptive immune responses after two different scenarios: (A) infection: This part of the figure represents the 
response after primary and secondary infection. The primary infection causes disease manifestation, as there is a 
lag in developing T- and B-cells. The secondary infection causes the memory T-cells to respond quickly and helps 
develop antibodies to fight the infection or pathogen. (B) Administration of vaccination follows a similar pattern 
without the manifestation of the disease. Created with BioRender.com.
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occurs (see Figure 3). Thus, the aim of achieving a faster immunological response to a 
pathogen is achieved through this mechanism [44].

For effective antibody production, the coordinated actions of CD4-positive 
follicular helper T-cells and B-cells depend on the successful presentation of a pro-
tein antigen, which is recognized by its specific B-cell clone in secondary lymphoid 
organs such as the lymph node and provides the first signal for B-cell activation [45]. 
This specific B-cell clone processes an extracellular protein antigen by uptake into 
endosomes and lysosomes for proteolytic digestion into peptides of varying length 
for incorporation into highly diverse HLA Class II molecules, which are imported 
from the endoplasmic reticulum [46] and can bind antigenic peptides of 10 to 30 
residues in length. The mature HLA Class II molecule bearing its antigenic peptide is 
then expressed on the surface of the B-cell for presentation to CD4-positive follicular 
helper T-cells at the periphery of the follicles of secondary lymphoid organs. The 
interaction between the antigen-presenting B-cell and the follicular T-cell depends 
on specific recognition of the mature HLA Class II molecule containing its peptide 
antigen by its T-cell receptor. It provides a second signal for the activation of the B 
lymphocyte resulting in its proliferation and differentiation into antibody-secreting 
plasma cells and memory B-cells [47], with the latter capable of rapid response to a 
second exposure to its specific antigen resulting in antibodies of higher affinity.

Cell-mediated immunity targets cells functioning as reservoirs of infection or 
displaying foreign peptides. The mechanism of antigen presentation is analogous to 
the Class II pathway described above but differs in several ways. First, the protein 
antigen is present in the cytoplasm, which is processed by ubiquitin-mediated 
proteasomal digestion resulting in small peptide fragments about nine residues in 
length that are then imported into the endoplasmic reticulum. Here, they may bind 
to HLA Class I molecules if the fragments contain sufficient antigenicity. The mature 
HLA Class I molecules with their bound antigenic peptides are then displayed on the 
antigen-presenting cell surface for recognition by an activated CD8-positive cytotoxic 
T cell specific for this complex [48, 49]. Delivery of the cytotoxic payload of this 
effector T-cell results in the activation of the apoptotic pathway of the target cell and 
its elimination.

A second exposure to an antigen, such as a booster, is often required for a more 
robust and effective immune response. Thus, a successful vaccine design strategy 
requires this immunologic knowledge and characteristics of its protein target, where 
computational methods to determine peptide antigenicity among the highly polymor-
phic HLA molecules are helpful [50, 51].

4.  Clinical development of mRNA vaccines for the prevention of  
cancer-causing infectious diseases and as cancer therapeutics

4.1 mRNA vaccines for the prevention of cancer-causing infectious diseases

Microbial infection accounts for around 15% of all human cancers, totaling 
approximately two million yearly cases [52]. Bacterium Helicobacter pylori, human 
papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and 
Epstein–Barr virus (EBV) are primarily responsible for 97% of these cancers [53]. 
Besides cancer-causing infectious diseases, mRNA vaccines are also being studied as a 
preventive treatment against influenza A, zika, cytomegalovirus, respiratory syncy-
tial, and rabies [16].



69

A New Era of RNA Personalized Vaccines for Cancer and Cancer-Causing Infectious Diseases
DOI: http://dx.doi.org/10.5772/intechopen.110905

Currently, mRNA vaccines have been designed for two of seven viruses that can cause 
cancer (oncoviruses). One of the examples is the liposome-encapsulated mRNA vaccine 
for human papillomavirus type 16 (HPV-16). It encodes for the oncoproteins E6 and 
E7, which have the potential for immunomodulation and antineoplastic activities [54]. 
Upon intravenous administration, the liposomes protect the RNA degradation within the 
bloodstream leading to uptake by APCs [55]. Translocation to the cytoplasm leads to the 
translation of E6 and E7 oncoproteins. After the processing of the proteins, the peptide 
complexes are presented to the immune system and hence induce antigen-specific T-cell 
responses (CD8+ and CD4+) against HPV16 E6 and E7 [56]. The associated clinical 
trial is mentioned in Table 2. Another example is mRNA-1189 Epstein–Barr virus 
(EBV) vaccine. This encodes EBV’s envelope glycoproteins (gH, gL, gp42, and gp220), 
which mediate viral entry into B-cells and epithelial surface cells, the primary targets 
of EBV infection [57, 58]. The viral proteins in mRNA-1189 are expressed in their native 
membrane-bound form for recognition by the human immune system.

Brand Title Conditions Phase

BNT111 Trial with BNT111 and Cemiplimab as a single 
agent and/or in combination

Melanoma stage 
III/ and/or IV

Phase II

BNT112 Prostate Cancer Messenger RNA 
Immunotherapy

Prostate cancer Phase I 
and II

BNT113 Safety, tolerability, and therapeutic effects of 
bnt113 in combination with Pembrolizumab/
Alone for participants with head/neck cancer 
positive for HPV16 and PD-L1 expression

Head and neck 
cancer

Phase II

BNT116 Clinical trial evaluating the safety, tolerability, 
and preliminary efficacy of BNT116 alone and/
or in combination

Non-small cell lung 
cancer

Phase I

BNT122 Comparing the efficacy of RO7198457 Vs. 
Watchful waiting in patients with high-risk 
stage II and Stage III colorectal cancer

Colorectal cancer 
Stage II/III

Phase II

RO7198457 A study of RO7198457 as a single agent and/or in 
combination with atezolizumab in participants 
with advanced or metastatic tumors

Melanoma
Bladder cancer

Phase I

RO7198457 A study of the efficacy and safety of 
RO7198457 in combination with atezolizumab 
Vs. Atezolizumab alone

Non-small cell lung 
cancer

Phase II

RO7198457 A study to evaluate the efficacy and 
safety of RO7198457 in combination with 
pembrolizumab Vs. pembrolizumab alone 
in participants with previously untreated 
advanced melanoma

Advanced 
melanoma

Phase II

mRNA-4157 Safety, tolerability, and immunogenicity 
of mRNA-4157 alone in participants with 
resected solid tumors and/or in combination 
with pembrolizumab in participants with 
unresectable solid tumors

Solid tumors Phase I

An efficacy study of adjuvant treatment with 
the personalized cancer vaccine mRNA-4157 
and pembrolizumab in participants with high-
risk Melanoma

Melanoma Phase II
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Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of three human 
malignancies: Kaposi’s sarcoma, primary effusion lymphoma, and the plasma cell 
variant of multicentric Castleman disease. Currently, there are no well-developed 
KSHV vaccine candidates. One of the clinical trials completed in 2019 looked at the 
impact of Valganciclovir on severe immune reconstitution syndrome (S-IRIS)-Kaposi 
Sarcoma (KS) mortality: an open-label, parallel, randomized controlled trial, in 
which 40 patients were randomized and 37 completed the study. It was concluded that 
Valganciclovir significantly reduced the episodes of S-IRIS-KS. Although attributable 
KS mortality was lower in the experimental group, the difference was insignificant. 
Mortality was significantly lower in EG patients with pulmonary KS [59].

4.2 Development of mRNA vaccines as cancer therapeutics

Several widely used conventional cancer therapies, such as chemotherapy and hor-
mone therapy, have proven effective in treating cancer [60]. Chemotherapy involves a 
series of drugs that impair DNA synthesis, thus fatally interrupting the physiological 
processes of cancerous and healthy cells [61, 62]. However, the success rates for this 
treatment are most effective only in highly proliferative and low heterogeneity can-
cers. Alternatively, hormonal or endocrine therapy targets growth signaling pathways 
by interfering with hormone receptors in cancer cells [63]. Thus, it is suitable for 
low-proliferating cancers such as breast and prostate [64].

Among immunotherapeutic treatments, mRNA vaccines stand out due to their 
superior specificity and potential for adaptability according to the genetic profile of 
each patient’s cancer. To produce an efficient, individualized cancer vaccine, specific 
genetic mutations in the cancerous cells are identified to produce neoantigens that 

Brand Title Conditions Phase

mRNA5671/
V941

A study of mRNA-5671/V941 as monotherapy 
and in combination with pembrolizumab

Non-small cell lung 
cancer
Pancreatic 
and colorectal 
Neoplasms

Phase I

mRNA-2752 Dose escalation study of mRNA-2752 for 
intra-tumoral injection to participants with 
advanced malignancies

Relapsed/
refractory 
solid Tumor 
malignancies or 
lymphoma

Phase I

SW1115C3 A study of neoantigen mRNA personalized 
cancer in patients with advanced solid tumors

Solid tumor Phase I

mRNA-4539 Study of mRNA-4359 administered alone and 
in combination with Immune Checkpoint 
Blockade in participants with Advanced Solids 
Tumors

Advanced solid 
tumors

Phase I 
and II

BNT 141 Safety, pharmacokinetics, pharmacodynamics, 
and preliminary efficacy trial of BNT141 in 
patients with unresectable CLDN18.2-positive 
gastric, pancreatic, ovarian, and Biliary tract 
tumors

Solid tumor
Gastric, pancreatic, 
biliary tract, and 
metastatic cancer

Phase I and 
IIa

Table 2. 
Clinical trials of mRNA encoding TAAs and TSAs (clinical trials.gov).



71

A New Era of RNA Personalized Vaccines for Cancer and Cancer-Causing Infectious Diseases
DOI: http://dx.doi.org/10.5772/intechopen.110905

could bind to T-cells and elicit an immune response in the patient more specifically 
than traditional systemic and local methods [37]. However, this treatment has faced 
challenges, such as a need to enhance the identification of potential genetic markers 
that could provide the specificity needed for cancer vaccines [23, 65].

RNA vaccines targeting various cancers are in the development and undergoing 
clinical trials. Examples of RNA cancer vaccines include CV9202 (CureVac), which 
targets multiple antigens found in non-small cell lung cancer [13]. Moderna is also 
developing an mRNA vaccine that targets the K-RAS proto-oncogene that plays a role 
in the pathogenesis of non-small cell lung cancer, colorectal cancer, and pancreatic 
adenocarcinoma [66]. The mRNA-4157 against melanoma, created by Moderna, and 
the BNT122 vaccine against prostate cancer, created by BioNTech, targets various 
solid tumors and are individualized vaccines [35, 67]. These specific vaccines are 
designed to elicit the immune response toward tumor-associated antigens (TAAs) or 
tumor-specific antigens (TSAs) in malignant tumor cells. These vaccines used next-
generation sequencing technology to identify and isolate antigen epitopes unique to 
each patient, creating a more refined vaccine. Various clinical trials exist for differ-
ent cancer vaccines (see Table 2) [2]. TAAs are present in both normal tissues and 
tumors, as these are non-mutated self-antigens. For a few tumors, TAAs are desirable 
vaccine targets. However, immune tolerance responses, such as central and periph-
eral, may be triggered by vaccines that can express TAAs and can reduce clinical 
vaccination efficacy [68]. Therefore, these kinds of vaccines are still in a phase where 
they are used in combination with immune checkpoint inhibitors [69]. With many 
ongoing clinical trials in different phases and preexisting clinical information or data, 
personalized vaccines can potentially be effective in cancer treatment. BioNTech 
vaccine BNT122 RO7198457) and Moderna vaccine mRNA-4157 are two personalized 
mRNA-based cancer vaccines in phase II clinical trials.

