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Preface

A time series is simply a sequence of data points occurring in succession for a given
period of time. Time series data are a collection of observations obtained through
repeated measurements over time. Time series data are of two types: measurements
gathered at regular time intervals (metrics); and measurements gathered at irregular
time intervals (events).

Time series data are everywhere since time is a constituent of everything that is
observable. As our world becomes increasingly digitized, sensors and systems are
constantly emitting a relentless stream of time series data which have numerous
applications across various industries. Graphs of time series data points can often
illustrate trends or patterns in a more accessible, intuitive way.

Time series analysis is a specific way of analyzing a sequence of data points that are
collected and recorded at consistent intervals over a set period of time rather than just
recorded intermittently or randomly. Time series analysis typically requires a large
number of data points to ensure consistency and reliability. It also ensures that any
trends or patterns discovered are not outliers and can account for seasonal variance.
Additionally, time series data can be used for forecasting and predicting future data
based on historical data. Time series analysis is used for non-stationary data, things
that are constantly fluctuating over time or are affected by time. Industries like
finance, retail, and economics frequently use time series analysis. New time series
analysis tools are needed in disciplines as diverse as astronomy, economics, and
meteorology. Examples of time series analysis presented in this book include:

* Digital elevation model error analysis and modeling combining principal
component analysis and least-squares method

* ARIMA models with time-dependent coefficients

* Methods of conditionally optimal forecasting for stochastic continuous
acquisition logic support technologies

* A two-stage modeling framework for time series analysis of spatiotemporal data

* Forecasting functional nonparametric time series using the parametric power
transformation

* Monitoring residuals from time series models

» Comparison of the out-of-sample forecast for inflation rates using ARIMA
and ARIMAX models

¢ The subordinated solution of continuous-time bilinear time series.



Among other applications of time series analysis are quarterly sales, weather fore-
casting, rainfall measurement, heart rate monitoring (EKG) and brain monitoring
(EEG).

Because time series analysis includes many categories or variations of data, analysts
must sometimes make complex models. However, not all variances can be accounted
for, and models that are too complex or that try to do too many things can lead to a
lack of fit. Lack of fit or overfitting models may fail to distinguish between random
error and true relationships, leaving analysis skewed and forecasts incorrect.

Time series analysis models include the following types:
* Classification: Identifies and assigns categories to the data.

* Curve fitting: Plots the data along a curve to study the relationships of variables
within the data.

* Descriptive analysis: Identifies patterns in time series data, like trends, cycles,
or seasonal variation.

* Explanative analysis: Attempts to understand the data and the relationships
within it, as well as cause and effect.

* Exploratory analysis: Highlights the main characteristics of the time series data,
usually in a visual format.

* Forecasting: Predicts future data. This type is based on historical trends. It uses
historical data as a model for future data, predicting scenarios that could happen
along future plot points.

o Intervention analysis: Studies how an event can change the data.

* Segmentation: Splits the data into segments to show the underlying properties
of the source information.

There are a few factors that can cause variations in time series data. The following five
components are used to describe how time series data behaves:

o Autocorrelation refers to the relationship between a given observation in a time
series and a previous observation in the same time series, where the interval
between the two data points is referred to as a “lag.” Analysts use autocorrelation
functions to understand if the connection between two lags is significant and to
determine how random or stationary the time series is.

* Seasonality is when data experiences predictable changes at regular intervals
such as quarterly, monthly, or biannually. For instance, summer clothes are sold
more in the spring than in other seasons, and Black Friday is the busiest shop-
ping day of the holiday season. Seasonality always occurs in a fixed and known
period.

XII



* A trend represents a long-term movement of data in a certain direction. The
trend can be increasing or decreasing or even linear or nonlinear. Not all series
have a noticeable trend—things like fires, floods, revolutions, earthquakes,
strikes, and epidemics are clear representations of this. That said, the overall
trend must be upward, downward, or stable. Examples include periods of
economic growth and recession, the average prices of apartment rentals in each
city, and sales of a particular product.

* Cycles occur when data show a rise-and-fall pattern that is not over a fixed
period. Many people confuse cyclical variations with seasonal variations, but
they are quite different. Cyclical variations have nothing to do with the time of
year and cannot be measured according to a given calendar month. They also
typically last longer than seasonal variations and are often economic in nature.
For example, monthly housing sales can reflect overall market trends, and
demand rises and falls in a cyclical pattern over time.

* Anirregular component is due to short-lived fluctuations in a series. While they
are not predictable, sometimes irregularities such as sales tax changes can be
anticipated. Irregularities represent the remaining time series outside the trend
cycle and the seasonal components. Examples include natural disasters, health
crises, and wars.

Rifaat Abdalla

Department of Earth Sciences,
College of Science,

Sultan Qaboos University,
Al-Khoudh, Oman

Mohammed El-Diasty
Sultan Qaboos University,
Al-Khoudh, Oman

Andrey Kostogryzov and Nikolay Makhutov
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Moscow, Russia
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Chapter 1

Sensitivity Analysis and Modeling
for DEM Errors

Mohammed El-Diasty and Rifaat Abdalla

Abstract

The Digital Elevation Model (DEM) can be created using airborne Light
Detection And Ranging (LIDAR), Image or Synthetic-Aperture Radar (SAR)
mapping techniques. The direct georeferencing of the DEM model is conducted using
a GPS/inertial navigation system. The airborne mapping system datasets are processed
to create a DEM model. To develop an accurate DEM model, all errors should be
considered in the processing step. In this research, the errors associated with DEM
models are investigated and modeled using Principal Component Analysis (PCA) and
the least squares method. The sensitivity analysis of the DEM errors is investigated
using PCA to define the significant GPS/inertial navigation data components that are
strongly correlated with DEM errors. Then, the least squares method is employed to
create a functional relationship between the DEM errors and the significant GPS/
inertial navigation data components. The DEM model errors associated with airborne
mapping system datasets are investigated in this research. The results show that the
combined PCA analysis and least squares method can be used as a powerful tool to
compensate the DEM error due to the GPS/inertial navigation data with about 27% in
average for DEM errors produced by the direct georeferenced airborne mapping
system.

Keywords: sensitivity, PCA, least squares, DTM errors, navigation

1. Introduction

The Digital Elevation Model (DEM) can be created using airborne Light
Detection And Ranging (LIDAR), Image or Synthetic-Aperture Radar (SAR) map-
ping techniques. The direct georeferencing of DEM model is conducted using GPS/
inertial navigation system. The accuracy of the developed DEM model is strongly
dependent on the mapping system and the georeferencing system grades. The
selection of the mapping system and the georeferencing system grades is carried
out in the planning stage based on the accuracy requirements of the required DEM
model.

The previous literatures focused and heavily investigated the DEM model
generation based on LIDAR, Images, and SAR data cleaning and filtering tech-
niques such as Triangulated Irregular Network (TIN)-based filtering, slope-
based filtering, mathematical morphological filtering, interpolation-based
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filtering, and Machine-learning-based filtering. The original TIN-based filtering
was developed based on the classical progressive TIN densification (PTD) and
was implemented effectively in the commercial software TerraScan [1, 2]. Then,
the revised PTD was investigated and reduced the total errors by about 8% when
compared with classical PTD method [3]. Afterwards, a Parameter-Free PTD
(PFPTD) algorithm was developed and outperforms the classical and revised
PTD methods [4]. The original slope-based filtering was derived based on height
differences in the training dataset [5, 6]. Then, adaptive slope-based filtering
algorithm was developed to improve the accuracy in urban applications when
compared with the original slope-based filtering algorithm [7]. The original
mathematical morphological filtering was proposed to filter LIDAR data [8].
Then, the progressive morphological filtering algorithm was developed to
improve the original method by applying threshold condition based on the ele-
vation differences and proposed increasing gradually the filtering window size
[9]. Afterward, the spline iteration method was introduced to improve the mor-
phological filtering algorithm [10]. All mathematical morphological filtering
methods outputs are strongly dependent on adapting the filtering window size.
The original interpolation-based filtering method was proposed to deal with the
steep areas [11]. Then, the interpolation-based DEM generation method was
developed where one of the Inverse Distance Weighted, Kriging, and Natural
Neighbor (NN) can be employed for DEM generation [12]. The Natural Neigh-
bor (NN) method was proven to provide most efficient results. Finally,
Machine-learning-based filtering was investigated where this method depends on
topographic characteristics of the areas under investigation [13]. The deep
convolutional neural network (CNN) was proposed for develop accurate DEM
model [14]. The Machine learning method was optimized using windowing
method to improve the DEM model generation [15].

However, the above-mentioned methods are mainly dependent on the data
cleaning and filtering techniques of the heights to develop the DEM model. These
methods are associated with errors that are not considered in the DEM modeling and
could be corelated with system navigation data. Therefore, this research investigated
the sensitivity analysis modeling of DEM errors that are potentially correlated with
navigation data to improve the overall accuracy of the DEM model.

2. Combined PCA and least squares method

The sensitivity and modeling of DEM errors are investigated in this research using
PCA and least squares function modeling. The system navigation data (position,
velocities, attitudes, accelerations and dopplers) are considered the inputs to the
model and the DEM height error is considered the desired output of the model.

PCA is a numerical technique used to study multidimensional processes that can be
used to (1) reduce the dimensionality of a dataset and (2) identify relationships
between the underlying variables of the process. PCA is based on eigen or singular
value analysis of the process correlation or covariance matrix. The goal of PCA is to
determine the minimum number of eigenvectors that best describe the key features of
the process correlation matrix. This results in a reduced-dimensionality model for the
matrix which can be used for data analysis, reduction, and model synthesis. Singular
value decomposition (SVD) is fundamental to PCA. More details on PCA and SVD can
also be found in Jolliffe [16].
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2.1 PCA analysis

Let X denote an m x n matrix. For convenience, we assume m > n. The elements of
the i™ row of X form the n-dimensional vector g:. The elements of the jth column of X
form the m-dimensional vector a;. The general singular value decomposition (gSVD)
of X can be written as:

X=vuxvT (1)

where U is an m x m matrix, X is an # x # matrix containing the singular values,
and V7 is an 7 x 7 matrix. The columns of U are called the left singular vectors, {u;,}, and
form an orthonormal basis for the range space, so that u;-u; = 1 fori = j, and u;-u; = 0
otherwise. The rows of V' contain the elements of the right singular vectors, {v;}, and
form an orthonormal. U and V are orthonormal so that their inverses exist and are
their transposes. The matrix ¥ can be decomposed as:

-1 ®

where S is an m x n diagonal matrix in which only the diagonal elements are non-
zero, S = diag(ss,...,s,) where the diagonal elements are zero. If the rank of X is 7, s, > 0
for1<k <r,ands; = 0 for (r + 1) <k <n. [For problems like the one we are interested
in, noise generally ensures that » = #.] By convention, the ordering of the singular
vectors is determined by high-to-low sorting of singular values, with the highest
singular value in the upper left index of the S matrix. Note that for a square, symmet-
ric matrix X, SVD is equivalent to eigenvalue decomposition. In PCA, the right singu-
lar vectors are frequently called the components. While the scaled left singular vectors
{s;u,} are called the scoves.

Note that U can be decomposed into two submatrices, an m x n matrix Ug and an m
x m-n matrix Uy where U = [Ug Ux]. U defines the range space of U, while Uy
defines the null space. Note that X = UgSV” so that XV = UgS. This provides the
reduced form of SVD often used in PCA. In practice this is the form generally used;
hence, we often drop the R subscript on U. Figure 1 illustrates the various reduced-
form matrices. Note that the right singular vectors span the space of the row vectors
{g:} and the left singular vectors span the space of the column vectors {a;}.

Several relationships can be derived. The SVD equation for g; is:

8= Z Uil SkVk 3)
k=1

which is a linear combination of the right singular values {v;}. The i row of U, [
contains the coordinates of the i entry in the coordinate system (basis) of the scaled
right singular values, s,v. If 7 < n (or if we truncate the singular values to » = [), this
computation requires fewer variables using g’; rather than g;, thus reducing the
dimension of the problem. Similarly, the SVD equation for a; (the j™ column of X) is:

,
aj = vpsiu (4)
k1

which is a linear combination of the left singular values {u}. The j™ column of V7,
a’j (see Figure 1), contains the coordinates of the 7™ column of X in the coordinate
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Figure 1.
Hllustration of reduced SVD matrices. The right singular vectors have often termed the components while the left
singular values are the scaled scoves.

system (basis) of the scaled left singular vectors (the scores), s,u,. By using the vector
a’j, the analysis may be captured by » < variables, which is always fewer than the m
elements in the vector a;, thus SVD reduces the number of variables required. Essen-
tially, there are only » (which we can truncate to eliminate small singular values and
further reduce the dimensionality) component vectors (the corresponding right sin-
gular vectors) which explain the behavior of X. The application of PCA often use the
SVD property:

1
x0 = Zukskvz ©)
=

where X is the closest rank-/ matrix to X, i.e., X’ minimizes the sum of
the squares of the difference between the elements of X and X,
diff = Z,]|x,] - x(l)ij|2.

We can define the covariance matrix as X' X = X,g,g;". SVD analysis of X' X yields
VT, which contains the principal components of {g;}, i.e. the right singular vectors
{vi} are the same as the principal components of {g;}. The eigenvalues of X"X are
equivalent to 5%, which are proportional to the variances of the principal compo-
nents. The matrix XX = Za;a;" is proportional to the covariance matrix of the
variables of a;. The left singular vectors {u,} are the same as the principal compo-
nents of {a;}. The s;,” are proportional to the variances of the principal components.
The diagonal values of S (i.e., s) are the “singular value spectrum”. The value of a
singular value is indicative of its importance in explaining the data. More specifi-
cally, the square of each singular value is proportional to the variance explained by
each singular vector.

In PCA, X is defined and the SVD is computed. The singular values s, are then
plotted versus k. A reduced dimensionality approximation to X is computed by trun-
cating the singular value series, i.e. by setting s;, = 0 for k& > K where K is the chosen
threshold value, and using Eq. (3). Note that the squared singular values s are a
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measure of the variability or “power” in the corresponding signal component specified
by the corresponding to singular vector (like the frequency component in Fourier
analysis).

2.2 Least squares functional modeling with PCA optimization

We ultimately seek a model that relates the inputs (navigation parameters) to the
height error. The least squares method is used to model DEM errors. More details on
the least squares method can also be found in Ghilani [17]. Assuming a linear forward
model:

Xh=c¢ (6)

The set of navigation data parameters is used to form the s vector. We will assume
that the corresponding DEM height errors form the e vector. For each epoch, we form
a single /2 and e vector. Since the model parameters vary with time, vectors are created
by stacking the values as a function of time.

Using the matrix form, the X matrix in Eq. (6) represents the mapping between
the model parameters and the height. This mapping is what we want to estimate from
the DEM error training set. While there are several approaches, the following
approach is attractive. Since Eq. (6) must apply for all realizations we create matrices
H and E by combination of all the vectors of  and e, i.e., H = [hyfh;| ... h,] and
similarly for E. We can then write:

XH=E )

Shifting the mean and scaling the vector elements affects the performance of the
estimate. Assuming we have enough realizations, we can write a least-squares empir-
ical estimate of X, X, as:

X, =EH"(HH") ™ (8)

While we can use X, directly, SVD analysis of X provides us with a powerful tool
to understand the relationship between H and E. The SVD analysis of X is:

X, =UxvT 9)

The singular value spectrum of X tells us the dimensionality (say /) of the
model parameter vector () are “useful” while the first / column vectors of V'
provide a basis for the space of “useful” subspace of model parameters. (In the ideal
case, a retained column vector of V that contained a single 1 in a particular location w
and zero elsewhere would suggest that only the w” component of model vector needs
to be used. In general, the [ useful columns of V provide a mapping (rotation and
scaling) from the original model parameter space to a restricted model parameter
space. As noted previously, the value of [ is either the rank or is selected by
truncating the singular value spectrum. The first [ columns of U form a basis of
the output or the range space of X,, that is, of the height error function. The columns
of U and V greater than [ can be discarded, which simplifies usage of the truncated
model.
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Note that while the order of the model parameters or error values within the
vectors is not important, the range of cases included does matter. The model may be
unable to adequately represent a case not included in the training set. Also, the model
can only represent linear functions of the input model parameters. (Recall, that we
can produce non-linear responses by including non-linear transforms of model
parameters in the model parameter vector.)

Let X, be the singular value reduced estimate of X, i.e. Eq. (9) where the diagonal
elements of X are set to zero beyond the /" element. To apply a height correction, we
form an % vector of the model parameters from a new data take, and compute an
estimate of the height error vector e:

th =€ (10)

The error e is subtracted from the height map to remove the height error. Note that
due to our formulation of the original model and height vectors that this is done
“block-wise”.

In this research, the sensitivity analysis is carried out using PCA and the modeling
is investigated the least squares function modeling where the system navigation data
are considered the inputs to the model and the DEM height error is considered the
desired output of the model.
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Figure 3.
Combined PCA analysis and least squares methodology.
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3. Data and methodology

The DEM model errors associated with airborne mapping system datasets are
investigated in this research. Figure 2 shows an example of DEM errors case study.
It can be seen that the DEM errors map shows large errors in the left side associated
with low depression angles and small errors in the right side associated with high
depression angles. The across-track DEM errors sections at three different depression
angles are investigated (sections 1 to 3) as shown in Figure 2 where the DEM errors
are the highest in these locations.

The methodology for the proposed combined PCA analysis and least
squares method is shown in Figure 3. The PCA analysis is utilized to identify
the significant inputs from multiple navigation data and the least squares method is
implemented to estimate the DEM errors models. The root mean squares (RMS) errors
are used to quantify the accuracy of the developed DEM errors models.

4, Results and discussion

Three across-track sections (1 to 3) as shown in Figure 2 have been investigated
to test the performance of combined PCA analysis and least squares method. The
navigation data (3 positions, 3 velocities, 3 attitudes, 3 accelerations, 3 attitude
rates, 3 attitudes accelerations, 1 doppler, and 1 doppler rate) represent the input
parameters for DEM errors modeling were investigated using PCA analysis
method. Out of 20 inputs, 10 inputs were found significant (2 positions, 2 acceler-
ations, 2 attitudes, 2 attitude rates, 1 doppler and 1 doppler rate) in the three
across-track sections.

Then the least squares were employed to model the functional relationship
between the 10 significant navigation inputs and the targeted DEM error output. The
RMS errors were estimated before and after modeling to test the performance of the
developed model to compensate the DEM errors. Figure 4 shows the targeted DEM
errors and the modeled DEM errors where Figure 5 shows the differences between the
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— Model
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Figure 4.
Section (1) DEM errors where blue line represents the targeted DEM error and red lines represents the modeled

DEM error.
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Section (1) difference between the targeted DEM error and modeled DEM errors.
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Section (2) DEM errors where blue line represents the targeted DEM ervor and ved lines represents the modeled

DEM error.

targeted and modeled DEM errors for section (1) case. In section (1) case, the esti-
mated RMS error before modeling is 0.59 m and after modeling is 0.44 m which

means that about 25% of DEM errors can be compensated in section (1) case. Figure 6

shows the targeted DEM errors and the modeled DEM errors where Figure 7 shows

the differences between the targeted and modeled DEM errors for section (2) case. In
section (2) case, the estimated RMS error before modeling is 0.45 m and after model-

ing is 0.33 m which means that about 27% of DEM errors can be compensated in

section (2) case. Figure 8 shows the targeted DEM errors and the modeled DEM errors
where Figure 9 shows the differences between the targeted and modeled DEM errors

for section (3) case. In section (3) case, the estimated RMS error before modeling is
0.35 m and after modeling is 0.25 m which means that about 28% of DEM errors can
be compensated in section (3) case.
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Figure 7.
Section (2) difference between the targeted DEM error and modeled DEM errovs.
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Section (3) DEM ervors where blue line represents the targeted DEM error and ved lines represents the modeled
DEM error.

Section RMS error before RMS error after Percentage of DEM error
modeling (m) modeling compensation (%)
Section (1) 0.59 0.44 25
Section (2) 0.45 0.33 27
Section (3) 0.35 0.25 28
Overall percentage of DEM error compensation 27
Table 1.

RMS errors for all sections before and after DEM error modeling.

Table 1 and Figure 10 summarize the RMS errors and the percentage of DEM
error compensation from the three sections where the overall percentage of DEM
error compensation is about 27% on average. The results show that the combined PCA
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Section (3) difference between the targeted DEM error and modeled DEM errors.
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Figure 10.
RMS errors for all sections before and after DEM error modeling.

analysis and least squares method can be used as a powerful tool to compensate the
DEM error produced by the navigation data with about 27% in average for the case
study investigated in this research.

5. Conclusions and recommendation

The sensitivity analysis of DEM errors to the GPS/inertial navigation data was
investigated in this research. It was concluded that the sensitivity analysis of the DEM
errors can be performed using the PCA to identify the significant GPS/inertial navi-
gation data components that are strongly correlated with DEM errors. Also, it is
concluded that the least squares method can be rigorously utilized to establish the
functional relationship between the DEM errors and the significant GPS/inertial nav-
igation data components. The combined PCA and least squares method were validated
using the DEM model errors associated with airborne mapping system datasets using
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three across-track sections of the DEM errors datasets. The results show that the
combined PCA analysis and least squares method can be used as a powerful tool to
compensate for the DEM error produced by the GPS/inertial navigation data with
about 27% on average. Therefore, it is recommended to use the combined PCA anal-
ysis and least squares method to reduce the DEM errors associated with the DEM
model produced by the direct georeferenced airborne mapping system.
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Chapter 2

ARIMA Models with
Time-Dependent Coefficients:
Official Statistics Examples

Guy Mélard

Abstract

About 25 years ago, effective methods for dealing with time series models that
vary with time appeared in the statistical literature. Except in a few cases, they have
never been used for economic statistics. In this chapter, we consider autoregressive
integrated moving average (ARIMA) models with time-dependent coefficients
(tdARIMA) applied to monthly industrial production series. We start with a small-
size study with time-dependent integrated autoregressive (tdARI) models on Belgian
series compared to standard ARI models with constant coefficients. Then, a second,
bigger, illustration is given on 293 U.S. industrial production time series with
tdARIMA models. We employ the software package Tramo to obtain linearized series
and model specifications and build both the ARIMA models with constant coefficients
(cARIMA) and the td ARIMA models, using specialized software. In these td ARIMA
models, we use the simplest specification for each coefficient: a simple regression with
respect to time. Surprisingly, for a large part of the series, there are statistically
significant slopes, indicating that the td ARIMA models fit better the series than the
cARIMA models.

Keywords: nonstationary process, time series, time-dependent model, time-varying
model, local stationarity

1. Introduction

About 25 years ago, effective methods for dealing with time series models that vary
with time appeared in the statistical literature. Except in a few cases, like Van
Bellegem and von Sachs [1] for marginal heteroscedasticity in financial data or
Kapetanios et al. [2], they are not used for economic statistics. In this chapter, we
consider autoregressive integrated moving average (ARIMA) models with time-
dependent coefficients (tdARIMA) that provide a natural alternative to standard
ARMA models. Several theories appeared in the last 25 years for parametric estimation
in that context, including Dahlhaus’ approach based on locally stationary processes,
see Dahlhaus [3, 4]. To simplify the presentation of the method in Section 2, we first
focus on autoregressive integrated (ARI) models before going to the general case of
ARIMA. Section 3 is devoted to illustrations of official time series, more precisely
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industrial production series. We start with a small-size study on Belgian monthly
industrial production and show an improvement for time-dependent autoregressive
integrated (tdARI) models with respect to standard ARI models with constant
coefficients. Then, a second, bigger, illustration of tdARIMA models is given on
293 U.S. industrial production time series, already used by Proietti and Liitkepohl
[5], with a different objective. We employ the software package Tramo from Gémez
and Maravall [6] to obtain linearized series and model specifications, and we built
both ARIMA models with constant coefficients (cARIMA) and tdARIMA models
based on the Tramo specifications. This is done in specialized software since no
existing package can cope with these td ARIMA models. In these td ARIMA models,
we use the simplest specification for each coefficient: a simple regression with
respect to time, hence two parameters, a constant and a slope. Indeed, this is the
closest departure from constancy, and this seems natural in an evolving world. We
will see that, for a large part of the series, there are statistically significant slopes,
indicating that the td ARIMA models fit better the series than the cARIMA models. In
the second step, since many of the slopes introduced as additional parameters in the
model are not significantly different from 0, they are omitted one by one, starting
with the least significant one, until all the remaining slopes are different from 0 at
the 5% level. Most of the summary results are improved. Section 4 contains our
conclusions.

2. Methods

We consider the well-known class of multiplicative seasonal ARIMA models, see
e.g. Gémez and Maravall and Box et al. [6, 7]. Models with time-dependent coeffi-
cients appear often in econometrics but not in ARIMA models. For a very long time
series, there is no reason that the coefficients would stay constant. They can be
supposed to vary slowly with time although breaks could also be considered. This is
the reason why linear (or other) functions of time replace the constant coefficients.
Time series models with time-varying coefficients have been studied, mainly from a
theoretical point of view. In addition to [3, 4], several papers [8-10] provide condi-
tions for the asymptotic properties, hence the justification for statistical inference.
Otherwise, our tests on slopes would have no foundation. These conditions are of
course enforced in the estimation procedure.

2.1 The model

To illustrate a simple ARIMA model with a time-dependent coefficient, we can
consider the ARMA(1,1) model. Let the series be denoted by y = (y1, y2, ..., ¥,). Thena
tdARMA(1,1) model is described by the equation as follows:

Ve = ¢§n)yt—1 +e — Gﬁ")em, (1)

where the ¢, are independent random variables with mean zero and with standard

deviation o, and the time-dependent coefficients 4,;") and 9;") depend on time ¢, also
on#, the length of the series, and also on a small number of parameters stored in a m x

1 vector . The simplest specification for ¢, for example, is as follows:
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¢£>(ﬁ>=¢+n_1<r—”; )¢, @)

where ¢ is an intercept and ¢’ is a slope, and a similar expression for 9,("> (p) using
two other parameters 6§ and ¢'. The vector § contains all parameters to be estimated,

those in ¢." (B) (like ¢ and ¢, here) and o™ () (0 and ¢'), but not the scale factor ¢
which is estimated separately. For the corresponding cARIMA model, there is of
course no slope, i.e., ¢’ = ¢ = 0. For a lag k instead of 1, we add a subscript k to the
coefficient symbols.

Let us now consider a general tdARMA (p, ¢) model. It is defined by the equation

P q
9= b B e — D05 (Perrs 3)
k=1 k=1

where the coefficients ¢£Z>(ﬁ), k=1, ..,p,and 9;;’) B), k=1, ..,q,are
deterministic functions of ¢ and, possibly, of #. The e;,t = 1,2, ..., are like before. We
suppose that the additional number of parameters is small. Practically, for economic
time series, linear or exponential functions of time, like in Eq. (2), seem to be
enough instead of constant coefficients, but there is no problem to use other func-
tions, up to some point. In other cases, see Alj et al. [11], periodic functions can be
considered. In practice, we suppose that the coefficients are constant before the first
observation.

Adding marginal heteroscedasticity should also be tried. Van Bellegem and von
Sachs [1] had already shown the usefulness of a time-dependent variance. Indeed,
there is no reason why the innovation standard deviation is constant. We replace e;_,

k=0,1, ..,q,in Eq. (3) withg@k (B)es_r, where gi")(/}) is a (strictly positive)
deterministic function of ¢ and, possibly, of 7, depending on the parameters, so that
the standard deviation becomes gﬁ") (f)o> 0. Adding gﬁ") (p) is also covered by Azrak
and Mélard [8, 12]. In practice, we used an exponential function of time for gﬁ") ).
Since the series are nonstationary, we need to consider also regular V and seasonal
differences V, where s is the seasonal period (s = 12, for monthly data), on the
possibly square roots or log-transformed observations. Furthermore, the series is not

seasonally adjusted, so the so-called seasonal multiplicative models of Box et al. [7] are
also needed.

2.2 The estimation method

For any tdARIMA model, we can estimate the parameters by maximizing the
logarithm of the Gaussian likelihood. Time Series Expert [13], and more precisely its
computational engine ANSECH is used for that purpose. It is based on an exact
algorithm for the computation of the Gaussian likelihood [14] and an implementation
of a Levenberg-Marquardt nonlinear least-squares algorithm. Under some very gen-

eral conditions [8, 12], it is shown that the quasi-maximum likelihood estimator B
converges to the true value of 8, and f is asymptotically normal, more precisely
Vn(B—p) 5N (0, V1), when n — oo where . indicates convergence in distribu-
tion, and V! is the asymptotic covariance matrix. Moreover, V can be estimated as a
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by-product of estimation. Let us denote its estimator by V,,. The Student ¢ statistics
shown in the next section make use of the standard errors deduced from the estima-
tion of V. Using the asymptotic covariance matrix, it is also possible to design a Wald
test for a subset b of » among the m parameters in f3, for example, to test that all the
slopes are equal to 0, using a y” distribution. Let R be a r x m restriction matrix
composed of the rows of the m x m identity matrix that correspond to the parameters
in the subset b. Then, b = Rf. The Wald statistic for testing that » = 0 is then

nb' (RV,R') b, where b is the estimate of b and ' indicates transposition. Under the
null hypothesis, the statistic converges in distribution to a y” distribution with »
degrees of freedom when n — oo.

Note that centering of time around its mean (z + 1)/2 in Eq. (2) improves the
statistical properties of the estimators by reducing the amount of correlation between
their elements and that the factor 1/(n-1) is there to avoid explosive behavior when
n — oo,

Note also that the conditions for convergence and asymptotic normality are satis-
fied in the present case because a sufficient condition [15] is that the AR and MA
polynomials have their roots outside the unit circle at all times and that condition is
checked during estimation.

An asymptotic theory for locally stationary processes due to Dahlhaus [3, 4] can
also be used. There seems to exist only one software implementation, the R package
LSTS (for Locally Stationary Time Series) by Olea et al. [16] to support the estima-
tion of locally stationary ARMA models, see also Palma ez al. [17]. Since it does not
cope with the multiplicative seasonal models necessary to deal with seasonally
unadjusted time series, we have preferred to use Azrak and Mélard [8] with Time
Series Expert for estimation. See Azrak and Mélard [18] for a comparison of the
existing theories.

2.3 The datasets

In the first empirical analysis, the number of series is limited, and simple pure
autoregressive models are used. The purpose is to show the basic elements of the
methodology. We used a dataset of indices for the monthly Belgian industrial pro-
duction for the period 1985-1994 by the various branches of activity, 26 in all. Nine
years are used for fitting the models and a tenth year is used to compute ex-post
forecasts and the mean absolute percentage error (MAPE). An automatic procedure
is applied to fit ARIMA models and we retained the 20 series out of 26 for which
pure integrated autoregressive or ARI(p, d)(P, D),, models are fitted to the series of
108 observations. Let us remind that these models are defined by the equation as
follows:

0, (L)DH(L)VVDy, =, 4)

where L is the lag operator, such that Ly, = ytfl,gbp (L) and ®p(L*) are, respectively,
the regular autoregressive and the seasonal autoregressive polynomials, of degree p
and 12P in L. The model can include transformations and interventions (additive or on
the differenced series) which are not detailed here. The fit is characterized by the
value of the SBIC criterion. For using time-dependent ARI, or tdARI, models, slope
parameters are added for each of the existing coefficients, like ¢’ for ¢ in Eq. (2). The
models have therefore coefficients that are linear functions of time. For models in
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multiplicative seasonal form, the product of the regular and seasonal polynomials is
first computed and slope parameters are added to each lag, but only to lags smaller
than 14, for practical reasons. For example, for the AR(2)(1),, model, with the poly-
nomial in the lag operator L

(1—¢iL — p,L*) (1 — D1L?) = (1 — pyL — poL? — &1L + &1L + ¢, 1LM),
(5)

the specification is (1 — g{)t(f L — (,bg)Lz - dJ;,’%le — t(,nl)3L13 + ¢2¢>1L14> , where qbgo
is like in Eq. (2), and

1 n+1 1 n+1
¢§§)—¢z+n—<t— 5 )(ﬁ'z, Eﬁ)z—q51+m<t—7>¢iz,

-1

n) 1 n+1
b1z = —¢1‘p1+m (t—T P13

with seven parameters instead of the full form (1 — B — 2B — d)g'l)zBlz

—(]5;)711)3313 — (f)t(,"l)A‘BM) that would involve 10 parameters in all. This is enforced to

restrict the number of parameters and avoid numerical problems. Note that the factor
1/(n — 1) is there only for the asymptotic theory and will be omitted in practice.

In the second empirical analysis, we use a big dataset of U.S. industrial production time
series, already used by Proietti and Liitkepohl [5] for assessing transformations in fore-
casting. See http://www.federalreserve.gov/releases/gl7/ipdisk/ip_nsa.txt. These are now
293 time series from January 1986 to December 2018 at least. Most series start before and
they are even a few ones starting in 1919. The models were fitted until December 2016
leaving the remaining months to compare the data to the ex-post forecasts, using either a
fixed forecast origin for several horizons or rolling forecasts each for given horizons.

We employ the software package Tramo described by Gémez and Maravall [6] to
obtain partially linearized series by removing outliers and trading day effects. Indeed,
the presence of outliers and trading day effects can distort the analysis, as could be
seen in preliminary analyses. Selecting the cARIMA models in an automated way is
also done using Tramo. Then we replace the constant coefficients by linear functions
of t for order k <13, giving tdARIMA models, like in Eq. (2) for each lag k coefficient
in the model. At this stage, we do not omit nonsignificant parameters. The cARIMA
and tdARIMA models are fitted using the same specialized software package ANSECH
included in Time Series Expert, to facilitate the comparison. See Figure 1 for a
schematic representation of the whole automatic procedure. For more complex time
dependency, an automatic selection procedure like the one exposed by Van Bellegem
and Dahlhaus [19] is possible.

We compare the results of tdARIMA versus cARIMA models using the following
criteria:

* Is the highest ¢ statistic of the td parameters, the slopes, in absolute value, larger
than 1.96?

* Is the p-value of the global y” statistic for the Wald test on the slopes smaller than
0.05?
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Figure 1.
Schematic vepresentation for the whole automatic treatment.

* Is tdARIMA SBIC smaller than the corresponding cARIMA SBIC?

* Is tdARIMA residual standard deviation smaller than the corresponding cARIMA
one?

* Is the tdARIMA P-value of the Ljung-Box (LB) statistic for residual
autocorrelation (with lag 48) larger than the corresponding cARIMA one?

* Is tdARIMA MAPE in percent for 1 year (2017) and all horizons from 1 to 12
smaller than the corresponding cARIMA one?

¢ similarly, for rolling forecasts from December 2016, for several horizons 1, 3, 6, and
12, are td ARIMA MAPE in percent smaller than the corresponding cARIMA one?

In the early stage of this project, the data were limited to 2016 and without a
correction for outliers or trading days, and only fixed origin forecasts were consid-
ered. This gave worse results that were indicative, and not conclusive.

Note that one can object against the use of the Ljung-Box test statistic to compare
models, especially here because there is no foundation to its limit behavior for
tdARIMA models. Like the other criteria, we use it as a descriptive indicator.

3. Empirical results
3.1 Two examples

Before showing the results, we will consider two examples, to justify the recourse
to the class of tdARIMA models which is the object of this chapter.
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Figure 2.
The original series, the index of land transportation (TRTER).

The first example is taken from the first dataset: the index of land transportation
(series TRTER) for Belgium for the period from January 1985 to December 1994, see
Figure 2. Two additive interventions were automatically considered, respectively, in May
1986 and in February 1992. Let 18605 and 19202 denote, respectively, the corresponding
binary variables. Otherwise, the series is taken in square roots and seasonally differenced.
Let us denote the transformed series TRTER_TF after all these operations. It equal to
Vi (\/ TRTER — big60518605 — b1920219202) , up to a normalizing factor, and shown in
Figure 3. The partial autocorrelations of that series shown in Figure 4 show a truncation
after lag 12. The usual Box and Jenkins analysis lead to the suggestion of a seasonal AR
model. Then adding time dependency to the AR coefficient leads to the following model:

(1— @, 1,B) {Vn (\/TRTER — bragosI8605 — b1920219202> — /4} — e,

where the ®; 15, is estimated by —0.686 + 6.47 1072 (¢ - 60.5), and the estimates
of bigsos, b19202, and p are, respectively, equal to —30.9, 24.8, and 4.23. The standard
error corresponding to the slope of ®; 1, is equal to 1.70 10~ 2, so the associated
Student statistic is equal to 3.8, hence the slope is significantly different from 0. To
explain that significance, let us look at the partial autocorrelation at lag 12 for the
transformed series TRTER_TF: for the first 4 years it is —0.488 and for the last 4 years
it is —0.391. That explains the significantly positive slope for @ 1,

ke
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Figure 3.
The transformed series (TRTER_TF).
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Figure 4.
The partial autocorrelation function of the transformed sevies.

