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Preface

In mathematics and science, a nonlinear system is one in which the change of the 
output is not proportional to the change of input. Because most systems in nature 
are nonlinear, nonlinear problems have aroused the interest of engineers, biologists, 
physicists, mathematicians, and many other scientists. The most prominent differ-
ence between a nonlinear system and a linear system is that a nonlinear system may 
lead to chaos, unpredictability, or non-intuitive results.

In general, the behavior of a nonlinear system can be mathematically described as a set 
of nonlinear simultaneous equations, in which the unknown number (or the unknown 
functions in the differential equations) appears as a polynomial variable higher than 
the first degree, or as a parameter of a polynomial function of a non-first degree. 
Generally speaking, the behavior of nonlinear systems is described mathematically by 
a set of nonlinear simultaneous equations, which contain non-first-degree polynomi-
als composed of unknowns. In other words, a nonlinear equation cannot be written 
as a linear combination of its unknowns. A nonlinear differential equation refers to a 
term in which the power of the unknown function and its derivative function is not 
equal to one. When determining whether an equation is linear or nonlinear, only the 
part of the unknown number (or unknown function) needs to be considered, without 
checking whether there is a known nonlinear term in the equation. For example, in 
the differential equation, if the order of all unknown functions and unknown deriva-
tives is one, it can still be regarded as a linear differential equation even if there is a 
 nonlinear function composed of a known variable.

Since nonlinear equations are quite difficult to solve, we often need to approximate a 
nonlinear system with linear equations (linear approximation). This approximation is 
very accurate for the input values (variables) in a certain range, but after linear approx-
imation, many interesting phenomena, such as solitary waves, chaos, and singularities 
cannot be explained. These strange phenomena often make the behavior of nonlinear 
systems seem counterintuitive, unpredictable, or even chaotic. Therefore, it is of great 
theoretical significance to analyze and solve nonlinear differential equations.

At the same time, economic advances and the continuous innovation and develop-
ment of electronic computer technology have led to the rise of automatic control 
technology which is gradually being applied to aviation detection, engineering 
production, mechanical equipment research and development and management, 
weapons manufacturing and other areas, where it is of inestimable value. Automatic 
control technology has also begun to expand into the realm of social life, in areas such 
as biological manufacturing, medical research, and environmental management. 
Automatic control systems may be linear or nonlinear. A linear system has regularity, 
but it is nonlinear systems that are widely found in society. Compared with a linear 
system, a nonlinear system cannot meet the superposition, and it is unbalanced. 
Research into nonlinear control systems and related control strategies is of important 
practical significance and value for engineering applications.



IV

This book investigates promising and in-depth research on nonlinear systems and 
related control strategies. Chapter 1 describes the extension of differential equations to 
different underlying time domains, so-called dynamic equations on time scales, whose 
calculus unifies the continuous and discrete calculus and extends it to any non-empty 
closed subset of real numbers. Dynamic equations on time scales allow the modeling 
of processes that are neither fully discrete nor fully continuous. Chapter 2 deals with 
a class of nonlinear fractional differential equations involving the Caputo fractional 
derivative with nonlocal boundary conditions. By applying the Leray‒Schauder 
nonlinear alternative and Banach contraction principle, the existence and unique-
ness of this problem are established. In Chapter 3, the dynamical behavior of the 
incommensurate fractional-order FitzHugh‒Nagumo model of neurons is explored in 
detail from local stability analysis. The FitzHugh‒Nagumo model is a mathematical 
simplification of the Hodgkin‒Huxley model, which proves that the fractional-order 
FitzHugh‒Nagumo model can be simulated by a simple electrical circuit where the 
capacitor and the inductor are replaced by corresponding fractional-order electrical 
elements. The local stability of this model is then studied using the theorem on the 
stability of an incommensurate fractional-order system combined with Cauchy’s 
argument principle. Finally, the dynamic behaviors of the model are investigated. In 
Chapter 4, an m-th order elliptic equation is considered in Sobolev spaces generated 
by the norm of a grand Lebesgue space. Subspaces are determined in which the shift 
operator is continuous, and local solvability (in the strong sense) is established in 
these subspaces. Interior and up-to-boundary Schauder-type estimates are established 
with respect to these Sobolev spaces for m-th order elliptic operators, the trace of 
functions and trace operator are determined, the boundedness of trace operator and 
the extension theorem is proved, and the properties of the Riesz potential regarding 
these Sobolev spaces are studied. In Chapter 5, a practical introduction to a generalized 
nonlinear analysis framework tailored for time-series data is provided, enabling the 
safe quantification of underlying evolutionary dynamics, which describe the referring 
empirical data-generating process. The reader can incorporate the proposed analysis 
framework, conduct the analyses and reconstructions using the correct specifications, 
and learn about misleading propositions or parameter choices. Chapter 6 proposes 
random matrix theory (RMT) to handle this problem, which begins by modeling 
spatial-temporal datasets as sequences, each of whose terms is in the form of a ran-
dom matrix. Fundamental RMT principles are briefly discussed, such as asymptotic 
spectrum laws, transforms, convergence rate, and free probability, in order to extract 
high-dimensional statistics from the random matrix as the indicators. The statistical 
properties of these indicators are discussed for a better understanding of the system, 
and potential applications are suggested. Chapter 7 studies the structural properties 
and convergence approach of chance-constrained optimization of boundary-value 
elliptic partial differential equation systems (CCPDEs). Real-world systems, such as 
physical and living systems, are generally subject to vibrations that can affect their 
long-term integrity and safety. Thus, the determination of the law that governs the 
evolution of the oscillatory quantity has become a major topic in modern engineer-
ing design. Chapter 8 reviews recent developments and advances in the theory of 
isochronous oscillations of nonlinear systems. Chapter 9 focuses on conventional 
and proposed control configuration selection methods for nonlinear systems. The 
proposed input-output pair method for nonlinear benchmark processes is also cal-
culated. In Chapter 10, feedback linearization techniques, including input-state and 
input-output linearization methods, are described. The input-output linearization 
method is then used for the output voltage control of an interleaved boost converter. 

V

Chapter 11 proposes an advanced nonlinear model predictive control solution, including 
multi-step prediction models, for the yaw control system of a horizontal-axis wind 
turbine. A notable feature of the proposed solution is the use of a finite control set 
under constraints for the potentially demanded yaw rate; the optimal control demand 
for the yaw system is conveniently solved using an exhaustive search method based 
on a sequential diagram.

In summary, this book aims to provide advanced research on nonlinear systems and 
control schemes for researchers and engineers working in relevant fields.

Bo Yang
Faculty of Electric Power Engineering,

Kunming University of Science and Technology,
Kunming, China
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University of Illinois at Urbana-Champaign,
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Chapter 1

Dynamic Equations on Time Scales
Sabrina Streipert

Abstract

An extension of differential equations to different underlying time domains are so
called dynamic equations on time scales. Time scales calculus unifies the continuous
and discrete calculus and extends it to any nonempty closed subset of the real num-
bers. Choosing the time scale to be the real numbers, a dynamic equation on time
scales collapses to a differential equation, while the integer time scale transforms a
dynamic equation into a difference equation. Dynamic equations on time scales allow
the modeling of processes that are neither fully discrete nor fully continuous. This
chapter provides a brief introduction to time scales and its applications by incorpo-
rating a selective collection of existing results.

Keywords: time scales, existence, uniqueness, linear, applications

1. Introduction

The modeling of processes using differential equations is a well-established
method in multiple branches of sciences. Dependent on the model assumptions, the
form of the differential equation can range from a comparably simple ordinary dif-
ferential equation to more advanced formulations using nonlinear, higher order, and
partial differential equations. Reasons to consider difference equations include com-
putational benefits and, even more fundamental, a discrete modeling perspective. For
example, when describing a zero-coupon bond where the invested amount at time t,
Mt, receives interest r at the end of each year but remains unchanged during each
year, the recursive model Mtþ1 ¼ 1þ rð ÞMt captures the change of the investment
from time t to time tþ 1. Difference equations are also a common tool to describe
processes on a macro scale in time, for example, when describing non-overlapping
generations. Even though the number of individuals may vary throughout the gen-
eration period, one may only be interested in the individuals at the beginning of each
generation time, i.e., the size of each cohort. There are however processes that
cannot be described accurately using differential or difference equations. For exam-
ple, when modeling species that are reproducing continuously during certain months
of the year before laying eggs right before hibernating. Another example are plant
populations that grow continuously during some months of the year and plant their
seeds prior to dying out. In [1], Robert May gives examples of insects that exhibit
such hybrid continuous–discrete behavior.
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Instead of introducing a set of simplifying assumptions and possibly discontinuous
model parameters that impact the model analysis, dynamic equations on time scales can
provide a simple alternative to describe such processes. Time scales calculus was intro-
duced by Stefan Hilger in 1988 [2]. It unifies the continuous and discrete calculus and
extends it to any nonempty closed subset of the real numbers called a time scale,
denoted by . By introducing differentiation and integration on , the classical theory
of differential equations can be extended to time scales, which allows the modeling of
processes that are not changing continuously nor solely discretely in time. These
so-called dynamic equations are essentially the time scales analogue of differential and
difference equations and have gained increasing interest due to their potential in appli-
cations. Choosing the time scale to be the real numbers, a dynamic equation transforms
into a differential equation and by choosing the time scale to be the integers, a
corresponding difference equation is obtained. Thus, instead of studying differential
equations and difference equations separately, time scales provides also a tool to inves-
tigate both by analyzing the corresponding dynamic equation. This is specifically inter-
esting since certain difference equations exhibit significantly different behavior as their
continuous analogues, see for example the “logistic map” and the “logistic differential
equation”. By analyzing a dynamic equation on time scales, the effect of the underlying
time domain onto the behavior of solutions may be revealed.

2. Time scales fundamentals

In this subsection, the basic definitions of time scales calculus are introduced based
on the introductory book [3].

Definition 1. A time scale, denoted by , is a nonempty closed subset of .
Examples of a time scale are ,, h, q0 ¼ 1, q, q2, q3,…

� �
q> 1ð Þ, a, b½ �∪ c, df g

where a< b and a, b, c, d∈, and the Cantor set. It therefore contains the popular
cases of the continuous, the discrete, and the quantum calculus.

Operators that aid the description of a time scale are the “forward jump operator”,
denoted by σ tð Þ, the “backward jump operator”, denoted by ρ tð Þ, and the “graininess
function”, denoted by μ tð Þ. These operators are defined for t∈ as

σ tð Þ≔ inf s∈ : s> tf g, ρ tð Þ≔ sup s∈ : s< tf g, μ tð Þ≔ σ tð Þ � t: (1)

Since  is closed, σ, ρ : !  and μ : ! ½0;∞Þ. Table 1 provides values of the
corresponding operators for different examples of time scales.

Using these operators, any t∈ can be classified as:
• right-scattered (left-scattered), if σ tð Þ> t (ρ tð Þ< t), and
• right-dense (left-dense), if σ tð Þ ¼ t (ρ tð Þ ¼ t).

 σ tð Þ ρ tð Þ μ tð Þ
 t t 0

 t þ 1 t � 1 1

q0 qt t
q t q� 1ð Þ

Table 1.
The description of the time scales functions σ, ρ, μ for the examples of , , and q0(q> 1).

4
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We say that a point t∈ is isolated, if it is right- and left-scattered. We say that a
point t∈ is dense, if it is right- and left-dense. Note that for  ¼ , every point is
dense and, for  ¼ , every point is isolated.

Example 2.1. El Nino events can be described using a time scale. El Nino events
between 2002 and 2017 have been observed in the time intervals 2002–2003,
2004–2005, 2006–2007, 2009–2010, and 2014–2016 [4], which suggests the
corresponding time scale (Figure 1, Table 2)

 ¼ ∪ 5
i¼0 ai, aiþ1½ �

with a0, a1, a2, … , a5ð Þ ¼ 2002, 2004, 2006, 2009, 2014, 2015ð Þ.

The following notation is commonly used for t∈,

σn tð Þ ¼ σ∘σ∘… ∘σð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�times

tð Þ, ρn tð Þ ¼ ρ∘ρ∘… ∘ρð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�times

tð Þ:

2.1 Functions on time scales

We can now consider scalar functions on time scales, that is, f : ! , and
discuss their properties. We define the subset κ as follows: If  has a left-scattered
maximum m∈, then κ ¼ n mf g, else κ ¼ .

Definition 2. f: !  is called regressive, if, for all t∈κ,

1þ μ tð Þf tð Þ 6¼ 0

and is called positively regressive, if, for all t∈κ,

1þ μ tð Þf tð Þ>0:

The following are properties of f : !  that later identify integrability.
Definition 3. f : !  is called regulated provided its right-sided limit exists (as a

finite value) for all right-dense points and its left-sided limit exists (as a finite value)
for all left-dense points.

t∈ σ tð Þ μ tð Þ ρ tð Þ
t1 ∈ 2004, 2005ð Þ σ t1ð Þ ¼ t1 μ t1ð Þ ¼ 0 ρ t1ð Þ ¼ t1

t2 ¼ 2005 σ t2ð Þ ¼ t3 μ t2ð Þ ¼ 1 ρ t2ð Þ ¼ t2

t3 ¼ 2006 σ t3ð Þ ¼ t3 μ t3ð Þ ¼ 0 ρ t3ð Þ ¼ t2

Table 2.
The functions σ, ρ, μ for the time points t1, t2, t3 ∈ based on Figure 1.

Figure 1.
Part of the time line containing points in the time scale . Curly lines identify intervals within . Here,
t1 ∈ 2004, 2005ð Þ, t2 is the last point in the interval 2004, 2005½ �, and t3 ¼ 2006 is the first point in 2006, 2007½ �.
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Even though every regulated function on a compact interval is bounded, in
general, max

a≤ t≤ b
f tð Þ and min

a≤ t≤ b
f tð Þ do not need to exist for regulated f : ! .

Definition 4. f : !  is called rd-continuous if f is continuous at all right-dense
points and its left-sided limit exists (as a finite value) for all left-dense points. The set
of rd-continuous functions is denoted by Crd ¼ Crd ð Þ ¼ Crd ,ð Þ.

Note that, if f : !  is continuous, then f is rd-continuous. If f is rd-continuous,
then f is regulated.

The set of rd-continuous and regressive (positively regressive) functions is
denoted by R ¼ R ð Þ ¼ R ,ð Þ (Rþ ¼ Rþ ð Þ ¼ Rþ ,ð Þ).

Beside the classical addition and subtraction of functions, time scales calculus
introduces the so-called “circle plus”, denoted by ⊕ , and “circle minus”, denoted by
⊖ . These operations are defined for f , g : !  as follows

f ⊕ gð Þ tð Þ ¼ f tð Þ þ g tð Þ þ μfgð Þ tð Þ
and, for g∈ R, f⊖ gð Þ tð Þ ¼ f tð Þ � g tð Þ

1þ μgð Þ tð Þ :

A useful property is that if f , g∈R (Rþ), then f ⊕ g, f⊖ g∈R (Rþ) implying that
the (positively) regressive property is being carried over. Furthermore, R, ⊕ð Þ forms
an Abelian group with the inverse elements of f ∈R given by ⊖ f .

For  ¼ , the operators ⊕ and ⊖ correspond to the classical addition and
subtraction.

2.2 Differentiation

Definition 5. Let f : !  and t∈κ. If there exists fΔ tð Þ∈ such that for all
ε>0, there exists δ>0 such that

∣f σ tð Þð Þ � f sð Þ � fΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ, tþ δð Þ∩,

then we call fΔ tð Þ the delta (or Hilger) derivative of f at t∈κ.
If fΔ tð Þ exists for all t∈κ, we say that f is delta differentiable (or short: differen-

tiable) and the function fΔ : !  is called delta derivative of f on κ.
If f is differentiable at t∈κ, then

f σ tð Þð Þ ¼ f tð Þ þ μ tð Þ fΔ tð Þ:

The following notations are used equivalently

f σð Þ tð Þ ¼ f ∘σð Þ tð Þ ¼ f σ tð Þð Þ:

The definition of a delta derivative can be extended to consider higher order
derivatives. We say that f is twice delta differentiable with the second (delta)
derivative fΔΔ, if fΔ is (delta) differentiable on κ2 ¼ κð Þκ.
6
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Note that the definition of delta derivatives focuses on the change forward in time.
A corresponding definition that focuses on the change backward in time is referred to
as nabla derivative, see for example [5].

Theorem 2.2. [See [3, Theorem 1.16]] Let f : !  and t∈κ. Then, the
following holds:

i. If t is right-dense, then

fΔ tð Þ ¼ lim
s!t

f tð Þ � f sð Þ
t� s

,

provided that the limit exists (as a finite number).

ii. If f is continuous at the right-scattered point t, then

fΔ tð Þ ¼ f σ tð Þð Þ � f tð Þ
μ tð Þ :

Applying Theorem 2.2 for the case of  ¼ , shows that the delta derivative is
consistent with the classical derivative, that is, fΔ tð Þ ¼ f tð Þ for t∈ ¼ . For  ¼ ,
the delta derivative collapses to the forward Euler operator, widely accepted as
the discrete analogue of a derivative, that is, fΔ tð Þ ¼ f tþ 1ð Þ � f tð Þ if  ¼ 
(see Table 3).

As in the continuous case, the differential operator is linear, that is, for α, β∈,
t∈κ, and for (delta) differentiable functions f , g : ! ,

αf þ βgð ÞΔ tð Þ ¼ α fΔ tð Þ þ βgΔ tð Þ:

The analogues of the product and the quotient rule on time scales take on slightly
different forms. For (delta) differentiable functions f , g : ! , and t∈κ,

fgð ÞΔ tð Þ ¼ fΔ tð Þgσ tð Þ þ f tð ÞgΔ tð Þ ¼ fΔ tð Þg tð Þ þ f σ tð ÞgΔ tð Þ

and, for g tð Þ, gσ tð Þ 6¼ 0,

f
g

� �Δ

tð Þ ¼ fΔ tð Þg tð Þ � f tð ÞgΔ tð Þ
g tð Þgσ tð Þ :

For  ¼ , we have f σ ¼ f and gσ ¼ g so that the classical product and quotient
rule are retrieved. In the case of  ¼ , we have the correspondent rules consistent
with [6], namely

  ¼   ¼   ¼ qℕ0

fΔ tð Þ f 0 tð Þ Δf tð Þ f qtð Þ�f tð Þ
t q�1ð Þ

Table 3.
Derivatives for the examples of  ¼ ,  ¼ , and  ¼ qN0 (q> 1). Note that Δf tð Þ ¼ f t þ 1ð Þ � f tð Þ is the
forward Euler operator.

7

Dynamic Equations on Time Scales
DOI: http://dx.doi.org/10.5772/intechopen.104691



Δ fgð Þ tð Þ ¼ Δf tð Þð Þg tþ 1ð Þ þ f tð Þ Δg tð Þð Þ ¼ Δf tð Þð Þg tð Þ þ f tþ 1ð Þ Δg tð Þð Þ:

If g tð Þ, g tþ 1ð Þ 6¼ 0, then

Δ
f tð Þ
g tð Þ

� �
¼ f

g

� �Δ

tð Þ ¼ Δf tð Þð Þg tð Þ � Δg tð Þð Þf tð Þ
g tð Þg tþ 1ð Þ :

The modifications in the product and quotient rule highlight that some of the well
established differentiation rules only carry over to time scales calculus after some
adjustments. In fact, the product rule on time scales reveals that the useful property of
power functions f tð Þ ¼ tn for n∈0 is no longer the simple reduction of the power by
one, because

t2
� �Δ ¼ t � tð ÞΔ ¼ tþ σ tð Þ,

which may not be delta differentiable. This indicates already that the series repre-
sentation of functions requires further thought.

Also, considering the chain rule, we note that for  ¼ ,

Δ f ∘fð Þ tð Þ ¼ f σ tð Þ fΔ tð Þ þ f tð Þ fΔ tð Þ ¼ fΔ tð Þ f tð Þ þ f σ tð Þð Þ 6¼ 2f tð Þ fΔ tð Þ,

for f σ tð Þ 6¼ f tð Þ. Thus, the powerful chain rule, often utilized in solving differential
equations via a variable transformation, does not apply on time scales. In an attempt
to generalize the chain rule for functions on time scales a few identities have been
formulated. The next theorem provides such an expression based on works in [7, 8].
Other formulations can be found in [3].

Theorem 2.3. (See [3, Theorem 1.90]). Let f : !  be continuously differentia-
ble and suppose g : !  is (delta) differentiable. Then f ∘g : !  is (delta) differ-
entiable and

f ∘gð ÞΔ tð Þ ¼
ð1
0
f 0 g tð Þ þ hμ tð ÞgΔ tð Þ� �

dh
� �

gΔ tð Þ:

An interesting observation is that the operators, Δ and σ, do generally not com-
mute, that is, fΔ

� �σ 6¼ f σð ÞΔ. Take for example  ¼ q0 with q> 1, then

fΔ
� �σ

tð Þ ¼ f q2tð Þ � f qtð Þ
μ qtð Þ 6¼ f q2tð Þ � f qtð Þ

μ tð Þ ¼ f σð ÞΔ tð Þ,

since μ qtð Þ ¼ qt q� 1ð Þ 6¼ t q� 1ð Þ ¼ μ tð Þ.

2.3 Integration

Definition 6. A continuous function f : !  is called pre-differentiable with
(region of differentiation) D, provided that D⊂κ, κnD is countable and contains no
right-scattered elements of , and f is (delta) differentiable at each t∈D.

Theorem 2.4. (See [3, Theorem 1.70]). Let f : !  be regulated. Then there exists a
function F : !  which is pre-differentiable with region of differentiation D such that

8

Nonlinear Systems - Recent Developments and Advances



FΔ tð Þ ¼ f tð Þ for all t∈D:

The function F is called an pre-antiderivative of f tð Þ.
If FΔ tð Þ ¼ f tð Þ for all t∈κ, then F is called antiderivative of f .
We define the indefinite integral of a regulated function f by

Ð
f tð ÞΔt ¼ F tð Þ þ C,

where C∈ is an arbitrary integration constant and F is a pre-antiderivative of f . The

Cauchy integral is defined by
Ð b
a f tð ÞΔt ¼ F bð Þ � F að Þ for all a, b∈.

Theorem 2.5. (See [3, Theorem 1.74]). Every rd-continuous function f has an
antiderivative. In particular, if t0 ∈, then F defined by

F tð Þ≔
ðt
t0
f sð ÞΔs for all t∈

is an antiderivative of f .
For  ¼ , the integral is consistent with the Rieman integral (see Table 4).

The integral operator is linear so that for f , g∈Crd and a< b, a, b∈, and α, β∈,

ðb
a
αf þ βgð Þ sð ÞΔs ¼ α

ðb
a
f sð ÞΔsþ β

ðb
a
g sð ÞΔs:

With the definition of integration on time scales, we have the machinery to intro-
duce a series representation for time scales functions. In [9], see also [3], a time scales
analogue of polynomials that allows a corresponding Taylor series expression was
introduced using the recursive formulation

g0 t, sð Þ ¼ h0 t, sð Þ � 1 for all t, s∈,

and, for every k∈0,

gkþ1 t, sð Þ ¼
ðt
s
gk σ τð Þ, sð ÞΔτ for all s, t∈,

and

hkþ1 t, sð Þ ¼
ðt
s
hk τ, sð ÞΔτ for all s, t∈:

Now, hΔk t, sð Þ ¼ hk t, sð Þ and gΔk t, sð Þ ¼ gk σ tð Þ;sð Þ for k∈ and t,s∈Tκ. Two Taylor series
representations can be formulated for a time scales function f, one that uses the time
scales polynomials gk and one that uses the polynomials hk, see Section 1.6 in [3] for
more details.

  ¼   ¼   ¼ q0 I

Ðt
s
f τð ÞΔτ Ðt

s
f τð Þdτ Pt�1

τ¼s
f τð Þ Pk

n¼0
sqk q� 1ð Þf qks

� � P
τ∈ a, b½ Þ∩

μ τð Þf τð Þ

Table 4.
Integrals for the examples of  ¼ ,  ¼ , and  ¼ qN0 (q> 1), and isolated time scales I, for which all points
in I are assumed to be isolated. In all cases, s, t∈ and s< t. In the case of  ¼ q0 , we assume t ¼ qks.
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3. Linear dynamic equations

This chapter provides a brief introduction to first order dynamic equations and
provides a selected summary of [3], extended by applications. A first order dynamic
equation is of the form

yΔ tð Þ ¼ f t, y, yσð Þ, (2)

for y : ! n and f : � n � n ! n with n∈1 ¼ 1, 2, 3, …f g. A first order
initial value problem (short: IVP) is then given by (2) with an initial condition
y t0ð Þ ¼ y0 ∈n for t0 ∈. A function y : ! n is called a solution of (2) if y satisfies
the equation for all t∈κ.

We call (2) linear if

f t, y, yσð Þ ¼ f 1 tð Þyþ f 2 tð Þ, or f t, y, yσð Þ ¼ f 1 tð Þyσ þ f 2 tð Þ,

where f 1, f 2 : ! n.We say the linear dynamic equation is homogeneous, if f 2 � 0.

3.1 Scalar case

We first focus on the scalar case of (2), that is, f : ! . Based on the above
definition of linearity, there are two forms a linear, homogeneous, first order dynamic
equation can have:

yΔ ¼ p tð Þy, (3)

yΔ ¼ p tð Þyσ, for p: !  (4)

Note that for  ¼ , yσ ¼ y and therefore y0 ¼ p tð Þyσ ¼ p tð Þy so that both, (3) and
(4), are the time scales analogues of y0 ¼ p tð Þy.

If p∈R, then (3) is called regressive and if �p∈R, then (4) is called regressive.
The unique solution to (3) with initial condition y t0ð Þ ¼ 1 for some t0 ∈ is

denoted by y tð Þ ¼ ep t, t0ð Þ and is called the time scales exponential function. The
unique solution to (4) with initial condition y t0ð Þ ¼ 1 is y tð Þ ¼ e⊖ �pð Þ t, t0ð Þ.

Table 5 contains the time scales analogues of the exponential function for the
dense time scale  ¼ , the discrete time scale  ¼ , and the quantum time scale
 ¼ q0 .

 Dynamic Eq. (3) ep t, t0ð Þ
 y0 ¼ p tð Þy

exp
Ðt
t0
p sð Þds

( )

 Δy ¼ p tð Þy Qt�1
i¼t0 1þ p ið Þð Þ

qℕ0 yΔ ¼ p tð Þy Q
s∈ t0,t½ Þ∩ 1þ s q� 1ð Þp sð Þð Þ

Table 5.
The exponential function for the continuous, discrete, and quantum time scale (q> 1), assuming p∈R.
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The Table 5 reveals a crucial aspect of the time scales exponential function,
namely that the positivity property, known for the traditional exponential function,
does not uphold on time scales. Take for example,  ¼  and p ¼ �3, then p∈R as
1þ p ¼ �2 6¼ 0, but ep t, 0ð Þ ¼ �2ð Þt which is negative for odd values of t. If however
p∈Rþ, then ep t, t0ð Þ>0, restoring the positivity property. Note that if  ¼ , then
any function p∈Rþ since 1þ μ tð Þp tð Þ ¼ 1>0.

Some of the properties of the time scales exponential function are consistent with
the convenient properties in the continuous case. If p, q∈R and t, s∈, then

i. e0 t, sð Þ ¼ 1, ep t, tð Þ ¼ 1,

ii. ep⊕ q t, sð Þ ¼ ep t, sð Þeq t, sð Þ,

iii. e⊖ p t, sð Þ ¼ ep s, tð Þ ¼ 1
ep t, sð Þ,

iv. ep t, rð Þep r, sð Þ ¼ ep t, sð Þ,

v. ep σ tð Þ, sð Þ ¼ 1þ μ tð Þp tð Þð Þep t, sð Þ.

Theorem 3.1. [See [3, Theorem 2.39]] If p∈R and a, b, c∈, then

ðb
a
p tð Þep t, cð ÞΔt ¼ ep b, cð Þ � ep a, cð Þ

ðb
a
p tð Þep c, σ tð Þð ÞΔt ¼ ep c, að Þ � ep c, bð Þ:

As an application of linear, homogeneous, first order dynamic equations, one may
consider the Malthusian growth model. In “An essay on the principle of population”
from 1798, Thomas Robert Malthus proposed an exponential law of population growth
with the corresponding differential equation

P0 ¼ rP, P t0ð Þ ¼ P0,

where P is the population at time t, r is the inherent growth rate, and P0 is the initial
population level at time t0 ∈. This linear, homogeneous, first order differential equa-
tion has the solution P tð Þ ¼ er t�t0ð ÞP0. Assuming a positive initial population level P0 >0,
it follows that for a positive growth rate r>0, the population increases exponentially. If
instead r<0 and P0 >0, then the population goes extinct as lim t!∞er t�t0ð ÞP0 ¼ 0.
Despite its simplicity and the unrealistic behavior of unbounded population levels for
r > 0, the Malthusian model can sometimes serve short-term predictions.

Let us now consider the corresponding time scales model (3) with initial condition
P t0ð Þ ¼ P0 >0 and inherent growth rate r>0, that is, PΔ = rPwith P t0ð Þ ¼ P0 for t0 ∈.
The respective solution is then P tð Þ ¼ er t, t0ð ÞP0, which is unbounded for r;P0 >0, see
Figure 2. Thus, for r;P0 >0, the behavior of the solution is consistent with the solution
in the continuous case. However, for r<0, the population does not have to go extinct
but can result in biologically unmeaningful behavior as solutions can become negative.

