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Chapter 1

Endothelial Dysfunction, 
Molecular Biology, 
Physiopathology, Diagnosis,  
and Treatment
Fernando Grover Páez and Javier Esparza Pimentel

Abstract

Endothelial cell dysfunction has lately become one of the principal subjects 
being incorporated into the assessment of cardiovascular risk because of the 
relevance that has been shown in several clinical studies. Comprehending and 
incorporating basic physiological knowledge, about endothelium molecular 
biology and vascular tonicity, is key to understanding the relevance of this topic. 
The approach of endothelial dysfunction physiopathology is overly complex and 
widely studied, but it can be enrolled into both consumption of bioavailable NO 
and deficit production of NO. In the last decades, scientific equipment has been 
developed from the necessity of creating non-invasive tools to measure arterial 
stiffness, being FMD one of the first and most used ones. Once the endothelial cell 
dysfunction was identified, several drugs and bioactive substances were evaluated 
because of their potential to decrease the level of arterial stiffness and improve life 
quality, such as polyphenols, phosphodiesterase five inhibitors, and new incoming 
therapies.

Keywords: endothelial cell dysfunction, nitric oxide, flow mediated dilatation, 
polyphenols, PDE5i

1. Introduction

Endothelial cell dysfunction (ECD) is defined as an altered metabolism of avail-
able nitric oxide (NO), or an imbalance of relaxing and constrictor endothelial factors 
[1]. Many of the physiological functions of the endothelial cells (ECs) are involved 
with the regulation of vascular tonicity, balancing of blood fluidity and thrombosis 
through coagulation and fibrinolysis factors, vascular inflammatory and immunologi-
cal process control, and several growth factors [2]. Any alteration in these systems 
can lead to a loss of vascular homeostasis and contribute to developing endothelial 
dysfunction [1, 2].
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2. Endothelium molecular biology, vascular tonicity and its regulation

Vascular tonicity is regulated by multiple molecules, proteins, hormones, and 
peptides secreted or with action mechanisms on the ECs such as an atrial natriuretic 
peptide, eicosanoids, adrenal steroids, sodium, and water excretion, and reno-medul-
lary endothelial systems [3].

Examples of several endothelium-derived hyperpolarizing factors are NO and 
prostacyclin, whereas endothelin-1 (ET-1), angiotensin II, thromboxane A2 and reac-
tive oxygen species (ROS), relaxing factors [4].

2.1 Nitric oxide (NO)

NO is a reactive, diffusible gaseous free radical whit strong intrinsic oxidant 
properties. It is produced locally at ECs by three different isoforms of NO synthase 
(NOS) enzymes, each with unique expression and functional properties: neu-
ronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial NOS 
(eNOS, NOS3) [5].

Elevated levels of intracellular Ca2+, acting through calmodulin, activates nNOS 
and eNOS respectively; iNOS is less susceptible to Ca2+, but around 1000 times 
more inducible by inflammatory stimuli such as TNF- α, IL-1β, and IFN-γ [6]. 
The NOS produced NO by catalyzing the oxidation of the nitrogen guanide of the 
L-arginine and O2 producing L-citrulline and NO (Figure 1) [5, 6]. The NO activates 
soluble guanylyl cyclase (sGC), which at binding creates an augmentation of the 
Vmax of sGC and, consequently, rising the cellular cyclic guanosine monophosphate 
(cGMP) [6].

The cGMP vascular effects are mediated by several mechanisms, being the 
 activation of protein kinase G (PKG) one of the main processes, conducting vasodi-
latation by means of release inhibition of Ca2+ mediated by inositol 1,4,5-trisphos-
phate (IP3) [6].

Figure 1. 
The graphic shows the activation of NOS mediated by Calmodulin/Ca+2. Subsequently, NOS produced NO and 
L-citrulline starting from L-arginine and O2. Original graphic created with BioRender.com.
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2.2 Endothelin-1 (ET-1)

ET-1 is a peptide of 21 amino acids that has two disulfide junctions, synthesized 
from a 39 amino acid precursor sequence named pre-pro endothelin by the activity 
of endothelin-converting enzyme (ECE) (Figure 2). ECE-1 restricts the synthesis of 
ET-1. The ET-1 its produced mainly in ECs, induced by several cytokines, angiotensin 
II and mechanical stress. It is codified by EDN1 gene, which expression is reduced by 
NO and prostaglandin I2 [7].

There are two basic types of ET-1 receptors: ETA and ETB. Both receptors are 
coupled to a G-protein and to the formation of IP3. ETA is, in normal conditions, the 
most prevalent of these ET-1 receptors [8].

ET-1 action is characterized by vasoconstriction; this effect is initiated once it 
binds to ETA receptor. The union of these results in the activation of Gq-PLC-IP3 
pathway. IP3 induces the release of Ca2+ of the endoplasmic reticule by opening 
the L-type Ca2+ channels and increasing the cytosolic Ca2+, which produced 
the contraction of the muscular smooth cells and subsequent vasoconstriction 
(Figure 3) [1, 7, 8].

Despite the presence of ETB receptor on vascular smooth cells, it is also found on 
ECs, which stimulates the formation of NO causing vasodilatation, and additionally 
decreases the ET-1 synthesis causing relaxation [1].

3. Endothelial dysfunction physiopathology

ECD is defined biochemically by a decreased amount of available NO in the 
 vasculature. There are multiple mechanisms that reduce this value, moreover, the whole 
dysfunction can be enrolled into two main categories [9].

3.1 Consumption of bioavailable NO

Altered NO metabolism due to elevated degradation of NO, inactivation of NO, or 
presence of NO inhibitors may be due to the elevation in oxidative stress [10]. NO is a 
highly diffusible and reactive species with an unpaired electron, because of this, there 
are a variety of chemical components that impede appropriate signaling [11]. Some of 
the principal agents of this deficiency are ROS and superoxide (O2−).

ROS increases the activity of stimulants such as inflammation, radiation, 
advanced age, obesity, and sundry chemical substances. Superoxide is an important 

Figure 2. 
Amino acid sequence of ET1, characterized by the presence of 21 amino acids and two disulfide junctions. 
Original graphic created with BioRender.com.
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radical for cardiovascular biology, formed by one-electron reduction of oxygen. At a 
cellular level, increase oxidative stress causes damage by altering several molecules’ 
structures like deoxyribonucleic acid, proteins, lipids, and carbohydrates [12].

3.2 Deficit production of NO

Approaching ECD through the deficit of NO production, modifications of eNOS 
is one of the processes that stand out in this category, being eNOS uncoupling is a 
major mechanism. This enzyme requires dimerization in the presence of heme and 
BH4 for an effective electron movement to L-arginine and the subsequent formation 
of NO and L-citrulline [3, 4, 13]. When this relation is disrupted, the outcome is that 
eNOS function as a weak NADPH oxidase, generating O2− instead of NO, a process 
denominated eNOS uncoupling. Several mechanisms induce eNOS uncoupling, which 
increases local oxidative stress and removes the vasodilatation effect of NO [13].

Many pathways contribute to eNOS uncoupling, being ONOO one of the main. 
Also known as peroxynitrite, ONOO is an oxidant and nitrating agent with an 
unstable structural isomer of nitrate. The formation of this molecule is due to the 
reaction of free radical superoxide, with free radical nitric oxide. ONOO disrupts 
a zinc-thiolate cluster in eNOS and oxidizes BH4 to BH3, both creating an eNOS 
uncoupling and creating a cycle of ROS production [14].

Other, but also well-known, mechanism is L-arginine decrease associated with its 
inhibitor asymmetric dimethyl-L-arginine (ADMA). ADMA is an endogenous protein 
produced by N-methyltransferase type 1, elevated in redox status, and degraded by 
dimethylarginine dimethylaminohydrolase, altered by oxidative stress [15, 16].

Figure 3. 
The ET-1, synthesized from pre-pro ET1 by the activity of ECE in ECs, binds to ETA receptor in vascular smooth 
muscle and activates the pathway Gq-PLC-IP3, which rises cytosolic Ca2+ and induces muscular contraction. 
ET-1 can also activate ETB receptor in ECs leading to an increase in NOS activity and augmentation of 
bioavailable NO. Original graphic created with BioRender.com.
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4. Diagnosis

Cardiovascular disease (CVD) remains as the principal cause of morbidity and 
mortality worldwide [17]. During last century multiples, studies have been devel-
oped with the intention to identify the association between several lifestyle factors 
and the probability of suffering CVD [18]. Moreover, it is established the presence of 
cardiovascular risk factors (CVRF) in early childhood is a predictor of CVD in their 
lifetime [18, 19].

At the end of the last century, some equipments were created and able to identify 
the endothelium condition through non-invasive tools. Flow-mediated dilation 
(FMD) has become the most popular and widely used method for examining nonin-
vasive peripheral artery endothelium-dependent dilation [20].

4.1 FMD

Flow-mediated dilation represents an endothelium-dependent, largely 
NO-mediated dilatation of conduit arteries in response to an imposed increase in 
blood flow and shear stress first described in 1992 [20].

4.1.1 FMD procedure

FMD is typically assessed in brachial artery with a standardized diameter of 
3−5 mm. Through a high-resolution B-mode ultrasound, images of the brachial artery 
are taken, usually with an ultrasound probe of 7.5–12 MHz [21]. An approach by 
tangential scanning is a common mistake and results in underestimation of the true 
brachial artery diameter (Figure 4). Recent studies, which adopt H-shaped, probe 
capturing two short-axis and one long-axis for automatic probe position correction 
may overcome this previous limitation [22].

A simultaneous evaluation of pulse-wave Doppler velocity is recommended, given 
the importance of shear stress as the eliciting stimulus for dilatation. The recom-
mended isonation angle is <60° for optimal data acquisition, which should be kept 
constant [23, 24].

To ensure an optimal image throughout the hole FMD procedure, a probe-holding 
device is recommended. A stereotactic adjustable probe-holding device allows adjust-
ment of probe position during the test, allowing to maintain the same scan in the 
study [25].

Many subject-related factors can influence FMD such as alcohol, smoking, food, 
supplements, drugs, physical activity, and mental stress. Some factors directly 
stimulated NO-release, but others, such as acute physical exercise and mental stress, 
modify baseline vasomotor tone [26, 27].

4.1.2 Clinical evidence

In a study, brachial FMD has associated whit intima-media thickness progression 
in a population free of CVD, and in hypertensive, postmenopausal women [28]. A 
follow-up study in hypertensive patients with FMD predicted target organ damage 
progression for 3 years, even adjusted for known CVRF [29].

One meta-analysis described a significant 8−13% lower risk of CVD per percent-
age point increase in brachial artery FMD (e.g. from 7–8% dilatation). This reduction 
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was present in high and low-risk population but appeared larger in patients with 
established CVD [30, 31].

The clinical value of long-term changes in FMD may have a prognostic implica-
tion. For interventional trials FMD could represent a surrogate endpoint, especially 
since FMD is a tool with a rapid response effect to therapies, allowing recognition and 
identification of new bioactive substances or drugs able to modify FMD [32].

5. Treatment

5.1 Lifestyle

It is well established that lifestyle interventions have a main role in prevention of 
CVD. Many activities such as diet, aerobic exercise, quitting smoking and alcohol, 
and a non-sedentary day routine, have shown a significant reduction in blood 
pressure (BP) and arterial stiffness [33].

5.1.1 Mediterranean diet

The diet is one of the tractable modifiers of vascular health and BP, which has 
exhibited that targeting the whole diet has a more significant effect on BP than focus-
ing on individual foods and nutrients [34].

Figure 4. 
FMD representation with cuff positioned in the forearm. Through ultrasound assessment, brachial artery 
diameter is measured before and 5 minutes after the ischemia. FMD can oscillate depending on if a hypertensive 
drug is used before the procedure such as nitrates. Original graphic created with BioRender.com.
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The prevention with Mediterranean-style diet in several trials in patients with high 
CVRF showed that a Mediterranean diet supplemented with olive oil or nuts, reduced 
diastolic blood pressure by −1.5 mm Hg and − 0.7 mm Hg respectively, in comparison 
with low-fat diet over 4 years [35].

The recommendation to incorporate Mediterranean diet for older adults aiming its 
effect on BP and arterial stiffness is established in a 12-month randomized controlled 
trial called NU-AGE study. A total of 1294 healthy participants were included, aged 
65 to 79 years, recruited from 5 European centers, and arterial stiffness was assessed 
in 225 participants using the Vicorder device measuring both carotid-femoral pulse 
wave velocity (PWV) and augmentation index (AIx) [36, 37]. The intervention group 
received individually tailored standardized dietary advice and commercially available 
foods to increase adherence to a Mediterranean diet, and the control group continued 
their habitual diet, and were provided with current national dietary guidance. Of the 
original sample, 1142 participants completed the trial, and after 1 year, the interven-
tion group resulted in a significant reduction in systolic blood pressure (−5.5 mm Hg; 
95% CI, −10.7 to −0.4; P = 0.03), and in a subset (n = 225), augmentation index was 
improved following intervention (−12.4; 95% CI, −24.4 to −0.5; P = 0.04), with no 
change in pulse wave velocity [37].

The favorable effects of the Mediterranean diet on health may result from high 
intake of omega-6 and omega-3 fatty acids, fibers, antioxidants, and polyphenols [38].

5.1.2 Polyphenols

There are scientific studies that showed polyphenol-enriched diet impedes 
hyperlipidemia and coronary endothelial dysfunction, both by counteracting vascular 
inflammation and oxidative damage by activating Akt/eNOS pathway [39]. Some of 
the polyphenol’s effects are linked to the promotion of SIRT1-induced repression of 
the p38 MAPK/NF-kappaB pathway and ROS production [40].

When they come from virgin olive they reduce inflammatory angiogenesis in ECs 
through inhibition of matrix metalloproteinase-9 and cyclooxygenase-2, supporting 
the protective role of dietary polyphenols both in atherosclerosis and cancer [41].

5.2 Pharmacological therapy

Several drugs have actions mechanism involved in the physiological pathways of 
endothelial regulation and vascular tonicity, therefore this section will be discussed 
briefly a few of them.

5.2.1 PDE5i

Phosphodiesterase of cyclic nucleotide is a family of enzymes that hydrolyzed the 
cyclic nucleotides 3′-5′ to their 5′ monophophates analogs [42].

Vardenafil is one of many PDE5i in which a reduction of arterial stiffness has 
been reported. In one study twelve patients with erectile dysfunction, mean age of 
58 ± 9 years, received verdanafil20 mg per day, in a randomized, placebo-controlled, 
double-blind2-way crossover design. Aortic stiffness was evaluated through carotid-
femoral PWV and AIx. PWV decreased significantly (0.7 m/s, P = .001), denoting a 
decrease in aortic stiffness, and AIx decreased significantly (by 7%, P = .008), denot-
ing a decreased effect of wave reflections from the periphery [43].
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5.2.2 New therapies

Recent studies showed that microRNAs have a key role during atherosclerotic 
plaque formation, representing a potential new target for developing drugs.

In atherosclerotic plaque, miR-143 was found to be upregulated, and its overex-
pression in human umbilical vein endothelial cells (HUVECs) suppressed glycolysis 
by targeting hexokinase 2, leading to endothelial dysfunction [44]. And, in vivo, the 
inhibition of miR-92a, a regulator of endothelial proliferation and angiogenesis after 
ischemia, results in beneficial effects on the endothelium such as reducing inflamma-
tion and decreasing plaque size [45, 46].

Recent evidence shows several epigenetic pathways involved in endothelial dysfunc-
tion and related to cardiovascular diseases which will be discussed in the following.

Histone deacetylase 1 (HDAC1) overexpression in bovine aortic endothelial cells 
triggers a reduction of eNOS lysine acetylation and NO production. Its inhibition 
can stand as a therapy for preventing endothelial dysfunction. Additionally, HDAC1 
decline leads to no change in eNOS acetylation, otherwise increasing basal nitrate NO 
formation [46, 47].

Another study evidence that resveratrol, a phenol produced naturally by different 
plants, prevents TNF-α-induced injury from damaging HUVECs by stimulating 
sirtuin-1 (SIRT1) and repressing p38 MAPK/NF-kappaB pathway and ROS 
production [40, 46].

Additionally, another NAD-dependent deacetylase, SIRT6 is expressed in ath-
erosclerotic disease in human patients. In several mice studies, absence and haplo-
insufficient SIRT6 have been associated with monocyte adhesion to endothelium, 
augmentation of atherosclerosis gene expression, impaired vasorelaxation, and 
overexpression of VCAM-1 [48, 49]. Being so this knowledge is a potential subject for 
investigation of novel therapies counteracting atherosclerosis and decreasing endo-
thelial dysfunction.

6. Conclusions

ECD is a vast, interesting, and shallow subject shortly explored by the scientific 
community, therefore, the actual information about this topic is very limited. Further 
clinical and molecular research should be addressed for a better understanding of the 
entire implications of these pathways in clinical and molecular investigations.

Moreover, current equipment for addressing clinical non-invasive parameters 
of arterial stiffness is emerging and earning a relevant place in cardiovascular risk 
assessment, therefore, these tools are already being incorporated in several interna-
tional medical guidelines as an important parameter to consider.
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Appendices and nomenclature

ECD Endothelial cell dysfunction
NO Nitric oxide
ECs Endothelial cells
ET-1 Endothelin-1
ROS Reactive oxygen species
NOS NO synthase
nNOS, NOS1 Neuronal NOS
iNOS, NOS2 Inducible NOS
eNOS, NOS3 Endothelial NOS
sGC Soluble guanylyl cyclase
PKG Protein kinase G
IP3 1,4,5-trisphosphate
ECE Endothelin-converting enzyme
O2− Superoxide
CVD Cardiovascular disease
CVRF Cardiovascular risk factors
FMD Flow mediated dilation
BP Blood pressure
PWV Pulse wave velocity
AIx Augmentation index
PDE5i Phosphodiesterase 5′ inhibitors
ADMA Asymmetric dimethyl-L-arginine
HUVECs Human umbilical vein endothelial cells
HDAC1 Histone deacetylase 1
SIRT1 Sirtuin-1
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Chapter 2

An Overview of Gene Variants of 
Endothelin-1: A Critical Regulator 
of Endothelial Dysfunction
Anushree Gupta

Abstract

Endothelial dysfunction (ED) is an early marker of development of cardiovascular 
diseases and is closely related to clinical events in patients with atherosclerosis and 
hypertension. Endothelin-1 (ET-1), a potent vasoconstrictor, and nitic oxide (NO), a 
potent vasodilator, produced in endothelial cells are leading molecules which regulate 
vascular function. Failure of the physiological balance between these two molecules, 
often aggravated by increased production and biological activity of ET-1, commonly 
reflects endothelial dysfunction. The role of endothelium-derived small molecules 
like ET-1 (among many) with diverse biological functions continues to fascinate 
researchers all over the world both for its evolutionary significance and its transla-
tional potential in disease biology. Studies on systems genetics in human endothelial 
cells have provided evidence supporting the possibility that predisposition to complex 
disease is manifested through noncoding common genetic variants that modify levels 
of target gene expression in endothelial cells. These studies highlight the importance 
genetic variants of regulatory molecules secreted by endothelial cells in health and 
disease. It is unlikely that a single-nucleotide polymorphism (SNP) would directly 
cause disease, but it would increase the genetic predisposition of individuals and 
can affect their responses to drugs and medications. The knowledge gained would 
help in the risk stratification and clinical management of patients with personalized 
medicine.

Keywords: endothelial dysfunction, endothelin-1, cardiovascular diseases, single 
nucleotide polymorphisms, haplotype, precision medicine

1. Introduction

Endothelial dysfunction (ED) is a hallmark of many human vascular diseases [1] 
like peripheral arterial disease, cardiovascular diseases including atherosclerosis and 
hypertension, stroke, diabetes, chronic kidney failure, tumor growth, and metas-
tasis. Endothelial dysfunction, like many other multifactorial diseases, is caused by 
a combination of multiple genetic and environmental factors, a large proportion 
of which remain unexplained. Individual differences in endothelial function and 
hence susceptibility to diseases might relate not only to different levels of exposure 
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to risk factors but also to differences in the presence of different risk alleles of genes 
expressed in vascular endothelium, in different individuals [2]. Genetic regulation 
of variation in vascular function in different individuals is poorly understood and 
is largely mystifying. The genetic factors are one of the key determinants in the 
approach to prevent or treat diseases as envisaged by the Precision Medicine Initiative 
(PMI) [3] launched in 2015. Single-nucleotide polymorphisms (SNPs) are the most 
common genetic variation between human beings and key enablers of the concept of 
personalized medicine. An SNP is a single base substitution occurring at a specific site 
in the DNA sequence and in at least 1% or more of the population.

