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Chapter 1

Free Actions of Compact Lie
Groups on Manifolds
Thales Fernando Vilamaior Paiva

Abstract

If a compact Lie group G acts freely on a manifold X, the resulting orbit space X=G
is itself a manifold. This text is concerned with the existence of such actions as well as
the cohomological classification of the respective orbit spaces by using some known
tools of equivariant cohomology theory and spectral sequences.

Keywords: free actions, manifolds, orbit spaces, cohomology, spectral sequences

1. Introduction

When a topological group G acts on a manifold X, we can define the orbit space
X=G, that does not necessarily have the structure of a manifold. However, when G is a
compact Lie group and we impose the condition that the action be free, which means
that the isotropy subgroup Gx contains only the trivial element 1 of G, for any x∈X,
then we can construct on X=G a manifold structure.

The general situation above can be illustrated by the construction of the projective
spaces kPn, for k ¼ , or , that are orbit spaces of certain free actions of the groups
2, S1, and S3 on spheres Sn, S2nþ1, and S4nþ3, respectively. Such spaces, as we know,
appear in different contexts and for this reason there is an interest in obtaining certain
algebraic and geometric invariants that characterize them, such as their homotopic
and cohomological classification.

Thus, given X and G, we can naturally consider the general problem of classifying
the space of orbits X=G, through the existence or not of a free action of G on X, which
is a typical transformation group problem associated with this data.

The interest in this type of problem, particularly when G is a finite group, has
become greater since the publication of work [1], by H. Hopf in 1926, in which one
formalizes the purpose of classification of all manifolds whose universal covering is
homeomorphic to a sphere Sn: This problem, as we know, is equivalent to the classifi-
cation of all finite groups that can act freely on Sn:

However, we realize that to get a homotopic classification of such spaces can
become extremely complicated, even when the space X already has a known classifi-
cation. For example, let Sn be the n�sphere seen as the one-point compactification of
euclidean space n, which does not have a complete classification of its homotopy
groups. As a result, instead of a homotopic classification, we can consider a
cohomological classification of these orbit spaces.
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In this direction, we realize that the difficulty in computing the cohomology of the
orbit space X=G, by direct methods, becomes evident when X has nontrivial coho-
mology on several levels. On the other hand, many such results have been obtained by
using some tools of equivariant cohomology theory. This is due to the fact that as long
as G is a compact Lie group acting freely on a space X, there is a homotopy equiva-
lence between the orbit space X=G and the Borel space XG, so that we can use the
so-called Leray-Serre spectral sequence associated with the Borel fibration:

ð1Þ

where BG denotes the classifying space for group G, to investigate the cohomology
ring H ∗ XG;Rð Þ ffi H ∗ X=G;Rð Þ:

In this text, we briefly deal with these tools and then we present some applications
regarding the existence of free actions of certain compact Lie groups in some classes of
smooth manifolds, as well as the cohomological classification of the respective orbit
spaces.

2. Preliminary concepts

2.1 Group actions and classifying spaces

Let μ : G� X ! X be an action of a topological group G on a topological space X, i.
e. μ is a continuous map such that

μ g, μ h, xð Þð Þ ¼ μ gh, xð Þ, (2)

μ e, xð Þ ¼ x, (3)

for any g,h∈G and for any x∈X, where e indicates the neutral element of G. In
this case, we say that G acts on X and X is a G�space.

As it is usual, we denote by μ g, xð Þ ¼ g xð Þ or simply μ g, xð Þ ¼ gx to indicate the
action of the element g of G on x∈X:

For each x∈X, the subspace G xð Þ ¼ gx; g∈Gf g is called the orbit of the element x:
It is a simple task to show that for any two orbits G xð Þ and G yð Þ, then G xð Þ∩G yð Þ ¼ ∅
or G xð Þ ¼ G yð Þ: Therefore, we can define the orbit space:

X=G ¼ G xð Þ; x∈Xf g, (4)

which is provided with the quotient topology induced by the natural map q : X !
X=G, given by q xð Þ ¼ G xð Þ, which is called orbit map.

Example 2.1.1. Any group G acts on itself by multiplication. Precisely, we can
define μ : G� G ! G by μ g, hð Þ ¼ gh:

An action μ of G on X induces a group homomorphism Γμ : G ! Homeo Xð Þ, such
that, for each g∈G, we define Γμ gð Þ ¼ Lg, where

Lg : X ! X, Lg xð Þ ¼ gx: (5)

The action μ is called effective when the kernel of the homomorphism Γμ contains
only the trivial element e∈G and is called trivial when kerΓμ ¼ G:
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For each x∈X, we call the isotropy subgroup at x the following subgroup of G:

Gx ¼ g∈G; gx ¼ xf g: (6)

When Gx ¼ ef g, for any point x∈X then the action is called free, and X is said to
be a free G�space. The set XG ¼ x∈X; gx ¼ xf g is called the fixed point set of the
action.

Remark 2.1.1. If X is a haursdorff space and G is a compact space, it is well known
that any action μ : G� X ! X is a closed map, according to Theorem 1.2 of [2].
Furthermore, in this case, the subspace μ G� Að Þ⊆X is closed (resp. compact) if A is
closed (resp. compact).

Let X and Y be G�spaces. If the map f : X ! Y is equivariant, i. e. f gxð Þ ¼ gf xð Þ,
for any g∈G and any x∈X, then we can define the map:

f : X=G ! Y=G, f G xð Þð Þ ¼ G f xð Þð Þ: (7)

Remark 2.1.2. Even though it is possible to investigate actions in arbitrary topo-
logical spaces, we are interested in observing certain structures both in X and in the
orbit space X=G, so that we will assume, from now on, that X is a manifold (smooth or
not) and G is a Lie group.

We recall that a Lie group G is a topological group that is also a (real) finite-
dimensional smooth manifold, in which the multiplication operation g1, g2

� �
↦ g1g2

and the inversion map g↦ g�1 are smooth.
Example 2.1.2. The matrix groups GL n, ð Þ, GL n, ð Þ, of the invertible

n� n�matrices with entries in  or , respectively, are standard examples of Lie
groups, along with respective subgroups (special linear groups) SL n, ð Þ and
SL n, ð Þ:

Example 2.1.3. Let O nð Þ⊂GL n, ð Þ be the subgroup of the orthogonal matrices,
i. e. those in which AAt ¼ Id and let U nð Þ be the subgroup of SL n, ð Þ of the unitary
matrices AAt ¼ Id: We can define the special orthogonal group by SO nð Þ ¼
O nð Þ∩ SL n, ð Þ and the special unitary group by SU nð Þ ¼ U nð Þ∩ SL n, ð Þ:

We know that SU 2ð Þ is isomorphic to S3 identified as the subgroup of the unitary
quaternions. Also we know that the isomorphic groups U 1ð Þ and SO 2ð Þ are isomorphic
to the circle group S1:

For each integerm, let m ¼ =m be the group of the integer modulo m, which can
be identified with the subgroup of S1 of all m�th roots of unity. In particular, we have
the following chain of Lie (sub)groups:

m ⊂ S1 ffi U 1ð Þ ffi SO 2ð Þ⊂ SU 2ð Þ ffi S3: (8)

Example 2.1.4. (Free actions on spheres) Let X be the n�sphere Sn ⊂nþ1 and G
be the finite group 2: Then, G acts freely on X by the antipodal map μ 1, xð Þ ¼ A xð Þ ¼
�x, and in this case we have X=G ¼ Pn the real projective space.

For X ¼ S2n�1 ⊂2n ffi n and G ¼ S1 seen as a subgroup of the complex plane, we
can consider the free action induced by complex multiplication:

μ : G� X ! X, μ z, z1, ⋯, znð Þð Þ ¼ zz1, ⋯, zznð Þ, (9)

and it follows that X=G ¼ Pn�1 is the complex projective space.
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Let X ¼ S4n�1 ⊂4n ffi n and G ¼ S3 identified with the group of the unitary
quaternions SU 2ð Þ, where  denotes the quaternion algebra:

 ¼ α �β

β α

" #
; α, β∈

( )
: (10)

Similar to the previous case, we can define the free action μ : G� X ! X, induced
by the multiplication, such that X=G ¼ Pn�1 the quaternionic projective space.

Example 2.1.5. (Free involutions on projective spaces) An involution1 on a space X
is a continuous action of the group 2 on X: Let x1, x2, ⋯, x2n�1, x2n½ �∈P2n�1 ¼
S2n�1=2 be an arbitrary element. Its easy to see that the map:

T x1, x2, ⋯, x2n�1, x2n½ �ð Þ ¼ �x2, x1, ⋯, �x2n, x2n�1½ � (11)

defines a free involution on P2n�1:

Similarly, for z1, z2, ⋯, zm, zmþ1½ � an arbitrary element in Pm ¼ S2mþ1=S1, if m> 1
is odd then we can define the free involution:

S z1, z2, ⋯, zm, zmþ1½ �ð Þ ¼ �z2, z1, ⋯, �zmþ1, zm½ � (12)

Pm: (13)

When a group G acts on a manifold X, in general, we can consider the orbit space
X=G with no other additional structure. However, when the action is free and proper,
then this orbit space can be seen as a manifold, according to the Quotient Manifold
Theorem:

Theorem 2.1.1. (Quotient Manifold Theorem) [4]. Let G be a compact Lie group
acting freely (and smoothly) on a smooth manifold X: If the action is free and proper,
then X=G is also a smooth manifold of dimension dim Xð Þ � dim Gð Þ, such that the
quotient map X ! X=G is a principal G�bundle and a smooth submersion.

Remark 2.1.3. As an immediate consequence of the previous theorem, for every
cohomology functor H ∗ we have Hj X=G;Rð Þ ¼ 0f g, for all j>dimX � dimG, for any
commutative ring with unity R:

Recall that given any compact Lie groupGwe can construct the universal G�bundle
pG : EG ! BG, with fiber space G, where the total space EG is the G�space defined as
the join operation2 of infinite copies ofG, and the base is the quotient space (by diagonal
action) BG ¼ EG=G, which is called the classifying space for G and pG is the projection.

Example 2.1.6. (Classifying spaces for 2,S1 and S3) For G ¼ 2, we can see that
BG ¼ EG=G ffi P∞: Consequently, the mod 2 cohomology of the classifying space BG

is given by H ∗ BG;2ð Þ ¼ 2 t½ �, where degt ¼ 1: Regarding to G ¼ S1, since BG ¼
EG=G ffi P∞, then π1 BGð Þ ¼ 1 and the mod 2 cohomology is give by H ∗ BG;2ð Þ ¼
2 τ½ �, where degτ ¼ 2: With respect to the group G ¼ S3, it follows that BG ¼ EG=G ffi
P∞: Since3 πi BGð Þ ffi πi�1 Gð Þ, therefore π1 BGð Þ ffi 1 and the mod 2 cohomology of BG
is given by H ∗ BG;2ð Þ ¼ 2 τ½ �, where degτ ¼ 4:

1 Formally, an involution is a map T : X ! X such tha T2 ¼ 1: For an extensive treatment of involutions on

manifolds, see [3].
2 For more details on Milnor’s construction of classifying spaces, see [5] and Section 4.11 of [6].
3 For more details, see Corollary 8.13 of [7].
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2.2 The Leray-Serre spectral sequence of a Borel fibration

Let X be a free G�space, q : X ! X=G the orbit map, and ϖ : EG ! BG the
universal G�bundle. The group G acts freely on the product X � EG, by the diagonal
action g x, yð Þ ¼ gx, gyð Þ, where do we get

ρ : X � EG ! X � EGð Þ=G ¼ XG (14)

the respective orbit map. The quotient space XG is also know as the Borel space.
Since the projections proj1 : X � EG ! X and proj2 : X � EG ! EG are

G�equivariant, they induce the fibrations π and p, respectively, according to the
diagram below:

ð15Þ

where π is called the Borel fibration with fiber X, and p is a principal G�bundle.
Moreover, under the above hypothesis, the fiber EG of p is contractible and there-

fore p is a homotopy equivalence4, which induces a natural isomorphism p ∗ :
H ∗ X=G;Rð Þ ! H ∗ XG;Rð Þ, for any commutative ring with unit R:

By Theorem 5.2 of [9], there is a first quadrant cohomological spectral sequence
E ∗ , ∗
r , dr

� �
converging to H ∗ XG;Rð Þ ffi H ∗ X=G;Rð Þ, as an algebra, such that the

E2�page Ep,q
2 , is isomorphic to

Ep,q
2 ffi Hp BG;ℋq X;Rð Þð Þ, (16)

where the symbol ℋq X;Rð Þ indicates a system of local coefficients twisted by the
action of the fundamental group π1 BGð Þ on the cohomology ring of X:

When π1 BGð Þ acts trivially onH ∗ X;Rð Þ, the system of local coefficientsℋq X;Rð Þ is
simple and, according to Proposition 5.6 of [9], the E2�page as in (13) takes the form:

Ep,q
2 ffi Hp BG;Rð Þ⊗ RHq X;Rð Þ, (17)

what happens, in particular, when π1 BGð Þ ¼ 1:
Moreover, by Theorem 5.9 of [9], the homomorphisms

Hq BG;Rð Þ ¼ Eq,0
2 ↠⋯↠Eq,0

q ↠Eq,0
qþ1 ¼ Eq,0

∞ ⊆Hq XG;Rð Þ (18)

and

Hq XG;Rð Þ↠E0,q
∞ ¼ E0,q

qþ1 ⊆E0,q
q ⊆⋯⊆E0,q

2 ¼ Hq X;Rð Þ (19)

coincide with the homomorphisms π ∗ : Hq BG;Rð Þ ! Hq XG;Rð Þ and i ∗ :
Hq XG;Rð Þ ! Hq X;Rð Þ, respectively.

4 According to ([8], p. 180.)
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3. Some applications

Supposing that there is a free action of a group G on X, there is an interest in
classifying the orbit space X=G, in the same way as it happens on the real, complex,
and quaternionic projective spaces.

In order to do this, we will cite some results that use these tools presented in the
previous sections to obtain cohomological classifications for certain known spaces.

However, we observe that in general way, the computation of the cohomology of
the orbit space X=G can be a difficult task when the space X is not a sphere or, more
generally, when X has nontrivial cohomology Hj X;Rð Þ 6¼ 0f g on several levels
0< j<dimX

Remark 3.1. Since all these results use only the cohomological struture of space X,
we observe that the same conclusions can be obtained replacing X by any finitistic

space that has same C
^

ech cohomology algebra. Recall that a finitistic space is a
paracompact Hausdorff space whose every open covering has a finite-dimensional
open refinement, where the dimension of a covering is one less than the maximum
number of members of the covering which intersect nontrivially. It is known [10, 11]
that if G is a compact Lie group acting continuously on X, then X is finitistic if and
only if the orbit space X=G is finitistic. Therefore, we can consider the problem of
cohomology classification of the orbit spaces up to finitistic spaces of isomorphic
cohomology to initial space X:

3.1 Free actions on spheres and projective spaces

In 1926, Hopf posed the general problem of classifying all groups that
present freely in Sn: Posteriorly, in 1957, J. Milnor provided some answers for this
problem by showing, among other things, that the symmetric group S3 cannot act
freely on Sn:

Even considering this classification only on the category of compact Lie groups,
this problem still does not have a complete solution for a arbitrary sphere Sn: How-
ever, if n is even, the only finite group that acts freely on Sn is the group 2:

In fact, if G acts freely on X ¼ S2k, then the quotient map X ! X=G is a covering
projection; therefore, with χ �ð Þ the Euler characteristic, it follows that

2 ¼ χ S2k
� � ¼ ∣G∣ � χ S2k=G

� �
, (20)

which implies that ∣G∣ ¼ 1 or ∣G∣ ¼ 2: Since the action is free, the only possibility is
∣G∣ ¼ 2 and then G ¼ 2: Furthermore, the resulting orbit space Sn=2 has the same
homotopy type of real projective space Pn:

For n odd, the Section 3.8 of [2] contains a compilation of results related to the
existence of free G�actions on spheres Sn: In particular, with respect to groups of
positive dimension, the Theorem 8.5 of [2] states that a group G that act freely on Sn

must be isomorphic to S3, S1, or N S1
� �

:

Suppose that G ¼ S1 and let X ¼ Sn and XG ! BG the Borel fibration.
For E ∗ , ∗

r , dr
� �

the associated Leray-Serre spectral sequence, we have

Ep,q
2 ¼ Hp BG;2ð Þ⊗Hq X;2ð Þ ¼ 2 ⊗2, if p isodd and q ¼ 0, n

0f g, otherwise:

�
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Since this sequence converges to H ∗ X=G;2ð Þ, it follows that it cannot collapse on
E2�page, which means that there is a nontrivial differential d2k : E

0,n
2k ! E2k,0

2k , for
k∈ such that n ¼ 2k� 1:

Therefore, the sequence collapse on E2kþ1�page is E∞ ¼ E2kþ1, whose only nonzero
row is Eeven,0

∞ and the total complex is isomorphic to the graded cohomology ring
H ∗ Pn�1;2
� �

:

Proceeding in a similar way, we can show that H ∗ S4n�3=S3;2
� � ¼ H ∗ Pn�1;2

� �
:

In order to generalize this type of problem, we can consider X a product of spheres.
For example, L. W. Cusick [12] showed that if a finite group G acts freely on a product
of spheres of even dimensions, X ¼ S2n1 �⋯� S2nk , then then G must be isomorphic
to a group of the type r

2, for some r≤ k:
Concerning on free actions of a finite group p, p prime, and the circle group S1 on

a product of spheres Sm � Sn, Dotzel et al. [13] showed the following classification
results according to Theorems 3.1.1, 3.1.2, and 3.1.3.

Theorem 3.1.1. Let p, p an odd prime, act freely on X ¼ Sm � Sn, 0<m≤ n: Then,
H ∗ X=p;p
� �

is isomorphic to p x, y, z½ �=ϕ x, y, zð Þ, as a graded commutative algebra,
where ϕ x, y, zð Þ is one of the following ideals:

i. x2, y mþ1ð Þ=2, z2
� �

m odd, degx ¼ 1, y ¼ β xð Þ the Bockstein cohomology
operation and degz ¼ n;

ii. x2, y mþnþ1ð Þ=2, y n�mþ1ð Þ=2z� ay nþ1ð Þ=2, z2 � bym
� �

, m even, n odd, degx ¼ 1,
y ¼ β xð Þ, degz ¼ m, a,b∈p, and a ¼ 0 necessarily when n< 2m;

iii. x2, y nþ1ð Þ=2, z2 � bym
� �

, n odd, degx ¼ 1, y ¼ β xð Þ, degz ¼ m, b∈p, b 6¼ 0
only when m is even and 2m< n:

Theorem 3.1.20. Let 2 act freely on X ¼ Sm � Sn, 0<m≤ n: Then, H ∗ X=2;2ð Þ
is isomorphic to p y, z½ �=ψ y, zð Þ, as a graded commutative algebra, where ψ y, zð Þ is
one of the following ideals:

i. ymþ2, z2ð Þ, degy ¼ 1, and degz ¼ n;

ii. ymþnþ1, yn�mþ1, z, z2 � aymz� by2m
� �

, degy ¼ 1, degz ¼ m, a,b∈2, and a ¼
0 necessarily when n< 2m;

iii. ynþ1, z2 � aymz� by2m
� �

, degy ¼ 1, degz ¼ m, a,b∈2, and b ¼ 0 necessarirly
when m ¼ n or n< 2m:

Theorem 3.1.3. Let G ¼ S1 act freely on X ¼ Sm � Sn, 0<m≤ n: Then,
H ∗ X=G;ð Þ is isomorphic to  y, z½ �=ψ y, zð Þ, as a graded commutative algebra, where
ψ y, zð Þ is one of the following ideals:

i. y mþ1ð Þ=2, z2
� �

, m odd, degy ¼ 2 and degz ¼ n;

ii. y mþnþ1ð Þ=2, zy n�mþ1ð Þ=2 � ay nþ1ð Þ=2, z2 � bym
� �

, m even, n odd, degy ¼ 2, degz ¼
m, and a ¼ 0 necessarily when n< 2m;
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iii. y nþ1ð Þ=2, z2 � bym
� �

, n odd, degy ¼ 2, degz ¼ m, and b 6¼ 0 only when m is
even and 2m< n:

Using the same techniques, it is shown in [14] similar results regarding the action
of groups S1 and S3 on the product of spheres, considering both rational and mod 2
coefficients.

Theorem 3.1.4. The group S3 cannot act freely on a n�torus X ¼ S1
� �n

:

Proof. Let X be the n�torus S1
� �n

and suppose that G ¼ S3 act freely on X, with
n≥ 3: Let x1,⋯,xn ∈H1 X, 2ð Þ be the generators. By Quotient Manifold Theorem, the
spectral sequence E ∗ , ∗

r , dr
� �

associated with the Borel fibration XG ! BG does not
collapse on the E2�term. Therefore, there must exist some nontrivial differential dp,qr ,
for a certain r≥ 2, such that

Ep,q
r ffi Ep,q

r�1 ffi ⋯ ffi Ep,q
2 ¼ Hp BG;2ð Þ⊗Hq X;2ð Þ,

and it is clear that this is only possible when r≥ 4k, for some k∈ℕ:
Let us suppose that r ¼ 4 and let y ¼ xi1xi2xi3 ∈H3 X;2ð Þ be an element for which

d0,34 1⊗ yð Þ ¼ τ⊗ 1: By dimensional reasons, d0,14 1⊗ xið Þ ¼ 0 for all 1≤ i≤ n; therefore,
it follows that

τ⊗ 1 ¼ d0,34 1⊗ yð Þ ¼ 1⊗ xi1ð Þ 1⊗ xi2ð Þd0,14 1⊗ xi3ð Þ ¼ 0,

for τ the generator of H ∗ BG;2ð Þ, which is a contradiction. Since this argument
works for any r≥4 and for any y∈Hj X;2ð Þ, j≥ 3, it follows that G cannot act freely
on X: □

Let p≥ 2 be a positive integer and q1,⋯,qm be integers coprime to p, where m≥ 1.
Then the action of p on S2m�1 ⊂m defined by:

e2πiq1=p, ⋯, e2πiqm=p
� �

∗ z1, ⋯, zmð Þ ¼ e2πiq1=pz1, ⋯, e2πiqm=pzm
� �

is itself free. Therefore, the resulting orbit space is a compact Hausdorff orientable
manifold of dimension 2m� 1, which is called lens space and it is denoted by:

S2m�1=p ¼ L2m�1
p q1, ⋯, qm

� � ¼ L2m�1
p qð Þ:

Theorem 31.5. [15] Let G ¼ 2 act freely on X ¼ L2m�1
p qð Þ: Then, H ∗ X=G;2ð Þ is

isomorphic to one of the following graded commutative algebras:

i. 2 x½ �= x2m
� �

, where degx ¼ 1:

ii. 2 x, y½ �= x2, ym
� �

, where degx ¼ 1 and degy ¼ 2:

iii. 2 x, y, z½ �= x3, y2, zm=2
� �

, where degx ¼ degy ¼ 1, degz ¼ 4, and m is even.

iv. 2 x, y, z½ �= x4, y2, zm=2, x2y
� �

, where degx ¼ degy ¼ 1, degz ¼ 4, andm is even.

v. 2 x, y, w, z½ �= x5, y2, w2, zm=4, x2y, wy
� �

, where degx ¼ degy ¼ 1, degw ¼ 3,
degz ¼ 8, and 4∣m:
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Related to actions of 2 on the product of projective spaces, both real and complex,
we can mention the work [16], which provides a list of possible cohomology algebras
for the respective orbit spaces. In [17], the authors showed that the group G ¼ S3

cannot act freely on the real projective space of any dimension.
Theorem 3.1.6. The group G ¼ S3 cannot act freely on X ¼ Pn,Pn, for any n>0:
Proof. Let us suppose that the group G ¼ S3 acts freely on X ¼ Pn: Then, the

spectral sequence E ∗ , ∗
r , dr

� �
associated with the Borel fibration X↣XG ! BG, which

has the E2�term given by Ep,q
2 ¼ Hp BG;2ð Þ⊗Hq X;2ð Þ, converges to H ∗ XG;2ð Þ ffi

H ∗ X=G;2ð Þ, as an algebra. By the cohomology structures of BG ffi P∞ and X ¼ Pn,
it follows that

Ep,q
2 ffi 2, if p ¼ 4iandq ¼ 2j, forall i, j≥0,

0f g, otherwise:

�

Therefore, a differential dp,qr : Ep,q
r ! Epþr,qþ1�r

r with bidegree r, 1� rð Þ, is
nontrivial only if p ¼ 4i and q ¼ 2j≤ 2n, for some positive integers i and j: In this case,
we have the following equality involving the bidegrees: 4iþ r, 2jþ 1� rð Þ ¼ 4k, 2lð Þ,
for certain integers k,l>0, that is, these numbers must satisfy the linear system:

4iþ r ¼ 4k,
2jþ 1� r ¼ 2l,

�

that clearly has no integer solution; therefore, we conclude that all differentials
d ∗ , ∗
r are trivial, for all r≥ 2: This implies that the sequence collapses on its

Er ffi E2�term and contradicts the Quotient Manifold Theorem.
Similarly, let us suppose that the group S1 acts freely on X ¼ Pn, and let us

consider E ∗ , ∗
r , dr

� �
the spectral sequence associated with the Borel fibration XS1 !

BS1 , whose E2�term is given by Ep,q
2 ffi Hp BS1 ;2

� �
⊗Hq X;2ð Þ:

Let t be the generator of H ∗ P∞;2ð Þ ffi H ∗ BS1 ;2
� �

and τ be the generator of
H ∗ Pn;2ð Þ: Then,

Ep,q
2 ffi 2, if p ¼ 2iandq ¼ 4j, i, j≥0,

0f g, otherwise:

�

By Quotient Manifold Theorem, the spectral sequence does not collapse on it
E2�term; therefore, there must exist some nontrivial differential d ∗ , ∗

r : If r≥ 2 is the
smallest integer for which this happens, so that

Ep,q
r ffi Ep,q

r�1 ffi ⋯ ffi Ep,q
2 ,

for all p,q≥0, we see that this is only possible when the integers r,i,j, and k (which
are obtained from the equality between the bidegrees involved) satisfy the linear system:

r ¼ 2i,
4jþ 1� r ¼ 4k:

�

But this system has no integer solution; therefore, the group S1 cannot act freely on
X: Since S1 is a subgroup of S3, then X does not admit any free action of S3: □
11
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3.2 Free actions on spaces of type a, bð Þ

Let X be a finite CW complex. We say that X is a space of type a, bð Þ, characterized
by an integer n>0, if

Hj X;ð Þ ¼ , if j ¼ 0, n, 2n, 3n,
0f g, otherwise,

�
(21)

whose generators ui ∈Hin X;ð Þ satisfy the relations au2 ¼ u21 and bu3 ¼ u1u2, for
certain integers a and b: By Universal Coefficient Theorem, the mod 2 cohomology of
X is given by Hin X;2ð Þ ffi Hin X;ð Þ⊗2 ffi 2, for n ¼ 0,1,2,3, and the relations
come to depend only on the parity of the numbers a and b: In this case, we will use the
same symbols to denote the generators, i. e.

2 ffi uih i ffi Hin Xð Þ ¼ Hin X;2ð Þ: (22)

Example 3.2.2. The spaces of type (a, b) were first studied by James [18] and Toda
[19]. Note that we can construct examples of these spaces by considering products or
unions between certain known spaces, as spheres and projective spaces. Moreover, in
Toda’s work, it is shown that it is possible to construct a space of type a, bð Þ for any
choice of a and b: For example,

1.The product Sn � S2n is a space of the type 0, 1ð Þ, characterized by n:

2.The one point union Sn ∨ S2n ∨ S3n is of type 0, 0ð Þ, characterized by n:

3.The one point union S6 ∨P2 is of type 1, 0ð Þ, characterized by n ¼ 2:

4.The projective spaces P3,P3,P3 are examples of spaces of type 1, 1ð Þ,
characterized by n ¼ 1,n ¼ 2 and n ¼ 3, respectively.

In 2010, Pergher et al. [20] investigated the existence of free actions of the groups
2 and S1 on spaces of type a, bð Þ, for n> 1, where they concluded that:

Theorem 3.2.1. [20] Let X be a space of type a, bð Þ, characterized by n> 1:

i. If a is odd and b is even, then 2 cannot act freely on X:

ii. If a 6¼ 0, then S1 cannot act freely on X:

iii. If G ¼ 2 act freely on X where both a and b even, then H ∗ X=G;2ð Þ ffi
2 x, z½ �= x3nþ1, z2, zxnþ1

� �
, where degx ¼ 1 and degz ¼ n:

iv. If G ¼ S1 act freely on X, then a ¼ 0 and H ∗ X=G;2ð Þ is isomorphic to one of
the following graded commutative algebras

2 x, z½ �= x 3nþ1ð Þ=2, z2, zx nþ1ð Þ=2
D E

, wheredegx ¼ 2 anddegz ¼ n,

or

2 x, z½ �= x nþ1ð Þ=2, z2
D E

,where degx ¼ 2,degz ¼ 2nandb isodd:
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In [21], Dotzel and Singh constructed a class of examples of free actions of p, p
prime, on spaces of type 0, 0ð Þ, by using some known topological operations.

In particular, for n even, it is shown in [22] that the only group that can act freely
on X is 2: In addiction, the authors construct a example of such action. If n is odd and
X is of type 0, 1ð Þ, then any finite group G which acts freely on X cannot contain the
group p⊕p, for any p odd prime.

Theorem 3.2.2. Let X be a manifold5 that is a space of type 0, bð Þ, characterized by
n> 1: If G ¼ S3 acts freely on X, then n is an odd number of the form 4k� 1, for some
k≥ 1 and b is odd. In this case, the cohomology algebra of the orbit space X=G is
isomorphic to the graded polynomial algebra 2 x, y½ �= xk, y2

� �
, where degx ¼ 4 and

degy ¼ 2n:
Proof. Let us suppose know that the group G ¼ S3 acts freely on a space X of type

0, bð Þ and let E ∗ , ∗
r , dr

� �
be the spectral sequence associated with the Borel fibration

XG ! BG, with fiber X, such that Ep,q
2 ¼ Hp BG;2ð Þ⊗Hq X;2ð Þ, which converges to

H ∗ XG;2ð Þ ffi H ∗ X=G;2ð Þ:
By Quotient Manifold Theorem, it follows that this sequence does not collapse on

its E2�term. Then, there must exist some nontrivial differential dri , for some ri ≥ 2: If
r ¼ min rif g, then

Ep,q
r ffi Ep,q

r�1 ffi ⋯ ffi Ep,q
2 ,

and this is possible only if r ¼ 4k and n ¼ 4k� 1, for some k≥ 1: This provides the

following possibilities for the action of the differentials d4l,q4k , for q ¼ n,2n,3n :

a. dr 1⊗ u1ð Þ ¼ 0, dr 1⊗ u2ð Þ ¼ τk ⊗ u1 and dr 1⊗ u3ð Þ ¼ τk ⊗ u2,

b. dr 1⊗ u1ð Þ ¼ τk⊗ 1 dr 1⊗ u2ð Þ ¼ τk ⊗ u1 and dr 1⊗ u3ð Þ ¼ 0,

c. dr 1⊗ u1ð Þ ¼ τk⊗ 1, dr 1⊗ u2ð Þ ¼ 0 and dr 1⊗ u3ð Þ ¼ τk ⊗ u2,

d. dr 1⊗ u1ð Þ ¼ 0, dr 1⊗ u2ð Þ ¼ τk ⊗ u1 and dr 1⊗ u3ð Þ ¼ τk ⊗ u2,

e. dr 1⊗ u1ð Þ ¼ 0, dr 1⊗ u2ð Þ ¼ 0 and dr 1⊗ u3ð Þ ¼ τk ⊗ u2,

f. dr 1⊗ u1ð Þ ¼ 0, dr 1⊗ u2ð Þ ¼ τk ⊗ u1 and dr 1⊗ u3ð Þ ¼ 0,

g. dr 1⊗ u1ð Þ ¼ τk⊗ 1, dr 1⊗ u2ð Þ ¼ 0 and dr 1⊗ u3ð Þ ¼ 0:

We will divide the analysis of these cases according to the parity of b:
Case b odd: In this case, we have the relation u1u2 ¼ u3 and, by the multiplicative

properties of the differentials, we have

5 This proof works even if X is a more general finitistic space of type a, bð Þ, and for that we only need an

adaptation of the Quotient Manifold Theorem for a more general result concerning the cohomology of the

quotient of a finitistic CW complex space. More precisely, it is possible to show that if X is a finitistic free

G�space, where G ¼ 2,S1 or G ¼ S3, and if there is n>0 such that Hj X;2ð Þ ¼ 0f g for all j>n then

Hj X=G;2ð Þ ¼ 0f g for all j>n:
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dr 1⊗ u3ð Þ ¼ 1⊗ u1ð Þdr 1⊗ u2ð Þ þ 1⊗ u2ð Þdr 1⊗ u1ð Þ:

So, if one of the cases bð Þ, dð Þ, eð Þ, or gð Þ occurred, it would lead to the contradiction
00 ¼ τk ⊗ u2:

If case að Þ occurred, then the differentials d4i,3n4k and d4i,2n4k would be isomorphisms,
whence it would follow that

imd4i,3n4k ffi 2 ⊈ 0f g ¼ kerd4 iþkð Þ,2n
4k ,

which is a contradiction.
If case fð Þ occurred, then the sequence would collapse on its E4kþ1�term, with the

lines E ∗ ,0
4kþ1 and E ∗ ,3n

4kþ1 containing an infinite number of nonzero elements. This would
contradict the Quotient Manifold Theorem.