Using the time scales exponential function that solves a linear, homogeneous, first
order dynamic equation, we can use the variation of constants formula to obtain the
solution to a linear, nonhomogeneous, first order dynamic equation.
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Theorem 3.2. [See [3, Theorems 2.74 & 2.77]] Suppose p∈R, f ∈Crd; t0 ∈ and
y0 ∈ then the unique solution to

yΔ ¼ p tð Þyþ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ ep t, t0ð Þy0 þ
ðt
t0
ep t, σ sð Þð Þf sð ÞΔs:

Furthermore, the unique solution to

yΔ ¼ �p tð Þyσ þ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ e ⊖p t, t0ð Þy0 þ
ðt
t0
e ⊖p t, sð Þf sð ÞΔs:

Example 3.3. Suppose that the life span of a certain species is one time unit.
Suppose that just before the species dies out, eggs are laid that are hatch after one time
unit. The species is therefore only alive on  ¼ ∪∞

k¼0 2k, 2kþ 1½ �, see also [3, Example
1.39] and [10]. Suppose further that during the specie’s, life cycle, the species reduces
due to external factors with rate d ∈ (0, 1) and at the end of the life cycle t ¼ 2kþ 1,
the individuals alive in (2k, 2kþ 1) lay eggs that result in the reproduction rate r>0.
The corresponding dynamic equation for the species N(t) at time t, is then

NΔ tð Þ ¼ p tð ÞN tð Þ, with p tð Þ ¼ �d t∈ 2k, 2kþ 1½ Þ
r t ¼ 2kþ 1

�

and initial conditionN 0ð Þ ¼ N0. We note that even though p tð Þ is discontinuous at
t ¼ 2kþ 1, p tð Þ∈R. Theorem 3.2 gives the population at time t∈ 2m, 2mþ 1½ � as

Figure 2.
The behavior of the solution to PΔ ¼ rP with P t0ð Þ ¼ P0 where r = 0.45, t0 = 1, and P0 = 0.1, for  ¼ ,  ¼ 
and  ¼ 1:3ℕ0 . The solid line represents the solution in the continuous case, the open circle represents the solution in
the discrete case, and the stars represent the solution in the quantum calculus case with q=1.3.
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N tð Þ ¼ N0ep t, t0ð Þ ¼ N0ep t, 2mð Þ
Ym�1

k¼0
ep 2kþ 1, 2kð Þep 2kþ 2, 2kþ 1ð Þ� �

¼ N0 exp
ðt
2m
� dds

� � Ym�1

k¼0
exp

ð2kþ1
2k
� dds

� �
1þ rð Þ

( )
¼ N0e�d t�mð Þ 1þ rð Þm:

Example 3.4. Newton’s law of cooling suggests that the temperature of an object at
time t, T tð Þ, changes dependent on the temperature of its surrounding, Tm.
Then, T0 tð Þ ¼ �κ T � Tmð Þ, where κ is the heat transfer coefficient. Suppose that an
object with initial temperature T0 is cooled in a lab environment. Due to safety
regulations, once the lab assistant leaves the work space, the object can only be
exposed to an environment that preserves the current temperature of the object. The
cooling of the object can be modeled using time scales with the underlying time
domain to be the working hours of the lab assistant. Assume that the lab assistant’s
working hours, and therefore the time scale, is of the form  ¼ ∪∞

i¼0 ai, bi½ �∪ ci, di½ �,
where the interval ai, bi½ � are the working hours prior to lunch, and ci, di½ � are the
working hours of the lab assistant after lunch of day i. One way of modeling this
scenario on time scales is

TΔ ¼ �p tð Þ T � Tmð Þ, p tð Þ ¼ κ t∈ ai, bi½ Þ∪ ci, di½ Þ
0 t∈ bi, dif g

�

with initial temperature T t0ð Þ ¼ T0 for t0 ∈. Since p tð Þ is rd-continuous and
regressive, the theorems above can be applied despite the discontinuity of p tð Þ.

Example 3.5. The following example is from [11], where a Keynesian-Cross
model with lagged income is considered. Here, the aggregated income y changes
according to

yΔ ¼ δ dσ tð Þ � y½ �, t≥ t0 ∈,

where d tð Þ is the aggregated demand at time t and δ∈ 0, 1ð Þ is the “adjustment
speed”. Since d tð Þ can be expressed as the addition of aggregated consumption (c),
aggregated investment (I), and governmental spending (G), we have
d tð Þ ¼ c tð Þ þ I þG for I,G∈ 0,∞ð Þ. Under the assumption that aggregated
consumption is itself linear in the aggregated income, we have c tð Þ ¼ aþ by tð Þ with
a, b>0 so that the model reads as

yΔ ¼ δ aþ byσ þ I þG� y½ �:

Under the assumption that p tð Þ: ¼ 1� δbμ tð Þ 6¼ 0, we can apply yσ ¼ yþ μyΔ, and
express the dynamic equation as

yΔ ¼ δ aþ I þ Gð Þ
p tð Þ þ δ b� 1ð Þ

p tð Þ y:

which is a linear, non-homogeneous, first order dynamic equation. It is left as an
exercise to apply the techniques of this subsection to derive an explicit solution to this
dynamic equation.
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Example 3.6. Let us consider a time scales analogue of the popular logistic growth
model y0 ¼ ry 1� y

K

� �
, namely,

yΔ ¼ ryσ 1� y
K

� �
, y t0ð Þ ¼ y0, (5)

with growth rate r > 0, and carrying capacity K > 0, and initial population size
y t0ð Þ>0 at time t0 ∈ . Even though this is an example of a nonlinear dynamic
equation of first order, we can apply the substitution z ¼ 1

y for y 6¼ 0, to obtain the
linear dynamic equation

zΔ ¼ �y
Δ

yyσ
¼ �rzþ r

K
, z t0ð Þ ¼ 1

y0
:

For �r∈R, the solution is then given by Theorem 3.2. Using also Theorem 3.1 and
resubstituting yields

y tð Þ ¼ y0K
e�r t, t0ð Þ K � y0

� �þ y0
: (6)

It can be easily checked that y t0ð Þ ¼ y0 and that y solves (5), see also [12].
Note that for  ¼ , (5) collapses to the Verhulst model y0 ¼ ry 1� y

K

� �
and the

solution (6) reads in this case as

y tð Þ ¼ y0K
e�r t�t0ð Þ K � y0

� �þ y0
,

which coincides with the classical solution.

3.2 Linear systems

Let us now consider (2) with f: � n � n ! n for n∈ ¼ 1, 2, 3, …f g. In order
to extend the solution methods for linear first order dynamic equations that were intro-
duced in the previous section for scalar functions, the definitions of rd-continuity and
delta differentiability have to be first extended to matrix valued functions A : ! m�n.
This adjustment is mostly proposed element-wise. More precisely, A is rd-continuous on
 if aij is rd-continuous on  for all 1≤ i≤ n, 1≤ j≤m. The class of all such rd-continuous
m� n-matrix-valued functions on  is then denoted by Crd ,m�nð Þ. Similarly, we say
that A is delta differentiable (or short: differentiable), if aij is delta differentiable for all
1≤ i≤ n, 1≤ j≤m. Similar to the scalar case, the following identity holds for any matrix-
valued (delta) differentiable function A,

Aσ tð Þ ¼ A tð Þ þ μ tð ÞAΔ tð Þ:
The property of regressive is however not defined elementwise. Instead, we say that

A∈n�n is regressive if In þ μ tð ÞA tð Þ is invertible for all t∈κ, where In ∈n�n is the
identity matrix. The class of rd-continuous and regressive functions is denoted by
R ,n�nð Þ (or shortR).

Note that even if all entries of A are regressive, A does not have to be regressive.
Take for example  ¼  with

A ¼ a11 a12
a21 a22

� �
¼ 0 �2
�2 3

� �
:
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Then all entries are regressive as 1þ aij 6¼ 0 for all 1≤ i, j≤ 2 but det I þ Að Þ ¼ 0.
As for the scalar case, differentiation is linear, that is,

αAþ βBð ÞΔ tð Þ ¼ αAΔ tð Þ þ βBΔ tð Þ
for differentiable m� n-matrix-valued functions A,B, and α, β∈.
We consider

yΔ ¼ A tð Þy (7)

to be the system analogue of (3). If A is n� n matrix valued function, then, the
unique solution to (7) with yðt0Þ ¼ In, where In is the n� n identity matrix, is denoted
by y tð Þ ¼ eA t, t0ð Þ. If A∈n�n and  ¼  then eA t, t0ð Þ ¼ eA t–t0ð Þ, and if  ¼ , then
eA t, t0ð Þ ¼ I þ Að Þt–t0 . The analogue of (4) in higher dimensions is

yΔ ¼ �A∗ tð Þyσ,
where A∗(t) is the conjugate transpose of A(t).
Theorem 3.7. (See [3, Theorems 5.24 & 5.27]). LetA∈R ,n�n,n�nð Þ and suppose

that f: ! n is rd-continuous. Let t0 ∈ and y0 ∈n. Then, the initial value problem

yΔ ¼ A tð Þyþ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ eA t, t0ð Þy0 þ
ðt
t0
eA t, σ τð Þð Þf τð ÞΔτ:

The unique solution to

yΔ ¼ �A∗ tð Þyσ þ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ e⊖ A ∗ t, t0ð Þy0 þ
ðt
t0
e⊖ A ∗ t, τð Þf τð ÞΔτ:

Example 3.8. In [13], the authors consider the Cucker-Smale type model on an
isolated  (i.e., every t∈ is isolated) with sup ¼ ∞ and sup μ tð Þ : t∈f g<∞,

xΔi ¼ vi

vΔi ¼
1
N

XN
j¼1

aij v j � vi
� �

,
(8)

where aij ∈þ0 ¼ 0,∞½ Þ and i∈ 1, 2, … ,Nf g represents the impact of agent’s j
opinion onto the agent’s i opinion. The variable xi represents the state of agent i, and
vi is the consensus parameter of agent i. The original Cucker-Smale model, see [14],
is a discrete time system discussing the flock behavior of birds, where vi
represents the velocity of bird i and xi is its position. The weights aij quantify the
way the birds influence each other.

Note that since  is isolated, we can equivalently write (8) as

xi σ tð Þð Þ ¼ xi tð Þ þ μ tð Þvi tð Þ, vi σ tð Þð Þ ¼ vi tð Þ þ μ tð Þ
N

XN
j¼1

aij v j tð Þ � vi tð Þ
� �

,
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or in form of a system in y ¼ x1, x2, … , xN, v1, v2, … , vNð ÞT,

yΔ ¼ By, B ¼ 1
N

0N NIN
0N A�D,

� �
, (9)

where Að Þij ¼ aij for i, j∈ 1, 2, … ,Nf g, D ¼ diag d1, d2, … , dNð Þ with dk ¼
PN

j¼1akj,
0N is a matrix of dimension N �N with all entries being zero, and IN is the identity
matrix of dimension N �N.

If B∈R, then the solution to (9) with initial condition y(t0) = y0 is
y(t) = eB (t,t0) y0. In order for B∈R, NIN + μ(t)(A-D) must be invertible because

~B tð Þ ¼ I2N þ μ tð ÞB ¼ IN μ tð ÞIn
0N C tð Þ

� �
, C tð Þ ¼ IN þ μ tð Þ 1

N
A�Dð Þ,

and

det ~B tð Þ� � ¼ det I2N þ μ tð ÞBð Þ ¼ det INð Þdet C tð Þð Þ:
We conclude this section by examples of nonlinear dynamic equations that can

be transformed into a system of linear dynamic equations of first order, so that
Theorem 3.7 provides its solution.

Example 3.9. Let  be again an isolated time scale, that is, every point in  is
isolated and inf μ tð Þ : t∈f g>0. Consider

xσ
k ¼ Kx

1� μ tð Þαð ÞK þ μ tð Þαx , (10)

with initial values x!0 ¼ x0, x1, … , xk�1ð Þ∈ 0,∞ð Þk, K > 0, and –α ∈ þ. Eq. (10) is
a delayed Beverton-Holt model and can be used to model mature individuals of a
population, assuming that it takes k reproductive cycles for an individual to become
mature, where the length of a reproductive cycle starting at t is μ tð Þ. An application
may be populations where the lengths between breeding cycles is temperature depen-
dent. Model (10) has been considered in [15] (and, for  ¼ , in [16]), where the
authors applied the transformation y≔ K

x for x 6¼ 0 to obtain

YΔ ¼ A tð ÞY þ b tð Þ with A tð Þ ¼ 1
μ tð Þ

0k�1 Ik�1
�μα �s

� �
, b tð Þ ¼ 0k�1

α

� �
, (11)

where s ¼ k
1

� �
,

k
2

� �
,

k
3

� �
, … ,

k
k� 1

� �� �
and 0k�1 ∈k�1�1 is vector of zeros.

Applying Theorem 3.7, to (11) yields the solution.
Example 3.10. In [17], the authors proposed the following nonlinear system of

dynamic equations to model the spread of a contagious disease,

SΔ ¼ �β tð ÞSσI � ν tð ÞSþ γ tð ÞI þ ν tð Þκ,
IΔ ¼ β tð ÞSσI � γ tð ÞI � ν tð ÞI:

In line with well-established epidemic models, the population was compartmen-
talized into susceptible S and infected I individuals. The model assumes that the
disease is spread by contact with an infected individual with a transmission rate of
β>0. The recovery rate is assumed to be γ >0 and recovered individuals rejoin the
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group of susceptible individuals. The death rate is ν tð Þ across the population and ν tð Þκ
newborns join the group of susceptibles.

By introducing a new variable w≔ Sþ I, wΔ ¼ �ν tð Þwþ ν tð Þκ. This first order,
linear, nonhomogeneous dynamic equation can be solved using Theorem 3.2, assum-
ing �ν tð Þ∈R. The solution is then w tð Þ ¼ e�ν t, t0ð Þ I0 þ S0 � κð Þ þ κ, so that, after
recalling that S ¼ w tð Þ � I, the dynamic equation in I can be expressed as

IΔ ¼ β tð Þ wσ � Iσð ÞI � γ tð ÞI � ν tð ÞI:

Although the dimension has been reduced to one, the dynamic equation is still
nonlinear. Defining however y ¼ 1

I for I 6¼ 0 yields again a linear dynamic equation,
namely

yΔ ¼ �β tð Þwσ tð Þ þ γ tð Þ þ ν tð Þð Þyσ þ β tð Þ:

Applying Theorem 3.2 gives the solution

y tð Þ ¼ e⊖ p t, t0ð Þy0 þ
ðt
t0
e⊖ p t, sð Þβ sð ÞΔs;

where p tð Þ ¼ β tð Þw σ tð Þð Þ � γ tð Þ þ ν tð Þð Þ is assumed to be an element of R.
Resubstituting yields then the solution I and using S ¼ w� I yields S.

For more epidemic models on time scales that are systems of first order nonlinear
dynamic equations, see [18–21]. While the dynamic Susceptible-Infected-Recovered
epidemic model introduced in [18] can be solved explicitly via variable transforma-
tions, in most cases, including [19], explicit solutions to nonlinear dynamic equations
are not available. In these cases, properties of solutions such as existence and unique-
ness are of fundamental interest. The interested reader is referred to [22, Section 2]
and [3, Section 8.2].
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Chapter 2

Existence Results for Boundary
Value Problem of Nonlinear
Fractional Differential Equation
Noureddine Bouteraa and Habib Djourdem

Abstract

In this chapter, we investigate the existence and uniqueness of solutions for class of
nonlinear fractional differential equations with nonlocal boundary conditions. The
existence results are obtained by using Leray-Schauder nonlinear alternative and
Banach contraction principle. An illustrative example is presented at the end to
illustrated the validity of our results.

Keywords: fractional differential equations, existence, nonlocal boundary,
fixed-point theorem

1. Introduction

In this chapter, we are interested in the existence of solutions for nonlinear
fractional difference equations

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þ, cDβ
0þu tð Þ, cDα

0þu tð Þ
� �

, t∈ J ¼ 0,T½ �, (1)

subject to the three-point boundary conditions

λu 0ð Þ � μu Tð Þ � γu ηð Þ ¼ d,
λu0 0ð Þ � μu0 Tð Þ � γu0 ηð Þ ¼ l,

�
(2)

where T >0, 0≤ η≤T, λ 6¼ μþ γ, d, l, λ, μ, γ ∈, β þ 1< α, A is an n�n

matrix and cDα
0þ ,

cDβ
0þ are the Caputo fractional derivatives of order

1< α≤ 2, 0< β≤ 1, respectively.
The first definition of fractional derivative was introduced at the end of the

nineteenth century by Liouville and Riemann, but the concept of non-integer deriva-
tive and integral, as a generalization of the traditional integer order differential and
integral calculus, was mentioned already in 1695 by Leibniz and L’Hospital. In fact,
fractional derivatives provide an excellent tool for the description of memory and
hereditary properties of various materials and processes. The mathematical modeling
of systems and processes in the fields of physics, chemistry, aerodynamics,
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electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback
amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology,
control theory, fitting of experimental data, involves derivatives of fractional order.
In consequence, the subject of fractional differential equations is gaining much
importance and attention. For more details we refer the reader to [1–5] and the
references cited therein.

Fractional differential equation theory have recieved increasing attention. This
theory has been developed very quickly and attracted a considerable interest from
researches in this field, which revealed the flexibility of fractional calculus theory in
designing various mathematical models. The main methods conducted in this articles
are by terms of fixed point techniques [6]. Boundary value problems for nonlinear
differential equations arise in a variety of areas of applied mathematics, physics and
variational problems of control theory. A point of central importance in the study of
nonlinear boundary value problems is to understand how the properties of
nonlinearity in a problem influence the nature of the solutions to the boundary value
problems. The multi-point boundary conditions are important in various physical
problems of applied science when the controllers at the end points of the interval
(under consideration) dissipate or add energy according to the sensors located, at
intermediate points, see [7, 8] and the references therein. We quote also that realistic
problems arising from economics, optimal control, stochastic analysis can be modeled
as differential inclusion. The study of fractional differential inclusions was initiated by
EL-Sayad and Ibrahim [9]. Also, recently, several qualitative results for fractional
differential inclusion were obtained in [10–13] and the references therein.

The techniques of nonlinear analysis, as the main method to deal with the prob-
lems of nonlinear differential equations (DEs), nonlinear fractional differential equa-
tions (FDEs), nonlinear partial differential equations (PDEs), nonlinear fractional
partial differential equations (FPDEs), nonlinear stochastic fractional partial differ-
ential equations (SFPDEs), plays an essential role in the research of this field, such as
establishing the existence, uniqueness and multiplicity of solutions (or positive solu-
tions) and mild solutions for nonlinear of different kinds of FPDEs, FPDEs, SFPDEs,
inclusion differential equations and inclusion fractional differential equations with
various boundary conditions, by using different techniques (approaches). For more
details, see [14–36] and the references therein. For example, iterative method is an
important tool for solving linear and nonlinear boundary value problems. It has been
used in the research areas of mathematics and several branches of science and other
fields. However, many authors showed the existence of positive solutions for a class of
boundary value problem at resonance case. Some recent devolopment for resonant
case can be found in [37, 38]. Let us cited few papers. In [39], the authors studied the
boundary value problems of the fractional order differential equation:

Dα
0þu tð Þ ¼ f t, u tð Þð Þ ¼ 0, t∈ 0, 1ð Þ,

u 0ð Þ ¼ 0, Dβ
0þu 1ð Þ ¼ aDβ

0þu ηð Þ,

(

where 1< α≤ 2, 0< η< 1, 0< a, β< 1, f ∈C 0, 1½ � � 2,
� �

and Dα
0þ, Dβ

0þ are
the standard Riemann-Liouville fractional derivative of order α. They obtained the
multiple positive solutions by the Leray-Schauder nonlinear alternative and the fixed
point theorem on cones.

In 2017, Resapour et al. [40] investigated a Caputo fractional inclusion with
integral boundary condition for the following problem
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cDαu tð Þ∈F t, u tð Þ, cDβu tð Þ, u0 tð Þ� �
,

u 0ð Þ þ u0 0ð ÞþcDβu 0ð Þ ¼ Ð η0u sð Þds,
u 1ð Þ þ u0 1ð ÞþcDβu 1ð Þ ¼ Ð ν0u sð Þds,

8>><
>>:

where 1< α≤ 2, η, ν, β∈ 0, 1ð Þ, F : 0, 1½ � � � � ! 2 is a compact valued
multifunction and cDα denotes the Caputo fractional derivative of order α.

In 2017, Sheng and Jiang [41] studied the existence and uniqueness of the solutions
for fractional damped dynamical systems

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þð Þ, t∈ 0,T½ �,
u 0ð Þ ¼ u0, u0 0ð Þ ¼ u00,

(

where 0< β≤ 1< α≤ 2, 0<T <∞, u∈n, A is an n�n matrix, f : 0, 1½ � � n !
n jointly continuous function and cDα

0þ ,
cDβ

0þ are the Caputo derivatives of order
α, β, respectively.

In 2018, Abbes et al. [42] studied the existence and uniqueness of the solutions for
fractional damped dynamical systems

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þ, cDβ
0þu tð Þ, cDα

0þu tð Þ
� �

, t∈ 0,T½ �,
u 0ð Þ ¼ u Tð Þ, u0 0ð Þ ¼ u0 Tð Þ,

8<
:

where 0< β≤ 1< α≤ 2, 0<T <∞, u∈n, A is an n�n matrix and f : 0, 1½ � �
n ! n jointly continuous.

In 2019, Tao Zhu [43] studied the existence and uniqueness of positive solutions of
the following fractional differential equations

Dα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þð Þ, t∈ 0,T½ Þ, 0< β< α< 1,

u 0ð Þ ¼ u0:

(

Inspired and motivated by the works mentioned above, we establish the
existence results for the nonlocal boundary value problem (1.1)–(1.2) by using
Leray-Schauder nonlinear alternative and the Banach fixed point theorem. Note
that our work generalized the three works cited above [41–43]. The chapter is
organized as follows. In Section 2, we recall some preliminary facts that we need in
the sequel. In Section 3, deals with main results and we give an example to illustrate
our results.

2. Existence and uniqueness results for our problem

2.1 Preliminaries

Let as introduce notations, definitions and preliminary facts that will be need in
the sequel. For more details, see for example [44–46].

Definition 2.1. The Caputo fractional derivative of order α for the function
u∈Cn 0,∞½ Þ,ð Þ is defined by
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cDα
0þu tð Þ ¼ 1

Γ n� αð Þ
ðt

0

t� sð Þn�α�1u nð Þ sð Þds:

where Γ �ð Þ is the Eleur gamma function and α>0, n ¼ α½ � þ 1, α½ � denotes the
integer part of the real number α.

Definition 2.2. The Riemann-Liouville fractional integral of order α>0 of a
function u : 0,∞ð Þ !  is given by

Iα0þu tð Þ ¼ 1
Γ αð Þ

ðt

0

t� sð Þα�1u sð Þds, t>0:

where Γ �ð Þ is the Eleur gamma function, provided that the right side is pointwise
defined on 0,∞ð Þ.

Lemma 2.1. Let u∈ACn 0,T½ �, n∈ and u �ð Þ∈C 0,T½ �. Then, we have
cDβ

0þ Iα0þu tð Þ� � ¼ Iα�β0þ u tð Þ,

Iα0þ
cDα

0þu tð Þ� � ¼ u tð Þ�
X
k¼0

n�1 tk

k!
u kð Þ 0ð Þ, t>0, n� 1< α< n,

Especially, when 1< α< 2, then we have

Iα0þ
cDα

0þu tð Þ� � ¼ u tð Þ � u 0ð Þ � tu0 0ð Þ:

Lemma 2.2. 10½ �ð Þ Let 0< β< 1< α< 2, then we have

Iα0þ
cDβ

0þu tð Þ
� �

¼ Iα�β0þ u tð Þ � u 0ð Þtα�β
Γ α� β þ 1ð Þ :

2.2 Existence results

Let C J,nð Þ be the Banach space for all continuous function from J into n

equipped with the norm

uk k∞ ¼ sup u tð Þk k : t∈ Jf g,

where �k k denotes a suitable complete norm on n. Denote L1 J,nð Þ the Banach
space of the measurable functions u : J ! n that are Lebesgue integrable with norm

uk kL1 ¼
ðT
0

u tð Þk kdt:

Let AC J,nð Þ be the Banach space of absolutely continuous valued functions on J
and set

ACn Jð Þ ¼ u : J ! n : u, u0, u00, … , u n�1ð Þ ∈C J,nð Þ
n o

and u n�1ð Þ ∈AC J,nð Þ:
24
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By

C1 Jð Þ ¼ u : J ! n where u0 ∈C J,nð Þf g,
we denote the Banach space equipped with the norm

uk k1 ¼ max uk k∞, u0k k∞
� �

:

For the sake of brevity, we set

δ ¼ λ� μ� γð ÞΓ α� β þ 1ð Þ þ A μTα�β þ γηα�β
� �

, Δ ¼ Γ α� β þ 1ð Þ
δ

σ ¼ A α� βð Þ μTα�β�1 þ γηα�β�1
� �

, Λ ¼ λ� μ� γð Þ � μT þ γηð Þ σ

δ

� �
,

R1 ¼ 1þ Ak kTα�β

Γ α� β þ 1ð Þ
� �

M1 þ TM2 þ Ak kTα�β

Γ α� β þ 1ð Þ

R2 ¼ M2 þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ M1 þ Ak kTα�β�1

Γ α� βð Þ
M1 ¼ Δ Λ�1

σ

δ

� �
μT þ γηð Þ þ 1

h i
Φþ Λ�1 μT þ γηð ÞΘ

n o

,

and

M2 ¼ Λ�1
σ

δ

� �
Φþ Θ

n o
,

with

Φ ¼ Ak k
Γ α� β þ 1ð Þ μTα�β þ γηα�β

� �þ μTα þ γηαð Þ L1Γ 2� βð Þ þ T1�β L3 Ak k þ L2ð Þ� �
Γ αþ 1ð ÞΓ 2� βð Þ 1� L3ð Þ ,

Θ ¼ Ak k
Γ α� βð Þ μTα�β�1 þ γηα�β�1

� �þ μTα�1 þ γηα�1
� �

L1Γ 2� βð Þ þ T1�β L3 Ak k þ L2ð Þ� �
Γ αð ÞΓ 2� βð Þ 1� L3ð Þ :

Lemma 2.3. Let y �ð Þ∈C J,nð Þ. The function u �ð Þ∈C1 J,nð Þ is a solution of the frac-
tional differential problem

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ y tð Þ, t∈ J ¼ 0,T½ �,
λu 0ð Þ � μu Tð Þ � γu ηð Þ ¼ d,

λu0 0ð Þ � μu0 Tð Þ � γu0 ηð Þ ¼ l,

8>><
>>:

(3)

if and only if, u is a solution of the fractional integral equation

u tð Þ ¼ 1� Atα�β

Γ α� β þ 1ð Þ
� �

u 0ð Þ þ tu0 0ð Þ þ A
Γ α� βð Þ

ðt

0

t� sð Þα�β�1u sð Þds

þ 1
Γ αð Þ

ðt

0

t� sð Þα�1y sð Þds,
(4)

with
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u 0ð Þ ¼ Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
AIα�β0þ μu Tð Þ þ γu ηð Þð Þ þ Iα0þ μy Tð Þ þ γy ηð Þð Þ þ d
h in

þΛ�1 μT þ γηð Þ AIα�β�10þ μu Tð Þ þ γu ηð Þð Þ þ Iα�10þ μy Tð Þ þ γy ηð Þð Þ þ l
h io

,

(5)

and

u0 0ð Þ ¼ Λ�1
σ

δ

� �
AIα�β0þ μu Tð Þ þ γu ηð Þð Þ þ Iα0þ μy Tð Þ þ γy ηð Þð Þ þ d
h in

þ AIα�β�10þ μu Tð Þ þ γu ηð Þð Þ þ Iα�10þ μy Tð Þ þ γy ηð Þð Þ
h i

þ l
o
,

(6)

where

Iα0þu Tð Þ ¼ 1
Γ αð Þ

ðT

0

T � sð Þα�1u sð Þds,

Iα0þu ηð Þ ¼ 1
Γ αð Þ

ðη

0

η� sð Þα�1u sð Þds,

Iα�β0þ u Tð Þ ¼ 1
Γ α� βð Þ

ðT

0

T � sð Þα�β�1u sð Þds,

Iα�β0þ u ηð Þ ¼ 1
Γ α� βð Þ

ðη

0

η� sð Þα�β�1u sð Þds:

Proof. From Lemmas 2.1 and 2.2, we have

u tð Þ ¼ u 0ð Þ þ tu0 0ð Þ � Atα�β

Γ α� β þ 1ð Þ u 0ð Þ þ A
Γ α� βð Þ

ðt

0

t� sð Þα�β�1u sð Þds

þ 1
Γ αð Þ

ðt

0

t� sð Þα�1y sð Þds

Applying conditions (2), we obtain (5) and (6).
Conversely, assume that u satisfies the fractional integral (4), and using the facts

that cDα
0þ is the left inverse of I

α
0þ and the fact that cDα

0þC ¼ 0, where C is a constant,
we get

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þ, u0 tð Þð Þ, t∈ J ¼ 0,T½ �:

Also, we can easily show that

λu 0ð Þ � μu Tð Þ � γu ηð Þ ¼ d,

λu0 0ð Þ � μu0 Tð Þ � γu0 ηð Þ ¼ l:

(

The proof is complete.
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To simplify the proofs in the forthcoming theorem, we etablish the bounds for the
integrals and the bounds for the term arising in the sequel.

