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Preface

Calculus is the elementary subject of applied analysis and its study includes a rich 
variety of functions and their behavior. This book brings together a range of different 
concepts from across the wide spectrum of the concept of calculus.

The book is in two sections. The first deals with advances in analysis and the second 
with the application of some results of functional calculus to applied problems.

The first section opens with an analysis of logarithmic potential transform. The sin-
gular values of this transform are discussed on the Poincaré disk. This potential can be 
used to illustrate some of the important features of field theory such as dimensional 
regularization and renormalization. Although most recent textbooks do not discuss 
this potential in detail, the calculations to demonstrate some of its unique features are 
quite simple. The bound state energy of this logarithmic potential is obtained through 
the uncertainty principle, phase space quantization and the Hellmann‒Feynman 
theorem.

In the second chapter of the first section, the authors define and prove new Tauberian 
theorems under triple statistically Norlund-Cesaro summability. Some theorems, 
lemmas and corollaries can be defined and proved similarly by using the (1, 0, 0), 
(0, 1, 0) and (0, 0, 1) summability method. Although Tauberian theorems for single 
sequences of a single variable are well established, they remain in their infancy for 
triple sequences.

The final chapter of the first section is devoted to the study of the Calderon operator, 
which is the sum of the Hardy averaging operator and its adjoint and plays an impor-
tant role in the theory of real interpolation. On the other hand, the Hilbert operator 
arises from the continuous version of Hilbert’s inequality. Both operators appear in 
different contexts and have numerous applications within the harmonic analysis. In 
this chapter, the authors briefly review the Calderon and Hilbert operators, showing 
some of the most relevant results within the functional analysis and presenting recent 
results on these operators within Fourier analysis.

The second section of the book collects some results from applied analysis The first 
chapter deals with the study of heat transfer development of titanium oxide nanofluid 
of platelet-shaped nanoparticles over a vertical stretching cylinder. A set of nonlinear 
equations is obtained using suitable transformation on the governing equations which 
are then solved with numerical scheme BVP4C. The results obtained are interpreted 
graphically and numerically. The effects of Prandtl, Eckert and unsteadiness param-
eters on temperature distribution are depicted, and skin friction and Nusselt number 
are also computed. In the second chapter, a nonlinear response of the follower motion 
is simulated at different cam speeds, different coefficients of restitution and different 
internal distances of the follower guide from inside. The nonlinear response of the fol-
lower is employed to investigate the chaotic phenomenon in the cam follower system in 



IV

the presence of follower offset. The numerical results are achieved using Solid Works 
software. The chaos phenomenon is detected using Poincaré maps with phase-plane 
portraits, the largest Lyapunov exponent parameter, and a bifurcation diagram. 
The largest Lyapunov exponent has its maximum value when the follower offsets to 
the right, and its minimum value when the follower offsets to the left. The chaotic 
phenomenon in cam follower systems when the follower offsets to the left is greater 
than the chaotic phenomenon when the follower offsets to the right. The final chapter 
investigates the decision fusion problem for large-scale sensor networks associated 
with the Internet of Things and artificial intelligence. The sensor networks discussed 
are those with unavoidable transmission channel interference and non-ideal channels 
that are prone to errors. A generalized algorithm is proposed that enables decision 
fusion rules to be designed for large-scale sensor networks and can at the same time 
search for the optimal sensor rules and the optimal fusion rule. Finally, numerical 
examples show the effectiveness of the new algorithms for large-scale sensor networks 
with non-ideal channels.

Hammad Khalil
Department of Mathematics,

University of Education,
Lahore, Pakistan
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Chapter 1

The Singular Values of the
Logarithmic Potential Transform
on Bound States Spaces of Landau
Hamiltonians on the Poincaré Disk
M’hamed Elomari and Ali El Mfadel

Abstract

In the present manuscript, we prove that the singular numbers of the Cauchy

transform Lσ f½ � zð Þ ¼ � 1
π

Ð


f ξð Þ
ξ�z log

1
∣z�ξ∣

� �
1� ξξ
� �σ�2

dμ ξð Þ (2) defined on the space

L2,σ ð Þ of complex-valued measurable functions, which are 1� ξξ
� �σ�2

dμ ξð Þ-square
integrable on  where σ > 1 is a fixed parameter, are asymptotically

≈C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km�4νþ1

p
, as k ! ∞ where C is a constant.

Keywords: the logarithmic potential transform, the singular values, Cauchy transform.

1. Introduction

Let  be the complex unit disk endowed with its Lebesgue measure μ and let ∂ID
be its boundary. Denote by L2 , dμð Þ the space of complex-valued measurable func-
tions, which are dμ square integrable on . The logarithmic potential transform:
L2 ð Þ ! L2 ð Þ is defined by

L f½ � zð Þ ¼ � 1
π

ð



f ξð Þ
ξ� z

log
1

∣z� ξ∣

� �
dμ ξð Þ: (1)

This operator is very important as the transformed Cauchy and it often appears in
Analysis [1].

The dimensional analysis [1, 2] and scaling arguments form an integral part of
theoretical physics to solve some important problems without doing much calculation.

The logarithmic potential in physics forms an interesting one as it provides some
unusual predictions about the system. Moreover, this potential can be used suitably to
illustrate some of the important features of field theory such as dimensional regular-
ization and renormalization. In most of our textbooks, this potential is not discussed in
detail; although the calculations are quite simple to demonstrate some of its unique
features. We have obtained the bound state energy of this logarithmic potential

3



through uncertainty principle, phase space quantization, and the Hellmann-Feynman
theorem.

In Ref. [3] the authors have been dealing with the restriction of L to the space
L2
a ð Þ of analytic μ-square integrable on . They precisely have considered the

projection operator P0: L2 ð Þ ! L2
a ð Þ and they have proved that the singular

values λk of LP0, (which turn out to be eigenvalues of the operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LP0ð Þ ∗ LP0ð Þ

p

behave like k�1 as k goes to ∞. They also concluded that LP0 belongs to the
Schatten class S1,∞.

Now, consider the following weighted logarithmic potential transform

Lσ f½ � zð Þ ¼ � 1
π

ð



f ξð Þ
ξ� z

log
1

∣z� ξ∣

� �
1� ξξ
� �σ�2

dμ ξð Þ, (2)

defined on the space L2,σ ð Þ of complex-valued measurable functions, which are

1� ξξ
� �σ�2dμ ξð Þ-square integrable on  where σ > 1 is a fixed parameter. We observe
that the subspace L2,σ

a ð Þ of analytic functions on  and belonging to L2,σ ð Þ coincides
with the eigenspace

Aσ
0 ð Þ≔ ψ ∈L2,σ ð Þ, Δσψ ¼ 0

� �
, (3)

of the second order differential operator

Δσ ≔ � 4 1� zzð Þ 1� zzð Þ ∂
2

∂z∂z
� σz

∂

∂z

� �
, (4)

known as the σ-weight Maass Laplacian and its discrete eigenvalues are given by

εm ≔4m σ � 1�mð Þ, m ¼ 0,1,2,… ,⌊ σ � 1ð Þ=2⌋, (5)

with their corresponding eigenspaces

Aσ
m ð Þ≔ ψ ∈L2,σ ð Þ and Δσψ ¼ εσmψ

� �
, (6)

are here called generalized Bergman spaces since …

After noticing that, we here deal with analogous questions as in Ref. [3] in the
context of the weighted Cauchy transform (2) and for its restriction to the space
Aσ

m ð Þ. That is, we are concerned with the operator CσPσ
m where Pσ

m is the projection
L2,σ ð Þ ! Aσ

m ð Þ. The results achieved are as follows:
Firstly, we find that the singular values of LσPσ

m. For k 6¼ m, it can be expressed as

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1 þ J2 þ J3

p
,

where

J1 ¼
1þ k�mð Þm

m! k�mþ 1ð Þ
� �2X∞

n¼0

An
Γ 2nþ 2k� 2mþ 6� 1ð ÞΓ 4ν� 2m� 1ð Þ

Γ 2nþ 2k� 4mþ 4νþ 6ð Þ ,

J2 ¼
αν,mk

2ν�m� 1

� �2X∞
n¼0

An
Γ 4ν� 2m� 1ð ÞΓ 2nþ 2ð Þ
Γ 2nþ 4ν� 2mþ 1ð Þ ,

4
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and

J3 ¼
1þ k�mð Þmαν,mk

m! k�mþ 1ð Þ 2ν�m� 1ð Þ
X∞
n¼0

An
Γ k�mþ 2ð ÞΓ 4ν� 2m� 1ð Þ

Γ 4ν� k� 3mð Þ

 !
:

For k ¼ m can be expressed as

λ2k ¼
αν,mk 2 2ν�mð Þ � 1ð Þ
8 π 2ν�mþ 1ð Þð Þ

X∞
n¼0

Bn

nþ 2ν�m
, (7)

where

Bn ¼
X∞
n¼0

Γ �mþ 1ð ÞΓ 2ν�mð ÞΓ 2 ν�mð Þ þ 1ð Þ
n!Γ 2 ν�mð ÞΓ 2ν�mþ 2ð Þð ,

αν,mk ¼ Γ 2ð ÞΓ 2 m� νð Þ þ 1ð Þ
Γ mþ 1ð ÞΓ 2þm� 2νð Þ :

Secondly, we show that these singular values behave like

λk � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km�4νþ1

p
, as k ! ∞,

where C is a constant.
The paper is organized as follows: In Section 2, we review the definition of the

weighted logarithmic potential transform, as well as some of its needed properties.
Section 3 deals with some basic facts on the spectral theory of Mass Laplacians on the
Poincaré disk. In Section 4, a precise description of the generalized Bergmann spaces
is reviewed. Section 5 is devoted to the computation of the singular values of the
weighted logarithmic potential transform. The asymptotic behavior of these singular
values is established in Section 6.

2. The weighted logarithmic potential transform Lν

2.1 The case ν ¼ 1

Let  the complex unit disk endowed with its Lebesgue measure μ and let ∂ID its
boundary denote by L2 ð Þ the space of complex-valued measurable functions on 
with finite norm

kfk ¼
ð


f ξð Þj j2dμ ξð Þ: (8)

The Logarithmic Potential operator L : L2 ð Þ ! L2 ð Þ is defined by

L f½ � zð Þ ¼
ð

I D
f ξð Þ log 1

ξ� zj j
� �

dμ ξð Þ: (9)

2.2 The case of ν≥ 1

We fix a real parameter ν such that 2ν> 1 and we consider the following weighted
logarithmic potential transform

5
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Lν f½ � zð Þ ¼
ð


f ξð Þ log 1

ξ� zj j
� �

1� ξξ
� �2ν�2

dμ ξð Þ, (10)

defined on the space L2,ν ð Þ complex-valued measurable functions are

1� ξξ
� �2ν�2

dμ ξð Þ-square integrable on . As a convolution of L2,ν-functions with the

compactly supported measure 1�ξð Þ2ν�2

ξ 1Ddμ ξð Þ Lν : L2,ν ð Þ ! L2,ν ð Þ is obviously
bounded. Moreover, it is not hard to show that Lν is in fact compact [4]. This raises a
question concerning the spectral picture of Lν.

3. The Landau Hamiltonian Hν on the Poincaré disk 

Let  = z∈ℂ, zz< 1f g be the complex unit disk with the Poincaré metric ds2 ¼
4 1� zzð Þ�2dzdz:  is a complete Riemannian manifold with all sectional curvature
equal �1: It has an ideal boundary ∂ID identified with the circle ω∈ℂ, ωω ¼ 1f g: One
refers to points ω∈∂ID as points at infinity. The geodesic distance between two points
z and w is given by

cosh d z, wð Þ ¼ 1þ 2 z�wð Þ z� wð Þ
1� zzð Þ 1�wwð Þ : (11)

By Ref. [5] the Schrödinger operator on  with a constant magnetic field of
strength proportional to ν>0 can be written as:

Lν ≔ � 1� zj j2
� �2 ∂

2

∂z∂z
� νz 1� zj j2

� �
∂

∂z
þ νz 1� zj j2

� �
∂

∂z
þ ν2 zj j2: (12)

which is also called Maass Laplacian on the disk. A slight modification of Lν is
given by the operator

Hν ≔4Lν � 4ν2 (13)

acting in the Hilbert space

L2,0 ð Þ≔ φ :  ! ℂ,
ð


φ zð Þj j2 1� zj j2

� ��2
dμ zð Þ< þ∞

� �
, (14)

For our purpose, we shall consider the unitary equivalent realization ~Hν of the
operator Hν in the Hilbert space

L2,ν ð Þ≔ φ :  ! ,
ð


φ zð Þj j2 1� zj j2

� �2ν�2
dμ zð Þ< þ∞

� �
, (15)

which is defined by

~Hν ≔Q�1
ν HνQν, (16)

6
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where Qν : L
2,ν ð Þ ! L2,0 ð Þ is the unitary transformation defined by the map

φ↦Qν φ½ �≔ 1� zj j2
� ��ν

φ:Different aspects of the spectral analysis of the operator ~Hν

have been studied by many authors. For instance, note that ~Hν is an elliptic densely
defined operator on the Hilbert space L2,ν ð Þ and admits a unique self-adjoint reali-
zation that we denote also by ~Hν: The spectrum of ~Hν in L2,ν ð Þ consists of two parts:
ið Þ a continuous part 1, þ∞½ ½, which corresponds to scattering states, iið Þ a finite
number of eigenvalues (hyperbolic Landau levels) of the form

ενm ≔4 ν�mð Þ 1� νþmð Þ, m ¼ 0,1,2,⋯, ν� 1
2

� �
(17)

with infinite degeneracy, provided that 2ν> 1. The eigenvalues in (17) correspond
eigenfunctions, which are called bound states since the particle in such a state cannot
leave the system without additional energy. A concrete description of these bound
states spaces will be the goal of the next section.

4. The bound states spaces A2
ν,m ð Þ

Here, we consider the eigenspace

A2
ν,m ð Þ≔ Φ :  ! , Φ∈L2,ν ð Þ and ~HνΦ ¼ ενmΦ

� �
: (18)

See Refs. [6, 7], for the following proposition.
Proposition 4.1. Let 2ν> 1 and m ¼ 0,1,2,⋯, ν� 1

2

� �
:Then, we have.

ið Þ an orthogonal basis of A2
ν,m ð Þ is given by the functions

ϕν,m
k zð Þ≔ zj j∣m�k∣ 1� zj j2

� ��m
e�i m�kð Þargz

�2F1 �mþm� kþ ∣m� k∣
2

, 2ν�mþ ∣m� k∣�mþ k
2

, 1þjm� kj; zj j2
� � (19)

k ¼ 0,1,2,⋯, in terms of a terminating 2F1 Gauss hypergeometric function.
iið Þ the norm square of ϕν,m

k in L2,ν ð Þ is given by

ϕν,m
k

�� ��2 ¼ π Γ 1þ m� kj jð Þð Þ2
2 ν�mð Þ � 1ð Þ

Γ m� ∣m�k∣þm�k
2 þ 1

� �
Γ 2ν�m� ∣m�k∣þm�k

2

� �

Γ mþ ∣m�k∣�mþk
2 þ 1

� �
Γ 2ν�mþ ∣m�k∣�mþk

2

� � : (20)

Corollary 4.1. The functions Φν,m
k

� �
, k ¼ 0,1,2,… , given by

Φν,m
k zð Þ≔ �1ð Þk 2 ν�mð Þ � 1

π

� �1
2 k!Γ 2 ν�mð Þ þmð Þ

m!Γ 2 ν�mð Þ þ kð Þ
� �1

2

(21)

� 1� zj j2
� ��m

zm�kP m�k, 2 ν�mð Þ�1ð Þ
k 1� 2zzð Þ, (22)

in terms of Jacobi polynomials constitute an orthonormal basis of A2,ν
m ð Þ.

7

The Singular Values of the Logarithmic Potential Transform on Bound States Spaces
DOI: http://dx.doi.org/10.5772/intechopen.107090



Proof. Write the connection between the 2F1-sum and the Jacobi polynomial

Pα,β
k uð Þ ¼ 1þ αð Þk

k!
: 2F1 �k, 1þ αþ β þ k, 1þ α;

1� u
2

� �
,

then the functions

ϕν,m
k zð Þ ¼ �1ð Þmin m, kð Þ

1� zj j2
� �m zj j m�kj je�i m�kð ÞargzP m�kj j, 2 ν�mð Þ�1ð Þ

min m, kð Þ 1� 2zzð Þ, (23)

constitute an orthonormal basis of A2
ν,m: The norm square of ϕν,m

k in L2,ν ð Þ is
given by

ϕν,m
k

�� ��2 ¼ π

2 ν�mð Þ � 1ð Þ
m∨ kð Þ!Γ 2 ν�mð Þ þm∧ kð Þ
m∧ kð Þ!Γ 2 ν�mð Þ þm∨ kð Þ : (24)

Here, m∧ k≔ min m, kð Þ and m∨ k≔ max m, kð Þ: Thus, the set of functions

Φν,m
k ≔

ϕν,m
k

ϕν,m
k

�� �� , k ¼ 0,1,2,… (25)

is an orthonormal basis of A2
ν,m ð Þ and can be rewritten as.

Φν,m
k zð Þ ¼ �1ð Þk 2 ν�mð Þ � 1

π

� �1
2 k!Γ 2 ν�mð Þ þmð Þ

m!Γ 2 ν�mð Þ þ kð Þ
� �1

2

(26)

� 1� zj j2
� ��m

zm�kP m�k, 2 ν�mð Þ�1ð Þ
k 1� 2zzð Þ (27)

by making appeal to the identity S, p:63ð Þ:

Γ mþ 1ð Þ
Γ m� sþ 1ð ÞP

�s, αð Þ
m uð Þ ¼ Γ mþ αþ 1ð Þ

Γ m� sþ αþ 1ð Þ
u� 1
2

� �s

P s, αð Þ
m�s uð Þ,1≤ s≤m (28)

for s ¼ m� k, t ¼ 1� 2 zj j2, and α ¼ 2 ν�mð Þ � 1:…□.
Corollary 4.2. The L2�eigenspace A2

ν,0 ð Þ, corresponding to m ¼ 0 in 3:1ð Þ and
associated with the bottom energy εν0 ¼ 0 in 2:6ð Þ, reduces further to the weighted Bergman
space consisting of holomorphic functions ϕ:  !  such that

ð



ϕ zð Þj j2 1� zj j2
� �2ν�2

dμ zð Þ< þ∞: (29)

8
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5. Computation of the singular values λk

Elements of this basis are given in terms of Jacobi polynomials as

ϕν,m
k zð Þ ¼ �1ð Þmin m, kð Þ

1� zj j2
� �m zj j m�kj je�i m�kð ÞargzP m�kj j, 2 ν�mð Þ�1ð Þ

min m, kð Þ 1� 2zzð Þ: (30)

The norm square of ϕν,m
k in L2,ν ð Þ is given by

ρν,mk ¼ π

2 ν�mð Þ � 1ð Þ
m∨ kð Þ!Γ 2 ν�mð Þ þm∧ kð Þ
m∧ kð Þ!Γ 2 ν�mð Þ þm∨ kð Þ : (31)

Here, m∧ k≔ min m, kð Þ and m∨ k≔ max m, kð Þ: Let us introduce the notation.
The set of functions

γν,mk ≔
�1ð Þm∧ k

ffiffiffiffiffiffiffiffi
ρν,mk

p ,k ¼ 0,1,2,… (32)

So that we consider the elements

Φν,m
k zð Þ≔ γν,mk

1
1� zzð Þm zj j m�kj je�i m�kð ÞargzP m�kj j, 2 ν�mð Þ�1ð Þ

min m, kð Þ 1� 2zzð Þ: (33)

5.1 The action Lν

Lemma 5.1. We set z ¼ ρeit, and I ¼ �Ð 2π0 ei k�mð Þθ log jz� reiθj� �
dθ
2π, we have

I ¼ � log ρ∧ rð Þ k ¼ m,

I ¼ ei k�mð Þt

2∣m� k∣
r
ρ

� �m�k

∧
r
ρ

� �m�k
 !

k 6¼ m,

8>>>><
>>>>:

(34)

Proof. By ref. [3], it remains to prove that this lemma for k<m.
We have

ð2π
0
ei k�mð Þθ log ρeit � reiθ

�� ��� �
dθ ¼ �

ð2π
0
ei m�kð Þ �θð Þ log rei �tð Þ � ρei �θð Þ�� ��� �

d �θð Þ (35)

The function θ ! ei m�kð Þ �θð Þ log rei �tð Þ � ρei �θð Þ�� ��� �
is a periodic mapping with the

period equal 2π, then

9
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ð2π
0
ei k�mð Þθ log ρeit � reiθ

�� ��� �
dθ

¼ �
ð2π
0
ei m�kð Þ �θð Þ log rei �tð Þ � ρei �θð Þ�� ��� �

d �θð Þ

¼ ei k�mð Þt

2 m� kð Þ �
r
ρ

� �m�k

∧
r
ρ

� �m�k
 !

:

□
Lemma 5.2. For all λ∈ ∂D. Lν commutes with the rotations Rλ, where

Rλfð Þ zð Þ ¼ f λzð Þ:

Proof. We observe that

Rλϕ
ν,m
k zð Þ ¼ λk�mϕν,m

k zð Þ, ∀k 6¼ m:

□
Corollary 5.1. Lν ϕν,m

k

� �� �∞
k¼0 are orthonormal in L2,ν ð Þ.

Proof. As Rλ is an isometry of L2,ν ð Þ,

Lν ϕν,m
k

� �
, Lν ϕν,m

j

� �� �

¼ RλLν ϕν,m
k

� �
, RλLν ϕν,m

j

� �� �

¼ LνRλ ϕν,m
k

� �
, LνRλ ϕν,m

j

� �� �

¼ λj�k Lν ϕν,m
k

� �
, Lν ϕν,m

j

� �� �
, if m> k,

or

¼ λk�j Lν ϕν,m
k

� �
, Lν ϕν,m

j

� �� �
, if m< k

For all λ∈ ∂D, since λ 6¼ 0, we have

Lν ϕν,m
k

� �
, Lν ϕν,m

j

� �� �
¼ 0 if j 6¼ k:

□
Lemma 5.3. If we denote 1ϕν,m

k zð Þ, if k>m and 2ϕν,m
k zð Þ, if k<m, we have

Lν
1ϕν,m

k

� �
zð Þ ¼ Γ kþ 1ð ÞΓ 2ν�mð Þ

Γ mþ 1ð ÞΓ 2ν� kð ÞLν
2ϕν,m

k

� �
zð Þ:

Proof. Just use

Γ mþ 1ð Þ
Γ m� sþ 1ð ÞP

�s, αð Þ
m uð Þ ¼ Γ mþ αþ 1ð Þ

Γ m� sþ αþ 1ð Þ
u� 1
2

� �s

P s, αð Þ
m�s uð Þ,1≤ s≤m: (36)

□
10
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Proposition 5.1. The action of the operator L on a basis element ϕν,m
k is of the form:

If k ¼ m, We put z ¼ ρeiθ then

Lν ϕν,m
k

� �
zð Þ ¼ αν,mk

2 2ν�mþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r
1� ρ2
� �2ν�m�1

3F2
�mþ 1, 2ν�m, 2ν�mþ 1

2 ν�mð Þ, 2ν�mþ 2
j1� ρ2

� �
:

(37)

If k 6¼ m then

Lν ϕν,m
k

� �
zð Þ ¼ πγν,mk ei k�mð Þt

2 k�mð Þ I3 þ I4ð Þ,

where

I3 ¼ 1þ k�mð Þm
m! k�mþ 1ð Þ ρ

k�mþ2 1� ρ2
� �2ν�m�1

2F1
�mþ 1, 2 ν�mð Þ þ k

2þ k�m
jρ2

� �
,

and

I4 ¼ αν,mk

2ν�m� 1
1� ρ2
� �2ν�m�1

2F1
�mþ 1, 2ν�m� 1

2 ν�mð Þ, jρ2
� �

:

Proof. For k ¼ m, we have

Lν ϕν,m
k

� �
zð Þ ¼ �1ð Þm

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r ð


1� ξj j2
� �2ν�m�2

P 0, 2 ν�mð Þ�1ð Þ
m 1� 2 ξj j2

� �
log z� ξj jð Þdμ ξð Þ

¼ �1ð Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r ð1
0
1� r2
� �2ν�m�2

P 0, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� �
log ρ∧ rð Þdr2

¼ �1ð Þm
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r ð1
0
1� tð Þ2ν�m�2P 0, 2 ν�mð Þ�1ð Þ

m 1� 2tð Þ log ρ2 ∨ t
� �

dt

¼ �1ð Þm
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r
I1 þ I2½ �:

where

I1 ¼
ðρ2
0

1� tð Þ2ν�m�2P 0, 2 ν�mð Þ�1ð Þ
m 1� 2tð Þ log ρ2 ∨ t

� �
dt,

and

I2 ¼
ð1
ρ2

1� tð Þ2ν�m�2P 0, 2 ν�mð Þ�1ð Þ
m 1� 2tð Þ log tð Þdt:

Calculus of I1.