Therefore, cð Þ is the only possible case, and it produces the following pattern:

Ep,q
4kþ1 ¼

2, if p ¼ 0, 4, ⋯, 4 k� 1ð Þandq ¼ 2n,
0f g, otherwise:

�

Then, the sequence collapses on its E4kþ1�term, and Ep,q
∞ ffi Ep,q

4kþ1, for all p,q≥0:
So, Hj X=G;2ð Þ ffi Totj E∞ð Þ:

The elements τ⊗ 1 and 1⊗ u2 are the only permanent co-cycles, so they determine
the nonzero elements x and y in E4,0

∞ and E0,2n
∞ , respectively. By (15), we have π ∗ τð Þ ¼

x; then, 0 ¼ π ∗ τj
� � ¼ xj for all j≥ k: By the structure of the E∞�term, it follows that

y2 ¼ 0; therefore, H ∗ X=G;2ð Þ is isomorphic to the graded polynomial algebra
2 x, y½ �= xk, y2

� �
, where degx ¼ 4 and degy ¼ 2n:

Case b even: We will show that if b is even, then none of the cases can occur. By
the relation u1u2 ¼ 0, we have

0 ¼ 1⊗ u1ð Þdr 1⊗ u2ð Þ þ 1⊗ u2ð Þdr 1⊗ u1ð Þ,

and this allows us to eliminate the cases bð Þ, cð Þ, and gð Þ, since they produce the
contradiction 0 ¼ τk ⊗ u2:

By the same reason of the previous case (b odd), we can eliminate case að Þ; that is,
it implies that

imd4i,3n4k ⊈ kerd4 iþkð Þ,2n
4k :

By a similar reason we can eliminate dð Þ, since it implies that the differentials d4i,2n4k

and d4j,3n4k are isomorphisms.
For case eð Þ, the sequence would collapse on its E4kþ1�term, with the lines E ∗ ,0

4k and
E ∗ ,n
4k containing infinite nonzero elements, which would contradict the Quotient

Manifold Theorem. Finally, by the same reason of the previous case, we can eliminate
fð Þ; therefore, when b is even, the space X does not admit any free action of G: □

3.3 Free actions on Dold, Wall, and Milnor manifolds

The Dold manifolds P m, nð Þ, as they came to be known, were defined by A. Dold
[23] as orbit spaces of free actions of 2, or equivalently free involutions, on a product

14

Manifolds III - Developments and Applications



of the form Sm � Pn: Precisely, for each pair of nonnegative integers m and n,
P m, nð Þ is the orbit space Sm � Pn=T, where T x, z½ �ð Þ ¼ �x, z½ �ð Þ:

Let R : Sm ! Sm be the involution defined by the reflection of the last coordinate
R x0, ⋯, xmð Þ ¼ x0, ⋯, xm�1, �xmð Þ, and 1 : Pn ! Pn be the identity map. Since the
involution R� 1 : Sm � Pn ! Sm � Pn commutes with the involution T, it induces
an involution S : P m, nð Þ ! P m, nð Þ:

For each pair of nonnegative integers m and n, the Wall manifold6 Q m, nð Þ is
defined as the mapping torus of the homeomorphism S, that is,

Q m, nð Þ ¼ P m, nð Þ � 0, 1½ �
x, z½ �, 0ð Þ � S x, z½ �, 1ð Þ : (23)

Let m, n be integers, such that 0≤ n≤m: It is called a (real) Milnor manifold7 of
dimensions nþm� 1 to the smooth closed submanifold of codimension 1 in Pm �
Pn, described in homogeneous coordinates as:

Hm,n ¼ x0, ⋯, xm½ �ð , y0
�

, ⋯, yn�Þ∈Pm � Pn jx0y0 þ⋯þ xnyn ¼ 0
� �

, (24)

which is also denoted by H m, nð Þ: Equivalently, Hm,n is the total space of the
bundle:

ð25Þ

The manifolds P m, nð Þ, Q m, nð Þ, and H m, nð Þ were constructed to provide repre-
sentatives for generators in odd dimension to the unoriented cobordism ring ℜ ∗ ,
since we have the projective spaces as representatives in even dimensions. Precisely,
the following sets are generator sets for ℜ ∗ :

P2i� �
, P 2r � 1ð½ , s2rÞ�; i, r, s≥ 1

� �
, (26)

P2i� �
, Q 2r � 2ð½ , s2rÞ�; i, r, s≥ 1

� �
, (27)

and

P2i� �
, H 2k

��
, 2t2kÞ�; i, k, t≥ 1

� �
: (28)

For these reasons, the analysis of certain structures and algebraic invariants related
to the Dold, Milnor, and Wall manifolds is a relevant research topic, as it is done on
the works [26–28] of Mukerjee. On the particular interest of investigating the exis-
tence of free actions of compact Lie groups on these spaces and also the cohomology
classification of the respective orbit spaces, there are several results in the literature in
which we will briefly discuss some of them below.

Regarding the existence of free actions of2 on Doldmanifolds, Morita et al. [29]
partially solved the problem by considering free involutions on P 1, nð Þ, for n≥ 1 an odd
integer. Later this problemwas completely solved byDey [30], according to the following.

Theorem 3.3.1. [30] If G ¼ 2 acts freely on X ¼ P m, nð Þ, then H ∗ X=G;2ð Þ is
isomorphic to one of the following graded algebras:

6 For more details on the construction of this manifolds, see [24].
7 For more details on Milnor’s manifold, see [25, 26].
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i. (i) 2 x, y, z½ �= x2, y mþ1ð Þ=2, znþ1
� �

, where degx ¼ 1, degy ¼ degz ¼ 2, and m is
odd.

ii. 2 x, y, z½ �= f , g, z nþ1ð Þ=2 þ h
� �

, where n is odd, degx ¼ degy ¼ 1, degz ¼ 4,
f ¼ xmþ1 þ α1xmyþ α2xm�1y2ð Þ, and g ¼ y3 þ β1xy2 þ β2x2yð Þ, with αi,βi ∈2,
and h∈2 x, y, z½ � is either the zero polynomial or it is a homogeneous
polynomial of degree 2nþ 2 with the highest power of z less than or equal to
n� 1ð Þ=2:

Concerning on free involutions on Wall manifods Q m, nð Þ, the work of Khare [31]
shows that these manifolds bounds if and only if n is odd or n ¼ 0 and m odd. By
Proposition 3.5 in [32], we can conclude that X ¼ Q m, oddð Þ admit free involutions
and about the orbit spaces X=2 we have the following result, for some values of m:

Theorem 3.3.2. [32, 33] Let X ¼ Q m, nð Þ, where n>0 is odd, equipped with a free
action of the group G ¼ 2:

i. Ifm ¼ 1 and the induced action of 2 on the mod 2 cohomology is trivial, then

H ∗ X=G;2ð Þ ffi 2 x, y, z, w½ �= x3, y3, z2, y2 þ yw, w nþ1ð Þ=2
D E

,

where degx ¼ degy ¼ degz ¼ 1, and degw ¼ 4:

ii. If m is even and the induced action of 2 on the mod 2 cohomology is trivial,
then H ∗ X=2ð Þ is isomorphic to one of the following graded polynomial
algebras:

2 x, y, z, w½ �= x3, y2, zmþ1 þ zmy, w nþ1ð Þ=2
D E

,

where degx ¼ degy ¼ degz ¼ 1 and degw ¼ 4, or

2 x, y, z, w½ �= x2, ymþ1, y2 þ z, wnþ1� �
,

where degx ¼ degy ¼ 1 and degz ¼ degw ¼ 2:
Example 3.3.1. (Free S1�actions on Dold manifolds) Let G be the group S1 andm,n

odd integers, where m ¼ 2k� 1, for some k≥ 1: Considering Sm ⊆k, we define a free
action of G on Sm � Pn by:

z ∗ w, vð Þ↦ zw1, ⋯, zwkð Þ, zv0 : ⋯ : zvn½ �ð Þ, (29)

where w ¼ w1, ⋯, wkð Þ∈ Sm ⊆k and v ¼ v0 : ⋯ : vn½ �∈Pn:
Let us consider an arbitrary element w, v½ �∈P m, nð Þ ¼ Sm � Pnð Þ=T, and note

that the isotropy subgroup Gw, v½ � is trivial. Therefore, zmust be equal to 1∈G, that is,
G w, v½ � ¼ 1f g, so the induced action on Dold manifold P m, nð Þ is free.

If n is odd and m ¼ 2k is even, then we can consider

Sm ¼ w, tð Þ∈k � ; ∥w∥þjtj¼ 1
n o

, (30)
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and the analogous free action of G on Sm � Pn is defined by:

z ∗ w, tð Þ, vð Þ↦ zw1, ⋯, zwk, tð Þ, zv0 : ⋯ : zvn½ �ð Þ: (31)

Since this action is free, it induces a free action of G on P m, nð Þ, as in the previous
case.

Theorem 3.3.3. There is no free action of G ¼ S1 on X ¼ Q m, nð Þ, for any m,n>0:
Proof. Recall that8 H ∗ X;2ð Þ ffi 2 x, c, d½ �= x2, cmþ1 þ cmx, dnþ1� �

, where degx ¼
degc ¼ 1 and degd ¼ 2: Suppose that there is a free action of G ¼ S1 on X and let
X ↪ XG ! BG be the associated Borel fibration, with E ∗ , ∗

r , dr
� �

, and such that Ep,q
2 ffi

Hp BG;2ð Þ⊗Hq X;2ð Þ, that converges, as an algebra, to H ∗ XG;2ð Þ ffi H ∗ X=G;2ð Þ:
Since this sequence does not collapse on E2�page, there is some nontrivial differential
d ∗ , ∗
2 , according to the following cases.
Case m odd: In this case, we have d0,mþ1

2 1⊗ cmþ1ð Þ ¼ 0: In fact, since mþ 1 ¼ 2r,
for some r>0, then d0,2r2 1⊗ c2rð Þ ¼ d0,2r2 1⊗ crð Þ 1⊗ crð Þð Þ ¼ 0: However, by relation
cmþ1 ¼ cmx, it follows that

d0,mþ1
2 1⊗ cmþ1� � ¼ 1⊗ cmð Þd0,12 1⊗ xð Þ þ 1⊗ xð Þd0,m2 1⊗ cmð Þ:

Therefore, d0,12 1⊗ xð Þ 6¼ 0 and d0,12 1⊗ cð Þ 6¼ 0, cannot occur simultaneously
because in this case we will have 0 ¼ τ⊗ cm�1 cþ xð Þ, which is a contradiction.

Similarly, d0,12 1⊗ xð Þ ¼ 0 and d0,12 1⊗ cð Þ 6¼ 0, cannot occur simultaneously. There-
fore, it follows there are only the possibilities:

1.d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ ¼ 0 and d0,22 1⊗ dð Þ ¼ τ⊗ c,

2.d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ ¼ 0 and d0,22 1⊗ dð Þ ¼ τ⊗ x:

We claim that (1) and (2) cannot occur.
If (1) occurs, then for any j≥0, k∈ 1⋯, mf g and l∈ 1⋯, nf g, it follows that

dj,2l2 τj ⊗ dl
� �

¼ 0, if l is even,
τjþ1 ⊗ cdl�1, if l isodd,

�

dj,kþ2l
2 τj ⊗ ckdl

� �
¼ 0, if l is even,

τjþ1 ⊗ ckþ1dl�1, if l isodd,

�

dj,2lþ1
2 τj ⊗ xdl

� �
¼ 0, if l is even,

τjþ1 ⊗ cxdl�1, if l isodd,

�

dj,2lþkþ1
2 τj ⊗ xckdl

� �
¼ 0, if l is even,

τjþ1 ⊗ xckþ1dl�1, if l isodd,

�

therefore, we will have Ep,q
3 ffi 0f g, for all p odd or q � 2 mod4ð Þ and q>0: We can

see that the sequence collapses on E3�page, however E2r,q
3 6¼ 0f g, for all q � s mod4ð Þ,

s ¼ 0,2,3, and r≥0, which contradicts the Quotient Manifold Theorem.

8 See [24].
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If the case (2) occurs, then for all j≥0, k∈ 1⋯, mf g and l∈ 1⋯, nf g, we have

dj,2l2 τj ⊗ dl
� �

¼ 0, if l is even,
τjþ1 ⊗ xdl�1, if l isodd,

�

dj,2lþk
2 τj ⊗ ckdl

� �
¼ 0, if l is even,

τjþ1 ⊗ xckdl�1, if l isodd,

�

while dj,2lþ1
2 τj ⊗ xdl

� �
¼ 0, since x2 ¼ 0: Therefore, analogous to case (1), we can

conclude that this case is not possible either.
Case m even: In this case, we have d0,m2 1⊗ cmð Þ ¼ 0, so d0,mþ1

2 1⊗ cmxð Þ ¼
1⊗ cmð Þd0,12 1⊗ xð Þ, while, by relation cmþ1 ¼ cmx, d0,mþ1

2 1⊗ cmxð Þ ¼
d0,mþ1
2 1⊗ cmþ1ð Þ ¼ 1⊗ cmð Þd0,12 1⊗ cð Þ, therefore, we should have necessarily

d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ:
If d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ ¼ τ⊗ 1, then d0,22 1⊗ dð Þ ¼ 0, otherwise we will have

imd0,22 ¼ d0,22 1⊗ dð Þ� �
⊈ kerd2,12 τ⊗ cþ xð Þh i,

which is a contradiction.
Let us suppose now that d0,12 1⊗ cð Þ and d0,12 1⊗ xð Þ are nontrivial, and d0,22 1⊗ dð Þ ¼

τ⊗ c: Then, for example,

imd0,42 ¼ τ⊗ cdh i⊕ τ⊗ c2x
� �

⊈ kerd2,32 ¼ τ⊗ xc2
� �

⊕ τ⊗ c3
� �

,

which is a contradiction. Therefore, for m even, we must consider only the cases:

a. d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ ¼ τ⊗ 1 and d0,22 1⊗ dð Þ ¼ 0;

i. d0,12 1⊗ cð Þ ¼ d0,12 1⊗ xð Þ ¼ 0 and d0,22 1⊗ dð Þ ¼ τ⊗ x:

We will show that both ið Þ and iið Þ cannot occur.
If ið Þ is true, then for all j≥0, k∈ 1⋯, mf g and all l∈ 1⋯, nf g, we have

dj,k2 τj ⊗ ck
� � ¼ 0, if k is even,

τjþ1 ⊗ ck�1, if k isodd,

�

dj,kþ1
2 τj ⊗ ckx

� � ¼ τjþ1 ⊗ ck, if k is even,
τjþ1 ⊗ cþ xð Þck�1, if k isodd,

(

dj,2lþk
2 τj ⊗ ckdl

� �
¼ 0, if k is even,

τjþ1 ⊗ ck�1dl, if k isodd,

�

and dj,2lþ1
2 τj ⊗ xdl

� �
¼ τjþ1 ⊗ dl: Therefore, Ep,q

3 ffi 0f g, for all q �� 1 mod4ð Þ, e
p>0: However, for q � 1 mod4ð Þ, q≥ 5, we have

E2j,q
3 ffi τj ⊗ cþ xð Þd q�1ð Þ=2

D E
6¼ 0f g:
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which contradicts the Quotient Manifold Theorem.
For iiið Þ, note that it will result in a pattern similar to case (2); therefore, it cannot

occur either due to the same arguments. □
In order to investigate the existence of free involutions on a Milnor manifold X ¼

H m, nð Þ, Dey and Singh [34] showed that if G ¼ 2 acts freely on X, with 1< n<m
and m �� 2 mod4ð Þ, then necessarily m and n must be odd. Furthermore, they con-
struct some examples of such free actions and, in this case, it follows that

H ∗ X=G;2ð Þ ffi 2 x, y, z, w½ �=I, (32)

where

I ¼ hz2,w2 � γ1zw� γ2x� γ3y,x
nþ1ð Þ=2 þ α0zwx n�1ð Þ=2yþ⋯þ αn�1

2
zwy n�1ð Þ=2,

wþ β0zð Þy m�1ð Þ=2 þ wþ β1zð Þxy m�3ð Þ=2 þ⋯þ wþ βn�1
2
z

� �
x n�1ð Þ=2y m�nð Þ=2i,

with degx ¼ degy ¼ 2, degz ¼ degw ¼ 1, and αi,βi,γi ∈2:

If G ¼ S1 act freely on X ¼ H m, nð Þ, then H ∗ X=G;2ð Þ ffi 2 x, y, w½ �=I, where

I ¼ x nþ1ð Þ=2, wy m�1ð Þ=2 þ xwy m�3ð Þ=2 þ⋯þ wx n�1ð Þ=2y m�nð Þ=2, w2 � αx� βy
D E

,

with degx ¼ degy ¼ 2, degw ¼ 1, and α,β∈2:
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Chapter 2

Perspective Chapter: Quasi
Conformally Flat Quasi
Einstein-Weyl Manifolds
Fusun Nurcan

Abstract

The aim of this work is to study on quasi conformally flat quasi Einstein-Weyl
manifolds. In this book chapter, firstly, an interesting relationship between comple-
mentary vector field and generator of the quasi Einstein-Weyl manifold is obtained
and supported by an example. Then, it is investigated that quasi conformally flat quasi
Einstein-Weyl manifolds are of quasi constant curvature, recurrent and semi-
symmetric under which conditions after obtaining the expression of the curvature
tensor of the quasi conformally flat quasi Einstein-Weyl manifold. Furthermore, some
equivalences are obtained between to be of quasi constant curvature and to be semi-
symmetric in quasi conformally flat quasi Einstein-Weyl manifolds.

Keywords: quasi Einstein-Weyl manifold, Weyl manifold of quasi constant curvature,
quasi conformally flat manifold, recurrent manifold, semi-symmetric manifold

1. Introduction

In 1918, H. Weyl generalized Riemannian geometry as a new way to formulate the
unified field theory in physics and definedWeyl manifolds with conformal metric and
symmetric connection [1]. After this study, Weyl manifolds attracted the attention of
many mathematicians. In 1943, E. Cartan defined Einstein-Weyl manifolds and studied
three-dimensional Einstein-Weyl spaces [2]. In 1985, P.E. Jones and K.P. Tod have
studied Einstein-Weyl spaces, and then they have done many studies on this subject [3].
AlthoughWeyl’s theory did not attract much attention in physics, it attracted the atten-
tion of mathematicians and studies have been carried out on this subject until today.

An n-dimensional Weyl manifold M is defined as a manifold with a torsion-free
connection Γ and a conformal metric tensor gij, if the compatible condition is in the
form of

∇kgij � 2gijΦk ¼ 0 (1)

which is equivalent to

∇kgij þ 2gijΦk ¼ 0, (2)

23



where Φk is a complementary covariant vector field [4]. Such a Weyl manifold is

denoted by M, gij,Φk

� �
and (1) tells us that a Riemannian manifold is obtained if

Φk ¼ 0 or Φk is gradient.
Φk changes by

~Φk ¼ Φk þ ∂k log λð Þ (3)

under the transformation of the metric tensor gij in the form of

~gij ¼ λ2gij (4)

where λ is a point function [4]. With reference to this transformation, the quantity
A is called a satellite of gij with the weight of {p} if it changes by [5]

~A ¼ λpA (5)

and the quantity _∇kA is called prolonged covariant derivative of the satellite A of
gij with the weight of {p} if it is defined by [5]

_∇kA ¼ ∇kA� pΦkA: (6)

From (1), (4) and (6), we have

_∇kgij ¼ 0 (7)

which gij is with the weight of {2}.

The coefficients Γi
jk’s of a torsion-free connection Γ on the Weyl manifold

M, gij,Φk

� �
are given by

Γi
jk ¼

i
jk

� �
� δijΦk þ δikΦj � gjkg

ihΦh

� �
(8)

where
i
jk

� �
’s are the Christoffel symbols of second kind [4].

The curvature tensor Rh
ijk of the symmetric connection Γ on the Weyl manifold is

defined by

Rh
ijk ¼ ∂jΓh

ik � ∂kΓh
ij þ Γh

rjΓ
r
ik � Γh

rkΓ
r
ij: (9)

The Ricci tensor Rij, which is defined by Rij ¼ Rh
ijh, satisfies

R ij½ � ¼ n∇iΦj� ¼ 1
2
Rr
rji: (10)

With the help of (9), the conformal curvature tensor Ch
ijk and the concircular curva-

ture tensor ~C
h
ijk of a torsion-free connection Γ on theWeyl manifold are expressed by
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Ch
ijk ¼ Rh

ijk �
1
n
δhi R

r
rjk þ

1
n� 2

δhj Rik � δhkRij þ gikg
hmRmj � gijg

hmRmk

� �

� 1
n n� 2ð Þ δhj R

r
rki � δhkR

r
rji þ gikg

hmRr
rjm � gijg

hmRr
rkm

� �

þ R
n� 1ð Þ n� 2ð Þ δhkgij � δhj gik

� �
,

(11)

~C
h
ijk ¼ Rh

ijk �
R

n n� 1ð Þ δhkgij � δhj gik
� �

, (12)

where Rh
ijk, Rij and R denote the curvature tensor, the Ricci tensor and the scalar

curvature of Γ, respectively [6, 7].
In 1968, Yano and Sawaki defined and studied a new curvature tensor called quasi

conformal curvature tensor on a Riemannian manifold [8]. Similarly, the notion of
quasi conformal curvature tensor Wh

ijk of type 1, 3ð Þ on a Weyl manifold of dimension
n (n> 3) is introduced by [9]

Wh
ijk ¼ � n� 2ð ÞbCh

ijk þ aþ n� 2ð Þb½ �~Ch
ijk, (13)

where a, b are arbitrary constants not simultaneously zero, Ch
ijk and ~C

h
ijk are

conformal curvature tensor and concircular curvature tensor of type 1, 3ð Þ,
respectively.

By substituting (11) and (12) in (13) the quasi conformal curvature tensor can be
expressed by

Wh
ijk ¼ aRh

ijk þ b δhkRij � δhj Rik þ gijg
hmRmk � gikg

hmRmj

n o

þ b
n

n� 2ð Þδhi Rr
rjk

n
þ δhj R

r
rki � δhkR

r
rji þ gikg

hmRr
rjm � gijg

hmRr
rkm

o

�R
n

a
n� 1

þ 2b
n o

δhkgij � δhj gik
� �

:

(14)

2. The concept of quasi conformally flatness on quasi Einstein-Weyl
manifolds

Quasi Einstein manifolds occupy a large place in the mathematical literature. For
instance, research on quasi-Einstein manifolds helps us to understand the global
character of topological spaces. Beside mathematics, studies on quasi-Einstein mani-
folds gain meaning with applications to general relativity.

The concept of quasi Einstein manifold was firstly introduced by M. C. Chaki and
R. K. Maity as follows [10]:

A non-flat Riemannian manifold Mn, gij
� �

n> 2ð Þ is defined to be a quasi Einstein

manifold if its Ricci tensor Rij of type 0, 2ð Þ is not identically zero and satisfies the
condition

Rij ¼ αgij þ βAiAj, (15)
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where α, β are scalars of which β 6¼ 0 and Ai is a non-zero unit covariant vector
field. In such an n-dimensional manifold which is denoted by QEð Þn; α, β are called
associated scalars and Ai is called the generator of the manifold.

After Chaki and Maity, quasi Einstein manifolds are studied by many other
authors. Moreover, in the articles [11–13] that inspired this study, conformal flatness
and quasi conformal flatness were examined on quasi Einstein manifolds.

In this study, the concept of quasi conformal flatness on quasi Einstein manifolds
were adapted to quasi Einstein-Weyl manifolds which was introduced by İ. Gül and E.
Ö. Canfes as follows [14]:

Definition 1. A non-flat Weyl manifold M, gij,Φk

� �
of dimension n n> 2ð Þ is said to be

a quasi Einstein-Weyl manifold if the symmetric part of its Ricci tensor Rij of type (0,2) is
not identically zero and satisfies the condition

R ijð Þ ¼ αgij þ βAiAj (16)

where α and β are scalars of weight {�2} with β 6¼ 0. The scalars α, β are called
“associated scalars” and the unit covariant vector Ai of weight {1} is called “generator of the
manifold”. Such a manifold is denoted QEWð Þn.

Therefore the aim of the present book chapter is to examine quasi conformally flat
quasi Einstein-Weyl manifolds. It is organized as follows: In Section 1, the general
information about Weyl manifolds are given. In Section 2, a theorem which shows the
relationship between complementary vector field Φk and generator Ak of quasi
Einstein-Weyl manifold QEWð Þn is proved and the expression of the curvature tensor
of the quasi conformally flat quasi Einstein-Weyl manifold is obtained. In Section 3,
three basic concepts are defined on quasi conformally flat quasi Einstein-Weyl mani-
folds and the necessary and sufficient conditions for these concepts are emphasized.

By means of (10) and (16), Ricci tensor Rij of QEWð Þn is expressed by

Rij ¼ αgij þ βAiAj þ n∇iΦj� (17)

which implies

R ¼ αnþ β: (18)

From (17), we have

Rij,l � μlRij ¼ gij α,l � α μl � 2Φlð Þf g þ β,l � βμl
� �

AiAj þ β Ai,lAj þ AiAj,l
� �þ

n
2

Φj,il �Φi,jl
� �� μl Φj,i �Φi,j

� �� �
:

(19)

Since

R,l ¼ gijRij
� �

,l ¼ �2ΦlgijRij þ gijRij,l (20)

and Ai is normalized by the condition

gijAiAj ¼ 1⇔AjAj ¼ 1 (21)

it is found that by multiplying (19) by gij
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R,l � μl � 2Φlð ÞR ¼ n α,l � α μl � 2Φlð Þf g þ β,l � βμl
� �þ β Ai,lAi þ AjAj,l

� �
: (22)

By means of (18),

R,l � μlR ¼ n α,l � μlαð Þ þ β,l � μlβ
� �

: (23)

We obtain that

Φl R� αnð Þ ¼ βAi,lAi (24)

where β ¼ R� αn.
Hence we have the following:
Theorem 1. The complementary vector field Φi and the generator Ai of the quasi

Einstein-Weyl manifold QEWð Þn are related by

Ai,lAi ¼ Φl: (25)

Although the first part of the following example was given to prove the existence
of the quasi Einstein-Weyl manifold QEWð Þn n> 2ð Þ in [14], the verification of
Theorem 1 is made by the author of the present book chapter in the second part of the
example.

Example 1. A three dimensional Weyl manifold M3 is equipped with a metric gij by

ds2 ¼ gijdx
idxj ¼ ex

1
dx1
� �2 þ dx2

� �2h i
þ dx3
� �2

and a 1-form Φ whose components Φk given by Φ ¼ ex
1
dx2 þ dx3. The nonzero

coefficients Γi
jk of a torsion-free connection Γ are [14]

Γ1
11 ¼

1
2

, Γ1
12 ¼ Γ1

21 ¼ �ex
1
, Γ1

13 ¼ Γ1
31 ¼ �1 , Γ1

22 ¼ � 1
2

,

Γ2
11 ¼ ex

1
, Γ2

12 ¼ Γ2
21 ¼

1
2

, Γ2
22 ¼ �ex

1
, Γ2

23 ¼ Γ2
32 ¼ �1 ,Γ2

33 ¼ 1 ,

Γ3
11 ¼ Γ3

22 ¼ ex
1
, Γ3

23 ¼ Γ3
32 ¼ �ex

1
,Γ3

33 ¼ �1 :

It is clear that M3, gij,Φk

� �
is a Weyl manifold with the connection Γ satisfying the

condition (1). An elementary calculation gives the following nonzero components of the Ricci
tensor [14]:

R11 ¼ ex
1
1þ ex

1
� �

, R12 ¼ �R21 ¼ 3
2
ex

1
, R22 ¼ ex

1
,

R23 ¼ R32 ¼ �ex
1
, R33 ¼ ex

1
:

Moreover, the components of the symmetric parts of the Ricci tensor Rij and the scalar
curvature R are [14]

R 11ð Þ ¼ ex
1
1þ ex

1
� �

, R 22ð Þ ¼ ex
1
, R 23ð Þ ¼ �ex

1
, R 33ð Þ ¼ ex

1
, R ¼ 2 1þ ex

1
� �

:

Therefore, by considering (15), we find that [14]
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α ¼ 1þ ex
1
, β ¼ � 1þ ex

1
� �

,

A1 ¼ 0 , A2 ¼ ex
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p , A3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p

where gijAiAj ¼ 1. Thus, M3, gij,Φk

� �
is a quasi-Einstein Weyl manifold.

Now covariant derivatives of A1, A2 and A3 with respect to xk k ¼ 1, 2, 3ð Þ are as follows:

A1,1 ¼ 0 , A1,2 ¼ 0 , A1,3 ¼ 0;

A2,1 ¼ ex
1

2 1þ ex1ð Þ32
, A2,2 ¼ e2x

1 � ex
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p , A2,3 ¼ 0; (26)

A3,1 ¼ �ex
1

2 1þ ex1ð Þ32
, A3,2 ¼ 2ex

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p , A3,3 ¼ 1� ex
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p

On the other hand, the reciprocals of Ai‘s are

A1 ¼ 0 , A2 ¼ A3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex1

p (27)

By substituting (26) and (27) in (25),

A1,1A1 þ A2,1 A2 þ A3,1A3 ¼ Φ1 ,

A1,2A1 þ A2,2 A2 þ A3,2A3 ¼ Φ2 ,

A1,3A1 þ A2,3 A2 þ A3,3A3 ¼ Φ3

are obtained.

A Weyl manifold M, gij,Φk

� �
n> 3ð Þ is called quasi conformally flat, if the quasi

conformal curvature tensor Wh
ijk satisfy the condition

Wh
ijk ¼ 0: (28)

Now, let us suppose that QEWð Þn n> 3ð Þ is quasi conformally flat with a 6¼ 0 and
b 6¼ 0. Then from (14),

Rh
ijk ¼

�b
a

δhkRij � δhj Rik þ gijg
hmRmk � gikg

hmRmj

n o

þ�2b
an

n� 2ð Þδhi R kj½ � þ δhj R ik½ �
n

� δhkR ij½ � þ gikg
hmR mj½ � � gijg

hmR mk½ �
o

þ R
an

a
n� 1

þ 2b
n o

δhkgij � δhj gik
� �

(29)
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On the other hand, since it is assumed that the manifold is QEWð Þn, its Ricci tensor
Rij can be written as (17) which satisfies (18).