There is a significant increase in ongoing or completed studies/clinical trials in 
mRNA vaccines. In addition, various other clinical trials evaluate the tolerability, safety, 
immunogenicity, and/or efficacy of mRNA-personalized vaccines in participants with 
tumors. In this way, we are stepping into a new era of therapeutic mRNA-based cancer 
vaccines or prevention and treatment of currently incurable malignant diseases.

5. Summary

This chapter describes the technology, the basics of the immune response, and 
examples of developing mRNA vaccines for cancer and cancer-causing infectious 
agents. They can be used for preventive and therapeutic purposes. This information 
is of value to interdisciplinary researchers, engineers, and healthcare professionals 
as it may impact the prospects of medical care. Built on the highly fueled interest 
and potential, we have complete confidence to predict an accelerated pace in mRNA 
therapy studies and development in the next decade, possibly providing many solu-
tions for the prevention and treatment of currently incurable diseases.
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Abstract

RNA therapeutics represent a promising class of drugs and some of the successful 
therapeutics have been recently transformed into clinics for several disorders. A grow-
ing body of evidence has underlined the involvement of aberrant expression of cancer-
associate genes or RNA splicing in the pathogenesis of a variety of cancers. In addition, 
there have been >200 clinical trials of oligonucleotide therapeutics targeting a variety 
of molecules in cancers. Although there are no approved RNA therapeutics against 
cancers so far, some promising outcomes have been obtained in phase 1/2 clinical tri-
als. We will review the recent advances in the study of cancer pathogenesis associated 
with RNA therapeutics and the development of RNA therapeutics for cancers.

Keywords: nucleic acid therapeutics, antisense oligonucleotide, cancer, aptamer, 
clinical trial

1. Introduction

Nucleic acid plays a central role in biology and it is an attractive tool for therapeutic 
applications due to multiple reasons. One of the major obstacles is the low in vivo 
stability of nucleic acid therapeutics due to nuclease sensitivity. Numerous synthetic 
oligonucleotides have been developed to overcome this obstacle using chemical 
modifications, phosphate backbone, and many other technologies. Some of these tech-
nologies have been shown to potently protect the oligonucleotides from degradation 
and enable efficient cellular uptake, which could be translated into the clinic. In fact, 
some RNA therapeutics have shown dramatic effects on neurodegenerative disorders 
such as spinal muscular atrophy and amyotrophic lateral sclerosis. Although there has 
been no approved RNA therapeutics in oncology so far, researchers have obtained a 
number of promising results from preclinical and clinical studies. In this chapter, we 
will concisely summarize the general characteristics of RNA therapeutics and review 
recent advances in the development of RNA therapeutics in the oncology field.

2. RNA therapeutics

RNA therapeutics represents a therapy with the use of RNA-based molecules to 
modulate molecular and biological processes to cure a specific disease or improve 
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symptoms. There are multiple classes of RNA therapeutics and each of them has its 
own strengths which would be difficult to achieve by using other drug modalities.

2.1 Classification of RNA therapeutics

Oligonucleotide therapeutics that have been investigated in clinical trials include 
antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs 
(miRNAs) and aptamers (Figure 1).

2.1.1 Antisense oligonucleotide (ASO)

ASOs are small (~18–30 nucleotides), synthetic, single-stranded nucleic acid poly-
mers that are complementary to the specific RNA through Watson-Crick base-pairing 
[1]. They are highly sensitive to degradation by nucleases in their naked form. In 
addition, their phosphodiester backbone makes it difficult to go through the plasma 
membrane. To resolve these issues, numerous efforts have been made to improve 
these situations by chemically modifying ASOs. As a result, there are currently three 
generations of modified ASOs. Chemical modifications and pharmacological profiles 
were reviewed in detail elsewhere such as in [2]. The main mechanisms of approved 
ASOs are classified into the following two categories [3]:

i. ASOs in the first category induce the cleavage of a target mRNA by binding to 
the target sequence. When this category of ASOs binds to the target mRNA, 
RNase H endonuclease recognizes the RNA-DNA heteroduplex, degrades the 
mRNA and downregulates gene expression.

Figure 1. 
A variety of RNA therapeutics and their mechanisms. Endocytosis is the main pathway for oligonucleotides to 
enter cells. Antisense oligonucleotides (ASOs) block the translation of target messenger RNA (mRNA) in RNase 
H-dependent and -independent manners. ASOs are also able to modulate RNA splicing. Mature mRNA is 
targeted by small interfering RNAs (siRNAs). The roles of microRNAs (miRNAs) are mainly classified into two 
types: miRNA mimetics that restore the levels of miRNAs and antagomiRs that suppress expression levels of target 
miRNA. Aptamers functions to block receptors, protein-protein interactions, etc. like antibodies, but they are 
smaller in size and easier to pass through the cell membrane compared to antibodies.
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ii. ASOs in the second category regulate splicing of pre-mRNAs generally by 
blocking the binding of splicing factors to cis-element such as splice sites, 
exonic splicing enhancer (ESE) and intronic splicing silencer (ISS). This 
category of ASOs is the most widely used strategy.

2.1.2 Small interfering RNA (siRNA)

siRNAs are non-coding RNAs that degrade the mRNA of the targeted gene. 
Exogenous double-stranded precursor siRNAs are taken up into the cell and processed 
by Dicer into 20–25 bp long, which are passed to Argonaut (Ago) protein and the 
sense strand is released [4]. The remaining antisense strand and Ago then form an 
RNA-induced silencing complex (RISC). Finally, the RISC seeks out and binds to the 
target mRNA and degrades it [5].

2.1.3 microRNA (miRNA)

In addition to siRNA, miRNA is another RNA therapy based on RNA interfer-
ence. miRNA is a small non-coding RNA that degrades mRNA in the same way as 
siRNA. However, its mechanism is slightly different from that of siRNA. Transcripts 
expressed from miRNA genes are single-stranded RNAs, taking a hairpin structure. 
In the nucleus, miRNA transcripts undergo primary processing by Dorsha [6], which 
has an RNase III domain, and after that, Exportin5 transports them to the cytoplasm. 
In the cytoplasm, miRNAs receive secondary processing by Dicer and are cleaved as 
double-stranded miRNAs [7]. As with siRNAs, the single-stranded miRNAs then bind 
to Ago protein and form RISC. In addition, GW182 protein is required for target RNA 
degradation [8]. Via GW182, some RNA degrading enzymes assemble on the RNA 
and RISC destabilizes RNA instability.

2.1.4 Aptamers

The other category is RNA therapy targeting proteins. Aptamers are short single-
stranded nucleic acids that bind to proteins. Its properties are achieved by its tertiary 
structures. Aptamer can have a wide range of functions including agonists [9, 10], 
antagonists [11, 12], bispecific aptamers [13, 14] and carriers for other drugs [15, 16]. 
Although its function is similar to antibodies, RNA aptamers are smaller in size and 
easier to pass through the cell membrane.

2.2 Advantages of RNA therapeutics

RNA therapy has several valuable strengths, which make the development of RNA 
technologies a worthwhile investment. These advantages could be summarized below:

2.2.1 Targeting the untargetable, treating the untreatable

One of the greatest advantages of RNA therapeutics is nicely condensed in the 
phrase above. RNA drugs can target “undruggable” molecules that are difficult or 
impossible to target with small molecule-based drugs or other modalities. Only about 
one-third of proteins can be targeted by common drugs such as small molecules and 
antibodies [17]. In addition, many proteins share similar structures, which makes it 
difficult to target specific proteins. On the other hand, as RNA drugs can indirectly 
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act on proteins before the translation, they function independently of protein struc-
ture. Furthermore, small molecules and monoclonal antibodies exert their effects 
by binding to the active site pocket of receptors or enzymes. For this reason, it is 
impossible for conventional drugs to target non-coding RNAs that are not translated. 
RNA drugs can target non-coding RNAs and are expected to greatly expand the range 
of therapeutic targets in the future [3]. We will review some examples of previously 
“undruggable” targets for which clinical trials are currently ongoing.

2.2.2 Quick production

As we all enjoyed the significant benefits from mRNA vaccines for coronavirus 
disease-2019 (COVID-19) in recent years, the next important advantage of RNA thera-
peutics is that RNA drugs can be designed and synthesized rapidly for clinical tests. 
Given that the development of small molecule or antibody-based drugs takes several 
years, this characteristic of RNA therapy is the biggest reason that we were able to 
control the COVID-19 pandemic by significantly reducing the rate of infection and the 
severity of the disease. By simply changing the sequence of RNA drugs according to the 
target genes/diseases, researchers can quickly create a novel RNA therapeutic for further 
testing within a short period of time. This leads to another advantage below.

2.2.3 Patient-customized therapy

Pharmaceutical companies generally hold the back investment for rare diseases as 
the market is small and the cost-benefit ratio is normally not attractive. However, RNA 
therapy might be a game changer in this scenario. A landmark trial of patient-customized 
ASO therapy for neuronal ceroid lipofuscinosis 7 (CLN7), a fatal neurodegenerative 
disorder (a form of Batten’s disease) was reported in 2019 [18]. In this case, a mutation 
located in intron 6 of MFSD8 creates a novel acceptor, leading to a cryptic exon with a 
premature stop codon. The authors developed a tailored ASO to rescue the mis-splicing 
event and delivered it to the patient within 1 year after first contact with the patient. 
This led to a reduction in seizures without any serious adverse events. The fact that rare 
diseases affect approximately 30 million persons in the United States alone [19] highlights 
the importance of such rapid development of patient-customized treatments.

3. Current advances in the development of RNA therapy for cancers

Targeted therapies have greatly improved cancer management by specifically 
targeting the genetic alterations and consequent molecular disturbances that play 
an essential role in cancer initiation and maintenance. One of the major therapeutic 
successes would be inhibitors that specifically target constitutively active tyrosine 
kinases, such as imatinib and its second- and third-generation inhibitors specifically 
targeting BCR-ABL against Philadelphia chromosome-positive chronic myeloid 
leukemia (CML) [20] and acute lymphoblastic leukemia (ALL) [21]. Before the 
development of imatinib, treatment with interferon alfa plus cytarabine was standard 
care for patients with CML. In the landmark clinical trial of imatinib, newly diag-
nosed chronic-phase CML patients were treated with either imatinib or interferon 
alfa plus cytarabine. After a median follow-up of 19 months, the major cytogenetic 
response was 87.1% in the imatinib group versus 34.7% in the combination therapy 
group (P < 0.001) [20]. Based on the clearly superior therapeutic outcome, imatinib 
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became the first-line therapy in newly diagnosed chronic-phase CML. Other success-
ful targeted therapies include vemurafenib for the constitutively active form of the 
BRAF kinase (BRAFV600E) in BRAF-V600E mutated metastatic melanoma [22] and 
the blocking antibodies such as anti-EGFR antibody for metastatic colon cancer [23] 
and anti-HER2 antibody for breast cancer with HER-2 amplification) [24].