I1 ¼ log ρ2
� �ð1

ρ2
1� tð Þ2ν�m�2P 0, 2 ν�mð Þ�1ð Þ

m 1� 2tð Þdt:

We use the formula
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P α, βð Þ
k uð Þ ¼ 1þ αð Þk

k! 2
F1

�k, 1þ αþ β þ k
1þ α

j 1� u
2

� �
:

We have

I1 ¼ log ρ2
� �ðρ2

0
1� tð Þ2ν�m�2

2F1
�m, 2ν�m

1
jt

� �
dt:

By Ref. [8], we have
ð
xc�1 1� xð Þb�c�1

2F1
a, b
c

jx
� �

dx ¼ 1
c
xc 1� xð Þb�c

2F1
aþ 1, b
cþ 1

jx
� �

,

implies that

I1 ¼ log ρ2
� �

ρ2 1� ρ2
� �2ν�m�1

2F1
�mþ 1, 2ν�m

2
jρ2

� �
:

Calculus of I2.

I2 ¼
ð1
ρ2

1� tð Þ2ν�m�2P 0, 2 ν�mð Þ�1ð Þ
m 1� 2tð Þ log tð Þdt:

Use the previous formula in Ref. [8] and the integration by part gives

I2 ¼ t1� t2ν�m�1
2F1

�mþ 1, 2ν�m

2
jt

 !
log t

" #1

ρ2

� Ð 1
ρ2 1� t2ν�m

2F1

�mþ 1, 2ν�m

2
jt

 !
dt

¼ �ρ2 log ρ21� ρ2
2ν�m�1

2F1

�mþ 1, 2ν�m

2
jρ2

 !
� Ð 1

ρ2 1� t2ν�m
2F1

�mþ 1, 2ν�m

2
jt

 !
dt:

Calculus of
ð1
ρ2

1� tð Þ2ν�m
2F1

�mþ 1, 2ν�m
2

jt
� �

dt:

Use the following formula, which has place in [9]

2F1
a, b
c

jt
� �

¼ Γ cð ÞΓ c� a� bð Þ
Γ c� að ÞΓ c� bð Þ2

F1

a, b

aþ b� cþ 1
1� tj

 !

þ Γ cð ÞΓ aþ b� cð Þ
Γ að ÞΓ bð Þ 1� tð Þc�a�b

2F1

a, b

aþ b� cþ 1
1� tj

 !
:

We put a ¼ 1�m, b ¼ 2ν�m, c ¼ 2 and use the formula Boher-Mollerup, for
z∈ IR ∗

þ ,

Γ zð Þ ¼ e�γz

z

Y∞
n¼1

1þ z
n

� ��1
e�

z
n,

which implies 1
Γ 1�mð Þ ¼ 0, then

12
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2F1
�mþ 1, 2ν�m

2
jt

� �
¼ 2Γ 2 m� νð Þ þ 1ð Þ

m!Γ 2þm� 2νð Þ2
F1

�mþ 1, 2ν�m
2 ν�mð Þ j1� t

� �
,

implies that

ð1
ρ2

1� tð Þ2ν�m
2F1

�mþ 1, 2ν�m
2

jt
� �

dt ¼ 2Γ 2 m� νð Þ þ 1ð Þ
m!Γ 2þm� 2νð Þ

ð1
ρ2

1� tð Þ2ν�m
2F1

�mþ 1, 2ν�m
2 ν�mð Þ j1� t

� �
dt:

By the change 1� t ¼ s, we get

ð1
ρ2

1� tð Þ2ν�m
2F1

�mþ 1, 2ν�m
2

jt
� �

dt ¼ 2Γ 2 m� νð Þ þ 1ð Þ
m!Γ 2þm� 2νð Þ

ð1�ρ2

0
t2ν�m

2F1
�mþ 1, 2ν�m

2 ν�mð Þ jt
� �

dt:

In [8], p. 44,

ð
xα�1

2F1
a, b
c

j�t
� �

dx ¼ xα

α 3
F2

a, b, α
c, αþ 1

j�t
� �

þ Γ αð ÞΓ a� αð ÞΓ b� αð ÞΓ cð Þ
Γ að ÞΓ bð ÞΓ c� αð Þ

Since a ¼ 1�m, b ¼ 2ν�m, c ¼ 2 ν�mð Þ, and α ¼ 2ν�mþ 1 we have

Γ αð ÞΓ a� αð ÞΓ b� αð ÞΓ cð Þ
Γ að ÞΓ bð ÞΓ c� αð Þ ¼ 0

and by the change t ¼ �s

ð1�ρ2

0
t2ν�mþ1

2F1

�mþ 1, 2ν�m

2 ν�mð Þ
tj j

 !
dt

¼ �1ð Þm
ðρ2
0
t2ν�m

2F1

�mþ 1, 2ν�m

2 ν�mð Þ
�tj j

 !
dt

¼ �1ð Þm ρ2 � 1ð Þ2ν�mþ1

2ν�mþ 1 3
F2

�mþ 1, 2ν�m, 2ν�mþ 1

2 ν�mð Þ, 2ν�mþ 2
1� ρ2
�� ��

� �
:

we set αν,mk ¼ 2Γ 2 m�νð Þþ1ð Þ
m!Γ 2þm�2νð Þ. We get

I2 ¼
�ρ2 log ρ21� ρ2

2ν�m�1
2F1

�mþ 1, 2ν�m

2
jρ2

 !

þ�1mαν,mk
1�ρ2

2ν�m�1

2ν�mþ1 3
F2

�mþ 1, 2ν�m, 2ν�mþ 1

2ν�m, 2ν�mþ 2
j1� ρ2

 !
:

Finally

Lν ϕν,m
k

� �
zð Þ ¼ αν,mk

2 2ν�mþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

r
1� ρ2
� �2ν�m�1

3F2
�mþ 1, 2ν�m, 2ν�mþ 1

2 ν�mð Þ, 2ν�mþ 2
j1� ρ2

� �
:

Now if k>m, set z ¼ ρeit.
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Lν ϕν,m
k

� �
zð Þ ¼ γν,mk

ð


1� ξj j2
� �2ν�m�2

ξk�m log
1

∣z� ξ∣

� �
P k�m, 2 ν�mð Þ�1ð Þ
m 1� 2 ξj j2

� �
dμ ξð Þ

¼ γν,mk

ð1
0
1� r2
� �2ν�m�2

rk�mþ1P k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� �ð2π
0
ei k�mð Þθ log

1
∣z� riθ∣

� �
dθdr

¼ πγν,mk ei k�mð Þt

2 k�mð Þ
ð1
0
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2

¼ πγν,mk ei k�mð Þt

2 k�mð Þ
ðρ
0
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2
 

þ
ð1
ρ
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2:

We set

I3 ¼
ðρ
0
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2:

and

I4 ¼
ð1
ρ
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2:

Calculus of I3.

I3 ¼ ρm�k 1þ k�mð Þm
m!

ðρ2
0
tk�m 1� tð Þ2ν�m�2

2F1
�m, 2 ν�mð Þ þ k

1þ k�m
jt

� �
dt:

By the formula

ð
xc�1 1� xð Þb�c�1

2F1
a, b
c

jx
� �

dx ¼ 1
c
xc 1� xð Þb�c

2F1
aþ 1, b
cþ 1

jx
� �

,

we have

I3 ¼ 1þ k�mð Þm
m! k�mþ 1ð Þ ρ

k�mþ2 1� ρ2
� �2ν�m�1

2F1
�mþ 1, 2 ν�mð Þ þ k

2þ k�m
jρ2

� �

Calculus of I4.

I4 ¼
ð1
ρ
1� r2
� �2ν�m�2

rk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2r2

� � r
ρ

� �k�m

∧
ρ

r

� �k�m
 !

dr2

¼ ρk�m 1þ k�mð Þm
2m!

ð1
ρ2

1� tð Þ2ν�m�2
2F1

�m, 2 ν�mð Þ þ k

1þ k�m
tj
!
dt:
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As the previous

ð1
ρ2

1� tð Þ2ν�m�2
2F1

�m, 2 ν�mð Þ þ k

1þ k�m
tj
!
dt ¼ αν,mk

ð1
ρ2

1� tð Þ2ν�m�2
2F1

�mþ 1, 2ν�m

2 ν�mð Þ
1� tj

0
@

1
Adt

0
@

¼ �1ð Þmαν,mk

ð0
ρ2�1

t2ν�m�2
2F1

�mþ 1, 2ν�m

2 ν�mð Þ
tj
!
dt

 

¼ αν,mk

2ν�m� 1
1� ρ2
� �2ν�m�1

3F2

�mþ 1, 2ν�m, 2ν�m� 1

2 ν�mð Þ, 2ν�m
1� ρ2
��

! 

also

3F2
�mþ 1, 2ν�m, 2ν�m� 1

2 ν�mð Þ, 2ν�m
j1� ρ2

� �
¼ 2F1

�mþ 1, 2ν�m� 1

2 ν�mð Þ j1� ρ2
� �

Now if k<m. We have

ϕν,m
k zð Þ ¼ �1ð Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

k!Γ 2 ν�mð Þ þmð Þ
m!Γ 2 ν�mð Þ þ kð Þ

s
1� zj j2
� ��m

zm�kP m�k, 2 ν�mð Þ�1ð Þ
k 1� 2 zj j2

� �
:

By the formula

Γ mþ 1ð Þ
Γ m� sþ 1ð ÞP

�s, αð Þ
m uð Þ ¼ Γ mþ αþ 1ð Þ

Γ m� sþ αþ 1ð Þ
u� 1
2

� �s

P s, αð Þ
m�s uð Þ,1≤ s≤m, (38)

and put s ¼ m� k and α ¼ 2 ν�mð Þ � 1, we have

P m�k, 2 ν�mð Þ�1ð Þ
k 1� 2 zj j2

� �
¼ m!Γ kþ αþ 1ð Þ

k!Γ mþ αþ 1ð ÞP
k�m, 2 ν�mð Þ�1ð Þ
m 1� 2 zj j2

� �
,

substituting in the expression of ϕν,m
k zð Þ, we get

ϕν,m
k zð Þ ¼ �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ν�mð Þ � 1

π

m!Γ 2 ν�mð Þ þ kð Þ
k!Γ 2 ν�mð Þ þmð Þ

s
1� zj j2
� ��m

zk�mP k�m, 2 ν�mð Þ�1ð Þ
m 1� 2 zj j2

� �
,

it is the same formula for k>m, which proves the same formula of Lν ϕν,m
k

� �
zð Þ if

k>m.
Remark 5.1. By the previous formula in [9], we have

2F1
�mþ 1, 2 ν�mð Þ þ k

2 ν�mð Þ jρ2
� �

¼ k!Γ 2þ k�mð Þ
Γ 1� 2 ν�mð Þð Þ2

F1
�mþ 1, 2 ν�mð Þ þ k

2 ν�mð Þ j1� ρ2
� �

:

5.2 The spectrum of Lν

Proposition 5.2. If k 6¼ m, then

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1 þ J2 þ J3

p
:
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where

J1 ¼
1þ k�mð Þm

m! k�mþ 1ð Þ
� �2X∞

n¼0

An
Γ 2nþ 2k� 2mþ 6� 1ð ÞΓ 4ν� 2m� 1ð Þ

Γ 2nþ 2k� 4mþ 4νþ 6ð Þ ,

J2 ¼
αν,mk

2ν�m� 1

� �2X∞
n¼0

An
Γ 4ν� 2m� 1ð ÞΓ 2nþ 2ð Þ
Γ 2nþ 4ν� 2mþ 1ð Þ :

and

J3 ¼
1þ k�mð Þmαν,mk

m! k�mþ 1ð Þ 2ν�m� 1ð Þ
X∞
n¼0

An
Γ k�mþ 2ð ÞΓ 4ν� 2m� 1ð Þ

Γ 4ν� k� 3mð Þ

 !
,

If k ¼ m then

λ2k ¼
αν,mk 2 2ν�mð Þ � 1ð Þ
8 π 2ν�mþ 1ð Þð Þ

X∞
n¼0

Bn

nþ 2ν�m
: (39)

where

Bn ¼
X∞
n¼0

Γ �mþ 1ð ÞΓ 2ν�mð ÞΓ 2 ν�mð Þ þ 1ð Þ
n!Γ 2 ν�mð ÞΓ 2ν�mþ 2ð Þð :

Proof. If k 6¼ m. We have

Lν ϕν,m
k

� �� �
zð Þ ¼ πγν,mk I3 þ I4ð Þ

2 k�mð Þ ei k�mð Þt:

We set H ¼ L2 ð Þ, 1� ξj j2
� �2ν�2

dμ ξð Þ
� �

, I3 ¼ I3 ρð Þ, and I4 ¼ I4 ρð Þ we have

λ2k ¼ Lν ϕν,m
k

� �
, Lν ϕν,m

k

� �� �
H

¼ π2γν,mk

k�mð Þ
ð1
0
I3 ρð Þ þ I4 ρð Þð Þ2ρdρ:

Calculus of
Ð 1
0 I3 ρð Þð Þ2ρdρ.

I3 ρð Þ ¼ 1þ k�mð Þm
m! k�mþ 1ð Þ ρ

k�mþ2 1� ρ2
� �2ν�m�1

2F1
�mþ 1, 2 ν�mð Þ þ k

2þ k�m
jρ2

� �
:

Since

2F1
�mþ 1, 2 ν�mð Þ þ k

2þ k�m
jρ2

� �
¼
X∞
n¼0

�mþ 1ð Þn 2 ν�mð Þ þ kð Þn
2þ k�mð Þn

ρ2n

n!
,

then

I3 ρð Þð Þ2 ¼ 1þ k�mð Þm
m! k�mþ 1ð Þ
� �2X∞

n¼0

Anρ
2n 1� ρ2
� �4ν�2m�2

:
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where

An ¼ 1
n!

Xn
i¼0

�mþ 1ð Þi �mþ 1ð Þn�i 2 ν�mð Þ þ kð Þi 2 ν�mð Þ þ kð Þn�i

2 ν�mð Þð Þi 2 ν�mð Þð Þn�i
:

Thus

J1 ¼
ð1
0
I3 ρð Þð Þ2ρdρ ¼ 1þ k�mð Þm

m! k�mþ 1ð Þ
� �2X∞

n¼0

An

ð1
0
ρ2nþ2k�2mþ6�1 1� ρ2

� �4ν�2m�1�1
dρ:

Use the fact that

ð1
0
tα�1 1� tð Þβ�1dt ¼ Γ αð ÞΓ βð Þ

Γ αþ βð Þ ,

implies

ð1
0
I3 ρð Þð Þ2ρdρ ¼ 1þ k�mð Þm

m! k�mþ 1ð Þ
� �2X∞

n¼0

An
Γ 2nþ 2k� 2mþ 6� 1ð ÞΓ 4ν� 2m� 1ð Þ

Γ 2nþ 2k� 4mþ 4νþ 6ð Þ :

(40)

Calculus of
Ð 1
0 I4 ρð Þð Þ2ρdρ.

In the same,

J2 ¼
ð1
0
I4 ρð Þð Þ2ρdρ ¼ αν,mk

2ν�m� 1

� �2X∞
n¼0

An
Γ 4ν� 2m� 1ð ÞΓ 2nþ 2ð Þ
Γ 2nþ 4ν� 2mþ 1ð Þ : (41)

Calculus of 2
Ð 1
0 I3 ρð Þð Þ I4 ρð Þð Þρdρ.

J3 ¼ 2
ð1
0
I3 ρð Þð Þ I4 ρð Þð Þρdρ ¼ 1þ k�mð Þmαν,mk

m! k�mþ 1ð Þ 2ν�m� 1ð Þ
X∞
n¼0

An
Γ k�mþ 2ð ÞΓ 4ν� 2m� 1ð Þ

Γ 4ν� k� 3mð Þ :

(42)

If k ¼ m.
Since

3F2
�mþ 1, 2ν�m, 2 ν�mð Þ þ 1

2 ν�mð Þ, 2ν�mþ 2
j1� ρ2

� �� �2

¼
X∞
n¼0

Γ �mþ 1ð ÞΓ 2ν�mð ÞΓ 2 ν�mð Þ þ 1ð Þ
n!Γ 2 ν�mð ÞΓ 2ν�mþ 2ð Þð 1� ρ2

� �n
:

(43)

λ2k ¼
αν,mk 2 2ν�mð Þ � 1ð Þ
8 π 2ν�mþ 1ð Þð Þ

X∞
n¼0

Bn

ð1
0
1� ρ2
� �nþ2ν�m�1

dρ ¼ αν,mk 2 2ν�mð Þ � 1ð Þ
8 π 2ν�mþ 1ð Þð Þ

X∞
n¼0

Bn

nþ 2ν�m
,

(44)

where

Bn ¼
X∞
n¼0

Γ �mþ 1ð ÞΓ 2ν�mð ÞΓ 2 ν�mð Þ þ 1ð Þ
n!Γ 2 ν�mð ÞΓ 2ν�mþ 2ð Þð :
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6. Asymptotic behavior of singular values λk as k ! ∞

Proposition 6.1.

λk � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km�4νþ1

p
, as k ! ∞,

where C is a constant.
Proof. If k>m, then

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1 þ J2 þ J3

p
,

where

J1 ¼
1þ k�mð Þm

m! k�mþ 1ð Þ
� �2X∞

n¼0

An
Γ 2nþ 2k� 2mþ 6� 1ð ÞΓ 4ν� 2m� 1ð Þ

Γ 2nþ 2k� 4mþ 4νþ 6ð Þ ,

J2 ¼
αν,mk

2ν�m� 1

� �2X∞
n¼0

An
Γ 4ν� 2m� 1ð ÞΓ 2nþ 2ð Þ
Γ 2nþ 4ν� 2mþ 1ð Þ

and

J3 ¼
1þ k�mð Þmαν,mk

m! k�mþ 1ð Þ 2ν�m� 1ð Þ
X∞
n¼0

An
Γ k�mþ 2ð ÞΓ 4ν� 2m� 1ð Þ

Γ 4ν� k� 3mð Þ

 !
:

The limit of λk as k ! ∞.
We use the formula

Γ kþ að Þ
k ¼ b

� ka�b

we have

J1 �
k�1�m

m!

 !2X∞
n¼0

AnΓ 4ν� 2m� 1ð Þ 2kð Þ2m�4ν�1 � k�4ν�122m�4ν�1Γ 4ν� 2m� 1ð Þ
X∞
n¼0

An

m!
:

(45)

J2 ¼ Ok�∞ 1ð Þ (46)

In the same

J3 � km�4νþ1 α
ν,m
k Γ 4ν� 2m� 1ð Þ
m! 2ν�m� 1ð Þ

X∞
n¼0

An: (47)

Therefore

λk � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km�4νþ1

p
,

where C is a constant.
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Chapter 2

Some Tauberian Theorems under
Triple Statistically Nörlund-Cesáro
Summability Method
Carlos Granados

Abstract

In this paper, we extend the notion presented by Braha (2020) in a higher
dimension, we introduce the notion of Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -statistically convergence and

show necessity and sufficiency conditions under which the existence of the limit
st- lim

n,m, g!∞
xn,m,g ¼ L follows from that st- lim

n,m, g!∞
Nn,m,g

p,q C 1,1,1ð Þ
n,m,g ¼ L. These conditions are

one-sided or two-sided if xn,m,g
� �

is a sequence of real or complex numbers, respectively.

Keywords: Nörlund-Cesro summability method, one-sided and two-sided Tauberian
conditions, triple statistical convergence

1. Introduction

The concept of statistical convergence was introduced by Fast [1] and Steinhaus
[2]. Besides, in this connection, Fridy [3] showed some relation to a Tauberian condi-
tion for the statistical convergence of xkð Þ. Subsequently, many researchers have
worked in this area in several settings. For more recent works in this direction, one
may refer to [4, 5]. Existing works in this field based on statistical convergence
appears to have been restricted to real or complex sequences; however, Parida et al.
[6] extended the idea for a locally convex Hausdorff topological linear space. Tauber
[7] introduced the first Tauberian theorems for single sequences, that an Abel sum-
mable sequence is convergent with some suitable conditions. Later, a huge number of
authors such as Landau [8], Hardy and Littlewood [9], and Schmidt [10] obtained
some classical Tauberian theorems for Cessáro and Abel summability methods of
single sequences. Recently, Braha [11] introduced some notions on statistical conver-
gence by using the Nörlund-Cesáro summability method in a single sequence and
proved some Tauberian theorems. In the last year, Canak and Totur [12], and Jena
et al. [13] presented and studied several Tauberian theorems for single sequences. On
the other hand, Knopp [14] obtained some classical type Tauberian theorems for Abel
and C, 1, 1ð Þ summability methods of double sequences and proved that Abel and
C, 1, 1ð Þ summability methods hold for the set of bounded sequences. Further, Moricz
[15] proved some Tauberian theorems for Cesáro summable double sequences and
deduced Tauberian theorems of Landau [16] and Hardy [17] type. Canak and Totur [18]

21



have proved a Tauberian theorem for Cesáro summability of single integrals and also
the alternative proofs of some classical type Tauberian theorems for the Cesáro
summability of single integrals and later introduced by Parida et al. [6] for double
integrals. Otherwise, the notion of C, 1, 1, 1ð Þ summability of a triple sequence was
originally introduced by Canak and Totur in 2016 [19]. Later, Canak et al. [20] studied
some C, 1, 1, 1ð Þ means of a statistical convergent triple sequence and gave some
classical Tauberian theorems for a triple sequence that P-convergence follows from
statistically C, 1, 1, 1ð Þ summability under the two-sided boundedness conditions and
slowly oscillating conditions in certain senses. Then, in 2020 Totur and Canak [21]
proved Tauberian conditions under which convergence of triple integrals follows
from C, 1, 1, 1ð Þ summability. For more studies associated to the main topic of this
paper, we refer the reader to [22–24].

Let pn,m,g

� �
and qn,m,g

� �
be any two non-negative real sequences with

Rn,m,g ¼
Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k 6¼ 0 n,m, gð Þ∈ℕ� ℕ� ℕð Þ

and C, 1, 1, 1ð Þ-Cesáro summability method. Let xn,m,g
� �

be a sequence of real of
complex numbers and set

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g ¼ 1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k
1

iþ 1
1

jþ 1
1

kþ 1

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y

for n,m, gð Þ∈ℕ� ℕ� ℕ.
In this paper, we show necessary and sufficient conditions under which the

existence of the limit lim
n,m, g!∞

xn,m,g ¼ L follows from that of lim
n,m, g!∞

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g ¼ L.

These conditions are one-sided or two-sided if xn,m,g
� �

is a sequence of real or complex
numbers, respectively.