The healthy endothelium acts a gatekeeper of cardiovascular health regulating an 
exchange of fluids, nutrients, and metabolites critical to homeostasis and vascular 
health. Endothelial dysfunction leads to (i) loss of vascular integrity, (ii) increased 
expression of adhesion molecules, (iii) pro-thrombotic phenotype, (iv) production of 
cytokines, and (v) upregulation of human leukocyte antigen molecules [4].

Endothelial cells modulate the underlying vascular smooth muscle compartment 
by secreting several vasoactive substances [5] that control vascular relaxation and 
contraction as well as enzymes that control blood clotting, immune function, 
and platelet adhesion. Two major endothelium-derived factors are nitric oxide (NO) 
and endothelin-1 (ET-1) that have opposing effects on the function and structure of 
the vessel wall. Nitric oxide (NO) is a vasodilator, and endothelin (EDN-1) is a potent 
vasoconstrictor. Both molecules are critical regulators of vascular function. Decrease 
in NO production and the consequent impaired vasodilation is a hallmark of endothe-
lial dysfunction. Failure of the complex balance between vasodilation brought about 
by NO and vasoconstriction brought about by ET- 1, because of genetic or acquired 
disturbances between these two molecules, results in changes in vascular tone and 
ED, triggering the pathological process of vascular diseases at their primary stage [6].

2. Genetic variation in the study of human disease

The potential of genetic discoveries in unraveling pathophysiological mechanisms 
and identifying drug targets is widely accepted [7]. The sequence of any two indi-
viduals is 99.5% identical, and the genomes of any two individuals differ by approxi-
mately 0.1% or less. It is in this tiny fraction of the genome that researchers seek to 
find the collection of sequence variations that determine susceptibility to disease and 
its outcome. A resource for cataloging the differences between any two genomes was 
created with the completion of mapping and sequencing of human genome. Sites in 
the DNA sequence where individuals differ at a single DNA base are called single-
nucleotide polymorphisms (SNPs). As some SNPs predispose individuals to have a 
certain disease or trait or react to a drug in a different way, they are highly useful in 
diagnostics and drug development. Single-nucleotide polymorphisms (SNPs) have 
the potential to improve personalized medicine, and discovery of new SNPS enhance 
the risk stratification of patients with multifactorial diseases. In a clinical setting, SNP 
testing is particularly useful in complementing family history and phenotypic risk 
factors. The basic assumption here is that the affected individuals harbor a significant 
excess of clinically defined established pathogenic DNA variants as compared with a 
group of unaffected persons (controls) that are available from large datasets obtained 
from the general population.

The association of an SNP with a disease in an individual can be studied either 
directly or indirectly. Searching the entire genome for SNPs for disease association 
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would be very expensive because it would involve the cost of sequencing the entire 
genome of several healthy and diseased individuals and comparing the sequences 
to identify the variants. In the indirect approach, marker SNPs called the “tag 
SNPs” which represent sets of nearby SNPs on the same chromosome inherited in 
blocks, and their disease associations are identified. The pattern of SNPs on a block 
is a haplotype, and a few SNPs are enough to uniquely identify the haplotypes in 
a block. The HapMap is a map of these haplotype blocks, and the tag SNPs are the 
specific SNPs that identify the haplotypes. The HapMap reduces the number of 
SNPs to be scanned in the genome making the indirect approach more efficient and 
comprehensive.

Using just the tag SNPs, particular regions of chromosomes can be identified 
that have different haplotype distributions in the two groups of people, those with 
a disease and those without. The identified regions are scanned in more detail to 
discover the gene variants in the region that contribute to the disease or determine the 
response to drugs by affecting drug metabolism pathways, leading to development of 
more effective tests and interventions.

The 1000 Genomes project was undertaken to provide a comprehensive descrip-
tion of common genetic variation by applying whole-genome sequencing to a diverse 
set of individuals from multiple populations. In this project, genomes of 2504 indi-
viduals from 26 populations were reconstructed by sequencing and 88 million SNPs 
were genotyped. The resource generated provides insights into processes that shape 
genetic diversity and advanced understanding of disease biology (The 1000 Genomes 
project Consortium, Nature 2015 [8]).

3. Candidate gene variations in endothelial dysfunction

A candidate gene in context of gene polymorphisms is one which is presumed 
to be associated with a particular disease or a phenotypic trait and whose biological 
functions are derived directly or indirectly from other studies. The role of nitric oxide 
(NO) and ET-1 in maintaining endothelial homeostasis is well established, and they 
are the obvious candidate genes of choice for studying endothelial dysfunction. Low 
levels of NO are associated with impaired endothelial function, and polymorphisms 
in genes of molecules, factors, and pathways regulating synthesis of nitric oxide in 
vascular endothelium have been implicated in endothelial dysfunction, the rationale 
being the impaired bioavailability of endogenous nitric oxide (NO) that underlies 
vascular disease [2]. They include polymorphisms in the endothelial nitric oxide 
synthase gene (eNOS gene), NOS3, asymmetric dimethyl arginine gene (ADMA), tet-
rahydrobiopterin gene BH4, and the gene encoding the p22phox subunit of NADPH 
oxidase (CYB A). NO in vascular endothelium is synthesized by the enzyme NOS 
which requires BH4 as a co-factor. NOS is inhibited by ADMA, a naturally occurring 
product of metabolism found in human circulation and an analog of L-arginine. NO 
synthesis is inhibited by raised levels of ADMA, and this results in impaired endo-
thelial function. Increased levels of ADMA are found in people with hypercholester-
olemia, atherosclerosis, hypertension, chronic heart failure, diabetes mellitus, and 
chronic renal failure. Reactive oxygen species (ROS) such as superoxide (O2

−) lead to 
increased inactivation of NO with the generation of ONOO− which can lead to protein 
and DNA damage and subsequently loss of atheroprotective functions of NO. A vari-
ant of p22phox subunit of NADPH oxidase, an enzyme responsible for generation of 
O2

− in vasculature involved in the production of ROS in vessel wall, has been shown 
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to be associated with progression of atherosclerosis [9]. Results of polymorphisms 
studied in other genes whose products have been implicated in endothelial dysfunction 
have been inconclusive.

4.  Endothelin-1 as a candidate gene in human diseases for the study  
of endothelial dysfunction

Endothelin-1 like nitric oxide is a key regulator of endothelial dysfunction. The 
beneficial effects in maintenance of healthy endothelium are attributed to increased 
bioavailability of NO that regulates vascular homeostasis by causing vasodilation and 
by having antiproliferative, antioxidant, anti-inflammatory properties that inhibit 
atherogenesis. Conversely, increased synthesis of ET-1 is associated with the distur-
bance of homeostatic balance with pathological outcomes. The involvement of ET-1 in 
pathological process of vascular diseases with endothelial dysfunction like hyperten-
sion, coronary artery diseases, atherosclerosis, and diabetes is well established now. 
A knowledge of the mechanisms behind the development of endothelial dysfunction 
and the role of ET-1 and its gene is of great importance. The selection of ET-1 as a 
candidate gene is attractive because of its established role in vascular diseases and has 
assumed importance in the conduct of genetic association studies and SNP profiling 
in suitable population-based studies [10].

5. Endothelin system

The endothelin system is comprised of:

1. Endothelins (ETs): The 21 amino acid peptide isoforms such as ET-1, ET-2, 
and ET-3

2. Endothelin receptors (ETRs): The G-protein-coupled receptors for the peptides 
such as endothelin receptor A (ETRA) and endothelin receptor B (ETRB)

3. The endothelin-converting enzymes (ECEs) such as ECE1 and ECE2

5.1 Endothelin-1

Endothelin-1 was discovered as a potent vasoactive peptide [11] mainly secreted 
by endothelial cells and playing a role in regulating vascular tone, blood pressure, 
cell proliferation, and hormone production. It is now known to have diverse biologi-
cal actions on almost all aspects of physiology and cell function and is increasingly 
being recognized as a pro-inflammatory cytokine. Because of its vasoconstricting 
effects on vascular smooth muscle cells (VSMCs) and the resultant increase in 
arterial blood pressure, the peptide is best known for its role in hypertension. It is 
a molecule with great clinical relevance with critical roles in neurological function 
[12], pulmonary physiology [13], chronic kidney disease [14], fluid and electrolyte 
transport [15], autoimmune disorders [16], cancer biology [17], inflammatory 
response and sepsis [18], embryogenesis [19, 20], and importantly endothelial 
dysfunction [21].
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5.2 Biosynthesis of endothelin-1

ET-1 peptide is most abundant and widely expressed of the three isoforms such 
as ET-1, ET-2, and ET-3 [22]. ET-2 and ET-3 exhibit two and six different amino 
acids, respectively, compared to ET-1. ET-1 has a molecular weight of 2492, a hydro-
phobic carboxyl terminus, and two intramolecular disulfide bonds near the amino 
terminus [22]. It is the only isoform thought to be constitutively released from 
endothelial cells and is synthesized as the result of a series of proteolytic cleav-
ages of the initial gene product – the preproendothelin – an inactive precursor 212 
amino acids long. A 17-aa leader sequence targets preproET-1 to the endoplasmic 
reticulum where it enters the secretory pathway [23]. The precursor peptide is pro-
cessed by furin-like proteases to biologically inert intermediates pro-endothelin1 
and the 38-aa “big ET-1.” Endothelin-converting enzyme (ECE) cleaves the bond 
between Trp 21 and Val22 [24–26] to generate the mature 21-aa active ET-1 peptide 
(Figure 1).

ET-1 is synthesized by a dual pathway being released continuously by the secre-
tory vesicles of the constitutive pathway to maintain the vascular tone [27]. They are 
also stored in Weibel-Palade granules of endothelial cells and released by exocytosis 
and degranulation in a regulated manner when exposed to pathophysiological 
stimuli [28].

Under physiological conditions, blood flow appears to regulate ET-1 synthesis 
and release via the “shear stress receptors” on endothelial cells. This endothelin 
synthesis is activated in response to major cardiovascular risk factors such as 

Figure 1. 
Schematic representation of endothelin-1 and its biosynthesis and the localization of endothelin receptor subtypes 
on vascular smooth muscle cells and endothelial cells. Abbreviations: ET-1, endothelin-1; ETR-A, endothelin 
receptor A; ETR-B, endothelin receptor B; ECE, endothelin-converting enzyme. Figure created by using the 
Bioservier Medical Art.
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hyperglycemia [29, 30], hypercholesterolemia [31], arterial hypertension, estro-
gen deficiency [32], and aging [25], as well as by biochemical and mechanical 
stimuli.

5.3 Endothelin-converting enzymes

Endothelin-converting enzymes (ECE-1 and ECE-2) are type II membrane-bound 
zinc metalloproteases that cleave the low-activity precursor, Big ET-1 between Trp21- 
and Val22 to produce mature ET-1 [33]. The two enzymes have 59% overall homology 
[24–26, 34–36] but differ in pH for maximal activity. ECE-1 has a pH optimum of 7.0, 
whereas ECE-2 has an optimum pH of 5.5 for its activity. ECE-2 is 250 times more 
sensitive to the metalloprotease inhibitor phosphoramidon. In humans, ECE-1 has 
four isoforms, ECE1a-d [34, 37], derived from a single gene by differential splic-
ing of mRNA transcripts. These isoforms differ only in the aminoacid sequence of 
N-terminus and show comparable efficiency in catalyzing the cleavage of Big ET-1 
into mature ET-1. ECE-1 is the main enzyme responsible for the transformation of big 
ETs into ETs [38].

5.4 Endothelin receptors

In the vasculature, contraction or vasodilation by ET-1 are mediated by two 
 different receptor subtypes, ETA and ETB [39], belonging to the family of heptaheli-
cal G-protein-coupled receptors located on vascular smooth muscle cells (VSMCs) 
and endothelial cells. The endothelin receptor subtypes are distinctively local-
ized. The ETA-receptor subtype mainly mediates the vasoconstrictor activity. The 
receptor subtype is widely co-localized with ETR-B in vascular smooth muscle of 
cardiovascular tissues [40, 41], cardiopulmonary [42], central nervous system [43], 
retina [44], and placenta. However, ETR-A is not expressed on endothelial cells 
and renal-collecting duct cells. ETRB is highly expressed in the endothelium, and 
under pathophysiological conditions, the expression of ETB receptor subtype also 
increases on VSMCs and produces vasoconstriction. ETR-A has high affinity for 
both ET-1 and ET-2, whereas ETR-B has a similar affinity for all ET isoforms [45]. 
ETRB has broader effects compared to ETR-A and has roles to play in ET-1 clearance, 
endothelial cell survival, signaling to NO synthase (eNOS) and NO production, 
prostacyclin synthesis, and inhibition of ECE-1 [46]. Interaction of ET-1 with its 
receptors increases intracellular calcium, leading to phosphorylation and activation 
of myosin light chain to produce vasoconstriction [47]. Vasodilatory effect by ET-1 is 
mediated through ETB receptors on endothelial cells which increase the production 
of NO and PGI2.

Endothelin receptor antagonists (ERAs) have been developed to block the effects 
of ET-1 in a variety of cardiovascular conditions. Three main kinds of ERAs exist:

1. selective ETA receptor antagonists (sitaxentan, ambrisentan, atrasentan,  
BQ-123, and zibotentan), which affect endothelin A receptors.

2. dual antagonists (bosentan, macitentan, and tezosentan), which affect both 
endothelin A and B receptors.

3. selective ETB receptor antagonists (BQ-788 and A192621) which affect endothelin 
B receptors are used in research but have not yet reached the clinical trial stage.
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Sitaxentan (withdrawn in 2010 after acute liver failure leading to death), ambrisen-
tan, and bosentan are mainly used for the treatment of pulmonary arterial hypertension 
(PAH), while atrasentan is an experimental anticancer drug.

6. Possible role of endothelin in endothelial dysfunction

It is generally accepted that generation of reactive oxygen species (ROS) and an 
increased level of oxidative low-density lipoprotein (oxLDL) induces endothelial 
dysfunction. The receptor for oxidative low-density lipoprotein (oxLDL) is the 
lectin-like oxidized LDL receptor (LOX-1) found on endothelial cells (Figure 2). 
Under normal conditions, LOX-1 is expressed at a low level on endothelial cells, 
but it is induced by pro-inflammatory cytokines and under proatherogenic condi-
tions such as hypertension, diabetes, and hyperlipidemia [6]. Angiotensin II and 
homocysteine that induce oxidative stress also induce LOX-1 expression. Also, LDL 
is oxidized by oxidative stress, leading to generation of ox-LDL. Binding of oxLDL 
to its receptor LOX-1 reduces NO production from endothelial cells via generation 
of reactive oxygen. It also induces the production of superoxide anion and activa-
tion of redox-sensitive transcription factor NFkB [48], which in turn upregulates 
ET-1 as well as adhesive molecules and chemokines promoting endothelial 
dysfunction.

Figure 2. 
The role of endothelin in endothelial dysfunction: In a healthy cell (left), the protective role of nitric oxide 
(NO) signaling pathway predominates. The formation of NO from L-arginine is catalyzed by endothelial NO 
synthase (eNOS). NO is released from endothelial cells and acts on smooth muscle cells to exert vasodilator 
and proliferative effects. In a dysfunctional endothelial cell (right), the vascular homeostasis is disrupted via 
the engagement of endothelial LOX-1 with oxidized LDL (OxLDL) resulting in downregulation of NO and 
upregulation of NFkB and the endothelin (ET)-1 signaling pathway. ET-1 is released from endothelial cells 
and acts on smooth muscle cells through the interaction of two types of receptors (ET-1 receptor type A [ETR-A] 
and ET-1 receptor type B [ETR-B]), both of which mediate vasoconstriction and proliferation. Figure created 
using Servier Medical Art.
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7. Endothelin-1 gene polymorphism

An individual’s phenotypic characteristics, including a person’s propensity 
toward complex disorders such as heart disease and cancer at the genetic level, are 
determined by sequence variations that exist at defined positions within genomes. 
Sequence variations are tools for understanding human variation and molecular 
genetics and can be used for gene mapping, definition of population structure, and 
performance of functional studies. The human genome has a total of over 88 mil-
lion variants of which 84.7 million are SNPs, 3.6 million short insertions/deletions 
(indels), and 60,000 structural variants (The 1000 Genomes Project Consortium, 
Nature, 2015 [8]). A typical genome differs from the reference human genome 
at 4.1million−5.0 million sites. Realizing the importance of the role of SNPs in 
human health, many databases like Ensembl Variation Database, A-SNP, HGBase 
(Human Genic Bi-allelic SEquences), HOWDY (Human organized whole-genome 
variation Database), and dbSNP have been created for cataloging the variations 
occurring in human genome. The emergence of genetic variation databases, such 
as (i) dbSNP and HGV for short genetic variations, (ii) dbVar and DGV for struc-
tural variations, (iii) dbGaP for genotype/phenotype interaction studies, and (iv) 
ClinVar and ClinGen for human variations of clinical significance, facilitates the 
contemporary identification/discovery of (i) known or novel polymorphisms, (ii) 
phenotype to genotype associations, and (iii) clinically important human genetic 
variations.

The Single Nucleotide Polymorphism Database (dbSNP) is a free public archive 
for genetic variation developed and hosted by the National Centre for Biotechnology 
Information (NCBI) in collaboration with the National Human Genome Research 
Institute (NHGRI). This collection of polymorphisms includes

i. single-base nucleotide substitutions (also known as single-nucleotide polymor-
phisms or SNPs),

ii. small-scale multi-base deletions or insertions (also called deletion insertion 
polymorphisms or DIPs), and

iii. retrotransposable element insertions and microsatellite repeat variations (also 
called short tandem repeats or STRs).

Majority of the genetic variations among individuals are due to SNPs. The associa-
tion of candidate gene SNPs like those of EDN1 in multifactorial diseases, like endo-
thelial dysfunction which often set the stage for the occurrence of vascular diseases 
like CAD, is important for the identification of therapeutic targets.

The gene for ET-1 gene locus spans a region of approx. 7.0 kb on short arm of chro-
mosome 6 at 6p24–23 [49, 50]. The gene is composed of five exons (Figure 3) that 
synthesizes a cDNA of 2026 bps. Nucleotide sequences encoding the mature ET-1 are 
present in the second exon. ExonI has the 5’UTR of mRNA. The upstream promoter 
region is well conserved.

The endothelin pathway is central to pulmonary vascular function. Several 
polymorphisms and/or mutations in the genes coding for endothelin (ET)-1 and its 
receptors correlate with the clinical manifestations of other diseases. The dbSNP 
contains 15,259 entries for human EDN1 gene (as on 20.06.2022) which represent 
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all the above categories of variations. Many of these entries are redundant. For 
example, rs386556298, rs60458956, rs56478068, and rs3730357 have been merged 
into rs2070699 which represents intron variant c.233 + 30 G > C/G > T variation in 
the EDN1 gene. A total of 15 of these as represented in the ClinVar database (Build 
155, Jun 16, 2021) have been included in Table 1 due to the limitation of space in 
this article.

This is by far the most reported variant of pre-proendothelin-1, and there are 
161 publications (21.06.2022) in LitVar for this variant. The third base “G” of codon 
198 of preproendothelin-1 gene is substituted with “T” leading to a change in codon 
for lysine to arginine. The genotypic variants of rs5370 are GG, GT, and TT. In the 
ECTIM (Etude Cas-Témoin de l’Infarctus du Myocarde) multicenter study [51] 
comprising of 648 male patients who had survived myocardial infarction and 760 
population-based controls, the G/T polymorphism predicting the Lys/Asn change 
showed that the “T” allele was associated with increase of blood pressure in over-
weight subjects. This finding was confirmed by the Glasgow Heart Scan Study [51] 
as well.