Substituting (10), (17) and (18) in (29), the curvature tensor Rh
ijk is obtained as

Rh
ijk ¼ P δhkgij� δhj gik

� �
þQ δhkAiAj� δhj AiAkþ gijg

hmAmAk� gikg
hmAmAj

n o

� n� 2ð Þb
a

2δhi∇kΦj� þ δhk∇iΦj� � δhj ∇iΦk� þ gijg
hm∇mΦk� � gikg

hm∇mΦj�
n o

(30)

where P ¼ αnþβ
n n�1ð Þ þ 2bβ

an

n o
and Q ¼ �b

a β are scalars.

Ricci tensor Rij is obtained as

Rij ¼ P n� 1ð Þ þ Qf ggij þQ n� 2ð ÞAiAj � n n� 2ð Þb
a

∇iΦj� (31)

by contracting on the indices h and k in (30) and the scalar curvature is found in
the form of

R ¼ P n� 1ð Þ þ Qf gnþ Q n� 2ð Þ (32)

by transvecting (31) by gij:
Using (10), (30), (31) and (32) in (11), it is obtained that

Ch
ijk ¼ 0 (33)

leading us to following:
Corollary 1. Quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn n> 3ð Þ is

conformally flat.

3. Some necessary and sufficient conditions on quasi conformally flat
quasi Einstein-Weyl manifolds

The concept of a space of quasi constant curvature was firstly introduced by Chen
and Yano [15]. Similarly, we can define a Weyl manifold of quasi constant curvature
as follows:

Definition 2. A Weyl manifold M, gij,Φk

� �
n> 3ð Þ is said to be of quasi constant

curvature if it is conformally flat and its curvature tensor Rh
ijk of type (1,3) is in the form of

Rh
ijk ¼ U δhkgij � δhj gik

� �
þ V δhkAiAj � δhj AiAk þ gijg

hmAmAk � gikg
hmAmAj

n o
, (34)

where U and V are scalars with V 6¼ 0 and Ai is a covariant vector.
On the other hand, Amur and Maralabhavi [16] proved that a quasi conformally

flat Riemannian manifold is either conformally flat or Einstein. So, a quasi
conformally flat quasi Einstein manifold, which is not Einstein, is conformally flat and
its curvature tensor satisfies the condition in (32) with a 6¼ 0 and b 6¼ 0. Therefore, a
quasi conformally flat quasi Einstein manifold with a 6¼ 0 and b 6¼ 0 is of quasi
constant curvature.
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However, the situation is more complicated for quasi conformally flat QEWð Þn.
Because although quasi conformally flat QEWð Þn is conformally flat, it does not meet
the requirement in (34) automatically. Therefore, a quasi conformally flat QEWð Þn
will be of quasi constant curvature under special conditions.

Suppose that quasi conformally flat QEWð Þn n>4ð Þ be of quasi constant curvature
with the same definition in (2). Since a 6¼ 0 and b 6¼ 0, from (29),

2δhi∇kΦj� þ δhk∇iΦj� � δhj ∇iΦk� þ gijg
hm∇mΦk� � gikg

hm∇mΦj� ¼ 0 (35)

is obtained. By transvecting (35) by gij,

n� 4ð Þghi∇iΦk� ¼ 0 (36)

and transvecting one more time by ghj with the assumption of n>4, it is found that

∇jΦk� ¼ 0 (37)

which means that the covariant derivative Φk,j is symmetric.
Conversely, let the covariant derivative Φk,j be symmetric in a quasi conformally

flat QEWð Þn n>4ð Þ: If (37) is substituted in (30), then (34) is obtained. Hence we get
the following:

Theorem 2. A necessary and sufficient condition for a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn n>4ð Þ to be of quasi constant curvature is that the
covariant derivative Φk,j is symmetric.

Now, let us consider in which cases the covariant derivative Φk,j is symmetric in a
quasi conformally flat QEWð Þn, remembering that Φk is different from zero or non-
gradient. So, let us give the definitions of some special vector fields in the Weyl

manifold M, gij,Φk

� �
:

Definition 3. A vector field ξ in the Weyl manifold M, gij,Φk

� �
is called torse-

forming if it satisfies the condition ∇Xξ ¼ ρX þ λ Xð Þξ, where ξ ∈ χ Mð Þ, λ Xð Þ is a linear
form and ρ is a function. In the local coordinates, it is expressed by ∇iξ

h ¼ ρδhi þ ξhλi,
where δhi is the Kronecker symbol, ξh and λi are the components of ξ and λ. A torse-forming
vector field ξ is called concircular if ∇iξj ¼ ρgij with ξj ¼ ghjξ

h.

Definition 4. A vector field ϕ in the Weyl manifold M, gij,Φk

� �
is called ϕ (Ric)

vector field if it satisfies ∇ϕ ¼ μRic, where μ is a constant and Ric is the Ricci tensor. In
local coordinates, it is expressed by ∇iϕj ¼ μRij, where ϕi and Rij are the components of ϕ
and Ric.

Definition 5. The components ϕi of a vector field ϕ in the Weyl manifold M, gij,Φk

� �

is defined as parallel if ϕi
,j ¼ 0 and is defined concurrent if ϕi

,j ¼ cδij, where c is a
constant.

When we apply the above definitions to parallel, concurrent and concircular com-
plementary vector field Φk in a quasi conformally flat quasi Einstein-Weyl manifold
QEWð Þn, the covariant derivatives Φk,j of these vector fields are

Φk,j ¼ 2ΦkΦj, Φk,j ¼ 2ΦkΦj þ cgkj, Φk,j ¼ ρgkj, (38)
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respectively.
Now, let us consider Φk as a ϕ (Ric) vector field. From Definition 3.4 and (10),

1� μnð Þ∇jΦk� ¼ 0: (39)

Finally, let us write the covariant derivative Φk,j for a torse forming vector field Φk

defined by ∇iΦh ¼ ρδhi þΦhAi, where Ai is the generator of QEWð Þn. By using
Definition 3.3, we have

Φk,j ¼ 2ΦjΦk þ ρgkj þ AjΦk: (40)

By means of (38), (39) and (40), we can express the following:
Corollary 2. A quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn n> 4ð Þ

is of quasi constant curvature if the complementary vector field Φk satisfies any one of the
following:

1.Φk is a parallel, concurrent or concircular vector field,

2.Φk is a ϕ (Ric) vector field with μ 6¼ 1
n,

3.Φk is a torse forming vector field defined by ∇iΦh ¼ ρδhi þΦhAi, where AjΦk �
AkΦj ¼ 0:

Now, we seek a necessary and sufficient condition for a quasi conformally flat
quasi Einstein-Weyl manifold QEWð Þn to be recurrent. So, firstly, let us define the
concept of recurrency in the quasi Einstein-Weyl manifolds by analogy to A.G.
Walker’s definition [17]:

Definition 6. A non-flat Weyl manifold M, gij,Φk

� �
is called recurrent if there exists a

non-zero covariant vector μl such that

Rh
ijk,l � μlR

h
ijk ¼ 0: (41)

Suppose that quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn n> 3ð Þ,
whose associated scalars α and β satisfy

α,l
α

¼ β,l
β

¼ μl � 2Φl, (42)

is recurrent. From (39), it follows that

Rij,l � μlRij ¼ 0 (43)

by contracting on the indices h and k in (41) and transvecting (43) by gij

gives us

R, l � μl � 2Φlð ÞR ¼ 0 (44)

by means of (20).
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By substituting (43) in (23), it is obtained that

n α,l � μl � 2Φlð Þαf g þ β,l � μl � 2Φlð Þβ� � ¼ 0 (45)

which is satisfied by associated scalars in the above hypothesis.
If (42) is substituted in (19) and transvecting by Ai

0 ¼ β Aj,l �ΦlAj
� �þ n

2
Φj,il �Φi,jl
� �� μl Φj,i �Φi,j

� �� �
Ai (46)

is obtained.
The conditions

Aj,l �ΦlAj ¼ 0⇔Aj,l ¼ ΦlAj (47)

and

Φj,il �Φi,jl
� �� μl Φj,i �Φi,j

� �� �
Ai ¼ 0 (48)

are satisfied in order to provide (46) since β 6¼ 0 and n> 3 for a quasi conformally
flat quasi Einstein-Weyl manifold QEWð Þn.

If (47) is satisfied, then

Aj
,l ¼ �ΦlAj, (49)

where Aj ¼ gjhAh.
Let us first compute first and second covariant derivatives of the complementary

vector Φj defined by (25) by considering (21), (47) and (48):

Φj,i ¼ AkAk,i �ΦjΦi, (50)

Φj,il ¼ 2ΦjΦiΦl � Ak Ak,ilΦj þ Ak,jlΦi þ Ak,jiΦl � Ak,jil
� �

: (51)

By using (50) and (51), the expressions Φj,il �Φi,jl
� �

Ai and μl Φj,i �Φi,j
� �

Ai in (48)
can be written as

Φj,il �Φi,jl
� �

Ai ¼ AiAk Φl Ak,ij � Ak,ji
� �þ Ak,jil � Ak,ijl

� �� �
, (52)

μl Φj,i �Φi,j
� �

Ai ¼ AiAk μl Ak,ji � Ak,ij
� �� �

: (53)

If (52) and (53) are substituted in (48), then

AiAk Ak,jil � Ak,ijl
� �� μl þΦlð Þ Ak,ji � Ak,ij

� �� � ¼ 0 (54)

is obtained. Since Ai and Ak’s are linearly independent,

Ak,jil ¼ μl þΦlð ÞAk,ji: (55)
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Conversely, let (47) and (55) be satisfied in a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn whose associated scalars α and β satisfying (42).

From (30),

Rh
ijk,l � μlR

h
ijk ¼ P,l � μl � 2Φlð ÞPf g δhkgij � δhj gik

� �

þ Q ,l � μlQ
� �

δhkAiAj � δhj AiAk þ gijg
hmAmAk � gikg

hmAmAj

n o

þQ δhk Ai,lAj þAiAj,l
� �� δhj Ai,lAk þAiAk,lð Þ

n

þ gijg
hm Am,lAk þAmAk,lð Þ � gikg

hm Am,lAj þAmAj,l
� �o

� n� 2ð Þb
a

δhi Φj,kl �Φk,jl
� �� μl Φj,k �Φk,j

� �� �(

þ 1
2
δhk Φj,il �Φi,jl
� �� μl Φj,i �Φi,j

� �� �

� 1
2
δhj Φk,il �Φi,klð Þ � μl Φk,i �Φi,kð Þ½ �

þ 1
2
gijg

hm Φk,ml �Φm,klð Þ � μl Φk,m �Φm,kð Þ½ �

� 1
2
gikg

hm Φj,ml �Φm,jl
� �� μl Φj,m �Φm,j

� �� �)

(56)

If (42), (47) and (55) are written in (56), then (41) is obtained. Hence we can state
the following:

Theorem 3. A necessary and sufficient condition for a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn n> 3ð Þ whose recurrent scalars α and β having the same
recurrency vector μl � 2Φl to be recurrent is that the equations Ak,j ¼ ΦjAk and Ak,jil ¼
μl þΦlð ÞAk,ji are satisfied.

Let us dedicate the last part of this section to the concept of semi-symmetricness in
a quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn. Firstly, let us define
semi-symmetric QEWð Þn similar to the definition which is made by Szabo for
Riemannian manifolds [18] as follows:

Definition 7. A non-flat Weyl manifold M, gij,Φk

� �
is called semi-symmetric if its

curvature tensor Rh
ijk of type (1,3) satisfies the condition

Rh
ijk,lm � Rh

ijk,ml ¼ 0: (57)

It follows that

Rij,lm � Rij,ml ¼ 0 (58)

by contracting on the indices h and k in (57).
Let us suppose that a quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn

n> 3ð Þ with aαn 6¼ bβ n� 2ð Þ is semi-symmetric. From (17) and (58),

0 ¼ β Ai,lm � Ai,mlð ÞAj þ Ai Aj,lm � Aj,ml
� �� �þ 2αgij Φl,m �Φm,lð Þ

þ n
2

Φj,ilm �Φi,jlm
� �� Φj,iml �Φi,jml

� �� �
:

(59)
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With the aid of the Ricci identity given as

vi,jk � vi,kj ¼ vhRh
ijk, (60)

where vi‘s are the components of a covariant vector, it is obtained that

0 ¼ β AhRh
ilm

� �
Aj þ Ai AhRh

jlm

� �h i
þ 2αgij Φl,m �Φm,lð Þ

þ n
2

Φj,ilm �Φi,jlm
� �� Φj,iml �Φi,jml

� �� �
:

(61)

If (61) is transvected by gij, it is found that

0 ¼ 2β AhRh
ilm

� �
Ai þ 2αn Φl,m �Φm,lð Þ: (62)

Substituting the following equation, resulted from (48),

AhRh
ilm

� �
Ai ¼ � n� 2ð Þb

a
Φl,m �Φm,lð Þ (63)

which is valid in a quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn in
(62) gives us

Φl,m �Φm,lð Þ αn� β
n� 2ð Þb

a

� �
¼ 0: (64)

Because of the restriction on α and β,

Φl,m �Φm,l ¼ 0: (65)

If we form the difference Φl,m �Φm,l after taking covariant derivative of (25) with
repect to xm, we have

Φl,m �Φm,l ¼ Ai Ai,lm � Ai,mlð Þ þ Ai,lAi
,m � Ai,mAi

,l: (66)

If firstly rearranging the first term on the right hand side of the equation in (66)
with the help of (60) and then using (63) and (64) in the resulting equation gives

Ai,lAi
,m � Ai,mAi

,l ¼ 0 (67)

or equivalently

Ai,lAj,m � Aj,lAi,m ¼ 0: (68)

Conversely, let us assume that the generator Ai of a quasi conformally flat
quasi Einstein-Weyl manifold QEWð Þn n> 3ð Þ satisfies the condition (67) or
equivalently (68). If (67) is substituted in (66), then (65) is satisfied by means of
(60). In this case,

Ai Ai,lm � Ai,mlð Þ ¼ Ai AhRh
ilm

� � ¼ 0 (69)
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which means that

Ai,lm � Ai,ml ¼ 0 (70)

since Ai‘s are linearly independent.
From (30),

Rh
ijk,ls ¼ P,ls þ 2Φl,sPþ 2ΦlP,s þ 2ΦsP,l þ 4ΦlΦsPð Þ δhkgij � δhj gik

� �

þQ ,ls δhkAiAj � δhj AiAk þ gijg
hmAmAk � gikg

hmAmAj

n o

þQ ,l δhk Ai,sAj þ AiAj,s
� �� δhj Ai,sAk þ AiAk,sð Þ þ gijg

hm Am,sAk þ AmAk,sð Þ
n o

�gikg
hm Am,sAj þ AmAj,s
� �

þQ ,s δhk Ai,lAj þ AiAj,l
� �� � δhj Ai,lAk þ AiAk,lð Þ þ gijg

hm Am,lAk þ AmAk,lð Þ
�gikg

hm Am,lAj þ AmAj,l
� ��þ Q δhk Ai,lsAj þ Ai,lAj,s þ Ai,sAj,l þ AiAj,ls

� �� �

�δhj Ai,lsAk þ Ai,lAk,s þ Ai,sAk,l þ AiAk,lsð Þ
þgijg

hm Am,lsAk þ Am,lAk,s þ Am,sAk,l þ AmAk,lsð Þ
�gikg

hm Am,lsAj þ Am,lAj,s þ Am,sAj,l þ AmAj,ls
� ��

(71)

is obtained. If necessary simplifications are made in the difference Rh
ijk,ls � Rh

ijk,sl

which is formed by means of (66), then it is found that

Rh
ijk,ls � Rh

ijk,sl ¼ Q δhk Ai,ls � Ai,slð ÞAj þ Ai Aj,ls � Aj,sl
� �� ��

�δhj Ai,ls � Ai,slð ÞAk þ Ai Ak,ls � Ak,slð Þ½ �
þgijg

hm Am,ls � Am,slð ÞAk þ Am Ak,ls � Ak,slð Þ½ �
�gikg

hm Am,ls � Am,slð ÞAj þ Am Aj,ls � Aj,sl
� �� ��

(72)

If (70) is written in (72), then we have

Rh
ijk,ls � Rh

ijk,sl ¼ 0 (73)

which tells us that quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn is
semi-symmetric. Therefore we can express the following:

Theorem 4. A necessary and sufficient condition for a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn n> 3ð Þ with αan 6¼ βb n� 2ð Þ to be semi-symmetric is
that the equation Ai,lAi

,m � Ai,mAi
,l ¼ 0 is satisfied.

In the last part of this section, let us take a look at the relationships between to be
of quasi constant curvature and to be semi-symmetric in a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn.

If we combine Theorem 1 with Theorem 3 we get the following:
Corollary 3. A necessary and sufficient condition for a quasi conformally flat quasi

Einstein-Weyl manifold QEWð Þn n>4ð Þ with αan 6¼ βb n� 2ð Þ to be semi-symmetric is
that the manifold is of quasi constant curvature.
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Now, we will examine two special cases of the generator Ai of a quasi conformally
flat quasi Einstein-Weyl manifold QEWð Þn:

I.case: For a parallel generator Ai; since

Ai,l ¼ 2AiΦl andAi,lm � Ai,ml ¼ 2Ai Φl,m �Φm,lð Þ (74)

from Definition 5, it is clear that a quasi conformally flat quasi Einstein-Weyl
manifold QEWð Þn n>4ð Þ, which the generator Ai is parallel, is automatically semi-
symmetric. If Definition 5 and the equations in (74) are used in (66), then (65) is
obtained. This means that the manifold is of quasi constant curvature by means of
Theorem 2.

Conversely, let us assume that quasi conformally flat quasi Einstein-Weyl mani-
fold QEWð Þn n>4ð Þ, which the generator Ai is parallel, is of quasi constant curvature.
In this case, if (70), which is implied by (64), is substituted in (72), then (73) is
achieved which means that the manifold is semi-symmetric. Hence we can state the
following:

Theorem 5. A necessary and sufficient condition for a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn n>4ð Þ which the generator Ai is parallel to be semi-
symmetric is that the manifold is of quasi constant curvature.

II.case: Let us consider a quasi conformally flat quasi Einstein-Weyl manifold
QEWð Þn n>4ð Þ with 2β þ αn 6¼ 0, which the generator Ai is concurrent, is semi-
symmetric. From Definition 5, it follows that

Ai,l ¼ 2AiΦl þ cgil, Ai,lm � Ai,ml ¼ 2Ai Φl,m �Φm,lð Þ,
Ai,lAi

,m � Ai,mAi
,l ¼ c Am,l � Al,mð Þ : (75)

If Definition 5 and the equations in (75) are used in (66), then

Φl,m �Φm,l ¼ c Al,m � Am,lð Þ: (76)

Using (75) and (76) in (62) gives

c 4β þ 2αnð Þ Al,m � Am,lð Þ ¼ 0: (77)

Because of the assumption on α and β, Al,m � Am,l ¼ 0 and therefore Φl,m �
Φm,l ¼ 0 by (76) which tells us that the manifold is of quasi constant curvature.

Conversely, a quasi conformally flat quasi Einstein-Weyl manifold QEWð Þn
n>4ð Þ, which the generator Ai is concurrent, is of quasi constant curvature. Then,
by Theorem 1, Φl,m �Φm,l ¼ 0 which is equivalent to Al,m � Am,l ¼ 0 by (76). If the
last equation is substituted in (72), then (73) is obtained which means that the
manifold is semi-symmetric. Hence we can state the following:

Theorem 6. A necessary and sufficient condition for a quasi conformally flat quasi
Einstein-Weyl manifold QEWð Þn n>4ð Þ with 2β þ αn 6¼ 0 which the generator Ai is
concurrent to be semi-symmetric is that the manifold is of quasi constant curvature.
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Chapter 3

An Introduction to the Generalized
Gauss-Bonnet-Chern Theorem
Paul Bracken

Abstract

This work studies the mathematical structures which are relevant to differentiable
manifolds needed to prove the Gauss-Bonnet-Chern theorem. These structures
include de Rham cohomology vector spaces of the manifold, characteristic classes
such as the Euler class, pfaffians, and some fiber bundles with useful properties. The
paper presents a unified approach that makes use of fiber bundles and leads to a non-
computational proof of the Gauss-Bonnet-Chern Theorem. It is indicated how it can
be generalized to manifolds with boundary.

Keywords: manifold, Euler characteristic, bundle, fiber, projection, universal

1. Introduction

One of the great achievements of differential geometry is the Gauss-Bonnet theo-
rem. In its original form, the theorem is a statement about surfaces which connect
their geometry in the sense of curvature to the underlying topology of the space, in the
sense of the Euler characteristic [1–5]. The most elementary case of the theorem states
that the sum of the angles of a triangle in the plane is π radians. If the surface is
deformed, the Euler characteristic does not vary as it is a topological invariant, while
the curvature at certain points does change [6–8]. The theorem states that the total
integral of the curvature remains the same, no matter how the deformation is
performed. If there is a sphere with a ding, its total curvature is 4π since its Euler
characteristic is two. This is the case no matter how big or deep the actual deformation
is. A torus has Euler characteristic zero, so its total curvature must also be zero. If the
torus carries the usual Riemannian metric from its embedding in ℝ3, then the inside
has negative Gaussian curvature, and the outside has positive Gaussian curvature, so
the total curvature is zero. It is not possible to specify a Riemannian metric on the
torus which has everywhere positive or everywhere negative Gaussian curvature.
Manifolds M have dimension n unless stated otherwise [9–11]. There are many
applications of this theorem in both mathematics and mathematical physics such as in
gravity [12–14], string theory [15] and even in the study of Ricci flow [16].

Although the curvature K is defined intrinsically in terms of the metric on the
manifold M. It can also be defined for n ¼ 2 extrinsically when the metric on M is
induced by an embedding M⊂ℝ3. In fact, it ν : M ! S2 is the normal map and da is
the volume element on S2, then Kdσ ¼ ν ∗ da so that
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ð

M
Kdσ ¼

ð

M
ν ∗ dað Þ ¼ deg νð Þ �

ð

S2
da ¼ 4π � deg νð Þ: (1)

Without bringing in differential geometric considerations, it is seen to be the case
that deg νð Þ ¼ 1=2ð Þχ Mð Þ, where χ Mð Þ is the Euler characteristic of M. Using this fact
in (1), the Gauss-Bonnet theorem for a compact oriented surface M, the first version
of the theorem is obtained for the case in which the metric onM arises by means of an
embedding in ℝ3

ð

M
Kdσ ¼ 2πχ Mð Þ: (2)

It is the intention here to state and prove a general version of the theorem
which applies to manifolds of even dimension, so a surface with n ¼ 2 is a special case.
An intrinsic proof of the theorem was obtained by Chern 1944. The kind of argument
outlined above was used by Hopf in developing the first generalization of the
theorem. To outline the basic idea, consider a compact surface Mn ⊂ℝnþ1 when n
is even. If dμg is the volume form on the manifold and dsn denotes the volume element
Sn, then

ð

Mn
Kndμg ¼

ð

Mn
ν ∗ dsn ¼ vol Snð Þ � deg νð Þ ¼ 1

2
vol Snð Þ � χ Mnð Þ: (3)

This can be extended to any compact oriented Riemannian n-manifold Mn, gð Þ
which has even dimension, where Kn in a coordinate system is given by

Kn ¼ 1
2n=2n!

X

i1, … , in

j1, … , jn

Ri1i2j1j2⋯Rin�1injn�1jn
1ffiffiffigp εi1 … in � 1ffiffiffigp εj1 … jn : (4)

The ffiffiffigp (4) is the square root of the determinant of the metric. With Kn given by
(4), and μg the volume form on the manifold, we are then led to conjecture that

ð

Mn
Kndμg ¼

1
2
vol Snð Þ � χ Mnð Þ, (5)

where M is a compact, oriented Riemannian manifold with n even.
It is the objective to look at and study some of the ensuing developments which

have led to a much deeper understanding of the foundations which underlie this
theorem. It will be seen that this development leads to a completely non-
computational proof of this deep theorem.

2. Characteristic classes

When an oriented n-dimensional manifold M, dμg
� �

is compact and closed, with

dμg is the volume form and μ the orientation of M, so every form has compact
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support, Stokes theorem leads to the important theorem. Let η be any n� 1ð Þ-form
then

ð

M
dη ¼

ð

∂M
η: (6)

Therefore an n-form ω on M, which is not exact, even though it must be closed as
all n-forms on M are zero, can be found simply by locating an ω such that

ð

M
ω 6¼ 0: (7)

Such a form always exists, as it is known there is a form ω such that for
v1, … , vn ∈Mp, ω v1, … , vnð Þ>0 if v1, … , vn½ � ¼ μp. If c : 0, 1½ �n ! M, μð Þ preserves
orientation, c ∗ ω on 0, 1½ �n is gdx1 ∧⋯∧ dxn for some g>0 on 0, 1½ �n, hence Ðcω>0.
This observation leads to this theorem. A smooth, oriented manifold is not smoothly
contractible to a point. In fact, it is the shape of M not the size which determines
whether or not every closed form on M is exact. More information about the shape of
M can be obtained by analyzing more closely the extent to which closed forms are not
exact. So how many non-exact n-forms are there on a compact oriented n-manifold If
ω is not exact, the same holds for ωþ dη for η any n� 1ð Þ-form η. Thus it is necessary
to regard ω and ωþ dη as equivalent. This suggests an equivalence relation and directs
one to think of this in terms of quotient spaces.

For each k, Zk Mð Þ denotes all closed k-forms on M and it is a vector space. The
space Bk Mð Þ of all exact k-forms is a subspace since d2 ¼ 0. The quotient space is
called the k-dimensional de Rham cohomology vector space of M and is defined to be

Hk Mð Þ ¼ Zk Mð Þ=Bk Mð Þ: (8)

The theorem of de Rham states that the vector space is isomorphic to a vector
space defined just in terms of the topology of M called the k-dimensional cohomology
group of M with real coefficients.

An element of Hk Mð Þ is an equivalence class ω½ � of a closed form ω such that closed
forms ω1 and ω2 are equivalent if and only if the difference is exact. In terms of these
vector spaces, the Poincaré lemma gives Hk ℝnð Þ ¼ 0, the vector space consisting of
just the zero vector if k>0, or Hk Mð Þ ¼ 0 if M is contractible and k>0. To compute
H0 Mð Þ note B0 Mð Þ ¼ 0 as there are no non-zero exact 0-forms as there are no non-
zero minus one forms. Thus H0 Mð Þ is the same as the vector space of all C∞ functions
f : M ! ℝ with df ¼ 0. If M is connected, this condition implies f is constant so
H0 Mð Þ � ℝ and its dimension is the number of components of M.

The de Rham cohomolgy vector spaces with compact support Hk
c Mð Þ are defined

similarly to (8), that is, Hk
c Mð Þ ¼ Zk

c Mð Þ=Bk
c Mð Þ, where Zk

c Mð Þ is the vector space of all
closed k-forms with compact support and Bk

c Mð Þ all k-forms dη where η is a k-form
with compact support. If M is compact Hk

c Mð Þ ¼ Hk Mð Þ.
Theorem 2.1. (The Poincaré-Duality Theorem) If M is a connected, oriented n-

manfold of finite type, then the map

Π : Hk Mð Þ ! Hn�k
c Mð Þ (9)

is an isomorphism for all k. □
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This theorem eventually motivates the introduction of the Euler characteristic for
any smooth connected oriented manifold M. Consider then a smooth k-dimensional
vector bundle ξ ¼ π : E ! M over M. Orientations μ for M, and ν for ξ give an
orientation μ⊕ν for the nþ kð Þ-manifold E, since E is locally a product. Let
U1, … ,Urf g be a cover of M by geodesically convex sets so small that each bundle ξ
restricted to Ui is trivial. Then π�1 U1ð Þ, … , π�1 Urð Þ� �

turns out to be a nice cover for
E, so it is a manifold of finite type. For the section and projection maps s, π, π∘s ¼ I on
M and s∘π is smoothly homotopic to the identity of E, so the map π ∗ : Hl Mð Þ ! Hl Eð Þ
is an isomorphism for all l. The reason for mentioning (6) and Theorem 2.1 is that it
shows there is a unique class U ∈Hk

c Eð Þ such that

π ∗ : μ∪U ¼ μ⊕ν⊂Hnþk
c Eð Þ: (10)

This class is called the Thom class of ξ.
A theorem states that if M, μð Þ is a compact oriented, connected manifold ξ ¼ π :

E ! M an oriented k-plane bundle over M orientation ν, the Thom class U is the
unique element of Hk

c Eð Þ such that for all p∈M, and jp : Fp ! E the inclusion map, we

have j ∗p U ¼ νp. This condition has the implication that
Ð

Fp,νpð Þ jpω ¼ 1, where U is the

class of closed form ω.
The Thom class U of ξ ¼ π : E ! M can now be used to determine an element of

Hk Mð Þ. Let s : M ! E be any section. There is always one, any two are clearly
homotopic. Define the Euler class χ Eð Þ⊂Hk Mð Þ of ξ by

χ ξð Þ ¼ s ∗ U: (11)

If ξ has a non-zero section s : M ! E and ω∈Ck
c Mð Þ represents U, a suitable

multiple c � s of s takes M to the complement of support ω, so in this case, χ ξð Þ ¼
c � sð Þ ∗ U ¼ 0.

The term Euler class is connected with the special case of the bundle TMwhich has
sections which are vector fields on M. If X is a vector field on M having an isolated
zero at some point p, X pð Þ ¼ 0, but X qð Þ 6¼ 0 for q 6¼ p in a neighborhood of p. An
index of X at p can be defined. Suppose X is a vector field on an open set U ⊂ℝn with
an isolated zero at 0∈U. Define f X : U ! 0f g ! Sn�1 by f X pð Þ ¼ X pð Þ=∣X pð Þ∣. If i :
Sn�1 ! U is i pð Þ ¼ εp mapping Sn�1 into U, then the map f X∘i : S

n�1 ! Sn�1 has a
certain degree independent of ε for small ε, since maps i1, i2 : Sn�1 ! U correspinding
to ε1, ε2 will be smoothly homotopic. This degree is called the index of X at 0. Consider
a diffeomorphism h : U ! V ⊂ℝn with h 0ð Þ ¼ 0, so h ∗X is the vector field on V such

that h ∗Xð Þ yð Þ ¼ h ∗ Xh�1 yð Þ
� �

. So 0 is an isolated zero of h ∗X. It can be shown, if h :

U ! V ⊂ℝn is a diffeomorphism with h 0ð Þ ¼ 0 and X has an isolated zero at 0, the
index of h ∗X at 0 equals the index of X at 0.

As a consequence of this, an index of a vector field on a mainifold can be defined.
If X is a vector field on M, with isolated zero at p∈M, choose a coordinate system
x,Uð Þ such that x pð Þ ¼ p and define the index of X at p to be the index of x ∗X at 0.

Theorem 2.2. Let M be a compact, connected manifold with orientation μ, also an
orientation for the tangent bundle ξ ¼ π : TM ! M. Let X : M ! TM be a vector field
with only a finite number of zeros and let σ be the sum of indices of X at these zeros.
Then
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χ ξð Þ ¼ σ � μ∈H0 Mð Þ: (12)

□

3. Pfaffians

An intrinisic expression along with one in a coordinate system for the function Kn
on a compact, oriented Riemannian manifold of even dimension has been given
already. Another more important way of expressing Kn involves the curvature form Ωi

j

for a positively oriented orthonormal moving frame X1, … ,Xn onM. In terms of these
forms, the n-form Kndμg, the one to be integrated, can be written down. A sum over
permutations such as

X
π ∈ Sn

B Xπ 1ð Þ, … ,Xπ nð Þ
� �

, (13)

can be written just as well as

X
j1,⋯, jn

εj1,⋯,jnB Xj1 , … ,Xjn

� �
: (14)

Suppose this is the n-fold wedge product

Ωi1
i2 ∧⋯∧Ωin�1

in : (15)

Since the Ωi
j are 2-forms, using the definition of wedge product,

Ωi1
i2 ∧⋯∧Ωin�1

in X1, … ,Xnð Þ ¼ 2þ⋯þ 2ð Þ!
2!⋯2!

� 1
n!

