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Chapter 1

Picocyanobacteria in Surface Water 
Bodies
Alejandra Sandoval Valencia, Lisseth Dahiana Salas,  
María Alejandra Pérez Gutiérrez, Luisa María Munera Porras 
and Leonardo Alberto Ríos-Osorio

Abstract

Cyanobacterial harmful algal blooms (CyanoHABs) in lentic, low tidal water bod-
ies with high concentrations of easily assimilated nutrients have generated worldwide 
concern. However, CyanoHABs often formed from a variety of lesser-known taxa, 
such as nanocyanobacteria and picocyanobacteria, which are characterized as 
numerous and ubiquitous in diverse environments. Studies indicate that some taxa of 
picocyanobacteria can produce toxins. However, their identification through conven-
tional methods is limited by their size and physiological plasticity, recently molecular 
methods have been chosen for more reliable results. This systematic review aims to 
summarize the results of original research articles on predominant picocyanobacte-
ria in surface water bodies collected in indexed journal articles and gray literature. 
The methodology used consisted of searching for original publications in 3 specific 
databases and one general, using thesauri and free terms; the articles were filtered by 
previously defined inclusion and exclusion criteria. Thirty-four articles were selected 
and analyzed. The results show that the predominant picocyanobacteria in freshwater 
systems belong to the genus Synechococcus, reported in oligotrophic systems and 
capable of producing cyanotoxins. Likewise, from 2015 to 2019, the largest number 
of publications on this topic was obtained, mainly in countries such as China and the 
United States, which invest in research resources.

Keywords: cyanobacteria, cyanoHAB, freshwater, picocyanobacteria, surface water

1. Introduction

In recent years, the excessive growth of phytoplanktonic organisms in reservoirs, 
lagoons, and in general, in lentic, low-tide water bodies with a high concentration 
of phosphate and nitrogenous nutrients, which are easily assimilated, has generated 
worldwide concern [1, 2]. Physical factors such as temperature, solar radiation, wind, 
rain, water column stratification, water flow, or biological interactions with other 
organisms, among others, play an important role in the so-called cyanobacterial 
harmful blooms (CyanoHAB) [3, 4].
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CyanoHABs can be defined as events in which visually noticeable turbidity of the 
water occurs due to a rapid accumulation of cyanobacterial cells, often at the water 
surface, but sometimes deeper in the water column [3, 5]. These blooms have the 
potential to generate a variety of adverse effects due to their ability to produce toxins 
[6, 7] that, in turn, cause negative impacts on animals, including humans, aquatic eco-
systems, the economy, drinking water supply, real property values, and recreational 
activities, including swimming and commercial and recreational fishing [8, 9].

CyanoHAB-forming cyanobacteria are often accompanied by a variety of lesser-
known taxa that contribute greatly to the total cyanoHAB biomass, such as nanocya-
nobacteria and picocyanobacteria [10]; e.g., Vardaka et al. [11] have described blooms 
composed of multiple species.

Picocyanobacteria are bacteria that play a key role in primary production and 
dominate phytoplankton biomass in both oligotrophic and eutrophic waters [12, 13]. 
They are the smallest cell-sized, most numerous, and ubiquitous cyanobacteria in 
freshwater, marine, and even in environments with high salt concentrations [14]. 
Among the cyanobacteria are the so-called planktonic picocyanobacteria; micro-
organisms that are part of the smallest aquatic plankton and are often associated 
with various species [15]. In freshwater, the main representatives are the genera 
Synechococcus, Cyanobium, and Synechocystis, and in brackish water, Synechococcus and 
Prochlorococcus predominate [13, 16].

Although this group of microorganisms is ubiquitous and causes environmental 
concerns, it is still understudied [13]. Much research continues to use microscopy 
techniques that require long processing times and can produce erroneous results 
[17] since picocyanobacteria are difficult to observe and most of the time are found 
forming groups or present diverse biological forms ranging from single cells to 
microcolonies [18]; besides, their physiological or epigenetic plasticity means that 
cyanobacteria with the same genotype can appear very different due to the external 
factors to which they are influenced [19]. This is determined by the growth condi-
tions, adaptations, and expansion of the cells in response to the stay in complex 
communities and fluctuating environments [20].

Recently, attempts have been made to study picocyanobacteria through molecular 
techniques by amplification and sequencing of the 16S rRNA gene or next-generation 
sequencing (NGS), which allows obtaining results quickly, with high sensitivity and 
high detection efficiency [21]. However, research aimed at describing picocyanobac-
teria present in surface waters is atomized, moreover, it is limited and there are no 
current review articles focused on this. Therefore, this study aims to summarize the 
results of original research articles on the predominant picocyanobacteria in surface 
water bodies collected from indexed journal articles and gray literature involving the 
molecular identification of picocyanobacteria. It also provides an understanding of 
the factors that influence the predominance of picocyanobacteria in these environ-
ments, such as trophic status and the method of molecular identification, as well as 
research trends and the countries that contribute most to this field of research.

2. Materials and methods

2.1 Data collection

This research was conducted as described in the PRISMA Declaration [22]. Thus, 
for the development of this study, a systematic literature search was carried out in 
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three bibliographic databases: Scopus, ScienceDirect, and Scielo, which articles are 
part of publications in indexed journals [23]; in addition, the Google Scholar search 
engine was used, focused and specialized in the search for scientific-academic content 
and bibliography that includes gray literature defined by Garousi et al. [24] as: “litera-
ture that is not formally published in sources such as books or journal articles”. This 
allowed an exhaustive search, broadening the information to be analyzed.

Keywords were defined using free terms and the Agrovoc and DeCS thesauri to 
increase the sensitivity of the search: picocyanobacteria, freshwater, sweetwater, 
small cyanobacteria, reservoirs, dams, lakes, lagoons, and small blue-green algae. 
At the same time, Boolean operators (AND and OR) were used to logically connect 
concepts or groups of terms and to quickly broaden, specify, limit, and define the 
search (Table 1) see annex.

We then proceeded to eliminate duplicate articles using the free tool Zotero-5.0.93. 
Three investigators independently applied the inclusion and exclusion criteria 
presented in Table 2 (see annex) to the resulting articles to avoid bias and ensure 
reproducibility of the selection.

2.2 Data analysis

The statistical program R Studio® (V 3.6.1) was used to perform the descriptive 
analysis of the collected data. A database was created using Microsoft Excel where 

(“Picocyanobacteria” AND lakes OR lagoons AND Freshwater)

(“Picocyanobacteria” AND reservoirs OR dams AND freshwater)

(“Picocyanobacteria” OR “smallest cyanobacteria” AND freshwater)

(“Smallest Cyanobacteria” AND lakes OR lagoons AND freshwater)

(“Picocyanobacteria” OR “smallest cyanobacteria” AND lagoons OR lakes AND freshwater)

(“Small blue-green algaes” AND “freshwater” OR “sweet water”)

(“Small blue-green algaes” AND “lakes” OR “lagoons”)

(“Small blue-green algaes” AND “reservoirs” OR “dams”)

(“Smallest cyanobacteria” AND “reservoirs” OR “dams”)

(“Smallest cyanobacteria” AND “freshwater” OR “sweet water”)

(“Smallest cyanobacteria” AND “lagoons” OR “lakes”)

(“Picocyanobacteria” AND “reservoirs” OR “dams”)

Table 1. 
Searches applied for the selection of articles in the three databases used.

Inclusion criteria Exclusion criteria

Original article in english Brackish water bodies

Molecular identification of picocyanobacteria Use of collection strains

Field collected sample

Table 2. 
Inclusion and exclusion criteria established and applied to each article for eligibility.
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certain attributes of the research were recorded, such as year of publication, the country 
where the article was published, journal, picocyanobacteria species, water body, trophic 
state, and picocyanobacteria molecular identification method. Particularly, using this 
database, the relative and absolute frequencies of the number of publications of pico-
cyanobacteria per year, the number of publications per country, and the number and 
species of picocyanobacteria most frequently found were determined, as well as some 
factors related to the prevalence of picocyanobacteria in surface water bodies.

The free software VOSviewer (V 1.6.14) was used to analyze the data on the 
frequencies of index and author keywords to determine the most frequent keywords 
researched in the articles included in the systematic review and thus identify trends in 
research on the topic.

3. Results

3.1 Search strategy and articles obtained

A total of 371 articles were obtained from the databases (Scopus: 251, 
ScienceDirect: 118, and Scielo: 2) and 57 articles from the Google Scholar search 
engine. A total of 243 duplicate articles were deleted, resulting in a total of 185 articles 
subject to eligibility. After applying the inclusion and exclusion criteria, 34 articles 
were filtered out (Figure 1) see annex.

3.2 Articles description

Table 3 shows the detailed information of each of the articles: year of publication, 
authors, journal in which it was published, the molecular method applied for the identifi-
cation of picocyanobacteria, and type of water body where the research was carried out.

Figure 1. 
Flowchart of the research search strategy. Source: own elaboration through the application diagrams.net.
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N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

1 Sedimentary 
DNA record of 
eukaryotic algal 

and cyanobacterial 
communities in a 

shallow Lake driven 
by human activities 
and climate change

2021 Hanxiao 
Zhang, 

Shouliang 
Huo, Kevin 
M. Yeager, 

Fengchang Wu

Science of 
The Total 

Environment

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

2 Spatiotemporal 
variability of 

cyanobacterial 
community 

in a Brazilian 
oligomesotrophic 

reservoir: The 
picocyanobacterial 

dominance

2019 Ana María 
M. Batista, 
Alessandra 

Giani

Ecohydrology & 
Hydrobiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Reservoir

3 Insights into 
the evolution of 

picocyanobacteria and 
phycoerythrin genes 
(mpeBA and cpeBA)

2019 Patricia 
Sánchez 

Baracaldo, 
Giorgio 

Bianchini, 
Andrea 

Di Cesare, 
cristiana 

Callieri, Nathan 
A. M. Chrisma

Frontiers in 
Microbiology

DNA Extraction by 
PCR and Genome 

Sequencing

Lake

4 Metabarcoding reveals 
a more complex 
cyanobacterial 

community than 
morphological 
identification

2019 Xiao Chuang, 
LShouliang 

Huoa, Jingtian 
Zhanga, 

Chunzi Ma, 
Zhe Xiao, 
Hanxiao 

Zhang, Beidou 
Xi, Xinghui Xia

Ecological 
Indicators

DNA Extraction, 
Amplification, and 

Sequencing of the 16S 
rRNA Gene

Lake and 
Pond

5 High-throughput 
DNA sequencing 

reveals the 
dominance of pico- 

and other filamentous 
cyanobacteria in an 

urban freshwater 
Lake

2019 Li, H., Alsanea, 
A., Barber, M., 

Goel, R.

Science of 
the Total 

Environment

Sequencing of DNA 
by PCR

Lake

6 Seasonal succession 
and spatial 

distribution of 
bacterial community 

structure in a 
eutrophic freshwater 

Lake, Lake Taihu

2019 Zhu, C., Zhang, 
J., Nawaz, M.Z., 

Mahboob, S., 
Al-Ghanim, 
K.A., Khan, 
I.A., Lu, Z., 

Chen, T

Science of 
the Total 

Environment

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake
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N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

7 Seasonal succession 
and spatial 

distribution of 
bacterial community 

structure in a 
eutrophic freshwater 

Lake, Lake Taihu

2018 Zhu, C., Zhang, 
J., Nawaz, M.Z., 

Mahboob, S., 
Al-Ghanim, 
K.A., Khan, 
I.A., Lu, Z., 

Chen, T

Science of 
the Total 

Environment

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

8 Ecological and 
genomic features 

of two widespread 
freshwater 

picocyanobacteria

2018 Cabello-Yeves, 
P.J., Picazo, 

A., Camacho, 
A., Callieri, 
C., Rosselli, 

R., Roda-
Garcia, J.J., 

Coutinho, F.H., 
Rodriguez-
Valera, F.

Environmental 
Microbiology

Sequencing of DNA 
by PCR

Reservoir

9 Planktonic 
cyanobacteria from a 
tropical reservoir of 
Southeastern Brazil: 
A picocyanobacteria 
rich community and 

new approaches for its 
characterization

2018 Marcele Laux, 
Vera Regina 

Werner, 
Ricardo A. 
Vialle, José 

Miguel Ortega, 
Alessandra 

Giani

Nova Hedwigia Amplification of DNA 
by PCR

Reservoir

10 Novel Synechococcus 
genomes 

reconstructed from 
freshwater reservoirs

2017 Cabello-Yeves, 
P.J., Haro-

Moreno, J.M., 
Martin-

Cuadrado, 
A.-B., Ghai, 

R., Picazo, A., 
Camacho, A., 

Rodriguez-
Valera, F.

Frontiers in 
Microbiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Reservoir

11 Metagenomic analysis 
in Lake Onego 

(Russia) Synechococcus 
cyanobacteria

2017 Vasileva, A., 
Skopina, M., 
Averina, S., 

Gavrilova, O., 
Ivanikova, N., 

Pinevich, A

Journal of Great 
Lakes Research

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

12 Phenotypic plasticity 
in freshwater 

picocyanobacteria

2017 Huber, P., 
Diovisalvi, 
N., Ferraro, 
M., Metz, S., 
Lagomarsino, 

L., Llames, 
M.E., Royo-
Llonch, M., 

Bustingorry, J., 
Escaray, R.

Environmental 
Microbiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake
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N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

13 Microbial community 
structure and 

interannual change in 
the last epishelf lake 

ecosystem in the north 
polar region

2017 Taller, M., 
Vincent, W.F., 
Lionard, M., 

Hamilton, 
A.K., Lovejoy, 

C

Frontiers in 
Marine Science

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

14 Synechococcus 
diversity along a 

trophic gradient in 
the Osterseen Lake 

District, Bavaria

2016 Ruber, J., Bauer, 
F.R., Millard, 
A.D., Raeder, 
U., Geist, J., 

Zwirglmaier, K

Microbiology 
(United 

Kingdom)

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

15 CO2 alters 
picophytoplankton 

community structure 
in freshwater 
ecosystems

2016 Shi, X., Li, S., 
Wang, X., Liu, 

M., Kong, F.

Fundamental 
and Applied 
Limnology

DNA Sequencing of 
18S RNA Genes

Lake

16 Community analysis 
of picocyanobacteria 

in an oligotrophic 
lake by cloning 16S 
rRNA gene and 16S 

rRNA gene amplicon 
sequencing

2015 Fujimoto,N., 
Mizuno, K., 

Yokoyama, T., 
Ohnishi, A., 
Suzuki, M., 
Watanabe, 

S., Komatsu, 
K., Sakata, Y., 
Kishida, N., 
Akiba, M., 

Matsukura, S.

Journal of 
General and 

Applied 
Microbiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

17 Diversity of Lake 
Ladoga (Russia) 

bacterial plankton 
inferred from 

16S rRNA gene 
pyrosequencing: 
An emphasis on 

picocyanobacteria

2015 Skopina, M., 
Pershina, E., 

Andronov, E., 
Vasileva, A., 
Averina, S., 

Gavrilova, O., 
Ivanikova, N., 
Pinevich, A.

Journal of Great 
Lakes Research

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

18 Genetic diversity of 
picocyanobacteria 
in Tibetan lakes: 

Assessing the endemic 
and universal 
distributions

2014 Huang, S., Liu, 
Y., Hu, A., Liu, 

X., Chen, F., 
Yao, T., Jiao, N.

Applied and 
Environmental 
Microbiology

Amplification and 
Sequencing of the 16S 
and 23S rRNA Genes

Lake

19 Free-living and 
particle-associated 
bacterioplankton in 

large rivers of the 
Mississippi River 

basin demonstrate 
biogeographic 

patterns

2014 Colin R. 
Jackson, Justin 
J. Millar, Jason 

T. Payne, 
Clifford A. 

Ochs

Applied and 
Environmental 
Microbiology

DNA Extraction, 
Amplification, and 

Sequencing of the 16S 
rRNA Gene

River
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N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

20 Detection and 
expression of genes 

for phosphorus 
metabolism in 

picocyanobacteria 
from the Laurentian 

Great Lakes

2013 Kutovaya, 
O.A., McKay, 

R.M.L., 
Bullerjahn, G.S.

Journal of Great 
Lakes Research

Sequencing of DNA 
by PCR

Lake

21 Seasonal and 
Spatial Diversity of 
Picocyanobacteria 
Community in the 

Great Mazurian Lakes 
Derived from DGGE 

Analyses of 16S 
rDNA and cpcBA-IGS 

Markers

2013 Jasser, I., 
Królicka, A., 
Jakubiec, K., 

Chróst, RJ

Journal of 
Microbiology 

and 
Biotechnology

DGGE analysis of 
molecular markers 
derived from the 
16S–23S internal 

transcribed spacer 
(ITS) of the ribosomal 

operon.

Lake

22 Picocyanobacterial 
community structure 

and space–time 
dynamics in the 
subalpine Lake 

Maggiore (N. Italy)

2012 Callieri, C., 
Caravati, E., 
Corno, G., 
Bertoni, R.

Journal of 
Limnology

Amplification and 
Sequencing of the 16S 
and 23S rRNA Genes

Lake

23 Genome sequences of 
siphoviruses infecting 
marine Synechococcus 

unveil a diverse 
cyanophage group and 
extensive phage-host 

genetic exchanges

2012 Sijun Huang, 
Kui Wang, 

Nianzhi Jiao, 
Feng Chen

Environmental 
Microbiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Bay

24 Vertical and 
longitudinal 
distribution 

patterns of different 
bacterioplankton 
populations in a 

canyon-shaped, deep 
prealpine lake

2011 Salcher, M.M., 
Pernthaler, 

J., Frater, N., 
Posch, T.

Limnology and 
Oceanography

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

25 East Tibetan lakes 
harbor novel clusters 
of picocyanobacteria 

as inferred from 
the 16S–23S rRNA 

internal transcribed 
spacer sequences

2010 Wu, Q.L., Xing, 
P., Liu, W.-T.

Microbial 
Ecology

Fragment 
Polymorphism 

Analysis of 
16S–23S rRNA Internal 

Transcribed Spacer 
(ITS) PCR Amplicon

Lake

26 Photosynthetic 
picoplankton 

dynamics in Lake 
Tahoe: Temporal 
and spatial niche 

partitioning among 
prokaryotic and 
eukaryotic cells

2009 Winder, M. Journal of 
Plankton 
Research

Phycoerythrin (PE) 
and Chlorophyll 

(Chl) Fluorescence by 
Cytogram

Lake



9

Picocyanobacteria in Surface Water Bodies
DOI: http://dx.doi.org/10.5772/intechopen.105750

N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

27 High ratio of 
bacteriochlorophyll 
biosynthesis genes 

to chlorophyll 
biosynthesis genes 

in bacteria of humic 
lakes

2009 Eiler, A., Beier, 
S., Säwström, 

C., Karlsson, J., 
Bertilsson, S.

Applied and 
Environmental 
Microbiology

Sequencing of DNA 
by PCR

Lake

28 Lake superior 
supports novel clusters 

of cyanobacterial 
picoplankton

2007 Ivanikova, N.V., 
Popels, L.C., 

McKay, R.M.L., 
Bullerjahn, G.S.

Applied and 
Environmental 
Microbiology

Sequencing of 16S 
rRNA Gene and cpcBA 
Phycocyanin Operon 

Intergenic Spacer 
(IGS) Sequences

Lake

29 Photosynthetic 
characteristics and 

diversity of freshwater 
Synechococcus at 
two depths during 
different mixing 

conditions in a deep 
oligotrophic lake

2007 Callieri, C., 
Corno, G., 

Caravati, E., 
Galafassi, S., 

Bottinelli, M., 
Bertoni, R.

Journal of 
Limnology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

30 Abundance 
and diversity of 

picocyanobacteria in 
High Arctic lakes and 

fjords

2006 Patrick Van 
Hove, Warwick 

F. Vincent, 
Pierre E. 

Galand, Annick 
Wilmotte

Algological 
studies

DNA Extraction, 
Amplification, and 

Sequencing of the 16S 
rRNA Gene

Lake

31 Rapid establishment 
of clonal isolates of 

freshwater autotrophic 
picoplankton by 

single-cell and single-
colony sorting

2003 Crosbie, N.D., 
Pöckl, M., 
Weisse, T.

Journal of 
Microbiological 

Methods

Direct Sequencing of 
the 16S rRNA Gene 

and cpcBA-IGS Region

Lake

32 Dispersal and 
phylogenetic diversity 

of nonmarine 
picocyanobacteria, 
inferred from 16S 

rRNA gene and 
cpcBA-intergenic 
spacer sequence 

analyses

2003 Crosbie, N.D., 
Pöckl, M., 
Weisse, T.

Applied and 
Environmental 
Microbiology

Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake

33 Identification 
of cultured and 

uncultured 
picocyanobacteria 

from a mesotrophic 
freshwater lake 

based on the partial 
sequences of 16S 

rDNA

2001 Toshiya Katano 
Manabu Fukui 

Yasunori 
Watanabe

Limnology Amplification and 
Sequencing of the 16S 

rRNA Gene

Lake
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The number of publications per year ranged from 2001 to 2021. Of the 34 articles 
analyzed, it was found that 2019 was the year with the highest number of publica-
tions recorded on the subject, followed by 2017, which had five and four publications, 
respectively (Table 3) see annex. This is evidence that research on picocyanobacteria 
has increased in recent years.

In addition, Figure 2 (see annex) shows the countries with the greatest number 
of research projects developed for the study and identification of picocyanobacteria 
in the environments described above. Thus, the country where the institute or center 
where the research was carried out is located was identified. It is important to clarify 
that these countries corresponded to the sampling sites.

The countries with the highest number of research studies were China (7), United 
States (6), and United Kingdom (3). The countries with at least two publications were: 
Brazil, Canada, Spain, Italy, Japan, and Russia. Germany, Argentina, Switzerland, 
Sweden, Austria, and Poland had only one publication.

Figure 3 (see annex) shows the picocyanobacteria identified in the articles ana-
lyzed, showing that Synechococcus was the predominant genus in surface water bodies, 
with a frequency of 24 articles, followed by Cyanobium with a frequency of 4 articles.

N° Article name Year Author(s) Journal Molecular 
identification method

Water 
body

34 Systematics and 
ecology of chlorophyte 

picoplankton in 
German Inland waters 

along a nutrient 
gradient

2001 Dominik 
Hepperle., 

Lothar Krienitz

International 
Review of 

Hydrobiology

Amplification of DNA 
by PCR

Lake

Table 3. 
Summary of the results of each article selected for the research.

Figure 2. 
Countries where research studies on picocyanobacteria molecularly identified in surface waters have been carried 
out.Source: own elaboration through the software program Microsoft Excel.
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As shown in Figure 4 (see annex), oligotrophic lakes were the most studied for 
the identification of picocyanobacteria with a relative frequency of 32%, followed by 
oligomesotrophic lakes with 18.6% and mesotrophic and eutrophic lakes with 14% each.

3.3 Research topics on picocyanobacteria

The keyword mapping shows that the words: Cyanobacterium, Cyanobacteria, 
Synechococcus, Lake, Microbiology, 16S RNA, and Picocyanobacteria are the ones that 

Figure 3. 
Predominant picocyanobacteria in freshwater bodies. Source: own elaboration through the statistical tool RStudio.

Figure 4. 
Trophic state of the lakes studied in the articles of interest. Source: own elaboration through the statistical tool 
RStudio.
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show the highest tendency in the present research with a frequency in the number of 
articles of 22, 18, 16, 14, 11, 11 and 10, respectively (Figure 5) see annex.

4. Discussion

The databases used in this systematic review were Scopus, Science Direct, and 
Scielo, as mentioned above. Scopus was chosen because it is widely known as one 
of the largest databases of abstracts and citations of peer-reviewed literature and 
has many records in the science area. In addition, it is easy to export bibliographic 
information for further analysis [25]. Likewise, ScienceDirect is a database with 
an extensive record of article records in various areas of science [26]. In the case 
of Scopus, this database focuses more on article records of researchers from South 
American countries [27]. With the choice of these three databases, the aim was to 
address the largest number of research studies on picocyanobacteria worldwide, 
since this is a subject that has not been studied extensively, as has been recognized by 
several authors.

In this regard, and after conducting the search strategy, it was found that the 
ScienceDirect and Scopus databases provided the largest number of publications 
due to their worldwide positioning as indexed databases and their mainly English-
language journals. In addition, Scopus covers various areas of science, technology, 
medicine, social sciences, arts, and humanities [25]. Moreover, Sciencedirect is a 
database that also covers multidisciplinary scientific areas [28], however, it is limited 
to journals and books published directly by its publisher [29]. Therefore, although 
many of the articles included in this review were found, they did not exceed those 
found in Scopus [30].

Figure 5. 
Keyword mapping used in the search. Source: own elaboration through the application VOSviewer.
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In contrast, the Scielo open-access database, although it includes journals from all 
areas of science, only two articles associated with the topic were found in the search. 
This is since this database contains scientific articles published only in Latin America, 
and because it is a database that publishes mainly in Spanish and Portuguese [31].

There are different molecular techniques used for the identification of picocyano-
bacteria, in this review we found that the application of these techniques to character-
ize and amplify portions of the cyanobacterial genome has increased considerably in 
recent years. These techniques have proven to be valuable for comparing the struc-
tures of complex microbial communities, inferring phylogenetic relationships, and 
monitoring their dynamics in relation to environmental factors [32]. Cyanobacteria 
such as Synechococcus and Cyanoothece are particularly difficult to identify and clas-
sify [33], most molecular methods to identify them are based on total DNA or RNA 
extraction and amplification by PCR as shown in Table 3. However, there are biases 
related to the presence of PCR inhibitors and primer specificity and efficiency that 
can skew the results of community composition [33].

Concerning the number of annual publications obtained in the analyzed period 
(Table 3), there was consistency with the findings of Rousso et al. [4] in their 
research on predictive models for cyanobacterial blooms in freshwater lakes. They 
found that in the period between 2014 and 2019 the highest number of publications 
on cyanobacteria was reported, the same as this research, where it was found that 
between 2015 and 2019 the highest number of publications on picocyanobacteria 
was collected. However, the maximum number of publications found for the articles 
found that met the inclusion criteria was only 5 for the year 2019, indicating that 
there are still not many studies on picocyanobacteria [34]. Research on cyanobacteria 
appears to be strongly related to advances in monitoring technology, i.e., increased 
availability of data, knowledge of cyanobacterial ecology, physiology, and risks, 
among other factors [34]. Furthermore, due to the environmental problems associ-
ated with cyanobacteria and their potentially toxic blooms. Merel et al. [8] evidence 
that articles on cyanobacteria have increased significantly in the period 1995–2010, a 
trend that is expected to continue [8]. This systematic review shows that 2010 was a 
year where no significant reports on picocyanobacteria were found, which probably 
indicates that research is still focused on microplankton cyanobacteria instead of 
picocyanobacteria.

Regarding the countries where the studies were conducted, it was found that the 
United States and China have been outstanding countries for the number of scientific 
publications on cyanobacteria and their toxic blooms, this is demonstrated by the 
study conducted by Bertone [4], which analyzed the publications on CyanoHAB in 
different countries and found that most of the publications are focused on the United 
States, Northern Europe, Southeast China, Japan, and Oceania [4]. This result coin-
cides with that found in this study (Figure 2), where the highest number of scientific 
articles on picocyanobacteria have been published in the United States and China.

The concentration of publications in developed countries such as these may be 
related to their economy and extensive scientific resources, the provision of funds for 
research and development, and the availability of data used for these purposes [35]. 
Also, these countries have managed to develop specialized monitoring and control 
procedures for CyanoHAB from research [8, 36]. On the other hand, Ndlela [37], 
made an overview of cyanobacterial bloom occurrences and research in Africa during 
the last decade and found that the amount of information available on the continent 
on the subject is limited probably due to the general inadequacy of the infrastructure 
and its relation to civil wars [37].
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Regarding the most frequent genera, the genus Synechococcus was the most reported 
with a frequency of 24; this genus plays a fundamental role in the ecology of surface 
water bodies that are important human resources, being predominant in freshwater 
systems. Generally, picocyanobacteria of the genus Synechococcus, Prochlorococcus, and 
Cyanobium are designated as non-flourishing [38]. However, some strains of the genus 
Synechococcus can produce toxins such as β-N-methylamino-L-alanine (BMAA), and 
microcystin (MC) [39], which causes problems in the ecosystem and human health. 
Similarly, Gin [15] through his study showed that Synechococcus spp. could produce 
cylindrospermopsin (CYN) and anatoxin-a (ATX) which are alkaloids that can cause 
damage to mammalian organisms, this discovery has implications on the potential risk 
to freshwater resources that serve as drinking water supply [40].

Previous studies by Li [21] report that the prevalence of Synechococcus in water 
bodies is influenced by warm temperature, high nutrient level, and phosphorus 
limitation, comprising fractions of up to 80% of the total biomass of picocyanobac-
teria of a bloom [41]. Furthermore, the result obtained in this review agrees with that 
reported by Cabello [38], where it is confirmed that the genera Synechococcus and 
Cyanobium are the dominant picocyanobacteria in freshwater systems [42].

Prochlorococcus ranks third as one of the most frequently found picocyanobacteria 
in research. It inhabits the entire photic zone and can be found as deep as 200 m 
below the surface, being abundant in oligotrophic systems [43]. Prochlorococcus and 
Synechococcus can coexist in water bodies, but Synechococcus tolerates a wider tempera-
ture range, without being limited by temperatures as low as 2°C and is more ubiqui-
tous and has a wider latitudinal distribution [32].

It has been shown that the trophic state of water bodies influences the composi-
tion and abundance of picocyanobacterial communities. It was observed that the 
most studied lakes were those in an oligotrophic state, these lakes are characterized 
by being poor in nutrients and having low primary productivity [44], which limits 
the presence of a high microbial density and only those taxa that have adapted to 
these conditions can survive. Thus, picocyanobacteria of the genus Synechococcus are 
predominant in these systems, this is due to the ability of these picocyanobacteria 
to adapt to low light conditions, their affinity for orthophosphate and other sources 
of inorganic phosphorus, as well as their ability to store nitrogen in phycobilins that 
increase the competition of Synechococcus against algae and other bacteria, as stated 
by Vanstein [45]. The above is consistent with that reported by Joachim Ruber et al. 
[46], who describe this important genus as dominant in oligotrophic conditions, 
concluding that Synechococcus could be used as a bioindicator in such environments 
[46]. Besides, authors such as Rousso et al. [4] reported in a systematic review on 
CyanoHAB that more than 50% of the lakes investigated were eutrophic or hyper-
trophic and only 8% of the lakes were oligotrophic, reporting that the occurrence of 
CyanoHAB is related to the levels of nutrients present in the lakes [47].

In Figure 5, it is evident that the distance between two keywords demonstrates 
relative strength and similarity of topic and circles in the same color group suggest 
that a similar topic is being addressed among the publications [48]. Figure 5 shows 
that the most used keywords are: Synechococcus, microbial community, phylogeny, and 
16S rRNA, this shows us that more molecular identification strategies have been used 
recently for the identification of picocyanobacteria as cited by Demoulin et al. [49], 
who indicate that since the late 1990’s many phylogenetic studies based on 16S rRNA 
or specific protein have been published. Similarly, the results of the keywords are 
also observed in Figure 5, in which the most frequent words have been used a greater 
number of times in the articles. The total link strength attribute indicates when a 



15

Picocyanobacteria in Surface Water Bodies
DOI: http://dx.doi.org/10.5772/intechopen.105750

keyword is very important because it is identified to have had a lot of interaction with 
other keywords in the analyzed articles, the higher the value the stronger the link that 
exists between one word and another [50].

The findings of the current systematic review show the lack of research on 
picocyanobacteria in surface waters that allow understanding the importance they 
represent as beneficial microorganisms; standing out for being part of the primary 
producers, or harmful because they can produce toxic blooms. It was also evidenced 
that molecular identification methods of picocyanobacteria have recently begun to 
be highlighted in research methodologies, which shows a transition from traditional 
research to a more advanced one.

5. Conclusions

Although in the last two decades the identification of picocyanobacteria has 
increased due to the implementation of new automated methods and molecular 
techniques, studies aimed at identifying them in surface water bodies intended 
for recreational use or drinking water supply are still incipient, which is possibly 
explained by the difficulty in their characterization and rapid physiological plastic-
ity. The predominant genus of picocyanobacteria in this systematic review was 
Synechococcus, a producer of toxic compounds, which generates an alert and highlights 
the importance of advancing in the implementation of protocols for sampling and 
identification of these bacteria for epidemiological surveillance.