7.1 Pulmonary arterial hypertension

Endothelial dysfunction is believed to be one of the first triggers initiating the 
process of abnormal vascular remodeling in pulmonary arterial hypertension (PAH) 
[52]. K198N (rs5370) polymorphism in the endothelin 1 gene (EDN1) has been 
demonstrated to associate with blood pressure reactivity and can result in greater 
endothelin-1 (ET-1) synthesis which may favor the development of PAH and affect 
its course of progression [53]. The influence of EDN1 gene variants on susceptibility 
to pulmonary arterial hypertension remains uncertain. However, a meta-analysis of 

Figure 3. 
EDN1 Gene Locus and some of its common gene variants. The EDN1 gene is located on short arm (p-arm) of 
chromosome 6 and has five exons (green), a 5’non-translated region and a 3’non-translated region of the gene 
that is transcribed in mRNA. The 5’ntr is located downstream of promoter, while the 3’ntr is located downstream 
of exon 5. The gray areas of the gene represent the introns that are spliced off in the mature RNA. The rs nos. 
of commonly studied SNP variants in EDN1 gene are mentioned in blue horizontal bars in extreme right. The 
complete data from SNPs build 155 are available at https://ftp.ncbi.nlm.nih.gov/snp/ in multiple formats.
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a total of 17 articles with 2631PAH subjects and 5139 controls and 5 candidate gene 
variants that also included rs5370 SNP of EDN1 gene for susceptibility to PAH showed 
a significant association between “T” allele carriers and risk of developing PAH [54]. 
Another large-scale genomic analysis to examine the interaction of ET-1 pathway 
polymorphisms and treatment response of patients with PAH treated with ET recep-
tor anatagonists (ERAs) showed that these polymorphisms of the ET-1 pathway may 
influence the clinical efficacy of ERAs [55].

7.2 Essential hypertension

There are several reports connecting this SNP variant to hypertension. Our own 
studies (unpublished) like those of Wiltshire et al. [43] have found no sufficient 
data supporting the association between K198N polymorphism with high blood 
pressure, systolic blood pressure, lipid levels, and insulin resistance or metabolic 
syndrome. In other studies, subjects with high endothelin-1 levels were shown to 
have an increased risk of low-renin hypertension [56]. Rs5370 variant of EDN1 
has been associated with low-renin hypertension and increased aldosterone/renin 
ratios in individuals of African descent, but not in whites [57]. This study also 
provided the first evidence of a potential association between the EDN1 rs5370 
SNP and the risk of subclinical hyperaldosteronism in subjects of African descent. 
These investigators also assessed the effect of EDN1 rs5370 on systolic BP curves, 
but they did not see an effect. They also observed a significant association of 
salt-sensitive BP and rs5370, even with adjustment for sex, since an earlier study 
[58] had reported sex differences in the relationship between systolic BP and a 
haplotype of EDN1. In rheumatoid arthritis, hypertension is quite common and has 
been reported to be associated with the endothelin-1 (ET-1) gene locus (EDN1) in 
some groups, such as the Afro-Caribbean but not in the general population. Some 
other groups where hypertension-related high levels of plasma ET-1 in RA have 
been observed are the obese and individuals with low-renin states. A study [59] 
that evaluated the potential association of EDN1 gene locus and serum ET-1 levels 
with hypertension in patients with RA showed an increase in the prevalence of T-T 
haplotype carriers.

7.3 Preeclampsia

Preeclampsia (PE) is an often-fatal pathology characterized by hypertension 
and proteinuria at the 20th week of gestation that affects 5–10% of the pregnan-
cies [46]. Risk factors for the development of PE include obesity, insulin resistance, 
and hyperlipidemia that stimulate inflammatory cytokine release and oxidative 
stress leading to endothelial dysfunction (ED). Normal pregnancy course includes 
variations in hemodynamics, in which placenta allows the exchange of nutrients 
and waste disposal between mother and fetus. During the stage of establishment of 
maternal-fetal interface when the extravillous throphoblasts from placenta conquer 
the maternal decidua, the maternal spiral arteries from the decidua go through a 
process of remodeling, where they are upgraded from low-capacity high-resistance 
into high-capacity low-resistance vessels. PE is characterized by an impaired invasion 
of fetal trophoblasts which causes a reduced remodeling of the maternal spiral arter-
ies eventually leading to a decrease in blood flow to the placenta. Consequently, the 
mother develops hypertension, usually at the end of the second or third trimester of 
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gestation, to increase the blood flow. The polymorphism rs5370 in EDN1 was shown 
to be associated with susceptibility to preeclampsia [60]. In another study [61], 
markedly increased risk of early onset of PE was shown to be related to the C allele 
polymorphism rs5370 in EDN1.

7.4 Glaucoma

ET-1 has been suggested to have a role to play in optic neuropathy observed in 
glaucoma [62]. Associations between polymorphisms of endothelin (ET-1) and 
endothelin receptors (ER) A and B genes with the occurrence of glaucoma were inves-
tigated by Ishikawa et al. [63] in Japanese patients. For the rs5370 ET-1 polymorphism 
that involved a transversion of G/T in exon 5, the Lys-Lys (GG) genotype tended to be 
more frequent than in open-angle glaucoma patients.

7.5 Diabetic retinopathy (DR)

Diabetic retinopathy (DR) is the result of impaired NO pathway that affects the 
vusculature of the retina. Several candidate genes have been studied for their role in 
diabetic retinopathy, but only a fraction of them have been shown to be associated 
with DR. Many studies have provided evidence in support of the role of endothelin 
(ET) system in the pathophysiology of DN. However, studies on K198N variant 
have revealed that the “T” (Asn) allele actually has a protective role against DR in a 
Chinese population with type 2 diabetes [64]. Yet another study by Maja Seruga [65] 
showed that the EDN1 rs5370, rs1476046, and rs3087459 polymorphisms of EDN1 
gene are not risk factors for DN in Caucasians with T2DM.

7.6 Childhood primary nephrotic syndrome

ET-1 levels are raised in children with first episode of nephrotic syndrome 
(FENS), pointing toward endothelial dysfunction [66]. Also, children with steroid 
resistance have a greater risk of endothelial dysfunction [67]. The rs5730 SNP of 
EDN1 gene might play a disease-modifying role and susceptibility to childhood 
primary nephrotic syndrome (CPNS) [68]. Plasma Cholesterol, a hallmark of NS, 
seems to be associated with the genetic variations within the human ET-1 gene. 
The other EDN1 SNPs associated with CPNS include rs1630736 and rs10478694 
(3A/4A) and rs9296344 [69]. In a case-control study, it was found that GG geno-
type was more frequent in steroid-sensitive NS group compared to the steroid-
resistant NS group and was associated with hypertension. This group also showed a 
better response to steroid therapy [70]. The study by Hashemi et al. [71], however, 
did not find any association of rs5370 G > T variant with nephrotic syndrome in 
children.

7.7 Asthma

EDN1 has been reported to be implicated in the pathophysiology of asthma. In a 
study on 342 families from UK and 100 families from Norway, rs5370 along with 10 
other EDN1 variants rs1800541, rs1800542, rs1476046, rs1800543, rs5369, rs1794849, 
rs1626492, rs1629862, rs1630736, and rs4714383 were genotyped, and a strong 
association was found in both the populations for rs5370 and rs1800541 located in 
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the upstream region of EDN1 gene [72]. However, literature results on the genetic 
association of EDN1 in asthma are inconsistent.

7.8 As risk predictors in cancer

Ma et al. analyzed the genotypes of angiogenesis-related genes in 180 patients 
with nasopharyngeal carcinoma (NPC) using Sequenom MassARRAY and found that 
EDN1-rs1800541, rs2071942, and rs5370 can be used as risk predictors of radiation-
induced oral mucositis, xerostomia, and myelosuppression, respectively.

Auriculocondylar Syndrome and Question Mark Ears.
rs587777231 [Lys91Glu].
rs587777232[Pro71His].
rs587777233[Val64Asp],
rs587777234 [Tyr81 Termination (stop gained)].
Auriculocondylar syndrome (ACS) is a rare disorder which affects facial develop-

ment with a small chin micro-gnatha) and a malfunction of the joint that connects the 
lower jaw (mandible) to the skull—a condition referred to as mandibular hypoplasia. 
Another feature of this disorder is malformed outer ears that have a characteristic 
shape caused by a split that separates the upper ear from the earlobe (question-mark 
ears or QMEs). Ref. [73] identified a homozygous substitution in a furin cleavage site 
of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents by 
whole-exome sequencing (WES). Four mutations (S.No. 11–14 in the ClinVar Table) 
were identified in the EDN1 gene, one of which resulted in a stop codon and the other 
three resulted in missense mutations. These mutations also had different modes of 
inheritance, suggesting that the degree of residual EDN1 activity differed depending 
on the mutation. These findings provided support for the hypothesis that ACS and 
QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway 
which is important in the development of the lower jaw. The four variants are classi-
fied in ClinVar database as pathogenic having clinical manifestations.

rs1800997: 3A/4A (+138 5’UTR locus of exon1 ins/del A) polymorphism.
(Formerly rs10478694)
This SNP contains an adenine insertion at position +138, 5′ untranslated region 

(UTR) and exon 1 of the ET-1 [74]. The genotypes are as follows: the mutant form 
(4A/4A), wild type (3A/3A), and the heterozygote (3A/4A) [53]. Some studies have 
reported increased plasma levels of ET-1 in individuals who have a mutant genotype 
[53, 75]. Studies have reported different allele distributions among patients with 
pulmonary artery hypertension (PAH), idiopathic pulmonary artery hyperten-
sion (IPAH), and coronary heart disease (CHD), with the control group [76]. 
They showed a significant increase of alleles containing the 3A form in patients 
with hypertension [76]. Some researchers have shown that there is no significant 
association between this SNP and the development of hypertension [77]. This 
SNP, although, not reported in ClinVar database has been shown to be associated 
with high expression levels of ET-1 both in vitro (Popowski) and in vivo (Abhishek 
Kumar, 2021), and the high expression levels associated with the homozygous 
mutant form 4A/4A were hypothesized to be deleterious to cyanotic children with 
severe pulmonary hypertension [75].

Other variants not reported in ClinVar Database but reported in literature as 
heritable risk variants in many cardiovascular disorders such as hypertension, 
coronary artery disease, ventricular arrhythmia, and other related disorders are 
shown in Figure 3.
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8. Summary and conclusions

Endothelial dysfunction is multifactorial, and ET-1 is a key regulator of ED. The 
genetic factors that modulate individual susceptibility to multifactorial diseases 
are common, functionally different forms of genes (polymorphisms), that have 
modest effects on physiology and disease biology at individual level but, because 
of their high frequency of occurrence in the population, can be associated with a 
high attributable risk. By definition, a mutation results in a significant phenotype, 
whereas an SNP, which represents a stable change in the genome, possesses mild or 
no phenotypic changes. SNPs whether they relate clinical end points or intermedi-
ate phenotypes such as endothelial dysfunction require careful analysis. Available 
evidence in literature suggests that most of the susceptibility genes from common 
diseases do not have a primary etilogical role in predisposition to disease, but 
rather act as response modifiers to exogenous factors such as stress, environment, 
disease, and drug intake. A better characterization of the interactions between 
environmental and genetic factors constitute a key issue in understanding of 
the pathogenesis of multifactorial diseases. For example, risk factors like oxida-
tive stress, hyperlipidemia, and cytokines disrupt the vascular homeostasis in a 
dysfunctional endothelial cell leading to the production of ET-1 and consequent 
pathophysiological changes. Also, results from two independent studies ECTIM 
and Glasgow Heart Scan Study [53] on ET-1, BMI, and Blood Pressure suggested 
that obesity is a crucial factor influencing the association between the ET-1/
Lys198Asn polymorphism and BP levels. Obesity, predominantly governed by 
complex social and environmental factors, might enhance expression of ET-1 gene 
possibly through an upregulation by insulin, which is known to stimulate ET-1 
production [78]. In common diseases, genetic effects can be considerably amplified 
in the presence of triggering factors and gene-environment interaction is a central 
concept in multifactorial diseases.

The potential usefulness of SNPs in medicine is unprecedented. Obtaining a 
detailed family history is often considered standard in clinical practice for character-
izing the inherited component of individual’s disease risk. SNPs allow us to look 
closely at the footprints of past generations of the families. SNPs of the endothelin-1 
gene axis have the potential to help us in dissecting the genetic component of com-
plex diseases like cardiovascular diseases of which vascular dysfunction is an early 
manifestation. Susceptibility to disease in such cases depends on the cumulative 
contribution of multiple genetic risk factors. SNPs provide the potential to interpret 
genetic risks associated with complex polygenic disorders by developing models based 
on quantitative genetic theory to analyze and compare family history and SNP-based 
models [79, 80].

The most difficult task will be to consider the implementation of SNPs in clinical 
decision-making, particularly as it relates to providing recommendations for inter-
ventional or preventional measures, based on the concept of “risk.”
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Chapter 3

Genetic Markers of Endothelial 
Dysfunction
Iwona Wybranska

Abstract

The rate of endothelial dysfunction is influenced by genetic variation and thus 
inherited in families. Genetic disorders, such as familial hypercholesterolemia and 
homocystinuria, are at risk for premature atherosclerosis, and exhibit early endo-
thelial dysfunction. The known spectrum of mutations in LDL receptor, APOB and 
PCSK9 gene represent the monogenic dominant hypercholesterolemia. An autosomal 
recessive form of hypercholesterolaemia in the caused by homozygous mutations in 
the LDL-R adaptor protein. The polygenic hypercholesterolaemia for patients with 
a clinical diagnosis of FH is based on the cumulative effect of LDL-C-raising alleles 
with a cumulative effect, in a complex interaction with the environment that leads to 
an increase in LDL-C, producing an FH-like phenotype and presenting this type of 
hypercholesterolaemia as a typical complex disease. The various causes of homocys-
teinaemia like genetic causes include mutations and enzyme deficiencies such as the 
most frequently mentioned 5, 10-methylenetetrahydrofolate reductase (MTHFR), 
but also methionine synthase (MS) and cystathionine β-synthase (CβS) but also by 
deficiencies of folate, vitamin B12 and, to a lesser extent, deficiencies of vitamin 
B6, which affects methionine metabolism, and leads also to endothelial disfunction 
in different mechanismms. Mutations in genes coding enzymes in homocysteine 
metabolism and also in nitric oxide (NO) synthesis, the main vasodilatator is also 
presented in this chapter. The crucial importance of microRNAs in endothelial 
physiology following EC-specific inactivation of the enzyme Dicer which is involved 
in altered expression of key regulators of endothelial function, including endothelial 
nitric oxide synthase (eNOS), vascular endothelial growth factor receptor 2 (VEGF), 
interleukin-8, Tie-1 and Tie-2. The new discoveries based on genome-wide screening 
(GWAS) complement the knowledge of the topic.

Keywords: asymmetric dimethylarginine, endothelial nitric oxide, low density 
lipoprotein, hypercholesterolaemia, homocysteinaemia, epigenetic regulation,  
gene polymorphism, association studies

1. Introduction

A healthy vascular endothelium exerts atheroprotective effects through  
vasoactive mediators such as nitric oxide (NO), prostacyclin and endothelium-derived 
hyperpolarizing factor (EDHF). The endothelium plays an important role in regulating 
vasomotor tone and maintaining vascular integrity. Endothelial dysfunction, impaired 
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endothelium-dependent dilation, is a fundamental element in the pathogenesis of 
cardiovascular disease. There is evidence that as we age, the endothelium is exposed to 
the deleterious effects of elevated blood pressure and increased levels of cholesterol, 
glucose, homocysteine, to products of the inflammatory response and to components of 
cigarette smoke, and these protective properties decrease, leading to a state of endo-
thelial dysfunction [1]. Although endothelial dysfunction is associated with a number 
of risk factors for atherosclerosis, these risk factors are not the only determinants of 
endothelial dysfunction. The rate of endothelial dysfunction is influenced by a number 
of factors that are determined by genetic variation and thus inherited in families. These 
issues will be addressed in this chapter.

Vascular atherosclerosis, as the most common sign of endothelial dysfunction, 
usually manifests itself at a later age, although studies of twins and adoptions indi-
cate that this more common form is also partly heritable, although the inheritance 
is complex, arising from shared environmental exposures (risk factors) and many 
common gene variants (polymorphisms) with small to moderate effects. Endothelial 
dysfunction manifested in atherosclerosis also results from single-gene diseases that 
strongly modify risk factors, such as hypercholesterolemia or hyperhomocysteinuria. 
Children with certain single-gene disorders, such as homocystinuria and familial 
hypercholesterolemia, are at risk for premature atherosclerosis, and also exhibit early 
endothelial dysfunction [2–4].

2. Aging endothelium—mechanisms of endothelial senescence

Endothelial cell senescence is a physiological process of irreversible cell cycle 
arrest to which various biological stress conditions such as, telomere shortening, DNA 
damage, reactive oxygen species (ROS) production and mitochondrial dysfunction 
contribute. Cellular senescence is a process in which vascular cells stop dividing and 
undergo characteristic phenotypic changes, such as profound changes in chromatin 
and secretome [5]. Vascular endothelial cell senescence has been found to play a 
key role in vascular aging, leading to the initiation, progression and development of 
vascular atherosclerosis [6]. Aging vascular endothelial cells typically become flatter 
and enlarged with increasingly polypoid nuclei. These changes are accompanied by 
modulation of cytoskeletal integrity, angiogenesis, cell proliferation and migration 
[7]. Aging endothelial cells exhibit decreased production of endothelial nitric oxide 
(NO), increased release of endothelin-1 (ET-1), increased inflammation and cell 
apoptosis [7]. Senescence of endothelial cells thus induces structural and functional 
changes in blood vessels, exacerbating thrombosis, inflammation and atherosclerosis 
with impaired vascular tone, angiogenesis and vascular integrity, which contributes 
to the development and progression of atherosclerosis [8]. However, the molecular 
mechanisms of vascular endothelial cell aging and their relationship to underlying 
pathophysiological changes are not yet fully understood. In this chapter, the role of 
genetic factors affecting the mechanisms of endothelial cell senescence in the process 
of vascular aging and the development of atherosclerosis will be discussed.

Cellular senescence is a physiological or pathological process that occurs 
throughout life [9]. Under physiological conditions, cellular senescence is involved 
in embryonic tissue development, tissue repair, and tumor suppression responses 
[9]. However, the accumulation of senescent cells can lead to loss of replicative 
capacity, cell apoptosis, unfavorable structural changes and the associated develop-
ment of atherosclerosis [9]. Cellular senescence is usually associated with aging and 
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age-related disorders. In human coronary arteries, endothelial cells with increased 
β-galactosidase activity associated with enhanced senescence are observed dur-
ing aging, suggesting that aging is also associated with decreased endothelial cell 
regeneration and endothelial cell senescence, which is associated with decreased 
endothelium-dependent arterial relaxation [10] and the development of arterial 
stiffness [9]. Several studies have found that NO donors reduce arterial stiffness in 
healthy subjects and in patients with hypertension and hypercholesterolemia [10]. 
These data support a role for aging vascular endothelial cells in the pathogenesis of 
arteriosclerosis. However, while few clinical studies have examined the relation-
ship between endothelial aging, arterial stiffness and hypertension, those that have 
been conducted have shown that aging is closely associated with arterial stiffness 
and atherosclerosis. For example, data from the Framingham Heart Study showed 
that older age was significantly associated with higher carotid-femoral pulse wave 
velocity and mean arterial pressure [11]. Arterial stiffness has been shown to be an 
independent biomarker of atherosclerotic morbidity and mortality in the general 
population, in aging individuals, in patients with hypertension and in patients with 
end-stage renal disease [12]. With aging and the associated arterial stiffness, systolic 
blood pressure tends to increase while diastolic blood pressure tends to decrease, and 
this pathophysiological change results in an increase in pulse pressure and pulse wave 
velocity in the aorta. Indeed, it has also been observed that the prevalence of hyper-
tension, especially isolated systolic hypertension, is increased in the aging population 
[13]. Increased systolic pressure increases left ventricular afterload with an associ-
ated increase in myocardial oxygen demand. Declining diastolic pressure reduces 
perfusion of the coronary circulation during diastole. These consequences of arterial 
stiffness, increased systolic pressure and decreased diastolic pressure further induce 
left ventricular hypertrophy and subsequent myocardial ischaemia, remodeling and 
other cardiovascular complications in aging individuals [8].