Lemma 2.4. For y �ð Þ∈C J,nð Þ, we have

Iα0þy ηð Þ�� �� ¼
ðη

0

η� τð Þα�1
Γ αð Þ y τð Þdτ

������

������
≤

ηα

Γ αþ 1ð Þ yk k:

Proof. Obviously,

ðη

0

η� τð Þα�1
Γ αð Þ y τð Þdτ ¼ � η� τð Þα

αΓ αð Þ
� �η

0
¼ ηα

αΓ αð Þ ¼
sα

Γ αþ 1ð Þ :

Hence

ðη

0

s� τð Þα�1
Γ αð Þ y τð Þdτ

������

������
≤

ηα

Γ αþ 1ð Þ yk k:

Lemma 2.5. For u �ð Þ∈C1 J,nð Þ and 0< β≤ 1, we have

cDβ
0þu tð Þ

���
���
∞
≤

T1�β

Γ 2� βð Þ u0k k∞,

and, so

cDβ
0þu tð Þ

���
���
∞
≤

T1�β

Γ 2� βð Þ uk k1:

Proof.
Clearly, when β ¼ 1, the conclusion are true. So, consider the case 0< β< 1. By

Definition 2.1, for each u �ð Þ∈C1 J,nð Þ and t∈ J, we have

Dβ
0þu tð Þ

���
��� ¼ 1

Γ 1� βð Þ
ðt

0

t� sð Þ�βu0 sð Þds
������

������

≤ u0k k∞
1

Γ 1� βð Þ
ðt

0

t� sð Þ�βds

¼ u0k k∞
t1�β

Γ 1� βð Þ

≤
T1�β

Γ 1� βð Þ u0k k∞

≤
T1�β

Γ 1� βð Þ u0k k1:

We need to give the following hypothesis:
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H1ð Þ there existe a constants L1, L2 >0 and 0<L3 < 1 such that

f t, u, v,wð Þ � f t, u, v,wð Þj j≤L1 u� uk k þ L2 v� vk k þ L3 w�wk k,
for any u, v, u, v,w∈n and t∈ J.
Now we are in a position to present the first main result of this paper. The

existence results is based on Banach contraction principle.
Theorem 1.1. ([47] Banach’s fixed point theorem). Let C be a non-empty closed

subset of a Banach space E, then any contraction mapping T of C into itself has a
unique fixed point.

Theorem 1.2. Assume that H1ð Þ holds. If
max R1,R2ð Þ< 1, (7)

then the boundary value problem (1.1)–(1.2) has a unique solution on J.
Proof. We transform the problem (1.1)–(1.2) into fixed point problem. Let N :

C1 J,nð Þ ! C1 J,nð Þ the operator defined by

Nuð Þ tð Þ ¼ 1� Atα�β

Γ α� β þ 1ð Þ
� �

Bþ tDþ A
Γ α� βð Þ

ðt

0

t� sð Þα�β�1u sð Þds

þ 1
Γ αð Þ

ðt

0

t� sð Þα�1g sð Þds,
(8)

with

B ¼ Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
AIα�β0þ μu Tð Þ þ γu ηð Þð Þ þ Iα0þ μy Tð Þ þ γy ηð Þð Þ þ d
h in

þΛ�1 μT þ γηð Þ AIα�β�10þ μu Tð Þ þ γu ηð Þð Þ þ Iα�10þ μy Tð Þ þ γy ηð Þð Þ þ l
h io

,

and

D ¼ Λ�1
σ

δ

� �
AIα�β0þ μu Tð Þ þ γu ηð Þð Þ þ Iα0þ μg Tð Þ þ γg ηð Þð Þ þ d
h in

þ AIα�β�10þ μu Tð Þ þ γu ηð Þð Þ þ Iα�10þ μg Tð Þ þ γg ηð Þð Þ
h i

þ l
o
,

where g∈C J,nð Þ be such that

g tð Þ ¼ f t, u tð Þ, cDβ
0þu tð Þ, g tð Þ þ AcDβ

0þu tð Þ
� �

For every u∈C1 J,nð Þ and any t∈ J, we have

Nuð Þ tð Þ ¼ D� α� βð ÞAtα�β�1
Γ α� β þ 1ð Þ Bþ A

Γ α� β � 1ð Þ
ðt

0

t� sð Þα�β�2u sð Þds

þ 1
Γ α� 1ð Þ

ðt

0

t� sð Þα�2g sð Þds:
(9)

28

Nonlinear Systems - Recent Developments and Advances



Clearly, the fixed points of operator N are solutions of problem (1.1)–(1.2).
It is clear that Nuð Þ∈C J,nð Þ, consequently, N is well defined.
Let u, v∈C J,nð Þ. Then for t∈ J, we have

Nuð Þ tð Þ � Nvð Þ tð Þk k≤ 1þ Ak kTα�β

Γ α� β þ 1ð Þ
� �

B� B1k k þ T D�D1k k

þ Ak k
Γ α� βð Þ

ðT

0

T � sð Þα�β�1 u sð Þ � v sð Þk kds

þ 1
Γ αð Þ

ðT

0

T � sð Þα�1 g sð Þ � h sð Þk kds,

with

B1 ¼ Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
AIα�β0þ μv Tð Þ þ γv ηð Þð Þ þ Iα0þ μh Tð Þ þ γh ηð Þð Þ þ d
h in

þΛ�1 μT þ γηð Þ AIα�β�10þ μv Tð Þ þ γv ηð Þð Þ þ Iα�10þ μh Tð Þ þ γh ηð Þð Þ þ l
h io

,

and

D1 ¼ Λ�1
σ

δ

� �
AIα�β0þ μv Tð Þ þ γv ηð Þð Þ þ Iα0þ μh Tð Þ þ γh ηð Þð Þ þ d
h in

þ AIα�β�10þ μv Tð Þ þ γv ηð Þð Þ þ Iα�10þ μh Tð Þ þ γh ηð Þð Þ
h i

þ l
o
,

From Hð Þ, for any t∈ J, we have

g tð Þ � h tð Þk k ¼ L1 u tð Þ � v tð Þk k þ L2
cDβ

0þu tð Þ�cDβ
0þv tð Þ

���
���

þL3 g tð Þ þ AcDβ
0þu tð Þ � h tð Þ � AcDβ

0þv tð Þ
���

���
≤L1 u tð Þ � v tð Þk k þ L2

cDβ
0þu tð Þ�cDβ

0þv tð Þ
���

���
þL3 g tð Þ � h tð Þk k þ L3 Ak k cDβ

0þu tð Þ�cDβ
0þv tð Þ

���
���

≤L1 u tð Þ � v tð Þk k þ L3 g tð Þ � h tð Þk k þ L3 Ak k þ L2ð Þ cDβ
0þ u tð Þ � v tð Þð Þ

���
���:

Thus

g tð Þ � h tð Þk k≤ L1

1� L3
u tð Þ � v tð Þk k þ L3 Ak k þ L2

1� L3

cDβ
0þ u tð Þ � v tð Þð Þ

���
���

≤
L1

1� L3
u� vk k∞ þ

L3 Ak k þ L2

1� L3

cDβ
0þ u� vð Þ

���
���
∞
:

Then, according to the Lemma 3.2, we get

g tð Þ � h tð Þk k≤ L1

1� L3
u� vk k1 þ

T1�β L3 Ak k þ L2ð Þ
Γ 2� βð Þ 1� L3ð Þ u� vk k1

¼ L1Γ 2� βð Þ þ T1�β L3 Ak k þ L2ð Þ
Γ 2� βð Þ 1� L3ð Þ u� vk k1:

(10)
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By employing (10) and Lemma 3.1, we get

B1 � B2k k≤Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
Φþ Λ�1 μT þ γηð ÞΘ

n o
u� vk k1

¼M1 u� vk k1:

and

D1 �D2k k≤Λ�1
σ

δ

� �
Φþ Θ

n o
u� vk k1

¼M2 u� vk k1,

where Φ and Θ defined above.
Thus, for t∈ J, we have

Nuð Þ tð Þ � Nvð Þ tð Þk k≤ 1þ Ak kTα�β

Γ α� β þ 1ð Þ
� �

M1 þ TM2 þ Ak kTα�β

Γ α� β þ 1ð Þ
�

þT
αL1Γ 2� βð Þ þ T1�βþα L3 Ak k þ L2ð Þ

Γ αþ 1ð ÞΓ 2� βð Þ 1� L2ð Þ
�

u� vk k1
¼ R1 u� vk k1:

Also

Nuð Þ tð Þ � Nvð Þ tð Þk k≤ D2 �D1k k þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ B1 � B2k k

þ Ak k
Γ α� β � 1ð Þ

ðT

0

T � sð Þα�β�2 u sð Þ � v sð Þk kds

þ 1
Γ α� 1ð Þ

ðT

0

T � sð Þα�2 g sð Þ � h sð Þk kds:

By employing (10) and Lemma 3.2, we get

Nuð Þ tð Þ � Nvð Þ tð Þk k≤ M2 þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ M1 þ Ak kTα�β�1

Γ α� βð Þ
�

þT
α�1L1Γ 2� βð Þ þ Tα�β L3 Ak k þ L2ð Þ

Γ αð ÞΓ 2� βð Þ 1� L2ð Þ
�

u� vk k1
¼ R2 u� vk k1:

Therefore

Nuð Þ tð Þ � Nvð Þ tð Þk k≤ max R1,R2f g u� vk k1:

Thus, by (10) the operator N is a contraction. Hence it follows by Banach’s contrac-
tion principle that the boundary value problem (1)–(12) has a unique solution on J.

Now we are in a position to present the second main result of this paper. The
existence results is based on Leray-Schauder nonlinear alternative.
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Theorem 1.3. ([6] Nonlinear alternative for single valued maps). Let E be a Banach
space, C a closed, convex subset of E and U an open subset of C with 0∈U. Suppose
that F : U ! C is a continuous and compact (that is F U

� �
is relatively compact subset

of C) map. Then either

i. F has a fixed point in U, or

ii. there is a u∈ ∂U (the boundary of U in C) and λ∈ 0, 1ð Þ with u ¼ λF uð Þ.

Set

l1 ¼ M3 þ TM4 þ Ak kTα�β

Γ α� β þ 1ð ÞM3 þ TM4 þ Ak krTα�β

Γ α� β þ 1ð Þ þ
Tα

Γ αþ 1ð ÞM,

and

l2 ¼ M4 þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ M3 þ Ak krTα�β�1

Γ α� βð Þ þ
TαM
Γ αð Þ :

Theorem 1.4. Assume that H1ð Þ holds and there exists a positive constant M>0
such that max l1, l2f g ¼ l<M. Then the boundary value problem (1.1)–(1.2) has at
least one solution on J.

Proof. Let N be the operator defined in (8).
N is continuous. Let unð Þ be a sequence such that un ! u in C J,nð Þ. Then for t∈ J,

we have

Nuð Þ tð Þ � Nunð Þ tð Þk k≤ 1þ Ak kTα�β

Γ α� β þ 1ð Þ
� �

B1 � Bn2k k þ T D1 �Dn2k k

þ Ak k
Γ α� βð Þ

ðT

0

T � sð Þα�β�1 u sð Þ � un sð Þk kds

þ 1
Γ αð Þ

ðT

0

T � sð Þα�1 g sð Þ � gn sð Þ�� ��ds,

where Bn2,Dn2 ∈n, with

Bn2 ¼ Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
AIα�β0þ μun Tð Þ þ γun ηð Þð Þ þ Iα0þ μgn Tð Þ þ γgn ηð Þ� �þ d
h in

þΛ�1 μT þ γηð Þ AIα�β�10þ μun Tð Þ þ γun ηð Þð Þ þ Iα�10þ μgn Tð Þ þ γgn ηð Þ� �þ l
h io

,

Dn2 ¼ Λ�1
σ

δ

� �
AIα�β0þ μun Tð Þ þ γun ηð Þð Þ þ Iα0þ μgn Tð Þ þ γgn ηð Þ� �þ d
h in

þAIα�β�10þ μun Tð Þ þ γun ηð Þð Þ þ Iα�10þ μgn Tð Þ þ γgn ηð Þ� �þ l
o
,

and

gn tð Þ ¼ f t, un tð Þ, cDβ
0þun tð Þ, gn tð Þ þ AcDβ

0þun tð Þ
� �

:
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From Hð Þ, for any t∈ J, we have

g tð Þ � gn tð Þ�� �� ¼ L1 u tð Þ � un tð Þk k þ L3 g tð Þ þ AcDβ
0þu tð Þ � gn tð Þ � AcDβ

0þun tð Þ
���

���

þL2
cDβ

0þu tð Þ�cDβ
0þun tð Þ

���
���

≤L1 u tð Þ � un tð Þk k þ L2
cDβ

0þu tð Þ�cDβ
0þun tð Þ

���
���

þL3 g tð Þ � gn tð Þ�� ��þ L3 Ak k cDβ
0þu tð Þ�cDβ

0þun tð Þ
���

���

≤L1 u tð Þ � un tð Þk k þ L3 g tð Þ � gn tð Þ�� ��þ L3 Ak k þ L2ð Þ cDβ
0þ u tð Þ � un tð Þð Þ

���
���:

Thus

g tð Þ � gn tð Þ�� ��≤ L1

1� L3
u tð Þ � un tð Þk k þ L3 Ak k þ L2

1� L3

cDβ
0þ u tð Þ � un tð Þð Þ

���
���

≤
L1

1� L3
u� unk k∞ þ

L3 Ak k þ L2

1� L3

cDβ
0þ u� unð Þ

���
���
∞
:

Then, according to the Lemma 3.2, we get

g tð Þ � gn tð Þ�� ��≤ L1

1� L3
u� unk k1 þ

T1�β L3 Ak k þ L2ð Þ
1� L3ð ÞΓ 2� βð Þ u� unk k1

¼ L1Γ 2� βð Þ þ T1�β L3 Ak k þ L2ð Þ
1� L3ð ÞΓ 2� βð Þ u� unk k1:

By employing (10) and Lemma 3.1, we get

B1 � Bn2k k≤Δ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

h i
Φþ Λ�1 μT þ γηð ÞΘ

n o
u� unk k1,

¼M1 u� unk k1:

and

D1 �Dn2k k≤Λ�1
σ

δ

� �
Φþ Θ

n o
u� unk k1

¼M2 u� unk k1,

Thus, for t∈ J, we have

Nuð Þ tð Þ � Nunð Þ tð Þk k≤ 1þ Ak kTα�β

Γ α� β þ 1ð Þ
� �

M1 þ TM2 þ Ak kTα�β

Γ α� β þ 1ð Þ
�

þT
αL1Γ 2� βð Þ þ T1�βþα L3 Ak k þ L2ð Þ

Γ αþ 1ð ÞΓ 2� βð Þ 1� L2ð Þ
�

u� unk k1
¼ R1 u� unk k1:
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Also

Nuð Þ tð Þ � Nunð Þ tð Þk k≤ Dn2 �D1k k þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ B1 � Bn2k k

þ Ak k
Γ α� β � 1ð Þ

ðT

0

T � sð Þα�β�2 u sð Þ � un sð Þk kds

þ 1
Γ α� 1ð Þ

ðT

0

T � sð Þα�2 g sð Þ � gn sð Þ�� ��ds:

By employing (10), we get

Nuð Þ tð Þ � Nunð Þ tð Þk k≤ M2 þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ M1 þ Ak kTα�β�1

Γ α� βð Þ
�

þT
α�1L1Γ 2� βð Þ L3 Ak k þ L2ð ÞTα�β�1

Γ α� β þ 1ð Þ M1 þ Ak kTα�β�1

Γ α� βð Þ
�

u� unk k1:
¼ R2 u� unk k1:

Thus Nu�Nunk k1 ! 0 as n! ∞, which implies that the operator N is continuous.
Now, we show N maps bounded sets into bounded sets in C J,nð Þ. For a positive

number r, let Br ¼ u∈C1 J,nð Þ : uk k1 ≤ r
� �

be a bounded set in C J,nð Þ. Then we
have

g tð Þk k≤ f t, u tð Þ, g tð Þ þ AcDβ
0þu tð Þ,Dβ

0þu tð Þ
� �

� f t, 0, 0, 0ð Þ
���

���þ f t, 0, 0, 0ð Þk k

≤L1 u tð Þk k þ L3 g tð Þ þ AcDβ
0þu tð Þ

���
���þ L2 Dβ

0þu tð Þ
���

���þ f t, 0, 0, 0ð Þk k

≤L1 uk k∞ þ L3 g tð Þk k þ L3 Ak k þ L2ð Þ Dβ
0þu

���
���
∞
þ f ∗ ,

where sup
t∈ J

f t, 0, 0, 0ð Þj j ¼ f ∗ <∞. Thus

g tð Þk k≤ L1

1� L3
uk k∞ þ

L3 Ak k þ L2

1� L3
Dβ

0þu
���

���
∞
þ f ∗

1� L3
:

Then, By Lemma 3.2, we have

g tð Þk k≤ L1

1� L3
uk k∞ þ

L3 Ak k þ L2ð ÞT1�β

1� L3ð ÞΓ 2� βð Þ u0k k∞ þ
f ∗

1� L3

≤
L1

1� L3
uk k1 þ

L3 Ak k þ L2ð ÞT1�β

1� L3ð ÞΓ 2� βð Þ uk k1 þ
f ∗

1� L3

≤
L1r

1� L3
þ L3 Ak k þ L2ð ÞrT1�β

1� L3ð ÞΓ 2� βð Þ þ
f ∗

1� L3
¼M,

(11)
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which implies that

Bk k≤ r Ak kΔ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

� � μTα�β þ γηα�β

Γ α� β þ 1ð Þ
� ��

þΛ�1 μT þ γηð Þ μTα�β�1 þ γηα�β�1

Γ α� βð Þ
� ��

þMΔ Λ�1
σ

δ

� �
μT þ γηð Þ þ 1

� � μTα þ γηα

Γ αþ 1ð Þ
� �

þ Λ�1 μT þ γηð Þ μTα�1 þ γηα�1

Γ αð Þ
� �� �

þΔΛ�1 μT þ γηð Þ lþ d
σ

δ

� �
þ 1

� �h i
¼M3,

and

Dk k≤ r Ak k Λ�1
σ

δ

� � μTα�β þ γηα�β

Γ α� β þ 1ð Þ þ
μTα�β�1 þ γηα�β�1

Γ α� βð Þ
� �

þMΛ�1
σ

δ

� � μTα þ γηα

Γ αþ 1ð Þ
� �

þ μTα�1 þ γηα�1

Γ αð Þ
� �� �

þ Λ�1
σ

δ

� �
dþ l

h i
¼M4:

Thus (8) implies

Nuð Þ tð Þk k≤M3 þ Ak kTα�β

Γ α� β þ 1ð ÞM3 þ TM4 þ Ak krTα�β

Γ α� β þ 1ð Þ þ
Tα

Γ αþ 1ð ÞM ¼ l1,

and

Nuð Þ tð Þk k≤M4 þ α� βð Þ Ak kTα�β�1

Γ α� β þ 1ð Þ M3 þ Ak krTα�β�1

Γ α� βð Þ þ
TαM
Γ αð Þ ¼ l2:

Therefore

Nuð Þk k1 ≤ max l1, l2f g ¼ l: (12)

Now, we show that N maps bounded sets into equicontinuous sets of C1 J,nð Þ. Let
t1, t2 ∈ 0, 1½ � with t1 < t2 and u∈Br is bounded sets of C1 J,nð Þ. Then

Nuð Þ t2ð Þ � Nuð Þ t1ð Þk k≤M4 t2 � t1ð Þ þ 1þ Ak kM3

Γ α� β þ 1ð Þ
� �

tα�β2 � tα�β1

� �

þ Ak kr
Γ α� βð Þ

ðt2

t1

t2 � sð Þα�β�1dsþ Ak kr
Γ α� βð Þ

ðt1

0

t2 � sð Þα�β�1 � t1 � sð Þα�β�1
h i

ds

þ M1

Γ αð Þ
ðt2

t1

t2 � sð Þα�1 dsþ
ðt1

0

t2 � sð Þα�1 � t1 � sð Þα�1
h i

ds

2
4

3
5

Obviously, the right-hand side of the above inequality tends to zero as t2 ! t1.
Similarly, we have
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Nuð Þ t2ð Þ � Nuð Þ t1ð Þk k≤ α� βð Þ Ak kM3

Γ α� β þ 1ð Þ tα�β�12 � tα�β�11

� �

þ Ak kr
Γ α� β � 1ð Þ

ðt2

t1

t2 � sð Þα�β�2dsþ Ak kr
Γ α� β � 2ð Þ

ðt1

0

t2 � sð Þα�β�2 � t1 � sð Þα�β�2
h i

ds

þ M
Γ α� 1ð Þ

ðt2

t1

t2 � sð Þα�2dsþ
ðt1

0

t2 � sð Þα�2 � t1 � sð Þα�2
h i

ds

2
4

3
5

Again, it is seen that the right-hand side of the above inequality tends to zero as
t2 ! t1. Thus, Nuð Þ t2ð Þ � Nuð Þ t1ð Þk k ! 0, as t2 ! t1. This shows that the operator N is
completely continuous, by the Ascoli-Arzela theorem. Thus, the operator N satisfies
all the conditions of Theorem 3.4, and hence by its conclusion, either condition (i) or
condition (ii) holds. We show that the condition (ii) is not possible.

Let U ¼ u∈C1 J,nð Þ : uk k<M
� �

with max l1, l2f g ¼ l<M. In view of condition
l<M and by (12), we have

Nuk k≤ max l1, l2f g<M:

Now, suppose there exists u∈ ∂U and λ∈ 0, 1ð Þ such that u ¼ λNu. Then for such a
choice of u and the constant λ, we have

M ¼ uk k ¼ λ Nuk k< max l1, l2f g<M,

which is a contradiction. Consequently, by the Leray-Schauder alternative, we
deduce that F has a fixed point u∈U which is a solution of the boundary value
problem (1)–(12). The proof is completed.

We construct an example to illustrate the applicability of the results presented.
Example 2.1. Consider the following fractional differential equation

cDα
0þu tð Þ � AcDβ

0þu tð Þ ¼ f t, u tð Þ, cDβ
0þu tð Þ, cDα

0þu tð Þ
� �

, t∈ J ¼ 0, 1½ �, (13)

subject to the three-point boundary conditions

u 0ð Þ � u 1ð Þ � u
1
2

� �
¼ 1,

u0 0ð Þ � u0 1ð Þ � u0
1
2

� �
¼ 1,

8>>><
>>>:

(14)

where α ¼ 2, β ¼ 1, λ ¼ μ ¼ d ¼ l ¼ 1, A ¼ 2 1

0 2

� �
and

f i t, u, v,wð Þ ¼ cit
8

arctan uj j þ vj j þ wj jð Þ, i ¼ 1, 2,

such that f ¼ f 1, f 2
� �

with 0< ci < 1, i ¼ 1, 2.
For every ui, vi ∈2, i ¼ 1, 2, 3, we have
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f i t, u1, u2, u3ð Þ � f i t, v1, v2, v3ð Þ�� ��≤ ci
8

u1 � v1j j þ u2 � v2j j þ u3 � v3j jð Þ, i ¼ 1, 2,

where L1 ¼ L2 ¼ L3 ¼ ci
8 for appropriate choice of constants ci, i ¼ 1, 2. we check

the condition of Theorem 2.2. Clearly, assumption H1ð Þ holds. A simple computations
of R1, R2, l1 and l2 shows tha the second condition of Theorems 3.3 and 3.5 is satisfied.
Thus the conclusion of Theorems 3.3 and 3.5 applies, and hence the problem (13)–(14)
has a unique solution and at least one solution on 0, 1½ �.

3. Conclusions

This chapter concerns the boundary value problem of a class of fractional differ-
ential equations involving the Riemann-Liouville fractional derivative with nonlocal
boundary conditions. By using Leray-Schauder nonlinear alternative and the Banach
fixed point theorem, we shows the existence and uniqueness of positive solutions of
our problem. In addition, an example is provided to demonstrate the effectiveness of
the main results. The results of the present chapter are significantly contribute to the
existing literature on the topic.
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Chapter 3

Fractional Calculus-Based
Generalization of the
FitzHugh-Nagumo Model:
Biophysical Justification,
Dynamical Analysis and
Neurocomputational Implications
Serge Gervais Ngueuteu Mbouna

Abstract

In this chapter, the dynamical behavior of the incommensurate fractional-order
FitzHugh-Nagumo model of neuron is explored in details from local stability analysis.
First of all, considering that the FitzHugh-Nagumomodel is a mathematical simplification
of the Hodgkin-Huxley model, the considered model is derived from the fractional-order
Hodgkin-Huxley model obtained taking advantage of the powerfulness of fractional
derivatives in modeling certain biophysical phenomena as the dielectrics losses in cell
membranes, and the anomalous diffusion of particles in ion channels. Then, it is shown
that the fractional-order FitzHugh-Nagumo model can be simulated by a simple electrical
circuit where the capacitor and the inductor are replaced by corresponding fractional-
order electrical elements. Then, the local stability of the model is studied using the
Theorem on the stability of incommensurate fractional-order systems combined with the
Cauchy’s argument Principle. At last, the dynamical behavior of the model are investi-
gated, which confirms the results of local stability analysis. It is found that the simple
model can exhibit, among others, complex mixed mode oscillations, phasic spiking, first
spike latency, and spike timing adaptation. As the dynamical richness of a neuron
expands its computational capacity, it is thus obvious that the fractional-order FitzHugh-
Nagumo model is more computationally efficient than its integer-order counterpart.

Keywords: fractional-order FitzHugh-Nagumo model, fractional derivatives,
slow-fast dynamics, mixed mode oscillations, first spike latency

1. Introduction

When excited sufficiently, the neuron, which is the primary unit of brain and
nerves electrical activity, generates an action potential, also known as neuronal
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spike, which is a rapid increase then decrease in the neuronal voltage (see for
example [1]). This action potential is at the basis of many mechanisms of communi-
cation between neurons and therefore is fundamental to understanding signal
processing in the brain and nerves activity [2, 3]. Indeed, action potentials can
propagate in essentially constant shape away from the cell body along nerves axons
and toward synaptic connections with other cells [3]. Neurons exhibit many differ-
ent spike-based behaviors including regular periodic and chaotic spiking (train of
spikes) and bursting (alternation between a quiescent state and repetitive spiking)
[3]. Bursting activity via action potentials plays a crucial role in neuronal communi-
cation, including robust transmission of signals [4, 5]. Another interesting spike-
based behavior is the mixed mode oscillations (MMOs) pattern, which is an alterna-
tion between oscillations of distinct large and small amplitudes [6], where large
amplitude oscillations are spikes. Certain MMOs patterns are considered as a type of
bursting patterns where the period of small amplitude oscillations is considered as
the quiescent phase of the bursting pattern.

Since the pioneering work of Hodgkin and Huxley [1], many relevant
conductance-based models and simplified phenomenological models have been
developed to describe the brain and nerves microscopic dynamical functions. Study-
ing these computational models with the help of the tools of nonlinear dynamics and
singular perturbation theory has shed light on the dynamical processes that support
the generation of spiking, bursting and MMOs. Indeed, all these models are nonlinear
and almost all of them are singularly perturbed systems which are systems involving
multiple time scales. The simplest singularly perturbed systems evolve on on two time
scales and are therefore named slow-fast systems. Spike as a form of relaxation,
bursting and MMOs are the dynamical signatures of the slow-fast property of a
system. The complex slow-fast dynamical behaviors that are bursting and MMOs have
been intensively investigated in three-dimensional slow-fast systems and have been
found previously to occur only in slow-fast systems involving at least three variables
because the successive trigger and extinction of spikes suppose the multiple time scale
trip of the system trajectory on a complex well organized high-dimensional phase
space. A long time afterwards, it was found that noise can induce MMOs in simple
two-variable systems as the van der Pol oscillator with constant forcing [7] and
FitzHugh-Nagumo-like oscillators [8, 9]. More recently, we found that MMOs can
emerge in two-variable systems due to fractional derivation, while studying the
fractional-order van der Pol oscillator with constant forcing where the forcing value
was set near the Hopf bifurcation point [10]. Subsequently, this result was confirmed
by Abdelouahab et al. while studying Hopf-like bifurcation and bifurcating oscillatory
states in a fractional-order FitzHugh-Nagumo model [11].

Recent studies have shown that the fractional derivation increases the dynamical
richness of neuronal models. For example, in Ref. [12], Teka et al. have implemented the
fractional dynamics on each gating variable of the Hodgkin-Huxley model and they found
that the obtained fractional-order versions of the Hodgkin-Huxley model exhibit not only
spiking behavior as their integer-order counterpart, but in addition, square wave bursting,
MMOs, pseudo-plateau potentials, and phasic spiking. In Ref. [13], Shi andWang consid-
ered a fractional-order Morris-Lecar model and found that this new model exhibits a rich
variety of bursting patterns that appear in some common neuron models with properly
chosen parameters but do not exist in the corresponding integer-order Morris-Lecar
model. In Ref. [14], Mondal et al. considered a fractional-order FitzHugh-Rinzel model
whose integer-order counterpart is an elliptic burster and found that it exhibits a wide
range of neuronal responses including regular spiking, fast spiking, bursting, and MMOs.

42

Nonlinear Systems - Recent Developments and Advances



In Ref. [15], Teka et al. studied the fractional-order Izhikevich model and found that the
model produces a wide range of neuronal spike responses, including regular spiking, fast
spiking, intrinsic bursting, MMOs, regular bursting and chattering, by adjusting only the
fractional derivatives order. The dynamical richness of these fractional-order systems
with at least three variables would justify the occurrence of MMOs in the aforementioned
two-variable fractional-order slow-fast systems.

In this chapter, we explore further the dynamical behaviors of fractional-order two-
variable slow-fast systems by considering an incommensurate fractional-order
FitzHugh-Nagumo (FHN) model derived on the basis of biophysical concepts. Com-
mensurate fractional-order FHN models that are widely considered in previous works
are just mathematical generalizations that are not supported by any biophysical justifi-
cation (see for example Ref. [11]). Exploring the behavior of the incommensurate
fractional-order FHN model, we have found that depending on the orders of fractional
derivatives the model can exhibit two types ofMMOs. In the first case, they are identical
to classical folded nodes-induced MMOs observed in integer-order systems, also known
as canard generated MMOs [16]. In the second case, obtained for lower derivatives
orders, the small oscillations of the MMOs pattern start with very low amplitude which
then grows slowly before the oscillations enter the spiking phase. This last type of
MMOs is identical to singular Hopf bifurcation-induced MMOs observed in integer-
order systems [16]. In the second case, the active MMOs phase is sometimes, depending
on initial conditions, preceded by a quiescent state which is known in the context of
neuroscience as first spike latency. And in addition, the MMOs regime shows a promi-
nent spike timing adaptation as the order of fractional derivatives decrease. The rest of
the paper is organized as follows. In Section 2, the incommensurate fractional-order
FHN model is derived from the fractional-order Hodgkin-Huxley model obtained using
biophysical concepts. In Section 3, it is shown that the fractional-order FHN model can
be simulated using an electrical circuit that is similar to the circuit proposed by Nagumo
et al. [17] with the only difference that the capacitor and the inductor are replaced by
corresponding fractional-order electrical elements. Section 4 is devoted to the study of
local stability of the fractional-order FHN model, which allows to derive the conditions
of occurrence of Hopf-like bifurcation with respect to fractional derivatives orders. In
Section 5, the dynamical behavior of the fractional-order FHN model is revealed in
order to confirm the results of local stability analysis carried out in the preceding
section. A particular attention is granted to MMOs and first spike latency as they are
new dynamical features due to fractional derivatives. The chapter ends with a conclu-
sion where the results are summarized.