The countries where more studies on cyanobacteria were conducted were the United 
States and China since these are developed countries that invest their resources in 
education and research and can develop specialized monitoring and control procedures 
for CyanoHAB from their scientific resources. Therefore, there is a need for further 
research in this area, to use the information for further studies and decision making.
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Chapter 2

Removal of Microcystins
from Drinking Water by
Electrocoagulation: Upscaling,
Challenges, and Prospects
Stephen Opoku-Duah, Dennis Johnson, Dan Blair
and Jeff Dimick

Abstract

Microcystins (MCs) belong to a family of stable monocyclic heptapeptide
compounds responsible for hazardous toxins in drinking water. Although several
methods have been applied to remove MCs from drinking water (e.g., activated
carbon filtration, ion exchange resins, high-pressure membranes, and electrochemis-
try), upscaling laboratory experiments to benefit municipal water treatment is still a
major challenge. This chapter is a follow-up study designed to test three electrocoa-
gulation (EC) techniques for decomposing MC by UV-ozone purification (labora-
tory), electrocoagulation (field unit), and coupled UV-ozone-electrocoagulation
(municipal treatment). The chemistry and efficiency of the treatments were first
examined followed by comparison with activated carbon filtration. Electrocoagulation
outperformed activated carbon filtration by nearly 40%. When the laboratory
treatments were evaluated at the municipal scale, effectiveness of the technique
deteriorated by 10–20% because of UV pulse dissipation, vapor-ion plasma under-
functioning, and limitations of polymer fiber filters. We confirmed previously
published studies that pollutant coagulation and MC decomposition are affected by
physicochemical factors such as radiation pulse density, electrical polarity, pH, and
temperature dynamics. The results have relevant applications in wastewater
treatment and chemical recycling.

Keywords: microcystins, drinking water, UV-ozone purification, electrocoagulation,
municipal, coupled UV-electrocoagulation

1. Introduction

Cyanobacteria (also called cyanotoxins) in drinking water is a global concern
because of their hazardous effects on human and animal health [1–3]. Microcystins
(MCs) are a common source of cyanotoxins. MCs are produced by a variety of
cyanobacteria including Microcystis spp, Anabaena spp, and Planktothrix spp, and to a
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lesser extent Dolichospermum spp., Geitlerinema spp., Leptolyngbya spp., Pseudanabaena
spp., Synechococcus spp., Spirulina spp., Phormidium spp., Nostoc spp., Oscillatoria spp.,
and Radiocystis spp. [4]. Microcystis aeruginosa is the most common species of
cyanobacteria found in freshwaters around the globe and has been associated with a
number of human, livestock, and wildlife poisoning [5, 6].

M. aeruginosa commonly produces microcystin-LR (MC-LR) (Figure 1) which is
the most toxic and most prevalent of the over 100 identified variants [4, 5]. All MCs
share a common structure including a cyclic heptapeptide containing three D-amino
acids (alanine, glutamic acid, and methylaspartic acid), two “unusual” amino acids
(N-methyldehydroalanine and 3-amino-9- methoxy-2,6,8-trimethyl-10-phenyldeca-
4,6-dienoic acid (ADDA)), and two variable L-amino acids (X and Z) [7]. MC-LR
contains leucine and arginine in the X and Z positions, respectively, and accounts for
99% of total harmful algal blooms [8]. Other less common variants include MCLA,
MC-YR, MC-RR, MC-LF, and MC-LW. They are believed to have lower toxicity than
MC-LR [6]. MC-LR’s biochemistry and toxicity are attributed to the ADDA moiety
and its stereochemistry [9, 10]. Mechanistically, MC-LR targets hepatocytes in the
liver and enters the cells by active transport aided by anion-transporting polypeptides
[11, 12]. Next, the MC-LR binds strongly and irreversibly to serine or threonine
protein phosphatases coded as PP1 and PP2A, which subsequently result in enzyme
inhibition [13]. Given their importance in cell function and cell regulation, inhibition
of PP1 and PP2A can result into hyper-phosphorylation of proteins and cytoskeletal
filaments, which can induce apoptosis. MC-LR ingestion may also result in DNA
damage, cell proliferation, and possible tumor promotion [12]. Acute toxicity can
result in liver inflammation, hemorrhaging, and extensive hepatic bleeding. Death
may occur due to liver failure at high or prolonged exposure.

MC-LRs are water-soluble and stable and demonstrate slow natural degradation
(half-life = 10 weeks) in polluted water. The molecule is complex and heat-resistant
making it toxic even after boiling. Although hard to remove by conventional water

Figure 1.
General structure of microcystin-LR.
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treatment, MC can rapidly degrade when exposed to UV radiation with wavelengths
close to the absorption peak. Due to the presence of carboxyl, amino, and acylamino
groups, MCs have been observed to ionize at temperatures above >40°C and in
extreme acid-base media (pH <1.0 or pH >9.0) [9, 14, 15].

The distribution of MC in the US is a serious environmental health problem.
Jenssen [16] has reported a wide range of MC concentration (12.5–225.6 μg/L) in
multiple US communities. Environmental problems in the Wood County (West Vir-
ginia) and Mercer County (Ohio) closely reflect the national situation. Water quality
data monitored between 2015 and 2019 by the EPA revealed that MC load in the
Grand Lake St. Mary ranged from 0.0 to 79.7 μg/L, compared with the tolerable limit
of 1.0 μg/L [17]. Similar data have been reported concerning the Ohio River Valley in
West Virginia [16]. As mentioned before, UV exposure and electrocoagulation (EC)
are useful methods for MC removal because of the capability to split their C–N bonds
using electrical energy [15, 18, 19].

Recently, Folcik and Pillai [14] demonstrated the effectiveness of high-energy
electron technology (advanced oxidation-reduction process) in degrading MC
pollutants. The technology utilized accelerators to generate highly energetic
electrons from regular electricity to create redox species to damage contaminants
[20]. Similar examples of radiation technologies employed 60Co gamma rays to
inactivate MC multiplication [21–23]. Despite their effectiveness, these technologies
are expensive and hi-tech and generally lack practical applications. Nevertheless,
one of the techniques that are growing in popularity for MC decomposition is
electrocoagulation [15].

Electrocoagulation (EC) employs the principles of electrochemistry for water
treatment. It involves sacrificial corrosion of the electrodes (anode) to release active
coagulant precursors (e.g., Al3+ or Fe2+) into solution. At the cathode, hydrogen gas
evolves from electrolytic reactions. EC equipment can theoretically be scaled for any
size and is not too difficult to operate. Recent technical improvements combined with
a growing need for small-scale water treatment facilities have amplified interest in EC
applications. Nonetheless, only a few studies have focused on the question of scale to
demonstrate how laboratory filtration can be upgraded to municipal treatments. In
addition, elucidating the key components that control EC production and MC removal
efficiency is of paramount interest. Some of the factors that require illumination
include current density, electrical polarity, and acid-base equilibria [24]. We hypoth-
esize that a coupled UV-electrocoagulation process will completely remove MC from
contaminated drinking water. We also predict that laboratory EC techniques are
scalable to municipal purification cognizant that strong water treatment oxidizers like
ozone are obtainable from the system’s vapor-ion plasma. The aim of this study is to
(1) examine the operability and efficiency of cheap laboratory EC units for removing
MC from drinking water, (2) test the scalability of laboratory EC filtration to munic-
ipal treatments, (3) evaluate the efficiency of the EC results against commercial water
filtration (granulated activated carbon), and (4) examine the effects of radiation
density, electrical polarity, pH, and temperature on the ionization of MC pollutants.
The study will raise questions about electrocoagulation and industrial chemical
recycling.

The chapter is structured in the following way. The first part reviews the literature
on MC decomposition followed by description of the EC technique including the key
components of the electrical units, electrodes activation, and reaction chemistry. The
second section discusses the EC methodology followed by data generation, data anal-
ysis, and EC scalability. The final part examines the factors controlling EC physics,
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including radiation density, electrical polarity, pH, and temperature. The final section
also discusses the economy of the new EC method.

2. Materials and methods

2.1 Equipment and raw materials

The basic raw material is surface and groundwater samples from the Mid-Ohio
River Valley in Parkersburg (West Virginia) and untreated water from the Grand St.
Mary’s Lake in Celina (Ohio). The illustration in Figure 2a represents the experimen-
tal design describing the general process of treating contaminated water using electri-
cal energy. Figure 2b displays the laboratory-built UV-ozone water purification
prototype, consisting of a 100-gallon plastic tank batch reactor fitted with an ionized
nitrogen-oxygen (NI-OX) generator. The device is also fitted with a small fractional
horsepower delivery compressor and 1-μm electron separation porous cellulose fiber
water filter. Using basic engineering ideas, the unit was powered by a 110-V electrical
source with the generator fastened to the tank cover and connected to a 1-μm polar-
ized polymer filter suspended 10 inches above the inside base of the tank. The filter
was connected to a fine bubble aeration diffuser using a half-inch poly tubing
designed to eliminate debris, suspended solids, and microcystins pollutants. The prin-
cipal component of the generator is a UV radiation lamp (λ = 155 nm) capable of

Figure 2.
(a) Schematic of the electrocoagulation purification system; (b) UV-ozone filtration unit; (c) Electrocoagulation
unit; and (d) Coupled UV-ozone-electrocoagulation filtration system.

24

Cyanobacteria – Recent Advances and New Perspectives



splitting ambient gases (e.g., O2 and N2) into monoatomic-charged particles using
ultraviolet ionizing energy and magnetic emission.

Figure 2c is a modified version of the prototype in Figure 2b designed to suit field
conditions. It consists of a 400-gallon steel tank powered by a high-amperage (250 A),
low-voltage generator (40 V) constructed to provide energy via switching polarity
from direct current electric discharge. A characteristic component is 34 pairs of
submerged anode and cathode crosslinked aluminum electrodes secured over a steel
tank (Figure 2c). Crosslinked electrodes are the main reason for the (switching)
reverse polarity. The coagulator works by establishing an intense electromagnetic
field creating simultaneous oxidation-reduction reactions. An attached high-pressure
pump was designed to channel polluted water over the metal plate contact areas.
Treated water was pumped into a clean glass tank before samples are drawn for
testing.

The third equipment (Figure 2d) is a coupled UV-EC (UV-ozone-EC) system,
designed to mimic an industrial treatment system, with capacity to purify approxi-
mately 10,000 gallons of contaminated water within 12 h. Table 1 shows a summary
of technical characteristics of the EC processing system.

2.2 Experimental methods

Raw water and treated water samples were tested at the Industrial Chemical
Laboratories, LLC (ICL) of Denver (CO). ICL is a specialized facility for testing
chemical and biological pollutants in drinking water and wastewater including
cyanobacteria. The samples were tested every 10 min for 90 min and analyzed using
the Agilent 1100 tandem high-performance liquid chromatography-mass spectrome-
ter (HPLC-MS). The glassware was thoroughly washed and rinsed with methanol and
distilled water to prevent cross-contamination. The samples were first filtered with
Whatman filter paper (1.2 μm) and chilled overnight at �20°C to dilute concentration
of the pollutants. The filtrate was dissolved in 400 μL methanol and treated with a
2 mg/L sodium thiosulfate and acidified with trifluoroacetic acid (TFA, 0.1%, v/v),

Scale Raw
Water
Sample

(Gallons)

Pump
Horse-
power

Energy
from

Generator

Minimum Time
of Microcystin
Decomposition

(Minutes)

Maximum Time
of Microcystin
Decomposition

(Minutes)

Water treatment
method

Voltage
(Volts)

Electrical current
(Amperes)

UV-ozone
ionization

Labo-
ratory

90 1.5 9 80 20 50

Electro-
coagulation

Field 400 2.5 24 160 10 30

UV-
ozone-electro-
coagulation

Muni-
cipal

10,000 3.5 32 250 50 50

Activated carbon Field 5 Not
applicable

Not
applicable

Not applicable 60 60

Table 1.
Characteristics of the water treatment techniques.
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concentrated via solid phase cartridges (SuperClean LC-18, 3 mL tube), and eluted
with 15 mL of 0.1% TFA in methanol. Aliquots of 20 μL were injected into system’s
column (150 � 4.60 mm) at a flow rate of 1 mL/min at 30°C column temperature. The
mobile phase consisted of H2O plus 0.05% TFA and acetonitrile plus 0.05% TFA with
a linear increase from 30 to 70% of the latter between 0 and 30 min. Chromatograms
were recorded at 238 nm based on the literature. UV spectra and all chromatographic
peaks were examined and compared to spectra standards of MC moieties. Peaks
possessing the UV spectrum characteristic for MCs were quantified using a calibration
curve. Unidentified peaks possessing the UV spectrum characteristic for MC but not
matching the retention time of the standards were determined as MC-LR equivalents
with a detection limit of 0.01 μg/L [25]. To understand seasonal variations, MC
distribution was measured seven consecutive days in spring, summer, and fall and a
regional mean calculated (Table 2).

The UV-ozone ionization reaction process was produced following the reactions
below. Charged nitrogen particles were activated to release of free electrons (e�) to
accelerate oxygen ionization:

N2
UV
MagE

Nαþ �Nα� e�

O2ionized
free electron e�½ � plus accelerating ionized O2ð Þ:

(1)

The oxygen radiation produced ozone vapor, ionized ozone, and superoxide ions
and dissociated into more singlet oxygen (Eq. 2), resulting in a chain reaction of high-
energy ionized oxygen in (Eq. 3):

O2
UV
MagE

O3
UV
MagE

! O3
þ $ O�

3
UV
MagE

! O�
2 superoxide ionð Þ (2)

O� O� � þxO� � O� sin gletð Þ � UV þ electrons
MagE

�O� �O� �O �O�
x

� �� �O� chainð Þ

(3)

The reaction of singlet oxygen (or chained ionized oxygen) with water was gener-
ated to produce high concentrations of hydrogen peroxide and/or hydroxide ions as
saturated water produces excess peroxyl-reactive (oxidizing, disinfecting, and coagu-
lating) ionized water in the subsequent reactions:

xO�
2 þH2O

e�

stream
! xH2O2 $ xOH� þ xOH�

2 scavengerð Þ (4)

O�
2 þH2O

e�

MagEΔT
! H2O2 (5)

Thermal reaction of hydrogen peroxide and ozone was created to release free
electrons and trioxidanes, superoxide ions, and peroxone Eqs. (6)–(8). The charged
nitrogen and superoxide ions in aqueous solution were designed to produce additional
free electrons, dinitrogen tetraoxide (nitroxyl ions), and hydroxide ions toxic to
cyanobacteria:

H2O2 þ O3
e�

MagEΔT
! H2O3 þ O�

2 (6)
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O3 þH2O2
e�

ΔT
! H2O5 (7)

Nþ
2 þ 3O�

2 þ 2H2O
e�

MagEΔT

�O2 �Nþ
2 �O�

2 þ 4OH� (8)

The electrocoagulation reverse polarity reaction follows an electrolytic procedure
[26]. The primary reactions at the anode and cathode are described in Eqs. (9)–(13):

2H2O lð Þ ! O2 gð Þ þ 4Hþ aqð Þ þ 4e� Anode (9)

4H2O lð Þ þ 4e� ! 2H2 gð Þ þ 4OH� aqð Þ Cathode (10)

6H2O lð Þ ! 2H2 gð Þ þO2 gð Þ þ 4Hþ aqð Þ þ 4OH� aqð Þ Overall (11)

4Hþ þ 4OH� aqð Þ ! 4H2O lð Þ (12)

2H2O lð Þ ! 2H2 gð Þ þO2 gð Þ (13)

While reductants (free electrons) are released from the anode, oxidants and floc-
culation aggregates (e.g., H2O2, Al(OH)3, Al2O3) are generated at the cathode as
shown in Eqs. (14)–(18):

Xe� þH2O ���������!Metal Electrodes H2↑þ O2↑ ������!Electrons O� �O� �O�
x Oxidationð Þ (14)

������!Electrons OH� þH2O2 (15)

������!Electrons Al OHð Þ3↓ (16)

������!Electrons Al2O3↓ (17)

������!Electrons ElectrophilicþNucleophilic cleavage of C� F bonds (18)

The pollutant removal efficiency (% r) was calculated using Eq. (19) as follows:

%r ¼ C0� Ct
C0

� �
x 100% (19)

where C0 is the initial concentration of pollutant and Ct is the concentration of
pollutant at time t.

To initialize the EC process and augment flocculent formation, about 80 g of
potassium aluminum sulfate dodecahydrate (KAl2(SO4)2.12H2O) (potash alum) solu-
tion was used both as an electrolyte and coagulant following previous experiments by
Johnson [26]. Finally, treated water samples were compared with data from a com-
mercial gravity block ionic adsorption unit fitted with granular activated carbon filters
and coated by silver-impregnated ceramic outer shells. The experimental results are
discussed in the subsequent section.

3. Results and discussion

3.1 Electrocoagulation and scalability

The results in Figure 3 displays microcystin (MC) response to laboratory UV
exposure compared with field and municipal electrocoagulation (EC). To determine
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the EC production efficiency, MC filtration data were compared with the WHO’s
maximum contaminant level of 1.0 μg/L. While the laboratory and field experiments
decomposed MC within 10–20 min, the municipal system disrupted MC bonds after
50 min. Multiple reasons can explain this. The first one is a technical challenge. As
expected, building and testing the 10,000-gallon reactor (Table 1) was more arduous
than the 90-gallon reactor. The installation of high-intensity UV lamps to generate
optimal radiation density in the larger reactor was particularly challenging. Another
difficulty was how to generate maximum turbulence to aerate and circulate radiation.
Although this was improved using bubble diffusers, predicting diffuser size was still
time consuming, requiring several iterations. The reaction delays were also attribut-
able to differences in surface energy interactions between radiation pulse and pollut-
ant substrates. A recent study by Cavitt et al. [27] has shown that molecular bond
disruption in aqueous media is controlled by many thermodynamic factors such as
reaction rates, solvent volume, acid-base equilibria, and interfacial alignment of reac-
tants versus products. Given similar temperature doses, reaction rates were better
favored in the laboratory (90-gallon) reactor than its municipal (10,000-gallon)
counterpart. The general conclusion is that MC bond disruption is easier in smaller
reaction tanks than larger ones.

The aforementioned result notwithstanding the results in Figure 3 shows a slight
deviation between UV irradiation (20 min) and EC (electrolytic) treatments (10 min).
Notice that UV irradiation is closely related to physical factors such as UV lamp size,
pulse intensity, and radiation diffusion (15, 18), while EC is controlled by direct
electrical vibration against C–N bonds. The aforementioned, therefore, is a reasonable
explanation for the observed discrepancy. Another reason for the reaction delay is
ozone deficiency possibly resulting from coupling glitches between the system’s ion-
ized nitrogen-oxygen (NI–OX) generator and its compressor (Figure 2b). This matter
will be further investigated in subsequent studies. It is worth noting, however, that all
the prototypes (Figure 2) decomposed MC molecules reasonably well. Notice for

Figure 3.
Comparison of microcystin removal techniques.
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instance, that the municipal EC unit destroyed MC by approximately 80% within the
first 10 min, while the coupled UV-ozone treatment was even better at 95%. Studies
such as Wolfe et al. [28], Langlais et al. [29], and Folcik et al. [14] have reported polar
bond disruption from electron bombardment, free radical attack, and ozone and
peroxone toxicity. Peroxone is a mixture between ozone and hydrogen peroxide
Eqs. (1)-(8). The theoretical basis is that heavy oxidizing agents (e.g., peroxides,
trioxidanes, and peroxones) can break down functional C–N bonds of microcystins
[30, 31]. Previously, He et al. [32] reported the destruction of cyanobacteria using
hydroxyl-free radicals. In addition, studies such as Yoo et al. [33] and Lui et al. [34]
have demonstrated how low doses of peroxyl and nitroxyl ions can disrupt chemical
bonds in molecular compounds. Results from this study quite closely reflect conclu-
sions by previous researchers.

To validate MC decomposition data in Figure 3, UV treatments were matched
against granular activated-carbon filtration data. The carbon filtration was from a
commercial source and readily available. The results are displayed in Figure 4a. Two
important things are observable from the outcomes. While the UV filtration disrupted
C–N bonds within 20 min, the activated carbon produced treatments after 30 min.
Still, the UV filtration outperformed the commercial granular carbon filtration by
nearly 40%. This was expected knowing that UV radiation is more energetic in
splitting C–N bonds. To predict the rate of MC removal, the data were subjected to a
crude regression analysis. The curve followed a polynomial decay in the form of
y = 8.394x2–88.635x + 221.97; R2 = 0.9399 (Figure 4b) confirming the robustness of
UV radiation in removing MC pollutants within 1 h. This knowledge is relevant and
applicable to wastewater treatment and chemical recycling.

3.2 Principal component analysis

This section discusses electrocoagulation (EC) principal components that control
MC decomposition. The parameters below were considered important in the
published literature [15]: (a) voltage (as proxy data for radiation density), (b) pH
(acid-base equilibria), (c) electrical polarity (reverse polarity), and (d) temperature.
The parametric data were derived using Eq. (19). The results are displayed in
Figure 5. The municipal EC results were evaluated using the published data by Miao
et al. [31] and further verified [35]. Two important points are observable here. First,
MC removal increased with increasing radiation density. Second, there was a differ-
ence in optimal voltage density coincidental with maximum MC decomposition.
While the field reactor completely removed MC (100% decomposition) at 24 V, the
municipal reactor performed maximally at 32–40 V showing 95% pollutant removal
(Figure 5a). The difference in energy dosage was attributed to the sheer size of the
municipal reactor, which in turn resulted from generator adjustments to solve solvent
turbulence and flocculent formation deficiencies.

As expected, no large differences were observed between the field and municipal
reactions in terms of acid-base equilibria and thermodynamics (Figure 5b and d). The
most significant conclusions are that (1) pH and temperature elevations are more
favorable to MC decomposition; and (2) optimal pH for pollutant removal lies in the
alkaline range with pH > 8.00. While the pH data strongly agreed with recent findings
by Folcik and Pillai [14], it was strikingly contrary to previous conclusions by Bao
et al. [16] whose studies on C–F decomposition was more productive in acidic media.
It is possible to explain our findings in two ways. First, the coagulation “seeding
agent” (i.e., potash alum (KAl2(SO4)2.12H2O) may have contributed to pH elevation.

30

Cyanobacteria – Recent Advances and New Perspectives



Secondly, the production of metal hydroxides such as Al(OH)3 and Fe(OH)3 from
sacrificial anodes (aluminum and iron metals electrodes in the electrolytic cell
(Figure 2)) may have produced more alkaline conditions. Thermodynamic effects on
MC decomposition are well researched including published articles by Folcik and
Pillai [14], Folcik et al. [36], and Wang et al. [37]. The conclusion here is that MC
bonds are significantly disrupted at temperatures beyond 40°C. The results in
Figure 5d quite closely matched some of the aforementioned findings. In this study,
however, 30°C was observed as the starting point of MC decomposition with maxi-
mum disruptions encountered between 70 and 90°C. The difference may largely be
due to high generator amperage (250 A) employed (Section 2.1).

Another important EC factor is electrical polarity. Previous studies such as Triantis
et al. [38] and Gajda et al. [39] have reported limitations of conventional single-anode
polarity in EC production. For this reason, we experimented a more robust switching
polarity procedure using crosslinked aluminum electrodes with its energy from direct

Figure 4.
(a) Comparison between UV radiation and granular activated-carbon removal of microcystins; and (b)
Regression curve of the UV-ozone water treatment.
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current electrical discharge. Using a trial-and-error optimization approach, the reactor
was “trained” to switch electrical current bombardments between the anode and
cathode electrodes. The data in Figure 5c show that MC removal was maximum
(100% removal) at every 5 s. The question is: Why is the switching polarity so
important? The answer relates to two important things. First, optimizing the system
saved time, power, and ultimately, cost. Second, the switching polarity ensured that
the C–N bonds were attacked at both the anode and the cathode, contrary to conven-
tional one-way electrical bond splitting. The dual attack against C–N bonds is a major
reason for effective EC production. Notice, however, that the response from the large-
size municipal reactor was inferior compared with its field counterpart. The discrep-
ancy is still not easy to explain. However, operational problems such as electrode size
determination for maximum flocculent distribution may be responsible for deviations.
This is another topic worth investigating in future studies.

How does the new EC equipment compare with conventional community water
treatment in terms of cost economics? To answer this question, the municipal proto-
type was “starved” of ozone and UV radiation, while extending treatments beyond
90 min. The goal was to examine whether the EC system would provide cheaper
filtration compared with conventional treatments in the study area. The results are
displayed in Table 3. The data show that while groundwater MC treatment was
unimportant inWest Virginia, the importance of surface water treatment was without
question. The heavy pollution associated with both the Ohio River and Grand St.
Mary’s Lake (Table 2) is noticed. The data in Table 3 show that the EC procedure was
much cheaper than conventional membrane filtration or chemical disinfection. Spe-
cific to MC removal, the EC method was predicted to be nearly 800 times cheaper
than conventional treatments at the Celina plant. On the basis of this study,

Figure 5.
Factors controlling electrocoagulation efficiency in decomposing microcystin (a) radiation density; (b) bond
polarity; (c) pH; and (d) temperature.
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incorporating EC methods at conventional treatment plants has potential to both
improve water treatment chemistry and save cost.

3.3 Further studies

This study has confirmed published reports that advanced EC methods are effec-
tive in removing MC pollutants from drinking water. However, some key topics
remain to be investigated including (a) chemical elucidation of decomposed MC
fragments, (b) scalability of UV lamps, ionized nitrogen-oxygen (NI-OX) generators
and EC electrodes, (c) technical operability and cost assessments, and (d) applicabil-
ity of the technique for wastewater treatment and chemical recycling. Some of these
topics will be addressed in subsequent studies.

4. Conclusion

The removal of microscopic pollutants in drinking by electrocoagulation (EC) is
becoming increasing popular because of the use of radiation energy in decomposing
molecules that contain polar bonds including C–F and C–N bonds. The purpose of this
study was to discuss three EC techniques for removing microcystins (MC) in con-
taminated drinking water at the Celina (OH) and Parkersburg (WV) treatment plants
and to compare their effectiveness at the laboratory, field, and municipal scales. While
the laboratory and field experiments employed UV-ozone and electrolytic cell filtra-
tion techniques, respectively, the municipal experiment applied a coupled UV-ozone
and EC technique. To validate the effectiveness of the methods, the EC results were
evaluated against a commercially available granular activated carbon filtration unit.
The EC technique outperformed the activated carbon filtration by more than 40%.
When the laboratory treatments were upscaled and tested at a municipal level, effec-
tiveness of the technique declined by nearly 10–20% because of pulse dissipation from
UV lamps, vapor-ion plasma underactivity, and limitation of membrane filters. We

Celina (Ohio) Grand
Lake St. Mary’s

Parkersburg
(West Virginia)

Source of Drinking Water Lake water Groundwater
(Ohio River
Valley)

Scale of Water Treatment Municipal Municipal

Rate of Water Treatment 1000 gallons/minute 265 gallons/
minute

Cost of Water Treatment $3.66/1000 gallons/
minute

$1.84/1000
gallons/minute

Cost of Microcystin Removal using Conventional Techniques
(Aeration, bio-digestion & membrane filtration)

$0.37/1000 gallons/
minute

$0.00/1000
gallons/minute*

Cost of Microcystin Removal by Electrocoagulation $0.04/1000 gallons/
minute

$0.04/1000
gallons/minute

*Parkersburg groundwater treatment is achieved by activated carbon filtration.

Table 3.
Costs comparison between conventional water treatment and new electrocoagulation.
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confirmed previously published studies that pollutant coagulation and MC decompo-
sition were affected by physical factors such as radiation density, reverse electrical
polarity, pH, and temperature. These results have other applications in industrial
wastewater treatment and chemical recycling.
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Abstract

The present-day scenario in the health sector calls for alternative medicine 
sources with no risk of resistance, effective in the mode of action, and eco-friendly. 
Cyanobacteria are microbial factories for a wide range of products. They are reservoirs 
of bioactive compounds which have the potential to act as precursors of novel drug 
molecules. A plethora of algae have been documented for their therapeutic abilities 
in treating diseases. A plethora of antioxidative compounds along with enzymes are 
present in cyanobacteria, possessing applications in nutraceuticals and cosmeceuti-
cals, which is quite evident from the products available in the market. This chapter 
highlights the significant leads in the area of cyanobacteria-based antioxidants. A 
sustainable approach to envisaging cyanobacteria as competent antioxidants can open 
new doors in prevention, treatment, and control of a plethora of diseases.

Keywords: algae, antioxidants, cyanobacteria, cosmeceuticals, nutraceuticals

1. Introduction

Cyanobacteria exist in various habitats that are exposed to various adverse 
environmental variables, such as ultraviolet light, salinity, climate, and food supple-
ments. Algae are multicellular creatures found in freshwater, saltwater, and marine 
environments. They synthesize a wide range of metabolites to acclimate to these 
demanding environments quickly [1]. Cyanobacteria’s antioxidants can be used 
in the pharmaceutical and medical fields. The search for safe antioxidants derived 
from natural sources is currently generating interest on a global scale. Algae could 
biogenically create, consume, collect, and develop a wide variety of metabolites [2]. 
The agricultural, medicinal, pharmaceutical, food, nutritional, cosmetic, and other 
industries employ algae. In the absence of light, they can also grow under heterotro-
phic conditions by utilizing an organic carbon substrate as an energy source [3].

The existence of several proterozoic oil deposits is related to cyanobacterial 
activity. Additionally, they are significant suppliers of nitrogen fertilizer for growing 
rice and beans. Throughout the planet’s history, cyanobacteria also played a major 
role in determining ecological change and evolution. Many cyanobacteria produce 
the oxygen atmosphere on which we rely. Before it, the atmosphere’s chemistry was 
significantly different and unsuitable for modern species.

The nascent, most diversified, and wide cluster of photosynthetic prokaryotes 
known as cyanobacteria (blue-green algae) exhibits similarities to green plant life 
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in oxygenic photosynthesis and to Gram-negative bacteria in the cellular organiza-
tion [4]. Almost all terrestrial and aquatic freshwater and marine habitats support 
the growth and colonization of blue-green algae, which adapt to diverse ecological 
circumstances [5]. Microalgae exist as a standard source of bioactive chemicals and 
have been used in various pharmacological applications due to their richness in pri-
mary and secondary metabolites [6]. Bioactive substances are physiologically active 
molecules that can either benefit or harm a living thing, tissue, or cell when present in 
small amounts [7].

Proteins called antioxidant enzymes to play a catalytic role in converting reactive 
oxygen species (ROS) and their byproducts into stable, harmless compounds, mak-
ing them the most effective protection against oxidative stress-related cell damage. 
Antioxidant enzymes can stabilize or inactivate free radicals before damaging cellular 
components. They work by lowering the free radicals’ energy or by sacrificing part 
of their electrons for its use, making the radicals more stable. To lessen the harm by 
free radicals, they may also halt the oxidative chain reaction. Over the last 10 years, 
numerous studies have been conducted on the advantages of antioxidant enzymes. 
Antioxidants protect cells against the harm caused by free ions, even when their 
concentration is lower than the substance being oxidized [8]. However, various harm-
ful side effects, including cancer and liver damage, are associated with these synthetic 
antioxidants. As a result, scientists are looking for natural antioxidants that may be 
used in place of synthetic antioxidants in the food and pharmaceutical industries 
that are safe and efficient [9]. Our body’s capacity to lower the risk of free radical-
related health issues is made more tangible by minimizing exposure to free radicals 
and increasing the intake of foods or supplements rich in antioxidant enzymes [8]. 
Therefore, antioxidant enzymes are vitally essential for preserving the best possible 
cellular and systemic health and well-being. Free radicals are included in the highly 
reactive oxygen-containing molecules known as reactive oxygen species (ROS). The 
hydroxyl radical, superoxide anion radical, hydrogen peroxide, singlet oxygen, nitric 
oxide, and chlorine ions radicals, and other lipid peroxides are examples of ROS. All 
have the potential to interact with cellular membranes, phospholipids, nucleic acids, 
proteins, enzymes, and other tiny molecules to cause cellular harm [8].

Algae’s numerous bioactive chemicals are being examined. PUFA, sterols, ter-
penoids, carotenoids, and alkaloids are just a few functional chemical components 
found in the diverse group of organisms known as algae. These have been shown to 
protect against various diseases, including cancer [9].

2. Algae antioxidants

Algae are photoautotroph organisms. There is no damage to the structure, and 
it can produce the substances they need to defend itself against oxidation. They are 
a rich source of powerful antioxidants that can shield our bodies from the harmful 
effects of oxygen species created during regular bodily metabolism. Carotenoids and 
vitamin E (gamma-tocopherol) are two types of powerful fat-soluble antioxidants 
found in algae, whereas vitamins, phycobiliproteins (PBPs), and polyphenols are 
adequate water-soluble antioxidants [9].