Given two non-negative sequences pn,m,g

� �
and qn,m,g

� �
, the convolution p⋆qð Þ is

defined by

Rn,m,g ¼ p⋆qð Þn,m,g ¼
Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k ¼
Xn
i¼0

Xm
j¼0

Xg

k¼0

pn�i,m�j,g�kqi,j,k

with C, 1, 1, 1ð Þ we will denote the triple Cesáro summability method. Now, let
xn,m,g
� �

be a sequence, when p⋆qð Þn,m,g 6¼ 0 for all n,m, gð Þ∈ℕ� ℕ� ℕ the general-

ized Nörlund-Cesáro transform of the sequence xn,m,g
� �

is the sequence Nn,m,g
p,q C 1,1,1ð Þ

n,m,g

obtained by putting

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g ¼ 1
p⋆qð Þn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k
1

iþ 1
1

jþ 1
1

kþ 1

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y:

(1)

We say that the sequence xn,m,g
� �

is generalized Nörlund-Cesáro summable to L

determined by the sequences pn,m,g

� �
and qn,m,g

� �
(or simply summable Nn,m,g

p,q C 1,1,1ð Þ
n,m,g )

to L if
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lim
n,m, g!∞

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g ¼ L: (2)

Throughout this paper, we will assume that the sequences pn,m,g

� �
and qn,m,g

� �
are

satisfying the following conditions

qn,m,g ≥ 1,
Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j � nmg, n,m, gð Þ∈ℕ� ℕ� ℕ, (3)

qλn�i,m�j,g�k
≤ 2qn�i,m�j,g�k, i ¼ 1, 2, … , n; j ¼ 1, 2, … ,m; λ> 1k ¼ 1, 2, … ; λ> 1, (4)

qn�i,m�j,g�k ≤ 2qλn�i,m�j,g�k
i ¼ 1, 2, … , λn; j ¼ 1, 2, … , λm; k ¼ 1, 2, … , ; 0< λ< 1, (5)

where λn ¼ λn½ �, λm ¼ λm½ � and λg ¼ λg½ �. On the other hand, an,m,g � bn,m,g means
that there are constants C,C1 such that an,m,g ≤Cbn,m,g ≤C1an,m,g. If

lim
n,m, g!∞

xn,m,g ¼ L (6)

implies (2), then the method Nn,m,g
p,q C 1,1,1ð Þ

n,m,g is said to be regular. Nevertheless, the
converse is not always true as can be seen in the following example:

Let us consider that pn,m,g ¼ qn,m,g ¼ 1 for all n,m, gð Þ∈ℕ� ℕ� ℕ. Besides, we

define the following sequence x ¼ xi,j,k
� � ¼ �1ð Þiþjþk, then we get

1
nþ 1ð Þ mþ 1ð Þ gþ 1ð Þ ∣

Xn
i¼0

Xm
j¼0

Xg

k¼0

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

�1ð Þuþvþy∣

≤
1

nþ 1ð Þ mþ 1ð Þ gþ 1ð Þ
Xn
i¼0

Xm
j¼0

Xg

k¼0

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

1! 1 as n,m, g !∞:

and as we know, x ¼ xi,j,k
� �

is not convergent. Notice that (6) can imply (2) under
a certain condition, which is called a Tauberian conditions. Any theorem which states
that convergence of a sequence follows from its Nn,m,g

p,q C 1,1,1ð Þ
n,m,g summability and some

Tauberian conditions are said to be a Tauberian theorems for the Nn,m,g
p,q C 1,1,1ð Þ

n,m,g sum-
mability method.

Next, we will find some conditions under which the converse implication holds,
for defined convergence. Exactly, we will prove under which conditions statistical
convergence of sequences xn,m,g

� �
, follows from statistically Nörlund-Cesáro summa-

bility method.
A sequence xn,m,g

� �
is weighted Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -statistically convergent to L if for

every ε>0,

lim
n,m, g!∞

1
p⋆qð Þn,m,g

∣ i, j, k≤ p⋆qð Þn,m,g :
1

p⋆qð Þn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k

(

1
iþ 1

1
jþ 1

1
kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L∣ ≥ εg∣ ¼ 0:
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And we say that the sequence xn,m,g
� �

is statistically summable to L by the
weighted summability method Nn,m,g

p,q C 1,1,1ð Þ
n,m,g if st� lim

n,m, g
Nn,m,g

p,q C 1,1,1ð Þ
n,m,g ¼ L. We will

denote by Nn,m,g
p,q C 1,1,1ð Þ

n,m,g stð Þ the set of all sequences which are statistically summable, by

the weighted summability method Nn,m,g
p,q C 1,1,1ð Þ

n,m,g .

Theorem 1.1 Let x ¼ xn,m,g
� �

be a sequence Nn,m,g
p,q C 1,1,1ð Þ

n,m,g summable to L, then the

sequence x ¼ xn,m,g
� �

is Nn,m,g
p,q C 1,1,1ð Þ

n,m,g -statistically convergent to L, but not conversely.
Proof: The first part of the proof is obvious. To prove the second part, we will

show the following example:
Let us define

xi,j,k ¼
ffiffiffiffiffiffiffixyzp , for i ¼ n2 j ¼ m2 and k ¼ g2

0, otherwise

�

and pn,m,g ¼ 1 ¼ qn,m,g. Under this conditions we obtain,

1
nþ 1ð Þ mþ 1ð Þ g þ 1ð Þ ∣fi, j, k≤ nþ 1,mþ 1, g þ 1 :

∣
1

nþ 1ð Þ mþ 1ð Þ g þ 1ð Þ
Xn
i¼0

Xm
j¼0

Xg

k¼0

1
Pi,j,k

Xi
u¼0

Xj

v¼0

Xk
y¼0

pu,v,yxu,v,y � 0∣ ≥ εg∣

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ mþ 1ð Þ g þ 1ð Þp

nþ 1ð Þ mþ 1ð Þ g þ 1ð Þ ! 0:

On the other hand, for i ¼ n2, j ¼ m2 and k ¼ g2, we have

1
nþ 1ð Þ mþ 1ð Þ g þ 1ð Þ

Xn
i¼0

Xm
j¼0

Xg

k¼0

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y ! ∞,

as n,m, g ! ∞:

From last relation follows that x ¼ xn,m,g
� �

is not Nn,m,g
p,q C 1,1,1ð Þ

n,m,g summable to 0.

Theorem 1.2 Let x ¼ xn,m,g
� �

be a sequence statistically convergent to L and
∣xn,m,g � L∣ ≤M for every n,m, gð Þ∈ℕ� ℕ� ℕ. Then, it converges Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -statis-

tically to L.
Proof: From the fact that xn,m,g

� �
converges statistically to L, we have

lim
n,m, g!∞

∣i, j, k≤ n,m, g : ∣xi,j,k � L∣ ≥ εg∣
nmg

¼ 0:

We will denote Bε ¼ i, j, k≤ n,m, g :jxi,j,k � Lj≥ ε
� �

and Bε ¼
i, j, k≤ n,m, g :jxi,j,k � Lj≤ ε
� �

. Then,

∣
1

Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L∣

¼ ∣
1

Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqn�i,m�j,g�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �

∣

24

Functional Calculus - Recent Advances and Development



≤
1

Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

i,j,kð Þ∈Bε

pi,j,kqn�i,m�j,g�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

∣xu,v,y � L∣

þ 1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

i,j,kð Þ∈Bε

pi,j,kqn�i,m�j,g�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

∣xu,v,y � L∣

≤M
1

Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

i,j,kð Þ∈Bε

1þ ε≤M
C2

nmg

Xn
i¼0

Xm
j¼0

Xg

k¼0

i,j,kð Þ∈Bε

1þ ε ! 0þ ε,

as n,m, g ! ∞,

for some constant C2.
Converse of Theorem 1.2 is not true as can be seen in the following example.

Consider that pn,m,g ¼ nþ 1ð Þ mþ 1ð Þ g þ 1ð Þ, qn,m,g

� �
¼ 1 for some

n,m, gð Þ∈ℕ∪ 0f g � ℕ∪ 0f g � ℕ∪ 0f g and define the sequence x ¼ xn,m,g
� �

as follows:

xi,j,k ¼
1, for i ¼ p2 � p, … , p2 � j ¼ t2 � t, … , t2 � 1 and k ¼ o2 � o, … , o2 � 1;

� 1
pto

, for i ¼ p2, p ¼ 2, :: j ¼ t2, t ¼ 2, :: and k ¼ o2, o ¼ 2, …

0, otherwise

8>>><
>>>:

Under this conditions, after some basic calculations we get that x ¼ xn,m,g
� �

is
Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -summable to 1. Therefore, by Theorem 1.2, x ¼ xn,m,g

� �
is Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -

statistically convergent. On the other hand, the sequences p2; p ¼ 2, 3, … , t2; t ¼
2, 3, … and o2; o ¼ 2, 3, … have natural density zero and it is clear that st-
lim inf
n,m, g

xn,m,g ¼ 0 and st- lim sup
n,m, g

xn,m,g ¼ 1. Hence, xi,j,k
� �

is not statistically convergent.

2. Tauberian theorems under Nn,m,g
p,q C 1,1,1ð Þ

n,m,g -statistically convergence

In this section, we show the results that we obtained. Throughout this paper, Rλn,m,g

and Rλn,λm,λg will have the same meaning.

Consider that st- lim i, j, kxi,j,k ¼ L; xn,m,g
� �

is Nn,m,g
p,q C 1,1,1ð Þ

n,m,g -statistically convergent
and (13) satisfies, then for every t> 1, is valid the following relation

st� lim
i, j, k

1
Rλi,j,k � Ri,j,k

Xλi
w¼iþ1

Xλj

e¼jþ1

Xλk
r¼kþ1

pw,e,rqλi�w,λj�e,λk�r

1
wþ 1ð Þ eþ 1ð Þ rþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xw,e,r � xi,j,k
� � ¼ 0

(7)

and in case where 0< t< 1,
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st� lim
i, j, k

1
Ri,j,k � Rλi,j,k

Xi
w¼λiþ1

Xj

e¼λjþ1

Xk
r¼λkþ1

pw,e,rqi�w,j�e,k�r

1
wþ 1ð Þ eþ 1ð Þ rþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xi,j,k � xw,e,r
� � ¼ 0:

(8)

The condition given by relation (13) is equivalent to the condition

st� lim
n,m, g!∞

Rn,m,g

Rλn,m,g

> 1, 0< λ< 1: (9)

Proof: Suppose that relation (13) is valid, 0< λ< 1, w ¼ λn ¼ λn½ �, e ¼ λm ¼ λm½ �
and r ¼ λg ¼ λg½ �, n,m, gð Þ∈ℕ� ℕ� ℕ. Then, it follows that

1
λ
> 1 ) w

λ
¼ λn½ �

t
≤ n,

1
λ
> 1 ) e

λ
¼ λm½ �

t
≤m and

1
λ
> 1 ) r

λ
¼ λg½ �

t
≤ g:

From above relation and definition of sequences pn,m,g

� �
and qn,m,g

� �
, we have

Rn,m,g

Rλn,m,g

≥
R n

λ½ �, m
λ½ �, g

λ½ �
Rλn,m,g

) st� liminf
n,m, g!∞

Rn,m,g

Rλn,m,g

≥ st� liminf
n,m, g!∞

R n
λ½ �, m

λ½ �, g
λ½ �

Rλn,m,g

> 1:

Conversely, suppose that (9) is valid. Now, let λ> 1 be given and let λ1, λ2, λ3 be
chosen such that 1< λ1, λ2, λ3 < λ. Set w ¼ λn ¼ λn½ �, e ¼ λm ¼ λm½ � and r ¼ λg ¼ λg½ �.
From 0< 1

λ <
1
λ1
, 1
λ2
, 1
λ3
< 1, it follows that

n≤
λn� 1
λ1

<
λn½ �
λ1

¼ w
λ1
, m≤

λm� 1
λ2

<
λm½ �
λ2

¼ e
λ2

and g≤
λg � 1
λ3

<
λg½ �
λ3

¼ r
λ3

provided λ1, λ2, λ3 ≤ λ� 1
n , λ� 1

m , λ� 1
g, which is a case where if n, m and g are large

enough. Under this condition, we obtain

Rλn,m,g

Rn,m,g
≥

Rλn,m,g

R
w
λ1

h i
, e

λ2

h i
, r

λ3

h i ) st� liminf
n,m, g!∞

Rλn,m,g

Rn,m,g
≥ st� liminf

n,m, g!∞

Rλn,m,g

R
w
λ1

h i
, e

λ2

h i
, r

λ3

h i > 1:

Consider that (13) is satisfied and let x ¼ xi,j,k
� �

be a sequence of complex numbers

which is Nn,m,g
p,q C 1,1,1ð Þ

n,m,g -statistically convergent to L. Then,

st� lim
n,m, g

1
Rλn,m,g � Rn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y ¼ L for λ> 1

(10)
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and

st� lim
n,m, g

1
Rn,m,g � Rλn,m,g

Xn
i¼λnþ1

Xm
j¼λmþ1

Xg

k¼λgþ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y ¼ L for 0< λ< 1:

(11)

Proof:We begin proving the case (10), i.e. when λ> 1. Then, we have

1
Rλn,m,g � Rn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �

¼ Rλn,m,g

Rλn,m,g � Rn,m,g

1
Rλn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �� Rn,m,g

Rλn,m,g � Rn,m,g

1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,kqλn�i,λm�j,λg�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �

¼ Rλn,m,g

Rλn,m,g � Rn,m,g

1
Rλn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�j

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �� Rn,m,g

Rλn,m,g � Rn,m,g

1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,k

qλn�i,λm�j,λg�k þ qn�i,m�j,g�k � qn�i,m�j,g�k

� � 1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �

¼ Rλn,m,g

Rλn,m,g � Rn,m,g

1
Rλn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �� Rn,m,g

Rλn,m,g � Rn,m,g

1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,k

qn�i,m�j,g�k
1

iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ
Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y �
Rn,m,g

Rλn,m,g � Rn,m,g

1
Rn,m,g

Xn
i¼0

Xm
j¼0

Xg

k¼0

pi,j,k

qλn�i,λm�j,λg�k � qn�i,m�j,g�k

� � 1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � L
� �

:

(12)
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From (12), definition of the sequence qn,m,g

� �
and relation lim sup

n,m, g

Rλn,m,g

Rλn,m,g�Rn,m,g
<∞,

we get (10).
Prove of (11) is made similarly to the prove of (10).
In the following theorem, we characterize the converse implication when the

statistically convergence follows from its Nn,m,g
p,q C 1,1,1ð Þ

n,m,g âˆ’ statistically convergence.

Theorem 1.3 Let pn,m,g

� �
and qn,m,g

� �
be two non-negative real sequences and

st� liminf
n,m, g!∞

Rλn,m,g

Rn,m,g
> 1 for every λ> 1, (13)

where λn,m,g ¼ λnλmλg ¼ λn½ � λm½ � λg½ � denotes the integral part of λnλmλg for every
n,m, gð Þ∈ℕ� ℕ� ℕ, and let xn,m,g

� �
be a sequence of real numbers which is

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g -statistically convergent to a finite number L. Then, xn,m,g
� �

is st-conver-
gent to the same number L if and only if the following two conditions hold

inf
λ> 1

limsup
n,m, g

1
Rn,m,g

∣ i, j, k≤Rn,m,g :
1

Rλi,j,k � Ri,j,k

Xλi
w¼iþ1

Xλj

e¼jþ1

Xλk
r¼kþ1

pw,e,rqλi�w,λj�e,λk�r

(

1
wþ 1ð Þ eþ 1ð Þ rþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xw,e,r � xi,j,k
� �

≤ � εg∣ ¼ 0,

(14)

and

inf
0< λ< 1

limsup
n,m, g

1
Rn,m,g

∣ i, j, k≤Rn,m,g :
1

Ri,j,k � Rλi,j,k

Xi
w¼λiþ1

Xj

e¼λjþ1

Xk
r¼λkþ1

pw,e,rqi�w,j�e,k�r

8<
:

1
wþ 1ð Þ eþ 1ð Þ rþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xi,j,k � xw,e,r
� �

≤ � εg∣ ¼ 0:

(15)

Proof: Necessity: Suppose that lim n,m,g!∞xn,m,g ¼ L and (13) holds. By Proposi-
tion 2, we have

lim
n,m, g!∞

1
Rλn,m,g � Rn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � xn,m,g
� �

¼ lim
n,m, g!∞

1
Rλn,m,g � Rn,m,g

Xλn
i¼nþ1

Xλm
j¼mþ1

Xλg

k¼gþ1

pi,j,kqλn�i,λm�j,λg�k

0
@

8<
:

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y

!
� xn,m,g

)
¼ 0,
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for every λ> 1. In case where 0< λ< 1, we have that

lim
n,m, g!∞

1
Rn,m,g � Rλn,m,g

Xn
i¼λnþ1

Xm
j¼λmþ1

Xg

k¼λgþ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xn,m,g � xu,v,y
� �

¼ lim
n,m, g!∞

xn,m,g � 1
Rn,m,g � Rλn,m,g

Xn
i¼λnþ1

Xm
j¼λmþ1

Xg

k¼λgþ1

pi,j,kqn�i,m�j,g�k

0
@

8<
:

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,yÞg ¼ 0:

Sufficiency: Consider that (14) and ((15) are satisfied. In what follows, we
will prove that lim

n,m, g!∞
xn,m,g ¼ L. Given any ε>0, by (14) we can choose λ1 >0

such that

liminf
n,m, g!∞

1
Rλn1 ,λm1 ,λg1�Rn,m,g

Xλn1
i¼nþ1

Xλm1

j¼mþ1

Xλg1
k¼gþ1

pi,j,kqλn�i,λm�j,λg�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � xn,m,g
� �

≥ � ε,

(16)

where λn1 ¼ λn1½ �, λm1 ¼ λm1½ � and λg1 ¼ λg1
� �

. By the assumed summability

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g of xn,m,g
� �

, Proposition 2 and (16), we have

limsup
n,m, g!∞

xn,m,g ≤Lþ ε, (17)

for any λ> 1.
On the other hand, if 0< λ< 1, for every ε>0, we can choose 0< λ2 < 1 such that

m liminf
n,m, g!∞

1
Rn,m,g � Rλn2 ,λm2 ,λg2

Xn
i¼λn2þ1

Xm
j¼λm2þ1

Xg

k¼λg2þ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xn,m,g � xu,v,y
� �

≥ � ε,

(18)

where λn2 ¼ λn2½ �, λm2 ¼ λm2½ � and λg2 ¼ λg2
� �

. By the assumed summability

Nn,m,g
p,q C 1,1,1ð Þ

n,m,g of xn,m,g
� �

, Proposition 2 and (18), we have

liminf
n,m, g!∞

xn,m,g ≥L� ε, (19)
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for any 0< λ< 1.
Since ε>0 is arbitrary, combining (17) and (19), we obtain

lim
n,m, g!∞

xn,m,g ¼ L:

In the following theorem, we will consider the case where x ¼ xn,m,g
� �

is a
sequence of complex numbers.

Theorem 1.4 Let (13) be satisfied and let xn,m,g
� �

be a sequence of complex
numbers which is Nn,m,g

p,q C 1,1,1ð Þ
n,m,g -statistically convergent to a finite number L. Then,

xn,m,g
� �

is convergent to the same number L if and only if the following two
conditions hold

inf
λ> 1

limsup
n,m, g

1
Rn,m,g

∣ i, j, k≤Rn,m,g :
1

Rλi,j,k � Ri,j,k

Xλi
w¼iþ1

Xλj

e¼jþ1

Xλk
r¼kþ1

pw,e,rqλi�w,λj�e,λk�r

(

1
wþ 1ð Þ eþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xw,e,r � xi,j,k
� �

≥ εg∣ ¼ 0,

(20)

and

inf
0< λ< 1

limsup
n,m, g

1
Rn,m,g

∣ i, j, k≤Rn,m,g :
1

Ri,j,k � Rλi,j,k

Xi
w¼λiþ1

Xj

e¼λjþ1

Xk
r¼λkþ1

pw,e,rqi�w,j�e,k�r

8<
:

1
wþ 1ð Þ eþ 1ð Þ rþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xi,j,k � xw,e,r
� �

≥ εg∣ ¼ 0:

(21)

Proof: Necessity: If both (2) and (6) hold, then Proposition 2 yields (20) for every
λ> 1 and (21) for every 0< λ< 1.

Sufficiency: Suppose that (2), (13) and one of the conditions (20) and (21) are
satisfied. For any given ε>0, there exists λ1 >0 such that

limsup
n,m, g!∞

∣
1

Rλn1 ,λm1 ,λg1 � Rn,m,g

Xλn1
i¼nþ1

Xλm1

j¼mþ1

Xλg1
k¼gþ1

pi,j,kqλn1�i,λm1�j,λg1�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � xn,m,g
� �

∣ ≤ ε,

where λn1 ¼ λn1½ �, λm1 ¼ λm1½ � and λg1 ¼ λg1
� �

. Taking into account fact that

xn,m,g
� �

is Nn,m,g
p,q C 1,1,1ð Þ

n,m,g summbale to L and Proposition 2, we have the following
estimation
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limsup
n,m, g!∞

∣L� xn,m,g∣

≤ limsup
n,m, g!∞

∣L� 1
Rλn1 ,λm1 ,λg1 � Rn,m

Xλn1
i¼nþ1

Xλm1

j¼mþ1

Xλg1
k¼gþ1

pi,j,kqλn1�i,λm1�j,λg1�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y∣

þ limsup
n,m, g!∞

∣L� 1
Rλn1 ,λm1 ,λg1

� Rn,m

Xλn1
i¼nþ1

Xλm1

j¼mþ1

Xλg1
k¼gþ1

pi,j,kqλn1�i,λm1�j,λg1�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y � xn,m,g
� �

∣

≤ ε:

For a given ε>0, there exists λ2 >0 such that

limsup
n,m, g!∞

∣
1

Rn,m,g � Rλn2 ,λm2 ,λg2

Xn
i¼λn2þ1

Xm
j¼λm2þ1

Xg

k¼λg2þ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xn,m,g � xu,v,y
� �

∣ ≤ ε,

where λn2 ¼ λn2½ �, λm2 ¼ λm2½ � and λg2 ¼ λg2
� �

. Taking into account fact that xn,m,g
� �

is Nn,m,g
p,q C 1,1,1ð Þ

n,m,g summbale to L and Proposition 2, we obtain the following

limsup
n,m, g!∞

∣L� xn,m,g∣

limsup
n,m!∞

∣L� 1
Rn,m,g � Rλn2 ,λm2 ,λg2

Xn
i¼λn2þ1

Xm
j¼λm2þ1

Xg

k¼λg2þ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xu,v,y∣

þ limsup
n,m, g!∞

∣
1

Rn,m,g � Rλn2 ,λm2 ,λg2

Xn
i¼λn2þ1

Xm
j¼λm2þ1

Xg

k¼λg2þ1

pi,j,kqn�i,m�j,g�k

1
iþ 1ð Þ jþ 1ð Þ kþ 1ð Þ

Xi
u¼0

Xj

v¼0

Xk
y¼0

xn,m,g � xu,v,y
� �

∣

≤ ε:

Since ε>0 in either case, we get

lim
n,m, g!∞

xn,m,g ¼ L:
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3. Conclusion

In this paper, we have defined and proved new Tauberian theorems under triple
statistically Nörlund-Cesáro summability, as a consequence of results showed in 2,
some theorems, lemmas and corollaries can be defined and proved similarly by using
1, 0, 0ð Þ, 0, 1, 0ð Þ, and 0, 0, 1ð Þ method of summability. It is well know that Tauberian
theorems for single sequences of single variable have been achieved a high degree of
development; however, it is still in its infancy for triple sequences. For that reason,
the results established in this paper can be extended and studied in some inclusion,
Tauberian type theorems and Tauberian convexity type for certain families of
generalized Nörlund.
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Chapter 3

A Brief Look at the Calderón and
Hilbert Operators
Guillermo J. Flores

Abstract

The Calderón operator is the sum of the Hardy averaging operator and its adjoint,
and plays an important role in the theory of real interpolation. On the other hand, the
Hilbert operator arises from the continuous version of Hilbert’s inequality. Both oper-
ators appear in different contexts and have numerous applications within harmonic
analysis. In this chapter we will briefly review the Calderón and Hilbert operators,
showing some of the most relevant results within functional analysis and finally we
will present recent results on these operators within Fourier analysis.

Keywords: Calderón operator, Hilbert operator, Lebesgue spaces, Lipschitz spaces,
BMO spaces, weighted inequalities, Calderón weights

1. Introduction

The Calderón and Hilbert operators are among the most relevant operators in
harmonic analysis, arising from Hilbert’s double series theorem which is one of the
simplest and most beautiful in the theory of double series of positive terms. It was
proved by Hilbert, in the course of his investigations in the theory of integral equa-
tions, that the series

P
m,n∈

am an
amþan

, where an ≥0 for all n∈, is convergent wheneverP
n∈a

2
n is convergent.

Other proofs of Hilbert’s double series theorem and generalizations in different
directions were studied and published over time by influential mathematicians such as
H. Weyl, F. Wiener, J. Schur, Fejér and F. Riesz, Pólya and Szegö, Francis and
Littlewood, G.H. Hardy and M. Riesz, among others.