X
j1,⋯jn

εi1⋯ip Ωi1
i2 Xj1 ,Xj2

� �
⋯Ωin�1

in Xjn�1
,Xjn

� �

¼ 1
2n=2

X
j1,⋯jn

εj1,⋯,jn R Xj1 ,Xj2

� �
Xj2 ,Xj1

� �
⋯ R Xjn�1

,Xjn

� �
Xjn ,Xjn�1

� �

¼ 1
2n=2

X
j1,⋯, jn

Ri1i2j1j2⋯Rin�1injn�1 jn :

(16)

Comparing this to (4), it may be concluded that

Kn ¼ 1
2n=2n!

X
i1,⋯, in

εi1,⋯,in2n=2Ωi1
i2 ∧⋯∧Ωin�1

in X1,⋯,Xnð Þ: (17)

When (17) is multiplied by the volume form dμg, it becomes

Kndμg ¼
1
n!

X
i1,⋯, in

Ωi1
i2 ∧⋯∧Ωin�1

in : (18)

By (18) the form on the right does depend on the choice of the positively oriented
orthonormal frame, X1, … ,Xn. There is a direct way to get this algebraically.
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Suppose A is an n� n matrix A ¼ aij
� �

with n ¼ 2m even. Define the Pfaffian,
Pf Að Þ of A to be

Pf Að Þ ¼ 1
2mm!

X
i1,⋯, in

ai1i2⋯ain�1in : (19)

Note that εi1⋯in does not change when any permutation of the pairs i2l�1, i2lð Þ. For
any set S ¼ h1, k1ð Þ,⋯, hm, kmð Þf g of pairs of integers between 1 and n, let us define

ε Sð Þ ¼ εh1k1⋯hmkm : (20)

It is not necessary to specify any ordering of pairs hi, kið Þ in S. Also a permutation
of the pairs i2l�1, i2lð Þ does not change the factor ai1i2⋯ain�1in. So for each P above define
aS ¼ ah1k1⋯ahmkm . If P is the collection of all such S, we clearly have

Pf Að Þ ¼ 1
2m
X
S∈P

ε Sð ÞaS: (21)

Theorem 3.1. Let n ¼ 2m then for all n� n matrices A and B,

Pf BtABð Þ ¼ detBð Þ � Pf Að Þ: (22)

and Bt denotes the transpose. If B∈ SO nð Þ then

Pf B�1AB
� � ¼ Pf Að Þ: (23)

Proof:

2m �m! Pf BtABð Þ ¼
X
i1⋯in

εi1⋯in
X
j1⋯jn

bj1i1aj1j2bj2i2
� �

⋯ bjm�1im�1ajm�1jnbjnin
� �

¼
X
j1⋯jn

X
i1⋯in

εj1⋯jnbj1i1⋯bjnin

" #
aj1j2⋯ajn�1 jn ¼

X
j1,⋯, jn

εj1,⋯,jn det Bð Þaj1j2⋯ajn�1jn

¼ 2mm! detBð Þ Pf Að Þ:

(24)

□

This theorem was stated for matrices of real numbers, but Pf Að Þ can be defined
provided the entries of A are in some commutative algebra over ℝ.

Consider again a positively oriented orthogonal moving frame X1, … ,Xn on M,
with curvature forms Ωi

j. For each p∈M, the direct sum A ¼
ℝ⊕Ω2 Mp

� �
⊕Ω2 Mp

� �
⊕⋯ is a commutative algebra over ℝ under the operation ∧ . So

one can consider Pf Ω pð Þð Þ, where Ω pð Þ is an n� n matrix of connection 2-forms at p

Pf Ωp
� � ¼ 1

2mm!

X
i1,⋯, in

εi1,⋯,inΩi1
i1 ∧⋯∧Ωin�1

in pð Þ: (25)

If X0 ¼ X � a is another positively oriented orthonormal moving frame then
a pð Þ∈O nð Þ and the corresponding curvature forms satisfy Ω0 ¼ a�1Ωa. Then
Theorem 3.1 implies that
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Pf Ω0 pð Þð Þ ¼ Pf a�1 pð ÞΩa pð Þ� � ¼ Pf Ω pð Þð Þ (26)

so the form
P

i1,⋯,in ε
i1,⋯,in Ωi1

i2 ∧⋯∧Ωin�1
in is well defined.

4. Bundles of paticular importance

Projective n-space ℙn can be defined as the set of all pairs �p, pð Þ for p∈ Sn ⊂ℝnþ1

or the set of line through 0 in ℝnþ1, since each lines intersects Sn through two anti-
podal points. A Grassmannian manifold Gn ℝnð Þ is the set of all n-dimensional sub-
spaces of ℝN with N >0. Over the Grassmannian manifold Gn ℝN

� �
, there is a natural

n-dimensional bundle ζn ℝnð Þ constructed as follows. The total space of the bundle
E ζn ℝN

� �� �
is the subset of Gn ℝN

� �� ℝN consisting of all pairs

W,wð Þ∈Gn ℝN� ��ℝM, w∈W: (27)

The projection map which takes E ζn ℝN
� �� �! Gn ℝN

� �
is π W,wð Þð Þ ¼ W. The

fibre π�1 Wð Þ overW of Gn ℝN� �
will beW itself or, more explicitly, W,wð Þ : w∈Wf g.

A vector space structure is defined on π�1 Wð Þ by using the vector space structure on
W ⊂ℝN; if a is a scalar, then W,w1ð Þ þ W,w2ð Þ ¼ W,w1 þw2ð Þ and a W,wð Þ ¼
W, awð Þ. Also ζn ℝN

� �
satisfies the local triviality condition.

For M>N there is a natural map α : Gn ℝN
� �! Gn ℝM

� �
, as an n-dimensional

subspace of ℝN can be considered an n-dimensional subspace of ℝM. There is clearly a
map α : E ζn ℝN

� �� �! E ζn ℝM
� �� �

such that α, αð Þ is a bundle map from ζn ℝN
� �

to
ζn ℝM
� �

and thus ζn ℝN
� �

≂α ∗ ζn ℝM
� �� �

.
In algebraic topology, one often considers the union G0 ℝ∞ð Þ of the increasing

sequence Gn ℝnþ1
� �

⊂Gn ℝnþ1
� �

⊂⋯ with weak topology; that is, a set U ∈Gn ℝ∞ð Þ ¼
∪l Gn ℝnþl

� �
is open if and only if U∩Gn ℝnþl

� �
is open in Gn ℝnþl

� �
for all l. There is a

natural n-dimensional bundle ζn over Gn ℝ∞ð Þ defined in a way similar to ζn ℝN
� �

such
that the following properties are maintained: ið Þ for every bundle ξ over a
paracompact space X, there is a map f : X ! Gn ℝ∞ð Þ such that ξ≃ f ∗ ζnð Þ. iið Þ if
f 0, f 1 : X ! Gn ℝ∞ð Þ are maps of a paracompact space X into Gn ℝ∞ð Þ with f ∗

0 :

ζn ≃ f ∗
1 ζ

n then f 1 ≃ f 0.
For this reason ζn is called the universal n-dimensional bundle and Gn ℝ∞ð Þ, is called

the classifying space for n-dimensional bundles since equivalence classes of n-dimen-
sional bundles over X are classified by homotopy classes of maps of X into Gn ℝ∞ð Þ.
Now Gn ℝ∞ð Þ is not a manifold so we continue to use the bundles ζn ℝN

� �
, which are

usually called universal bundles.
An orientation for a vector space V is an equivalence class of ordered bases for V

where v1, … , vnð Þ � w1, … ,wnð Þ if and only if aij
� �

defined by wi ¼
P

j aji vj has

det aij
� �

>0. There are only two such equivalence classes η and �η. An oriented vector
space is a pair V, ηð Þ, where η is an orientation for V.

An orientation for a bundle ξ ¼ π : E ! X is a collection η ¼ ηxf g of orientations
for the fibres π�1 xð Þ which satisfy an obvious compatibility requirement, while an
oriented bundle is a pair ξ, ηð Þ, where η is an orientation for ξ. Orientation η of ξ gives
another �η ¼ �ηf g if X is connected. This is the only other one for ξ. Define
ξ1⊕ξ2, μ1⊕μ2ð Þ to be the sum ξ1⊕ξ2 with the indicated orientation.
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Suppose ξ ¼ π : E ! M is a smooth oriented n-dimensional vector bundle over a
smooth manifold M of any dimension. The Euler class χ ξð Þ∈Hn Mð Þ was defined by
first defining the Thom class U ξð Þ∈Hn

c Eð Þ. It can be proved U ξð Þ is the unique class
whose restriction to each π�1 pð Þ is the generator νp ¼ Hn

c π�1 pð Þð Þ determined by the
orientation. This result leads directly into the next theorem.

Theorem 4.1. Let ξ ¼ π : E ! M be a smooth manifold where M0 is also a compact
manifold. If E is the total space of f ∗ ξ and ~f : E0 ! E is a bundle map covering f ,

~f
∗
U ξð Þð Þ ¼ U f ∗ ξð Þ∈Hn

c E0ð Þ: (28)

Proof: Note ~f has the property inverse of a compact set is compact, so ~f
∗
takes

Hn
c Eð Þ to Hn

c E0ð Þ. Let f ∗ ξ be π0 : E0 ! M0. If p∈M0 is any point, and ip0 : π0�1 pð Þ ! E0 is
the inclusion map, then

i ∗p0~f U ξð Þ ¼ ~f ∘ip0
� � ∗

U ξð Þ: (29)

Recall how f ∗ ξ is defined then ~f ∘ip0
� � ∗

U ξð Þ must be the generator of Hn
c π0�1 p0ð Þð Þ,

since i ∗f p0ð ÞU ξð Þ is the generator ofHn
c π�1 f p0ð Þð Þð . This shows ~f

∗
U ξð Þmust be U f ∗ ξð Þ.□

The Euler class χ ξð Þ was defined as s ∗ U ξð Þ for any section s of ξ. Suppose s ¼ 0 is
the zero section, which is chosen. It can be shown that

f ∗ χ ξð Þ ¼ χ f ∗ ξð Þ∈Hn M0ð Þ: (30)

A consequence of (30) is important as it gives the following.
Theorem 4.2. If n is even, then

χ ~Q
n
ℝN� �� �

6¼ 0, N > n: (31)

Proof: Since Sn ⊂ℝN for N > n, we have a bundle map ~f , f
� �

: TSn ! E ~ζ
n
ℝN
� �� �

so

χ TSnð Þ ¼ f ∗ χ ~ζ
n
ℝN� �� �

: (32)

However, it is known to be the case that χ TSnð Þ is χ Snð Þ times the fundamental
class of Sn and χ Snð Þ ¼ 2 6¼ 0. □

5. A unique one-form constructed from the curvature

This is an important characteristic class which is important and plays a significant
role. Consider principal bundles associated with a smooth oriented n-dimensional
vector bundle ξ over a smooth manifold M. There is the principal bundle of frames
F ξð Þ of E. If ξ has a Riemannian metric ,h i, the bundle O Eð Þ of orthonormal frames can
be considered, which is a principal bundle with group O nð Þ. Since only paracompact
M are considered here, there is an Ehresmann connection ω on O Eð Þ. Thus ω is a

matrix of one-forms ωi
j

� �
on O Eð Þwith values in o nð Þ, the curvature form Ω ¼ Dω is a
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matrix of two-forms Ωi
j

� �
with values in o nð Þ. A connection ω on O Eð Þ is equivalent to

a covariant derivative operator on E compatible with the metric, and for a general ξ
over M, there will be many connections compatible with the metric. One can not be
singled out by requiring a symmetric connection which only makes sense for the
tangent bundle. As ξ is oriented, we can also consider the bundle SO Eð Þ of positively
oriented frames. If X is connected, it is simply one of the two components of O Eð Þ,
with group SO nð Þ and Lie algebra o nð Þ. A connection ω on SO nð Þ again has values in
o nð Þ as does the matrix of two-forms Ω.

If we specialize to the case of a smooth oriented n-dimensional vector bundle ξ ¼
π : E ! M over M, with n ¼ 2m even. If ,h i is a Riemannian metric for ξ and ω is a
connection on the corresponding principal bundle ω : SO Eð Þ ! M, consider the n-
form which is defined on SO Eð Þ

2m �m! Pf Ωð Þ ¼
X

i1,⋯, in

εi1,⋯,inΩi1
i2 ∧⋯∧Ωin�1

in : (33)

The following is an invariant formulation of a previous theorem.
Theorem 5.1. There is a unique n-form Λ on M such that

ω ∗ Λð Þ ¼
X

i1,⋯, in

εi1,⋯,in Ωi1
i2 ∧⋯∧Ωin�1

in ¼ 2mm! Pf Ωð Þ: (34)

Proof: Let X1,⋯,Xn ∈Mp Y1,⋯,Yn ∈ SO Eð Þu be tangent vectors such that πYi ! Xi,
and choose some u∈ω�1 pð Þ. Then form Λ must satisfy

Λ X1,⋯,Xnð Þ ¼ 2m �m! Pf Ωð Þ Y1,⋯,Ynð Þ (35)

This suffices to give uniqueness. If it can be shown this Λ in (35) is well-defined,
then existence can be established.

Suppose different tangent vectors Z1,⋯,Zn are taken such that ωxZi ¼ Xi. Since
ωx Yi � Zið Þ ¼ 0, all Yi � Zi are vertical. However, Ω Y,Zð Þ ¼ 0 if either Y or Z is
vertical. Consequently,

Pf Y1,⋯,Ynð Þ ¼ Pf Ωð Þ Z1,Y2,⋯,Ynð Þ ¼ Pf Ωð Þ Z1,Z2,Y3,⋯,Ynð Þ
¼ Pf Ωð Þ Z1,⋯,Znð Þ:

(36)

This means the definition of Λ does not depend on the Yi selected. Suppose a
different u∈ω�1 pð Þ is chosen. Then u ¼ RA uð Þ ¼ u � A for some A∈ SO nð Þ, and so let
Yi ∈ SO Eð Þπ be given by Yi ¼ RA ∗Yi and

Pf Ωð Þ Y1,⋯,Yn
� � ¼ Pf Ωð Þ RA ∗Y1,⋯,RA ∗Ynð Þ ¼ Pf R ∗

AΩ
� �

Y1,⋯,Ynð Þ

¼ Pf A�1ΩA
� �

Y1,⋯,Ynð Þ ¼ Pf Ωð Þ Y1,⋯,Ynð Þ:
(37)

□

Theorem 5.2. The unique n-form Λ in (35) is closed, dΛ ¼ 0.
Proof: Suppose X1,⋯,Xnþ1 ∈Mp be given and choose u∈ω�1pÞ and

Y1,⋯,Ynþ1 ∈ SO Eð Þu with ωxYi ¼ Xi and hYi the horizontal component of Yi. Then
working out dΛ
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dΛ X1,⋯,Xnþ1ð Þ ¼ dΛ ωxY1,⋯,ωxYnþ1ð Þ ¼ dΛ ωxhY1,⋯,ωxhYnþ1ð Þ
¼ ω ∗ dΛð Þ hY1,⋯, hYnð Þ ¼ d ω ∗Λð Þ hY1,⋯, hYnþ1ð Þ

¼ 2m �m!d Pf Ωð Þð Þ hY1,⋯, hYnþ1ð Þ ¼ 2m �m!D Pf Ωð Þð Þ Y1,⋯,Ynþ1ð Þ:
(38)

However, DΩ ¼ 0 by Bianchi’s identity and a consequence of this is that (38)
vanishes. □

This result applies automatically when ξ is the tangent bundle. The implication of
this is that the n-form Λ determines a de Rham cohomolgy class Λ½ �∈Hn Mð Þ of M. The
form Λ itself depends on the oriented n-dimensional bundle ξ ¼ π : E ! M overM as
well as the choice of metric for ξ and connection ω on the corresponding bundle SO Eð Þ.

Theorem 5.3. The cohomology class Λ½ � is independent of both the metric and the
connection ω.

Proof: Suppose two metrics ,h i, ,h i0 are given for ξ. Then the corresponding
principal bundles SO Eð Þ and SO0 Eð Þ are equivalent. If ~f : SO0 Eð Þ ! SO Eð Þ is a fiber
preserving diffeomorphism which commutes with the action SO nð Þ and ω a connec-
tion on SO Eð Þ. Then ω0 ¼ ~f

∗
ω is a connection on SO Eð Þ. Corresponding curvature

forms satisfy Ω0 ¼ ~f
∗
Pf Ωð Þ so Pf Ω0ð Þ ¼ ~f

∗
Pf Ωð Þ. The corresponding forms Λ and Λ0

are in fact equal. It suffices to show any two connection differential forms ω0, ω1 on
the same SO Eð Þ generate forms Λ0, Λ1 whose difference is exact. If π : M� 0, 1½ � ! M
is the projection π p, tð Þ ¼ p, consider the bundle π ∗ SO ξð Þ over M� 0, 1½ �. Induced
connections are π ∗ω0 and π ∗ ω1 on π ∗ SO ξð Þ. Let τ : M� 0, 1½ � ! 0, 1½ � defined here as
τ p, tð Þ ¼ t and define a connection

ω ¼ 1� τð Þπ ∗ ω0 þ τπ ∗ ω1 (39)

on π ∗ SO ξð Þwith Ω the connection form. If it mapsM toM� 0, 1½ � and is defined as
it pð Þ ¼ p, tð Þ, then i ∗0 ωð Þ can be identified with ω0 and i ∗1 ωð Þ with ω1. By Theorems 5.1
and 5.2, which hold for manifolds with and without boundary, there is a closed n-form
Λ on M� 0, 1½ � which pulls back to 2mm! Pf Ωð Þ on the total space of π ∗ SO ξð Þ. A
theorem states for any k-form ω on M� 0, 1½ �, i ∗1 ω� i ∗0 ω ¼ d Iωð Þ � I dωð Þ. So if
dω ¼ 0, this implies i ∗1 ω� i ∗0 ω ¼ d Iωð Þ. Substituting the form Λ in place of ω into
this, it follows that Λ1 � Λ0 is exact. □

Thus every smooth oriented smaooth bundle ξ over M of even fibre dimension n
determines a de Rham cohomology class C ξð Þ ¼ Λ½ �∈Hn Mð Þ and C ξð Þ ¼ C ηð Þ if ξ≃ η.
It may be asked how does the object C ξð Þ behave with respect to f ∗ .

Theorem 5.4. Let ξ ¼ π : ξ ! M be a smooth oriented bundle over M with fibre
dimension n even, let f : M0 ! M be a smooth map. Then

C f ∗ ξð Þ ¼ f ∗ C ξð Þ∈Hn M0ð Þ: (40)

Proof: The total space of f ∗ ξ is called E0. Let ~f : E0 ! E be the bundle map covering

f . If ,h i is a metric on E, then ~f
∗
,h i is a metric on E. There is an equivalence f :

SO E0ð Þ ! SO Eð Þ covering f with ω0 taking SO E0ð Þ to M0 and ω mapping SO Eð Þ to M.
If ω is a connection on SO Eð Þ, then f

∗
ωð Þ is a connection on SO E0ð Þ. It is seen that

the corresponding connection forms satisfy Ω0 ¼ ~f
∗
Ω. Aa a result, we have

Pf Ω0ð Þ ¼ Pf f
∗
Ω

� �
¼ f

∗
Pf Ωð Þ: (41)
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For n-forms Λ on M given by Theorem 5.1, we then have

ω0 ∗ f ∗Λð Þ ¼ f
∗
ω ∗Λ ¼ 2m �m!f

∗
Pf Ωð Þ ¼ 2m �m! Pf Ω0ð Þ: (42)

This means f ∗Λ must be the n-form Λ0 on M0 given in (31). □
When ξ is a smooth oriented bundle of odd fibre dimension, the definition of C

may be extended. It would be remarkable if it were the case that C ξð Þ were always a
constant multiple of χ ξð Þ. To this end, the following theorem is needed.

Theorem 5.5. Let ξi ¼ πi : Ei ! M for i ¼ 1, 2 be smooth oriented vector bundles
over M of fibre dimension n1 and n2. If ni ¼ 2mi, then

C ξ1⊕ξ2ð Þ ¼ m1 þm2ð Þ!
m1!m2!

C ξ1ð Þ∪C ξ2ð Þ: (43)

If n1 or n2 is odd, this reduces to C ξ1⊕ξ2ð Þ ¼ 0.
Proof: Pick two metrics which are Riemannian for each ξi and set �, �h i ¼

�, �h i1⊕ �, �h i2 on ξ1⊕ξ2 ¼ π : E ! M. Let ωi : SO Eið Þ ! M and ω : SO Eð Þ ! M be the
corresponding principal bundles. Over M consider the product principal bundle Q ¼
SO E1ð Þ ∗ SO E2ð Þwith corresponding group SO n1ð Þ � SO n2ð Þ⊂ SO n1 þ n2ð Þwhose fiber
over p∈M is the direct product ω�1

1 � ω�1
2 pð Þ, so this bundle is a subset of SO Eð Þ.

Let ρi be the projection maps for Q which project this down onto either of its
factors. If ωi are connections on SO Eið Þ, with curvature forms Ωi, then

ρ ∗
1 ω1⊕ρ ∗

2 ω2 ¼
ρ ∗
1 ω1 0

0 ρ ∗
2 ω2

� �
(44)

is a connection on Q and the curvature form is

Ω ¼ ρ ∗
1 Ω1⊕ρ ∗

2 Ω2 ¼
ρ ∗
1 Ω1 0

0 ρ ∗
2 Ω2

� �
(45)

The connection ω can be extended uniquely to a connection ~ω on SO Eð Þ. The
requirement ~ω σ Mð Þð Þ ¼ M determines ~ω at the new vertical vectors, hence ~ω is
determined at all points of Q, and then at all points of SO Eð Þ by the requirement
~ω R ∗

A Y
� � ¼ Ad A�1� �

~ω Yð Þ.
At any point e∈Q , the horizontal vectors for ~ω are the same as that for ω. At E, it

holds that Ω ¼ ~Ω for tangent vectors to Q which implies, using Pf A⊕Bð Þ ¼
Pf Að Þ � Pf Bð Þ, that

Pf ~Ω
� � ¼ Pf Ω

� � ¼ Pf ρ ∗
1 Ω1

� �
∧Pf ρ ∗

2 Ω2
� � ¼ ρ ∗

1 Pf Ω1ð Þ∧ ρ ∗
2 Ω2ð Þ: (46)

Consequently, if Λi are the forms given by (34), then at e it must hold that on
tangent vectors to Q

ω ∗Λ ¼ 2m1þm2 m1 þm2ð Þ! Pf ~Ω
� � ¼ m1 þm2ð Þ!

m1!m2!
2m1m1!ρ

∗
1 Pf Ω1ð Þ∧ 2m2m2!ρ

∗
2 Pf Ω2ð Þ

¼ m1 þm2ð Þ!
m1!m2!

ρ ∗
1 ω

∗
1 Λ1 ∧ ρ ∗

2 ω
∗
2 Λ2 ¼ m1 þm2ð Þ!

m1!m2!
ω ∗
1 Λ1 ∧ω ∗

2 Λ2:

(47)
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This implies that

Λ ¼ m1 þm2ð Þ!
m1!m2!

Λ1 ∧Λ2: (48)

□

Corollary 5.1. If the oriented bundle ξ ¼ π : E ! M has a nowhere zero section s,
then

C ξð Þ ¼ 0: (49)

Proof: Let E1 ⊂E be written

∪p∈Mℝ � s pð Þ, (50)

and let E2 ⊂E be the orthogonal complement

∪p∈M ℝ � s pð Þð Þ⊥ (51)

with respect to some Riemannian metric on E. Then ξ1 ¼ π1∣E1 : E1 ! M is an
oriented one-dimensional bundle. Consequently, ξ2 ¼ π2∣E2 : E2 ! M is also an ori-
ented bundle since ξ is oriented. Clearly ξ≃ ξ1⊕ξ2. An application of the previous
result shows that C ξð Þ ¼ 0. □

This theorem is almost enough to characterize χ as we can now show the statement
which relates C ξð Þ and the Euler class.

Corollary 5.2. If ξ ¼ π : E ! M is a smooth vector bundle of fibre dimension n over
a compact oriented manifold M, then the class C ξð Þ∈Hn Mð Þ is a multiple of the Euler
class χ ξð Þ.

Proof: Suppose S is the sphere bundle S ¼ e∈E : e, eh i ¼ 1f g, which is constructed
with respect to some Riemannian metric on E. Let π0 : S ! X be the restriction π∣S.
The bundle π ∗

0 ξ has a nowhere zero section. Corrollary 5.1 and Theorem 5.4 then yield

π ∗
0 C ξð Þ ¼ C π ∗

0 ξ
� � ¼ 0: (52)

However, there is a theorem which states a class α∈Hn Mð Þ satisfies π ∗
0 α ¼ 0 if and

only if α is a multiple of χ ξð Þ. It can now be inferred that C ξð Þ is a multiple of the Euler
class χ ξð Þ. □

6. The Gauss-Bonnet-Chern theorem

If Corollary 5.2 is applied to the tangent bundle of a compact oriented manifold M
of dimension n which is even, the class C TMð Þ∈Hn Mð Þ is some multiple of the Euler
class χ TMð Þ. This fact is not so interesting because Hn Mð Þ is one-dimensional since it
means C TMð Þ ¼ 0 if χ TMð Þ ¼ 0. The corollary does lead to something interesting
when applied to the universal bundle.

Theorem 6.1 For every even n, there is a constant βn such that

C ξð Þ ¼ βn χ ξð Þ: (53)
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for all smooth oriented n-dimensional bundles ξ over compact oriented manifolds.
In this sense, it is universal.

Proof: Begin with the bundles ~zetan ℝN
� �

for N > n. Corollary 5.2 implies there are
constants βn,N such that

C ~ζ
n
ℝN� �� �

¼ βn,Nχ ~ζ
n
ℝN� �� �

∈Hn ~ζn ℝN� �� �
: (54)

If j : ~Gn ℝN
� �! ~Gn ℝM

� �
is the natural inclusion, then j ∗ ~ζ

N
ℝN
� �� �

≃ ~ζ
n
ℝN
� �

.

Equation (30) and Theorem 5.4 yield

C ~ζ
n
ℝN� �� �

¼ j ∗ C ~ζ
n
ℝM� �� �

¼ j ∗ χ ~ζ
n
ℝM� �� �

: (55)

Thus, (54), (55) give

βn,N χ ~ζ
n
ℝN� �� �

¼ βn,M χ ~ζ
n
ℝN� �� �

: (56)

Since χ ~ζ
n
ℝN
� �� �

6¼ 0 by Theorem 4.2, this implies that βn,N ¼ βn,M for allM,N > 1.

This common number is called βn, and we have

C ~ζ
n
ℝN� �� �

¼ βn χ ~ζ
n
ℝN� �� �

: (57)

However it is known that any smooth oriented n-dimensional bundle ξ over a

compact manifold M is equivalent to f ∗ ~ζ
n
ℝN
� �� �

for some smooth map f : M !
~G ℝN
� �

, then

C ξð Þ ¼ C f ∗ ~ζ
n
ℝN� �� �

¼ f ∗C ~ζ
n
ℝN� �� �

¼ βn f
∗ χ ~ζ

n
ℝN� �� �

¼ βn χ ξð Þ: (58)

□

The constant βN is universal in nature and it may be asked whether it can be
computed. Since it has this universality property, it suffices to compute this constant
for a special case where the calculation is easier and in turn implies another applica-
tion of the next theorem.

Theorem 6.2 For integer n ¼ 2m, the constant βn in Theorem 6.1 is

βn ¼
n!
2
V Snð Þ ¼ πm2nm!: (59)

If M, ,h ið Þ is a compact manifold of even dimension n ¼ 2m then

ð

M
Kndμg ¼

πm2nm!

n!
χ Mð Þ: (60)

Proof: Let ξ be the tangent bundle TM of a compact oriented manifold of dimension
n. Now (17) gives a formula for Kndμg, where Ωi

j are curvature forms for some
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positively oriented orthonormal moving frame. This implies that the form Λ in
Theorem 5.1 for the bundle SO ξð Þ ¼ SO TMð Þ is

Λ ¼ n!Kndμg: (61)

If κ is the fundamental class of M then

ð

M
Kndμg

� �
κ ¼ 1

n!

ð

M
Λ

� �
κ ¼ 1

n!
C ξð Þ ¼ βn

n!
χ ξð Þ ¼ βn

n!
χ Mð Þ � κ: (62)

Hence, equating the coefficients of κ on both sides,

ð

M
Kndμg ¼

βn
n!

χ Mð Þ: (63)

Consider the case of a specific manifold M ¼ Sn in (63), where Kn ¼ 1 so the left
side of (63) reduces to V Snð Þ

V Snð Þ ¼ βn
n!

χ Snð Þ ¼ 2βn
n!

: (64)

Since the volume V Snð Þ is known to be πm 2nþ1m!=n!, solve (64) for βn in terms of
V Snð Þ ,

βn ¼
n!
2
V Snð Þ ¼ πm 2nm!: (65)

This value of βn can be put back into (60) and for the manifold M, it follows that

ð

M
Kndμg ¼

πm 2nm!

n!
χ Mð Þ: (66)

□

7. The theorem for manifolds with boundary

Theorem 5.5 played a large part in the proof of (64). It allowed us to state that if
ξ ¼ π : E ! M is an oriented n-dimensional vector bundle with sphere bundle π0 :
S0 ! M, then π ∗

0 C ξð Þ ¼ 0 was a large part of the proof of (). If Λ is the n-form on M
representing C ξð Þ, then the n-form π ∗

0 Λ on S is exact π ∗
0 Λ ¼ dΦ for some n� 1ð Þ-form

on S. Suppose ξ ¼ TM ∗ and let X be a unit vector bundle on M which has an isolated
singularity at p∈M Let B εð Þ be a closed ball of radius ε around p and set Mε ¼
Mnint B εð Þð Þwhere int denotes the interior. Then X Mεð Þ is a manifold with boundary,
the image of Mε under the section X : Mn pf g ! S. Consequently

ð

M
Λ ¼

ð

M� pf g
Λ ¼ lim

ε!0

ð

Mε

Λ ¼ lim
ε!0

ð

Mε

X ∗ π ∗
0 Λ

� � ¼ lim
ε!0

ð

X Mεð
π ∗
0 Λ

¼ lim
ε!0

ð

X Mεð Þ
dΦ ¼ lim

ε!0

ð

∂X Mεð Þ
Φ: (67)

52

Manifolds III - Developments and Applications



If ind X, pð Þ is the index of X at p
ð

M
Λ ¼ ind X, pð Þ

ð

π�1
0 pð Þ

Φ ¼ χ Mð Þ
ð

π�1
0 pð Þ

Φ: (68)

Since n ¼ 2m we also have the Gauss-Bonnet-Chern Theorem 6.2
ð

M
Λ ¼

ð

M
n!Kndμg ¼ πmm!2n χ Mð Þ, (69)

we finally obtain
ð

π�1
0 pð Þ

Φ ¼ πmm!2n: (70)

Let M, ∂Mð Þ be a compact orientable manifold with boundary with Euler charac-
teristic χ Mð Þ ¼ dimH0 Mð Þ � dimH1 Mð Þ þ⋯. A compact oriented manifold M2 can
be constructed, the double of M, by taking two disjoint copies of M and identifying
corresponding points of ∂M.

Theorem 7.1 The Euler characteristic of the manifold M2 is given by

χ M2� � ¼ 2χ Mð Þ � χ ∂Mð Þ: (71)

Proof: Let U and V be open neighborhoods of the two copies ofM inM2 such that
Hk Uð Þ � H Vð Þ � Hk Mð Þ for all k and Hk U∩Vð Þ � Hk

∂Mð Þ for all k. So there is the
sequence 0 ! H0 M2� �! ⋯ ! Hk M2� �! Hk Uð Þ⊕Hk Vð Þ ! ⋯ ! Hk U∩Vð Þ !
Hkþ1 M2� �

. When the sequence is exact, a theorem can be applied to obtain the result.□
This is very interesting since it claims different things depending on whether the

dimension n of M is even or odd. When n is odd χ M2� � ¼ 0 hence χ Mð Þ ¼ 1=2χ ∂Mð Þ
which implies χ ∂Mð Þ must be even. But when n is even, χ ∂Mð Þ ¼ 0, so the previous
theorem implies

2χ Mð Þ ¼ χ M2� �
: (72)

Corollary 7.1 Let M be a compact orientable manifold with boundary of even
dimension n. Let X be a vector field on M with only finitely many zeros all in Mn∂M
such that X is outward pointing on ∂M. The sum of indices of X is χ Mð Þ.