2. Model and biophysical justification

The FHN model

ε
dx
dt
¼ yþ x� 1

3
x3 þ I,

dy
dt
¼ �x� δyþ γ,

(1)

is a simple representative of a class of excitable-oscillatory systems including the
Hodgkin-Huxley model of the squid giant axon. The derivation of the FHN model as
a simple nerve membrane model is based on phase space methods applied to the
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Hodgking-Huxley model. Indeed, the phase diagram of the FHN model and a
properly chosen projection from the 4-dimensional Hodgking-Huxley phase
space onto a plane are similar, which underlines the relationship between the two
models.

As the FHN model is just a mathematical representation, to derive its generaliza-
tion with fractional derivatives, we consider as starting point the generalization of the
Hodgking-Huxley model which was derived using biophysical concepts. The
Hodgking-Huxley model is given by the following set of differential equations:

Cm
dv
dt
¼ I � gKn

4 v� vKð Þ � gNam
3h v� vNað Þ � gl v� vlð Þ,

dn
dt
¼ an 1� nð Þ � bnn,

dm
dt
¼ am 1�mð Þ � bmm,

dh
dt
¼ ah 1� hð Þ � bhh,

(2)

where v ¼ Em � Er is the displacement of the membrane potential Em from its
resting value Er; n, m, and h are the potassium current activation, sodium current
activation, and sodium current inactivation gating variables, respectively. Cm is the
membrane capacity per unit area, I is an applied stimulus current. vK ¼ EK � Er,
vNa ¼ ENa � Er, and vl ¼ El � Er, where EK and ENa are the equilibrium potentials for
the sodium and potassium ions, and El is the potential at which the leakage current due
to chloride and other ions is zero. gKn

4 ¼ gK, gNam
3h ¼ gNa, where gK, gNa and gl are

ionic conductances. an, bn, am, bm, ah, bh are rate constants which vary with membrane
voltage. However, Hodgking and Huxley claimed that “The only major reservation
which must be made about [the first equation in Eq. (2): I ¼ Cm

dv
dt þ INa þ IK þ Il] is

that it takes no account of dielectric loss in the membrane” [1]. Now, to account for
dielectric losses in a capacitor, Curie proposed the following empiric relation between
a DC voltage U0 applied at t ¼ 0 and the current i it will produce [18]:

i tð Þ ¼ U0

h1tα
, (3)

where h1 is a constant related to the capacitance of the capacitor and the kind of
dielectric, 0< α< 1, α is related to the losses of the capacitor. The lower the losses, the
closer to 1 is α. Westerlund and Ekstam [19] showed that for a general input voltage
v tð Þ, Eq. (3) turns into:

i tð Þ ¼ Cα
dαv tð Þ
dtα

, (4)

where Cα ¼ Γ 1� αð Þ=h1, d
αv tð Þ
dtα is the fractional (α-order) time derivative of v tð Þ, and

Γ �ð Þ is the Gamma function. On the other hand, Cole claimed that alternating current
resistance and capacity measurements over a wide frequency range show that
biological materials may be considered electrically equivalent to a circuit including a
polarization element considered as a resistance and a capacity in series [20]. When a
constant current i is started through this element at time t ¼ 0, the potential
difference across the element may be found to be:
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e tð Þ ¼ z1itα

Γ 1þ αð Þ , (5)

where z ωð Þ ¼ z1 jωð Þ�α is the impedance of the element, with j2 ¼ �1. The phase of
this element: φ ¼ απ=2 allowed to provide the value of α for diverse biological mate-
rials. For example, it was found that α is ranged from 0.62 to 0.71 for frog sciatic
nerve. This justifies why the power-law dynamics can occur in the membrane electri-
cal activity. Note that Eqs. (3) and (5) are equivalent. Fractional derivatives with
power-law kernel have also been used to account for the multiple timescale dynamics
in neuroscience i.e. for processes which cannot be dynamically characterized with a
single time constant. For example, Lundstrom et al. [21] showed that single rat neo-
cortical pyramidal neurons adapt with a time scale that depends on the time scale of
changes in stimulus statistics and that this multiple time scale adaptation is consistent
with fractional-order differentiation, such that the neuron firing rate is a fractional
derivative of slowly varying stimulus parameters. Subsequently, Teka et al. [22]
developed a fractional-order leaky integrate-and-fire model which can reproduce
upward and downward spike adaptations found experimentally by Lundstrom et al.
[21]. In Ref. [22], the fractional derivation operator was applied on the membrane
potential. So, the spike timing adaptation would be a dynamical manifestation of
dielectric losses in the membrane. So, in order to account for the dielectric losses in the
membrane, the total membrane current should be written as follows:

I ¼ Cα
m
dαv
dtα
þ INa þ IK þ Il, (6)

where Cα
m is a constant related to the capacitance of the membrane. Taking into

account the ionic conductances and the gating variables, Eq. (6) is rewritten as
follows:

Cα
m
dαv
dtα
¼ I � gKn

4 v� vKð Þ � gNam
3h v� vNað Þ � gl v� vlð Þ: (7)

On the other hand, it has been shown that the dynamics of the gating variables
would better be described using fractional derivatives instead of first-order deriva-
tives [12]. Indeed, the gating dynamics is more complicated than what is traditionally
assumed. Let us recall that ion channels are complex membrane proteins which pro-
vide ion-conducting, nanoscale pores in the biological membranes [23]. The gating
dynamics is the spontaneous conformational dynamics of these proteins resulting in
stochastic transitions between the conducting and non-conducting states also known
as open and closed states of the pore, respectively. It was considered that the transi-
tions between the open state and the closed state is a Markovian stochastic process
that can be characterized by exponential residence time distributions of open and
closed time intervals. However, experimental investigations had revealed that the
distributions of the residence time intervals of closed states are typically not expo-
nential. For several ion channels, these residence time distributions can be fitted by a
stretched exponential function [24], or by a power-law function [25]. In Ref. [23], the
time derivative of the Mittag-Leffler function which interpolates between the
stretched exponential (at small time) and the asymptotic long time power-law
function, was considered to show that the closed state of the ion channel can be
modeled as an anomalous diffusion process over a large number of traps, described by
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a time-fractional diffusion equation. Accordingly, the dynamics of gating variables in
the Hodgking-Huxley equation should be described by fractional-order differential
equations as shown by Teka et al. [12], i.e.:

dβz
dtβ
¼ az 1� zð Þ � bzz, (8)

where z ¼ n, m, h½ �, and β is a parameter related to the power-law index of
anomalous diffusion. As shown in Ref. [23], the diffusion process over the substates of
the closed state is a subdiffusive phenomenon, which corresponds to 0< β< 1.

Combining Eqs. (7) and (8), one obtains the incommensurate fractional-order
Hodgking-Huxley model. Now, the variables x and y of the FHN model have been
considered to describe the membrane voltage and the coarse-grained action of the
gating variables, respectively. So, the variables x and y correspond to v in Eq. (7) and z
in Eq. (8), respectively. Thus, the incommensurate fractional-order Hodgking-Huxley
model given by Eqs. (7) and (8) is reduced to the following incommensurate
fractional-order FHN model:

εDα
t x ¼ yþ x� 1

3
x3 þ I,

Dβ
t y ¼ �x� δyþ γ,

(9)

where Dα
t x ¼ dαx

dtα is the fractional-order (α-order) time derivative of x tð Þ defined in
the sense of Caputo [26] as follows:

Dα
t x tð Þ ¼ 1

Γ 1� αð Þ
ðt
0

x 1ð Þ τð Þ
t� τð Þα dτ, (10)

where α∈ℝ and 0< α< 1, and Γ �ð Þ is the Gamma function. The Caputo’s definition
of fractional derivative is suitable for initial value problems. Note that lim

α!1�
Dα

t x tð Þ ¼
x 1ð Þ tð Þ ¼ dx tð Þ

dt [27] and then for α! 1 and β ! 1, the set of eqs. (9) is reduced to the
classical FHN model given by Eq. (1). For I ¼ δ ¼ 0, Eq. (9) amounts to the incom-
mensurate fractional-order van der Pol oscillator with constant forcing studied by us
in Ref. [10]. If we apply the transformation y! �y and set β ¼ α in Eq. (9), we
uncover another version of the fractional-order FHN model considered by
Abdelouahab et al. [11].

3. Equivalent electrical circuit

An example of electrical circuit capable to reproduce the dynamical behavior of the
fractional-order FHN model is apparently the same as the one considered by Nagmo
et al. [17] as shown in Figure 1, where L is a fractional-order inductor, C is a
fractional-order capacitor, and the other electronic elements are classic. Since, there is
not yet a conventional manner to represent fractional-order electronic elements, we
prefer to represent them as classical elements. TD is a tunnel diode whose voltage-

current characteristic is given by f eð Þ ¼ i0 � e� e0ð Þ � e� e0ð Þ3=3K2
� �

=ρ, where

i0 ¼ f e0ð Þ. The fractional capacitor and the fractional inductor are characterized by
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iC ¼ Cα dαv
dτα , and vL ¼ Lβ dβi

dτβ , respectively, where Cα and Lβ are parameters related to
their capacitance and inductance, with 0< α< 1, 0< β< 1. Some of these coefficients
can be found in Refs. [19, 28] for real capacitors and in Ref. [29] for real inductors.
Applying the Kirchoff’s law, it comes out that the circuit of Figure 1 is described by
the following set of fractional-order differential equations:

Cα d
αv

dτα
¼ iþ i0 � 1

ρ
E0 � v� e0ð Þ � 1

3K2 E0 � v� e0ð Þ3
� �

þ j,

Lβ d
βi

dτβ
¼ �Ri� v:

(11)

Let τL ¼ L=ρ and τC ¼ ρC, the time constants related to the dynamics of the
inductor and capacitor, respectively. Let us introduce the following dimensionless
variables: t ¼ τ=τL, x ¼ vþ e0 � E0ð Þ=K, and y ¼ ρ iþ i0ð Þ=K, and use the fractional
differential operator Dα

t . Then, Eq. (11) can be rewritten as follows:

ετ1�αL Dα
t x ¼ yþ x� 1

3
x3 þ I,

τ1�βL Dβ
t y ¼ �x� δyþ γ,

(12)

where ε ¼ τC=τL ¼ ρ2C=L, I ¼ ρj=K, δ ¼ R=ρ, γ ¼ Ri0 þ e0 � E0ð Þ=K. The differ-
ence of scales between τL and τC is at the basis of the slow-fast dynamics that results in
relaxation oscillations in the FHN system behavior. Indeed, τC ≪ τL, then ε ¼
τC=τL ≪ 1 acts as a time scales ratio between x and y. Without harming any generality,
we will consider τL ¼ 1, since the only effect of this parameter is to reinforce the
relaxation that is expressed yet in ε. Then, Eq. (12) can be rewritten without τL, which
amounts to the fractional-order FHN model given by Eq. (9). So, the fractional-order
FHNmodel can be simulated with the electrical circuit in Figure 1where the capacitor
and the inductor are fractional-order electrical elements known as fractances.

Figure 1.
An electrical circuit simulating the fractional-order FHN model.
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4. Local stability analysis and Hopf-like bifurcation

The equilibrium points E x ∗ , y ∗
� �

of Eq. (9) are solutions of the following set of
algebraic equations:

x3∗ � 3 1� 1
δ

� �
x ∗ � 3 I þ γ

δ

� �
¼ 0,

y ∗ ¼
�x ∗ þ γ

δ
:

(13)

We will consider the case where this equation admits only one solution, i.e. for
�4 1� 1=δð Þ3 þ 9 I þ γ=δð Þ2 >0, according to the Cardan’s method. The fractional
dynamics does not affect neither the number of equilibrium points nor their positions,
but it may change their stability [26]. So, it is proper to study the stability of E in this
particular context and conclude about the effect of the fractional derivatives. To do so,
we will first consider the local stability of the classical integer-order FHN model. Let
λf g be the eigenvalues spectrum of the Jacobian matrix JE of Eq. (9) evaluated at

equilibrium point E x ∗ , y ∗
� �

. The corresponding eigenvalues are conjugate complex
numbers given by:

λ1,2 ¼
� εδ� 1þ x2∗
� �� j

ffiffiffiffi
Δ
p

2ε
, (14)

where j2 ¼ �1, and Δ ¼ 4ε 1� δ 1� x2∗
� �� �� εδ� 1þ x2∗

� �2 >0: Then, E is a focus,
a key ingredient for the occurrence of Hopf bifurcation. According to Eq. (14), E is
stable (for the integer-order system) if:

εδ� 1þ x2∗ >0: (15)

Thus, Hopf bifurcations occur at x ∗ ¼ xþH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εδ� 1
p

and x ∗ ¼ x�H ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
εδ� 1
p

which correspond via Eq. (13) to two values of the stimulus current, namely IþH and I�H,
respectively. Figure 2 shows the bifurcation diagram computed using Matcont Matlab
toolbox, around IþH for a set of parameters chosen very close to the one used by
FitzHugh in its pioneering work [30], namely ε ¼ 0:1, δ ¼ 0:8, γ ¼ 0:7, that will be
used all through the paper. Figure 2 shows that the Hopf bifurcation obtained for this
set of parameters is subcritical.

Secondly, we consider the fractional-order FHN model with different rational
orders α ¼ m=m0 and β ¼ n=n0, with m,n,m0,n0 ∈ℕ. LetM be the less common multiple
ofm0 and n0 . According to the Theorem on the stability of incommensurate fractional-
order systems [26], the equilibrium point E is asymptotically stable if all the roots λk of
the following equation:

det diag λMα λMβ
� �� JE

� � ¼ 0, (16)

satisfy the following condition:

arg λkð Þj j> π

2M
, ∀ k, (17)

where JE is the Jacobian matrix of the system evaluated at E. The stability condition
given by Eq. (17) is equivalent to the following:
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λk ∉ D ¼ z∈ℂ=z ¼ rejθ, 0≤ r<R! ∞, θj j≤ π

2M

n o
, ∀ k: (18)

And Eq. (17) is equivalent to the following characteristic equation:

P λð Þ ¼ λM αþβð Þ þ δλMα � 1� x2∗
ε

λMβ þ 1� δ 1� x2∗
� �
ε

¼ 0: (19)

Let BD be the boundary of D. According to the Cauchy’s argument Principle
[31, 32], if Eq. (19) has no root on BD the closed curve P BDð Þ encircles the origin N
times, where N is the number of roots of Eq. (19) inside the domain D. Accordingly,
the stability condition given by Eq. (18) requires that N ¼ 0. Therefore, the stability
condition can be resumed in the following theorem [32]:

Theorem 1: The equilibrium point E of the fractional-order FHN model is stable if
P BDð Þ neither encircles nor gets through the origin O in the complex plan.

Drawing one’s inspiration from the method of exploitation of Theorem 1 proposed
in Ref. [32] and improved in Ref. [10], one can derive the following stability condition
for the equilibrium point E of the incommensurate fractional-order FHN model:

ζαþβ cos
αþ βð Þπ

2
þ δζα cos

απ

2
� 1� x2∗

ε
ζβ cos

βπ

2
þ 1� δ 1� x2∗

� �
ε

>0, (20)

where ζ is solution of the following equation:

ζαþβ sin
αþ βð Þπ

2
þ δζα sin

απ

2
� 1� x2∗

ε
ζβ sin

βπ

2
¼ 0: (21)

where ζ ¼ rM, with r∈ℝþ. For a given value of I, Eq. (13) is solved and the solution
x ∗ is introduced into Eq. (21) which is solved its turn for a given set α, βð Þ, and the
solution ζ is introduced into Eq. (20) to check the stability condition. Let us recall that
in the case of the integer-order system, the stability changes via Hopf bifurcations.
Now, considering its definition, a Hopf bifurcation cannot occur in a fractional-order
system which cannot have exact periodic solutions on a finite time interval [33]. How-
ever, S-asymptotically T-periodic functions, can occur as solutions of a fractional-order

-0.35 -0.345 -0.34 -0.335 -0.33 -0.325

Stimulus I

-2

0

2

-x

LPC

H
I
H
+

Figure 2.
One parameter bifurcation diagram of the FHN system with respect to the stimulus current I, for ε ¼ 0:1, δ ¼ 0:8,
γ ¼ 0:7. The solid (resp. dashed) gray line depicts stable (resp. unstable) equilibrium point; the black solid (resp.
red hollow) circle markers depict the extremums of stable (resp. unstable) periodic orbits. H and LPC label Hopf
bifurcation and fold bifurcation of periodic orbits also known as saddle-node bifurcation of limit cycles and limit
point bifurcation for cycles, respectively.
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autonomous system with fixed bounded lower terminal, instead of normal T-periodic
solutions [34]. Then, the concept of Hopf-like bifurcation has been introduced to
characterize the stability change of an equilibrium point giving rise to S-asymptotically
T-periodic solutions [11]. As the stimulus current I is the bifurcation parameter, the
numerical simulation of the set of Eqs. (13), (20) and (21) shows that the stability of the
equilibrium point E of the fractional-order FHN model switches via Hopf-like bifurca-
tions at two critical points that we will refer to as IþH and I�H, whose values depend on α
and β . It is worthwhile pointing out that for β ¼ α! 1 these bifurcation points merge
with those obtained above in the case of integer-order FHN model.

In the case, where the fractional dynamics appears only in the membrane potential
(i.e., for 0< α< 1 and β ! 1), and in the case where the fractional dynamics appears
only in the gating variables (i.e., for α! 1 and 0< β< 1), the stability conditions can
be derived easily from Eqs. (20) and (21). These two limiting cases are depicted in
Figures 3 and 4, where we can see how the positions of the bifurcations points IþH and

Figure 3.
Stability chart of the equilibrium point E in I, αð Þ space for β! 1: (b) is a zoom of (a). The gray colored area is
the oscillatory region, which corresponds to unstable E. The black solid lines depict the Hopf-like bifurcations or
stability boundaries IþH αð Þ and I�H αð Þ. UE (resp. SE): Unstable (resp. stable) equilibrium point E.

Figure 4.
Stability chart of the equilibrium point E in I, βð Þ space for α! 1: (b) is a zoom of (a). The gray colored area is
the oscillatory region, which corresponds to unstable E. The black solid lines depict the Hopf-like bifurcations or
stability boundaries IþH βð Þ and I�H βð Þ. UE (resp. SE): Unstable (resp. stable) equilibrium point E.
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I�H vary with respect to the fractional derivatives orders α and β. Figure 5 shows the
effects of the fractional-order derivatives on the stability boundaries of Figure 4(b).
Figure 5 corresponds to the general case where the fractional dynamics appear in both
the membrane potential and gating variables, that is, for 0< α< 1 and 0< β< 1 .
Overall, as shown in Figures 3–5, as the derivatives orders α and β decrease, the region
corresponding to unstable equilibrium shrinks, involving the expansion of stability
regions. Thus, as expected, the fractional-order derivation enhances stability in the
dynamics of the FHN system.

In what comes next, keeping in mind the above local stability analysis, we will
examine the oscillatory behaviors of the fractional-order FHN system.

5. Dynamical behavior and neurocomputational implications

The incommensurate fractional-order FHN model given by Eq. (9) is solved
numerically thanks to the Adams-Bashforth-Moulton predictor-corrector scheme
[35], with the set of parameters used for Figure 2, that is, ε ¼ 0:1, δ ¼ 0:8, γ ¼ 0:7.
Unless otherwise indicated, the initial conditions are set as x 0ð Þ ¼ 0 and y 0ð Þ ¼ 0 .
The fractional derivatives orders α and β, and the input stimulus current I are assumed
to be control parameters.

Let us recall that, for the chosen set of parameters, the dynamics of the classical
integer-order FHN model (Eq. (1) or Eq. (9) for α! 1 and β! 1) converges either to
the equilibrium point (resting state) or to a limit cycle with relaxation oscillations
(spiking state), depending on the strength of the stimulus I. Since, the transition
between these two regimes occurs via a subcritical Hopf bifurcation, there is an
interval of I where the two attractors coexist.

In the case, where the fractional dynamics appears only in the membrane potential
(i.e. for 0< α< 1 and β! 1), a narrow region of a new regime, namely phasic spiking,
appears between the regions of existence of resting state and spiking state. The phasic
spiking pattern is made up of a spiking phase transient to resting. The size of its region
of existence in the parameter space increases with decreasing value of α. Figure 6
shows an illustration of these three dynamical regimes. Note that the region of exis-
tence of spiking state extends beyond the stability threshold, which means that the
subcritical Hopf-like bifurcation persists. Keeping the value of α∈ 0, 1� ½, the value of β
is reduced a bit, say from 1 to 0.9. The bifurcation scenario changes a lot. When the
system loses stability, MMOs take place (see Figure 7) and when the value of I
decreases further, there is a transition to spiking state. For high values of α, at the

Figure 5.
Effect of α and β on the stability boundary (Hopf-like bifurcation) IþH.
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Figure 6.
Time series�x tð Þ showing the dynamical regimes exhibited by the FHN model with fractional-order dynamics only
in the membrane potential (i.e. β! 1) for α ¼ 0:8, and different values of the stimulus I: (a) I ¼ �0:400:
Spiking; (b) I ¼ �0:345: Phasic spiking; (c) I ¼ �0:330: Resting.

Figure 7.
Time series �x tð Þ showing some MMOs patterns exhibited by the fractional-order FHN model for α ¼ 0:8, β ¼
0:9, and different values of I: (a) 115 pattern for I ¼ �0:4146; (b) 1312 pattern for I ¼ �0:4290; (c) 12 pattern
for I ¼ �0:4320; (d) 1121 pattern for I ¼ �0:4472.
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transition between resting state and MMOs, a narrow window of small amplitude
oscillations (see Figure 8) appears. A very narrow region of another type of phasic
spiking appears, for relatively small values of α, at the transition from resting state to
MMOs. This new type of phasic spiking is made up of transient MMOs to resting (see
Figure 8). The lifetime and the number of spikes of this transient MMOs regime
increases as the strength of the stimulus current goes away from the bifurcation point.

Regular MMOs have been often referred to as Ls patterns, where L and s are the
number of large amplitudes and the number small amplitudes in one pattern, respec-
tively. For example, Figure 7 shows MMOs with 115 pattern in (a), and 12 pattern in
(c). When the value of the control parameter I varies, MMOs with complex patterns
develop at the transition between two MMOs states with regular patterns; for exam-
ple, Figure 7 shows MMOs with 1312 pattern in (b); and 1121 pattern in (d). The 1312

MMOs develops between 13 MMOs and 12 MMOs, and 1121 MMOs develops between
11 MMOs and 21 MMOs. Figure 7 also shows that when the value of I is close to the
bifurcation point IþH≈� 0:41185, we have 1s MMOs – the value of s decreases for
decreasing value of I. As the value of I decreases further and the value of s reaches 1,
one obtains complex MMOs patterns with many large amplitude oscillations, which
finally leads to L1 MMOs (where L increases with decreasing value of I). The MMOs
patterns shown in Figure 7 are identical to classical folded nodes-induced MMOs
observed in integer-order systems, also known as canard generated MMOs [16].

In order to illustrate the bifurcation scenarios described above, we map all the
dynamical regimes in the parameter space as shown in Figure 9. As mentioned above,
the Hopf-like bifurcation obtained there is subcritical as shown in Figure 9(a).
Indeed, there is a parameter region where oscillatory states coexist with resting state.
However, Figure 9(b) show that when the value of β decreases, the limit between
oscillatory states and resting state is marked clearly by the stability threshold obtained
by local stability analysis.

We now examine the case where the fractional dynamics appears only in the gating
variables, that is, for α! 1 and 0< β< 1 . The resting state exists for high values of I.
As the value I decreases the equilibrium state loses stability and MMOs take place. At
the transition between resting state and MMOs, a very narrow window of small
amplitude oscillations appears. As the value of I decreases further, there is a transition
from MMOs to spiking state. Keeping 0< β< 1, the value of α is reduced a bit, say
from 1 to 0.9. The bifurcation scenario does not change significantly. Finally, we map

Figure 8.
Time series �x tð Þ showing some dynamical regimes exhibited by the fractional-order FHN model: (a) small
amplitude oscillations for α ¼ 0:985, β ¼ 0:9, and I ¼ �0:3824; (b) phasic spiking for α ¼ 0:6, β ¼ 0:9, and
I ¼ �0:427.
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all the dynamical behaviors in the parameter space as shown in Figure 10. One can
notice that the result of the global dynamics analysis obtained numerically agrees very
well with the local stability analysis result. This figure shows that the domain of
existence of MMOs widens as the value of β decreases. The major difference between
the cases depicted in the subsets (a) and (b) of Figure 10 is that the region of
existence of small amplitude oscillations shrinks with decreasing value of α.

These phase diagrams in Figures 9 and 10 show the rich variety of dynamical
behaviors of the fractional-order FHN neuron model.

For low values of β (say, lesser than about 0.7) one observes another type of MMOs
for which small oscillations start with very low amplitude which then grows slowly before
the oscillations enter the spiking phase (see Figure 11). This last type ofMMOs is identical

Figure 9.
Dynamical regimes maps in I, αð Þ space superimposed on the stability boundaries IþH αð Þ obtained analytically: (a)
β! 1; (b) β ¼ 0:9. Gray colored region: Spiking; cyan colored region: MMOs; magenta colored region: Small
amplitude oscillations (SAOs); red colored region: Phasic spiking (PS), white region: Resting. The square markers
in (a), circle markers and diamond marker in (b) show the parameters used for Figures 6–8, respectively.

Figure 10.
Dynamical regimes maps in I, βð Þ space superimposed on the stability boundaries IþH βð Þ obtained analytically: (a)
α! 1; (b) α ¼ 0:9. Gray colored region: Spiking; cyan colored region: MMOs; magenta colored region: Small
amplitude oscillations (SAOs); white region: Resting. The circle marker in (b) show the parameters used for Figure 11.
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to singular Hopf bifurcation-inducedMMOs observed in integer-order systems [16]. Note
that unlike the integer-order FHNmodel for which in the unstable equilibrium region, the
dynamics of the system converges to a unique limit cycle no matter the initial conditions,
the dynamics of its fractional-order counterparts is sensitive to initial conditions [11]. The
same phenomenon was observed in the fractional-order van der Pol oscillator with con-
stant forcing [10] which is closely related to the FHNmodel. So, changing the initial
conditions, it is possible to uncover new dynamical states. For example, we have change
the set of initial conditions x 0ð Þ, y 0ð Þð Þ in Figure 11 from 0, 0ð Þ to 0, 1ð Þ, and we have
found that the active state is preceded by a static-like regime. This static-like transient
state was found for the first time in the context of dynamical systems by us, while
studying a fractional-order van der Pol oscillator with constant forcing [10]. In the
context of neuroscience, this quiescent transient regime is known as first spike latency.
Teka et al. [22] found that the fractional derivation also induces the occurrence of first
spike latency in a leaky integrate-and-fire model, and that this first spike latency is
reinforced by decreasing value of the fractional derivative. On the other hand, still
regarding the type MMOs shown in Figure 11, the instantaneous spike frequency (the
inverse of the duration of the corresponding interspike interval), also known as the firing
rate, increases as a function of the interspike interval number and approaches an asymp-
totic value after a certain number of intervals. Also, the increasing rate of the firing rate
decreases with decreasing value of the fractional derivatives orders. This property of
neurons known as upward spike timing adaptation, observed experimentally [21], has
proved to appear only in fractional-order models [21, 22].

It was found in Ref. [10] that the lifetime of this static-like transient and the
pseudo-period (corresponding to the interspike interval) of the asymptotic
MMOs increase exponentially with the closeness to the Hopf bifurcation point.
The same result is found in the present work. Figure 12 shows the behavior of
the first spike latency (FSL) and of the fiftieth interspike interval (ISI) – the period
of the asymptotic MMOs after spike timing adaptation - when the value of the
stimulus current I varies, coming close to the bifurcation point IþH. The results from
the direct numerical simulation of Eq. (9) (depicted in Figure 12) have been fitted
using the following exponential functions in EzyFit Matlab toolbox:

Figure 11.
Time series �x tð Þ showing two different behaviors of the fractional-order FHN model for α ¼ 0:9, β ¼ 0:6, and
I ¼ �0:540 and different initial conditions: (a) x 0ð Þ, y 0ð Þð Þ ¼ 0, 0ð Þ; (b) x 0ð Þ, y 0ð Þð Þ ¼ 0, 1ð Þ.
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FSL Ið Þ ¼ a exp
b

I � IþH

� �
þ c, ISI Ið Þ ¼ a0 exp

b0

I � IþH

� �
þ c0: (22)

For the two cases of fitting, the value of the correlation coefficient is over 0.999,
indicating good fittings. Thus, this confirms the exponential growth of the first spike
latency and of the interspike interval. Furthermore, as shown in Figure 13, the fea-
tures of the first spike latency and of the interspike interval are reinforced by
decreasing values of the orders of fractional derivatives.

Although the specific role of MMOs among the plethora of slow-fast dynamical
behaviors occurring in neural systems has not yet been determined, it has been
nevertheless suggested that the dynamical richness of a neuron expands its com-
putational capacity by increasing its coding capacity [12, 15, 36]. On the other
hand, it has been suggested that first spike latency could code for stimulus recog-
nition in several sensory systems [37–40]. Indeed, the variation of first spike
latency with stimulus parameters contains considerable information about those
parameters [40]. The first spike latency has also been suggested as a source of
information for accurate decisions [22]. In addition, the behavior of the firing rate
(or interspike interval) of neurons also provides information on the stimulus
statistics [21]. The fractional-order FHN model is a mathematically simple model
with complex dynamics features, thus increasing the amount of information that

Figure 12.
First spike latency (FSL) and interspike interval (ISI) versus stimulus current I, for α ¼ 0:9 and β ¼ 0:6 . With
IþH≈0:504497.