3.  Cholesterol—factor of endothelial senescence and endothelial 
dysfunction

Senescence of endothelial cells is known to mediate the endothelial damage that 
occurs during the initial phase of atherosclerosis. Aging cells of the vascular wall lead 
to endothelial dysfunction, resulting in the synthesis of inflammatory cytokines and 
promoting the progression of atherosclerosis. The second stage of developing athero-
sclerosis, fibrous plaque formation, is characterized by increased lipid accumulation 
in the intima, resulting in fibrous tissue proliferation and vitreous degeneration, 
forming characteristic plaques in the intima. Also, macrophages accumulate in the 
subendothelial space, where they induce pathology by increasing the expression of 
key atherogenic and inflammatory cytokines and chemokines [14]. In the third stage, 
atherosclerotic plaque formation, the fibrous tissue is large and necrotic, enriched 
in lipids, while the lesion surface is thinner and few foam cells are present at the 
base and margin. In atherosclerotic lesions, smooth muscle cells of the vascular wall 
migrate from the media to the intima, accumulate around the lipid core formed by 
dead foam cells and switch from a contractile to a synthetic phenotype. Macrophages, 
on the other hand, which phagocytized lipids, display an abnormal or activated 
phenotype, which promotes pathological vascular proliferation [15]. At this stage, 
proliferation dominates the smooth muscle cells of the vascular wall, but aging does 
not occur and a typical atherosclerotic plaque is formed. The fourth stage involves 
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changes secondary to atherosclerotic plaques, in which aging macrophages promote 
plaque instability, degradation of elastic fibers and thinning of the fibrous cap, as well 
as increased expression of metalloproteases and formation of ulcers and thrombi [14]. 
At this stage, foam cells induce senescence of human vascular endothelial cells by 
releasing 4-hydroxynonenal (4-HNE) [16], which exacerbates senescence and induces 
atherosclerosis. Senescent human vascular wall smooth muscle cells differentiate into 
an osteogenic phenotype and undergo expression of calcifying factors, which eventu-
ally leads to calcification of the atherosclerotic plaque. It is noteworthy that human 
vascular smooth muscle cells proliferate in the early phase of atherosclerotic plaque 
formation. However, the proliferation rate of these cells is lower in advanced plaques 
than in early lesions, indicating that cell senescence may occur [17]. In addition, vas-
cular injury and phenotypic transformation of senescent human vascular wall smooth 
muscle cells also play a role in mediating vascular calcification [18]. Cellular aging 
is not a consequence of a single cause, but there are many factors that can induce 
cellular aging. Premature cellular aging, can be caused by factors such as miRNAs, 
homocysteine, hyperglycaemia, hypertension, hyperlipidaemia, hyperphosphataemia 
and oxidative stress, by reducing telomerase activity, increasing ROS production and 
promoting vascular calcification, mitochondrial dysfunction and DNA damage.

High cholesterol and triglyceride levels have also been found to be associated with 
an increased risk of atherosclerosis and shorter life expectancy. In fact, the vascu-
lar endothelial dysfunction that occurs during human aging is the factor, and the 
accumulation of lipids in the vascular endothelium activates leukocytes to produce 
cytokines and chemokines that recruit macrophages. On the other hand, macrophages 
enhance the inflammatory response and secrete vascular endothelial growth factor, a 
key cytokine that mediates angiogenesis and the inflammatory response. And hyper-
lipidaemia itself is a major risk factor for aging, hypertension and diabetes.

The relationship between hypercholesterolemia, atherosclerosis and aging is still 
poorly understood. Low-density lipoprotein (LDL) (cholesterol) in general is an impor-
tant physiological compound for cellular function, but in high concentrations can lead 
to atherosclerosis. It is generally accepted that the oxidized form of cholesterol leads 
to endothelial dysfunction, which is the initial step in the formation of atherosclerotic 
plaques. Oxidized low-density lipoprotein acts by binding to multiple scavenger recep-
tors (SRs), such as SR-AI, SR-A2, and can also increase the expression of endothelial 
cells’ own LOX-Ion receptor and activate these cells [19–21]. Under physiological condi-
tions, endothelial cells secrete many factors, monitor the transport of plasma molecules 
and regulate vascular tone. In addition, endothelial cells are involved in the regulation 
of cholesterol and lipid homeostasis, signal transduction, immunity and inflamma-
tion [22]. And, in addition, oxidized low-density lipoprotein promotes the growth and 
migration of smooth muscle cells, fibroblasts and macrophages. Vascular lesions are 
most often caused by hypercholesterolaemia, which can be induced by dietary supple-
mentation, overproduction of lipoproteins by the liver or genetic mutations of lipid 
receptors and other proteins that regulate lipid homeostatic pathways.

3.1 Mutations of genes regulating the cholesterol level

Hypercholesterolaemia is a common, and still underdiagnosed, autosomal 
dominantly inherited disorder that is estimated to occur at a prevalence of ≈1 in 
220 people worldwide. Familial hypercholesterolaemia (FH) is characterized by a 
persistent lifelong elevation of low-density lipoprotein cholesterol (LDL-C) and, if 
untreated, leads to early onset atherosclerosis and an increased risk of cardiovascular 
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events. Untreated hypercholesterolaemia in men and women is associated with a very 
high risk ranging from 30–50% of having a fatal or non-fatal cardiac event at 50 and 
60 years of age, respectively [23]. The most common cause of single-gene familial 
hypercholesterolaemia is pathogenic variants in the LDL receptor gene (LDL-R), 
which account for 85–90% of genetically confirmed cases of familial FH. Pathogenic 
variants in the gene for apolipoprotein (ApoB), a ligand for the LDL receptor, a com-
ponent of LDL resulting in reduced binding of LDL to LDL-R, or gain-of-function 
mutations in the gene for proprotein convertase subtilisin/kexin 9 (PCSK9), resulting 
in increased destruction of LDL-R, account for 5–15% and 1% of cases of monogenic 
hypercholesterolaemia, respectively [24]. There is also an autosomal recessive form of 
hypercholesterolaemia in the human population, caused by homozygous mutations in 
the LDL-R adaptor protein which, is associated with the mild phenotype of homozy-
gous hypercholesterolaemia found in Sardinian residents [25].

With the exception of the homozygous form of familial hypercholesterolemia 
(HoFH), FH is generally a silent disease. HoFH usually manifests with pathogno-
monic physical symptoms in childhood, such as cantelosis, tendon xanthoma and 
corneal arching. FH is diagnosed clinically based on a weighted combination of 
physical findings, personal or family history of hypercholesterolemia, early isch-
emic disease in the family and circulating LDL-C levels. The genetic cause is highly 
heterogeneous. Mutations in the LDL receptor genome are very common and occur 
at different sites disrupting receptor function in different ways. They therefore have 
different pathological significance. The spectrum of functional alterations in APOB 
outside the fragments routinely screened is growing. The ClinVar database at NCBI 
shows all the mutations in this gene described to date. There are about 3000 of them, 
and of these mutations that are labeled as pathological there are about 1000. They 
are mainly missense, nonsense frameshift mutations including about 500 deletions 
and 170 duplications. The largest number of known mutations are single nucleotide 
mutations mainly in coding regions of the gene, about 2000.

The known spectrum of mutations in APOB has been increasing in recent years 
thanks to next-generation sequencing (NGS) techniques, which allow all 29 exons 
of APOB to be studied without increasing laboratory workload [26–29]. However, 
as APOB is a highly polymorphic gene, these variants require functional assessment 
before a clear diagnosis can be made [27]. It is also known that mutations in the APOB 
gene do not have 100 per cent penetrance, and the phenotype of patients is usually 
milder than in patients with FH caused by LDLR mutations [30].

The ClinVar database from NCBI is being updated with known pathological muta-
tions in the APOB gene. There are currently 84 of them, most of which are located in 
the hydrophilic part of the apoB protein, the part that can bind to the LDL receptor. 
Mutations of the nonsense, missense and reading frame shift types dominate among 
the pathologies leading to familial hypercholesterolemia.

Familial hypercholesterolemia (FH), a major risk factor for coronary artery 
disease (CAD), is typically caused by mutations in genes that code for proteins 
responsible for removing low density lipoprotein (LDL) from the circulation. Only 
17 pathogenic mutations in the PCSK9 gene are currently known and presented in the 
ClinVar database from NCBI. PCSK9 was discovered in 2003 when gain-of-function 
(GOF) mutations in this gene were identified as causative of FH in an autosomal dom-
inant manner [31]. These GOF mutations are associated with hypercholesterolemia 
and a higher risk of CAD [32–36]. For example, a mutation in the apoB gene p.S127R 
is specifically associated with overproduction of this protein, resulting in greater 
synthesis of very low-density lipoprotein (VLDL), intermediate-density lipoprotein 
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(IDL) and, consequently, LDL [32]. Another mutation of this gene p.E670G is associ-
ated more with serum lipid parameters, including total cholesterol (TC), high-density 
lipoprotein (HDL) and Apo B [33], as well as with an increased risk of stroke due to 
large vessel atherosclerosis and ischaemic stroke [36]. Serum PCSK9 levels, has been 
identified as a major predictor of carotid atherosclerosis independent of other risk 
factors in asymptomatic patients [37]. Furthermore, the contribution of PCSK9 con-
centrations to FH severity appears to be independent of LDL receptor genotype [38]. 
Recently, a homozygous gain-of-function mutation of the PCSK9 gene was character-
ized that is associated with the phenotype of a patient whose cholesterol is 316 mg/
dl and LDL was 234 mg/dl at the age of 11 years [39]. This patient has no mutations in 
the LDL receptor or Apo B genes [39].

Loss-of-function mutations of the PCSK9 gene are associated with hypocholester-
olaemia and significant protection against CAD [40–43]. Notably, the p.Y142X muta-
tion is found only in 0.4 per cent of African Americans, but not in other ethnic groups 
[40]. The p.C679X mutation is more common in African Americans and Zimbabwean 
Africans, but very rare in European Americans [41]. One individual has been described 
who is homozygous for the p.R46L mutation and has a total cholesterol level of 11 mg/
dl [42]. In one family, six of the eight members who carry the p.R46L mutation have 
LDL levels below the bottom 10% percentile of LDL [42]. Another study reported 
that two healthy women with ‘loss of function’ mutations affecting both alleles of the 
PCSK9 gene have extremely low LDL cholesterol levels (14 mg/dL) [41–43].

The concept of polygenic hypercholesterolaemia for patients with a clinical 
diagnosis of FH but no monogenic cause was presented in 2013 by Talmud et al. 
[44]. This concept is based on the cumulative effect of LDL-C-raising alleles with a 
cumulative effect, perhaps in a complex interaction with the environment that leads 
to an increase in LDL-C, producing an FH-like phenotype and presenting this type of 
hypercholesterolaemia as a typical complex disease.

The more often publishing genes with polymorphisms contributing to the high cho-
lesterol phenotype include cadherin EGF LAG 7-pass G-type receptor 2, ATP-binding 
cassette subfamily G members 5 & 8 (ABCG5/8), sterol regulatory element binding 
protein-2 (SREBP-2), signal transducing adaptor family member 1 (STAP1), and Apo 
E. Talmud’s group developed a genetic risk score (GRS) based on scoring 12 SNPs where 
individuals above the top decile of the distribution of LDL-C scores were described 
as having a higher probability of polygenic hypercholesterolaemia [44]. Then, by 
removing SNPs with smaller effects/lower frequencies, they showed that a weighted 
score of six SNPs performed as well as a score of 12-SNPs. The top three quartiles of 
the distribution also indicated a greater likelihood of a polygenic explanation for their 
elevated LDL-C [45]. Another study established the 10-SNP GRS, which showed a 
strong association with high LDL cholesterol, confirming the validity of this score as a 
genetic risk marker for elevated LDL cholesterol [46]. In this cohort, individuals with 
an extreme weighted GRS ≥1.96 (≥90th percentile) were defined as having polygenic 
severe hypercholesterolaemia. Research has gone further and a study of patients with 
severe hypercholesterolaemia found that a high polygenic score for 2 million-SNP 
LDL-C (upper 5th percentile) could explain hypercholesterolaemia in up to 23% of 
patients, while only 2% carried a monogenic mutation [47].

With the development of genetic testing in recent years, a mutation in any of the 
three known autosomal dominant genes causing familial hypercholesterolaemia is 
found in the majority of cases with a clinical diagnosis of familial hypercholester-
olaemia. SituationBecause individuals with polygenic background hypercholester-
olaemia do not have the same inheritance pattern observed in monogenic familial 
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hypercholesterolaemia, familial cascade screening is not recommended for individu-
als with polygenic background, as only 30% of relatives have elevated LDL-C levels 
compared to 50% in monogenic families. The presence of a causative monogenic 
mutation is associated with the highest cardiovascular risk vs. no mutation or poly-
genic ancestry, providing prognostic information independent of LDL-C. This may 
also help to assess the intensity of intervention. Treatment adherence also appears to 
be higher after monogenic confirmation of hypercholesterolaemia.

4.  Homocystein—factor of endothelial senescence and endothelial 
dysfunction

In addition to cholesterol, the second important factor whose high blood concen-
tration causes vascular endothelial damage is homocysteine. Homocysteine (Hcy) is 
a sulfur-containing non-proteinogenic amino acid formed during the metabolism of 
the essential amino acid methionine. Hcy is considered an independent risk factor for 
atherosclerosis and cardiovascular disease, but the molecular basis of these com-
pounds remains incompletely elucidated to date. There is a causal link, as studies have 
observed that impaired endothelial function, a key initial event in the development 
of atherosclerosis and CVD, is observed in hyperhomocysteinemia (HHcy). Various 
phenomena may explain the vascular toxicity associated with high homocysteine 
concentrations. For example, Hcy is an inhibitor of nitric oxide (NO) synthesis, a 
gaseous master regulator of endothelial homeostasis. In addition, Hcy is responsible 
for deregulating the signaling pathways associated with hydrogen sulphide another 
important endothelial gasotransmitter. Hcy is also involved in the loss of critical 
endothelial antioxidant systems and thus increases the intracellular concentration of 
reactive oxygen species (ROS) causing oxidative stress. ROS interfere with lipoprotein 
metabolism, forming oxidized forms of lipids that are removed by vascular wall 
macrophages contributing to the development of atherosclerotic vascular lesions. In 
addition, excess Hcy can be indirectly incorporated into proteins, a process referred 
to as N-homocysteinylation of proteins, inducing vascular damage. The inability 
to metabolize homocysteine and excess homocysteine decreases the synthesis of 
the universal methyl group donor, so necessary for epigenetic processes occurring 
in cells, and the hypomethylation of cellular DNA caused by the accumulation of 
S-adenosylhomocysteine (AdoHcy) also contributes to the molecular basis of Hcy-
induced vascular toxicity and endothelial cell aging. A negative regulator of cellular 
methyltransferases, AdoHcy is a metabolic precursor of Hcy that accumulates under 
HHcy conditions [48].

4.1 Genetics of homocysteinaemia

There are various causes of homocysteinaemia. Genetic causes include mutations 
and enzyme deficiencies such as the most frequently mentioned 5, 10-methylene-
tetrahydrofolate reductase (MTHFR), but also methionine synthase (MS) and 
cystathionine β-synthase (CβS). In addition, HHcy can be caused by a diet rich in 
folate, but also by deficiencies of folate, vitamin B12 and, to a lesser extent, deficien-
cies of vitamin B6, which affects methionine metabolism, and also by impaired renal 
function.

MTHFR catalyzes the conversion reaction of 5,10-methylenetetrahydrofolate 
to 5-methyltetrahydrofolate, which is an intermediate in the conversion of Hcy to 
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methionine. Mutations in MTHFR occur frequently in the population and are com-
mon inborn errors of folate metabolism that result in phenotypes ranging from 
asymptomatic to severe neurological deterioration and even early death in the classic 
form of MTHFR deficiency [49].

Homocystinuria is also an autosomal recessive error of metabolism resulting from 
defects in the cobalamin (vitamin B12)-dependent pathway that converts Hcy to 
methionine and is catalyzed by the enzyme methionine synthase.

Hcy in the blood is generally found 70–80% as a disulfide bound to plasma pro-
teins, 20–30% as a homodimer with itself and about 1% as a free thiol, or a heterodi-
mer with other thiols [50]. Levels of the Hcy are usually controlled by 2 biochemical 
processes: (1) roughly ~50% of the Hcy goes to transsulfuration pathway for produc-
ing the glutathione and the remaining and (2) ~50% can be remethylated back to 
methionine [51, 52]. Normally, the synthesis and elimination of Hcy stay pretty much 
in balance, but in diseased conditions, i.e., in HHcy, the overall plasma Hcy levels 
tend to increase due to the errors in the Hcy metabolism [53].

Causes of homocystinaemia include regular consumption of an excessively 
methionine-rich protein diet, or B12/folate deficiency, or ‘loss-of-function type’ 
mutations of the CBS gene as heterozygous or homozygous, and finally insufficient 
Hcy clearance from the kidney. Several other factors are influential among which 
are gender, age, smoking, alcohol consumption, certain medications, and medical 
conditions that can potentially modulate the methionine cycle can increase Hcy levels. 
Furthermore, there are additional genetic factors that are key in promoting HHcy 
status, such as genetic defects in enzyme proteins involved in ‘1-carbon metabolism’ 
[54–56]. As this cycle is the only pathway that gives methyl group in both biosynthesis 
of cellular compounds such as creatine, epinephrine, carnitine, phospholipids, pro-
teins, and polyamines and in epigenetic changes (like methylation of DNA, RNA, and 
histones) [57]. Nevertheless, HHcy mediated metabolic malfunctioning because of 
the higher circulating Hcy levels promote oxidant stress-induced vascular inflamma-
tion and vessel dysfunction leading to atherosclerosis, myocardial infarction, stroke, 
multiple sclerosis, cognitive impairment, epilepsy, dementia, Parkinson’s disease, and 
ocular disorders [58, 59].

An interesting scientific discussion is being conducted in the context of the impor-
tance of the common MTHFR gene polymorphism and its significance in endothelial 
diseases. Heterozygous polymorphisms of the MTHFR gene reduce enzyme activity 
by 40% (CT variant, MTHFR c. [665C > T];[665C =]) and up to 70% in the homo-
zygous form (TT variant, MTHFR c. [665C > T], [665C > T]). The CT variant is very 
common as it occurs in up to 20–40% of the Caucasian population and 1–4% of most 
other ethnic groups. The homozygous TT variant occurs in about 10% of the general 
population in Europe.

Retrospective studies conducted in the 1980s showed an increased prevalence of 
homocysteine concentrations in the 15–30 μmol/l range dependent on the MTHFR 
677C > T polymorphism (new nomenclature, c.665 C > T) in the presence of con-
comitant folate deficiency in patients with atherosclerosis after myocardial infarction, 
stroke and coronary artery disease, and with a history of venous thromboembolism 
(VTE), i.e. deep vein thrombosis and/or pulmonary embolism. Quite different results 
were published from a prospective study published in 2002 in which these correla-
tions were shown to be weak or even non-existent. In 2010, the American College 
of Cardiology and the American Heart Association unequivocally spoke out against 
homocysteine determination in cardiovascular risk assessment, considering hyper-
homocysteinaemia to be a non-significant risk factor at the public health level [60]. 
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In contrast, during protein biosynthesis, Hcy can be misused by methionyl-tRNA syn-
thase to produce homocysteine thiolactone (HTL), a cyclic thioester that reacts rapidly 
with proteins to form amide bonds with the amino groups of lysine residues [61]. The 
resulting N-homocysteinylated proteins with altered structure and biochemical prop-
erties contribute to the vascular pathology associated with HHcy [62]. In fact, studies 
on cell cultures confirmed that Hcy supplemented in the medium was converted to 
HTL, and the extent of this conversion was proportional to Hcy concentration.