On the other hand, targeted therapies remained to be developed for many other 
cancer-associated genes, especially for other ‘undruggable’ targets such as RAS and 
MYC. Although there has been no approved RNA therapy for cancers so far, extensive 
efforts have been focused on targeting such ‘undruggable’ targets by using a variety of 
RNA therapeutics, which will be introduced in this section.

3.1 ASO therapy

Targeted therapies through ASO have been most actively studied among RNA 
therapeutic and approximately half of ongoing clinical trials on RNA therapeutics 
are classified as this modality. Recently developed ASO therapies against cancers are 
summarized in Table 1.

NCT Number Phase RNA therapy Target Start date Status

NCT05267899 Phase 1 Cancers AKT1 2022/8/1 Not yet recruiting

NCT02144051 Phase 1 Prostate cancer AR 2014/5/1 Completed

NCT03300505 Phase 1/2 Prostate cancer AR 2019/5/31 Suspended

NCT04072458 Phase 1 Lymphoid 
malignancies

BCL2 2020/11/5 Recruiting

NCT04504669 Phase 1 Cancers FOXP3 2020/8/18 Recruiting

NCT02781883 Phase 2 AML GRB2 2016/5/1 Recruiting

NCT02923986 Phase 1/2 Ph-ALL GRB2 2017/9/1 Withdrawn

NCT04196257 Phase 1 Cancers GRB2 2022/7/1 Not yet recruiting

NCT01780545 Phase 2 Bladder cancer HSP27 2013/4/1 Completed

NCT02423590 Phase 2 Squamous cell 
lung cancers

HSP27 2014/6/1 Unknown status

NCT04485949 Phase 2 Glioblastoma IFG-1R 2022/12/1 Not yet recruiting

NCT03101839 Phase 1 Cancers KRAS 2017/5/15 Completed

NCT01563302 Phase 1/2 Cancers STAT3 2012/2/27 Completed

NCT01839604 Phase 1 Hepatocellular 
carcinoma

STAT3 2013/5/1 Completed

NCT02417753 Phase 2 Cancers STAT3 2015/4/3 Terminated

NCT02549651 Phase 1 DLBCL STAT3 2016/7/13 Completed

NCT04862767 Phase 1 Cancers TGF-β2 2021/3/9 Recruiting

NCT02243124 Phase 1 MDS TP53 2014/9/1 Terminated

Abbreviations: AR, androgen receptor; AML, acute myeloid leukemia; Ph-ALL, Philadelphia-chromosome positive 
acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; MDS, myelodysplastic syndromes.*The table 
does not include all the recent clinical trials on ASO therapies in oncology. This equally applies to Tables 2–4.

Table 1. 
Recent ASO therapy in clinical trials.*
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Some of the landmark trials in this field were performed or are currently per-
formed as follows:

3.1.1 ASO therapy against MYB

Historically, the first clinical trial of ASO in oncology was a phase II study back in 
1993, which evaluated G4460, an ASO targeting MYB in CML (NCT00002592). MYB 
is a proto-oncogene that encode a transcription factor. As evidenced by the discovery 
of translocations and duplications of MYB in a subset of T-cell acute lymphoblastic 
leukemia (T-ALL) [25, 26], MYB activation was shown to contribute to the leukemo-
genesis via differentiation block [25]. In addition, early studies using an antisense 
oligodeoxynucleotide and dominant-negative form of MYB have demonstrated that 
MYB activation is important for the proliferative capacity of myeloid malignancies 
such as AML and CML. Another study indicated that an oligomer complementary 
to the sequence of MYB-encoded mRNA resulted in significant growth inhibition in 
several leukemic cell lines [27, 28]. Based on these observations, G4460 was designed 
to bind the MYB mRNA and trigger RNase H-dependent degradation [29]. In a pilot 
study, CD34+ marrow autografts were purged with G4460 in allograft-ineligible 
CML patients. Although the clinical efficacy of G4460 could not be assessed in this 
pilot study, MYB mRNA levels were significantly reduced in approximately 50% of 
patients, suggesting the feasibility of transplanting G4460-treated autografts [29]. 
As described above, the standard treatment strategy for CML has been dramati-
cally changed since imatinib and other tyrosine kinase inhibitors were developed. 
Nonetheless, MYB is an attractive target, considering that overexpression of MYB is 
associated with cellular proliferation and differentiation in multiple cancers including 
several types of leukemias and breast cancers [30].

3.1.2 ASO therapy targeting BCL2

BCL2 family of proteins have long been identified for their roles in apoptosis. 
BCL2 was initially discovered in the context of B-cell lymphoma in the 1980s, 
followed by the identification of a variety of homologous proteins [31–33]. The role 
of the BCL2 family is typically understood as the anti-apoptotic and pro-apoptotic 
members. By regulating outer mitochondrial membrane (OMM) integrity and 
function, BCL2 facilitates oncogenesis through cell death resistance [34]. In cancer, 
increased expression of BCL2 protein is frequently found [35] and is commonly 
associated with reduced susceptibility to chemotherapy and increased radio-
resistance [36]. These observations provided a rationale to target BCL2 in a variety 
of cancers.

Genasense (oblimersen, G3139) would be a representative ASO targeting BCL2, 
which targets codon 1–6 of BCL2 mRNA and triggers RNase H-dependent degrada-
tion [37]. More than 40 clinical trials have been performed on this ASO in a variety of 
types of cancers and Genasense obtained orphan drug designation for CLL in 2001. 
However, overall and progression-free survival was not affected and the primary 
endpoint was not reached by the treatment of Genasense in the following eight phase 
III studies. For example, combined fludarabine + cyclophosphamide + Genasense 
therapy resulted in a better response (complete + partial response) rate over fludara-
bine + cyclophosphamide therapy in CLL, which fulfilled only the second endpoint of 
the NCT00024440 trial [38]. Following these unsatisfactory results, Genasense was 
not approved and the production of Genasense was ceased.
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Several other ASOs such as SPC2996 and PNT2258 have been developed to target 
BCL2. SPC2996 is a gapmer that targets the first six codons of the BCL2 mRNA. 
Although the phase 1/2 trial for evaluating SPC2996 was performed in CLL, approxi-
mately 40% of patients experienced painful inflammatory reactions [39]. PNT2258 
is a liposome-encapsulated ASO that targets the BCL2 promoter to suppress its 
transcription. Although the safety of PNT2258 was confirmed in the phase 1 study, 
the following phase 2 trial targeting patients with diffuse large B-cell lymphoma 
(DLBCL) resulted in an unsatisfactory outcome with a very low response rate of 8.1%.

Following these failures of ASOs targeting BCL2, the development of ASOs against 
BCL2 slowed down. In 2016, the selective BCL2 inhibitor ABT-199 (venetoclax), a 
BH3 mimetic was approved as the first small molecule drug targeting a protein-pro-
tein interaction for chronic lymphocytic leukemia (CLL) [40]. Venetoclax has been 
also approved for the treatment of AML in combination with other chemotherapeutic 
agents such as DNA demethylating agents and low-dose cytarabine [41].

3.1.3 ASO therapy targeting IFG-1R

Results from a unique clinical study were reported in 2021 [42]. In this phase IB 
clinical trial, the safety and efficacy of IMV-001, an antisense oligodeoxynucleotide 
against IGF type 1 receptor (IGF-1R) mRNA were evaluated in adults with newly 
diagnosed glioblastoma. Glioblastoma is one of the most aggressive forms of brain 
cancer which represents approximately 15% of all brain tumors [43]. Despite inten-
sive treatment, glioblastoma almost always recurs, leading to a dismal prognosis 
with a median survival of 10–13 months [44]. On the other hand, IFG-1R is highly 
expressed in a variety of malignancies, which regulates transformation and anti-
apoptotic effects and are essential for the survival and progression of malignant 
cells [45–48]. However, previous efforts to target IGF-1R alone were not successful 
[48]. Interestingly, IMV-001 had an off-target effect to activate Toll-like receptor 9 
(TLR9) in antigen-presenting cells [49, 50], which stimulates the immune response. 
Therefore, the research group from Thomas Jefferson University designed a phase IA 
trial of IGV-001 to use an autologous cell combination product therapy [51]. More 
specifically, 12 patients underwent MRI-based image-guided tumor resection (which 
resulted in partial resections in all the cases). After diagnostic confirmation, an 
abdominal acceptor site between the rectus sheath and rectus abdominis muscle was 
created. On the other hand, the resected tumor cells were treated with IMV-001 ex 
vivo and encapsulated in several chambers. Immediately after irradiation to the tumor 
cells, chambers were implanted in the acceptor site and removed after 24 h (Figure 2).

While 3 of 12 patients were re-treated after the approval from FDA was obtained, 
8 patients received no other treatment except surgical resection and/or best support 
care (and the other one exceptional case received temozolomide). As a result, there 
were no unexpected treatment-related complications except deep vein thrombo-
sis, which was successfully managed by enoxaparin prophylaxis. Post-treatment 
observation identified two and four patients with complete and partial responses, 
respectively, which were atypical for the nature of aggressive glioblastoma. Among 
the patients with these responses with disease recurrence, three patients had unusual 
regression spontaneously or after surgical resection. Interestingly, perivascular lym-
phocytic infiltration was observed in some patients who did not have such infiltration 
at diagnosis, strongly suggesting a contribution of the immune response. Based on 
these results, IGV-001 was granted Orphan Drug designation by FDA in 2017. A total 
33 newly diagnosed patients with glioblastoma were enrolled in the subsequent Phase 
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IB study (ClinicalTrials.gov: NCT02507583). In this study, patients received IGV-001 
and standard care which consists of maximal safe resection, adjuvant radiotherapy 
and temozolomide and maintenance therapy with temozolomide. Median progres-
sion-free survival (PFS) in the intent-to-treat population was 9.8 months, which was 
significantly better than that of patients who received standard care in published 
studies (6.5 months; P = 0.0003). Because the promoter methylation status of the 
MGMT gene was previously shown to positively predict the therapeutic efficacy of 
temozolomide [52, 53] and overall survival (OS) [54], the authors quantified the 
methylation levels of MGMT and revealed that the MGMT methylation status is a 
potent biomarker for PFS and OS. Furthermore, they assessed serum cytokines and 
identified that some of the pro-inflammatory cytokines such as IFNγ and IL-2 were 
elevated after IGV-001 treatment (before initiation of standard care). Although these 
responses were not associated with therapeutic outcomes, these results suggested that 
IGV-001 treatment induces a local environment at implantation which promotes a 
proinflammatory innate immune response [42].

3.2 siRNA therapy

Although most clinical trials on siRNA drugs in oncology are currently phase 1, 
there are some promising results from these trials. In addition, some phase 2 trials 
have been recently initiated (Table 2).