Figure 13.
First spike latency (FSL) versus displacement of the stimulus current I from the Hopf-like bifurcation point IþH, for
α ¼ 0:9 and different values of β. Note that IþH β ¼ 0:6ð Þ≈� 0:504497 and IþH β ¼ 0:8ð Þ≈� 0:431551.
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can describe the input. So, the fractional FHN model is more computationally
efficient than its integer-order counterpart.

6. Conclusion

In this work, the dynamical behavior of an incommensurate fractional-order
FitzHugh-Nagumo model of neuron has been investigated in details. First of all, the
considered fractional-order model has been derived from the fractional-order Hodgkin-
Huxley model obtained taking advantage of the powerfulness of fractional derivatives in
modeling the dielectric losses in cell membranes, and the anomalous diffusion of parti-
cles in ion channels. Then, it has been shown that the fractional-order FitzHugh-
Nagumomodel can be simulated by a simple electrical circuit. Then, the local stability of
the incommensurate fractional-order model has been studied with a particular attention
granted to the effect of the fractional derivatives. It has been found that the fractional
derivatives enhance the local stability of the model. At last, the dynamical behavior of
the fractional-order models has been explored numerically, which has confirmed the
results of local stability. It has been found that the fractional-order FitzHugh-Nagumo
exhibits a lot of complex dynamical features that are not observed in the behavior of its
integer-order counterpart, and that cannot be observed in integer-order two-variable
systems. Among others, the fractional-order model exhibits mixed mode oscillations,
phasic spiking, first spike latency, and spike timing adaptation. These complex features
of the dynamical behavior of the fractional-order model increase the computational
capacity of the FitzHugh-Nagumomodel. An outlook of this work would be the study of
the mechanism(s) underlying the formation of mixed mode oscillations and first spike
latency as effects of fractional derivation in two-variable systems.
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Chapter 4

Some Solvability Problems of
Differential Equations in
Non-standard Sobolev Spaces
Bilal Bilalov, Sabina Sadigova and Zaur Kasumov

Abstract

In this chapter an m-th order elliptic equation is considered in Sobolev spaces
generated by the norm of a grand Lebesgue space. Subspaces are determined in which
the shift operator is continuous, and local solvability (in the strong sense) is
established in these subspaces. It is established an interior and up-to boundary
Schauder-type estimates with respect to these Sobolev spaces for m-th order elliptic
operators, the trace of functions and trace operator are determined, the boundedness
of trace operator and the extension theorem are proved, the properties of the Riesz
potential are studied regarding these Sobolev spaces, etc. It is considered a second-
order elliptic equation, and we study the Fredholmness of the Dirichlet problem in the
Sobolev space generated by a separable subspace of the grand Lebesgue space. It is also
considered one spectral problem for a discontinuous second-order differential opera-
tor and proved the theorem on the basicity of eigenfunctions of this operator in
subspace of Morrey space, in which the infinitely differentiable functions with
compact support are dense.

Keywords: non-standard function spaces, grand-Sobolev spaces, space of traces,
Schauder type estimates, Riesz potentials, elliptic equations, Fredholmness, spectral
problem, basicity, Morrey space

1. Introduction

Differential (also elliptic) equations play an especial role in the study of various
processes and phenomena in natural science. Solvability problems of elliptic
equations have a very rich history and remarkable monographs by various famous
mathematicians are devoted to them. The theory of elliptic equations was developed
in an comprehensive way in Hölder classes (solution in the classical sense) and in
Hilbertian Sobolev spaces Wk

2 Ωð Þ. In the above mentioned case, depending on the
nature of the problem, there are various methods of solution (for instance, the
method of potentials, the periodic case, the method of the theory of functions,
spectral method, etc.), which cannot be said for the non-Hilbert case Wk

p Ωð Þ, p 6¼ 2,
in which each method faces certain difficulties. All considered spaces are separable
Banach spaces and infinitely differentiable and finite functions are dense in them.
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In the study of solvability of differential equations these facts are significant.
Note that one of the methods to solve differential equations is a spectral method.
To justify the solution by this method, one should study the basis properties of
the root vectors of the considered spectral problem in the appropriate Banach
function space.

In connection with applications in problems of mechanics, mathematical physics
and pure mathematics, the so-called non-standard spaces of functions have greatly
increased and the list of such spaces includes Lebesgue spaces with a variable sum-
mability index, Morrey spaces, grand Lebesgue spaces, Orlicz spaces, etc. For more
details one can see the monographs [1–6]. Compared with other areas of mathematics,
the apparatus of harmonic analysis has been fairly well studied in relation to these
spaces. The problems of analysis and approximation theory have been relatively well
studied in Lebesgue spaces with variable summability index and Morrey spaces (see
[7–14]). The above mentioned problems have begun to be studied in Grand Lebesgue
spaces, and valuable results have been obtained in this direction (see [15, 16]). The
solvability problems of partial differential equations have also begun to be studied in
the Sobolev spaces generated by these spaces (see [17–27]). Morrey-Sobolev and
grand-Sobolev spaces are not separable and therefore infinitely differentiable and
finite functions are not dense in them, in this reason the study the problems of
solvability of differential equations in these spaces are of special scientific interest.
Therefore, it is necessary to extract reasonable subspaces dictated by differential
equations and develop an instruments for studying the solvability of differential
equations in these subspaces.

An m-th order elliptic equation is considered in Sobolev spaces generated by the
norm of a grand Lebesgue space. Subspaces are determined in which the shift operator
is continuous, and local solvability (in the strong sense) is established in these sub-
spaces. It is established an interior and up-to boundary Schauder-type estimates with
respect to these Sobolev spaces for m-th order elliptic operators, the trace of functions
and trace operator are determined, the boundedness of trace operator and the exten-
sion theorem are proved, the properties of the Riesz potential are studied regarding
these Sobolev spaces, etc. It is considered a second-order elliptic equation and we
study the fredholmness of the Dirichlet problem in the Sobolev space generated by a
separable subspace of the grand Lebesgue space. It is considered one spectral problem
for a discontinuous second order differential operator and proved the theorem on the
basicity of eigenfunctions of this operator in subspace of Morrey space, in which the
infinitely differentiable functions with compact support are dense.

2. Needful information

2.1 Standard notation

Zþ will be the set of non-negative integers. 1, n ¼ 1, 2, … , n.  is the set of complex
numbers. Br x0ð Þ ¼ x∈Rn : x� x0j j< rf gwill denote the open ball in Rn centered at x0,
where xj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ … þ x2n

p
, x ¼ x1, … , xnð Þ. �; �h i is a scalar product in Rn. mes Mð Þ

will stand for the Lebesgue measure of the set M; ∂Ω will be the boundary of the
domain Ω; Ω ¼ Ω⋃∂Ω; diam Ω will stand for the diameter of the set Ω; f=M denotes
the restriction of f to M. C∞

0 Ωð Þ� will denote the space of infinitely differentiable and
finite functions in Ω and C mð Þ Ωð Þ�will stand for the space of m-th order continuously
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differentiable functions in the domain Ω. Cm
0 Ωð Þ�will stand for the space of m-th

order continuously differentiable and finite functions in the domain Ω. DL�will stand
for the domain of the operator L; RT�will stand for the range of the operator T;
KerT� is the kernel of the operator T; T ∗ is the adjoint of T; X;Y½ � is a Banach space of
bounded operators acting from X to Y; X½ � ¼ X;X½ �. Throughout this paper, q0 will
denote the conjugate of a number, i.e. 1qþ 1

q0 ¼ 1.

2.2 Elliptic operator of m-th order and some necessary facts

Let Ω⊂Rn be some bounded domain with the rectifiable boundary ∂Ω. We will use
the notations of [19]. α ¼ α1, … , αnð Þ will be the multiindex with the coordinates
αk ∈Zþ,∀k ¼ 1, n; ∂i ¼ ∂

xi
will denote the differentiation operator, ∂α ¼ ∂

α1
1 ∂

α2
2 … ∂

αn
n .

For every ξ ¼ ξ1, … , ξnð Þ we assume ξα ¼ ξα11 ξ
α2
2 … ξαnn . Let L be an elliptic differential

operator of m-th order

L ¼
X
pj j≤m

ap xð Þ∂p, (1)

where p ¼ p1, … , pn
� �

, pk ∈Zþ, ∀k ¼ 1, n, ap �ð Þ∈L∞ Ωð Þ are real functions. Con-
sider the elliptic operator L0:

L0 ¼
X
pj j¼m

a0p ∂p, (2)

with the constant coefficients a0p and denote by J �ð Þ a fundamental solution of
Eq. (2) [28].

Let L be an elliptic operator and consider a “tangential operator”

Lx0 ¼
X
pj j¼m

ap x0ð Þ∂p, (3)

at every point x0 ∈Ω. Denote by Jx0 �ð Þ the fundamental solution of the equation
Lx0φ ¼ 0. The function Jx0 �ð Þ is called a parametrics for the equation Lφ ¼ 0 with a
singularity at the point x0. Let

Sx0φ ¼ ψ xð Þ ¼
ð
Jx0 x� yð Þ φ yð Þdy, (4)

and

Tx0 ¼ Sx0 Lx0 � Lð Þ: (5)

Denote the operators Sx0 ,Lx0 and Tx0 , corresponding to the point x0 ¼ 0, by S0,L0

and T0, respectively.
Let us give the definition of smooth boundary.

Definition 1.1 We will say that the boundary ∂Ω of a domain Ω⊂Rn belongs to
class C kð Þ if each sufficiently small piece of it can be mapped onto a segment of the
hyperplane xn ¼ 0 using a coordinate transformation y xð Þ ¼ y1 xð Þ; … ; yn xð Þ� �

with a
positive Jacobian so that yi ∈C kð Þ,∀i ¼ 1, n.
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2.3 Grand-Sobolev spaces Wm
qÞ Ωð Þ and WNm

qÞ Ωð Þ

Define the grand-Lebesgue space LqÞ Ωð Þ , 1< q< þ∞ (throughout this paper we
will assume that this condition holds on q). Grand-Lebesgue space LqÞ Ωð Þ is a Banach
space of (Lebesgue) measurable functions f on Ω with the norm

fk kqÞ ¼ sup
0< ε< q�1

ε

ð

Ω
 fj jq�εdx

� � 1
q�ε
: (6)

The following continuous embeddings hold

Lq Ωð Þ⊂LqÞ Ωð Þ⊂Lq�ε Ωð Þ, (7)

where ε∈ 0, q� 1ð Þ is an arbitrary number. The space LqÞ Ωð Þ is not separable.
Below in this section we will assume that every function defined on Ω is extended

by zero to RnnΩ. Let Tδ be a shift operator, i.e. Tδfð Þ xð Þ ¼ f δþ xð Þ, ∀x∈Ω and
∀δ∈Rn. Let

NqÞ Ωð Þ ¼ f ∈LqÞ Ωð Þ : Tδf � fk kqÞ ! 0, δ! 0
n o

: (8)

The space NqÞ Ωð Þ is a Banach space with the norm �k kqÞ, (i.e. is the subspace of
LqÞ Ωð Þ.)

The following lemma is true (see [17]).
Lemma 1.2 C∞

0 Ωð Þ ¼ NqÞ Ωð Þ (the closure is taken in LqÞ Ωð Þ).
Let us include the following lemma without proof.
Lemma 1.3 The embeddings

Lq Ωð Þ⊂NqÞ Ωð Þ⊂LqÞ Ωð Þ⊂L1 Ωð Þ, (9)

hold and every inclusion is strict.
Denote by Wm

qÞ Ωð Þ the grand-Sobolev space generated by the norm

fk kWm
qÞ
¼
Xm

k¼0
 f kð Þ
���

���
qÞ
: (10)

Let

WNm
qÞ Ωð Þ ¼ f ∈Wm

qÞ Ωð Þ : Tδf � fk kWm
qÞ
! 0, δ! 0

n o
: (11)

Consider the following singular kernel

k xð Þ ¼ ω xð Þ
xj jn , (12)

where ω xð Þ is a positive homogeneous function of degree zero, which is infinitely
differentiable and satisfies
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ð

xj j¼1
ω xð Þdσ ¼ 0, (13)

dσ being a surface element on the unit sphere. By K we will denote the
corresponding singular integral

Kfð Þ xð Þ ¼ k ∗ f xð Þ ¼
ð

Ω
f yð Þk x� yð Þdy: (14)

The following theorem is valid for the operator K (see [4]).

Theorem 1.4 [4] The inclusion K ∈ LqÞ Ωð Þ
� �

, 1< q< þ∞ is valid, i.e. ∃c>0:

Kfk kqÞ ≤ c fk kqÞ,∀f ∈LqÞ Ωð Þ (15)

The validity of the following lemma is given in [17].

Lemma 1.5 [17] NqÞ Ωð Þ, 1< q< þ∞, is an invariant subspace of the singular
operator K in LqÞ Ωð Þ .

Considering the expression for the norm NqÞ, it is not hard to prove the following.

Proposition 1.6 Let Ω⊂Rn�be a bounded domain and L be an elliptic operator with

coefficients ap ∈L∞ Ωð Þ, ∀ pj j≤m. Then it is valid L∈ WNm
qÞ Ωð Þ;NqÞ Ωð Þ

h i
, i.e. the

following inequality

Luk kNqÞ Ωð Þ ≤C uk kWNm
qÞ Ωð Þ, ∀u∈WNm

qÞ Ωð Þ, (16)

holds, where C>0 is a constant independent of u.
In the sequel, when Ω ¼ Br the spaces LqÞ Ωð Þ,NqÞ Ωð Þ,WqÞ Ωð Þ andWNqÞ Ωð Þwill be

redenoted by LqÞ rð Þ,NqÞ rð Þ,Wm
qÞ rð Þ and WNm

qÞ rð Þ, respectively. Along with WNm
qÞ Ωð Þ,

consider the following space of functions Nm
qÞ Ωð Þ equipped with the norm

fk kNm
qÞ Ωð Þ ¼

X
pj j≤m

d pj j�n
q

Ω ∂
pfk kLqÞ Ωð Þ

, (17)

where dΩ ¼ diam Ω, and we will assume N0
qÞ Ωð Þ ¼ NqÞ Ωð Þ. The closure of C∞

0 Ωð Þ in
Nm

qÞ Ωð Þ (Nm
q Ωð Þ) we will denote by ∘Nm

qÞ Ωð Þ (∘Nm
q Ωð Þ).

3. Main lemma

3.1 Solvability in the small

Introduce the following

Definition 1.7 We will say that the operator L has the property Px0Þ if its coeffi-
cients satisfy the conditions: i) ap ∈L∞ Br x0ð Þð Þ, ∀ pj j≤m, for some r>0; ii) ∃r>0 :

for pj j ¼ m the coefficient ap �ð Þ coincides a.e. in Br x0ð Þ with some function bounded
and continuous at the point x0.
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It is absolutely clear that if ap ∈C Ωð Þ, ∀ pj j≤m, then L has the property Px0Þ for
∀x0 ∈Ω.

In establishing the interior Schauder-type estimate for grand-Sobolev spaces
Nm

qÞ Ωð Þ the following Main Lemma, proved in [18] plays a key role.

Main Lemma. Let the m-th order elliptic operator L have the property Px0Þ at the point
x0. Let φ∈Nm

qÞ Br x0ð Þð Þ and φ vanish in a neighborhood of x� x0j j ¼ r. Then for q> 1
it holds

Tx0φk kNm
qÞ Br x0ð Þð Þ ≤ σ rð Þ φk kNm

qÞ Br x0ð Þð Þ, (18)

where the function σ rð Þ ! 0, r! 0, depends only on the ellipticity constant Lx0 ,
on the coefficients of L and their moduli of continuity.

Let us consider the m-th order elliptic operator L with the coefficients ap xð Þ
defined by (1), and the corresponding operator Tx0 defined by (5). Using Main
Lemma, it is proved the following local existence theorem.

Theorem 1.8 Let L be an m-th order elliptic operator which has the property Px0Þ
at some point x0 ∈Ω and f ∈GqÞ Ωð Þ, 1< q< þ∞. Then, for sufficiently small r,
there exists a solution of the equation Lu ¼ f belonging to the class NqÞ Br x0ð Þð Þ.

4. Interior Schauder type estimates

Let ω �ð Þ be an infinitely differentiable function on 0, 1½ � such that for 0≤ t< 1
3,

ω tð Þ � 1 and for 2
3 < t≤ 1, ω tð Þ � 0. For 0<R1 <R2 we put

ξ xð Þ ¼
1, xj j≤R1,

ω
xj j � R1

R2 � R1

� �
,R1 < xj j≤R2:

8<
: (19)

Regarding this function it holds the following.
Lemma 1.9 There is a constant C>0 depending only on R2 and ω �ð Þ, such that for
∀R1 : 0<R1 <R2, there is

ξk kCm R2ð Þ ≤C 1� R1

R2

� ��m
: (20)

Accept the following property with respect to the domain Ω.
Property αÞ.We say that the domain Ω admits the continuation of functions of the space

Nk
qÞ Ωð Þ if there exists a domain Ω0 ⊃Ω and a linear mapping θ of the space Nk

qÞ Ωð Þ into
Nk

qÞ Ω
0ð Þ such that

θu ¼ u in Ω,
θuk kNk

qÞ Ω
0ð Þ ≤ const uk kNk

qÞ Ωð Þ, (21)

holds.
So, the following lemma is true.

66

Nonlinear Systems - Recent Developments and Advances



Lemma 1.10 Let the domain Ω have the Property αÞ with respect to space Nk
qÞ Ωð Þ.

Then ∃C>0 depending only on n, q and on a constant from (21), which holds

φk kNk
qÞ Ωð Þ ≤ ε φk kNkþ1

qÞ Ωð Þ þ Cε�k φk kLqÞ Ωð Þ, (22)

for ∀k ¼ 1,m� 1 and ∀ε>0.
The main result of this section is the following Schauder type estimate.

Theorem 1.11 Let the coefficients of m-th order elliptic operator L satisfy
the following conditions: i) ap �ð Þ∈C Ω

� �
, ∀p : pj j ¼ m; ii) ap �ð Þ∈L∞ Ωð Þ, ∀p : pj j<m;

where Ω⊂Rn� bounded domain with boundary ∂Ω. Let Ω0 ⊂Ω be an arbitrary
compact. Then for ∀u∈WGm

qÞ Ωð Þ, 1< q< þ∞, the following a priori estimate holds

uk kNm
qÞ Ω0ð Þ ≤C Luk kLqÞ Ωð Þ þ uk kLqÞ Ωð Þ

� �
, (23)

where the constant C depends only on the ellipticity constant m,Ω,Ω0 of L, on the
coefficients of the operator L.

5. Extension of functions from Nm
qÞ Ωð ÞCompactness

Consider the question of the possibility of extension of a function f from class
Nm

qÞ Ωð Þ to a wider class Nm
qÞ Ω

0ð Þ with Ω0⊃Ω. Following the classical case (see, mono-

graph [29]), first consider the case when Ω0 is a cube with an edge 2a>0 : Ka ¼
yi
�� ��< a, i ¼ 1, n
� �

, and Ω is a parallelepiped Kþa ¼ Ka⋂ yn >0
� �

.
The following lemma is true.

Lemma 1.12 For ∀f ∈WNk
qÞ K

þ
a

� �
there exists an extension F∈WNk

qÞ Kað Þ and, in
addition, inequality

Fk kNm
qÞ Kað Þ ≤C fk kNm

qÞ Kþað Þ, (24)

holds.
It is completely analogous to the monograph [29, p. 129], it is proved the following

Lemma 1.13 Let f ∈WNk
qÞ Ωð Þ and for ∀ξ∈ ∂Ω there exists a function Fξ xð Þ, defined

in a ball Br ξð Þ of some radius r ¼ r ξð Þ>0, such that Fξ xð Þ ¼ f xð Þ, ∀x∈Ω∩Br ξð Þ and
Fξ ∈WNk

qÞ Br ξð Þð Þ. Besides

Fξ

�� ��
WNk

qÞ Br ξð Þð Þ ≤C fk kWNk
qÞ Ωð Þ, (25)

is true, where C>0 is a constant independent of f . Then, for any ρ>0, the
function f has an extension F to the domain Ωρ ¼ ⋃

x∈Ω
Bρ xð Þ with the properties

F∈WNk
qÞ Ωρ

� �
, F xð Þ ¼ 0, ∀x∈ΩρnΩρ=2: and the inequality

Fk kWNk
qÞ Ωρð Þ ≤C fk kWNk

qÞ Ωð Þ, (26)
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holds, where the constant C>0, is dependent only on domain Ω and ρ.
Using Main Lemma and Lemmas 1.12, 1.13, similarly to [29, p. 130] it is proved the

following extension.

Theorem 1.14 Let Ω, Ω0 be bounded domains in Rn, �Ω⊂Ω0 and ∂Ω∈C mð Þ. Then for
∀f ∈Nm

qÞ Ωð Þ there exists a finite extension F∈Nm
qÞ Ω

0ð Þ in Ω0 and the following estimate

Fk kNm
qÞ Ω

0ð Þ ≤C fk kNm
qÞ Ωð Þ, (27)

is valid, where C>0 is a constant independent of f .
Consider the compactness question of the family in NqÞ Ωð Þ. The following theorem

is true.

Theorem 1.15 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 1ð Þ. Then a
set, bounded in N1

qÞ Ωð Þ, is compact in NqÞ Ωð Þ.
Analogously to Theorem 1.15, the following theorem is also proved.

Theorem 1.16 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C kð Þ.
If the set of functions is bounded in Nk

qÞ Ωð Þ, then the set of their traces on n� 1ð Þ-
dimensional surface Γ ⊂ �Ω from the class C kð Þ is compact in Wr

qÞ Ωð Þ, ∀r ¼ 0, k� 1.

6. Trace of functions from the grand-Sobolev space Nm
qÞ Ωð Þ

In this section, we will define a concept of the trace for functions from the grand-
Sobolev space Nm

qÞ Ωð Þ on an n� 1ð Þ-dimensional differentiable surface.

Based on the embedding Nm
qÞ Ωð Þ⊂N1

qÞ Ωð Þ, ∀m≥ 2, it is sufficient to define this con-

cept regarding the functions fromN1
qÞ Ωð Þ . So, assume S⊂Ω: S∈C 1ð Þ is some n� 1ð Þ-

dimensional surface. Let x0 ∈ S be an arbitrary point. Then it is obvious that there exists a
sufficiently small neighborhood of this point Sx0 ⊂ S, such that uniquely projected onto
some domain D of the plane xn ¼ 0 in Rn and it has the equation

xn ¼ φ x0ð Þ∈C 1ð Þ �Dð Þ, x0 ¼ x1, … , xn�1ð Þ∈D: (28)

Ω is bounded domain and we will consider that it is placed inside a cube
0< xi < a, i ¼ 1, n
� �

, with an edge a>0. Let f ∈ ∘C∞ Ωð Þ be some finite function in Ω.
For ∀ x0;φ x0ð Þð Þ∈ Sx0 we have

f xð Þ=Sx0 ¼ f x0;φ x0ð Þð Þ ¼
ðφ x0ð Þ

0
 ∂f x0; ξnð Þ

∂ξn
dξn: (29)

Let ε∈ 0, q� 1ð Þ�be an arbitrary number, qε ¼ q� ε and 1
qε
þ 1

q0ε
¼ 1. Applying

Hölder’s inequality from (29), we obtain

f=Sx0

���
���
qε
≤ φ x0ð Þj j

qε
q0ε

ðφ x0ð Þ

0
 ∂f x0; ξnð Þ

∂ξn

����
����
qε
dξn ≤ a

qε
q0ε

ðφ x0ð Þ

0
 ∂f x0; ξnð Þ

∂ξn

����
����
qε
dξn: (30)
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Let C ¼ max a; 1f g. Consequently

ε f=Sx0

���
���
qε
≤Cqε ε

ðφ x0ð Þ

0
 ∂f x0; ξnð Þ

∂ξn

����
����
qε
dξn, (31)

where C is a constant independent of f and ε. Multiplying byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ2

x1 þ … þ φ2
xn�1

q
and integrating over D we obtain

ε
1
qε f

���
���
qε

Lqε Sx0ð Þ
≤C ε

1
qε
∂f
∂xn

����
����
qε

Lqε Ωð Þ
: (32)

Since the surface S can be covered by a finite number of surfaces of type Sx0 , then
summing the corresponding inequalities (from (32)) we establish

ε
1
qε f

���
���
qε

Lqε Sð Þ
≤C ε

1
qε
∂f
∂xn

����
����
qε

Lqε Ωð Þ
, (33)

where C>0 is a constant independent of f and ε. This immediately implies

ε
1
qε f

���
���
Lqε Sð Þ

≤C
X
pj j¼1

dΩ ε
1
qε∂

pf
���

���
Lqε Ωð Þ

≤C ε
1
qε∂

pf
���

���
N1

qε
Ωð Þ
: (34)

Taking first sup
0< ε< q�1

on the right and then the same sup on the left, from this

estimate for ∀f ∈C
0
∞ Ωð Þ, we have

fk kLqÞ Sð Þ ≤C fk kN1
qÞ Ωð Þ: (35)

If ∂Ω∈C 1ð Þ, then Theorem 1.14 implies that the inequality (35) holds for
∀f ∈C 1ð Þ Ω

� �
.

Let f ∈N1
qÞ Ωð Þ be an arbitrary function. Then ∃ f n

� �
⊂C∞ Ω

� �
:

f n � f
�� ��

N1
qÞ Ωð Þ
! 0, n! ∞: (36)

It follows directly from (35) that the sequence f n
� �

is fundamental in LqÞ Sð Þ:

f n � f m
�� ��

LqÞ Sð Þ ! 0, n,m! ∞: (37)

From the completeness of LqÞ Sð Þ it follows that ∃ f S ∈LqÞ Sð Þ:

f n � f S
�� ��

LqÞ Sð Þ ! 0, n! ∞: (38)

Similarly the classical case, it is proved that f S does not depend on the choice of the
sequence f n

� �
.

f S is called the trace of the function f ∈N1
qÞ Ωð Þ on S and we will denote it by the

operator ΓS : Γf ¼ f=S.
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Based on the concept of ΓS, we define the following linear space

N1
qÞ Sð Þ ¼ N1

qÞ Ωð Þ=S ¼ f ∈LqÞ Sð Þ : ∃u∈N1
qÞ Ωð Þ ) f ¼ ΓSu ¼ u=S

n o
: (39)

For the case of S ¼ ∂Ω, the operator ΓS will be simply denoted by Γ : Γ∂Ω ¼ Γ:
The following lemma is true.

Lemma 1.17 Let Ω⊂Rn be an bounded domain and ∂Ω∈C 1ð Þ. Then the linear spaces
F 1

qÞ and N1
qÞ ∂Ωð Þ are isomorphic, where

N1
qÞ ∂Ωð Þ � N1

qÞ Ωð Þ=∂Ω ¼ f ∈LqÞ ∂Ωð Þ : ∃u∈N1
qÞ Ωð Þ ) f ¼ Γu ¼ u=∂Ω

n o
: (40)

Based on this lemma, we define the norm in N1
qÞ ∂Ωð Þ

fk kN1
qÞ ∂Ωð Þ ¼ Γ�1f

�� ��
F 1

qÞ
, ∀f ∈N1

qÞ ∂Ωð Þ: (41)

Since F 1
qÞ is a Banach space with respect to the norm �k kF 1

qÞ
, then this lemma

immediately implies that N1
qÞ ∂Ωð Þ is also Banach with respect to the norm (41).

The space Nm
qÞ ∂Ωð Þ is defined similarly and the corresponding lemma is true for the

spaces Fm
qÞ, where

Nm
qÞ ∂Ωð Þ � Nm

qÞ Ωð Þ=∂Ω ¼ f ∈LqÞ ∂Ωð Þ : ∃u∈Nm
qÞ Ωð Þ ) f ¼ Γu ¼ u=∂Ω

n o
: (42)

The following theorem is true (regarding the proof see [30]).

Theorem 1.18 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C mð Þ. If the
set of functions is bounded in Nm

qÞ Ωð Þ,m≥ 1, then the set of their traces on the n� 1ð Þ-
dimensional surface S⊂Ω from the class C mð Þ is compact in LqÞ Sð Þ.

7. Schauder-type estimate up to the boundary

Using the results obtained in the previous sections, it is established a Schauder-
type estimate up to the boundary for a second-order elliptic operator with nonsmooth
coefficients. The following theorem is true.

Theorem 1.19 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ and L be a
second-order elliptic operator (i.e. m ¼ 2) with coefficients ap ∈C �Ωð Þ, ∀p : pj j ¼ m and
ap ∈L∞ Ωð Þ, ∀p : pj j<m. Then for ∀u∈N2

qÞ Ωð Þ the following estimate

uk kN2
qÞ Ωð Þ ≤C Luk kNqÞ Ωð Þ þ uk kN2

qÞ ∂Ωð Þ þ uk kNqÞ Ωð Þ
� �

, (43)

holds true, where C>0 is a constant independent of u, but depends on the norms
of the coefficients of L in L∞ Ωð Þ.
70

Nonlinear Systems - Recent Developments and Advances



8. Solvability of the Dirichlet problem for a second-order elliptic operator

Let us apply the estimates established in the previous sections to the solvability
question (in the strong sense) of the Dirichlet problem for a second-order elliptic type
equation in classes N2

qÞ Ωð Þ. So, let Ω⊂Rn be a domain with a boundary Ω∈C 2ð Þ .