The second example is taken from the second dataset: the U.S. production index of

clothing (B51212) for the period from January 1986 to January 2019, see Figure 5.
Tramo has adjusted the series for outliers and proposed a logarithmic transform,

and both a regular and a seasonal difference, giving the transformed series BS51212DS

shown in Figure 6.
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Figure 5.
The original series, the U.S. production index of clothing (B51212).
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Figure 6.
The transformed B51212 series (B51212DS).
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Subsequently, Tramo has suggested modeling the series by a seasonal ARIMA
model with a regular autoregressive polynomial of degree 3 and a seasonal moving
average. We fitted that model using ANSECH and obtained

(1+0.035L — 0.142L> — 0.249L%) VVy, log (B51212;) = (1 — 0.850L")e;.

Then, we replaced the constant coefficients with linear functions of time and
replaced the constant innovation variance with an exponential function of time.
Omitting one by one the nonsignificant parameters at the 5% probability level, we
obtained finally the following heteroscedastic model but with constant autoregressive
and moving average polynomials:

(1+0.041L — 0.142L% — 0.228L%)VVy, log (B51212;) = (1 — 0.855L")g,e;,

where g, is given by g, = exp (0.001753(t — 193)).

3.2 First empirical analysis

In the first experiment, the number of series is small and simple pure integrated
autoregressive models are used.

Table 1 shows the main results, including those tdAR coefficients for which the
test of zero slope leads to a rejection at the 5% level, and the corresponding ¢-statistic.
For example, the AR(2)(1),, model in Eq. (5) which was shown in Section 2.3 is
used for nonmetallic manufacturing, in addition to a regular and a seasonal difference.

In that case, the standard ARI model is better than the tdARI model for SBIC (826
versus 830) and provides also betters forecasts (MAPE = 5.5% versus 9.4%) although
there is one significant slope for lag 12 with a Student statistic of 3.6. Even if tdARI
models are not systematically better, they often produce better forecasts and some-
times show a better fit or at least some statistically significant slope parameters at the
5% level. All the nonsignificant slopes were left in the model and that can explain why
the SBIC criterion was generally worse for tdARI models. Since that analysis was
promising, we were led to consider a bigger dataset.

3.3 Second empirical analysis

The second empirical analysis bears on 293 seasonally unadjusted time series in a
dataset of U.S. industrial production. We will show three tables of results. Table 2
presents a summary of the dataset resulting from Tramo. For example for 280 series
out of 293, a regular difference was used, which accounts for 96% of the dataset. As
said above, we preserved this and all parameters in our cARIMA and tdARIMA
models. For the tdARIMA models, slopes were added to all autoregressive and moving
average coefficients for lag less or equal to 13.

Table 3 is based on the initial td ARIMA models, with possibly nonsignificant
parameters. We show the percentages for each criterion across the 293 series. For
example, more than 50% of the dataset had at least one of the slopes with a Student ¢
value greater than 1.96. If we use the Wald test, which should show a better view, for
more than 44% of the series, the hypothesis of null slopes leads to a rejection at the 5%
level. If the series were randomly drawn from cARIMA processes, we should expect
5% of rejections, on average. Of course, because of the multiple-test argument, the
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Branch (Name) Orders ARI tdARI
(p, d) SBIC SBIC parameter t-Value
(P, D) MAPE MAPE

Food, beverages 3,0) 655 669 none

(ALIBOR) 0,1) 4.0 3.9

Other extraction of minerals 2, 0) 904 910 AR2 2.8

(AUEXTR) 0,1) 10.5 9.4

Wood-processing, furniture (3,1) 778 792 AR12 2.6

(BOIME) (1,1) 6.4 59

Hosiery (2,0) 702 692 AR1 29

(BONNE) 1,1 9.1 5.5 AR2 8.7
AR12 11.0

Commerce (3,0) 553 557 AR12 3.7

(COMME) 1,1 17 2.4

Construction (3,0) 827 830 AR2 2.8

(CONST) (0, 1) 8.0 236

Petrol derivatives (1,1) 888 891 none

(DERPE) (0, 0) 5.2 52

Petrol distribution (1,0) 941 951 none

(DISPE) (1,0) 10.8 10.7

Metal processing (2,0) 682 681 AR2 21

(FABME) 0,1) 6.6 7.2

Manufacture of textiles 2,1) 739 749 none

(FILAT) 0,1) 5.5 6.4

Gas production/distribution 3,0) 897 891 AR2 -2.8

(GAZ) (1,1) 2.1 2.0 AR3 —4.5

Construction materials (1,1) 809 807 AR13 -33

(MATCO) (1,1) 43 57

Nonmetallic manufacturing 2,1) 826 830 AR12 3.6

(NONFE) (1,1) 5.5 9.4

Paper/paperboard industry (3,0) 746 758 AR2 -21

(PAPCA) (1,1) 59 5.8

Iron and steel (3,0) 833 836 AR1 4.0

(SIDER) (1,1) 5.9 9.2 AR12 36

Manufacture of tobacco (3,0) 778 791 AR3 3.1

(TABAC) (1, 1) 10.9 13.2 AR12 5.4

Aviation 3,1 746 753 AR12 6.3

(TRAER) (1,1) 8.8 8.7

Maritime transportation 2,1 732 740 AR12 2.3

(TRMAR) (1,1) 3.6 2.6 AR13 36

Land transportation (0, 0) 854 849 AR12 —-2.6

(TRTER) 1,1) 12.1 125

Manufacture of clothing 2,1) 757 767 none

(VETEM) (0,1) 26.7 26.7

Table 1.

For each branch of the economy, we give the ovders (p,d) (P,D) of the model, SBIC and MAPE (in italics) for the raw ARI
model and for the td ARI model (vesults in bold type ave better), the statistically significant slopes (ARK denotes ¢,,) and the
corresponding t-value.
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Specification #series % Note

Levels vs. logs 70/223 24/76

Regular diff. vs. none 280/13 96/4 4% with 2 differences

Seasonal diff. vs. none 279/14 95/5 0% with 2 differences

Stationary vs. nonstationary 0/293 0/100

Airline model vs. other 84/209 29/71

Outliers vs. none 79/21 0-20, on average 2.63

Trading day effect vs. none 47/53

Easter effect vs. none 40/60

ARMA parameters vs. none 100/0 1-7, on average 3.12
Table 2.

Summary of the model selections made by Tramo on the 293 U.S. industrial production series.

Student tests on the slopes would give a higher proportion of rejections. A simulation
study will confirm this later. The use of the Wald test in the present context is
therefore essential. Some results are partially deceptive but can be explained: only
about 4% of the series have a smaller SBIC for the tdARIMA but this is mainly due to
the useless parameters. About one-half of the series have a smaller residual standard
deviation, but for more than 57% the test on residual autocorrelation, based on the
Ljung-Box test with 48 lags, gives a better result.

If we retain only the series where the Wald test rejected the constancy of the
coefficients, the percentage of smaller SBIC for td ARIMA models is only slightly
higher at about 9% and reaches 61% for the residual standard deviation. The percent-
age for the Ljung-Box test is lower. Indeed, the theory for that test was never under-
taken for tdARIMA models. Forecasting performance was evaluated using the MAPE
criterion. For fixed origin forecasts, about 47% of the series have a smaller MAPE for
the tdARIMA models rather than for the cARIMA models. Among the series for which

Criteria Percentage Notes Percentage if td significant
Highest [¢] statistic of td parameters >1.96 50.17 (@]

p-value of global test of stationarity <0.05 44.71 100.00
tdARIMA SBIC < cARIMA SBIC 04.10 (@) 9.16
tdARIMA residual std. dev < cARIMA 49.15 61.83
tdARIMA LB P-value > cARIMA 57.68 54.20
tdARIMA forecasting MAPE < cARIMA 47.44 45.04
tdARIMA £ = 1 rolling forecasts MAPE < cARIMA 32.76 31.30
tdARIMA £ = 3 rolling forecasts MAPE < cARIMA 32.42 29.01
tdARIMA £ = 6 rolling forecasts MAPE < cARIMA 37.88 40.46
tdARIMA & = 12 rolling forecasts MAPE < cARIMA 36.86 37.40

Notes: (*) Statistically significant slope parameters at the 5% level, (**) Nonsignificant parameters were not omitted.

Table 3.
For each criterion, the percentages of improvement from cARIMA models to td ARIMA models are given over the
293 U.S. series.
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time dependency is retained, only 45% of them benefit from better forecasts. For
rolling forecasts for various horizons, the percentages are even smaller, in particular
for horizons of 1 and 3 months. The percentages are about the same if the Wald test
rejects constancy or not. That means that, even if the introduction of time-
dependency improved the fits, it does not improve the forecasts. Let us remind that, at
this stage, the tdARIMA may have many statistically nonsignificant slopes.

For Table 4, starting from the full td ARIMA models of Table 3, we omitted, one
by one, the most nonsignificant slope at the 5% level, see Figure 1. In the end, all
remaining slopes are thus significantly different from 0. This was done in an auto-
mated way in order to avoid mistakes. We will refer to these models as parsimonious
tdARIMA models. Of course, the cARIMA models are the same as previously, essen-
tially the same as given by Tramo, but estimated with more digits of accuracy. We
notice that the percentage of at least one statistically significant slope, 54.61%, differs
slightly from the percentage of rejection of the Wald test on all the slopes, 54.27%.
Indeed, for one series (G325A4, Chemicals except for pharmaceuticals and medi-
cines), there are two slightly significant slopes but the global test does not reject their
nullity, although the p-value is close to 0.05. Anyway, these percentages of improved
tdARIMA models are slightly higher than in Table 3.

The fitting results are partially better with more than 18% smaller SBIC for tdARIMA
models (respectively 34% if we condition on the rejection of the Wald test). Some are
worse, however, with 38% for the residual standard deviation instead of 49% for the
fully parameterized model (respectively 70% and 61%, if we condition on the rejection
of the Wald test), and 27% for the residual autocorrelation instead of 57% for the full
model (respectively 50% and 54%, if we condition on the rejection of the Wald test).

Strangely, the forecasting performance with a fixed origin is worse for the parsi-
monious model than for the full model with the percentage of improvement of
tdARIMA models with respect to cARIMA models equal to 28%, instead of 47%
(respectively 51% and 45%, if we condition on the rejection of the Wald test). That
means that the omitted slopes seem to contribute to the forecasting performance but

Criteria Percentage Notes Percentage if td significant
Highest [¢| statistic of td parameters >1.96 54.61 *)

p-value of global test of stationarity <0.05 54.27 100.00
tdARIMA SBIC < cARIMA SBIC 18.77 (@) 34.59
tdARIMA residual std. dev < cARIMA 38.23 70.44
tdARIMA LB P-value > cARIMA 27.65 50.31
tdARIMA forecasting MAPE < cARIMA 28.33 51.57
tdARIMA £ = 1 rolling forecasts MAPE < cARIMA 20.48 37.74
tdARIMA £ = 3 rolling forecasts MAPE < cARIMA 17.75 32.70
tdARIMA £ = 6 rolling forecasts MAPE < cARIMA 18.77 34.59
tdARIMA £ = 12 rolling forecasts MAPE < cARIMA 21.84 40.25

Notes: (*) Statistically significant slope parameters at the 5% level, (**) Contrarily to Table 3, nonsignificant slope
parameters ave omitted one by one until all were statistically significant.

Table 4.

For each criterion, the percentages of improvement from cARIMA models to td ARIMA models are given over the
293 U.S. series. The last column contains percentages conditional to the rejection of nullity of all the slopes by the
Wald test.
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that, among the series with time-dependent coefficients, about one-half have pro-
vided better forecasts. The picture for rolling forecasts is again worse for the parsi-
monious models with smaller percentages of improvement in the range of 17-22%,
according to the horizon, instead of 32-37% for the full models, but again similar
under the condition of rejection of the Wald test (respectively 32-44% instead of
29-40%). Surprisingly, the percentages are systematically higher for horizons 6 and
12 months rather than for those of 1 and 3 months.

One can object that introducing time dependency can introduce some over-fitting:
a certain proportion of the tests of nullity of the slopes ¢}, or ¢, can lead to rejection,
about 5% when there is only one slope, more otherwise.

To try to answer that natural question, we generated artificially 320 series using
cARIMA models, with the same length of 372, again leaving the last 12 values. We
have used an airline model for that purpose instead of the large variety of models
fitted by Tramo-Seats. Then we added time dependency and proceeded exactly like
before. The results are shown in Table 5. The percentage of 14.06 for the first
criterion (instead of five) shows that our rough examination of the largest |¢| value
should be better replaced by a simultaneous test on the td parameters, as we did. For
SBIC, there are many superfluous parameters, as could be guessed. But about one-half
of the tdARIMA models give smaller residual standard deviations, less residual auto-
correlation, and smaller forecast errors than their cARIMA counterparts, as expected.

The results show that for a majority of series there is (i) at least one statistically
significant slope parameter at the 5% level, (ii) rejection of the nullity of all the slopes
using a Wald test that provides better-founded results than the ¢-tests, (iii) smaller
residual standard deviation, and (iv) less residual autocorrelation. This is true for the
full td ARIMA model specifications but also, at least partly, with more parsimonious
tdARIMA models obtained by omitting, one by one, the statistically nonsignificant
slopes. At least it is true conditionally on significant time dependency, i.e. when the
Wald test rejects the constancy of the coefficients.

The results for the SBIC criterion are not good. For the full tdARIMA model, an
explanation is the presence of nonsignificant slope parameters. It remains, however,
for the parsimonious models. The only unsatisfactory aspect of td ARIMA models is
that they fail to improve the forecasts for a majority of the series. Indeed, they confirm
that only one-third of the “time-dependent series”, i.e. those series which have at least
one statistically significant slope parameter, provide better forecasts with a tdARIMA
model than with a cARIMA model.

We had already observed similar results with slightly shorter series of the big
dataset when the outliers and trading day effects were not handled. Consequently, the

Criteria Percentage Artificial series Percentage U.S series
Highest |¢| statistic of td parameters >1.96 14.06 50.17
tdARIMA SBIC < cARIMA SBIC 00.00 04.10
tdARIMA residual std. dev < cARIMA 42.81 49.15
tdARIMA LB P-value > cARIMA 43.75 57.68
tdARIMA forecasting MAPE < cARIMA 47.81 47.44

Table 5.

For each criterion, the percentages of improvement from going from cARIMA models to td ARIMA models are given
over the 320 artificial series. The last column contains the corvesponding percentages obtained for the U.S. series
taken from Table 3.
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presence of outliers or trading day effects is not the cause of better fits by td ARIMA
models, as we feared. A common feature is nevertheless that the forecasts are not
better by replacing the cARIMA models with tdARIMA models. This is surprising
although we know that a better fit is not a guarantee for better forecasts. It should be
investigated why the forecasts seem to be worse in the U.S. series for tdARIMA
models. Of course, it can be due to a global change in 2016.

4, Conclusions

It took several decades to go from ARIMA models with constant coefficients to
suitable and powerful generalizations with time-dependent coefficients that vary
deterministically. We showed the usefulness of the approach for dealing with official
statistics time series that have generally a seasonal component.

We used linear functions of time. We do not hope that other functions than linear
functions should be useful with the inconvenience to add many parameters, except if
we exploit the fact that since 2019 most of the series in the dataset are available before
1986, often since 1972, or sometimes earlier.

Finally, one weak point in the analysis is due to the detection of outliers and trading
day effects, and the time series linearization is based on cARIMA models. If the time
dependency of the coefficients becomes serious for very long official time series, it would
be worth trying to extend Tramo features to tdARIMA models, e.g. to detect outliers
simultaneously with the estimation of time-dependent coefficients for the ARIMA model.

On the other side, it would be also interesting to conclude that traditional cARIMA
models are enough to forecast very long time series and that no substantial gain can be
obtained by considering tdARIMA models.

It can be interesting to repeat the analysis with other datasets, quarterly or prefer-
ably monthly, like those maintained by Eurostat. Good candidates would be in the
industry, trade, and services, short-term business statistics, production, turnover, etc.
A U.S. database like FRED (https://research.stlouisfed.org/econ/mccracken/fred-da
tabases/) could also be considered.
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Chapter 3

Methods of Conditionally Optimal
Forecasting for Stochastic
Synergetic CALS Technologies

Igor N. Sinitsyn and Anatoly S. Shalamov

Abstract

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in synergistical organization-
technical-economical systems (SOTES) are considered. Nowadays for highly available
systems the problems of creation of basic systems engineering principles, approaches
and information technologies (IT) for SOTES from modern spontaneous markets at
the background inertially going world economics crisis, weakening global market
relations at conditions of competition and counteraction reinforcement is very
important. Big enterprises need IT due to essential local and systematic economic loss.
It is necessary to form general approaches for stochastic processes and parameters
estimation in SOTES at the background noises. The following notations are intro-
duced: special observation SOTES (SOTES-O) with own organization-product
resources and internal noise as information from special SOTES being enact noise
(SOTES-N). Conception for SOTES structure for systems of technical, staff and
financial support is developed. Linear, linear with parametric noises and nonlinear
stochastic (discrete and hybrid) equations describing organization-production block
(OPB) for three types of SOTES with their planning-economical estimating divisions
are worked out. SOTES-O is described by two interconnected subsystems: state
SOTES sensor and OPB supporting sensor with necessary resources. After short sur-
vey of modern modeling, sub- and conditionally optimal filtering and forecasting
basic algorithms and IT for typical SOTES are given. Influence of OTES-N noise on
rules and functional indexes of subsystems accompanying life cycle production, its
filtration and forecasting is considered. Experimental software tools for modeling and
forecasting of cost and technical readiness for parks of aircraft are developed.

Keywords: sub- and conditionally optimal filtering and forecasting (COF and COFc),
continuous acquisition logic support (CALS), organizational-technical-economical
systems (OTES), probability modeling, synergetical OTES (SOTES)

1. Introduction

Stochastic continuous acquisition logic support (CALS) is the basis of integrated
logistic support (ILS) in the presence of noises and stochastic factors in
organizational-technical-economic systems (OTES). Stochastic CALS methodology
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was firstly developed in [1-5]. According to contemporary notions in broad sense ILS
being CALS basis represents the systems of scientific, design-project, organization-
technical, manufactural and informational-management technologies, means and
fractial measures during life cycle (LC) of high-quality manufacturing products (MP)
for obtaining maximal required available level of quality and minimal product
technical exploitational costs.

Contemporary standards being CALS vanguard methodology in not right measure
answer necessary purposes. CALS standard have a debatable achievement and the
following essential shortcoming:

* informational-technical-economic models being not dynamical;

* integrated database for analysis of logistic support is super plus on one hand and
on the other hand does not contain information necessary for complex through
cost LC estimation according to modern decision support algorithms;

* computational algorithms for various LC stage are simplified and do not permit
forecasting with necessary accuracy and perform at conditions of internal and
external noises and stochastic factors.

So ILS standard do not provide the whole realization of advantages for modern and
perspective information technologies (IT) including staff structure in the field of
stochastic modeling and estimation of two interconnected spheres: techno-sphere
(techniques and technologies) and social ones.

These stochastic systems (StS) form the new systems class: OTES-CALS systems.
Such systems destined for the production and realization of various services including
engineering and other categorical works providing exploitation, aftersale MP support
and repair, staff, medical, economical and financial support of all processes. New
developed approach is based on new stochasting modeling and estimating approaches.
Nowadays such IT are widely used in technical application of complex systems
functioning in stochastic media.

Estimation of IT is based on: (1) model of OTES; (2) model of OTES-O (observa-
tion system); (3) model OTES-N (noise support); (4) criteria, estimation methods
models and for new generations of synergetic OTES (SOTES) measuring model and
organization-production block (OPB) in OTES-O are separated.

Synergetics being interdisciplinary science is based on the principle of self-
realization of the open nonlinear dissipative and nonconservative systems. According
to [6, 7] in equilibrium when all systems parameters are stable and variation in it arise
due to minimal deviations of some control parameters. As a result, the system begins
to move off from equilibrium state with increasing velocity. Further the non-stability
process lead to total chaos and as a result appears bifurcation. After that gradually new
regime establishes and so on.

The existence of big amount of free entering elements and subsystems of various levels
is the basic principle of self-organization. One of inalienable properties of synergetical
system is the existence of “attractors”. Attractor is defined as attraction set (manifold) in
phase space being the aim of all nonlinear trajectories of moving initial point (IP). These
manifolds are time invariant and are defined from equilibrium equation. Invariant mani-
folds are also determined as constraints of non-conservative synergetical system. In
synergetical control theory [8] transition from natural, unsupervised behavior according
to algorithms of dissipative structure to control motion IP along artificially in putted
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demanded invariant manifolds. As a control object of synergetical system always
nonlinear its dynamics may be described by nonlinear differential equations. In case of big
dimension the parameters of order are introduced by revealing most slow variable and
more quick subordination variables. This approach in hierarchical synergetic system is
called subordination principle. So at lower hierarchy level processors go with maximal
velocity. Invariant manifolds are connected with slow dynamics.

Section 1 is devoted to probabilistic modeling problems in typical StS. Special
attention is paid to hybrid systems. Such specific StS as linear, linear with the Gaussian
parametric noises and nonlinear reducible to quasilinear by normal approximation
method. For quick off-line and on-line application theory of conditionally optimal
forecasting in typical StS is developed in Section 2. In Section 3 basic off-line algo-
rithm of probability modeling in SOTES are presented. Basic conditionary optimal
filtering and forecasting quick — off-line and on-line algorithms for SOTES are given in
Section 4. Peculiarities of new SOTES generalizations are described in Section 5.
Simple example illustrating the influence of SOTES-N noise on rules and functional
indexes of subsystems accompanying life cycle production, its filtration and forecast-
ing is presented in Section 6. Experimental software tools for forecasting of cost and
technical readiness for aircraft parks are developed.

2. Probabilistic modeling in StS
Let us consider basic mathematical models of stochastic OTES:
* continuous models defined by stochastic differential equations;
* discrete models defined by stochastic difference equations;
* hydride models as a mixer of difference and differential equations.

Probabilistic analytical modeling of stochastic systems (StS) equations is based on
the solution of deterministic evolutionary equations (Fokker-Plank-Kolmogorov,
Pugachev, Feller-Kolmogorov) for one- and finite dimensions. For stochastic
equations of high dimensions solution of evolutionary equation meets principle
computationary difficulties.

At practice taking into account specific properties of StS it is possible to design rather
simple stochastic models using a priori data about StS structure, parameters and stochas-
tic factors. It is very important to design for different stages of the life cycle (LC) models
based on available information. At the last LC stage we need hybrid stochastic models.

Let us consider basic general and specific stochastic models and basic algorithms of
probabilistic analytical modeling. Special attention will paid to algorithms based on
normal approximation, statistical linearization and equivalent linearization methods.
For principally nonlinear non Gaussian StS may be recommended corresponding
parametrization methods [9].

2.1 Continuous StS

Continuous stochastic models of systems involve the action of various random
factors. While using models described by differential equations the inclusion of
random factors leads to the equations which contain random variables.
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Differential equations for a StS (more precisely for a stochastic model of a system)
must be replaced in the general case by the Equations [9, 10].

Z=F(Z,x,t), Y=G(Z1), (1)

where F(z,x,t) and G(z,t) are random functions of the p-dimensional vector,
z,n-dimensional vector x and time ¢ (as a rule G is independent of x). In consequence
of the randomness of the right-hand sides of Eq. (1) and also perhaps of the initial
value of the state vector Zy = Z(to) the state vector of the system Z and the output Y
represent the random variables at any fixed time moment ¢. This is the reason to
denote them by capital letters as well as the random functions in the right-hand sides
to the Eq. (1). The state vector of the system Z(¢) and its output Y () considered as the
functions of time ¢ represent random functions of time ¢ (in the general case vector
random functions). In every specific trial the random functions F(z,x,t) and G(z,t)
are realized in the form of some functions f (2, x,¢) and g(z,t) and these realizations
determine the corresponding realizations z(t), y(¢) of the state vector Z(t) and the
output Y (z) satisfying the differential equations (which are the realizations of Eq. (1)

z=f(zx1), y=gz1).

Thus we come to the necessity to study the differential equations with random
functions in the right-hand sides.

At practice the randomness of the right-hand sides of the differential equations
arises usually from the fact that they represent known functions some of whose
arguments are considered as random variables or as random functions of time ¢ and
perhaps of the state and the output of the system. But in the latter cased these
functions are usually replaced by the random functions of time which are only
obtained by assuming that their arguments Z and Y are known functions of time
corresponding to the nominal regime of system functioning. In practical problems
such an assumption usually provides sufficient accuracy.

So we may restrict ourselves to the case where all uncertain variables in the right-
hand sides of differential equations may be considered as random functions of time.
Then Eq. (1) may be written in the form

Z=f(Z,x,Ni(t),t), Y =g(Z,N,(t),t), )

where f and g are known functions whose arguments include random functions of
time N1(¢) and N (¢). The initial state vector of the system Z in practical problems is
always a random variable independent of the random functions N;(¢) and N»(t)
(independent of random disturbances acting of the system).

T

- T, 7T . T T
Every realization {nl(t) n,(t) } of the random function {Nl(t) N, (t) ] deter-

mines the corresponding realizations f (z,x,71(t),t), g(2,%2(t),t) of the functions

f(z,x,N1(t),t), g(2, N2(t),t), and in accordance with this Eq. (2) determine respective

realizations z(t) and y(¢) of the state vector of the system Z(¢) and its output Y (z).
Following [9, 10] let us consider the differential equation

dX/dt = a(X,t) + b(X,1)V, (3)

where a(x,t), b(x,t) being functions mapping R? x R into R? and R4, respec-
tively, is called a stochastic differential equation if the random function (generalized)
V(t) represents a white noise in the strict sense. Let X be a random vector of the same
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dimension as the random function X(¢). Eq. (3) with the initial condition X(to) = X,
determines the stochastic process (StP)X(z) .

In order to give an exact sense to Eq. (3) and to the above statement we shall
integrate formally Eq. (3) in the limits from ¢ to ¢ with the initial condition
X(to) = Xo. As result we obtain

X(t) =Xo + Jﬂ(X(T),T)dT + Jb(X(T),T)V(T)dT

where the first integral represents a mean square (m.s.) integral. Introducing the
StP with independent increments W (¢) whose derivative is a white noise V(t) we
rewrite the previous equation in the form

X)) =Xo+ Ja(X(r), 7)dr + Jh(X(T)’ 7)dW (7). (4)

to to

This equation has the exact sense. Stochastic differential Eq. (3) or the equivalent
equation

dX = a(X,t)dt + b(X,t)dW (5)

with the initial condition X (¢¢) = X, represents a concise form for of Eq. (4).

Eq. (5) in which the second integral represents a stochastic Ito integral is called a
stochastic Ito integral equation and the corresponding differential Eq. (3) or (5) is
called a stochastic Ito differential Eq.

A random process X (¢) satisfying Eq. (4) in which the integral represent the m.s.
limits of the corresponding integral sums is called a mean square of shortly, an m.s.
solution of stochastic integral Eq. (4) and of the corresponding stochastic differential
Eq. (3) or (5) with the initial condition X(z¢) = Xo.

If the integrals in Eq. (4) exist for every realization of the StPW(¢) and X (t) and
equality (4) is valid for every realization then the random process X(t) is called a
solution in the realization of Eq. (4) and of the corresponding stochastic differential
Eq. (3) and (5) with the initial condition X () = X.

Stochastic Ito differential Egs. (3) and (5) with the initial condition X(to) = Xo,
where X is a random variable independent of the future values of a white noise
V(s), s >to (future increments W(s) — W(t), s>t>to, of the process W) determines
a Markov random process.

In case of W being vector StP with independent in increments probabilistic

modeling of one and #-dimensional characteristic functions g; = = Ee'"'Z0) and
g, =Eexp {i>;_;4{Z(t;)} and densities f, and f,, is based on the following
integrodifferential Pugachev Eqgs:

agléi;t) :(271z)1” J J [“T“(Z,t)ﬂ (b(zit)%tﬂ g (s t)dpdz,  (6)

—00 —o00
oo
—oo

n
X exp {i (/IZ _ﬂZ)ZK}gn(Ml» e s U3 By wee s B )Apes e s Apiy3dze, ... A2y,
=1

oo oo

8

7]
wign(/lla ~~~7ﬂfn;tl) -~~a Znat}’l +}((b(znatn)T/1natn):|
n

8—‘

%)
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afl

7 T T a(g,t) +)(< (C,t)TA;r)}eMT@*Z) fF(Gndcds,  (8)

a%fn(zl, s Enits ...,tn)z(zj)np ]o T[Mza(gn,tn)+x(b(§n,tn)mn;tn)}

)
X exp {z > (& —zk)}fn(cl, s Cnsthy s tn)AC1y oA 3 A,y oy,
k=1
f Z; to fO (10)
where i being imaginary unit,
1 ahl(/l;t) (11)

x(ust) = >
(s1) hi(ust) ot
fn (Zl’ v 3Zn—153n3815 e stn—1, tn71> = fn_l(zl’ w3 Zp—15015 ey tn,]_)é(zn - anl)'
(12)
For the Wiener W StP with intensity matrix v() we use Fokker-Plank-Kolmogorov

Egs:

. T '
Tap = et )]+1t{dang( ObE foE0r (13)

at initial conditions (12).

2.2 Discrete StS

For discrete vector StP yielding regression and autoregression StS

Xk+1 = Cl)k(Xk, Vk) (k = 1a 2, oo ), (14)
Xpi1= ak(Xk) —|—bk(Xk)Vk (k =1,2, .. ) (15)

Egs for one and # dimensional densities and characteristic functions are described by:

1) = G | €L (0) = Bexp (1470}, (16)

1 o
Ll g, (15 w5 X) = )? J { Zflhxh}gk (s s )ty sy s

(17)

L Eexp{ Zzl xk,} (18)

£p1(4) =Eexp {zﬂwk X, Vi) = J J gt o (x, “ (5)hy, (v)dxdo, (19)

44



Methods of Conditionally Optimal Forecasting for Stochastic Synergetic CALS Technologies
DOI: http://dx.doi.org/10.5772 /intechopen.103657

=1

Ehrro o (M, oo s Ay) = Eexp {iZ/llTxkl + ileCz)kn Xk, » Vk”)}

= J J J exp{ Z/Ihxh +zi @y, (%u5 On) }fk1 x1, e s X ), (0,)dxq .. dxy, doy,.

(20)

Here E being symbol of mathematical expectation, /;, being V), characteristic
function

gkl,._,,knfl,knfl(/h, . :;ln) =&k, .. kn,1()“1’ s Anc1 JF/ln);

(21)
Gl oy P15 oo ln) =& (s s ),

where (s1, ...,$,) — permutation of (1, ...,n) at ks, <k, < ... <Kks,.
In case of the autoregression StS (1.14) basic characteristic functions are given by
Egs:

Zip1(M15 s An) = Eexp {id"ay,(xp) + A be(Xp) Vi }

oo oo

- J JeMT“’e( a0 £ (e (0 )dxdu:E[exp {mTak(Xk)}+hk(bk(xk)%)},

—00 —00

(22)

-

n—

Zir g, (W15 s A) = Eexp {i Mg, +idlay, (Xy,) +iAlby, (Xk,,)Vk,,}
I

Il
N

oo

J J J exp {z /1 xHrM a, xn)Jrz/l by, (%) n} (23)

h=1

—o00 —

[exp {z Mxp, +idlay, (X, )} + hy, (bn(Xn)T,ln)l.
=1

2.3 Hybrid continuous and discrete StS

When the system described by Eq. (2) is automatically controlled the function
which determines the goal of control is measured with random errors and the control
system components forming the required input x* are always subject to noises, i.e. to
random disturbances. Forming the required input and the real input including the
additional variables necessary to transform these equations into a first-order equation
may be written in the form

X=X, U,1), U=w(X,Z,U,Ns(t)t) (24)

where U is the vector composed of the required input and all the auxiliary vari-
ables, and N3(t) is some random function of time ¢ (in the general case representing a
vector random function). Writing down these equations we have taken into account
that owing to the action of noises described by the random function N3(t), the vector
U and the input X represent random functions of time and in accordance with this we
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denoted them by capital letters. These equations together with the first Eq. (2) form
the set of Eqs

Z =f(Z,X,N1(t),1), X = »(X,U,t), U= w(X,Z,U,Ns(t),t).

These equations may be written in the form of one equation determining the
T
extended state vector of the system Z; = [Z"X"U"] :

Zl :fl(Zl,N4(t),l')

where N,(t) = [N:(0)"N5(0)"] , and

F1(Z1,Nalt), £) = [ FZXNLT 9%, U8 w(X,2,U,N3,t)"]

As a result rejecting the indices of Z; and f; we replace the set of the Egs. (2) and
(24) by the equations

Z= f1ZuNu(0),1), Y =g(Z,Na(0), 1),

In practical problems the random functions N1(t) and N, (t) are practically always
independent. But the random function N3(¢) depends on N;(¢) and N,(¢) due to the
fact that the function 4(Y,t) = h(g(Z, N2(t),t),t) and its total derivative with respect to
time ¢ enter into Eq. (24). Therefore, the random function N;(¢) and N4(t) are depen-

T
dent. Introducing the composite vector random function N(¢) = |N;(t) N, (t)"N 3(t)T}

we rewrite the equations obtained in the form
Z=f1(ZN@),t), Y =g(Z,N(),1). (25)

Thus in the cased of an automatically controlled system described by Eq. (2), after
coupling Eq. (2) with the equations of forming the required and the real inputs we
come to the equations of the form of (23) containing the random function N(t).

If a control StS based on digital computers we decompose the extended state vector

T
Z into two subvectors Z', Z", Z = {Z’TZ” T} one of which Z' represents a continu-

ously varying random function, and the other Z" is a step random function varying by
jumps at prescribed time moments t*) (k = 0,1,2, ...). Then introducing the random
function

Z'(6) =) Z1a, (1)
k=0

and putting Z}, = Z'(t%)) (k = 0,1,2, ...) we get the set of equations describing the
evaluation of the extended state vector of controlled

A :f(Z’N(t)’t)’ Z;e/+1 = Wk(ZkaNk) (26)

where N, (k = 0,1,2, ...) are some random variables, and N(¢) some random
function.
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For hybrid StS (HStS) let us now consider the case of a discrete-continuous system

T
whose state vector Z = [Z/TZ”T} (extended in the general case) is determined by the

set of equations

Z =a(Z,t) +b(Z,0)V, Z'= Zz 14,(t), Zj1 = 0(Zis Vi) (27)

where is the value of Z(t) att = t*), 7, = {Z’,ZZ"Z} ' = Z(t<k>) (=0,1,2, ...),
a, b, wy, are functions of the arguments indicated 14, (¢) is the indicator of the interval
Ap = [(Pe#*) (k = 0,1,2, ...), V is a white noise in the strict sense, {V}} is a
sequence of independent random variables independent of the white noise V. The
one-dimensional characteristic function 44 (u; ) of the process with independent
increments W (z) whose weak m.s. derivative is the white noise V, and the distribu-
tions of the random variables V, will be assumed known.