5. Gene polymorphisms influencing vasomotor endothelial function

Nitric oxide (NO), is a key vasodilator. It is formed in the vascular endothelium 
by the oxidation of arginine through the catalytic activity of nitric oxide synthase 
(NOS). This reaction requires NADPH and O2 as co-substrate and yields NO and 
citrulline as end products. Importantly, the enzymatic activity of NOS is inhibited by 
methylated analogues of arginine, namely N-monomethylarginine (L-NMMA) and 
asymmetric dimethylarginine (ADMA) [63], which are synthesized in vivo by a fam-
ily of enzymes known as protein arginine methyltransferases. Proteolysis of proteins 
containing L-NMMA and ADMA releases them into the endothelial cell cytosol, from 
where they are removed into the blood. Elevated serum ADMA levels are associated 
with atherosclerotic vascular disease [64].

More than 15 polymorphisms exist in the NOS3 promoter that might influence 
mRNA transcription and reduce gene expression. Two polymorphisms in NOS3, 
786 T > C and 894G > T, are the most studied. 786 T > C resides in the promoter 
region of NOS3 and regulates transcriptional initiation [65]. However, the –786 T > C 
polymorphism has shown inconsistent associations with functional measures, and 
with clinical disease end points. The CC genotype at 786 T > C is associated with 
blunted forearm blood flow responses to Ach in hypertensive subjects [66] and no 
increases in NOS3 mRNA and endothelial nitric oxide synthase (eNOS) protein 
expression in response to laminar shear stress in endothelial cells from coronary heart 
patients [67]. Polymorphisms within the coding region of the NOS 3 gene could alter 
NOS enzymatic activity. The 894G > T polymorphism in exon 7 of NOS3 results in 
substitution of glutamate with aspartate at codon 298 (also denoted as Glu298Asp) 
[68]. There is currently a debate, with controversial studies on whether this polymor-
phism is indeed functional. Two studies have shown that eNOS Asp298 undergoes 
selective proteolytic cleavage in endothelial cells and vascular tissues, which may 
account for reduced vascular NO production [69]. However, other studies have sug-
gested that this finding may be the result of an artifact [70].

ADMA is removed from the circulation by metabolism primarily by isoform two 
of the DDAH2 dimethylarginine dimethylaminohydrolase, which predominates in tis-
sues that express eNOS, such as the endothelium. The main cause of elevated ADMA 
levels in patients at risk for vascular disease is not fully understood, but one potential 
explanation could be loss-of-function mutations in the DDAH enzyme gene that alter 
gene expression or enzyme activity. Six potentially pathological polymorphisms have 
been identified in the DDAH2 gene. Five of them are upstream of the translation start 
site and may affect gene transcription. An insertion-deletion polymorphism (6G/7G) 
at position 2871, which lies in the core promoter region, affected DDAH2 promoter 
activity in the promoter/reporter assay [71].

The realization that common gene variants can, at best, have little to moderate 
impact on physiology and disease susceptibility has led to the understanding that 
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future studies of susceptibility to complex diseases, whether they address clinical 
endpoints or intermediate phenotypes such as endothelial function, will need to 
be much larger and include more variables simultaneously. Because many GWAS 
identify SNPs outside protein coding regions or in non-coding intervals, the contribu-
tion of small non-coding RNA (e.g., lncRNA, microRNA) in modulating endothelial 
function should be addressed.

6. Micro-RNA and its epigenetic role in endothelial pathophysiology

Indisputably, microRNAs are fundamental regulators of many biological pro-
cesses. Regulation of basic vascular endothelial functions by microRNAs and its 
disruption can lead to endothelial dysfunction. MicroRNAs are small, generally non-
coding RNAs that regulate the expression of many genes through post-transcriptional 
degradation or translational repression. The crucial importance of microRNAs in 
endothelial physiology has been demonstrated following EC-specific inactivation of 
the enzyme Dicer which is involved in the biogenesis and processing of microRNAs, 
which cleaves microRNA precursors into mature forms [72, 73]. The absence of Dicer 
in the endothelium leads to altered expression of key regulators of endothelial func-
tion, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth 
factor receptor 2 (VEGF), interleukin-8, Tie-1 and Tie-2.

Recent studies have identified miR-19a as an important driver of upregulation of 
important factors implicated in endothelial dysfunction, hyperlipidemia, inflamma-
tion and atherosclerosis, revealing a vicious cycle involving endothelial Hif-1a activa-
tion, hyperlipidemia and upregulation of miR-19a, promoting CXCR2 (C-X-C Motif 
Chemokine Receptor 2 which mediates neutrophil migration to sites of inflammation) 
dependent monocyte adhesion by increasing endothelial expression of its ligand 
CXCL1 [74]. It is also worth noting that microRNAs are also involved in switching 
the phenotype of VSMCs between a quiescent (pro-contractile, differentiated) and 
proliferative (pro-synthetic, differentiated) state [75], a critical step in the patho-
physiology of atherosclerosis.

The endothelium has a critical role in maintaining vascular integrity and protect-
ing against cardiovascular disease. Accumulated data indicate endothelial function 
is a heritable trait regulated by polygenic factors; however, these genetic factors have 
not been fully elucidated until now.

7. New discoveries based on genome-wide screening (GWAS)

Genome-wide association studies (GWAS) have been widely used in recent years 
to identify new genetic loci underlying chronic diseases. GWAS for endothelial func-
tion have been relatively limited due to the different phenotypes associated with it. 
The first such study was conducted by Vasan and colleagues for several cardiovascular 
traits, including FMD (%) and hyperemic flow velocity in 1345 individuals from the 
Framingham Heart Study, using a set of 100kSNPs [76]. They identified several SNPs 
associated with each trait in this study, including chloride channel (CFTR) and phos-
phodiesterase 5A (PDE5A) SNPs. Although these results have not been replicated, this 
was the first GWAS to directly examine endothelial function on a large population.

Yoshino and colleagues conducted an association study on the coronary vascular 
response to acetylcholine (ACh), a common index of coronary endothelial function, 
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in 643 female and male subjects [77]. They used a set of 1536 SNPs located in genes 
related to cardiovascular physiology and pathology. The results showed that variants 
in adenosine A1 receptor (ADORA1) were associated with endothelial dysfunc-
tion in the entire cohort, while variants in adenosine A3 receptor (ADORA3) and 
lipoprotein(a) (LPA) had the strongest associations with increased risk of endothelial 
dysfunction in women only.

In recent genome-wide association study (GWAS) studies in European popula-
tion, three novel sites related to endothelial dysfunction were found [78, 79]: Vascular 
endothelial growth factor A (VEGFA) rs9472135, Faciogenital dysplasia 5 (FGD5) 
rs11128722, Zinc Finger C3HC-type Containing 1 (ZC3HC1) rs11556924.

Because many GWAS identify SNPs outside protein coding regions or in non-cod-
ing intervals, the contribution of small non-coding RNA (e.g., lncRNA, microRNA) 
in modulating endothelial function should be addressed. In 2011, genome-wide asso-
ciation studies (GWAS) identified ANRIL as a biomarker closely associated with coro-
nary heart disease (CHD) [80]. These studies identified, locus 9p21 which contains 
many single nucleotide polymorphisms (SNPs) that are located in a “gene desert” 
without any protein-coding genes. A key portion of the SNPs at the 9p21 locus overlap 
with six exons in the ANRIL gene also known as CDKN2B-AS or CDKN2B-AS1, which 
is transcribed in the antisense direction in the INK4b-ARF-INK4a gene cluster. ANRIL 
is expressed in vascular endothelial cells, vascular smooth muscle cells, mononuclear 
phagocytes and atherosclerotic plaques and its variation is associated with vascular 
endothelial malfunction, vascular smooth muscle cell (VSMC) including prolifera-
tion, migration, senescence, apoptosis, mononuclear cell adhesion and proliferation, 
glycolipid metabolism disorders and DNA damage [81].

Heritable changes in gene activity and expression also can be the result of epigen-
etic changes. Recent evidence suggests epigenetic changes such as those induced by 
histonemethyltransferase Set7 are associated with endothelial dysfunction, including 
impaired FMD in diabetics [82].

The problem with the paucity of GWAS studies is that most disease-relevant single 
nucleotide polymorphisms (SNPs) cannot be assigned to a specific gene, and even 
demonstrating that a single SNP affects gene expression is not possible for most SNPs. 
This is a consequence of the complex architecture of the genome, in which enhanc-
ers are often located far from their target gene in a two-dimensional sequence-based 
projection. The second aspect is a consequence of the heterocellularity of the athero-
sclerotic lesion, such that a specific SNP is relevant in only one of the many different 
cell types expressed in the lesion.

In the future, thanks to the already initiated GWAS studies in single cells of the 
atherosclerotic lesion, this second problem may be solved.
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Chapter 4

The Role of Occludin in Vascular 
Endothelial Protection
Yunhui Du, Yanru Duan and Shihan Zhang

Abstract

Endothelial tight junction proteins play an important role in maintaining the 
integrity of vascular endothelial structure and physiological function. In recent years, 
studies have found that alterations in the expression, distribution, and structure 
of endothelial tight junction proteins may lead to many related vascular diseases 
and pathologies (such as diabetes, atherosclerosis, neurodegenerative diseases, 
and hypertension). Therefore, related strategies to prevent and/or tight junction 
proteins dysfunction may be an important therapeutic target. Occludin, as the most 
representative one among tight junction proteins, is mainly responsible for sealing 
intercellular junctions, maintaining cell permeability and the integrity of vascular 
endothelium. Here, we review the published biological information of occludin. We 
highlight the relationship between occludin and vascular endothelial injury-related 
disease. At the same time, we show our current knowledge of how vascular endo-
thelial occludin exerts the protective effect and possible clinical applications in the 
future.

Keywords: occludin, vascular endothelial cells, protective effect

1. Introduction

The normal vascular endothelium is taken as a gatekeeper of cardiovascular 
health, whereas abnormality of vascular endothelium is a major contributor to a 
plethora of cardiovascular ailments, such as atherosclerosis, hypertension, myocar-
dial infarction, coronary artery disease [1]. Therefore, it is important to study the 
occurrence and development mechanism of vascular endothelial injury. Recent stud-
ies have shown that alterations in expression, distribution, and structure of endothe-
lial tight junctions (TJ) may lead to atherosclerosis, neurodegenerative diseases, and 
pulmonary hypertension, suggesting that TJs play an important role in the vascular 
endothelium [2].

Occludin, the most representative tight junction proteins, can control the perme-
ability of cells by regulating the connection between cells to play a barrier function. 
Occludin is involved in the formation of cell polarity via forming a fence to prevent 
cells from spreading to the top and base outer membranes [3]. Meanwhile, occludin 
can promote cell proliferation and migration [4]. In addition, the expression level of 
occludin in different vascular beds is positively correlated with the properties of the 
endothelial barrier of the vascular beds. For example, the permeability of the arterial 
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vascular endothelial barrier is lower than that of the venous vascular endothelial 
barrier, and the expression of occludin in arterial vascular endothelial is about 18 
times higher than that in the venous blood vessels [3], suggesting that occludin is a 
critical factor of cell permeability and plays an important role in maintaining vascular 
homeostasis.

Alterations in occludin expression play an important role in vascular endothelial 
dysfunction. For example, the expression of occludin in retinal vascular endothelial 
cells of diabetics decreased, resulting in vascular dysfunction such as vascular perme-
ability increased, new vascular formation disorders, and inflammatory response 
increased, suggesting that the decreased level of occludin may be one of the factors 
for vascular dysfunction in diabetes [5]. Liu et al. [6] isolated primary mouse retinal 
endothelial cells for in vitro culture and found that occludin S490 phosphorylation 
is one of the important conditions for retinal endothelial cell tube formation, cell 
proliferation, and migration. In addition, in the rat with cerebral ischemia at 24 h and 
72 h, the expression of occludin in the blood-brain barrier first increased and then 
decreased [7]. In view of this, understanding the role and mechanism of occludin 
in vascular endothelial protection is significant for the prevention, diagnosis, and 
treatment of cardiovascular diseases. We will summarize recent advances in the 
relationship between occludin and vascular endothelial injury based on the biological 
information of occludin, the signaling pathway of occludin to protect the vascular 
endothelium, and the relationship between occludin and vascular endothelial injury-
related diseases in this chapter.

2. Biological information of occludin

There are four main types of intercellular connections in vertebrates: tight junc-
tions, adhesion junctions, gap junctions, and desmosome junctions. Intercellular 
tight junctions, which can seal intercellular spaces, control hydronium, water, and 
other molecular pathways, and maintain cell polarity, as discovered by Farquhar and 
Palade [8]. Discovery of tight junctions revealed the complexity of cellular internal 
structural, and cellular tight junction proteins (cingulin [9], Zos [10], Tricellulin, 
JAM [10], and occludin [11]) further clarify the structural complexity and functional 
diversity of cells.

2.1 Structure of occludin

Occludin has four transmembrane segments, two extracellular loops (the first 
extracellular loop rich in tyrosine and glycine and the second extracellular loop 
rich in tyrosine) and two extracellular loops internal domains (NH2-terminal 
cytoplasmic domain and COOH-terminal cytoplasmic domain) (Figure 1). The 
main function of the COOH-terminal cytoplasmic domain of occludin is to mediate 
the basolateral transport and endocytosis of proteins, while occludin lacking the 
C-terminus can localize at tight junctions, the tight junctions cannot be assembled 
correctly and function is lost [12]. In addition, Bamforth et al. [13] found that 
occludin lacking or truncating the N-terminus of the extracellular domain can still 
target tight junctions and co-localize with ZO-1, but the function of tight junction 
barrier disappears, suggesting that the C- and N-terminal domains of occludin are 
involved in tight junction assembly and play a barrier function. In addition, the two 
extracellular loop domains of occludin are critical for the localization of cellular tight 
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junctions. Occludin lacking the two extracellular loops is only present on the surface 
of basal cells but not cellular TJ [14].

2.2 Tissue distribution and expression regulation of occludin

Occludin is expressed in different cells and tissues with different expression level, 
and it is related to the function of tissues and organs. Occludin can be expressed 
in human, rat, mouse and other species, and it is mainly localized in arterial and 
venous vascular endothelial cells, blood-brain barrier, and blood-retinal barrier [14]. 
Although the expression of occludin could not be detected at the capillary-endothelial 
junction in mouse heart and skeletal muscle, occludin was highly expressed in brain 
capillaries [3], suggesting that occludin is essential for regulating the endothelial 
permeability of the blood-brain barrier. Morcos et al. [15] confirmed that under 
physiological conditions, occludin is highly expressed in retinal capillaries. However, 
in pathological conditions, the expression of occludin in the vascular endothelium 
will decrease significantly accompanied by different stress responses (inflammation, 
diabetes, cardiovascular diseases, neurodegenerative diseases, and atherosclerosis), 
and the permeability of vascular endothelium and the apoptosis of cell will increase 
[4], which suggests that occludin plays an important role in the blood-retinal barrier. 
In conclusion, under physiological and pathological conditions, the different expres-
sion levels of occludin in different tissues and cells are closely related to the tissue 
barrier properties.

3.  The signaling pathway of occludin exerting the protective effect of 
vascular endothelium

In recent years, the study of cellular tight junction proteins has increased 
dramatically. Occludin, the most typical cell tight junction protein, has attracted 
much attention. A large number of studies have shown that many classical signaling 
pathways are involved in the regulation of occludin, affecting the distribution and 
expression of occludin.

Figure 1. 
Structural insight into occludin. Occludin shares with general architecture as tetraspan transmembrane proteins 
colored in a gradient ranging from yellow at the N-terminus [N] to yellow at the C-terminus [C]. aa: Amino 
acid; G: Glycine; T: Tyrosine; EL1/2, extracellular loops 1 and 2; TM1 to 4, transmembrane domains 1 to 4.
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3.1 Occludin and mTOR pathway

mTOR, consisting of two distinct complexes (mTORC1 and mTORC2), is a sensor 
of ATP. mTOR1, a classical metabolic pathway in mammals, is involved in the prolif-
eration and migration of vascular endothelial cells [16] and the occurrence and devel-
opment of various cardiovascular diseases. Currently, a large number of studies have 
focused on the role of the mTOR pathway in the regulation of occludin expression [1]. 
In diabetic rat model, as the phosphorylation level of mTOR increases, the down-
stream 4EBP1 and S6K1 proteins are activated, and the expression level of ROS is 
increased, which leads to the reduction of NO production in vascular endothelial cells 
and the decrease of the expression of occludin protein, and the vascular endothelium 
is damaged. However, the expression of occludin increased after adding the mTOR 
inhibitor rapamycin [2, 17] inhibiting the production of occludin via the inhibition of 
the PI3K/Akt/mTOR signaling pathway in the cerebral vascular endothelium may lead 
to the age-related leakage of the blood-brain barrier [3, 18]. Hepatocyte growth factor 
[HGF] secreted by mesenchymal stromal cells can activate endothelial cell mTOR/
STAT3 signaling pathway to promote endothelial occludin expression, maintaining 
vascular endothelial permeability homeostasis and reducing endothelial cell apoptosis 
[19]. In conclusion, mTOR signaling pathway is involved in the regulation of occludin 
expression.

3.2 Occludin and VEGF pathway

The VEGF family consists of five vascular growth factors: VEGFA, VEGFB, 
VEGFC, VEGFD, and placental growth factor (PIGF). VEGF binds to tyrosine kinase 
cell receptors (VEGFR1/fms-like tyrosine kinase 1(FLT1), VEGFR2/human kinase 
insertion domain receptor (KDR)/mouse fetal liver kinase 1 (FLK1), and VEGFR3/ 
fms-like tyrosine kinase 4 (FLT4)) to exert biological effects. Under physiological 
conditions, VEGF may cause neovascularization, and aggravate vascular inflamma-
tion, vascular endothelial cell proliferation, migration and invasion, and endothelial 
cell survival [20]. A variety of studies revealed the relationship between the VEGF 
pathway and occludin: (1) Phosphorylation of occludin S490 could induce endothe-
lial cell VEGF expression and promote endothelial cell proliferation and angiogenesis 
both in vivo and in vitro [6]; (2) in rat model of cerebral artery occlusion, the lack 
of VEGF expression in microvascular endothelial cells can prevent the expression 
of occluding via inhibiting the VEGFR2/eNOS signaling pathway to further affect 
the permeability of the blood-brain barrier [21]; and (3) in mouse mammary can-
cer model, VEGF secreted by cancer cells can inhibit the expression of occludin in 
pulmonary vascular endothelium, increase pulmonary vascular permeability, and 
induce cancer cell metastasis, while overexpression of occludin can alleviate vascular 
endothelial disorder [22]. In conclusion, the interaction between VEGF and occluding 
could affect the occurrence and development of the disease.

3.3 Occludin and PKC pathway

PKC, a second messenger-regulated serine/threonine kinase, belongs to the AGA 
kinase family. Studies have shown that PKC can participate in the regulation of vas-
cular endothelial integrity by interacting with the vascular endothelial marker tight 
junction protein [23]. Presently, a variety of in vivo and in vitro disease models have 
been studied to explore the role of the PKC pathway in regulating the expression and 
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distribution of occludin: (1) In diabetes, metformin improves TJ barrier function by 
promoting the abundance and assembly of full length occludin at the TJ and that this 
process involves phosphorylation of the protein via an AMPK-PKCζ pathway [24]; 
(2) high glucose/ethanol induction increases the activity of NAD(P)H and promotes 
the phosphorylation level of subunit p47phox via inhibiting the activity of PKCα and 
PKCβ to increase the activity of matrix metalloproteinase 2 and reduce the expression 
of occluding, ultimately increasing vascular endothelial permeability, leading to the 
loss of blood-brain barrier integrity [25]; (3) in rat model of hypoxia and pulmonary 
ischemia-reperfusion injury, PKCα inhibits the expression of occludin in cerebral 
blood vessels and affects cerebral angiogenesis [26]; and (4) endothelial monocyte-
activating polypeptide-II (endothelial monocyte-activating polypeptide II, EMAP-II) 
induced-redistribution of occludin by activating the PKCζ/PP2A signaling pathway is 
another mechanism in the impairment of the blood-tumor barrier [27].

3.4 Occludin and PKA pathway

PKA, a cAMP-dependent kinase involved in the regulation of vascular endothelium, 
belongs to AGA kinase. Recently, it was reported in the literature that a novel 
β-adrenergic receptor agonist [complex 49b]-treated diabetic retinal endothe-
lial cells could activate the PKA signaling pathway, promote the expression of 
occludin in retinal vascular endothelium, increase vascular tight junctions, and 
reduce endothelial cell apoptosis [27]. cAMP/PKA signal transduction is involved 
in the increase of blood-tumor barrier permeability mediated by bradykinin and 
promotes the up-regulation of occludin expression [28]. Glucagon-like peptide-1 
(GLP-1) activates the cAMP/PKA signaling pathway to promote occludin expres-
sion and maintain the integrity of the blood-brain barrier in rat primary brain 
capillary endothelial cells [29].