Proof: Modify X near ∂M so it is an outward pointing unit normal ν on the
boundary and so there are no new zeros. Then there is a vector field on M2 which
looks like X on one copy ofM and�X on the other. Since n is even, the index �X of an
isolated zero is the same as the index of X at that zero. The Theorem of Poincaré-Hopf
on the sum of indices of X gives twice the sum of the indices of X equals χ M2� � ¼
2χ Mð Þ by (72). □

Theorem 7.2 Let M be a compact oriented Riemannian manifold with boundary of
even dimension n ¼ 2m, tangent bundle π : TM ! M and associated sphere bundle
π0 ¼ π∣S : S ! M. Let ω be a connection on the principal bundle ω : SO TMð Þ ! M,
with curvature form Ω. Let Λ be the unique n-form on M with

ω ∗Λ ¼
X

εi1,⋯,in Ωi1
i2 ∧⋯∧Ωin�1

in ¼ 2mm! Pf Ωð Þ, (73)
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and Φ an n� 1ð Þ-form on S with π ∗
0 Λ ¼ dΦ. Let ν : ∂M ! S be the outward

pointing unit normal on ∂M. Then

ð

M
Kndμg ¼

1
n!

ð

M
Λ ¼ πmm!2n

n!
χ Mð Þ þ 1

n!

ð

∂M
ν ∗ Φ: (74)

Proof: Extend ν to a vector field X on M with only finitely many zeros
p1, … , pk ∈Mn∂M. Let Bi εð Þ be the closed balls of radius ε centered at pi which are
disjoint from each other and from ∂M. Put Mε ¼ Mn∪k

i¼1 intBi εð Þ. Now integrate the
form Λ over M and use (70)

ð

M
Λ ¼ lim

ε!0

ð

∂X Mεð Þ
Φ ¼

ð

ν ∂Mð Þ
Φþ

Xk
i¼1

lim
ε!0

ð

∂Bi εð Þ
Φ

¼
ð

∂M
ν ∗ Φþ πmm!2n

XM
i¼1

indXð Þpi ¼
ð

∂M
ν ∗ Φþ πmm!2n χ Mð Þ:

(75)

The last line makes use of Corollary 7.1. □
Theorem 7.2 presents one way in which Theorem 6.2 can be generalized to the case

of manifolds with boundary. At this point an interpretation for the first term in (75) is
not easy to provide. It is required to obtain an explicit Φ such that π ∗

0 Λ ¼ dΦ. In fact
such a Φ can be constructed.
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Chapter 4

Smooth Structures on Spin
Manifolds in Four Dimensions
Simon Davis

Abstract

The estimate of the coefficient of the magnitude of the signature, which are defined
by the number of positive and negative eigenvalues in the inequality representing
smooth, oriented, simply connected, compact, spin four-manifolds with indefinite
intersection forms can be increased until it is equal to the conjectured value. Therefore,

if the intersection form ismE8 ⊕ n
0 1

1 0

� �
, the oriented, simply connected, compact,

spin four-manifold will admit a smooth structure if and only if n≥ 3
2 mj j. The inequality

is changed to n≥ 3
2 mj j � 1� 1

2i

� �
, there is a 2i-fold spin covering of a non-spin manifold

M given the demonstration of n≥ 3
2 mj j for oriented, compact, spin manifolds. A closer

examination of the proof reveals that the lower bound for b+ can be increased to 3|k| + 1,
where kj j ¼ 3

15 σj j for a spin manifold, yielding b2 ≥ 11
8 σj j þ 2. The projection of a spin

covering to a non-spin manifold yields the lower bound b2 ≥ 11
8 σj j, which establishes the

prediction for the coefficients of intersection forms for this class of smooth, oriented,
simply connected, compact four-manifolds.

Keywords: intersection forms, coefficients, spin manifolds, smooth structures

1. Introduction

The classification of four-manifolds may be determined by the handlebody decompo-
sition into simply connected components of a topological sum when the manifold is
smooth. If it is closed, oriented, and simply connected, then it will be distinguished,
within a homotopy equivalence, by an intersection form that is either definite, indefinite
with odd parity, or indefinite with even parity. These manifolds also be identified by the
second Betti number and the signature. The four-manifold admits a smooth structure if
the intersection matrix is definite or indefinite with odd parity. Furthermore, if the

intersection form is indefinite and equalsmE8 ⊕ n
0 1

1 0

� �
, it will continue to have a

smooth structure if n≥ 3
2 mj j. In the (b2, σ) plane, the smooth structures are located above

the line b2 ≥ 11
8 σj j [1] and the nonsmooth structures are located below the line b2 ≤ 5

4 σj j,
with the region between the two lines undetermined. It may be shown, however, that one
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of the manifolds in this region does not admit a smooth structure [2]. The coefficient of
11
8 also will be the maximal value for the line separating the set of manifolds with smooth
and nonsmooth structures because the inequality is saturated by K3 [3]. Consequently, it
remains to be established that all of the manifolds with an indefinite intersection form in
this intermediate region do not admit a smooth structure. The condition of an indefinite
intersection form is necessary because b2 = 1 and σ = 1 for ℂℙ2.

By considering finite-dimensional approximations to the Seiberg-Witten map of
the tensor product sections of the spinor bundle and the space of connections, the
lower bound b2 ≥ 10

8 σj j þ 2 was established for oriented, connected spin manifolds [4].
It may be increased with the use of stable homotopy groups of spheres and Pin2-
equivariant homotopy invariants [5] to b2 ≥ 10

8 σ þ 4. The lower limit will be increased
first to b2

σj j >
21
16 for spin manifolds with signature σ ≥ 16 as a result of a theorem on the

nonexistence of smooth four-manifolds with the intersection form þ4E� 8⊕ 5H [6].
Then, the coefficient of 11

8 will be found by considering precisely the form of the maps
between finite-dimensional vector bundles over the four-manifold. A second proof
will be derived by considering intersection products of second homology classes
representable by spheres [7]. Consequences of the related 3

2 conjecture for the
embedding of surfaces with a nonvanishing second homology class in an irreducible
four-manifold will be described.

2. The inequality for the second Betti number and the signature

Since the intersection matrix is symmetric and diagonalizable over ℝ, b+ and b�
will denote the number of positive and negative eigenvalues respectively. Then the
second Betti number and the signature are b2 = b+ + b� and σ = b+ � b� respectively.
Let k ¼ � σ Mð Þ

16 and the inequality bþ ≥ 3k ¼ � 3σ
16. When the signature is negative, and

–σ may be replaced by |σ|,

b2 þ σ

2
≥

3 σj j
16

b2 ≥ 2 � σ

2
þ 3 σj j

16

� �
¼ 11

8
σj j:

(1)

The signature could be positive such that b ≥ 3 k is a much less stringent inequality.
However, by reversing the orientation, the sign of the signature is changed, and this
inequality always can be taken to imply bþ ≥ 3 σj j

16 .
Similarly, if the orientation is chosen such that bþ ≥ 2kþ 1 ¼ � σ

8 þ 1 is equivalent

to bþ ≥ σj j
8 þ 1,

b2 þ σ

2
≥

σj j
8

þ 1

b2 ≥ 2
σj j
2
þ σj j

8
þ 1

� �
¼ 5

4
σj j þ 2:

(2)

It may be demonstrated that a spin 4-manifold can admit a smooth structure when
the intersection form is 4E8 ⊕ nH for n ≥ 6 [7]. Consequently, there is no smooth
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manifold with the intersection form 4E8 ⊕ 5H. Since the coefficients are relatively
prime, the ratio n

m ¼ 5
4 is achieved only for the intersection forms 4kE8 ⊕ 5kH, k = 1, 2,

3, .... Given that there is a manifold M with the intersection form 4E8 ⊕ 5H, the latter
form would characterize #kM.

Lemma 2.1. Smooth, oriented, simply connected, compact 4-manifolds with a
spin structure and an indefinite intersection form have second Betti numbers
bounded by 21

16 σj j, which is a bound closer to the line with gradient 11
8 for non-zero

signature.
Proof. The line representing smooth structures must be n≥ 5

4m. Then

b2
σj j ¼

8mþ 2n
8m

≥
8mþ 5

2m
8m

¼ 21
6
: (3)

When

10
8

þ 2
σj j ≤

21
16

, (4)

or

σj j≥ 32
5
, (5)

this bound is better than the established value. If

10
8

þ 4
σj j <

21
16

, (6)

or

σj j≥ 65
5
: (7)

Any spin manifold will have a signature divisible by 16 by Rohlin’s theorem.
Therefore, if it is non-zero, these inequalities will be valid.

The line with gradient 21
16 in the geography of four-manifolds is closer to the

boundary between smooth and nonsmooth structures.
Given the validity of the 11/8 conjecture, smooth connected spin four-manifolds

can be regarded as the topological sums #kK3#ℓS2 � S2 or #kℂℙ2#ℓℂℙ2.
Lemma 2.2. All manifolds #kK3#ℓS2 � S2 with k > 0 have b2

σj j ≥
11
8 , with the bound

saturated by K3. The coefficients in #kℂℙ2#ℓℂℙ2 must satisfy the inequalities
3
19 k≤ℓ 19

3 k for a smooth structure to exist by the 11Þ
8 conjecture.

Proof. Since K3 has an interesection form with 3 positive and 19 negative eigen-
values, b2(K3) = 22 and σ(K3) = �16. The intersection form of S2 � S2, H, has the
eigenvalues 1 and � 1, and b2(S

2 � S2) = 2, while σ(S2 � S2) = 0. Then

b2 #kK3#ℓS2 � S2
� � ¼ 22kþ 2ℓ

σ #kK3#ℓS2 � S2
� � ¼ �16k

(8)
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and

b2 #kK3#ℓS2 � S2
� �

σ #kK3#S2 � S2
� ��� �� ¼

11
8
þ 1
8
ℓ
k
: (9)

The intersection matrix of #kℂℙ2#ℓℂℙ2 is diag(1, ..., 1, �1, ..,–1) with

b2 #kℂℙ2#ℓℂℙ2
� �

¼ kþ ℓ

σ #kℂℙ2#ℓℂℙ2
� �

¼ k� ℓ:
(10)

It follows that

b2 #kℂℙ2#ℓℂℙ2
� �

σ #kℂℙ2#ℓℂℙ2
� � ¼ kþ ℓ

k� ℓj j ¼
1þ 2ℓ

k� ℓ
k>ℓ

1þ 2k
ℓ� k

ℓ> k

8><
>:

(11)

either

1þ 2ℓ
k� ℓ

≥
11
8
,

ℓ ≥
3
19

k
(12)

or

1þ 2k
ℓ� k

≥
11
8

k ≥
3
19

ℓ
(13)

which may combine in the inequalities

3
19

k≤ℓ≤
19
3
k: (14)

A bound may be established for simply connected complex surfaces with an even
cup product form [8]. It is known that, for these manifolds, b2 = c2–2 and σ ¼
1
3 c21 � 2c2
� �

, where c1 and c2 are the first two Chern numbers. Defining

b ¼ 1
16

8b2 � 11jσjð Þ, (15)

the 11
8 conjecture is equivalent to b ≥ 0.When σ < 0,

48b ¼ 3 8 c2 � 2ð Þ þ 11
8

c22 � 2c2
� �� �

¼ 11c21 þ 2c2 � 48:
(16)
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When σ > 0,

48b ¼ 3 8 c2 � 2ð Þ � 11 c21 � 2c2
� �� �

¼ �11c21 þ 43c2 � 48:
(17)

Adding the two inequalities gives c2 ≥ 32
15. This inequality is satisfied for complex

surfaces, since c21 ≥0 and c2 ≥ 3. However, for negative signature,

11c21 þ 2c2 � 48≥ � 42: (18)

For positive signature, c21 ≤ 3c2 and

�11c21 þ 43c2 � 48≥ 10c2 � 48≥ � 18: (19)

It is clear that 48b = 3(8b2–11|σ|) is integer. By Rohlin’s theorem, the signature will
be divisible by 16 and b also would be integer. By Eqs. (18) and (19), b≥ � 7

8 and
b≥ � 3

8 respectively. Then b ≥ 0 and the 11
8 conjecture is valid for simply connected

complex surfaces with an even intersection form.

3. Summary of the K-theoretic proof of the lesser lower bound
for the second Betti number

The Dirac operator D is a map from sections of spinor bundles Eo to E1, D:
Γ(E0) ! (E1), and ind D = dim Ker D – dim Coker D. Now consider a Whitney sum
with a finite-dimensional vector bundle, such that D ¼ Lþ L0 : V0 ⊕Γ E0� �!
V1 ⊕Γ E1� �

, where L is a finite-dimensional mapping and L’ is an isomorphism between
infinite-dimensional spaces. Then ind D = dim V0 – dim V1. Therefore, topological
information about a manifold on which the Dirac operator, arising from equations
with a linearization of N = 2 supersymmetry on the space, deduced from the index
may be evaluated through a finite-dimensional construction. When M is a closed
spin 4-manifold, the Seiberg-Witten map is a Pin2-equivariant map given by
ℍ∞ ⊕ ~R

∞ ! ℍ∞ ⊕ ~R
∞
, where ~R is the nontrivial one-dimensional real representation

space of Pin2. A finite-dimensional approximation is a Pin2-equivariant map

ℍc0 ⊕ ~R
d0 ! ℍc1 ⊕ ~R

d1 , where c0 � c1 ¼ � σ Mð Þ
16 and d0 � d1 ¼ bþ Mð Þ, in a generalized

Kuranshi construction [9].
The four-dimensional spin manifold will admit a Spin4 bundle and vector bundles

T, S+, S� and Λ constructed from the Spin4 � Pin2 modules –ℍþ,þℍ,�ℍ andþℍþ
defined by the actions q�aa

�1
þ ,qþϕq

�1
0 ,qþωq

�1
0 and qþωq

�1
þ for (q�, q+, q0) ∈

Spin4 � Pin2 and a∈ –ℍþ,ϕ∈ þℍ,ψ ∈ –ℍ and ω∈ þℍþ. If ~R is the real one-dimensional
Pin2 module defined by multiplication by Pin2/S

1, ~T ¼ T⊗ ~R,C : T⊗ Sþ ! S� with
a, ϕð Þ ! aϕ,C : T⊗ ~T ! ~Λ with a, bð Þ ! ab,D1 ¼ C∇1 : Γ Sþð Þ ! Γ S�ð Þ, D2 ¼ C∇2 :

Γ ~T
� �! Γ ~Λ

� �
, D ¼ D1 ⊕D2 : Γ Sþ⊕ ~T

� �! Γ S� ⊕ ~Λ
� �

, Q : Sþ ⊕ ~T ! S� ⊕ S� ⊕ ~Λ
with ϕ, að Þ ! aϕi, ϕiϕ

� �
, then D + Q: V ! W where V is the L2

4 completion of
Γ Sþ ⊕ ~T
� �

and W is the L2
3 completion of Γ S� ⊕ ~Λ

� �
[4].
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Let M be a compact G-space, E and F be G-equivariant complex vector bundles
over M, BE and BF be disk bundles corresponding to E and F, SE and SF be boundary
sphere bundles, ~f : BE ! BF be a G-equivariant bundle map preserving boundaries.
By the Thom isomorphism theorem, KG(BE, SE) and KG(BF, SF) are generated by
Thom classes τE and τF. With ~f

∗
being the pullback map KG(BF, SF) ! KG(BE, SE),

~f
∗
τF ¼ α0τE, where α0 ∈ KG(M) is the degree of ~f

∗
. Since the restriction of the Thom

classes to the zero sections are the Euler classes of E and F,
P

d �1ð Þd ΛdF
� � ¼

α0
P

d �1ð Þd ΛdE
� �

.
Contracting M = pt., G = Pin2,

Ept: ¼ Vλ,ℂ ¼ ℍkþm þ ~R
n

� �
⊗ℂ

Fpt: ¼ Wλ,ℂ ¼ ℍm þ ~R
bþþn

� �
⊗ℂ,

(20)

where Vλ is the subspace of V spanned by the eigenspace of D* D with eigenvalues
less than or equal to λ, and Wλ is the subspace of w spanned by eigenspaces of DD*
with eigenvalues less than or equal to λ,f : Vλ,ℂ ! Wλ,ℂ is the complexification of
Dλ þQλ,where Dλ þ Qλ ¼ Dþ pλQ

� ���
Vλ
,f u⊗ 1þ v⊗ ið Þ ¼ Dλ þQλð Þu⊗ 1þ

Dλ þ Qλð Þv⊗ i:
Suppose that φ : V ¼ ker d ∗ð Þ⊕Γ Vþð Þ ! Ω2

þ ⊕Γ V�ð Þ ¼ W, φ vð Þ ¼ L vð Þ þ θ vð Þ,

L ¼ dþ 0

0 ∂

 !
is linear, θ a, ψð Þ ¼ σ ψð Þ, aψð Þ is quadratic, where a is the gauge

potential in the covariant derivative and σ’ is an automorphism of the space Γ(W+)

and σ0 ψ j

� �
¼ σ0 zþ jwð Þj ¼ σ0 �vþ jmzð Þ ¼ �σ0 ψð Þ. Let f λ : V ! W be defined by u �

f λ vð Þ ¼ vþ L�1 1� pλ
� �

θ vð Þ, L uð Þ ¼ L vð Þ þ 1� pλ
� �

θ vð Þ, with pλ being the projection
of V and W onto Vλ and Wλ. Defining φΛ : ⊕ λ≤ΛVλ ! ⊕ λ≤ΛWλ, φΛ uð Þ ¼ pλφf

�1
Λ uð Þ

[10].
Let Tu vð Þ ¼ u� L�1 1� pΛ

� �
θ vð Þ. Then

Tu v1ð Þ � Tu v2ð Þk k ¼ Tu v1ð Þ � uð Þ � Tu v2ð Þ � uð Þk k

¼ �L�1 1� pΛ
� �

θ v1ð Þ þ L�1 1� pΛ
� �

θ v2ð Þ�� ��:
(21)

The eigenvalue of L�1(1 – pΛ) is 1
λ on each Wλ, which has the maximum value 1

Λ

for λ > Λ. The automorphism σ’(ψ) is given by σ0 z, wð Þ ¼ i zj j2� wj j2
2

� �
� kRe zwð Þ þ

jIm zwð Þ, and, if σ̂ z, wð Þ ¼ ρ̂∘σ0 z, wð Þ, where ρ̂ : T ∗ Xð Þ ! Hom W�, W∓� �
,

ρ̂ v1 ∧ v2ð Þ ¼ 1
2 ρ v1ð Þ, ρ v2ð Þ½ �, f 1 ¼ 1

2 e1 ∧ e2 � e3 ∧ e4ð Þ, f 2 ¼ 1
2 e1 ∧ e3 � e4 ∧ e2ð Þ, f 3 ¼

1
2 e1 ∧ e4 � e2 ∧ e3ð Þ, where i, j, k correspond to f1, f2, f 3 ∈Λþ Mð Þ, with Λ2 Mð Þ ¼
Λþ Mð Þ⊗Λ�1 Mð Þ, σ̂ ψð Þj j2 ¼ 1

2 ψj j2 [3]. It follows that

σ̂ψ1, a1ψð Þ1Þ � σ̂ψ2, a2ψ2Þð k≤ a1, ψ1ð Þ � a2ð , ψ2Þk k�� (22)

if ∣ψ1∣< a1, ∣ψ2∣< a2, and a1, a2 < 1. Under these conditions, by the Banach
contraction principle, φ�1

Λ 0ð Þ is a compact set.
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With BVλ,ℂ ¼ u⊗ 1þ v⊗ i∈Vλ,ℂj uk k, vk k≤Rf g, SVλ,ℂ ¼ ∂BVλ,ℂ, let f ¼ f ∘p,
where p : Wλ,ℂn 0f g ! SWλ,ℂ. Then the mapping f : BVλ,ℂ ! BWλ,ℂ is defined to be
the cone of f . If k>0, α∈R Pin2ð Þjρℓ Fð Þα ¼ ψℓα

� �
ρℓ Eð Þ� �

⊂Ker R Pin2ð Þ ! R S�1� �� �
.

Consider an element α of Ker(R(Pin2) ! R(S1)) satisfying
P

d �1ð Þd ΛdF
� � ¼

α
P

d �1ð Þd ΛdE
� �

. Regarding E and F as S1 modules, let E0 ¼ 2 kþmð Þ ℂ⊕ℂ ∗ð Þ⊕ n and
F0 ¼ 2m ℂ⊕ℂ ∗ð Þ⊕ bþ þ nð Þ be representation spaces.

Let ψℓ be the Adams operation and ρℓ Eð Þ be the characteristic class satisfying
ψℓτE ¼ ρℓ Eð ÞτE. Then

ψℓ ~f
∗
τF

� �
¼ ~f

∗
ψℓτF
� � ¼ ~f

∗
ρℓ Fð ÞτF
� �

ψℓ α0τEð Þ ¼ ψℓα0
� �

ψℓτE ¼ ψℓα0ρ
ℓ Eð ÞτE

~f
∗
ρℓ Fð ÞτF
� � ¼ ρℓ Fð Þ~f ∗

τF ¼ ρℓ Fð Þα0τE
ρℓ Fð Þα0τE ¼ ψℓα0

� �
ρℓ Eð ÞτE

ρℓ Fð Þα0 ¼ ψℓα0
� �

ρℓ Eð Þ:

(23)

Given that ρℓ Lð Þ ¼ 1þ L½ � þ L2� �þ⋯þ Lℓ�1� �
for a line bundle L, ρℓ E0ð Þ ¼

ρℓ ℂð Þρℓ ℂ ∗ð Þ� �2 kþmð Þ
ρℓ 1ð Þn ¼ 1þ tþ … þ tℓ�1

� �
1þ t�1 þ … þ t� ℓ�1ð Þ� �� �2m

ℓn and

ρℓ F0ð Þ ¼ 1þ tþ … þ tℓ�1
� �

1þ t�1 þ … þ t� ℓ�1ð Þ� �� �2m
ℓbþþn. Since

Ker R Pin2ð Þ ! R S�1� �� � ¼ c 1� ~1
� �jc∈ℤ

� �
, the trace of the degree relation gives

22mþbþþn ¼ 2c22kþ2mþn for α ¼ c 1� ~1
� �

, which is consistent with the inequality
bþ ≥ 2kþ 1.

Methods have been developed for increasing the bound for b2
σj j through the inequal-

ity between b2(M) and the level number of ℂℙ2k�1, defined to be least n such that

ℂℙ2k�1, Sn�1� �ℤ2 6¼ �0, where k ¼ � σ Mð Þ
16 [11, 12]. The computations of level(ℂℙ2k�1)

yield the inequalities level((ℂℙ2k�1) ≥ 2 k + t if k � t mod4ð Þ, t = 1, 2, 3 and the equality
level(ℂℙ2k�1) = 2 k + 3 if k � 0 (mod 4), k > 0 [13]. The equivalent inequalities for the
second Betti number and signature would be b2 ≥ 5

4 σj j þ 2t for σj j
16 � t mod4ð Þ when

t = 1, 2, 3 and b2 ≥ 5
4 σj j þ 6 for σj j

16 � 0 mod4ð Þ, σj j>0. The Bauer-Furuta stable
Seiberg-Witten invariants also yield a condition for the existence of smooth
structures [14].

4. Proof of the exact bound for the second Betti number

It will be demonstrated that the previous lower bound for b+ can be increased to a
maximal value.

Theorem 4.1. The second Betti number and signature of a smooth, oriented,
simply connected, compact, spin four-manifold with an indefinite intersection form
satisfies the inequality b2 ≥ 11

8 ≥ σj j.
Proof. Since c is a non-zero integer, the trace condition also requires a stricter

bound for b+. The Euler class of Ewill be given by that of ℍkþm, while the Euler class of
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F would be that of ℍm, since the ~R components do not contribute. The Spin4 � Pin2
actions do not alter the norm of the points in the quaternionic vector spaces. The fixed
point at the origin, however, would be the source of a flow generated by a dilation,
representing an invariance of the spinor equation, that must have an endpoint at ∞.
Adding the point {∞} to the quaternionic plane produces a manifold that is
diffeomorphic to S4 and χ(S

4) = 2. Therefore, by the Thom class relation,

2m ¼ tr αpt:
� �

2kþm (24)

and tr(αpt.) = 2–|k|, except that kmust be chosen to be nonpositive through k = �|k|,
then tr(αpt.) = 2|k|. A similar result follows from the evaluation of the K-theory char-
acteristic classes ρℓ Eð Þ. Reintroducing the ~R components in the vector bundles allows
the inclusion of the factor c0 ≥ 1 occurring in Ker(R(Pin2) ! R(Pin1)) in α ¼
2 kj j–1c0 1� ~1

� �
.It follows that

22mþbþþn ¼ 2c0 2 kj j�122 kj jþ2mþn ¼ 2 kj j22 kj jþ2mþn (25)

or

bþ ≥ 3 kj j (26)

and

b2 ≥
11
8

σj j: (27)

Furthermore, this inequality is equivalent to n≥ 3
2 mj j since the second Betti num-

ber and the absolute value of the signature of a manifold with the intersection form

mE8 ⊕ n
0 1

1 0

� �
are b2 = 8|m| + 2n and |σ| = 8|m|, and

b2
σj j ¼

8 mj j þ 2n
8 mj j ≥

11
8

8 mj j þ 2n≥ 11 mj j
n≥

3
2
mj j:

(28)

It has been proven for cobordisms between homology three-spheres Y0 and Y1 with

the intersection form m �E8ð Þ þ n
0 1

1 0

� �
that κ Y1ð Þ þ n≥ κ Y0ð Þ þmþ 1, where κ is

an invariant that reduces modulo 2 to the Rohlin invariant μ(Y) [2]. When Y0 and Y1

are S3, this inequality is n ≥ |m| + 1, which is consistent with the previously derived
inequality [4] for the coefficients since it would follow that

b2
σj j ¼

8 mj j þ 2n
8 mj j ≥

5
4
þ 2

σj j
8 mj j þ 2n≥ 10 mj j þ 2

n≥ mj j þ 1:

(29)
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Nevertheless, the nonexistence of smooth spin manifolds transcending the stricter
inequality, such that n ¼ 3

2 mj j � 1, with a decompositionM ¼ X1 ∪ Y1X2 ∪ Y2 … ∪ Yr�1Xr,

where the intersection forms of Xi, 1 ≤ i ≤ r – 1 are 2 �E8ð Þ þ 3
0 1

1 0

� �
, Yi is a

homology three-sphere and Xr has the intersection form 2 �E8ð Þ þ 2
0 1

1 0

� �
[15],

indicates there are characteristics that cannot be preserved when under topological
sums yielding 5

4 < b2
σj j <

11
8 .

Definition 4.2. A space is Floer G-split if the S1 action on the the K-theory group
~KG Mð Þ has the form z ! zr for some positive integer r.

Theorem4.3. The compact manifoldM ¼ X1 ∪ Y1X2 ∪ Y2 … ∪ Yr�1Xr with spaces
Xi, = 1, … , r – 1, andXr having the intersection formsQ Xið Þ ¼ 2 �E8ð Þ∪ 3H andQ Xrð Þ ¼
2 �E8ð Þ∪ qrH, and Yi being homology three-spheres, is smooth if and only if qr≥ 3.

Proof. When the S1 action does not have this form, which requires z ! zr with
r ∉ ℚ, the resulting quotient produces a non-Hausdorff structure because arbitrarily
near points are identified. If r ¼ s

t ∈ℚnℤ, then the points e2πiθ and e
2π
t iθ are identified,

which yields an orbifold rather than a smooth manifold. A theorem proven by
Manolescu states that no closed spin four-manifold has a decomposition of this type
such that all homology spheres in the set {Yi} are Floer G-split [2]. It follows that a
quotient of one of the homology spheres by an S1 action with z ! zr,r ∉ Z, is not
smooth. The S1 action on the homology sphere, which is not Floer G-split, may be
transferred to the manifold Xr, as a result of the parallelizability necessary for the
existence of the spin structure, thereby proving that a spin manifold with an intersec-
tion form 2 �E8ð Þ⊕ 2H does not admit a smooth structure.

Now suppose that the spin manifold X has the intersection form m �E8ð Þ⊕ nH,
where n ¼ 3

2 mj j. The analogous result to that given above for n ¼ 3
2 mj j � 1 would be

the decomposition

X ¼ X1 ∪ Y1X2 ∪ Y2 … ∪ Yr�1Xr

Q Xið Þ ¼ 2 �E8ð Þ þ 3H,i ¼ 1,… ,r
(30)

withY1, ...,Yr–1 beinghomologyspheres, then the inequality κ(Yi + 1)+3≥κ(Yi)+2+1,
or κ(Yi + 1) ≥ κ(Yi), is valid for all j = 1, ..., r – 2, and each Yi is Floer G-split, which
requires the existence of a smooth structure on each Xi, i = 1, ..., r. Therefore, closed
spin four-manifolds with the intersection form mE8 ⊕ nH and n ¼ 3

2 mj j admit smooth
structures. For n≥ 3

2 mj j, the inequalities for κ(Yi), i = 1, ..., r–1 continue to be valid,
each of the homology spheres will be Floer KG-split, and there will be a smooth
structure on the spin four-manifold.

Several results may be proven given the validity of the 11
8 conjecture, including the

theorem on ξ ∙ ξ for a characteristic second homology class ξ representable by S2 for a
range of values of b+ and b� [7]. The following lemma is required:

Let M be a closed connected oriented four-manifold with ξ∈H2 M;ℤð Þ be a char-
acteristic homology class representable by S2. Then ξ ∙ ξ = σ(M) + 16 m with

m≤ max ⌊b1�1
3 ⌋, ⌊b��bþ

16 ⌋
n o

would be consistent with the 11
8 conjecture.

The demonstration of this result is suggestive of an equivalence of the conditions
with the limits ofm being derived from geometric properties of the spin manifold, and
the 11

8 conjecture following from the ranges for m.
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By a theorem of Kervaire and Milnor, it is known that, in a four-manifold which
allows the embedding of two-spheres representing the homology class ξ, ξ ∙
ξ = σ(M) + 16 m for some m [16]. Since σ(M) = b+ � b�, ξ ∙ ξ = b+ � b� + 16 m. The
range given in the above theorem with ξ ∙ ξ = 0 or b� = b+ + 16 m yields the following
results.

m ≤ max ⌊
bþ � 1

3
⌋, ⌊

bþ þ 16m� r
16

⌋

� �
¼ max ⌊

bþ � 1
3

⌋, mþ ⌊
bþ � r
16

⌋

� �

¼ max ⌊
bþ � 1

3
⌋, m

� � (31)

and

m≤ ⌊
bþ � 1

3
⌋: (32)

Since spin manifolds have an even intersection form, b+ is even. Then if b+ = 0, 2 or
4 (mod 6) and ⌊bþ�1

3 ⌋ ¼ ⌊bþ3 ⌋� 1,⌊bþ3 ⌋ or⌊
bþ
3 ⌋ respectively. If m≤ bþ

3 ,

b� ¼ bþ þ 16m≤
19
3
bþ: (33)

Then

b2 � σ ≤
19
3

b2 þ σð Þ
16
3
b2 ≥ � 22

3
σ

b2 ≥
11
8

σj jσ <0:

(34)

For σ > 0, the roles of b+ and b+ are interchanged, and

b2 þ σ ≤
19
3

b2 � σð Þ
16
3
b2 ≥

22
3
σ

b2 ≥
11
8

σj jσ >0:

(35)

Therefore, the condition ξ ∙ ξ = 0 together with the range of m yielding the upper
limit bþ

3 , is sufficient to prove the 11
8 conjecture. Given that ξ ∙ η is the intersection

number of ξ and η are representable by S2, ξ ∙ ξwould equal the sum of the eigenvalues
of the intersection form of S2 � S2, which equals zero.