Introducing the random processes

20 szlAk Z0) = [z 0"z 0] .

we derive in the same way as before the equation for the one-dimensional charac-
teristic function

g1(58) = B 20 — Bexp {i2"2/(¢) + 22" (6) +id” 2 (1)}
= Eexp {il’T "(t) + M"TZZ + MWTZ%}

of the StP Z(t)

BAEY) _ g liiTaz,0) + 202075007 ). (28)

Taking the initial moment ¢y = (9 the initial condition for Eq. (25) is

g1(45t0) = E{ (M/T + M”’T)Zg +ir'T g} _ go(w T W} T> 29)

where g (p) is the characteristic function of the initial value Zo = Z(z¢) of the
process Z(t).
At the moment t*) the value of g, (/;2) is evidently equal to

EBexp {i(2"+247" )z, + 2"z} },

T
i.e. to the value g, ( P’T w40 T] ) of the characteristic function g, (p) of the

T
random variable Z;, = [Z”Z Z",ﬂ . If the function y(u;t) is continuous function of ¢ at

any yu the g, (4;t) tends to
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E{iﬂ’TZ§H1 il Tzl +id TZ,;}

when ¢ — t**1 i.e. to the joint characteristic function g} (A, 1",1") of the random

. ! 1 rzl
variables Z), ,,, Z},.7Z),

gy (65 = 0) = lim g,(451) =g (., 2,2°).

g (k1S

(k+1)

At the moment t**Vg, (1;¢) changes its value by the jump and becomes equal to

” ” T
Eexp{i(2"+17") 2 +id" 2 } =g < 2t ] )

To evaluate this, we substitute here the expression of Z;_, from the last Eq. (27).
Then we get

2 (/1 t k+l)) —E exp {i(A’T + A"’T)Z;H il oy (Zs, Vk)}. (30)

Owing to the independence of the sequence of random variables {V},} of the white
noise V and independence of V;, of Vg, Vi, ..., Vj_1 the random variables Z;, and Z, “
are independent of V},. Hence, the expectation in the right-hand side of Eq. (30) is
completely determined by the known distribution of the random variableV}, and by

the joint characteristic function g, (1, 4", 1") of the random variables Z},, 1, Z},, Z,,, i.e.
by g, (ﬂ;t(k“) — 0). So Eq. (26) with the initial condition (27) and formula (28)
determine the evolution of the one-dimensional characteristic function g, (4;t) of the

_ T
process Z(t) = { '0'z'0)z (t)T] and its jump-wise increments at the moments

t® (k=1,2, ..).
In the case of the discrete-continuous HStS whose state vector is determined by Eqs

Z=a(Z,t) +b(Z,t)V (31)

we get in the same way the equation for the #-dimensional characteristic function

. Tt Tt Ty (NT1T
&,(A1, .., Ans3te, ..., t,) of the random process Z(t) = { &) Z"t) Z (¢) } ,

02, (A5 ooy An3 b1y w5 tn) /Oty

_ _ 32

- E[ilZa(Z(tn),tn) +;((b(Z(tn),t,,)TAn;tn)} {iTZ(1) + - +idTZ(t,) ), (32)
And the formula for the value of g, (11, ..., An;t1, ..., ts) att, = gkt >

2 (11, s In3 Ty ,tnfl,t(“”) = E{iﬂfz(tl) + e ik 1 Z(tn 1) (33)

+i(A + ") Z o + i) o (Zg, Vi) }
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At the point ¢, = t(kH)gn (M5 s dnst1, ..., t,) changes its value by jump from

g (21, A3ty s tug, 85T — 0) = E{Mff(tl) e iy 1 Z(tna) 2 Zgig
+idTZ) + M;;'nge}

t0 g, (A1, s dn3t1s wor s ta_1,2*V) given by (33).
The right-hand side of (33) is completely determined by the known distribution of

the random variable V, and by the joint characteristic function
2, (M5 ey Ans b1, oo sy, £%TY — 0) of the random variables

Z(t1)5 w2 (tn-1)Z} 1,2y, Z),. Hence, Eq. (32) with the corresponding initial condi-
tion and formula (33) determine the evolution and the jump-wise increments of

g,(A1, ..y Ap3te, ... t,) at the points t*#+1) when ¢, increases starting from the value z,_;.

2.4 Linear StS
For differential linear StS and W being StP with independent increments V = W
Z =aZ+ao+bV (34)

corresponding Eqgs for z#-dimensional characteristic function are as follows:
B 1T %o 4 [T T
o = Aralen) S+ [idTao(t) + i (b(6) husta g, (35)

Explit formulae for n-dimensional characteristic function is described by formulae

n

gnu’l’ v s Ans b1, ...,tn) =¥ (Z (tk,to ) exp Z/lk J tk, ao(T)d’l'

k=1

(36)

1=k

+i J x(h(r)Tiu(tl,f)Tz,;T>dT} n=12,..).
k=1 fos

Here u = u(ty, r) being fundamental solution of Eq # = au at condition: u(t,t) = I
(unit (n x #) matrix).
In case of the Gaussian white noise V with intensity matrix » characteristic
function g, is Gaussian
n
g, (A5 s Ansta, s ty) :g0< u(ty,to)” ) exp Z/Ik J u(te, 7)ao(7)de
k=1
" min (¢,1,) (37)
1
71;1 Al u(ty, )b () (0)b () uty, 0)Tdedy p (n=1,2, ...).
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2.5 Linear StS with the parametric Gaussian noises

In the case of StS with the Gaussian discrete additive and parametric noises
described by Eq

P
Z=aZ+ay+ (bo + thzh> V. (38)

h=1

we have the infinite set of equations which in this case is decomposed into
independent sets of equations for the initial moments a;, of each given order

r r
QG = g ke, Ay, 00 —c, + E Ar,e, Ohe+e;—e,
r=1 q=1

1 p
+§Zk”(k7’ 1) <6W 0%—2e, +Zgweqak+eq 2, T Z Orrieqg+e, Ck+eg+e,— 2137)

q=1 q,u=1

r p-1 b4
+§ ke kg Oys5,00k —e, —e; +§ Ors,eq Cheteg—er—e + E Ors,eq+eu Mktey+e,—e,—e; |

r=2 s=1 q=1 g,u=1
(39)
A0 = A0ps  re, =drg (b1, o Ry =0,1,2, .5 o(k) =1,2,....).
Corresponding Eqs of correlational theory are as follows:
m = am + ao; (40)

K = aK + Ka" + bovb, + Z (bivbg + bovby, )mo + Z byvb] (mymy + ky).  (41)
h=1 hy1=1

where &y, is the covariance of the components Z;, and Z; of the vector
Z (h1=1, ..,p). Eq. (41) with the initial condition K (t,) = K, (kpq (to) = kgq)
completely determines the covariance matrix K(t) of the vector Z(¢) at any time

moment ¢ after funding its expectation .

For discrete StS with the Gaussian parametric noises correlational Eqs may be
presented in the following form:

v
Kies1 = apXp + a0 + (boz + Zbijkj> Vi, (42)
=i
M1 = apmy, + dogs Mk = EYy, (43)

p
Ky = akKka,Z + bo/evkbgk + Z (bokl)lb & b; kvlhOk)m]k

j=1
rp r (44)
+ Z ijkvkbhk MM, + kk]h)
j=1h=1
Ky =E(Y1—m)(Y1 —mi)’,
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K(j,h+1) =K(j,h)a,, K(j,j)=K. (45)
2.6 Normal approximation method
For StS of high dimensions methods of normal approximation (MNA) are the only
used at engineering practice. In case of additive noises b(x,t) = bo(t) MNA is known

as the method of statistical linearization (MSL).
Basic Eqs of MNA are as follows [9]:

1
g2,(15t) ~ exp {i/let - EATIQA},

1 (46)

Fawst) (e L) exp {5 (67 = mT ) m)
my = ¢1(mt11<t,t) m(to) = mo, ¢1(mt’1<tat) = E,/\fa(Yt)t)’ (4‘7)
K, = ¢y(my, Kiyt)  K(to) = Ko, (48)

@2(me, Kiyt) = g (e, Kiyt) + 0oy (me, Ky t)' + @ (my, Ko 1),
@2 (my, Ki,t) = Eya(Xy, )(XtT - mtT>’§022(Wlt, Ky,t) = ENb(Xt’t)U(t)b(Xt’t)T’
oK (t1,¢
(02?7122> K(t1,12)K(t2)~ 1¢21(m’(t2)1<(t2)’(t2)T’
(49)
1op— —
£,(M5 s Ans e, osty) = exp {ixlen - E/ITI n/l} (n=12,..),

— 1 —_
£ (81s coes X3 By oy ly) = {(277:)"|K,,| 2 exp {E (& —m!)K, " (x, — m,,)} n=12, ..),

, (50)
2= [T = [me(0) ()" mlen) ]
K(t1,t1) K(t1,t5) ... K(tatn)
- K(ts,t1) K(tstsy) ... Kltot, (51)
K, = (2 ) (2 2) ) (2 ) ,where X, = [xlTx;xz;]T
K(ty,,t1) K(ty,t2) ... K(tn,tn)
Eq. (49) may be rewritten in form
0K (t1,¢
% = p3(K(t1,12),t1,12) (52)
2
where
2ny |77 -1/2 I
@3(K(t1,12), 11, 12) = [(27)™™ K| J J —my,)@(x2,12)
X exp{ (xTxT) —mD)K, " (xTxT) — )}dxldxz; (53)

T _ I((tl, t1> I((tl, tz
My = [mz; Z;} ; K=
I((tz, tl) K(tz, tz)
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For discrete StS equations of MNA may be presented in the following form:

miy = Eyoy(X, Vi) mi=EX; (I1=1,2), (54)
Kiy1 = Exan(Xp, V) (X, Vi) — Exan (X, Vi) Eyan (X, Vi), (55)

at conditions

Ky = Ex (X1 —my) (X1 —m1) (1 =1,2),
K = ExXi04 (X, Vi)' = miEpran (X, Vi)', (56)
Ky=K, at I<h(h=12,..), K =K1 =Kh,1) at I<h.

Corresponding MNA equations for Eq. (15) are the special case of Egs. (54)—(56).

3. Conditionally optimal forecasting in StS

Optimal forecasting is well developed for linear StS and off-line regimes [9]. For
nonlinear StS linear StS with the parametric Gaussian noises and on-line regimes
different versions approximate (suboptimal) methods are proposed. In [9] general
results for complex statistical criteria and Bayes criteria are developed. Let us consider
m.s. conditionally optimal forecasters for StS being models of stochastic OTES.

3.1 Continuous StS

Conditionally optimal forecasting (COFc) for mean square error (mse) criterion
was suggested by Pugachev [10]. Following [9] we define COFC as a forecaster from
class of admissible forecasters which at any joint distributions of variables X (state

variable) X, (estimate of X,), Y; (observation variable) at forecasting time A >0 and
time moments ¢ >ty in continuous (differential) StS
dXt = ﬂ(Xt, Yta t)dt + b(Xt, Yt’ t)dWl, dYt = ﬂl(Xt, Yta t)dt + bl(Xt) Yt) t)sz
(57)

(W1, W5, being independent white noises with the independent increments;
@@y, being known nonlinear functions) gives the best estimate of X A at infini-

. . .. .. 5 S 2
tesimal time moment s >¢, s — t realizing minimum E|XS — X;+A| . Then COFc at
any time moment ¢ > ¢ is reduced to finding optimal coefficients a;, ,, y, in the
following Eq:

dX, = a&(X;, Yo, t)dt + pin(Xy, Yo, t)dY, + y,dt. (58)

Here ¢ = f(Xt, Yi,t),n= ;1(5(}, Y,,t) are given functions of current observations Y7,

estimate X, and time ¢.
Using theory of conditionary optimal estimation (13, 17, 18) for Eq

dXein = a(Xeva,t + A)dt + b(Xeia,t + A)dW1(t + A). (59)

we get the following Eqgs for coefficients a;, 3,, 7,
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aymy + ﬂtmz + }/t = mo, mo = Ea(Xtr Yt; t); my = Eg(Yt!Xt+A) t))

. (60)
m, = En (Yt,XHA, t)al(Xt, Y, 1),
B = Koakyss Koz = E(Xt —Xt+A)a1(Xt, Yt,t)Tn(Y,,XHA,t)T 61)
+EB(Xy, Vi tW(e)b1(Xs, Yoo ) T (Vs Ko art)
k2 = B(Ye, X0, 8)b1(Xe, Yo 0(0)b1(Xe, Yoo ) (Vi K ar2) )

S T
+Eb(Xe, Yo, t)o(6)b1 (X, Yo t)Tﬂ(Yt,XH-A, t)

at condition (det x5, # 0).

The theory of conditionally optimal forecasting gives the opportunity for simulta-
neous filtering of state and identification of StS parameters for different forecasting
time A. All complex calculations for COFc design do not need current observations
and may be performed on a priori data during design procedures. Practical application
of such COFc is reduced to Eq. (58) integration. The time derivative for the error
covariance matrix R; is defined by formulae

. . T
R, =E [(Xt+A — X:)a(Xriat + A +a(Xeart+A) (XtT+A -X, )

~ - T
— P (Yt’ Xeins t)bl(Xt: Yi, t)v2(t)b1(Xy, Vs, t)Tﬂ(Yn Xivas t) ﬂtT (63)

+b(Xt+A,t + A)Ul(t + A)b(Xt+A,t + A)T

Mathematical expectations in Eq. (60)—(63) are computed on the basis of joint

rar 7T
distribution of random variables [XIT XL\, YT ,XtT XtT+ A} by solution of the following

.. . ~71T
Pugachev Eq for characteristic function g, (41, A2, 43, i1, iy, 35 ¢, s) for StP [XtT YtT X, }
ats>t:

08, (A, Aoy A3, pias o 33 1,5) /05 = E{w%(YJ,Xﬂs) +iuy a(X;,s)

+ lﬂ; [(X;cf(Y;, Xs,s) + ﬂ:"](YuXx’ 5) + 7;]

+)(<b1(Y:»X:a5)Tﬂ1 +b(Xs, ),
T o A\ oT
+b1(Ys,Xs>5) W(YS,XnS) /}5 /"3;5>}

X exp {u{Yﬁ iAX, + i X, il Y+ ipd X+ ngf(:}.
(64)
at condition
8> (A15 20, A3, g5 s 33 s t) = g1 (A1 + pgs Ao + s A3 + 33ty ). (65)
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Basic algorithms are defined by the following Proposals .3.1.1-3.1.3.

Proposal 3.1.1. At the conditions of the existence of probability moments (60), (61)
nonlinear COFc is defined by Eqgs. (58) and, (63).

Proposal 3.1.2. For linear differential StS

dX, = (X, +ag)dt +bdW1, dY, = (bY,+ b1 X; + bo)dt + b1dW,. (66)
Eqgs of exact COFc ave as follows:

dX, = [a1(t + A) (e X1 +he) +ao(t + A)|dt + ey, [AY, — (bX1 +bo)dt].  (67)

& =a(t+ A)e — ga. (68)

hy = a1t + A) — eag + ar(t + A)h,. (69)

Ry = ai(t + AR, + Ruax(t + A)" — f,(b1wab] )BT +wy(t + A)r(t + A)ba(t + A

(70)
In case of the linear StS with the parametric Gaussian noises:
Nx
dXt == (ﬂlXt + ﬂo)dt + <610 + ZCl,ny+yXy> dWl,
r=1 (71)

r=1 r=1

ny Ny
dY; = bY; + b1X: + bo)dt + (Czo + ZCZVYV + ZCZV,nerVXV) dW,.
COFc is defined by exact Eqs (Proposal 3.1.3):
dX, = [a1(t + A) (eX1 + k) +ao(t + A)|dt + epy, [dY, — (bX1 +bo)dt].  (72)

ét = ﬂl(t + A)gt — &a1, ht = ﬂo(t + A) — &ado + ﬂl(t + A)ht, (73)

Ry =a1(t + AR, + Ry (t + A)"

Ny +1y Ny +1y
T T
€20 + Coymy 01| €50 + C5, My

P

r=1 r=1

Ny +1yx

E T
+ Cerlczgkrs

r=1

"y 1y

B+ [clo t+A)+ Z e (t + A)m, (t + A)] vy(t+ A)

r=ny+1

X [clo(t +a)" + nyz cr(t 4 A)'m, (¢ + A)]

r=ny+1
"y 1y
+ D et + Aa(t + Aess(t + A) k.
r=ny+1

(74)

For nonlinear StS in case of the normal StP X,, Y;, X, Egs of normal COFc (NCOFc)
are defined by Proposal 3.1.1 for joint normal distribution.
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3.2 Discrete and hybrid StS
Let us consider the following nonGaussian nonlinear regression StS
Xir1 = 0(Xies Vi), Vi = 00X, Vi, Vi) (k=1,2...). (75)

In this case Eqs of the discrete COFc are as follows:

Xieri1 = 06 (X X)) + 7 (76)
8k = DBy 7k = Miiris — Sepps (77)
Mitri1 = B0 (Xitrs Vierr), (78)

P =BG (X X1),  Br=E[G(Xi Xi) — i) G (X X)
Dy = E[0sr(Xiesr> Vierr) — Miesri1) S (02 (Xk,Xk))T, (79)
Dogssr (1> d2s 1) = B{iA X + i3 Xy + i X}, (80)
82k etr+1 (A1, A2, 1) = EeXP{M{Xk + M;wkw(XkJm Viewr) + iﬂTXk} (81)

at initional condition

Eope (s das 1) = g4, (A + Ao, ). (82)

So for the nonlinear regression StS (14) we get Proposal 3.2.1 defined by
Egs. (75)-(82).

In case of the nonlinear autoregression discrete StS (15) we have the following Eqs
of Proposal 3.2.2:

Xiy1 = ap(Xe) + b1 (Xe) Vi, Yi = ae(Xpe, Yie) + b1 (Ye) Vi, (83)
Xirri1 = %y (Xk) + B (Xk)yk + ks (84)
k k k) /< k
oy + Bty = ks iy (Xi) + By = ki, (85)
k k) (< k k
ne=py " —apl (Xe) — Bt = ks (86)
/)E)k-w-ﬂ) = EakJrr(XkJrV)’ (87)
®T (T]T k 5 k B

=TT A =Ba ), P = B (R (X, (88)

B
Be=| o 2|, detlBil #0, (89)

B

1 Kp»

& =E[a®) - o ]a )

K(é) = Kgi) = E{fk (Xx) —ﬂgk)}ﬂlk(Xk)Tnk (Xk)T,

Ky =E [’lk (X )aw (Xp) Pge)}ﬂik(xk)T'?k (Xk)" + En (X0 bus (X Joubae (X0) e (X3
(90)
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D, = {ngl) Kg;):|, (91)

k%) = Blap (Xe) — mi 16 (%)

(k) T (T T s \T ©2)
K3 = Elae(Xe) — mpsa)ane(Xe) me (X)) + Ebue(Xi)veb1e(Xe) me (Xi)
m1 = pl, p) = Eay(Xy), EVy = 0, EViV] = (93)

Analogously we get from Proposal 3.2.2 COFc for discrete linear StS and linear
with the Gaussian parametric noises. For hybrid StS we recommend mixed algorithm
based on joint normal distribution and Proposal 3.1.1.

3.3 Generalizations

Mean square results (Subsection 2.1 and 2.2) may be extended to StS described by
linear, linear with the Gaussian parametric noises and nonlinear Eqs or reducible to
them by approximate suboptimal and conditionally optimal methods.

Differential StS with the autocorrelated noises in observations may be also reduced
to differential StS.

Special COFc algorithms based on complex statistical criteria and Bayesian creteria
are developed in [11].

4. Probability modeling in SOTES

Following [3, 4] let as consider general approach for the SOTES modeling as
macroscopic (multi-level) systems including set of subsystems being also macro-
scopic. In our case these sets of subsystems will be clusters covering that part of MP
connected with aftersales production service. More precisely the set of subsystems of
lower level where input information about concrete products, personal categories etc.
is formed.

For typical continuous-discrete StP in the SOTES production cluster we have the
following vector stochastic equation:

dX; = [p(X;,t) + S)p(Xy, t))dt + S(v)dP°(t). (94)

Here P°(t) being the centered Poisson StP; p(X;,t) being (1, x 1) intensity of
vector of StP P(t), p(Xi,t) = [p12(Xe» £)p13(Xes £) e pre Xir )] 75 P (X1 1) being intensi-
ties of streams changes of states; ¢(X;,t) being continuous (np X 1) vector function of
quality indicators in OPB; S(v) being (1, x 7,) matrix Poisson stream of resources

(production) with volumes v according to the SOTES state graph. Analogously we get
corresponding equations for SOTES-O and SOTES-N:

dY, = [q(Xe,t) + @1(Ye, 1) + D(r)y(Ys,0)lde + D(r)dP? (1), (95)
d¢, = [pa(Es1) + CO)u(&,s 1))dt + C(9)dP3 (t), (96)

where ¢, and ¢, being vector functions quality indicators in OPB for the SOTES-O
and the SOTES-N; D(r) being structional matrix of resources streams in the SOTES-N
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matrix; y(Y;,?) and D(r) being the intensity function and vector of P{(¢) jumps in the
SOTES-O.

In linear case when p,; (X;,t) = A,X; Egs. (94)-(96) for the SOTES, SOTES-O and
the SOTES-N may be presented as

dX; = a(t,v)Xdt + S(v)dP° (), (97)
AY; = b(r,t)Ydt + A(Yy,£)X; + D(r)dP°(t) + w (t)dE,, (98)
d¢, = 6(9,8)¢,dt + C(8)dP) (¢). (99)
Here notations
Bl(r, t) =bi(t) + A,(r,t), ©2(9,t) =c2+Au(,1). (100)

A,(r,t), Au(8,t) are derived from Eqgs:
D(r)y(Ye,t) = Ay (r,0) Ve, COu(Erst) = Au(9, )¢ (101)

At practice a priori information about SOTES-N is poor than for the SOTES and
SOTES-O. So introducing the Wiener StP W (), W1(t), W, (t) we get the following Egs:

dX; = (@X; +a1Y; + ao)dt + S()dP° (t) + v/ (t)dW (t), (102)
dY: = (qX, +b1Y; + byl + bo)dt + D(r)dPy(t) + y(t)dS, + wi(t)dW (), (103)
dg, = (€28, + co)dt + C(9)dP3 (1) + w3y (1)dW (1) (104)

R em ark4.1. Such noises from OTES-N may act at more lower levels OTES-O
included into internal SOTES being with minimal from information point of view
maximal. For highest OTES levels intermediate aggregative functions may be
performed. So observation and estimation systems must be through (multi-level and
cascade) and provide external noise protection for all OTES levels.

Remark4.2. As arule at administrative SOTES levels processes of information
aggregative and decision making are performed.

Finally at additional conditions:

1. information streams about OPB state in the OTES-O are given by formulae
Y, =G(Ty) + Ty (105)

and every StP G,(T,) is supported by corresponding resource (e.g. financial);

2. for SOTES measurement only external noise from SOTES-N and own noise due
to error of personal and equipment are essential.

We get the following basic ordinary differential Eqs:

X, = aX; +a1G, +ag +y, Vo = Ly, 2 (106)
G, = q(Tw)X, +bat, +x,Va =L, (107)
Z::t =08 +co+x:Va =L, (108)
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Ty = bX; +b1Ty +bo +y, Vo = Lr. (109)

T
Here V(1) = [VZ(t) VgT(t)VCT(t)VE;(t)} being vector white noise, dimVq(t) =
((nx +ng +np+ nts) X 1) , MVgq(t) = 0, with diagonal block intensity matrix vg =

)
diag{ [vx] [v] o] [vss] }> dimo, (£) = (e x 1), dimw, () = (1, x ng), dimoe(r) =
(ne X ng), dimog(t) = (s X 10g), Yy» s X Xt being known matrices:

Ve = SOWVel) + ¥ OV, Vg —pa@Ve + V4OV, Ve = CO)Vya + vh0) Vs
(110)

. . O . O . .
Vp=Pot), Vppi=P,(t), Vpp=P,(t), Ve=Vp, Vw=W({), Vwi=Wit),
Vwz = Wa(t).

(111)

Remark4.3. Noises Vp, Vp1, Vp; (random time moments of resources or
production) in are non-Gaussian noises induced by Poisson noises in the OTES,
OTES-O, OTES-N, whereas noises Vi, Vw1, Vw2 (personal errors, internal noises)
are Gaussian StP.

From Egs. (110) and (111) we have the following equivalent expressions for
intensities of vector Vq(t):

Ux = S(U)EST (v) + l///le//Ti Vg = WlU{WT + l//lﬂ)Wll//,lT’ (112)
ve = COECT (9) + whowawy, v =D(r)7D"(r).

Here the following notations are used: S(v)pS” (v), C(9)aC” (9), D(r)7D” (r) being
intensities of nonGaussian white noises S(v)Vp(t), D(r)Vpi(t), C(9)Vp(2): p =
E[diagp(X;,t)],7 = E[diagy(Y,,t)], u = E[diagu({;,t)] being mathematical expecta-
tions of intensivity diagonal matrices of Poisson streams in the SOTES, SOTES-O,
SOTES-N; vw, vw1, vw, being intensivities of Gaussian white noises Vi, Vi1, Via.
Note the difference between intensity of Poisson stream and intensity of white noise.

In case of Egs. (106)-(109) with the Gaussian parametric noises we use the fol-
lowing Egs:

X, = Lx + (aX, + @1G,) Vg, (113)
G =Lg+ (th n Ezg) Vo, (114)

¢ = Le+ &4, Vo, (115)
Ty =Ly + (EXt n ElTﬂ) Va, (116)

where bar means parametric noises coefficients.
At additive noises Vg presenting Eqgs. (113)-(116) for Z, = [X; G, ¢, Tst]T in form
of MSL:

Z, = Bo(m?, K%, t) + By (m?, K%, 8)Z, + B (m?, K%, 1)V, (117)
we get following set of interconnected Eqs for mZ, K5:
e = Bo(m?,K;,t), m(to) = m}, (118)
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K, = By (m?, K2, 0)K? + KZBy (m?, K2,1) " + B (m?, K2,0)08B (m?, K2,1) T, KE(to) = K5,
(119)

Eq for K*(t1,1,) is given by (49).

5. Basic SOTES conditionally optimal filtering and forecasting algorithms

Proposal 5.1. Let SOTES, SOTES-O, SOTES-N being linear, satisfy Eqs. (102)-(104)
and admit linear filter of the form:

};{t = (EXt +a1G; + ﬂO) + 5, [Gt - (tht + bZCt)] ) (120)

where coefficient ¢, in (120) does not depend upon T';. Then Eqs of optimal and
conditionally optimal filters coincide with the Kalman-Bucy filter and may be
presented in the following form:

XZ‘ - EXI; + ﬂ]Gt + ao + thzvgl [Z - (tht + bZCt)] (Zt - Gt)! (121)
R, = @R, + Ria" +vx — Rq; v, 'q,R;. (122)

Proposal 5.2. At condition when measuring coefficient q, depends upon 2, = A(T,t)
and admit statistical lineavization

AT, t) % Ao (M, Kty 1) + A1 (m, Ko, ) T,
)*0 (mxb I<Sta t) - M[A(Tsta t)] x /10 (mst; I(Sb t)) ;Ll (mxh I<St) t) ~ O (123)

sub- and conditionally optimal filter Eqs are follows:

X, =X, +a1G, + ao + Rqqo(ms, Ka) 0, {Zs — [qo(ma, Ka)Xe + b2G] ), (124)
Ry = @R, + Rid + vx — Rigo(ma, Kyt )v, 'q/ (mt, Kot )R:. (125)

R em ark5.1. Filtering Eqs defined by Proposals 5.1 and 5.2 give the m.s. square
optimal algorithms nonbias of X, for OTES at conditions of internal noises of measur-
ing devices and external noise from OTES on measuring part of SOTES-O.

Rem ark5.2. Accuracy of estimation X, depends upon not only upon noise ¢,
influencing on measuring signal but on rule and technical-economical quality SOTES
criteria but on line state of resources T,; OPB for SOTES-O.

Using [9-11] let us consider more general SOTES than Egs. (113)-(116) for system

vector X; = [X;G,{,Ty]" and observation vector Y; = [Y1Y,Y3Y,]" defined by Egs:

. . o "y o "y o
X, = (a¥: +arX; + ao) + <clo +> ¥+ ch,nyHXV) v, (126)
r=1 r=1
- — — "y — e —
Zi =Y, = (bY: +biX; +bo) + (cm +3 e, + Zcz,ny+,x,> Vi, (127)
r=1 r=1
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Here a, a0, a1, b, bo, b1and c; (1 =12 j=1, nx)— vector-matrix functions ¢ do

- _ T
not depend from X; = [X; ...X,,X]T and Y; = [Yl Y,,J . Then corresponding
algorithm of conditionally optimal filter (COF) is defined by [9-11]:

X, = (a?t X, + ao) + B, [Zt - (b?t X, + bo)} . (128)

For getting Eqs for f, it is necessary to have Eqs for mathematical expectation m,

T
and covariance matrix K; of random vector Q, = {Xl X Y1 Yny} error

covariance matrix R; for Xt = )L(t - X,. Using Eqs

mt == ﬂmt + ﬂo, (129)
Ny +1y Ny +1y
K, = aK, + K,a" + covel + Z (cove! + cyved)m, + Z covel (myms + k) (130)
r=1 r,s=1
b b b Cor .
<a={ 1}, ﬂOZ{ "}, crz{z] (r:o,ny+nx)), (131)
a a ago C1r

we have the following Eq for the error covariance matrix

-+ 1y
Rbi + <6'10 + 3 cwm)v (Czo + > czT,mr>

Rt = ﬂ]_Rt +Rtﬂ{ -

r=1 r=1

7y
T -1
+ E C1VC5Rys | Ky X X
r,s=1

ny+1y Ny +1y
R/bq + (czo + Z czym7>v (clTO + Z clTrmr>

r=1 r=1

Ny 1y T My 1y Ny 1y Ny 1y
T k T T T k
+ CuVCHRys ++1|cw0+ C1yMy |V Cpo + Cy,My + C1yVC Ry -
r,s=1 i r=1 r=1 r,s=1

(132)
Here
Ny +1y My 1y Ny 1y
K11 = (Czo + CZer>v (cZTO + Z c%}m,) + Z czrvcgkm, (133)
r=1 r=1 r,s=1

me=1[m,) (r=1,(n,+n)),K; =[kys] (r,s= (1, (my+nz)); V being the white
nonGaussian noise of intensity v. Coefficient g, in Eq. (127) is defined by formula

Ny +1y Ny +1y Ny +1y
B, = {RtblT + ((310 + Z clymr>v <62TO + Z czTrmr> + Z Cly'l)(f%;km}l('lll. (134)
r=1 r=1

7, s=1

R emark5.3. In case when observations do not influence the state vector we have
the following notations:
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a=0, b=0, ¢, =0, =0 (r=14), n,=4, n,=4%

a ﬁl 0 0 EO_ Xx
q 0 b, O 0 26
a, = , Ao = > C10 = >
0 0 ¢ O co X
b 0 0 b b | Xst
crs=1[d @ 0 0], c16= [q 05 0], c7=[00& 0], cig= [E 00 1;1]

(135)

Proposal 5.3. Let SOTES is described by Eqs. (125) and (126). Then COF algorithm is
defined by Eqs. (127)-(133).
Theory of conditionally optimal forecasting [9-11] in case of Eqs:

. — nx —
X = (a1 X: +ao) — <C1o + 261,ny+rxr> Vi, (136)
r=1

. o . "y o ny o
Zi=Y; = (bY, + b1 X; + bo) — (Czo + ZCZVYV + Zcz,ny+rxr> Va, (137)
r=1 r=1

where A being forecasting time, V; and V; are independent nonGaussian white
noises with matrix intensities v1 and v,, gives the following Eqs for COFc:

X, = |ai(t + AX, +aolt + A)} 3 [zt - (b?t + b X, + by — blsglhtﬂ . (138)

where the following notations are used: u(s,¢) is fundamental solution of Eq:
du/ds = a;1(s)u at initial condition u(¢,¢) =1, & =u(t+ A,1),

B, = &(Ky — Kix )bl 7, (139)
t+A
he = h(t) = J Wt + A, Dao(t)de, b+ ) = (140)
:
Myt + A) = emy(t) + by = emy + hy. (141)

Remarkb5.4. At practice COFc may be presented as sequel connection of COF,
amplifier with gain & = u(t + A, t) and summater s, = h(z):

}L(t = St};(l + ht’ (142)

where )%t being the COF output or COF of current state X;.
Eq. (137) may be presented in other form:

)%t = a1t + A) (X1 + k) +ao(t + A) + ey [Z; — (bX1 +bo)]. (143)
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Accuracy of COFc is defined by the following Eq:

Ny +1y Ny +1y
T
0 + E CoMy V1| €20 + E €5, My

r=1 r=1

R = ai1(t + AR, + Raq(t + AT — B,

ny+ny 1y 41y
+ Z 6'271)10;]675 ﬂ;r + + Clo(t + A) + Z C1y(t + A)Tmr(t + A)
r,5=1 r=ny+1
1y +1y
+ Z 1 (t 4+ Aot + Aegs(t + A) kys.
s=n¥+1

(144)

Proposal 5.5. At conditions of Proposal 5.3 COFc is described by Eqs. (137)-(140),
(143) or Egs. (141)—(143).

Let us consider Egs. (94)-(96) at conditions of possible subdivision of measuring
system and OPB in SOTES-O so that g(X;,?) = q(¢)X; and noise ¢, is additive. In this case
for SOTES, SOTES-O, SOTES-N Egs. (94)-(96) may be presented in the following form:

X = p(Xe,t) + S©)p(Xe,t) + 1, Va, (145)
G = q(Ta)Xe + bal, + 1,V (146)

& = a8i1) + CO(Gt) + 1 Va, (147)
Ty = ¢1(Tsst) + D(r)y(Tast) + x1s V. (148)

At condition of statistical linearization we make the following replacements:

S@)p(Xest) % S®)po My Ky ) + A (M, Ky ) X0, (149)
C(9)u(Ge,t) m C(I)g(me, Ke,t) + Ap(me, Ke), (150)
9 (oo t) R ro + 91l (151)

So we get the following statistically linearized expressions:

@X1st) +S)p(Xest) = Pxo + Px1Xes  @c(Epst) + C(Nu(Eirt) = Pro + Prales
(152)

where.

Px0 = Px0(Ma, Ky t) — [0301 (M, Ky £) ++ A1 (e, Ky 8) | e + S(0)po (1, Koy 1),
Px1 = @x1(mx, Ky t) + Api(my, Ky, ),
Pro = 0ro(me, Kest) = [0 (me, K t) + A (me, Kiyt) [mg 4+ C(9)pg (me, K¢, 0),
a1 = @a(me, Ko, t) + Ay (me, Ke, ).
(153)

Proposal 5.6. For Eqs. (144)—(148) at statistical linearization conditions Eqs. (152)
and (153) when q, does not depend upon T suboptimal filtering algorithm is defined by
Eqs:
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X, = PxiXe + Pxo + Rg v, [Z0 — (0% + baty)], (154)
R, = 9xiR; + Ry + v — Rig[ v, 'q Re. (155)

Proposal 5.7. At conditions 2, = A(Ty,t) Eqs for SOTES, SOTES-O, SOTES-N may be
presented in the form:

X; = PxaXs + Pxo + 1 Vas (156)
Gi =qX, +baly + 2, Vo, (157)
& = P81+ @0+ 2V, (158)

T = G Tt + Po + 14 Ve (159)

Suboptimal algorithm at condition

ATy, t) m Ao (my, Ky) (160)

is as follows:
Xe = xXe + Pxo + ReAgvg HZe — [Ag (mae Ke)Xe + bai], (161)
R = Px1R: + Rt@a +Ux — Rt’lgv‘;uoRt' (162)

6. Peculiarities of new SOTES generations

As it was mentioned in Introduction in lower levels of hierarchical subsystems of
SOTES arise information about nomenclature and character of final production and its
components.

Analogously in personal LC subsystems final production systems being categories
of personal with typical works and separate specialists with common works. In [1, 2] it
is presented methodology of personal structuration according to categories, typical
processes graphs providing necessary professional level and healthy. Analogous
approach to structuration may be used to elements macroscopic subsystems of various
SOTES levels. It gives possibility to design unified modeling and filtering methods in
SOTES, SOTES-O, SOTES-N and then implement optimal processes of unique budget.
So we get unique methodological potential possibilities for horizontal and vertical
integrated SOTES.

In case of Egs. (107)—(111) for LC subsystems in case aggregate of given personal
categories defined by Eqs

Xp =aXp +apGp + aop + xpVap, (163)
Gp = qp(Tep)Xp + baplp + 1opVors (164)
&p = cwlp +cop + xpVaps (165)

Tsp = bpXp + birTep + bop + xypVars (166)
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where index P denotes variables and parameters in personal LS. According to
Section 4 the following filtering Eqs:

Xp = apXp + ayp,Gp + aop + Reqpvg [Z — (qpXp + barlp)], (167)
Rp = @pRp + Rpﬁ}; +vp — qugvgpquRp. (168)
Let us consider linear synergetical connection between X and Xp:
Xp = k1X + Ko. (169)
Here x; and «¢ being known (np x 7,) and (np x 1) synergetical matrices. Putting

(151) into Egs. (144)-(150) we get Eqs for personal subsystem and its observation
expressed by X:

Xp = 6_lp(K1X + Ko) + a1pGp + aop + ypVap, (170)
Gp = qp(Tsp) (k1X + ko) + baplp + 1gp V- (171)

Corresponding Egs with combined right hand for SOTES vector X are described by:

aX +a1G; +agVa (X =1,ny),

X={_ E——— Vo))
ap(k1X + ko) + a1pGp(X) + aop + xpVap (XK = Nxt1, (Mx + ﬂp))

Analogously using Proposal 5.1 we get the Kalman-Bucy filter Egs:

i { ﬁX-ﬁ-ﬂth +ag +RﬂT1)g71[Z — (/1}2+sz) (X‘[( = m),

ap(1X + ko) + awGp(X) + aop + Rplgvg}l {Zp (kX + ko) + baplp|} (%K =Nxi1, ix + 71p),
(173)
R=aR+Ra’ +v, — RATv, 1R, (174)
Rp = @pRp + Rpiap, + vp — ReApv,p ApRp. (175)

Egs. (154)—(157) define Proposal 5.5 for SOTES filter including subsystems accom-
panying LC production and personal taking part in production LC.