As naturally obtained bioactive compounds with a wide variety of biological 
potencies, such as antibacterial, antiviral, antioxidant, and anti-inflammatory, 
cyanobacteria have attracted much attention [1]. Antioxidants and phycobiliproteins 
(PBPs), which are cyanobacteria’s distinctive photosynthetic pigments, are thought 
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to be abundant in cyanobacteria. In particular, these pigments have been exploited as 
organic coloring replacements in nutritive, cosmetic, and pharmaceutical products. 
Due to their fluorescent qualities, PBPs are also utilized in the branch of immunol-
ogy [2]. Phycobiliproteins are highly effective fluorescent substances due to their 
distinctive characteristics of high molar absorbance coefficients, high fluorescence 
quantum yield, big stokes shift, high oligomer stability, and high photostability [10]. 
The primary endogenous damage to the biological system is caused by free radicals 
generated during oxidative stress. This kind of damage is frequently linked to several 
degenerative diseases and disorders, including cancer, cardiovascular disease, aging, 
and immune function loss. Free radicals are the main factor in lipid oxidation, the 
process by which food degrades and finally loses its properties to sense it through 
sensory organs and edibility, in addition to harming live cells [11]. Many individuals 
use antioxidants in the form of commercial food additives, which are produced syn-
thetically and may contain significant amounts of preservatives, to combat the effects 
of oxidative stress [12]. However, most antioxidant sources identified to date compete 
with conventional meals and commodities.

Most biologically active compounds in algae, including pigments like carotene, 
astaxanthin, lutein, zeaxanthin, and phycobiliproteins [13], exhibit both anti- 
inflammatory and antioxidant properties [14]. One of the key factors driving the 
hunt for bioactive substances like anti-inflammatory kinetic molecules from natural 
sources such as microalgae is the rising demand for medications with few adverse 
effects. The cell that showed anti-inflammatory action will accumulate metabolites 
from the various microalgae. Several research has already shown the chemical makeup, 
structural details, and biosynthesis routes of the bioactive substances displaying 
anti-inflammatory chemicals produced by microalgae [15]. Proteins, phycobiliproteins, 
flavonoids, carotenoids like astaxanthin and lutein, and the fatty acids DHA, EPA, 
and SPs produced by metabolically active microalgae species are all present examples 
of substances with anti-inflammatory properties [2]. To be a valuable target product, 
these bioactive compounds must fulfill two requirements: (1) they must accumulate in 
relatively large amounts in cultures grown under standard test conditions throughout 
commercial production, and (2) they should continuously be overexpressed as an algal 
reaction to unpleasant development surroundings or when exposed to the synthetic or 
actual pressure. This can be achieved by differing the circumstances, like changing the 
physicochemical boundaries and the retention of supplements, as well as changes in 
temperature, pH, light quality, and irradiance [16]. The species of algae and the grow-
ing circumstances significantly impact the generation of anti-inflammatory chemicals 
[14]. Only a peptide from P. tricornutum with anti-inflammatory characteristics made 
it to market. Carotenoids, an algae stain, are discovered to positively influence immune 
response modulations and anti-inflammatory cellular response pathways [2]. H. pluvia-
lis microalgae produce the carotenoid astaxanthin, which has strong anti-inflammatory 
properties [14]. One extremophilic microalga, D. salina, is used in industry to create a 
valuable substance with anti-inflammatory properties [17]. Microalgae-produced com-
pounds have also been shown to have antioxidant as well as anti-inflammatory activity. 
Microalgal anti-inflammatory compounds known as sugars have also demonstrated 
antioxidant potential. Several excellent reviews have been published recently to discuss 
their uses and advantages for human health [2]. The antioxidant microalgae sugars 
extracted from Porphyridium [18] and Rhodella [19] are two excellent patterns.

Cyanobacteria inherently produce ROS throughout the photosynthetic activity. 
These species are created by abiotic causes such as ultraviolet radiation, osmotic 
disturbances, desiccation, and heat. Multiple strategies are needed for cyanobacteria 
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to avoid the inhibitory effects of harsh conditions. By reducing the amount of energy 
lost during the photosynthetic process, they can reduce the generation of ROS. One 
approach uses the carotenoid zeaxanthin to non-photochemically quench (NPQ ) 
excitation energy through photosystem II [20]. Cyanobacteria remove ROS using 
various bioactive compounds, as mentioned in Figure 1, and their genetic relation-
ship can be elucidated using various methods of molecular phylogenetics [21]. 
Although peroxidases and catalases accelerate the removal of peroxides (such as H2O2 
and R-O-O-H)13, SORs and SODs eliminate superoxide free radicals (O2). These 
O2 molecules are produced by photosynthetic and respiratory electron transport 
chains12, as well as extracellular processes on the cell surface. This promotes vari-
ous processes like a ferrous deposition, cell signaling, and growth; however, if O2 is 
allowed to accumulate inside the cell, it reacts with solvent-exposed 4Fe-4S clusters in 
proteins, including those needed for amino acid biosynthesis17 and photosynthesis18, 
resulting in Fenton reactants, which can eventually cause cell death. Therefore, SODs 
and SORs are discovered in all three branches – Eukarya, Archaea, and Bacteria [21].

Some of the important antioxidants found in algal species are listed below in Table 1.

S.no. Algal species Antioxidants References

1. Chlorella zofingiensis,
Chaetoceros gracilis

Exopolysaccharides [22, 23]

2. Chlorella ellipsoidea Carotenoids (mainly
violaxanthin)

[24]

3. Chlorella vulgaris Carotenoids (mainly
lutein)

[24]

4. Chaetoceros calcitrans,
C. gracilis

Fucoxanthin [23, 25]

Figure 1. 
ROS removing bioactive compounds.
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3. Antioxidative enzymes

3.1 Catalases

Initially, cyanobacteria were partitioned into two forms, those that have and 
those that need ascorbate peroxidase [42]. This depended on the perception that the 
principal bunch searches H2O2 with a peroxidase utilizing a photo-reductant as an 
electron benefactor. Cyanobacteria have three types of catalases (Figure 2) which 
differ significantly in terms of their structure and amino acid sequence. Bernroitner 
[43] examined the presence of these three catalases in 44 cyanobacterial genomes and 
executed a phylogenetic exploration of the enzymatic activities. The findings show 
that while monofunctional heme-containing catalase (KatE) is the most common 
type of catalase found in bacteria, archaea, and eukarya, it is extremely rare in cya-
nobacteria. Only one complete KatE gene was found in Nostoc punctiforme PCC73102, 
whereas pseudogenes (incomplete or fusion genes) were found in Nostoc sp. PCC7120, 
Cyanothece sp. ATCC51142, and Synechococcus elongatus [43].

KatG bifunctional catalase/peroxidase has both catalases and peroxidase activ-
ity. Unlike KatE, it was found in a variety of known cyanobacterial genomes. 
Cyanobacterial KatGs are known to form a well-segregated clade in the evolutionary 
representation, implying that KatG evolved in cyanobacterial evolution [43]. Mn 
catalase (MnCat) is a di-manganese catalase that does not contain heme. Except for 
Gloeobacter violaceus PCC7421, all species have MnCat. It is thought to be found only in 
diazotrophic cyanobacteria, except for Gloeobacter violaceus PCC7421 [43] (Figure 2).

S.no. Algal species Antioxidants References

5. Codium fragile Siphonaxanthin [26]

6. Cyanophora
Paradoxa

β-Cryptoxanthin [27]

7. Dunaliella salina β-carotene [28, 29]

8. Dunaliella tertiolecta Violaxanthin [29, 30]

9. Haematococcus pluvialis Astaxanthin [31]

10. Nannochloropsis oculata Sterols [32]

11. Nannochloropsis salina, PUFA [33]

12. Skeletonema sp., PUFA [34]

13. Chaetoceros sp., PUFA [35]

14. Thalassiosira weissflogii PUFA [36]

15. Phaeodactylum tricornutum Sulfated
Polysaccharides

[29, 37]

16. Porphyridium purpureum Zeaxanthin [38]

17. Porphyridium cruentum Sulfolipids [39]

18. Spirulina platensis C-Phycocyanin [40]

19. Tribonema sp. Sulfated
polysaccharides

[29, 41]

Table 1. 
Antioxidants from algae.
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3.2 Superoxide dismutase

SODs are common metalloenzymes and are classified into four types based on 
FeSOD, CuZnSOD, MnSOD, and NiSOD. All have metal redox-active centers that, 
respectively, include Fe (III), Cu (II), Zn (II), Mn (III), and Ni (II/III) at the active 
site [44]. Cyanobacteria have all four kinds of SOD, and many cyanobacterial spe-
cies include more than one type of SOD [45]. It should be emphasized that some 
actinobacteria and archaea have a single gene that, depending on the environment, 
can either make FeSOD or MnSOD [46]. Cambialistic SOD refers to Fe/MnSOD 
that exhibits similar activity in Fe- and Mn-bound forms (Sheng et al. 2014). There 
are currently no known cabalistic Fe/MnSODs. While FeSOD and NiSOD or FeSOD 
and MnSOD are present in various other single-celled strains, the marine species of 
Prochlorococcus has only one NiSOD [44]. In contrast, strains that are heterocystous, 
heterotrichous, and flagellated exclusively have iron and manganese forms. Despite 
having comparable structural characteristics, FeSOD and MnSOD can be identi-
fied from one another by structural traits due to the existence of a transmembrane 
domain, residues mainly for some metals that differ between the two representations, 
and highly conserved residues found only in the manganese form [47]. Many investi-
gations have found SODs to be involved in protective processes in cyanobacteria.

3.3 Peroxidases

Ascorbate peroxidase is essential for the detoxification of H2O2 in plants [48]. 
These enzymes convert H2O2 to monodehydroascorbate and water using ascorbate as 
the electron source. Ascorbate and dehydroascorbate are produced spontaneously by 
monodehydroascorbate. Dehydroascorbate reductase converts dehydroascorbate to 
ascorbate by using glutamine. NADPH-glutamine reductase then regenerates oxidized 
glutamine. This highlights the importance of the ascorbate-glutamine cycle in plant 
oxidative stress response. Nostoc muscorum PCC 7119 and Synechococcus PCC 6311 have 
both been found to contain ascorbate peroxidase-like activities, and dehydroascorbate 
reductase and glutamine reductase were both engaged in the regeneration of ascor-
bate and glutamine, respectively, in Synechococcus PCC 7942.

Peroxiredoxins (Prx-s), also known as alkyl-hydro peroxidases, are another wide-
spread group of thiol-explicit cell reinforcement proteins that utilize thioredoxin and 

Figure 2. 
Types of catalase enzyme.
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other thiol-containing decreasing specialists as electron givers to diminish H2O2, alkyl 
hydroperoxides, and peroxynitrite [49]. It is believed that peroxiredoxins are crucial 
for decreasing endogenously produced ROS.

3.4 Superoxide reductases

All species interacting with air produce superoxide, or O2•-, which, depending on 
the biological environment, can function as a signaling agent, a poisonous lifeform, 
or a nontoxic precursor that breaks down spontaneously. Superoxide reductase (SOR) 
and superoxide dismutase (SOD) are two enzymes that limit their levels in vivo 
(SOD) [46]. SORs are simple enzymes with a sequence of 110–180 amino acids. SORs 

S. No Antioxidant compounds Health benefits References

1. Astaxanthin Influence the immune system and support 
cognitive health.

[50]

2. β-Carotene Preventative for breast cancer [51]

3. Bromophenol,
Carrageenan

Inhibition of α glycosidase
Antitumor, antiviral

[52]

4. Carotenoids Reduce the risk of cancer and eye disease. [53]

5. Chlorophyll Prevent cancer and heal damaged skin [54]

6. Flavonoids Anticancer activity prevents coronary 
heart disease

[55]

7. Fucophlorethol Chemopreventive [56]

8. Fucoidan Improves hyperoxaluria
Anticancer
Protection against monogenic
Disorder

[57, 58]

9. Fucoxanthins Ontogenesis [59]

10. Galactan sulfate Antiviral [60]

11. Lutein Anti-inflammatory [51]

12. Oligosaccharides Anti-HIV [61]

13. Polyphenols Vascular chemoprotection
Antimicrobial
α glycosidase inhibition

[55, 62]

14. Phenolic functional groups and 
MAAs

Antiproliferative [55, 63]

15. Phycobiliproteins (PBPs) Antiallergic, anti-inflammatory, 
neuroprotective.

[10, 64]

16. Phlorotannin reduce inflammation
Kills bacteria

[65]

17. Phycoerythrin Reduce the effects of diabetes 
complications

[66]

18. Xanthophylls Neuroprotective [50]

Table 2. 
The advantages of algal antioxidants for health.
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can be categorized in several ways. Neelaredoxins and desulfoferrodoxins have only 
one or two Fe atoms per polypeptide chain, respectively, which was the most distin-
guishing feature of these enzymes [44]. As a result, the most accurate classification 
for the procedure is to categorize them as 1Fe-SORs (neelaredoxins) and 2Fe-SORs 
(the desulfoferrodoxins). The most current exploration the methanoferrodoxin, a 
SOR from some methanogens with a domain harboring a [4Fe-4S]2+/1+ cluster, may 
lead to an extension of this classification in the near future [46] (Table 2).

4. Non-enzymatic antioxidants

4.1 Carotenoids

Carotenoids are the most common and naturally occurring pigment. One such 
example is hydrophobic terpenoids. The polyene chain of carotenoids, which is made 
up of double bonds, gives them their coloration and the capacity to absorb photons of 
visible wavelengths. Both photosynthetic and non-photosynthetic species can pro-
duce carotenoids. Carotenes and xanthophylls are the two major categories of natu-
rally occurring carotenoid algae [67]. Carotenes are linear or cyclic hydrocarbons, 
e.g., β-carotene and α-carotene. Oxygenated carotenoid derivatives are known as 
xanthophylls. The xanthophylls, violaxanthin, antheraxanthin, zeaxanthin, neoxan-
thin, and lutein produced by higher species are synthesized by green algae [67].

Freshwater pond cyanobacterial blooms emit a foul stench because of their 
adaptation to human-induced conditions exposed. These blooms of blue-green algae 
spread widely and produce cyanotoxin, poisonous to other creatures. However, 
these poisons have demonstrated potential properties as cancer treatments. Consider 
microcystins, numerous peptide toxins, including cryptophycins and anatoxin-A, 
have shown clinical effectiveness for various cancers [68].

Carotenoids, which are byproducts of photosynthesis and include carotene, 
xanthene, lutein, and lycopene, are often abundant in algae and cyanobacteria. As 
foragers of electron species with a singlet, or ROS, carotenoids and other terpenoids 
are crucial. Therefore, these scavengers are used as antioxidants to stop the growth of 
cancer cells. There are not many reports on carotenoids’ ability to fight different types 
of cancer [69].

Astaxanthin and β-carotene, generated by Haematococcus pluvialis and Dunaliella 
salina, respectively, are two main carotenoids produced by microalgae. A vital com-
ponent known as β-carotene is extensively looked for as a food coloring agent, for 
cosmetics addition, and as healthy food. It is frequently used in soft drinks, cheeses, 
butter, and margarine and is well-known for being safe and having health benefits 
due to its pro-vitamin A activity [70]. Astaxanthin has advantages, including increas-
ing eye health, boosting muscle power and endurance, and shielding the skin from 
UVA damage, inflammation, and early aging. Animals need it for various purposes, 
such as immune system functions and regeneration. It is a potent coloring agent. 
Other carotenoids are catechin and phycocyanobilin (Figure 3).

4.2 Phycobilin pigments

Microalgae form accessory pigments like phycobiliproteins. These pigments 
improve the light energy utilization efficiency of algae and protect it from solar 
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radiation and its effects. They are antioxidants in feed and humans. Phycobiliproteins 
are the major component of light-harvesting antenna pigments called phycobilisomes. 
They are present in Rhodophyta (red algae), Cryptomonads algae, and Cyanobacteria 
(blue-green algae) [71].

The cyanobacterium Spirulina (Arthrospira), which produces phycocyanin (blue), 
and the rhodophyte porphyridium, which produces phycoerythrin(red), are the main 
sources of phycobiliproteins. In Japan and China, phycocyanin is utilized in chewing 
gum, candies, dairy goods, jellies, ice cream, soft beverages, as well as in cosmetics 
like lipsticks. Phycocyanin is a versatile blue coloring agent that gives jelly and confec-
tions a vibrant blue color [71].

Figure 3. 
Chemical structure of some carotenoids. a) Phycocyanobilin b) Catechin, c) β-carotene d) Astaxanthin.
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4.3 Phenolic and polyphenols compounds

The secondary metabolites are polyphenols. They are a collection of chemical sub-
stances found in aquatic macrophytes and terrestrial plants. Phenolic compounds are 
present in edible plants, and their structure contains benzene [71]. Plants frequently 
contain phenolic chemicals. Polyphenols contain tannins, phenolic acids, flavonoids, 
tocopherols, and lignin.

Class Metabolites Species Reference

1. Carotenoids Asctaxanthin Chlorella zofingiensis, Chlorococcum sp.,
Haematococcus pluvialis, Scenedesmus sp.

[71, 72]

β-carotene Dunaliella bardawil,
Dunaliella salina,
Dunaliella tertiolecta,
Scenedesmus almeriensis

Canthaxanthin Coelastrella striolata,
C. zofingiensis,
D. salina, Scenedesmus komareckii

Echinenone Botryococcus braunii

Fucoxanthin Isochrysis galbana,
Phaeodactylu tricornutum

Lutein Chlorella protothecoides,
Chlorella zofingiensis, Chlorococcum citriforme,
Muriellopsis sp.,
S. almeriensis

Lycopene Chlorella ellipsoidea,
Chlorella marina,
D. tertiolecta

Peridinin Amphidinium carterae

Phytoene Dunaliella sp.

Phytofluene Dunaliella sp.

2. Polysaccharides Crude 
polysaccharide 
extracts

Chlorella stigmatophora, P. tricornutum,
P. cruentum,
Rhodella reticulata

[73]

3. Phycobiliproteins (A) 
Phycoerythrin 
– Red
(B) 
Phycoerythrin 
– Blue

Arthrospira platensis,
Limnothrix sp.,
Nostoc sp.,
Phorphyridium aerugineum,
Phormidium ceylanicum,
Synechococcus lividus

[74]

4. Polyphenols (A) Phenolic 
acids,
(B) Flavonoids-
Marennin

Ankistrodesmus sp.,
A. platensis,
Caespitella pascheri,
Euglena cantabrica,
Leptolyngbya protospira,
Nostoc commune,
Nodularia spumigena,
Phormidiochaete sp.,
Spirogyra sp.

[75]

Table 3. 
Algal metabolites.
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4.4 Sulfated polysaccharides

There are substances called polysaccharides in plants, animals, algae, microbes, 
and other natural products. They comprise numerous monosaccharides connected by 
various glycosidic linkages and contain polymeric carbohydrate structures. Sulfated 
polysaccharides are of non-animal origin and are most abundant. Most sulfated 
polysaccharides found in nature are complex combinations of molecules with a 
wide range of structures and activity [71]. They frequently occur in nature. Sulfated 
polysaccharides with a variety of biological functions are primarily found in seaweed. 
Fucoidan is a complex sulfated polysaccharide that is present mainly in the cell wall 
fluid of several species. It contains L-fructose and sulfate, ester groups.

Some of the important metabolites found in different algal species are listed in Table 3.

5. Applications

5.1 Potential uses for antioxidants

Cyanobacteria’s ancestors produced the first biogenic molecular oxygen on Earth, 
but they are still unknown how they handled oxidative stress [71]. We explore the 
advancement of superoxide dismutase proteins (Turfs) equipped for eliminating 
superoxide-free revolutionaries and gauge the beginning of Cyanobacteria. Our 
microfossil-adjusted Bayesian atomic timekeepers foresee that stem cyanobacteria 
emerged quite a while back. The development of NiSOD is especially captivating 
because it concurs with the intrusion of the vast sea by cyanobacteria [21]. Microalgal 
biotechnology can expand into regions and climates that are unfavorable for agricul-
ture, such as deserts and seashores, and can reach higher productivity. Additionally, 
aquaculture and life-support systems depend on microalgae cultivation as feed, and 
they effectively remove nutrients from water [70].

5.2 Potential application in the agricultural sector

Cyanobacteria have been studied thoroughly and have established a solid ground 
in the agricultural sector. Utilizing microalgae and cyanobacteria to increase agricul-
tural productivity sustainably and efficiently has various potential advantages [76]. A 
significant source of a wide range of bioactive substances that can control numerous 
plant response processes is microalgae and cyanobacteria: the enhancement of soil 
fertility and plant nutrition; the defense of plants against factors both biotic and abiotic; 
and promotion of growth. Hence, we can conclude that using microalgal/cyanobacte-
rial biomass (or their extracts) instead of chemical-based fertilizers, insecticides, and 
growth promoters can be an extremely feasible and sustainable option in the agricul-
tural sector. Additionally, the utilization of these biologically based organisms gives rise 
to a significant step in improving agricultural productivity, which is crucial to achieving 
the ever-increasing objectives for food items, pharmaceutical items, toxic items, and 
antitoxic items which are heavily mandated by growing global population [71].

5.3 Potential application in pharmaceuticals and cosmetics sector

Cyanobacteria are a rich source of organic chemicals and can be utilized to make 
food. Cyanobacteria-derived compounds are often used in cosmetics as thickening, 
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water-binding, and antioxidant ingredients. Cosmetic companies typically base their 
skin or health claims on ingredients such as carrageenan, vitamin A, polysaccharides, 
iron, phosphorus, salt, copper, vitamin B1, and minerals such as calcium, magnesium, 
or others [71].

Since they frequently target tubulin or actin filaments in eukaryotic cells, cya-
nobacteria cytotoxic metabolites are appealing anticancer medicines. Dolastatins, 
produced by NRPS-PKS enzymes and present in Leptolyngbya and Simploca sp., can 
interfere with the development of microtubules. Other cyanobacterial byproducts, 
such as the cyclic depsipeptide derivatives known as lyngbyastatins, which are also 
suspected elastase inhibitors, function as protease inhibitors [70]. A mixture NRPS-
PKS pathway is utilized in the biosynthesis of apratoxins such apratoxin-a from 
Lyngbya majuscule. Due to its capacity to cause G1-phase cell cycle arrest and death, it 
is cytotoxic.

In the cosmetics sector, secondary metabolites can be employed as natural 
components. Sunscreens contain photoprotective MAAs that protect the skin from 
UVR damage. In addition to serving as natural colorants, pigments like carotenoids 
and phycobiliproteins can act as antioxidants to shield the skin from UV-induced 
mutilation [71].

6. Future prospects

Due to their intricate structures and a range of bioactivities, these secondary 
metabolites can also be used as lead molecules in developing new drugs. A bio-
synthetic pathway study employing genomic data with over 208 publicly available 
cyanobacterial genome sequences can find new natural compounds. Even though 
cyanobacterial secondary metabolites have been the subject of intensive research, a 
variety of species still need to be sequenced and examined, and there are still a lot of 
secondary metabolites that may be significant but have not yet been identified. The 
growth study of cyanobacteria under peroxidation is still in its initial phases. Most 
of the information we know about the production of reactive oxygen species in the 
photosystem mechanism comes from plant findings. Still, cyanobacteria, as a distinct 
type for photochemical research, will help us understand peroxidation in photosyn-
thesis in general. Analyzing the particular reaction for each reactive form is chal-
lenging because many ROS are created concurrently in cells. Future studies should 
concentrate on the biological consequences and particular targets of specific ROS 
species in cyanobacteria and the functional reactions they cause. In recent years, sig-
nificant advancements have been achieved in identifying ROS-scavenging enzymes. 
The recognition or finding of ROS-scavenging enzymes has advanced significantly in 
recent years. Still, much more investigation is required to comprehend their function 
in vivo fully, as well as to determine which areas of the cell they act in and the range of 
oxidants they can detoxify.

7. Conclusion

Natural algae antioxidants are significant bioactive substances that help fight 
various ailments and shield cells from oxidative stress. It is an important source of 
chemicals that are neuroprotective. Algae have exceptional nutritional value, and 
therapeutic properties have higher demands for natural algal products. This gives 
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Abstract

Cyanobacteria are bioactive photosynthetic prokaryotes that have a superior 
ability to fix atmospheric nitrogen and are highly competitive in the microflora 
community. They also improve the physical and chemical properties of the soil and 
increase its water-holding capacity. Therefore, cyanobacteria are used as biofertilizers 
in agriculture. Cyanobacteria are able to promote plant growth by providing nutrients 
and producing many highly effective chemical compounds, such as enzymes and 
hormones, in the plant rhizosphere, giving the plant a highly competitive ability. In 
addition to activating plant defense responses against soil-borne pathogens, they have 
an effective strategy as a biocide against bacteria, fungi, and nematodes that attack 
plants. With multiple beneficial biological roles, the environmentally friendly cyano-
bacteria occupied the role of the maestro in sustainable agriculture.

Keywords: cyanobacteria, sustainable agriculture, biofertilizer, nitrogen fixation, 
abiotic stress, antimicrobial activity

1. Introduction

Given the ongoing increase in the world’s population and the depletion of food 
resources, our society currently needs a sustainable supply of agricultural productivity 
that poses no environmental risks [1]. Plants are constantly affected by abiotic stresses, 
such as drought, salinity, cold, heat, and nutrient deficiencies, as well as biotic stress, 
including pathogens and pests. In addition to climatic changes that greatly affect soil 
fertility, virulence of pests and diseases, and plant-producing biomass and seeds [2]. 
In nature, the interaction continues between biotic stress and plants, causing dynamic 
changes in their activities and composition under changing environmental conditions. 
Beneficial microorganisms play an effective role in maintaining the balance of this 
interaction in a way that is in the interest of the plant at the expense of biotic stress. 
Furthermore, plants can more effectively withstand abiotic stress, enhance nutrient 
uptake and utilization, and increase photosynthetic activity by virtue of the mecha-
nisms carried out by beneficial microorganisms, which leads to higher yield [3].
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 Beneficial microorganisms can act as biopesticides by attacking phytopathogens 
directly and limiting their population by competition for space, nutrients, and the 
production of antimicrobial compounds [ 4 ]. Furthermore, beneficial microorgan-
isms can induce plants to pre-activate the defensive responses controlled by plant 
hormones in order to combat infections more rapidly and successfully. This is referred 
to as systemic acquired resistance [ 5 ]. Among beneficial microorganisms are cyano-
bacteria. Cyanobacteria are photosynthetic prokaryotic organisms, extremely varied 
groups that can be found in practically all of the world’s ecosystems. 

 Cyanobacteria occur in unicellular, colonial, or multicellular filamentous forms. 
They are considered a subset of the bacterial kingdom. This subset is responsible for a 
significant amount of N 2  fixation, reduction of the level of CO 2 , solubilization of phos-
phate, and the production of plant growth regulators by releasing phytohormones, 
polypeptides, amino acids, polysaccharides, and siderophores [ 6 ]. Cyanobacteria are 
composed of numerous organic inclusion units capable of carrying out a wide range of 
specialized functions, which give cyanobacteria their unique tasks and applications in 
sustainable agriculture [ 7 ]. The components that make up the structure of cyanobacte-
ria are light-harvesting antennae, phycobilisomes, polyphosphate bodies, cyanophycin 
granules, polyhydroxyalkanoate granules, carboxysomes, lipid bodies, thylakoids, 
DNA-containing areas, and ribosomes [ 8 ] (  Figure 1  ) . Cyanobacteria have chlorophyll-
a, which engages it in oxygenic photosynthesis, carotenoids that protect chlorophyll-a 
from oxidative degradation, and specific pigments called phycobilins that are bound to 
water-soluble proteins [ 9 ]. Flagella are not present in cyanobacteria [ 10 ].  

 Some kinds of cyanobacteria contain specialized cells called heterocytes and aki-
netes that are morphologically distinct from vegetative cells. The position, amount, 
and distribution of heterocytes and akinetes are significant morphological charac-
teristics of cyanobacteria species and genera. Heterocytes are specialized cells that 
allow nitrogenase to fix atmospheric nitrogen by reducing it to ammonium, a process 
known as diazotrophy [ 11 ]. Akinetes contain granules of glycogen and cyanophycin 
but no polyphosphate granules and have a multilayered cell wall [ 9 ].  

  2. Characterization of cyanobacteria 

 Cyanobacteria are distinguished from most other microalgae by their lack of a 
cell nucleus and other cell organelles. They lack chloroplasts and have instead simple 
thylakoids, which are the location of the light-dependent processes necessary for 

  Figure 1.
  Cyanobacterial cell structure.          



61

Perspective Chapter: Cyanobacteria – A Futuristic Effective Tool in Sustainable Agriculture
DOI: http://dx.doi.org/10.5772/intechopen.109829

photosynthesis. Cyanobacteria exhibit a variety of traits that can be utilized for 
microscopic analysis and identification, including the size and form of the cells, the 
presence of subcellular structures, and the presence of specialized cells. Flagella, 
which are present in many other bacterial or phytoplankton taxa, are absent in 
cyanobacteria. However, many cyanobacteria, especially filamentous varieties, 
exhibit gliding movement. Cyanobacteria have not been shown to reproduce sexu-
ally. The division of vegetative cells is their unique asexual method of reproduction. 
Cyanobacterial cells can be spherical, cylindrical, barrel-shaped, ellipsoid, conical, or 
disc-shaped. The critical abiotic parameters that determine the success of cyanobacte-
rial growth are light, pH, temperature, water, CO 2 , and nutrient supplements [ 9 ,  12 ].  

  3. Symbiotic association between plant and cyanobacteria 

 In a symbiotic relationship, both organisms can benefit from each other in various 
ways. The filamentous cyanobacteria live in symbiosis with a wide range of eukaryotic 
hosts, including plants and fungi [ 13 ]. The cyanobacteria that will form symbiotic rela-
tionships with the plants are called cyanobionts, which can grow inside the host or more 
or less firmly attach themselves to the host [ 14 ]. The plants provide cyanobacteria with 
carbon sources, for example, sucrose. Cyanobacteria have the ability to fix nitrogen from 
the air in heterocysts, which benefits plants by supplying them with nitrogen (  Figure 2  ). 
Therefore, the symbiotic cyanobacteria are mostly heterocyst-forming strains. They are 
virtually entirely associated with the genera Nostoc and Anabaena [ 15 ]. Cyanobacteria 
provide plants with about 88% of the fixed nitrogen in the form of NH 3  and keep only 
12% for themselves [ 16 ]. In addition to a symbiotic relationship between cyanobacteria 
and whole plants, there is also a symbiotic relationship between cyanobacteria and plant 
tissues. Cyanobacteria were found to have colonized different areas of wheat, where they 
were abundantly present around the root, in the spaces between root epidermal cells 
and cortex, and as single cells within the stem or on the surface of leaves [ 17 ]. Due to the 
symbiotic relationship between Gunnera and Nostoc, the number of heterocysts formed 
increased by up to 80%. This is evidence that the symbiotic relationship has different 
effects on the growth and development of cyanobacteria. Leghemoglobin concentra-
tion in chickpea root nodules increases as a result of the simultaneous inoculation of the 

  Figure 2.
  Nitrogen fixation in cyanobacterial heterocyst cell.          
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cyanobacterium  Anabaena laxa  and the rhizobia  Mesorhizobium cicero  [ 18 ]. The assimila-
tion of ammonium in cyanobacterial heterocysts is carried out by the enzyme glutamine 
synthetase. Heterocysts in the  Nostoc-Anthoceros  symbiosis showed a 3- to 4-fold reduc-
tion in Glutamine synthetase activity [ 19 ]. The reduction of abiotic stress and plant 
protection against diseases are factors that encourage the development of symbioses 
from a plant’s side. Plants benefit from the general improvement of soil conditions.  

   4. The role of cyanobacteria in plant improvement 

 Cyanobacteria play an important role in improving plant growth and crop 
 production. They are good bio-fertilizers, enhance solubilization and mobility of 
nutrients, and increase essential microelements in soil that are necessary for ion 
uptake, as well as stimulate plant growth due to their ability to produce bioactive com-
pounds, such as phytohormones and other plant growth regulator substances, such as 
amino acids and polysaccharides (  Figure 3  ).  