In [1, 2], G.H. Hardy observed that Hilbert’s theorem stated above is an immediate
corollary of another theorem which has interest in itself. This theorem is as follows: If

an ≥0 for all n∈ and
P

n∈a
2
n is convergent, then

P
n∈

1
n

Pn
j¼1a j

� �2
is also

convergent.
The first extension of the just stated Hilbert’s and Hardy’s results in which we are

interested is the following (see [3]): Let 1< p<∞ and p0 ¼ p= p� 1ð Þ (i.e. p0 is the
conjugate of p). If

P∞
n¼1a

p
n and

P∞
n¼1b

p0
n are convergent, where an and bn are

nonnegative numbers for all n∈, then
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X∞
m¼1

X∞
n¼1

ambn
mþ n

≤
π

sin π=pð Þ
X∞
m¼1

apm

 !1=p X∞
n¼1

bp
0

n

 !1=p0

and
X
n∈

1
n

Xn
j¼1

a j

 !p

≤ p0ð Þp
X∞
n¼1

apn:

The constants π= sin π=pð Þ and p0ð Þp ¼ p= p� 1ð Þð Þp are the best possible.
At the same time, the continuous versions of the previous inequalities are the

following (see [3, 4]): Let 1< p<∞ and p0 the conjugate of p. If
Ð
0,∞½ Þ fj jp and Ð 0,∞½ Þ gj jp

0

are finite, then

ð

0,∞½ Þ

ð

0,∞½ Þ

∣f xð Þ∣ ∣g yð Þ∣
xþ y

dxdy≤
π

sin π=pð Þ
ð

0,∞½ Þ
f xð Þj jpdx

 !1=p ð

0,∞½ Þ
g xð Þj jp0dx

 !1=p0

and

ð

0,∞½ Þ

1
x

ð

0,x½ �
f yð Þdy

 !p

dx≤
p

p� 1

� �pð

0,∞½ Þ
f xð Þj jpdx:

Once again, the constants involved are the best possible.
As usual in harmonic analysis, if E is a measurable subset of n, then Lp Eð Þ,

1≤ p<∞, is the Lebesgue space of all measurable functions f such that ∥f∥pLp Eð Þ ¼Ð
Ej f xð Þjpdx is finite. Recall that Lp Eð Þ, ∥ � ∥Lp Eð Þ

� �
is a Banach space and in the case

E ¼ n, it is denoted ∥ � ∥p ¼ ∥ � ∥Lp Eð Þ.
Now, consider the operators H and P defined by

Hf xð Þ ¼
ð

0,∞½ Þ

f tð Þ
xþ t

dt and Pf xð Þ ¼ 1
x

ð

0,x½ �
f tð Þdt,

which naturally arise from the inequalities presented above. Also consider

Qf xð Þ ¼
ð

x,∞½ Þ

f tð Þ
t

dt

being the adjoint operator of P and satisfying

ð

0,∞½ Þ
Qf xð Þð Þpdx ¼

ð

0,∞½ Þ

ð

x,∞½ Þ

f tð Þ
t

dt

 !p

dx≤C
ð

0,∞½ Þ
f xð Þð Þpdx,

for all f ∈Lp 0,∞½ Þð Þ, 1< p<∞, where C is a positive constant (see [4]). Therefore,
P and Q are bounded operators from Lp 0,∞½ Þð Þ in itself, that is,

∥Pf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ and ∥Qf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ forall f ∈Lp 0,∞½ Þð Þ:

It is immediate that for nonnegative functions f ,

Hf xð Þ≤Pf xð Þ þ Qf xð Þ≤ 2Hf xð Þ forall x>0:

Consequently H is a bounded operator on Lp 0,∞½ Þð Þ, that is,
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∥Hf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ forall f ∈Lp 0,∞½ Þð Þ:

It is well known that P is called the Hardy averaging operator and H is called the
Hilbert operator. Also, the Calderón operator S is defined by S ¼ Pþ Q, being then a
bounded operator from Lp 0,∞½ Þð Þ in itself.

We end this section with some of the first and most important direct applications
obtained from Hilbert’s and Hardy’s inequalities.

Theorem 1.1 Let E be the interval 0, 1ð Þ and f ∈L2 Eð Þ not null in E. Then

X∞
n¼0

ð

E
xnf xð Þdx

� �2

< π

ð

E
f 2 xð Þdx

and the constant π is the best possible. The integrals
Ð
Ex

nf xð Þdx, n ¼ 0, 1, … are
called the moments of f in E and are important in many theories.

Theorem 1.2 (Carlema’s inequalities) Let anf g be a sequence of positive numbers
and 1< p<∞. Then

X∞
n¼1

1
n

Xn

k¼1

ak1=p
 !p

<
p

p� 1

� �pX∞
n¼1

an and
X∞
n¼1

Yn

k¼1

ak

 !1=n

< e
X∞
n¼1

an:

The constants involved are the best possible.
The corresponding integral version for the second inequality of Carlema’s inequal-

ity is: If f is a positive function belonging to L1 0,∞½ Þð Þ, then
ð

0,∞½ Þ
exp

1
x

ð

0,x½ �
log f tð Þdt

 !
dx ¼

ð

0,∞½ Þ
eP log fð Þ xð Þdx< e

ð

0,∞½ Þ
f xð Þdx:

where the constant e is the best possible.
Theorem 1.3 Let 1< p≤ 2 and p0 the conjugate of p. If Lf sð Þ ¼ Ð∞0 f tð Þe�st dt, i.e. Lf is

the Laplace transform of f , then

ð∞
0
Lf sð Þp0ds≤ 2π

p0

ð∞
0
f sð Þpds

� �p0=p

forall f ∈Lp 0,∞½ Þð Þ:

Therefore L is a bounded operator from Lp 0,∞½ Þð Þ into Lp0 0,∞½ Þð Þ, 1< p≤ 2, and
∥Lf∥p0 ≤ 2π=p0ð Þ1=p0∥f∥p.

The number of applications and results that arise from Hilbert’s and Hardy’s
inequalities is by now very large and it would be impossible to give a detailed survey
of all of them in a reasonable amount of text. We have simply made a very brief
introduction about them in this section.

2. Calderón weights and Lp-weighted inequalities

A function ω defined on n is called a weight if it is locally integrable and positive
almost everywhere. For a measurable set E⊂n, ∣E∣ denote its Lebesgue measure,
ω Eð Þ ¼ ÐEω, and Ec the complement of E in n. Given a ball B, tB is the ball with the
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same center as B and with radius t times as long, and f B ¼ 1
∣B∣

Ð
Bf . As usual, χE denotes

the characteristic function of E and B x, rð Þ denotes a ball centered at x with radius r.
Also, C denotes a positive constant.

Let ω be a weight in n and 1≤ p<∞. A Lebesgue measurable function f belongs to
Lp ωð Þ if

∥f∥Lp ωð Þ ¼
ð

n
fj jpω

� �1=p

<∞:

We say that an oprator T is a bounded operator on Lp ωð Þ if

∥Tf∥Lp ωð Þ ≤C∥f∥Lp ωð Þ, forall f ∈Lp ωð Þ:

Given 1< p<∞, it is said that ω is a Calderón weight of class Cp, that is ω∈ Cp, if
the Calderón operator S is bounded on Lp ωð Þ (see [5]) or, equivalently, if P and Q are
both bounded on Lp ωð Þ (see also [6]). It is well known that the class Cp for p> 1 is
given by the conditions

Mp :

ð

0,x½ �
ω tð Þdt

 !1=p ð

x,∞½ Þ

ω1�p0 tð Þ
tp0

dt

 !1=p0

≤C for all x>0;

Mp :

ð

x,∞½ Þ

ω tð Þ
tp

dt

  !1=p ð

0,x½ �
ω1�p0 tð Þdt

 !1=p0

≤C for all x>0:

The Calderón operator plays an important role in the theory of real interpolation
and such theory related to Calderón weights is developed in [5]. On the other hand, in
[7], the authors considered a maximal operator N on 0,∞ð Þ associated to the basis of
open sets of the form 0, bð Þ, given by

Nf xð Þ ¼ sup
b> x

1
b

ð

0,b½ �
∣f tð Þ∣dt

for measurable functions f . Then, for nonnegative functions f , we have

P xð Þ≤Nf xð Þ≤ Sf xð Þ forall x>0:

The classes of weights ω associated to the boundedness of N on Lp ωð Þ are those
that satisfy the Muckenhoupt-Ap condition, 1≤ p<∞, only for the sets of the form
0, bð Þ. These classes are denoted by Ap,0 and defined as follows:

A1,0 : Nω xð Þ≤Cω xð Þ for almost all x>0;

Ap,0 :
1
x

ð

0,x½ �
ω

 !
1
x

ð

0,x½ �
ω1�p0

 !p�1

≤C for all x>0,where1< p<∞:

Then, in [7] is proved that N and S are bounded operators on Lp ωð Þ if and only if
ω∈Ap,0 for 1< p<∞. This result implies, in particular, that the classes of weights Cp

and Ap,0 coincide for 1< p<∞.
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Taking into account these results it is natural to wonder for the action of the
Calderón and Hilbert operators over suitable spaces such as BMO or Lipschitz spaces.
Also, another interesting question is: which are, in these cases, the Calderón weights in
order to obtain weighted inequalities between these spaces?

These problems were treated for instance in the case of the fractional integral
operator in [8, 9], which have been the main motivation for the article [10] and for
the development of the following sections.

3. The n-dimensional Calderón and Hilbert operators

For 0≤ α< n, f a Lebesgue measurable function and x∈n, x 6¼ 0, the general
n-dimensional Calderón and Hilbert operators are defined by

Sαf xð Þ ¼ Pαf xð Þ þ Qαf xð Þ and Hαf xð Þ ¼
ð

n

f yð Þ
jxj þ jyjð Þn�α dy,

where Pαf xð Þ ¼ 1
xj jn�α

Ð
∣y∣ ≤ ∣x∣f yð Þdy and Qαf xð Þ ¼ Ð∣y∣> ∣x∣

f yð Þ
yj jn�α dy.

Again, it is immediate that for nonnegative functions f , the following pointwise
inequalities hold

Hαf xð Þ≤ Sαf xð Þ≤ 2n�αHαf xð Þ, (1)

and consequently, all weighted-Lp inequalities obtained for S are true for H and
reciprocally.

In spite of the punctual comparison (1), we will show in Section 4 that the results
obtained for Sα and Hα are not analogous when the BMOγ and Lipschitz spaces are
involved.

Both operators Sα and Hα appear in several different contexts and applications, see
for instance [4, 11–17].

Next, we introduce the spaces of functions and the classes of weights which appear
in our main results.

Recall that a measurable function f defined on E⊂n is said to be essentially
bounded provided there is some M≥0, called an essential upper bound for f , for which
∣f xð Þ∣ ≤M for almost all x∈E. As usual, the class of all functions that are essentially
bounded on E is denoted by L∞ Eð Þ and ∥f∥∞ is the infimum of the essential upper
bounds for f ∈L∞ Eð Þ. Then, L∞ Eð Þ, ∥ � ∥∞ð Þ is a Banach space.

Now, a Lebesgue measurable function f belongs to L∞ ωð Þ if ∥fω∥∞ <∞.
Also recall that L1

loc 
nð Þ denotes the space of locally integrable functions f

satisfying that ∥f χB∥1 is finite for every ball B⊂n.
Definition 3.2. Let ω be a weight in n and 0≤ γ < 1=n. A locally integrable

function f belongs to BMOγ ωð Þ if there exists a constant C such that for every ball
B⊂n,

1
ω Bð Þ Bj jγ

ð

B
∣f � f B∣ ≤C: (2)

The seminorm of f ∈BMOγ ωð Þ, ∥f∥BMOγ ωð Þ, is the infimum of all such C.
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Definition 3.4. Let ω be a weight in n and 0≤ γ< 1=n. A locally integrable
function f belongs to BMγ

0 ωð Þ if there exists a constant C such that

1
ω Bð Þ Bj jγ

ð

B
∣f ∣ ≤C (3)

for every ball B⊂n centered at the origin.
The norm of f ∈BMγ

0 ωð Þ, denoted by ∥f∥BMγ
0 ωð Þ, is the infimum of all such C. We

will denote by BM0 ωð Þ ¼ BM0
0 ωð Þ.

Observe that with these definitions the space BMO0 ωð Þ is the weighted version of
BMO introduced by Muckenhoupt and Wheeden in [18]. Also, the family of spaces
BMOγ ωð Þ is contained in the family of weighted Lipschitz spaces Iω γð Þ defined and
studied in [8], and BMOγ ωð Þ for ω � 1 is the well known Lipschitz integral space.
Furthermore, we note that L∞ ω�1ð Þ⊂BM0 ωð Þ∩BMO ωð Þ.

Given p> 1, it is known that a weight ω satisfies the reverse Hölder inequality with
exponent p, denoted by ω∈RH pð Þ, if

1
∣B∣

ð

B
ωp

� �1=p

≤C
1
∣B∣

ð

B
ω (4)

for all balls B⊂n and some constant C.
Definition 3.7. Given p> 1, a weight ω belongs to RH0 pð Þ if it satisfies (4) but only

for balls centered at the origin.
Definition 3.8. A weight ω belongs to D0 if it satisfies the doubling condition

ω 2Bð Þ≤Cω Bð Þ for every ball B⊂n centered at the origin and some constant C.
Definition 3.9. Let η≥ 1, a weight ω belongs to Dη if it satisfies the doubling

condition

ω 2B x, jxjþrð Þð Þ
B x, jxjþrð Þj jη ≤C

ω B x, rð Þð Þ
B x, rð Þj jη

every ball B x, rð Þ⊂n and some constant C.
It is immediate that Dη ⊂D0 for all η, and Dη is increasing in η. It is well known that

each weight in the Muckenhoupt class A∞ is in RH pð Þ∩Dη for some p and for some η,
see for instance [19]. On the other hand, there exist weights belonging to Dη for some
η, such that it is not in A∞, see [20].

Also, we observe the following property that we will use along this chapter. If
ω∈Dη there exists a constant C such that

ω Bð Þ≤Cω Bn 1
2
B

� �
(5)

for every ball B⊂n centered at the origin.
Definition 3.11. Let 0≤ α< n and 1< p<∞. A weight ω belongs to H0 α, pð Þ if there

exists a constant C such that

ð

Bc

ωp0 yð Þ
yj j n�αþ1ð Þp0

dy

 !1=p0

≤C
ω Bð Þ

Bj j1þ1=p�α=nþ1=n (6)
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for every ball B⊂n centered at the origin.
A weight ω belongs to H0 α,∞ð Þ if there exists a constant C such that

ð

Bc

ω yð Þ
yj jn�αþ1 dy≤C

ω Bð Þ
Bj j1�α=nþ1=n (7)

for every ball B⊂n centered at the origin.
The classes of weights H0 α, pð Þ and H0 α,∞ð Þ satisfying (6) and (7) respectively but

for all ball B⊂n, were introduced and studied in [8].

4. Weighted Lebesgue and BMOγ norm inequalities for Sα and Hα

Before beginning our study of the generalized Calderón operator, we notice that Sαf
can be identically infinite for some functions f belonging to Lp ω�pð Þ or BMγ

0 ωð Þ. For
example, for ω � 1 and α>0, if f xð Þ ¼ xj j�αχBc 0,1ð Þ xð Þ and n=α< p, then f ∈Lp ω�pð Þ but
Sαf � ∞. For the case n=α ¼ p, if g xð Þ ¼ xj j�α log jxjð Þ� 1þ1=pð Þ=2χBc 0,2ð Þ xð Þ, then
g∈Lp ω�pð Þ but Sαg � ∞. Also, if h xð Þ ¼ χBc 0,1ð Þ xð Þ, then h∈BMγ

0 ωð Þ but Sαh � ∞ for all
0≤ α< n. However, in Lemma 4.7 we will show that if f belongs to Lp ω�pð Þ∪BMγ

0 ωð Þ
and Sαf xð Þ is finite for some x 6¼ 0, then Sαf is finite on nn 0f g. This also happens for
the generalized Hilbert operator since the comparison (1).

Therefore, throughout the following sections we shall consider Sα and Hα defined
on functions f belonging to Lp ω�pð Þ or BMγ

0 ωð Þ such that Sαf and Hαf are finite for
some x 6¼ 0.

Also, note that Sαf is finite on nn 0f g for all compactly supported functions
f ∈L∞ ω�1ð Þ, and the same holds for Hαf . These functions belongs to Lp ω�pð Þ and
those such that zero is not in their support belongs to BMγ

0 ωð Þ.
The operator P is naturally bounded from BM0 into L∞ and analogously, Q is

naturally bounded from BM0 into BMO (see Proposition 3.5 in [13]). So, immediately
the Calderón operator is bounded from BM0 into BMO. This natural boundedness is
our motivation in order to consider the BMγ

0 ωð Þ spaces and obtain Theorems 1.5 and
1.7. Likewise, since L∞ ω�1ð Þ⊂BM0 ωð Þ, we get Corollaries 4.1 and 4.2.

We now state the main results of this chapter.
Theorem 1.4 Suppose α>0, n=α≤ p< n= α� 1ð Þþ, η ¼ 1þ 1=nþ 1=p� α=n and

δ ¼ α=n� 1=p. The operator Sα is bounded from Lp ω�pð Þ into BMOδ ωð Þ and ωp0 ∈D0 if
and only if ω∈RH0 p0ð Þ∩Dη.

Theorem 1.5 Suppose 0≤ α< 1, 0≤ γ < 1=n� α=n, η ¼ 1þ 1=n� α=n� γ and δ ¼
α=nþ γ. The operator Sα is bounded from BMγ

0 ωð Þ into BMOδ ωð Þ and ω∈D0 if and
only if ω∈Dη.

Corollary 4.1. Let η ¼ 1þ 1=n. Then S is bounded from L∞ ω�1ð Þ into BMO ωð Þ and
ω∈D0 if and only if ω∈Dη.

Theorem 1.6 Suppose α>0, n=α≤ p< n= α� 1ð Þþ, η ¼ 1þ 1=nþ 1=p� α=n and
δ ¼ α=n� 1=p. The operator Hα is bounded from Lp ω�pð Þ into BMOδ ωð Þ if and only if
ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη.

Theorem 1.7 Suppose 0≤ α< 1, 0≤ γ < 1=n� α=n, η ¼ 1þ 1=n� α=n� γ and δ ¼
α=nþ γ. The operator Hα is bounded from BMγ

0 ωð Þ into BMOδ ωð Þ if and only if
ω∈H0 αþ nγ,∞ð Þ∩Dη.
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Corollary 4.2. Let η ¼ 1þ 1=n. Then H is bounded from L∞ ω�1ð Þ into BMO ωð Þ if and
only if ω∈H0 0,∞ð Þ∩Dη.

Remark 4.3. It is classic the study of the boundedness of operators between L∞ and
BMO spaces. In [10], the results obtained in Corollaries 4.1 and 4.2 are originals, even
in the unweighted case for H. The unweighted case for S is contained in Proposition
3.5 of [13].

Remark 4.4. The limit case p ¼ ∞ (p0 ¼ 1) of Theorem 1.4 is contained in Theorem
1.5 with γ ¼ 0, since the hypotheses on the weights coincide. This also is true to
Theorems 1.6 and 1.7.

Let α, p and η be as in Theorems 1.4 and 1.6. It is not difficult to show that if
ωp0 ∈A1,0 then ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Also, if ω xð Þ ¼ xj jβ with
β∈ 0, 1þ n=p� αð Þ, then ωp0 ∉ A1,0 but ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Furthermore, if
ω xð Þ ¼ xj jβ with β ¼ 1þ n=p� α, then ω∈RH0 p0ð Þ∩Dη but ω ∉ H0 α, pð Þ. Now, if in
addition 0< α< 1 and p0 > n= 1� αð Þ, we have that if ωp0 ∈Ap0þ1,0 then
ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. In fact, the H0 α, pð Þ-condition is obtained directly from
the Ap0þ1,0-condition, and by Hölder inequality we have that

ωp0 B 0, 2 jx0jþrð Þð Þð Þ
∣B 0, 2 jx0jþrð Þð Þ∣

� �1=p0

≤C
∣B 0, 2 jx0jþrð Þð Þ∣
ω�1 B x0, rð Þð Þ ≤C

∣x0∣þ r
r

� �n ω B x0, rð Þð Þ
∣B x0, rð Þ∣

≤C
∣x0∣þ r

r

� �1�αþn=p ω B x0, rð Þð Þ
∣B x0, rð Þ∣

for all balls B x0, rð Þ⊂n. Thus, the RH0 p0ð Þ and Dη conditions follow from the last
expression.

On the other hand, suppose that α, γ and η be as in Theorems 1.5 and 1.7. If ω∈A1,0

then ω∈H0 αþ nγ,∞ð Þ∩Dη. Also, if ω xð Þ ¼ xj jβ with β∈ 0, 1� α� nγð Þ, then
ω ∉ A1,0 but ω∈H0 αþ nγ,∞ð Þ∩Dη. Finally, if ω xð Þ ¼ xj jβ with β ¼ 1� α� nγ, then
ω∈Dη but ω ∉ H0 αþ nγ,∞ð Þ.

We shall denote by A x, r,Rð Þ with 0< r<R the annulus centered at x with radii r
and R, and by C and c positive constants not necessarily the same at each occurrence.

Before proceeding to the proofs of the main theorems we give some previous
lemmas.

Suppose that 1< p<∞ and ω∈RH0 p0ð Þ, then it is easy to see that there exists C
such that

ð

B
∣f ∣ ≤C

ω Bð Þ
Bj j1=p fk kLp ω�pð Þ (8)

for all f ∈Lp ω�pð Þand for every ball B⊂n centered at the origin.
Lemma 4.6. ið Þ Let 0< α< n and 1< p<∞. If ω∈H0 α, pð Þ then there exists C such that

ð

Bc

∣f yð Þ∣
yj jn�αþ1 dy≤C

ω Bð Þ
Bj j1þ1=p�α=nþ1=n ∥f∥Lp ω�pð Þ

for all f ∈Lp ω�pð Þ and for every ball B⊂n centered at the origin.
iið Þ Let 0≤ α< 1, 0≤ γ < 1=n� α=n and η ¼ 1þ 1=n� α=n� γ. If

ω∈H0 αþ nγ,∞ð Þ∩Dη then there exists C such that
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ð

Bc

∣f yð Þ∣
yj jn�αþ1 dy≤C

ω Bð Þ
Bj jη ∥f∥BMγ

0 ωð Þ

for all f ∈BMγ
0 ωð Þ and for every ball B⊂n centered at the origin.

Proof: The part ið Þ is immediate from Hölder’s inequality and Definition 3.11. For
iið Þ, since the hypothesis on ω and (3.10), for B ¼ B 0, rð Þ we have

ð

Bc

∣f yð Þ∣
yj jn�αþ1 dy ≤C

X∞

k¼0

1

2kr
� �n�αþ1

ð

2kr≤ ∣y∣< 2kþ1r
∣f yð Þ∣dy

≤C∥f∥BMγ
0 ωð Þ

X∞

k¼0

ω B 0, 2kþ1r
� �� �

2kr
� �n�αþ1�nγ

≤C∥f∥BMγ
0 ωð Þ

X∞

k¼0

ω B 0, 2kþ1r
� �nB 0, 2kr

� �� �

2kr
� �n� αþnγð Þþ1

≤C∥f∥BMγ
0 ωð Þ

ω Bð Þ
Bj jη :

Lemma 4.7. ið Þ Let α>0, 1< p<∞ and ω∈RH0 p0ð Þ. If f ∈Lp ω�pð Þ and there exists
x 6¼ 0 such that Sαf xð Þ is finite, then Sαf is finite on nn 0f g and Sαf ∈L1

loc 
nð Þ. The claim

also holds for Hα.
iið Þ Let ω∈Dη. If f ∈BMγ

0 ωð Þ and there exists x 6¼ 0 such that Sαf xð Þ is finite, then Sαf
is finite on nn 0f g and Sαf ∈L1

loc 
nð Þ. The claim also holds for Hα.