3.5 Occludin and AMP-activated protein kinase [AMPK] pathway

AMPK is a serine/threonine protein kinase involved in the regulation of cellular 
and body metabolism. AMPK activation counteracts oxidative stress by inhibiting the 
production of reactive oxygen derived by NAD[P]H oxidase in endothelial cells [30]. 
Stimulation of lipopolysaccharide in aging mice can significantly inhibit the activa-
tion of AMPK pathway in cerebral vascular endothelial cells, up-regulate the produc-
tion of NAD[P]H oxidase, and reduce the expression of occludin protein, leading to 
blood-brain barrier disorders [31]. AMPK kinase inhibits the activation of inflamma-
some NLRP3 through the mTOR/ULK1 pathway-mediated autophagy, promotes the 
expression of occludin, and protects the blood-brain barrier in human brain capillary 
endothelial cells cultured in vitro [18]. Studies reported that occludin can negatively 
regulate AMPK activity to affect blood glucose uptake and energy production [32]. 
In conclusion, there is a strong connection between the energy metabolism pathway 
AMPK and occludin.

3.6 Occludin and MAPKs pathway

MAPKs including extracellular signal-related kinases (ERK1/2), p38, and c-Jun 
N-terminal kinase [JNK] are a family of serine/threonine protein kinases [33]. Under 
the stimulation of various extracellular factors (such as inflammatory signals), MAPK 
kinase promotes the activation of nuclear proteins and transcription factors, and 
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regulates gene expression, differentiation, apoptosis and other processes. MAPK 
kinase is an important intracellular signal transduction that regulates various intracel-
lular functions. Many studies have found that MAPK pathway activation can affect 
endothelial cell occludin expression and modification in physiological and pathologi-
cal conditions: (1) Exposure of cerebral microvascular endothelial cells to lipopoly-
saccharide can affect the p38MAPK/JNK signaling pathway and MMP2 expression, 
thereby regulating the level of occludin protein in endothelial cells and leading to 
central nervous system inflammation and brain edema [34]; (2) ERK1/2 inhibits the 
activation of the NF-κB signaling pathway resulting in the increase of occludin and 
decrease of endothelial barrier permeability to protect the TJ barrier in human lung 
microvascular endothelial cells [35]; (3) after lipopolysaccharide stimulates human 
umbilical vein endothelial cells, it can promote the mRNA and protein expression 
of CXCL4 and its receptor CXCR3 activates the downstream p38 signaling pathway, 
thereby inhibiting the expression of occludin in endothelial cells, promoting endothe-
lial cell apoptosis, and increasing endothelial cell permeability [36]; (4) exposure of 
human umbilical vein endothelial cells to γ-rays can promote the expression of MAPK 
pathway molecules p38, p53, p21, and p27, induce the activation of NF-κB signaling 
pathway, and inhibit the expression of occludin in endothelial cells, resulting in the 
increase of cell permeability, oxidative stress, nitrification, and inflammatory [37]; 
(5) in human brain microvascular endothelial cells, reduction of occludin can upregu-
late PI3K/AKT and ERK signaling pathways, and promote cytokine secretion, inflam-
matory factor activation, and apoptosis protein expression. However, overexpression 
of occludin can inhibit endothelial cell apoptosis and inflammation [25]. In conclu-
sion, the MAPK signaling pathway is closely related to the regulation of occludin.

4. Protein post-translational modifications (PTMs)

In general, various protein post-translational modifications (PTMs) increase the 
functional diversity of the proteome through adding covalent functional groups, 
proteolytically cleaving regulatory subunits, or degrading the entire protein. These 
covalent modifications of proteins involving in phosphorylation, glycosylation, 
ubiquitination, nitrosylation, methylation, acetylation, lipidation, and proteolysis 
have affected all the details of cellular physiology and pathology. The post-transla-
tional modifications of proteins further contribute to the biological complexity from 
genome to proteome. PTMs play an important role in regulating activity, localization, 
and interaction with cellular molecules (such as proteins, nucleic acids, lipids, and 
cofactors) [38, 39].

Therefore, better understanding and analysis of protein post-translational modi-
fications may be crucial for the study of cell biology, disease treatment and disease 
prevention including cardiovascular diseases, several forms of cancers, neurodegen-
erative diseases and diabetes, etc. [40].

4.1 Post-translational modifications of occludin

In recent years, post-translational modifications of occludin, as representative tight 
junction proteins, have become a research hotspot. The reported post-translational 
modifications of occludin include proteolysis, phosphorylation, and ubiquitination, 
which have all been shown to play vital roles in the course of disease occurrence, 
development, and convalescence [41, 42].
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4.2 Proteolytic degradation of occludin

Studies have found that degradation of tight junction proteins play an important 
regulatory feature in pathological and physiological tissue remodeling [43]. Basic stud-
ies demonstrated that the two fragments of cleaved Occludin released into circulation 
and the levels of blood occludin correlate well with the extent of blood brain barrier in 
cerebral ischemic model of rats [44]. In addition, occludin serve as a potential bio-
marker to predict the severity of acute ischemic stroke, hemorrhagic transformation, 
and patient prognosis [45]. These results suggested that the degradation of Occludin 
may be involved in the occurrence and development of many diseases.

4.3 MMPs-dependent degradation of occludin

Matrix metalloproteinases (MMPs) are secreted by astrocytes, endothelial cells, 
pericytes and peripheral circulating cells and are capable to degrade extracellular 
matrix (ECM) proteins as well as non-ECM proteins, including cytokines, chemo-
kines, membrane receptors, and antimicrobial peptides [46, 47]. Studied showed 
that MMPs are related to the development of cancer infiltration and metastasis, 
inflammatory response, and angiogenesis. Within the endothelial layer, MMPs can 
degrade intercellular junction molecules (such as cadherin, occludin, and claudins) 
and intracellular structural proteins (e.g., actins), enhancing the permeability of 
endothelial barrier [48].

Currently, a number of data have showed that occludin was mainly proteolytically 
cleaved via MMPs to inactive fragments, leading to endothelial barrier disruption. 
(1) Feng Chen et al. demonstrated MMP9 induced the degradation of occludin and 
suppressed the synthesis and expression of Occludin in brain endothelial cells and in 
brains of mice with experimental acute liver failure (ALF), which can cause severe 
vasogenic brain edema [49]. (2) Related studies showed that LPS/hypoxia induced 
brain blood barrier (BBB) leakage by MMP2/MMP9 contributed to the degradation 
of occludin in brain microvascular endothelial cells [34]. (3) TGF-β can promote the 
production of MMP9 in brain microvascular endothelial cells and retinal endothelial 
cells, accelerate the degradation of Occludin, and lead to increased vascular endothe-
lial permeability [50]. (4) Several studies demonstrated that MMP2/9 leads to occlu-
din fragmentation in brain microvessels from rat model of cerebral ischemic injury, 
with resultant brain leakage and brain edema [51–53]. (5) At the same time, Yang et al. 
firstly described the temporal dynamics of occludin degradation by MMPs in rodent 
models of cerebral ischemic injury, suggesting that MMP-2 cleaved occludin during 
the early phase of the ischemia (3 h), while MMP-9 caused further occludin degrada-
tion and more long-term (24-h) alterations to BBB integrity. In addition, MMP9 can 
promote the degradation of occludin through HIF-1α and AQP-4, ultimately trigger-
ing BBB disruption and brain edema [54]. (6) Simultaneous data show that MMP2/9-
mediated occludin hydrolysis can be used as a marker of blood-brain barrier and 
blood-retinal barrier in type 2 diabetes and diabetic retinopathy [55, 56]. (7) Caron 
et al. have suggested that elevated ProMMP-2/9 and MMP9 correlate with increased 
levels of occludin degradation in rodent kidney endothelium in ischemic injury [57]. 
(8) The degradation of tight junction proteins (occludin, claudins) through MMP9 
secreted by glioma cells is an important mechanism in the BBB breakdown mediated 
by TGF-β [58]. (9) In acute leukemia, MMP9 secreted by leukemic cells degraded 
occludin, which constituted an extreme mechanism of the BBB breakdown that con-
tributes to the invasion of the central nervous system [59]. Overall, occludin contains 
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extracellular MMP cleavage sites and are a substrate of MMPs. In endothelial cells, the 
degradation of Occludin mediated by MMPs leads to vascular leakage.

4.4 MMP-independent proteolysis of occludin

At present, a large number of data focus on MMPs-dependent occludin degradation; 
however, there are also some studies showing the existence of MMPs-independent 
occludin degradation. (1) Qian et al. found that tryptase can act on mouse brain 
microvascular endothelial cells to promote the production of MMP9/2, degrade the 
tight junction proteins occludin and Claudin5, and lead to the destruction of the 
blood-brain barrier [60]. (2) Wan et al. and Runs et al. verified both serine and cyste-
ine peptidases cleavage the occludin with elevation of epithelial permeability, which 
reveals a pathological mechanism for allergen delivery across lung and nasal epithelial 
barriers in asthma and allergic rhinitis sufferers [35]. (3) Caspase-mediated cleavage 
of the occludin C-terminal promotes apoptosis in MDCKs [61]. The studies about the 
MMP-independent proteolysis of occludin occurred in the epithelial cells; therefore, 
more research is needed to further define the MMP-independent proteolysis of occludin 
in endothelial cells.

4.5 Occludin phosphorylation

Protein phosphorylation is a ubiquitous type of post-translational modification, 
whereby protein kinase catalyzes the phosphorylation reactions by transferring the 
phosphate group of ATP to the substrate protein amino acid residues, typically serine, 
threonine, and tyrosine, or bind GTP under the action of signal transduction. It was 
widely demonstrated that protein phosphorylation is the most basic and the most 
common key mechanism for regulating and controlling protein biological activity and 
function [62]. Notably, the phosphorylation status of occludin regulating endothelial 
barrier protection has been received extensive attention.

More than 40 phosphorylation residues are in human occludin; however, only 
nine sites are confirmed in cell levels by different kinases on certain stimuli, includ-
ing Y398, T400, Y402, T403, T404, S408, T424, T438, and S490 [46]. All confirmed 
phosphorylation residues lie in the occludin C terminal. As early as 1997, Sakakibara 
et al. firstly observed increased phospho-serine [pSer] and phospho-threonine 
[pThr] occludin selectively localized to intact epithelial TJs as a detergent-insoluble 
form [63]. Subsequently, Kale and Elias et al. confirmed occludin phosphorylation 
on key serine, threonine, and tyrosine residues plays a crucial role in the assembly 
and maintenance of TJs in Caco-2 and MDCK cells [64, 65]. Dörfel and colleagues in 
2013 studied that CK2-mediated phosphorylation [T400A/T404A/S408A] of occludin 
in MDCK-C11 cells bind with ZO1/2 interaction and protect the epithelial barrier 
[66]. The regulation of occludin phosphorylation in endothelium has also received 
extensive attention, with many studies focusing on how the phosphorylation status of 
occludin regulates the vessel barrier.

Different phosphorylation sites of occludin exerts specific functions in endothelial 
cells: (1) Antonetti and his colleagues investigate the role of tight junction protein 
occludin phosphorylation at S490 in modulating barrier properties and its impact 
on visual function. They found that endothelial-specific expression of the S490A 
form of occludin completely prevented diabetes-induced permeability to label 
dextran and inhibit leukostasis. Importantly, vascular-specific expression of the 
occludin mutant completely blocked the diabetes-induced decrease in visual acuity 
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and contrast sensitivity in the retinas of streptozotocin-induced diabetic mice [67]. 
(2) Treatment with glutamate increased tyrosine phosphorylation and decreased 
threonine phosphorylation of occluding in brain microvascular endothelial cells. It 
affects the redistribution of occludin. These may lead to opening of the blood-brain 
barrier (BBB) and induce further brain damage [68]. (3) The phosphorylation of 
occludin and claudin-5 by RhoK at specific sites disrupted the integrity of BBB. 
Antibodies against specific phosphorylation sites of occludin could be useful reagents 
for monitoring BBB dysfunction in vivo [69]. (4) Other recent studies confirm the 
importance of threonine phosphorylation with occludin C-terminal for mediating its 
ability to localize to the tight junction [70–72]. According to the above studies, it is 
demonstrated that the specific phosphorylation sites of occludin regulate the different 
function of endothelial cells. Other studies need to further focus on other phosphory-
lation residues of occludin in correlating with endothelial function.

4.6 Occludin ubiquitination

Ubiquitination, also known as ubiquitylation, refers to the process in which the 
ubiquitin (a small 76-residue regulatory protein widely expressed in eukaryotes) 
molecules classify the proteins in cells under the action of a series of special enzymes, 
choose the target protein molecules from them, and specifically modify the target 
proteins. These special enzymes include ubiquitin-activating enzymes (E1), ubiqui-
tin-conjugating enzymes (E2), ubiquitin-protein ligase (E3), and degrading enzymes 
[73]. Ubiquitination plays an important role in protein localization, metabolism, 
function, regulation, and degradation [73, 74]. At the same time, ubiquitination takes 
part within the regulation of nearly all life activities, including cell cycle, prolifera-
tion, apoptosis, differentiation, metastasis, gene expression, transcriptional regula-
tion, signal transmission, damage repair, inflammation, and immunity [73, 74]. In 
recent years, studies about the functional role of occludin ubiquitination in diseases 
have begun to emerge in a burst. And the modification way has become an important 
regulatory mechanism in epithelial and endothelial function.

Hannelore et al. identified a novel interaction between occludin N-terminal and 
the E3 ubiquitin-protein ligase Itch, a member of the HECT domain-containing 
ubiquitin-protein ligases by co-immunoprecipitation in vivo and in vitro [75]. In addi-
tion, the team provides evidence that Itch is specifically involved in the ubiquitination 
of occludin in vivo, and that the degradation of occludin is sensitive to proteasome 
inhibition. The team firstly confirmed that occludin can be ubiquitinated. Liu and 
Lee et al. reported that occludin degradation was associated with Itch and UBC-4 (an 
ubiquitin-conjugating enzyme), resulting in occludin ubiquitination to disrupt tight 
junctions in blood and testosterone barrier [76]. A slightly later study reported that 
a conserved C-terminal PY motif of occludin association with Nedd4-2 was involved 
in the paracellular permeability of mpk-CCD[c14] cells (a collecting duct epithelial 
cell line) by coimmunoprecipitation. These authors also showed that small interfering 
RNA [siRNA]-mediated knockdown of Nedd4-2 increased occludin expression and 
reduced the epithelial permeability, with Nedd4-2 overexpression having the opposite 
effects [77]. In conclusion, ubiquitinated occludin is taken part in the maintenance of 
cell barrier.

Currently, the study about the regulation of occludin ubiquitination in vascular 
endothelial function focuses on the following aspects. (1) Murakami et al. demon-
strated that Ser-490 phosphorylation of occludin is an essential prerequisite for its 
ubiquitination in BRECs. The team showed that a C-terminal occludin-ubiquitin 
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chimera was internalized, bypassing the requirement for phosphorylation. Thus, 
VEGF, through PKCβ-mediated phosphorylation, promotes Itch-mediated ubiquity-
lation of occludin, which is required for its internalization and degradation, thereby 
enhancing retinal endothelial permeability [78]. (2) It is well known that blood-spinal 
cord barrier (BSCB) breakdown is a hallmark of amyotrophic lateral sclerosis (ALS). 
Results found that mutant SOD1 induced occludin phosphorylation, which promoted 
the subsequent occludin ubiquitination mediated by the E3 ligase ITCH. Moreover, 
ubiquitinated occludin interacted with Eps15 to initiate its internalization, then 
trafficked to Rab5-positive vesicles, and be degraded by proteasomes, resulting in a 
reduction in cell surface localization and total abundance [79]. (3) Feng et al. showed 
that the γ-secretase blocker DAPT reduced the permeability of the BBB by decreasing 
the ubiquitination and degradation of occludin during permanent brain ischemia 
[80]. Notwithstanding the information already generated about the role of occludin 
ubiquitination in endothelial cells, several avenues for future investigation still 
remain. The identification of new ubiquitin enzymes, characterization of tissue and 
cell-specific occludin ubiquitination, and deciphering the functional rapport between 
different modification events (e.g., phosphorylation, ubiquitination, proteolysis), 
will likely typify future studies in this field. This will ultimately yield a fuller under-
standing of how ubiquitination modifications to occludin affect TJ characteristics 
and will help to unlock the therapeutic potential of the TJ by identifying new cellular 
targets for intervention in diseases characterized by barrier dysregulation.

5.  The relationship between occludin and vascular endothelial  
injury-related diseases

Vascular endothelial injury includes vasodilation dysfunction characterized 
by decreased endothelial NO and structural damage characterized by increased 
endothelial inflammatory response, endothelial cell apoptosis, and endothelial cell 
permeability. A large number of studies have found that the abnormal expression 
and modification of occludin is accompanied by damage to the endothelial structure 
of blood vessels in tissues and organs, resulting in increased vascular permeability, 
inflammatory cell infiltration, and apoptosis. Therefore, we will detail the relation-
ship between occludin and diseases related to damage to the arterial vascular endo-
thelial structure in this section.

5.1 Occludin and arterial vascular disease

5.1.1 Occludin and cerebrovascular injury-related diseases

Brain has received extensive attention because it is the most vulnerable to  endothelial 
barrier dysfunction. Under normal circumstances, the blood-brain barrier is a semi-
permeable interface, which is important for providing a neuronal microenvironment 
and exchanging water, ions, gases, and metabolites, but it is not suitable for exogenous 
harmful substances such as bacteria and viruses [4]. However, many triggers (e.g., 
inflammation, traumatic brain injury, ischemia) can lead to leakage of the blood-brain 
barrier, increasing the risk of cerebral edema, nerve damage, cerebral hemorrhage, 
and further increasing the risk of cerebral ischemia. The brain endothelial cell tight 
junction protein occludin plays an important role in maintaining the integrity of the 
blood-brain barrier. For example: (1) Both clinical and basic researchers have found 
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that under cerebral ischemia, and cysteinase can hydrolyze the blood-brain barrier tight 
junction protein occludin to promote its release into the blood, resulting in an increase 
of occludin levels in serum. Therefore, serum occludin levels can be used as an indicator 
for predicting the severity of acute ischemic stroke, hemorrhagic transformation, and 
prognosis of patients [45]; (2) studies have shown that the increased permeability of the 
blood-brain barrier in type 1 diabetic mice may be due to the increased level of serum 
extracellular vesicle occludin, which affects the distribution of occludin in the cerebral 
vascular endothelial cell membrane [81]; (3) in rat model of traumatic shock, the 
expression of occludin in cerebral vascular endothelial cells is reduced, which affects the 
integrity of the blood-brain barrier, the leakage of inflammatory cells, and deterioration 
of vascular inflammatory response [82]; (4) both in vitro and in vivo studies found that 
the occludin degradation caused by autophagy is an important factor of the blood-brain 
barrier disorder when the brain is exposed to an ischemic environment [83]; (5) the 
increased expression of occludin in cerebral microvascular endothelial cells can reduce 
the apoptosis of endothelial cells by inhibiting the expression of apoptosis-related 
proteins, and the degradation of occludin makes cerebral blood vessels more prone to 
reperfusion injury [25, 84]; (6) in diabetic animal model, the expression of occludin 
in the cerebral vascular endothelium is reduced, which is manifested as diabetes 
complicated with cerebrovascular disease, and nerve damage, etc. [85]. In conclusion, 
abnormal expression, modification, and degradation of occludin may induce vascular 
endothelial dysfunction, resulting in injury of blood-brain barrier function, and 
ultimately aggravating the occurrence and development of brain diseases.