3.2.1 siRNA therapy targeting MYC

MYC is one of the most famous and most commonly activated oncogenes and 
has thus far been considered one of the major “undruggable” targets in cancers. 
As described above, a therapeutic approach using RNA interference (siRNA) is a 

Figure 2. 
Study design for the IGV-001 treatment. After MRI-based image-guided tumor resection and diagnostic 
confirmation, an abdominal acceptor site between the rectus sheath and rectus abdominis muscle was created. The 
resected tumor cells were treated with IMV-001 ex vivo and encapsulated in several chambers. Immediately after 
irradiation to the tumor cells, chambers were implanted in the acceptor site and removed.
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promising strategy because a number of studies have shown that silencing MYC 
induces growth inhibition in MYC-activated tumors in multiple cellular and animal 
models. An anti-MYC siRNA formulated in lipid nanoparticles called DCR-MYC has 
shown anti-tumor potential in vivo across several tumor models [55]. In phase 1 dose-
escalation study, 19 patients with a variety of cancers were treated with DCR-MYC. 
DCR-MYC was well tolerated and demonstrated promising clinical efficacy across 
various dose levels, including a complete response in one patient and tumor regres-
sion in several other patients, validating the hypothesis that siRNA targeting MYC is a 
potential therapeutic strategy to make the “undruggable” target druggable.

Recently, another strategy to pharmacologically target MYC was reported [56]. In 
this study, the authors performed a pan-cancer transcriptome and splicing analysis of 
RNA sequence data generated from cancer patients with or without hotspot mutations 
in SF3B1, which is the most frequently mutated splicing factor across cancer [57, 58]. 
In this study, detailed molecular and biological experiments using isogenic murine 
models and cancer patient samples revealed that a mis-splicing event in PPP2R5A 
induces MYC activation via post-translational modifications. More specifically, 
mutant SF3B1 induced 3′ alternative splice site in PPP2R5A, which led to a reduced 
protein expression of PPP2R5A, a regulatory B subunit of PP2A phosphatase com-
plex. PP2A complex containing PPP2R5A was shown to regulate phosphorylation of 
MYC protein which was critical for the regulation of protein stability. Therefore, loss 
of PPP2R5A function stabilized MYC protein. Importantly, FDA-approved activator 
FTY-720 suppressed mutant SF3B1 leukemogenesis in vivo, providing a preclinical 
insight into the use of PP2A activators in SF3B1 mutant cancers [56]. Furthermore, 
the mis-splicing event in PPP2R5A can be potentially targeted by a specific ASO, 
which will also create a therapeutic opportunity for pharmacological intervention 
toward activated MYC.

NCT Number Phase RNA therapy Target Start date Status

NCT04844983 Phase 2 cSCC TGF-β1 and 
COX2

2021/5/18 Recruiting

NCT02866916 Phase 1 Prostate cancer AR 2017/9/1 Withdrawn

NCT02166255 Phase 1 Cancers CBLB 2014/12/1 Completed

NCT03087591 Phase 1 Cancers CBLB 2017/4/28 Completed

NCT01591356 Phase 1 Cancers EPHA2 2015/7/1 Recruiting

NCT03819387 Phase 1 Cancers GST 2019/3/18 Recruiting

NCT01676259 Phase 2 Pancreatic cancer KRASG12D 2018/3/7 Recruiting

NCT03608631 Phase 1 Pancreatic cancer KRASG12D 2021/1/27 Recruiting

NCT02110563 Phase 1 Cancers MYC 2014/4/1 Terminated

NCT02314052 Phase 1/2 Hepatocellular 
carcinoma

MYC 2015/1/27 Terminated

NCT01808638 Phase 1/2 Pancreatic cancer PNK3 2013/3/1 Completed

NCT04995536 Phase 1 NHL STAT3 2022/8/1 Recruiting

Abbreviations: cSCC, cutaneous squamous cell carcinoma; NHL, non-Hodgkin lymphoma.

Table 2. 
Recent siRNA therapy in clinical trials.
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3.2.2 siRNA therapy targeting mutant KRAS

Another “undruggable” target commonly detected across cancers, especially 
in pancreatic cancers is a hotspot mutation in KRAS. Based on the results that 
siRNA-mediated KRAS silencing resulted in growth inhibition of pancreatic 
cancer cells in vitro and in vivo, Silenseed Ltd. has developed a siRNA drug named 
siG12D-LODER, which is a siRNA targeting KRAS G12D and other additional 
G12X mutations such as G12C and G12V with a miniature biodegradable polymeric 
matrix. LODER™ allows slow and prolonged local release of the encapsulated drug. 
siG12D-LODER was designed to keep releasing the drug for 4 months, which can 
be inserted into the pancreatic tumor via a standard endoscope ultrasound-guided 
biopsy procedure.

In the phase 1/2a dose escalation and expansion study, patients with pancreatic 
cancer received a one-time dose of siG12D-LODER via endoscopic intervention 
with chemotherapy including gemcitabine or FOLFIRINOX. The combination of 
chemotherapy and siG12D-LODER was safe and well-tolerated, with five of 15 treated 
patients experiencing serious adverse events including grade 3–4 neutropenia and 
cholangitis. Regarding efficacy, the median OS was 15.1 months. Tumor progression 
was not observed in any patients at 8 weeks after the treatment. In addition, in 10 
patients whose tumor marker CA19-9 levels were elevated at enrollment, more than 
20% decrease in CA19-9 levels were observed in seven patients [59]. Following these 
promising results, a phase 2 clinical trial is recruiting patients with both borderline 
resectable and locally advanced pancreatic cancer [60].

3.3 miRNA therapy

Compared to the ASO and siRNA modalities, the number of clinical trials for 
evaluating miRNA therapeutics is limited as below (Table 3). However, research on 
miRNA or miRNA therapeutics are being greatly increased in number, according to a 
survey by Bonneau et al. [61].

Here are some examples of miRNA therapeutics developed or being devel-
oped. Therapeutic strategies using miRNA are mainly classified into the follow-
ing two groups: (1) AntagomiRs to repress overexpressed miRNAs (Example: 
MRG-106), and (2) miRNA mimetics to restore downregulated miRNAs 
(Example: MRX34).

NCT number Phase RNA 
therapy

Target Start date Status

NCT04675996 Phase 1 Cancers JNK1 2020/12/18 Recruiting

NCT03713320 Phase 2 CTCL miR-155 2019/4/2 Terminated

NCT03837457 Phase 2 CTCL miR-155 2019/10/1 Terminated

NCT01829971 Phase 1 Cancers miR-34a 2013/4/1 Terminated

NCT02862145 Phase 1/2 Melanoma miR-34a 2016/8/1 Withdrawn

NCT02369198 Phase 1 Cancers miR-16 2014/9/1 Completed

Abbreviation: CTCL, cutaneous T-cell lymphoma cutaneous squamous cell carcinoma.

Table 3. 
Recent miRNA therapy in clinical trials.
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3.3.1 miRNA therapy against miR-155

miR-155 is overexpressed in various malignancies, especially in cutaneous T-cell 
lymphoma (CTCL) including Mycosis fungoides (MF) [62–64], and is associated with 
enhanced cell proliferation and survival [65–67] and genomic instability [68, 69]. In 
addition, in a number of studies, genetically engineered mice with overexpression of 
miR-155 murine homolog in lymphoid cells had an increased susceptibility to develop 
lymphomas and leukemias [64, 70–72]. Molecularly, miR-155 directly targets SHIP1 
[73], SOCS1 [74] and some other cancer-associated genes. Overexpression of miR-155 
is also related to activation of the PI3K-AKT [75], NF-κB [76] and JAK/STAT [77] 
pathways. Collectively, these observations provided a rationale to target miR-155 in 
cancer therapy.

Evidenced by these scientific results, miRagen therapeutics has developed cobo-
marsen (MRG-106), an oligonucleotide inhibitor of miR-155 which is optimized for 
efficient uptake in CD4+ T-cell and MF cells with lipid nanoparticles. Cobomarsen 
was shown to de-repress direct miR-155 target genes as well as de-activate multiple 
survival pathways in MF cell lines in vitro [78]. The phase 1 trial of cobomarsen 
recruited 15 patients with biopsy-proven stage I-III MF [79]. Intratumoral or sub-
cutaneous administration of cobomarsen resulted in almost no clinically significant 
adverse events. On the other hand, histological examination of pre- and post-
treatment tissue revealed a reduction in cell density and depth in most patients. In 
addition, a gene expression analysis on these specimens demonstrated significant 
inactivation of PI3K-AKT, NF-κB and JAK/STAT pathways. This led to the Orphan 
Drug Designation of cobomarsen for MF type CTCL in 2017 and the initiation of 
phase 2 trials.

3.3.2 miR-34a based therapeutic

Accumulating evidence has demonstrated the presence of a normally small 
fraction of cancer cells, cancer stem cells (CSCs) which share stem-like properties 
with normal stem cells such as self-renewal and differentiation capacities. miR-34 is 
a tumor suppressive miRNA whose expression is frequently downregulated in many 
cancers [80] and CSCs.

miR-34 family is one of the three major tumor suppressive miRNA families consist-
ing of miR-34a, miR-34b and miR-34c. Among them, miR-34a is known to repress 
the expression of >200 target genes and loss of miR-34a biologically regulates tumor 
growth by inhibiting multiple processes such as cell cycle, epithelial-to- mesenchymal 
transition, metastasis, immune response and stemness [81–83].

In addition, the loss of miR-34a is associated with CSC regulation in multiple can-
cer types. For example, MET, NOTCH1 and NOTCH2 were identified as direct targets 
of miR-34a in glioma stem cells [84] and restoration of miR-34a expression induced 
differentiation of glioma stem cells with increased expression of astrocyte and 
oligodendrocyte markers [85]. Another example comes from colorectal cancer where 
miR-34a functions as a cell-fate determinant of CSCs in this malignancy. Bu et al. 
identified that high miR-34a expression decreased both symmetric and asymmetric 
division (resulting in decreased CSCs and increased more differentiated daughter 
cells), while low miR-34a expression enhanced symmetric CSC-CSC division and 
suppressed asymmetric division [86].

The first-in-human phase 1 study was initiated to evaluate the maximum tolerated 
dose, safety, pharmacokinetics and clinical activity of MRX34, a liposomal miR-34a 



RNA Therapeutics - History, Design, Manufacturing, and Applications

90

mimic in 47 patients with advanced tumors [87]. Although MRX34 demonstrated 
some clinical response, including one patient with hepatocellular carcinoma exhibit-
ing a prolonged partial response for 48 weeks and four patients with stable disease 
for more than 16 weeks, the trial was halted by FDA in 2016 due to severe immune 
reactions and deaths in four patients in the expansion cohort.

3.4 Aptamer therapy

Although there are only a limited number of clinical trials for Aptamer therapy as 
is miRNA therapeutics (Table 4), there are some promising results, especially from 
the studies on the aptamer targeting CXCL12.