Remark 6.1. Analogously we get Eqs for SOTES filter including for financial
subsystem support and other subsystems.

Remark 6.2. Egs. (173) and (174) are not connected and may be solved a priori.

7. Example

Let us consider the simple example illustrating modeling the influence of the SOTES-
N noise on rules and functional indexes of subsystems accompanying LC production, its
filtration and forecasting. System includes stocks of spare parts (SP), exploitation orga-
nization with park of MP and together with repair organization (Figure 1).

At initial time moment necessary supplement provides the required level of effec-
tive exploitation at time period [0, T]. Let consider processes in ASS connected with
one type of composite parts (CP) in number N7. During park exploitation CP failures
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SP supplement l

Figure 1.
After Sale system (ASS) for MP.

vnlpln (X?r)

l VorP12 (X.,1)

Vo101 (X, 1)

Figure 2.
Graph of production state.

appears. Non-repaired CP are or repaired again and returned into exploitation or
whiting off. If the level of park readiness in exploitation is less the critical the repaired
MP are taken from stocks.

In graph (Figure 1) the following notations are used: (1) being in stocks in number
X1, (2) exploitation in number X5, (3) repair in number X3, (4) witting off in number
X4. Using Figure 2 we n,, = 4; transitions: 1 — 2v = 1 (for the Poisson stream p,X1);
2 — 3 = pp3X2; 2 — 4 — ppyXo; 3 — 2; number of transitions is equal to n, = 4. As
index of efficiency we use the following coefficient of technical readiness [1, 2]:

T T
1 (Xa(o)dr 1
K, (T) = TJ N. TNTJXZ(T)dT, (176)
0
where
NT:X2+X3+X4 (177)

Being constant number of CP of park in exploitation.

Note that the influence of the SOTES-N on SOTES and SOTES-O is expressed in
the following way: system noise {; as factor of report documentation distortion leads
to fictive underestimated K (t). In case when relation
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Krr(t) > Kyp(t) (178)

is breaked down (K, (¢) being critical of floating park level) stocks will give
necessary CP amount. So we receive the possibility to exclude defined CP amount
from turn over.

Finally let us consider filtering and forecasting algorithms of ASS processes for
exposition of noise ;.

Solution.

1. For getting Eq for K1z (t) we assume X () = K7z (¢) and take into account
Egs. (106)-(109). So have the following scalar Egs:

. 1
XTR(I) = T—IVTXz(t),

X1 = —ppX1, Xz = ppX1— (P23 +P24)X2, X3 = p3X2 — p3Xs, X4 = p24X2.
(179)

Inour casea; =a9 =0, Vx = 0and Eq. (10.4) may be presented in vector form

X = aX (180)
where
0 0 (TN) ! 0 0
0 —pp 0 0 0
a=10 pp —(p3tpu) 0 0 (181)
0 0 P23 —pn 0
0 o0 P2 0 0

At practice the reported documentation is the complete of documents containing
SP demands from stock and acknowledgement SP documents. So noise ¢, acts only if
its realization take part delivery and acquisition sides. This is the reason to name this
noise as system noise and carried out by group of persons.

2. For setting Eqs for electronic control system we use of the following type
Eq. (108)

G=qgX+{+x,Va (182)

where Vg = [VTRV1V2V3V4}T being noises with intensity v,; 1 = [/ITR/11/12/13/14}T
being ecoefficiency of measuring block. In scalar form Eq. (181) may be presented as

Grr = AmrX1R + ¢+ Vi, Gi=hX1+ Vi, Gy= X, +Vy,

) ) (183)
G3=M1X3+V3, Gy=14X4+V,

3. Algorithm for noise ¢, description depends on participants. In simple case we use
error

5XTR(t) = XTR(t) — I?’;R (t) (184)
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In this case we get lag in Grr measurement on variable {;:

& = ba(X1r)|X1r(t) — Krgl- (185)

By the choice of coefficient b, necessary time temp of documentation manipula-
tion may be realized.

4. Using Eqs of Proposals 5.1 and 5.2 we get the following matrix filtering Eqs for
system noise ¢; on background of measuring noise Vg

X =aX + R, Z - (X + ()], (186)

R=aR+Ra" — RlTvgl/lR. (187)

atZ =G, ¢ =1[¢ 000]".

R emark7.1. Realization of the described filtering solutions for internal noises
needs a priori information about basic OTES characteristics. So we need special
methods and algorithms.

5. Finally linear COFc is defined by Eqs. (137)-(104) for various forecasting times A.

Remark?7.2. In case of SOTES with two subsystems using Eqgs. (172)-(174) we
have the following Kalman-Bucy filter:

. {aX—FR/ITvgl Z— (X +¢)], Xk =T1ng
a ap (KX + ko) + Rplgvg}l{zp — [Zp(kiX +x0)Cp] }s Xk = s 11x + 1P,

where {p being noise acting on the functional index of personal attendant
subsystem.

These results are included into experimental software tools for modeling and
forecasting of cost and readiness for parks of aircraft [1, 2].

8. Conclusion

For new generations of synergetical OTES (SOTES) methodological support for
approximate solution of probabilistic modeling and mean square and forecasting
filtering problems is generalized. Generalization is based on sub- and conditionally
optimal filtering. Special attention is paid to linear systems and linear systems with the
parametric white Gaussian noises.

Problems of optimal, sub- and conditionally optimal filtering and forecasting in
product and staff subsystems at the background noise in SOTES are considered.
Nowadays for highly available systems the problems of creation of basic systems
engineering principles, approaches and information technologies (IT) for SOTES from
modern spontaneous markets at the background inertially going world economics
crisis, weakening global market relations at conditions of competition and counterac-
tion reinforcement is very important. Big enterprises need IT due to essential local and
systematic economic loss. It is necessary to form general approaches for stochastic
processes (StP) and parameters estimation (filtering, identification, calibration etc) in
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SOTES at the background noises. Special observation SOTES (SOTES-O) with own
organization-product resources and internal noise as information from special SOTES
being enact noise (SOTES-N). Conception for SOTES structure for systems of techni-
cal, staff and financial support is developed. Linear, linear with parametric noises and
nonlinear stochastic (discrete and hybrid) equations describing organization-
production block (OPB) for three types of SOTES with their planning-economical
estimating divisions are worked out. SOTES-O is described by two interconnected
subsystems: state SOTES sensor and OPB supporting sensor with necessary resources.
After short survey of modern modeling, sub- and conditionally optimal filtering and
forecasting basic algorithms and IT for typical SOTES are given.

Influence of OTES-N noise on rules and functional indexes of subsystems accom-
panying life cycle production, its filtration and forecasting is considered.

Experimental software tools for modeling and forecasting of cost and technical
readiness for parks of aircraft is developed.

Now we are developing presented results on the basis of cognitive approaches [12].
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Chapter 4

Probabilistic Predictive Modelling
for Complex System Risk
Assessments

Andrey Kostogryzov, Nikolay Makhutov, Andrey Nistratov
and Georgy Reznikov

Abstract

The risks assessment is described by the action of estimating the probability dis-
tribution functions of possible successes or failures of a system during a given predic-
tion period. Typical probabilistic predictive models and methods for solving risks
prediction problems are described, and their classification is given. Priority develop-
ment directions for risks prediction in standard system processes and their imple-
mentation procedures are proposed. The reported examples demonstrate the effects
and interpretation of the predictive results obtained. Notes: 1. System is a combination
of interacting elements organized to achieve one or more stated purposes (according
to ISO/IEC/IEEE 15288 “Systems and software engineering—System life cycle pro-
cesses”). 2. Risk is defined as the effect of uncertainty on objectives considering
consequences. An effect is a deviation from the expected — positive and/or negative
(according to ISO Guide 73).

Keywords: prediction, method, model, probability, risk

1. Introduction

Systems are subject to various risks throughout their life cycles despite their suc-
cessful design and effective operation. That is why mathematics and system perfor-
mance prediction have been closely interrelated since the ancient times. There is no
doubt in the design and the maintenance of the world-famous wonders, astonish
modern man. The preservation of these wonders was entirely based on predictive
methods using existing mathematical approaches by that time. With the advent of
probability theory, this relationship has become even closer. Currently, various clas-
sical mathematics and probabilistic methods are often used to solve complex engi-
neering problems.

If for the layman probability is still associated with divination on daisies, then for
specialists these methods have long become powerful tools in predicting success or
failure, proactive management, and achieving the desired effects. Risk predictive
assessments are practiced in various industrial sectors, for example, fuel and energy,
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pharmaceutical, mining, metallurgical, chemical, communication and information,
dispatch centers, etc. [1-32]. Hundreds of universities and other scientific
organizations are involved in probabilistic research activities connected to risk pre-
diction. By now it is possible to clearly trace the activities chain in a predictive
approach: “From uncertainties formalization — to probabilistic modelling”, “From
probabilistic modelling — to reasonable control”, “From reasonable control — to
achievable effects” and “From achievable effects —to sustainable harmony”. It means
that predictive probabilistic concepts meet the main analytical challenges in the
eternal aspirations to go from uncertainties formalization” to “sustainable harmony”,
see Figure 1.

Thousands of mathematicians are currently involved in risk prediction R&D
activities. It is unfortunately impossible to mention all the running developments.
This chapter will focus on:

* some generalizations and thoughts regarding the variety of the existing risk
prediction probabilistic approaches;

* the formulation of the goals and objectives of the probabilistic methods
throughout the life cycle of various systems;

WONDERS OF THE WORLD AS EXAMPLES m 9,

OF RETROSPECTIVE PREDICTIVE METHODS 'V, From achievable lf/

= e

=8 effects — .

1), to sustainable 5 ¥ &

< "k
»iﬁ harmony ~ & %4

3

= From
9% probabilistic
modeling —
to reasonable

control

uncertainties
formalization —
to probabilistic
modeling

Figure 1.
The eternal aspirations: “From uncertainties formalization—to sustainable harmony.”
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* the description of the general risk prediction probabilistic approach;

* the essence of the probabilistic concepts considering the acceptable risk notion;
* some original probabilistic models;

* the analytical methods of risks integrating for standard processes;

* some optimization problem statements for rational proactive actions;

some examples of practical applications (illustrating some scientific and technical
possibilities for solving real engineering problems);

* the expected achievable effects.

2. Goals and objectives

In general, risk prediction is associated with the achievement of pragmatic goals

and solving the analytical problems of systems rational concept (conceptual design),
development, utilization, and support. Pragmatic system goals may be:

75

* improving the efficiency of the implementation of the state and/or corporate

strategy in the economy;

* improving the safety and sustainability of the region’s development,

ensuring socio-economic, pharmaceutical, medical, and biological safety of the
region;

* ensuring the protection of the population and territories from natural and man-

made risks, etc.

In turn, the following objectives require risk predictive capabilities:

* to predict the mean residual time before the next operational abnormality;

* to ensure the effective operation and development of complex engineering,

energy, transport, and communication systems;

* to ensure the security of critical infrastructure, information, and information-

psychological security;

* to ensure energy and industrial safety, technical diagnostics and resource

management for critical facilities and systems;

* to ensure the safety of railway, aviation and water transport;

* to develop critical technologies (for example, information and cognitive

technologies; energy technologies of the future; technologies for monitoring and
predicting the state of the environment and equipment; technologies for
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exploration and development of mineral deposits and their extraction; and
technologies for preventing and eliminating natural and technogenic hazards), etc.
A review of the numerous existing mathematical approaches allows us to make the
following generalization —the main goals of applying probabilistic prediction are
connected with (see Figure 2):
* an analysis of opportunities, achievable quality, safety and efficiency;
* arationale for achieving desirable characteristics and acceptable conditions;
* an optimization of systems performance and processes;
* exploring new ideas and innovative concepts.
The enlarged classification of methods, using the probabilistic risk predictive

models (including the proposed models), is presented in Table 1. These methods are
used for solving various objectives during system life cycle.

Estimation of challenges and
risks. Prediction of reliability,
safety, quality of system == & =
operation, effectiveness and —r e
efficiency (on real data).
Optimization. Planning.
Rationale of improvement

Estimation of technical

System analysis 2 %
solutions and risks.

- $ _~ of expected usefulness
- =3 and profits. Studying
; of conceptual design.
Rationale of system
requirements

. quality of system operation,

| effectiveness and efficiency
: (on possible data).
Optimization

Figure 2.

Generalization of goals and objectives throughout the system’s life cycle that require visk probabilistic-predictive
models.
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3. Conceptual probabilistic-predictive approach

The solution of problems in the system life cycle [6-8, 9, 14] is considered by the

example of a complex system, designated as (S-N-T)-system and covering: social
sphere S (person, society, state and world community); natural sphere N (earth and
space); techno-sphere T (man-made infrastructures and life support facilities).

In general, solving problems using a probabilistic-predictive approach includes:

* obtaining new knowledge about the fundamental laws of the operation and

development of (S-N-T)-system in time and defining the probabilistic
expressions and their parameters;

* formation of specific goals, concepts, and conditions in the system life cycle

(with the construction of fault trees and event trees, as well as risk matrices for
infrastructures and facilities), operation (including quality assurance, safety,
efficiency) and development and their integration (taking into account certain
priorities) for each of these areas (S, N, T) and (S-N-T)-system as a whole;

* rationalizing and building scientifically based predictions of the (S-N-T)-system

development, as well as each of the constituent spheres (S, N, T), to achieve
certain goals during the life cycle and to retain the critical parameters and
measures within acceptable limits;

* rationalizing means, methods, and technologies for sustainable development of

the (S-N-T)-system based on new knowledge and reasonable predictions;

* planning of rational (S-N-T)-system process management taking into account

feedbacks;

* practical implementation and control (on-line and off-line) of the predictions

and plans fulfillment for the operation and sustainable development of the
(S-N-T) system, taking into account social, natural, and man-made hazard-
exposure uncertainties.

When planning and implementing these actions, the following should be taken

into account:
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* the complexity and uncertainty of (S-N-T)-system probabilistic-predictive

models, many challenges and threats leading to a deterioration of the system
integrity, the effects of damaging factors, and the decrease in the survivability of
the system;

* the time dependence of interrelations between spheres and components of the

system, subsystems and significant elements, vulnerabilities and admissible
limits for the (S-N-T)-system states in the conditions of possible challenges and
threats;

* the need to categorize and classify (S-N-T)-system according to the level of

importance and criticality in order to achieve goals throughout the life cycle and
to retain critical parameters and measures within acceptable limits.
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The random time variables 7 considered in the predicted risk R(z, t) does simulta-
neously take into account the probabilities P(z, ¢) of the threats’ occurrence and
activation, and also the associated damages U(z, t). For example, the random time
variable 7 may be defined as the time between successive losses of element integrity
(see details in sections 4 and 5). Here the prediction period t (which in general is also
subject to justification) is dependent on the basic measures, designed to characterize
the uncertainties and complexity of (S-N-T)-system, and conditions for solving the
analytical problems.

The source of risks regarding the (S-N-T) system has been and remains: human
(human factor); nature with its own range of threats; and techno-sphere with its
inherent hazards. They are the determinants of the reliability (including aging and
degradation of technical means), other quality measures (including the quality of the
information used), and the safety and efficiency of the system. This makes it possible
to determine risk as functionals:

R(z,t) = F{P(z, t), U(r, t)} = F{Rs(z, t), Rn(z, 1), Rr(z, 1)},

In practice, risks are estimated by the dimensionless probability of an elementary
event during a period of time, comparing possible damage to it, or by the probabilistic
expectation of damage (as the probabilistic multiplication of the possible damage on
the probability of damage), or by the frequency of damage, etc. In turn, the magni-
tude of damages can be estimated in economic indicators (financial), areas of con-
tamination, losses in case of accidents, etc.

For example, formalization of such limitations may be presented as follows:

R(z, t) <Radm(z, t),Radm(z, t)>0.

Then a safety S(z, t) for (S-N-T)-system can be expressed in terms of risks:
S(z, t) <Radm(z, t) — R(r, t). Safety is maintained if and only if S(z, ¢) > 0.

To ensure that the quality, safety and sustainable development of the (S-N-T)-
system are in the acceptable risk zones. Thus, it is necessary to implement a set of
actions with the economic costs expected to reduce risks to an acceptable level.

Examples of the applicability of this approach are proved in many industrial
sectors such as nuclear, thermal and hydraulic power plants; the largest installations of
oil and gas chemistry; the unique space station, aviation, sea and land transport; large-
scale offshore energy resources development facilities [7], etc.

4. The essence of probabilistic concepts

The risk predictive approaches, used by system analysts, are based on classical
probability theory. Generally, a probabilistic space (£2, B, P) should be created per
system (see for example [1-6, 9-14]), where: £ - is a finite space of elementary
events; B — is a class of subspaces in £ -space with the properties of 5-algebra; P —is a
probability measure on a space of elementary events £2. Because 2 = {w;} is finite,
there is enough to establish a correspondence w, — p, = P(w| 2| k|) in which p, >0
and ) ,p, = 1. Briefly, the initial formulas in mathematical form for original models
(which are used in practice) are given in Appendices A and B.

Note. Some cases of a limited space of elementary events see in Section 6. The
results of modelling are related only to introduced elementary events and specific
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interpretation, the results of the probabilistic prediction can not describe future exact
events (place, time and other detailed characteristics).

The next interconnected concepts 1—7 are proposed for probabilistic predictive
modelling.

Concept 1 is concerning the probability distribution function (PDF) P(z <t) (see
for example [1-6, 9-14] etc.) for a continuous random variable of time 7. P(z <t) is a
non-decreasing function P(t) whose value for a given point >0 can be interpreted as
the probability that the value of the random variable 7 is less or equal to the given time
t. Regarding risk prediction, the given time t indicates the prediction period. Addi-
tionally, P(t) = 0 fort <0, and P(t) — 1 fort — oo. From a decision-making stand-
point, the problem is to determine the probability of system “success” and/or
“unsuccess” during the given prediction period T,., (for example, a risk of “failure”
considering consequences). This probability is a value for a point t = T}, and a PDF is
due to be built for modelling the system’s operational states with the time.

Concept 2. The processes, connected with data processing should provide the
required system operational quality (because the system performs functions by
logical reasoning based on data processing). The corresponding probabilistic
methods should be appropriate for the assessment of the quality of the used
information [6-8, 9-14, 28-31].

Concept 3. The PDF should establish the analytical dependence between the input
parameters to allow solving direct and inverse problems necessary for the rational
management of the system operation. For example, the PDF P(t) describing the
random time t between successive losses of integrity of a system may be an analytical
exponential approximation of a simple system element, i.e. P(t) =1 — exp (—it),
where 4 is the frequency of failures (losses of element integrity per unit of time). At the
same time, the frequency of failures may be considered as a sum of frequencies of
different types of failures because of various specific failure reasons—for example,
failure from equipment 13, or from natural threats 4,, or from “human factor” A3 and so
on. For this use case, PDF may be presented as P(t) =1 — exp [—(A1 + 42 + A3 + ... )t],
if and only if all the implied failures are independent. Then if the PDF P(¢) is built
in dependence on different parameters and if an admissible probability level for
acceptable risk is given then the inverse problem may be solved analytically—see also
Section 7.

Notes. 1 System integrity is defined as such system state when system purposes are
achieved with the required quality. 2. The rationale for exponential approximation
choice in practice see for example in [6, 9, 14, 28-31].

Concept 4. Acceptable adequacy must be ensured. It means the consideration of
several essential system parameters on which “success” or “failure” of the system
operation is dependent. For example, today the way for risks prediction based on only
one parameter — frequency of failures A — is common. For this case, the exponential
PDF can be used—see Figure 3. But the required acceptable adequacy is not always
proven.

For exponential approximation the frequency of failures A is connected with the
hypothesis: “No failures during the given time with a probability less than the
given admissible probability P,;,,>0”. This is always the case if the failure fre-
quency is constant with time. For this case, the given prediction time must be no

) That may not be often an accurate

—In(1-P
more than t,.; = 1/A44m, here dyg, = MT,IM

engineering estimation because many systems’ capabilities and operation condi-
tions are ignored [9, 14]. In Figure 3, this case is explained on the timeline.
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Figure 3.

Probabilistic risk, approximated by a move adequate PDF P(t), in comparison with the existing representation
of exponential PDF (both connected with the same 1), and admissible risk, imaginary by exponential PDF,
connected with Ay,

For different approaches and discussions, devoted to adequacy, see for example
the work in [33]. In that case, the diagnostic approach to evaluate the predictive
performance is based on the paradigm of maximizing the sharpness of the predic-
tive distributions. After calibration, one obtains an assessment and ranking of the
probabilistic predictions of wind speed at the Stateline wind energy centre in the
US Pacific Northwest. In [34], the approach is illustrated by examples connected
with “human factors”. For specific systems, the topic of improving the adequacy of
the prediction will always remain relevant.

Concept 5. A complex system includes subsystems and/or components (system
elements), the probabilistic approach must allow a generation of probabilistic predic-
tive models to predict the system’s operational performance and its dependence on
different uncertainty conditions. In general, predictive models must consider system
complexity, the diagnostics of system’s integrity, the monitoring of the diagnostics,
the recovery from loss integrity of every system component and the quality of the
used information. The adequate PDF must be the output of the probabilistic-
predictive models (see also Appendix A).

Concept 6. The input for the probabilistic-predictive models must be based on real
and other possible data (subjective data, meta-data, etc.) considering the system
operational specifications and the supporting actions. These may be also hypothetical
data for research purposes.

Concept 7. The specific problems of optimization must be solved considering risks
prediction results (including optimization in real time). The given time for prediction
should be defined so to be in real system operation time to allow taking rational
proactive actions.

5. The description of some original probabilistic models

For modelling modern and future systems, taking into account their specifications,
it makes sense to distinguish between the intellectual part, where uncertainties are
associated with information gathering, processing and production for decision-
making, and the technical part, where there is no significant dependence on the high
quality of the current information.
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5.1 About system operational information quality

The created models [6-8, 9-14, 28-31] help to implement concepts 1 and 2. In
general, operational information quality is connected with requirements for reliable
and timely producing complete, valid and/or confidential information, if needed. The
gathered information is used for proper system specificity. The abstract view of such
quality is illustrated in Figure 4.

The proposed probabilistic predictive models to assess the information quality are
described in Appendix A. The models cover the predictive measures according to the
abstract information quality metrics in Figure 4. It may be applied for solving prob-
lems connected with decision-making on the base of information gathering,
processing and production.

5.2 About “black box” formalization to predict “failure” risks

The models below help to implement concepts 1, 3 and 4 [6, 9, 14-31]. In general,
successful system operation is connected with counteractions against various system
integrity loss hazards (of social, natural and technogenic origins) throughout system
operation timeline. There are considered two general technologies formalized to
predict “failure” risks. Both technologies are briefly described below.

Technology 1 is based on a periodic diagnostic of system integrity policy. It is
carried out to detect system functional abnormalities or degradations that may result
in a system loss of integrity. The system loss of integrity can be detected only as a
result of diagnostics. Dangerous influence on system is logically acted step-by-step: at
first, a danger source penetrates into system and then after its activation begins to
influence. System integrity can not be lost before penetrated danger source is
activated. A danger is considered to be realized only after danger source has
influenced on system.

Notes: 1. For example, for new steel structures, time before the appearance of
critical erosion from rust can be considered as the source penetration time, activation
time is the time before unacceptable structural damage occurs due to this rust. 2.
Regarding a degradation of technical system the input time of danger source penetra-
tion tends to zero. 3. For special research cases of cyberattacks the term “Loss of
Integrity” may be logically replaced by the term “functional abnormalities”.

Technology 2, additionally to technology 1, implies that system integrity is moni-
tored between diagnostics by operator. An operator may be a man or a special artificial

Used information
(reflecting the potential threats realization)

Non-confidential

Due to processing intolerable mistakes

Non-actual

With hidden distortions as a result
of unauthorized accesses

Non-produced as a result ’

of system’s unreliability

Untimely With hidden virus distortions
Incomplete

Due to random faults of staff and users

Due to random errors missed during checking

Figure 4.
The example of abstract information quality in the system.

82



Probabilistic Predictive Modelling for Complex System Risk Assessments
DOI: http://dx.doi.org/10.5772 /intechopen.106869
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Figure 5.
Some accident events for technology 2, left—successful (correct) operation, right—a lose of integrity during given
time Tyey.

intelligence system or a system of support or their combination. The operator repairs
the system after having detected the loss of integrity hazard—see Figure 5.
Accordingly, the model assumption of operator’s faultless action can do the full
neutralization of the active hazard. Penetration is only possible if an operator makes
an error. A dangerous influence occurs if the danger is activated before the next
diagnostic. Otherwise, the source will be detected and neutralized during the next
diagnostic.

The probability of a successful operation within a given period of time, i.e.
the probability of “success” (P) may be estimated using the models presented in
Appendix B. The risk to lose integrity (R) is an addition to 1 of the probability of
successful operation, i.e. R = 1 — P considering consequences. Damage from the
consequences for the given period is taken into account as an additional characteristic
of the calculated probability.

5.3 Algorithm to generate probabilistic models for complex system

The algorithm helps to implement concepts 1 and 5 for complex systems with
parallel or serial structure [9-31] with the assumption of random variables indepen-
dence. Let us consider the elementary structure for two independent parallel or series
elements. Let us PDF of time between losses of the i-th element integrity is B;(t) =
P(7; <t), then the time between successive integrity losses will be determined as
follows:

1. for a system composed of serial independent elements is equal to the minimum
of the two times 7;: failure of 1st or 2nd elements. The PDF B(t) is defined by
expression

Bys(t) = P = [1 = B1(1)]+[1 = B2 (1)]; 1)
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.................. D R P P P PP PP TP TP PP
.t .
. .

;" Technical aspects (constructions, equipment etc.) Information aspects for making decision

Figure 6.
An example of a complex system integrating two serial complex structures, which also are complex subsystems
(abstraction).

2. for a system composed of parallel independent elements is equal to the maxi-
mum of the two timesz;, i.e. the system goes into the state of integrity loss when
both elements lose integrity. The PDF By(t) is

Bys(t) = P = [1— By(t)sBs(t)]. @)

Applying expressions (1-2), the PDF of the time interval between successive losses
of integrity for any complex system with parallel and/or serial structure and their
combinations can be built. An example of a complex system integrating two serial
complex subsystems is presented in Figure 6, see also Examples 2—4. For this system
the following interpretation of elementary events is used: complex system integrating
serial components “structures 1and 2” is in the state of “successful operation” during
a given period T, if during this period component “structure 1” “AND” component
“structure 2” are in the state of “successful operation”. Note that both components are
in their turn complex subsystems including subsystems and components, as well.

6. Risks prediction for standard processes

6.1 About standard processes

All actions in the timeline may be characterized as the performance of some system
processes. The main system processes according to ISO/IEC/IEEE 15288 “System and
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software engineering—System life cycle processes” include 30 standard processes—
agreement processes (acquisition and supply processes), organizational project-
enabling processes (life cycle model management, infrastructure management, port-
folio management, human resource management, quality management and knowl-
edge management processes), technical management processes (project planning,
project assessment and control, decision management, risk management, configura-
tion management, information management, measurement and quality assurance
processes), technical processes (business or mission analysis, stakeholder needs and
requirements definition, system requirements definition, architecture definition,
design definition, system analysis, implementation, integration, verification, transi-
tion, validation, operation, maintenance and disposal processes).

The focus on standard processes is justified by the fact that the life cycle of any
complex system is woven from a variety of standard processes deployed in time, and
for them, possible purposes, outcomes and typical actions are defined. Considering
that for many critical systems, the potential damage and costs of eliminating the
consequences in the conditions of heterogeneous threats can exceed the costs of pre-
ventive measures by an order of magnitude, it is necessary to find effective solutions to
counter threats and ensure effective risk management for each of the processes
performed. Despite many works on risk management for different areas theproblems
of this chapter continue to be relevant (of course in practice developing new processes
may be considered, not only from ISO/IEC/IEEE 15288 standpoint).

6.2 The example about input for probabilistic modelling

The proposed practical way to input forming helps to implement concept 6 for
any monitored system (including real time system). For each critical parameter
(for which prognostic estimations are needed to do proactive actions) the ranges of
acceptable conditions can be established. The traced conditions of monitored
parameters are data on a timeline. For example, the ranges of possible values of
conditions may be established: “Working range within the norm”, “Out of
working range, but within the norm” and “Abnormality” for each traced separate
critical parameter. If the parameter ranges of acceptable conditions are not
established in explicit form, then for modelling purpose they may be impleaded
and can be expressed in the form of average time value. These time values are

= YO T T, Ab lit
g activation 2 activation 3 normali y range
- srassnsssessnssannes . Tactivation 1 NN ]
= |i Red | m—————— Aborder of
'.'; range i / normative range
ng_u— - . e - -@ - s 5 - = '['_ -‘. _—— O - " - W
(] remveg 1 s recoveﬁ' 2

Yellow / A border of
@ iarss /'Out of working range, but within the norm | orknerange
E Y1 ' Green ‘: \ tpanetuti'u_nz \ \
B range i/ Lpenetration W Working range within the norm
A t

Yo
Figure 7.

An example of universal ranges for data about events and conditions. Note. In general case, the ranges may be
established by subjective mode if a reasonable and objective one is impossible.
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used as input for probabilistic models (see Appendices A and B). For example,

for coal mine some of many dozens heterogeneous parameters may be compression,
temperature, etc. It may be interpreted similarly by light signals “green”, “yellow”
and “red” [18, 25, 28-31]—see Figure 7 and following Example 1.

6.3 The considerations

For the estimation of reliability of standard process performance, there may be two
cases to estimate the probabilistic measure: the case of observed repeatability and the
case of assumed repeatability of random events influencing reliability without the
consideration of additional specific threats (for example, threats to operational infor-
mation quality). For the estimation, the probabilistic measure repeatability of threats
activation is assumed. For estimation of the assumption of independence of events
connected with reliability of standard process performance and additional specific
threats activations (for example, threats to information security) is used.

6.4 The case of the observed repeatability

The inputs for calculations use statistical data according to some observed repeat-
ability. For standard process, the reliability of process performance and expected
results in time are required. Failure to perform the necessary actions of the process is a
threat of possible damage. From the different points of view, all varieties of the
standard process can be divided into K groups, K > 1 (if necessary). Based on the use of
statistical data, the probability R, 1 (T%) of failure to perform the actions of the process
for the k-th group for a given time T} is proposed to be calculated by the formula:

Race £ (Tk) = Graiture k(Tk)/Gr(Tk), (3)

where Geaiyre £ (Tk)>Gr(Tr)—are accordingly the number of cases of failures when
performing the necessary actions of the process and the total quantity of necessary
actions from the k-th group to be performed in a given time T}.

The probability R, (T) of failure to perform the necessary actions of a standard
process without consideration of additional specific threats activations (for example,
threats to operational information quality) is proposed to be estimated for the option
when only those cases are taken into account for which the actions were not
performed properly (they are the real cause of the failure)

K K

Reel(T) =1=) Wil — Roce k(Tp)] Ind(e)/ > W, (4)
k=1 k=1

where T is the specified total time for a process performance for the entire set of
actions from different groups, including all particular values T}, taking into account
their overlaps; theW, is the number of actions taken into account from the k-th group
for multiple performances of the process.

For the k-th group, the requirement to perform the process actions using the
indicator function Ind, (ay,)is taken into account

1, ifthe specified requirementsAconditions ave met, i.e.a is true,

Ind(a) = { (5)

0, otherwise, i.e.if the condition a is false.
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The condition o used in the indicator function is determined by the analysis of
different specific conditions, proper to the process. It is to allow take into account the
consequences associated with the failure of the process—see (3) and (4). Condition
means a set of conditions for all process actions required from the k-th group.

6.5 The case of the assumed repeatability

There may be recommended the models from Section 5 and Appendices A and B,
which do not exhaust the whole set of possible probabilistic models.

6.6 About estimation of generalized measure

The generalized probability Reener(T) of failure to perform standard process
considering additional specific threats R,qq(T") for the given period T may be
calculated by the formula:

Rgener(T) =1- [1 - Rrel(T)] ! [1 - Radd(T)]' (6)

Here the probabilistic measure Rgener(T') of failure to perform reliable process
considering specific threats are estimated according to proposition of section 5,
subsections 6.1—6.5 and Appendices A and B considering the possible consequences.

6.7 Approach for risks integration from different processes

The integral risk of violation of the acceptable performance of standard processes
set is proposed to be evaluated depending on the real or hypothetical initial data
characterizing each process (see subsections 6.1-6.4), from the possible scenarios of
using each process during the given prediction period. The prediction period can
cover any period during the system life cycle, including at least 1 complete process of
each of the types involved in the specified set of standard processes in the scenario
under consideration. An example of the standard processes performed on the time
axis is shown in Figure 8. In general, the scenario of using standard processes iy, iy, ... ,
ii is proposed to be determined by the real or hypothetical frequency of these

Process i3

Process i,

Process iy

Process i3
Process i,

Process i,
Process i,
Process i,
Process i,
]
I Y

(Tyurea—the specified durdtion of the given prediction period.)

—
-V

Figure 8.
An example of standard processes performed on the time axis.
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processes (taking into account the typical actions performed at the same time that
affect the time characteristics of the implementation of the processes). This approach
allows us to take into account such opportunities when one process can be part of the
work performed within other standard processes in the system lifecycle and, if
necessary, includes other processes.

The integral risk of violation of the acceptable performance of standard processes
set R J‘(T:tated) for given prediction period T, is proposed to be estimated by the

formula

I

I
R J<de> =1—> 4{1 = R(Taatea i)*[Ind ()1} ) > 4, )

i=1 i=1

where /; is the expected frequency of execution of standard processes of the
i-th type for the prediction period. If the duration of the executed process can go
beyond the prediction period (which depends on the actions performed and their time
characteristics), this frequency can be a fractional number that characterizes the
number of executions of each type of process, greater than one;

T'tated i — the expected period specified in the source data for modeling for the
acceptable execution of standard type i process;

T'tateq — the given prediction period that covers the duration of all the specified
periods Tyys.q ; of each from standard processes involved in the scenario. The assump-
tion about a partially completed process that can start at the end of the prediction
period and not finish (if the total number of processes of each type is greater than
one) can be satisfied by setting the fractional value 4;.

At the same time, the criterion for meeting the requirements and conditions («;)
for each type of process, including the requirements for acceptable risks and damages,
is set using the indicator function (5).

Note. The expression (6) is a special case of expression (7).

The proposed in Section 6 models and methods are applicable for solving practical
problems related to risk prediction and the justification of effective proactive mea-
sures to reduce risks or their prevention within acceptable limits.

7. Optimization of problem statements for rationale proactive actions

The proposed optimization problem statements for rationale actions help to
implement concept 7. The matter is the metrics calculated in sections 5 and 6, in
the models from Appendixes A and B depend on many parameters. The values of
some parameters may be given and often variated within system life cycle. These
values of some parameters may be specified or selected to achieve pragmatic goals
and solve the different analytical problems of systems rational concept, develop-
ment, utilization and support (described in Section 2). They are impacting the values
of the estimated probabilistic risks. It means many optimization problems may be
solved by rationale proactive actions connected with providing rational values of
these parameters. For example, such parameters for optimization may be the dura-
tion of prediction period, parameters, impact on the information quality (see
Appendix A), system structure, for the compound components: time between the
end of diagnostic and the beginning of the next diagnostic, diagnostic time (see
Appendix B) etc.
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The proposed concepts 2—6 may be supported by the following typical optimiza-
tion problem statements for various systems [9, 14, 28-31]:

1.on the stages of the system conceptual design, development, production and
support: system parameters, software, technical and control measures (they are
described by a set Q of parameters, which may be optimized) are the most
rational for the given prediction period if the minimum of expenses Z(Q) can be

reached

Z(thional) = min Z(Q)’ (8)

parameters of Q

a. with limitations on probability of an admissible level of quality
Puatity(Q) = Puam and expenses for development, production, and support

C(Q) £ C,4m and under other development, operation or maintenance
conditions; or

b. with limitations on admissible risk to lose system integrity R(Q) <R, and
expenses for development, production and support C(Q) < C,4, and under
other development, operation or maintenance conditions; or

c. with limitations based on a combination between 1a) and 1b);

2.utilization stage:

* System parameters, software, technical and control measures (Q) are the
most rational for the given period of system operation if the maximum of
the probability of successful operation can be reached

P, quality(thional) = max P, quality(Q)r 9)

parameters of Q

a. with limitations on probability of an admissible level of quality
Puatity(Q) = Pugm and expenses for operation C(Q) < C,4,, and under
other operation or maintenance conditions; or

b. with limitations on the admissible risk to lose system integrity
R(Q) £R,4, and expenses for operation C(Q) < C,4,, and under other
operation or maintenance conditions; or

c. with limitations based on a combination between 2.1a)and 2.1b);

* System parameters, software, technical and control measures (Q) are the
most rational for the given period of system operation if the minimum of the
risk to lose system integrity can be reached

R(thional) = min R(Q>’ (10)

parameters of Q

a. with limitations on the quality Py, (Q) > Pagy and expenses
C(Q) £ C, 4 and under other operation or maintenance conditions; or
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b. with limitations on the admissible risk to lose system
integrityR(Q) < R,u» and expenses C(Q) < C,4, and under other
operation or maintenance conditions; or

c. with limitations based on a combination between 2.2a) and 2.2b).