Proof: Since (3.1) we will only consider the operator Sα. Suppose f is a nonnegative
function in L1

loc 
nð Þ such that Sαf x0ð Þ<∞ for some x0 6¼ 0. Then Qαf xð Þ<∞ for

∣x∣ ≥ ∣x0∣, and if 0< ∣x∣< ∣x0∣ then

Qαf xð Þ≤ 1
xj jn�α

ð

∣x∣< ∣y∣< ∣x0∣
f yð ÞdyþQαf x0ð Þ<∞:

Furthermore, since

ð

B 0,rð Þ
Qαf xð Þ � Qαf νð Þð Þdx≤

ð

B 0,rð Þ
f yð Þrαdy<∞,

where ∣ν∣ ¼ r, then Qαf ∈L1
loc 

nð Þ.
If α>0 it is immediate that Pαf ∈L1

loc 
nð Þ. Therefore, ið Þ follows from (4.5). For

iið Þ it remains to show that Pαf ∈L1
loc 

nð Þ in the case α ¼ 0. Let B j ¼ B 0, 2�jr
� �

, j ¼
0, 1, … , by (3.10) we have

ð

B0

1
xj jn
ð

B 0,jxjð Þ
f yð Þdydx ≤C∥f∥BMγ

0 ωð Þ

ð

B0

ω B 0, jxjð Þð Þ
xj jn�nγ dx

≤C∥f∥BMγ
0 ωð Þ

X∞
j¼0

rnγ�n

2 j nγ�nð Þ

ð

B jnB jþ1

ω B j
� �

dx

≤C∥f∥BMγ
0 ωð Þr

nγ
X∞
j¼0

ω B jnB jþ1
� �

2jnγ

≤C∥f∥BMγ
0 ωð Þr

nγω B0ð Þ:
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Proof of Theorem 1.4:We begin showing the sufficient condition. Let B ¼
B x0, rð Þ. If x0 ¼ 0, let u ¼ re1=2 and v ¼ 3re1=4, where e1 ¼ 1, … , 0ð Þ. If x0 6¼ 0, let
u ¼ jx0jþr=2ð Þx0=∣x0∣ and v ¼ jx0jþ3r=4ð Þx0=∣x0∣. Thus, we consider the following
two regions

U ¼ B u, r=8ð Þ∩ uþ h : sign uið Þ ¼ sign hið Þ i ¼ 1, … , nf g,
V ¼ B v, r=4ð Þ∩ vþ h : sign við Þ ¼ sign hið Þ i ¼ 1, … , nf g, (9)

where u ¼ u1, … , unð Þ, v ¼ v1, … , vnð Þ and h ¼ h1, … , hnð Þ. In the case ui ¼ 0 for
some i, we choose hi >0. Clearly, we have the estimates dist U,Vð Þ ¼ Cr,

∣U∣ ¼ 1
2n

∣B u, r=8ð Þ∣ ¼ C∣B∣ and ∣V∣ ¼ 1
2n

∣B v, r=4ð Þ∣ ¼ C∣B∣:

Let f a nonnegative function in Lp ω�pð Þ such that supp fð Þ⊂B 0, jx0jþr=2ð Þ, where
supp fð Þ is the closure of the set x : f xð Þ 6¼ 0f g. Then

∥Sαf∥BMOδ ωð Þ ≥
C

ω Bð Þ Bj j1þδ

ð

B

ð

B
∣Sαf xð Þ � Sαf zð Þ∣dzdx

≥
C

ω Bð Þ Bj j1þδ

ð

U

ð

V
∣

1
xj jn�α �

1
zj jn�α

� �ð

B 0,jx0jþr=2ð Þ
f yð Þdy∣dzdx:

Note that, for x∈U and z∈V we have 1
xj jn�α � 1

zj jn�α ≥C r
jx0jþrð Þn�αþ1. Then

∥Sαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,jx0jþr=2ð Þ
f yð Þdy: (10)

Thus, taking f yð Þ ¼ ωp0 yð ÞχB 0,jx0jþr=2ð Þ yð Þ in (10) and since the boundedness of Sα
and ωp0 ∈D0, we have

ωp0 B 0, jx0jþrð Þð
∣B 0, jx0jþrð Þ∣

� �1=p0

≤C
∣x0∣þ r

r

� �1�αþn=p ω Bð Þ
∣B∣

:

Taking x0 ¼ 0 in the last expression, we have that ω∈RH0 p0ð Þ. Then, applying the
Hölder’s inequality, we obtain that ω satisfies the desired condition Dη.

Now, let us show the necessary condition. Let f ∈Lp ω�pð Þ such that Sαf xð Þ is finite
for some x 6¼ 0 and let ω∈RH0 p0ð Þ∩Dη. It is immediate that ωp0 ∈D0. Thus
Sαf ∈L1

loc 
nð Þ by ið Þ of Lemma 4.7. First, we consider B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let

ν be such that ∣ν∣ ¼ r, and let

Kν x, yð Þ ¼ min 1,
yj jn�α

xj jn�α

� �
� min 1,

yj jn�α

νj jn�α

� �
:

Then, since Kν x, yð Þ ¼ 0 for ∣y∣> ∣ν∣, we have

Sαf xð Þ � Sαf νð Þ ¼
ð

∣y∣ ≤ ∣ν∣
Kν x, yð Þ f yð Þ

yj jn�α dy: (11)
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If ∣y∣ ≤ ∣ν∣ then Kν x, yð Þ≥0, so

1
ω Bð Þ

ð
B
∣Sαf xð Þ � Sαf νð Þ∣dx ≤

1
ω Bð Þ

ð
B

ð
B
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx

¼ 1
ω Bð Þ

ð
B

ð
∣y∣ ≤ ∣x∣

Kν x, yð Þ ∣f yð Þ∣
yj jn�α dydxþ 1

ω Bð Þ
ð
B

ð
∣x∣< ∣y∣ ≤ r

Kν x, yð Þ ∣f yð Þ∣
yj jn�α dydx:

(12)

Now we estimate each term in (12).
If ∣y∣ ≤ ∣x∣ then Kν x, yð Þ≤ yj jn�α xj j� n�αð Þ. So, by (8) we have

1
ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ
ð

B

1
xj jn�α

ð

B
∣f yð Þ∣dydx

≤C∥f∥Lp ω�pð Þ Bj jδ:

For the second term, since 0≤Kν x, yð Þ≤ 1 and (8), we have

1
ω Bð Þ

ð

B

ð

∣x∣< ∣y∣ ≤ r
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ
ð

B

1
xj jn�α

ð

∣x∣< ∣y∣ ≤ r
∣f yð Þ∣dydx

≤
C

ω Bð Þ
ð

B
f yð Þkyj jαdy

≤C∥f∥Lp ω�pð Þ Bj jδ:

(13)

Then, by (12) and (13), we have proved

1

ω Bð Þ Bj jδ
ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ, (14)

for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (14) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣. In the same way as (11), we have

Sαf xð Þ � Sαf νð Þ ¼
ð

∣y∣ ≤ ∣ν∣
Kν x, yð Þ f yð Þ

yj jn�α dy:

Now, we note that if ∣y∣ ≤ ∣ν∣ then Kν x, yð Þ≥0. Applying the mean value theorem
and using ∣ν∣ � ∣x∣, then

Kν x, yð Þ≤ yj jn�α

xj jn�α �
yj jn�α

νj jn�α ≤C
r yj jn�α

νj jn�αþ1 : (15)

Thus, by (8) and ω∈Dη, we have

1
ω Bð Þ

ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤C

r

ω Bð Þ νj jn�αþ1

ð

B

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣dydx

≤C∥f∥Lp ω�pð Þ
rnþ1

νj jn�αþ1þn=p

ω B 0, jνjð Þð Þ
ω Bð Þ

≤C∥f∥Lp ω�pð Þ Bj jδ:

(16)
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Therefore, (14) and (16) complete the proof of the theorem.
Proof of Theorem 1.5:We begin showing the sufficient condition. Let B ¼ B x0, rð Þ

and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, we again have

∥Sαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,jx0jþr=2ð Þ
f yð Þdy, (17)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂B 0, jx0jþr=2ð Þ.

Now, if γ ¼ 0 we take f yð Þ ¼ ω yð ÞχB 0,jx0jþr=2ð Þ yð Þ in (17) and since ∥f∥BMγ
0 ωð Þ ≤ 1, the

boundedness of Sα and ω∈D0, we have ω∈Dη.

If γ >0, let f yð Þ ¼ Pnγ ωχB 0,jx0jþr=2ð Þ
� �

yð Þ, then ∥f∥BMγ
0 ωð Þ ≤C and

ð

B 0,jx0jþr=2ð Þ
f yð Þdy ¼ C

ð

B 0,jx0jþr=2ð Þ
ω tð Þ jx0jþr=2ð Þnγ � tj jnγð Þdt

≥C jx0jþrð Þnγω B 0, jx0jþr=2ð Þ=2ð Þð Þ:
(18)

Therefore, using this function f in (17), the boundedness of Sα, (18) and ω∈D0,
we have ω∈Dη.

Now, let us show the necessary condition. Let f ∈BMγ
0 ωð Þ such that Sαf xð Þ is finite

for some x 6¼ 0 and let ω∈Dη. Thus Sαf ∈L1
loc 

nð Þ by iið Þ of Lemma 4.7. We begin
considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be such that ∣ν∣ ¼ r. In the same way as
we did in (12), we have

1
ω Bð Þ

ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤ 1

ω Bð Þ
ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx

þ 1
ω Bð Þ

ð

B

ð

∣x∣< ∣y∣ ≤ r
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx,

(19)

where Kν x, yð Þ ¼ min 1, yj jn�α

xj jn�α

n o
� min 1, yj jn�α

νj jn�α

n o
:

We estimate the first term of (19). Let B j ¼ B 0, 2�jr
� �

, j ¼ 0, 1, … . Thus, since

Kν x, yð Þ≤ yj jn�α xj j� n�αð Þ for ∣y∣ ≤ ∣x∣ and (5), we have

1
ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ
ð

B

1
xj jn�α

ð

∣y∣ ≤ ∣x∣
∣f yð Þ∣dydx

≤C∥f∥BMγ
0 ωð Þ

1
ω Bð Þ

ð

B

ω B 0, jxjð Þð Þ
xj jn�α�nγ dx

≤C∥f∥BMγ
0 ωð Þ

rnγþα

ω Bð Þ
X∞
j¼0

ω B jnB jþ1
� �

2 j nγþαð Þ

≤C∥f∥BMγ
0 ωð Þ

Bj jδ
ω Bð Þ

X∞
j¼0

ω B jnB jþ1
� �

¼ C∥f∥BMγ
0 ωð Þ Bj jδ:

(20)
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For the second term of (19), since 0≤Kν x, yð Þ≤ 1, we have

1
ω Bð Þ

ð

B

ð

∣x∣ ≤ ∣y∣ ≤ r
Kν x, yð Þ ∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ
ð

B

∣f yð Þ∣
yj jn�α

ð

∣x∣ ≤ ∣y∣
1dxdy

≤C∥f∥BMγ
0 ωð Þ Bj jδ:

(21)

Therefore, by (19)-(21) we have proved

1

ω Bð Þ Bj jδ
ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ, (22)

for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (22) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣. In the same way as we obtained (11)
and (15) in the previous proof, we have

Sαf xð Þ � Sαf νð Þ ¼
ð

∣y∣ ≤ ∣ν∣
Kν x, yð Þ f yð Þ

yj jn�α dy

and Kν x, yð Þ≤Cr yj jn�α νj j� n�αþ1ð Þ. By ω∈Dη, we have

1
ω Bð Þ

ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤C

rnþ1

ω Bð Þ νj jn�αþ1

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣dy

≤C∥f∥BMγ
0 ωð Þ

rnþ1

νj jn�αþ1�nγ
ω B 0, jνjð Þð Þ

ω Bð Þ
≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(23)

Therefore, (22) and (23), complete the proof of the theorem.
Let x, ν∈n, ν 6¼ 0, then

Hαf xð Þ �Hαf νð Þj j≤
ð

yj j≤ νj j
f yð Þj j 1

xj j þ yj jð Þn�α �
1

νj j þ yj jð Þn�α

����
����dy

þ
ð

yj j> νj j
f yð Þj j 1

xj j þ yj jð Þn�α �
1

νj j þ yj jð Þn�α

����
����dy:

(24)

Proof of Theorem 1.6:We begin showing the sufficient condition. Let B ¼
B x0, rð Þ and let u, v, U and V as in (9) of the proof of Theorem 1.4. Note that if x∈U,
z∈V then for all y∈n,

1
jxj þ jyjð Þn�α �

1
jzj þ jyjð Þn�α ≥C

r

jx0jþrþjyjð Þn�αþ1 : (25)

Hence, if f is a nonnegative function in Lp ω�pð Þ such that supp fð Þ⊂A 0, r,mð Þ and
taking x0 ¼ 0 in (25), we have

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ
ð

A 0,r,mð Þ

f yð Þ
yj jn�αþ1 dy, (26)
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for every ball B centered at the origin.
Thus, taking f m,j yð Þ ¼ yj j� n�αþ1ð Þ= p�1ð Þωp0 yð ÞχAm,j

yð Þ in (26) where Am,j ¼
A 0, r,mð Þ∩ y : 1=j≤ω yð Þ< jf g, m, j ¼ 1, 2, … , using the boundedness of Hα and letting
m ! ∞, j ! ∞ we obtain that ω∈H0 α, pð Þ.

On the other hand, if f is a nonnegative function in Lp ω�pð Þ such that
supp fð Þ⊂B 0, 2 jx0jþrð Þð Þ, then by (25)

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,2 jx0jþrð Þð Þ
f yð Þdy: (27)

Thus, taking f j yð Þ ¼ ωp0 yð ÞχA j
yð Þ in (27) where A j ¼

B 0, 2 jx0jþrð Þð Þ∩ y : 1=j≤ω yð Þ< jf g, j ¼ 1, 2, … , and using the boundedness of Hα, we
have

ð

A j

ωp0 yð Þdy
 !1=p0

≤C
∣x0∣þ r

r

� �n�αþ1 ω Bð Þ
Bj j1=p

:

Letting j ! ∞ and taking x0 ¼ 0 in the last expression, we can obtain that
ω∈RH0 p0ð Þ. Then, applying Hölder’s inequality, we obtain ω∈Dη.

Now, let us show the necessary condition. Let f ∈Lp ω�pð Þ such that Hαf xð Þ is finite
for some x 6¼ 0 and let ω such that ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Hence Hαf ∈L1

loc 
nð Þ

since ið Þ of Lemma 4.7. We begin considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be
such that ∣ν∣ ¼ r. We estimate the two terms of (24). By (8), we have

1
ω Bð Þ

ð

B

ð

yj j≤ νj j

f yð Þ
xj j þ yj jð Þn�α �

f yð Þ
νj j þ yj jð Þn�α

����
����dydx

≤
C

ω Bð Þ
ð

B

ð

B

f yð Þj j
xj jn�α dydx

≤C fk kLp ω�pð Þ

ð

B

1

xj jn�αþn=p dx ¼ C fk kLp ω�pð Þ Bj jδ:

(28)

To analyze the second term of (24), we use the mean value theorem, then

1
jxj þ jyjð Þn�α �

1
jνj þ jyjð Þn�α

����
����≤C

r

yj jn�αþ1 :

Thus, by ið Þ of Lemma 4.6

1
ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

f yð Þ
jxj þ jyjð Þn�α �

f yð Þ
jνj þ jyjð Þn�α

����
����dydx ≤

Cr
ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣
yj jn�αþ1 dydx

≤C∥f∥Lp ω�pð Þ Bj jδ:
(29)

Therefore, by (24)–(29), we have proved

1

ω Bð Þ Bj jδ
ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ, (30)
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for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (28) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣, then ∣ν∣ � ∣x∣ and ∣x∣ � ∣x0∣. Using
∣y∣ ≤ ∣ν∣ and the mean value theorem

1
jxj þ jyjð Þn�α �

1
jνj þ jyjð Þn�α

����
����≤C

r

x0j jn�αþ1 :

Then, by (8) and ω∈Dη

1
ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣ 1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

����
����dydx

≤
Crnþ1

ω Bð Þ x0j jn�αþ1

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣dy

≤C∥f∥Lp ω�pð Þ
rnþ1

x0j jn�αþ1þn=p ω B 0, jνjð Þð Þ

¼ C∥f∥Lp ω�pð Þ Bj jδ:

(31)

Now, using the mean value theorem

1
jxj þ jyjð Þn�α �

1
jνj þ jyjð Þn�α

����
����≤C

r
yj jn�αþ1 :

Then, by ið Þ of Lemma 4.6

1
ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

f yð Þ
jxj þ jyjð Þn�α �

f yð Þ
jνj þ jyjð Þn�α

����
����dydx ≤

Cr
ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣
yj jn�αþ1 dydx

¼ C∥f∥Lp ω�pð Þ Bj jδ:
(32)

Therefore, by (24) with ν ¼ jx0jþrð Þx0=∣x0∣, (31) and (32), we have

1

ω Bð Þ Bj jδ
ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ,

for every ball B ¼ B x0, rð Þ considered. This completes the proof of the theorem.
Proof of Theorem 1.7:We begin showing the sufficient condition. Let B ¼ B x0, rð Þ

and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, as in (26) of the
proof of Theorem 4 (with x0 ¼ 0), we again have

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ
ð

A 0,r,mð Þ

f yð Þ
yj jn�αþ1 dy (33)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂A 0, r,mð Þ and for

every ball B centered at the origin.
Thus, taking f yð Þ ¼ yj jnγω yð ÞχA 0,r,mð Þ yð Þ in (33), using that ∥f∥BMγ

0 ωð Þ ≤ 1, the
boundedness of Hα and letting m ! ∞, we have that ω∈H0 αþ nγ,∞ð Þ.

On the other hand, as in (27) of the proof of Theorem 1.6 we again have
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∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,2 jx0jþrð Þð Þ
f yð Þdy, (34)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂B 0, 2 jx0jþrð Þð Þ

and for every ball B ¼ B x0, rð Þ.
If γ ¼ 0, we take f yð Þ ¼ ω yð ÞχB 0,2 jx0jþrð Þð Þ yð Þ in (4.34) and since ∥f∥BMγ

0 ωð Þ ≤ 1 and
the boundedness of Hα, we have ω∈Dη.

If γ >0, let f yð Þ ¼ Pnγ ωχB 0,2 jx0jþrð Þð Þ
� �

yð Þ then ∥f∥BMγ
0 ωð Þ ≤C and as in (4.18) of the

proof of Theorem 1.5, we have

ð

B 0,2 jx0jþrð Þð Þ
f yð Þdy≥C jx0jþrð Þnγω B 0, jx0jþrð Þð Þ:

Therefore, using this function f in (34) and the boundedness ofHα, we have ω∈Dη.
Now, let us show the necessary condition. Let f ∈BMγ

0 ωð Þ such that Hαf xð Þ is finite
for some x 6¼ 0 and let ω∈H0 αþ nγ,∞ð Þ∩Dη. Hence Hαf ∈L1

loc 
nð Þ by iið Þ of Lemma

4.7. We begin considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be such that ∣ν∣ ¼ r. We
estimate the two terms of (24). Then,

1
ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣ 1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

����
����dydx

≤
C

ω Bð Þ
ð

B

1
xj jn�α

ð

∣y∣ ≤ ∣ν∣
f yð Þdydx

≤C∥f∥BMγ
0 ωð Þ

1
ω Bð Þ

ð

B

ω B 0, jνjð Þð Þ νj jnγ
xj jn�α dx

≤C∥f∥BMγ
0 ωð Þ Bj jδ:

(35)

For the second term of (24), using the mean value theorem

1
jxj þ jyjð Þn�α �

1
jνj þ jyjð Þn�α

����
����≤C

r

yj jn�αþ1 : (36)

Then, by iið Þ of Lemma 4.6

1
ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣
∣f yð Þ∣ 1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

����
����dydx

≤
Cr
ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣
yj jn�αþ1 dydx

≤C∥f∥BMγ
0 ωð Þ Bj jδ:

(37)

Therefore, by (24) and (35)–(37), we have proved

1

ω Bð Þ Bj jδ
ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ, (38)

for every ball B centered at the origin.
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We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (33) it is enough to consider only
these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣, then ∣ν∣ � ∣x∣ and ∣x∣ � ∣x0∣. If ∣y∣ ≤ ∣ν∣,
by the mean value theorem

1
jxj þ jyjð Þn�α �

1
jνj þ jyjð Þn�α

����
����≤C

r
x0j jn�αþ1 :

Then, since ω∈Dη, we have

1
ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣ 1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

����
����dydx

≤
Crnþ1

ω Bð Þ x0j jn�αþ1

ð

∣y∣ ≤ ∣ν∣
∣f yð Þ∣dy

≤∥f∥BMγ
0 ωð Þ Bj jδ:

(39)

On the other hand, using again the mean value theorem as in (36) and iið Þ of
Lemma 4.6, we get

1
ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣
∣f yð Þ∣ 1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

����
����dydx

≤
Crnþ1

ω Bð Þ
ð

∣y∣> ∣ν∣

∣f yð Þ∣
yj jn�αþ1 dy

≤C∥f∥BMγ
0 ωð Þ

rnþ1

ω Bð Þ
ω B 0, jνjð Þð Þ

νj jnη

≤C∥f∥BMγ
0 ωð Þ Bj jδ:

(40)

Thus, by (24) and (39)–(40), we have proved

1

ω Bð Þ Bj jδ
ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ,

for every ball B ¼ B x0, rð Þ considered. This completes the proof of the theorem.

5. Conclusions

As a conclusion to this chapter, we have given necessary and sufficient conditions
for the generalized Calderón and Hilbert operators to be bounded from weighted
Lesbesgue spaces into suitable weighted BMO and Lipschitz spaces. Then, we have
obtained results on the boundedness of these operators from L∞ into BMO, even in the
unweighted case for the Hilbert operator. The class of weights involved are close to
the doubling and reverse Hölder conditions related to the Muckenhoupt’s classes.

The study of the weighted boundedness for integral operators on function spaces,
like the one we develop in this chapter, is one of the main research fields in harmonic
analysis. In particular, it has had a profound influence in partial differential equations,
several complex variables, and number theory. Evidence of such success and
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importance is the pioneering work of leading mathematicians Bourgain, Zygmund,
Calderón, Muckenhoupt, Wheeden, C. Fefferman, Stein, Ricci, Tao and so on.
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Chapter 4

Effect of Titanium Oxide Nanofluid
over Cattaneo-Christov Model
Hammad Khalil,Tehseen Zahra, Zaffer Elahi
and Azeem Shahzad

Abstract

The proposed chapter deals with the study of heat transfer development of
titanium oxide nanofluid of platelet shape nanoparticles over a vertical stretching
cylinder. The set of nonlinear equations is obtained using suitable transformation on
the governing equations that are then solved with numerical scheme BVP4C. The
obtained results are interpreted graphically and numerically. The effects of Prandtl,
Eckert, and unsteadiness parameters on temperature distribution are depicted.
Moreover the skin friction and Nusselt number are also computed.

Keywords: Cattaneo-Christov model, heat transfer, vertical cylinder

1. Introduction

Cattaneo-Christov model is an improved version of Fourier law as Fourier law does
not detect the initial temperature disturbance; to overcome this ambiguity, Cattaneo
added a thermal relaxation parameter. This parameter covers the ambiguity of Fourier
law. The classical Fourier law is obtained while vanishing the relaxation parameter [1].
Cattaneo-Christov heat flux model gives us heat transfer rate in stretching cylinders as
well as sheets. Heat transfer is a wonderful natural phenomenon that occurs when two
bodies have a thermal difference until both bodies are at thermal equilibrium. The
Cattaneo-Christov model is in the form of a heat equation. The thermal convection effect
is studied using the Christov heat model in conjunction with the Cattaneo heat model [2].
It has been realized that the development of stretchy surfaces and the flow field that
surrounds them speaks to a variety of technological and industrial applications, such as
paper making, glass blowing, crystal growth, and aerodynamic plastic sheet extrusion
[3]. Heat transfer is a common natural occurrence as long as there is a temperature
differential between things or between various regions of the same object, heat transfer
will occur. As a result, a lot of effort has gone into predicting the heat transport behavior.
In several starting and boundary problems, the uniqueness and structural stability of the
solutions for the temperature governing equations using the Cattaneo-Christov heat flow
model have been demonstrated. The chapter released uses the Cattaneo-Christov heat
flux model to analyze the flow and heat transfer of upper-convective Maxwell fluid
across a stretching sheet [4]. Efforts have been undertaken to increase the thermal
efficiency of processes during the last many decades. On the one hand, there has been an
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attempt to lower the size of the equipment by increasing the thermal exchange surface,
such as with fins, and on the other hand, novel fluid exchangers with higher thermal
conductivity have been developed. Different NPS types (metallic, nonmetallic, and
carbon based) have been synthesized and dispersed in conventional fluids such as water,
oil, or ethylene glycol referred to as nanofluids since the advent of nanotechnology and
the possibility of synthesizing materials on a nanometric scale [5]. The boundary layer
flow and heat transfer caused by stretching flat plates or cylinders are both practical and
theoretically interesting in fiber technology and extrusion operations. This method is
used to produce polymer sheets and plastic films. The cooling of an infinite metallic plate
in a cooling bath, the boundary layer along material handling conveyors, the aerody-
namic extrusion of plastic sheets, the boundary layer along a liquid film in condensation
processes, paper production, glass blowing, metal spinning and drawing plastic films,
and polymer extrusion are all examples of boundary layers [6]. The aim of this chapter is
to manipulate the heat transfer rate of titanium oxide nanofluid with the Cattaneo-
Christov heat flux model over a vertical stretching cylinder.