3.4.1 Aptamer therapy targeting CXCL12

CLL is the most common adult form of leukemia in Western countries which is 
characterized by the expansion of mature monoclonal B-cells. It has been known that 
the tissue microenvironment confers survival advantage and drug resistance to the 
CLL cells via CXC chemokine ligand CXCL12 and other factors such as BAFF, APRIL 
and CD40 ligand [88–90]. Therefore, drug development has been focused on strategies 
that interrupt the crosstalk between CCL cells and the stroma such as bone marrow 
(BM) stroma cells (BMSCs). Importantly, the migration of CLL cells in the tissues 
is controlled by tissue gradients of chemokines. In the BM, CLL cells are attracted 
by the CXCL12, which is continuously secreted from BMSCs. The close proximity 
between CLL cells and BMSCs protects CLL cells from spontaneous- and drug-induced 

NCT number Phase RNA 
therapy

Target Start date Status

NCT03385148 Early 
Phase 1

Colorectal 
cancer

PTK7 2017/1/1 Unknown 
status

NCT01034410 Phase 2 AML Nucleolin 2010/1/1 Terminated

NCT00881244 Phase 1 Cancers Nucleolin 2003/9/1 Completed

NCT00740441 Phase 2 Renal cell 
carcinoma

Nucleolin 2008/8/1 Unknown 
status

NCT00512083 Phase 2 Leukemia Nucleolin 2007/7/1 Completed

NCT01486797 Phase 2 CLL CXCL12 2012/3/1 Completed

NCT01521533 Phase 2 MM CXCL12 2012/3/1 Completed

NCT01194934 Phase 1 HSCT CXCL12 2010/8/1 Completed

NCT00976378 Phase 1 HSCT CXCL12 2009/10/1 Completed

NCT04121455 Phase 1/2 Glioblastoma CXCL12 2019/9/12 Recruiting

NCT03168139 Phase 1/2 Cancers CXCL12 2017/4/18 Completed

NCT04901741 Phase 2 Pancreatic 
Cancer

CXCL12 2022/12/1 Not yet 
recruiting

Abbreviations: AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; HSCT, 
hematopoietic stem cell transplantation.

Table 4. 
Recent aptamer therapy in clinical trials.
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apoptosis [90–93]. Besides these protective effects, CXCL12 enhances the expansion 
of BMSC-dependent pre-B cell clones [94] as well as activates multiple pro-survival 
pathways associated with ERK1/2, STAT3 and AKT (Figure 3) [90, 95, 96].

Because CLL cells are attracted via CXCR4, the chemokine receptor of CXCL12, 
the first small molecule targeting the CXCL12-CXCR4 axis was developed. A mul-
ticenter phase 1 study of plerixafor in combination with the anti-C20 antibody 
rituximab was performed in 24 patients with relapsed/refractory CLL. In this study, 
a median 3.3-fold increase of CLL cells in the peripheral blood was observed after the 
first administration of plerixafor, strongly supporting the mobilizing capacity of the 
drug on CLL cells or the CXCL12-CXCR4 axis and suggesting that plerixafor would 
contribute to the sensitization of CLL cells [97].

Another therapeutic approach to target the CXCL12-CXCR4 axis is the blockade 
of CXCL12. However, CXCL12 is highly evolutionary conserved, which hinders 
the development of antibody-based drug development for CXCL12. NOX-A12 
(Spiegelmer), an RNA oligonucleotide successfully bypassed this issue by using 
a mirror image configuration of naturally occurring RNA. More specifically, the 
Spiegelmer technology enables an RNA oligonucleotide to bind target molecules 
with high affinity and specificity [98, 99]. The major merits of using a mirror-image 
configuration would be summarized as follows: (i) Spiegelmer is resistant to degrada-
tion by nucleases, (ii) Spiegelmer does not hybridize with native nucleic acids, (iii) 
Spiegelmer is immunologically “cold”. NOX-A12 is a Spiegelmer that was designed to 
bind and antagonize CLCX12.

After a phase 1 trial in healthy volunteers was completed, two clinical tri-
als were initiated. In a phase 1/2 trial (NCT01486797) [100], 28 patients with 
relapsed/refractory CLL were treated with NOX-A12 (olaptesed pegol) in combina-
tion with bendamustine and rituximab (BR). NOX-A12 was well-tolerated and 
there was no additional toxicity when patients were treated in combination with 

Figure 3. 
Schema representing the roles of the CXCL12-CXCR4 axis in CLL. Constitutively secreted CXCL12 from the bone 
marrow stromal cells attract CLL cells via the chemokine receptor CXCR4, which creates leukemic niche in the 
bone marrow. Molecularly, CXCR4 activates the downstream multiple cancer-associated pathways such as PII3K/
AKT/mTOR, RAS/RAF/MEK/ERK and NF-κB pathways.
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chemoimmunotherapy. In addition, an overall response rate of 8%, including a 
complete response of 11% was obtained, with a median PFS of 15.4 months and 
a 3-year OS of >80%. These results compare favorably with those reported by BR 
alone and other recent BR combination trials [100–102], warranting further clinical 
development.

Similarly, NOX-A12 was evaluated in 28 patients with relapsed/refractory multiple 
myeloma (MM) in phase 2 clinical trial (NCT01521533) [103]. This was based on the 
scientific observations that CXCL12 plays an essential role in supporting myeloma 
cells in the bone marrow microenvironment and in mobilizing myeloma cells to the 
peripheral [104, 105]. Patients with MM were treated with NOX-A12 alone for 2 weeks 
in the pilot phase, followed by the combination treatment (NOX-A12 + bortezomib 
and dexamethasone) for up to 8 cycles. There were no unexpected adverse events. The 
overall response rate was 68%, including a complete response of 7% and a very good 
partial response of 18%. The median PFS and OS were 7.2 months and 28.3 months, 
respectively. Given that overall response rates in the previous MM studies of bort-
ezomib and bortezomib-based combination treatment for relapsed/refractory MM 
patients were mostly within the range of 43–63% [106–111], the outcome of this 
phase 2 study is favorable. In addition, the overall response rates of CXCR4 inhibitor 
ulociplumab or plerixafor with bortezomib + dexamethasone were 40% and 51%, 
respectively [112, 113], suggesting that NOX-A12 is a promising approach to target the 
CXCL12-CXCR4 axis in MM. The results of these clinical trials emphasize the impor-
tance of further evaluation of NOX-A12 in MM.

4. Conclusion

Numerous efforts to develop RNA therapeutics against cancers have been made as 
we partly introduced in this chapter. Although there is currently no approval of RNA 
therapeutics in oncology, some of the phase 2 studies yielded promising results, which 
greatly encourages investigators in the field. On the other hand, oligonucleotide drug 
delivery has now almost matured to the position of clinical utility (there are excellent 
reviews on this topic such as [39, 114]). Therefore, it is possible that the outcome of a 
previously failed oligonucleotide therapeutic could be improved with the use of next-
generation oligonucleotide or with a novel drug delivery system. These developments 
would provide expectation that RNA therapy for many cancers will be soon available 
through the use of precision genetic medicine.
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RNA Interference Applications  
for Machado-Joseph Disease
José M. Codêsso, Carlos A. Matos and Clévio Nóbrega

Abstract

Machado-Joseph disease (MJD), also named spinocerebellar ataxia type 3 (SCA3), 
is a dominantly inherited neurodegenerative disease caused by abnormal CAG 
expansions in MJD1 gene, which translate to an overexpanded tract of glutamines in 
the ataxin-3 (ATXN3) protein. Since the identification of the causative gene, a huge 
effort was made toward the development of animal models for MJD/SCA3, to increase 
the understanding of the molecular mechanisms underpinning disease pathogenesis, 
and to develop therapeutic strategies for the disease. Nevertheless, until now there are 
no therapies available capable of stopping or delaying the disease progression, which 
culminates with the death of the patients. Therefore, there is an urgent unmet need 
for therapeutic solutions, for which gene therapy stands out. The RNA interference 
(RNAi) mechanism discovery allowed the identification of small RNA molecules 
with the ability to regulate gene expression. For gene therapy, RNAi provided a way to 
silence mutant genes, which are particularly useful in dominantly inherited diseases. 
In the last years, several studies have focused on using RNAi molecules to target 
mutant ATXN3. The results showed that this could be an efficient and safe strategy for 
modifying MJD/SCA3 progression. Now, an additional effort must be done to  
translate these results into clinical trials.

Keywords: Machado-Joseph disease/spinocerebellar ataxia type 3, ataxin-3, RNA 
interference technology, (non-) allele-specific gene silencing, exogenous small 
interfering RNAs, short hairpin RNAs, artificial microRNAs, microRNA mimics

1. Introduction

1.1 Machado-Joseph disease

Machado-Joseph disease (MJD), also named spinocerebellar ataxia type 3 (SCA3), 
is an inherited and rare neurodegenerative disease, usually with adult-onset, and is 
considered the most common autosomal dominant ataxia worldwide. It is part of the 
group of polyglutamine (polyQ ) disorders. The group currently includes nine disor-
ders — Huntington’s disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), 
spinal and bulbar muscular atrophy (SBMA), and six different spinocerebellar 
ataxias (SCA1/2/3/6/7/17). These disorders are caused by abnormal expansions of the 
CAG trinucleotide in the coding region of the causative genes, which are translated 
into abnormally long polyQ tracts in the respective proteins [1–4]. MJD/SCA3 was 
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initially described in Portuguese descendants in the United States. Among SCAs, its 
relative frequency is higher in countries such as Brazil [5], Portugal [6, 7], China [8], 
Germany [9], and Japan [10, 11]. In the Azores islands, the disease has the highest 
prevalence registered worldwide (1:140 on the small island of Flores) [12].

The main clinical manifestation of MJD/SCA3 is progressive cerebellar 
ataxia – motor incoordination that can affect balance, gait, and speech [13]. Other 
symptoms of the disease include a pyramidal syndrome with brisk deep tendon reflexes 
and spasticity; peripheral neuropathy with amyotrophy; oculomotor abnormalities 
with nystagmus, eyelid retraction and progressive external ophthalmoplegia; facial and 
lingual fasciculation; and extrapyramidal signs like dystonia and rigidity [14–18]. The 
neurodegenerative process in MJD/SCA3 affects multiple neuronal systems, particularly 
cerebellum, brainstem, basal ganglia, spinal cord, and some cranial nerves [19, 20].

MJD/SCA3 is caused by the abnormal expansion of the CAG trinucleotide in the 
coding region of the MJD1 gene located on chromosome 14q32.1 [21]. The number of 
repeats is about 10–51 in healthy individuals and 55–87 in MJD/SCA3 patients, and there 
is a positive correlation between the CAG repeat number and both the severity and 
precocity of the symptoms, a neuropathological feature common to other polyQ disor-
ders [22–24]. The MJD1 gene encodes ataxin-3 (ATXN3), a protein whose biochemical 
function seems to be associated with the UPS [25, 26]. Some studies also suggest that 
ATXN3 is involved in the regulation of transcription and in DNA repair mechanisms 
[27–30]. Upon translation, the mutation results in an abnormally long polyQ tract at the 
carboxylic terminus of ATXN3. The mutant protein then acquires toxic properties and 
initiates a cascade of molecular mechanisms that culminate in neurodegeneration. An 
important neuropathological hallmark of MJD/SCA3 is the accumulation of neuronal 
insoluble aggregates containing the mutant ATXN3, predominantly in the nucleus, both 
inside and outside of the areas affected by neurodegeneration. That is a key feature of 
all polyQ diseases [31–33].