These statements may be retransformed into the other problems statements of
expenses minimization for different limitations.

In system life cycle, there may be a combination of these formal statements.

Note. There may be another applicable variants of optimization.

8. Examples

The applications of the proposed approach cover: the analysis of the reliability
of complex systems built from unreliable components; the estimation of the
expected reliability and safety for complex constructions and intelligent
manufacturing, the modelling of robotic and automated systems operating in cosmic
space, the optimization of a centralized heat supply system, the analysis of the
possibilities to keep “organism integrity” by continuous monitoring, the risk analysis
during longtime grain storage, the control of timeliness, the completeness and
validity of used information; the comparison between information security pro-
cesses in networks; resources management and predicting quality for information
systems operation; the estimation of human factor, the research of mutual monitor-
ing operators actions for transport systems, rational dispatching of a sequence of
heterogeneous repair works, the analysis of sea oil and gas systems vulnerabilities in
conditions of different threats, the development of recommendations to reduce risks
for the important land use planning (including Arctic region), the rationales of
preventive measures by using “smart systems” etc.—see [9, 14-31]. Here the
examples are intended to demonstrate some probabilistic risk prediction sectorial
applications.

8.1 Example 1 of predicting the mean residual time before the next parameter
abnormality

The example demonstrates system possibility on the base of solving the inverse
problem by models described in subsection 5.2 and Appendix B. The research results
are applied to rationale actions in real time for coal companies.

The conditions of parameters, traced by dispatcher intelligence centre, are data
about a condition before and after the current moment of time. But always the
scientifically justified predictions open new possibilities in the prevention of risks.
With the use of predicted residual time, the responsible staff (mechanics, technolo-
gists, engineers, etc.) can determine the admissible time for rational changing of
system operational regime to prevent negative events after expected parameter
abnormality. For monitored critical parameters, the probabilistic approach to predict
the mean residual time before the next parameter abnormality is proposed.

For every subsystem (element) monitored parameter, the ranges of possible values
of conditions are established—see Figures 7 and 9. The condition “Abnormality”
means system (element) integrity loss (it may simply mean “system failure” that
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includes also “functional failure”). To prevent the possible cross-border abnormalities
propagation, through the prediction of the residual time on the base of the data about
parameter condition fluctuations. Given that the information quality also is estimated
and provided (by using models from Appendix A).

The predicted residual time T4 is the solution tq of the following equation:

R(Tpenetr’ t, Thetws Tdiag, Treq.) = Radm. (Treq) (11)

concerning of unknown parameter t, i.e. Tyesig = to-

Here R(Tpenetrs ts Thetws Tdiags Treq.) is the risk to lose integrity, calculated
according to the model of Appendix B. Tpenetr is the probabilistic expectation of PDF
Qpenetr (1), defined by the transition statistical parameter from “green” to “yellow”—
see Figures 7 and 9. The other parameters Tpety and Tgiag in (11) are known—see
Appendix B. The example explains a method to rationally estimate the value of
prediction time Treq.

The properties of the function R(Tpenetr, t, Tbetw, Tdiag, Treq.) are the next:

* if t increases from O to oo, for the same another parameter, the function
R(..., t, ...) is monotonously decreasing from 1 to 0;

* if parameter T,.q increases, from 0 to oo for the same another parameter, the
function R(..., Tyq) is monotonously increasing from 0 to 1,i.e. for large Ti.q, the
risk approaches to 1. It means that the such maximal x exists when t = x and
Treq. = xand 0 < R(Tpenetr> X5 Thetws Tdiag> X) < 1, i.e. the mean residual time

Abuormality range

Aborderaf
wirmative rasge

Working range within the norm

¢t [RRS

Figure 9.
Example of predicted vesidual time before the next parameter abnormality.
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«_»

before the next abnormality is equal to “x” with the confidence level of the
admissible risk R(Tpenetrs X» Thetws Tdiag> X)- See details in [18].

The proposed ideas, probabilistic methods, models and justified normative
requirements are implemented in Russia at the level of the national standard for
system engineering—see for example GOST R 58494-2019 regarding the
multifunctional safety systems of the coal mines (in the part of a remote monitoring
system of critical industrial systems).

8.2 Examples related to socio-economic and pharmaceutical safety in a region

Examples 2—4 below demonstrate some analytical capabilities of the proposed
approach for infrastructure management process related to socio-economic and phar-
maceutical safety in a region of Russia. It concerns some problems in the creation and
application of enterprise (S-N-T)-system — the manufacturer of pharmaceuticals
denoted further as (S-N-T)-ESMP. Let the purposes of S-N-T-ESMP are to solve the
following tasks:

* for the development of socio-economic infrastructure (tasks of the 1st type):
ensuring the population with high-quality medications in a low-cost range (more
than a hundred items); providing the emergence of new jobs; increasing tax
revenues to the region; making profit from economic activities in the interests of
strengthening and expanding business and stakeholders satisfaction;

* for the development of production and transport infrastructure (tasks of the 2nd
type): ensuring strict compliance with the rules of production of good practice
(GMP); development of a laboratory complex for ensuring and controlling the
quality of products as part of microbiological, physical-chemical laboratories and
air-liquid chromatography laboratories; expansion of the composition of
manufacturers of substances and excipients, their suppliers and consumers of
finished products; increasing the stability of the parameters of the production
processes in order to ensure the reproducibility of the properties of finished
medications;

* for the development of information and communication infrastructure (tasks
of the 3rd type), providing the creation of an effective control system for
ensuring the safety and quality, information security, integration of the
enterprise into the state information system for monitoring the movement of
medications.

In relation to the mentioned tasks, which allows achieving the demonstration
goals of the examples, the application of methodological approach illustrates
predicting on probability level: the risk of failure to reliable perform system infra-
structure management process without consideration of specific abnormal impacts
(see example 2); the risk of unacceptable damage because of abnormal impacts; the
integral risk of failure to reliable perform system infrastructure management pro-
cess considering specific abnormal impacts (see example 4). Assuming the com-
mensurability of possible damages, a system analysis using probabilistic risk
measures is carried out in the examples.
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Element 1 Element 2 Element 3
Qutput results and assets to solve Output results and assets to solve Output results and assets to solve
tasks for the development tasks for the development tasks for the development
of socic-economic infrastructure of production and transport of information and communication
(1 type) infrastructure (2™ type) infrastructure (3™ type)
Figure 10.

The abstract complex structure for modelling (example 2).

Taking into account possible damages, the objectives of risk prediction are formu-
lated as follows. In the conditions of existing uncertainty, to carry out: a quantitative
predicting of the risks of failure to reliable perform system infrastructure manage-
ment process without consideration of specific abnormal impacts; a quantitative
predicting of the risks of unacceptable damage because of abnormal impacts on (S-N-
T)-ESMP (both piecemeal for each type of infrastructure tasks and for the entire set of
tasks); identification of critical factors affecting risks; determination of such a period
in which guarantees of risks retention within admissible limits are maintained; a
quantitative predicting of the integral risk of failure to reliable perform system infra-
structure management process considering specific abnormal impacts.

Example 2. Here, the infrastructure model without consideration of specific
abnormal impacts is focused on a set of output results and assets for solving tasks of
the 1st, 2nd and 3rd types—see system structure in Figure 10. The following inter-
pretation is applicable: During the given prediction period, the modeled complex
structure is in an elementary state “the integrity of the infrastructure is maintained” if
an implementation of the system infrastructure management process is reliable to
solve the tasks “AND” for socio-economic, “AND” for production and transport
“AND?” for information and communication infrastructure. Many possible threats
affecting the reliability of output results for each of the structural elements have been
identified. Without delving into the numerous technical aspects of setting and solving
the tasks of developing socio-economic, production and transport, information and
communication infrastructure in a region, Table 2 reflects hypothetical averaged
input data for research by the models (see sections 5, 6 and Appendix B considering
application of Appendix A models).

Input for every element (see model in Appendix B) Values
for 1st for 2nd for 3rd
element element element
o—frequency of the occurrences of potential threats 2timesina 1timeina  1timein
year year a month
f—mean activation time of threats up to unacceptable damage 6 months 2 months 2 weeks
Thetw — time between the end of diagnostics and the beginning 1 week 1 week 1 hour

of the next diagnostics

Taiag — diagnostics time of element integrity 1 hour 1 hour 1 minute
Trecov — recovery time after integrity violation 3 days 1 week 30 minutes
T — given prediction period From 1 to 4 years

Table 2.

Input for probabilistic modelling (example 2).
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For modelling a period from 1 to 4 years was chosen because it is a typical period
for short- and medium-term plans according to an infrastructure project. Analysis of
the calculation results showed that in probabilistic terms the risk of failure to reliable
perform system infrastructure management process without consideration of specific
abnormal impacts for 2 years will be 0.282 totally for all elements (see Figure 11). In
turn, for 1 year the risk will not fall below 0.150 (see Figure 12), and for 4 years with
weekly diagnostics, the probabilities of “success” and “failure” will almost equal (0.51
vs. 0.49). In practice, such a level of risks is inadmissible, i.e. it is necessary to identify
the critical factors (affecting risks) and effective ways to reduce risks.

Additional calculations have shown that one of the critical factors is the parameter
“time between the end of diagnostics and the beginning of the next diagnostics” (that
can also be called “Mean Time Before Diagnosis-MTBD” because of “diagnostics time
of element integrity” is much less—see Table 2) for the 1st and 2nd elements (Thetw)-
Due to the management decision, expressed in changing the frequency of diagnostics
from weekly to daily and the adoption of the appropriate measures to counter threats,
with other conditions unchanged, it is possible to reduce risks several times. It is
enough to compare the risks in Figures 11 and 13. About 2.1-fold reduction in risk has
been achieved totally for all elements. That is, due to the most simply implemented

0.30

0.282

1 2 3 For all

Figure 11.

The risks of failure to reliable perform system infrastructure management process without consideration of specific
abnormal impacts on elements 1—3 for 2 years (for weekly diagnostics).

YL TN i i e D B R

0.30
For 4 years with weekly
diagnostics the probabilities
of “success” and “failure”
will aimost be equal
015 |
1 year 2 years 3 years 4 years

Figure 12.
The dependence of total risk of failure to veliable perform system infrastructure management process without
consideration of specific abnormal impacts from duration of prediction period (for weekly diagnostics).
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0.152

For all

Figure 13.
The risks of failure to reliable perform system infrastructure management process without consideration of specific
abnormal impacts on elements for 2 years.

0.28

Under the conditions of the example with
daily diagnostics the risk level of 0.10
ill not be exceeded for 1.3 s

0.15 il

0.10 [
0.08
1 year

1.2 years 2 years 3 years 4 years

Figure 14.
The dependence of total visk of failure to veliable perform system infrastructure management process without
consideration of specific abnormal impacts from duration of prediction period (for daily diagnostics).

organizational measures related to the introduction of more frequent diagnostics of
work on the development of socio-economic and production and transport infra-
structure, a significant risk reduction is achievable. This finding is the result of the
used models. Despite the high value of this logical finding for example conditions,
frequent diagnosis generates higher running costs and lower services supply capacity.
Diagnosis costs money and time. It should be considered in other optimization
problems (see Section 7).

For 1 year, the risk of failure of the infrastructure management process without
considering the specific abnormal impacts will be about 0.08 (see Figure 14). In turn,
as a result of the analysis of the risk dependence on the prediction period (from 1 to
4 years), it is additionally revealed that under the conditions of the example with daily
diagnostics the risk level of 0.10 will not be exceeded for 1.3 years. Accordingly, and
for infrastructure management process during development, focusing on admissible
risk at the level of 0.10, in the conditions of the example, guarantees risks prevention
within the admissible limits for about 1.3 years. Recommended measures to reduce
risks are to increase the stability of the mechanical properties of the critical areas of
structures, to timely carry on preventive and repair maintenance, to perform statisti-
cal analysis of emergency situations, and to predict critical unacceptable values of
critical parameters inherent in the unacceptable risks.
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Example 3. In contrast with Example 2, the model of specific abnormal impacts
covers a set of actions related to the maintenance of buildings and constructions
(element 1), ensuring the operation of engineering and technical systems (element 2),
ensuring the operation of engineering networks (element 3), solving development
problems of socio-economic infrastructure (element 4), production and transport
infrastructure (element 5) and information and communication infrastructure (ele-
ment 6)—see model on Figure 15. The following interpretation is applicable: during
the given prediction period, the modeled complex structure is in an elementary state
“the integrity of the system in case of abnormal impacts is maintained”, if all the
system elements are taken into account during the entire prediction period are in the

state “the integrity of the system element in case of specific abnormal impacts is
maintained”.

Engineering infrastructure of (S-N-T)-ESMP Functional system of (S-N-T)-ESMP
Element 1 Element 2 Element 3 Element 4 Element 5 Element 6
Actions Actions Actions Actions for Actions for Actions for
related to the ensuring ensuring solving the solving the solving the
maintenance the operation | | the | | problemsof | | problemsof | | problems of
of buildings of operation 'development of production information and
and engineering of socio-economic| |and transport| | communication
constructions| | and technical | |engineering infrastructure infrastructure infrastructure
systems networks (1% type) (2™ type) (3 type)
Figure 15.

The abstract complex structure for modelling specific abnormal impacts.
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Input for every element (see model in [1-7]) Elements Values

o — frequency of the occurrences of potential threats Element 1 4 times a year
Element 2 2 times a year
Element 3 1time in a year
Element 4 1 time in 2 years
Element 5 1 time in 2 years
Element 6 2 times a year

 — mean activation time of threats up to unacceptable damage  For all elements 1-6 1 month

Thetw — time between the end of diagnostics and the beginning Element 1 24 hours

of the next diagnostics Element 2 24 hours
Element 3 24 hours
Element 4 8 hours
Element 5 8 hours
Element 6 1 hour

Tdiag — diagnostics time of element integrity For all elements 1-6 30 seconds

Trecov — recovery time after integrity violation For all elements 1-6 10 minutes

T — given prediction period For all elements 1-6 From 1 to

4 years

Table 3.
Input for probabilistic modelling (example 3).

Without delving into the numerous technical, engineering and functional aspects
of (S-N-T)-ESMP, Table 3 reflects hypothetical averaged input data for research by
models, described in sections 5—7, Appendices A, B and [1-7]. Input values for
element 1 consider additional factors leading to degradation and destruction of
techno-sphere systems (seismic, wind, snow, corrosion and other natural impacts).
For element 6, proper impacts may be from “human factor” and/or from “cyber
threats”. For elements 2—5, input values have usual explanation.

Analysis of the results showed that in probabilistic terms the risk of unacceptable
damage due to specific abnormal impacts for 2 years will be about 0.219 totally for all
elements (see Figure 16). In turn, for the predict for 4 years with daily monitoring of
the state of the engineering infrastructure of the (S-N-T)-ESMP (i.e. elements 1, 2, 3),
the risk of unacceptable damage from specific impacts for all elements 1—6 will be
about 0.39, and for the predict 1, this probability is about 0.12 (see Figure 17). In
general, the results are comparable with the results of Example 2 (Figures 18 and 19).

Moreover, due to the management decision, expressed in changing the frequency
of diagnostics from daily to 1 time every 8 hours it is possible to reduce total risk from
0.219 to 0.091 (see Figure 18). And owing to diagnostics every 8 hours the admissible
risk level of 0.10 will not be exceeded about 2.3 years (see Figure 19).

Example 4. In continuation of Examples 2 and 3, the integral probability
R I(T) of failure of the infrastructure management process considering specific

system abnormal impacts for the prediction period T = 1 year is calculated using the
recommendations of Section 6. It depends on probabilities Rye(T) and Raqa(T) — see
formula (6). Considering that Ry (1year) = 0,08 and R,q4(1year) = 0,05,
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0.22 0219
0.z20
“Boltlenecks™ — the Elements 1,2, 3
due 1o a rarer diagnosis in comparisons
015 with Elements 4, 5, 6

0.40

0.08

0.0
For all

Figure 16.
The risks of unacceptable damage because of specific abnormal impacts on elements 1-6 for 2 years (for daily
diagnostics).

0.39 -
p ‘.f-.
: ._‘_,.
0.30 o o
- A
s o
~ i
p e
2 The risk of unacceptable damage from

et abnormal impacts for all elements 1-6

0.20 /,./ will be about 0.39
,',’.
0.12
1 year 2 years 3 years 4 years

Figure 17.
The dependence of total risk of unacceptable damage because of specific abnormal impacts on elements 1—6 from
duration of prediction period (for daily diagnostics).

0.100 0.091

Due to the management decision, expressed in
changing the frequency of diagnostics from daily
0078 to 1 time every 8 hours it is possible
te reduce total risk from 0.219 to 0.091

0.050

0.025

0.0
For all

Figure 18.
The risks of unacceptable damage because of abnormal impacts on elements 1-6 for 2 years (for diagnostics every
8 hours).

R J(1year) = 1—(1—0, 08) - (1—0, 05)~0,126.

Interpretation: the integral risk for the prediction period of 1 year is about 0.126
considering possible damage. In general, such risk is considered elevated. It can be
considered acceptable only in exceptional cases when there are no real possibilities
of any counteraction to threats. As measures to improve the process, additional con-
trol systems for damaging natural factors, emergency protection systems for
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0.17
0.15
0.10 s e e %
i Owing to diagnostics every
' 8 hours the admissible risk
| level of 0.10 will not be
| exceeded about 2.3 years
0.05 -
1 year 2 years 2.3 years 3 years 4 years

Figure 19.
The dependence of total risk of unacceptable damage because of abnormal impacts on elements 1—6 from duration
of prediction period (for diagnostics every 8 hours).

techno-sphere systems, operators and personnel under extreme natural hazards, and
measures to increase safety against specific system threats (the sources of specific
abnormal impacts) can be used. Since such opportunities are far from being
exhausted, an additional search for measures to reduce the integral risk is necessary.
Decision-making on ways to reduce risks may be quantitatively justified using the
proposed models and methods.

8.3 What about the possible pragmatic effects?

In general pragmatic effects are connected with achieving pragmatic goals (see
Section 2). It may characterize the efficiency of the implementation of the state and/or
corporate strategy in the economy, effects from improving the safety and sustainabil-
ity of the region’s development, from ensuring the protection of the population and
territories from natural and man-made hazards, etc. For example, the authors of this
chapter took part in the creation of the complex of supporting technogenic safety in
the systems of oil and gas transportation and distribution and have been awarded for
it by the award of the Government of the Russian Federation in the field of a science
and technic. Through the Complex intellectual means, it is possible to detect remote-
sensing technology: vibrations, fire, flood, unauthorized access, hurricane; and to
recognize, identify and predict the development of extreme hazardous situations, and
to make decisions in real-time. The applications of this Complex for 200 objects in
several regions of Russia during the period 5 years have already provided economy
about 8,5 Billion Roubles (reached at the expense of effective risks prediction and
processes optimization [7]).

9. About directions for development

It is proposed to focus on scientific and technical efforts on the meta-level of
system engineering, which allows, by universal probabilistic models, to set and ana-
lytically solve the problems of rational development and efficient operation of com-
plex systems of various functionalities and purposes.
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The proposed prioritization of development directions for predicting are: 1 —
focusing on scientific and technical efforts on achieving the goals of ensuring the
required safety, quality, balanced effects, sustainable operation and development of
complex systems; 2 — providing capabilities for predicting and rational risk managing
in standard processes of the system life cycle, improving and accumulating knowl-
edge, patterns discovery; 3 — expansion of the functionality of the created models and
methods, software and technological and methodological solutions (for predicting and
rational risk managing) to all spheres of human activity, cross-application of knowl-
edge bases; 4 — transformation of the existing approach to the creation and use of
models and methods into artificial intelligence technology to support logical decision-
making (based on proactive research with traceability of logic from the idea to the
achieved effect).

The proposed steps to implement these directions are 1st step: from pragmatic
filtering of information — to promising ideas and purposeful conceptions; 2nd step:
from promising ideas and purposeful conceptions — to the formalization of uncer-
tainties; 3rd step: from the formalization of uncertainties — to the knowledge of
patterns and logical solutions; 4th step: from the knowledge of patterns and logical
solutions — to rational risk management; 5th step: from rational risk management —
to achieving the required safety, quality, balanced effects and sustainable operation
and development.

The expected results will equally be understood at the level of probabilistic risk
predictions, identically interpreted and comparable, the traceability of the
effectiveness of scientific and technical system efforts from the conceptions to the
results obtained will also be ensured. The purposeful aspirations “From uncertainties
formalization — to sustainable harmony” (see Section 1) may be really supported.

10. Conclusion

On the generalizations of goals and objectives throughout the system’s life cycle and
existing approaches to risks prediction, there are proposed main goals of applying prob-
abilistic methods. The goals of probabilistic concepts of risks prediction are connected
with: an analysis of opportunities, achievable quality, safety and efficiency; a rationale
for achieving desirable characteristics and acceptable conditions; an optimization of
systems and processes; and finding and developing new ideas and concepts.

The enlarged classification of probabilistic methods for solving various objectives
is explained for all stages of the system life cycle: concept, development, production,
utilization, support and retirement.

The conceptual approach, proposed to risk prediction, covers social sphere
(person, society, state and world community), natural sphere (earth and space) and
techno-sphere (man-made infrastructures and life support facilities).

The essence of the proposed probabilistic concepts of risks prediction for the
system is described on the level of probability distribution function. The described
methods of risks prediction for complex systems include probabilistic models,
methods for risks prediction and integration, optimization methods for rationale
actions and examples for solving the problems of system analysis and rationale
proactive actions in uncertain conditions. The achievable practical effects are
explained.

The prioritization of development directions for risk prediction in standard system
processes and targeted steps for their implementation are proposed. They support the
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purposeful aspirations “From uncertainties formalization — to sustainable harmony”
in application to the life cycle of various systems.

Appendix A. The recommended models to predict information system
operation quality

The proposed models are presented in Table A.1.

Appendix B. The models to predict risks for “Black box”

B.1. The model for technology 1 (“Black box”) — see 5.2, [9, 14, 15].

Input:

Qpenerr(t)—is the PDF of time between neighboring influences for penetrating a
danger source;

4011 (t)— is the PDF of activation time up to “accident event”;

T peny —is time between the end of diagnostic and the beginning of the next
diagnostic,

T 4isg—Tis diagnostic time.

R =1 — P considering consequences.

Variant 1—(Treq_ < Thetw. + Tdiag):

P(l) (Treq.) =1- Qpenetr *k ‘Qm‘tiv (Treq.) . (12)

Variant 2—the assigned period T.,. is more than or equals to an established period
between neighboring diagnostics (Tmi, > Therw. + Tdmg)!
measure a)

P(Z) (Treq.) = N((Tbetw. + Tdiag)/Treq.)'PI(\{) (Tbetw + Tdiug) + (Trmn/Treq)'P(l)(Trmn)a

(13)
where N = [Tgim / (Tbetw, + Td,',lg)] is the integer part,
Tymn = Teiven — N(Tperw. + Taiag);
measure b)
Po)(Treg.) = Py (Toetw. + Taiag) *P3y(Trmn)» (14)

where the probability of success within the given time Py (Treq‘) is defined by (B.1).

B.2. The model for technology 2 (“Black box”)—see 5.2, [9, 14, 15].

Input:

Additionally to Input for technology 1: A(t)—is the PDF of time from the last finish
of diagnostic time up to the first operator error.

Evaluated measures:

Risk to lose system integrity (R). Probability of providing system integrity (P).

R =1 — P considering consequences.
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For variant 1 (T,eq_ < Thenw. + Td,-ag): see (A.11).

For variant 2 (Tyeq. > Thenw. + Tiiag): see (A.12), (A.13), and the same (B.2), (B.3).

Evaluated measures:

Risk to lose system integrity (R). Probability of providing system integrity (P).
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Chapter 5

A New Approach of Power
Transformations in Functional
Non-Parametric Temperature
Time Series

Haithem Taha Mohammed Ali
and Sameera Abdulsalam Othman

Abstract

In nonparametric analyses, many authors indicate that the kernel density functions
work well when the variable is close to the Gaussian shape. This chapter interest is on the
improvement the forecastability of the functional nonparametric time series by using a
new approach of the parametric power transformation. The choice of the power para-
meter in this approach is based on minimizing the mean integrated square error of kernel
estimation. Many authors have used this criterion in estimating density under the
assumption that the original data follow a known probability distribution. In this chapter,
the authors assumed that the original data were of unknown distribution and set the
theoretical framework to derive a criterion for estimating the power parameter and
proposed an application algorithm in two-time series of temperature monthly averages.

Keywords: functional non-parametric time series, power transformation, Kernel
density function, Mean Integrated Square Error

1. Introduction

One of the most common approaches for studying forecasting models is the
Nonparametric functional regression method, which has been successfully applied in
time series analysis. In this chapter, a new approach of power transformation is
proposed to improve time series prediction when using functional nonparametric
techniques. Although the nonparametric regression estimation under dependence is a
useful tool for forecasting in time series [1], the functional and nonparametric
approaches does not work well in certain circumstances.

Regarding the functional approach, The functional data (FD) analysis treats with the
observations as a functions [2] without the need for fully parametric and non-parametric
modeling conditions. In other words, FD analysis reduces the size of the data by clarify-
ing the correlations between a large number of variables by a small number of factors or
functions [3]. This transformation of the data structure into a linear combination of a
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few functions (curves) is equivalent to structural regression models. A number of useful
semi-metrics families can be used to measure the proximities between the curves of the
functional variables. One of these ways, for example, the Functional Principle Compo-
nents Analysis (FPCA) [4, 5]. In some data sets with the time dependence of observa-
tions, FPCA may lead to weak estimates and that this problem may be exacerbated in
some time series data sets especially those characterized by the presence of seasonal
changes [6] (See also [7] who pointed out that the standard PCA may not be the suitable
technique to apply when the data distribution is skewed or there are outliers).

As for the nonparametric approach to estimating kernel density functions (KDF)
or predictions in regression and time series models, although this approach is a
Distribution-Free method, the symmetricity of the data is an important issue in order
to obtain efficient estimators [8, 9].

As for time series and the goal of improving forecastability, it is known that the
time series data sets in practical applications are rarely adapted for statistical analysis
due to their instability in variance, trend, and seasonal variations [10].

Based on the aforementioned requirements of importance that precede the analysis
and inference in the functional nonparametric time series analysis, it can be said
that the power transformation (PT) provide a novel corrective framework of the
predictive modeling.

The rest of the chapter is organized as follows: The second section includes some
explanations and clarifications of some traditional approaches of PT and their uses in
KDF. In the third section, the authors present their proposal which contains a new
approach for Transforming of KDS. Section four includes the algorithm for applying
the proposed method. While the fifth section includes an applications of the proposed
method to two temperature time series datasets. Finally, the sixth section included the
conclusions and some future recommendations.

2. The traditional approaches of transformations in KDF

There is a long tradition of applying PT models in statistical applications. In 1952,
Finney [11] used the PT model ¥(Z) = Z* when A # 0 and ¥(Z) = log (3) when 4 = 0,
where Z represents the original dose variable in the biological assay. The purpose of
using transformation in dose response relationship was to achieve the monotonous and
linear characteristics for the Intrinsically nonlinear models. In 1964, Box and Cox [12]
proposed the following general class of transformation of the response variable in the
multiple linear regression model,

z'-1
wiz)={ 2 TA70 ()

log(z) ifA=0
to achieve a linear relationship with normality errors. In 1977, Tukey [13] describes

an orderly way of re-expressing variables using the following model in order to
preserve the order of the variable after the PT is used,

Z'if 2>0
Y(Z)= log(z)if A=0 (2)
~Z*if <0
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to make the relationship as close to a straight line as possible. As for the
nonparametric estimates, many authors refer to the usefulness of PT in reducing the
bias of KDF when the data is clearly skewed or heavy tailed [14], (For more details
see, [15-17]).

Regarding the transformation parameter estimation issues, most transformation
methodologies have a common analytical path, which is the choice of the PT model
and proposing an algorithm for estimating the power parameters in parallel with the
mechanisms of estimating traditional model parameters. As for the approach of
transforming the probability density function (PDF) of all or some model variables
before proposing an algorithm estimation, there are at least two common methodolo-
gies of data transformation. The first in chronological order is the Box Cox transfor-
mation (BCT) methodology of data transforming to normality of response variable in
parametric multiple regression models [12]. The common decision rule for selecting
power parameter estimator in this approach is the maximization of log likelihood
function of the PDF of original data. In some cases, the Bayesian estimating method is
used and many other methods included in the subject literature can also be used to
choose the transformation parameter. The second methodology is proposed by Wand,
Marron and Ruppert in 1991 [8] to transform the KDF to a symmetrical shape in
density function. In this methodology, the decision rule for selecting optimal estima-
tor of density power parameter is the minimization of the Mean Integrated Square
Error (MISE) of KDF estimator. Both transformation ways are used the distribution
approach of transformed data and therefor defining the original data distribution as a
"back-transformed" of change-of-variable technique. Mathematically, in the case of
the univariate random variable Z, Box and Cox [12] assumes that there exist a

parametric PT function y(.) of the random variable Z such that y(z) = Z® ~
N (p,6%) under the assumption that the original data is of unknown distribution.
Therefore, the PDF of the original variable is given by,

dy(z)

fz(8) =f (w(zi);ﬂ,dz)-’ dz; (3)

While the second methodology [8], Wand, Marron, and Ruppert assumes the
estimated KDF of the transformed variable y(z) that is close to the symmetrical shape
is given by,

Frm@@sd) =f{v @)} ™) wE) (4)

Such that the estimated KDF of the original variable Z is the back-transform of
(Eq. (4)) and given by,

folmhi) =y () {w(z) —w(Z)} 5)

Where h is the bandwidth and the kernel K is a density. In brief terms, the first
methodology aims in the parametric models to improve the efficiency of the statistical
inference based on the data normality, and the second methodology aims to improve
the kernel estimator at least on the basis of symmetrical data. And in the same
context, the literatures recommend the use of transformations as long as they can
improve interpretation of effect sizes between variables [13] or given the fact that
model parameters are not easily interpreted in terms of the original response [14],
(For more details, see [15-17]).
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Now, assuming that U = y(z), The optimum value of the PT parameter A is the
one that corresponds to the lowest possible value of MISE of the estimated density
(Eq. (5)) and given by,

MISEy(h, 4) J{fz 55, A) fz(z)}zdz 6)

Assume that the first and second derivatives of the function f, (%) exist, as well as
that Ky = [ Z’K(Z) ds, K, = [K*(Z) dxz so

MISEz(k, ) = AMISEz(h, ) + O (k* + n"h ™) @)

Where:
AMISEz(h, 1) = h*(K%/4) Jy/’{t// u)} o) ’du+nh 'K, Ey'(z)  (8)

and the minimized window width for any value of A is given by,

1/5
K> Evy'
B, — 2Ey'(=) s (©)
K |/ o) £ 2 e

and it contains less AMISE,(., 1) for each constant value of A that equals,

Inf AMISE, (h, 1) = (5/4) (K1K2)*°T (A)n~*/ (10)

h>0
Where,

/ 4 / 2 15
0 = [ @ [v () Fotusardu a

The last two equations (Egs. (10) and (11)) represent a measure of the transfor-
mation’s y(z) influence on minimizing the error associated with estimating the func-
tion of the original data f(.; 4, 4). Therefore, the optimal value of A can be known as

the one that minimizes: Inf AMISE, (h, ).
h>0

By the same decision rules logic AMISE, (h, A), derived from the density estima-
tion of the transformed variable Z, the optimal asymptotical window width for each A
according to the original random variable is:

e | & 17 o)
b R2 T, (A)n

Asymptotically, the optimal choice of A minimizes

Inf AMISE,(h, ) = (5/4) (K1K2)*J,,(A)yn~4/5 (13)
h>0
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Where:

Ju(d) = U ’L’,(u;z)zdu} " (14)

In other words, it can be said that the minimization of J,(4) and J,(4) are the
sufficient condition to prove the optimization of A since Eq. (11) and Eq. (14) repre-
sents the variable parts of Eq. (10) and Eq. (13) respectively.

Finally, the relationship between MISE, (k, A) and MISE, (h, 1) can be determined
according to the equations:

N 2
MISE, (h, 1) EJ [Fuw) o)} v o ) (15)

~ 2
MISE, (b, ) = E [ {£.6) ~£.0)} " w Y (w(e))ds. (16)

Both error functions yield the same results, whether in terms of the original
variable or of the transformed variable.

3. A new approach of transformations in KDS

Unlike BCT methodology, which assumes that the original data is of unknown
distribution, PTs’ in KDF estimation are used to shifted the random variables with a
known distribution into symmetric shapes to obtain an efficient kernel density esti-
mation. The statistical literature in nonparametric estimation suggested the use of
MISE indicator as a decision rule for power parameter estimation for a number of
distributions such as Lognormal [8, 18], gamma [8], Cauchy [9], Pareto [18] and
heavy-tailed distributions [19, 20].

Now, similar to the BCT approach, the primary hypothesis of the new approach
in this chapter is that the data do not have a definite distribution. We will use the
power transformation to transform the data to a normal shape and use MISE as a
decision rule to choose the optimal value of the power parameter. Later in the sections
4 and 5 we will use this approach in the functional nonparametric time series analysis.

Let us assume that we have the random variable Z with unknown distribution and
U = y(z) represents a PT model. Let, for Finney transformation (FT), suppose U = z*
follows the normal distribution with mean p and variance 62. Therefore, according to the
Eq. (3), the PDF of the original variable Z is given by f ,(2) = ¥'(2) f, (w(2i); p, 6%).

In our proposed approach, the assumption of the normality of the transformed
data when the original data is of unknown distribution provides uncomplicated
options for estimating the power parameter so that Eq. (14) can be used as the
simplest alternative to Eq. (11). In our assumption, we have,

1 —(u—p)?
fulusA) zme 22  UeR (17)

So, the square of the second derivative of Eq. (17) is,

_ 2 2 4
fasi = (Vare?) "exp <_(u,;§”)> L,lﬁ;zz At
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By inserting the integration factor, we get,

Jf”(u; A)’du = 678 (\/ﬁ) ! [ Ja“( 27:0'2) 71ei(ly)2du (19)

—1 _(u-p)?
—JZGZ(M —II)Z(\/ZJw ) e du

+ J (u—p)* (\/ﬁ) _le(tzﬂ)zdu}

Assume 62 = 282, then the first term of Eq. (19),

~(u—)? 4 ()2 4
J64 1 e S du — G—J#e Ay =2 (20)

V27262 V2) /2262 V2

and the second term of Eq. (19),

Jzaz(u -’ (\/2—;;) e = Z;‘ZJ (u—p)? (\/Zr;) e

v2 (21)
267 , ¢t

=2 B =2

and the third term of Eq. (19),
1 _(u-p)? -1 —(u—p)?
J(u —ﬂ)4 (V 27r0'2) e s du = ij (u —ﬂ)4(\/ 27:62> e%du

\/51 (22)

= — E(U-p)*
7 (U—p)

by using the central moments equation of the real-valued random variable U,
E(U —p)" = EY_} oC}(—1)"7 U/ " then,

E(U —p)* = E(U*) — 4p E(U?) + 6 )’E(U?) — 4 P E(U) + (u*) (23)

Based on the moments equation, .
By = E(U ),get,
EU-p)* =pg—4psp+6p, 0 — dpp®+p* (24)

Substitute the three parts defined by Eq. (20), Eq. (21) and (Eq. (22) into
Eq. (19) get,

Jul) = [als (V2ro?) ) <¢1§ (o — dpsp + 6pop” — dp® +p*) | V5 (25)

Eq. (25) is the end of the derivation. The optimal power parameter value is the one
that minimizes the value of J;;(4). In the practical application, the estimators of the

maximum likelihood method were used for the moments about zero ji* = S uk/n

and the central moments i, = 5 (u; — #)* /n.
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4. Proposed application algorithm

For the univariate time series {Z;,¢ R}, assume that the sample is divided
into (p + 1)) statistical samples of size (# = N —s — p + 1) so that the time
series data set can be defined as a functional data {(X;, Y;)} . The regression
model,

i=1,.,n

Y=mX)+e (26)

represents the relationship between the smooth functional data m(X) and scalar
response Y; = Z;,,i = p, ,N — s. The white noise ¢ is a sequence of independent
identically distributed functions in such E(¢/X) = 0. X4, X5, ...., X, are identically
distributed as the functional random variable X; = (Z,-,pH, s Z,~). Assume N = nt
for some n ¢ N and some 7> 0 to get a statistical sample of curves X; =
{Z(¢), (i — 1)z <t it} of size (n — 1) and the response Y; = Z(it +s),i =1, ...,n — 1
[5]. The kernel regression estimator evaluated at a given function m(X) in Eq. (26) by:

_ Y YiK(h T d (X, X))

" S K d (x,X) 7

Where K is a kernel function and, h (depending on n) are a positive real bandwidth
and d (X, X;) denotes any semi-metric index of proximity between the observed
curves based on the functional principal components [5, 6, 21]. Many authors have
proposed a number of methods for measuring the proximity such as, the method of
FPCA in which, d (X, X;) is measuring by the square root of the quantity
[ (X:i(e) - Xj(t))zdt or the quantity | (XE2> t) -X ](.2> (t))zdt (for more details, see
[4, 21-25]).