  4.1 Promoting plant growth 

 Cyanobacteria will actively promote seed germination, plant growth, and 
 development due to their ability to produce some of the plant hormones, such as aux-
ins, cytokinins, and gibberellins, by the genera  Anabaena, Anabaenopsis , and  Calothrix
[ 20 ,  21 ]. Cyanobacteria have the ability to increase root and stem growth, dry weight, 
and yield in wheat [ 8 ,  20 ]. The cyanobacteria used in wheat cultivation showed 
effective results on the appearance of plants in terms of increasing plant height, dry 
weight, and a number of grains of the wheat crop, in addition to some important 
positive changes in increasing the bio-carbon content of the beneficial microbial 
mass [ 22 ]. The effects of cyanobacteria on rice crop growth have demonstrated that 
cyanobacterial inoculation can improve rice seed germination and growth parameters 
[ 23 ]. According to Osman et al. [ 24 ], the amount of growth-promoting secondary 

  Figure 3.
  The role of cyanobacteria in improving plant growth and stimulating the response of defense systems.          
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metabolites varies depending on the cyanobacterial strain. While Oscillatoria angustis-
sima had higher quantities of gibberellic acid, and Nostoc entophytum had higher levels 
of auxin and cytokinin. Cyanobacterial extracts improved nutrient uptake, and plant 
development in lettuce, red beet [25], tomato [26], and cucumber [27]. In a broader 
sense, cyanobacteria are used as commercial bioinoculants to promote plant develop-
ment because of their greater biodiversity, ability to survive in a variety of conditions, 
faster growth rate, and simpler nutritional requirements [28].

4.2 Nitrogen fixation

Nitrogen is the most important element needed for plant growth and is a key ingredi-
ent for successful cultivation on reclaimed land. Biological atmospheric nitrogen fixation 
by microorganisms is the main source of soil nitrogen [29]. Cyanobacteria have the 
ability to fix atmospheric nitrogen through specific cells called heterocysts that pos-
sess the nitrogenase enzyme. Nostoc Linkia, Anabaena variabilis, Aulosira Fertilissima, 
and Calothrix SP are the most efficient cyanobacteria in the soil’s air nitrogen fixation 
[30]. Cyanobacteria get established permanently in the field after being applied for 
three to four subsequent crop seasons [31]. The growth characteristics of Oryza sativa 
were enhanced by the addition of Nostoc commune and Nostoc carneum as sources of 
cyanobacteria with chemical fertilizer [32]. Spraying the foliar of Salix viminalis L. 
three times with Anabaena sp. and Microcystis aeruginosa improved photosynthesis, 
stomatal conduction, and intracellular CO2 concentration [33]. The application of Nostoc 
entophytum and Oscillatoria angustissima on Pisum sativum L. decreased the chemical 
fertilization to 50% [34]. The addition of cyanobacterium Phormidium ambiguum to 
sandy soil increased nitrate content by 15% more than the untreated soil after 90 days. 
Furthermore, the use of Scytonema javanicum improved the N content in slit loam, sandy 
loam, loamy sand, and sandy soils by 11, 10, 14, and 55%, respectively, the effect of cya-
nobacteria in biological crust formation and N supplementation for any sort of soil [35].

4.3 Bio fertility

In modern agriculture, microbes play a vital role in determining fertility and 
soil structure [36]. Cyanobacteria have potential use in agriculture as biofertilizers. 
Maintaining soil fertility using renewable bioresources is the main requirement of 
sustainable agriculture to reduce the need for synthetic fertilizers.

Among such resources, cyanobacteria are the most promising candidates. In the 
rhizosphere, cyanobacteria can be directly inoculated in the soil or can be used as a 
coating on seeds, but in both cases, their survival should be guaranteed. Although 
the use of agricultural chemical nitrogen fertilizers was a solution to all agricultural 
problems related to food production and increasing agricultural crop production, many 
environmental problems have arisen as a result of the excessive use of these chemical 
fertilizers in intensive farming systems. The high prices of chemical fertilizers have led 
to a decrease in the profit of agricultural crops, and the shortage of chemical fertilizers is 
a major problem facing farmers in developing countries, which makes researchers try to 
search for bio-alternatives to expensive chemical fertilizers [37]. Recently, there has been 
much interest in linking primary field crops in agriculture, especially cereal crops, such 
as wheat and rice, and organisms as a source of biofertilizers, such as cyanobacteria.

Due to the adaptation of cyanobacteria to most different environmental condi-
tions, it is widely used in increasing soil fertility and improving soil quality and 
structure, so it has become one of the most important biofertilizers [38]. The effect 
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of cyanobacteria supplementation on growth, productivity, and physical properties 
of sandy soil under greenhouse conditions was tested. Sood et al. [39] found that 
there was a lot of ecological and metabolic diversity in cyanobacteria and that their 
structural-functional flexibility led to even more diversity. The use of cyanobacteria is 
one of the inexpensive applications in agriculture, which legalizes the use of chemi-
cal fertilizers. Cyanobacteria are one of the most important improvers that increase 
organic matter, amino acids, vitamins, and auxins in the soil, reduce soil salinity and 
phosphate deposits, and increase productivity in rice crops [40].

Cyanobacteria are emerging microorganisms for sustainable agricultural devel-
opment. It can contribute about 20–30 kg of N per hectare, as well as soil organic 
matter, which is quite important for economically weak farmers who cannot invest 
in expensive chemical nitrogen fertilizers. The diazotroph group is the cyanobacteria 
most widely used for the development of biofertilizers and is capable of controlling 
the nitrogen deficiency in plants and improving the aeration of the soil and the water 
holding capacity. The most efficient nitrogen-fixing cyanobacteria are Nostoc linkia, 
Anabaena variabilis, Aulosira fertilissima, Calothrix sp., Tolypothrix sp., and Scytonema 
sp., which are normally present in the rice crop cultivation area.

4.4 Protection against abiotic stress

Abiotic stress on plants can be caused by a variety of factors, such as temperature, 
droughts, light, and soil-related factors, including salinity, presence of heavy metals, 
and soil acidity [41, 42]. Cyanobacteria induce diverse changes in response to elevated 
soil salinity by synthesis and accumulation of protective substances, maintaining low 
intracellular ion concentrations, and expression of so-called salt stress proteins [43]. 
Anabaena torulosa and Anabaena sp., exhibited anti-saline action by suppression of 
some expressed proteins, enhancement of other proteins, and expression of special-
ized salt stress proteins [44]. The effect of the extracellular products of Scytonema 
hofmanni on the growth of rice plants under salt stress was clearly demonstrated. 
These extracellular products made rice plants able to cope with stress caused by high 
salt concentrations. Comparison with the effects of plant gibberellic acid indicates 
that S. hofmanni produces gibberellin-like plant growth stimuli [45]. Another way to 
increase the sensitivity of plants to salinity stress is through the expression of cyano-
bacterial flavodoxin within them. This can induce multiple resistances in plants; it has 
been shown that it can reduce salt stress in Medicago truncatula. Adding cyanobacte-
rium Aphanothece sp. and Arthrospira maxima led to improve tomato plant growth and 
increase the content of chlorophyll and nutrients essential content, such as nitrogen, 
phosphorous, and potassium, under saline stress [46]. Reduce the effects of salt stress 
on sweet pepper plants increase in growth, as well as in the water content of the plants 
by using a liquid extract of Roholtiella sp. [47].

The reduction of the harmful effect of abiotic stresses on plants was observed 
by cyanobacteria, which has a direct effect on the soil or an indirect effect through 
the activation of specific responses in plants [48]. Concerning salinity stress, the 
mechanisms of cyanobacteria depend on increasing the plant’s ability to tolerate 
salinity through nitrogen fixation; the production of extracellular polysaccharides, 
compatible solutes, hormones, and antioxidative enzymes; the active export of ions; 
and the effects on the microbial community [49]. Rice plants showed an effective 
response to abiotic stress after treatment of rice roots with Oscillatoria acuta and 
Plectonema boryanum. That results in regular increases in the activity of peroxidase, 
phenylalanine ammonia-lyase, and phenylpropanoid [50]. Furthermore, rice plants 
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showed an increase in tolerance to salinity after inoculating roots with strains isolated 
from saline soils, such as Nostoc calcicola, Nostoc linkia, and Anabaena variabilis [51]. 
In salt-affected soils, N. punctiforme enhanced the physical composition, nutritional 
status, and microbial activity, leading to noticeably higher growth and yield [52].

Plant germination under drought stress can be enhanced by the use of cyanobac-
teria [53], moreover, it enhances the growth and development of plants in arid lands 
[54]. Microcoleus sp. and Nostoc sp. are capable of increasing germination and seedling 
growth of Senna notabilis and Acacia hilliana under drought stress [55]. Similar 
results were achieved in lettuce plants cultivated in barren soils after the addition of 
Spirulina meneghiniana and Anabaena oryzae [56].

Heavy metals can be effectively removed from agricultural soil and water by 
cyanobacteria [57]. Many cyanobacterial species, including Anabaena variabilis, 
Nostoc muscorum, Aulosira fertilissimia, and Tolypothrix tenuis, may absorb and remove 
Cr, Cu, Pb, and Zn [58], whereas Oscillatoria sp. and Synechocystis sp. can remove 
Cr, this was linked to increasing wheat growth [59]. Applying Spirulina platensis can 
hasten seed germination and boost plant growth by preventing Cd from moving from 
roots to shoots [60]. Synechocystis sp. and Phormidium sp. are capable of absorbing and 
removing systemic insecticide from the soil [61]. The addition of S. platensis in the 
soil can induce the biosynthesis of some amino acids, which can protect plants from 
the negative effects of the herbicide [62]. Cyanobacteria contribute to stimulating 
the release of plant hormones, such as salicylic acid or jasmonic acid, which have an 
effective role in protecting plants from biotic and abiotic stresses by stimulating gene 
expression of specific proteins [63]. Cyanobacteria lead to increased nitrogen and 
carbon content, state of soil aggregation, water retention, decrease in pH, exchange-
able sodium, and decrease in heavy metals, as well as microbial flora reconstitution 
which in turn all have an effective role in reducing salt stress [49, 53].

5. The role of cyanobacteria in soil resilience

Soil health is seriously threatened in many parts of the world due to salinization, 
groundwater pollution from acidification, and excessive use of chemical fertilizers 
and pesticides. Cyanobacteria are essential for maintaining the health of the soil by 
enhancing soil physicochemical properties, including aggregation, aeration, and 
nutrient release patterns [20]. Additionally, cyanobacteria contribute to the fixation 
of nitrogen, excretion of biologically active compounds, increase soil biomass and 
organic matter, improve water-holding soil capacity, and improve soil phosphate 
bioavailability, moreover, cyanobacteria are alternative low-cost and eco-friendly that 
ensure soil sustainability (Figure 4).

5.1 Cyanobacteria improve physical properties of soil

In the upper crust of soil, the growth of cyanobacteria produces exopolysaccha-
rides and extracellular polymers that alter the chemical composition and improve the 
physical properties of soil, which in turn promote beneficial microbial growth and 
strengthen soil structure [56]. Some cyanobacteria secrete mucilage or slime, which 
increases the availability of nutrients, and enhances soil structure that creates an 
ideal environment for the growth of advantageous microorganisms and plays a part in 
enhancing soil characteristics. The cyanobacteria Nostoc muscorum excrete exopoly-
saccharides and enhance saline soil stability [64]. Cyanobacteria can contribute to 
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the improvement and recovery of infertile soils by releasing holding and aggregation 
of soil particles together, the accumulation of organic content, and an increase in 
the water-holding capacity of the upper soil layer [ 65 ]. Rossi et al. [ 66 ] reported that 
the addition of cyanobacteria to the soil will improve soil properties and texture by 
adjusting soil stabilization, nutrients, moisture-holding capacity, and crust forma-
tion. The micromorphological characteristics of soil were improved after 6 weeks of 
the application of cyanobacteria combined with polysaccharides [ 67 ]. Chamizo et al. 
[ 35 ] demonstrated that the application of cyanobacteria can improve dry land func-
tions through restoration and reestablishment. Cyanobacteria contribute to improv-
ing the properties of hard-to-cultivable lands, such as calcareous and saline soils, and 
making them suitable for cultivation.  

  5.2 Phosphorus uptake 

 Phosphorus is the second most important nutrient for plants after nitrogen. It is 
a crucial mineral for the growth and development of plants. It is one of the essential 
components of a live cell since it serves as the primary structural support for DNA, 

  Figure 4.
  An overview of the cyanobacterial role in sustainable agriculture and environmental safety.          
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RNA, and ATP [68]. Phosphate is frequently supplied to the soil in the form of 
phosphatic fertilizers. However, plants only use a small portion of this nutrient since 
a large portion of it is quickly converted to insoluble complexes in the soil that plants 
cannot utilize. With the help of phosphatase enzymes, cyanobacteria can solubilize 
and mobilize the insoluble organic phosphates present in the soil, for example, ferric 
phosphate, aluminum phosphate, tricalcium diphosphate, and hydroxyapatite into 
soluble forms and improve the bioavailability of phosphorus to the plants [69]. The 
use of cyanobacteria in crop fields plays a significant role in the mobilization of 
inorganic phosphates by extracellular phosphates and the excretion of organic acids. 
Cyanobacteria enhanced the decomposition and mineralization of phosphate and 
transformed it into readily available soluble organic phosphates.

5.3 Degradation of agrochemicals

Control of agricultural pests and weeds depends on the use of agrochemicals, 
for example, pesticides, fungicides, bactericides, insecticides, and herbicides. This 
leads to maintaining global food production by killing agricultural pests, but at the 
same time, these pesticides pollute the environment. Biological intervention for 
many beneficial microorganisms, including cyanobacteria, is involved in removing 
the chemical residues [70]. Cyanobacteria can be used to get rid of various pol-
lutants, such as heavy metals, pesticides, chemical fertilizers, and crude oil [71]. 
Cyanobacteria are also able to remove heavy metals from water bodies and can reduce 
the increase in nitrates and phosphates from agricultural fields [72]. Intensive use of 
pesticides leads to an imbalance in the environmental system, especially in soil, water, 
and air. Currently, the use of beneficial microorganisms, especially cyanobacteria, is 
considered the best way to eliminate pesticides and chemicals that pollute agricultural 
soil. Cyanobacteria have the ability to break down pesticides at a faster rate. This 
requires some processes, such as adding the necessary nutrients or organic materi-
als, to accelerate the rate of decreasing pollutants by the cyanobacteria, which have 
growth activities that exceed the chemical roads in addition to being environmentally 
friendly [73].

Among the different compounds used for agricultural applications the phos-
phorous-organic pesticide category. The random use of such chemicals causes many 
environmental problems. It also poses a great danger to other organisms, such as 
birds, fish, animals, and humans. As a result, it is highly recommended that these 
hazardous chemicals be removed from the environment in an appropriate manner. 
Cyanobacteria are one of the best applications of beneficial microorganisms because 
it breaks down toxic chemicals into nontoxic compounds. The widespread appearance 
of cyanobacteria in the polluted area is a contributing factor, making them a better 
candidate for biological decomposition [8].

6. The role of cyanobacteria in controlling phytopathogens

Plants can be attacked by bacteria, fungi, viruses, and nematodes at different 
stages of growth, causing severe harm to the root system, stem, leaves, and fruits. 
Chemical pesticides were the best approach to decrease the damage of these diseases, 
but pesticides have many negative effects over time. The use of biological alterna-
tives, for example, cyanobacteria, has become a necessity to preserve the safety of the 
environment and the quality of crops. The major strategies used by cyanobacteria to 
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attack plant pathogens are antibiosis, the release of chemical compounds that may 
have the potential to inhibit a variety of phytopathogens, competition for space, and 
activation of plant defense responses. Cyanobacteria are distinguished by producing 
a huge number of bioactive substances (  Figure 5  ). Thus, cyanobacteria provide a sig-
nificant, safe alternative to avoid the harmful effects resulting from chemical control. 
It is a critical tool in sustainable agriculture [ 7 ].  

 Several plant fungi can be effectively controlled by cyanobacterial extracts, for 
example,  Fuarium  spp.,  Verticillium  spp.,  Alternaria  spp.,  Penicillium  spp.,  Botrytis 
cinerea ,  Rhizoctonia solani , and  Sclerotinia sclerotiorum  [ 6 ] .  Two orders of cyanobac-
teria, the Nostocales and Oscillatoriales, are very effective against fungal pathogens. 
Among Nostocales, two species,  Anabaena minutissima  and  Anabaena variabilis  
are active in preventing the spread of airborne diseases [ 74 ,  75 ]. Airborne fungal 
pathogens produce a significant number of spores, which are considered the main 
source of spread. Therefore, inhibiting spore germination could play an effective 
role in controlling the disease and preventing secondary infection. Spraying of  A. 
minutissima  on cucurbit plants can reduce the symptoms of powdery mildew caused 
by  Podosphera xanthii ; also, infected areas of cucumber leaves and spore produc-
tion decreased by 31% and 47%, respectively [ 75 ], while the disease was inhibited 
by 25% on zucchini [ 74 ].  A. variabilis  has effective antibiosis against  R. solani  and 
F. moniliforme  pathogens that infect tomato seedlings [ 76 ]. Also,  A. variabili s,  N. 
linckia , and  N. commune  have the same antibiosis effect on tomato wilt disease caused 
by  F. oxysporum  f. sp.  lycopersici  [ 76 – 78 ].  Anabaena  sp. has an antibiosis against  P. 
xanthii , which causes powdery mildew in zucchini plants [ 79 ].  N. entophytum  and  N. 
muscorum  considerably decreased the activity of  R. solani  in soybean by an antibiosis 
mechanism [ 24 ]. Additionally,  Oscillatoria agardhii  has an antibiosis against  F. solani , 
Macrophomina phaseolina , and  R. solani , which cause the damping off disease in 
lupine seedlings [ 80 ]. 

  Figure 5.
  Mechanisms of antimicrobial activity of cyanobacteria against phytopathogens.          
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The presence of diisooctyl adipate, extracted from N. piscinale and A. variabilis, is 
one strong indication that cyanobacteria contain chemical compounds active against 
R. solani, the causative agent of rice sheath blight, which causes severe damage in rice 
fields in China [81]. Anabaena spp., Scytonema spp., and Nostoc spp. have antifungal 
and toxic activity against soil-borne fungi [82]. Rhizopus stolonifer, Phytophthora 
capsici, Pythium ultimum, Botrytis cinerea, Colletotrichum gloeosporoides, Fusarium oxys-
porum, and Alternaria solani are all considerably inhibited by Nostoc commune metha-
nolic extracts [83]. Additionally, methanolic extracts of Spirulina platensis effectively 
prevent the growth of Helminthosporium spp., Alternaria brassicae, Aspergillus flavus, 
and Fusarium moniliforme [84, 85].

Cyanobacteria can produce enzymes that directly act against the pathogen’s cell 
wall. Anabaena sp. and Calothrix elenkinii can produce chitinases and chitisonases 
against pathogens, F. moniliforme, F. solani, F. oxysporum, A. solani, M. phaseolina, and 
R. solani and significantly reduce disease [86, 87]. Endoglucanases and glucosidases 
are two other enzymes that Anabaena sp. and C. elenkinii release. These enzymes can 
disrupt the cell walls of different plant pathogens by degradation of chitin and glucan, 
respectively [88]. In addition, Gupta et al. [89] reported that the antifungal proper-
ties of cyanobacteria are attributed to the production of endoglucanase, chitosanase 
homologs, and benzoic acid. Benzoic acid has the ability to interfere with fungal cell 
functioning, alter many parts of the cell, and has an effect on the respiration of the 
fungal cell [90]. Cyanobacteria can compete for space in the rhizosphere by form-
ing biofilms at the roots and blocking sites of infection for soil pathogens, such as 
Anabaena sp., against R. solani in cotton roots [91].

On the other hand, they activate the defensive responses of the plant directly 
against fungal pathogens, such as A. variabilis or A. laxa, which enhance the 
activity of defense and pathogenesis-related enzymes in tomato roots against F. 
oxysporum f. sp. lycopersici [92], or by the activation of systemic resistance, such 
as N. muscorum and A. oryzae, that increase total phenol content and the activities 
of peroxidase, superoxide dismutase, and polyphenol oxidase enzymes in tomato 
leaves against A. solani [93].

The ability of cyanobacteria to combat various plant pathogenic bacteria and their 
ability to release compounds into the environment has been extensively studied [94]. 
The mechanism underlying the bactericidal action of cyanobacteria is attributed to 
the presence of tannins, amino acids, phenolics, alkaloids, carbohydrates, and fatty 
acids, which may cause bacterial membrane deterioration that eventually allows cells 
to leak, lowers nutrition intake, and prevents cellular respiration [95]. Pseudomonas 
aeruginosa is capable of infecting the roots of A. thaliana and Ocimum basilicum, 
causing plant death [96]. Nostoc sp. was effective in controlling P. aeruginosa due 
to the presence of long-chain fatty acids [97]. Additionally, Anabaena flos-aquae 
can completely suppress Ralstonia solanacearum, which causes brown rot disease in 
potatoes due to the production of antibiosis that is released into the environment [98]. 
Yanti et al. [99] found that cyanobacteria were able to stop Ralstonia syzygii subsp. 
indonesiensis, which is the cause of many vascular diseases in different crops.

Cyanobacteria possess antibiosis mechanisms against plant pathogenic nema-
todes that include paralysis, death, accelerating egg hatching, and inhibiting gall 
formation against plant harmful nematodes. Heterodera cajani, Heterodera avenae, 
Meloidogyne graminicola, Meloidogyne incognita, and Rotylenchulus reniformis can all 
be immobilized and killed by aqueous extracts of Synechococcus nidulans [100]. Nostoc 
calcicola, Spirulina sp., and Anabaena oryzae can lessen the quantity of nematode galls 
and egg masses in the cowpea rhizosphere [101]. M. incognita and M. triticoryzae are 
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nematostatically inhibited by Aulosira fertilissima [102]. Additionally, M. incognita 
eggs are inhibited from hatching by the cyanobacteria species Anacystis nidulans, 
Oscillatoria fremyii, and Lyngbya sp. [103]. Furthermore, M. incognita in the tomato 
rhizosphere can be eliminated by an aqueous extract of Calothrix parietina [104]. 
Additionally, Microcoleus vaginatus has the capacity to lower M. incognita popula-
tions in the tomato rhizosphere and reduce root galling [105]. By coming into touch 
with plant roots, cyanobacteria can trigger several nematode defense mechanisms in 
plants. In order to combat M. incognita, S. platensis increases the catalase activity in 
the roots of banana plants [106] and stimulates the production of the plant defense 
compound jasmonic acid in tomato plants [107].

7. Conclusion

The presence of cyanobacteria in the soil is a positive indicator of the avail-
ability of organic matter, the support of oxygen, and the synthesis of hormones, 
amino acids, and vitamins, in addition to increasing the solubility of phosphates and 
enhancing the efficiency of fertilizers in plants while reducing the soil content of 
oxidants and salinity. Additionally, it plays a crucial role in nitrogen fixation, which 
is a major source of plant nutrition. Moreover, cyanobacteria promote the production 
of plant hormones and play an important role in combating many phytopathogens as 
antifungal, antibacterial, antinematode, and antiviral. It is clear from the above that 
cyanobacteria play an integral role in the sustainability of agriculture, as they work 
to improve the physiology of the plant and protect it against abiotic stress and attack 
by phytopathogens. Therefore, cyanobacteria should be applied on a larger scale in 
modern agricultural systems.
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Abstract

Polyhydroxyalkanoates (PHAs) are a group of biopolymers produced from various
microorganisms that attracted many researchers for their use as a substitute for
conventional petrochemical plastics. PHA possesses similar material properties to
petrochemical plastics with the added benefits of biocompatibility, biodegradability,
hydrophobicity, thermoplasticity, piezoelectricity, and stereospecificity. The first dis-
covery of PHA production in cyanobacteria was in 1969, and the commercialization of
PHA produced from cyanobacteria is not feasible to date. The difficulty with the
commercial production of cyanobacterial PHA is due to the low biomass production
and lower PHA accumulation than the heterotrophic bacteria. The biosynthesis of
PHA, production of cyanobacterial PHA, and strategies to improve the production of
PHA and commercialization are discussed in this chapter.

Keywords: cyanobacteria, Polyhydroxyalkanoates, biodegradable polymers,
bioplastics, bioprocess, PHB, P(HB-HV), PHA properties

1. Introduction

Bioplastics are a type of plastic that can be produced from natural materials like
plant starches and oils. By 2025, it is anticipated that the amount of petroleum used to
produce plastic would have decreased by 15–20% due to the use of bioplastics, which
are made from plants. Asia and Europe will hold the biggest market share for
bioplastics by 2025. Asia will make up 32% of the market, followed by Europe at 31%
and the United States at 28%. The market for bioplastics is now growing at a rate of
10% per year, accounting for 10–15% of the entire plastics business in 2016 and
increased to 25–30% in 2020 [1]. Synechocystis, Spirulina, Anabaena, and Nostoc
muscorum are cyanobacteria that can serve as bio-factories for the production of
biofuel and bioplastic. They can produce biopolymers like polyhydroxybutyrate
(PHB) and polyhydroxyalkanoates (PHAs), among other copolymers, that are both
affordable and sustainable [2].

Recent bioplastics like Bio-PET are only called biobased since their monomers are
made from corn, but the polymerization process is chemical, and the final polymer has
the same qualities as traditional PET, making it nondegradable [3]. Scytonema geitleri
and other cyanobacterial species can store internal poly-hydroxybutyrate granules for
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energy and carbon reserve when under stress. The environmentally benign and bio-
degradable PHB can then be collected and utilized to create biocompatible thermo-
plastics [4]. Polyhydroxyalkanoates (PHAs) are a type of polymer produced by
cyanobacteria. PHAs are lipid compounds that a variety of microbes accumulate
when there are abundant carbon sources present. They can be used for a variety of
purposes, including the creation of bioplastics [5]. Cyanobacteria need only a small
amount of nutrients to develop, and they produce PHAs through oxygenated photo-
synthesis [6].

Biochemical processes can naturally recycle bioplastics manufactured from
renewable resources, reducing the need for fossil fuels and preserving the environ-
ment. Bioplastics are therefore environmentally friendly, generally biodegradable,
and biocompatible. In many industrial applications today, including horticulture, food
packaging, hygiene, AND composting bags, bioplastics have become essential. Addi-
tionally, bioplastics are utilized in biological, structural, electrical, and other consumer
goods. With the demand for plastic usage increasing globally, a lot of research is being
done to investigate green materials and novel processing techniques.

Chlorosis is the term for the dormant state that occurs when nutrients are scarce,
such as nitrogen. During chlorosis, cyanobacteria deteriorate their photosynthetic
machinery. Beyond this breakdown, there is a significant buildup of glycogen for the
storage of carbon and energy. The process ends with the cells starting to break down
the glycogen and turn it into PHB [7]. The sole PHA synthesized under the described
photoautotrophic state out of the several PHAs is PHB. It is possible to add organic
carbon precursors like valerate to make the additional short-chain-length PHAs (scl-
PHAs), such as P(3HB-co-3 HV). Long-chain-length PHA or mcl-PHA have not yet
been found in cyanobacteria. The most effective known catalyst for PHB synthesis in
cyanobacteria is nitrogen restriction [8]. It has been noted that elements including
culture conditions, such as N, P, light exposure, and CO2 dynamics, have an impact on
cyanobacteria’s ability to produce PHA. Additionally, it has been noted that additional
elements including two-stage (growth and PHA accumulation) processes, metabolic
inhibitors for other pathways, and bioengineering have a favorable effect on PHA
production [9–13].

1.1 Types of bioplastics

Following is a classification of bioplastics based on the wide definition:

i. Starch-Based Bioplastics—Starch-based polymers are defined as those that
contain either natural or modified starch moieties. This group comprises
polymers made from the fermentation of starch as well as mixtures of starch
and natural or manufactured plastics. This makes up many of the
thermoplastics already in use and represents around 50% of the worldwide
bioplastics market such as thermoplastic starch (TPS) and Bio-PET.

ii. Bioplastics made of cellulose that is derived from cellulose esters or other
cellulose derivatives. Because cellulose comprises glucose molecules linked
together by a linkage [1, 14], certain symbiotic microorganisms are necessary
for ruminants to digest it. For instance, cellulose acetate and methylcellulose.

iii. Aliphatic Polyesters—Materials that have more resistance to hydrolytic
degradation, e.g., PHA and PLA.
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iv. Protein-Based Bioplastics—Derivative of sources such as milk, wheat gluten,
and other sources of protein. Very similar to the process of cheese-making,
e.g., casein bioplastics.

v. Lignin-Based Bioplastics—Although lignin has long been a byproduct of
cellulose manufacturing, it has only recently become important due to the
development of biorefinery projects. For instance, PP- and PHA- and lignin
polymer blends.

vi. Chitin-based bioplastic—The second most prevalent biopolymer after
cellulose, chitin is comprised of N-acetyl-D-glucosamine units connected by
linkages [1, 14]. Although chitin is found in the exoskeletons of arthropods
and the cell walls of yeast and fungi, the shells of crustaceans like crabs,
prawns, and shrimps are the main source of its extraction. For instance,
bioplastics made of chitosan, chitin blended with PP, etc. [3].

1.2 Sources of bioplastics

Microbial biopolymers are natural polymers that are produced and broken down
by a variety of species; they do not harm the host and have some benefits over
petroleum-based plastics [14].

Because of their potential for usage and quick destruction by microorganisms,
especially bacteria, biopolymers are innovative and promising. Under stressful cir-
cumstances, these biopolymers build up in microbial cells as store resources [15].

Microbiologically synthesized PHAs have shown considerable potential for
various applications in the fields of (i) pharmaceuticals: controlled release and drug
delivery systems; (ii) agriculture: regulated discharge of pesticides, plant growth
regulators and herbicides, and fertilizers; (iii) biofuel: methyl ester of 3-
hydroxybutyrate and methyl esters of 3-hydroxyalkanoate (MCL) can be used as
biofuels; (iv) medicine: PHAs can be used to create absorbable sutures, bone plates,
surgical pins, films, and staples, bone marrow supports, tendon repair tools, ocular
implant implants, skin substitutes, cardiac valves, tissues for cardiovascular use, vas-
cular grafts, tissue engineering applications, nerve guides, adhesion barriers, etc.; (v)
disposable: PHAs may be utilized in the production of razors, food trays, diapers,
hygiene items, cutlery, cosmetic packaging, glasses, medical surgical clothes, furni-
ture, carpets, packaging, bags, compostable lids, and other items; and (vi) chroma-
tography—Additionally, PHAs may be used as a stationary phase for chromatographic
columns [16].

2. Polyhydroxyalkanoates

Bio-polymers such as polyhydroxyalkanoates (PHAs) are produced by microor-
ganisms as lipid inclusions for granular types of energy storage inside the cellular
structure [17]. PHAs are natural polyesters made from thermoplastic 3-, 4-, 5-, and 6-
hydroxy alkanoic acids. More than 90 genera of bacteria, both Gram-positive and
Gram-negative, have been found to produce PHAs in both aerobic and anaerobic
conditions thus far. Some native bacterial strains, recombinant bacterial strains, and
recombinant eukaryotes can all manufacture polyhydroxyalkanoates (PHAs). These
bio polyesters are created by metabolically converting different carbon sources.
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Numerous PHA polymers also offer intriguing characteristics, such as the ability to
biodegrade, and they can be used for a variety of purposes, from single-use bulk
plastics to specialized medicinal applications [18].

2.1 Structure of PHA

A total of 150 distinct PHA congeners have been identified. The resulting polymer
is known as polyhydroxybutyrate or polyhydroxybutyric acid if the group is R = CH3,
polyhydroxyoctanoate (PHO) if R = C3H7, and so on.

2.2 Classification of PHA

PHAs are classified into three classes short, medium, or long chain length (scl, mcl,
and lcl), respectively. It is based on the number of carbon atoms as short-chain-length
PHA (scl-PHA), medium-chain-length PHA (mcl-PHA), and long-chain length PHA
(lcl-PHA). Scl-PHA refers to PHA comprised of monomers having 5 or fewer carbon
atoms [19]. These include 3-hydroxybutyrate and 3-hydroxyvalerate. The mcl-PHA is
comprised of monomers having 6 to 14 carbon atoms. These include 3-
hydroxyhexanoate, 3-octanoate, and 3-hydroxydecanoate. The lcl-PHA, which is
uncommon and least studied, consists of monomers with more than 14 carbon atoms
[20] (Figure 1).

Figure 1.
General structures of polyhydroxyalkanoates.
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2.3 Biosynthesis of PHA

PHAs are produced from two molecules of acetyl-CoA by three enzymatic reac-
tions. The classical polyhydroxybutyrate (PHB) biosynthesis pathway consists of the
following reactions:

1.β-ketothiolase (encoded by the phaA gene) catalyzes the formation of
acetoacetyl-CoA by the condensation of 2 acetyl-CoA molecules.