There is no cure for MJD/SCA3. However, several therapeutic strategies (Figure 1) 
have been developed to counteract the disease pathogenesis at different stages, namely 
RNA interference (RNAi)-based approaches. Considering the pathological features, the 
strategies involve targeting (i) mutant mRNA, (ii) mutant protein aggregation,  
(iii) toxic proteolytic cleavage of mutant protein, (iv) protein clearance pathways 
(autophagy and ubiquitin-proteasome system), (v) posttranslational modifications, (vi) 
transcriptional dysregulation, (vii) mitochondrial dysfunction, (viii) calcium homeo-
stasis, and (ix) neuroprotective pathways. In quite general terms, the RNAi technology 
constitutes a powerful tool that allows targeting the mutant ATXN3 mRNA, thereby 
controlling the mutant ATXN3 protein expression [34].

1.2 RNA interference mechanism

All scientific discoveries have precedents, and the RNAi mechanism was no excep-
tion. In the late 1980s and early 1990s, plant biologists, trying to genetically increase 
the purple pigmentation of petunias’ flowers, were surprised when they noticed, not 
as expected, that introducing multiple extra copies of a gene that codes for “purple 
flowers,” via Agrobacterium, led to plants with white or variegated flowers. Somehow, 
the introduced extra copies of the gene had silenced both themselves and the plants’ 
own “purple-flower” gene [35, 36]. An explanation for these observations remained 
elusive until 1998 when Fire, Mello, and colleagues discovered the RNAi mechanism. 
The authors reported a selective and efficient silencing of a target gene using an exog-
enous and naked double-stranded RNA (dsRNA), in a sequence-specific manner, in 
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Caenorhabditis elegans. Additionally, they also observed that the dsRNA was substan-
tially more effective at silencing the gene than was the corresponding single-stranded 
(ssRNA) antisense strand individually [37]. Regarding the petunias’ experiments, the 
multiple copies of the gene introduced in the plant genome led to the generation of a 
homologous dsRNA, which, subsequently, mediated the silencing of both introduced 
and endogenous genes [38, 39].

Since then, the discovery of the RNAi mechanism, numerous studies have 
furthered our understanding of the RNAi mechanism, and how RNAi could be an 
extremely useful experimental tool for learning what genes do and for the develop-
ment of potential therapeutic strategies.

1.2.1 Endogenous RNA interference mechanism

The endogenous RNAi mechanism is an evolutionarily conserved process used 
by cells to regulate gene expression. In general terms, the naturally occurring key 
molecules of the endogenous RNAi mechanism are categorized into three classes: 
microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs), and 
PIWI-interacting RNAs (piRNAs). The most extensively studied class is the class 
of the miRNAs. All those regulatory RNAs are small noncoding RNAs that have a 
particular homology for specific genes, and a wide variety of expression patterns, 
especially in a time and a cell or tissue-dependent manner [40–42].

Figure 1. 
Schematic representation of possible MJD/SCA3 therapeutic strategies, especially detailing the non-
pharmacological approaches [34].
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The endogenous RNAi mechanism (Figure 2) has been deeply implicated in several 
aspects of animal and plant development and their regular physiological function-
ing, namely cell differentiation, cell proliferation, and cell death. It has been involved 
in the pathophysiological processes of numerous diseases, as well. Additionally, the 
endogenous RNAi mechanism also provides antiviral “molecular defense” response 
and restricts “genomic parasites,” such as transposable elements. It is known that 
RNAi can effectively protect hosts against viruses, by intercepting and inhibiting viral 
transcripts through miRNAs. RNAi can also protect cells against transposable ele-
ments, both by degrading the transcripts of transposable elements and by preventing 
the expression of transposable elements through heterochromatin formation [43–46].

In animals, the miRNA pathway, the most notorious pathway, can be divided 
into multiple steps. Initially, in the nucleus, the miRNA genes are transcribed into 
long primary transcripts, the primary miRNAs (pri-miRNAs), that have a stem-loop 
structure flanked by single-stranded regions corresponding to the 5′ end (with 
7-methylguanosine) and 3′ end (with the poly-A tail). The transcription is generally 
processed by RNA polymerase II [47, 48]. Then, the pri-miRNAs are cleaved at the 
opposite extremity of the loop by Drosha, a ribonuclease type III (RNase III), gener-
ating miRNA precursors, the precursor miRNAs (pre-miRNAs), which maintain the 
stem-loop structure but with a 2-nucleotide 3′ overhang. During the process, Drosha 
forms an enzymatic complex with another protein, the dsRNA-binding protein 
DiGeorge syndrome critical region gene 8 (DGCR8), that stabilizes the pri-miRNAs. 
The complex mentioned above is known as a microprocessor [49–52]. Additional 
proteins, such as the enhancer of the rudimentary homolog (ERH), can also interact 
with the microprocessor, modulating its catalytic activity [53].

Still in the nucleus, the pre-miRNAs associate with the dsRNA-binding protein 
exportin-5 that transfers them to the cytoplasm, in the presence of the Ras-related 

Figure 2. 
Overview of the RNAi pathway depicting the two principal sub-pathways: the miRNA pathway and the siRNA 
pathway.
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nuclear- GTP-binding protein (Ran-GTP) [54, 55]. After the hydrolysis of GTP, the 
pre-miRNAs are released and intercepted by a cluster of proteins containing the 
RNase III Dicer and the dsRNA-binding proteins HIV-1 transactivating response 
(TAR)- RNA-binding protein (TRBP) and protein kinase R (PKR) activator (PACT). 
Dicer recognizes the 2-nucleotide 3′ overhang of the pre-miRNAs (through its 
Piwi-Argonaut-Zwille (PAZ) domain, an RNA-binding domain) and cleaves the loop 
extremity. That originates miRNAs duplexes of approximately 21–23 nucleotides in 
length (on each strand) harboring 2-nucleotide 3′ overhangs at both extremities. The 
proteins TRBP and PACT stabilize the pre-miRNAs during the process [56–59].

After the previous processing step catalyzed by Dicer, the cluster of proteins con-
taining Dicer, TRBP, and PACT provides a structural landing platform for the recruit-
ment of another protein, argonaute (habitually argonaute-2), which associates with 
the miRNA duplexes, recognizing the 2-nucleotide 3′ overhangs (like Dicer, argonaute 
has a PAZ domain). Altogether, the proteins above are the major members of the RNA-
induced silencing complex (RISC), which mediates later the messenger RNA (mRNA) 
silencing. The RISC becomes active when only one of the strands of the miRNA 
duplexes (guide strand, antisense strand, mature miRNA, or simply miRNA or miR) 
remains associated with argonaute. The other strand (the passenger strand, the sense 
strand) is removed and rapidly degraded [60–62]. If the nucleotide-pairing between 
the two strands of the miRNA duplexes is imperfect, it seems to be argonaute itself, 
through its endonucleolytic strand-dissociating activity, which dissociates the guide 
strand and the passenger strand (the most likely pathway since the miRNA duplexes 
frequently have mismatches). If the nucleotide-pairing is perfect or near-perfect, it is 
suggested that RNA helicases, through their strand-unwinding activity, separate the 
two strands [63–65]. Experimental evidence suggests that miRNA duplexes dissocia-
tion starts at the extremity with the lowest thermodynamic stability. The strand that 
has its 5′ end at this extremity is the one that preferentially remains associated with 
argonaute, and acts later as a guide strand in the mRNA silencing [66].

The final step of the miRNA pathway occurs when the miRNAs bound to argo-
naute selectively recognize and bind to the target mRNAs, and then the miRNAs-
mRNAs macrostructures are degraded. The specificity of the mRNA recognition 
derives primarily from the high-level complementarity of the nucleotide sequence 
comprising the nucleotides 2–8 of the 5′ end of the miRNAs, known as seed region, 
with the 3′ untranslated region (UTR) of the mRNAs (in general, but the miRNAs can 
also target coding regions). Moreover, some experimental data revealed an additional 
nucleotide sequence in the miRNAs, termed supplementary region, comprising at 
least the 13–16 nucleotides, that seems to be equally important in the specificity of 
the mRNA recognition, given the high-level complementarity with the 3′ UTR of the 
mRNAs, as well. The importance increases when the complementarity of the seed 
region is suboptimal. As a rule, except for the localized nucleotide sequences men-
tioned above, the complementarity of the remaining nucleotides of the miRNAs with 
the 3’ UTR of the mRNAs is partial, and the occurrence of mismatches and bulges 
is common and naturally tolerated [67–70]. After the miRNAs selectively recognize 
and bind to the target mRNAs, the miRNAs-mRNAs macrostructures, along with 
argonaute, are transported to cytoplasmic compartments called processing bodies 
(P-bodies) that promote its degradation. In this way, the miRNAs lead to the silencing 
of the target mRNAs, inhibiting the translation (or, in fact, leading to the silencing of 
the corresponding genes) [71, 72].

Considering the endo-siRNA pathway, in animals, there are several dsRNAs 
sources, which constitute endo-siRNAs precursors and ultimately originate 
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endo-siRNAs. These sources include i) pairs of transposable element transcripts, 
which are formed by two transcripts from a single transposable element bi-direc-
tionally transcribed [73, 74]; ii) pairs of cis-natural antisense transcripts (cis-NATs), 
which are formed by two overlapping transcripts from the same genomic locus) [75]; 
iii) pairs of trans-NATs (also known as gene-pseudogene pairs), which are formed by 
two overlapping transcripts from distinct genomic loci, usually a gene mRNA and a 
pseudogene transcript [76]; and iv) hairpin RNA transcripts with stem-loop struc-
ture, which result from the transcription of long inverted repeats [77]. The endo-
siRNAs precursors are long dsRNAs and, once in the cytoplasm, they are processed by 
Dicer into smaller endo-siRNAs duplexes of around 20–23 nucleotides in length (on 
each strand). After the RISC assembly and the subsequent strand selection, the endo-
siRNAs bound to argonaute selectively recognize and bind to the target RNAs, such as 
transposon transcripts or endogenous mRNAs. Then, the endo-siRNAs-RNAs macro-
structures are directly cleaved by argonaute in the RISC. This differs from the miRNA 
pathway due to the high-level complementarity of the entire nucleotide sequence of 
the endo-siRNAs with the target RNAs [78–81].

The piRNA pathway was originally described in the Drosophila germline, and 
it has several features that distinguish it from miRNA and endo-siRNA pathways. 
First, in Drosophila, specific genomic loci, such as piRNA clusters, are transcribed 
into long antisense single-stranded piRNA precursors. After being transported to 
the cytoplasm, the endonuclease Zucchini (Zuc) (or mitochondrial phospholipase 
D6-MitoPLD — in mice and humans) processes the piRNA precursors into mature 
antisense piRNAs of approximately 25–33 nucleotides in length [82–85]. Then, the 
antisense piRNAs are loaded into PIWI proteins, a subgroup of argonaute proteins, 
and depending on the PIWI protein involved, the piRNAs have different fates. 
piRNAs bound to aubergine (Miwi in mice and Hiwi in humans) participate in a 
posttranscriptional gene silencing of target RNAs in the cytoplasm, such as trans-
poson transcripts. In contrast, piRNAs bound to PIWI (Miwi2 in mice and Hiwi2 in 
humans) translocate to the nucleus and, there, promote transcriptional gene silenc-
ing. As a rule, the posttranscriptional gene silencing mediated by piRNAs is a slicer-
dependent mechanism that depends on catalytically active aubergine. By contrast, 
the transcriptional gene silencing mediated by piRNAs does not involve the cleavage 
of the target. Instead, it leads to a target shutdown through chromatin modifications, 
such as repressive histone marks and DNA methylation [82, 83, 86–89].