5.1.2 Occludin and coronary vascular injury diseases

Coronary endothelial barrier dysfunction is closely related to ischemic heart 
disease. Endothelial barrier integrity and function are regulated by a variety of 
transmembrane proteins, including claudin family proteins, occludin, VE-cadherin, 
etc. In recent years, basic research on occludin and coronary artery injury-related 
diseases has found that in mouse model of coronary artery sclerosis, the expression 
of occludin in arterial endothelial cells decreased, and the atherosclerotic plaque was 
expanded. Conversely, up-regulation of occludin expression in arterial endothelial 
cells can alleviate the occurrence and development of plaque [86]. In conclusion, 
abnormal expression of occludin in coronary endothelial cells is directly related to the 
occurrence and development of heart disease.

5.1.3 Occludin and pulmonary vascular injury diseases

Pulmonary vascular endothelial cells form a complete cell barrier, participate in the 
regulation of vascular homeostasis, and maintain the normal operation of the body. 
Under pathological conditions (diabetes, hypertension, and hyperlipidemia), the 
pulmonary vascular endothelial barrier is damaged, resulting in vascular endothelial 
dysfunction and chronic structural damage. Tight junction proteins play an impor-
tant role in maintaining the integrity of the pulmonary vascular endothelial barrier. 
As an important component of TJ, occludin has been shown to be down-regulated 
in a variety of pulmonary vascular injury-related diseases. (1) Pulmonary arterial 
hypertension (PAH) is a progressive disease characterized by pulmonary endothelial 
cell dysfunction and vascular remodeling. Histological evaluation of mouse model of 
pulmonary arterial hypertension shows downregulation of occludin expression in pul-
monary vessels [87]; (2) the expression of occludin in pulmonary artery endothelial 
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cells of diabetic and hypertensive model mice was reduced, and nitric oxide (NO), 
superoxide dismutase, and inducible NO synthase were severely imbalanced, suggest-
ing that occludin may be involved in the production of vascular endothelial NO [88]; 
(3) studies have found that the occludin protein in the pulmonary artery endothelial 
cells of the rat model of acute lung injury is lost, the endothelial permeability is 
increased, the vascular inflammatory response is increased, and oxidative stress and 
other pathological states occur [89]. In conclusion, abnormal expression and distribu-
tion of occludin are closely related to pulmonary vascular lesions.

5.1.4 Occludin and renal vascular injury diseases

Kidney is one of the organs with the most abundant distribution of endothelial cells. 
Under physiological conditions, renal endothelium can mediate signal communication 
between various parts of the kidney, stabilize renal osmotic pressure, and regulate 
vascular permeability. Under pathological conditions such as ischemia, inflammation, 
and sepsis, renal vascular endothelial permeability is increased, renal metabolism is 
impaired, and the basal layer of endothelial cells is thickened, which induces endothelial 
damage and leads to plasma leakage. Occludin is involved in maintaining the barrier 
function of renal endothelial cells, and a large number of basic studies on occludin and 
renal vascular injury have found that (1) The abnormal expression and distribution of 
occludin in renal endothelial cells, the imbalance of electrolytes such as sodium, potas-
sium, and chloride, and the deterioration of renal injury exist in the rat model of renal 
ischemia-reperfusion, suggesting that the abnormal expression and distribution of 
occludin in renal vascular endothelial cells affect renal function homeostasis [90]; (2) 
High glucose and high fat stimulate human glomerular endothelial cells, decrease the 
expression of occludin, and damage renal endothelial barrier function, which leads to 
development of diabetic nephropathy [91]; (3) renal dysfunction caused by hyperoxia 
is closely related to renal endothelial tight junction protein occludin [92]. In conclusion, 
the decreased expression of occludin in renal endothelial cells under pathological condi-
tions may be a new marker of renal vascular injury.

5.1.5 Occludin and other arterial diseases

The blood retinal endothelial barrier maintains the integrity of retinal tissue. The 
level of occludin in endothelial cells can dynamically regulate the intracellular signal 
transduction system, promote the transport of nutrients, and limit the transport of 
harmful substances, which is extremely important for maintaining the blood retinal 
endothelial barrier. Studies have found that: (1) The phosphorylation of occludin 
S490 in retinal endothelial cells regulates the proliferation and angiogenesis of retinal 
endothelial cells [6]; (2) the decreased expression of occludin in endothelial cells of 
diabetic retinopathy can induce inflammatory cell infiltration, suggesting that the 
loss of occludin at the blood-retinal barrier leads to increased endothelial cell perme-
ability, which is an important factor for mediating the aggravation of vascular inflam-
matory responses [93]; (3) when neonatal rats exposed to hypoxia, the expression 
of occludin in retinal endothelial cells decreased, vacuoles appeared in endothelial 
cytoplasm, and mitochondrial vacuoles and multivesicles accumulated in capillary 
lumen, suggesting that occludin was involved in the occurrence of hypoxic stress 
response [94]; (4) relevant studies have shown that exogenous stimuli (high sugar, 
long-term high-fat diet, long-term smoking) can inhibit the expression of occludin 
in the vascular endothelium, resulting in an increase in vascular permeability, which 
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in turn causes the occurrence of oxidative stress in vascular endothelial cells [89]. 
According to the above research results, it is suggested that the maintenance of blood 
retinal endothelial barrier integrity is closely related to occludin.

5.2 Occludin and venous vascular diseases

Venous vessels maintain venous barrier function by expressing abundant occludin. 
Recent studies on occludin in venous endothelial cells have shown that: (1) Serum 
occludin levels are higher in patients with jugular vein stenosis [95]; (2) Nitta et al. 
found that in mouse model of retinal vein occlusion, venous vascular inflammation 
increased, occludin expression decreased, and retinal edema occurred; conversely, 
inhibiting vascular inflammation could alleviate the decrease in occludin expression 
and maintain retinal homeostasis [96]; (3) studies on mice with ischemic stroke found 
that early cerebral venous filling and dilation were associated with occludin displace-
ment and abnormal expression and distribution [97]. In conclusion, the maintenance 
of the venous homeostasis is inseparable from the regulation of occludin.

6. Conclusions

Occludin, as a cellular tight junction protein, mediates molecular communication 
between cells and maintains the integrity of various tissues and cells. More and more 
studies have confirmed that under pathological conditions, various signaling pathways 
can disrupt the integrity of cell barrier by regulating the expression and distribution 
of occludin, and participate in apoptosis, inflammation, cardiovascular and neuro-
degenerative diseases. Occludin plays an important role in cardiovascular disease, but 
current research also faces great challenges. A variety of classical signaling pathways 
can regulate the expression and distribution of occludin, but only some studies suggest 
that occludin can act as an upstream regulatory molecule to affect downstream signal-
ing pathways, whether it affects multiple molecules and signaling pathways is an urgent 
problem to be solved. At present, most researches focus on occludin participating in cell 
barrier and maintaining cell integrity. Whether its overexpression plays a positive role 
in all systems is unknown. Loss of occludin can affect vascular endothelial permeability, 
leading to pathology such as inflammatory cell infiltration, apoptosis, and oxidative 
stress. However, whether inflammatory stimulation, apoptosis, and oxidative stress 
can directly affect the expression, modification, and redistribution of occludin is the 
current vacancy in current research field and needs further exploration and discovery. 
Relatively speaking, the research on occludin and vascular endothelial injury-related 
diseases is still very limited, but there is already relevant evidence that it is a close rela-
tionship between them. There is still a large gap in the relationship between occludin 
and vascular metabolic diseases needs to be filled. With further research in the future, 
the connection between occludin and many diseases related to vascular endothelial 
injury will become increasingly clear. In a word, whether it is possible to inhibit or use 
occludin to develop related drugs and apply them to the treatment of clinical diseases 
requires further research and discovery.
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Abstract

In an inflammation, including appendicitis, vascular adequacy is required to 
 supply anti-inflammatory substances and nutrition due to inflamed tissue remodel-
ing. Normal tissue has balanced tissue regeneration and tissue destruction from 
apoptosis. While in inflammation, inflammatory substances tend to cause tissue 
destruction and lead to necrosis. This requires the tissue to increase cell regeneration 
to maintain tissue homeostasis in the appendix, induced mainly by oxygenation, 
nutrition, growth factors, and mainly anti-inflammatory substances that are obtained 
with vascular adequacy. This process needs active vascularization that can be achieved 
with neovascularization to ensure good vascularization to the tissue lacking from 
vascular damage. The ability of neovascularization is mainly related to growth factors 
acting in the endothelium and inducing neovascularization process. This mechanism 
is impaired in the process of inflammation by inflammatory substances causing 
endothelial dysfunction. As stated that vascular adequacy is related to growth factors 
such as vascular endothelial growth factors (VEGF) that may differ from one person 
to another, external and internal factors plays role in affecting individualized differ-
ence in adapting to inflammatory process, the expression of the VEGF may be a novel 
distinction to cut-off requirements of inflammation process in appendicitis would 
be self-limiting or continue to cause tissue necrosis and perforating appendicitis that 
urges surgical treatment to encounter the unstoppable inflammatory process in the 
appendix.

Keywords: appendicitis, endothelial dysfunction, inflammation, neovascularization, 
VEGF

1. Introduction

Appendicitis is an inflammation of the vermiform appendix, which presents as 
one of the causes of acute abdomen leading to emergency surgical indication. The 
acute appendicitis presented as the most common indication of nontraumatic emer-
gency surgeries around the world. Annually, more than 100 cases of appendicitis per 
100,000 persons are recorded around the world. About 16.33% of men and 16.34% 
of women mostly in the second and third decades of life were at risk of experiencing 
acute appendicitis [1, 2].
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More than 108,000 surgical procedures were conducted to treat appendicitis in 
a year. Acute appendicitis may be treated with surgical treatment and conservative 
treatment. Treatment choices were considered in acute appendicitis by classification 
of clinical uncomplicated or complicated appendicitis occurred [3].

Distinguishing indications of surgery or appendectomy as treatment of appendicitis 
might be challenging. It was more subtle in pediatric patients, as more consideration 
and careful examination needed to be conducted prior to the surgical procedure. 
Statistics had recorded more events of negative appendectomy, the fact that vermiform 
appendix presented to be normal or not inflamed after the process of appendectomy. 
The incidence was commonly only about 15% in adults but raised up to 56.7% or even 
more in pediatric patients presenting with related symptoms to appendicitis. These pro-
cedures were stated as a burden in medical decision-making as non-indicative surgeries 
may harm patients or even cause expenditures for non-beneficial procedures [4].

The main aim of diagnostic and decision-making in appendicitis was to accurately 
distinguish any chance of currently symptomatic appendicitis appearing normal 
as presented during operation. This means that appendicitis may be reversible and 
basic inflammation of the appendicitis was not causing permanent damage to the 
appendix vermiform itself. Currently, there was still no such strong evidence to prove 
whether an appendicitis process that occurred would end as permanent tissue damage 
and causes complications that are mandatory for surgical treatment of the appendix 
vermiform or would heal without risk of complications [5].

We analyzed the possibilities of differentiation of the two conditions in appen-
dicitis. The main key to understand and accurately differentiate risk in appendicitis 
would be clearly explained in a basic inflammatory mechanism on how appendicitis 
would occur. The promising approach was glancing at the pathways and mechanism 
of inflammation would occur specifically, as related with factors lying alongside the 
pathophysiological process of inflammation and cure of the inflammation itself, by 
sufficient oxygenation and adequate metabolism of remodeling or tissue repair.

2. The appendix vermiformis

The appendix vermiform is an anatomical structure located at the end of cecum, 
commonly in posteromedial projection, located about 1.7 cm below the ileocecal 
valve, at the end of the taenias of the colon converging on the cecum. Its size is 
about 91.2 mm long in men and 80.3 mm in women, respectively. The appendix is a 
true diverticulum, as its layer is made up of mucosa, submucosa, longitudinal and 
circular muscle, and serosa. Anatomically, the position of the appendix just located 
anterior to the iliopsoas muscle and the lumbar plexus, and posterior to the layers 
of abdominal wall muscles. The main blood supply to the appendix comes from the 
appendicular artery, one branch of ileocolic artery, which extends along the mesoap-
pendix to the distal tip of the appendix. Mesoappendix is a mesenterium consists of 
connective tissue anchoring the appendix into the mesentery of the intestines which 
size varies to the size of the appendix itself. Somehow, angle and projection of the 
appendix may differ from one to another: retrocecal, subcecal, preileal, postileal, and 
pelvic (Figure 1) [6, 7].

Nutrition of the vermiform appendix was obtained by special vessels vasculating 
the appendix running along the mesoappendix. Main nutrition and oxygenation 
living the appendix are supplied by the appendicular artery, derived and branched 
from the ileocolic artery alongside the ileum, cecum, and ascending colon. The 
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appendicular artery was 1 single branch from the ileocolic artery vascularize the 
whole appendix which then performed networks of smaller arteries perforating 
into the layers of appendix. The vascularization of the appendix originates from 
mesenteric blood circulation which is also responsible for other parts of the intestinal 
circulation. The appendicular artery is one of the most distal parts of the branches 
from the superior mesenteric circulation. Although it is part of the huge mesenteric 
circulation, as appendiceal circulation took a little part and branch among the circula-
tion, the regulation of blood flow is less and lower than in other parts of the mesen-
teric circulation such as in the ileum or ascending colon. However, regulation of the 
blood flow is commonly maintained by local factors with vasodilator effects induced 
and attributed by hypoxia or cytokines of inflammation to cause an increase in blood 
flow to the appendix. Certain osmotic mechanisms, autonomic and neurohumoral, 
also the intestinal wall activity of peristalsis affect the blood flow in the mesenteric 
circulation primarily the special circulation to the appendix [6, 8].

Metabolic end products from the tissue in the vermiform appendix were drained 
away by the venous drainage which anatomically will join the venous blood flow in 
the ileocolic vein and the superior mesenteric vein. Another non-venous drainage 
of the appendix occurs by the lymphatic drainage of the cecum and the appendix 
which passes the lymph nodes in the mesoappendix and ileocolic lymph nodes 
surrounding the ileocolic artery into a group of superior mesenteric lymph nodes 
(Figure 2) [9].

The vermiform appendix is known as a vestigial organ embryologically and by the 
evolution of mammals. The main functions of vermiform appendicitis itself remain 
unknown. Theories stated that in humans the vermiform appendix no longer func-
tions but other theories counters. As histologically it is rich in lymphoid tissue and its 
vascularization and lymphatics, its function is mostly discussed related to the immu-
nological functions, especially to the gastrointestinal system. As its luminal and non-
continuous structure, the vermiform appendix was also hypothesized to be a reservoir 
for gut microbiota. This function and structure were suspected to have strong cor-
relations to inflammatory mediators and microbiological mechanisms of the bacteria. 

Figure 1. 
The anatomy of vermiform appendix and the cecum (left) and its anatomical variations (right) [6].
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This puts the vermiform appendix as an organ with a lot of risks of inflammations and 
infections its homeostasis was disrupted [10].

3. Appendicitis

Appendicitis is defined as inflammation of the vermiform appendix and represents 
the most common cause of acute abdomen and emergency surgical indication in 
the world [1]. As common to all kinds of inflammation and precisely to the gut, 
appendicitis was commonly related to biochemical, histological, and physiological 
changes to the vermiform appendix itself. Inflammatory mediators regardless of 
factors precipitating lead to common manifest of inflammatory signs of a fluid shift, 
size changes (enlargement), increased blood flow and perfusion, inflammatory cell 
infiltrations, and also tissue remodeling, especially to the lymphoid tissues of the 
appendix. The inflammatory process as occur in all tissue may be reversible and some 
tend to be permanent remodeling or end with tissue damage and causes complication 
of appendicitis [11].

Presentation of appendicitis occurs by luminal obstruction of the appendix lumen 
that may be precipitated by a variety of etiologies, whether due to mass, faecolith 
or appendicolith, mucosal inflammation, lymphoid tissue hyperplasia, parasite 
infestations, or other mechanism leading to disruption of the passage of fluid and 
any luminal contents in the appendix to be propelled away to the cecum, and causing 
maladaptive mechanism that started certain cascade of pathophysiological events of 
inflammation that would be manifested clinically [12].

Clinical manifestation of appendicitis may be challenging. Most common symp-
tom that occurs and causes patients to seek medical care is abdominal pain, although 
other symptoms such as fever, constipation, diarrhea, anorexia, and nausea are 
also reported as the main symptom. Pain in appendicitis starts in periumbilical and 
epigastric region at the beginning of the onset, and later migrates to the lower right 

Figure 2. 
Arterial supply of the vermiform appendix [6].
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quadrant where classic McBurney sign of classic lower right quadrant pain occurs. 
However, the history of migratory pain from one to another abdominal region occurs 
only in 50–60% of patients with acute appendicitis. Symptoms of nausea and vomit-
ing start as the effect of abdominal pain, and fever starts about 6 hours after the 
onset of pain where an inflammatory process in the appendix had been established. 
The history of symptoms may be different from one patient to another, related to 
the anatomical variation of the appendix. Anteriorly located appendix commonly 
causes more marked and localized pain in the right lower quadrant, and the varia-
tion of retro-cecal one commonly has a dull abdominal pain manifestation or may be 
interpreted as a lower lumbar region pain. Furthermore, as appendicitis occurs with 
inflammation not restricted only to the appendix itself but may affect surrounding 
organs, other symptoms such as urinary urgency, dysuria, or rectal symptoms may 
appear but some cases [13, 14].

Physical examinations of patients with appendicitis include basic vital sign find-
ings followed by an appendicitis-specific examination. Patients with appendicitis 
mostly present as febrile with a temperature greater than 38°C, tachycardia, and 
tachypnea may be found. Most early clinical manifestation of appendicitis are mostly 
non-specific and mimics other gastrointestinal disturbances. Obvious manifestation 
would present when inflammation progresses when inflammation had involved the 
parietal peritoneum in the serosa of the appendix which causes localized right lower 
quadrant tenderness that further exacerbates by specific physical examination such 
as McBurney sign, Rovsig sign, or other signs of appendicitis. However, the pain 
would progress more to be exacerbated by movement or cough causing an increase 
in intraabdominal pressure. Routine laboratory test usually provides an increase in 
leukocytes, especially neutrophil as an acute reaction to the inflammatory process 
presents a shifting to the left in leukocyte differential count. C-reactive protein indi-
cates that systemic inflammation with greater than 1.5 mg/l may be one of the likely 
diagnostic indicators of appendicitis [15].

Further complicated and severe appendicitis usually has leukocytosis counts 
more than 20,000/μl and commonly related to perforation dan peritonitis and high 
level of C-reactive protein or even Procalcitonin. However, perforation and com-
plicated appendicitis were also reported in about 10% of appendicitis with normal 
to mild increase in leukocyte count and C-reactive protein. This could not exclude 
the possibility of perforation in normal laboratory values in appendicitis. This 
because low sensitivity of leukocyte count in the diagnosis of appendicitis with 
only 65–75% while only 57–87% for C-reactive protein. Therefore, many studies 
had been conducted on early specific diagnosis; such as procalcitonin, as it is a good 
biomarker in sepsis and appendicitis may lead to sepsis but is still limited in appen-
dicitis with no sepsis [15].

3.1 Pathophysiology of appendicitis

Exact pathophysiology of appendicitis itself remains a struggle for physicians. The 
process of appendicitis itself is related and basically similar to other pathophysiology 
of inflammations. Commonly appendicitis began with a luminal obstruction. Several 
causes of obstruction may occur such as lymphoid hyperplasia, parasitic infections, 
fecalith, or intra and extra luminal mass. This causes an increase of intraluminal and 
intramural pressure which causes small vascular and lymphatic occlusion collapsed by 
the tension of the lumen and mural. Obstructed appendix tends to cause overgrowth 
of bacteria, mostly aerobic bacteria dominate in acute appendicitis [16].



Endothelial Dysfunction - A Novel Paradigm

90

The obstruction may also cause mucous plaques and accumulated causing disten-
sion. Distension of the appendix may progress vary from one patient to another up 
to 50–65 mmHg. When the luminal pressure increases, vascularization in the mural 
may be disrupted. Increase in the pressure may beyond the lymphatic and venous 
pressure and prevents fluid drain from the two vessels due to a weak wall of vein and 
lymphatics [17]. First collapsed vessel would be the lymphatic drainage preventing 
fluid back into circulation to remain in the appendix tissue. Soon as pressure increases 
in the lumen, the pressure disrupted the lumen of the vein and causes collapse of both 
lymph and blood flow from the tissue of the appendix. This process causes the edema 
process which occurred by disrupted fluid drainage [14, 18].