Assume that f ∈NqÞ Ωð Þ is a given function and aij ∈C �Ωð Þ; ai; a∈L∞ Ωð Þ i;j ¼ 1, n.
Consider the equation

Lu ¼
Xn
i; j¼1

aij xð Þ ∂
2u

∂xi∂x j
þ
Xn
i¼1

ai xð Þ ∂u
∂xi
þ a xð Þu ¼ f xð Þ, x∈Ω: (44)

In the sequel we will assume that the following uniformly ellipticity condition
holds a.e. in Ω

ν ξj j2 ≤
Xn
i, j¼1

aij xð Þξiξ j ≤ ν�1 ξj j2, ∀ξ∈Rn, (45)

where ν∈ 0, 1ð � is some constant.
Under the solution of the Eq. (44) we mean a function u∈N2

qÞ Ωð Þ for which

equality (44) holds a.e. x∈Ω. Let φ∈N2
qÞ ∂Ωð Þ be a given function. Let us define the

boundary condition

Γu ¼ u=∂Ω ¼ φ (46)

where Γ : N2
qÞ Ωð Þ ! N2

qÞ ∂Ωð Þ� is a trace operator.

We will say that the domain Ω has a property δq
� �

is class ∘N2
qÞ Ωð Þ, if the Dirichlet

problem (46) is correctly solvable for the Poisson equation, i.e. the problem

Δu ¼ f , in Ω,
Γu ¼ 0, on ∂Ω,

�
(47)

has a unique solution for ∀f ∈NqÞ Ωð Þ in class ∘N2
qÞ Ωð Þ.

In order to solve the problem (44), (46) we apply the parameter continuation
method (see e.g. [28, p. 247]).

Furthermore, assume that the operator L satisfies the following inequality

uk kLqÞ Ωð Þ ≤C Luk kLqÞ Ωð Þ,∀u∈ ∘N2
qÞ Ωð Þ, (48)

where the constant C depends only on the ellipticity constants of the operator L, on
the sup norms of the coefficients L, on domain Ω and is independent of the function
u∈ ∘N2

qÞ Ωð Þ.
We will say that the operator L has property (A) if an inequality (48) holds for an

operator L.
The question of whether inequality (48) holds (i.e. property (A)) we will consider

later.
Thus, the following main theorem is true.
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Theorem 1.20 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ and L is a
second-order elliptic differential operator defined by expression (44) with coefficients
aij ∈C �Ωð Þ; ai; a∈L∞ Ωð Þ, i; j ¼ 1, n. Assume that the domain Ω has property ΔqÞ

� �
in

class ∘N2
qÞ Ωð Þ and the operator L has property (A). Then the equation Lu ¼ f is

uniquely solvable for ∀f ∈NqÞ Ωð Þ in class ∘N2
qÞ Ωð Þ, i.e. ∘L : N2

qÞ Ωð Þ $ NqÞ Ωð Þ is an
isomorphism and it is obvious that the estimate

uk kN2
qÞ Ωð Þ ≤C fk kNqÞ Ωð Þ, ∀f ∈NqÞ Ωð Þ, (49)

holds true, where C>0 is a constant independent of f .
Now consider a homogeneous equation Lu ¼ 0 in Ω with a nonhomogeneous

boundary condition Γu ¼ u=∂Ω ¼ φ, where φ∈N2
qÞ Ωð Þ�is given function. From the

results of Section 6 it follows that ∃Φ∈N2
qÞ Ωð Þ : ΓΦ ¼ φ: Suppose υ ¼ u�Φ and let

f ¼ �LΦ. It is clear that Γυ ¼ υ=∂Ω ¼ 0 and Lυ ¼ f in Ω. If aij; ai; a∈L∞ Ωð Þ, i; j ¼ 1, n,
then, as follows from Proposition 1.6 that f ∈NqÞ Ωð Þ. Therefore, we can apply the
Theorem 1.20 to the problem

Lυ ¼ f , a:e:in Ω,
υ=∂Ω ¼ 0:

�
(50)

If all the conditions of Theorem 1.20 are satisfied, then this problem is uniquely
solvable in class N2

qÞ Ωð Þ and for the solution it is valid the following estimate

υk kN2
qÞ Ωð Þ ≤C fk kNqÞ Ωð Þ, (51)

where C>0 is a constant independent of f . It is quite obvious that then the
problem

Lu ¼ 0, a:e:in Ω,
u=Γ ¼ φ,

�
(52)

is also uniquely solvable in N2
qÞ Ωð Þ.

Taking into account expression (41) for the norm in N2
qÞ ∂Ωð Þ, we obtain

uk kN2
qÞ Ωð Þ ≤C φk kN2

qÞ ∂Ωð Þ: (53)

Consider a nonhomogeneous equation with a nonhomogeneous boundary condition

Lu ¼ f a:e:in Ω,
u=∂Ω ¼ φ,

�
(54)

where f ∈NqÞ Ωð Þ and φ∈N2
qÞ ∂Ωð Þ�are given functions. Representing the function

u in the form u ¼ vþ w, where

Lv ¼ f ,
v=∂Ω ¼ 0,

�
Lw ¼ 0,

w=∂Ω ¼ φ,

�
(55)
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from Theorem 1.20 and taking into account estimate (53), we arrive at the follow-
ing conclusion.

Theorem 1.21 Let the domain Ω and the operator L satisfy all the conditions of
Theorem 1.20. Then for ∀f ∈NqÞ Ωð Þ and ∀φ∈N2

qÞ ∂Ωð Þ the problem (54) is uniquely

solvable in the space N2
qÞ ∂Ωð Þ and regarding the solution the estimate

uk kN2
qÞ Ωð Þ ≤C fk kNqÞ Ωð Þ þ φk kLqÞ ∂Ωð Þ

� �
, (56)

is fulfilled, where C>0 is a constant independent of f and φ.

9. Some properties of a Riesz potential

For obtaining main results we need some properties of a Riesz potential and
embedding theorems regarding the spaces Nm

qÞ. In this section, we will give some
properties of an integral operator with a weak singularity. These properties are used to
study the properties of functions from class Wk

qÞ Ωð Þ. Let us remember the Sobolev
integral identity

u xð Þ ¼
Xk�1

αj j¼0
xα
ð

Ω
bα yð Þu yð Þdyþ

X
αj j¼k


ð

Ω
Aα x; yð Þ

rn�k
∂
αu yð Þdy, ∀u∈Ck �Ωð Þ, (57)

where bα ∈C �Ωð Þ, A∝ ∈L∞ Ω� Ωð Þ (generally speaking, for x 6¼ y: A∝ x; yð Þ is infi-
nitely differentiable). In establishing many properties of a function from Sobolev
classes the representation (57) plays a key role. In accordance with (57) consider the
integral operator (Riesz potential).

Kρð Þ xð Þ ¼ V xð Þ ¼
ð

Ω
A x, yð Þ

rλ
ρ yð Þdy, (58)

where r ¼ y� xj j; x∈Ω⊂Rn is a bounded domain, 0≤ λ< n; A∈L∞ Ω� Ωð Þ. The
following theorem is true.

Theorem 1.22 Let Ω⊂Rn be a bounded domain, ρ∈LqÞ Ωð Þ, A∈C �Ω� �Ωð Þ and
λq0 < n. Then operator (58) acts compactly from LqÞ Ωð Þ to C �Ωð Þ.
It is true the following classical analogue

Theorem 1.23 Let λq0 ≥ n and an integer s satisfy n� n� λð Þ< s≤ n. Then the
integral (58) defines a function that, on any intersection Ωs of the set Ω by a plane
of dimension s, is defined almost everywhere in the sense of the Lebesgue measure
in Rs. The operator K defined by formula (58) is bounded as an operator from
LqÞ Ωð Þ to Lr Ωsð Þ (also from LqÞ Ωð Þ to LrÞ Ωsð Þ), for ∀r: 1< r< r0 ¼ sq

n� n�λð Þq.
It is valid the following

Theorem 1.24 If λq0 ≥ n, then the operator K, defined by expression (58), acts
compactly from LqÞ Ωð Þ to Lr Ωð Þ (also from LqÞ Ωð Þ to LrÞ Ωð Þ), for ∀r : 1< r< r0 ¼

nq
n� n�λð Þq.
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10. Embedding theorems

To obtain Sobolev-type embedding theorems in spaces Wk
qÞ Ωð Þ we will use the

results obtained in the previous section. Throughout this section, we assume that the
domain Ω⊂Rn� is bounded and stellar relative to some sphere. Remember that a
domain is called stellar relative to some point if any ray outgoing from this point has
one and only one common point with the boundary of this domain. A domain is stellar
with respect to some set if it is stellar at every point of this set. The following theorem
is true.

Theorem 1.25 If qk> n, then Wk
qÞ Ωð Þ compactly embedded in C �Ωð Þ.

The following theorem is true.

Theorem 1.26 Let qk≤ n and Ωs ⊂Ω�be a piecewise smooth manifold of s dimen-
sions, where n� kq< s≤ n. Then Wk

qÞ Ωð Þ continuously embedded in Lr Ωsð Þ (also in
LrÞ Ωsð Þ), where 1< r< r0 ¼ sq

n�kq.

The following theorems are proved in a completely similar way.

Theorem 1.27 If qk≤ n, thenWk
qÞ Ωð Þ compactly embedded in Lr Ωð Þ (also in LrÞ Ωð Þ),

where 1≤ r< nq
n�kq .

The following theorem is also true.

Theorem 1.28 Let u∈Wk
qÞ Ωð Þ. Then it has all possible generalized derivatives of

any order l< k in Ω. At the same time Wk
qÞ Ωð Þ compactly embedded in Cl �Ωð Þ, if

k� lð Þq> n and in Wl
r Ωð Þ(also in Wl

rÞ Ωð Þ), if k� lð Þq≤ n and 1≤ r< nq
n�kq.

Let us give some equivalent norms in the grand-Sobolev spaces Wk
qÞ Ωð Þ (then in

Nk
qÞ Ωð Þ). Let a function f �ð Þ continuous in Rr have the following properties

αÞ f tð Þ≥0∧f tð Þ ¼ 0⇔t ¼ 0;

βÞ f λtð Þ ¼ λj jf tð Þ, ∀λ∈R∧∀t∈Rr; (59)

γÞ f tþ τð Þ≤ f tð Þ þ f τð Þ, ∀t; τ∈Rr:

In a completely analogous way to the classical case, the following theorem is
proved.

Theorem 1.29 Let r denote the number of distinct monomials of degree ≤ k� 1 and let
l1, … , lr be linear functionals bounded on Wk

qÞ Ωð Þ that do not simultaneously vanish on
any polynomial of degree ≤ k� 1, except for the identically zero. Let f �ð Þ be a continu-
ous function in Rr, having the properties of a norm αÞ � γÞ. Then the norm

uk k ∗qÞ,k ¼ f l1u; l2u; … ; lruð Þ þ
X
αj j¼k

 ∂
αuk kLqÞ Ωð Þ, (60)
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is equivalent to the norm �k kWk
qÞ Ωð Þ.

The following lemma is true.

Lemma 1.30 Let Ω⊂Rn be a bounded domain with sufficiently smooth boundary ∂Ω.
Then the norm �k k ∗qÞ,k, defined by expression

uk k ∗qÞ,k ¼
Xk�1

αj j¼0

ð

∂Ω
∂αudσ

����
����þ

X
αj j¼k

 ∂
αuk kLqÞ Ωð Þ, (61)

is equivalent to �k kWk
qÞ Ωð Þ in Wk

qÞ Ωð Þ. In this case for u∈ ∘Wk
qÞ Ωð Þ the following

inequality

uk kLqÞ Ωð Þ ≤C
X
αj j¼k

 ∂
αuk kLqÞ Ωð Þ, (62)

holds, C is a constant independent of u.

11. About the property (a). Fredholmness

Let us get back to the question of whether property (A) is satisfied. Let Ω⊂Rn be a
bounded domain. Let S⊂ �Ω be some n� 1ð Þ-dimensional surface. Define the following
class of functions. Let S⊂ �Ω belong to class C kð Þ and ε>0 be some number. Put
Ωε Sð Þ ¼ x∈Ω : ρ x; Sð Þ> εf g.

We say that the function f belongs to class Ck
0 Sð Þ (i.e. f vanishes in some neigh-

borhood S), if f ∈Ck �Ωð Þ and ∃ε>0 : f xð Þ ¼ 0, ∀x∈ΩnΩε Sð Þ. Denote by ∘Nk
qÞ Ω; Sð Þ the

closure Ck
0 Sð Þ in Nk

qÞ Ωð Þ.
Thus, it is clear that ∘Nk

qÞ Ω; ∂Ωð Þ ¼ ∘Nk
qÞ Ωð Þ. Denote by Fm

qÞ Ω; Sð Þ the factor space
Nm

qÞ Ωð Þ=∘Nm
qÞ Ω; Sð Þ. Thus, Fm

qÞ Ω; ∂Ωð Þ ¼ Fm
qÞ. Each function f ∈N1

qÞ Ωð Þ (also f ∈Nk
qÞ Ωð Þ)

has a (unique) trace f=S on S, and f=S ∈LqÞ Sð Þ. Consider the following class of functions

Nk
qÞ Sð Þ ¼ Nk

qÞ Ωð Þ=S ¼ f ∈LqÞ Sð Þ : ∃u∈Nk
qÞ Ωð Þ ) f ¼ u=S

n o
: (63)

The following theorem is true.

Lemma 1.31 Let S⊂ �Ω∧S∈C kð Þ be n� 1ð Þ-dimensional surface. Then the linear spaces
F k

qÞ Ω; Sð Þ and Nk
qÞ Sð Þ, k≥ 1, are isomorphic.

It is not hard to see that if f ∈ ∘Nk
qÞ Ω; Sð Þ, then f=S ¼ 0, ∀k≥ 1. Applying this

lemma, completely similar to Theorem 1.19, we can prove the following.

Theorem 1.32 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ. Let L be a
second-order elliptic operator with coefficients aij ∈C �Ωð Þ, ai, a ∈L∞ Ωð Þ, ∀i,j ¼ �1, n
defined by expression (44). Let S⊂ �Ω∧S∈C 2ð Þ be some n� 1ð Þ-dimensional surface
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and Ω0 ⊂ ⊂Ω⋃S (i.e. �Ω0 ⊂Ω⋃S) be an arbitrary domain. Then the following esti-
mate holds true for ∀u∈ ∘N2

qÞ Ω; Sð Þ:

uk kN2
qÞ Ω

0ð Þ ≤C Luk kNqÞ Ωð Þ þ uk kNqÞ Ωð Þ
� �

, (64)

where the constant C depends only on the ellipticity constants of operator L, on the
norms of the coefficients of L in L∞ Ωð Þ, on S and Ω0 (is independent of u).

It is not hard to see that Theorem 1.19 is a particular case of this theorem, for this it
is sufficient to take S ¼ ∂Ω. By Theorem 1.32 completely analogous to Theorem 9.14 of
the monograph [31, p. 240] the following theorem is proved.

Theorem 1.33 Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ and L be
an elliptic operator (44) with coefficients aij ∈C �Ωð Þ, ai, a ∈L∞ Ωð Þ, i, j ¼ �1, n . Then
the following estimate holds for ∀u∈ ∘N2

qÞ Ωð Þ:

uk kNqÞ Ωð Þ ≤C Lu� σuk kNqÞ Ωð Þ, (65)

for ∀σ ≥ σ0, where C; σ0 >0 are some constants that independent of u.
The following theorem is the result of Theorems 1.20 and 1.33.

Theorem 1.34 Let L be an elliptic operator (44) with coefficients aij ∈C �Ωð Þ, ai,
a∈L∞ Ωð Þ, i, j ¼ 1, n. Let Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ,
which has a property ΔqÞ

� �
. Then ∃σ0 >0: the equation Lu� σu ¼ f is uniquely

solvable for ∀f ∈NqÞ Ωð Þ in class ∘N2
qÞ Ωð Þ, ∀σ ≥ σ0.

The Fredholm alternatives hold for the equation Lu ¼ f, i.e. the following main
theorem is true.

Theorem 1.35 Let L be an elliptic operator (44) with coefficients aij ∈C �Ωð Þ, ai,
a∈L∞ Ωð Þ, i, j ¼ 1, n and Ω⊂Rn be a bounded domain with a boundary ∂Ω∈C 2ð Þ,
which has a property ΔqÞ

� �
. Then: i) if KerL ¼ 0 in ∘N2

qÞ Ωð Þ, then the boundary value

problem Lu ¼ f , u=Γ ¼ φ, has a unique solution for ∀φ∈F 2
qÞ Ωð Þ and ∀f ∈NqÞ Ωð Þ;

ii) KerL is a finite-dimensional subspace in ∘N2
qÞ Ωð Þ.

Regarding the proof of all these facts one can see the works [4, 6].

12. On one spectral problem in Morrey-Smirnov space

In this section we consider one spectral problem in Morrey-Smirnov space. Such
spectral problems arise in the problem of vibrations of a loaded string with fixed ends
is solved by applying the Fourier method (see [32–34]). Morrey space is also non
separable space and we define its subspace in which the infinitely differentiable
functions are dense. We prove that eigenfunctions of the considered spectral problem
form a basis in this subspace after eliminating an arbitrary term from them.

We need some facts from the theory of Morrey-type spaces. Let Γ be some
rectifiable Jordan curve on the complex plane C: By Mj jΓ we denote the linear
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Lebesgue measure of the set M⊂Γ. By the Morrey- Lebesgue space
Lp,α Γð Þ, 0≤ α≤ 1, p≥ 1, we mean a normed space of all functions f �ð Þ measurable on Γ
equipped with a finite norm fk kLp,α Γð Þ:

fk kLp,α Γð Þ ¼ sup
B

B∩Γj jα�1Γ

ð

B∩Γ
 f ξð Þj jp dξj j

� �1
p

< þ∞: (66)

Lp,α Γð Þ is a Banach space and Lp,1 Γð Þ ¼ Lp Γð Þ,Lp,0 Γð Þ ¼ L∞ Γð Þ. The embedding
Lp,α1 Γð Þ⊂Lp,α2 Γð Þ is valid for 0≤ α1 ≤ α2 ≤ 1 . Thus Lp,α Γð Þ⊂Lp Γð Þ, ∀α∈ 0, 1½ �, ∀p≥ 1.
The case of Γ � a, b½ � will be denoted by Lp,α a, bð Þ.

Denote by ~L
p,α

a, bð Þ the linear subspace of Lp,α a, bð Þ consisting of functions whose
shifts are continuous in Lp,α a, bð Þ, i.e. f � þ δð Þ � f �ð Þk kLp,α a,bð Þ ! 0 as δ! 0: The

closure of ~L
p,α

a, bð Þ in Lp,α a, bð Þ will be denoted by Mp,α a, bð Þ. In [35] the following
theorem is proved.

Theorem 1.36 The exponential system ei nt
� �

n∈Z is the basis in Mp,α �π, πð Þ,
1< p< þ∞, 0< α≤ 1:

Using this theorem, it is easy to obtain the following

Theorem 1.37 Each of the trigonometric systems sinnxf g∞n¼1 and cosnxf g∞n¼0 forms
the basis for Mp,α 0, πð Þ, 1< p< þ∞, 0< α≤ 1.
Consider a sample eigenvalue problem for the discontinuous second-order differ-

ential operator

�y00 xð Þ ¼ λy xð Þ, x∈ 0,
1
3

� �
∪

1
3
, 1

� �
, (67)

with the boundary conditions

y 0ð Þ ¼ y 1ð Þ ¼ 0,

y
1
3
� 0

� �
¼ y

1
3
þ 0

� �
,

y0
1
3
� 0

� �
� y0

1
3
þ 0

� �
¼ λmy

1
3

� �
,

9>>>>>=
>>>>>;

(68)

where λ is the spectral parameter, m is a non-zero complex number.
Let us give some results from [36], which we will need throughout the paper.

Lemma 1.38 [36] The spectral problem (67), (68) has two series of eigenfunctions
which are given by the following expressions

y1,n xð Þ ¼ sin 3πnx, x∈ 0, 1½ �, n ¼ 1, 2, … , (69)

y2,n xð Þ ¼
sin ρ2,n x� 1

3

� �
þ sin ρ2,n xþ 1

3

� �
, x∈ 0,

1
3

� �
,

sin ρ2,n 1� xð Þ, x∈ 1
3
, 1

� �
, n ¼ 0, 1, 2, … :

8>>><
>>>:

(70)
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Let us construct the operator L, which linearizes the problem (67), (68) in the
direct sum Lp 0, 1ð Þ⊕C. Denote by W2

p 0, 1
3

� �
⊕W2

p
1
3 , 1
� �

the space of functions whose

restrictions to intervals 0, 1
3

� �
and 1

3 , 1
� �

belong to Sobolev spaces W2
p 0, 1

3

� �
and

W2
p

1
3 , 1
� �

, respectively, where 1< p<∞: Let us define the operator L in the following
way. As its domain DL we take the manifold

DL ¼ ŷ ¼ y xð Þ,my
1
3

� �� �
: y xð Þ

�
∈W2

p 0,
1
3

� �
⊕W2

p
1
3
, 1

� �
,

y 0ð Þ ¼ y 1ð Þ ¼ 0, y
1
3
� 0

� �
¼ y

1
3
þ 0

� ��
,

(71)

and for ŷ∈DL the operator L is defined by the relation

Lŷ ¼ �y00; y0 1
3
� 0

� �
� y0

1
3
þ 0

� �� �
: (72)

The following lemma holds true.

Lemma 1.39 The operator L defined by expressions (71), (72) is a densely defined
closed operator with a completely continuous resolvent. The eigenvalues of the
operator L and the problem (67), (68) coincide. If y xð Þ is the eigenfunction (associ-
ated function) of problem (67), (68), then ŷ ¼ y xð Þ;my 1

3

� �� �
is the eigenvector

(associated vector) of the operator L:
In order to obtain the main results, we need some concepts and facts from the

theory of bases in a Banach space.
Recall the following definition.

Definition 1.40 The basis unf gn∈N of Banach space X is called a p-basis, if for any
x∈X one has the inequality

X∞
n¼1

 x, ϑnh ij jp
 !1

p

≤M xk k, (73)

where ϑnf gn∈N is the biorthogonal system for unf gn∈N .

Definition 1.41 The sequences unf gn∈N and φnf gn∈N of Banach space X are called p-
close, if

X∞
n¼1

 un � φnk kp <∞: (74)

We will also use the following results from [37, 38] (see also [39, 40]).

Theorem 1.42 [37] Let xnf gn∈N form a q-basis for the space X, and the system
yn
� �

n∈N is p- close to xnf gn∈N, where
1
pþ 1

q ¼ 1. Then the following properties are
equivalent:

1. yn
� �

n∈N is complete in X;

2. yn
� �

n∈N is minimal in X;
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3. yn
� �

n∈N forms an isomorphic basis to xnf gn∈N for X.

Let X1 ¼ X⊕Cm and ûnf gn∈N ⊂X1 be some minimal system, and ϑ̂n
� �

n∈N ⊂X ∗
1 ¼

X ∗⊕Cm be its biorthogonal system:

ûn ¼ un; αn1, … , αnmð Þ; ϑ̂n ¼ ϑn; βn1, … , βnmð Þ: (75)

Let J ¼ n1, … , nmf g be some set of m natural numbers. Suppose

δ ¼ det βnij

���
���
i,j¼1,m

: (76)

The following theorem holds true.

Theorem 1.43 [38] Let the system ûnf gn∈N form a basis for X1. In order to the
system unf gn∈NJ

, where NJ ¼ NnJ, form a basis for X it is necessary and sufficient that
the condition δ 6¼ 0 is satisfied. In this case the biorthogonal system to unf gn∈NJ

is
defined by

ϑ ∗
n ¼

1
δ

ϑn ϑn1 … ϑnm

βn1 βn11 … βnm1
… … … …

βnm βn1m … βnmm

���������

���������
: (77)

For δ ¼ 0 the system unf gn∈NJ
is not complete and is not minimal in X.

Let X be a Banach space and uknf gk¼1,m; n∈N be some system in X.

Let a nð Þ
ik , i, k ¼ 1,m, n∈N, be some complex numbers. Put

An ¼ a nð Þ
ik

� �
i,k¼1,m

and Δn ¼ detAn, n∈N: (78)

Let us consider the following system in space X

ûkn ¼
Xm
i¼1

a nð Þ
ik uin, k ¼ 1,m; n∈N: (79)

Theorem 1.44 If the system uknf gk¼1,m; n∈N forms a basis for X and

Δn 6¼ 0, ∀n∈N, (80)

then the system ûknf gk¼1,m; n∈N forms a basis with parentheses for X. If in addition
the conditions

supf
n

Ank k, A�1n

�� ��g<∞, sup
n

uknk k, ϑknk kf g<∞, (81)

hold, where ϑknf gk¼1,m; n∈N ⊂X ∗ is biorthogonal system to uknf gk¼1,m; n∈N, then
the system ûknf gk¼1,m; n∈N forms the usual basis for X.
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The following theorem holds true.

Theorem 1.45 The system of eigen and associated vectors of the operator L forms
the basis for space Mp,α 0, 1ð Þ⊕C, 1< p<∞, 0< α≤ 1:

Now, let us consider the basicity of the system y0
� �

∪ yi,n
n o∞

i¼1,2; n∈N
with a

removed function in space Mp,α 0, 1ð Þ:
Theorem 1.46 If from the system of eigen and associated functions of problem (67),

(68) y0
� �

∪ yi,n
n o∞

i¼1,2; n∈N
we eliminate any function y2,n0 xð Þ, corresponding to a

simple eigenvalue, then the new system forms a basis for Mp,α 0, 1ð Þ,1< p<∞, 0< α≤ 1.
And if we eliminate any function y1,n0 xð Þ from this system, then the obtained system does
not form a basis in Mp,α 0, 1ð Þ; moreover, in this case this system is not complete and is
not minimal in this space.

Proof. For the eigenfunctions z0f g∪ zi,nf g∞i¼1,2; n∈N of the adjoint problem we have
z1,n 1

3

� � ¼ 0 for any n∈N and z2,n 1
3

� � 6¼ 0. On the other hand, the eigenvectors of
the adjoint operator L ∗ are defined by ẑn ¼ zn,mzn 1

3

� �� �
, n ¼ 0, 1, … , . Applying

Theorem 1.43 to the system ŷ0
� �

∪ ŷi,n
n o∞

i¼1,2; n∈N
, we notice that δ ¼ mz1,n 1

3

� � ¼ 0

for any n∈N and δ ¼ mz2,n 1
3

� � 6¼ 0 for any eigenfunction corresponding to a
simple eigenvalue, and the statements of the theorem follow from the
corresponding statements of Theorem 1.43.
Theorem is proved.
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Chapter 5

Chaos Analysis Framework:  
How to Safely Identify and 
Quantify Time-Series Dynamics
Markus Vogl

Abstract

Within this chapter, a practical introduction to a nonlinear analysis framework 
tailored for time-series data is provided, enabling the safe quantification of underly-
ing evolutionary dynamics, which describe the referring empirical data generating 
process. Furthermore, its application provides the possibility to distinct between 
underlying chaotic versus stochastic dynamics. In addition, an optional combination 
with (strange) attractor reconstruction algorithms to visualize the denoted system’s 
dynamics is possible. Since the framework builds upon a large variety of algorithms 
and methods, its application is by far trivial, especially, in hindsight of reconstruction 
algorithms for (strange) attractors. Therefore, a general implementation and applica-
tion guideline for the correct algorithm specifications and avoidance of pitfalls or 
other unfavorable settings is proposed and respective (graphical) empirical examples 
are shown. It is intended to provide the readers the possibility to incorporate the 
proposed analysis framework themselves and to conduct the analyses and reconstruc-
tions properly with correct specifications and to be knowledgeable about misleading 
propositions or parameter choices. Finally, concluding remarks, future avenues of 
research and future refinements of the framework are proposed.

Keywords: nonlinear dynamics, attractor reconstruction, time-series quantification, 
chaos analysis framework, financial markets

1. Introduction

Following current estimates, the predictive analytics market is expected to grow 
from around 10.5 Bn. USD at the end of 2021 to around 28–30 Bn. USD until 2030, 
thus, stating the immense relevance of successful forecasting capabilities for the 
technological advancement in our digitalized, fully connected and global economy 
[1–3]. Therefore, respective fields of applications for predictive analytics (or related 
methodologies) can be represented by any real-world system interacting with 
practitioners or researchers alike [4]. For example, climate, hydrological cycles, 
ecosystems, the human brain, neuroscientific observations, the universe, engineer-
ing applications, economic systems or financial markets can be seen as such real-
world systems [5]. Nonetheless, previously denoted examples are all classified as 
complex systems [5].
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The meaning of referring to complex systems renders itself obvious once one 
regards contemplation of real-life confrontations, in which similar scenarios tend to 
evolve similarly and occur repeatedly [6]. The latter similar repetition of scenarios 
leads to the association of a predefined level of determinism in said real-life systems 
due to the timely evolution of memory and experience effects [6, 7]. Henceforth, quan-
titative modeling via deterministic differential equations proposes itself as a suitable 
methodology to cope with these kind of systems, since the respective entireties can be 
characterized by equivalent mathematical differential equations [6, 8]. Presupposing 
that the initial conditions of the referring systems are exactly disclosed, the respective 
differential equations enable the predictions of the systems’ final states to an indefinite 
level of precision and time span due to the deterministic characteristics of the systems 
[6]. In terms of predictive analytics and forecasting attempts of such systems, presup-
posing said deterministic scenario, would illustrate the prerequisite of the future 
evolutions of the systems to be completely explicable via the current states, principally 
indicating a ‘plainness’ in terms of the predictability of such systems [9, 10].

However, scrutinizing one of the previously denoted examples as a representation 
of such systems with deterministic real-world characteristics leads to the emergence of 
unexpectedly drastic insights with vast practical implications [11]. The before men-
tioned real-world systems, such as financial markets, viewed as complex systems and 
driven by inherent or underlying empirical properties (i.e. stylized facts1), result in a 
contrastingly challenging effort in terms of predictability and mathematical modeling 
in comparison to the before assumed ‘plainness’ of deterministic forecasts [6, 11].  
Consequently, the determination of the true data generating process (DGP) of time-
series, which are empirical observations of the underlying complex systems such 
as a stock price series for financial markets, with respect to stylized facts and other 
innovations is advantageous for the systems’ observers, researchers or other involved 
entities [20, 21]. Under the presupposition of complex dynamical systems, seemingly 
conceptual differences are the basis for the discussion on the underlying nature and 
essential functioning of the emerging dynamics of, for example, financial markets 
or other defined real-world systems [6]. A deeper understanding of such assumed 
underlying laws of dynamical motions would facilitate the thorough application of 
chaos analysis in such real-world systems [22].