2. Mathematical formulation

In the coordinate plane, assume that the cylinder is taken in the vertical direction
along the z-axis, and the r-axis is normal to the axis of the cylinder. Consider the fluid
is moving with surface velocity,

Uw ¼ bz
1� αt

In the direction of stretching cylinder under the external magnetic field defined by

B tð Þ ¼ B0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αt

p

Further, suppose u = u(r, z, t) and w = w(r, z, t) be the velocity components along
the respective axes of the coordinate plane, while T = T(r, z, t) denotes the tempera-
ture of the nanofluid, as shown in Figure 1.

Figure 1.
Representation of the dilemma.
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Let the base fluid (water) and platelet-shaped NPS in thermal equilibrium. Under
these assumptions, the equation of continuity, momentum equation, and energy
equations are obtained, which are as follows:

∂ ruð Þ
∂r

þ ∂ rwð Þ
∂z

¼ 0 (1)

þ u ∂w
∂r

þw ∂w
∂z

¼ ν

r
∂

∂r
r ∂w
∂r

� �
� σ

ρ
Bₒ2 wþ gβ T � T∞ð Þ (2)

∂T
∂t

þ u ∂T
∂r

þw ∂T
∂z

¼ ν

Cp
∂w
∂r

� �2

þ λ1
2ν
Cp

∂w
∂r

� �
∂
2w
∂t∂r

þ u
∂
2w
∂r2

� �
� ∂

2T
∂t2

0
@

2
4

þ u2
∂
2T
∂r2

þ w2 ∂
2T
∂z2

2u
∂
2T

∂t∂r
þ 2w

∂
2T

∂t∂z
þ 2uw

∂
2T

∂z∂r

þ ∂u
∂t

þ u
∂u
∂r

þ w
∂u
∂z

� �
∂T
∂r

þ ∂w
∂t

þ u
∂w
∂r

þw
∂w
∂z

� �
∂T
∂z

1
A
3
5:

(3)

Subject to the boundary conditions

u ¼ 0,w ¼ Uw,
∂T
∂r

¼ 0 at r ¼ R,

w ! o,T ! T∞ as r ! ∞ (4)

The thermophysical properties of density (ρnf ), dynamic viscosity (μnf ), electric
conductivity (σnf ), diffusivity (αnf ), and heat capacity (ρCp) can be defined in Refs.
[7, 8], while the ratio of thermal conductivity of nanofluid and base fluid is given by
the following equation:

knf
k f

¼ ks þ m� 1ð Þk f þ m� 1ð Þ ks � k f
� �

ϕ

ks þ m� 1ð Þk f � ks � k f
� �

ϕ

" #
(5)

where ϕ denotes volume-fraction of NPS.
The thermophysical properties of titanium nanofluid with base fluid as water [9]

are given in Table 1, while the viscosity coefficients A1, A2, and shape factorm values
of TiO2 nanofluid [10] are listed in Table 2.

Base Density (kg/m3) Thermal conductivity (W/m K) Specific heat (J/kg K)

TiO2 3900 8.4 0.8692

H2O 997.1 0.613 4179

Table 1.
Thermophysical properties of base fluid and TiO2 nanoparticles.
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Introducing the transformations, as

T ¼ T∞ þ Tw� T∞ð Þ θ ηð Þ, η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
ν 1� αtð Þ

r� �
r2 � R2

2R

� �
,ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cν

1� αtð Þ
r� �

zrf ηð Þ∂ψ

(6)

where ψ is the stream function (describes the flow pattern) and is defined as u =
�1
r

∂ψ
∂r and w = 1

r
∂ψ
∂r . The governing Eqs. (2)–(5) have been transformed to Eqs. (8)–(10)

using similarity variables in Eq. (7), as

ϵ1 1þ 2Cηð Þf 000 ηð Þ þ 2ϵ1Cf 00 ηð Þ � ϵ3M f ηð Þ
þ f ηð Þf 00 ηð Þ � f 02 ηð Þ � S f 0 ηð Þ þ η

2
f 00 ηð Þ

� �h i
þ λθ ηð Þ ¼ 0

, (7)

1þ 2Cηð Þ ϵ1Ecf 002 ηð Þ þ ϵ2
Pr

θ00 ηð Þ
� �

þ 2ϵ2
Pr

Cθ0 ηð Þ þ f ηð Þθ0 ηð Þ � S 2θ ηð Þ þ η
2
f 00 ηð Þ

� �

þβ

ϵ1Ec 1þ 2ηð Þ 3Sf 002 ηð Þ þ Sηf 00 ηð Þf 000 ηð Þ � 2f ηð Þf 00 ηð Þf 000 ηð Þ� �
2ϵ1EcCf ηð Þf 002 ηð Þ

� S2
6θ ηð Þ þ 11

4
θ00 ηð Þf ηð Þ þ S

5f 0 ηð Þθ ηð Þ � 11
2
f ηð Þθ0 ηð Þ � ηf ηð Þθ00 ηð Þ

þ η� 1
2

� �
f 0 ηð Þθ00 ηð Þ þ η

2
f 00 ηð Þθ ηð Þ

0
BBB@

1
CCCA

þf 0 ηð Þθ00 ηð Þ � f ηð Þf 0 ηð Þθ0 ηð Þ � f ηð Þf 00 ηð Þθ ηð Þ þ f 02 ηð Þθ ηð Þ

0
BBBBBBB@

1
CCCCCCCA

0
BBBBBBB@

1
CCCCCCCA

2
66666666664

3
77777777775

�f 0 ηð Þθ ηð Þ:
(8)

where β is the thermal relaxation parameter and is given by,

β1 ¼ cλ1
1� αtð Þ (9)

Under the boundary condition,

f 0ð Þ ¼ 0, f ’ 0ð Þ ¼ 1, θ’ 0ð Þ ¼ �k f

knf
γ 1� θ 0ð Þð Þ at η ¼ R

f ’ ηð Þ ¼ 0, θ 0ð Þ as η ! ∞ (10)

Now the dimensionless constants, such as Ec, Pr, ϕ, M, and S, and that of ϵ1, ϵ2,
and ϵ3 are used frequently in the above equations, defined in Ref. [11]. For various

Platelet

A1 A2 m

37.1 612.6 5.72

Table 2.
Viscosity and shape factor values of platelet-shaped nanoparticles.
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values of dimensionless parameters, the value of the local Nusselt number is shown in
Table 3. Nusselt number can be defined as,

Nu ¼ zknf
k f Tw�T∞ð Þ

∂T
∂r

� �

r¼R
(11)

The non-dimensionless form of Eq. (11), using Eq. (6), as

Re
�1
2 Nu ¼ � knf

k f
θ’ 0ð Þ (12)

3. Method of solution

To find the numerical solution of a nonlinear system (7) and (8), the set of first-
order linear equations is obtained by considering the following assumptions. By put-
ting these assumptions in the above equations, we get first-order linear equations,
which are then used in MATLAB by using BVP4C scheme to get numerical and
graphical results.

y1 ¼ f , (13)

y01 ¼ y2, (14)

y02 ¼ y3, (15)

y03 ¼ g1, (16)

θ ¼ y4, (17)

y04 ¼ g1, (18)

y05 ¼ g2, (19)

y1 0ð Þ ¼ 0, y2 0ð Þ ¼ 1, y4 0ð Þ � 1 ¼ 0 at η ¼ 0 (20)

y2 ηð Þ ¼ 0, y4 ηð Þ ¼ 0:as η ! ∞ (21)

Physical parameters Platelet

Ec Pr Re
�1
2 Nu

0.0 6.0 0.037666741

0.5 — 0.038924615

1.0 — 0.039829280

1.0 4.0 0.042765482

— 6.0 0.038924615

— 8.0 0.036302577

Table 3.
Nusselt number of platelet shape nanoparticle.
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where

g1 ¼
1

ϵ1 1þ 2ηCð Þ ϵ3My2 � 2ϵ1Cy3 � λy4 � y1y3 � y22 � S y2 þ
η

2
y3

� �� �� �
, (22)

and

g2 ¼
1

1þ 2ηCð Þϵ3
Pr

� β1
Sηð Þ2
4

� Sηy1 þ y21

 ! S y4 þ
η

2
y5

� �
� y1 þ y2y4 �

2ϵ2Cy5
Pr

� ��

� 1þ 2ηCð Þϵ1Ecy23 � β1 ϵ1Ec 1þ 2ηCð Þ 3Sy23
� �þ Sty3y

0
3 � 2ϵ1EcCy1y

2
3 � 2y1y3y

0
3

� �

� S2 6y4 þ
11
4
ηy5

� �
� S 5y2y4 �

11
2
y1y5

� ��
þ η� 1

2
y2y5 þ

η

2
y3y4

�
þ y1y3y5 þ y22y4

��� �
:

(23)

g1 and g2 are the obtained first-order linear equations.

4. Analysis of results

Obtained numerical results and the effect of various parameters on temperature
profile are obtained in both numerical and graphical form and discussed in detail.

4.1 Graphical analysis

Figure 2 describes the influence of Eckert number for platelet shape nanoparticle.
By varying the value of Eckert, it can be seen that the temperature is increasing.
Physically, it can be seen that the Eckert number enhances the thermal conductivity of
the fluid. Figure 3 shows that the increase in the value of the Prandtl number results

Figure 2.
Effect of Eckert number on the temperature profile.

62

Functional Calculus - Recent Advances and Development



in deceleration in temperature because of the reduction in thermal diffusivity. As the
unsteadiness parameter increases, the temperature gradually decreases, as shown in
Figure 4. Physically the value of the unsteadiness parameter is grown up, and the
thickness of the thermal boundary layer decreases, which results in a decline in the
temperature profile.

4.2 Numerical results

The heat transfer rate is calculated for platelet shape nanoparticles, which is given
in Table 3. It is inferred that with the rise in Eckert number, Nusselt number increases
while the reverse trend is seen for Prandtl number

Figure 3.
Effect of Prandtl number on the temperature profile.

Figure 4.
Effect of unsteadiness parameter number on the temperature profile.
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5. Conclusion

By numerical computation, the effect of platelet shape nanoparticle on TiO2

nanofluid over a vertical stretching cylinder is seen in this chapter. Influence of
different physical parameters, such as Eckerd and Prandtl numbers on temperature
profile, is examined both graphically and numerically. The Nusselt number increases
for Eckert number Ec, which decreases for Prandtl number Pr. Graphical result shows
acceleration in temperature profile, while the reverse trend is found in Figure 2.

Nomenclature

u,w velocity components along r, z directions (m/s)
αf, αnf thermal diffusion of base fluid and nanofluid (m2/s)
ρf, ρnf density of base fluid and nanofluid (kg/m3)
μf, μnf viscosity of base fluid and nanofluid (kg m/s)
νf, νnf kinematic viscosity of base fluid and nanofluid (m2/s)
σnf electrical conductivity (�)
Uw surface velocity (m/s)
σnf electrical conductivity (�)
(ρCp) nf heat capacity of nanofluid (�)
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Chapter 5

Nonlinear Dynamics Phenomenon
in a Polydyne Cam with an Offset
Flat Faced Follower Mechanism
with Clearance
Louay S. Yousuf

Abstract

Nonlinear response of the follower motion is simulated at different cam speeds,
different coefficient of restitution, and different internal distance of the follower
guide from inside. The nonlinear response of the follower is employed to investigate
the chaotic phenomenon in cam follower system in the presence of follower offset.
The numerical results are done using SolidWorks software. The chaos phenomenon is
detected using Poincare’ maps with phase-plane portraits, the largest Lyapunov
exponent parameter, and bifurcation diagram. The largest Lyapunov exponent has a
maximum values when the follower offsets to the right, while the largest Lyapunov
exponent has a minimum values when the follower offsets to the left. The chaotic
phenomenon in cam follower system when the follower offsets to the left is more than
the chaotic phenomenon when the follower offsets to the right.

Keywords: chaotic phenomenon, follower offset, Lyapunov exponent parameter,
nonlinear response. Poincare’ maps

1. Introduction

The proposed system can be found in windshield wiper on the front window of the
car in which the rotary motion of the cam transforms into an oscillating motion. Yang
et al. introduced the mathematical model to describe the separation, transient impact,
and contact in cam follower system using oblique impact, [1]. They showed that the
cam and the follower system kept permanent contact without the use of coefficient of
restitution at low speeds for the cam. Yousuf studied the detachment between the cam
and the follower using largest Lyapunov exponent parameter, power density function
of Fast Fourier Transform (FFT), and Poincare’ maps due to the nonlinear dynamics
phenomenon of the follower. Nonlinear response of the follower displacement is cal-
culated at different cam speeds, different coefficient of restitution, different contact
conditions, and different internal distance of the follower guide from inside [2, 3].
Flores et al. used a nonsmooth dynamics approach to model the interaction of the
colliding bodies using Coulomb’s law for dry friction [4]. Lassaad et al. studied the
effect of cam profile error on the nonlinear dynamics behavior of oscillating roller
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follower system by using a model with eight degrees of freedom of two nonlinear
Hertzian contacts [5]. Li and Du used the coefficient of restitution as a main control
parameter to analyze the periodic movement and the bifurcation region in Non-fixed
constrained collision vibration system [6]. Wu et al. studied the influence of the joint
clearance on the dynamic response of a planar mechanism with two driving links and
prismatic pair clearance under variable input speeds [7]. They concluded that the
largest Lyapunov exponents are dependent on the clearance size and the input speed.
Chen et al. identified the chaos phenomenon of the 2-DOF nine-bar mechanism with a
revolute clearance using the phase diagrams, the Poincaré portraits, and largest
Lyapunov exponent parameter [8]. Bifurcation diagrams with changing clearance
value, friction coefficient, and driving speed are drawn. The aim of this paper is to
discuss the chaotic phenomenon of an offset follower through the use of impact coeffi-
cient of restitution at different follower guides’ clearances and different cam speeds.

2. Numerical simulation

Follower displacement is calculated using SolidWorks software [9]. The follower
moved with three degrees of freedom. Four values of the follower guide’s from inside
(I.D. = 16, 17, 18, 19 mm) at different cam speeds are used. The follower with the offset
(O = 20, 30, 40, 50 mm) are chosen. The impact coefficient of restitution with the values
(0.2, 0.3, and 0.4) is considered in the calculation of nonlinear response of the follower in
the presence of follower offset. Cam follower mechanism is shown in Figure 1.

Figure 1.
Polydyne cam with an offset flat-faced follower.
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The chaotic phenomenon in cam follower system is increased with the increasing
of impact coefficient of restitution in which the impact will happen due the loss in
potential energy of the follower and due to the increase in follower guide clearance
value. Figures 2 and 3 show the mapping of nonlinear response of the follower at

Figure 2.
Nonlinear response mapping when the follower offsets to the right (O = 10 mm).
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different cam speeds, different follower guides’ clearances, and different impact
coefficient of restitution when the follower offsets to the right and left respectively
(O = 10 mm). The nonlinear response of the follower is periodic as shown in Figure 2a
and both the cam and the follower are in permanent contact. The follower lost the
contact with the cam at time (t = 13.58 s) and (t = 15.99 s) at detachment height

Figure 3.
Nonlinear response mapping when the follower offsets to the left (O = 10 mm).
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(26.98 mm) and (27.43 mm) respectively. Due to the coefficient of restitution, the
follower keep bouncing from the cam from (t = 0.36 s) to (t = 5.658 s) while the
follower will regain energy and keep permanent contact with the cam for the period
from (t = 9.208 s) to (t = 10.11 s) which is having a periodic motion as illustrated in
Figure 2b. The chaotic motion is shown in Figure 2c–f which increased with the
increasing of follower guides’ clearances, cam speeds, and coefficient of restitution.
There is an intangible impact when the coefficient of restitution (0.2) and the
dissipation in potential energy is occurred due to sliding while the contact is still valid
between the cam and the follower, as shown in Figure 3a. The periodic and chaotic
motion is together shown in Figure 3b and c. The periodic motion is shown from the
period (t = 6.1 s) to (t = 10.26 s) and from the period (t = 14.14 s) to (t = 19.55 s) as
shown in Figure 3b while the periodic motion begins from the period (t = 1.264 s) to
(t = 3.808 s) as shown in Figure 3c. The chaotic motion is shown in Figure 3d–f.

Figure 4.
Bifurcation diagram against cam speeds.

Figure 5.
Bifurcation diagram when the follower offsets to the left (O = 50 mm).
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3. Bifurcation diagram

The contrast in angular displacement for the cam and the follower is used in the
calculation of bifurcation diagram [10, 11]. Figure 4 is built at the follower guide’s from
inside (I.D. = 19 mm) when the follower offsets to the right and left (O = 50 mm).

The periodic motion is shown in Figure 4 in which it has the blue trend at cam
speeds (N = 100–300 rpm) while the quasi-periodic motion of the follower has red
trend at cam speeds (N = 100 rpm). The transition to chaos for the system when the
follower offsets to the left is grown faster than the system when the follower offsets to
the right as indicated in Figures 5 and 6. It can be concluded that the transition to
chaos is incremented with the increment in cam speeds.

4. Lyapunov exponent parameter

Local Lyapunov exponent parameter is used to detect the chaotic phenomenon of
nonlinear response of the follower attractor. Positive Lyapunov exponent refers to
chaotic phenomenon while negative Lyapunov exponent indicates to periodic motion
[12]. Figure 7 shows the local Lyapunov exponent against number of points when the
follower offsets to the right (O = 10 mm) at coefficient of restitution (0.2), cam speed
(N = 200 rpm), and follower guide’s clearance (16 mm). In this figure there are
positive and negative local Lyapunov exponent in which the negative local Lyapunov
exponent represents to the steady state while the positive local Lyapunov exponent
reflects to the transient state. Each value of local Lyapunov exponent has a value of
embedding dimension [13].

5. Poincare’ maps with phase-plane portraits

The contact status of the follower is detected using Poincare’ map at high and low
speeds [14]. Moreover, the quantity of the black dots in Poincare’ maps detects the

Figure 6.
Bifurcation diagram when the follower offsets to the right (O = 50 mm).
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chaotic analysis in follower movement when the follower has detached from the cam.
The system in Figure 8 has smooth orbit of follower displacement at (I.D. = 16 mm
and 19 mm) when the follower offsets to the left (O = 20 mm) at diverse cam speeds.

Figure 7.
Local Lyapunov exponent when the follower offsets to the right (O = 10 mm) at cam speed (N = 200 rpm),
coefficient of restitution (0.2), and follower guide’s clearance (16 mm).

Figure 8.
Phase portrait of chaotic attractor when the follower offsets to the left (O = 20 mm).
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The follower displacement is repeated itself based on the single black dots in phase-
plane orbit. The chaotic analysis is detected based on the multi black dots in phase-
plane orbit at (I.D. = 16 mm and 19 mm) and diverse cam speeds as shown in Figure 9.
SolidWorks software is used in the simulation.

6. Follower displacement

Figures 10 and 11 show the follower linear displacement against the time at
different cam angular speeds when the camshaft offsets to the left (O = 40 mm) and
to the right (O = 50 mm) at (I.D. = 17 mm) respectively. The follower stays in
permanent contact when the cam starts spinning at (N = 200 rpm) and
(N = 400 rpm), while the follower starts detaching from the cam at (N = 1000 rpm) as
shown in Figure 10. The follower also starts jumping a little bit higher from the cam at
(N = 800 rpm) as shown in Figure 11.

MATLAB Code:
The code algorithm of phase-plane diagram and Poincare’ map are added

at the end of this chapter. The code is done using MATLAB software and as in
below:

clear; clc; close all
SignalName = '100rpm.dat';
signal = load(SignalName);
signal = signal - min(signal);
% Poincare map
% original D=signal; % Read data
[x1max,t1max] = findpeaks(D(:,1));

Figure 9.
Poincare’ maps of chaotic attractor when the follower offsets to the left (O = 20 mm).

74

Functional Calculus - Recent Advances and Development



Nmax = length(x1max); figure(1)
subplot(1,2,1)
for i=1:Nmax-1 plot(x1max(i),x1max(i+1),'ko','MarkerSize',5,'MarkerFa-

ceColor','k')
hold on
axis square
xlabel('x_{max} '),ylabel('next x_{max}')
grid on
end
%title('n = 100 rpm c = 1.5 mm') SignalName = '100rpmc2.dat';
signal = load(SignalName);
D = signal; % Read data

Figure 10.
Follower displacement against time when the follower offsets to the right (O = 50 mm) at various cam speeds.

Figure 11.
Follower displacement against time when the follower offsets to the left (O = 40 mm) at various cam speeds.
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[x1max,t1max] = findpeaks(D(:,1));
Nmax = length(x1max); subplot(1,2,2)
for i=1:Nmax-1 plot(x1max(i),x1max(i+1),'ko','MarkerSize',5,'MarkerFa-

ceColor','k')
hold on
axis square
xlabel('x_{max} '),ylabel('next x_{max}')
grid on
end
%title('n = 100 rpm c = 2 mm') figure(2)
aa = load('100rpm.dat');
aa = aa - min(aa);
plot(aa, gradient(aa));

7. Conclusions

In this article the chaotic motion of the follower response is considered in the
presence of impact coefficient of restitution using SolidWorks program. The chaotic
motion of the follower response is occurred due to the increase in cam speeds, fol-
lower’s offsets, follower guides’ clearances and impact coefficient of restitution. The
value of Lyapunov exponent is increased with the increasing of embedding dimen-
sions values. The positive local Lyapunov exponent depicts the transient state in
nonlinear response of the follower in the presence of impact coefficient of restitution.
Negative local Lyapunov exponent refers to the steady state in the follower motion.
Some of the nonlinear response of the follower has periodic and chaotic motions at
different time periods. The quantity of the black dots in Poincare’ maps detects the
chaotic analysis in follower movement when the follower has detached from the cam.
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Chapter 6

Decision Fusion for Large-Scale
Sensor Networks with Nonideal
Channels
Yiwei Liao, Xiaojing Shen, Junfeng Wang and Yunmin Zhu

Abstract

Since there has been an increasing interest in the areas of Internet of Things (IoT)
and artificial intelligence that often deals with a large number of sensors, this chapter
investigates the decision fusion problem for large-scale sensor networks. Due to
unavoidable transmission channel interference, we consider sensor networks with
nonideal channels that are prone to errors. When the fusion rule is fixed, we present
the necessary condition for the optimal sensor rules that minimize the Monte Carlo
cost function. For the K-out-of-L fusion rule chosen very often in practice, we
analytically derive the optimal sensor rules. For general fusion rules, a Monte Carlo
Gauss-Seidel optimization algorithm is developed to search for the optimal sensor
rules. The complexity of the new algorithm is of the order of O LNð Þ compared with
O LNL� �

of the previous algorithm that was based on Riemann sum approximation,
where L is the number of sensors and N is the number of samples. Thus, the proposed
method allows us to design the decision fusion rule for large-scale sensor networks.
Moreover, the algorithm is generalized to simultaneously search for the optimal
sensor rules and the optimal fusion rule. Finally, numerical examples show the
effectiveness of the new algorithms for large-scale sensor networks with nonideal
channels.

Keywords: decision fusion, multisensor detection, nonideal channels, Monte Carlo
method, importance sampling

1. Introduction

Distributed detection has been an active research area in the past decades [1–7]. It
involves the design of decision rules for the sensors1 and the fusion rule [8]. Early
work on distributed detection mainly focused on conditionally independent sensor
observations, such as [2, 4, 9, 10], and the resulting optimal sensor decision rules, as
well as the fusion rule, were likelihood ratio tests (LRTs). Details on distributed
detection with conditionally independent sensor observations can be seen in [1, 6, 7]
and references therein.

1

In the rest of the paper, the term “sensor rules” refers to the “decision rules at the sensors.”
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In this chapter, we focus on conditionally dependent observations in sensor net-
works. In [5], the computational difficulty of obtaining the optimal sensor rules was
shown by a rigorous mathematical approach. Some early progress was made on the
derivation of sensor rules for the dependent observation case such as in [11–15]. More
recently, a hierarchical conditional independence model was provided that was applica-
ble to some specific classes of multisensor detection problems with dependent observa-
tions [16]. Copula-based distributed decision fusionmethods have been proposed to deal
with dependent observations in sensor networks, such as [17–19] and references therein.
Given a fusion rule, Monte Carlo methods were proposed to reduce the computational
complexity of deriving sensor decision rules with ideal channels in [20, 21], and the
optimal sensor rules were obtained analytically for the K-out-of-L fusion rule in [20].

Some works on the derivation of optimal fusion rules can be seen in [15, 22–24].
For some specific parallel network decision systems, a unified fusion rule was
presented in [15]. Some further results on the problem are available in [25, 26]. In
[27], the authors provided methods that search for the sensor rules and the fusion rule
simultaneously by combining the methods of [2] and [15] in order to attain near-
optimal system performance.