The application methodology includes estimating the smooth functional data m(X)
in the regression equation Eq. (26) according to the kernel estimator Eq. (27)
after transforming the time series dataset. So, the following proposed application
algorithm of the nonparametric estimation of transformed functional time series
according to the proposed new approach for transforming the kernel density were as
follows:

Step 1: Choosing the common range A = {—3, 3} for the power parameter A

Step 2: Calculate the value of J,,(7)(4) according to Eq. (14).

Step 3: Transform the original response variable Z according the Finney [11] PT
model, ¥(Z) = Z* when A # 0 and BCT model Eq. (1) to get the explanatory func-
tional matrices ¥, (X) = [¥4(2)],,, (for more about the matrices file organizing in the
R program, see [5, 21]”.

Step 4: Redefining the functional data of the regression model {(X;, Yi)},; ,
so that the statistical sample of curves X; = {Z(t), (i — 1)<t it} is defined as
follows,

nxt

Y.(X;) ={P.(Z{1)), (i — 1)r<t<it} (28)
and the response Y; = Z(it +5),i =1, ..., n — 1is defined as follows,

Y’A(Y,') = 'I’A(Z(l’l' +S)) (29)
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Step 5: Defining the Eq. (28) and Eq. (29) in which t equal the seasonal length.
Step 6: Estimate the explanatory function regression ¥;(Y;) = m(¥,(X)) + ¢,
(where)

_ ST PAUY)R(h 7 d (Pi(X), V(X))

m(¥,(X)) SEK (R d (P(X), Pa(X)))

(30)

by using the Nadaraya—Watson regression estimator for functional data.
Step 7: Perform the steps 2 through 6 for all A € A.
Step 8: Choose the optimal value that corresponds to the lowest value of J;(4).
Step 9: Calculate the estimator of mean square errors of the last curve
MSE(X,) = (1/9)34 (%) — zj)z, where, %; and z; are the j-th estimated and real
values respectively in the last curve. zjvalues denoted to, they are computed from the

back transform of y(z) = 2.
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Figure 1.

Plots of the monthly temperature averages series: (a) TSN; (b) TST [21].
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In all PT methodologies, the decision rule for choosing the optimal power param-
eter, always leads to what we might call the area of feasible solutions. For example, the
argumentative question in BCT is: Does the optimal parameter that results from
minimizing MLE method for the original response function achieve the normality of
the transformed variable in practice? The authors believe that this problem is due to
the nature of the data. In the proposed approach, the optimal power parameter that
corresponds to the lowest Ji;(4), we have the challenge of complexity in the feasible
solutions area that we suppose to achieve: The transformed response normality in
practical application that provides quality conditions for both functional and non-
parametric analyzes approaches in nonstationary seasonal time series (For more see
[26, 27] that point to other challenges related to the use of PT and the quality of the
power parameter estimation).

5. Applications

The PT models indicated in the proposed application algorithm have been
applied to two examples of nonstationary time series of monthly temperature
averages [21]. The first has a size of 200 observations of Nineveh City in Iraq
(TSN) for the period 1976 to 2000 (Figure 1a). The second has a size of 300
observations of Tunisia (TST) of the period 1991 to 2015 (Figure 1b). R software
was used to analyze the data. The data is available at https://climateknowledgeporta
l.worldbank.org.
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'r’lﬂr?lr:ln—lix—!‘—‘(q?? SO0 - e
A

Figure 2.
The curves of the ordered pairs (i,-, T (/’L)) of the transformed responses of the two time series data sets using FT:
(a) TSN. (b) TST.
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Returning to the ideas of the of feasible solutions area, we must verify the
results of choosing the optimal PT value according to the proposed density
transformation approach and its contribution to achieving the analysis efficiency
requirements: the concavity of J, (1), the normality of the transformed response,
and the reduction of the prediction error in the functional nonparametric time
series analysis.

Mathematically, J,(4) is a concave function, but a number of authors state
the possibility that there is no mini-point or is not unique [8, 18]. This
conclusion may depend on the success in choosing the appropriate PT model [20].
The plots in Figures 2 and 3 show the curves of the ordered pairs (;,],(4)) of
Eq. (14).

In Figure 2, it can be seen that the curves of the two time series data sets using
FT has a concavity point in the range (-3, 0), while the J, (1) values tends to zero in
which the curves fades towards the horizontal line in the range (0, 3).

While when applying BCT, it becomes clear from Figure 3 that there is no point of
concavity in the curves of J, (1) as its value goes to zero whenever the value of A goes
to —3. Therefore, it is not possible to obtain an optimal value for A.

As for the normality of the transformed data, Table 1 shows for the two examples,
that the response variable data in its original and transformed states are not normal.
Both optimal values of A corresponding to the minimum values of J,,(4) did not shift
the data to the normal shape. But on the other hand, the improvement in the
forecastability of the two-time series was evident through the estimates of mean
square errors of the last curve (Table 2).
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Figure 3.
The curves of the ordered pairs (i,-, T (/’\.)) of the transformed responses of the two time series data sets using BCT:

(a) TSN. (b) TST.
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Time Series Responses by p-value
K-Smirnov Sh.-Wilk
TSN Z(t) 1.0 0.0002 8.5E-7
¥,(Z(t) 0.4 2.2E-16 2.8E-6
TST Z(t) 1.0 2.0E-8 5.0E-11
Y, (Z(t)) -0.6 2.2E-16 5.9E-10
Table 1.

The data normality tests of the original and transformed vesponses in the two examples using FT model.

Time Series Responses by MSEz(X,)
TSN Z(t) 1.0 1.7616
v HZ(r)) -0.4 0.9462
TST Z(¢) 1.0 0.4303
T VAD) —-0.6 0.1994
Table 2.

The MSE estimates of the last curve Xy of the two-time series datasets.

6. Conclusions

In the analysis of parametric and non-parametric time series, like any statistical
modeling process that requires the availability of certain conditions so that the
results of statistical inference are reliable, which contributes to improving the
forecastability.

Data is rarely ready for statistical analysis, which necessitates the use of power
transformation to improve the required output. In this chapter, power transformation
has been used with a new methodology to improve the outputs of the analysis with the
following three directions: time series, nonparametric estimation and functional anal-
ysis. Therefore, the authors faced the challenge of choosing the optimal power
parameter estimation method in accordance with the conditions of the feasible solu-
tions area for the three directions. Using MISE as a criterion for choosing the power
parameter in the proposed method did not achieve the normality of the data but it
enhanced the forcasetibility of the time series.

By applying the FT and BCT models, the first was applicable and fulfilled the
concavity condition for the transformation effect measurement function J,, (1), while
the function curve was divergent at both ends of the power parameter range using the
second model.

In the future, we recommend developing the proposed methodology using other
transformation models and looking into the possibility of using it in other shapes of
time series.
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Chapter 6

Change Detection by Monitoring
Residuals from Time Series Models

Tom Burr and Kim Kaufeld

Abstract

Change detection in time series can be approached by fitting a model to the
no-change, ordinary background data and then monitoring time series of residuals,
where a residual is defined as residual = data - fit. In many applications, models that
fit time series data lead to residuals that exhibit no patterns unless the signal of
interest is present. Therefore, an effective signal or change detection approach is to
first fit a time series model to the background data without any signal and then
monitor the time series of residuals for evidence of the signal. This chapter briefly
reviews a few time series modeling options and then focuses on statistical tests for
monitoring residuals, including Page’s cumulative sum (cusum, a type of scan statis-
tic), the ordinary cumulative sum (cumsum), the matched filter (a version of the
Neyman-Pearson test statistic), and pattern tests, such as those used in quality con-
trol. Simulation and analytical approximation methods are recommended for studying
test behavior, as illustrated in three examples.

Keywords: time series models, residuals, scan statistics, cusum, matched filter

1. Introduction

This chapter’s focus is on change detection by monitoring residuals arising from
fitted models to time series data. The residual at time ¢ is defined as », = x; — X;, where
% is the predicted (estimated) value of the data x;. Large residuals or patterns in
residuals could indicate that some type of change has occurred compared to usual
behavior during the analysis period that was used to fit the model. For example, the
number of positive test results for a disease could show a sharp rise or decline com-
pared to the recent past, perhaps indicating that a signal of interest is present, such as
a more infectious strain emerging. As another example, assembly line productions
monitor product quality, such as the diameter of a machined part, which can drift due
to measurement effects and/or machining effects. Diameter drifting can lead to
detectable residual patterns, where the residual is the measured diameter—target
diameter. Prior to diameter drifting, the time series should vary randomly around a
mean value that is close to the target mean diameter. Therefore, time series fitting of
the “in control” process data simply requires estimation of the mean and standard
deviation of the measured diameter of each part. Other time series fitting options are
less simple.
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There are many types of time series, such as series of the unit or system failure
times in reliability data, series of new disease cases or deaths, series of measured
product quality, such as geometric dimensions in machined parts or salt content in
bags of chips. This chapter does not consider predicting the next failure time, the time
to the next spike in disease counts, or the time for the machined part mean dimension
to shift. Instead, the chapter focuses on monitoring for possible changes in the mean-
time to failure, changes in the distribution of disease counts, or machined part
dimensions. There are many applications in which a training period for model fitting
is assumed to define normal behavior, and then the testing period monitors for
various types of changes from the normal behavior, such as a shift to a different mean
value.

Figure 1 is a time series of # = 50 values that have mean 0 and standard deviation 1
(independently and identically distributed normal random values, denoted iid N(0,1)
in the figure caption) that exhibit no change in (a), a mean shift of 2 units on period 25
in (b) a mean shift of 2 units at time indices 26-30 in (c), and a mean shift at time
indices 26-50 in (d). The human brain/eye is reasonably effective at spotting such
changes but is vulnerable to being fooled by spurious patterns. Statistical methods,
some very simple and some less simple have been developed to detect changes of
interest, as this chapter explains.

Let x1,x7, ..., x, denote a time series, which is a sequence of values at times
1,2, ..., n. Figure 2 plots an example simulated time series with # = 50.

An effective time series model leads to residuals that are approximately
independently and identically distributed (iid) [1, 2]. The residual at time ¢ is defined

Zero mean residuals Period 25
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@ N . 1 @ N 1 iy 1
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Figure 1.

Time series, iid N(0,1).
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Figure 2.
Time series, MA(1) generated from iid N(0,1).

as 7y = x; — X;, where &, is the predicted (estimated) value of x;. For example, f() could
be linear in the x’s, resulting in the well-known auto-regressive (AR) model,

fO) = pixi—a + ppXe—2 + ... +p;, %1, or f() might be linear in both the x’s and an
underlying iid noise sequence ey, e, ...,¢,, resulting in the auto-regressive moving
average (ARMA) modelf () = p1x;1 + poxs—2 + o +pp X1, + 011+ 02x 2 + ... +
01,,%:_1,, where [ is the AR lag, and Iy is the moving average (MA) lag [1, 2]. The lag-
one MA, AR, and ARMA models are given in (Egs. (1)-(3)).

xt - 1916,_1 + et (1)
Xy = P1Xr—1 + e (2)
Xt = p1Xe1 + Oher 1+ & (3)

Conditions on the magnitudes of € and p ensure stationarity (constant mean and
variance over time). Often, time series can be transformed to stationarity by taking
first differences, as is commonly done in stock market price series [1, 2]. Of course, f()
might not be linear in prior x values or ¢ values and in general could be an arbitrarily
complicated function, f(;—1, ..., Xe_1,5€—15 v €1y ).

Figure 2 is simulated data from a lag one MA model, x; = 61¢;_1 + ¢, . Figure 3 is
the cumulative sum (cumsum, C; = Zlexi) and Page’s cusum S; with parameter k
(see [3] and examples 2 and 3) defined as.

St = max (0,81 +x;, — k (4)

for the data plotted in Figure 2 [3]. Because of the reset-to-0 feature of S, if the
sum goes negative and because of the parameter k, Page’s S; does not have the large
drift behavior that the cumulative sum does. Figure 4 is the estimated underlying
residual sequence and the actual underlying simulated residual sequence. Figure 5 is
the same as Figure 4 but plots the difference between the estimated and true resid-
uals. All plots and analyses are performed in R [4]. Statistical tests for changes in the
background due to signal are applied to estimated residuals, so alarm thresholds and
signal detection probabilities should be estimated using estimated residuals obtained
via simulation.
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Figure 5.
Same as Figure 4, but plotting the difference, residual-estimated residual.
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This chapter describes three change-detection examples. Example 1 monitors for
patterns of large residuals, such as a consecutive string of three residuals exceeding a
threshold. Example 2 monitors for excessive numbers of tweets in any of the 65
Florida counties. Example 3 monitors for nuclear material loss. Portions of Examples 1
and 3 have been published. Example 2 is entirely new.

2. Example 1: monitoring for patterns of large residuals

The Stein-Chen (SC) method approximates the probability density function (pdf)
that assigns probabilities to the number of times that a pattern such as Iy, I; 11, ;12 =
{1 0 1} occurs, starting at position ¢ in a binary time series of length 7. In example 1,
the original time series that is converted to binary is assumed to consist of a sequence
of independent iid residuals that result from fitting any type of time series model.
Recently the SC method was shown to provide an accurate Poisson-based approxima-
tion and corresponding total variation distance bounds in a time series context [5].
The binary values.

I1, 15,15, ..., I, are assumed to be independent and identically distributed with
constant probability p = P(I; = 1). The probability p is the probability that the original
time series X exceeds a threshold, and the I notation denotes an indicator or binary
variable. As an aside, the SC method can also be applied if p is not constant over time,
but the independence assumption is difficult to avoid [5-10]. Any type of time series
model [1, 2] can be fit, and then the resulting residuals become the original series that
is thresholded to convert to binary; therefore, the application is quite general.

Figure 6 is the estimated residuals from Figure 4 but thresholded at 1.4 (values of 1.4
or larger are set to 1; values less than 1.4 are set to 0) to convert to binary.

Note that if {1 0 1} is known to not occur, for example, starting at position ¢ = 1,
then this information impacts the probability that {1 0 1} occurs starting at position
t =2 ort = 3, because the trials to obtain {1 0 1}are overlapping and thus not
independent, so the Poisson distribution assumptions are not met. Nevertheless,

Ref. [5] showed that Poisson-based approximation (that is strictly correct only for
independent trials) can be remarkably accurate, and the SC method provides a bound
on the total variation distance between the true and approximate pdf.
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Figure 6.
Binary version of the estimated residuals in Figure 3.
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Consider scanning for {1x 1} with x = 0 or 1, with p = P(I; = 1) being quite small,
such as 0.10 or less in a residual series of length # = 10. Then the probability of the
pattern {1x 1} is p,, = p?, and there are # — 2 = 8 possible starting locations for the
pattern in N = 10 trials. Because there are only 2'° = 1024 possible patterns of Os and
1s, all 1024 patterns could be listed, and the probabilities assigned to each set of 10
binary values that include {1 x 1} at least once could be summed to provide an exact
calculation. For larger values of #, this exact calculation is unwieldy, so an approxi-
mate method is desired, provided the approximation is highly accurate with provable
error bounds.

Start at index i = 1 and check whether {1 x 1} occurs in positions {1 2 3}, then start
atindex i = 2 and check whether {1 x 1} occurs starting at index 2 in positions {2 3 4},
then start at index 3, etc. Note, for example, that if {1 x 1} occurs starting at position
i = 1, then the probability that {1 x 1} also occurs starting at index 3 is p. Clearly, there
is a small neighborhood of dependence around each starting index, as just illustrated.
This neighborhood of dependence violates the assumptions for a Poisson distribution
(as a limit distribution for a sequence of N Bernoulli trials, each with a small proba-
bility of success), but Ref. [6] shows that provided the dependence neighborhood is
modest, the Poisson distribution can still provide an excellent approximation to the
pdf defined on the number of times {1 x 1} occurs in a series of length N.

2.1 Stein-Chen method

The Poisson pdf with mean parameter A = (N — Z)pp provides an approximation Y
to the true pdf W for the number of times {1 x 1} occurs in a series of length # [5, 6].
The value (n — 2) is used instead of 7 because the length 3 pattern could only be found
starting at index 1, 2, ..., n — 2.

The quality of the Poisson(4) approximation can be measured by computing b; and
by, where b1 = Z:‘l:lzjeN,-Pin’ with N; = {i —2,i — 1,4,i 4+ 1,7 + 2} being the
dependent neighborhood N; of index i, and by = >, ;e v E{I;I j }, wherej #J'.
The term b3 is equal to 0 in Theorem 2 of Ref. [6] by the construction of N; in this
example. Then, the total variation distance (TVD) satisfies.

drv (Y, W) <4(b1 +b2) = 4(n — 2,97 + 3p,p) 5)

The TVD is a general distance measure between two pdfs. The TVD is defined here
as the maximum absolute difference between the probability assigned by Y and the
probability assigned by W to any specified subset of possible integer values. In the
current scanning context, the most important subset of possible values to consider is
the single value {0}, which would imply that the pattern {1 x 1} never occurred
(occurred O times) in the n — 2 overlapping trials. Then, the SC method, in this
context, uses the Poisson approximation to assign a value to P {0} and this method
ensures that the Poisson approximation to P{0} is quite accurate, as shown by the
numerical example below.

According to the Poisson approximation, P({1x 1} never occurs) = ¢ *. For
example, usingz = 1000 and p = 0.01, 2 = 998p,, = 0.0998, then e*=0.905 is the
approximate probability that the pattern never occurs, with an SC-based bound of

4(n —2) (9}9; + 3ppp) = 0.0123. Therefore, the maximum difference between the
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true probability defined by the Y random variable and the approximate probability
assigned to any subset of the possible number of occurrences of {1 x 1} defined by the
approximating W (Poisson random variable) is 0.01236. So, for example, if the
probability that ({1 x 1} never occurs) = e* = 0.905, then the true probability of 0
occurrences of the pattern is between 0.89 and 0.92. Section 2.3 uses simulation to
confirm the quality of the SC approximation in Eq. (5) in this context.

Simulation can be used to closely approximate the true probabilities, but only for
moderate values of #. For example, in 10° repeated sets of 7 = 1000 Bernoulli trials
with p = 0.01, then A = 998pp = 0.0998, and e * = 0.905, the simulation-based P(0

occurrences of {1x 1}) = 0.907. The Poisson-based approximation gives 0.905 with a
SC-based TVD bound from Eq. (4) of 0.0123.

2.2 Summary

The SC method was described to approximate the pdf for the number of
occurrences of an example pattern in an independent binary time series. In scanning
for whether a pattern, such as {1 x 1}, occurs starting at index i, there are overlapping
tries to achieve the pattern, resulting in many non-independent trials consisting of the
values in three successive indices. As the time series length increases and the
probability p = P(I; = 1) decreases, the SC method shows that the Poisson approxima-
tion is excellent, with a small total variation distance bound.

The SC bound does not seem to be commonly used; however, related references
are available [5-10]. For example, Ref. [7] applies the SC method to calculate
coincidence probabilities. References [8, 9] apply the SC method in different time
series contexts than considered here. To simplify the calculation of bivariate Poisson
moments, Ref. [10] applies the SC identity Xf (X) = pE(f(X + 1)), where X is a
Poisson(u) random variable, E denotes expected value, and f () is any bounded
function defined on the nonnegative integers. The SC identity was used to develop the
SC approximation method used in Ref. [5] and the example above. Reference [5]
showed that the SC bound defends the use of the Poisson approximation in real
applications (as opposed to unwieldy combinatorial calculations for long time series),
and provides a small bound on the approximation error. Simulation and/or analytical
approximation are needed to estimate p = P(J; = 1) to apply the Poisson approximation
and associated SC bound.

3. Example 2: monitoring for excessive numbers of tweets in 65 Florida
counties

3.1 Introduction

Example 2 analyzes two types of daily tweet counts. The first type of counts is
available from March 8, 2010, to December 31, 2015, in each of 65 Florida counties. In
the available data from 65 counties (instead of the full 67), Lafayette is merged with
Madison, and Liberty is merged with Gadsden; see Appendix 1. Such merging changes
the spatial resolution available to detect spatial-temporal outbreaks for the four rele-
vant counties. Reporting counts at the county (or merged county) level also changes
the available spatial resolution, compared, for example, to geo-tagged counts. The
second type of counts is time-tagged (to the nearest second) and geo-tagged (latitude
and longitude) tweets, not aggregated to county-level counts.
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One approach to monitor any numerically-valued time series has two main steps—
(1) use training data to fit a model or models to the daily counts by county; and (2)
monitor the corresponding residuals during training and testing to detect departures
from the fitted model(s). For (1), effects such as day-of-week or time-of-year effects
with multiple seasonal trends could be present, so the model building should be
comprehensive, including assessment of simple exponentially weighted moving aver-
age (EWMA) models as well as models to fit trends and/or seasonal effects. For (2),
the anomalies of interest could arise in neighboring counties (such as a reaction to a
severe weather event such as a hurricane), and so could cluster in time and/or space.

3.2 Exploratory data analysis

Figure 7 is daily tweet counts from March 8 to December 31, 2010 (236 days) for
(a) Brevard, (b) Broward, (c) Duval, and (d) Flagler counties (4 of 65 counties). This
report addresses what types of models might fit these data, and options for monitoring
residuals from the fitted model(s).

Question 1: Is the distribution of daily counts stable or stationary? Stationary
means that, for example, the mean and variance of the counts is constant over time
[1, 2]. Informally, it appears that spiking occurs in Broward county and that a mean
shift occurs in Duval county. If the counts are not stationary, sometimes, for example,
the first differences in counts are at least approximately stationary, perhaps with
occasional spikes (Figure 8) [1, 2].

Question 2: Is the background (“training”) data such as the 2010 counts adequately
fit by a Poisson distribution [11-13]? Figure 9 plots the variance/mean ratio (which
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Figure 7.

The daily tweet counts for four of 65 Florida counties from march 8 to December 31, 2010.
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should be approximately 1 for Poisson data) for each of the 65 counties. Hillsborough,
Miami-Dade, and Orange counties appear to be outliers. In view of Figure 9, question
2 is academic here, because it is not expected that a simple constant-mean Poisson
model will be adequate [11-13]. Figure 9 suggests non-Poisson behavior.

Figure 10 plots the daily number of tweets for Broward county and simulated
counts assuming a constant mean (equal to the mean of the Broward county counts)
Poisson model. Figure 10 also suggests non-Poisson behavior.
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Figure 8.

The first differences in daily tweet count for four of 65 Florida counties from March 8 to December 31, 2010.
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The variance/mean for each of 65 Florida counties in 2010. The three largest variance/mean vatios are

Hillsborough, Miami-Dade, and Orange counties.
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Figure 10.
The daily number of tweets in Broward county from March 8 to December 31, 2010, real (top), and simulated
Poisson (bottom).

In Figure 10, the largest simulated count is 11 (the mean count is 3.4) but 7 of the
236 real counts exceed 11, and 2 of those exceed 20. More formally, the 99th percentile
of the variance/mean ratio when sampling 236 observations from Poisson (3.4) is 1.23,

2 : ~ Zj:lxi : 2 Zi?(xﬁ?c)z :
but £ = 3.4 (Figure 8), where X = <~ is the sample mean and s* = <~~5;=——is the

sample variance. All analyses are performed using R [4]. Together, Figures 9 and 10
strongly suggest that a constant mean Poisson model is not adequate. Possibly, resid-
uals around a fitted model could display approximate Poisson behavior, or perhaps
another model such as the negative binomial for which variance/mean > 1 would be
more appropriate [11].

Figure 11 is the total counts overall 65 Florida counties for each year in 2010-2015.
ijﬂ (xi %) ( (x j 7f)
\/anzl(x" %)
minor adjustment to avoid negative indices [1]) using indices 1-117, prior to the large
drop at index 118 for the total Florida counts in 2015. The ACF is useful for selecting

possible models, such as those included in the class of ARMA models [1]. Modern
machine-learning (ML) methods can also be evaluated, typically using AR modeling
[1,2, 12, 13]. An example of linear AR model is the lag one model x; = u + px;_1 +¢;,
where i is the long-term mean and the condition |a| <1 ensures that the {x;} series is
stationary. The noise term is denoted ¢;. An example of a linear MA model is in Eq. (1);
fitting an MA model requires estimating the noise sequence ¢, [1, 2]. Figure 13 is (a)
simulated MA(1) data and (b) estimated residuals versus true residuals as was also
shown in Figures 4 and 5.

Figure 12 is the autocorrelation function ACF; = p; = (with a

3.3 Model selection and fitting

Exploratory data analysis (EDA) indicates no significant correlations in the resid-
uals from the ARIMA(O0,1,1) fit, so a simple MA(1) model could be competitive. The
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The total counts overall 65 Florida counties for each year in 2010-2020,105.
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Figure 12.
The ACF for total Florida counts in 2015 over indices 1—117 before the large drop.

exponentially weighted moving average (EWMA) fit leads to the same fits as an MA
(1) fit to the lag-one differences, which can be easily seen [1] as follows:

% = (1= %1+ o1 =x-1 + (1 — 2) (o001 — %—1) (6)
Xt = (1 — /1)6;;71 + e (7)
Xy =Xp_1 — (1 - /1)61'—1 (8)

The forecast %, in Eq. (6) from EWMA is the same as the forecast X; in Eq. (7) from
ARMA(0,1,1) which is an MA(1) after differencing [1, 2]. It should be pointed out
that Poisson EWMA control charts as described in Ref. [11] are designed to monitor
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Figure 13.
(a) Simulated MA (1) data and (b) estimated vesiduals versus true residuals.

whether the Poisson mean g, is constant over time. In that case, g, = (1 — A)i,_4 +
Ax;_1 is monitored rather than monitoring residuals from a local fit to the time-varying
mean as in the twitter count monitoring.

The EWMA is among the simplest and most effective methods to forecast a time
series. However, anomalies that persist for more than one day will impact the EWMA
forecast in a manner that leads to reduced detection probability (DP) to detect the
anomaly. For example, suppose an anomaly persists for 5 days. The EWMA forecast
will be quite effective for day 1 of the anomaly, but the day 2 EWMA forecast will
tend to increase due to the elevated expected count on day 1; this increased forecast
leads to a reduced residual, thus reducing the DP.

Smooth fits using wavelets [13], EWMA [1, 2], and iterative bias reduction (IBR)
[14-16] have been compared on this data. Edge effects are present in the wavelet and
EWMA smoothers at the beginning of the data. The RMSE for wavelets, EWMA, and
IBR are 4.05, 3.33, and 3.58, respectively, so EWMA is the simplest and has the smallest
RMSE in this example. In data regions that have peaks, EWMA also performs accept-
ably well. The smoothing parameter A in Eq. (6), X, = (1 — A)X;—1 + Ax;_1 can be chosen
by using a grid search in Ref. [0,1] to minimize the RMSE in the training data. It is not
unusual for EWMA to provide a competitive RMSE compared to other methods. As an
example, Figure 14 is the daily counts and the EWMA fit for Bay county counts.

Figure 15 is the residuals from the EWMA fit in Figure 14.

The standard deviation of the residuals in Figure 15 is 3.43 while the standard
deviation of the counts is 4.43. Figure 16 is the ACF of the residuals in Figure 15.

3.4 Monitoring residuals

One effective option to monitor residuals from a fitted model is Page’s statistic
applied in this case to residuals in a single county, or to sums of residuals from
neighborhoods of counties [17-20]. Reference [20] describes a scan statistic that spans
temporally and spatially. Reference [21] illustrates that if the temporal and/or spatial
spanning window is selected to provide maximum evidence of an anomaly, then the
false alarm probability can be undesirably large unless the variable spanning is taken
into account.
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To monitor for positive mean shifts due to anomalously-large count(s), Page’s
statistic applied to the residuals ¢, = x; — %; is defined in Eq. (4)
(S; = max (0, S,_1 + e — k)). The parameter k is chosen to have good DP for a specific
mean shift, but monitoring whether S, >/ for threshold % can be effective for a range

Number of tweets

Figure 14.

Daily counts and a smooth fit for bay county. The green “P’s
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of values of k. For the Poisson distribution, by using the ratio of the likelihood under
the background mean yjp to the shifted mean g, the optimal value of k& (leading to the
largest DP) is given by k = #S#&-. A statistical test based on the maximum of Page’s
In %
HB

statistic over an analysis window is equivalent to a statistical test based on a scan
statistic defined as max;> ] ;{e;; — k} over the analysis window.

Because the mean clearly changes over time in the background/training counts,
the approach taken here is to fit a model and monitor the residuals ¢, that are scaled
to have variance 1, so k = 0.5 is chosen on the assumption that the residuals are
symmetric around 0, and approximately normally distributed, so k = 0.5 is optimal
(leads to the largest DP) for a mean shift of one standard deviation. However, k = 0.5
can lead to large DPs for other mean shift magnitudes. Figure 17 plots Page’s statistic
applied to residuals from an EWMA fit for days 1-256 in 2012 in the first four counties
(alphabetically: Alachua, Baker, Bay, and Bradford). Figure 18 is similar to Figure 17,
but Page’s statistic is applied to the net residual in each county plus the residuals in all
the nearest-neighbor of each respective county.

To select a threshold (see Figure 19) for monitoring all 65 residuals (one from each
county) and all 65 residuals (one from each county including the neighboring
counties), the 0.95 or 0.99 quantiles of the distribution of the maximum of the 65 or
130 Page’s statistic values can be estimated (corresponding to a FAP or either 0.05 or
0.01 per analysis period (256 days in this example).

Figure 20 plots the DP for one-county-at-a-time monitoring and one-county-
plus-nearest-neighbors monitoring. The 65 Florida counties are mapped in Appendix
1, defining the neighborhood scheme. For example, the five neighbors of Brevard
county are Indian River, Orange, Osceola, Seminole, and Volusia. The nearest-
neighbor county DPs are slightly smaller than the one-county-at-a-time DPs because
the injected anomalies only impacted one county, and the alarm thresholds are slightly
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Figure 17.

Page’s statistic versus day for Alachua, baker, bay, and Bradford.
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Figure 18.

Page’s statistic versus day for Alachua, baker, bay, and Bradford and their respective nearest neighbors.
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Figure 19.
The maximum value of Page’s statistic overall 65 counties (a) and overall 65 counties with residuals from the
respective county’s neighbors (b).

larger when monitoring both individual counties and individual plus nearest-neighbor
counties.

If the injected anomaly impacts all five neighbors of Brevard county then the DPs
are much larger than those in Figure 19. For example, the DPS are 0.36, 0.78, and 0.99
for a mean shift of 1, 2, or 3 standard deviations in each of the five neighbors.
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The DP versus the mean shift occurring on days 1—10 in Brevard county. The nearest-neighbor monitoring includes
both one-county-at-a-time and nearest neighbor monitoring.

8 — 01-16-2017
>° 06-13-2017
2 11-29-2017
S &

.é- o
:‘E

8 o
[
=]

h=J

S

o

0 1 2 3 4 5
|09(T. ol TD-T)

Figure 21.
The probability density of log('T; — Ti_,) for each of the 3 days.

Another Florida data set records each tweet to the nearest second by geo-location
in latitude and longitude for each of 3 days during 2017 (January 16, June 13, and
November 29). Figure 21 plots the log of the lag-one time differences,

log(T; — T;1) for each of the 3 days (with the T values measured in seconds, but
the time unit is ignored in applying the log function). If the inter-arrival times
followed an exponential distribution with mean 1/y, then Figure 20 would exhibit a
single peak, and the number of counts in any given time interval of duration ¢
would be distributed as Poisson(u = ). Clearly, the counts do not exhibit exponential
inter-arrival times, and the lag-one time differences between the tweets show
considerable similarity across the 3 days. The 3 days have a total of 8102, 6376, and
5839 counts, respectively.

The custom R function generate.data() can be extended to include seasonality
such as a single dominant peak per year if appropriate; however, typically more
than one local peak is present per year. For example, find peaks applied to the
IBR-based smooth finds an average of 4.9, 5.0,3.9, 4.8, 4.1, and 4.7 peaks (across all
65 counties) in years 2010, 2011, ..., 2015, respectively. Simulated data from
generate.data() can be used to assess candidate fitting options and to estimate DPs
when synthetic anomaly effects are added. However, DP estimates tend to be too
optimistic if a data generator such as generate.data() does not include enough realistic
effects [18, 19].
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Model fitting includes both model selection and estimating parameters in the
selected models [13, 18, 19]. Recall that ARMA models are linear models but more
generally, for example, AR models such as x; =f (xt,l,xt,z, ,xt,p) + ¢; can be
linear in the previous x values or not. Multivariate adaptive regression with splines
(MARS) is a flexible nonlinear fitting option that was evaluated using the first
300 days to train and the next 300 days to gest for Brevard county counts. Although
the RMSE from MARS fits was 2.48 in training (EWMA has an RMSE of 2.78 in
training), the RMSE increased to 3.82 in testing (EWMA has an RMSE of 3.67 in
testing), so EWMA remains competitive. Bayesian additive regression trees (BART)
are another flexible option to fit AR models. The RMSE for BART (using gbart in R)
was 5.07, which is larger than the standard deviation of the daily counts in the testing
data (4.04).

Together with the time record of each tweet (to the nearest second), the latitude
and longitude provide an option to monitor for spatial and/or temporal clustering. If
there is no space-time clustering, then the event of being close in time is independent
of the event of being close in time. It is, therefore, possible to check for independence
by comparing the number of tweets that are close in space and time to the expected
number assuming independence. Arbitrarily defining close in time to be the 0.1
quantiles of all the pairs of time gaps between tweets (and defining close in space to be
the 0.1 quantiles of all the spatial distances between pairs of tweets), the 2-by-2 tallies
for January 16 is in Table 1.

The y*test for independence strongly rejects the independence of space and time.
Alternatively, the latitude and longitude values can be randomly reordered, breaking
any true possible connection between space and time. The resulting test for indepen-
dence is then not expected to be rejected; however, as an aside, while the random
resorting of latitude and longitude reduced the 0.026-0.014, it turns out that 0.014 is
large enough to 0.01 in this example, that some type of discretization phenomenon
leads to this unexplained behavior. This same discretization phenomenon occurs for
other arbitrary definitions of close, such as the 0.05 or 0.2 quantiles instead of the 0.1
quantiles.

Time-tagged Twitter counts with geo-locations are also available for
Minnesota, Ohio, and Texas from January 01, 2016 to December 31, 2018
(1093 days with 3 missing days). Reference [19] provides plots of daily Twitter counts
for Minnesota, Ohio, and Texas. Decreasing trends are obvious in all three states, and
a t-test comparing the first 500 counts to the last 500 counts strongly rejects
stationarity.

Reference [19] provides historgrams of the daily counts for Minnesota, Ohio, and
Texas, respectively, along with simulated daily counts from a Poisson distribution
having that respective state’s mean count rate. The real data are much more dispersed
than a corresponding Poisson distribution.

Close in time (0.1 quantile) Not close in time
Close in space (0.1 quantile) 856,752 23,761,044
Not close in space 2,893,098 5,306,257

Table 1.