Substantial literature about testing underlying systems’ dynamics and chaos in 
such real-world systems (e.g. financial markets) provides strong evidence of nonlin-
earity and as a consequence, a special class of models, namely chaos models, arose  
[11, 23]. Chaos institutes a deeper rationale for the above-mentioned essential char-
acteristics and the underlying nature of the evolutionary processes driving a complex 
(real-world) system, which is affected by nonlinearities [10]. The first property, or 
distinctive feature of chaotic dynamical systems, is that even though deterministic, 
these systems characterize themselves via sensitivity to initial conditions2, implying 

1 Stylized facts, in particular, on financial markets can be volatility dynamics (e.g. [12]), nonlinearity 
(e.g. [13]), asymmetry (e.g. [3]), long memory (e.g. [14]), multifractality (e.g. [15]) and momentum 
driven trend characteristics, which clearly contradict the efficient market hypothesis [16]. Furthermore, 
studying stylized facts requires considering the heterogeneity of actors (e.g. [17]), resulting in multifractal 
timescales and behavioral patterns (e.g. [18]). All these properties occur at different timescales simultane-
ously, indicating the existence of stated nonlinearities (e.g. [19]) within the complex system of financial 
markets. Note that other complex systems may yield a similar variety of empirical characteristics to be 
regarded in respective predictive endeavors.
2 Deviations from a trajectory of the system’s phase (or state) space.
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slight fluctuations or even marginal perturbations of the initial conditions to be 
capable to render precise predictions on a long time scale meaningless and futile in 
their totality due to exponentially increasing error terms [9, 22]. In addition, data 
measurement limitations3 in regard to current initial conditions, state an upper bound 
of the predictability, even if the model is completely disclosed [22]. Second to elabo-
rate on, is the recurrence property, reflecting upon the dynamical behavior of such 
systems, which can potentially be exploited for the characterization of underlying 
dynamical evolutionary rules (or empirical DGPs) as presented later [6, 8].

Recent trends within chaotic dynamical analysis have led to a proliferation of pub-
lications, stating structural nonlinear models to be capable of displaying instabilities 
and chaos to be able to mimic empirical time-series properties4 [22]. Henceforth, a 
crucial pillar in nonlinear forecasting for over 40 years is the revelation of whether the 
considered time-series data sets are generated via deterministic or stochastic5 dynami-
cal systems since their respective mathematical operations differ noticeable (see the 
bibliometric review of Vogl [25]) [23, 24, 26]. Speaking in a mathematical sense, 
a chaotic dynamical system has a dense collection of points with periodic orbits, sensi-
tivity to initial conditions and topological transitivity, which is discussed in Eckmann 
and Ruelle [27], Devaney [28], BenSaïda and Litimi [29]. Chaos further refers to 
bounded steady-state behavior, which neither represents an equilibrium point, nor 
a quasi-periodic nor a periodic point nor indicates that nearby points separate expo-
nentially in finite time, resulting in those chaotic systems revealing very complex and 
seemingly random evolutions out of the view of standard statistical tests [22].

Hence, chaos reveals apparent randomness of (chaotic) complex system realiza-
tions, yielding underlying patterns, interconnectedness, feedback loops, recurrence, 
self-similarity (fractality) and self-organization capabilities [30–32]. For example, in 
financial systems, hyperchaotic6 phenomena potentially evolve into crises, denying any 
form of system control [37]. Referring to scientific literature, the first tests of chaotic 
behavior for complex time-series systems were executed following the Brock-Dechert-
Scheinkman (BDS) test of Brock et al. [38], yet, revealed its omnipotence, since it is 
unable to differentiate, whether the revealed nonlinearities originate from stochastic or 
chaotic dynamics [39]. Unfortunately, even comparisons between the most powerful 
tests (e.g. close-return test, BDS test and Lyapunov exponent7) do not result in conclusive 
findings [39]. In point of fact, several propositions toward a more conclusive solution in 
the scientific literature were brought to light, with no further positive indications [39].

The former statement is an allegory for the vast dilemma concerning the deter-
mination of the true, mostly unknown nature of complex dynamical (real-world) 
systems – whether it be stochasticity or chaoticity [40]. These systems are almost 
graphically similar and cannot be differentiated by respective statistical standard tests 
[29, 41]. Following Aguirre and Billings [41], a verification of strong noise influence 
on the identifiability of chaotic dynamics is provided, leading to misspecifications 

3 In terms of measurement errors, sampling frequency and data accuracy, among others.
4 Thus, vast disseminations of literature about deterministic chaotic behavior and the design of (economic) 
models in the regime of chaotic behavior from a theoretical view arose [24].
5 Originating from pure randomness.
6 Hyperchaos is considered, if more than two positive Lyapunov exponents exist (e.g. [33–35]). If a discrete 
nonlinear system is dissipative (spontaneously symmetry breaking), a positive maximum Lyapunov expo-
nent is an indication of chaotic dynamics within the system under regard [36].
7 A positive maximum Lyapunov exponent can occur even in non-chaotic series, due to inadequate applica-
tion on noisy data sets [39].
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of chaotic dynamics as stochastic dynamics due to noise-disturbance, rendering 
the discovery of evolutionary chaotic processes very difficult [42]. The majority of 
empirical time-series data is often small and noisy in comparison to its laboratory-
based ‘physics´ data counterparts’, suggesting a preclusion of dynamical identification 
if the noise levels are greater than a predefined critical threshold value [10, 41, 43]. 
Therefore, the great controversy of the nonlinear empirical literature as stated above 
is whether a complex system is characterizable via (low-dimensional) deterministic 
chaos or generated via stochastic dynamics and if those chaotic complex systems are 
controllable [10, 43].

To solve this ongoing debate, Vogl and Rötzel [40] and Vogl [44] successfully 
proposed distinct analysis frameworks, enabling the clear and safe quantification 
and determination of the underlying (empirical) DGPs of time-series data sets. 
Nonetheless, due to publication technical reasons, Vogl and Rötzel [40] present a 
framework specification tailored toward solely stationary time-series, while Vogl 
[44] supposes additional customization for non-stationary data. However, these 
specifications originate from one original, singular and holistic chaos analysis frame-
work for nonlinear time-series, which will be presented in its totality hereinafters. 
Furthermore, since the determination of the (empirical) DGP by the proposed 
framework is by far trivial in its application, owing to a large variety of advanced 
algorithms to be implemented, this chapter is purposed to provide a clear and distinct 
practical guideline on how to successfully implement the denoted analysis frame-
work. Particularly, the determination of ‘scaling regions’ via correlation sum and 
correlation dimensional schemes (refer to [45–47]) and the reconstruction algorithms 
of (strange, fractal) attractors of complex dynamical systems with chaotic traits (see 
[10, 48]) represent one of the main emphases, among others, since many erroneous 
conductions are possible and are widely dispersed throughout the scientific literature 
[25, 40, 45]. The distinct goal and aim of this chapter are to provide the researcher 
and practitioner with an empirical-practical guide on how to implement the pre-
sented chaos analysis framework successfully, thus, determining the (empirical) 
DGP and reconstructing potentially existing system attractors out of a scalar time-
series given [40, 44]. Moreover, the insights provided are mostly independent of the 
framework, generalizable and abstractable to any other kind of subsequent or related 
empirical analyses conducted.

Therefore, given in Section 2, the framework will be introduced completely and 
its inherent parts briefly reconciled, while the example data and subsequent correct 
specifications and selections to conduct a correct analysis are proposed in Section 
3. Furthermore, Section 4 levels around the avoidance of pitfalls and the empirical 
results of misspecifications via practical examples, before concluding remarks and 
future avenues are discussed in Section 5. Please note that mathematical definitions 
or formulas are neglected and the reader is referred to the stated literature instead. If 
no further explication is granted, the literature is seen as a prerequisite for arguments 
and propositions, since the focus is purely on practical applicability in a theoretical-
scientific context.

2. Framework overview

Before elaborating on the analysis framework itself, it is relevant to reconcile the 
contribution and relevance of the propagated inherent paradigm shift in quantita-
tive modeling, namely, the previous determination of the empirical DGP and its 
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characteristics before selecting referring mathematical procedures and models 
[40, 44]. Referring back to the introductory mentioned expected market increase by 
around 20 Bn. USD in predictive analytics, it is crucial for successful forecasting to be 
informed about the underlying evolutionary building mechanics of the to be analyzed 
time-series data, before deploying cost-intensive predictive applications. One may 
imagine deploying planned-out long-term predictive solutions on time-series sys-
tems, which however are chaotic and, thus, only predictable over a short time scale. 
This would either lead to disastrous outcomes and very poor predictive accuracy or 
render model performance and the totality of forecasts futile due to exponentially 
increasing error terms owing to said chaotic mechanics [49, 50]. Instead, the pro-
posed paradigm shift underlying the framework states the initial determination of 
the empirical DGP with inherent empirical characteristics, leading to exploitable 
knowledge about the predictive time horizons, hidden system properties and, there-
fore, the minimum model capability requirements, before practical implementation 
and roll-outs are conducted [40]. The model selections, thus, follow the insights of 
the determined empirical DGP [44]. Regarding the scientific side of the framework, 
existing literature and research do not execute sufficient theoretical precaution within 
respective applications and interpretations, leading to fragmentation and dispersion 
of methodology and modeling, thereby representing the rationale for the framework’s 
creation [40, 45].

Hereinafter, the chaos analysis framework is presented in detail. In Section 2.1, the 
framework in general and its components are elucidated, while sections 2.2 through 
2.7 level around the contents of each analysis step, while also introducing the inher-
ently applied algorithms and methods in a sparse and nonmathematical as well as 
practical-error avoidant oriented manner.

2.1 Chaos analysis framework

The holistic chaos analysis framework presented in Figure 1, consists of six steps 
and will be elucidated hereinafter. Before elaborating on the steps in detail, the brief 
course of analysis will be outlined. First, it is mandatory to analyze given noise con-
tamination and its respective levels and the nature of the potential noise [43]. Noise 
is capable of disturbing the identification of the underlying dynamics and, thus, is 
regarded as analysis destructive [45]. Furthermore, it is deemed favorable to gather 
basic statistical insights from the (denoised) datasets under analysis via determina-
tion of standard statistical tests, which incorporate tests for stationarity, nonlinearity 
and correlations, among others [40, 45]. It is possible to determine the applicability 
of reconstructions solely based on these insights. Second, several chaos measures 
and nonlinear metrics are calculated such as the sample entropy (see [51]), Lyapunov 
exponents (refer to [52, 53]) or the Hurst exponent (see [54]). These insights are 
relevant to determining the nature of the underlying dynamical system based upon 
mathematical procedures. Third, if applicable, (strange) attractor reconstruction 
algorithms can be implemented to reconstruct the system’s attractor visually. Fourth, 
an independent recurrence quantification analysis (RQA) paired with discrete 
wavelet transformations (DWT, refer to [55]) can be applied to (a) determine the 
existence of various sub-dynamics and (b) exploit denoted recurrence properties 
mathematically as well as visually [6, 8, 56]. This reveals hidden characteristics of the 
analyzed datasets. Fifth, spectral characteristics, especially exploitable in forecast-
ing by applying fractional calculus, are analyzed via wavelet-based multiresolution 
analysis (MRA) [57–59].
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Finally, (multi)scaling and (multi) fractal characteristics are elaborated on via the 
conduction of a multifractal analysis. The multifractal analysis includes a multifractal 
detrended fluctuation analysis (MFDFA, see [60]) as basis, which renders (locally) 
minimum and maximum Hurst exponents graphically visible, while subsequently 
providing inherent scaling coefficients. In particular, generalized Hurst exponents, 
multifractal scaling exponents and the multifractal scaling spectrum can be derived, 
thereinafter. Moreover, distributional coherence tests can be applied to validate, the ‘less 
worst’ distributional fit and, whether a power law is present in the data (refer to [61]). 

Figure 1. 
Generalized chaos analysis framework for the determination of the empirical DGP and underlying empirical 
system characteristics based on scalar time-series data taken with permission of [40, 44]. Step I (prerequisites 
and standard tests) consists of testing prerequisites, which are required to conduct a nonlinear dynamical analysis. 
Therefore, noise reduction is mandatory, followed by tests for stationarity, Gaussianity (distribution in general), 
nonlinearity, and space-time separations, which can prevent an analysis. Step II (chaos measures and tests) 
encompasses a collection of effective nonlinear dynamical or chaotic measures. First, a correlation sum scheme is 
applied to determine and test significant ‘scaling regions’. Moreover, the dimensionalities and properties of the 
system are tested (e.g. correlation dimension, Lyapunov exponents). Furthermore, information content via sample 
entropy is analyzed, among others. Step III (phase space reconstruction) involves the proper reconstruction of 
the system and a graphical representation using embedding theorems such as the traditional Takens’ embedding. 
Step IV (recurrence quantification analysis) is an independent confirmation of the previous steps, namely, the 
ability to describe and quantitatively measure the characteristics of the underlying dynamics, optionally, with 
the application of rolling window scale averages and a subsequent discrete wavelet transformation (DWT) 
application to determine the potential existence of sub-dynamics within the data. Furthermore, the quantification 
is not dependent on the prerequisites of steps I–III. Step V (multiresolution analysis) elaborates on the spectral 
properties of the data and is elucidated via continuous wavelet power spectra (CWT). Step VI (distributions 
and power-Laws) is to determine power-law characteristics via multifractal detrended fluctuation analysis 
(MFDFA) and distributional coherence tests.
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In total, holistic insight into the underlying empirical DGP and inherent characteristics 
is obtained, with which one may select appropriate models thereinafter.

2.2 Prerequisites and standard tests

Initially, the prerequisites and standard tests are presented briefly. The time-series 
has mandatorily to be denoised properly to ensure a descent beyond a predefined 
threshold level, best via nonlinear filter schemes [43, 45, 58]. Most time-series are 
contaminated by noise due to measurement errors and microstructure noise occur-
rences [39, 62]. Following Aguirre and Billings [41], noise exerts a mentionable (nega-
tive) influence on the identifiability of processes inherited via chaotic dynamics. 
Henceforth, if a certain level of noise is exceeded, accurate estimations of dynamic 
models and subsequent analyses are voided in their entirety8 [41]. The only feasible 
approach, therefore, is the drastic reduction of noise levels to ‘workable levels’, since 
contaminating noise in evolutionary dynamics may be dynamical noise in either 
additive or multiplicative specification, thus, disrupting the dynamical identification 
on several even small scales [26, 63]. Regarding the nonlinear filter structures, two 
criteria have to be met, namely, (1) the applied filters are required to be unbiased and 
(2) the residual variance of the filters levels the noise variance [41]. Please note that 
some nonlinear filters such as the median filter Introduce (artificial) autocorrelations 
in the data, which should be avoided, thus, wavelet filters are deemed to be favorable 
for nonlinear denoising (refer to [55, 65, 66]).

Once the time-seriess is successfully denoised, standard statistics can be applied to 
elaborate on primal insights into the underlying mechanics [40]. Within the frame-
work, the first and – destructive of reconstruction algorithms if missing – property 
is stationarity9 [40]. One has to exert special strictness in terms of stationarity, thus, 
proposing a 1% significance level for two successive tests is deemed favorable [44, 45]. 
For the framework, the augmented Dickey-Fuller (ADF) test and the more power-
ful Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test are executed (refer to [67, 68]), 
which both have to concur to be regarded as valid results in terms of stationarity. To 
elaborate on the initial test of distributional characteristics, a Kolmogorov-Smirnov 
(KS) test for a Gaussian specification (refer to [69]) is conducted, yet, other specifica-
tions are possible. Nonetheless, a 1% level of significance is recommended to adhere 
to the strictness of the presuppositions of the analysis. Moreover, to test for the exis-
tence of nonlinearity, which is a prerequisite for the existence of chaotic dynamics, 
the BDS test (refer to [38]) is executed. Please note that due to its stated omnipotence, 
it is only applied to identify nonlinearity in general and specifically not to distinguish 
stochasticity versus chaoticity [39]. Further note that sufficiently enough embedding 
dimensions have to be selected for the BDS test as well as subsequent methodologies 
to meet practical insights.

Lastly, correlation structures have to be elucidated, beginning with the calculation 
of autocorrelation functions (ACFs, see [70]) with sufficiently large lags (e.g. 100–300). 
The ACFs serve as the basis for the validation of potential reconstructions (see Section 
2.4) and indicate, whether analysis disturbance is given. Moreover, following Kantz 

8 For example, too much noise, leads to test rejections, disrupts the Grassberger-Procaccia algorithm  
(see [46, 47]), thus, the correlation dimensional estimates and alters the Lyapunov exponent calculations 
[63, 64].
9 Even if scientifically debatable, ‘brute-force’ methods such as logarithmic distances will provide suf-
ficient results, since the sole purpose is analysis not forecasting, thus, no drawbacks are to be expected.
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and Schreiber [45], nonzero autocorrelations are deemed problematic owing to trajec-
tory vectors being closely located in phase space due to continuously evolving time, 
which is also known as temporal correlation. To determine a relevant ‘scaling region’ 
by the application of correlation sum schemes (see [46, 47]), the absence of temporal 
correlations is mandatory due to fitting issues in regional curve shapes and the lack of 
invariance of said correlation sums as depicted in [45]. Hence, dynamically correlated 
time-series violate the estimation requirements and if sufficiently large or worst oscil-
lating, the analysis is futile [45].

To analyze temporal correlations, Provenzale et al. [71] propose estimates of the 
correlation time by applying time separation plots, presupposing pairs of points in 
phase space to be dependent on threshold distance and, additionally, on elapsed time 
in between respective measurements. Henceforth, the contour curves of said plots 
have to saturate and remain at an acceptable and non-oscillating boundary level [71]. 
The existence of a sufficient ‘scaling region’ is the premise for successful reconstruc-
tions [45]. Building upon the correlation sum scheme, determining the slopes of each 
correlation sum curve per selected embedding dimension results in an estimate of 
the (fractal) correlation dimension10, which is plotted by itself and has to saturate as 
well (refer to [45]). Novelty within the framework to determine the validity of the 
underlying ‘scaling region’ is a step difference test proposed by Vogl and Rötzel [40], 
which tests step differences of the correlation sum curves in a Student’s t-test against 
zero and graphically examines the resulting p-value heatmap. One can select the 
minimum embedding dimension by selecting the one, which has no p-value above 
1% significance. Note that the existence of an ongoing ‘scaling region’ is also directly 
visible in the heatmap.

2.3 Chaos measures and tests

In addition to the prerequisites, several singular chaos metrics are worth 
 determining to gather more initial insights into the potential underlying nature of 
the time-series dynamics under analysis [40]. First, the sample entropy as proposed 
in Richman and Moorman [51] is calculated, reflecting information content and 
self-similarity characteristics, thus, delivering insights into the presence of fractality 
within the data.

Furthermore, various Lyapunov exponents are determined, namely, (1) the maxi-
mum Lyapunov exponent, (2) the Lyapunov spectrum and (3) the Lyapunov time. 
Lyapunov exponents measure chaotic strength in a dynamical system by measuring 
the exponential convergence or divergence of nearby trajectories in phase space 
[45, 73]. It is possible to calculate Lyapunov exponents equaling the number of phase 
space dimensions, i.e. the number of the estimated embedding dimension, leading 
to the Lyapunov spectrum, which indicates the nature of the underlying dynami-
cal systems, whether it be conservative or dissipative [74]. The largest exponent is 
labeled as the maximum Lyapunov exponent, depicting the exponential divergence 
or convergence of close trajectories and can be determined via the algorithm of 
Rosenstein et al. [75]. Note that a positive maximum Lyapunov exponent in com-
bination with a negative Lyapunov spectrum sum is mostly seen as a sign of chaos, 
yet, is critiqued by the lack of distributional tests [11]. Therefore, a distributional 
rationale in form of the Bask-Gençay bootstrapping test is favorable, since it provides 

10 In finite scalars like time-series, according to Ramsey et al. [72], correlation dimensional estimates tend 
to return artificially smaller values than the theoretically assumable fractal dimension.
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a significance indication, particularly, in cases of small positive, beyond zero maxi-
mum Lyapunov exponents at a sufficient level of significance [76]. Please note that 
several ten to a hundred thousand of bootstrapping steps are advisable to obtain 
reliable results. Moreover, the Lyapunov time represents the inverse of the maximum 
Lyapunov exponent and, thus, implies the time-span, the system requires to render 
itself chaotic and non-predictable, i.e. the time in which the exponential growing 
errors remain in a ‘forecastable’ range, before diverging too far [53]. The Lyapunov 
time is interpretable in either time-series units or in SI units [seconds] for real-world 
applications [53].

Finally, the Hurst exponent or in the case of non-stationary data, the detrended 
fluctuation analysis (DFA) alpha value is calculated to obtain in-depth information 
about the evolutionary nature of the dynamical system [54, 77, 78]. In an ongoing 
debate, the interpretation of the Hurst exponent and its initial interpretation by 
Benoit Mandelbrot (see [79, 80]) is challenged [16, 25, 44].

The Hurst exponent is interpreted as follows, namely, (1) the system is repre-
senting a Wiener process11, should the Hurst exponent equal exactly 0.5, (2) the 
system is revealing long memory effects if it is exceeding 0.5 and (3) is being a 
mean-reverting system, should the exponent value be below 0.5 [16]. Nonetheless, 
recent empirical studies (refer to [16, 44]) state that the exceedance of 0.5 by the 
Hurst exponent reveals measurable fractal trends (or trending characteristics), 
which are an explicative rationale for momentum effects on financial markets. 
Within the setting of this analysis, the latter, novel indication is more suitable. 
The exceedance of 0.5 indicates persistency and the existence of a power-law, 
resulting in the denoted fractal characteristics [16, 44, 81]. Additionally, the Hurst 
exponent can be applied to determine the fractal dimensionality estimation (2-H) 
[82]. Finally, as an additional novelty, is adapting the Bask-Gençay test to the Hurst 
exponent as depicted in Vogl [44], ensuring the said exponent to be tested on 
significance [83]. In total, the second step enables the elucidation of the dynamical 
systems’ properties directly, thus, providing a solid indication of its underlying 
evolutionary nature.

2.4 Phase space reconstruction

An important step toward the conduction of successful predictions of nonlinear 
time-series systems is the method of attractor reconstruction, leading back to the 
1920s (refer to [84]) and the ideas of Packard et al. [85], Ruelle [86] and Takens [48], 
which represent the calculation of various invariant quantities required to character-
ize the underlying system [87]. This is mostly the presupposition for the nonlinear 
dynamical analysis of a time-series and state space model implementations [88]. The 
main contribution of reconstructions is given by the reconstruction of phase space, 
which is capable of preserving geometrical invariants (e.g. eigenvalues, fixed points 
or fractal dimension) of referring system attractors, including the Lyapunov expo-
nent of according trajectories [88]. To phrase it differently, attractor reconstruction 
can be seen as a method to recreate the full deterministic state space based upon a 
lower dimensional time-series (i.e. a scalar) [87]. Thence, state space reconstruction 
is the generation of a multidimensional, deterministic state space out of the underlying, 
sampled time-series data [88]. Furthermore, embedding is, thus, the mathematical 

11 Only in this scenario the efficient market hypothesis taken out of quantitative finance holds and is 
violated else.
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process by which an attractor is reconstructable presupposing a given set of scalar 
measurements, i.e. time-series datasets owing to dimensional preservation charac-
teristics [43].

The resulting accuracy of the attractor reconstruction is directly dependent on the 
methodology applied to the reconstruction process and also influences the Lyapunov 
spectrum [87]. Therefore, several problems may occur, since the Lyapunov exponent 
cannot be labeled as invariant toward initial conditions, thus, stating a dependence 
on sample size within the reconstruction of time-series trajectories in phase space 
[11]. Following Nichols and Nichols [87], several methods for delay-time and embed-
ding dimension selection exist for the standardized delay coordinate reconstruction, 
namely, the comparison between ACFs and the probabilistic concept of mutual 
information, while false nearest neighbor approaches are feasible to minimize said 
delay vectors. Nonetheless, the most common procedure is the delay-time reconstruc-
tion in combination with various embedding dimensions [89]. A non-exhaustive 
overview is proposed in Table 1. To be more detailed, the delay-time is defined as the 
time-span between two neighboring points applied to reconstruct the attractor, while 
the referring embedding dimension represents an estimate of the true dimension of 
the assumed phase space, which is intended to be reconstructed [97]. To refer back 
to the denoising presupposition given in Section 2.2, the underlying scientific theory 
requires noise-free data, on which natural processes timely evolve, which else leads to 
difficulties in state variable estimations [87].

According to Takens [48], in absence of noise contaminants, it is always feasible 
to embed a scalar time-series into a state space. Assuming the existence of noise, two 
trajectories of the same initial condition, potentially evolve differently and converge 
to different asymptotic behavior, thus, even the exact knowledge of said initial  
conditions does not guarantee the predictability of the system’s final state [88, 98].  
Therefore, noise has to be treated as an influential source of unpredictability, which 
cannot be fully disclosed via the deployment of conventional methodologies of 
nonlinear dynamical analysis such as exit bases or uncertainty exponents [98].

Algorithm Short Description Reference

TE Takens’ delay-time embedding, implies shifting a timely delayed comb through 
the data to generate 3D coordinates

[48]

SE Spectral embedding in combination with a k-nearest neighbor algorithm, 
principal component analysis and Laplacian Eigenmaps

[10]

LRNN & 
CRBP

Locally recurrent neural networks with casual recursive backpropagation 
learning by applying algebraic observability through Takens’ theorem

[90]

HH The reconstruction is conducted by a combination of hyperhelices [91]

ESN The reconstruction is conducted by echo state networks [92]

SVM The reconstruction is conducted by support vector machines [93]

HT State space reconstruction by Hilbert transformations [94]

MI Mutual information in the probabilistic method [95]

TM Trajectory matrix for singular system analysis [96]

Table 1. 
Overview of existing reconstruction algorithms within the scientific literature.
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To revert to practical implementations, it is relevant to determine the choice 
of delay- times (τ), which directly influences the success and accuracy of recon-
struction algorithms [87]. Hence, a too small selection results in vectors to be very 
near and almost identical, thus, carrying redundant information and leading the 
attractor to collapse onto the 45° line in state space [87]. In contrast, a too large 
selection will produce uncorrelated (unrelated) coordinates owing to exponentially 
growing errors in chaotic regimes, resulting in decorrelated vectors in hindsight 
of the underlying time-series [87]. Henceforth, the two boundary scenarios have 
to be well-balanced to receive a proper reconstruction, yielding maximal indepen-
dence, while preserving dynamically related coordinate properties [87]. The most 
commonly applied variant is the ACF delay, with several possibilities, namely, (1) 
the first zero crossing, (2) crossing of 0.1, or 0.5 and (3) not exceeding 1/e [87]. 
Please note that ACFs propose linear time evolutionary calculations and may, thus, 
be misleading [87]. Due to experiments, the most accurate representations by 
the author were achieved by selecting variant (1), i.e. the first zero crossing or in 
modification, the first zero crossing, while subsequent coefficients additionally stay 
insignificant. Moreover, the embedding dimension as shown by Sauer et al. [99] 
has to be topologically equivalent to the true attractor, if the embedding dimension 
is chosen to be larger than two times the fractal dimension of said attractor. Note 
that once the embedding dimension is selected sufficiently high, a reconstruction 
resembles almost always an embedding, independent of parameter selections [88]. 
Mostly, delay-coordinates are selected, yet, there exist the families of derivatives 
and principal component reconstructions, as depicted combinatorial in the spec-
tral embedding (see [10]) [88]. Within practical applications, the author deems a 
combination of (1) Takens delay-time embedding, which, unfortunately, resembles 
a ‘spaghetti monster’ in most cases and (2) the more sophisticated variant by Song 
et al. [10], applying a spectral embedding in combination with a k-nearest neighbors 
algorithm (k-NN), principal component analysis (PCA) and Laplacian Eigenmaps 
as very suitable. In the author’s empirical experiments, the PCA components are best 
selected to equal the embedding dimension, while the number of neighbors for the 
k-NN can be best determined by the following heuristic, namely, 0.01len(data)*1.5τ 
[40]. Moreover, to receive a correct reconstruction the properties stated in Table 2 
are strict to be adhered to.

Parameter Favorable Negative Impact

Stationarity stationary non-stationary very high

Nonlinearity nonlinear linear medium

ACFs not significant significant high

Space-Time Separation very low, non-oscillating high, oscillating high

Correlation Sum significant ‘scaling region’ no ‘scaling region’ very high

Correlation Dimension saturating not saturating high

Maximum Lyapunov Exponent significant and positive negative high

Lyapunov Spectrum Sum negative positive high

Table 2. 
Overview of parameter selections for attractor reconstruction specifications.
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2.5 Recurrence quantification analysis

Independently from previous attractor reconstruction and other prerequisites, 
the RQA bases itself upon the introductory denoted exploitation of the recurrence 
property12 of dynamical systems, thus, is applicable to any time-series data (e.g. [6]) 
[100]. The RQA is conducted by quantifying the recurrence plot (RP) as introduced 
in Eckmann et al. [101]. The RP and RQA analysis benefit from the preservation13 of 
time-ordering information contents given in the analyzed data as well as contained 
spatial structure [22]. With the RQA one may detect fundamentally given charac-
teristics underlying a dynamical system, namely, the recurrence states, resulting 
in a ‘robust to noise and data limitations’ method of quantifying and identifying 
(chaotic) dynamics [22]. Thus, respective trajectories and transitions are rendered 
visible, in combination with the degree of complexity, i.e. the fractal structures, 
which may be inherent in the analyzed data [8]. To determine the RQA a threshold 
level has to be decided on, which determines whether nearby points are counted as 
recurrent or not [7]. Following van den Hoorn et al. [102], propose several threshold 
determination methods, yet, traditionally, according to Koebbe and Mayer-Kress 
[103] as well as Zbilut and Webber Jr. [104], the threshold value should not exceed 
10%. Additionally, the threshold value should not be lower than five times the sample 
noise [6]. Furthermore, it is common to exclude the identity line (proportional to the 
maximum Lyapunov exponent) of the RP from the analysis [105]. First, the RPs can 
be interpreted visually, which is presented in Marwan et al. [6], p. 251. Second, there 
exist two different types of measures taken out of a RQA, namely, minima-dependent 
versus single-value measures [6]. One may plot the minima dependency for several 
selections and choose an appropriate value to quantify the RPs. The length of diagonal 
lines represents the duration of trajectory local evolutions, while vertical (horizontal) 
lines mark time durations, in which the underlying dynamics are trapped (labeled 
as intermittency or laminar state) [7]. The commonly applied measures are depicted 
in Vogl and Rötzel [40], Table 3. Finally, to distinguish the results from stochastic, 
chaotic or other systems, one may either apply a Wiener process realization, a mathe-
matical chaotic system realization or respective surrogate 14 datasets (see [45]). Paired 
with the conceptions taken out of Section 2.6, signal theoretical decompositions can 
be applied to identify potential hidden sub-dynamics [56]. To gather and obtain the 
most information out of the analyzed data signal, wavelets with better localization 
properties are commonly proposed in form of a DWT filter bank [44]. The resulting 
low pass and high pass decompositions can then be applied as novel datasets to the 
RQA analysis and sub-RPs can be created and quantified to demonstrate potential 
sub-dynamics [56]. Note that the process can be repeated as often as required, should 
more than residual noise remain after one respective decomposition or iteration.