2.Acetoacetyl-CoA dehydrogenase reduces acetoacetyl-CoA to R-
3-hydroxybutyryl-CoA with the reduction of NADP(H) to NADP+ (encoded by
phaB gene).

3.PHA synthase polymerizes R-3-hydroxybutyryl-CoA to 3-hydroxyacid units
(3HAs) or polyhydroxybutyrate (PHB) polymer (encoded by phaC gene).

However, apart from the classical pathway, there are other biosynthetic pathways
involved in PHA production that differs based on the substrates, enzymes, and
microorganisms used. The enzyme PHA synthase plays the most crucial role in PHA
synthesis since it can polymerize 3-HA units obtained from different pathways such as
fatty acid β-oxidation pathway, methylmalonyl-CoA pathway, and de novo fatty acid
synthetic pathway [21, 22]. Numerous studies conducted on heterophilic bacteria
revealed the classification of PHA synthase based on the specificity of 3-HA (C-Chain
Length) substrate, amino acid sequence, and constituent subunits to have four classes
[23]. Class I PHA synthases are encoded by phaC and polymerize scl-3HA units,
monomers with approx 64 kDa MW. Class II PHA synthases polymerize mcl-3HA and
are also encoded by phaC genes. These are monomers and have similar MW of
�63 kDa. Class III PHA synthases are heteromeric with �40 kDa two subunits
encoded by phaC and phaE genes each. They polymerize scl-3HA units. Class IV
PHA synthases are similar to Class III and are encoded by either phaEC genes
or phaRC genes. They polymerize scl-3HA to mcl-3HA and scl-3HA alone,
respectively.

The acetyl-CoA utilized in the classical pathway of PHB synthesis is acquired as
precursors derived from the tricarboxylic acid (TCA) cycle. This type of pathway is
most commonly found in cyanobacteria, archaea, and heterophilic bacteria such as
Cupriavidus metallidurans. Lipid metabolism is also used for the production of PHA
which are mostly medium chain length (MCL) —PHAs. Different hydroxyalkanoates
are generated from the β-oxidation pathway of fatty acids by the biotransformation of
alkanes, alkenes, and alkanoates. The conversion of the β-oxidation intermediate
trans-2-enoyl-CoA into (R)-hydroxyacyl-CoA is catalyzed by an R-specific enoyl-CoA
hydratase (encoded by phaJ gene) and is the crucial step in this type of pathway.
Studies conducted on Aeromonas caviae and Pseudomonas putida strains reported the
(R)-specific manner of action of the phaJ enzyme [24, 25]. The PHA synthase
(encoded by phaC genes) polymerizes (R)-hydroxyacyl-CoA into PHAs. MCL -3HA is
produced in this type of pathway where both sugars and lipids are utilized. Glycolic
precursor and fatty acid biosynthesis intermediates are converted to 3-hydroxyacyl-
ACP by 3-hydroxyacyl-ACP-CoA transferase and malonyl-Coa-ACP transacylase.
These key enzymes are encoded by phaG gene and are (R)-specific reactions by acyl-
ACP-CoA transacylase. The 3-hydroxyacyl-ACP is converted into 3-hydroxyacyl-CoA
and then polymerized to PHAs by PHA synthase.
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Apart from the biosynthesis pathways and carbon source, other nutrients such as
phosphate, nitrogen, oxygen, and sulfur also play a major role in PHA accumulation
[26]. Limiting nitrogen and/or phosphorus with an excess carbon source is favorable
for cell growth, along with C: N ratio changes showing better beneficial stress for PHA
accumulation [15, 27, 28]. Under nitrogen deprivation, the conversion of α-
ketoglutarate to glutamate is decreased causing accumulation of NAD(P)H by
absorption of ammonium ions into cells. Similarly, the supplement of citrate reduces
citrate synthase activity, thereby increasing the concentration of NAD(P)H. These
high concentrations of NADPH result in increased PHB production since the reduc-
tion of acetoacetyl-CoA to R-3-hydroxybutyryl-CoA is increased [29]. Limiting phos-
phorus to a minimum level needed for cell maintenance restricts the Krebs cycle by
promoting NADH accumulation, inhibiting citrate synthase and isocitrate dehydroge-
nase with increased acetyl-CoA. Nutritional stress induced by phosphorus limitation is
sometimes more significant than nitrogen as a limiting factor in cyanobacteria and
proved to be a good strategy for inducing PHA production [29] (Figure 2).

2.4 General properties of PHA

PHA properties are very indistinguishable from that of conventional plastics since
it has great chemical diversity of radicals [17]. The ranges of these polymers vary from
rigid and brittle thermoplastics to elastomers, rubbers, and adhesives which is totally
based on their composition. Depending on the kinds of aromatic monomers used,
aromatic PHAs exhibit a variety of properties. A lot of research has been done on the
thermal characteristics of aromatic PHAs, which show behavior that is particular to
the structure. Due to the increase in chain length and increase in the number of
comonomers in a copolymer, its elasticity increases, and thus, PHAs have different
properties according to their monomeric composition.

The physical properties of PHAs are as follows:

1.molecular mass

2.thermal properties

3.crystallinity index.

Figure 2.
Biosynthesis pathway of PHB and P(3HB-co-3 HV) copolymer. Adopted from [30].
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Commercial suitability of molecular mass and molecular weight distribution of a
polymer plays a vital role in characterization., and polymers with molecular mass less
than 4 � 104 Da have their mechanical properties deteriorated.

The molecular weight of the compounds differs from 2 � 105 to 3 � 105 Da which
depends on the type of microbial species used and growth conditions like pH, culti-
vation modes, and type and concentration of the carbon source. The properties of the
PHA depend on the size of the polymer chains, whose structural rearrangements may
depend on the degree of polymerization [31].

In addition to defining some mechanical characteristics of a material at ambient
temperature, a polymer’s thermal properties, such as its melting and glass transition
temperatures as well as crystallinity and crystallization time, also serve as useful
factors for the thermal processing of materials [32]. PHAs have melting points
between 50 and 180°C and crystallinities between 30 and 70%, depending on the
polymer’s composition. PHAs are categorized as stiff if their crystallinity is between
60 and 80%. Medium (30–40%) and short (30%) polymer lengths characterize
flexible and more elastic PHAs, respectively [31]. PHA’s industrial applications are
expanded thanks to its reduced degree of crystallinity, which also enhances its
processing properties [32].

Semicrystalline polymers, the most popular type of PHA, are more brittle
and less solvent-resistant but have tensile qualities that are comparable to those
of polypropylene and polyethylene. PHB and its copolymers, which are made
by cyanobacteria, have physical characteristics that can be linked to those of
synthetic polymers like polypropylene and high-density polyethylene [33]. The
creation of polymers with the appropriate properties will be aided by a good
understanding of the connections between the PHA crystallinity and the polymer
composition.

PHA is a suitable substitute for synthetic polymers due to its natural origin,
biodegradability, biocompatibility, piezoelectricity, optical purity, and
thermoplasticity [34]. Additionally, they are thermoplastic and/or elastomeric, non-
toxic, and have a very high purity inside the cell. They are also hydrophobic, insoluble
in water, inert, and indefinitely stable in the air [35]. PHA is less solvent resistant than
polypropylene but has a substantially higher resilience to ultraviolet (UV) radiation
degradation [36].

Numerous microorganisms in distinct situations have the ability to break down
PHAs. PHA breakdown generates carbon dioxide and water under aerobic settings,
whereas it generates carbon dioxide and methane under anaerobic ones [37]. The
degradation time depends on a number of variables, including surface area, microbial
activity of the environment, pH, temperature, humidity, the presence of other nutri-
ents, and the properties of the polymer, such as composition and crystallinity, and can
range from months (anaerobic digestion) to years (marine environment), among
others.

Due to their high density, PHAs do not float in aquatic settings; as a result, after
being dumped there, they sink and are biogeochemically destroyed on the surface of
the sediments [37]. The two main processes involved in the biodegradation of poly-
meric heterocomposites, such as cellulose, starch, and aliphatic polyesters, of which
PHAs are typical, are biotic or abiotic hydrolysis followed by bio-assimilation
(hydrobiodegradation), and the second is peroxidation followed by the bio assimila-
tion of low molecular mass (oxybiodegradation) products, which is applied in partic-
ular. Despite their quick biodegradability, PHAs are exceedingly stable in the air and
do not decay when stored normally.
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2.4.1 Appearance

Depending on the types of integrated monomers, aromatic PHAs have a variety
of physical appearances. PHAs made only of phenoxy or phenyl monomers
(P(3H5PhV)) are sticky and supple. When the content of 3H5PhV was increased in
the instance of P(3HA-3H5PhV), the polymer softened. P(3HA-3-hydroxy-
phenylalkanoate) [P(3HA-3HPhA)] changed from water-soluble to glue-like as the
provided acyl chain length of phenylalkanoic acid was lengthened. PHAs with
methylphenoxy groups are brittle, whitish substances [38]. PHAs that contain the
3H4BzB unit are similarly difficult. PHAs with thiophenoxygroups, however, are
cream in color and elastomeric. The majority of PHAs that include the
difluorophenoxy monomer is also cream-colored. Even with the addition of a small
number of nitrophenyl units (1.2–6.9%), the physical properties of PHAs containing
the nitrophenyl group diverged significantly from those of mcl-PHA [39].

2.4.2 Mechanical properties

The P(3-hydroxydodecanoate-3H5PhV) [P(3HDD-3H5PhV)] with varied 3H5PhV
contents have different mechanical characteristics. The yield strength, maximum
tension strength, and elongation at the break all decreased as a result of the addition of
the 3H5PhV unit to P(3HDD). It is interesting to note that P(3HDD-18.70 mol%
3H5PhV) displayed a larger elongation at break than P(3HDD). On the other hand,
except for P(3HDD-31.97 mol% 3H5PhV), Young’s modulus increased above that of P
(3HDD). These findings suggest a nonlinear relationship between the mechanical
characteristics and the content of 3H5PhV [38].

2.4.3 Surface properties

Two fluorine atoms were added to P(3H5opFPxV), and its surface characteristics
were assessed. This polymer has a surface contact angle of 104°, compared to 50° for
PHAs having phenoxy or alkyl groups (C3 and C5) in the side chain [38]. A surface
contact angle of more than 100 is typically insufficient to use the polymer as a non-
wetting material. This difluorinated PHA thus possessed water-shedding qualities [39].

2.4.4 Degradability

The capacity of aromatic PHAs to degrade has also been investigated. One crucial
quality of using PHAs as biodegradable materials is degradability. The stability of
PHAs at physiological pH and the safety of the substance produced during hydrolysis
should be assessed for medical applications such as medication delivery systems by
analyzing the chemical degradation and microorganism-mediated degradation [38].

2.4.5 Chemical degradation

According to the literature, the P(3H6PhHx) homopolymer’s chemical degradation
was investigated. Around pH 7, this polymer is remarkably stable. It could therefore
be utilized as a medication carrier to induce a delayed release of the active ingredient
[39]. Additionally, the hydrolytic products of P(3H6PhHx) may have significant
pharmacological effects that could enhance or expand the therapeutic effects of the
drug that is encapsulated. These hydrolytic products can be oxidized in vivo to
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phenylbutyric acid, phenylacetic acid, or trans-cinnamic acid. The antibacterial activ-
ity of (R)-3-hydroxy-phenylalkanoates (C5-C8), a hydrolytic product of PHAs bear-
ing a phenyl group, is established. The relevant study showed that all (R)-3-hydroxy-
phenylalkanoates inhibited the growth of Listeria species, attributed only
(or mainly) to the phenyl group. Olivera et al. created polymeric microspheres of
P(3H6PhHx) [38].

2.4.6 Solubility

Bacterial PHA copolymers often display a wide range of comonomer compositions,
which may result from modifications in the bacterial metabolism during PHA pro-
duction. The biosynthesized aromatic PHAs are not always formed as a copolymer,
but rather occasionally as a combination of two distinct PHAs. These aromatic
polymers were isolated by solvent fractionation in several investigations [38].

2.4.7 Thermal properties

PHAs are polymers that are only partly crystalline. Therefore, the Tg and Tm of
the amorphous and crystalline phases are typically used to express the thermal char-
acteristics of these materials. The results of several studies show that the properties of
aromatic PHAs differ significantly from those of mcl-PHAs, which are elastomers
with Tgs between 53 and 28 C and a Tm between 45 and 69 C, where the values
change depending on the types of aromatic monomers used [38].

2.4.8 Extraction of PHA

Treatment of cellular disruption and/or instability, recovery, and purification of
biopolymers are the steps involved in the PHA extraction process. These procedures
allow for the use of chemical, physical, biological, or even a mix of these technologies
to provide a product with high purity and preserved physical and thermal
characteristics.

The first step in the PHA extraction method is to centrifugate the solid material,
which is made up of cells containing intracellular biopolymer, from the culture broth.
Additionally, the microbial cell wall may be punctured or disturbed through biologi-
cal, physical, or chemical means [40]. A suspension of bio-polymer, cells containing
biopolymer (cells that destabilize but do not break cell walls), and cell debris form
upon rupture or instability of the cell wall (mixture of proteins, nucleic acids, lipids,
and cell-wall fragments). The next stage is to recover the biopolymer, which can be
done in a variety of ways, including chemically, biologically, physically, or utilizing a
combination of approaches like physical and chemical, biologically and chemical,
among others [16].

2.4.9 Chemical methods

Isolated or coupled solvents are used in the chemical processes of removing PHAs
from the cells of the microorganisms [40]. Chloroform, acetone, methyl isobutyl
ketone, methylene chloride, propylene carbonate, ethyl acetate, and isoamyl alcohol
are the most often used solvents. It is vital to assess the contact time and heating
temperature of the polymer with the solvent to gauge the efficacy of the extraction
process and the quality of the resulting product [16].
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2.4.10 Physical methods

The use of homogenizer mills and ultrasound is among themost popular physical
techniques used in PHA extraction. These methods are typically used at the beginning of
the extraction procedure to disrupt and weaken themicroorganisms’ cell membranes.
When compared to chemical extraction techniques, mechanical extraction yields poly-
mers with higher thermal characteristics while also being more cost-effective and less
hazardous. If an appropriate chemical method is used in conjunctionwith themechanical
method to extract biopolymers, which allows for high PHA recovery without signifi-
cantly altering its features, the possibility for recovery will be increased [16].

2.4.11 Biological methods

The biological method of microbial PHA extraction is a complicated procedure that
relies on the use of enzymes including lysozymes, nucleases, and proteases to recover
the biopolymer. The culture broth is supplemented with enzymes to hydrolyze PHA-
containing cells [16]. The gentle operating conditions, great selectivity of the enzymes
in hydrolyzing the microorganisms’ cell wall proteins without affecting the break-
down of the polymer, and high quality of the recovered polymer make this technology
appealing [40].

3. Cyanobacteria as a source of bioplastics

The PHB accumulation in cyanobacteria was first reported by Carr G.N. in 1966 with
up to 10% (dcw) in Chlorogloea fritschii [41]. In photoautotrophic culture Artrospira
platensis (Spirulina) accumulated a maximum PHB of 6%, and it is very less for
exploiting cyanobacteria for PHA thermoplastics production. However, PHA biosyn-
thesis in, Synechocystis sp. PCC 6803, Nostoc muscorum, and Synechococcus sp.MA19
produced up to 38, 46, and 55% (dcw), respectively, under different limiting culture
conditions reported in studies [9, 42, 43]. The production of PHA reported in several
other strains in photoautotrophic and also with supplementation of acetate or other
organic carbon sources are profoundly lower compared to heterotrophic bacteria. Chen
et al. reported a maximum accumulation of poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate) [P(3HBco-3HHx)] co-polymer up to 50% (dcw) in Aeromonas
hydrophila 4AK4 grown in 5% glucose medium with 5% lauric acid under phosphorous
limitation with a productivity of 540 mg.L�1.h�1 [44]. Despite the high PHA accumula-
tion, bacterial PHA thermoplastic has commercial limitations since the organic carbon
substrate itself accounts for �30–50% of the total cost of production on a large-scale
[15]. For example, PHB production of up to 77% (dcw) was reported in recombinant
Escherichia Coli using glucose as substrate with a productivity of 3200 mg.L�1.h�1;
however, the carbon source used accounts for 38% of the overall cost of production [45].
Compared to heterotrophic bacteria (4–5% carbon substrate), cyanobacteria required
significantly lower carbon substrate at about 0.4% [44, 46]. Thus, cyanobacteria are a
more promising candidate for the large-scale production of bioplastics.

3.1 General Cultivation of cyanobacteria

Cyanobacteria are photosynthetic prokaryotes found in both fresh and marine
water, soil, etc., and they have a unique physiology that makes them survive even in
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harsh ecological habitats such as deserts, hot springs, volcanic substrates, and even in
alkaline basins. The cyanobacteria can be cultivated in three different culture systems—
an open-raceway pond (mostly preferred), a closed system (photobioreactor), and a
hybrid system (combination of both open and closed systems) [47]. The widely used
media for the cultivation of cyanobacteria is BG11 having the following composition
(1500 mg.L�1 NaNO3, 31.4 mg.L�1 K2HPO4, 36 mg.L�1 MgSO4, 36.7 mg.L�1

CaCl2.2H2O, 20 mg.L�1 Na2CO3, 1 mg.L�1 NaMgEDTA, 5.6 mg.L�1 citric acid, 6 mg.L�1

ferric ammonium citrate, and 120 mg�L-1 NaHCO3) (himedialabs). The components of
the modified BG-11 used in the reactors are (K2HPO4, NaNO3, NaHCO3, CaCl2.2H2O,
NaOH, Na2EDTA, and NaHCO3). The optimum pH and temperature for the growth of
cyanobacteria are 7.5–9 and 30 � 2°C, respectively. The culture takes up to 7 days to
reach the log phase, and the complete growth cycle ends in 20 days (after reaching the
death phase).

3.1.1 Open systems

Open ponds are the natural ecosystem in which the algae tend to grow and
develop. Open systems are classified into two types—natural (lakes and ponds) and
artificial (containers and artificial ponds). There are several advantages of growing
cyanobacterium in open systems which include low investment, construction of the
pond being easier, and easy maintenance. Some of the drawbacks include a require-
ment for large land, poor light penetration, and low biomass productivity [48].

3.1.2 Closed systems

Photobioreactors are considered to be the closed system for the cultivation
of cyanobacterium. By using this culture system, the drawbacks of the open system
can be neglected. There are several advantages of using a closed system for algal
cultivation which include control over culture parameters (pH, temperature, etc.,),
low level of contamination, and good mixing that induces high gas exchange
within the culture. There are various types of closed system available for the
culture of algae which includes vertical column, tubular bioreactor, flat-plate
bioreactor, etc [48].

3.1.3 Hybrid system

A combination of both open and closed systems is known as a hybrid system.
There are two stages of cultivation in which the first stage involves a closed system
and the second stage occurs in the open-raceway system. By utilizing this system, the
advantages of both open and closed systems are possible. Many ongoing studies are
designing a commercial-scale hybrid reactor that can be economical and can be easy to
handle [49].

4. PHA from cyanobacteria

4.1 Biosynthesis of PHA in cyanobacteria

For decades it was believed that cyanobacteria possess an incomplete Kerbs cycle
like some prokaryotes due to the absence of the 2-oxoglutarate dehydrogenase
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complex which performs the conversion of 2-oxoglutarate to succinyl-CoA in the TCA
cycle [50]. Since the TCA cycle is incomplete, it is assumed that the breakdown of
PHB polymers generating acetyl-CoA could be utilized neither for the production of
cell components nor for energy generation [51]. It was hypothesized that this cycle
was closed by the glyoxylate stunt of aspartate transaminase reactions [52]. However,
recent studies reported that the Kerbs cycle was completed with help of γ-
aminobutyric acid shunt and 2 enzymes 2- oxoglutarate decarboxylase and succinic
semialdehyde dehydrogenase found in Synechocystis sp. PCC 6803 [53] and
Synechococcus sp. PCC 7002 [54], respectively. The later reported protein-encoding
genes are present in most cyanobacteria with variation in their organization.

The PHA polymer biosynthesis is linked with mobilization or depolymerization
[5]. The PHA polymers usually undergo a cyclic process of biosynthesis and depoly-
merization, where the PHA is formed from acyl-CoA precursors via different meta-
bolic routes under nutrient depletion/limitation conditions as the carbon source is
stored as polymer granules in the cells. The mobilization of PHB polymers is carried
out by intracellular PHB depolymerase generating acetyl-CoA which is used to gener-
ate oxidation via the Krebs cycle. Many studies reported the regulatory effect of acetyl
phosphate produced by the phosphotransacetylase catalytic activity on the post-
translation of PHB synthase enzyme [55–59]. The exploitation of exogenous carbon
sources such as glucose, fructose, and acetate showed decreased mobilization and
increased biosynthesis of PHA [60–63].

4.2 PHA production

The PHA-producing cyanobacterium is classified into two groups—one group
requires a limitation of an essential media component for PHA production, and
another group does not require any limitation in nutrients for the production of PHA.
The cyanobacterium that can be cultivated without nutrient limitation is preferred on
an industrial scale. A few studies have been conducted to optimize the nutrients for
the production of PHA and PHB on large scale in batch mode. In a study, Synechocystis
sp. PCC 6803 was cultivated in BG11 media with reduced nitrogen concentration and
showed a maximum PHB accumulative of 180 mg.ml�1 [47], Synechocystis sp.
CCALA192 was cultivated in a 200 L tubular photobioreactor in batch mode and
accumulated a maximum of 125 mg.ml�1 of PHB, and a wild-type cyanobacterial
strain Synechocystis sp. PCC 6714 produced a maximum of 640 mg.L�1 of PHA when
cultivated in optimized growth media [64].

Several studies reported that higher PHA accumulation in cyanobacteria occurs
under nutritional stress activating the PHA biosynthesis pathway. According to
Mendhulkar and Shetye [65], the metabolic pathways are diverted to produce carbon-
rich compounds for energy storage, such as PHAs, and glycogen, when the
cyanobacteria experience nutrient deficiency (nitrogen and/or phosphorus). The
study on cyanobacteria Synechococcus subsalsus and Spirulina sp. LEB18 in nitrogen-
deficient environment revealed that the carbon source is diverted to other metabolic
pathways for biopolymer production which is used as energy storage and reused in
favorable conditions [66]. PHA accumulation in Botryococcus braunii and Synechocystis
salina grown in BG-11 medium without any nutritional limitation was reported
[67, 68]. Different nutritional conditions are employed to increase the production of
PHA such as excess or limited levels of nitrogen and/or phosphorus, acetate, and
propionate, and various other conditions like salinity, gas exchange, wastewater as a
source, etc., were summarized in (Table 1). Apart from culture condition variations,
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Cyanobacteria PHB
content
(% DCW)

Substrate Production
condition

Polymer
composition

Reference

Synechocystis
sp. PCC 6803

38 Acetate P limitation and gas
exchange limitation

PHB [69]

Synechocystis
sp.

11 Nitrogen and
phosphorous
deficiency

PHB [69]

Synechococcus
sp.MA19

55 Phosphorous
deficiency

PHB [43]

Synechocystis
sp. PCC 6714

16 CO2 N2 and P3 limitation PHB [12]

Spirulina
platensis

6.0 CO2 Not given PHB [70]

Spirulina
platensis
UMACC 161

10 Acetate and CO2 N starvation PHB [71]

Botryococuus
braunli

16.4 Sewage wastewater BG 11 medium PHB [67]

Spirulina sp.
LEB-18

12 Nitrogen deficiency — [66]

Spirulina
platensis

10 Addition of acetate
and CO2

PHB [71]

Synechocystis
salina

5.5–6.6 CO2 BG 11 medium PHB [68]

Synechococcus
subsalsus

16 Nitrogen deficiency — [66]

Spirulina
maxima

7–9 CO2 N and P limitation PHB [72]

Synechocystis
sp. PCC6803

5 BG 11 medium — [73]

Synechococcus
elongates

17.15 Sucrose Nitrogen deficiency PHA [65]

Synechococcus
elongates

7.02 Sucrose Phosphorous
deficiency

— [65]

Gloeothece sp.
PCC 6909

9.0 Acetate — — [15]

Microalgae
consortium

43 Agro-based industrial
wastewater and
activated sludge

Wastewater PHB [74]

Microalgae
consortium

31 Agro-based industrial
wastewater and
activated sludge

Wastewater PHB [75]

Nostoc
muscorum

69 Phosphorous
deficiency

P(3HB-co-
3 HV)

[10]

N. muscorum 31 Acetate and propionate Addition of
acetate and
propionate

P(3HB-co-
3 HV)

[9]
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highly productive strain selection can also increase the PHA accumulation yields
ranging from 5.0% to about 70% (dcw).

Coelho et al., [77] reported higher percentages of PHA accumulation in Spirulina
sp. using Zarrouk medium with nitrogen and phosphorus limitations of 30.7% and
14.1% (dcw), respectively. Phosphorus and gas exchange limitations along with addi-
tional acetate and nitrogen and phosphorus limitations in Synechocystis sp. PCC 6803
lead to PHA accumulation of about 38% and 11% (dcw), respectively [69]. Studies
conducted by Bhati and Mallick on PHB-PHV co-polymer production in N. muscorum
under nitrogen and phosphorus deficiency resulted in co-polymer accumulation of
about 60% and 69% (dcw), respectively [10, 11]. Samantaray and Mallick reported a
maximum of 85% (dcw) PHB and 77% (dcw) PHB-co-PHV in Alusira fertilisima
CCC444 under nitrogen deficiency with fructose and valerate supplementation and
phosphorus deficiency along with additional citrate and acetate, respectively [79, 80].

Cyanobacteria PHB
content
(% DCW)

Substrate Production
condition

Polymer
composition

Reference

N. muscorum
Agardh

60 Acetate and valerate N deficiency PHB-co-
PHV

[11]

N. muscorum 22 CO2 P starvation PHB [61]

Spirulina
subsalsa

7.45 Acetate and CO2 Increased salinity PHB [76]

Spirulina sp.
LEB18

30.7 Nitrogen deficiency PHB [77].

Aulosira
fertilissima

49 Acetate Gas exchange
limitation

PHB [78]

Alusira
fertilisim
CCC444

77 Fructose and valerate N deficiency PHB-co-
PHV

[79]

Alusira
fertilisima
CCC444

85 Citrate and acetate P deficiency PHB [80]

Synechocystis
PCC 7942

3 CO2 N limitation PHB [81]

Synechocystis
PCC 7942

25.6 Acetate N limitation PHB [81]

Synechocystis
sp. CCALA192

12.5 CO2 N limitation PHB [13]

Anabaena
cylindrica

<0.005 CO2 Balanced Growth PHB [82]

A. cylindrica 2.0 Propionate N limitation PHB + PHV [82]

Synechococcus
elongatus

17.2 CO2 and sucrose N deficiency — [65]

Caltorix
scytonemicola
TISTR 8095

25 CO2 N deficiency PHB [83]

Table 1.
PHA production in cyanobacteria under different culture conditions.
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4.3 Strategies to improve cyanobacterial PHA production

4.3.1 Genetic manipulation

Many studies have been conducted on gene manipulation of cyanobacteria on
metabolic engineering and PHB synthesis, Synechhocystis sp. PCC 6803 is the most
studied strain. Insertion of C. nectar PHA operon into Synechococcus PCC 7942
increased the PHA production from 3 to 25% (dcw) [84]. The Synechhocytis sp. PCC
6803 was transfected with the PHA synthase gene from C. nectar and showed
increased activity but net PHB content did not increase [73]. Overexpression of phaAB
with 4 mM acetate supplementation showed an increase in PHB of up to 35% (dcw) in
Synechocytis sp. PCC6803 [85]. Wang et at. reported volumetric productivity of
263 mg.L�1.d�1 and a yield of 1.84 g.L�1 by overexpression of the acetoacetyl-CoA
reductase gene in Synechocystis [86]. Table 2 summarizes further studies conducted on
genetic manipulation for increasing PHB production.

4.3.2 Suppressing glycogen synthesis pathway

The 3PG intermediate is utilized for both glycogen and PHB polymer production.
The productivity of glycogen is high and quicker than that of PHB in nitrogen depri-
vation conditions (30% PHB and 60% glycogen (dcw) is produced) [92]. Assimilation
of CO2 through ribulose-1,5-biphosphate carboxylation by the Rubisco produces 3PG
which is directed to glycogen biosynthesis more than PHB accumulation. Grundel

Cyanobacteria Genetic manipulation Culture
conditions

PHB content
(% DCW)

Reference

Synechocystis
sp. PCC 6803

Overexpression of PHA synthase Direct
photosynthesis

14 [87]

Synechocystis
sp. PCC 6803

Transconjugant cells harboring
expression vectors carrying PHA genes

CO2 7.0 [88]

Synechocystis
sp. PCC 6803

Introducing PHA biosynthetic genes
from C. nectar

Acetate and
nitrogen
limitation

11 [73]

Synechocystis
sp. PCC 6803

Increasing acetyl-CoA levels CO2 12 [89]

Synechocystis
sp. PCC 6803

Overexpression of native PHA genes CO2 and nitrogen
deprivation

26 [85]

Synechocystis
sp.

Optimization of acetoacetyl-CoA
reductase binding site

CO2 35 [86]

Synechococcus
sp. PCC 7942

Defective in glycogen synthesis CO2 1.0 [90]

Synechococcus
sp. PCC 7942

Introducing PHA biosynthetic genes
from C. nectar

Acetate and
nitrogen
limitation

26 [81]

Synechococcus
sp. PCC 7002

Introduction of GABA Shunt CO2 4.5 [91]

Table 2.
Genetic manipulations to increase PHB biosynthesis.
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et al. reported that there is no influence on growth under continuous light conditions
while the biosynthesis pathway of glycogen was impaired in Synechocystis sp. PCC 6803
[93]. In the study conducted byWu et. al, [94], an increase in PHB accumulation from
8–13% was observed in knockout mutants unable to produce glycogen and did not
turn into dormant mode and was unable to recover from nitrogen scarcity. However,
PHB-deficient mutants produced the same level of glycogen as the wild-type and
recovered from scarcity once replenished with nutrients. A deficiency of growth was
observed in the mutants with the knockout of genes involved in both polymer syn-
theses. Thus, it is important to improve the synthesis of PHB yield with robust PHB
production and suppressed glycogen pathway.

4.3.3 Exploitation of metabolic inhibitors to increase cyanobacterial PHA

As the imbalance of C: N and NADPH: ATP ratios are contributing factors in
stimulating PHB production many studies were carried out on the effect of the meta-
bolic inhibitor on PHB production. Upon supplementing N. muscorum with
carbonylcyanide m-chlorophenylhydrazone (CCCP) and dicyclohexylcarbodiimide
(DCCD), the PHB pool was increased to 21% and 17% from 8.5%, respectively, were
reported [55]. The addition of monofluoroacetate increased the PHB pool up to 19%
(dcw), while Lmethionine-DL-sulfoximine (MSX) and azaserine addition also
enhanced PHB production. Treatment with metabolic inhibitors such as DCCD,
CCCP, and [3-(3,4-di chlorophenyl)-1,1- dimethylurea influenced the NADPH:
NADP ratio along with PHB accumulation in Synechocystis PCC 6803 were reported
[95]. This strategy of using metabolic inhibitors could help to enhance PHA accumu-
lation in both wild-type and recombinant cyanobacteria.

4.3.4 Mixed consortium

The mixed consortium of cyanobacteria, bacteria, and algae is a feast-famine
strategy where a sequencing batch reactor (SBE) without aeration is used for the
cultivation [96, 97]. The concept of the consortium is developed to increase the system
efficiency by enhancing productivity and accessibility of resources, community sta-
bility, efficient nutrient cycling, and partitioning, and distribution of carbon or energy
source in a non-competitive manner. The oxygen produced by the algae cells during
the famine phase is used to consume the NADPH reserves of the cells leading to
around a 20% (dcw) increase in PHA accumulation [97]. A permanent feast regime
under high light intensity conditions promoted PHA production to a maximum of
60% (dcw) in photosynthesis mixed culture. The famine phase can be eliminated
using axenic dark feast conditions increasing productivity by up to 60% (dcw) by
facilitating the acetate uptake [96, 97].