The connected sum ℂℙ2#9ℂℙ2 does not satisfy the inequalities in Eq. (14) for the
coefficients k and ℓ. Nevertheless, it has exotic smooth structures. The nonexistence

of spin structures on ℂℙ2#9ℂℙ2 may be demonstrated [17, 18]. The spaces ℂℙ2#ℓℂℙ2

have b2
σj j <

11
8 for ℓ ≥ 7. Furthermore, these four-manifolds have both standard and

exotic smooth structures for k = 7, 8 and 9 [19–21].
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Proposition 4.4. The topological sums ℂℙ2#ℓℂℙ2,ℓ≥ 7, do not represent coun-
terexamples to the inequality b2

σj j ≥
11
8 required for smooth structures on spin manifolds

given the validity of the 10
8 theorem.

Proof. The existence of smoooth structures on these spaces is established. From §2,

the second Betti number and signature of ℂℙ2#ℓℂℙ2 equal

b2 ¼ 1þ ℓ

σ ¼ 1� ℓ:
(36)

Then

b2
σj j ¼

ℓþ 1
ℓ� 1

ℓ≥ 2: (37)

For ℓ = 7, 8 and 9, b2
σj j is

4
3 ,

9
7 and

5
4 respectively. Then

10
8

<
b2
σj j <

11
8

forℓ ¼ 7,8

b2
σj j ¼

10
8

forℓ ¼ 9

b2
σj j <

10
8

forℓ> 9:

(38)

Consequently, the values ℓ ≥ 9 must be covered by the 10
8 theorem, which will

require the absence of spin structures on these manifolds.
It follows from Rohlin’s theorem that the signature of a smooth, spin compact four-

manifold is divisible by 16. For ℂℙ2#ℓℂℙ2, this condition is

ℓ � 1 mod 16ð Þ: (39)

This congruenece condition is not satisfied by ℓ = 7 or ℓ = 8. Therefore, there will
be no spin structure for these values. It follows that the connected sums for ℓ ≥ 7 will
not represent a counterexample to the 11

8 conjecture when the lower bound of 10
8

suffices generally for smooth spin manifolds.

There would be a spin structure on ℂℙ2#ℓℂℙ2. Both the above proposition and the
consistency of the 10

8 theorem require the nonexistence of spin structures on

ℂℙ2# 16rþ 1ð Þℂℙ2 for r ≥ 1.

Proposition 4.5. The topological sum ℂℙ2# 16rþ 1ð Þℂℙ2 is a spin manifold only if
r = 0.

Proof. There exists a spin structure on a space M the second Stiefel-Whitney class
w2 Mð Þ∈H2 M;ℤ2ð Þ is nonvanishing. The second homology group of a connected sum
M1#M2, wheredim M1 = dim M2 = 4, is

H2 M1#M2ð Þ ¼ H2 M1ð Þ⊕H2 M2ð Þ (40)

and. Specializing to the group ℤ2,

H2 M1#M2, ℤ2ð Þ ¼ H2 M1, ℤ2ð Þ⊕H2 M2, ℤ2ð Þ: (41)
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Then

H2 ℂℙ2#ℂℙ2, ℤ2

� �
¼ H2 ℂℙ2, ℤ2

� �
⊕H2 ℂℙ2, ℤ2

� �
(42)

Since ℂℙ2 does not have a spin structure, there will be a nonvanishing generator of
the second homology group u½ � 6¼ 0½ � and

H2 ℂℙ2#ℂℙ2, ℤ2

� �
¼ u½ �⊕ � u½ � (43)

The element of the homology group must be an element of ℤ2. Therefore, it would
be the image of the u½ �⊕ � u½ � under the mapping

φ : H2 ℂℙ2, ℤ2
� �

⊕H2 ℂℙ
2, ℤ2

� �
! ℤ2 (44)

This homomorphism will be defined by

φ u1½ �⊕ u2½ �ð Þ ¼ u1½ � þ u2½ �∈ℤ2 (45)

Since

φ u½ �⊕ � u½ �ð Þ ¼ u½ � � u½ � ¼ 0½ �, (46)

H2 ℂℙ2#ℂℙ2, ℤ2

� �
¼ �0, the second Stiefel-Whitney class vanishes, and there is a

spin structure for r = 0.
The homology group for higher values of r equals

H2 ℂℙ2# 16rþ 1ð Þℂℙ2
� �

¼ H2 ℂℙ2� �
# 16rþ 1ð ÞH2 ℂℙ2, ℤ2

� �
: (47)

Given that u½ �∈H2 ℂℙ2, ℤ2
� �

and � u½ �∈H2 ℂℙ2, ℤ2

� �
, the element of ℤ2 for the

topological sum is

φ u½ �⊕ 16rþ 1ð Þ �uð Þð Þ ¼ �16r u½ � (48)

Multiplication by a non-zero scalar does not affect the generator of the nontrivial

second homology class, which does not vanish. Then, ℂℙ2# 16rþ 1ð Þℂℙ2 is not a spin
manifold for r > 1.

There are no counterexamples given by ℂℙ2#ℂℙ2 to the lower bound of 11
8 for b2

σj j.
Topological sums with S4, S2 � S2 and K3 will not affect this inequality for the ratio of
the second Betti number to the magnitude of the signature. No other potential coun-
terexamples can exist for smooth, simply connected, compact spin four-manifolds.

5. The local coefficients for manifolds with a spin covering

The proof in §4 is restricted to smooth, oriented, simply connected, compact
manifolds which admit spinor structures. It remains to be established if the
conclusions continue to be valid for smooth non-spin four-manifolds that have a spin
covering. Since the lower bound for b2

σj j has been increased to 11
8 .
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Theorem 5.1. The coefficients of the intersection form mE8 + nH, where H ¼
0 1

1 0

� �
satisfy the inequality n≥ 3

2m� ρ Mð Þ þ ρ Mð Þ
2i

, with i being the exponent in the

order of a spin covering of the smooth, oriented, simply connected, compact manifold
M and ρ(M) is the rank of H1(M; ℤ2).

Proof. Let M be a smooth, oriented, simply connected, compact four-manifold
with the even intersection form I =mE8 + nH, signature σ(M) = 8m and Euler number
e(M) = 2 + 8 m + 2n, since the first Betti number can be set equal to zero for a given
intersection form. There exists a 2i cyclic covering π: N ! M, where N is a smooth,
oriented spin manifold [22, 23]. The signature and the Euler number of the covering
space are

σ Nð Þ ¼ 2iσ Mð Þ ¼ 8 2im
� � � 8r

e Nð Þ ¼ 2ie Mð Þ ¼ 2iþ1 þ 8 2im
� �þ 2 2in

� � ¼ 2þ 8rþ 2s
(49)

then N = rE8 + sH, where

r ¼ 2ims ¼ 2inþ 2i � 1: (50)

Since it has been proven that s≥ rj j þ 1 for spin manifolds [4],

2inþ 2i � 1 ¼ 2i mj j þ 1: (51)

and

n≥ mj j � 1� 1
2i�1

� �
: (52)

A term b1(N) can be added to s to give sþ b1 Nð Þ≥ rþ 1. Since
b1 Nð Þ≤ 2i � 1

� �
ρ Mð Þ � 1ð Þ when b1(M) = 0, where ρ(M) is the rank of H1(M; ℤ2) [6].

Then

2inþ 2i � 1þ 2i � 1
� �

ρ Mð Þ � 1ð Þ≥ 2i mj j þ 1:

n≥ mj j � ρ Mð Þ þ 1þ ρ Mð Þ
2i

:
(53)

If ρ(M) = 1 and N!M is a double covering with H1(M; ℤ) = ℤ2 [6], the inequality
n≥ mj j is valid.

With a tighter bound n≥ 3
2 mj j for spin manifolds, a similar inequality will be found

for non-spin manifolds. By the proof in §4, s≥ 3
2 rj j for the spin covering N, or

equivalently,

2inþ 2i � 1 ≥
3
2
2i mj j

n ≥
3
2
mj j � 1� 1

2i

� �
:

(54)
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Since (2i – 1)(ρ(M) – 1) is an upper bound for b1(N) – b1(M), after b1(M) is set
equal to zero,

2inþ 2i � 1
� �

ρ Mð Þ ¼ 3
2
2i mj j (55)

or

n≥
3
2
mj j � ρ Mð Þ þ ρ Mð Þ

2i
: (56)

It has been proven that there exist nonsmoothable spin manifolds with b2 ≥ 5
4 σj j þ

2 [24]. The strict inequality yields a contradiction with the demarcation between
smooth and non-smooth structures on a spin four-manifold, which conjectured for
coefficients of the intersection form generally.

Similarly, it is claimed that there are nonsmoothable non-spin manifolds with

b2 ≥ 5
4 σj j. The inequality derived for non-spin manifolds n≥ mj j � 1� 1

2i�1

� �
may be

translated to a bound for the second Betti number.

b2
σj j ¼

8 mj j þ 2n
8 mj j

≥ 1� 1
4

1þ 1
mj j 1� 1

2i�1

� �� �

¼ 5
4
� 2

σj j 1� 1
2i�1

� �
:

(57)

This lower bound for b2 is less than or equal to 5
4 σj j for i ≥ 1.

The tighter inequality for the coefficients in the intersection form is equivalent to

b2
σj j ≥ 1þ 1

4
3
2
� 1

mj j 1� 1
2i

� �� �

¼ 11
8
� 2

σj j 1� 1
2i

� �
:

(58)

The contradiction is resolved in the inequality if the lower bound for b2
σj j can be

increased. Then, the nonsmooth manifolds can exist in the region 5
4 σj j þ 2≤ b2 ≤ 11

8 σj j
when a spin structure exists and 5

4 σj j � 2 1� 1
2i�1

� �
≤ b2 ≤ 11

8 σj j � 2 1� 1
2i

� �
when there

is no spin structure.
A lower bound for b2 also can be derived for smooth, oriented non-spin manifolds

by the following set of equations

dimℤ2H
2 M;ℤ2ð Þ ¼ b2 Mð Þ þ 2t

t ¼ dimℤ2 Tor2H1 M;ℤ2 � ℤ2ð Þð Þ, (59)

b1 N;ℤ2ð Þ≤ 2ib1 M;ℤ2ð Þ � 2i þ 1, (60)

and

72

Manifolds III - Developments and Applications



b2 N;ℤ2ð Þ ¼ 2ie Mð Þ � 2þ 2b1 N;ℤ2ð Þ
≤ 2i 2� 2b1 M;ℤ2ð Þ þ b2 M;ℤ2ð Þð Þ þ 2 2ib1 M;ℤ2ð Þ � 2i þ 1

� �

¼ 2iþ1 � 2iþ1b1 M;ℤ2ð Þ þ 2ib2 M;ℤ2ð Þ þ 2iþ1b1 M;ℤ2ð Þ � 2iþ1 þ 2

¼ 2ib2 M;ℤ2ð Þ þ 2,

(61)

and, since the degree of the spin covering of M is even, t equals one [6]. It follows
that

b2 Nð Þ þ 2≤ 2i b2 Mð Þ þ 2ð Þ þ 2 ¼ 2ib2 Mð Þ þ 2iþ1 þ 2 (62)

or

b2 Nð Þ≤ 2ib2 Mð Þ þ 2iþ1: (63)

By the strong 10
8 inequality for spin manifolds,

b2 Nð Þ≥ 5
4
σ Nð Þj j þ 2 ¼ 5

4
2i σ Mð Þj j þ 2: (64)

and

b2 Mð Þ ≥
1
2i

5
4
2i σ Mð Þj j þ 2� 2iþ1

� �

¼ 5
4
σ Mð Þj j � 2� 1

2i�1

� �
:

(65)

The tighter inequality derived in §4 for spin manifolds yields

b2 Nð Þ≥ 11
8

σ Nð Þj j≥ 11
8
2i σ Mð Þj j (66)

and

b2 Mð Þ ≥
1
2i

11
8
2i σ Mð Þj j � 2iþ1

� �

¼ 11
8

σ Mð Þj j � 2:
(67)

The range for b2 is narrower for i ≥ 1 and there is a region below 11
8 σj j for which the

existence of smooth structures remains to be established.
Theorem 5.2. An oriented, simply connected, compact four-manifold with an

indefinite intersection form and a spin covering space has a smooth structure only if
b2
σj j ≥

11
8 .

Proof. Consider an oriented, simply connected, compact, four-dimensional mani-

foldM and the 2i-fold spin covering N!M. From the equation ~f
∗� �

τF ¼ α0τE, where

α0 is the degree of the pull-back map ~f
∗
from KG(BF, SF) to KG(BE, SE), the trace of

the relation ρℓ
~f
∗� �

τF ¼ ψℓα0
� �

ρℓ Eð ÞτE when projected to an S1 module in the sub-

space E’ and F0, introduces a factor of 2i in the pull-back of the kernel of the map from

Pin2 to S1, c 1� ~1
� �� ��c∈ℤ

� �2i
, and an overall factor of 22

i
. Then,
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α ¼ 22
i
2 kj j (68)

and

bþ Nð Þ≥ 2 kj j þ kþ 2i ¼ 3 kj j þ 2i: (69)

The lower bound for the second Betti number of the spin covering N would be

b2 Nð Þ ¼ 11
8

σ Nð Þj j þ 2iþ1: (70)

By Eq. (63),

2ib2 Mð Þ þ 2iþ1 ¼ 11
8

σ Nð Þj j þ 2iþ1 ¼ 11
8
2i σ Nð Þj j þ 2iþ1

b2 Mð Þ ¼ 11
8

σ Mð Þj j:
(71)

Therefore, the theoretically predicted inequality for the second Betti number of
smooth, oriented four-manifolds has been derived.

6. Lower bound for the genus of a surface embedded in a four-manifold

The genus of an embedded surface Σ in a four-manifold M may be given the lower
bound

g Σð Þ> 2r þ 1
2rþ1

X2 � 2rþ1

2r � 1
σ Mð Þ

����
�����

2r�1

2r � 1
b2 Mð Þ: (72)

where Σ2 is the intersection product of the second cohomology class Σ [19]. If the 11
8

conjecture is true, the bound can be increased to

g Σð Þ> 11
8

2r þ 1
2rþ1 Σ2 � 2rþ1

2r � 1
σ Mð Þ

����
�����

2r�1

2r � 1
b2 Mð Þ: (73)

For an algebraic surface Σd of even degree d embedded in ℂℙ2, with
2 d, g

P
d

� �
≥ 11

32 d
2�� � 19

9 [25].
The Thom conjecture for curves of algebraic curves of degree d states that

g
P

d

� �
≥ 1

2 d
2 � 3

2 þ 1. The replacement of 11
32 by

1
2 in the lower bound for the genus,

requires the substitution of 2 for 11
8 as the lower limit for b2

σj j. Consider the intersection
form mE8 ⊕ nH. Since

b2 mE8 ⊕ nHð Þ ¼ 8mþ 2n
σ mE8 ⊕ nHð Þ ¼ 8m,

(74)

the inequality

8mþ 2n
8m

≥ 2 (75)
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is equivalent to n ≥ 4m. This very tight bound is not expected to be valid for a large
class of smooth four-manifolds.

The 3
2 conjecture for irreducible simply connected four-manifolds is χ ≥ 3

2 σj j, where
χ ¼ 2þ rank Qð Þ ¼ 2þ b2 is the Euler characteristic. It follows that

b2 ≥
3
2
σj j � 2: (76)

Substituting the new coefficient into the lower bound for the genus of the embed-
ded surface in an irreducible manifold,

g
X� �

≥
3
2
� 2

σj j
� �

2r þ 1
3 � 2rþ1

X2 � 2r�1

2r � 1
σ Mð Þ

����
�����

2r�1

2r � 1
b2 Mð Þ, (77)

where 2r
P½ �k . Therefore, the genus of an algebraic curve of degree d embedded in

an irreducible, simply connected manifold would satisfy the inequality

g
P

d

� �
≥ 3

8 � 1
2 σj j

� �
d2 þ γ1dþ γ0 with γ0 and γ1 being constants.

7. Conclusion

The classification of four-manifolds has been reduced to the definite signature
with odd intersection forms that are diagonal, n1 + m(�1) or indefinite signature with
even intersection forms mE8 + nH, where E8 is the exceptional Lie group Cartan

matrix and H is the matrix
0 1

1 0

� �
, which is the form of S2 � S2. All known smooth,

oriented four-manifolds with an even intersection form are known to have coeffi-
cients satisfying n≥ 3

2 mj j or equivalently, a second Betti number satisfying b2 ≥ 11
8 σj j.

The oriented, spin geometries in four dimensions have been demonstrated to admit a
smooth structure only if n ≥ |m| + 1 or b2 ≥ 5

4 σj j þ 2. The proof has been extended to

non-spin manifolds with the inequality n≥ mj j � 1� 1
2i

� �
and b2 ≥ 5

4 σj j � 2� 1
2i�1

� �
. It

is found here that the lower bound for the signed Betti number b+ is larger than 2|
k| + 1, where kj j ¼ 3

16 σj j. Considering a cyclic covering of a non-spin manifold and
introducing the degree into the proof for the spin manifold, the inequality b2 ≥ 11

8 σj j.
This increase in the lower bound for the second Betti number allows the existence of
nonsmoothable manifolds with b2 ≥ 5

4 σj j within a strict demarcation between the
regions for smooth and nonsmooth structures.

The existence of smooth, compact simply-connected manifolds with 5
4 < b2

σj j <
11
8

present potential counterexamples to the 11
8 . The topological sums ℂℙ2#ℂℙ2 are

included within these limits. It is proven in §4 that these spaces cannot have spin

structures by Rohlin’s theorem. Amongst the connected sums ℂℙ2#ℓℂℙ2, only those
values of ℓ congruent to 1 modulo 16 would satisfy the condition on the divisibility of

the signature by 16. The absence of spin structures on ℂℙ2# 16rþ 1ð Þℂℙ2 for ℓ ≥ 1 is
established through the computation of the second Stiefel-Whitney class. Therefore,

ℂℙ2#ℂℙ2 is the unique spin manifold in this set, which is necessary for consistency of
the 10

8 theorem. The conclusion on the nonexistence of oriented, compact simply
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connected four-manifolds, having both a smooth structure and a spin geometry,
continues to be valid for topological sums of S4, S2 � S2 and K3 and complex algebraic
surfaces, since the condition of the existence of a spin structure requires generally an
increased minimum value of 11

8 for b2
σj j.

Classification:

MSC: 57N13; 57R19

Author details

Simon Davis
Research Foundation of Southern California, La Jolla, CA, USA

*Address all correspondence to: sbvdavis@outlook.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

76

Manifolds III - Developments and Applications



References

[1] Matsumoto Y. On the bounding genus
of homology 3-spheres. Journal of the
Faculty of Science of the University of
Tokyo. Section I, Mathematics. 1982;29:
287-318

[2] Manolescu C. On the intersection
forms of spin four-manifolds with
boundary. Mathematische Annalen.
2014;359:695-728

[3] Eguchi T, Gilkey PB, Hanson AJ.
Gravitation, gauge theories and
differential geometry. Physics Reports.
1980;66:213-293

[4] Furuta M. Monopole equation and 11
8 -

conjecture. Mathematical Research
Letters. 2001;8:279-291

[5] Hopkins M, Lin J, Shi X, Xu Z.
Intersection forms of spin 4-manifolds
and the pin(2)-Equivariant Mahowald
invariant. Communications of the
American Mathematical Society. 2022;2

[6] Furuta M, Kametani Y, Matsue H.
Spin 4-manifolds with signature=�32.
Mathematical Research Letters. 2001;8:
293-301

[7] Kikuchi K. Representing positive

homology classes of ℂℙ2#2ℂℙ2 and

ℂℙ2#3ℂℙ2. Proceedings of the American
Mathematical Society. 1993;117:861-869

[8] Barth W, Hulek K, Peters C, Van den
Ven A. Compact Complex Surfaces.
Heidelberg: Springer; 2004

[9] Furuta M. Finite-dimensional
approximations in geometry. In: Li T,
editor. Proceedings of the International
Congress on Mathematics 2002. Vol. III.
Beijing: World Scientific Publishing,
Singapore; August 20-28, 2002, 2002.
pp. 395-403

[10] Lawson B. The Theory of Gauge
Fields in Four Dimensions, CMBS
Regional Conference in Mathematics.
Providence: American Mathematical
Society; 1985

[11] Minami N. G-join theorem - an
Unbased G-Freudenthal theorem,
Homotopy representations, and a
Borsuk-Ulam theorem. Nagoya, Japan:
Nagoya Institute of Technology

[12] Schmidt B. Ein Kriterium für die
Existenz äquivarianter Abbildungen
zwishcen reellen Darstellungssphären
der Gruppe Pin(2). University of
Bielefeld: Diplomarbeit; 1997

[13] Furuta M, Kametani Y. The Seiberg-
Witten Equations and Equivariant
e-Invariants. Tokyo, Japan: University of
Tokyo; 2001

[14] Furuta M, Kametani Y, Matsue H,
Minami N. Homotpy theoretical
considerations of the Bauer-Furuta
stable Seiberg-Witten invariants. Geom.
& Topology Monographs. 2007;10:
155-166

[15] Freedman MH, Taylor L. Λ-splitting
of 4-manifolds. Topology. 1977;16:
181-184

[16] KervaireM,Milnor JW. On 2-spheres
in4-manifolds. Proceedings of theNational
Academy of Sciences of the United States
of America. 1981;47:1861-1657

[17] Goto R. Unobstructed deformations
of generalized complex structures
induced by C∞ logarithmic Symplectic
structures and logarithmic Poisson
structures. In: Futaki A, Miyaoka R,
Tang Z, Zhang W, editors. 10th China-
Japan Conference 2014. Geometry and
Topology of Manifolds. Tokyo: Springer;
2016. pp. 159-184

77

Smooth Structures on Spin Manifolds in Four Dimensions
DOI: http://dx.doi.org/10.5772/intechopen.106368



[18] Kirby RC. T3
Lie and ℂℙ2#9 �ℂℙ2� �

,
the Topology of 4-Manifolds. Vol. 1374.
Heidelberg: Lecture Notes in
Mathematics; Springer-Verlag; 1989

[19] Park J. Simply connected symplectic
4-manifolds with bþ2 ¼ 1 and c21 ¼ 2.
Inventiones Mathematicae. 2005;159:
657-667

[20] Kotschick D. On manifolds

homeomorphic to ℂℙ2#ℂℙ2. Inventiones
Mathematicae. 1989;95:591-600

[21] Donaldson SK. Irrationality and the
h-Cobordism conjecture. Journal of
Differential Geometry. 1987;26:141-168

[22] Lee R, Li T-J. Intersection forms of
non-spin four manifolds. Mathematische
Annalen. 2001;319:311-318

[23] Bohr C. On the signature of even 4-
manifolds. Mathematical Proceedings of
the Cambridge Philosophical Society.
2002;132:453-469

[24] Nakamura N. Pin�(2)-monopole
equations and intersection forms with
local coefficients of 4-manifolds.
Mathematische Annalen. 2013;357:
915-939

[25] Kotschick D, Matic G. Embedded
surfaces in four-manifolds, branched
covers, and SO(3)-invariants.
Mathematical Proceedings of the
Cambridge Philosophical Society. 1995;
117:275-286

78

Manifolds III - Developments and Applications



Chapter 5

Geometric Properties of Classical
Yang-Mills Theory on
Differentiable Manifolds
Paul Bracken

Abstract

Gauge theories make up a class of physical theories that attempt to describe the
physics of particles at a fundamental level. The purpose here is to study Yang-Mills
theory at the classical level in terms of the geometry of fiber bundles and differentia-
ble manifolds. It is shown how fundamental particles of bosonic and fermionic nature
can be described mathematically. The Lagrangian for the basic interactions is
presented and then put together in a unified form. Finally, some basic theorems are
proved for a Yang-Mills on compact four-dimensional manifolds.

Keywords: manifold, bundle, section, Yang-Mills, compact, four-dimensional,
spinor, classical field

1. Introduction

In 1954 C. N. Yang and R. Mills proposed a classical field theory that incorporates
Lie groups at a fundamental level [1]. Since then, great progress has been made in
the area of subatomic physics by realizing that physics which is described by non-
abelian Lie groups can display many novel features and play a major role in the kinds
of physical theories they describe [2–7]. These features are alluded to having no
classical analogu. When formulated using rigorous mathematics, Yang-Mills theories
as well as gauge theories make elegant use of complicated structures called fiber
bundles and associated vector bundles. These are indispensable in physics where
spacetime, the base manifold has a non-trivial topology. This occurs in string theory
for example spacetime is usually assumed to be a product 4 � K of Minkowski
spacetime with a compact Riemannian manifold. If Euclidean spacetime 4 is
compactified to the 4-sphere S4, a similar situation applies [8–14]. Fields in spacetime
often cannot be described simply by a map to a fixed vector space but as sections of a
non-trivial vector bundle. In these cases, fields on spacetime often cannot be
described simply by a map to a fixed vector space, but rather as sections of a nontrivial
vector bundle [15–20].

The Lagrangian and action of a field theory should be invariant under the action of
certain symmetry groups such as the Lorentz group, gauge symmetry, and conformal
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symmetry [21–26]. This means the Lagrangian for the fields, hence the laws of phys-
ics, are invariant under symmetry transformations. For spontaneously broken gauge
theories, the Lagrangian is invariant under gauge transformations that originate in a
Lie group. The Higgs condensate yields a vacuum configuration invariant only under a
subgroup of G, and at the same time provides a mechanism for giving mass to
particles. Although the quantum versions of theories are not discussed here, it is
important to state that symmetries of the classical theory, such as gauge symmetries,
do not necessarily hold in the quantized theory. The main reason is the quantization
method, such as the path integral measure may not be invariant under the symmetry
[27–31]. In this event, the theory is said to be anomalous.

In mathematical terms, suppose π : E ! M is a surjective differentiable map
between smooth manifolds. If x∈M is an arbitrary point, the nonempty subset
Ex ¼ π�1 xð Þ⊂E is called the fiber of π over x. For a subset U ⊂M we set EU ¼
π�1 Uð Þ⊂E, the part of E above U, and it is the union of all fibers Ex, where x∈U.
A differentiable map s : M ! E such that π∘s ¼ IM where IM is the identity map is
called a global section of π. A differentiable map s : U ! E, defined on some
open subset U ⊂M satisfying π∘s ¼ IU is called a local section. A differentiable map s :
U ! E is a local section of π : E ! U if and only if s xð Þ∈Ex, for all x∈U. Fiber
bundles are an important generalization of products E ¼ M� F and can be
understood as twisted products. The fibers are still embedded submanifolds and are all
diffeomorphic. The fibration in general is only locally trivial, so locally a product
which is not global.

Definition 1.1 Let, E, F, M be manifolds and π : E ! M a surjective differentiable
map. Then, E, π,M; Fð Þ is called a fiber bundle if: for every x∈M, there exists an open
U ⊂M around x such that π restricted to EU can be trivialized, so there is a
diffeomorphism ϕU : EU ! U � F such that pr1∘ϕU ¼ π. Denote a fiber bundle as
F ! E ! M, E is called the total space,M the base manifold, F the general fiber, π the
projection and U,ϕUð Þ a bundle chart.

Using a bundle chart, U,ϕUð Þ, the fiber Ex ¼ π�1 xð Þ is seen to be an embedded
submanifold of the total space E for every x∈M, and ϕU2

¼ pr2∘ϕU

��
Ex

: Ex ! F is a
diffeomorphism between the fiber over x∈U and the general fiber. For physical
reasons, it is essential to include pseudo-Riemannian metrics in the picture. LetM be a
smooth manifold. A pseudo-Riemannian metric g of signature s, tð Þ where
þ,⋯þ, � ,⋯,�ð Þ is a section that defines at each x∈M a non-degenerate symmetric
bilinear form gx : TxM� TxM !  of signature s, tð Þ.

Principal fiber bundles are a combination of the concepts of fiber bundle and group
action; that is, fiber bundles have a Lie group action such that both structures can be
made compatible. Let G ! P ! M be a fiber bundle with general fiber a Lie group G
and a smooth action P�G ! P on the right. For a principal G-bundle, the action of G
preserves the fibers of π and is simply transitive on them. The orbit map G ! P such
that g ! p � g is a bijection for all x∈M, p∈Px. There exists a bundle atlas of G-
equivariant bundle charts ϕi : PUi ! Ui � G satisfying ϕi p � gð Þ ¼ ϕi pð Þ � g, for all
p∈PUi , g∈G, where on the right G acts on pairs a, xð Þ∈Ui �G by x, að Þ � g ¼ x, agð Þ.
The group G is called the structure group P. Two features distinguish a principal
bundle P ! M from a standard fiber bundle whose general fiber is a Lie group G: there
exists a right G-action on P simply transitive on each fiber Px, x∈M and bundle P has
a principal bundle atlas. If P ! M is a principal G-bundle, p∈P, g∈G, τg denotes the
right translation p ! p � g. The fiber Px is a submanifold of the total space P for every
x∈M and the orbit map g ! p � g is an embedding for all p∈Px.
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A fiber bundle V ! E ! M is called a real or complex vector bundle of rank m if:
The general fiber V and every fiber Ex for x∈M, are m-dimensional vector space over
 ¼  or ℂ, and there exists a bundle atlas Ui,ϕið Þf gi∈ I for E such that induced maps
ϕix : Ex ! V are vector space isomorphisms for all x∈Ui. Such an atlas is called a
vector bundle atlas for E, and the chart a vector bundle chart. There are two features
that distinguish a vector bundle E ! M from a standard fiber bundle; the vector space
structure on each fiber Ex, x∈M and the bundle E has a vector bundle atlas. An
example of this is the tangent bundle of a smooth manifold which is canonically a
smooth real vector bundle [32–33].

Definition 1.2 Let G be a Lie group and M a Manifold. Suppose that M� G ! M
is a right action. For X ∈ gL we define the associated fundamental vector field ~X on
M by

~Xp ¼ d
dt

����
t¼0

p � exp tXð Þ:ð (1)

If we denote by ϕp, the orbit map for the right action, ϕp : G ! M, g ! p � g, then

~Xp ¼ Deϕp

� �
Xp
� �

: (2)

Similarly, suppose that G�M ! M is a left action. Then we define the funda-
mental vector field by

~Xp ¼ d
dt

����
t¼0

exp �tXð Þ � pð Þ, (3)

for p∈M. If we denote by ϕp0 the following orbit map for the left action, ϕ0
p : G !

M, g ! g�1 � p, then

~Xp ¼ Deϕ
0
p

� �
Xeð Þ: (4)

The fundamental vector field will also be denoted Xf when the presentation
requires.

It is shown here that a physical theory can be constructed based on the idea of a
differentiable manifold along with many other associated mathematical structures
that can be defined on it. The result is a theory which can be used to describe
fundamental interactions of elementary particles at the classical level. This also
permits the introduction of other ideas which can have a physical influence such as
topological invariants. There is no discussion with regard to quantization of
gauge theories. These interactions include the strong and weak forces. Physically,
Yang-Mills fields represent forces or carriers of force. The first half of the paper
introduces most of the mathematical concepts needed to describe particles of
both fermionic and bosonic nature. The last part specializes to Yang-Mills in four
dimensions. It is discussed how the field equations can be obtained from a
variational principle and how the theory of partial differential equations plays a role in
their study.
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2. Matter fields and couplings

Lie groups appear in principal bundles in gauge theories. These are associated to
vector bundles which describe particles and where representations on vector spaces
are built into gauge theories. Connections are associated with gauge fields and give
rise to covariant derivatives representing interactions.

Definition 2.1 A connection one-form on a principal G bundle π : P ! M is a one-
form A∈Ω1 P, gð Þ on the total space P so that r ∗g A ¼ Adg�1 A for all g∈G and A ~X

� � ¼ X

for all X ∈ gL, where ~X is the fundamental vector field associated to X and gL the Lie
algebra of G. This is called a gauge field in physics. □.