The works discussed thus far assumed the availability of ideal channels in sensor
networks. However, channel errors between the sensors and the fusion center are omni-
present in practical multisensor detection networks, and, therefore, studies on
multisensor detection in the presence of nonideal channels have attracted some recent
interest, such as in [8, 28–33]. Under the Neyman-Pearson criterion, the design of sensor
rules in the presence of nonideal channels was addressed in [32]. The parallel fusion
structure was extended by incorporating the fading channel layer and two alternative
fusion schemes were presented based on fixed sensor rules in [28]. It was shown that the
optimal sensor decision rule that minimizes the error probability at the fusion center is
equivalent to a local LRT for independent sensor observations in [29]. Under Neyman-
Pearson and Bayesian criteria, the work was generalized to dependent and noisy chan-
nels, respectively, in [8]. In [31], the authors considered the optimal sensor rules with
channel errors via Riemann sum approximation under a given fusion rule for general
dependent sensor observations. Although the method based on the Riemann sum
approximation has been developed for dependent observations with channel errors, it is
too computationally expensive to be of practical use in large-scale sensor networks.

In this chapter, a Monte Carlo importance sampling method is provided to reduce
the computational complexity of multisensor detection fusion with channel errors.
Based on the strong law of large numbers, the Bayesian cost function is approximated
by its empirical average through the Monte Carlo importance sampling method. The
main contributions of this chapter are listed below:

1.When the fusion rule is fixed, we derive a necessary condition for the optimal
sensor rules that minimize the approximated Bayesian cost function. A Monte
Carlo Gauss-Seidel optimization algorithm is developed and it is shown to be
finitely convergent. The complexity of the new algorithm is shown to be of the
order of O LNð Þ compared with O LNL� �

of the previous algorithm based on the
Riemann sum approximation.

2.When the fusion rule is the K-out-of-L rule, we prove that there exists an
analytical form for the optimal sensor rules in the presence of nonideal channels.
Thus, the proposed method allows us to design decision rules for large-scale
sensor networks.
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3.The Monte Carlo Gauss-Seidel optimization algorithm is extended to
simultaneously search for the optimal sensor rules and the optimal fusion rule.

Numerical examples show the effectiveness of the new algorithms for large-scale
sensor networks with dependent observations and channel errors.

The rest of this chapter is organized as follows: In Section 2, the parallel binary
Bayesian detection network with channel errors is formulated and the Monte Carlo
cost function is introduced. In Section 3, the necessary condition for the optimal
sensor rules is presented. For the K-out-of-L fusion rule, the analytical form for the
optimal sensor rules is provided. In Section 4, the Monte Carlo Gauss-Seidel iterative
algorithm and its convergence analysis are presented. The extension to search for the
optimal sensor rules and the optimal fusion rule are simultaneously described in
Section 5. Simulation results are provided in Section 6. Conclusions are contained in
Section 7.

2. Preliminaries

2.1 Problem formulation

The L-sensor parallel Bayesian detection network structure with two hypotheses
H0 and H1 in the presence of nonideal channels is considered (see Figure 1). Assume
that y1, y2, … , yL are sensor observations and the jth sensor compresses the nj-

dimension vector observation yj to one bit: Ij yj
� �

: nj ! 0, 1f g, j ¼ 1, … , L. For

notational convenience, nj ¼ 1 in the following description. The L sensors transmit the
compressed data to the fusion center and the fusion center makes the decision
between H0 and H1. Since external interference and internal errors may occur, the
channels are not reliable and the fusion center may not correctly receive the symbol Ij
sent by the jth sensor. Let I0j denote the received bit by the fusion center for j ¼
1, 2, … , L. Generally speaking, I0j may not be equal to Ij. The definition and assump-
tions on channel errors (see e.g., [29, 31]) are summarized below:

Definition 1: The channel errors between the jth sensor and the fusion center are

described as Pce1
j ¼ P I0j ¼ 0jIj ¼ 1

� �
and Pce0

j ¼ P I0j ¼ 1jIj ¼ 0
� �

for j ¼ 1, 2, … , L,

where Pce1
j is the probability of channel error when the jth sensor sends 1 but the

fusion center receives 0, and Pce0
j is the probability of channel error when the jth

sensor sends 0 but the fusion center receives 1.

Figure 1.
The L-sensor parallel binary Bayesian detection network structure in the presence of nonideal channels.
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Assumption 1: The probabilities of channel error are statistically independent of

the hypotheses, namely P I0j jIj, Hν

� �
¼ P I0j jIj

� �
, ν ¼ 0, 1.

Remark 1: Assumption 1 is due to the hierarchical structure based on the Markov
property (see [29]).

Assumption 2: The channels that connect the sensors to the fusion center are

independent, i.e., P I01 , I
0
2 , … , I0LjI1, I2, … , IL

� � ¼QL
j¼1P I0j jIj

� �
.

We consider the parallel binary Bayesian detection network with nonideal
channels that is built on the above definition and assumptions. The final decision
is made by the fusion center based on the received binary bits I01 , I

0
2 , … , I0L

� �
from

the L sensors. From the definition of a general Bayesian cost function given in [25],
the L-sensor binary Bayesian cost function with channel errors at the fusion center can
be written as follows:

C I01 y1
� �

; … ; I0L yL
� �

;F0� � ¼ C00P0P F0 ¼ 0jH0
� �þ C01P1P F0 ¼ 0jH1

� �

þ C10P0P F0 ¼ 1jH0
� �þ C11P1P F0 ¼ 1jH1

� � (1)

¼ cþ aP F0 ¼ 0jH1
� �� bP F0 ¼ 0jH0

� �
, (2)

where Cαβ, α, β ¼ 0, 1 are suitable cost coefficients, P0 and P1 are the prior proba-
bilities for the hypotheses H0 and H1, respectively, F0 is the fusion rule, and
P F0 ¼ μjHν

� �
, μ, ν ¼ 0, 1 denotes the conditional probability of the event that the

fusion center decides in favor of hypothesis μ when the real hypothesis is Hν. The
cost function (1) is simplified to (2) by defining c ¼ C10P0 þ C11P1, a ¼ P1 C01 � C11ð Þ,
b ¼ P0 C10 � C00ð Þ. F0 is actually a function of the disjoint set of all possible binary
messages I01 , I

0
2 , … , I0L

� �
. The received decisions are divided into two sets denoted asH0

0

and H0
1 which are given by

H0
0 ¼ u01 , u

0
2 , … , u0L

� �
: F0 I01 , I

0
2 , … , I0L

� �� � ¼ 0, I0j ¼ u0j , u
0
j ¼ 0=1, j ¼ 1, … , L

n o
;

H0
1 ¼ u01 , u

0
2 , … , u0L

� �
: F0 I01 , I

0
2 , … , I0L

� �� � ¼ 1, I0j ¼ u0j , u
0
j ¼ 0=1, j ¼ 1, … , L

n o
:

Obviously, H0 ¼ u01 , u
0
2 , … , u0L

� �
: I0j ¼ u0j , u

0
j ¼ 0=1, j ¼ 1, … , L

n o
¼ H0

0 ∪H0
1 .

For any binary decisions I01 , I
0
2 , … , I0L

� �
received by the fusion center, the original

sensor decision bits before transmission are I1, I2, … , ILð Þ and they consist of the set
H ¼ u1, u2, … , uLð Þ : Ij ¼ uj, uj ¼ 0=1, j ¼ 1, … , L

� �
: Therefore, based on the law of

total probability, the conditional probability formula, and Assumption 1:

P F0 ¼ 0jHν

� � ¼
X

s0 ∈H0
0

P D0jHν

� � ¼
X

s0 ∈H0
0

X
s∈H

P D0jD� �
P DjHνð Þ, (3)

where D0 ¼ I01 , I
0
2 , … , I0L

� �
, s0 ¼ s0 1ð Þ, … , s0 Lð Þð Þ, I0j ¼ s0 jð Þ, and s0 jð Þ ¼ 0=1 is a

specific value of I0j ; in the same way, D ¼ I1, I2, … , ILð Þ, s ¼ s 1ð Þ, … , s Lð Þð Þ, Ij ¼ s jð Þ,
and s jð Þ ¼ 0=1 is a specific value of Ij. Strictly speaking, we should use P D0 ¼ s0jHν

� �
to represent P D0jHν

� �
and we use the latter for notational simplicity. It is similar to

P DjHνð Þ. Based on Assumption 2:
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P D0jD� � ¼
YL
j¼1

P I0j jIj
� �

, (4)

where for any 1≤ j≤L

P I0j jIj
� �

¼ 1� Pce0
j

� �
1� I0j
� �

1� Ij
� �þ Pce0

j I0j 1� Ij
� �þ 1� Pce1

j

� �
I0j Ij þ Pce1

j 1� I0j
� �

Ij:

(5)

Thus, the cost function (2) becomes

C I01 y1
� �

, … , I0L yL
� �

;F0� � ¼ cþ
X

s0 ∈H0
0

X
s∈H

P D0 Dj Þ aP DjH1ð Þ � bP DjH0ð Þ½ ��
(6)

≜C I1 y1
� �

, … , IL yL
� �

; F0;Pce0, Pce1� �
, (7)

where Pce0 ¼ Pce0
1 , … , Pce0

L

� �
, Pce1 ¼ Pce1

1 , … , Pce1
L

� �
. Hence, the cost function now

becomes a function of the sensor rules I1, … , ILð Þ, the probabilities of channel errors
Pce0, Pce1, and the fusion rule F0. The goal of this chapter is to optimize the sensor rules
and the fusion rule so as to minimize the cost function with known probabilities of
channel errors.

We rewrite aP DjH1ð Þ � bP DjH0ð Þ as follows:

aPDjH1 � bPDjH0 ¼ ÐΩs
apy1, … , yLjH1 � bpy1, … , yLjH0dy1⋯dyL

¼ Ð IΩs apy1, … , yLjH1 � bpy1, … , yLjH0
� �

dy1⋯dyL,
(8)

where Ωs ¼ y1, … , yL
� �

: I1 y1
� � ¼ s 1ð Þ, … , IL yL

� � ¼ s Lð Þ� �
, IΩs is an indicator

function on Ωs, and the region of integration in (8) is the full space. Assume that
p y1, y2, … , yLjHν

� �
, ν ¼ 0, 1 (or p yjHνð Þ) are the known conditional joint probability

density functions. If not, we can learn the joint probability density functions from
training data using copula functions (see, e.g., [17]). Note that I1 y1

� �
, … , IL yL

� �
are

indicator functions and s jð Þ ¼ 0=1, j ¼ 1, … , L,

IΩs ¼ I y1,… ,yLð Þ:I1 y1ð Þ¼s 1ð Þ,… ,IL yLð Þ¼s Lð Þf g
¼ I y1:I1 y1ð Þ¼s 1ð Þf g⋯I yL:IL yLð Þ¼s Lð Þf g
¼ 1� I1ð Þ 1� s 1ð Þð Þ þ I1s 1ð Þ½ �⋯ 1� ILð Þ 1� s Lð Þð Þ þ ILs Lð Þ½ �:

(9)

For simplicity, denote Qj Ij
� � ¼ 1� Ij

� �
1� s jð Þð Þ þ Ijs jð Þ. Substituting (8) into (6),

C I1 y1
� �

, … , IL yL
� �

; F0;Pce0, Pce1� �

¼ cþ
X

s0 ∈H0
0

X
s∈H

PðD0 Dj Þ �
ð
Q1 I1ð Þ⋯QL ILð Þ½ap yjH1ð Þ � bp y H0j Þð �dy¼ cþ

ð
PH0

0
L̂ yð Þdy,

(10)

where PH0
0
¼Ps0 ∈H0

0

P
s∈HP D0jD� �

Q1 I1ð Þ⋯QL ILð Þ and L̂ yð Þ ¼ ap yjH1ð Þ �
bp yjH0ð Þ. Note that from the definition of H0

0, H
0
1 , H

0, and H, we have
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PH0
0
¼
X

s0 ∈H0

1� F0 D0� �� �X
s∈H

P D0jD� �
Q1 I1ð Þ⋯QL ILð Þ

¼
X2L

k0¼1

X2L

k¼1

1� F0 sk0ð Þ� �
P sk0 jskð Þ �

YL
j¼1

1� Ij yj
� �h i

1� sk jð Þ½ � þ Ij yj
� �

sk jð Þ
n o

,
(11)

where sk0 is the element ofH0 and sk is the element ofH. F0 D0� � ¼ 0=1 is used in the
first equality. The second equality holds since there are 2L elements in both H and H0.

2.2 Monte Carlo cost function

An essential difficulty of the Bayesian cost function (10) is the required high
dimensional integration when dealing with large-scale sensor networks. Monte Carlo
importance sampling is an attractive method to deal with this problem. In this
subsection, we approximate the Bayesian cost function (10) by the Monte Carlo
importance sampling method (see, e.g., [34, 35]). According to (10),

C I1 y1
� �

, … , IL yL
� �

; F0;Pce0, Pce1� �

¼ cþ
ð
PH0

0
I1 y1
� �

, … , IL yL
� �

; F0;Pce0, Pce1� � L̂ yð Þ
g yð Þ � g yð Þdy

(12)

¼ g
PH0

0
Yð ÞL̂ Yð Þ
g Yð Þ þ c, (13)

where y ¼ y1, y2, … , yL
� �

, and g yð Þ is a given importance sampling density such
that (12) is well-defined (i.e., g yð Þ>0). In (13), the expectation is taken with respect
to the importance sampling density g. Consequently, assume that N samples
Y1, … , YN are generated from the density g, that is, Y � g yð Þ, where Yi ¼
Yi1, Yi2, … , YiL½ �. Then

C I1 y1
� �

, … , IL yL
� �

;F0;Pce0, Pce1� �
≈

1
N

XN
i¼1

PH0
0
Yi1, Yi2, … , YiLð ÞL̂ Yið Þ

g Yið Þ þ c (14)

≜CMC I1 y1
� �

, … , IL yL
� �

;F0;Pce0, Pce1, N
� �

: (15)

Based on the strong law of large numbers, the expectation (13) can be approxi-
mated by the empirical average (14). Denote (14), namely the Monte Carlo cost
function, as CMC I1 y1

� �
, … , IL yL

� �
; F0;Pce0, Pce1, N

� �
. The optimal importance

sampling density is g y1, y2, … , yL
� �

∝∣PH0
0
L̂ y1, y2,
�

… , yLÞ∣ (see, e.g., [34, 35]).
The initial goal is to minimize the Bayesian cost function (10). Instead, we can

minimize the Monte Carlo cost function (15) by selecting a set of optimal sensor rules
I1 y1
� �

, I2 y2
� �

, … , IL yL
� �

and an optimal fusion rule F0. In this manner, the high-
dimensional integration problem is converted to a problem where we need to deal
with the single summation objective function for large-scale sensor networks. Thus,
for dependent observations with channel errors, the computational complexity is
reduced significantly by the Monte Carlo importance sampling method. In the fol-
lowing sections, we assume that the samples drawn from the importance sampling
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density are fixed so that CMC I1, … , IL;F0;Pce0, Pce1,
�

NÞ does not have any random-
ness, since only deterministic decision rules are considered in this chapter.

3. A necessary condition for the optimal sensor rules

In this section, when the fusion rule is fixed, we derive a necessary condition for
the optimal sensor rules that minimize the Monte Carlo cost function. First, we need
some equivalent transformations for PH0

0
. Then based on the transformations, the

necessary condition can be obtained. At the same time, an analytical result is obtained
when the fusion rule is the K-out-of-L rule.

3.1 Necessary condition

First, we need some equivalent transformations for PH0
0
.

Lemma 1 PH0
0
can be rewritten as follows:

PH0
0
≜ 1� Ij yj

� �h i
Pj1 I1 y1

� �
, … , Ij�1 yj�1

� �
, Ijþ1 yjþ1

� �
, … , IL yL

� �
; F0;Pce0, Pce1

� �

þPj2 I1 y1
� �

, … , Ij�1 yj�1

� �
, Ijþ1 yjþ1

� �
, … , IL yL

� �
; F0;Pce0, Pce1

� �
,

(16)

where for j ¼ 1, 2, … , L,

Pj1 �ð Þ≜
X2L

k0¼1

1� F sk0ð Þ½ � 1� Pce0
j � Pce1

j

� �
1� 2sk0 jð Þð ÞPm 6¼j, (17)

Pj2 �ð Þ≜
X2L

k0¼1

1� F sk0ð Þ½ � sk0 jð Þ þ Pce1
j 1� 2sk0 jð Þð Þ

h i
Pm 6¼j, (18)

Pm6¼j ≜
YL

m, m6¼j

1� Pce0
m

� �
1� sk0 mð Þð Þ 1� Imð Þ þ Pce0

m sk0 mð Þ 1� Imð� Þ

þ 1� Pce1
m

� �
sk0 mð ÞIm þ Pce1

m 1� sk0 mð Þð ÞIm
�
:

(19)

Proof: If sk mð Þ ¼ Im ym
� �

for all m ¼ 1, … , L, then the continued product termQL
m¼1 1� Im ym

� �� �
1� sk mð Þ½ � þ Im ym

� �
sk mð Þ� � ¼ 1 in PH0

0
. Otherwise, it is 0. Thus, PH0

0

can be rewritten as PH0
0
¼P2L

k0¼1 1� F sk0ð Þ½ �P sk0 j I1, I2, … , ILð Þð Þ, where the terms

that equal zero are omitted and P sk0 j I1, I2, … , ILð Þð Þ ¼ QL
j¼1P sk0 jð ÞjIj

� �
: Recalling

the conditional probability formula (5), we rewrite P sk0 jð ÞjIj
� �

as P sk0 jð ÞjIj
� � ¼

1� Ij
� �

1� Pce0
j � Pce1

j

� �
1� 2sk0 jð Þð Þ þ sk0 jð Þ þ Pce1

j 1� 2sk0 jð Þð Þ: Based on these

transformations, PH0
0
can be decomposed as (16).

Remark 2: Note that Pj1 �ð Þ and Pj2 �ð Þ are both independent of Ij yj
� �

for j ¼ 1, … , L.

In addition, they can also be applied in the Riemann sum approximation (see, e.g., [31]).
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Compared with [36], the sum of 2L terms about sk is eliminated and it greatly reduces
the computational time. In addition, the expression for Pj1 �ð Þ given in (17) is also a key
equation in the following results:

Substituting the transformations (16) into (15), we obtain

CMC I1 y1
� �

, … , IL yL
� �

;F0;Pce0, Pce1, N
� �

¼ cþ 1
N

XN
i¼1

1� Ij Yij
� �� �

Pj1 I1 Yi1ð Þð , … , Ij�1 Yi j�1ð Þ
� �

, Ijþ1 Yi jþ1ð Þ
� �

, … , IL YiLð Þ;F0;Pce0, Pce1Þ�

þPj2 I1 Yi1ð Þð , … , Ij�1 Yi j�1ð Þ
� �

, Ijþ1 Yi jþ1ð Þ
� �

, … , IL YiLð Þ; F0;Pce0, Pce1Þ� � L̂ Yið Þ
g Yið Þ ,

(20)

where Yi ¼ Yi1, Yi2, … , YiLð Þ. According to (20), the necessary condition for the
optimal sensor rules that minimize CMC I1 y1

� �
,

�
… , IL yL

� �
;F0;Pce0, Pce1, NÞ is stated

in the following lemma:
Lemma 2: Let I1 y1

� �
, … , IL yL

� �� �
be the set of optimal sensor rules, i.e., they

minimize CMC I1 y1
� �

,
�

… , IL yL
� �

;F0;Pce0, Pce1, NÞ in the parallel Bayesian detection
network, then they must satisfy the following equations:

I1 Yi1ð Þ ¼ I P11 I2 Yi2ð Þ, I3 Yi3ð Þ, … , IL YiLð Þ; F0;Pce0, Pce1� � � L̂ Yið Þ� �
, (21)

I2 Yi2ð Þ ¼ I P21 I1 Yi1ð Þ, I3 Yi3ð Þ, … , IL YiLð Þ;F0;Pce0, Pce1� � � L̂ Yið Þ� �
, (22)

⋯⋯

IL YiLð Þ ¼ I PL1 I1 Yi1ð Þ, I2 Yi2ð Þ, … , IL�1 Yi L�1ð Þ
� �

; F0;Pce0, Pce1� � � L̂ Yið Þ� �
, (23)

where Pj1 �ð Þ are defined by (17) and I �½ � is an indicator function defined as follows:

I x½ � ¼ 1, if x≥0;

0, if x<0:

�
(24)

Proof: Note that both Pj1 �ð Þ and Pj2 �ð Þ are independent of Ij yj
� �

for j ¼ 1, … , L. If

I1 Yi1ð Þ minimizes the Monte Carlo cost function under the given I2 Yi2ð Þ, … , IL YiLð Þ,
we only need to minimize the first term of the summation in (20), that is,

1� I1 Yi1ð Þ½ �P11 I2 Yi2ð Þ, I3 Yi3ð Þ, … , IL YiLð Þ;F0;Pce0, Pce1� � L̂ Yið Þ
g Yið Þ : Note that the value of

I1 Yi1ð Þ is 0 or 1 and g yð Þ is well defined, that is, g Yið Þ>0, I1 Yi1ð Þ should be equal to 1
when P11 I2 Yi2ð Þ,ð I3 Yi3ð Þ, … , IL YiLð Þ;F0; Pce0, Pce1ÞL̂ Yið Þ≥0 for i ¼ 1, … , N, other-
wise it should be equal to 0. Therefore, we obtain (21) by the definition of I x½ � in (24).
Similarly, we obtain (22) and (23) by minimizing (20).

3.2 An analytical result for the K-out-of-L rule

When the fusion rule is a K-out-of-L rule, we would obtain an analytical result in
the presence of nonideal channels. It is described as follows:

Theorem 1.1: If the fusion rule is a K-out-of-L rule and the probabilities of channel
errors are less than 0.5 (i.e., 0<Pce0

j <0:5, 0<Pce1
j <0:5) for each channel, the optimal

sensor rules are Ij Yij
� � ¼ I L̂ Yið Þ� �

for i ¼ 1, … , N and j ¼ 1, … , L.
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Proof: From Lemma 1, we know

Pj1 �ð Þ ¼
X2L

k0¼1

1� F sk0ð Þ½ �Pm 6¼j � 1� Pce0
j � Pce1

j

� �
1� 2sk0 jð Þ½ �

¼ 1� Pce0
j � Pce1

j

� �X2L�1

k0¼1

1� F sk0 jsk0 jð Þ ¼ 0ð Þð Þ � 1� F sk0 jsk0 jð Þ ¼ 1ð Þð Þ½ �Pm 6¼j

¼ 1� Pce0
j � Pce1

j

� �X2L�1

k0¼1

F sk0 jsk0 jð Þ ¼ 1ð Þ � F sk0 jsk0 jð Þ ¼ 0ð Þ½ �Pm6¼j:

(25)

Since 0<Pce0
j <0:5, 0<Pce1

j <0:5, we have 1� Pce0
j � Pce1

j >0. Obviously, Pm 6¼j >0
holds from its definition. If F sk0 jsk0 jð Þ ¼ 1ð Þ � F sk0 jsk0 jð Þ ¼ 0ð Þ½ �≥0, Pj1 �ð Þ≥0 can be

derived. When the fusion rule is a K-out-of-L rule, F sk0ð Þ ¼ I
PL

j¼1sk0 jð Þ � K
h i

. Thus,

F sk0 jsk0 jð Þ ¼ 1ð Þ ¼ I
XL

m¼1,m6¼j

sk0 mð Þ þ 1� K

2
4

3
5,

F sk0 jsk0 jð Þ ¼ 0ð Þ ¼ I
XL

m¼1,m 6¼j

sk0 mð Þ þ 0� K

2
4

3
5:

If
PL

m¼1,m6¼jsk0 mð Þ þ 0� K ≥0, then
PL

m¼1,m6¼jsk0 mð Þ þ 1� K ≥0, and we can get

that F sk0 jsk0 jð Þ ¼ 1ð Þ � F sk0 jsk0 jð Þ ¼ 0ð Þ ¼ 0. If
PL

m¼1,m 6¼jsk0 mð Þ þ 0� K <0, then
F sk0 jsk0 jð Þ ¼ 1ð Þ � F sk0 jsk0 jð Þ ¼ 0ð Þ≥0. In a word, F sk0 jsk0 jð Þ ¼ 1ð Þ � F sk0 jsk0 jð Þ ¼ 0ð Þ≥0 is
derived, thus Pj1 ≥0. It is easy to find a sk0 mð Þ, m 6¼ j so that

PL
m¼1,m 6¼jsk0 mð Þ þ 0 ¼

K � 1 and
PL

m¼1,m 6¼jsk0 mð Þ þ 1 ¼ K. Thus, there must exist F sk0 jsk0 jð Þ ¼ 1ð Þ �
F sk0 jsk0 jð Þ ¼ 0ð Þ>0. Therefore, the Pj1 >0 is derived. Recalling the necessary condition
for the optimal sensor rules, that is, I Yij

� � ¼ I Pj1 �ð Þ � L̂ Yið Þ� �
, the proof is completed.