During posttranscriptional gene silencing, additional antisense piRNAs are gener-
ated through an amplification mechanism termed the ping-pong cycle. In the cyto-
plasm, aubergine, through its normal slicer activity, naturally generate transposon 
transcript fragments that are used in the ping-pong cycle as sense piRNAs intermedi-
ates. Following a maturation process, which includes trimming to the appropriate 
length, the sense piRNAs intermediates originate mature sense piRNAs. Then, the 
sense piRNAs are loaded into the PIWI protein argonaute-3 (Mili in mice and Hili in 
humans) that subsequently cleaves the piRNA precursors, producing more antisense 
piRNAs with sequences identical, or near-identical to the original triggers. The ping-
pong cycle continues with the aubergine loading once again [82, 83, 90–92].

1.2.2 RNA interference mechanism mediated by artificial RNA effector molecules

The endogenous RNAi mechanism can be artificially triggered to induce specific 
gene silencing by different RNA effector molecules: exogenous (exo)-siRNAs, short 
hairpin RNAs (shRNAs), artificial miRNAs, and miRNA mimics [93]. The exo-siRNAs 
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are usually double-stranded molecules of around 21–23 nucleotides in length, chemically 
synthesized, and their guide strand has full complementarity with the target mRNAs. 
The delivery occurs using non-expression-based systems, including nanoparticles, such 
as lipid-based nanoparticles or polymer-derived nanoparticles. The exo-siRNAs are 
designed to mimic miRNA duplexes and enter the endogenous RNAi mechanism upon 
being loaded into the RISC in the cytoplasm. Following the strand selection, the passenger 
strand is degraded, whereas the guide strand bound to argonaute associates with specific 
complementary mRNAs, targeting them for direct cleavage by argonaute [94, 95]. The 
exo-siRNAs can be incorporated into stem-loop structures and originate shRNAs, when 
integrated into an artificial stem-loop, mimicking pre-miRNAs, or artificial miRNAs, 
when integrated into a backbone that derives from a natural pri-miRNA backbone, mim-
icking a pri-miRNA. Like exo-siRNAs, the guide strand of shRNAs and artificial miRNAs 
typically has full complementarity with the target mRNAs. Both molecules are delivered 
by expression-based systems, such as plasmids or viral vectors. Following viral-mediated 
transduction and subsequent transcription within the nucleus, the shRNAs are translo-
cated to the cytoplasm by exportin-5. Then occurs Dicer processing and incorporation 
into the RISC. The next steps are like those of exo-siRNAs. In turn, the artificial miRNA 
genesis is most upstream and requires an additional step — Drosha processing within the 
nucleus [96, 97]. The miRNA mimics are synthetic double-stranded molecules compris-
ing a guide strand that is designed to recognize and bind to a target mRNA with partial 
complementarity, as a mature miRNA. In fact, the guide strand typically corresponds 
to a naturally occurring mature miRNA, for a proper miRNA replacement and a natural 
mode of action silencing target mRNAs. The miRNAs mimics can be directly delivered 
by non-expression-based vectors or delivered by expression-based vectors. Depending 
on the delivery method, the miRNA mimics enter the endogenous RNAi mechanism as 
mentioned for the previous effector molecules [98, 99].

A possible categorization of the delivery systems is to divide them into expression-
based vectors and non-expression-based vectors. The expression-based vectors are 
considered much more efficient, especially the viral vectors, by allowing the effector 
molecules to permanently silence a target gene upon one single administration. In 
contrast, the non-expression-based vectors are generally safer and easier to produce. 
Their transient nature allows an interruption of the administration [100].

Although RNAi technology has a widely recognized potential as a therapeutic 
strategy, its efficiency has been questioned due to unintended effects that culminate 
in cell dysfunction or even animal death [101]. The cytotoxic effects include i) the 
saturation of the endogenous RNAi processing machinery, which derives from the 
overexpression of the effector molecules [101, 102]; ii) the induction of the immune 
response, due to the activation of cellular sensors that typically recognize foreign 
RNA and DNA, which then leads to the production of proinflammatory cytokines 
and interferons [103, 104]; and iii) potential off-target effects, which in general derive 
from unintended interactions between the guide strand of the effector molecules and 
other transcripts containing complementary sequences [105, 106].

2.  Therapeutic strategies for Machado-Joseph disease based on RNA 
interference

MJD/SCA3 is caused by a specific genetic mutation — a CAG repeat  expansion — 
in the coding region of the MJD1 gene, similar to other polyQ disorders on their 
causative genes, which trigger various pathogenic mechanisms. Due to their dominant 
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monogenic nature, RNAi technology provides a great opportunity to inhibit the 
mutant gene expression, at the earliest steps, over the mRNA, which could prevent 
the disease onset or progression. RNAi technology establishes not only a way to 
inhibit the toxic effects of the mutant protein, but also a way to inhibit the probable 
toxic effects of the mutant RNA [107]. Indeed, RNA toxicity has emerged as a crucial 
factor in the pathogenesis of polyQ disorders [108]. In MJD/SCA3, some studies have 
reported a mutant ATXN3 RNA-derived toxicity in Drosophila, Caenorhabditis elegans, 
and different mouse models [109–111].

Considering all this, several therapeutic strategies for MJD/SCA3 based on RNAi have 
been conceived, involving gene silencing mediated by exo-siRNAs and shRNAs (Table 1) 
and gene silencing mediated by artificial miRNAs and miRNA mimics (Table 2).

2.1  Exogenous small interfering RNA and short hairpin RNA-mediated gene 
silencing

The gene silencing mediated by exo-siRNAs and shRNAs, applied to MJD/SCA3, 
can be divided into two distinct categories: (i) non-allele-specific gene silencing and 
(ii) allele-specific gene silencing. The non-allele-specific silencing constitutes the 
most straightforward methodology, and unselectively silences both wild-type and 
mutant genes. On the other hand, allele-specific silencing is a more accurate method-
ology that allows the selective silencing of the mutant gene. The allele distinction is 
particularly important when the wild-type protein is essential for cellular function. To 
accomplish the allele distinction, differences between both transcripts of the genes, 
such as single-nucleotide polymorphisms (SNPs) and the CAG repeat itself, are used 
to design the effector molecules [128, 129].

2.1.1 Non-allele-specific gene silencing

In a non-allele-specific gene silencing approach on MJD/SCA3, following in vitro 
validation of its efficacy, a shRNA designed to target both human wild-type and 
mutant ATXN3 proved to be safe and efficient in a lentiviral rat model. This lentiviral 
model was generated through the stereotaxic injection of lentivirus encoding the 
human mutant ATXN3 in the striatum of wild-type animals. The administration of 
the shRNA encoded by lentivirus led to a reduction of the human mutant ATXN3 
levels and to a significant decrease of the neuropathological inclusions [112].

In another study, an exo-siRNA targeting the CAG repeat expansion and delivered 
by a liposome-based vector strongly reduced both mutant ATXN3 and wild-type 
ATXN3 protein levels, in MJD/SCA3 patient-derived fibroblasts. Furthermore, similar 
results were obtained for huntingtin, in a HD context, with the same exo-siRNA. 
It shows that a gene silencing approach targeting the CAG repeat expansion can be 
beneficial for different polyQ diseases [113].

Mouse and Caenorhabditis elegans knockout models for ATXN3, created to evaluate 
the physiological functions of this protein, showed to be viable and to have no major 
abnormalities [130, 131]. Nevertheless, a cellular experiment with a similar intent 
revealed that the absence of ATXN3 impacts the expression of a large set of genes 
involved in multiple signaling transduction pathways, and that may result in detri-
mental consequences [132]. Altogether, the experimental data above suggest that the 
optimal and safest gene silencing approach for MJD/SCA3 may be an allele-specific 
silencing of the mutant ATXN3, whenever possible, maintaining the endogenous 
ATXN3 functional.
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Effector molecule Allele 
specificity

Expression system Delivery system Reference

shRNA Non-allele-
specific

HEK 293T1 cell model 
and lentiviral mouse 
model

Transfection and 
lentivirus-mediated 
transduction

[112]

exo-siRNA targeting CAG 
repeat expansion

Non-allele-
specific

Patient-derived 
fibroblasts

Transfection [113]

exo-siRNAs and shRNAs 
targeting G/C SNP

Allele-specific COS-72 cell model Transfection and 
adenovirus-mediated 
transduction

[114]

exo-siRNA targeting G/C 
SNP

Allele-specific HEK 293T cell model Transfection [115]

shRNA targeting G/C SNP Allele-specific HEK 293T cell model, 
lentiviral rat and mouse 
models, and transgenic 
mouse model

Transfection and 
lentivirus-mediated 
transduction

[116–118]

exo-siRNA targeting G/C 
SNP

Allele-specific Neuro2a cell model, 
lentiviral and transgenic 
mouse models

SNALP-mediated 
transfection

[119]

exo-siRNAs targeting CAG 
repeat expansion

Allele-specific Patient-derived 
fibroblasts

Transfection [120]

shRNA targeting CAG 
repeat expansion

Allele-specific Patient-derived 
fibroblasts

Lentivirus-mediated 
transduction

[121]

ss-exo-siRNAs targeting 
CAG repeat expansion

Allele-specific Patient-derived 
fibroblasts

Transfection [122]

1Human embryonic kidney 293T (HEK293T)
2CV-1 simian cells transformed by an origin-defective mutant of SV40 (COS-7)

Table 1. 
exo-siRNA and shRNA-mediated gene silencing approaches for MJD/SCA3.

Effector molecule Allele 
specificity

Expression system Delivery system Reference

Artificial miRNA 
targeting 3′ UTR of 
ATXN3

Non-allele-
specific

Transgenic mouse 
model

AAV-mediated 
transduction

[123, 124]

Artificial miRNAs 
targeting exons within 
ATXN3

Non-allele-
specific

Heterozygous 
knock-in mouse 
model

AAV-mediated 
transduction

[125]

miR-25 mimic (Naturally) 
non-
specific

HEK 293T1 cell 
model

Transfection [126]

mir-9, mir-181a and 
mir-494 mimics

(Naturally) 
non-
specific

HEK 293T cell model 
and lentiviral mouse 
model

Transfection and 
lentivirus-mediated 
transduction

[127]

1Human embryonic kidney 293T (HEK293T)

Table 2. 
Artificial miRNA and miRNA mimic-mediated gene silencing approaches for MJD/SCA3.
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2.1.2 Allele-specific gene silencing

Extensive efforts on MJD/SCA3 have been made toward allele-specific silencing 
of the mutant ATXN3. Several allele-specific approaches have been focused on a SNP 
(G987GG → C987GG) located at the 3′ end of the gene, in linkage disequilibrium 
and immediately following the CAG repeat expansion. The wild-type ATXN3 gene 
has a G at position 987, whereas the mutant ATXN3 gene has a C at that position. All 
the remaining sequence is identical in both genes. The G/C SNP is present in approxi-
mately 70% of MJD/SCA3 patients [133–135]. Taking into consideration the G/C 
SNP, Miller and colleagues designed exo-siRNAs and shRNAs encoded by plasmids or 
adenovirus, and then accomplished an allele-specific silencing of the mutant ATXN3 
in cell cultures, with the three experimental systems. The mutant ATXN3 levels were 
effectively reduced, the accumulation of aggregated protein decreased and only 
slight effects on the wild-type ATXN3 levels were detected [114]. Similarly, Li and 
colleagues also created an exo-siRNA targeting the G/C SNP that led to a reduction of 
the mutant ATXN3 levels, with minimal impact on the wild-type ATXN3 levels, in a 
cellular model [115].