At p∈P, a connection one-form is a linear map Ap : TpP ! gL and Adg�1 is a
linear isomorphism of the Lie algebra to itself. There is a correspondence
between Ehresmann connections and connection one-forms. Physically we want
certain objects to be gauge invariant. A global gauge transformation is a bundle
automorphism of P or a diffeomorphism f : P ! P which preserve the fibers of P
and is G-equivariant

π ∘ f ¼ π, f p � gð Þ ¼ f pð Þ � g, p∈P, g∈G: (5)

Under composition of diffeomorphisms, the set of all gauge
transformations forms a group Aut Pð Þ. A local gauge transformation is a
bundle automorphism denoted Aut Pð Þ. In physics, gauge transformations are
often defined as maps on the base manifold M to the structure group G even for
non-abelian Lie groups.

Let π : P ! M be a principal G-bundle. A physical gauge transformation is a
smooth map π : U ! G defined on an open set U ⊂M. The set of all physical gauge
transformations forms a group C∞ U,Gð Þ with pointwise multiplication.

If s : U ! P is a local gauge of the principal bundle on an open subset U ⊂M, the
local connection one-form or local gauge field As ∈Ω1 U, gL

� �
determined by s is

defined as

As ¼ A ∘ Ds ¼ s ∗ A: (6)

Suppose we have a manifold chart on U and ∂μ

� �
μ¼1,⋯,n are the local coordinate

vector fields on U. Set Aμ ¼ As ∂μ

� �
and choose a basis eaf g for the Lie algebra gL and

then expand Aμ over that basis

Aμ ¼
XdimgL

a¼1

Aa
μea: (7)

The corresponding real-valued fields Aa
μ ∈ C∞ U,ð Þ and one forms Aa

s are called
local gauge boson fields in physics.

A principal bundle can have many gauges and it is of interest to determine how the
local connection one-forms transform as we change the local gauge. Let si : Ui ! P
and sj : Uj ! P be local gauges with Ui ∩Uj 6¼ ∅, then there exists gij xð Þ : Ui ∩Uj ! G
such that

sij xð Þ ¼ sj xð Þ � gji xð Þ, x∈Ui ∩Uj: (8)
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In (8), gij is the smooth transition function between local trivializations. There are

local connection 1-forms Ai ∈Asi ∈Ω1 Ui, gL
� �

and Aj ∈Asj ∈Ω1 Uj, gL
� �

and it is desired
to obtain the relationship between Ai and Aj. If μG ∈Ω1 G, pð Þ is the Mauer-Cartan
form defined as μG vð Þ ¼ Dg Lg�1 vð Þ for v∈TgG, set μji ∈ g ∗ji μG ∈Ω1 Ui ∩Uj

� �
. The

theorem which follows accounts for the transformation of local gauge fields.
Theorem 2.1 The local connection one-form transforms as

Ai ¼ Adg�1 ∘ Aj þ μji (9)

on Ui ∩Uj. If G⊂L n,ð Þ is a matrix Lie group then

Ai ¼ g�1
ji � Aj � gji þ g�1

ji � dgji (10)

where � denotes matrix multiplication, g�1
ji the inverse of gji in G and dgji the

differential of each component of the function gji : Ui ∩Uj ! G⊂n�n. If G is abelian,

then Ai ¼ Aj þ μji ¼ Aj þ g�1
ji � dgji.

Proof: Let s∈Ui ∩Uj and Z ∈TxM and set

X ¼ Dx sj Zð Þ∈Tsj xð ÞP, Y ∈Dx gji Zð Þ∈Tgji xð ÞG: (11)

with group action Φ : P�G ! P given as p, gð Þ ! pg, we calculate using the
differential of map Φ X,Yð Þ ! DXrg

� �
Xð Þ þ μG Yð Þxg, where rg is right translation μG is

the Mauer-Cartan form, and the chain rule

Dxsi Zð Þ ¼ Dx Φ ∘ sj, gji
� �� �

Zð Þ ¼ Dsj xð Þrgji Xð Þ þ μG Yð Þsj xð Þ f ¼ Dsj xð Þrgji xð Þ Xð Þ þ μji Zð Þsi xð Þ
���

���
f
:

(12)

By the defining properties of the connection form A, we have

Ai Zð Þ ¼ A Dxsi Zð Þð Þ ¼ A
�
Dsj xð Þrgji xð Þ Xð Þ þ μji Zð Þsi xð Þ f

��
�

¼ r ∗gji xð ÞA
� �

Xð Þ þ μji Zð Þ

¼ Ad�1
gji xð Þ∘Aj Zð Þ þ μji Zð Þ: (13)

The second claim follows by recalling that for a matrix Lie group Adg�1 � a � g for all
g∈G, a∈ gL and μG vð Þ ¼ g�1 v for v∈TgG

μji Zð Þ ¼ μG Dxgji Zð Þ
� �

¼ g�1
ji � dgji Zð Þ: (14)

Theorem 2.2 Let P ! M be a principal bundle and A∈Ω1 P, gL
� �

a connection one-
form on P. Suppose that f ∈G Pð Þ is a global bundle isomorphism. Then f ∗A is a
connection one-form on P

f ∗A ¼ Adσf�1∘Aþ σ ∗
f μG: (15)

Proof: This follows from the definition of a connection 1-form and the previous
Theorem.
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Let H be the associated horizontal vector bundle defined as the kernel of A. Then
TP ¼ V⊕H and we set πH : TP ! H for the projection onto the horizontal vector
bundle.

Definition 2.2 The two-form F∈Ω2 P, gL
� �

defined by

F X,Yð Þ ¼ dA πH Xð Þ, πH Yð Þð Þ, X,Y ∈TpP, p∈P (16)

is called the curvature two form of A. Sometimes FA is written to emphasize the
dependence on A. □

Definition 2.3 Let P be a manifold and gL a Lie algebra. For η∈Ω1 P, gL
� �

and
ϕ∈Ω1 P, gL

� �
, define η,ϕ½ �∈Ωkþl P, gL

� �
to be

η,ϕ½ � X1, … ,Xkþlð Þ ¼ 1
k!l!

X
σ ∈ Skþl

sgn σð Þ η Xσ 1ð Þ, … ,Xσ kð Þ
� �

,ϕ Xkþ1, … ,Xnð Þ� �
, (17)

where the commutators on the right are the commutator in the Lie algebra gL. This
is often written η∧ϕ as well.

It is useful to recall that if X ¼ ~V be a fundamental vector field and Y a horizontal
vector field on P, then the commutator X,Y½ � is horizontal.

Theorem 2.3 (Structure Equations) The curvature form F of a connection form A
satisfies

F ¼ dAþ 1
2
A,A½ �: (18)

Proof: Eq. (18) can be checked by inserting X,Y ∈TpP on both sides. Suppose X,Y
are both vertical. Then X,Y are fundamental vectors X ¼ ~Vp, Y ¼ ~Wp forcertain
elements V,W ∈GL,

F X,Yð Þ ¼ dA πH Xð Þ, πH Yð Þð Þ ¼ 0,
1
2
A,A½ � X,Yð Þ ¼ A Xð Þ,A Yð Þ½ � ¼ V,W½ �: (19)

The differential of a one-form A is given by

dA X,Yð Þ ¼ LX A Yð Þð Þ � LY A Xð Þð Þ � A X,Y½ �ð Þ, (20)

where vectors X,Y are extended to vector fields in a neighborhood of p. If the
extension is chosen by the fundamental vector fields ~V and ~W, then dA X,Yð Þ ¼
LX Wð Þ � LY Vð Þ � V,W½ � ¼ � V,W½ �, since V,W are constant maps from P to gL.

If both X and Y are horizontal F X,Yð Þ ¼ dA X,Yð Þ and 1
2 A,A½ � X,Yð Þ ¼

A Xð Þ,A Yð Þ½ � ¼ 0.
If X is vertical and Y is horizontal, then X ¼ ~Vp for some V ∈ gL, and we have

F X,Yð Þ ¼ dA πH Xð Þ, πH Yð Þð Þ ¼ dA 0,Yð Þ ¼ 0,
1
2
A,A½ � X,Yð Þ ¼ A Xð Þ,A Yð Þ½ � ¼ V, 0½ � ¼ 0:

(21)

Thus since ~V,Y� is horizontal

dA X,Yð Þ ¼ L~V A Yð Þð Þ � LY Vð Þ � A ~V,Y
� �� � ¼ �A ~V,Y

� �� � ¼ 0: (22)
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Connections define an important idea in geometry: that of parallel transport in
principal and associated vector bundles and leads to the concept of covariant
derivative on an associated vector bundle. An interesting result is that if X ¼ ~V be a
fundamental vector field and Y a horizontal vector field on P, then the commutator
X,Y½ � is horizontal. In a similar way, F can be written locally as was done for the local
section. If we have a manifold chart on U and ∂if g are local coordinate basis vector

fields on U, then Fμν ¼ Fs ∂μ, ∂ν
� �

and Fμν ¼
Pdim gL

a¼1 Fa
μν ea and locally the structure

equations take the form Fμν ¼ ∂μAν � ∂νAμ þ Aμ,Aν

� �
.

Definition 2.4 Let γ : a, b½ � ! M be a curve in M. The map

ΠA
g : Pγ að Þ ! Pγ bð Þ, p ! γ ∗

p bð Þ, (23)

is called parallel transport in the principal bundle P along γ with respect to the
connection A.

Similarly for a curve γ : 0, 1½ � ! M the map ΠE,A
γ : Eγ 0ð Þ ! Eγ 1ð Þ, given by

p, v½ � ! ΠA
γ pð Þ, v

h i
is a well-defined and linear isomorphism, called parallel transport

in the associated vector bundle E along the curve γ with respect to A. Let Φ be a
section of E, x∈M and X ∈TxM a tangent vector. A covariant derivative is to be
defined by choosing an arbitrary curve γ : �ε, εð Þ ! M with γ 0ð Þ ¼ x, _γ 0ð Þ ¼ X. For
each u∈ �ε, εð Þ parallel transport the vector Φ γ uð Þð Þ∈Eγ uð Þ back to Ex along γ. Take
the derivative at u ¼ 0 of the curve which results in Ex giving an element in Ex.
Formally, set

D Φ, γ, x,Að Þ ¼ d
du

����
u¼0

ΠE,A
γu

� ��1
Φ γ uð Þð Þ∈Ex:ð (24)

The restriction of the curve γ starting at 0 and ending at time u for u∈ �ε, εð Þ is
denoted γu. Parallel transport ΠA

γ is a smooth map between the fibers Pγ að Þ and Pγ bð Þ
and does not depend on the parametrization of the curve. Let γ be a curve inM from x
to y and γ0 a curve from y to z. Denote γ acting followed by γ0 by γ ∗ γ0, where γ comes
first, then ΠA

γ∘γ0 ¼ ΠA
γ0 ∘Π

A
γ .

Theorem 2.4 Let s : U ! P be a local gauge As ¼ s ∗A and ϕ : U ! V the map with
Φ ¼ s,ϕ½ �. Then the vector D Φ, γ, x,Að Þ∈Ex is given by

D Φ, γ, x,Að Þ ¼ s xð Þ, dϕ Xð Þ þ ρ ∗ As Xð Þð Þϕ xð Þ½ �: (25)

Proof: It holds that

ΠE,A
γt

� ��1
Φ γ tð Þð Þð Þ ¼ ΠA

γt

� ��1
s γ tð Þð Þ,ϕ γ Hð Þð Þð �:

�
(26)

Let q tð Þ be the unique smooth curve determined in the fiber Px such that
ΠA

γ tð Þ q tð Þð Þ ¼ s γ tð Þð Þ. Write q tð Þ ¼ s xð Þ � g tð Þ and g tð Þ is a uniquely determined smooth
curve in G

ΠE,A
γi

� ��1
Φ γ tð Þð Þð Þ ¼ q tð Þ,Φ γ tð Þð Þ½ � ¼ s xð Þ, ρ g tð Þð Þϕ γ tð Þð Þ½ �: (27)
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For t ¼ 0, we have

s xð Þ ¼ s γ 0ð Þð Þ ¼ ΠA
γ0

q 0ð Þð Þ ¼ q 0ð Þ, g 0ð Þ ¼ a∈G: (28)

Consequently, _g 0ð Þ∈ gL, and it follows that

D Φ, γ, x,Að Þ ¼ d
dt

����
t¼0

s xð Þ, ρ g tð Þð Þϕ γ tð Þð Þ½ � ¼ s xð Þ, ρx _g 0ð Þð Þϕ xð Þ þ dϕ Xð Þ½ �: (29)

To finish, ρr _g 0ð Þð Þ is calculated,

d
dt

����
t¼0

s γ tð Þð Þ ¼ ds Xð Þ, d
dt t¼0ΠA

γi
g tð Þð Þ ¼ _q 0ð Þ þ d

dt

����
����
t¼0

ΠA
γi
s xð Þð Þ: (30)

Since the curve ΠA
γt
s xð Þð Þ is horizontal, with respect to A, we obtain As xð Þ ¼

A ds Xð Þð Þ ¼ A _q 0ð Þð Þ. Since _q 0ð Þ and _g 0ð Þs xð Þ are related by ϕ ∗ , the map that associates
to a Lie algebra element the corresponding vector field on M is a homeomorphism,
hence, A _q 0ð Þð Þ ¼ _g 0ð Þ by definition of connection one-form. It follows that

ρ ∗ _g 0ð Þð Þ ¼ ρ ∗ As Xð Þð Þ, (31)

and so the claim.
In fact, the theorem implies that D Φ, γ, x,Að Þ depends only on the tangent vector

X not on the curve γ itself. Now we are in a position to define the covariant derivative.
Definition 2.5 Let Φ be a section of an associated vector bundle E and X ∈X Mð Þ a

vector field on M. The covariant derivative ∇A
XΦ of the section of E defined by

∇A
XΦ

� �
xð Þ ¼ D Φ, γ, x,Að Þ, (32)

where γ is any vector through Xx tangent to γ. The covariant derivative is a map
∇A : Γ Eð Þ ! Ω1 M,Eð Þ.

The fact that ∇AΦ is a smooth one-form in Ω1 M,Eð Þ for every Φ∈Γ Eð Þ is clear
from the local formula. In physics the covariant derivative in a local gauge s : U ! P
with Φ ¼ s,ϕ½ � is given as

∇A
XΦ ¼ s,∇A

Xϕ
� �

∇A
Xϕ xð Þ ¼ dϕ Xxð Þ þ ρ ∗ Ai Xxð Þð Þϕ xð Þ: (33)

The map ∇A is -linear in both entries and satisfies ∇A
fXΦ ¼ f∇A

XΦ for all smooth

functions f ∈ C∞ M,ð Þ. The Leibnitz rule ∇A
X λΦð Þ ¼ LXλð ÞΦþ λ∇A

XΦ holds for all
smooth functions λ∈ C∞ M,ð Þ.

Suppose γ : 0, 1½ � ! M is a closed curve inM, γ 0ð Þ ¼ γ 1ð Þ ¼ x, a loop. Then parallel
transport ΠE,A

γ is a linear isomorphism of the fiber Ex to itself. This isomorphism is

called the holonomy HolEγ,x of the loop γ in the basepoint x with respect to the

connection A. The Wilson loop is the map WE
γ that associates to a connection A and

loop γ the number WE
γ Að Þ ¼ Tr HolEγ,x Að Þ

� �
.

The map ∇A can be regarded as a generalization of the differential d : C∞ Mð Þ !
Ω1 Mð Þ. The differential d can be identified with the covariant derivative on the trivial
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line bundle over M. The differential can be uniquely be extended in the standard way
to an exterior derivative d : Ωk Mð Þ ! Ωkþ1 Mð Þ by demanding ddf ¼ 0 for all
f ∈ C∞ Mð Þ and d α∧βð Þ ¼ dα∧β þ �1ð Þkα∧dβ for α∈Ωk Mð Þ and β∈Ωl Mð Þ. This
differential satisfies d∘d ¼ 0 on all forms, and so the de Rham cohomology Hk

 Mð Þ is
well-defined for all k.

It is useful to show the covariant derivative can be extended similarly to an exterior
covariant derivative

dA : Ωk M,Eð Þ ! Ωkþ1 M,Eð Þ: (34)

This exterior covariant derivative, however, in general does not satisfy dA∘dA ¼ 0.
There is a well-defined vector product ∧ : Ωk Mð Þ � Ω1 Mð Þ ! Ωkþ1 M,Eð Þ between
standard differential forms, with values in , and differential forms with values in E.
Here we get the product between a scalar in  and a vector in E, which is well-
defined. Let ω be an element of Ωk M,Eð Þ and choose a local basis e1, … , er of E over an
open set U ⊂M, then ω can be written

ω ¼
Xr
i¼1

ωi ⊗ ei, (35)

with uniquely defined k-forms ωi ∈Ωk Uð Þ.
It should be stated that the definition of forms can be extended by defining C M,Wð Þ

as the set of all smooth maps fromM into the vector spaceW, which has a canonical
structure of a manifold, so that smooth maps are defined. A one-form onMwith values in
W is an alternating C∞ Mð Þ nonlinear map ω : χ Mð Þ �⋯� χ Mð Þ ! C∞ M,Wð Þ. The set
of all k-forms onM, and values inW can be identified with Ωk M,Wð Þ ¼ Ωk Mð Þ⊗ W.
It is said forms in Ω1 M,Wð Þ are twisted withW. Scalar product of twisted forms can be
defined by choosing a local frame for E over U ⊂M and expand k-forms F, G twisted
with E as F ¼Pr

i¼1Fi ⊗ ei, G ¼Pr
i¼1Gi ⊗ ei with Fi,Gi ∈Ωk U,ð Þ. Set

F,Gh iE ¼
Xr
i, j¼1

Fi,Gj
� �

ei, ej
� �

E (36)

with Hodge star operator ∗ : Ωk M,Eð Þ ! Ωn�k M,Eð Þ by ∗F ¼Pr
i¼1 ∗ Fið Þ⊗ ei, and

codifferential d ∗ ¼ �1ð Þtþnkþ1 ∗ d ∗ .
Definition 2.6 Let ∇ be a covariant derivative on a vector bundle E. Define the

exterior covariant derivative or differential d∇ : Ωk M,Eð Þ ! Ωkþ1 M,Eð Þ by

d∇ω ¼
Xr
i¼1

dωi ⊗ ei þ �1ð Þkωi∧∇ei
� �

: (37)

If ∇ ¼ ∇A is the covariant derivative on an associated vector bundle determined by
connection A on a principal bundle, write dA ¼ d∇. □.

Theorem 2.5 The definition of d∇ is independent of the choice of local basis eif g
for E.

Proof: Let ei0f g be another local basis of E over U. Then there exist unique
functions Cji ∈ C U,ð Þ with e0i ¼

Pr
i¼1Cji ei. The matrix C with entries Cji is invertible.

Let C�1 be the inverse matrix with entries C�1
ij and define
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ω0
j ¼

Xr

l¼1

C�1
lj ωl: (38)

Then ω ¼Pr
i¼1ωi ⊗ ei ¼

Pr
j¼1ω

0
j ⊗ e0j. Now let us calculate

Xr
j¼1

dω0
j ⊗ e0j þ �1ð Þkω0

j ⊗∇e0j
� �

¼
Xr

i, j, l¼1

d C�1
lj

� �
∧Cjiωl ⊗ ei þ C�1

lj Cji dωl ⊗ ei
�

þ �1ð ÞkC�1
lj ωl∧dCji ⊗ ei þ �1ð ÞkC�1

lj Cjiωl∧∇eiÞ
Xr
i¼1

dωi ⊗ ei þ �1ð Þkωi ⊗ ei
� �

þ
Xr

i, j, l¼1

d C�1
lj Cji þ C�1

ij dCji þ C�1
lj dCji

� �
∧ωl ⊗ ei:

�

(39)

The last term is zero since

0 ¼ dδli ¼ d
Xr
j¼1

C�1
lj Cji

 !
¼
Xr
j¼1

d C�1
lj

� �
Cji þ C�1

lj dCji

� �
: (40)

The derivative d∇ also satisfies

d∇ ωþ ω0ð Þ ¼ d∇ωþ d∇ω0, d∇ σ⊗ eð Þ ¼ dσ þ �1ð Þk σ∧∇e, (41)

as well as the Leibnitz formula for exterior covariant derivative. Unlike the case of
the standard exterior derivative d, it can be shown that d∇ in general has square
d∇∘d∇ 6¼ 0, a fact related to the curvature F∇ of the covariant derivative ∇.

3. Yang-Mills Lagrangians

In physics, the Lagrangians that are used are restricted out of an infinite set of
possible Lagrangians by various principles. The Lagrangian or action of a field theory
should be invariant under certain transformations of the fields by symmetry groups.
The laws of physics have to be invariant as well, a second meaning of symmetry is
invariance of the actual field configurations. In spontaneously broken gauge theories,
the Lagrangian is invariant under gauge transformations with values in a given Lie
group G. However, due to the Higgs field, the vacuum is invariant under a subgroup
H⊂G of transformations. The purpose of the Higgs is to give mass to the particles that
appear in the Lagrangians without at the same time breaking gauge invariance. A
quantum field theory associated to the Lagrangian should be renormalizable so after
the renormalization of parameters, finite results that can be compared with experi-
ment are obtained.

The scalar product of forms is given as

ω, ηh i ¼
X

μ1 <⋯< μk

ωμ1⋯μk η
μ1⋯μk ¼ 1

k!
ωμ1⋯μkη

μ1⋯μk , ωj j2 ¼ ω,ωh i: (42)

To write the Yang-Mills equations, the Hodge star operator written as
∗Ωk M,ð Þ ! Ωn�k M,ð Þ is the linear map on real-valued forms so that if dvg is the
volume element on M,
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ω∧∗ η ¼ ω, ηh idvg, ω, η∈Ωk M,ð Þ: (43)

The L2-scalar product of forms �, �h iL2 : Ωk
0 M,ð Þ � Ω1

0 M,ð Þ !  is defined by

ω, ηh iL2 ¼
ð

M
ω, ηh idvg: (44)

To obtain a finite integral, it is usual to work with forms of compact support. The
codifferential d ∗Ωkþ1 ! Ωk Mð Þ is

d ∗ ¼ �1ð Þtþnkþ1 ∗ d ∗ : (45)

Theorem 3.1 Let M be a manifold without boundary. Then the codifferential d ∗ is
the formal adjoint of the differential d with respect to the L2 scalar product on forms
of compact support dω, ηh iL2 ¼ ω, d ∗ ηh iL2 for all ω∈Ωk

0 Mð Þ, η∈Ωkþ1
0 Mð Þ.

Proof: The difference dω, ηh i � ω, d ∗ ηh i with respect to the pointwise scalar prod-
uct of the forms. Applying ∗ twice gives a map ∗∗ : Ωn�k Mð Þ ! Ωn�k Mð Þ is given by

∗∗ ¼ �1ð Þtþ n�kð Þk: (46)

Therefore, we have

dω, ηh i � ω, d ∗ ηh idvg ¼ dωð Þ∧∗ η� ω∧ ∗ d ∗ ηð Þ ¼ dωð Þ∧ ∗ ηþ �1ð Þkω∧ d ∗ ηð Þ
¼ d ω∧∗ ηð Þ:

(47)

Stokes’ Theorem applied here implies the result.
This knowledge allows us to define the covariant codifferential d ∗

∇ : Ωkþ1 M,Eð Þ !
Ωk M,Eð Þ by

d ∗
∇ ¼ �1ð Þtþnkþ1 ∗ d∇

∗ : (48)

To define the Yang-Mills Lagrangian and the associated Yang-Mills equations,
procced as follows. To do so, we use an n-dimensional, oriented, psuedo-Riemannian
manifold M, gð Þ, with signature s, tð Þ a principal G-bundle P ! M with compact
structure group G of dimension r, a scalar product on gL, which is Ad, invariant and an
orthonormal vector space basis Ti for gL.

Let A be a connection 1-form on the principal bundle P with curvature two-form
FA ∈Ω2 P, gL

� �
. The curvature defines a twisted two-form FA

M ∈Ω2 M,Ad Pð Þð Þ. The
Yang-Mills Lagrangian is defined by

LYM ¼ � 1
2

FA
M, F

A
M

� �
Ad Pð Þ: (49)

For a fixed connection A, this Lagrangian is a global smooth function LYM Að Þ :
M ! . The Yang-Mills Lagrangian is gauge invariant, LYM f ∗Að Þ ¼ LYM Að Þ, for all
bundle automorphisms f ∈G Pð Þ and all A on P. In a chart with coordinates xμ, the
components of FA are FA

μν ¼ FA
s ∂μ, ∂ν
� �

and they can be expanded over the Lie algebra
basis as
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FA
μν ¼ FAa

μν Ta, (50)

and FAa
s ∈Ω2 Uð Þ are real-valued differential forms, FAa

μν are real-valued smooth
functions on U. Thus, expanding (49), the Yang-Mills Lagrangian is locally

LYM Að Þ ¼ � 1
2

FA
s , F

A
s

� � ¼ � 1
4
FAa
μν F

Aμν
a , (51)

where FAa
μν ¼ ∂μAa

ν � ∂νAa
μ þ f bcaA

b
μA

c
ν, and structure constant f cba for the Lie

algebra.
Suppose M, gð Þ is compact and closed. The Yang-Mills action for a principal

G-bundle P ! M is the smooth map SYM : A Pð Þ ! , with A Pð Þ the space of all
connection one-forms A on P defined by

SYM Að Þ ¼ � 1
2

ð

M
FA
M,F

A
M

� �
Ad Pð Þdvg: (52)

A connectionA on the principal bundle P is a critical point of the Yang-Mills action if

d
du

����
u¼0

SYM Aþ uβð Þ ¼ 0, (53)

for all such variations on P.
Theorem 3.2 A connection A on a principal bundle P ! M is a critical point of the

Yang-Mills action if and only if A satisfies the Yang-Mills equation

dA
∗FA

M ¼ 0: (54)

Proof: Based on the structure equations, we calculate

FAþuβ ¼ d Aþ uβð Þ þ 1
2
Aþ uβ,Aþ uβ½ � ¼ FA þ u dβ þ A, β½ �ð Þ þ 1

2
u2 β, β½ �: (55)

Differentiating this and using the adjoint property on M, it follows that

d
du

����
u¼0

FAþuβ
M , FAþuβ

M

D E
Ad Pð Þ,L2

¼ 2 dAβ, FA
M

� �
Ad Pð Þ,L2 ¼ 2 β, d ∗

A FA
M

� �
Ad Pð Þ,L2 : (56)

The scalar product on the Lie algebra is non-degenerate, the L2-scalar product is
non-degenerate. It follows that A is a critical point of the Lagrangian (49) if and only
if (54) holds.

Any connection A on P has to satisfy the Bianchi identity

dAFA
M ¼ 0: (57)

When the group G ¼ U 1ð Þ, the local curvature forms are independent of the choice
of local gauge s and define a global two-form FA, so the Bianchi identity and Yang-
Mills equations are given by dFM ¼ 0 and d ∗ FM ¼ 0. These are Maxwell’s equations
for a source-free electromagnetic field on a general n-dimensionsl oriented pseudo-
Riemannian manifold.
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Fields of different types can be introduced into the picture. These include matter
fields that couple to the gauge field A, such as scalar fields or fermionic spinor fields,
and are distinguished by the statistics they obey. These two types of particle are
distinguished by an intrinsic property called spin, and this has to have its own
treatment.

A complex scalar field is a smooth map ϕ : M ! ℂ. A multiplet of complex scalar
fields is a smooth map ϕ : M ! ℂr for some r> 1 with the standard Hermitian scalar
product v,wh i ¼ v†w on ℂr. Given a principal g-bundle P ! Mwith compact structure
group G of dimension r, a complex representation ρ : G ! GL Wð Þ with associated
complex vector bundle E and G-invariant Hermitian scalar product �, �h iW on W and
bundle metric �, �h iE on the vector bundle E. If the dimension of V is one, then a
smooth section of E is called a multiplet of complex scalar fields and the vector space
W is called a multiplet space. With the covariant derivative dA : Γ Eð Þ ! Ω1 M,Eð Þ and
the scalar product �, �h iE on Ω1 M,Eð Þ, the Klein-Gordon Lagrangian can be given.

Definition 3.1 The Klein-Gordon Lagrangian for a multiplet of the complex scalar
field Φ∈Γ Eð Þ of mass m coupled to a gauge field A is

LKG Φ,Að Þ ¼ dAΦ, dAΦh iE �m2 Φ,Φh iE: (58)

For given fields Φ and A, the Klein-Gordon Lagrangian is a smooth function
LKG Φ,Að Þ : M ! .

The associated action SKG Φ,Að Þ is the integral over the Klein-Gordon Lagrangian
on the closed manifold M. In local coordinates on M, the kinetic term is

dAΦ, dAΦh i ¼ � ∇AμΦ,∇AμΦ
� �

E: (59)

In a local gauge s for the principal bundle, the Klein-Gordon Lagrangian can be
written as ΦjU ¼ s,ϕ½ �

LKG Φ,Að Þ ¼ ∂
μϕð Þ† ∂μϕ

� ��m2ϕ†ϕþ ∂
μϕð Þ† Aμϕ

� �� ϕ†Aμ

� �
∂
μϕð Þ � ϕ†AμAμϕ:

(60)

As with the Yang-Mills Lagrangian, the Klein-Gordon Lagrangian of a multiplet of
complex scalar fields coupled to a gauge field is gauge invariant.

To describe fermion fields classically using spinor fields on spacetime, a Lagrang-
ian for fermions is defined. The setting for doing this is an n-dimensional oriented and
time-oriented pseudo-Riemannian spin manifold M, gð Þ of signature s, tð Þ, a spin
structure Spin† Mð Þ together with complex spin bundle S ! M, and a Dirac form ,h i
on the Dirac spinor space, not necessarily positive definite, with Dirac bundle metric
,h iD. We abbreviate Ψ,Φh iD as ΨΦ.

Definition 3.2 The Dirac Lagrangian for a free spinor field ψ ∈Γ S⊗Eð Þ mass m is
defined by

LD ψð Þ ¼ Re Ψ,DAΨh iS⊗E �m Ψ,Ψh iS⊗E ¼ Re ΨDAΨ
� ��mΨΨ, (61)

where DAΓ S⊗Eð Þ ! Γ S⊗Eð Þ denotes the twisted Dirac operator, the first
term the kinetic term and the second pertains to the mass of the particle. The
associated action SD Ψ,A½ � is the integral over the Dirac Lagrangian on a closed
manifold M.
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Based on the fundamental Lagrangians which couple the fields to the gauge field,
the Lagrangian of the Standard Model can be built up as the sum of all the individual
Lagrangians that are to be accounted for and required to describe all the observed
fields. It could be referred to as the Yang-Mills-Dirac-Higgs-Yukawa Lagrangian

L ¼ Re ΨDAΨ
� �þ dAΦ, dAΦh i � V Φð Þ � 2gY Re ΨLΦΨR

� �� 1
2

FA
M, F

A
M

� �
Ad Pð Þ:

(62)

Experiment informs us that a realistic theory of particle physics has to involve
chiral fermions with a nonzero mass because the weak interaction is not invariant
under parity inversion.

4. Yang-Mills on four-dimensional manifolds

The general overview of Yang-Mills theory is now restricted to four-dimensional
compact Riemannian manifolds. This will emphasize how Yang-Mills relates to mani-
folds which are the natural context for Yang-Mills theory for more than one reason.
First the four-dimensional action is bounded below by the characteristic number of
the bundle so the field is constrained by the topology. By invariant theory, this is
linked to the conformal invariance of the action occuring just in dimension four. The
base manifold conformal structure leads to the relevant geometry. The curvature is
given in terms of the connection form ω, and the action is the sum of a gradient term
and a non-linear self-interaction term. They are of comparable strength only in
dimension four. Some of the symbols are adapted to the particular case studied here.