For the 8102 geo-located tweets on January 16, 2017, there are 8102¥8101/2 = 32,817,151 comparisons (the
sum of the four entries in Table) of time and space. The expected number in the “close in time and space” cell is 0.1
X 0.1 X 32,817,151 = 328171.51, while the observed counts ave 856,752 and 856,752/32817151 = 0.026,
which is statistically significantly lavger than o.01.
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3.5 Summary

Example 2 and Ref. [19] focused on monitoring residuals from simple EWMA fits.
Other possible fitting options, such as MARS or BART for autoregressive modeling are
described in Refs. [13, 18, 19]. If there were a more consistent seasonal peak, then
model fitting could appropriately include seasonal peak fitting as in Ref. [22] for
influenza forecasting. Another data source is Google’s flu query data (counts of google
searches that seek information about influenza symptoms) as a real-time option to
monitor for flu outbreaks [23]. It would be valuable to investigate why the google
flu data monitoring option has not been effective. Also, in monitoring for spatial-
temporal clustering, it was assumed that “close in space” and “close in time” were
defined arbitrarily at the 0.1 quantiles of their respective distributions. If instead
several possible quantile values were examined for statistical significance, and the
quantile choice leading to the highest evidence of clustering is used, then a simulation-
based method [21] could adjust for such maximal selection of statistical evidence of
clustering.

4. Example 3: monitoring for nuclear material loss

In nuclear material accounting (NMA), the material balance (MB) is defined as
MB = Ipegin + Tin — Tout — lend> Where Ty, is transferred in; Toy, is transferred out; Ipegin
is beginning inventory; and l.,q is ending inventory [24-34]. All terms involve mea-
sured material, so the MB values should vary around O if there is no NM loss. The
measurement error standard deviation of the MB is denoted oyg. Typically, many
measurements are combined to estimate the terms Tip, Ibegin, Tout> and Ienq in the MB;
therefore, the central limit effect and years of experience suggests that MBs in most
facilities will be approximately normally distributed with a mean equal to the true NM
loss y and standard deviation oy, which is expressed as X ~ N(u,0pmp), where X
denotes the MB. If the MB at a given time (“balance period”) exceeds k oy with k in
the 2-3 range, then the NMA system “alarms.”

A sequence of n MBs is often assumed to have approximately a multivariate

normal distribution X = X3, ..., X, ~ N(u,X), where the n-by-n covariance matrix
2 2 2
01012 Gln
2 2 2
02102 ++- Oy . . . . .
Y= . Estimating X is often one of the most tedious steps in frequent
2 2 2
O-nlanz Gn

NMA (near real-time accounting, NRTA). A simplified example of estimating a
component of X using a model of a generic electrochemical facility with one input
stream, one output stream, and two inventory items is as follows. First, each individ-
ual measurement method is modeled with a measurement error model. A typical
model for multiplicative errors is M;; = T; (1 +S; + R,-j) with S; ~ N(O, 5@)

and R; ~ N (0, 51%), where the jth measurement results (oftenj = 1) M;; of item 7, T;
is the true value of item 7, R;; is a random error of item i, S; is a short-term
systematic error for item i. Then, the error variance for the two inventory items is

02 = (T1 + T,)82 + T?5% + T265%, just as one example [26-29, 34] of error modeling
and variance propagation used to estimate a component of X.
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In the early 1980s, some believed that a plant reporting an MB every 30 days would
have a larger detection probability (DP) than that same plant reporting an MB every
year (typically a facility is inventoried and cleanout out approximately once per
year). However, Ref. [27] then showed that for optimal (from the diverter’s
viewpoint, meaning that the DP is minimized) protracted diversion with the
per-period loss being proportional to the row sums of the covariance matrix, X of the
MB series, annual MB testing has larger DP than monthly mass balance testing.
Reference [27] dampened hopes that frequent NMA, referred to as NRTA,
would allow challenging diversion DP goals to be met. However, Ref. [27]
conceded that NRTA has shorter detection times and higher DPs against abrupt
diversion. Reference [27] showed that the best statistical test, the Neyman-Pearson

KTy
=l
Z;Z j:1ZiJ

(NP)-based matched filter for the worse case loss with y;* , is based on

the cumsum, C, = > ;_,x;.
There are several reasons to apply statistical tests to a transformed sequence
defined as Y; = {X; — E(X;|Xi_1,Xi_2, ..., X1)}/6; where E denotes the expectation

and the standard deviation 6; of {X; — E(X;|X;_1,X;_2, ..., X1 is 6; = \/ 0% —fZ’lfT

where f = X 1;_1), the 1 to (i-1) entries in the ith row of X [2, 7]. From properties

of the MVN, each component Y; vector can be computed by calculating the
conditional mean E(X;|X; 1,X; 2, ..., X1) = fX}X; 1 where X, is the inverse of the
(i-1)-by-(i-1) matrix X;_; that corresponds to balance period 1 through period i-1. The
Cholesky factorization X = LU leads to a more computationally efficient recursive
approach that avoids matrix inversion [28]. The transformed sequence Y = L' X has
Xy =1, s0Y is a residual time series.

This is a logistic advantage and a DP advantage to transform the X1, X>, ..., X, time
series to the series of residuals Y1, Y, ..., Y, known in NMA as the SITMUF (stan-
dardized, independently transformed material unaccounted for sequence, here MUF
is another term for the MB). The logistic advantage is that the SITMUF time series is
iid N(0,1) if the loss ¢ = 0, so alarm thresholds depend only on the sequence length n
and the desired FAP. The DP advantage is a DP increase for many loss vectors arises
because the variance of the SITMUF sequence decreases over time, so particularly if a
diversion occurs late in the analysis period, the DP is larger for the Y sequence than for
the X sequence. Note that one cannot claim higher DP for the Y sequence than for the
X sequence in general, because the true loss scenario is never known, and the DP can
be larger for X than for Y for some loss scenarios. Modern NRTA systems use a suite of
several statistical tests, usually applied to the Y series.

Example DPs are plotted in Figures 22-24 (three different loss vectors for # = 16)
for these five tests: (1) SITMUF test, (2) Page’s test applied to the SITMUF series, (3)
CUMSUM test, (4) a combination of (1-3), and (5) the NP-based matched filter is also
useful to compute the largest possible DP for a specified loss. The alarm threshold / is
chosen so that the FAP per analysis period (usually one year) is 0.05 or whatever FAP
is specified. In Figures 22-24, the covariance matrix X from Ref. [34] has 1 on the
diagonal, —0.48 on the lag-one off diagonals, and 0.01 on all higher-lag off diagonals.
The loss 1 vector (Figure 21) is 0 on periods 1 to 5, constant on periods 6-10, then 0
on periods 11-16 (the nonzero entries summing to the quantity plotted on the hori-
zontal axis). The loss 2 vector (Figure 22) is all 0 except for an abrupt loss on period 6.
The loss 3 vector (Figure 23) is constant for all 16 periods.
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Figure 22.
DP versus the total mean shift (loss) for n = 16, for loss vector 1 (constant loss on periods 6 to 10).
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Figure 23.
DP versus the total mean shift (loss) for n = 16, for loss vector 2 (abrupt loss on period 6).
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Figure 24.
DP versus the total mean shift (loss) for n = 16, for loss vector 3 (constant loss).
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Make a pass/Tail decision every year

o Loss over months 6 to 18

ME (arbitrary units)

Balance period

Figure 25.
MB sequences over 36 months using fixed-period (annual) decision periods.

This example is concluded with two remarks.

Remark 1. Reference [24] showed that assuming the model X3, ..., X, ~ N(u, Z)
leads to larger DPs than fitting an ARMA model on training data for which it would
have to be assumed that the NM loss p = 0 [31], provided X is well estimated. If ¥ is
not well estimated, a Bayesian updating scheme to improve the estimate of X could be
used on training data for which the NM loss = 0 [35].

Remark 2. Figure 25 illustrates fixed-period testing and data-driven testing [29].
Some versions of NRTA use the most recent 1-year length sequences, so for n = 12
balance periods per year, the first evaluation period is months 1-12, the second
evaluation period is months 2-13, etc. This scheme allows for a statistical decision to
be made at every annual physical inventory, such as at months 12, 24, and 36. An
alternate scheme consisting of a hybrid of period-driven and data-driven testing is
described in Ref. [29], where it is pointed out that one should not simply truncate
sequential statistical tests at the time of the annual physical inventory because the
adversary could remove a portion of an SQ during year 1 and the remaining portion
during year 2. The scan statistic has the highest DP (0.95 in this case, verified by
simulation) if one knows that a loss will occur over a 12-month period with an
unknown start period (such as month 7). The scan statistic computes a moving sum of
months 1-12, 2-13, 3-14, etc.

5. Summary

This chapter has described three change-detection examples. Example 1 monitored
for patterns of large residuals, such as a consecutive string of three residuals exceeding
a threshold. Example 2 monitored for excessive numbers of tweets in any of the 65
Florida counties. Example 3 monitored for nuclear material loss. Portions of examples
1 and 3 have been published as cited in Refs. [5, 34]. Example 2 is entirely new. Page’s
statistic is generally recommended because of its reasonably large DP for a range of
change patterns, such as any of those in Figure 1.
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Appendix 1: The Florida counties in example 2

> ctylist

[1] “alachua” “baker” “bay” “bradford”

[5] “brevard” “broward” “calhoun” “charlotte”

[9] “citrus” “clay” “collier” “columbia”

[13] “desoto” “dixie” “duval” “escambia”

[17] “flagler” “franklin® “gadsden” “gilchrist”

[21] “glades” “gulf” “hamilton” “hardee”

[25] “hendry” “hernando” “highlands” “hillsborough”
[29] “holmes” “indian river” “jackson” “jefferson”
[33] “lake” “lee” “leon” “levy”

[37] “madison” “manatee” “marion” “martin”

[41] “miami-dade” “modroe” “nassau” “okaloosa”
[45] “okeechobee” “orange” “osceola” “palm beach”
[49] “pasco” “pinellas” “polk” “putnam”

[53] “st. johns” “st. lucie” “santarosa” “sarasota”
[57] “seminole” “sumter” “sumannee” “taylor”

[{3 . » [43 L ({3 » ({3 »
[61] “union volusia wakulla walton

]
[65] “washington”.

30-

29-

Latitude

charotie

Longitude

Figure A.1.

The 65 Florida countries. In the available data, liberty county is merged into Gadsden and Lafayatte county is
merged into Madison to reduce the 67 Florida counties to 65. Therefore, there ave 65 identified vegions (counties)
for which spatial and/or temporal vesiduals patterns can be monitoved for change.
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Figure A.1 is the 67 Florida counties, and this data merged Liberty into Gadsden
and merged Lafayatte into Madison to reduce the 67 Florida counties to 65.

> ctynbrs[5,] # Brevard county: neighbors of Brevard county

[110000000000000000000000000000010000000

[3810000000011000000000100001000.

ctylist[ctynbrs[5,]

> ctylist[as.logical(ctynbrs[5,])]

[1] “Indian river” “orange” “osceola” “seminole” “volusia”
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Chapter 7

Comparison of the Out-of-Sample
Forecast for Inflation Rates in
Nigeria Using ARIMA and
ARIMAX Models

Monday Osagie Adenomon and Felicia Oshuwalle Madu

Abstract

This book chapter compares the out-of-sample forecast for inflation rates in Nige-
ria using ARIMAX and ARIMA models. To achieve this, Annual Data on Exchange
Rate, Inflation Rate, Interest Rate and Unemployment Rate from 1981 to 2017 was
sourced from Central Bank of Nigeria (CBN). The analysis used data from 1981 to
2010 while 2011 to 2017 was used to valid the forecast from the ARIMA and ARIMAX
models. The preliminary analysis revealed that natural log transform of inflation rate
is normally distributed and stationary at first difference while Exchange Rate, Infla-
tion Rate, Interest Rate and Unemployment Rate were used as exogenous variables in
the ARIMAX models. The following models ARIMA(1,1,0), ARIMA(1,1,1), ARIMA
(0,1,1), ARIMAX(1,1,0), ARIMAX(1,1,1) and ARIMAX(0,1,1) were compared for
both in-sample and out-of-sample forecasts. Using the Root Mean Square Error
(RMSE) as selection criteria, ARIMAX(0,1,1) with RMSE of 0.6810 emerged as supe-
rior model for the in-sample forecast for forecasting inflation rate in Nigeria while
ARIMA(1,1,1) emerged as a superior model for the out-of-sample forecast for infla-
tion rate in Nigeria and its forecast for inflation revealed a negative growth in inflation
in Nigeria. This study therefore recommended ARIMA(1,1,1) model be used for out-
of-sample forecast for inflation rate in Nigeria.

Keywords: forecasting, inflation, ARIMA, ARIMAX, RMSE

1. Introduction

A time series can be considered as an ordered sequence of observations, of which the
ordering is through time [1]. The ordering could be equally spaced time interval or may
take other dimensions, such as space [2]. The applications of time series can be found in
engineering, geophysics, business, economics, medical studies, meteorology, quality
control, social sciences and agriculture. The list of the areas cannot be exhausted.

There are various objectives for studying time series. These include the under-
standing and description of the generated mechanism, the forecasting of future values
and optimum control of a system. The uses of time series analysis are (i). It helps in
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the analysis of past behavior of a variable, (ii) it helps in forecasting (iii). It helps in
evaluation of current achievement (iv). It helps in making comparative studied.
Therefore, the body of statistical methodology available for analyzing time series is
referred to as time series analysis [3].

Univariate time series modeling is very useful in forecasting such series. In the
class of univariate time series models, the model proposed by Box and Jenkins [4] as
Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving
Average (ARIMA) models are most popular and excellent while Autoregressive
Integrated Moving Average with Explanatory Variable (ARIMAX) is becoming also
popular because researchers have found that ARIMAX model can outperformed the
ARMA or ARIMA models [5]. These models are applied in almost all fields of
endeavors such as engineering, geophysics, business, economics, finance, agriculture,
medical sciences, social sciences, meteorology, quality control etc. [1]. This chapter
considered forecasting inflation using Exchange, Interest and unemployment rates as
Exogenous variable with the of ARIMAX model.

Inflation, exchange, interest, unemployment, and growth rates are the big macro-
economic issues of our time [6]. Inflation is bad, especially when unexpected, because
it distorts the working of the price system, creates arbitrary redistribution from
debtors to creditors, creates incentives for speculative as opposed to productive
investment activity, and is usually costly to eliminate. Inflation can be defined as a
positive rate of growth of the general price level. Eitrheim et al. [7] noted that
Inflation, exchange, interest, unemployment, and growth rates can affect any econ-
omy (either positive or negative) that is why these macroeconomic variables are of
great interest to Central Banks of many countries of the world.

Therefore the chapter considered forecasting inflation in Nigeria using ARIMA and
ARIMAX Models.

2. Empirical literature reviews of previous studies

Inflation may be defined as a positive rate of growth of the general price level.
Eitrheim et al. [7] noted that Inflation, exchange, interest, unemployment, and growth
rates can affect any economy (either positive or negative) that is why these macroeco-
nomic variables are of great interest to Central Banks of many countries of the world.

Several authors have studied the influence of inflation rates on other macroeco-
nomic variable and how other macroeconomic variable affect inflation. Some of the
authors include: Omotor [8] who studied the relationship between inflation and stock
market returns in Nigeria; Shittu and Yaya, [9] studied the inflation rates in Nigeria,
United States and United Kingdom using fractionally integrated logistic smooth tran-
sitions in time series; Abraham [10] studied the short and long runs effect of inflation
rates on All Share Index (ASI) in Nigeria; Musa and Gulumbe, [11] studied the
interrelationship between inflation rate and government revenues in Nigeria using
Autoregressive Distributed Lag (ARDL) model. Other economy have been also stud-
ied by several authors. Such authors include: Furuoka [12] who studied the interrela-
tion between unemployment and inflation in the Philipines using Vector Error
Correction Model (VECM). Omar and Sarkar [13] studied the relationship between
commodity prices and exchange rate in the light of global financial crisis in Australia
using Vector Error Correction Model (VECM). Mohaddes and Raissi [14] examined
the long-run relationship between consumer price index industrial workers (CPI-IW)
inflation and GDP growth in India using cross-sectional Augmented distributed lag

156



Comparison of the Out-of-Sample Forecast for Inflation Rates in Nigeria Using ARIMA...
DOI: http://dx.doi.org/10.5772 /intechopen.107979

(CS-DL) as well as standard panel ARDL method. The findings of Mohaddes and
Raissi suggested that, on the average, there is a negative long-run relationship
between inflation and economic growth in India.

Mida [15] revealed that changes in inflation rate have the opposite effects on the
exchange rate that is a rising inflation rate can depreciate the exchange rate.

Nastansky and Strohe [16] analyzed the interaction between inflation rate and
public debt in Germany using quarterly data from 1991 to 2014 using Vector Error
Correction Model (VECM). Their result revealed a strong positive relationship
between inflation rate and public debt.

Gillitzer [17] empirically assessed the performance of the Sticky Information
Phillips Curve (SIPC) for Australia. The study revealed that the estimates were sensi-
tive to inflation measures and sample period. Also poor performance of the SIPC
revealed the fact that inflation can be deficit to the model.

The following are empirical literature of the application of ARIMA, ARIMAX and
Other Time Series models:

Kongcharoen and Kruangpradit [5] examined and forecast Thailand exports to
major trade partners using ARIMA and ARIMAX models. They found that ARIMAX
outperforms the ARIMA Model.

Stock and Watson [18] empirically found out that time series regression model that
includes leading indicators into the model improves forecast performance.

Bougas [19] examined the Canadian Air transport sectors divided into domestic,
transboarder (US) and International flights using various time series forecasting
models namely: Harmonic regression, Holt-Winters Exponential smoothing, ARIMA
and SARIMA Regressions. The result indicated that all models provide accurate
forecast with MAPE and RMSE scores below 10% on the average.

Adenomon and Tela [20] fitted and forecasted inflation rates in Nigeria for
annual data covering 1970 to 2014. Among the ARIMA competing models,

ARIMA (1,1,2) was superior. While forecast for inflation rates revealed a negative
trend.

Styrvold and Nereng [21] compared ARIMA model with classical regression model
and VAR to model real rental rates as a function of previous periods’ rate, employ-
ment rates, real interest rates and vacancy rates. The studied concluded that classical
linear regression model is able to produce the most precise forecasts, although the
precision is not satisfactory.

Amadeh et al. [22] modeled and predicted the Persian Gulf Gas-Oil F. O. B using
ARIMA and ARFIMA models on weekly data of gas-oil prices. Their results revealed
that ARFIMA model performed better than ARIMA.

Avuglar et al. [23] applied ARIMA time series model to accident data from 1991 to
2011 in Ghana. They recommended ARIMA (0,2,1) as the best model.

Moshiri and Foroutan [24] modeled and forecast daily crude oil future prices from
1983 to 2003 listed in NYMEX using ARIMA and GARCH models. They further
improved forecast with the use of Neural network models.

Adenomon [2] modeled and forecasted the evolution of unemployment rates in
Nigeria using ARIMA model on annual data for the period of 1972 to 2014. The study
revealed ARIMA (2,1,2) as superior model for unemployment rates in Nigeria.

3. Model specification

This section considered the models used in this chapter.
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3.1 Unit root test

Engle and Granger [25] considered seven test statistics in a simulation study to test
cointegration. They concluded that the Augmented Dickey Fuller test was
recommended and can be used as a rough guide in applied work. The essence of the
unit root test is to avoid spurious regression.

To identify a unit root, we can run the regression

k
AY; =b,+ > bAY, j+fr+yYea+u (1)
j=1

The model above can be run without t if a time trend is not necessary [26]. If unit root
exist, differencing of Y will result in a white-noise series (that is no correlation with Y, 1).
The null hypothesis of no unit root test in the Augmented Dickey-Fuller (ADF)

test is given as H,: f# = y = 0 (if trend is consider, we use F-test) and H,: y = O (if
there is no trend is consider, we use t-test). If the null hypothesis is not rejected, this
suggest that unit root exist and the differencing of the data is required before running
a regression. When the null hypothesis is rejected, the data are refer to as stationary
and it can be analyzed without any form of differencing [27].

3.2 ARIMA model and estimation

ARIMA model can be viewed as an approach that combines the moving average
and the autoregressive models [28]. Box and Jenkins are the pioneers of the ARIMA
model that is why it is refer to as the Box-Jenkins (BJ) methodology, but in time series
literature is known as the ARIMA methodology [29]. The ARIMA models allow Y, to
be explained by the past, or lagged, values of Y, and stochastic error terms.

The ARMA (p, q) model is a combination of the AR and MA model which is given as

Ve =0+ ary, a2, 5+ . +apy, , — bis 1 —bouy 2 — ... —bgtty_gq +u; 2)

Box and Jenkins recommend difference non-stationary series one or more times to
achieve stationarity. Doing so produces an ARIMA model, with the ‘I’ standing for
‘Integrated’. But its first difference Ay, =y, —y, ; = u, is stationary, so y is ‘Integrated
of order 1’ or y ~ I(1).

The primary stages in building a Box-Jenkins time series model are model identifi-
cation; model estimation and model validation. The Theoretical features of autocorre-
lation function (ACF) and partial autocorrelation function (PACF) (Table 1).

Type of Typical feature of ACF Typical feature of PACF
model
AR(p) It decays exponentially or with damped sine wave Significant spikes are seen
pattern or both through lags p
MA(q) Significant spikes are seen through lags p It declines exponentially
ARMA(p,q) It exponentially decay It exponentially decay
Table 1.

Theoretical features of autocorvelation function (ACF) and partial autocorrelation function (PACF).
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After fitting ARIMA Model, test for adequacy of the fitted model (the chi-squared
test for goodness of fit) called Ljung-Box test [30] is required. The Ljung-Box test is

based on all the residual ACF as a set. The test statistic is as follows Q =
n(n+2)3%_ (n — i) 'y2(a) where y2(a) is the estimate for p;(@) and n is the number of
observations used to estimate the model. The statistic Q follows approximately the
chi-squared distribution with k-v degrees of freedom, where v is the number of

parameters estimated in the model. If we do not reject the null hypothesis, then it
implies that the fitted model is adequate.

3.3 ARIMAX model

The ARIMA model will be extended into ARIMA model with explanatory variable
(X4), called ARIMAX(p,d,q). Specifically, ARIMAX(p,d,q) can be represented by

(L)1 = L)Y, = O(L)X; + 0(L)e; (3)

Where L is the lag operator, d = difference order, p is the AR order, q is the MA
order, explanatory variables (X;) and ¢, is the error term while ¢,0,0 are the coeffi-
cients of the AR, MA and the exogenous variables [5].

3.4 Forecast assessment criteria

We considered the following forecast assessment criteria in this book chapter:
1.Mean Absolute Error (MAE) is given as MAE; = y This statistic measures
the deviation from the series in its absolute terms, and measures the forecast

bias. The MAE is one of the most common ones used for analyzing the quality of
different forecasts.

n 2
2.Root Mean Square Error (RMSE) is given as RMSE; = M where y; is the

time series data and y' is the forecast value of y [31].

For the two measures above, the smaller the value, the better the fit of the
model [3].

4, Method of data collection

The data used in this book chapter was collected from a secondary source. Annual
Data on Exchange Rate, Inflation Rate, Interest Rate, Unemployment Rate from 1981
to 2017 was sourced from Central Bank of Nigeria (CBN) Statistical Bulletin [32].
Inflation rate is the variable of interest (response variable) while the exogenous
variables are Exchange Rate, Interest Rate, Unemployment Rate. The variables are
transformed using the natural logarithm to ensures stability and normality, and to
reduce skewness and variability. Also the analysis was used data from 1981 to 2010
while 2011 to 2017 was used to valid the forecast from the ARIMA and ARIMAX
models.
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5. Results and discussion

The section presented the results emanating from the analysis and discussions of

results. The data analysis of this book chapter was carried out in R software environ-

ment using tseries and TSA packages.

Figure 1 below shows the inflation rate in Nigeria from 1981 to 2010. It is observed

that Nigeria experienced inflation from 1993 to 1996. While the inflation rates were

low from 2000 to 2010.

Figure 2 below shows the natural log transform of inflation rate in Nigeria from
1981 to 2010. It is observed that Nigeria experienced inflation from 1993 to 1996.

While the inflation rates were low from 2000 to 2010. In addition there is reduction in

the trend of inflation rates after transformation.

Figure 3 below presented the plots of Interest Rate (INT), Unemployment Rate

(UNE) and Exchange Rate (EX) from 1981 to 2010 in Nigeria. The interest rate shows
some decrease 2002 to 2010 but for unemployment rates and exchange rates shows an

increase from 2002 to 2009. This situation about unemployment and exchange rates
will definitely affect the standard of living in Nigeria if not properly control.
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Figure 1.
Plot of Inflation Rate in Nigeria from 1981 to 2010.
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Figure 2.

Plot of Natural Log transform of Inflation Rate from 1981 to 2010.
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Figure 3.
The plots of interest rate (INT), unemployment rate (UNE) and exchange rate (EX) from 1981 to 2010.

Natural Log Transform of Exogenous Variables
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Figure 4.

The Plots of the natural transform of interest rate (INT), unemployment rate (UNE) and exchange rate (EX)
from 1981 to 2010.

Figure 4 above presented the plots of the natural log transform of Interest Rate
(INT), Unemployment Rate (UNE) and Exchange Rate (EX) from 1981 to 2010 in
Nigeria. The log of interest rate shows some decrease 2002 to 2010 but for logs of
unemployment rates and exchange rates shows an increase from 2002 to 2009. This
situation about unemployment and exchange rates will definitely affect the standard
of living in Nigeria if not properly control. This similar to Figure 3 above.

Table 2 below presents the results of Jarque-Bera (JB) normality test of the infla-
tion rate and the natural log transform of the inflation rate. The result revealed that
inflation rate is not normally distributed since p-value = 0.02196 < 0.05. But the log
transform of inflation rate is normally distributed since p-value = 0.3075 > 0.05. This
test is necessary because the ARIMA and ARIMAX models are dependent on normal
distribution.

161



Time Series Analysis - New Insights

Inflation rate Natural log transform of inflation rate
JB Test 7.6367 2.3586
P-Value 0.02196 0.3075

Table 2.
Normality test.

Natural log transform of inflation rate ~ Natural log transform of inflation rate at 1st

at level difference
ADF Test —2.2624 —3.9483
P-Value 0.4719 0.02442
Remark Not stationary Stationary

Table 3.
ADF unit root test.

The Table 3 above presents the unit root test using Augmented Dickey Fuller
(ADF) test of the inflation rate. The ADF test is necessary in order to avoid spurious
regression. The test revealed that the first difference of the log transform of inflation
rate is stationary since p-value = 0.02442 < 0.05. This result imply that integration (I)
must be added to the estimated ARIMA and ARIMAX.

Figures 5 and 6 presented the ACF and PACF of the log transform of inflation rate.
Evidence revealed a combination of AR and MA processes for the inflation rate model.

The summary performances of the ARIMA and ARIMAX Model.

Table 4 below presents the in-sample performance of the ARIMA competing
models. Among the ARIMA models, ARIMA(1,1,1) has the least values of RMSE and
MAE. Hence ARIMA (1,1,1) outperformed the other ARIMA models while ARIMA
(1,1,0) model is the worst. In addition, the coefficients of the ARIMA(1,1,0) are not
significant (p-values>0.05) but the coefficients of ARIMA(1,1,0) and ARIMA(0,1,1)
models are significant (p-values<0.05). The residual from the models are normally
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Figure 5.
ACEF plot of the natural log transform of inflation rate.
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PACEF Plot of the natural log transform of inflation rate.
Model RMSE MAE ]B Test on Residual (P-values) Adequacy test (Box-Ljung Test)
ARIMA(1,1,0) 0.8322 0.6125 0.6066 Adequate
ARIMA(1,1,1) 0.7200 0.5675 0.9961 Adequate
ARIMA(0,1,1) 0.8054 0.6617 0.6744 Adequate

Table 4.
In-sample performances of the ARIMA models.

distributed (p-values>0.05) while all the models passed the adequacy test
(p-values>0.05).

Table 5 below presents the in-sample performance of the ARIMAX competing
models. Among the ARIMA models, ARIMAX(1,1,1) and ARIMAX (0,1,1) has the
least values of RMSE and MAE. Hence ARIMAX (1,1,1) and ARIMAX (0,1,1) models
are preferred while ARIMAX (1,1,0) model is the worst. In addition, the coefficients
of the ARIMAX(1,1,0) are not significant (p-values>0.05) while interest and
exchange rates are positively related to inflation and unemployment rate is negatively
related to inflation rate, though the coefficient of the exogenous variable are not
significant (p-values>0.05). For ARIMAX (1,1,1) model the AR and MA coefficients
are significant (p-values<0.05) while interest and exchange rates are positively
related to inflation and unemployment rate is negatively related to inflation rate,
though the coefficient of the exogenous variable are not significant (p-values>0.05).
for ARIMAX(0,1,1) model, the MA coefficient is significant (p-value<0.05) while
interest rate is positively related to inflation rate, but unemployment and exchange
rates are negatively related to inflation rate, though the coefficient of the exogenous
variable are not significant (p-values>0.05). The residual from the models are

Model RMSE MAE ]B Test on Residual (P-values) Adequacy test (Box-Ljung Test)
ARIMAX(1,1,0) 0.8107 0.6401 0.8394 Adequate
ARIMAX(1,1,1) 0.7058 0.5519 0.961 Adequate
ARIMAX(0,1,1) 0.6810 0.5820 0.489 Adequate

Table 5.

In-sample performances of the ARIMAX models.
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Model RMSE MAE

ARIMA(1,1,1) 0.3069 0.1970

ARIMAX(1,1,1) 0.3467 0.2777

ARIMAX(0,1,1) 0.3071 0.2336
Table 6.

Out-of-sample performances of the ARIMA and ARIMAX models.

Year Actual Log ARIMA (1,1,1) Forecast ARIMAX (1,1,1) ARIMAX (0,1,1)
Inflation of Log Inflation Rate  Forecast of Log Inflation Forecast of Log Inflation
Rate Rate Rate
2011 2.332144 2.172615 2.112835 2.159863
2012 2.442347 2.236377 2.123062 2.053614
2013 2.140066 2.158553 2.014263 2.068257
2014 2.085672 2.154786 1.964497 1.998779
2015 2.104134 2.112283 1.994304 2.073538
2016 2.261763 2.090041 1.960178 2.012625
2017 2.803360 2.057202 2.056447 2.167942
Table 7.

Actual and forecast of log inflation vate from 2011 to 2017.

normally distributed (p-values>0.05) while all the models passed the adequacy test
(p-values>0.05).

Table 6 above presented the out-of-sample forecast statistic of the preferred
ARIMA and ARIMAX models from the in-sample forecast. The result revealed ARIMA
(1,1,1) has the least values of RMSE and MAE. Hence ARIMA(1,1,1) model is pre-
ferred while ARIMAX (1,1,1) model is the worst model.

Table 7 above present the actual and forecast of log inflation rate from 2011 to 2011.
The forecast revealed a fluctuations in inflation rates but evidence of reduction in
inflation rates from 2012 to 2017 from the ARIMA(1,1,1). The plot of out-of-sample
forecast from ARIMA(1,1,1), ARIMAX(1,1,1) and ARIMAX(0,1,1) are presented in
Figures 7-9 respectively.

Inflation Forecast of ARIMA(1,1,1)
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Figure 7.
Inflation forecast of ARIMA(1,1,1) from 2011 to 2017.
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Inflation Forecast of ARIMAX(1,1,1)
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Figure 8.
Inflation forecast of ARIMAX(1,1,1) from 2011 to 2017.

Inflation Forecast of ARIMAX(0,1,1)
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Figure 9.
Inflation Forecast of ARIMAX(0,1,1) from 2011 to 2017.

6. Conclusions

This book chapter concluded that:

ARIMAX(0,1,1) with RMSE of 0.6810 emerged as superior model for the in-
sample forecast for forecasting inflation rate in Nigeria while ARIMA (1,1,1) emerged
as a superior model for the out-of-sample forecast for inflation rate in Nigeria and its
forecast for inflation revealed a negative growth in inflation in Nigeria. In addition,
the entire models estimated are adequate and their residuals are normally distributed.

Based on the findings of this chapter, the following are recommended:

i. ARIMAX (0,1,1) model be used for in-sample forecast for inflation rate in
Nigeria.

ii. ARIMA (1,1,1) model be used for out-of-sample forecast for inflation rate in
Nigeria.
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iii. Government should endeavor to formulate policy to reduce the negative
effect of inflation rate on the citizenry and on the economy of Nigeria.
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A. Appendix

R Codes
Endo<-ts(read.table("C:/Users/ADENOMON/Desktop/Inflation.txt" header=T),
start=c(1981,1),freq=1)

inftest <-ts(read.table("C:/Users/ADENOMON/Desktop/Inflatest.txt",
header=T),start=c(2011,1),freq=1)

Exoge <-ts(read.table("C:/Users/ADENOMON/Desktop/Exoge.txt",header=T),
start=c(1981.1),freq=1)

1nExoge <-log(Exoge)

adf.test(lnExoge[,1])

adf.test(lnExoge[,2])

adf.test(lnExoge[,3])

adf.test(diff(lnExoge[,1]))

adf.test(diff(lnExoge[,2]))

adf.test(diff(lnExoge[,3]))
fitl=Arima(lninf,order=c(1,1,0),include.constant=TRUE)
summary(fitl)

coeftest(fitl)

acf(fit1$residuals,main="ARIMA(1,1,0) Residuals")
jarqueberaTest(fitl$residuals)
Box.test(fit1$residuals,lag=12,type="Ljung-Box")
Box.test(fit1$residuals,lag=24,type="Ljung-Box")
qggnorm(fitl$residuals,main="Normal Q-Q Plot of ARIMA(1,1,0)")
qgline(fitl$residuals,main="Normal Q-Q Plot of ARIMA(1,1,0)")
fit2=Arima(lninf,order=c(1,1,1),include.constant=TRUE)
summary(fit2)

coeftest(fit2)

acf(fit2$residuals,main="ARIMA(1,1,1) Residuals")
jarqueberaTest(fit2$residuals)
Box.test(fit2$residuals,lag=12,type="Ljung-Box")
Box.test(fit2$residuals,lag=24,type="Ljung-Box")
ggnorm(fit2$residuals,main="Normal Q-Q Plot of ARIMA(1,1,1)")
gqline(fit2$residuals,main="Normal Q-Q Plot of ARIMA(1,1,1)")
fit3=Arima(lninf,order=c(0,1,1),include.constant=TRUE)
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summary(fit3)

coeftest(fit3)

acf(fit3$residuals,main="ARIMA(0,1,1) Residuals")
jarqueberaTest(fit3$residuals)
Box.test(fit3$residuals,lag=12,type="Ljung-Box")
Box.test(fit3$residuals,lag=24,type="Ljung-Box")
ggnorm(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
ggline(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
fit4=Arima(lninf,order=c(1,1,0).xreg=1nExoge,include.constant=TRUE)
summary(fit4)

coeftest(fit4)

acf(fit4$residuals,main="ARIMAX(1,1,0) Residuals")
jarqueberaTest(fit4$residuals)
Box.test(fit4$residuals,lag=12,type="Ljung-Box")
Box.test(fit4$residuals,lag=24,type="Ljung-Box")
ggnorm(fit4$residuals,main="Normal Q-Q Plot of ARIMAX(1,1,0)")
qgline(fit4$residuals,main="Normal Q-Q Plot of ARIMAX(1,1,0)")
fit5=Arima(lninf,order=c(1,1,1),xreg=1nExoge,include.constant=TRUE)
summary(fitb)

coeftest(fith)

acf(fits$residuals,main="ARIMAX(1,1,1) Residuals")
jarqueberaTest(fit5$residuals)
Box.test(fit5$residuals,lag=12,type="Ljung-Box")
Box.test(fitb$residuals,lag=24,type="Ljung-Box")
ggnorm(fit5$residuals,main="Normal Q-Q Plot of ARIMAX(1,1,1)")
qqgline(fit5$residuals,main="Normal Q-Q Plot of ARIMAX(1,1,1)")
fit6=Arima(lninf,order=c(0,1,1),xreg=1nExoge,include.constant=TRUE)
summary(fit6)

coeftest(fit6)

acf(fit6$residuals,main="ARIMAX(0,1,1) Residuals")
jarqueberaTest(fit6$residuals)
Box.test(fit6$residuals,lag=12,type="Ljung-Box")
Box.test(fit6$residuals,lag=24,type="Ljung-Box")
ggnorm(fit6$residuals,main="Normal Q-Q Plot of ARIMAX(0,1,1)")
ggline(fit6$residuals,main="Normal Q-Q Plot of ARIMAX(0,1,1)")
fitl.pred<-forecast(fitl,h=7)

accuracy(fitl.pred$pred,)

coeftest(fit3)

acf(fit3$residuals,main="ARIMA(0,1,1) Residuals")
jarqueberaTest(fit3$residuals)
Box.test(fit3$residuals,lag=12,type="Ljung-Box")
Box.test(fit3$residuals,lag=24,type="Ljung-Box")
ggnorm(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
ggline(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
fit3=Arima(D1lninf,order=c(0,1,1),include.constant=TRUE)
summary(fit3)

coeftest(fit3)

acf(fit3$residuals,main="ARIMA(0,1,1) Residuals")
jarqueberaTest(fit3$residuals)
Box.test(fit3$residuals,lag=12,type="Ljung-Box")
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Box.test(fit3$residuals,lag=24,type="Ljung-Box")
qggnorm(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
qgline(fit3$residuals,main="Normal Q-Q Plot of ARIMA(0,1,1)")
Exogetest <-ts(read.table("C:/Users/ADENOMON/Desktop/Exogetest.txt”,
header=T),start=c(2011,1).freq=1)

InExotest <-log(Exogetest)

lninftest <-log(inftest)

accuracy(fitl.pred,lninftest)

fit2.pred<-forecast(fit2,h=7)

accuracy(fit2.pred,lninftest)

plot(fit2.pred, main="Inflation Forecast of ARIMA(1,1,1)")
fit5.pred<-forecast(fit5,h=7xreg=1lnExotest)
accuracy(fitb.pred,lninftest)

plot(fit5.pred, main="Inflation Forecast of ARIMAX(1,1,1)")
fit6.pred <-forecast(fit6,h=7xreg=1nExotest)
accuracy(fit6.pred,lninftest)

plot(fit6.pred, main="Inflation Forecast of ARIMAX(0,1,1)")
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Chapter 8

The L,— Structure of Subordinated
Solution of Continuous-Time
Bilinear Time Series

Abdelouahab Bibi

Abstract

The models of stochastic subordination, or random time indexing, has been
recently applied to model financial returns (X(¢)), , exhibiting some characteristic
periods of constant values for instance exchange rate. In reality, sharp and large
variations for X(¢) do occur. These sharp and large variations are linked to informa-
tion arrivals and/or represent sudden events and hence we have a model with jumps.
For this purpose, by substituting the usual deterministic time ¢ as a subordinator
(T(t)),s o in a stochastic process (X(¢)), o we obtain a new process (X(T'(t))), , whose
stochastic time is dominated by the subordinator (T'(t)), ,. Therefore we propose in
this paper an alternative approach based on a combination of the continuous-time
bilinear (COBL) process subordinated by a Poisson process (that it is a Levy process)
which permits us to introduce further randomness for the phenomena which exhibit
either a speeded up or slowed down behavior. So, the main probabilistic properties of
such models are studied and the explicit expression of the higher-order moments
properties are given. Moreover, moments method (MM) is proposed as an estimation
issue of the unknown parameters. Simulation studies confirm the theoretical findings
and show that the MM method proposal can effectively reduce both the bias and the
mean square error of parameter estimates.