4.3.5 Two-Stage cultivation

The two-stage cultivation strategy is exploited for high biomass production and
increased concentration of PHA thermoplastics. The cells are grown in optimal nutri-
tional conditions in the first or growth stage to achieve high biomass concentration.
The cells are recultivated in fresh media with the limitation of a specific nutrient
(nitrogen and/or phosphorous) in the second or accumulation stage to induce stress
and produce PHA. A study conducted on Chlorogloea fritschii TISTR 8527 in two-stage
cultivation shows a maximum PHB accumulation of 25% (dcw) using acetate as
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substrate with 51 � 7% (w/w) of conversion efficiency [83]. As the first stage pro-
duces maximum biomass this strategy appears to be potentially viable for large-scale
production, but the shear forces experienced by the cells during recultivated give rise
to a new lag phase. Two-stage cultivation of Synechocystis cf. salina PCC 6909 operated
in a single stage without recultivation of biomass produced about 90 mg.L�1 of PHAs
in 14 days. The cyanobacterium was grown in an optimized media such that the
phosphorous and nitrogen were almost utilized by 7–8 days with a maximum biomass
production of up to 2 g.L�1 (dcw) and thereby entered the accumulation stage due to
nutrient starvation without harvesting and transfer of biomass [98]. The overall
production cost of PHA production can be reduced using such type of two-stage
cultivation strategy.

5. Problems

Currently, the major bottleneck is the non-existence of an economical mass culti-
vation strategy for the commercial production of cyanobacterial PHAs. The two
commercial-scale mass cultivation approaches as (i) closed photobioreactors and (ii)
conventional open pond culture systems. The close photobioreactors are effective for
monoculture cultivation as they are of more controlled types. An ideal
photobioreactor should be flexible to all system requirements for different strains and
specific growth environments for the production of the product of interest [99]. Open
pond culture system is cheaper compared to photobioreactor which requires high
construction, operation, and maintenance cost.

Biomass harvesting from the water on a commercial scale is still a major issue
partly due to the low concentration (0.2–2 g.L�1), small size, and colloidal stability
[100]. Filtration, flocculation, gravity settling, and centrifugation are some of the
techniques exploited for harvesting cyanobacterial biomass. Flocculation is cost-
effective and energy efficient compared to centrifugation and it can also handle a huge
volume of culture. Addition of inorganic salts such as AlCl3, Al2(SO4)3, FeCl3, and so
on, cationic starch and chitosan are used for the flocculation of biomass [101, 102].
Several research efforts are being carried out for developing cost-effective and effi-
cient cyanobacterial biomass harvesting technologies. For example, the settling veloc-
ity distribution of flocculated microalgal/cyanobacterial biomass is a critical
parameter for developing cost-effective gravity settlers for biomass recovery.

The drying of biomass is essential for further downstream processing and storage.
Around 20% of the overall cost of PHA production from Spirulina is contributed to the
drying process. The high-energy input process of drying is only required for PHA
extraction. Air drying is quite feasible, but it requires a large area and a longer time. Solar
or wind energy utilization for the drying process could overcome these limitations [6].

6. Applications

PHA has a lot of advantages over conventional plastics because of its sustainability,
now fossil plastics are to be replaced the major obstacle to be faced is the reduction of
the cost associated with microbiological plastic production. The cost of producing
traditional petroleum-based plastic in 2002 was €1.00/kg, which was considerably less
than the €9.00/kg cost of PHA. Even when compared to other sustainable polymers,
like PLA, which costs €1.72/kg, microbiological manufacture of PHA costs €2.49/kg,
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which is still pricey [103, 104]. Carbon source plays an important role in facing the
obstacles such as yield of the input, fermentation, productivity, and downstream
processing [105, 106].

7. Strategies to choose to face the obstacle related to a circular economy
and industrial ecosystem

Keen interest in cyanobacteria is because of the production of different metabolites
which works with more than one type of compound as a salable product this type of
application use is called a “cradle to cradle” system (turning waste into a new product)
that is bioplastic [107]. Another instance of turning waste into a new product is using
microalgae, reusing the effluents from the refining of olive oil in the cultivation of
microalgae for biodiesel and biopolymers [29].

Another beneficial environmental effect that makes the adoption of a circular
bioeconomy more real is the uptake of ambient carbon dioxide for conversion into
biotechnological products. Using by-products and leftovers from microbiological pro-
duction, it is possible to integrate the creation of bioplastic with the manufacture of
other desirable goods to reduce the cost of microbial PHB. An effective alternative is
the cyanobacterial genus Nannochloropsis sp., which produces eicosapentaenoic acid,
and the cyanobacterial genus Spirulina platensis, which produces linoleic acid. This
species is important for its expressive biomass output, which has a high protein
content and can be used to make animal feed or nutraceuticals.

The construction of a biorefinery, merging Synechocystis salina’s PHB synthesis with
commercially valuable pigments, notably the commonly abundant phycocyanin and
chlorophyll, and carotenoids, showed encouraging results. Since the quality of the
resulting polymer is directly influenced by purification, which includes the removal of
pigments that can be employed in manufacturing chains of higher value, the extrac-
tion of pigments without their degradation is not only feasible but also necessary. In
addition to pigments, S. salina biomass contains carbohydrates, lipids, and proteins
that can be used as animal feed as long as the necessary nutritional standards and laws
regarding the presence of contaminants like heavy metals or mycotoxins are observed.
In this case, cyanotoxins are given priority over cyanobacteria that do not produce
toxins [108].

Cyanobacterial dietary supplements are also advantageous for animal health, with
Spirulina sp. biomass enhancing hens’ humoral and immunological responses. For
cyanobacteria and microalgae in general, the dual benefit of production connected
with bioremediation has already been discussed, with a focus on the creation of
biodiesel. The same idea can be used to explain how naturally transformable organ-
isms like cyanobacteria can produce biopolymers, opening new opportunities for
genetic engineering.

8. Conclusion

PHA has turned out to be a substitute for conventional plastics. Cyanobacteria is
becoming the alternative source of PHA production. The major cause of the produc-
tion of PHA using microalgae is to reduce the cost. Now, cyanobacteria aids in the
production of PHA as it collects a huge amount of PHS through photosynthesis which
ultimately requires less nutritional content for growth. Cyanobacteria have a very low
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yield of autotrophic PHA; in near future, a biological system can be constructed to
make use of the resources and attributes which can increase in production of PHA
through autotrophic and heterotrophic. Production of PHA using microalgae has
many other advantages like industrial compounds, which include pigments, antioxi-
dants, cosmetics, pharmaceuticals, polysaccharides, and so on. Additionally, it has
been noted that these organisms create a variety of secondary metabolites, poisons,
and other bioactive substances that are significant from a pharmacological perspec-
tive. The economics of cyanobacterial PHAs would unquestionably be improved by
integrating all of these substances under a refining method.
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Chapter 6

Thermochemical Conversion of 
Algal Based Biorefinery for Biofuel
Arosha Vaniyankandy, Bobita Ray, Subburamu Karthikeyan 
and Suchitra Rakesh

Abstract

Algae being the photosynthetic organism, currently considered as underexplored 
species for biofuel production in the entire global region and yet need to be explored 
more. In presence of algal based theory regarding the thermochemical process, 
though many researchers have been proceeding with the experiment but have got to 
stretch it further. This process aims to produce energy and bioactive compounds using 
algal biomass as a raw material. The current study relates with the thermochemical 
conversion process and mainly reflects about the algal biomass conversion into biore-
finery production, in a short time with easier and economically viable points, unlike 
other biochemical and chemical conversion processes. In thermochemical process, 
high temperatures used during the process produces different biofuels including 
solid, liquid, gaseous biofuels. This thermal decomposition process of algal biomass 
can be categorized into Gasification, Pyrolysis, Direct combustion, Hydrothermal 
process, and Torrefaction. Hence, in this study, it briefs on different type of processes 
for better production of biofuel as well as its significant merit and demerit compari-
sons of each process.

Keywords: algae, biomass, thermochemical conversion, biorefinery, liquefaction

1. Introduction

Algae, grouped among the photosynthetic organism, are sustained in the diverse 
form of habitats. It can flourish in freshwater, marine water as well as wastewater. 
Algae are a suitable biomass resource for renewable energy production because of 
the rapid growth rate, high content of lipids, and tremendous biomass productivity 
[1]. The algal biorefinery concept integrates various processes for converting algal 
biomass into biofuels and other bioactive products [2]. They aim to produce energy 
and bioactive compounds using algal biomass as a raw material. The conversion pro-
cess for biorefinery production includes biochemical, chemical, and thermochemical 
conversion processes.

The thermochemical conversion process is considered an efficient method for pro-
ducing biofuel from algal biomass. During the process, molecules in algal biomass are 
broken down to release their potential energy. It transforms the entire algal biomass 
to the respective fuel in a shorter time, unlike other conversion processes. The process 
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uses high temperatures to degrade the algal biomass to produce different biofuels, 
including solid, liquid and gaseous biofuels [3]. It is the best option to process algae 
with low lipid content or residues after extraction of the algae with high lipid content. 
The process is direct, easy, and fast compared to biochemical and chemical conver-
sion processes and is economically viable [4]. This thermal decomposition process 
of algal biomass can be categorized into Gasification, Pyrolysis, Direct combustion, 
Hydrothermal process, and Torrefaction.

Gasification is an excellent process to convert algal biomass to gaseous fuels. In 
contrast, pyrolysis and hydrothermal liquefaction (HTL) processes give bio-oil low 
molecular weight and bio-crude high energy density [5]. In the gasification process, 
the partial oxidation of algal biomass occurs at high temperatures. Combustible fuel 
gases like CH4 and H2 are produced. The actual process of gasification involves the 
reaction with the carbon-containing compound in the algal biomass and the air, 
oxygen or steam present at high temperatures in the gasifier, resulting in the produc-
tion of syngas and mixtures of other combustible gases like CO, H2, CO2, N, CH4 [2]. 
These studies indicated the promising role of steam gasification in hydrogen produc-
tion. Pyrolysis is an anaerobic heating process that produces medium to low calorific 
value liquid fuels on a large scale. The significant products obtained after pyrolysis are 
bio-oil, biochar, and charcoal [4, 6].

Hydrothermal processes such as liquefaction is emerged to be the most promising 
method to convert wet algal biomass to liquid fuel with the use of high temperature 
and pressure. It consists of evolving technique that can connect biomass with high 
moisture content and low energy and can convert into heat, hydrogen, biochar, 
electricity and other type of synthetic fuels. It is more efficient and favorable in con-
verting wet algal biomass to biofuel than pyrolysis [7]. Combustion is the easiest and 
most traditional method among all thermochemical processes. The direct combustion 
process involves burning or incinerating the algal biomass and converting the stored 
chemical energy in the biomass into gases in the presence of excess air [4, 8]. Whereas 
pyrolysis and combustion characteristics of Chlorella vulgaris are under different 
heating rates found compared to pyrolysis, combustion produces higher biomass, and 
the faster heating rate leads to the quicker and higher conversion [9]. The torrefaction 
process is introduced to overcome the demerit of low calorific values of algae. These 
upgrading methods involve the thermal degradation of algal Sbiomass in an inert or 
N2 environment [2].

Biofuel generated from algae will be environmentally friendly, non-toxic, and 
highly biodegradable. So these are considered a better alternative to fossil fuel 
as it has many disadvantages like environmental degradation, climate change, 
rising price, and depletion. The algal biorefinery approach is an excellent way to 
produce biofuels and other value-added products from algae. Many review papers 
reviewed different processes and steps involved in algae-based biorefinery. Since 
solid, liquid, and gaseous fuels can be produced via thermochemical strategies, 
these are emerged as the viable option to recover energy from algal biomass. The 
thermochemical conversion process can recover highly efficient and economically 
valuable biofuels. The thermochemical conversion process provides a simpler route 
of conversion. Various thermochemical approaches are widely explored because 
of their huge advantage over other methods. This chapter describes the different 
types of thermochemical conversion process for various biorefinery productions as 
well as it also emphasizes the influence of catalysts in thermochemical process for 
upgrading of biofuels. For a brief understanding of this chapter a figure have been 
shown below mentioned as Figure 1.
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2. Algal-based biorefinery

Algal-based biorefinery is a cost-effective approach to producing biofuels, 
bioenergy, and other value-added products by integrating algal biomass conversion 
processes and equipment [10]. It adds to the concept of converting algal biomass 
into useful, commercially important products and energy. The major stages in algal 
biorefinery include upstream and downstream processing, such as cultivation, 
harvesting, drying, and conversion processes to produce biofuel and other value-
added products.

Algal cultivation becomes economically feasible since algae can be grown in 
wastewater as a culture medium to cultivate algae. The importance and necessity 
of aquaculture wastewater for the purpose of cultivating algae and even highly 
flourished growth of microalgae in fertilizer wastewater leads to the production of 
biodiesel from algal biomass in a cost-effective way [11, 12]. Open raceway ponds 
and closed photo-bioreactors comprise the principal method for algal cultivation. 
Compared with other algal culture systems, open culture systems are cost-effective 
and easy to install and maintain, and their energy consumption is preferably lower. 
The negative impact of this system is a lack of control over water temperature, light 
intensity, and evaporation [13, 14]. Whereas in the case of a closed culture system, 
photobioreactors can produce 3–5 times more biomass. It can cultivate single species 
of microalgae in a considerable quantity. Tubular, flat plate, column, and membrane 
photobioreactors are different types of closed systems [14]. A novel, cost-effective 
algal cultivation strategy, mixotrophic microalgae biofilm, was introduced to improve 
productivity [15].

The size of algae is relatively minute in particular, and its negative surface charge 
makes the separation process difficult, making it challenging for harvesting. Several 
techniques are applied to neutralize these negative charges [16]. Algae harvesting from 

Figure 1. 
Algal biomass to biofuel conversion techniques.
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the aqueous suspension can be done mechanically, chemically, biologically, or using 
electrical-based methods. A combination of two or more of these methods is also used 
[17]. Different technologies are used to harvest algal biomass, including centrifuga-
tion, flocculation, bio-flocculation, flotation, filtration, gravity sedimentation and 
electrocoagulation. Another cost effective method of easiest harvesting is combina-
tion of flocculation-sedimentation cum centrifugation [15, 16]. Partial harvesting of 
algal biomass with vacuum gas lift prior to the complete harvesting (centrifugation) 
proved efficient and cost-effective [18–20]. In another harvesting experiment, auto 
 flocculation uses appropriate flocculants like poly aluminum chloride, aluminum sul-
fate, and pH adjusted chitosan is the best and economical way to harvest the microal-
gae. Harvesting efficiency can also be enhanced by adding auto flocculating microalgae, 
which can induce faster sedimentation of non-flocculating microalgae [21].

Drying can be done to protect the algal biomass from spoilage. For the hydro-
thermal process, the algal biomass need not be dried because the process is carried 
out in the water and requires 95% moisture content. The other thermochemical 
processes like pyrolysis, gasification, and combustion needs to be dried algal biomass 
to produce biofuel and high value products [17]. The significant algae drying process 
comprises rotary dryer, solar heat drying, spray drying, cross flow, and vacuum shelf 
drying [22]. Among that, solar heat drying or sun drying is the most basic drying 
with a low cost of budget but requires more duration time to dry. Algal biomass is 
disrupted in order to release intracellular biomolecules. Nowadays, mechanical and 
non-mechanical cell disruption methods are used to disrupt the algal cell wall. Non-
mechanical methods comprise a chemical method, osmotic shock, and treatment 
using enzymes and detergents. Osmotic shock involves applying a high concentration 
of a solute, such as a dextran, salts, or polyethylene glycol, around a cell to lower its 
osmotic pressure. These cause disruption of the algal cell wall and the release of intra-
cellular molecules. Moreover, hypotonic osmotic shock can damage the membrane of 
all algal species but not the cell wall [23]. Chaetoceros mueller algae produced 35% 
methane and 72% algal lipid in an osmotic shock experiment [24]. Cell disruption can 
also occur using various chemicals such as organic solvents, surfactants, hypochlo-
rite, and chelating agents. Acids and alkali treatments are also used for the algal cell 
disruption. Several parameters were studied and optimized in order to increase lipid 
extraction potency from Scenedesmus sp. (cellulase, pectinase, xylanase, protein con-
centration, pH, temperature, and incubation time) [25]. In the case of the enzymatic 
cell disruption method, enzymes are used to recover intracellular components. It can 
degrade cell wall components such as cellulose, hemicellulose, alginates, and glyco-
proteins. Mechanical methods in the form of liquid and solid shearing (bead milling, 
high-speed homogenizer, and high-pressure homogenizer), energy transfer (ultra-
sonication, microwave, and laser), and heat (thermolysis and autoclaving) and as a 
current (pulsed electric field) are considered as an alternative method to disrupt the 
cell wall of algae [26]. The bead milling method induces direct mechanical damage to 
the algal cell. These cells are damaged by applying forces from collisions between cells 
and beads. The collision is propped up with the help of a rotating shaft in the grinding 
chamber [27]. Another technique method is ultrasonication which uses ultrasound 
waves to disrupt algal cells.

Similarly, the pulsed electric field technique uses an external electric field, creat-
ing a critical electric potential across the algal cell wall, thereby causing disruption 
of the cell wall. Heat treatment methods such as autoclaving and thermolysis are also 
effective for cell disruption [28]. Many valuable biomolecules can be extracted from 
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algae by cell disruption methods. After the cell disruption process, the extraction 
process begins. Supercritical fluids and deep eutectic solvents are used in solvent 
extraction. The organic solvent extraction technique is a well-known method for the 
extraction of algal biomolecules. This technique enhances the extraction yield by 
facilitating the access of solvents to inner cellular molecules. In addition to terpenes, 
liquid polymers, ionic liquids, and deep eutectic solvents, bio-based solvents are 
used for solvent extraction. In the case food and pharmaceutical industries super-
critical fluid extraction technique is primarily employed as it is a contamination-free 
method of extraction. Separation and purification methods are done to separate 
the impurities and the molecules of least interest. Separation methods to purify the 
extracted components include electrophoresis, membrane separation, ultracentrifu-
gation, etc. [26].

Various conversion technologies are employed to convert algal biomass into value-
added products, including biochemical, chemical, and thermochemical technologies. 
Biochemical conversion of algal biomass is achieved through biological treatments to 
produce biofuels. These conversion methods include fermentation, anaerobic diges-
tion, and transesterification. Anaerobic digestion converts algal biomass to hydrogen 
and methane, while fermentation produces ethanol, acetone, and butanol; trans-
esterification produces biodiesel.

3. Various processes of thermochemical conversion from algal biomass

The thermochemical conversion process is known to be an efficient method for 
the conversion of algal biomass into biofuel. It involves the thermal degradation of the 
biomass structure. From the evidence of many journals, chemical and biochemical 
methods are utilized in conversion to biofuel, whereas these days thermochemical 
conversion is also commonly used as it provides a more straightforward route to 
synthesize biofuel. The following thermochemical conversion processes are into 
Gasification, Pyrolysis, Direct combustion, Hydrothermal process, and Torrefaction. 
These processes also consist of demerits followed by merit points where the differ-
ences are shown in Table 1.

3.1 Gasification

As mentioned earlier, the gasification process is the partial oxidation of algal bio-
mass that prefers to work only at high temperatures along with the combustible fuel. 
The syngas, basically produced by the gasification process, has a low calorific value of 
4–6 MJ/m3 and can be used as a fuel for gas engines or gas turbines. The gasification 
process also produces hydrocarbon compounds which can be further converted into 
methanol via. The Fischer Tropsch conversion pathway. To effectively perform the 
gasification process, the moisture content of the biomass should be less than 14% [3]. 
In a study, it had pointed out that 40% of the moisture content in the algal biomass 
can be tolerated by the gasifier through the comparative performance analysis. It was 
also shown that this moisture content of the biomass is considered to be an impor-
tant factor influencing the heating value of gas and even the high moisture content 
seriously affecting the performance of the gasifier. At 5% moisture content, the high 
heating value and the cold gas efficiency of the syngas produced are 5.138 MJ/kg and 
73.81%. At 30% moisture content, it would be 3.338 MJ/kg and 44.24% [29].
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3.2 Pyrolysis

Through the process of pyrolysis, the algal biomass is converted into bio-oil, syngas, 
and charcoal in the absence of air. It is an anaerobic heating process, and heating can be 
done at a moderate temperature range of 350–700°C. The pyrolysis can be categorized 
into fast, flash, and slow pyrolysis on the basis of operating conditions. The production 
of bio-oil and biochar can be achieved by performing fast pyrolysis, and slow pyrolysis 
results in the production of pyrolytic gas and biochar. Slow pyrolysis having a heating 
rate range of 0.1 and 1°C/S with the sample particle size ranging between 5 and 50 mm, 

Thermochemical 
Process

Merit Demerit

Gasification 1. Converts algal biomass into gaseous fuels.

2. Combustible fuel gas like CH4 and H2 are 
produced.

3. Syngas produced can be used as a fuel for 
gas engines or gas turbines.

1. Moisture content of biomass 
should be less than 14%.

2. High moisture content in 
biomass affects the performance.

3. Low large scale production.

Pyrolysis 1. Anaerobic heating process that give rise to 
bio-oil having low molecular weight and 
bio crude having high energy density.

2. Produces medium to low calorific value 
liquid fuels in large scale.

3. Bio-oil, biochar, and charcoal are obtained 
even in moderate temperature range from 
350 to 700°C.

1. Expensive process.

2. Requires high energy and 
temperature for conversion.

3. Slow in process.

Direct 
Combustion

1. Easiest and traditional method.

2. Involves burning or incineration of 
biomass.

3. Converts stored chemical properties pres-
ent in biomass into gas state.

1. Requires high temperature, 
capacity to carry out is 800°C.

2. Requires pretreatment process 
like chopping, grinding,  
drying.

3. Basically leads to more energy 
and high cost.

Hydrothermal 
Process

1. Converts wet algal biomass into liquid fuel. 
Water volatile favorable.

2. Hydrothermal carbonization requires 
mild temperature and pressure to produce 
biochar.

3. This process can be carried out in low 
temperature, i.e., 300–350°C.

1. Expensive in process.

2. Forms corrosion.

3. Forming of tar and coke.

Torrefaction 1. Designed to improve drawback of algal 
biomass poor calorific value.

2. Also improves the physiochemical proper-
ties as well as fuel characteristics of algal 
biomass.

3. Also referred to as mild pyrolysis that give 
rise to solid biochar.

1. Low amount of density enhance-
ment is applicable.

2. Applied energy density during 
the process is not improved.

3. Water volatile not favorable.

Table 1. 
Comparison among various thermochemical processes.
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allows the production of solid, liquid and gaseous products. Fast pyrolysis gives rise 
to liquid and gaseous products. Since having a high heating rate, flash pyrolysis gives 
liquid products [30]. Microwave-induced pyrolysis is carried out from the microalga 
Scenedesmus almeriensis in an electric furnace and showed that the microwave-induced 
pyrolysis gives rise to higher syngas and H2 production [22, 23].

3.3 Direct combustion

The combustion process is said to be the easiest among all thermochemical 
processes. Both microalgae and macroalgae residues while heating follows into lipid 
extraction which is termed as an effective method [31–33]. Combustion is usually 
carried out at a temperature. But the capacity to carry out a temperature is around 
800°C in the boiler, that furnaces or steam turbines and used to generate electricity. 
The major products generated after the combustion processes include CO2, H2O, and 
heat. The major disadvantage of this process involves that it requires pretreatment 
processes like chopping, drying, and grinding, which utilizes more energy and leads 
to high cost. Also the presence of impurities in biomass such as sodium, potassium, 
sulfur and nitrogen leads to problems with fouling and corrosion [34].

Various studies have been done in the combustion of microalgae. Among the study 
used Haematococcus pluvialis microalgae (M) and the chemical extraction residue 
(MR). A couple of TG-MS systems were used to investigate the combustion and 
emission properties of M and MR and the results revealed that the combustion of M 
and MR took place in three stages i.e. the decomposition of proteins, carbohydrates, 
lipids, and char was the first stage, followed by the volatilization of free water and a 
tiny amount of volatiles, and finally the decomposition of minerals. Whereas co-
combustion of C. vulgaris, industrial waste of textile dyeing sludge (TDS) and their 
blends were also included in few of the studies [24, 26].

3.4 Hydrothermal process

HTL is emerged to be the most promising method to convert wet algal biomass to 
liquid fuel and various value-added products. The process is carried out at a low tem-
perature, usually 300–350°C, and high pressure (5-20 MPa) condition with the help 
of a catalyst and in the presence of hydrogen and yields bio-oil [35, 36]. The process 
effectively converts the biomass with water activity into smaller molecular compo-
nents with high energy densities. The drawback of the conventional HTL method 
paves the way for the two-stage sequential hydrothermal liquefaction (SEQHTL) 
method, which overcome the limitation of the conventional method in recovering 
bioactive compounds [37].

In an experiment given as an example, nine species of algae were selected in order 
to perform HTL at temperatures of 280°C and 320°C to find out the effect of the 
biochemical composition of the species on bio-oil yields and properties at two dif-
ferent temperatures. They got maximum bio-oil yield at a temperature of 320°C in 
the algae Nannochloropsis, which contains high lipid content [38]. It has been found 
through a microchip known to control high temperature and pressure that allows the 
HTL process in situ using fluorescence microscopy [39]. It requires a thermochemical 
process to convert the algal biomass into biochar products. The process involves heat-
ing algal biomass in water at the temperature of 200°C under pressure less than 2Mpa 
within 60 min of residence time. The process is exothermic and spontaneous [40]. In 
an experiment, lipid was extracted from Picochlorum oculatum. It was used as an algal 
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biomass for the conversion of algal hydrochar via hydrothermal carbonization and the 
resultant hydrochar were found to be a promising adsorbent for metal remediation of 
wastewater [41].

3.5 Torrefaction

The torrefaction process is designed to offset the drawback of microalgae’s poor 
calorific value. These are the pretreatment process to improve the physicochemi-
cal properties of algal biomass and thereby improve the fuel characteristics of algal 
biomass. The process involves the thermal degradation of algal biomass in an inert or 
nitrogen environment at one atmospheric pressure and 200–300°C temperature at a 
residence time of 10 to 60 min [42]. The torrefaction process gives rise to solid biochar. 
The efficiency of the process can be influenced by certain factors such as temperature, 
residence time, and composition of the biomass [43]. The torrefaction process shows 
high similarity with pyrolysis, but the process needs low operating temperatures, 
so it is called mild pyrolysis [44]. During the process, carbohydrates, proteins, and 
lipids are all degraded at varying rates resulting in partial carbonization. Few algae 
such as Chlorella sp., Nanochloropsis sp. are analyzed and their thermal degradation of 
carbohydrates, proteins, and lipids are demonstrated where the  activation energies 
of carbohydrates, lipids, and proteins are in the range of 53.28–53.30, 142.61–188.35 
and 40.21–59.23 KJ/mol and the thermal degradation of carbohydrates, proteins, and 
lipids, are in temperature ranges of 164–497, 209–309, and 200–635°C, respectively. 
Torrefaction is classified into conventional, microwave, wet, and  oxidative torrefac-
tion. These are again categorized as light (200–235°C), mild (235–275°C), and severe 
(275–300°C) torrefaction depending on the torrefaction temperatures [36–38].

4. Upgrading of bio-oil in pyrolysis and hydrothermal liquefaction

The bio-oil obtained from the HTL and pyrolysis process is considered a best-suited 
alternative to petroleum if and only if the quality of the bio-oil is enhanced. The bio-
oil extracted after the thermochemical conversion process contains phenols, acids, 
aldehydes, N, and O heteroatoms which confer thermal stability and corrosion. The 
use of bio-oils is restricted due to the high oxygen content, strong acidity, and high 
calorific value of bio-oil. Due to these reasons, the up-gradation of bio-oil is essential, 
which involves enhancing the quality of bio-oil to use in transportation.

4.1 Emulsification

The simple upgrading method involves the emulsification of bio-oil with other fuels. 
However, bio-oil is immiscible with petroleum-based fuels and can be emulsified with 
biodiesel using surfactants. As a liquid fuel, upgrading bio-oil by emulsifying it with 
diesel oil reduces viscosity and enhances the calorific value and cetane number [45, 46].

Therefore, the use of a cheap and appropriate emulsifying agent is essential in bio-
oil upgrading through emulsification. A study said emulsions of bio-oil with biodiesel 
and showed that the production of the most stable emulsion was acquired using the 
surfactant class polyethylene glycol-di-polyhydroxy stearate (PEG-DPHS), having an 
HLB number of 4.75 and a mass ratio of 32:8:1 diesel: bio-oil: surfactant. Even while 
using the co-surfactant SPAN80 in addition to the surfactant showed that the ability 
to solubilize bio-oil in diesel increases with increasing cosurfactant/surfactant ratio 
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[46]. When compared to the original bio-oil, in case of diesel emulsions possessed 
more fuel properties. These are very simple and rapid upgrading methods but expen-
sive due to the addition of surfactant and high energy costs.

4.2 Esterification

Esterification or otherwise called alcoholysis, is the process of conversion of free 
fatty acids into their respective alkyl esters. The bio-oil produced contains organic 
acids, which contributes to acidity, instability, and a high degree of unsaturation and 
can be reduced by the process of esterification. The reaction between the fatty acids 
and alcohol at atmospheric pressure with the help of catalysts gives rise to the forma-
tion of alkyl ester or biodiesel. Bio-oil also consists of aldehydes possessing challenges 
for bio-oil upgrading through esterification [40, 41]. In some study, ozone oxidation 
technology is used to pretreat bio-oil for the conversion of aldehydes into acids. And 
another through the experiment demonstration the two-step esterification-hydro-
genation process showed better performance in bio-oil upgrading than the one-step 
esterification-hydrogenation process, and it provides higher alcohol and more stable 
compounds [42, 43].

4.3 Hydrogenation

Bio-oil derived after the thermochemical conversion process contains high oxygen 
content, which can be removed using high-pressure hydrogen, known as hydrogena-
tion. The hydrogenation reaction is carried out during hydrotreating which increases 
the hydrogen content, thereby increasing the quality of bio-oil. Hydrotreating is a 
refinery process that aims to reduce bio-oil’s N, O, and S contents. Using a catalytic pro-
cess with high-pressure hydrogen, it eliminates oxygen as water. In a similar way, high 
consistency of pure nitrogen enhances to form ammonia synthesis. The energy and 
heat basically utilized here are recirculated easily and recovers it for power generation 
[44, 47]. Whereas in another case, two-step esterification hydrogenation even helps in 
upgrading the bio-oil. It basically helps to degrade the active compounds mostly acids 
and ketones and rather helps in raising the contents of alcohols and esters [48].

4.4 Cracking

These are the upgrading process to convert the oxygen content in the bio-oil to 
H2O, CO, and CO2 using catalysts. The reaction occurs in a fixed or fluidized bed 
reactor system under normal pressure. Zeolite catalyst (HZSM-5) is the most common 
catalyst used in catalytic cracking due to its strong acidity, high reactivity, and stable 
porous structure [40, 49]. An experiment had proposed that the bio-oil upgradation 
can be done with two heating units with or without the presence of zeolite catalyst 
but the characteristics of catalytic cracked bio-oil were better than the non-catalytic 
cracked bio-oil [47]. During the bio-oil upgrading, the formation of coke can deacti-
vate catalysts and its significant issue. Another experiment conducted with catalytic 
cracking of bio-oil models such as acetic acid, cyclopentanone and guaiacol had 
been investigated for the formation of coke using fixed bed reactor. It has found that 
compared to cyclopentanone and acetic acid, guaiacol produces more coke as it has 
ring structures that directs polymerization on the catalyst surface to form coke [50]. 
In Table 2, the thermochemical process with its various supported catalyst for the 
production of biorefinery products have been shown already.