Remark 3: The K-out-of-L rule counts the number of sensors that vote in favor ofH1

and compares it with a given threshold K [37]. It is also referred to as the counting rule
or voting rule and is widely used in the practical decision fusion area [38, 39]. It
encompasses a general class of fusion rules such as AND, OR, and Majority Boolean
fusion rules [40]. The reason we assume that the probabilities of channel errors are less
than 0.5 is based on practical considerations. If the probabilities of channel errors are
greater than or equal to 0.5, the channel is totally unreliable and the performance is not
better than a random decision. Obviously, the analytical solution is very efficient to
tackle large-scale sensor networks with dependent observations and channel errors.

4. Monte Carlo Gauss-Seidel iterative algorithm and its convergence

For general fusion rules that do not have the form of a K-out-of-L rule, an efficient
algorithm can be obtained that is inspired by Lemma 2. Next, we present a Monte Carlo
Gauss-Seidel iterative algorithm and derive its convergence, when the fusion rule is fixed.
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4.1 Monte Carlo Gauss-Seidel iterative algorithm

Based on the fixed-point type necessary condition given in Lemma 2, the Monte
Carlo Gauss-Seidel iterative algorithm is presented in Algorithm 1.

Algorithm 1: Optimization of the sensor rules.

Given the fusion rule F0:

• Step 1: Generate N samples: Y1, … , YN � g yð Þ, where g yð Þ is an importance
sampling density and Yi ¼ Yi1, Yi2, … , YiL½ �.

• Step 2: Initialize the L sensor rules, for j ¼ 1, 2, … , L and i ¼ 1, … , N,

I 0ð Þ
j Yij
� � ¼ 0=1: (26)

• Step 3: Iteratively search for the L sensor rules until a termination criterion in
Step 4 is satisfied. The nþ 1th iteration is given as follows: for i ¼ 1, … , N,

I nþ1ð Þ
1 Yi1ð Þ ¼ I P11 I nð Þ

2 Yi2ð Þ, I nð Þ
3 Yi3ð Þ, … , I nð Þ

L YiLð Þ;F0;Pce0, Pce1
� �

L̂ Yið �,
h

(27)

I nþ1ð Þ
2 Yi2ð Þ ¼ I P21 I nþ1ð Þ

1 Yi1ð Þ, I nð Þ
3 Yi3ð Þ, … , I nð Þ

L YiLð Þ;F0;Pce0, Pce1
� �

L̂ Yið Þ
h i

, (28)

I nþ1ð Þ
L YiLð Þ ¼ I PL1 I nþ1ð Þ

1 Yi1ð Þ, … , I nþ1ð Þ
L�1 Yi L�1ð Þ

� �
; F0;Pce0, Pce1

� �
L̂ Yið Þ

h i
: (29)

• Step 4: For i ¼ 1, … , N, the termination criterion of the iteration process is

I nþ1ð Þ
1 Yi1ð Þ ¼ I nð Þ

1 Yi1ð Þ,
I nþ1ð Þ
2 Yi2ð Þ ¼ I nð Þ

2 Yi2ð Þ,
⋯⋯

I nþ1ð Þ
L YiLð Þ ¼ I nð Þ

L YiLð Þ:

(30)

Remark 4:When we obtain I1 Yi1ð Þ for i ¼ 1, … , N, we can compress y1 by defining
I1 y1
� � ¼ I1 Yi1ð Þ if the distance ky1 � Yi1k≤ ky1 � Yi01k for all i0 6¼ i. In the same way,

we can compress yj for j ¼ 2, … , L. In fact, the method is to find one nearest neighbor
of yj for j ¼ 1, … , L and use the corresponding compression rule. Moreover, we can
utilize the k-nearest neighbor (knn) to compress yj (see more in [41]).

Remark 5: The main computation burden of Algorithm 1 is included in (27)–(29).
If we let the number of discretized points N1 ¼ N2 ¼ … ¼ NL ¼ N in [31], then
Pj1 �ð ÞL̂ Yið Þ, j ¼ 1, … , L, and i ¼ 1, … , N are computed LNL times for each iteration,
as in [31]. But they only need to be computed LN times in Algorithm 1. Thus, the
computational complexity of Algorithm 1, i.e., O LNð Þ is much less than that in [31],
that is, O LNL� �

. It is more efficient to tackle large-scale sensor networks with
dependent observations and channel errors.
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4.2 Convergence of the iterative algorithm

Now, we show that Algorithm 1 must converge to a stationary point and the algo-
rithm cannot oscillate infinitely, that is, it terminates after a finite number of iterations.

Lemma 3: Given the fusion rule F0, for any initial values I 0ð Þ
1 , … , I 0ð Þ

L

� �
in (26),

CMC I nð Þ
1 , … , I nð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ;F0;Pce0, Pce1, N
� �

must converge to a stationary point

after a finite number of iterations.
Proof: For j ¼ 1, … , L, we denote CMC (20) in the nþ 1th iteration process by

CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

¼ 1
N

XN
i¼1

1� I nþ1ð Þ
j Yij

� �h i
Pj1ðI nþ1ð Þ

1 Yi1ð Þ, … , I nþ1ð Þ
j�1 Yi j�1ð Þ

� �
, I nð Þ

jþ1 Yi jþ1ð Þ
� �

, … , I nð Þ
L YiLð Þ;F0;

n

Pce0, Pce1, NÞ þ Pj2ðI nþ1ð Þ
1 Yi1ð Þ, … , I nþ1ð Þ

j�1 Yi j�1ð Þ
� �

, I nð Þ
jþ1 Yi jþ1ð Þ
� �

, … , I nð Þ
L YiLð Þ;F0;Pce0, Pce1, NÞ

o

� L̂ Yið Þ
g Yið Þ þ c:

(31)

Similarly, we denote the nþ 1ð Þth iteration process of the iterative items Pj1 �ð ÞL̂ �ð Þ
in (27)–(29) by

Gi
j ¼ Pj1 I nþ1ð Þ

1 Yi1ð Þ, … , I nþ1ð Þ
j�1 Yi j�1ð Þ

� �
, I nð Þ

jþ1 Yi jþ1ð Þ
� �

, … , I nð Þ
L YiLð Þ;F0;Pce0, Pce1, N

� �
L̂ Yið Þ, (32)

for i ¼ 1, … , N and j ¼ 1, … , L: Plugging Gi
j into (31), we know

CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ;F0;Pce0, Pce1, N
� �

¼ 1
N

XN
i¼1

1� I nþ1ð Þ
j Yij

� �h i

g Yið Þ Gi
j þ Ci

j,

(33)

where Ci
j ¼ cþ 1

N

PN
i¼1Pj2 I nþ1ð Þ

1 Yi1ð Þ, … , I nþ1ð Þ
j�1 Yi j�1ð Þ

� �
, I nð Þ

jþ1 Yi jþ1ð Þ
� �

, … , I nð Þ
L YiLð Þ; F0;

�

Pce0, Pce1, NÞ L̂ Yið Þ
g Yið Þ is independent of I

nð Þ
j and I nþ1ð Þ

j . Splitting 1� I nþ1ð Þ
j Yij

� �
into two terms,

we obtain

CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

¼ 1
N

XN
i¼1

1� I nð Þ
j Yij
� �h i

þ I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

g Yið Þ Gi
j þ Ci

j

¼ 1
N

XN
i¼1

1� I nð Þ
j Yij
� �h i

g Yið Þ Gi
j þ Ci

j þ
1
N

XN
i¼1

I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

g Yið Þ Gi
j

¼ CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j�1 , I nð Þ
j , … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

þD nþ1ð Þ
j ,

(34)
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where

D nþ1ð Þ
j ¼ 1

N

XN
i¼1

I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

g Yið Þ Gi
j: (35)

Note that (27)–(29) imply that I nþ1ð Þ
j Yij

� � ¼ 0 if and only if Gi
j <0 and

I nþ1ð Þ
j Yij

� � ¼ 1 if and only if Gi
j ≥0 for i ¼ 1, … , N, j ¼ 1, … , L. It means

I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

Gi
j ≤0: (36)

Thus, for ∀i, j

I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

Gi
j=g Yið Þ≤0, (37)

where the inequality (35) holds since g �ð Þ is well-defined (i.e., g �ð Þ>0). Substitut-

ing (35) into (33) yields D nþ1ð Þ
j ≤0. Thus, for ∀j≤L,

CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

≤CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j�1 , I nð Þ
j , … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

:

(38)

Furthermore,

CMC I nþ1ð Þ
1 , I nþ1ð Þ

2 , … , I nþ1ð Þ
L ;F0;Pce0, Pce1, N

� �

≤CMC I nð Þ
1 , I nð Þ

2 , … , I nð Þ
L ;F0;Pce0, Pce1, N

� �
:

(39)

It means CMC is nonincreasing. Note that CMC I nð Þ
1 , I nð Þ

2 , … , I nð Þ
L ; F0;Pce0, Pce1, N

� �
is

a finite value. We conclude that it must converge to a stationary point after a finite
number of iterations.

Theorem 1.2: Given the fusion rule F0, the sensor rules I nð Þ
1 , I nð Þ

2 , … , I nð Þ
L are finitely

convergent, i.e., Algorithm 1 converges after a finite number of iterations.
Proof: By Lemma 3, CMC must attain a stationary point after a finite number of

iterations. It means that the value of CMC cannot change after nth iteration, that is,

CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ; F0;Pce0, Pce1, N
� �

¼ CMC I nþ1ð Þ
1 , … , I nþ1ð Þ

j�1 , I nð Þ
j , … , I nð Þ

L ;F0;Pce0, Pce1, N
� �

:

(40)

Using (32) and (37), we derive that D nþ1ð Þ
j ¼ 0. Combining (33)–(35), we know

I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� �h i

Gi
j ¼ 0, for i ¼ 1, … , N, (41)

which implies either I nð Þ
j Yij
� �� I nþ1ð Þ

j Yij
� � ¼ 0, i:e:, I nð Þ

j Yij
� � ¼ I nþ1ð Þ

j Yij
� �

or Gi
j ¼

0, i:e:, I nþ1ð Þ
j Yij

� � ¼ 1, I nð Þ
j Yij
� � ¼ 0: It follows that when CMC converges to a stationary
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point, either I nþ1ð Þ
j Yij

� �
is invariant or I nþ1ð Þ

j Yij
� � ¼ 1, I nð Þ

j Yij
� � ¼ 0. Namely, I nþ1ð Þ

j Yij
� �

can only change from 0 to 1 at most a finite number of times. Therefore, the

I nð Þ
1 , I nð Þ

2 , … , I nð Þ
L are finitely convergent.

5. Extension for simultaneous search for the optimal sensor rules and
fusion rule

In this section, we extend the Monte Carlo method to search for the optimal
sensor rules and the optimal fusion rule simultaneously. Firstly, the necessary
condition is generalized to search for the optimal sensor rules and the optimal
fusion rule simultaneously. Secondly, we describe a generalized Monte Carlo
Gauss-Seidel iterative algorithm. We also give the convergence of the iterative
algorithm.

5.1 A necessary condition for the optimal sensor rules and the optimal fusion rule

Note that (15) can be rewritten as follows:

CMC I1 y1
� �

; … ; IL yL
� �

;F0; ;Pce0; ;Pce1;N
� �

¼ cþ 1
N

XN
i¼1

X2L

k0¼1

X2L

k¼1

1� F0 sk0ð Þ� �
P sk0 jskð Þ � PskðI Yið Þ L̂ Yið Þ

g Yið Þ

¼ cþ 1
N

X2L

k0¼1

1� F0 sk0ð Þ� �XN
i¼1

X2L

k¼1

P sk0 jskð Þ � PskðI Yið Þ L̂ Yið Þ
g Yið Þ ,

(42)

where Psk I Yið Þð Þ≜QL
j¼1 sk jð ÞIj Yij

� �þ 1� sk jð Þð Þ 1� Ij Yij
� �� �� �

and I Yið Þ ¼
I1 Yi1ð Þ, I2 Yi2ð Þ, … , IL YiLð Þð Þ. Since Psk I Yið Þ ¼ 1ð if and only if Ij ¼ sk jð Þ for all j ¼
1, … , L, (39) can be simplified as follows:

CMC I1 y1
� �

; … ; IL yL
� �

;F0; ;Pce0; ;Pce1;N
� �

¼ cþ 1
N

X2L

k0¼1

1� F0 sk0ð Þ� � �
XN
i¼1

P sk0 j I1 Yi1ð Þ; … ; IL YiLð Þð Þð Þ L̂ Yið Þ
g Yið Þ ,

(43)

where the terms Psk I Yið Þð Þ ¼ 0 are eliminated.
Remark 6: According to (20) and (40), the necessary condition for the optimal

sensor rules is similar to Lemma 2 and the necessary condition for the optimal fusion
rule is given by

F0 sk0ð Þ ¼ I
XN
i¼1

P sk0 j I1 Yi1ð Þ, … , IL YiLð Þð Þð Þ � L̂ Yið Þ
g Yið Þ

" #
(44)

for k0 ¼ 1, … , 2L. The proofs are similar to Lemma 2.
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5.2 Generalized Monte Carlo Gauss-Seidel iterative algorithm

Based on the fixed-point type necessary condition, the generalized Monte Carlo
Gauss-Seidel iterative algorithm is presented in Algorithm 2.

Remark 7: For any initial values I 0ð Þ
1 , … , I 0ð Þ

L ; F0 0ð Þ
� �

, the Monte Carlo cost

function CMC I nð Þ
1 , … , I nð Þ

j , I nð Þ
jþ1, … , I nð Þ

L ;F0 nð Þ;Pce0, Pce1, N
� �

must converge to a sta-

tionary point and Algorithm 2 terminates after a finite number of iterations. The
proofs are similar to those of Lemma 3 and Theorem 1.2.

Algorithm 2: Simultaneous optimization of the sensor rules and the fusion rule.

• Step 1: Generate N samples: Y1, … , YN � g yð Þ, where g yð Þ is an importance
sampling density and Yi ¼ Yi1, Yi2, … , YiL½ �.

• Step 2: Initialize the L sensor rules and the fusion rule, respectively, for
j ¼ 1, 2, … , L, i ¼ 1, … , N, and k0 ¼ 1, … , 2L,

I 0ð Þ
j Yij
� � ¼ 0=1, F0 0ð Þ sk0ð Þ ¼ 0=1:

• Step 3: Iteratively search for the L sensor rules and the fusion rule until a
termination criterion in Step 4 is satisfied. The nþ 1th iteration is given as
follows: for i ¼ 1, … , N and k0 ¼ 1, … , 2L

I nþ1ð Þ
1 Yi1ð Þ ¼ I P11 I nð Þ

2 Yi2ð Þ, I nð Þ
3 Yi3ð Þ, … , I nð Þ

L YiLð Þ; F0 nð Þ;Pce0, Pce1
� �

� L̂ Yið Þ
h i

,

I nþ1ð Þ
2 Yi2ð Þ ¼ I P21 I nþ1ð Þ

1 Yi1ð Þ, I nð Þ
3 Yi3ð Þ, … , I nð Þ

L YiLð Þ; F0 nð Þ;Pce0, Pce1
� �

� L̂ Yið Þ
h i

,

⋯⋯

I nþ1ð Þ
L YiLð Þ ¼ I PL1 I nþ1ð Þ

1 Yi1ð Þ, I nþ1ð Þ
2 Yi2ð Þ, … , I nþ1ð Þ

L�1 Yi L�1ð Þ
� �

; F0 nð Þ;Pce0, Pce1
� �

� L̂ Yið Þ
h i

,

F0 nþ1ð Þ sk0ð Þ ¼ I
XN
i¼1

P sk0 I nþ1ð Þ
1 Yi1ð Þ, I nþ1ð Þ

2 Yi2ð Þ, … , I nþ1ð Þ
L YiLð Þ

� ����
� L̂ Yið Þ
g Yið Þ

 #
:

"

• Step 4: For i ¼ 1, … , N and k0 ¼ 1, 2, … , 2L, the termination criterion of the
iteration process is

I nþ1ð Þ
1 Yi1ð Þ ¼ I nð Þ

1 Yi1ð Þ,

I nþ1ð Þ
2 Yi2ð Þ ¼ I nð Þ

2 Yi2ð Þ,
⋯⋯

I nþ1ð Þ
L YiLð Þ ¼ I nð Þ

L YiLð Þ;

F0 nþ1ð Þ sk0ð Þ ¼ F0 nð Þ sk0ð Þ:

92

Functional Calculus - Recent Advances and Development



6. Numerical examples

In this section, in order to evaluate the performance of Algorithms 1 and 2, we
present some examples with a Gaussian signal s observed in the presence of Gaussian
sensor noises.

The random signal s and observation noises v1, v2, … , vL are as follows:

H0 : yj ¼ vj; H1 : yj ¼ sþ vj, for j ¼ 1, … , L, (45)

where v1, v2 … , vL, s are all mutually independent and

vj � N 0, 0:6ð Þ, s � N 1, 0:4ð Þ, for j ¼ 1, … , L:

Thus, given H0 and H1, the two conditional probability density functions are

p y1, y2, … , yLjH0
� � � N μ0, Σ0ð Þ, p y1, y2, … , yLjH1

� � � N μ1, Σ1ð Þ,

where μ0, μ1, Σ0, Σ1 are easily obtained from the relationship of s, v1, v2, … , vL.
Assume that each sensor is required to transmit a bit through a channel with

probabilities of Pceo
j ¼ Pce1

j ¼ p, where p ¼ 0:05, 0:15, 0:3, for j ¼ 1, 2, … , L. In the
cost function (2), let the cost coefficients C00 ¼ C11 ¼ 0 and C10 ¼ C01 ¼ 1. The
receiver operating characteristics (ROC) curves are used to evaluate the performance
of the algorithms. Pf and Pd denote the probability of false alarm and the probability
of detection, respectively.

6.1 Two-sensor network

We compare the Monte Carlo Gauss-Seidel iterative algorithm with the centralized
algorithm and the iterative algorithm based on the Riemann sum approximation in
[31] by using the receiver operating characteristics (ROC) curves.

In this case, we know μ0 ¼ 0, 0½ �T, μ1 ¼ 1, 1½ �ÞT and Σ0 ¼ 0:6, 0; 0, 0:6½ �, Σ1 ¼
1, 0:4; 0:4, 1½ �. Some discrete values of a and b are used to plot ROC curves. We refer
to the optimal importance sampling density g yð Þ∝∣PH0

0
yð ÞL̂ yð Þ∣ in Section 2.2 and

∣L̂ yð Þ∣ ¼ ∣ap yjH1ð Þ � bp yjH0ð Þ∣. The form is similar to the mixture-Gaussian distribu-
tion. Therefore, the importance sampling density g yð Þ is chosen to be the mixture-
Gaussian distribution. The effects of choosing different g yð Þ in terms of the perfor-
mance of the Monte Carlo method were shown in [21] via numerical examples. For
Algorithm 1, we take N ¼ 200 samples from the density g yð Þ. For the Riemann sum
approximation iterative algorithm in [31], we take a discretized step-size Δ ¼ 0:09,
yi ∈ �8, 10½ �, i.e., N1 ¼ N2 ¼ N ¼ 200. The ROC curves for three important fusion
rules: AND, OR, and XOR rules with p ¼ 0:05, 0:15, 0:3 are plotted in Figure 2. We
compare the computational time of the two algorithms with p ¼ 0:15 in Figure 3. Note
that the analytical solution is used for the AND rule and the OR rule. Since the XOR
rule is not a K-out-of-L rule, we use Algorithm 1 to search for the sensor rules.

Some observations in Figures 2 and 3 are presented as follows:

• Given the fusion rule, the two points 0, 0ð Þ and 1, 1ð Þ may not be the beginning
or ending points of the ROC curves, which is different from the case in the ideal
channel cases. In addition, the larger the probability of channel errors is, the
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farther away from 0, 0ð Þ or 1, 1ð Þ the ROC curves are. A possible reason is that
the detection probability is not equal to 0 or 1, even when the false alarm
probability is 0 or 1 in the presence of channel errors.

• From Figure 2, when the probability of channel transmission errors increases,
the decision fusion performance of different methods using the optimal sensor
rules decreases.

• It can be seen in Figure 2 that the ROC curves of the new Monte Carlo approach
are very close to those of the previous algorithm based on the Riemann sum
approximation. However, from Figure 3, the computational time of the Monte
Carlo importance sampling approximation is much less than that of the Riemann
sum approximation for the three different fusion rules. It also implies that the
new method can be used to deal with large-scale sensor networks.

• Note that the computational time of the AND rule and the OR rule is less than
that of the XOR rule for the Monte Carlo importance sampling approximation
from Figure 3. The reason is that the AND rule and the OR rule belong to the
K-out-of-L rules. The analytical form is used for the AND rule and the OR rule,
therefore, the corresponding computation time is relatively lower.

Figure 3.
Two-sensor computational time as N increases with the probability of channel errors p ¼ 0:15.

Figure 2.
Two-sensor ROC curves with the probability of channel errors p ¼ 0:05, 0:15, 0:3.
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6.2 Ten-sensor network

We consider a larger sensor network with 10 sensors, which cannot be dealt with
by the previous decision fusion algorithm based on the Riemann sum approximation
due to its heavy computation requirements. For different probabilities of channel
errors, the ROC curves of the AND rule, the OR rule, the 4-out-of-10 rule, the 6-out-
of-10 rule, and Algorithm 2 are plotted in Figure 4.

Some observations in Figure 4 are presented as follows:

• The ROC curves for the ten-sensor network exhibit similar behavior as those for
the two-sensor network.

• Given the fusion rule and the probability of channel errors, the decision fusion
performance of the AND rule is better than the other rules for a small false alarm
probability and the decision fusion performance of the OR rule is better than the
other rules for a large false alarm probability. The reason may be that both of
them are extreme cases of the fusion rules. For other cases, the 4-out-of-10 rule
and the 6-out-of-10 rule perform better than the AND rule and the OR rule,
respectively.

• Regardless of the centralized detection algorithm, Figure 4 shows that the ROC
curves generated by Algorithm 2 obtain almost the best performance for different
probabilities of channel errors. It implies that a simultaneous search for the
sensor rules and the fusion rule would provide better decision fusion
performance.

6.3 One-hundred-sensor network

We consider a large-scale network with one hundred sensors. The parameter
settings are similar to Section 6.2. The ROC curves of the 20-out-of-100 rule, the
40-out-of-100, the 50-out-of-100, the 60-out-of-100 rule, and the 80-out-of-100 rule
are plotted in Figure 5.

From Figure 5, it can be seen that the dramatically lower computational require-
ment of our method enables us to handle a large sensor network consisting of one
hundred sensors. This is due to the fact that we have shown that there exist analytical
forms of the optimal sensor rules for the K-out-of-L rule. In addition, the decision
fusion performance of different methods is improved, as the number of sensors
becomes large.

Figure 4.
Ten-sensor ROC curves with the probability of channel errors p ¼ 0:05, 0:15, 0:3.
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7. Conclusion

By employing the Monte Carlo importance sampling technique, decision fusion
algorithms have been provided for large-scale sensor networks with dependent obser-
vations and channel errors. The Bayesian cost function is approximated by the Monte
Carlo cost function. The necessary conditions for the optimal sensor rules and the
optimal fusion rule that minimize the Monte Carlo cost function have been obtained.
Computationally efficient Monte Carlo Gauss-Seidel iterative algorithms have been
proposed to search for the optimal sensor rules and the optimal fusion rule. These
algorithms have been shown to converge after a finite number of iterations. The
computational complexity of the new algorithm (i.e., O LNð Þ) is much less than that of
the previous algorithm based on Riemann sum approximation (i.e., O LNL� �

). For the
K-out-of-L rule, an analytical solution has been presented for the optimal sensor rules.
Simulations have demonstrated the effectiveness of Algorithms 1 and 2. Future work
will include the decision fusion algorithms under the Monte Carlo framework for
other networks such as tandem networks, tree networks, and sensor networks under
Byzantine attack.
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