Keywords: diffusion processes, subordination, Poisson process

1. Introduction

The non-linear time-continuous models were initially discussed by Mohler [1] in
control theory and then rapidly extended to a time-series analysis by several authors
(see [2] for review). One of the classes of non-linear time-continuous models which
has attracted considerable attention of the researchers is the classes of bilinear diffu-
sion processes which have been widely studied and considered in time series analysis
and in the theory of stochastic differential equations (SDE). For instance, among
others, Le Breton and Musiela [3] and Bibi and Merahi [4] have considered a process
(X(t)), o generated by the following SDE
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dX(t) = (aX(t) + p)dt + (yX(@) + p)dw(t),t > 0,X(0) = Xy (1)
= p(X(2))dt + o(X(t) )dw(t)

denoted hereafter by COBL (1) in which u(x) = ax + u and o(x) = yx + f are
respectively the drift and diffusion functions representing respectively the conditional
mean and variance of the infinitesimal change of X(z) at time ¢.(w(t)),. , is a real
standard Brownian motion defined on some basic filtered space (Q, A, (Ar);s 05 P) and
E{X(¢)dw(t)} = 0. The initial condition X(0) of X(¢) can be either deterministic or
random variable defined on (Q, A, P) independent of w such that E{X(0)} = m4(0)
and Var{X(0)} = Kx(0). However, the distribution of stochastic processes X(t) solu-
tion of (1) evaluated at random times process say T'(¢), are receiving increasing
attention in various applied fields. Some examples we have in mind are:

1.in reliability theory, the life span of some items subjected to certain accelerated
conditions,

2.in econometrics, the composition of the prices at short intervals on a speculative
market,

3.in queuing theory, the number of customers arriving at random times to some
facility where they receive service of some kind and then depart,

4.in statistics, for the random sampling of stochastic processes.

One of the first papers in this field is by Lee and Whitmore [5], who studied general
properties of processes delayed by randomized times. In the literature, due to the
interesting properties of the Poisson process, its popularity, and applicability, various
researchers have generalized it in several directions; e.g., compound Poisson processes
and/or weighted Poisson distributions, special attention is given to the case of a Poisson
process with randomized time or Poisson subordinator, i.e.; the time process is sup-
posed to be a subordinator — Poisson process with nondecreasing sample paths. Most
published research involving this approach, Clark [6] and German and Ane [7].

In this paper, our interest lies in the statistical inference of the parameters involved
in the diffusion process defined in (1) and in its subordination by a Poisson process.
Diffusion processes estimation has been widely studied in the statistical literature by
many authors under several restrictions (see [8] for a survey). The major approach used
in parameters estimation is the maximum likelihood method which in general presents a
difficulty to obtaining a tractable expression for the transition densities. So, certain
econometric methods have been recently proposed. Hence, parameters estimation of
continuous-time processes can be achieved through the use for instance the moments
method (MM) and/or its generalization (GMM). These methods are useful for model-
ing some events that occur randomly over a the fixed period of time or in a fixed space
chaotic subordination by assuming a Poisson process for the subordinating variable for
COBL(1,1) and hence some statistical and probabilistic properties are studied. For this
purpose, in next section we describe some theoretical framework for certain specifica-
tion of COBL(1,1). More precisely, we discuss the condition of their existence, unique-
ness, and their distribution. The moments properties of COBL(1,1) process are
presented in section 3 followed by its extended to that subordination by a Poisson
process. In section 4 we discuss the properties of the subordinated process, in particular,
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its moment properties and its distribution of the subordinated version. An estimation
issue based on MM and on GMM (considered as a benchmark) are presented in section
5, substantially enriched by the asymptotic properties of such estimations. In section 6,
Monte-Carlo simulation is carried out through a simulation study of COBL(1,1) and its
subordinated process. The end section is for the conclusions.

2. Theoretical background

The SDE (1,1) covers many models commonly used in the literature. Some specific
examples among others are:

1.COGARCH (1,1): This class of processes is defined as a SDE by dX(t) = o(¢)dB(t)
with do?(t) = (u — ac?(t))dt + yo*(t)dB,(t), t > 0 where By and B, are
independent Brownian motions, 4> 0, >0, and y > 0. So, the stochastic
volatility equation can be regarded as a particular case of (1) by assuming g = 0.

(see [9]).
2.CAR(1): This classes of SDE may be obtained by assuming y = 0 (see [10]).

3.Gaussian Ornstein-Uhlenbeck (OU) process: The OU process is defined as

dX(t) = (u+ aX(@))dt + pdw(t),t >0 (@)

with the diffusion parameter §> 0. So it can be obtained from (1) by assuming y = 0
(see [10] and the reference therein).

4.Geometric Brownian motion (GBM): This class of processes is defined as a R—

valued solution process (X(t)), o of dX(t) = aX(t)dt + yX(t)dw(t),t > 0. So it can
be obtained from (1) by assuming = u = 0 (see [11]).

2.1 Existence of ergotic and stationary solutions

The existence of solution process of equation (1), was investigated by several
authors, for instance, Igl6i and Terdik [12] have studied the same model driven by
fractional Brownian innovation. A class of COBL with time-varying coefficients was
studied by Le Breton and Musiela [3], Bibi and Merahi [4] and Leon and Perez-Abreu
[13]. Moreover, there are several monographic which discuss the theoretical
probabilistic and statistical properties (interested readers are advised to see [14, 15]
and the references therein). Hence, a Markovian It6 solution of SDE (1) is given by

t t

X(t) = 0(t)d X(0) + (4 — 1p) qul(s)ds + ﬁjdfl(s)dw(s) as., 3)

0 0

where ®(t) = exp {(a — 17?)t + yw(r)} is the fundamental process solution
(see e.g., [14] chapter 8) and its first and second moments functions ¥(¢) =
E{®(r)} = exp {ar} and ¢(t) = E{®*(t)} = exp {(2a + y*)t}. The key tool in studying
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the asymptotic stability of solution (3) is the top-Lyapunov exponent defined by
AL = lim sup 7 log |X(t)], so if it exists then A, controls the long-time asymptotic

t—-+to0
behavior of X. Indeed if 1;, < + oo, 4.5 then for sufficiently large ¢, there exists a positive
random variable ¢ such that |X ()| < &** and hence if /;, <0, then tliI_P X(t) =0, a.s.

Though the condition 4;, < 0 could be used as a sufficient condition for asymptotic
stability, it is of little use for the practice of checking for stationarity of the solution (3).
On the other hand, and in statistical applications, we often suggest conditions ensuring
the existence of some moments for the process solution. This suggestion cannot be
achieved by the top-Lyapunov exponent criterion. However, since the functions (x)
and o(x) are locally Lipschitz, then the existence and uniqueness of stationary and
ergodic solution process (X (¢ ))t> o given by (3) is ensured by the integrability on R*

ﬁz(y 7 exXp {2{ (’:2 dx} (see [16]) and that the density

function f(.) of the stationary distribution of a diffusion process (1) is proportional
tog(y). Moreover, the unique invariant probability is absolutely continuous with
respect to the Lebesgue measure with a density function equal tog (up to a constant).

Hence, the integrability on R™ of the function g may be discussed case by case in the
following cases

of the speed density g(y) =

1.y = 0and  # 0 (OU case), in this case g(y) = Cexp {ﬂz (y+4) } for some
positive constant C, and hence g(y) is integrable on R" if and only if @ < 0 for all

o’

u € R. Therefore we recognize a N/ (— £ — —) for the invariant distribution of
OU process and

2. =0, u =0 (GBM case) in this case g(y) = Cyz(“ﬁz)/yz and hence g(y) is not
integrable on R, therefore there is no stationary and ergodic solution for GBM
process.

2 2a)/y?*+1
3.8 =0, u # 0 (COBL(1,1) case) the functiong(y) = C(yl) (=) exp {72%},

the integrability conditions hold if and only if > 0, and hence the unique
ergodic and stationary solution exists on R". Therefore, we recognize a inverse-
gamma distribution noted ZG(6, 0) for the invariant distribution of COBL(1,1)
process where the shape parameter § = (y* — 2a)/y* > 0 and the scale parameter
0=2%>0and

%)
) =F”;5)y“ exp {—0/y}; y>0.

The inverse-gamma distribution appears in Bayesian inference, in a natural way, as
the posterior distribution of the variance in normal sampling. The process associated
with this parametrization is often referred to GARCH diffusion models. Note that the
ZgG distribution nests some well-known distributions such as the Inverse Exponential,
Inverse y? and Scaled Inverse y? distributions.
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In view of the above discussion, and since we are interested in the stationary non-
Gaussian solution of (1), therefore it is necessary to assume throughout the rest of the
paper that the parameters, @, y, y and f are subject to the following assumption:

Assumption 1. aff # yu, p> 0, y # 0 and 2a + y* <0.

Remark 2.1. The case  # O may be treated as that § = O by considering the affine
transformation X (t) = L (yX(¢) + B). On the contrary, the condition yu # aff must be
hold, otherwise the equation (1) has only a degenerate solution, i.e., X(t) = —g = —£ The
solution (3) is however Markovian when 3 # 0, otherwise the solution process is neither a
standarized diffusion process nor a martingale. In contrast, if y = 0 (OU process), the
stochastic term is a martingale and hence it has a vanishing expectation. So, In the sequel,
and without loss of generality we shall assume, that f = 0, i.e.,

AX(£) = (aX(2) + p)ds + X (1w (1), 2 0,X(0) = Xo, (4)

and this equation will be the subject of our investigation so it is noted hereafter
COBL(1,1).

Remark 2.2. In OU diffusion with u = 0, its solution is given by X(t) = X(0)e™* +

t
B [ e ) dw(s), t > 0 and its invariant probability distribution is Gaussian with mean 0
0

. 2 .
and variance 1. Moreover under the Assumption 1,

2
v~ ,—ah
Ee ,hZO

2.If X(0) is random variable, then E{X(t)} = E{X(0)}e™*, Cov(X(¢),X(t + h)) =
e~ Var(X(0)} + g—; (e — e~ *@ ™) and ast — +o0, E{X(t)} = 0, and
Cov(X(t),X(t + h)) = Le™" h>0.
Remark 2.3. In GBM with X (0) > 0, its solution is given by X (t) =
exp { (a —372)t + yw(r) }X(0) . So, the distribution of X (t) given X(0) is log normal with
E{X(t)} = E{X(0)}e” and Var{X(t)} = E{XZ(O)}eZ"”{eVZt - 1}. Hence, for any kR,
we have E{X*(t)} = E{X*(0)} exp {k(a - é)t + kzét}, 50 E{X*(t)} — +ooast — oo
whenever (a - g)k + gkz > 0. Additionally,

a. If a> 1y2, then Jim X () = oo,

b. If a< 372, then lim X(¢) = 0,

t—4oo

c. If a = Jy?, then asymptotically (X(¢)), , switches arbitrary between large and
small positive values.
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3. Moments properties of COBL(1,1) process

In the sequel, we shall focus on the popular sub-model (4). The popularity of such
a model comes from its solution in terms of stochastic integral, i.e.,

t

X(0) =X(0)0(0) + 4 [ @00 1515120, (s)
0
or equivalently
X(t) =X(0)+ J(aX(s) +p)ds +y JX(s)dw(s),t >0,X(0) =X (6)
0 0

It is easy verified that the process (X(z)), o as defined by (5) satisfies (1) for any a,
4 7> B = 0 and X(0), it is the unique strong solution to (1). The following proposition
summarizes the second-order properties.

Proposition 3.1. If X(0) is a random variable, then under the Assumption 1, we have

1m(t) = E{X(t)} = ¥(¢) (E{X(O)} —l—ybf‘l‘l(s)ds) and ast — o0, E{X(t)} =

m=—5>0.
2.Forany 2 >0, K(t,t +h) = Cov(X () +h)) =Y(h)K () whereK():K(t,t)
is the variance function given by K(¢ { )+y fqﬁ )ds}, S0 as

t — +oo, K(t) = —m? and the correlation

5 +2 Hence K (t,t +h) = —P(h)m? 2a+2

function is however p(h) = e®*. Therefore asymptotic stationary COBL(1,1)
process has autocorrelation function similar to a CAR(1) processes.

Proof.
1.The first formula follows directly from (5).

2.The derivation of the second formula may be derived upon the observation that
X(t) —m(t) =¥()Y(t) where dY (¢ {yY + Pt (t) }dw(r)

equivalently Y(t) = Y(0) + f{yY( +yP! }dw t) with Y(0) =
0
X(0) —m(0) (see Bibi and Merahi for further details). So for any % > 0, we have
t
E{Y®)Y(t+h)} =K(0) + [{rE{Y*(u)} + y*¥ *(u)m?(u) }du = E{Y*(t)}.
0

Moreover, taking & = 0 and noting that ¥*(t)E{Y?(¢)} = K(t) and
W)Wt + WE{Y ()Y (t +h)} = K(,t + k), we obtain K(t,¢ + h) — W(h)K(£) and

K(t) = ¥*(t)Var{X(0)} + ¥*(t) jt‘l‘_z(u){yzK(u) + y*m?*(u) }du. Since K(¢) =
0
2(t)E{Y*(t)}, then dK(t) = 2% (t)E{Y*(t) }dt + ¥*(t)dE{Y*(t) } where
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dE{Y?(t)} = PE{Y?(t)} + y*¥ 2(t)m?(t). Thus dK(¢) = (2a + y*)K(t) + y*m?(t).
By solving the last differential equation, the expression of the variance follows.
The rest of the proof fellows immediately by the dominated convergence
Theorem.

Remark 3.2. If X(0) is a real constant, then the mean and variance of (X(t)),s o
reduces to

t

m(t) = E{X@)} =Y (X(O) +u J‘Pl(s)ds> andVar{X(t)} = 7ot Jq,’fl(u)mz(u)du.
0

0

Moreover the K(t,t + &) depends in general on time and on initial condition, thus
the COBL(1,1) process is not stationary but is asymptotically stationary. Except, for
instance, in the following cases:

1. Apart from assumption 1, if E{X(0)} = —% y* = —2a and every K(0) then the
process (X(t)), o is second-order stationary.

2IfE{X(0)} = —£and K(0) =
stationary.

W then the process (X(t)), o is second-order

3.1 Higher-order moment of COBL(1,1) process

In what follows, we consider the function f(x) = x”, then f(X(¢)) is also an It6’s
process. Applying It6’s formula on f(X(t)) , we have

df (X(t)) =f'(X(0)dX (t) Jr%f"(X(t))(dX(t))2
=f X©)uX))dt +f (X(t)oX(0)dw(t) + %f "(X(1)o® (X (t))d(t)

which results to dX" (t) = (a,X"(t) + b, X" (t))dt + c,X" (t)dw(t) or equivalently

X" (t) = X"(0) + J(anX” (5) + b X"2(5) )ds + co JX"(s)dw(s) @)
0 0

where a, = na + - )y » b, =npand ¢, = ny. Due to stationarity and the fact
that the last term of equatlon (7) is a zero mean martingale, then the moments of
invariant distribution satisfy

E{X"(t)} = —a, 'b,E{X" ()} = (-1)" H a;'b;. (8)

i=1
The above equation allows us to find the moments of the invariant probability
distribution for the Markov process generated by (5) for example E{X(¢)} = —&

2
E{Xz and Var(X(t)) = _az(%o}l:)r}’z)'

- 2a+;/
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Example 3.1. As already pointed out in the above section, the unique invariant proba-
bility distribution for the stationary solution of (5) has the form {signG™" — £} where G has

Gamma-distribution G(a,b) with a = (y* — 2a) /y* the shape parameter, b = g—;is the scale
parameter and the density f (x) = Wx“’l exp {—x/b}, x> 0. So simple computation
give E{G} = ab and Var{G} = ab® however E{G '} = — % and Var(G ") = —

2.2
@ (2a+7?)
More generally for a >n we have E{G™"} = (i—’z‘)nnle(a — i), However, the above
expression coincides with (8).

Now, define m, (¢,x) = E{X"(¢)|X(0) = x} to represent the n-th conditional
moment of the process (X(t)), o defined by (5) forn = 0,1,2, ... withmg(t,x) = 1.
Then simple manipulation of conditional expectation shows that m, (¢, x) satisfy the
following first-order recursive differential equation

dmy(t,x) = aymy,(t,x)dt + bym,_1(t,x)dt, 9)

its solution is given in the following proposition

Proposition 3.3. Suppose that the constants ag, a1, a2, ...a, arve distinct. Then under
the Assumption 1, the solution of (9) forn = 0,1,2, ... is given by m,(t,x) = Y - & (n)e*"
where &;(n) satisfies the recursion

1
Z J+1 J+1 - H bi, A l] - Hm_ak (10)

k=j+1 k=j
J#

— n) __
with the convenient Bn+1 =LA =1

Proof. See Bibi and Merahi [17].
Example 3.2. The first and the second conditional moments are

b bib
my(t,x) = — fl—i + Po(x)e™ andm, (£, x) = pﬁ + Py1(x)e™ + Py(x)e™

where Py (x) = (bl +x) Pi(x) = (m(zlf’jm + (albjm)x) and Py(x) =
bib by
(et + Gy +27)-

az(a,—ay ar—a1
Remark 3.4. Note that when a + 51 y*> < O for any n, the m,,(t, x) converges ast — oo
to unconditional moments E{ZG"}. Moreover, when (X(t));s0 is a GBM pmcess My (£, %)
reduces to m,(t,x) = x"e*" because polynomial B 1 = 0 for any j <n and B 1 =1

Additionally, since for any n >1, m,(t,x) depends on time, thus COBL(1,1) process with
initial condition is non stationary, however it is asymptotically stationary.

4. Subordinated COBL(1,1) process

The main idea of subordination (or change of time method) is to find a simple
representation for (X(t)), , with a complicated structure, using some simple process
and subordinator process (T'(¢)), o- For example, if we consider a Brownian motion
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(w(t));s o as a simple process and (X(t)), , that satisfies the stochastic differential
equation (4) as a complicated process, then the question is: can we represent (X(z)), o
in the following form X (¢) = w(T(¢))? In many cases, the answer is “yes” (see [18]).
Hence, in this paper, we propose that T is represented by a homogeneous Poisson
process.

4.1 Poisson counting process

The Poisson counting process, {N(t);t> 0} consists of a nonnegative integer
random variable N(¢) and satisfy the following definition

Definition 4.1. A Poisson process (N(t)), o is a counting process with the following
additional properties

1.N(0)=0
2.The process has stationary and independent increments.

3.P(N(t)=n) = (%)n exp (—At) fort> 0 and n = 0,1, .. the parameter 1 is called the
rate of the Poisson process.

Remark 4.1. Note that N(t) is not a martingale but N(t) — At it is. Moreover, in
general, the “intensity” quantity At may be veplaced by a function A(t) which may be
stochastic, to obtain an inhomogeneous Poisson process. It is worth noting that the definition
4.1 is quite close to the definition of the Wiener process and therefore have a similar method
of approaching the simulation.

Recalling that the probability generating function of (N(t)),. , is given by

E{zN®O} =% 2"P(N(t) = n) = e #(17%). So by differentiation, we obtain the 4th—
order non centered moments vy (¢) = E{Nk (t)}, k=1, ..,4
un(t) = 26, 02(2) = (A8)> + 2t 03(t) = (A2)® + (A)? + A, v4(2) = (A)* + 6(4r)® + 7(42)* + Ar.

Moreover, the first four central moments y, () = E { (N(t) — vy () }, k=1, ..,4,
are given by u;(t) = 0, p,(t) = t, u3(t) = At and p,(¢) = 3(&t)> + At. Additionally, the
skewness Sk(t) and the excess kurtosis Ku(t) coefficients of N(z) are given by Sk(t) =

wBE _ 1 _ ) _ 1 ; :
% = and Ku(t) = z ‘%‘(t) = 3 + 4. Therefore the Poisson process is always a skewed

and leptokurtic distribution for any ¢ > 0.

4.2 Subordinated COBL(1,1) process and their second-order properties

In what follows, we shall focus on the COBL(1,1) subordinate by a Poisson process
Definition 4.2. The COBL(1,1) process (X(t)), o delayed by a Poisson process
(N(t)),s o s defined by
Y(r) = X(N()) (11)
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that is, the role of time is played by the Poisson process which makes (Y (t)), o @ Lévy process.
From the above definition, we can see that there are two sources of randomness:
the ground process (X(t)),. , and a time process (N(z)),. o. So, it’s referred to as a
stochastic time change, or ’time deformation’. From the solution (6), it follow that
N(t) N()
X(N@®)=X(0)+ [ (aX(s)+p)ds+7y [ X(s)dw(s),t >0, then the 1st change-of-
0 0

variable formula yields
dY(t) = (aY(t) + u)dN(t) + yY (t)dw(N(t)),t > 0,Y(0) = y,. (12)
Therefore, several authors have considered the process Y () = X (KI (t)) where
N(z) is the inverse of N(¢),i..;

AY (t) = (aY (t) + p)dN(t) + yY (t)dw (Kr(t)) ,£20,7(0) =y, (13)

(see [19] and the references therein) who gave the connection between the classi-
cal It6 SDE (4) and their corresponding subordinated SDE (12) and (13). The above
discussion is summarized in the next lemma

Lemma 4.2. [Duality of SDEs]. Let N(t) be a Poisson process, then

a. If (X(t)),  satisfies the SDE (4) , then Y (t) = X(N(t)) satisfies the SDE (12).
b. If (Y (£)), , satisfies the SDE (13), then X (£) = Y(N(t)) satisfies the SDE (4).

Proof. See [19].

Now, we are in a position to state the following proposition

Proposition 4.3. The unique, strong solution to homogeneous SDE (12) is explicitely
written as

Y(t) = F(6)d Y(0) + 4 J O 1(5)ds b,£> 0 (14)

where F(t) = exp {Z(t)} is the fundamental solutionw with Z(t) = (a — 1y*)N(z) +

rw(N(t)).
Proof. It suffices to show that the process (Y (¢)) given by (14) satisfies SDE (12).
N(t)
Set Y(¢) = F(t)g(t) whereg(t) = Y(0) +u | ®'(s)ds. By the Ito formula and the
0

differential identities we have
dY(t) = E£Yg(t)dZ(t) + &£ Vg (t)dt + % (eZ We(t)dZ(t) + Vg’ (t)dt)'

= Y(t)dZ(t) + pdN(t) + %Y(t)d[Z, Z)

=Y(z) <<a - %y2> dN(t) + ydw(N(t))) + udN(t) + %yzY(t)dN(t)
= (aY(t) + u)dN({@) + yY )dw(N(z)).
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Thus Y () satisfies (12), completing the proof.
Remark 4.4. If (X(t)), o is @ GMB, then the explicite solution of its subordinated version
(Y(t));5015 Y(t) = F(£)Y(0), t > 0 and hence More generally, for any k € R, we have

E{Y*(t)} = E{¥*(0)} exp {—/u<1 — exp { (a —f)k +k”22})}

and hence E {Yk (t)} — +o0ast — oo whenever (a - V—zz)k + 7—22162 > 0. Additionally,
1.If a> 372, then tETMY(t) = o0,
2.If a< 1y then tEr&}Y(t) =40,

3.If @ = }%, then asymptotically (Y (¢)), o switches arbitrary between large and
small positive values even infinitely.

An extension of Proposition 3.3 for the process (Y (£)),. , is stated in the following
proposition

Proposition 4.5. Let M, (t,y) = E{Y"(¢)|Y(0) = y} the n-th conditional moment of
the process (Y (t)), o defined by (11) Then under the condition of proposition 3.3, we have
M, (t,y) = S o&i(n)e ™ t where 2f = A(1 — e*) and & (n) satisfies the recursion (10).

Proof. From Example 3.2, moments properties of the Poisson process and some
manipulation of conditional expectation properties, the results follows.

Example 4.1. For the COBL(1,1) process delayed by N(t) process defined by (11) with
fixed initial value, the second-order properties of the process (Y(t)), o defined by (11) are
given by

b
E{Mi(t,y)} = — a—i +Po(y) exp {—2;},
b1b, —At -\t
t > 0andE{M;(t,y)} = T +Pi(y)e1" + Pa(y)e™™
142
where A{ = M1 —e™), 4] = A(1 — ¢*). Note that when the initial value is random, the

expressions of E{Y (t)} and E{Y?(t) } may be obtained by replacing the polynomials Po(Y),
P1(Y) and P,(Y) by their expectations. Moveover, it is clear that the fivst and second

moments depends in general on time and on the initial condition, thus the (Y (t)), o process
is not stationary but is asymptotically stationary.

4.3 Distribution

The distribution of the process (Y(¢)), o defined by (11) is given by
Fy(y) = PX(N() <3) = E{Ixvp <y} = E{E{Ixiv <IN ()} }-

Since XwZ G with shape § = (y> — 2a)/y* and scale 6! = %, then each X (¢)
follows an IG(ét, 0), that is, has a probability density function (PDF), f X(0) (x) =
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%x‘tﬁ‘l exp {—6/x}, x>0 and cumulative distribution function (CDF) Fx)(x) =
(f‘s )

then the PDF and CDF functions of (Y(¢)), , are given respectively by

k
1 [ /6)° 1
_ 0y it
fy) =€ Iyo) +e e y2<(/) ”) R (oR) L0~ 0)

k=1

k
Fy(y) =H(y)e ™ ¢~ ”Zr (8k,0/y) (()k).
k=1

where H(.) is the Heaviside step function, therefore, the probability law of
(Y(t)),5 o has atom e* at zero, that is, has a discrete part P(Y(¢) = 0) = e *.

Remark 4.6. An equivalent expression of the above PDF and CDF functions may be
given by the following Poisson mixture: fy(y) = > ;" of x4, 0)P(N(£) = k), Fy (y) =
Z,’:’ 0F x(k) V)P(N(t) = k). These PDF and CDF function are the same as for Z(t

Zn 1.§n wheve (£,), 1 15 a sequence of i.i.d. random variables independent of N (t ( ). Note
that when (X(t)), o and (N(t)), o are independent processes and the velevant moments
exist, then E{Y (t } tuxpy and Var{Y (t)} = t(ckuy — oxuy) where uy = E{N(1)},
ux = E{X(1)}, 6% = Var(N(1)) and 6% = Var(X(1)).

The 7§ distribution belongs to the exponential family of distribution with respect
to 0 = (5+1,0)'. Indeed, f4(x) = %% exp {—0/x} = exp {—0'T(x) + A(0)}

where T(x) = (log (x), 1) and A(0) = 5log (6)— log (I'(8)). The function A(.) is
known as the cumulant function its first and second derivative provide the mean and

the variance of T(X). Sofy, (y) may be rewritten as

froW) =e Ty-o +e* i exp {—0'(k)T(x) + A(0(k)) }P(N(t) = k)l 1y 0)

k=1

in which the vector 6(k) is obtained by replacing the parameter  in 6 by k. So, the
distribution of (Y (t)), , may be regarded (asymptotically) as the distribution of GIG
subordinated by the Poisson process. Regardless of the form of the expected value of the
function h(Y) is expressed as E{h(Y)} = [Exn—r{h(Y)}gy(k)dv(k) where Exjy{.} is
)

taken with respect to the conditional distribution of X. In particular, E{Y} = E{Exn(X)}
and Var{Y} = Var{Exn(X)} + E{Varxn(X) }. Moreover

E{Yn} _ efﬂt i { Jynfﬁkflefﬁ/ydy } eﬁk (/U')k k'r:(lk(s)

k=0 0

_ e n ST ) o)

2" T(ks) k!

= 0" "1 W1(6, —n, 5,0, i)
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where 1¥1(p,a,p,b,%) = ;o F ZZiZ ’,;! is the confluent hypergeometric function

that plays an important role in mixing theory. For certain values of the parameter p
and for # > 0, it is possible to give representations of 1¥1(p, a; p, 0;x) in terms of well-
known special functions. In general, the exact expression of 1¥1(p, 4, p, b, x) is very
difficult to express it, so in literature, the solution is given for certain specific case,
(interested readers are advised to see [20] and the references therein). The solution of
1¥1(p,a, p, b, x) is a vast subject and we will not develop it further here.

5. Estimation issues

In this section, we propose the moment’s method (MM) for estimating the
unknown parameters, o, ¢ and y gathered in vector € involved in COBL(1,1) and in its
distribution ZG. The estimates parameters according to MM are obtained from two
processes (X(t)), o and (Y (¢)), o. Moreover, we concentrated on the weak and/or
asymptotically stationary case and we assume that the parameter 4 in the Poisson
process is known. The first and second moments of the asymptotically stationary

process (Y(¢)) as defined in Example 4.1 are y; = —% =—ftand y, = 2122 = (2;—”;2)
Additionally, from proposition 3.1, we have asymptotlcally p(1) = e“. So the following
formulas for the parameters can be derived a = logp(1), = —auy, and y* =

(W r2am)

. These relationships can be used for estimating § by MM, more precisely the
Ha -

estimators are given by

~ — +2
a=logp(1l),u= —a,ulandy M
Ha

where fi;, fi,, and log p(1) are respectively the empirical first, second-order
moment, and the empirical logarithm of autocorrelation. Their consistency and
asymptotic normality are given the following proposition

Proposition 5.1. Under the Assumption 1,we have

1. (@4) converges in probability to 6,

2.\/n (@n - Q0> wN(0, () where Z(6,) is 3 X 3 asymptotic covariance matvix.

Proof. The proof follows essentially the same arguments as in Bibi and
Merahi [21].

5.1 Some simulation results

In order to check the effectiveness of the described estimation procedure, we
simulated 500 trajectories of length # € {1000,2000} with parameters § shown at the
bottom of each table below. The vector € is chosen to satisfy the second-order
stationarity and the existence of moments up to fourth-order. For the purpose of

illustration, the vector of parameters € is estimated with (X(z)), , noted 6% and
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Figure 1.

Top panels: The overlay of asymptotic kernel of \/n (9,,, (¢) — O(i)and \/n (9g (i) — 0(i) based on X(t). Bottom
panels: Are the corresponding boxplots summary of 0y, (i)and ,(i),i = 1,2 and 3 according to Design (1)
illustrated in Table 1.

n =1000 n =2000
Sza\le s Scﬁpe Sae s Scﬁpe
MM (1.002, 7.073) (1.023,7.173)
GMM (1.001, 7.040) (0.938, 6.641)

Design(1): Scale: 0:8889 and Schape: 6:3333

Table 2.
The estimation of the distribution of X(t).

compared with its delayed (Y (¢)), o, process noted 6'Y).As a parameter of configura-

tion we estimate 6 by the generalized method of moment (GMM) noted QéX) and ng).
In the Tables below, the column “Mean” correspond to the average of the parameters
estimates over the 500 simulations. In order to show the performance of the estima-
tors, we have reported in each table the root means squared error (RMSE) (results
between brackets). The results of estimating corresponding to the process (X(¢)) and
(Y(t)) are summarized in Table 1.

The plots of the asymptotic density of each component of 0 according to MM and
GMM methods based on process (X(t)) (resp. on process (Y(¢))) are summarized in
the Figure 1 (resp. in Figure 3)

Additionally, the estimates of scale and shape parameters of Z§ distribution are
reported in Table 2.

The plot of estimate Z§ distribution of the process X(¢) is shown in Figure 2.

5.2 Comments

Now a few comments can be made
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The left plot is the overlay of exact, MM estimate and GMM estimate associated to design (1) of 1G distribution of
the process X(t) with n = 1000. The right plot is similar to the left with n = 2000.
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Top panels: The overlay of asymptotic kernel of \/n (O (i) — 6

(

i) and /n (0, (i) — 0(i) based on Y (t). Bottom

panels: Are the corresponding boxplots summary of 0, (i)and 6,(i),i = 1, 2 and 3 according to Design (1)
illustrated in Table 1.

A.By inspecting Table 1

1.it is clear that the results of MM and GMM methods are reasonably closed
to the true values and their RMSE decreases when the sample size increases.

2.The above observations may be seen by regarding the plots of asymptotic
distributions of their kernels estimates displayed in Figure 2 showing the
moderate-fat tails (positive kurtosis or leptokurtic) of such a kernels and
the asymptotic accuracy of MM and GMM estimates.

3.Additionally, it can be seen from the boxplots displayed in Figure 2 that the
methods MM displays more outliers than GMM. This is not surprising due
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to the robustness properties of GMM and hence its capability to detect the
outliers in nonlinear models.

4.1t can be observed that the RMSE associated with GMM is more less than of
that associated to MM.

5.1t can be said that the estimation of scale parameters is more accurate for
the smaller values of those parameters whereas the estimation of shape
parameters is more accurate for the larger values of those parameters.

B. By inspecting Table 2

1. The performances of GMM and MM are according to their order, and are
close to each other.

2.1t seems that it is very difficult to distinguish between the results reported
in Table 1 and Table 2 and the plots of the asymptotic kernels showed in
Figures 1 and 3. This is due to asymptotic stationary which led to the same
parameters involved in both SDE (4) and (12).

3.Forn = 1000 and/or # = 2000, it is observed that GMM works the best from
MM for both designs of the two parameters a and u.

6. Concluding remarks and future research direction

The stochastic subordination model proposed in this paper is practically and theo-
retically appealing for the modeling of several phenomena already pointed out in
Section 1. Such models are rich enough to model among others, the observed non-
normal returns, significant autocorrelation of squared returns. In this paper, we have
proposed a theoretical model that not only takes under consideration such specific
property but also exhibits short-range dependence and can be used for data with
visible jumps. This model is based on the stable COBL(1,1) process delayed the
Poisson subordinator. The proposed model is non-linear and non-normal, involves
three additional parameters which may easily and quickly be estimated under the
asymptotically stationarity assumption with a moments method (MM) and compared
with a generalized method of moments (GMM). Clearly, the analyzed process is
complex and the estimation is challenging. A significant advantage of the stochastic
subordination model is that it inherits some properties of the process to be subordi-
nated and hence the stationary and nonstationary process can be obtained through the
subordination approach. These issues are of importance to theoreticians and practi-
tioners alike and will be the subject of further papers. Further research is required to
investigate the asymptotic theory of estimator under more matching conditions. The
model presented in this paper may be slightly modified by replacing the Poisson
process by other processes subject to some appropriate condition.
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