Cyanobacteria – Recent Advances and New Perspectives

118

A
lg

al
 S

pe
ci

es
 N

am
e

T
he

rm
oc

he
m

ic
al

 p
ro

ce
ss

 
ut

ili
ze

d
Te

m
pe

ra
tu

re
 

in
hi

bi
te

d
C

at
al

ys
t u

se
d

Bi
or

ef
in

er
y 

pr
od

uc
ts

O
th

er
 b

en
ef

ic
ia

l 
su

bs
ta

nc
es

Re
fe

re
nc

e

Ch
lo

re
lla

 v
ul

ga
ri

s
Su

pe
r C

rit
ic

al
 W

at
er

 
G

as
ifi

ca
tio

n
60

0°
C

N
A

N
A

P 
ac

cu
m

ul
at

io
n;

 O
rg

an
ic

 
co

m
po

un
ds

 d
ec

om
po

sit
io

n
[5

1]

Sa
cc

ha
rin

a 
ja

po
ni

ca
G

as
ifi

ca
tio

n
<5

00
°C

A
lk

al
in

e T
he

rm
al

 
Tr

ea
tm

en
t (

AT
T)

; N
i/

Zr
O

2

H
2

N
A

[5
2]

Fu
cu

s s
er

ra
tu

s, 
La

m
in

ar
ia

 
di

gi
ta

te 
an

d 
N

an
no

ch
lo

ro
ps

is 
oc

ul
at

a

St
ea

m
 G

as
ifi

ca
tio

n 
an

d 
Py

ro
ly

sis
80

0°
C

Fe
2O

3-
Ce

O
2 >

 R
ed

 
m

ud
 >

A
ct

iv
at

ed
 R

ed
 

M
ud

H
2

Ta
r d

eg
ra

da
tio

n
[6

]

Sc
en

ed
esm

us
 sp

. a
nd

 S
pi

ru
lin

a 
sp

.
H

yd
ro

th
er

m
al

 L
iq

ue
fa

ct
io

n 
an

d 
Sl

ow
 P

yr
ol

ys
is

30
0°

C 
an

d 
45

0°
C

N
A

Bi
o-

oi
l

N
A

[8
]

Fu
cu

s v
esi

cu
lo

su
s

H
yd

ro
th

er
m

al
 L

iq
ue

fa
ct

io
n

30
0°

C
H

β 
ze

ol
ite

Bi
oc

ru
de

-o
il

N
A

[5
3]

C.
 v

ul
ga

ri
s

H
yd

ro
th

er
m

al
 L

iq
ue

fa
ct

io
n

35
0°

C
N

A
Bi

oc
ru

de
N

A
[4

8]

N
an

no
ch

lo
ro

ps
is 

oc
ea

ni
ca

To
rr

ef
ac

tio
n

30
0°

C
Po

ta
ss

iu
m

 ca
rb

on
at

e
Bi

of
ue

l
N

A
[5

4]

C.
 v

ul
ga

ri
s

To
rr

ef
ac

tio
n

30
0°

C
N

A
Bi

oc
ha

r
M

et
hy

le
ne

 b
lu

e a
ds

or
pt

io
n

[5
5]

A
sco

ph
yl

lu
m

 n
od

os
um

H
yd

ro
th

er
m

al
 

ca
rb

on
iz

at
io

n
30

0°
C

Zn
Cl

2
Bi

oc
ha

r
A

nt
ib

io
tic

 re
m

ov
al

 fr
om

 
w

at
er

[5
6]

Ar
th

ro
sp

ira
 p

la
te

ns
is

Fa
st

 P
yr

ol
ys

is
80

0°
C

Ze
ol

ite
s

Bi
of

ue
l

Be
nz

en
e,

 to
lu

en
e,

 x
yl

en
e,

 
cy

cl
ob

ut
an

e,
 ac

et
on

itr
ile

[5
0]

Ta
bl

e 
2.

 
Ef

fec
t o

f v
ar

io
us

 th
er

m
oc

he
m

ica
l p

ro
ce

ss 
on

 m
ic

ro
al

ga
e.



119

Thermochemical Conversion of Algal Based Biorefinery for Biofuel
DOI: http://dx.doi.org/10.5772/intechopen.106357

4.5 Steam reforming

These are the promising method to produce hydrogen and syngas from algal biomass. 
The bio oil is kept in steam at high temperature. In the steam reforming process, 
fluidized or fixed bed reactor system is always used at the temperature of 700–1000°C 
using catalyst. Nickel is used widely as a catalyst for steam reforming [57].

5. Conclusion

Algae being the main source of feedstock for the biorefinery production have helped 
not only in maintaining sustainability but also keeping it pollution free. Since algae 
considered as third generation for the production of biofuel, until now many researches 
have shown evidences with many positive effective work that helped both in human 
as well as in living environment. Thermochemical conversion process found to be a 
promising route as it can connect with algal based biorefinery production. Basically it 
consists of recovering energy for conversion from algal biomass. Mostly thermochemi-
cal processes such as gasification, combustion, pyrolysis works based on less moisture 
content samples but hydrothermal process compared to other processes can be proceed 
with wet algal biomass (high moisture content). In some of the processes, catalyst con-
taining of chemical or biochemical are added for better result of biorefinery production 
in order to upgrade the bio-oil formed during the thermochemical process. Hence, 
though this process consists some positive effect but it also has its negative impact too 
where in some processes both wet and dry has its own impact along with large scale 
production issues. But overall, these thermochemical merit and demerit process leads to 
great study for research for future bio-refinery production.
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Abstract

Cyanobacterial exopolysaccharides (EPS) are heteropolysaccharides with  
significant biological importance in various industries. Investigating nanoparticles is 
gaining interest due to their great potential in improving cyanobacterial growth and 
co-products accumulation. Nevertheless, green synthesis of nanoparticles offers an 
alternative, eco-friendly and cost-effective approach to available chemical methods of 
nanoparticle synthesis. Thus, this study illustrates a novel approach to green synthe-
sizing Ag nanoparticles (AgNPs) from marine cyanobacterium Phormidium tenue 
and investigates their effect on the enhancement of biomass and exopolysaccharide 
accumulation in the same cyanobacterium by incorporating previously synthesized 
AgNPs. Firstly, the AgNPs were synthesized from P. teneue by adding 1 mM silver 
sulfate into the culture medium, and the obtained AgNPs were characterized by using 
UV-VIS spectroscopy, XRD, SEM, and FTIR. In order to increase the biomass yield 
and EPS accumulation, P. tenue culture was subjected to different concentrations of 
AgNPs. Under different concentrations of AgNPs, the biomass yield and exopolysac-
charides increased compared to the control condition on the 28th and 35th day of 
incubation, respectively. The characterization of the obtained EPS was studied by 
using FTIR which showed a specific absorbance of OH, weak aliphatic C-H stretching, 
sulfur-containing functional groups, and carboxylic acids, revealing the characteristic 
feature of EPS.

Keywords: cyanobacteria, exopolysaccharides, FTIR, HPLC, XRD, SEM, UV-VIS 
spectroscopy, silver nanoparticle, Phormidium tenue
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1. Introduction

1.1 Polysaccharides

Polysaccharides are biopolymers that are widely distributed in nature. Certain 
microorganisms have the ability to produce a large amount of polysaccharides in 
the presence of a surplus carbon source. Some of these polysaccharides (e.g. gly-
cogen) serve as storage compounds while others are excreted by the cell. Different 
monosaccharides (hexoses and pentoses) including some complex sugars are linked 
glycosidically to form long chains of the polymer. These polysaccharides exhibit 
a wide range of chemical structures with greatly differing physical properties. A 
considerable expenditure of energy is incurred by the microbial cell to synthesize 
these biopolymers.

Microorganisms produce a diverse range of biopolymers with varied chemical 
properties by using both simple as well as complex substrates. These biopolymers 
could be either intracellular or extracellular depending upon their cellular location. 
Though the intracellular biopolymers are limited, nevertheless, the range of the 
extracellular biopolymers is vast and may be categorized into four major classes; 
polysaccharides, inorganic polyanhydrides (such as polyphosphates), polyesters, 
and polyamides to be collectively termed as extracellular polymeric substances or 
exopolysaccharides (EPS).

1.2 Exopolysaccharides

Exopolysaccharides are high-molecular-weight polymers that are synthesized 
and secreted by the microorganisms into the surrounding environment. These 
exopolysaccharides are mainly polysaccharidic in nature, that is, they are generally 
composed of monosaccharides and some non-carbohydrate substituents such as 
acetate, pyruvate, succinate, and phosphate. They are either covalently linked or 
loosely attached to the cell surface or can be released into the surrounding envi-
ronment [1]. These exopolysaccharides are categorized into two groups: homo-
polysaccharides and heteropolysaccharides [2]. The homopolysaccharides consist 
of only one type of single structural unit whereas the heteropolysaccharides 
are composed of high-molecular-mass hydrated molecules made up of different 
sugar residues [3]. The composition of the EPS, however, varies with the type of 
microorganisms.

1.3 Cyanobacteria

In recent years, there has been a continuous search for new water-soluble polysac-
charides, particularly those produced by microorganisms including cyanobacteria 
[4]. Cyanobacteria or blue-green algae are Gram-negative prokaryotes that perform 
oxygenic photosynthesis and are unicellular or filamentous. They are capable of 
movement by gliding when in contact with the substrate [5] and also possess the 
ability to survive desiccation, extremes of temperatures, high pH, and salinity [6]. 
They are widely distributed in diverse habitats. During their life cycle, cyanobacteria 
exocellularly secrete outer investments mostly constituted by heteropolysaccharides, 
which are frequently associated with small amounts of non-carbohydrate substitu-
ents, such as peptide, DNA, and fatty acids [7]. These exopolysaccharidic secretions 
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are metabolites that accumulate on the surface of microbial cells. Their presence is 
considered as a boundary between the microbial cell and its immediate environment 
serving as a barrier to successfully cope with environmental constraints against high 
or low temperature and salinity or against possible predators and desiccation. The 
production of exopolysaccharides from cyanobacteria is considered to be a good 
alternative for polysaccharides produced by other organisms including higher plants, 
bacteria, fungi etc. This is owing to the versatile nature of cyanobacteria which are 
able to grow in any adverse environmental conditions. Their photosynthetic mode 
of nutrition and simple cultural requirements further add to the convenient growth 
of these organisms for large-scale production. In addition, the yield of the prod-
ucts obtained from these organisms can be enhanced by manipulating the culture 
 conditions [8].

1.4 Cyanobacterial EPS

There are two categories in which cyanobacterial EPS can be grouped, the first 
one being those which are associated with the cell surface known as cell-bound or 
capsular polysaccharides (CPS) and the other being the released polysaccharides 
(RPS) referring to those that are discharged into the surrounding environment. 
Depending on the thickness, consistency, and appearance, the EPS associated with 
the cell surface can be termed sheaths and slimes [1]. The sheath is a thin, dense layer 
loosely surrounding the cells or cell groups usually visible in light microscopy without 
staining. The slime, on the other hand, refers to the mucilaginous material dispersed 
around the organism but does not reflect the shape of the cells. On the contrary, the 
RPS is soluble aliquots of polysaccharidic material released into the medium, either 
from the external layer(s) or derived biosynthetically which can be easily recovered 
from liquid cultures.

The cyanobacterial EPS are high molecular weight complex hetero-biopolymer of 
10 kDa–2 MDa. This complexity is due to the presence of branching among the mono-
mers and frequently with other macromolecules [9]. These high molecular weight 
heteropolysaccharides are made up of linear or branched repeating units comprised 
of 2–10 monosaccharides such as hexoses, pentoses, uronic acids, and deoxy-sugars. 
While other important substituents include phosphate, sulfhate, acetate, pyruvate, 
proteins and lipids form the side chains. EPS are attached to the cell surface via 
hydrogen bonds, hydrophobic and electrostatic interactions.

Certain characteristic features are exhibited by the cyanobacterial EPS which 
are rarely found in the EPS produced by other microbial groups. For instance, the 
presence of uronic acid and sulfhate groups contribute to the anionic nature of the 
cyanobacterial EPS, conferring a negative charge and a “sticky” behavior to the over-
all macromolecule [1, 10]. The anionic charge plays an important role in building the 
affinity of these EPS towards cations, notably metal ions. Furthermore, many cya-
nobacterial EPS are also characterized by a significant level of hydrophobicity due to 
the presence of ester-linked acetyl groups, peptidic moieties and deoxysugars such as 
fucose and rhamnose. In the past decades, several factors controlling the production 
of cyanobacterial EPS have been identified. These include energy availability and the 
C: N ratio [11]. However, other important factors such as the effect of other nutrients 
as well as growth conditions such as light intensity, salinity, and temperature have not 
been much focused. Hence, EPS production by variation of different growth param-
eters becomes an important area of study.
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1.5 Role of cyanobacterial EPS

Cyanobacterial EPS plays a major role in protecting cells from various stress 
conditions in extreme habitat by serving as boundary between the cell and the 
surrounding environment. EPS are considered to maintain the structure and 
function of the biological membrane, hence, protecting them from irreversible 
and lethal changes during desiccation. They possess hydrophobic/hydrophilic 
characteristics, owing to which they are able to trap and accumulate water; thus 
creating a gelatinous layer around the cell that regulates water uptake and loss and 
stabilizes the cell membrane during the periods of desiccation. Cyanobacterial 
sheath formed by EPS protects the cells from the detrimental process of 
 biomineralization [12].

Polysaccharidic layer around the cell, in addition, prevent the cell from direct 
contact with toxic heavy metal present in the surrounding. Being negatively charged, 
these cyanobacterial EPS plays an important role in sequestration of metal cations 
and also create a microenvironment enriched in those metals that are essential for the 
growth of the cell which is otherwise present in low concentration in certain environ-
ments. The slime layer surrounding the cyanobacterial cell prevents the inactivation 
of nitrogenase enzyme, an enzyme responsible for nitrogen fixation which otherwise 
gets inhibited in presence of atmospheric oxygen. Cyanobacterial sheath also contains 
some UV absorbing substances such as scytonemim and mycosporine-like amino acid 
which protects the cell from the harmful effect of UV rays. Another important role of 
exopolysaccharides is that it helps in the gliding movement of cyanobacteria and also 
acts as an adhesive for cyanobacterial cell that lives in association or symbiosis with 
higher plant.

1.6 Applications of cyanobacterial EPS

Cyanobacterial exopolysaccharides possess potential applications in various fields 
such as food, cosmetics, environmental improvement, pharmaceutical, and water 
treatment industries [13, 14]. Due to the presence of both hydrophilic and hydropho-
bic groups in the macromolecules these exopolysaccharides act as emulsifying agent 
or biofloculant. Another interesting industrial application is that they have the ability 
to bind with the water molecules due to the presence of charged groups, finding their 
application in the cosmetic industry for product formulations [10]. These charged 
RPSs also have the capability to trap metal ions which may be used in the removal of 
toxic metal from polluted waters.

The most common industrial use of microbial polysaccharides is that they act as 
thickening agents because of their ability to modify rheological behavior of water, 
[15], and also to stabilize the flow properties of their aqueous solutions under drastic 
changes in temperature, ionic strength, and pH [1, 10]. These exopolysaccharides 
are water-soluble and can be used as swelling agents in the food industry due to the 
presence of cations such as Ca+2, Fe+3, Al+3, Cu+2, and Co+2. The cyanobacterial exo-
polysaccharides also find their use as soil conditioners due to the N2-fixing ability of 
some cyanobacterium colonies. Microbial exopolysaccharides can also be considered 
bioactive substances due to their possession of biological activities, such as antibacte-
rial, anticoagulant, anti-oxidative, anticancer, and anti-inflammatory activities. This 
is because of the presence of sulfhate group in the molecules which interfere with the 
absorption and penetration of another microorganism thereby preventing or inhibit-
ing the activity of that microorganism.
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1.7 Extraction

As discussed above, whilst some EPS are tightly bound to the cell structure, others 
are free and directly released (RPS). Therefore, there exist some differences in their 
extraction methodologies. RPS can be separated using physical methods such as 
high-speed centrifugation and ultra-sonication whereas, firmly cells-associated EPS 
requires chemical methods for extraction. EPS cross-linked by divalent cations can 
be released from the biofilm matrix by complexing agents such as ethylenediamine 
tetraacetic acid (EDTA), cation-exchange resins such as Dowex or by formaldehyde 
treatment with or without sodium hydroxide [11].

1.8 Characterization

The monosaccharides forming the cyanobacterial biopolymers consist of many 
isomers and show limited absorption in UV-Vis regions making the analysis of 
polysaccharides very difficult in terms of detecting or identifying the macromol-
ecule using absorbance or mass spectrometry. Total carbohydrates content can be 
determined by using the phenol-sulfuric method [16]. For analysis of carbohydrate 
composition, high-performance liquid chromatography (HPLC), however, remains 
the most widely used technique because of its high selectivity, sensitivity, and reli-
ability compared to other analytical methods [7].

Though present in lower concentrations, other non-carbohydrate constituents 
(like protein, lipid, nucleic acid, etc.), also impart very important characteristics to 
the EPS due to their unique linkage to sugar moieties. Hence, the determination of 
these components is also of vital importance. In this regard, Fourier Transformed 
Infrared (FTIR) spectroscopy can be used to characterize the vibrationally active 
functional groups within polysaccharides.

1.9 Nanoparticles

A nanoparticle or ultrafine particle is usually defined as a particle of matter that 
is between 1 and 100 nm in diameter. The term is sometimes used for larger particles, 
up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. 

Types of nanoparticles dimensions Key features

Zero dimensions This category includes spherical particles with diameters ranging 
from 1 to 100 nm
Examples: nanoparticles, fuller and quantum dots

One dimensions This category includes nanomaterials with two dimensions in the 
nanometer range
Examples: nanotubes, nanofibers, nanowires and nanobelts.

Two dimensions This category includes the one-dimensional nanometer range and 
two nanomaterials larger than 100 nm
Examples: graphene, nanoscales

Three dimensions This category, all three nanomaterial sizes are larger than 100 nm and 
exhibit nano-effects
Example: porous nanostructure

Table 1. 
Various types of nanoparticles dimensions.
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Nanotechnology is the technology of inventing, synthesizing, and applying materials 
on the nanoscale. Nanotechnology produces materials with some specific properties 
and functions, which are different types from their counterparts. Nanomaterials 
can be classified according to their size in the range of different dimensions [17] as 
mentioned in Table 1.

Nanoparticles have several advantages over their mass particles, such as surface-
to-volume ratio, which results in more significant heat treatment, better mass transfer 
paths, dissolution rate, and catalytic activity. In addition, nanoparticles have different 
functions and they are easy to function. Surface active sites have increased electrical, 
optical properties and improved absorption capacity.

2. Applications of nanoparticles

As the most prevalent morphology of nanomaterials used in consumer products, 
nanoparticles have an enormous range of potential and actual applications in agricul-
ture, cosmetics, environment, medicine, renewable energies, and petroleum.

There are two pathways for nanoparticles preparation Klaine, et al., [17],

• The direct synthetic route that produces particles in the nanosized range.

• Grinding or milling macroparticles to reduce the size.

Nanoparticles are classified in a broad spectrum according to their chemical 
composition, source, size, and morphology [18]. The classification of nanoparticles in 
the type of material, source, size, composition, and morphology.

Although nanoparticles have always existed in the environment, for example, 
in volcanic ash and forest fires, they are considered discoveries in the 20th century. 
Nanotechnology has become popular, and a variety of nanomaterials have been 
developed and used in various research areas. In addition, the use of nanotechnol-
ogy in many industrial applications has significantly advanced technical activities. 
Nanoparticles are widely used in commercial products, such as plastics, cosmetics, 
ultra-high-resolution displays, medical applications, pharmaceuticals, the environ-
ment, etc. The application of nanotechnology and nanoparticle technology has a 
significant impact on the economic viability of microalgae-based products (such as 
oils, lipids, bioactive compounds, EPS, and biofuels).

3. Materials and method

3.1 Green synthesis of silver nanoparticles

3.1.1 Preparation of algal biomass

The cyanobacterial biomass of P. tenue was harvested during their exponential 
phase. After that, the wet algal biomass of P. teneue was washed thoroughly with dis-
tilled water and ultrasonicated for the green synthesis of the nanoparticle. One gram of 
ultrasonicated wet biomass was resuspended in 100 mL of 1 mM silver sulfate aqueous 
solution at pH 7 and incubated in this mixture at 25°C for 24 hours [8, 19] (Figure 1).
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3.2 Characterization of silver nanoparticles

3.2.1 UV-Vis spectrometry

The UV-visual spectra of the synthesized nanoparticles were recorded by a UV-Vis 
spectrophotometer. The developed color was examined at 220–600 nm in a UV-Vis 
spectrophotometer (Lambda 25 UV/Vis, Perkin Elmer, Shelton, CT, USA).

3.2.2 Fourier transformer infra-red spectrometry (FT-IR)

The FTIR spectra were measured using Thermonicolet Spectrometer, Nexus 870, 
Thermo Nicolet, Madison, USA instrument. The synthesized green silver nanopar-
ticle was obtained from maximum biomass culture and was pressed into KBr pellets at 
a ratio of 1:100. The spectra were then recorded in transmittance mode over the wave 
range of 4000–400 cm−1.

3.2.3 X-ray diffraction analysis

The XRD analysis of the sample was collected at room temperature on a Philips 
X’Pert Pro diffractometer, equipped with a Cu target X-ray tube with a step size of 
0.020, 2θ, and time per step of 0.3 s.

The methods of Williamson and Hall were used to calculate the crystal size and 
strain. The simplest and most widely used method for estimating the mean crystal 

Figure 1. 
Sequential step for green synthesis of silver nanoparticle from P. tenue [8, 19].
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size is from the full width at half peak (FWHM) of the diffraction peak using the 
Scherrer equation as follows:

 λ= θXRDd K /Bcos  (1)

Where d is the crystal size, λ diffraction wavelength, B is the corrected FWHM, 
is the diffraction angle, and K is the near-unit constant. The main assumption is 
that the sample is not deformed. B can be obtained from the observed FWHM by 
complicating a Gaussian configuration that models the expansion of the Br pattern, 
like this:

 = −2 2 2
0 iB r B B  (2)

Where B0 is widely observed, and Bi is the instrument broadening. Williamson 
and Hall is a simplified integral width method to decipher the contributions of size 
and strain to line expansion as a function of 2θ [20].

3.2.4 Scanning electron microscopy (SEM) analysis

The surface morphology and characteristics of the synthesized nanoparticle 
were observed using Scanning Electron Microscopy (SEM) according to the protocol 
mentioned by [21]. Images were taken by the model ZEISS SEM and performed at a 
beam accelerating voltage of 20 kV.

Figure 2. 
Sequential step for RPS extraction from P. tenue.
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3.3 Studies with the effect of silver nanoparticles

Silver nanoparticles synthesized from P. tenue were first filtered through a 0.22 μm 
membrane filter and then integrated into the control culture medium (ASN-III 
medium) of Phormidium tenue culture at different concentrations. The effects on the 
growth rate, biomass production, and EPS production were then monitored accord-
ing to the protocol mentioned above. The total biomass yield and EPS yield were 
analyzed at regular intervals.

3.4 Extraction of EPS

3.4.1 Extracellular or released polysaccharides (RPS)

A known volume of culture was centrifuged at 10,000 rpm for 15 min. The 
supernatant so obtained was used for the extraction of released polysaccharides by 
addition of a measured volume of extraction solvent (acetone) followed by incuba-
tion at 4°C for 48 h. The released polysaccharide was then precipitated and collected 
by centrifugation at 10,000 rpm for 10 minutes. The pellet thus obtained was freeze 
drier (Figure 2).

3.4.2 Cell-bound or capsular polysaccharides (CPS)

A known amount of culture was centrifuged at 10,000 rpm for 10 min. The 
supernatant was discarded, and the pellet obtained was used to estimate capsu-
lar polysaccharides. It was carried out by the addition of 36.5% formaldehyde 
(0.06 mL) to the pellet, followed by incubation for 1 hour at 4°C [8], after which 
60 mL of 1 N NaOH was introduced and further kept for incubation at 4°C for 
3 hours. The treated sample was then centrifuged, and capsular polysaccharides 

Figure 3. 
Sequential step for CPS extraction from Phormidium tenue.
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in that supernatant were extracted by adding acetone (10 mL) and incubated for 
48 hours at 4°C. The capsular polysaccharides were precipitated by centrifugation 
and freeze drier (Figure 3).

4. Results and discussion

4.1 Green synthesis silver nanoparticle from P. tenue

4.1.1 UV-Vis spectrometry analysis

In this study, green synthesis of AgNP has been demonstrated from a filamentous 
marine P. tenue. It is well known that AgNPs exhibit a yellow-brown color in aqueous 
solution due to excitation of surface layer oscillations in AgNP. The reduction of silver 
ions of Silver sulfhate to AgNPs upon exposure to P. tenue ultrasonic biomass was 
followed by changing the color of the culture medium. As shown in Figure 4A–D, the 
changing color of the reaction mixture from green to yellow and then dark brown, 
followed by precipitation of grayish-black particles, proved the bioconversion of 
silver ions and the formation of AgNPs in an aqueous medium. The silver sulfate solu-
tion with washed P. tenue biomass turned yellow indicating the formation of silver 
nanoparticles.

Figure 5 shows the UV-Vis spectrum of the synthesized nanoparticle from  
P. tenue. A clear peak was observed with a maximum absorbance at 380–420 nm with 

Figure 4. 
(A) P. tenue culture (ASN-III medium),(B) Silver sulfate solution as the negative control, (C) Adding (1 g) 
ultrasonication wet biomass and Ag2SO4(1 Mm), the picture show the color change of silver sulfate solution by 
P. tenue in biomass and (D) The complete reduction of ionic silver (Ag+) and grayish black precipitation of AgNPs.
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an absorbance of 1 mM of the silver sulfate solution. The occurrence of the peaks 
within shows the presence of silver nanoparticles in the solution. Agreeing Gray-
black silver nanoparticle precipitation on P. tenue is observed in an experiment. They 
observed a characteristic protein coat at 270–275 nm in the ultraviolet spectrum. 
Ahmed et al. [22] shows that increasing the concentration of silver sulfate solution 
with 1 g of Phormidium tenue ultrasonic wet biomass causes the bioconversion of 
silver ions to silver nanoparticles. Furthermore, increasing the concentration of Silver 
sulfate solution with 1 g of P. tenue caused the ultrasonic wet biomass to induce the 
bioconversion of silver ions to silver to decrease, and the subsequent formation of 
SNPs in an aqueous medium. Regarding this concern, [18] observed a characteristic 
peak at 380–420 nm at 12 h. In principle, the wide plasma bonds with absorption at 
the longest wavelengths could be due to the size distribution of the nanoparticles. 
Silver ion reduction occurs either by an electron shuttle or by a reducing agent 
released by ultrasonicated P. tenue biomass into solution.

4.1.2 Fourier transformers infra-red spectrometry (FT-IR)

FTIR is used to identify the biomolecules in P. tenue responsible for the silver ions 
reduction and stabilization of reduced silver ions [22]. The FTIR spectrum of the 
AgNPs obtained from P. tenue, shows strong absorption peaks at 3390.90, 1634.19, 
1419.41, 1111.25, 614.429, and 477.719 cm−1 representing different functional groups 
such as fragments The stretching OH of the alcohol or phenol, the N-H (amino acid), 
the C-O carboxylic anion, the saturated C-O group, and the stretching N-O, respec-
tively (Figure 6).

The absorption peak at 3390 cm−1 indicates the presence of the N-H (amino acid). 
In agreement with this study [12] confirmed the presence of a protein coat responsible 
for the biosynthesis of nanoparticles. The presence of protein as a stabilizer surrounds 
silver nanoparticles. Protein molecule consisting of different functional groups in the 
amino acid chain such as amino group, carboxyl group, and sulfate group present in 
cyanobacterial protein promotes the formation of microscopic silver nanoparticles 
with narrow particle size distribution, and hydroxyl groups and sulfonic acid are 
beneficial for the synthesis of silver nanoparticles with slightly larger particle size in 
weakly reduced media.

Figure 5. 
UV-Vis spectrum was recorded after the reaction of 1Mm silver sulfhate solution with (1 g) P.tenue ultrasonication 
wet biomass at PH 7 and 25 °C and formation of AgNPs.
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In the presence of Silver nanoparticles inside the cytoplasm, silver ions are reduced 
to AgNP, since Ag2SO4, a toxic reactant, is used in metabolism, it eventually kills the 
cells. When the cyanobacteria died, the silver nanoparticles produced inside the cell 
were released across the cell membrane into solution, as indicated by the precipitation 
of silver nanoparticles around the cell. The dead P. tenue also releases organic mat-
ter (proteins and other biochemicals), which causes silver to continue to precipitate 
from solution outside the cell. The protein molecules act as a reducing agent for the 
silver nanoparticles. Protein molecule consisting of different functional groups in 
the amino acid chain such as amino group, carboxyl group, and sulfate group present 
in cyanobacterial protein promotes the formation of silver nanoparticles. Silver ions 
are reduced in the presence of sulfate reductase, resulting in the formation of a stable 
silver hydrosol (1111.25 in cm−1) and stabilized by a capping peptide [13].

4.1.3 XRD- size determination analysis

X-ray diffraction patterns have been widely used in nanoparticle research as the 
main characterization tool to obtain essential characteristics such as crystal structure, 
crystal size, and strain of nanoparticles. Randomly oriented crystals in nanocrystal-
line materials cause the widening of the diffraction peaks. In addition, homogeneous 
lattice distortion and structural defects lead to widening of peaks in diffraction 
patterns [23].

Figure 7 illustrates the XRD pattern of silver nanoparticles. The device apex width 
is obtained with standard silver powder-free from dimensional expansion, defects, 
and distortion. Using the Williamson and hall method and a Gaussian profile for the 
peak form, the average crystal sizes obtained at 60 nm and 88.18 nm for the peaks 
were 2θ = 32.40 and 2θ = 46.40, respectively.

4.1.4 Scanning electron microscopy (SEM) analysis

The size and structure of nanoparticles were further characterized using SEM 
analysis. SEM image of obtained nanoparticles clearly distinguishes the difference 

Figure 6. 
FTIR analysis of Phormidium tenue show the presence of protein shell for the reduction of silver ions.



137

Green Synthesis of Silver Nano-Particle from Cyanobacteria and Effect on Microalgal Growth…
DOI: http://dx.doi.org/10.5772/intechopen.106039

between shape and size. The surface deposited silver nanoparticles are clearly seen at 
high magnification in the micrograph (Figure 8).

4.2  Estimation of exopolysaccharides (EPS) yield from supernatant of 
phormidium tenue under varying concentration of extracting solvents

EPS yield in terms of released polysaccharides (RPS) in both the cyanobacterial 
species using different extraction solvents viz. acetone, ethanol, and EDTA respec-
tively taken in varying ratios with respect to the supernatant. All the three solvents 
gave a higher yield of EPS under supernatant: solvent ratio of 1:2 with acetone emerg-
ing out to be the best extraction solvent for cyanobacteria the test organisms.

4.3 Studies with effects of silver nanoparticles

In terms of toxicity, conducted studies have shown that Ag nanoparticles are one 
of the most toxic nanoparticles for microalgae due to their high reactivity, fast adsorp-
tion, and its antimicrobial properties. Thus, research effort has been directed toward 
finding nanoparticles that can act as nutritional supplements to increase microalgae 
growth and enhance the accumulation of high-value exopolysaccharides (EPS) and 
some other products.

Figure 7. 
The XRD pattern of silver nanoparticle.

Figure 8. 
SEM image of the silver nanoparticle produced by P. tenue.
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5. Conclusion

The natural ability of the cyanobacteria to produce high levels of exopolysaccha-
ride (EPS) has made them potentially attractive hosts. The present study was focused 
on the extraction and characterization of exopolysaccharide from cyanobacterial 
species namely Phormidium tenue. The exopolysaccharides are nothing but polysac-
charide which are present on outer surface of the cell or released into the surrounding 
environment. The preliminary study was focused on extraction methodologies using 
acetone. Once the best extracting solvent was known, the studies were emphasized 
on the time-course analysis of the exopolysaccharide yield (released and capsular 
polysaccharide) from the P. tenue (cyanobacterial species). Green synthesis of silver 
nanoparticle from P. tenue (Cyanobacteria). The study was to characterize the silver 
nanoparticle through XRD, FTIR, SEM and UV-VIS spectroscopy. Later, the enhance-
ment in microalgae growth and exopolysaccharide from P. tenue was observed by 
applying various concentrations (0.1 mg) of silver nanoparticle. Thus, the conclusion 
that can be drawn from the present study are:

• P. tenue was found to be the efficient biomass and EPS production.

• Acetone was found to be the best EPS extracting solvent in P. tenue 
(Cyanobacteria)

• Green synthesis of silver nanoparticle from Phormidum tenue (Cyanobacteria).

• XRD analysis of silver nanoparticle confirmed size determination by X’Pert Pro 
diffractometer.

• The functional groups (O-H, C=O, N-H, S=O, C-H) present in the EPS were the 
characteristic feature revealed by FTIR.

• Application of silver nanoparticle in enhanced biomass and EPS (both RPS and 
CPS) production with showing the highest biomass and EPS content than the 
control.
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Chapter 8

Cyanobacteria Natural Products 
as Sources for Future Directions in 
Antibiotic Drug Discovery
Bahareh Nowruzi

Abstract

Cyanobacteria, an abundant source of natural products with a broad diversity 
of secondary metabolites, have emerged as a novel resource for the progression of 
synthetic analogs. Due to the rise of antibiotic resistance, there is a need for new 
medications and cyanobacteria-derived compounds have shown promising important 
alternatives for new therapeutics. These secondary metabolites are produced through 
nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and mainly 
through mixed NRPS-PKS enzymatic systems. Current research is focused on the 
exploitation of cyanobacteria for the production of bioactive metabolites. Screening 
of cyanobacteria for pharmaceutically active compounds has received increasing 
attention; however, limited knowledge is available on biosynthetic mechanisms that 
would enhance the drug discovery process and culture-based production of desired 
metabolites. Overall, there is a promising outlook that cyanobacterial secondary 
metabolites will become alternatives for the development of new medications in a 
near future with enhanced pharmacological and pharmacokinetic properties.