Riemannian geometry in dimension four is distinguished by the fact that the
universal cover Spin 4ð Þ of the rotation group SO 4ð Þ is not a simple group, but factors
Spin 4ð Þ ¼ SU 2ð Þ � SU 2ð Þ. One way to look at this is at the group level, 4 and ℂ2 can
be identified with the quaternions ℍ. Thus SO 2ð Þ may be regarded as the unit
quaternions. For unit quaternions, g and h, the map x ! g�1xh is an orthogonal
transformation of ℍ ¼ 4 with determinant one, and hence yields a homeomorphism
π : SU 2ð Þ � SU 2ð Þ ! SO 4ð Þ. This map has kernel �1, 1f g and so indicates SU 2ð Þ �
SU 2ð Þ as the two-fold universal covering group of SO 4ð Þ.

Suppose M is a Riemannian manifold, so the metric determines the basic Levi-
Civita connection on the cotangent space

∇ : Γ T ∗Mð Þ ! Γ T ∗ ⊗T ∗Mð Þ: (63)

Choosing a local basis of sections ei
� �

of T ∗M we may write ∇ei ¼Pkω
i
k ⊗ ek,

where ωi
k

� �
are the connection one-forms. The nature of these one-forms can be

understood in the context of an arbitrary bundle. Let G be a compact semi-simple Lie
group with Lie algebra gL and let π : P ! M be a principal G-bundle over M. A
connection on P is a choice of an equivariant horizontal subspace on T ∗P or a gL-
valued one-form on P which has horizontal kernel and is equivariant g ∗ω Xð Þ ¼
Adg�1ð Þω Xð Þ for x∈Γ T ∗Pð Þ and g∈G.

Let C denote the affine space of C∞ connections of P. Then C becomes a vector
space when a base connection is fixed. The equivariance property shows that the
difference η ¼ ω� ω0 pulls down toM as a one-form with values in the adjoint bundle
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P�Ad gL also denoted GL. As such it determines a covariant map ∇ : Γ gL
� �!

Γ gL
� �

⊗T ∗ Mð Þ by virtue of ϕ ! ∇0 þ η,ϕ½ �, where ∇0 is the covariant derivative
corresponding to ω0. If ρ : G ! Aut E

� �
is a representation and E ¼ P�ρE the associ-

ated vector bundle, then ω induces a covariant derivative

∇E : Γ Eð Þ ! Γ ⊗T ∗Mð Þ (64)

on E by applying the Lie algebra representation ρ : g ! End E
� �

to ∇ above.
Suppose for example P is the frame bundle of T ∗M, the Riemannian connection can
be described either in terms of the covariant derivative or in terms of the
corresponding so nð Þ-valued connection form ω ¼ ωi

k

� �
.

Given a connection ∇E on a vector bundle E, several related operations can be
constructed from ∇E a the symbol map. Extending ∇E to the covariant derivative
∇ ¼ ∇⊗ 1þ 1⊗∇ on Λk ⊗E, with ∇ the Riemann connection on Λ ∗ , and using
exterior differentiation or its adjoint contraction as the symbol, an exterior differen-
tiation D : Γ Λ ∗ ⊗Eð Þ ! Γ Λ ∗þ1 ⊗E

� �
is obtained and its formal adjoint D ∗ . In a local

orthonormal frame ei
� �

, ϕ∈Γ Λ ∗ ⊗Eð Þ,

Dϕ ¼
X
i

ei∧∇iϕ, D ∗ϕ ¼ �
X
i

ei∇
i
ϕ: (65)

There are also two second order operators. They are the trace Laplacian

∇E� � ∗ ∇E ¼ �
X
i

∇E
i ∇

E
i � ∇E

∇iei (66)

on Γ Eð Þ, and the bundle Laplace-Beltrami operator □ ¼ DD ∗ þD ∗Dð Þ on
Γ Λ ∗ ⊗Eð Þ. The covariant derivative of ∇ : Γ gL

� �! Γ gL ⊗T ∗M
� �

extends by virtue of
(65) to an exterior differentiation D on the space of sections Λ ∗ ¼ Γ Λ ∗ ⊗ gL

� �
by

Dϕ ¼ ∇0ϕþ η,ϕ½ � where ∇0 is the covariant derivative corresponding to ω0.
The curvature of a connection ω on a principal bundle P is the gL-valued two-form

Ω X,Yð Þ ¼ dω hX, hYð Þ where h is the projection onto the horizontal subspace of ω.
One can say D ¼ d � h is a derivation on equivariant gL-valued one-forms on P given
by Dϕ ¼ dϕþ ω,ϕ½ � for one-forms with vertical kernel and Dϕ ¼ dϕþ 1

2 ω,ϕ½ � for
connection forms ϕ, in particular, Ω ¼ dωþ 1

2 ω,ω½ � on P. Let us fix connection ω0, so
for any other ω, the difference η ¼ ω� ω0 descends to M as an element of A1 and the
difference of the curvature is

Ω�Ω0 ¼ dηþ 1
2
ω,ω½ � � 1

2
ω0,ω0½ � ¼ dηþ 1

2
η, η½ � þ ω, η½ �,

Ω ¼ Ω0 þD0ηþ 1
2
η, η½ �:

(67)

Alternatively, ϕ∈A0 lifts to an equivariant gL-valued function on P and Dϕ has a
vertical kernel, so

D ∘ D ϕð Þ ¼ d Dϕð Þ þ ω,Dϕ½ � ¼ d dϕþ ω,ϕ½ �ð Þ þ ω,Dϕ½ � ¼ Dω,ϕ½ � � ω,Dϕ½ � þ ω,Dϕ½ � ¼ Dω,ϕ½ �:
(68)
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The formula descends to the base D∘∇ ϕð Þ ¼ Ω,ϕ½ � for ϕ∈A0. In terms of a local
basis of vector fields eif g and dual forms ei

� �

Ω ϕð Þ ¼ D ∘ ∇ϕ ¼ D
X
i

∇iϕei
 !

¼
X
j, k

∇jϕek∧∇kej þ ∇k∇jϕek∧ej
� �

: (69)

For the Riemannian connection, ∇i ej � ∇jei ¼ ei, ej
� �

so Ωij ¼ ∇i∇j � ∇j∇i � ∇ ei,ej½ �
and similarly for ΩE.

On a four-dimensional Riemannian manifold, the metric covariant derivative on
the spin bundle Sþ is a map ∇ : Γ Sþð Þ ! Γ Sþ ⊗ ∗Mð Þ. Thus ∇ on S� decomposes into
two operators: first the Dirac operator D : Γ S�ð Þ ! Γ S∓ð Þ where symbol is Clifford
multiplication, and the twister operator D : Γ V�ð Þ ! Γ Λ2

�
� �

, whose symbol is the
orthogonal complement of Clifford multiplication. In a local orthonormal frame ei

� �
with ϕ∈Γ Vð Þ

Dϕ ¼
X
i

ei � ∇iϕ, Dϕ ¼ ∇ϕþ 1
4

X
i

eiDϕ⊗ ei: (70)

The Dirac operator is elliptic and is formally self-adjoint on the total spin bundle S.
In four dimensions, the Riemannian curvature tensor R∈Λ2 ⊗Λ2 decomposes

under the splitting Λ2 ¼ Λ2
þ⊕Λ2

�. Due to the symmetry Rijkl ¼ Rklij, this is an element
of the symmetric tensor product Sym2 Λ2

þ⊕Λ2
�

� �
, which is a Spin 4ð Þ module, this

breaks uo into five irreducible pieces.
The components of this tensor under this decomposition are Wþ, Rs

12 , 2B,W
�� �

,

where Rs is the scalar curvature, B the traceless Ricci tensor, and W� are the self-dual
and anti-self-dual components of the conformally invariant Weyl tensor. This
decomposition results in some important classes of four-manifolds: M4 is Einstein if
B ¼ 0, conformally flat if W ¼ 0, and self-dual (anti) if W� ¼ 0 (Wþ ¼ 0).

Suppose M is a spin four-manifold with Riemannian connection ∇ and E, a vector
bundle over M with connection ∇E and curvature ΩE. Then the Dirac operator is
DΓ V⊗Eð Þ ! Γ V⊗Eð Þ is defined for E-valued spinors by D ¼Pi e

i � ∇i where ∇ is
the total covariant derivative on V⊗E. It is shown this operator has an algebraic
decomposition into Laplacian and curvature terms. Such an expression is called a
Weitzenböck operator. These encompass more than one kind of operator so it is worth
showing how they can be developed. To get D2, choose an orthonormal basis ei

� �
around x∈M, vector fields eif g dual to the ei such that ∇ei e

j
� �

x ¼ 0 for all i, j. Squaring
D and separating the symmetric and skew-symmetric parts

D2 ¼
X

ei � ∇i

� � X
ej∇j

� �
¼
X
i, j

ei � ej � ∇i∇j ¼ �
X
i, j

∇j∇i þ
X
i, j

ei � ej � ∇i∇j � ∇j∇i
� �

:

(71)

This can be summarized as

D2 ¼ ∇∗∇þ 1
2

X
i, j

ei � ej � Rij ⊗ 1þ 1
2

X
i, j

ei � ej � 1⊗ΩE
ij

� �
: (72)
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Since ∇ is torsionless, ei, ej
� �

x ¼ 0, and the total curvature is Ωij ¼ ∇i∇j � ∇j∇i. The
first term is (72) is the positive trace Laplacian of ∇, Rij can be written in terms of the
irreducible components of R.

Compact four-dimensional manifolds M4 possess two real characteristic classes.
These can be expressed locally as polynomials in the curvature of M and hence as
polynomials in the irreducible components of the curvature Rs,B,W�� �

.
Topological invariants arise in the consideration of four-dimensional manifolds M.

These have two real characteristic classes. They are the Pontryagin class p1M and the
Euler class χ Mð Þ given by

p1M ¼ 1
4π2

ð

M
Wþj j2 � W�j j2

� �
dvg,

χ Mð Þ ¼ 1
8π2

ð

M

R2
s

24
� 2 Bj j2 þ Wþj j2 þ W�j j2

� �
dvg:

(73)

More generally, if G is a compact simple Lie group, Hi BG;ð Þ vanishes for
i ¼ 1, 2, 3 and is  for i ¼ 4. Thus, there is a single real characteristic class for principal
G-bundles over M4 and it resides in dimension 4. In Yang-Mills theory, the
corresponding characteristic number is called the Pontryagin index κ of the bundle. It
is obtained by substituting the curvature Ω of P into the Killing form. In terms of the
anti-self-dual components Ω� of Ω, κ is

κ ¼ 1
8π2

ð

M
Ωþj j2 � Ω�j j2

� �
dvg: (74)

For functions on a bounded domain in n the Sobolov space Lk,p Dð Þ is the com-
pletion of the space of C∞ functions in the norm

fk kk,p ¼
ð

D

Xk
∣α∣¼1

∂α fj jp
 !1=p

: (75)

These spaces are related by the Sobolev embedding theorems: for p, q≥ 1, the
inclusion Kk,p Dð Þ ! Ll:q Dð Þ is continuous for k� n=p≥ 1� n=q, compact for k�
n=p> 1� n=q. This extends to vector bundles E with metric over M.

5. Deriving coupled Yang-Mills equations

It is the case that once the geometrical setting for a gauge theory has been set out,
the requirement of naturality then determines the theory. Let π : P ! M be a principal
bundle over a four-dimensional M with compact simple structure group G, ρ : G !
Aut E

� �
a unitary representation of G, E ¼ p�ρE the associated vector bundle, and W

the bundle associated to the frame bundle of M. To get a mathematically rigorous
development of the field equations, assume that they are variational equations and
arise as the stationary points of an action integral

A g,∇,ϕð Þ ¼
ð

M
L g,ω,ϕð Þdvg, (76)
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where the Lagrangian is a 4-form constructed from g, ∇, and ϕ.
Then P is a manifold with a certain geometric structure. There is a free right action

of G, so an automorphism of P is a map f : P ! P, which preserves this structure
f xg�1ð Þ ¼ f xð Þg�1 for all x∈P and g∈G. Let Aut Pð Þ denote the group of all
bundle automorphisms f such that the induced map π � f : M ! M preserves
orientation, Aut0 Pð Þ the subgroup which induces the identity onM. In the language of
physics, a section s : M∍U ! P is called a local choice of gauge, an automorphism
f ∈Aut0 Pð Þ is a gauge transformation, and the group G ¼ Aut0 Pð Þ is the gauge group
of the bundle.

These properties of the Lagrangian are required ið Þ in a local coordinate system and
choice of gauge, L should be a universal polynomial in g, h,Γ,ϕ, detgð Þ�1=2, dethð Þ�1=2

,

and their derivatives, Γ the Christoffel symbols. iið Þ the map L should be a natural
transformation with respect to the bundle automorphism f ,
L π � fð Þ ∗ g, f ∗ ∇, ρ f ∗ð Þϕð Þ ¼ f ∗L g,∇,ϕð Þ iiið Þ it should have conformal invariance, for
any σ on M, L eiσg,∇,ϕ

� � ¼ L g,∇,ϕð Þ. Naturality with respect to Aut0 Pð Þ means that
L g, f ∗ ∇, ρ f ∗ð Þϕð Þ ¼ L g,∇,ϕð Þ. This is Weyl’s principle of gauge invariance. For the
case in which L ¼ L g,∇ð Þ requiring naturality under orientation preserving
diffeomorphisms of P, SO 4ð Þ invariant theory implies

L ¼ c1 Rsj j2 þ c2 Bj j2 þ c3 Wþj j2 þ c4 W�j j2 þ c5Ω∧Ωþ c6Ω∧∗Ω, (77)

where Rs,B,W�� �
are the components of the Riemann curvature of g, Ω the

curvature of ω and the ci are real numbers. The actions of the various values of the ci
include topological invariants p1 Mð Þ, χ Mð Þ for example.

Let us be concerned with the action which depends on the bundle curvature which
is called the Yang-Mills action

A g,∇ð Þ ¼
ð

M
Ω∧∗Ωdvg ¼

ð

M
Ωj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð Þ

q
dx1∧⋯∧dx4: (78)

The action is evidently regular and Diff Mð Þ covariant. It is conformally invariant
because the ∗ operator on two-forms is

A e2σg,V
� � ¼

ð

M
e�4σ gijgkl Ωik,Ωjl

� �
det e2σg
� �1=2

dx1∧⋯∧dx4 ¼ A g,ωð Þ:
�

(79)

A gauge transformation g∈G takes ∇ to g∇g�1 and Ω ¼ D∘∇ to gΩg�1. The
Lagrangian Ωj j2 is then unchanged because the Killing form is invariant. Since Ωj j2 ¼
Ω�j j2 þ Ωþj j2, (71) shows that A g,ωð Þ≥ 8π2k with equality if and only if Ω� ¼ 0.
Consequently, self-dual connections are absolute minima of the Yang-Mills action.
There are two action integrals considered by physicists. They are the fermionic and
the bosonic types.

Definition 5.1 The fermion action is defined on E-valued spinors ψ ∈Γ V⊗Eð Þ as

A g,∇,ψð Þ ¼
ð

M
Ωj j2 þ ψ ,Dψh i

� �
dvg, (80)

where D is the Dirac operator and ,h i is the inner product on V⊗E and dvg the
volume form.
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Definition 5.2 The boson action is defined on E-valued scalars ϕ∈Γ Eð Þ by

A g,∇,ϕð Þ ¼
ð

M
Ωj j2 þ ∇ϕj j2 þ 5

6
ϕj j2 � V ϕð Þ

� �
dvg: (81)

where V : E !  is a gauge invariant polynomial on the fiber such that deg Vð Þ≤4.
Both Lagrangians are regular Diff Mð Þ invariant and gauge invariant. The degree

requirement comes about as we wish to vary the action over a Sobolev space and by the
Sobolev inequality, any polynomial in ϕ whose degree does not exceed four is then
integrable. Note the second term in the fermion Lagrangian is not positive definite, for
suppose ψ ¼ ψþ � ψ� ∈Γ Qþ⊕Q�

� �
satisfies Dψ ¼ λψ for some eigenvalue λ, ϕ ¼

ϕþ � ϕ� satisfiesDϕ ¼ �λϕ. This gives that the spectrum ofD is symmetric about zero.

6. Theorems in four dimensions for the Yang-Mills system

Let us calculate the first variation of the action for a spinor field. Introduce two real
parameters u, vð Þ and pick a one-parameter family of connections ∇u ¼ ∇0 þ uηþ⋯,
η∈Γ Λ1 ⊗ gL

� �
and a one-parameter family of spinors ψv ¼ ψ0 þ vψ þ⋯, ψ ∈Γ V⊗Eð Þ.

The curvature and total covariant derivative on V⊗E are

Ωu ¼ Ω0 þ uD0ηþ Rs

2
η, η½ �, ∇u ¼ ∇0 þ uρ ηð Þ: (82)

Expanding the action, it is given by

A ∇u,ψvð Þ ¼
ð

M
Ω0j j2 þ 2u Ω0D0 ηh i þ v ψDϕh i þ v ϕDψh i

 

þ u ψ
X
i

eiρ ηið Þψ
* +

þ⋯

!
dvg:

(83)

In (83), ei
� �

is a local orthonormal basis. This implies the equations, which result
from the first variation are for η∈Γ∞ Λ1 ⊗ gL

� �
and ψ ∈Γ∞ V⊗Eð Þ

ð

M
2 D ∗Ω, ηh i þ ψ ,

X
i

eiρ ηið ÞψÞ
* + !

dvg ¼ 0,
ð

M
ψ ,Dψh i þ ϕ,Dψh ið Þdvg ¼ 0,

(84)

Recall that D is self adjoint, so (84) gives the pair of equations

D ∗Ω ¼ J ϕð Þ ¼ � 1
2

X
i

ψ , eiρ σað Þψ� �
σa ⊗ ei, Dψ ¼ 0: (85)

In (85), σaf g is a local orthogonal basis of sections of gL, σaf g the dual basis in
Γ g ∗L
� �

. The current due to ψ is J ψð Þ and it is real-valued since ψ , eiρ ηið Þψ� � ¼
eiρ ηið Þψ ,ψ� �

. It is interpreted as a one-form on the space of connections.
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The boson action is defined on E-valued scalars ϕ∈Γ Eð Þ by

Ab g,∇,ϕð Þ ¼
ð

M
Ωj j2 þ ∇ϕ

�� ��2 þm
6

ϕj j2 � V ϕð Þ
� �

dvg: (86)

The first variation of this action is computed as follows. Choose a one-parameter
family of connections ∇u ¼ ∇0 þ uηþ⋯, η∈Γ Λ⊗ gL

� �
and a one-parameter family

ϕv ¼ ϕ0 þ vτ þ⋯, τ∈Γ V⊗Eð Þ

Ωu ¼ Ω0 þ uD0 ηþ u2

2
η, η½ �, ∇u ¼ ∇0 þ uρ ηð Þ, (87)

Hence, the action is

A g,∇u,ϕvð Þ ¼
ð

M
Ω0 þ uD0ηj j2 þ ∇0ϕ0

�� ��2 þ uρ ηð Þϕ0 þ v ∇0τj j2 þm
6

ϕ0 þ vτj j2

þV ϕ0 þ vτð Þdvg
¼
ð

M
Ω0j j2 þ 2u Ω0D0ηh i þ ∇0ϕ0

�� ��2 þ 2u ∇0ϕ0ρ ηð Þϕ0
� �

þ 2v ∇0ϕ0∇0τ
� �

(88)

þm
6

ϕ0j j2 þm
6
v ϕ, τh i þm

6
v τ,ϕ0h i � V ϕ0 þ vτð idvg: (89)

Differentiating with respect to u and v then setting u ¼ v ¼ 0,

∂A
∂u 0 ¼ 2

ð

M
D ∗

0 Ω0, η
� �þ ∇0ϕ, ρ ηð Þϕ0

� �� �
dμg,

����
∂A
∂v 0 ¼

ð

M
2 ∇0ϕ0,∇0τ
� �þm

6
ϕ0, τh i þm

6
τ,ϕ0h i þ V 0 ϕ0ð Þ, τh i

� �
dμg:

���� (90)

Equating the results, (90) to zero yields the coupled fermion and boson equations
of motion taking V 0 ¼ a ϕj j2ϕþm2

bϕ

D ∗Ω ¼ J ¼ � 1
2

X
ϕ, ei � ρ σað Þϕ� �

σa ⊗ ei, Dϕ ¼ mϕ,

D ∗Ω ¼ J ¼ �Re
X
i

∇iϕ, ρ σað Þϕ� �
σa ⊗ ei, ∇∗∇ϕ ¼ m

6
ϕþ a ϕj j2ϕþm2

bϕ:
(91)

In physics, one says Ω is a gauge field, ω its gauge potential, and ψ ,ϕ the field of a
massive particle interacting with Ω. When the fields are set equal to zero, the fermion
and boson actions reduce to the Yang-Mills field equations. Self-dual connections
satisfy this equation because they are absolute minima of the action. In fact, the first
field equation can be used to get

D ∗ J ¼ DD ∗Ω ¼ Ω, ∗Ω½ � ¼ ∗
X
α, β

Ωα,Ωβ

� �
σα, σβ
� � ¼ 0: (92)

When the structure group is abelian, the equation D ∗ J ¼ 0. This expresses the fact
that electric charge is conserved in electromagnetism.
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The field Eqs. (91) simplify considerably when we take a ¼ m ¼ 0. Then either
Dψ ¼ 0 on E-valued spinors or ∇∗∇ϕ ¼ m=6ð Þϕ with ϕ an E-valued scalar.

Theorem 6.1 Let E be a vector bundle over a manifold M and ϕ,Ωð Þ a solution of
the coupled boson equations D ∗ Ω ¼ J, ∇∗∇ϕ ¼ Rs=6ð Þϕ. If M is a compact manifold
with positive scalar curvature, or ifM ¼ 4 and ϕ vanishes at infinity, then ϕ ¼ 0 and
Ω is Yang-Mills.

Proof: If M is compact and s>0, integration by parts yields

ð

M
∇ϕ
�� ��2 þm

6
ϕj j2

� �
dvg ¼ 0: (93)

Thus ϕ ¼ 0 and J ¼ 0. The equation ∇∗∇ϕ ¼ 0 can be converted to a differential
inequality for ∣ϕ∣

d ∗ d ϕj j2 ¼ 2d ∗ ϕ,∇ϕ
� � ¼ �2 ∇ϕ

�� ��2 þ 2 ϕ,∇∗∇ϕ
� � ¼ �2 ∇ϕ

�� ��2,
d ∗ d ϕj j2 ¼ 2d ∗ jdjϕð Þ ¼ �2jdjϕ��2 þ 2∣ϕ∣d ∗ d∣ϕ∣:

(94)

Thus upon solving the second in (94) for ∣ϕ∣d ∗ d∣ϕ∣ and using the first, we get

jϕjd ∗ d jϕj ¼ jdjϕk2 � ∇ϕ
�� ��2 ≤0: (95)

Consequently, Δ ∣ϕ∣ ≥0 If ∣ϕ∣ vanishes at infinity, the maximum principle implies
that ϕ ¼ 0, hence the current J vanishes and Ω is a Yang-Mills field. □.

Theorem 6.2 Let M be a compact Riemannian four-manifold with Rs=3�
∣W�∣ ≥ ε>0. There is a constant α such that ið Þ Any Yang-Mills Ω such that
Ω�k k0,2 < α is self-dual (ii) Any solution Ω,ϕð Þ to the massless coupled fermion

Eqs. (90) with Ω�k k0,2 < α satisfies Ω� ¼ J ¼ ϕ� ¼ 0.
Proof: (i) Start with the equations D ∗Ω ¼ DΩ ¼ 0 to obtain DΩþ �DΩ� ¼ 0 so

DΩ� ¼ DþΩ� ¼ 0 and hence□Ω� ¼ 0. Here,□ ¼ DD ∗ þD ∗D is the Laplace
Beltrami operator. Integrate Ω�,□Ω�h i by parts overM using theWeizenbock formula,

□ ¼ ∇∗∇þ Rs

3
þWþðÞ � ΩE� �þ

, �
h i

(96)

and apply Kato’s inequality gives

0 ¼ Ω�,□Ω�h i ¼
ð

M
Ω� ∇∗j j∇Ω� þm

3
Ω�j j2 þW� Ω�j j2 �Ω� ΩE� ��

,Ω�� �� �
dvg

¼
ð

M
∇Ω��� ��2 þ m

3
þW�

� �
Ω�j j2 þ Ω� ΩE� ��

,Ω�� �� �
dvg

≥
ð

M
jdjΩ�k2 þ ε Ω�j j2 � Ω�j j3
� �

dvg:

(97)

By Hölder’s inequality, followed by Sobolev’s inequality, the last term is bounded by

ð

M
Ω�j j3dvg ≤ α Ω�k k0,2 � dΩ�k k20,2 þ Ω�k k20,2

� �
: (98)
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This is dominated by the first two terms whenever Ω�k k0,2 is sufficiently small.
But this means the right-hand side is positive and a contradiction. The only way this
can be is that Ω� ¼ 0.

(ii) If ϕ ¼ ϕþ,ϕ�ð Þ∈Vþ⊕V� satisfies Dψ ¼ 0, then ϕ�,D2ψ�� � ¼ 0. Using the
Weitzenböck formula for the squared Dirac operator D2, we obtain

0 ¼
ð

M
∇ϕ¼�� ��2 þ Rs

2
ϕ�j j2 þ 1

2

X
i, j

eiej � ϕ�ΩE
ijϕ

�
 !

dvg

≥
ð

M
jdjϕ�

����
2

þ Rs

2
ϕ�j j2 þ 1

2

X
i, j

eiejϕ
�Ωijϕ

�dvg:

(99)

Whenever Ω�k k0,2 is sufficiently small this inequality can apply, provided that
ϕϕ� ¼ 0 so then

�2D ∗ Ω ¼ �2J ¼ ϕ�, eiρ σαð Þϕ� �
σα ⊗ ei þ ϕþ, eiρ σαð Þϕ�� �

σα ⊗ ei ¼ 0: (100)

Therefore, Ω� ¼ 0 by ið Þ.
Solutions of the coupled field equations have the properties expected of

elliptic equations, specifically, for p> 2 an L2p weak solution is C∞
. This is

basically elliptic regularity. There is a subtle point in that the coupled equations are
elliptic only after a choice of gauge. Rather than using a connection to identify
C ¼ A1, we shall choose a point x∈M and ball B ¼ B x; rð Þ around x and fix a gauge,
considered as a section of the frame bundle of E, to pull down connections. This
identifies the space of connections over B with A1

��
B. Let V0 be the connection

corresponding to 0∈A1
��
B under this identification. Then in terms of covariant

derivatives, the original connection is ∇ ¼ dþ ω, and V0 is simply exterior
differentiation d.

The tangent space to the orbit of the gauge group through ∇,ϕð Þ∈ C ∈ E is the
image of K : A0 ! A1 þ E by X ! ∇X, ρ Xð Þ,ϕð Þ. The L2 orthogonal complement of
the image, which is the kernel of the adjoint operator K ∗ , provides a natural slice for
the gauge orbit. This adjoint is K ∗ : η,ψð Þ ! ∇∗ ηþ ψ , ρðÞϕh i, where this last term
selects an element of A0 ¼ A0� � ∗

via the Killing metric. There is a theorem which
applies at the regular points of C � E, where the action of the gauge algebra is free
which is just stated: Suppose M is a compact Riemannian 4-manifold possibly with
boundary. If a regular field V,ϕð Þ∈ C � Eð Þkþ1,p with k≥0, 2< p<4. Then there is a
constant c such that for every field η,ψð Þ with η,ψð Þk kkþ1,p < c there is a gauge
transformation g∈ Ckþ2,p unique is a neighborhood of the identity, with
K ∗

λ g � V þ ηð Þ � Vð , g � ϕþ ψð Þ � ϕÞ ¼ 0 weakly. If ∇,ϕ, η and ψ are C∞, then g is C∞.
Theorem 6.3 Let ∇ be an Lkþ1,p, k≥0, 2< p< 4 connection on a bundle E over a

four-manifold M and let σ : M ! Frame Eð Þ be a C∞ gauge for E. Then there exists a
constant c>0 depending only on M such that if ∇ ¼ dþ ω and ωk kkþ1,p < c in the
gauge σ, then there is a gauge transformation g∈Gkþ2,p such that d ∗ω ¼ 0 in the gauge
g � σ. If ∇ is C∞, then g is C∞.

We can choose a C∞ gauge around a given point x0 and modify this to a gauge in
which d ∗ ω ¼ 0 using Theorem 6.2. To achieve this, it is necessary to make the Lk,p

norm of the fields small.
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Theorem 6.4 Let ∇ be an L1,p, 2< p<4 connection on a domain D⊂M4. Then
there is a C∞ gauge σ and a gauge transformation g∈G2,p such that, after a constant
conformal change of metric, d ∗ω ¼ 0 in a neighborhood of 0∈D in the gauge g � σ and
the new metric.

Proof: Given ε>0 choose a C∞ gauge in a neighborhood of 0∈D and a small ball
B 1, τð Þ, τ> 1 around 0 with ωk k0,p < ε is the required scale. Take B 1, τ2ð Þ to the unit

disk B τ, 1ð Þ by a conformal change of metric. Since ωj j2p and ∇ωj jp ¼ P
ek ⊗∇kω

�� ��p
have conformal weight 2p, rescaling gives

ωk k2p0,2p,B τ,1ð Þ ¼ τ2p�4 ωk kp0,2p,B 1,τ2ð Þ, ∇ωk kp0,p,B τ,1ð Þ ¼ τ2p�4 ∇ωk kp0,p,B 1,τ2ð Þ: (101)

In the new metric, Hölder’s inequality gives,

ωk k1,p,B τ,1ð Þ ≤ ∇ωk k0,p,B τ,1ð Þ þ c ωk k0,2p,B τ,1ð Þ ≤ ∇ωk k0,p,B 1,τ2ð Þ þ c ωk k0,2p,B 1,τ2ð Þ ≤ 1þ cð Þε,
(102)

where c2p is the volume of the unit ball in the rescaled metric, which is uniformly
bounded in τ for τ< 1. When ε is sufficiently small, Theorem 6.3 applies.

Uhlenbeck has proved the much more difficult fact that the rescaling used here
depends only on Ωk k0,p.

Theorem 6.5 Let ∇ϕð Þ∈ C � Eð Þ1,p, p> 2 be a weak solution to the coupled Yang-
Mills Eq. (90). Then there is an L2,p gauge in which ∇,ϕð Þ is C∞.

Proof: Fix an x∈M, By Theorem 6.2, there is an L2,p gauge defined in a neighbor-
hood of x such that ∇ ¼ dþ ω with d ∗ω ¼ 0 in this gauge. Expanding the field
equations in this gauge, we have J ¼ D ∗Ω ¼ d ∗ dωþ ωdωþ 1=2ð Þω ω,ω½ �. Hence
dd ∗ω ¼ 0, so d ∗ dω ¼ □ω ¼ ∇∗∇ωþ Ric ωð Þ by the Weitzenböck formula, □ ¼
∇∗∇þ Ricþ 1=2ð ÞP ei � ej � ΩE

ij . A boson field then weakly satisfies

Δω� Ric ωð Þ � ωdω� 1
2
ω ω,ω½ � � Re ∇þ ωð Þϕ, ρðÞϕh i ¼ 0,

Δϕþ 2ωϕþ ωω ϕð Þ þ Rs

6
ϕþ a ϕj j2ϕþm2ϕ ¼ 0,

(103)

where Δ is the metric Laplacian on functions. Applying D to Dϕ ¼ mϕ and using
the Weizenböck formula (72) for the square of the Dirac operator on E-valued
spinors, gives equations for the fermion fields. These are uniformly elliptic systems.
Regularity follows by usual elliptic theory.

7. Conclusions

An extensive theory of Yang-Mills fields coupled to scalar and spinor fields on finite
dimensional manifolds has been established. As well as differential geometric ideas, the
appearence and systematic use of non-abelian Lie groups is also crucial and as such play
a deep role in the study of elementary particles. The Yang-Mills fields represent forces
or more accurately, they can be thought of as carriers of those fundamental forces. The
presentation has been innovative and proofs have been given for all of the theorems that
were introduced. It can also be looked at as a starting point for the study of other topics
such as the existence of singularities or isolated singularities.
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