Later it was demonstrated in rodent models of MJD/SCA3 that it is possible to 
selectively and efficiently silence the mutant ATXN3 in vivo, using a shRNA delivered 
by lentivirus targeting the G/C SNP. Lentiviral rat and mouse models, were generated 
through the stereotaxic injection of lentivirus in the striatum and in the cerebellum, 
respectively, allowing to evaluate neuropathological features before the onset of 
the symptoms. In these models, a significant improvement in the associated neuro-
pathological deficits upon silencing of the mutant ATXN3 was observed, namely less 
intranuclear inclusions, preservation of neuronal markers, and less neurodegenera-
tion [116, 117]. The study using the rat lentiviral model established the first proof-of-
concept for allele-specific gene silencing in the central nervous system (CNS) [116]. 
The allele-specific gene silencing in the cerebellum of the lentiviral mouse model 
also prevented the appearance of balance and motor coordination abnormalities and 
reduced the hyperactivity in the animals [117]. Additionally, in a severely impaired 
transgenic mouse model, especially useful for an evaluation after the disease onset, 
it was observed a rescue of the disease-associated motor disabilities and mitigation 
of the neuropathological deficits [118]. Moreover, considering the numerous reports 
of cytotoxic effects associated with the RNAi technology, the safety profile of the 
previously developed and tested shRNA, delivered by a lentivirus, was assessed. Upon 
brain injection, the stable and long-term expression of the shRNA in the striatum of 
wild-type mice did not lead to toxic effects. Indeed, no abnormal neuronal dysfunc-
tion, astrocytic activation, microglial activity and proinflammatory cytokines release, 
off-target effects or saturation of the endogenous RNAi processing machinery was 
detected five months after the injection of the lentiviral vectors. Similar results were 
obtained in human cell cultures for potential off-target effects and saturation of the 
endogenous RNAi processing machinery. This well-structured and complete study 
constitutes an important step in a future translation of gene silencing as therapy for 
MJD/SCA3 [136].

In a less invasive approach, following the validation of its efficacy in neuronal 
cells, an exo-siRNA, encapsulated in SNALPs, targeting the G/C SNP was admin-
istered intravenously in two different mouse models of MJD/SCA3 (lentiviral and 
transgenic mouse models). The SNALPs had covalently attached to the surface a small 
peptide derived from rabies virus glycoprotein (RVG-9r) that confers brain-targeting 
capability (ability to cross the blood-brain barrier (BBB); -RVG counterpart), as well 
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as improves the cellular uptake and the cytosolic release (-9r, nine arginines coun-
terpart). The administration of the exo-siRNA encapsulated in SNALPs resulted in a 
selective and efficient silencing of mutant ATXN3, a reduction of the neuropathologi-
cal inclusions, and an improvement of the motor behavior deficits [119].

Differently, and in a G/C SNP-independent manner, some allele-specific 
approaches have been focused on the CAG repeat expansion. Several mismatch-
containing exo-siRNAs delivered by a liposome-based vector and targeting the CAG 
repeat expansion successfully decreased the mutant ATXN3 protein levels, in MJD/
SCA3 patient-derived fibroblasts, with minor effects on the wild-type ATXN3 levels 
[120]. Another study, also targeting the CAG repeat expansion, tried to develop 
an allele-specific approach for four polyQ diseases — MJD/SCA3, SCA7, HD, and 
DRPLA. The strategy demonstrated the efficacy and allele selectivity of a shRNA 
delivered by lentivirus in the silencing of all four mutant proteins, including the 
mutant ATXN3, using patient-derived fibroblasts. Additionally, an evaluation of 
potential off-target effects revealed that the shRNA does not induce a significant 
degradation of other complementary transcripts [121].

An alternative approach reported a potent and allele-selective inhibition of the 
mutant ATXN3 expression using chemically modified single-stranded exo-siRNAs 
(ss-exo-siRNAs) targeting the CAG repeat expansion, in MJD/SCA3 patient-derived 
fibroblasts. It was also observed that the ss-exo-siRNAs, which were delivered by a 
liposome-based vector, bind to argonaute (argonaute-2) and promote its recruit-
ment to the ATXN3 mRNA, validating the involvement of the RNAi pathway in the 
gene silencing mediated by ss-exo-siRNAs. Besides the RNAi mechanism, a non-
RNAi-related process was found to affect the gene expression after the addition of 
the ss-exo-siRNAs, the alternative splicing, which is a typical mode of action of the 
antisense oligonucleotides (ASOs). Altogether, this approach shows that chemically 
modified ss-exo-siRNAs have properties of conventional exo-siRNAs and ASOs. 
Like exo-siRNAs, the ss-exo-siRNAs can operate through the RNAi pathway, and like 
ASOs, the ss-exo-siRNAs are single-stranded, simplifying their synthesis and chemi-
cal modification, and can trigger the alternative splicing [122].

2.2 Artificial microRNA and microRNA mimic-mediated gene silencing

As previously mentioned, an artificial miRNA consists of an exo-siRNA and a 
scaffold based on a natural pri-miRNA [97]. Considering that, similarly to exo-siR-
NAs, the gene silencing mediated by artificial miRNAs can be divided into non-allele-
specific or allele-specific gene silencing. In a non-allele-specific approach, an artificial 
miRNA targeting the 3′ UTR of ATXN3 mRNA and delivered by adeno-associated 
virus (AAVs) was able to decrease efficiently the human mutant ATXN3 expression 
in the cerebellum of a transgenic mouse model of MJD/SCA3 [123, 124]. It was also 
observed less neuronal nuclear accumulation of the mutant ATXN3. In addition, the 
silencing of the mutant ATXN3 resulted in a partial normalization of the endogenous 
miRNA steady-state levels in mice. Although the mouse wild-type ATXN3 expression 
has not been affected in vivo, the artificial miRNA led to a significant reduction of the 
human wild-type ATXN3 expression in human cell cultures [123]. Furthermore, the 
administration of the artificial miRNA encoded by AAVs was not neurotoxic and did 
not lead to signs of astrogliosis or microgliosis [124]. In another non-allele-specific 
gene silencing approach, artificial miRNAs were engineered to target several exons 
within the ATXN3 mRNA. Based on their silencing efficacy in cell cultures, the three 
most promising candidates encoded by AAVs were further tested in human induced 
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pluripotent stem cell (iPSC)-derived neurons and in a heterozygous knock-in mouse 
model of MJD/SCA3. It was observed an efficient reduction of the mutant ATXN3 
expression, as well as a reduction of the wild-type ATXN3 expression, in vivo and in 
vitro, respectively. No evidence for off-target effects or saturation of the endogenous 
RNAi processing machinery was found in human iPSC-derived neurons. In addition, 
the authors demonstrated in a large mammal, the minipig, that an intrathecal admin-
istration of AAVs (AAV serotype 5) can simultaneously transduce the cerebellum and 
brain stem, the main areas affected in MJD/SCA3 patients [125].

Some miRNA screening studies on MJD/SCA3 have shown that the expression of 
several miRNAs is dysregulated and closely associated with the neuropathology in 
SCA3/MJD [137, 138]. Since the miRNA mimics are generated to behave as endog-
enous miRNAs, and its guide strand is designed to correspond to a naturally occurring 
mature miRNA, the miRNA mimics are particularly useful to restore the function 
of a miRNA downregulated in a disease condition [98, 99]. That was accomplished 
on MJD/SCA3 using miR-25, which was found to be significantly downregulated in 
the serum of patients. Following transfection, the upregulation of miR-25 strongly 
reduced both the mutant ATXN3 and wild-type ATXN3 levels, by interacting with 
the 3′ UTR of the mRNA, in human cell cultures. miR-25 also decreased protein 
aggregation, suppressed early apoptosis, and increased cell viability [126]. A different 
study identified three miRNAs — mir-9, mir-181a, and mir-494 — whose expression 
is downregulated in human MJD/SCA3 iPSC-derived neurons and other MJD/SCA3 
cellular and animal models. All of them interact with the 3′ UTR of the mRNA and 
are highly expressed in the brain. The reestablishment of the three miRNAs, encoded 
by plasmids or lentivirus, led to an efficient reduction of human mutant ATXN3 levels 
in human cell cultures and a lentiviral mouse model, and a decrease of the protein 
aggregation and neuronal dysfunction in the lentiviral mouse model. The upregula-
tion of mir-9 and mir-181a also affected the mouse wild-type ATXN3 levels in vivo. 
Additionally, the authors verified that the absence of the 3’ UTR of the ATXN3, as a 
binding site for endogenous miRNAs, and the genetic and pharmacologic blockage of 
the miRNA biogenesis exacerbate the pathologic features of MJD/SCA3, in vitro and/
or in vivo [127].

Another interesting but different study, based on a miRNA overexpression but not 
using miRNA mimics, performing an enhancer-promoter (EP) screen for modifiers 
through overexpression, showed that the miRNA bantam is a potent modulator in the 
neuropathology of MJD/SCA3 in a Drosophila model. The upregulation of the miRNA 
bantam suppressed the degenerative eye phenotype induced by the mutant ATXN3 
toxicity. Surprisingly, miRNA bantam had no effect on the mutant ATXN3 protein 
levels. It was also verified that compromising the miRNA pathway/miRNA processing 
dramatically enhances the degeneration in the eyes of the Drosophila model and cell 
death in a human cell model of MJD/SCA3 [139]. Even though the miRNA bantam is 
not conserved between Drosophila and mammals, this study, together with the previ-
ous ones, suggests that the miRNA pathway/miRNAs have an important role in the 
neuropathology of MJD/SCA3.

3. Conclusions

An enormous effort was made by researchers to develop several gene silencing 
strategies based on RNAi molecules for MJD/SCA3. The results obtained decisively 
point to a huge therapeutic potential of these molecules. Overall, most of the studies 
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showed both using allele or non-allele-specific strategies that various pathological 
features are mitigated, including in rodent models. Additionally, in several of these 
studies, the safety profile of the RNAi molecules was also assessed, corroborating 
their safety and increasing their therapeutic value. Nevertheless, an additional effort 
must be made to translate these preclinical results to human clinics, starting with 
their testing in clinical trials (searching on clinicalstrials.gov, there are no RNAi-based 
clinical trials yet). The approval in Europe and the US of an RNAi-based gene therapy 
for hereditary amyloid transthyretin (hATTR) amyloidosis, ONPATTRO® (pati-
siran), opens the way for these therapies and provides new hope for the RNAi-based 
gene therapies for MJD/SCA3 and other polyglutamine diseases.
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