Keywords: cyanobacteria, natural products, antibiotic, drug discovery, antibiotic 
resistance, polyketide synthase (PKS), nonribosomal peptide synthetase (NRPS), 
bioactive metabolites, synthetic analogs, biosynthetic mechanisms

1. Introduction

Antibiotics, the so-called “miracle drugs,” came into existence half a century ago; 
however, their current popularity swiftly leads to overuse. Over the last decade, it 
has become quite apparent that the efficiency of antibiotics is dropping due to the 
growth of pathogen resistance; a problem that increases as fewer new drugs become 
available in the market. Moreover, unraveling this resistance is not straightforward, 
since antibiotic resistance is actually produced in multiple ways. Considering the 
urgency of the issue, efforts to develop new antibiotics are being carried out by 
pharmaceutical companies. In this regard, natural products account for a thorough 
and important component of today’s pharmaceutical compendium as a fundamental 
source of chemical diversity. To date, several natural products have been studied, 
but many others still await investigation [1]. Cyanobacteria, being one of the eldest 
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recognized creatures living on the earth with exclusive structural features, produce 
several bioactive compounds with varied biological activities. Moreover, cyanobacte-
ria as photosynthetic microorganisms, which have been preserving the oxygen levels 
on the earth, structurally look like gram-negative bacteria. They include chlorophyll 
a and phycobiliproteins, as well as the photosystems II and I. The adaptation mecha-
nisms shown by cyanobacteria allow them to survive in severe climate conditions and 
tolerate limiting factors, such as heat, drought, salinity, nitrogen starvation, cold, 
photo-oxidation, osmotic, and UV stress [2]. Additionally, cyanobacteria are able to 
produce biologically active natural products with known antifungal, antibacterial, 
anti-inflammatory, antiviral, and enzyme-inhibiting bioactivities mostly through 
either the nonribosomal polypeptide (NRP) or the mixed polyketide-NRP biosyn-
thetic pathways [3]. An increasing number of cyanobacterial metabolites are found 
to target actin and tubulin filaments in eukaryotic cells, making them a noteworthy 
source of anticancer natural products. Definite bioactive compounds, for example, 
dolastatin-10 and curacin A, have gone through clinical trials as possible anticancer 
drugs [4]. Cyanobacterial bioactive products can be categorized consistently with 
diverse structural typologies comprising terpenes, polyketides, peptides, lipids, and 
alkaloids. Many structural modifications can be found in cyanobacterial compounds, 
especially polyketide-derived units [3]. Besides, each cyanobacterial strain produces a 
category of bioactive compounds, so that new drugs are being constantly discovered 
from these sources.

Along with all these advantageous features, cyanobacteria are also known to pro-
duce toxins, mainly neurotoxins and hepatotoxins [2, 5], which act also as activators 
(e.g., antillatoxin) or blockers (e.g., jamaicamide A and kalkitoxin) and in addition 
their possible neuroprotectant and analgesics properties, they are functional molecu-
lar to distinguish usefully channels [4, 6–8].

Patellamide and trunkamide have also clinical potential, showing moderate 
cytotoxicity but multi-drug resistance. Investigations about the cyanobacterial 
natural product and secondary metabolites have gradually adapted to the genomic 
revolution over the past 15 years, and the genetic characterization of these secondary 
metabolites has led to further investigations in the field of cyanobacterial natural 
product synthesis. Despite important achievements in this area, numerous pharma-
ceutical companies have decreased the use of natural bioactive products and drug 
discovery screening because of: a) difficulties associated with strain, b) troubles 
correlated to natural bioactive products, and c) problems with logical property rights 
[9–14]. Finally, the use of compound collections prepared by combinatorial chemistry 
methods has been also influential.

2. Improving access to natural products

It is now evident that the chemical diversity of natural products is a better option 
than the variety of available synthetic compounds for drug discovery [15, 16]. 
Therefore, the use of natural chemical diversity in this regard is becoming increas-
ingly frequent [11, 17]. Early publications showed that only a small number of 
cyanobacteria taxa were accessible for screening [9]. Now, extensive cyanobacteria 
collections, together with better cyanobacteria culture techniques, are providing 
new chemicals for use in drug discovery assays [11]. Progress is being made in the 
chemistry of natural products, leading to advances in synthetic methods seeking the 
production of compound analogs with enhanced pharmacological or pharmaceutical 
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characteristics [18]. Another interesting feature that has made natural product 
“privileged” structures is their ability to be used as cores of compound (alkaloids, 
polyketides, terpenoids, and flavonoids) libraries produced through combinatorial 
techniques [19, 20].

Over the past 30 years, there has been a considerable reduction in the interest 
by the leading pharmaceutical companies in drug discovery from natural sources. 
Despite this, phycologists, associated with the manufacturing industry, are exploit-
ing this niche so that there is now a renaissance related to new improvements in 
spectroscopy, analytical technologies, and high-throughput screening [21]. In addi-
tion, competing technologies, such as combinatorial chemistry, have not proved to 
be very successful in delivering the new drug in significant numbers [22]. With the 
use of alternative techniques to produce analogs and derivatives of natural products, 
new compounds can be patented, even if the primary structure had been previously 
disclosed [11].

3. New approaches to the value of natural products

Multitude reasons have been suggested in regards to why natural products are such 
appropriate sources for drug leads, but at least one study has endeavored to quantify a 
connection between the drug molecules and those typically found in natural products 
and combinatorial chemical libraries [22]. Combinatorial libraries are synthesized in 
large numbers, and structures have high randomness. A multivariate evaluation of the 
chemical space occupied by thousands of combinatorial drug compounds compared 
with that of natural products revealed a good correlation between clinically approved 
drug molecules with natural products. This means that the structure of drugs used 
nowadays can be simulated by that of natural products [15]. With the progress in 
analytical spectroscopy, numerous clarifications are currently accessible so that 
the discovery of new bioactive compounds needs only a few micrograms [22]. The 
improvement in fractionation methods intended for isolating and purifying natural 
bioactive products (counter-current chromatography [20], analytical structure 
determination [23], etc. has led to screening natural product mixtures with times-
cales suitable for those expected in high-throughput screening campaigns. Complex 
structures can be resolved now with much less than 1 mg of the compound using the 
recent NMR techniques [11]. According to Quinn (developing a drug-like natural 
product library, 2008), it is possible to prepare a screening a library of highly diverse 
plant-derived compounds by pre-selecting products from the dictionary of natural 
products to be drug-like in their physicochemical properties. Yet, many alternative 
approaches are also being tested in order to enhance the speed and efficiency of drug 
discovery from natural products [11]. For instance, bioinformatics has been used 
for predicting microbes, which are able to produce new chemicals on the basis of the 
gene sequences encoding polyketide synthesis; this method has led to the discovery of 
potential antifungal and anticancer activities in some compounds [24]. Furthermore, 
the Metagenomics approach, which has led to the discovery of antibiotic compounds, 
has been recently used to achieve a broader range of synthetic cyanobacterial capabil-
ities. This involves the collection of the entire DNA from a field cyanobacteria sample 
and the cloning of this DNA in host organisms, such as E. coli. Recombinant bacteria 
are subsequently cultured and examined for the expression of bioactive metabolites 
[11]. Additionally, peptide synthetase genes and polyketide synthase genes have been 
explored, and manipulation of biosynthetic pathways in refractory microbes, such as 
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uncultivable, is a promising line of research. Along with the most innovative tools of 
genetic engineering, new approaches to metagenomic mining of environmental DNA 
are being popularized, so that the genetic potential of many bacteria can be explored 
[25]. Even though more than 200 genome projects are either already completed or 
still undergoing publication, there are still some striking questions on what is actu-
ally being sequenced, considering the fact that these studies are limited to cultivable 
microbes. The Metagenomics approach, being culture-independent, can help to 
solve this problem and can also help with data mining with potential interest for a 
broad scientific community [25]. Different techniques unite enzymatic and synthetic 
methods to achieve multifaceted natural bioactive products, and refining the activity 
of obviously occurring antibiotics [11]. Mutasynthetic techniques are useful for mak-
ing the antibiotic daptomycin-associated compounds [26, 27], vancomycin analogs 
and anticancer compound cryptophicin have been formed using the cytochrome P450 
enzymes [12]. The biosynthesis of cyanobacterial compounds supports the creation 
of numerous functional groups, chiefly in the gene clusters related to cyanobacte-
rial compounds, for instance, jamaicamide A, barbamide, or curacin A [28]. Hence, 
undescribed enzymatic mechanisms will be revealed thanks to biochemical studies 
in cyanobacterial secondary metabolic pathways. From the experience in the produc-
tion of pharmaceuticals from invertebrate-derived microbes, it is evident that several 
obstacles must be overcome before this approach becomes a conventional technology. 
Still, there are good reasons to be optimistic about the future [22].

4. Activity profiling of extracts

An alternative technique to the time-consuming and expensive methods previously 
used for creating extensive collections of isolated and structurally characterized 
natural products [29] is screening the mixtures of compounds obtained from extracts 
of cyanobacteria strains [11]. Yet, obtaining extracts with potential biologically active 
novel compounds is not always simple from primary screenings. This probability can 
be predicted by comparing the ratio of the binding potencies at two receptor sites for 
a known selective ligand and for an extract by the “differential smart screens” method 
[30]. Furthermore, by means of a database of the usefulness of an extensive variety 
of identified bioactive compounds the analysis of drugs with the unknown process is 
imaginable. Therefore, information about previously unidentified compounds can be 
gained, which is precious for the antibiotic applications stated below [31]:

1. Creation of original whole-cell assays for drug screening, such as multi-patch.

2. Target identification with cDNA and quantitative real-time PCR (qRT-PCR) for 
confirmation of the results.

3. Revisions on mechanisms-of-action (MOA) with antibiotic-induced expression 
profiling.

These techniques could lead to a novel understanding of the potential effects of 
untested compounds (or exposure to compounds not structurally analogous and, 
thus, not expected to act via the same biological target) [2].

Bioinformatics and proteomics experiments are used in studies at the mRNA 
(transcriptome) or protein (proteome) levels, which help with the identification 
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of DNA binding sites of transcription factors [32] and the adjustment of biological 
functions, respectively, in order to characterize the complex organism responses to 
environmental stimulates [2]. Microarrays have been used for the identification of 
regulon members and stimulons by many groups in the transcriptome measurement 
level [33, 34].

Two-dimensional gel electrophoresis in which proteins are separated according 
to their molecular weight and isoelectric point, is useful in most cases, but intricate 
protein samples can also be analyzed using the liquid chromatography-tandem MS 
(LC-MS/MS) in which protein and peptide combinations are supplied to a mass 
spectrometer (MS) from a HPLC system. Isotopic dilution strategies on a MS instru-
ment (e.g., isotope-coded affinity tags or ICAT) can be used for a comparative 
quantification of protein expression. ICAT approaches were advantageous when 
first released but are limited by their inability to analyze more than two conditions 
without a large amount of multiplexing [2, 35]. Currently, a developed version of the 
iTRAQ approach can analyze eight different conditions simultaneously. Despite all 
these tools, the most useful method would involve a concurrent quantification of the 
expression of all the genes and proteins of interest from a biological sample.

5. Natural products as pharmacological instruments

Aside from their curative activity, natural bioactive products can operate as 
pharmacological instruments demonstrating novel physiological features [14]. 
Cyanobacteria are stubbornly obstinate to genetic manipulation, which is accessible 
only for a small number of strains [3]. The modularity in cyanobacterial PKS-NRPS 
gene clusters authorizes the heterologous expression of natural bioactive products 
and, thus, genetic manipulation for combinatorial biosynthesis of innovative hybrid 
chemical bioactive products [4]. The prosperous production of nonribosomal and 
ribosomal peptides in heterologous hosts permits the usage of other cyanobacterial 
natural bioactive products [3]. Cyanobacteria usually synthesize multiple variants 
of the identical natural bioactive product; this can be ascribed to a deficiency of 
the inactivity of the NRPS tailoring enzymes or NRPS biosynthetic pathways. The 
genetic basis for this modification of secondary metabolite gene clusters is prob-
ably controlled by gene duplications, gene deletions, recombination, sequential 
mutation followed by natural selection, and loss and gain of tailoring enzymes [36]. 
However, the evolutionary and adaptive importance of these processes is deficiently 
understood.

6. Which cyanobacteria phyla produce therapeutics?

Throughout the prior decade, several natural bacterial compounds have been 
described, all of which originated from five bacterial phyla: Bacteroidetes (34 
compounds), cyanobacteria (220), actinobacteria (256), proteobacteria (78), 
firmicutes (35), and four bioactive compounds from taxonomically unknown 
sources [37]. The variety of cyanobacterial natural bioactive products gathers 
> 1100 secondary compounds recognized with composite chemical structures, 
stated from different genera [3]. These metabolites represent a broad range of 
bioactivities including some that may be related to their natural environment 
(antibacterial, antifungal, antiviral, and cytotoxic) [29], but others demonstrate a 
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clear pharmaceutical interest, for example, they can be used as anticancer agents, 
immunomodulators, or protease inhibitors [38]. Cyanobacteria exhibit different 
growth forms, from unicellular to filamentous or colonial forms, and depending 
on their environmental conditions they may be surrounded by a mucilaginous or 
gelatinous sheath [29]. The PKS and NRPS genes seem to be more widespread in 
undifferentiated filamentous and heterocystous cyanobacterial strains. Despite 
the current taxonomic instability within cyanobacteria, which makes assessing 
the actual occurrence of natural products difficult, cyanobacterial compounds are 
mainly obtained from the lyngbya, symploca, microcystis, nostac, and hapalosi-
phon (Table 1) [3, 37].

Cyanobacterial 
compounds 
(class)

Cyanobacterial 
strain

Biological 
target

Potential therapeutic 
uses

References

Apratoxin A Lyngbya bouillonii STAT3, KB, and 
LoVo cell lines
Cytotoxic 
against human 
tumor cell lines 
(0.36–0.52 nM)

Oncology, Early stage 
adenocarcinoma 
(induction of G-1 phase 
cell cycle arrest)

[4, 29, 37, 39]

Apratoxin D Lyngbya sp. Antiproliferative Oncology [40]

Coibamide A Leptolyngbya. Antiproliferative Oncology [41]

Curacin A-D
NRPS-PKS

Lyngbya majuscula 
19 L

Colon, renal, 
and breast 
cancer cell lines. 
Involvement of 
HMG-CoA in 
formation of 
cyclopropyl ring

Oncology, Antimitotic, 
Inhibits microtubule 
assembly
Anti-inflammatory, 
Antiproliferative, 
Immunosuppressant, 
herbicidal

[4, 29, 37, 42, 
43]

Cryptophycin Nostoc sp. Tubulin 
polymerization 
antiproliferative 
and antimitotic 
agents, 
Cytotoxicity 
against human 
tumor cell lines 
and human solid 
Tumors

Oncology, 
destabilization of 
microtubule dynamics 
and the induction of 
hyperphosphorylation 
of the anti-apoptotic 
protein B-cell leukemia/
lymphoma 2 (BCl-
2),triggering programed 
cell death

[37, 44, 45]

Largazole Symploca sp. Histone 
deacetylase

Oncology, anti-
epileptics, neurological 
disorders, mood 
stabilizer

[46]

Microcystin Microcystis 
aeruginosa PCC 
7806,M,aeruginosa 
K-139
Planktothrix 
agardhii CYA126

Lymphocytes Cytotoxic, inhibit 
membrane-bound 
leucine aminopeptidase
Enzyme inhibitor, 
cytotoxic, tumor 
promoter, anticancer

[47–51]

Hassallidins Anabaena sp. 
SYKE 748A

Antifungal activity [52]
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7. Cyanobacterial drug discovery

Systems biology can help us with the acquisition consciousness of the ways living 
systems function using computational power [65]. So as to study some specific facts 
in a definite biosynthetic pathway, some information about both the proteins in 

Sulfoglycolipid Scytonema sp. HIV-1 Inhibit reverse 
transcriptase and DNA 
polymerases

[29]

Dolastatin-10 Symploca sp. Binds to tubulin 
on rhizoxin-
binding Site

Affects microtubule 
assembly in P388 
lymphocytic leukemia 
cell line (NCI)

[53, 54]

Dolastatin-15 Lyngbya sp. binds to vinca 
alkaloid site of 
tubulin

Breast cancers treatment [55]

Jamaicamides 
(A-C)

L. majuscula H-460 human 
lung cell 
carcinoma, 
neuro-2A-
neuroblastoma 
cell line

Neurotoxic, cytotoxic 
against H-460 human 
lung and neuro-2a 
mouse neuroblastoma 
cell lines

[56]

Kalkitoxin L. majuscula Block voltage 
sensitive Na+ 
channel

Neurotoxic, Neural 
necrosis through 
N-methyl-D-aspartate 
Receptor mechanisms

[57]

Astaxanthin Haematococcus 
pluvialis

Colon cancer 
cell lines

Expression decrease 
of cyclin D1, increase 
of p53 and some cyclin 
kinase inhibitors 
(p21WAF-1/CIP-1, p27)

[58]

Polysaccharide Navicula directa HSV1, 2, 
influenza A 
virus

Inhibition of 
hyaluronidase

[59, 60]

Allophycocyanin Cryptomonads Enterovirus 71 Inhibition of cytopathic 
effect, delay in synthesis 
of viral RNA

[61]

Hectochlorin L. majuscula Colon, 
melanoma, 
ovarian

Actin binding 
compounds,

[62]

Diadinochrome 
A, B, 
Diatoxanthin, 
cynthiaxanthin

Peridinium bipes HeLa cells Cytotoxic effect [63]

Pheophorbide 
a-, b-like 
compounds

Dunaliella 
primolecta

HSV1 Inhibition of cytopathic 
effect

[64]

Table 1. 
Current status of potential cyanobacteria therapeutics.
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charge and the responsible gene of that event is needed. The function of linking the 
chemical diversity of natural bioactive products and genomes in addition to modeling 
and prediction by incorporating such biological information could offer considerable 
information for the understanding of such a complex biological system [2].

According to the Comprehensive Microbial Resource Declaration, the genome 
sequences of human pathogenic bacteria and non-homologous in humans, have been 
documented. This could be an appropriate technique for the reporting of the new 
drug [66], and the improvements in synthetic biology now provide a solution to 
cyanobacteria being stubborn to genetic manipulation, opening up cyanobacteria as a 
valuable source of new enzymes and novel natural bioactive products.

Today pharmaceutical industry is concentrated on prominent output screening 
systems, genomics tools, and bioinformatics, containing combinatorial chemistry 
and logical design for the recognition of new bioactive compounds [29]. Recognizing 
groups of secondary bioactive compounds biosynthetic gene clusters with possible 
therapeutic competence involvement in an initial stage, which is conducted by the 
chemical structure of the identified bioactive compounds in cyanobacteria strains 
[3]. Cyanobacterial biologically active compounds are produced through NRPS, PKS, 
and mixed NRPS-PKS pathways [4]. Cyanobacteria strains presentation progressive 
screening outcomes are then designated for proteome mining and genomic character-
ization in order to classify biosynthetic gene clusters responsible for proteins con-
nected to the making of these bioactive components [2]. This is imaginable because 
databases of biosynthetic gene clusters and cyanobacterial chemicals have been 
gathered through gene libraries (http://dtp.nci.nih.gov/docs/3d_database/dis3d.html, 
NCBI Pubchem http://pubchem.ncbi.nlm.nih.gov/, ChemIDPlus http://chem.sis.nlm.
nih.gov/chemidplus, ANTIMIC [67], and Super Natural Database http://bioinformat-
ics.charite.de/supernatural/) [68]. As a result of the increased antibiotic resistance, 
available drugs are effective against only one-third of the diseases, and the identifica-
tion of new biologically active compounds is thus urgently necessary [29].

8. Web-based tools and databases for drug target identification

A variety of different silico tools and databases are available for drug target 
determination among the identified genes in pathogens for an initial screening. 
DrugBank(http://insilico.charite.de/supertarget/ main.html#Home), NCBI Entrez 
Gene(http://www.ebi.ac.uk/msd/), TarFisDock and MATADOR ( http://matador.
embl.de/) could be used either by a manual searching or by BLAST search of 
sequenced proteins. These facilities compensate the costs of screening through very 
large compound collections, minimizing the pace of drug discovery by both reducing 
the number of compounds used in real screens and the costs of screening [2].

9. Secondary metabolites derived from Cyanobacteria strains

Natural bioactive products have been isolated from a varied diversity of strains 
and verified for numerous biological activities. Among these strains, cyanobacteria 
strains signify such a source.

Secondary metabolites derived from cyanobacteria strains were identified as a 
rich source of bioactive compounds [69–71]. Several bioactive compounds isolated 
from different cyanobacterial strains showed a varied range of chemical structures 
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and biological activities comprising new peptides, amides, terpenes, carbohydrates, 
polyketides, fatty acids, alkaloids, and other organic chemicals [41, 72–74]. These 
compounds are regarded as good candidates for drug discovery, with functions in the 
industry [75–77], agriculture [19], and in pharmacy [69, 77, 78].

The cyanobacterial bioactive compounds specify useful pharmaceuticals that 
are problematic to produce synthetically [79]. The variety of structures found in 
Lyngbya majuscula is just incredible. Compounds isolated from this strain are amino 
acids, fatty acids, depsipeptides, pyrroles, amides, alkaloids, lactones, lipopeptides, 
and many others [40, 72, 80, 81]. Totally, cyanobacterial bioactive compounds 
show an exciting range of biological activities ranging from insecticidal, immuno-
suppressant, antiviral, anticancer, antimicrobial, and anti-inflammatory to pro-
teinase-inhibiting activities which are outstanding targets of biomedical research 
(Table 2) [ 2, 5–8, 78, 113–118].

10. Antiviral activity

The extension of fatal, virus-related diseases, such as HIV, has resulted in several 
considerable consequences. Since the only accredited therapy (HAART, highly active 
antiretroviral therapy) has shown toxic effects, severe induction to viral resistance, 
and disability to eliminate viral agents, thus the need for new and safe antiviral 
therapies is an urgent issue [119, 120]. Some potential antiviral compounds are 
described below:

10.1 Polysaccharides

Spirulan and Ca-spirulan derived from Spirulina sp. are regarded as the most 
notable antiviral polysaccharide compounds provided their broad-spectrum activity 
against HIV-1, HIV-2, H, influenza and other enveloped viruses. These compounds 
disable the reverse transcriptase activity of HIV-1 and prevent the attachment and 
fusion of virus cells with host cells. Additionally, the fusion between HIV-infected 
and uninfected CD4+ lymphocytes, which boosts the viral infectivity, is inhibited 
[29]. Their reduced anticoagulant properties make them more advantageous antiviral 
agents over other sulfated polysaccharides. Another interesting compound is nos-
toflan from Nostoc flagelliforme, an acidic polysaccharide showing potent virucidal 
activity against herpes simplex virus-1 [121, 122].

10.2 Carbohydrate-binding proteins

A couple of carbohydrate-binding proteins have shown promising activity as 
antiviral agents. Ichthyopeptins A and B, derived from Microcystis ichthyoblabe, are 
potential agents against influenza virus, with an IC50 value of 12.5 mg ml–1 [123]. 
Cyanovirin-N and scytovirin are also potent virucidal drugs that interfere with sev-
eral steps of the viral fusion process. Cyanovirin-N, for example, shows both in vitro 
and in vivo activity against HIV and other lentiviruses in nanomolar concentrations. 
These 101 amino acids long, 11 kDa polypeptide derived from Nostoc ellipsosporum is 
being developed as a vaginal gel for preventing sexual transmission of HIV by Cellegy 
Pharmaceuticals, San Francisco, CA, provided its inhibitory effects upon HIV virus-
CD4 cell membrane fusion [124]. Scytovirin, on the other hand, is a 95 amino acid 
long, 9.7 kDa polypeptide (that includes five intra-chains disulfide bonds) derived 
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from aqueous extracts of Scytonema varium, that is able to attach to the glycoprotein 
envelope of HIV (gp120, gp160, and gp41), thus making the virus inactive even in low 
nanomolar concentrations [125].

10.3 Sulfoglycolipids

Natural cyanobacterial sulfoglycolipids show confirmed HIV-reverse transcriptase 
and DNA polymerase inhibitory effects [29].

11. Antibacterial activity

If bacterial resistance strengthens, the treatment may become impossible for some 
diseases. Nosocomial infections such as those caused by the methicillin-resistant 
Staphylococcus aureus or the vancomycin-resistant enterococci, caused by multi-
drug-resistant bacteria, create therapeutic problems of worldwide concern [126], 
hence the urgency of developing new antibiotics. Accordingly, new attempts to find 
antibacterial activity via screening of cyanobacterial extracts have started [127], 
although very few cyanobacteria-related antibacterial compounds have been detected 
to date. Noscomin57, from Nostoc commune [128], shows antibacterial activity against 
Bacillus cereus, Staphylococcus Epidermidis, and Escherichia coli. Antibacterial activity 
of Anabaena extracts against vancomycin-resistant S. aureus with a MIC of 32–64 mg 
ml-1 has been reported by [129].

12. Antiprotozoal activity

The estimations of the World Health Organization indicate that >109 people over the 
world suffer from tropical diseases caused by Schistosoma, Trypanosoma, Leishmania, 
Plasmodium, and others [130]. The unsuccessful treatment of such diseases (especially 
malaria) is related to the growing resistance shown by these protozoa and the slow pace of 
drug discovery [131, 132]. In a recent project operated by the Panamanian International 
Co-operative Biodiversity Group, five classes of antiprotozoal compounds were isolated 
from cyanobacteria. Nostocarboline, an alkaloid protease inhibitor isolated from Nostoc 
sp. 78-12 A, displayed activity against T. cruzi, Leishmania donovani, Trypanosoma brucei, 
and Plasmodium falciparum [133]. Moreover, aerucyclamide C68 isolated from Microcystis 
aeruginosa PCC 7806 has been also detected to be active against T. brucei.

13. Protease inhibition activity

More than 120 cyanobacterial alkaloids with various biological activities (includ-
ing protease inhibition) were introduced between 2001 and 2006. Some of these 
compounds, such as microginins (used for the treatment of high blood pressure), 
aeruginosins, and cyanopeptolins (a serine inhibitor used for asthma and viral 
infections) are described by Jaspars and Lawton [29]. Kempopeptins are other groups 
of protease inhibitory products, for example, kempopeptin B (with activity against 
trypsin, with an IC50 of 8.4 mM), kempopeptin A (a cyclodepsipeptide derived from 
marine Lyngbya with activity against elastase), and chymotrypsin with an IC50 of 
0.32 mM and 2.6 mM, respectively [46].
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14. Immunomodulatory activity

Besides the beneficial properties of cyanobacteria, their immunomodulatory 
activity exhibits diverse effects on immune systems, such as the increase of phago-
cytic activity in macrophages, the stimulation of antibody and cytokine produc-
tion and the accumulation of natural killer cells into tissues, or the activation of T 
and B cells [134]. For instance, the effect of Spirulina in mice was investigated by 
Hayashi et al., who demonstrated increased phagocytic activity and antigen produc-
tion. Enhanced phagocytic and natural killer cell-mediated antitumor activities, 
together with increased antigen production, were also shown in chicken by Qureshi 
and Ali [29]. Additionally, the incremental impact of cyanobacteria extracts on 
13.6-fold interferon and 3-fold interleukin (IL)-1b and -4 was observed in human 
blood cells. Despite Spirulina has been proved to be safe, other cyanobacteria (e.g., 
Microcystis sp.) produce metabolites that are cytotoxic to lymphocytes and have 
inhibitory effects on membrane-bound leucine amino peptidase, which is related 
to antigen-processing and antigen presentation response [47, 135], confirmed the 
immune-toxicity of microcystin that presented medical competence in the lipopoly-
saccharide-induced lymph proliferation in mice vaccinated with sheep T-dependent 
antigen red blood cells.

15. Anticancer activity

The urgency of brand-new anticancer medications is an important issue provided 
the increasing resistance against currently available drugs (such as taxanes) and the 
outbreak of new types of cancer subjected to chemotherapeutic treatment failure 
[29]. A considerable number of highly active cyanobacterial compounds target 
tubulin or actin filaments in eukaryotic cells and have exhibited potent antimitotic 
properties, which makes them a noteworthy source of potential anticancer agents 
[4]. Several of them have gone through Phase I and II clinical trials such as the 
third generation dolastatin15 and TZT-1027 (soblidotin), a synthetic derivative of 
dolastatin-10 [136, 137]. They generally act by blocking cell division at the M-phase 
by targeting tubulin with efficacy equivalent to clinical drugs, such as vinblastine, 
vincristine, or paclitaxel. Some of these highly cytotoxic compounds are described 
below in Figure 1 [138].

Figure 1. 
Potential of cyanobacterial extract as anticancer activity.
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15.1 Coibamide A – An anticancer agent with a novel action mechanism

Coibamide A, extracted from a Leptolyngbya strain, shows a novedous action 
mechanism targeting tubulin or actin filaments. Notable cytotoxical proper-
ties against breast, central nervous system, colon, and ovary cancers have been 
observed [41].

15.2 Cryptophycins

Cryptophycins are examples of cyanobacteria-derived tubulin-binding compounds 
with potent anticancer activity. Cryptophycin A was first isolated by Schwartz and co-
workers in 1990 from Nostoc sp. strains ATCC 53789 and GSV224 [22]. Microtubule 
dynamics suppression and blocking of G2/M phases are features making this molecule 
a potent anti-carcinoma metabolite [29]. Cryptophycin-52 (LY 355073), a chemical 
analog of cryptophycin-1, was developed to improve its hydrolytic stability but pro-
duced very slight activity in the clinical trial. The second-generation analog, crypto-
phycins-249 and -309, show better water solubility and stability [139]. According to a 
study by [140], the thioesterase derived from the cryptophycin biosynthetic pathway 
through the macrocyclization of a series of linear synthetic forerunners generate 
16-membered cyclic depsipeptides, showed significant efficiency as anticancer agents.

15.3 Largazole- a histone deacetylase inhibitor

Largazole, an ant proliferating compound with an unusual chemical scaffold, 
is extracted from Symploca sp. [141], and shows a considerable histone deacetylase 
(HDAC) inhibitory activity [142], together with a great selectivity in human mam-
mary epithelial and fibroblastic osteosarcoma cells. The FDA ratification of HDAC 
inhibitor suberoylanilide hydroxamic acid as a treatment for dermal T-cell lympho-
mas, besides its mood stability properties and anti-epileptic characteristics, confirms 
this compound for cancer treatment.

15.4 Apratoxins – signal transduction inhibitors

Apratoxins, a notable class of potent cytotoxic cyclic depsipeptides, was initially 
isolated from a chemically rich Lyngbya boulloni strain and, according to NCI’s 
Developmental Therapeutics Branch, demonstrated a unique action pattern against a 
panel of 60 cancer cell lines [143]. Limited findings until now indicate that the induc-
tion of G1-phase cell-cycle arrest and apoptosis is how apratoxins function as antican-
cer agents [39]. Apratoxin A showed moderate cytotoxicity in multiple human tumor 
cell lines (e.g., LoVo cell lines and KB cancer cells), although this compound is acid 
sensitive and decomposes when exposed to the HCl present in CDCl3. Other analogs, 
especially apratoxin D, have been studied in order to develop a lead structure [4].

15.5 Polypeptides- Hassallidins

Polypeptides, mostly with microbial origins, have long been used for pharmaceu-
tical applications either as antimicrobial agents or for disinfection. A group of cyclic 
glycosylated lipopeptide Cyanobacteria metabolites are the hassallidins A [52] and B 
[144], which are purified from Hassallia; these compounds are a type of comprehen-
sive with action against human pathogenic fungi [1].
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16. Conclusions

The results in this review emphasized the significance of the probable healing 
function of natural bioactive products purified from cyanobacteria strains, for 
instance, antibacterial, antitumor, protease inhibition activity, and antiviral effects, 
and highlighted the necessity to restart discovering natural biological sources. 
However, system biology for metabolite purification, characterization, and valu-
ation in cyanobacterial bioactive compounds that have not arrived in the clinical 
trials so far.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
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