This state of appendicitis consisted of inflammation and edema alone possibly 
start the clinical symptoms of appendicitis, but this stage is considered as a mild 
process in which conservative treatment for appendicitis may be available. Surgical 
treatment may be offered, and still may be beneficial but as it is an invasive procedure 
and has a number of complications, the surgical procedure which is still not yet 
urgent to be performed may not be a favorable choice of treatment. Antibiotics and 
good fiber intake may be one of the choice and helps relieve symptoms and reduce the 
inflammation of appendicitis [5, 19].

But the mild state of appendicitis also has a risk to develop further. Fluid accu-
mulation and edema also cause more tension to the vascular wall causing further 
obstruction and disruptions of vessel flows. Soon as the pressure increases more the 
arterial walls were collapsed due to pressure to its wall. The blood flow containing 
oxygens and nutrients was decreased due to arterial obstructions. This stated the 
condition of hypoxia in the distal of the arterial obstruction in the appendix [20].

Hypoxia state of the mucosa and the wall of the appendix begins further tissue 
damage in the appendix. Tissue damages were due to hypoxic stress of the cells in the 
appendix which then undergo a cell apoptosis process of even necrosis of the tissue. 
Tissue damage causes less strength of the appendix wall from distensions of the 
edema and fluid accumulation that is then related to complications by ulcerations, 
perforations, and necrotic appendix. This process occurs only if the vascularization 
were disrupted. Hypoxic environment also tends to be favorable for growth of intes-
tinal flora mostly the Gram-negative bacterias such as Escherichia coli, Enterococcus, 
Bacteroides, and Pseudomonas. Bacterial growth also elicits more inflammatory and 
immunologic processes in the appendix itself. E. coli itself as the main flora normal 
in the large intestine may cause activity changes and be pathogenic as shifted and 
trapped in the appendix with different microenvironments and releases toxins 
exacerbates inflammation [13, 20].

The tissue damage and necrosis in appendicitis risk a thin and fragile wall of the 
appendix. This at one point with more pressure would lead to a tear of the mucosal or 
even the muscular and serous layer of the wall causing perforation of the appendix. 
Once a perforation occur, acute appendicitis occurred with complication. As bacterial 
overgrowth inside the lumen of the appendix came in contact with the sterile perito-
neum cavity begins further immune and inflammatory responses cause peritonitis. 
As peritonitis occurred in complicated appendicitis, operative treatment with lapa-
rotomy may be inevitable. Further inflammatory process of the peritoneal wall also 
risks the spread of bacteria into the bloodstream and may complicate more into sepsis 
with all its high risk of mortality [21, 22].

Bacterial growth causes inflammation, especially in the mucosa of the appendix. 
The incompetence of the appendiceal wall risk the development of spreading infec-
tions and inflammatory mediators causing inflammation of the serous layer of the 
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appendix. A close anatomical layer of the serous into the parietal peritoneum and 
other adjacent organs. The inflammation of the peritoneum led to appendicitis 
complicated with peritonitis. Stimulation of pain fibers of the afferent visceral pain 
nerves in the layer of the peritoneum to the level of medulla spinalis. Pain sensation is 
interpreted as epigastric and periumbilical pain, which quality could not be specifi-
cally localized, but the right lower quadrant has the most accumulation of inflamma-
tory mediators that would inflame more and be more painful [12, 20].

Untreated and uncompensated process of inflammation leads the more serious 
complications of appendicitis. The longer the hypoxia occurs to the tissue, the more 
risk of tissue damage. Risk of infarction multiplied by time followed by progression 
into perforated or even gangrenous appendicitis. More severe symptoms as mentioned 
previously would progress and limits daily activity. More pain and nausea and vomit-
ing would occur. Systemic involvement in sepsis may be part of the risk of prolonged 
appendicitis. The process and pathophysiology off appendicitis may be illustrated in 
Figure 3 [16, 22].

Basically, no major changes occur in mesenteric circulation in appendicitis. 
However, as a reaction to inflammation, local vascularization specifically targeting 
the inflamed tissue increased and was hypothesized to activate the neovascularization 
in the collateral circulations nearby mucosa and muscular layer of the appendix. The 
tiny new collateral vasculature along the local inflammation we aimed to increase 
perfusion into the center of inflammation, which is highly fragile and requires 

Figure 3. 
The pathophysiology of appendicitis [23].
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strong endothelial stability which may be supported by certain endothelial factors to 
maintain perfusion against high intraluminal pressure from the appendix itself and 
preventing collapsed or burst of the vascularization [23, 24].

Severity and complications of appendicitis are known to be related with necrosis 
or ischemic tissue in the appendix vermiform. Basic consideration on factors affecting 
the vascularization patency to tissue damage in appendicitis. Arteries with dysfunc-
tioned endothelium occasionally damaged and unable to adapt and perform potent 
perfusion to tissues in systemic changes caused by the inflammatory mediators. While 
arteries with good endothelium tend to be able to keep strong perfusion to maintain 
oxygenation preventing cell death. This differentiates variations of symptoms in 
patients with appendicitis who develops complication and whom did not [25].

This means mucosal vascularization of the appendix was considered as a barrier 
preventing further damage to the mucosa from increased intraluminal pressure in 
appendicitis. So as the mucosal and muscular layer of the appendix receives adequate 
vascularization, tissue elasticity and cell regeneration would take place so that the 
tissue would able to adapt against stretch elicited by the increase of the intraluminal 
pressure. Furthermore, enough perfusion to the appendiceal muscular layer will be 
able to initiate appendiceal contractility to drain out fluid or any fecalith obstructing 
and causing trapped intraluminal contain. This tissue competence may be a key role 
in preventing the perforation of other complications of appendicitis [26].

3.2 Recovery process in appendicitis

The appendix as a rich in lymphoid tissue part of the intestine has a high reserve 
of natural killer cells (NK)111 CD31 T cells (NK T lymphocytes). This cell produces 
cytokines and chemokines early since activated by the local inflammatory process. 
Cells such as B2201CD31 T cells in the lymphoid of the appendix express CD45R 
indicates for T cell activations more than any part of the intestine. Certain factors 
related to a great number of lymphocytes in the appendix came as the presence of 
CCL21, a chemokine embedded to the lymphatic endothelial cells and luminal surface 
of endothelial venules around the parafollicular areas in MALT. CCL21 binds to CCR7 
to promote recruitment of B and T lymphocytes to the appendiceal lymphoid tissue 
and migration of dendritic cells (DC) back to appendiceal lymph nodes [15].

Apart from the abundant lymphocytes in the appendix, the molecular expression 
on the surface of the lymphocytes in the appendix differs from lymphocytes in the 
intestinal lymphocytes. In the lamina propria, the T cells in the lamina propria of the 
appendix express more integrin subunit b7 than B cells and also than the lympho-
cytes in the other parts of the intestine. Integrin a4b7 is expressed on T cells located 
between lamina propria and epithelium, and on macrophages and dendritic cells 
located in the mucosa of the appendix [22]. The molecule binds to mucosal addressin 
cell adhesion molecule 1 (MAdCAM-1), which mediation process of “tethering and 
rolling” and “homing” attracts lymphocytes into it. The localized expression of these 
molecules of a4b7 is considered a trafficking signal. Conversely, the aEb7 is respon-
sible for the retention of these lymphocytes, via binding with its ligand E-cadherin. 
The dendritic cells express aEb7 stimulate the differentiation of forkhead box protein 
3 (FoxP3)1 Treg cells soon after the interactions with antigens. Therefore, the sup-
pression of regulatory expression would prevent lymphocyte differentiation and lead 
to a proinflammatory state [14].

CD51 cells or B1 lymphocytes are expressed more in a healthy appendix than 
the rest of the gut. When the appendix inflamed, the expression increased even 
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more. These CD51 B cells produce IgM antibodies specific to certain pathogens. 
The synthesis of the IgM could take place directly in case of the absence of antigen 
presentation by other T cells, similar to innate-like immune response expressed by 
IELs. Despite the ability to synthesize IgM similar to immune response, the IgM 
antigen has low affinities, it still has major importance in reaction to microorgan-
isms. Increase in the expression would be explained by an alteration of the intestinal 
microflora that occurs along the pathogenesis of appendicitis. Moreover, the CD51 
cells also produce anti-self antibodies and an anti-inflammatory molecule such as 
IL-10 which means the increase of the expression was process to prevent inflamma-
tion currently occurring [27].

Pathologically, the complications of appendicitis were affected by the mucosal 
resistance to stress and adequate vascularity (microvessel density) in the appendix 
mucosa. This prevents further tissue damage. The mucosal resistance is determined 
by its adequacy to regenerate in case of stress or damage, producing new and strong 
mucosal layer which is influenced by folic acid (FA) metabolism. Adequate vascular-
ity is then determined by ability of angiogenesis which plays as on of the most impor-
tant factors in wound healing process. The angiogenesis itself is induced by growth 
factors namely vascular endothelial growth factor (VEGF), which role is fundamental 
by mediating and inducing the neovascularization, reepithelialization, and regulation 
of extracellular matrix. However the VEGF expression itself is endothelial cells in the 
blood vessels [28].

The angiogenesis occurs and induced in appendicitis, forming novel microvascu-
latures around the inflamed appendix to sustain adequate perfusion. The formation 
of new vascularization is required undergo the increased tissue’s requirement of 
oxygen and nutrients of parenchymal remodeling, as well as to repair damaged blood 
vessels induced by pressure of inflammatory cytokines. Angiogenesis itself depends 
on VEGF, which is produced by damaged endothelial cells that stimulates mitosis in 
the endothelial lining of blood vessels creating new blood vessels other than currently 
damages vessel. This mechanism relates the VGEF to be believed associated with com-
plicated appendicitis. Further evidence presented that different expression of VEGF 
may be found on histopathological examination of microvessel density in appendicitis 
specimens [28, 29].

Differentiating between risk of having complication may be a cut off on physi-
cian to take a concise decision on therapy of the patient. Patient which endothel may 
be strong enough responding the inflammatory process may not need to undergo 
operative treatment as tissue repair and remodeling were likely. However in chronic 
inflammation and weak endothelium possess a risk of further harm and requires 
surgical procedure [4, 12, 25].

Factors determining endothelial stabilities are regarding on tissue strength itself. 
Subgroup of individuals who tend to have a strong connective tissue subtypes of 
collagens has a chance to have a stronger endothelial stability. Factors effecting the 
endothelial growth and proliferations subsequently backs-up cells of the endothel 
to proliferate in preventing the endothelial damage. Also neovascularization may 
occur and possibly perfuse other sites of inflamed tissue to receive strong and sup-
ports of the vascularization. This prevents further complications to occur and more 
invasive treatment procedure may not be required or indicated as if antibiotics 
are capable [4, 19, 30]. The growth factor such as the vascular endothelial growth 
factor (VEGF) has a main role determining the strength of the endothelium against 
inflammation, especially in cases of appendicitis itself in the vascularization of the 
appendix [31].
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4. Vascular endothelial growth factor (VEGF)

Vascular endothelial growth factor (VEGF, now referred to as VEGF-A) is a 
 member of a family of proteins including VEGF-B, VEGF-C, VEGF-D, VEGF-E 
(virally encoded), and PlGF. VEGF-C and VEGF-D are primarily implicated in regu-
lation of lymph angiogenesis. Given the dominant role that VEGF-A plays in regulat-
ing angiogenesis and disease, it will be referred to as VEGF. VEGF undergoes multiple 
splicing alternative creating several exon leading to multiple isoforms. Common 
isoforms include VEGF 165, VEGF 206, VEGF121, and VEGF189. VEGF165 (VEGF164 
in mice) is the most frequently expressed isoform in majority of tissues. The VEGF165 
is also the most physiologic isoform, with characteristics connected to the highly dif-
fusible VEGF121 and the extracellular matrix (ECM)-bound VEGF189 [32, 33].

Less other isoforms of VEGF, such as VEGF145 and VEGF183 currently been 
described in several studies. Main features differentiates one isoforms than another 
were differential ability to bind heparin. The lowest affinity to heparin belongs to 
VEGF121, while strong affinity known for VEGF189 and VEGF206 which consist 
of two heparin-binding domains (encoded by exons 6 and 7), that may also bind to 
protein in the cell surfaces or the ECM. The most common VEGF165 has an interme-
diate binding ability with a single heparin-binding domain, encoded by exon 7, and 
has ability for ECM bound. In inflammatory process such as appendicitis, several 
proinflammatory molecules with protease ability such as the MMP3 and plasmin may 
alter the binding site of VEGF primarily at the COOH terminus and turns VEGF from 
ECM-bound peptides into non-heparin-binding, diffusible, molecular species which 
leads to less ability inducing angiogenesis [32].

Several inhibitory isoforms of VEGF have also been recently described, including 
VEGF165b and VEGFAx, but there is some controversy regarding the mechanisms 
of inhibition, and VEGF-Ax has now been shown to actually have pro-angiogenic 
and pro-permeability features. VEGF expression is majorly regulated by the hypoxia 
state by a transcription factor named hypoxia-inducible factor (HIF). The HIF and 
other genes related and activated by hypoxia plays role in diverse contexts activating 
several transcription of other growth factors including platelet-derived growth factor 
(PDGF), epidermal growth factor (EGF), and some oncogenic gene mutations (RAS, 
VHL, WNT-KRAS signaling pathway genes) which may control the VEGF expression 
in other side alters the VEGF-driven signaling [31].

The most understood VEGF signaling now is through VEGFR1/R2 regulation 
which controls the activities of several kinases and activation of its cascades to pro-
mote cell proliferation, survival, migration, and even influencing vascular permeabil-
ity on angiogenesis. The endothelial cell, which consist of both tip and stalk cells are 
at the main site of vascular proliferation. VEGF gradients induce tip cells and promote 
the formation of filopodia. The molecular regulation of these events is via activation 
of notch signaling and by increased expression of notch ligands on endothelial cells, 
including but not limited to delta-like 4 (DLL4). The increased signaling of the notch 
in neighboring cells will reduces the expression of VEGFR2, which is causing a nega-
tive feedback loop to the signaling process. This main signaling pathway of the VEGF 
plays a critical role to maintain homeostasis, but as alteration of the pathway lead to 
hyperactivation by pathologic process leading to pathologic angiogenesis. Another 
pathway were described in 2014, named as a non-canonical pathway of VEGFR2 that 
was characterized in neurons. It is known to be expressed more in retinal neurons 
but are lacking in endothelial cells. Study reveals that a deletion gene responsible in 
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VEGFR2 pathway in neurons causes abnormal angiogenesis process by high VEGF 
expressions around the neuron tissue in response to deficiency of the VEGFR2. In 
other hand, the abnormal angiogenesis at the juxta-neural cells were common in 
response to maintain homeostasis in cases of ischemic retinopathy to ensure regen-
erative phase. This similar mechanism were a point of interest as number of VEGF 
expressed would be a critical factor to maintain tissue vascularization in several 
pathogenesis of tissue damage (Figure 4) [31, 33].

The findings that anti-VEGF antibodies decreased the growth of tumor cells 
implanted in immune-deficient mice opened up translational possibilities for target-
ing VEGF-VEGFR signaling. In addition, it was also demonstrated that inactivation of 
a single allele of the VEGF-A gene in mice resulted in defective vascular development 
and early embryonic lethality, highlighting the importance of VEGF during embry-
onic development. Inactivation of both copies of vegfr2 largely pheno-copied vegfa 
single-allele deletion. The ability to delete VEGF in target tissues with the advent of 
cre-lox systems created the possibility of assessing the role of VEGF in individual 

Figure 4. 
VEGF activation and signaling pathways [33].
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tissues/cells. Numerous studies employing this approach have documented the impor-
tant role of VEGF in angiogenesis and homeostasis in a variety of pathophysiological 
circumstances [34].

4.1 Role of VEGF in appendicitis

Appendicitis is the most well-known gastrointestinal emergency and requires 
surgical approach in the pediatric population. The negative appendectomy rate is 
8.4%, however largely higher among children aged <6 years at 56.7%. However, the 
diagnosis of appendicitis in children is often missed due even in a total examination. 
This article summarizes the current evidence on the influences of folic acid (FA) 
and vascular endothelial growth factor (VEGF) in appendicitis. The pathological 
processes of appendicitis could be approached by histopathological examination of 
microvessel thickness. Further analysis reveals that folic acid (FA) assumed a role 
in mucosal opposition and its capacity to recover, and VEGF (explicitly found in 
vein endothelial cells) was associated in tissue remodeling through a cycle of neo-
vascularization, reepithelization, and guide of extracellular framework and has an 
important pro-angiogenic activity, having a mitogenic and an anti-apoptotic effect on 
endothelial cells, increasing the vascular permeability, promoting cell migration, etc. 
Due to these effects, it actively contributes in regulating the normal and pathological 
angiogenic processes [29].

Both folate acid and VEGF had a role as mentioned previously by certain cascades 
in the endothelial cells which may increase endothelial proliferation and induces 
branching of new collaterals during inflammation. This mechanism ensure enough 
and adequate blood flow locally around the appendix. The VEGF-induced prolifera-
tion among the endothelial cells adapts to race cell damages from stretch, cytokine 
induced cell death, and increase intraluminal pressures. This means collateral vas-
cularization in the appendix were stabilized and able to receive more blood flow for 
tissue healing process. This puts VEGF has a special role in preventing tissue damage 
and the complication of appendicitis such as perforation or necrosis [35].

Folate acids had been widely concentrated in cardiovascular sickness and malig-
nancy and an increased risk of infection among patients with insufficient degrees of 
folate acid. A low folate acid serum and raised homocysteine was shown to be found 
among patients with constant provocative infections and conditions such as systemic 
inflammatory illness and endothelial damage. A higher folate level would prevent 
endothelial damage as it would help maintain levels of homocysteine, vasodilators, 
and nitric oxide [28, 29, 36].

Similar patterns of reduction were also observed in basal VEGF levels among 
patients with appendicitis as reported by Fikri et al. However, the lower level in 
both FA and VEGF among patients with appendicitis were significant compared to 
control and a possible indicator in diagnosing complicated appendicitis. Another 
studies had reported increases in VEGF levels, namely in myocardial localized 
necrosis and was related to incendiary cytokines. The increasing levels of VEGF was 
directly associated with the number of hypoxia-inducible factors as it regulated the 
advancements of angiogenesis, vascular patency in atherogenic vessels. Fikri et al. 
further explained that VEGF levels in appendicitis has similar pattern as increase of 
VEGF during the stable phases after myocardial infarction and hence signifying that 
VEGF as a part of an ongoing inflammatory activity. The lower levels of VEGF often 
signifies a worsened condition and could be associated with a more complicated case 
of appendicitis [28, 36].
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VEGF in conclusion, a histopathological examination of microvessel thickness 
is required to investigate the influences of FA and VEGF towards the pathological 
process of appendicitis among the pediatric population. Both FA and VEGF could 
be associated with disease progression where lower levels often indicated a more 
complicated case. A higher FA was associated with less provocative conditions with 
less inflammation and endothelial damage and a higher VEGF often suggested better 
prognosis as VEGF was used in angiogenesis etc. However, in both studies FA and 
VEGF were still limited of evidence as statistically significantly different towards 
controls in their use as a biomarker in the diagnosis complicated appendicitis were 
done in animals but human reaches are still conducted. However other factors regard-
ing the endothelial functions in appendix are still limited to VEGF in current studies, 
other mechanism related to endothelin and the Fas-ligand were also in conduct for 
further evidence for the current update [26, 35].

5. Conclusions

Appendicitis is known as one of the most cause of emergency surgery. But beyond 
facts of its surgical emergency, basic pathophysiology of the appendicitis were not 
completely a surgical process. Manifestations and process of the inflammation of the 
appendicitis were also related to its vascularization and the stability of perfusion into 
the inflamed tissue. Factors contributing the quality of vascularization were consid-
ered to have a significant role in determining whether an appendicitis is a process of 
inflammation without or with complication, between non-surgical and surgical case. 
This fact may be guide further study physicians to differentiate indications of appen-
dectomy and to be selectively careful and to reduce the number of negative appendec-
tomies. Hance, current information and data were still provided by animal research 
model and laboratories studies, but rationally related to clinical manifests. However 
researches on the current topic with human sample of appendicitis is currently still 
conducted.
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