2.6 Multi-resolution analysis

To be very brief, time-series data are localized in the time domain, yet, may 
also yield exploitable frequency components, which in case of non-stationarity or 

12 The recurrence property originates from a topological approach and is given by the Poincaré recurrence 
theorem.
13 Presupposing the existence of a low-dimensional attractor, presence of dependence on initial conditions 
and the manifestation of said recurrence property.
14 I.e. destroying given determinism by shuffling via FTs. Then, comparison with original data.
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non-periodicity or other unfavorable characteristics will not be extractable via clas-
sical Fourier transformations (FT) [13, 106, 107]. Therefore, wavelets (i.e. tailored or 
bi-orthogonal) applied in a multi-resolution analysis (MRA) are well suited to extract 
underlying frequency information by retaining as much time localization information 
as possible [13, 16]. Thus, for filtering or denoising activities of time-series, discrete 
cascade filter banks with wavelet shrinkage (see [55, 108]) are applicable at length for 
various scales [40]. Moreover, to obtain insights into time-frequency localizations of 
to-be-analyzed datasets, one may apply a continuous wavelet transformation (CWT), 
resulting in a spectrum [57].

2.7 Distributions and power-laws

To elaborate on power-law characteristics, it is important to denote the intercon-
nections between chaotic dynamics, strange attractors, fractals and power-laws. In 
short, a dissipative (chaotic) dynamical system will reveal its phase space over timely 

Parameters Generic Mars S&P500 Implication

Denoising no yes yes Denoising with level 6 cascade wavelet filter 
and ‘Bior 2.8’ wavelet, since ‘biorthogonal’ 
states the best localization characteristics for 
non-tailored wavelet functions.

Stationarity yes yes yes ADF and KPSS (c, ct) tests with 1% 
significance each

Gaussianity no no no KS test with 1% significance

Nonlinearity yes yes no BDS test for embedding dimension of five and 
1% significance

Correlation 
Sum

scaling no scaling no scaling Build upon correlation sum graphs and step-
test with 1% significance

Correlation 
Dimension

saturating dropping not 
saturating

Based upon different correlation dimensions 
for embedding dimension

ACFs very low depending 
on lag

very low ACFs with 300 lags and 1% significance

Temporal 
Correlations

none very 
strong

oscillating Graphical via space-time separation plots for 
min. 100 steps

Sample 
Entropy

very low low very low Very low entropy is seen as a sign of self-
similarity in terms of information contents

Maximum 
Lyapunov

low 
positive

low 
positive

low 
positive

Tested for significance via Bask-Gençay test to 
propose the distributional theory

Lyapunov 
sum

negative negative negative Negative sum indicates dissipative system 
in combination with maximum Lyapunov 
exponent positivity

Hurst 
Exponent

trending trending mean 
reverting

Trending: Hurst >0.5; mean reverting: Hurst 
<0.5

Result positive negative negative Reconstruction invalid for real-world 
datasets, even if (non)linear dissipative 
systems

Table 3. 
Overview of steps one and two for all datasets with implication.
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evolution to deflate onto its own strange attractor, which is characterized via a fractal 
set [109, 110]. Generally, a fractal set yields a non-integer (non-Euclidean, thus, 
generalized) dimension, namely, the Hausdorff-Besicovitch dimension and is further 
characterized via self-similarity, i.e. multi-scaling, in addition to irregularities, non-
differentiability and recursiveness [111]. Henceforth, a (multi) fractal system requires 
a local power-law contributing to the mentioned scaling properties [111]. Therefore, 
a power-law is defined as the scalar relationship between two quantities and, thus, is 
characterized via scale invariance [112]. A fractal system with one scaling exponent 
is labeled monofractal, yet, multifractal systems require a singularity spectrum of 
exponents [111]. Referring back to a dissipative dynamical system, which deflates 
onto its strange attractor, thus, is represented by a fractal set. The fractal set of a 
strange attractor is rendered visible via its Poincaré sections, which show intersec-
tions of said strange attractor [110, 111]. To be more detailed, the intersections of 
strange attractors are fractal sets, which are described via multi-scaling and, thus, via 
powerlaws [111].

Analyzing time-series enables not only the reconstruction of potential (strange) 
attractors, yet, opens the way to mathematically determine given power-laws (i.e. 
the multi-scaling characteristics) of its underlying (multi) fractal properties [113]. 
Following Yuan et al. [114], state two rationales for time-series multifractality, 
namely, (1) the existence of fat-tailed probability distributions and (2) nonlinear 
temporal correlations. To draw out the multifractal spectrum, one may apply a mul-
tifractal analysis, which is built upon the MFDFA. The MFDFA visually depicts the 
scaling properties, as well as the (local) maximum and minimum Hurst exponents, 
also supporting the fractal trending interpretation discussed earlier [60]. Moreover, 
the generalized Hurst exponents, multifractal scaling exponents and the previously 
denoted multifractal scaling spectrum can be derived from the MFDFA output 
quantities [60]. In addition, calculating complementary cumulative distribution 
functions (CCDFs) and comparing them with power-law or other potential theoreti-
cal distribution types, enables the more or less save determination of power-law or 
other distribution fits [61]. However, as a word of absolute caution, the determination 
of coherence tests for various distributions has to be interpreted very carefully. The 
coherence tests are calculated via paired distributional fitting comparisons based 
upon log-likelihood measures, alongside other parameters [61]. These serve the 
purpose of achieving insights into suitable distributions, which may describe the 
datasets best, or to phrase it realistically, which at least represent the ‘less worst’ fit 
[61]. The coherence tests, thus, represent a comparison and no goodness of fit, which 
as indicated requires the reader to exert special care with the interpretation. It is 
advisable to fall back on graphical displays on log-log plots, which revealed as a useful 
guide for the practical implementations of the author. Concluding the powerlaws, the 
analysis is complete and the interpretation can carefully be exerted.

3. Correct empirical specifications

For each step of the analysis several algorithms are to be determined and a larger 
variety yield graphical insights, which can be either quantified or applied as a visual 
aid to deduce further insights and implications. Since a complete analysis as shown 
in Vogl and Rötzel [40] or Vogl [44] would vastly exceed the page limitations of this 
guide, the didactics of the practical display are as follows. First, this section will 
provide an idealistic outcome of a generic and mathematically tailored time-series, 
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based upon the Lorenz system (refer to [115]) to demonstrate the ‘best-case’ sce-
nario as the generalized point of reference, while two additional real-world datasets 
are presented as a comparison, namely, (1) the change rate of wind speed of Mars 
and (2) S&P500 1-minute tick return data. Second, the real-world datasets will be 
elaborated on in Section 4, since some hindrances are given and, thus, require analysis 
of potential misspecifications. The preliminary elaborations via steps one and two 
are depicted in Table 3, while Figure 2 presents the correlation sum, the correlation 
dimensional scheme as well as the correlation structures for the generic dataset. Note 
that for attractor reconstructions, Table 2 already proposes the favorable character-
istics to enable the correct implementation of reconstruction algorithms. Steps three 

Figure 2. 
Generalized point of orientation via the generic dataset for determination of reconstruction possibility. (a) Shows 
the correlation sum plots, which visually depict ‘scaling regions’, (b) shows the correlation dimensional plot, 
which ideally saturates as shown, (c) states the heatmap of p-values for the step-test of the lines of (a), (d) states 
the ACFs for 300 lags, which are insignificant and (ideally) stay that way and (e) shows the space-time separation 
plot for 100 steps, which is very low and non-oscillating. Note that for step two of the analysis, the minimum 
embedding dimension can be taken out of the heatmap, namely, by picking the first row with only 1% significance 
or lower p-values. During the existing experiments of the author, the heuristic of two times the fractal dimension 
as stated in the main text is also given by applying this selection method.
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to six are only stated in Section 4 for the real-world examples. In general, the stricter 
the interpretation and analysis, the better the results of the reconstruction, correct 
specification of underlying empirical DGPs and subsequent modeling.

Moreover, while steps one and two as presented above (in addition to potential 
reconstructions of step three), suffice to quantify the nature of the underlying system 
(i.e. whether it is dissipative, reconstructable or potentially chaotic), regarding the 
analysis of steps four through six, provide the exact quantified details of the system’s 
characteristics and serve as double confirmation procedure. Mainly, the RQA measure 
quantification provides exact details about the underlying empirical DGP, namely, 
a percentage comparison with surrogate data or pure stochastic (e.g. a Wiener pro-
cess) or pure deterministic chaotic systems (e.g. a Lorenz system) (refer to [6, 40]). 
Thence, one is capable of pinpointing whether the underlying system is pure chaotic, 
pure stochastic or a mixture of both and in which margins [40]. Subsequently, deriv-
ing frequency information, information about sub-dynamics, the existence of power-
laws and multifractal spectra enables the correct model selection as final outcome of 
the quantification. Nonetheless, a proper differentiation can be achieved after step 
four already. Since the RQA is too spacious it is neglected for this display, thus, the 
reader is referred to [6, 8, 40, 56].

4. Empirical negative examples

Continuing the previous section, hereinafter, the results for the two real-world 
datasets are presented in Figures 3 and 4, while the remaining indications are 
provided in Table 4. The invalid reconstruction algorithm results via Takens 
delay-time embedding (refer to [48]) and via spectral embedding (refer to [10]) 
are proposed in Figure 5 to clarify the relevance of proper prerequisites analysis. 
Regarding the Mars wind speed change rates, clear deterministic traits and sub 
dynamics are observable by the RQA, yet, a clear identity as a chaotic system as 
well as a distinct reconstruction is not possible. This is illustrated by the lack of 
a clear ‘scaling region’, dropping correlation dimensions, high ACFs and tempo-
ral correlations, which render this analysis step invalid. Furthermore, no scale 
independent multifractal scaling spectrum is visible and a nested power-law-
exponential distribution is proposed as ‘less worst’ distribution via the coherence 
tests (see [61]). In addition, no frequency information is determinable via CWT. 
Thus, the only insight generated is that it is a potentially chaotic, deterministic and 
dissipative system, while the exact modeling metrics are extractable out of the RQA 
quantification tables (refer to [6]). Regarding the (invalid) Takens reconstruction 
may suggest a non-chaotic attractor, since the results resemble a valid one in parts, 
yet, this is an invalid approach nonetheless. Spurious chaotic measure results are 
obtained by the S&P500 1-minute return series, since according to the BDS test 
nonlinearity is excluded, while the Hurst exponent indicates a clear mean-rever-
sion. Furthermore, no ‘scaling region’ by correlation sums and a non-saturating 
correlation dimension in combination with oscillating temporal correlation voids 
any other step of the analysis or reconstruction. Regarding the reconstruction by 
Takens, the linear nature is determinable. Moreover, the system has frequency 
information, yet, no power-law nor multifractal scaling characteristics (in agree-
ment with the Hurst exponent indication of mean-reversion). Following the 
RQA, sub dynamics and low levels of determinism are given, while vast stochastic 
characteristics are dominant. A final concluding remark at this point, considers 
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the frequency of the data samples, namely, Vogl and Rötzel [40] observed chaos in 
daily S&P500 returns, while in S&P500 1-minute tick return data, mean-reversion 
is present, leading to insights proposed by BenSaïda [39], namely, that the same 
system at different frequency levels, may propose different dynamics, revealing a 
scale dependence of the underlying empirical DGP.

Referring back to step three, namely, the attractor reconstruction, one may see 
various outcomes based upon false pretenses in the reconstruction results. In terms 

Figure 3. 
Results for the dataset wind speed change rate Mars (left) and S&P500 1-minute ticks (right). (a) States the 
correlation sum scheme, (b) the p-value heatmap, (c) the correlation dimensions, (d) the ACFs for 300 lags and 
(e) the space-time separation plots with 100 steps. Comparing with the generic datasets visually already reveals 
the conceptual differences and problems inherent in the analyzed data.
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Figure 4. 
Overview of RQA-DWT results for the display of RPs and sub-dynamics. (a) Is the DWT for the wind speed 
change rates of Mars and (c) for the S&P500 1-minute return ticks. In addition, (b) represents the approximation 
(left) and detail (right) coefficients for (a), while (d) represents the same for (c). It is denotable that both series 
consists of sub-dynamics. Note that the Mars detail coefficients may resemble a hidden chaotic subsystem, which 
can be separately analyzed.



105

Chaos Analysis Framework: How to Safely Identify and Quantify Time-Series Dynamics
DOI: http://dx.doi.org/10.5772/intechopen.106213

Parameters Generic Mars S&P500 Implication

RQA strong 
determinism, 
chaotic

determinism low 
determinism, 
stochastic

RQA measures versus comparative 
data provide characteristics for 
quantitative modeling

Sub-
Dynamics

no yes yes DWT with one iteration based upon 
a ‘Bior 2.8’ wavelet filter bank, the 
resulting high and low pass data are 
inserted into RQA

Frequency yes, distinct no yes, recurrent Based upon a CWT with a ‘Shannon’ 
wavelet, 1024 scales

Multifractal yes, clear scale-
dependent

no Based upon a MFDFA analysis

Power law yes nested 
exponential 
with fat tails

no Based upon CCDFs versus theoretical 
power-law backed with coherence 
tests on 1% significance

Result Chaotic, 
Multifractal 
System

Stochastic, 
Deterministic 
System

Mean 
Reverting 
system

Very careful interpretation 
advisable

Table 4. 
Overview of steps four to six for all datasets with implications.

Figure 5. 
Display of attractor reconstructions for the generic dataset based upon a Lorenz set (a, b), the wind speed change 
rates of Mars (c, d) and the S&P500 1-minute return ticks (e, f). (a), (c) and (e) represent the Takens delay-time 
embedding, yet, (c) and (e) are proven to be not reconstructable. (b), (d) and (f) display the spectral embedding 
in combination with a k-NN algorithm and a PCA with Laplacian Eigenmaps. As with (c) and (e), note that 
the analysis shows that (d) and (f) are not to be reconstructable. It is visible that a violation of reconstruction 
prerequisites results in very poor reconstructions since those are not to be conducted in the first place.
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of extreme high ACFs or temporal correlations, the attractor is dispersed and flat-
tened, while a lack of scaling characteristics results in singular ‘spaghetti like’ lines. 
Furthermore, as stated in Nichols and Nichols [87], a deflation or stretching on the 
45° line of the 3D space is also possible. Note that in the case of a linear system such 
as the S&P500 1-minute tick returns, the Takens embedding only states straight 
lines, which clearly indicates the absence of nonlinearity. A proper reconstruction 
shows a closed and dense area and visible attractor-like structures. For reference, as 
stated in Vogl and Rötzel [40], a pure stochastic system such as a Wiener process will 
end up resembling a ‘ball’ with no trajectory structure. In regards to time-series data 
with higher dimensional estimates, exceeding 3D spaces, the reconstructed graphical 
display may appeal ‘deformed’, owing to the lack of degrees of freedom in the visual 
display. On a final note, the exertion of particular care regarding the prerequisites of 
the reconstruction is highly advised, since violations result in poor representations 
and false characteristics, which will build the groundwork for subsequent quantitative 
modeling attempts. Furthermore, it is advisable to alter the delay-times and dimen-
sion estimates in several iterations to be sure to hit the most ‘representable’ form of 
the time-series system under analysis, especially, in more complex applications such 
as spectral embedding. Finally, the framework only provides the most basic intuitions 
or the minimum set of knowledge for analysis to be possible at all, refinements are 
always encouraged. Taken together, the stated insights can be abstracted into a mini-
mum set of requirements, which have to be fulfilled by potential model selections. 
Furthermore, one may reapply the whole analysis on the DWT sub-dynamics series to 
elaborate on potential hidden (strange) attractors.

5. Concluding remarks

Within this chapter, a practical guideline for the complete implementation of a 
combinatory, chaos analysis framework separately proposed in Vogl and Rötzel [40] 
for stationary and in Vogl [44] for non-stationary data is presented in its entirety. The 
framework is proposed as an integrated, holistic approach to analyzing the empirical 
DGP of nonlinear time-series data and provides the possibility to distinguish chaoticity 
from stochasticity while referring to underlying evolutionary dynamics. The analysis 
steps are elucidated, potential pitfalls and theoretical rationales stated and prerequi-
sites discussed in detail. Moreover, an ‘idealistic’ versus ‘negative’ case is empirically 
and graphically introduced and debated based upon real-world time-series sets 15. With 
this guide, the reader should be able to conduct the analysis themselves, without being 
prone to misspecifications and common errors present in the scientific literature.

Lastly, concluding remarks and current frontiers in the elaborated context are 
briefly to be stated. Current gaps in research and frontiers on the reconstruction of 
attractors is vastly seen in the application of neural network, evolutionary algorithms 
and other reconstruction methodologies to obtain sufficient and high-quality recon-
structions and analysis insights (see [116, 117]). Nonetheless, the research field of 
time-series reconstruction and quantification of empirical DGPs is scarce and defined 
as a current gap in research, particularly, in hindsight of novel technological advance-
ments such as artificial intelligence solutions. To conclude, Nieto et al. [98], states 

15 Even if not displayed in this chapter, during the preparation period, several different time-series have 
been analyzed, e.g. flood and river discharge series, wind power, energy prices, tweet-frequencies, nonlin-
ear fluids and fundamental economic indicators, among others.
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unpredictability as a ‘fundamental topic’ in the nonlinear scientific domain, owing 
to its consequences being rooted in the existence of sensitivity to initial conditions 
as the main trait of chaotic dynamics. Furthermore, no common understanding of 
unpredictability exists, since differing definitions may be applicable, e.g. problems in 
predicting trajectory evolutions may not be seen as a problem in hindsight of scatter-
ing problems, which only level around asymptotic behavior, thus, define problems 
only in the prediction of final system states [98]. Furthermore, predictability in 
subsequently implemented models is a vast topic, which is neglected for the discus-
sion of this chapter, yet, deemed of utmost relevance to it.

The stated framework can be enhanced further and shows several limitations, 
namely, it is computationally expensive and consists of many algorithms and meth-
ods, which are time intensive. Moreover, the selected methods are chosen due to 
their vast application in the scientific literature and not on performance. Hence, no 
optimization has been conducted yet, owing to the goal dependence of the analysis 
framework, even if applicability to various time-series is given. Furthermore, there 
exists no way to resolve attractor reconstructions given the existence of high ACFs 
and high or oscillating temporal correlations. Moreover, the framework is graphi-
cally reliant, which is seen as a potential hindrance in terms of future automatiza-
tion and application on larger data pools and automated decision rule generations. 
Nonetheless, to conclude, the presented framework is seen as the fundamental basis 
or minimal building block for future research, i.e. as the provision of a stepping 
stone toward more advanced, transparent and reliable insights originating from 
the scientific nonlinear dynamics community. The enablement to safely distin-
guish chaoticity from stochasticity paired with the detailed characterization of the 
empirical time-series DGP, in general, is expected to have a positive influence on the 
quantification, modeling and the future prospects of the field, solving a 40-year-old 
debate. Resolving stated debate, hopefully, opens the way to more coherent insights 
and persistent knowledge about time-series systems and the quantification of the 
real-world in various disciplines such as medicine, hydrology, economics and physics. 
The inherent paradigm shift is also expected to make model selection easier and more 
self-explanatory in the future of time-series predictions.
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Chapter 6

Spatial-Temporal Data Analysis in
Nonlinear System
Xing He and Minyu Chen

Abstract

Spatial-temporal analysis is at the heart of data mining in Big Data Era. Most
mathematical tools are incompetent to deal with spatial-temporal data. This phenom-
enon has greatly spurred the development of data science, especially in the field of
BDA (big data analytics). This chapter proposes random matrix theory (RMT) to
handle this problem, which begins by modeling spatial-temporal datasets as
sequences, whose term is in the form of a random matrix each. Then, some funda-
mental RMT principles are briefly discussed, such as asymptotic spectrum laws,
transforms, convergence rate, and free probability, in order to extract high-
dimensional statistics from the random matrix as the indicators. The statistical prop-
erties of these indicators are discussed for a better understanding of the system.
Finally, some potential application fields are given.

Keywords: spatial-temporal data, electric power system, data-driven, random matrix
theory, situation awareness, big data analyzation

1. Introduction

Electric power system reliability and intelligent management are critical to our daily
living. Engineers and academics have recently focused on the use of large-scale phase
measuring units (PMUs) to improve wide-area monitoring, protection, and control [1–5].

Most existing algorithms in power grid are model-based, which are built upon mech-
anism assumptions/simplifications and linear system control theory, with a determined
and typically analytic outcome. These models, however, are ineffective for today’s power
system, which is of ever-increasing complexity and uncertainty [6–10]: 1) Interconnec-
tion of nearby utilities may frequently improve overall safety and efficiency, resulting in
a huge interconnected system, such as the North American Power Grid, which serves
almost 400 million customers throughout the continent [11]; 2) the continuous penetra-
tion of cell units (e.g., distributed generations) that are small-size, large-number,
distributed-deployment, diverse-behaviors, smart-response, and uncertain-control [12].
3) physical disciplines (mechanics, magnetism, electric, and electronics) of a system are
closely intertwined, especially in a CHP (combined heat and power) system or even IES
(integrated energy system) [13]; and 4) the construction of energy foundation for a
smart city. Those above characteristics are advantageous to an open, flat, nonlinear,
high-uncertainty, and distributed EIoT, as shown in Figure 1 [14]. For such an EIoT, a
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precise mechanistic model or even a proper descriptive representation can hardly be
formulated, let alone model-based linear mode.

Furthermore, engineering data, such as sampling data in a power system, is not
similar to image data. Various sensors, such as phasor measuring units (PMUs), are used
to sample data from the grid. The huge dataset is in a high-dimensional vector space
and in time series: the temporal variations (T sampling instants) and spatial fluctuations
(N grid nodes) are recorded concurrently, and hence it is called spatial-temporal data.

Most mathematical tools are incompetent in this task [15]. Facing the above
spatial-temporal data, we can hardly extract statistical information, particularly
spatial-temporal correlations; the high-dimensional structure does not match the
requirements of most traditional mathematical methods. Also, this task is incompati-
ble with supervised training algorithms such as neural networks, due to the lack of or
asymmetry of massive labeled data [16].

Fortunately, random matrix theory (RMT), by unifying time and space through
their ratio c = T/N, can strictly and mathematically deal with such data. Moreover,
linear eigenvalue statistics (LESs) built from data matrices follow Gaussian distribu-
tions for very general conditions, and other statistical variables are studied due to the
latest breakthroughs in probability on the central limit theorems of those LESs.

2. Spatial�Temporal data analyzation mode, tools, theory, and
applications in electric power system

2.1 Big data era, fourth paradigm, and data-driven model

The world’s science has altered, as seen in Figure 2 [17]. Initially, there was
only experimental science, followed by theoretical science, which included Newton’s
Laws, Maxwell’s equations, and so on. The theoretical models became too hard
to solve analytically for many issues, and people had to start simulating. These
simulations have carried us through much of the previous millennia. People nowadays
are collecting data through intensive sensors or simulations. The data flood has an
impact on experimental, theoretical, and computational science, and several
state-of-the-art data technologies and data sciences have converged to provide tre-
mendous promise for data-intensive scientific discovery, the so-called Fourth
Paradigm.

Figure 1.
Diagram of future energy internet of thing: its resource flow, data flow, and participants [14].
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Data-driven becomes a natural and stressful topic in energy systems, as evidenced
by IEEE TRANSACTIONS ON SMART GRID special issue “big data analytics for
grid modernization” published in 2016 [18]. Data-driven approaches are also charac-
terized as model-free; we no longer rely significantly on physical models, and hence
can manage instances where physical parameters are incorrect or even totally
unavailable. Data-driven mode enables a quick start to our task, especially for a
modern energy system in which the behaviors and discipline of system cell units are
strongly coupled.

2.2 Basic of spatial�Temporal data, and high-dimensional information

Spatial–temporal data analysis means that we simultaneously deal with a large
number of variables (in N-dimensional spatial space), and each variable (i = 1, … , N)
samples time series for a duration (in T-dimensional temporal space). A classical
statistic theory treats fixed N only (typically N < 6 [3]), e.g., for ABC-dq0 transfor-
mation N = 3. This fixed small N is called the low-dimensional regime. In practice, we
are interested in the case that N can vary arbitrarily in size compared with T (typically
T > 60, N > 20, and c = N/T > 0 [15]). This fundamental difference is the primary
motivation for studying BDA.

Spatial–temporal data mining is expected to contribute some (high-dimensional)
information with domain-specific meaning attached as the supplement to DT-based
situation awareness (SA). High-dimensional indicators (outputs of high-dimensional
statistics) and deep features (outputs of deep learning) are two main types of
representation of high-dimensional information.

Figure 2.
Science paradigms and fourth paradigm [17].
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2.3 Spatial-temporal data utilization architecture and tools

Most mathematical methods struggle to extract information from spatial-temporal
data. This phenomenon has accelerated the development of data science, particularly
in the field of AI and BDA. We describe a high-focus technique for each field: 1) DL
(Deep learning), which is good at massive data modeling in AI [19] and 2) High-
dimensional statistics, or more precisely, RMT, which does well in data analytics in
BDA. Both tools use a set of (high-dimensional) methodologies for integrated spatial-
temporal modeling and analysis, and they have already made profound impacts on
many domains. Figure 3 depicts the architecture of large data mining based on DL
and RMT.

2.3.1 Deep learning and its advantages

DL is a cutting-edge data mining algorithm. As demonstrated in Figure 4, deep
characteristics are learned at some level from comparatively hidden features in the
hierarchy [20]. DL uses the enormous data in a non-handcrafted approach to create a

Figure 3.
Architecture of spatial-temporal data utilization.

Figure 4.
A typical ANN structure.

118

Nonlinear Systems - Recent Developments and Advances



deep (nonlinear) network model. A typical ANN (Artificial Neural Network) network
is modeled as

y ¼ f xð Þ≜ f L WL … f 2 W2f 1 W1xþ b1
� �þ b2

� �
… þ bL

� �
(1)

The above DL network model can be built with little prior knowledge relevant to
the physical mechanism or causal relationship. As a result, DL may be used in a variety
of situations or even systems without major changes. For example, we use CNN
(convolutional neural networks) for computer version system modeling [21], LSTM
(long short-term memory) for prediction [22], and deep reinforcement learning for
strategy optimization [23].

In a complicated system, DL has a competitive edge in terms of possible data use.
Furthermore, the test error might be used to quantify the DL model’s performance on
the generalization task, ensuring its usefulness in a real-world situation.

DL holds a competitive advantage for feasible data utilization in a complex system.
In addition, the performance of the DL model on generalization task could be quanti-
tatively evaluated by the test error, ensuring its usefulness in a real-world situation.

2.3.2 Big data analytics and RMT and the advantages

BDA uses spatial-temporal joint analysis to acquire high-dimensional statistics.
Matrix-based variables, such as eigenvalue or the matrix variate itself, are likely to
provide some insight to BDA [24]. These matrix-based variables are the variables of
the N � T (large-dimensional) spatial-temporal data matrix that have an intrinsic
statistical link, whether causal or not. These matrix-based variables are analytically
intractable due to their high dimensionality rather than their big size. RMT is inextri-
cably linked to this issue.

RMT understands the joint eigenvalue distribution as the statistic analytics in the
asymptotic regime. In particular, by unifying time and space through their ratio c = T/
N, BDA is acquired as the functionals of the eigenvalue distributions. For example, the
matrix’s LES indicators [25] follow Gaussian distributions for very general conditions.
Furthermore, many LES-derived variables, whose statistical properties are mostly
derivable and provable, are studied due to the latest breakthroughs in high-
dimensional probability [15]. In this sense, RMT is rigorous and fundamental in
nature. Besides, RMT performs well with only moderate-size (unlabeled) data, which
is often true for a domain-specific problem in EIoT.

2.4 Random matrix theory in a nutshell

2.4.1 RMT and its universality principle

Two ensembles, Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble
(LUE), are studied first in RMT [10]:

Γ ¼
1
2

Rþ RH� �
,R∈ℝN�N, GUE;

1
T
RRH,R∈ℝN�T, LUE:

8><
>:

(2)

where R is i.i.d. standard Gaussian random matrix.
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We investigate the rate of convergence of the expected empirical spectral distri-
bution (ESD) of Γ. Let hΓ (x) denotes the true eigenvalue density. Wigner’s Semicircle
Law and Wishart’s M-P Law, respectively, for GUE and LUE, say that

hΓ xð Þ ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2
p

, x∈ �2, 2½ �, GUE

1
2πcx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a1ð Þ x� a2ð Þ

p
, x∈ a1, a2½ �, LUE

8><
>:

(3)

where a1 ¼ 1� ffiffi
c
pð Þ2, a2 ¼ 1þ ffiffi

c
pð Þ2

Universality principle enables us to perform hypothesis tests under the assumption
that the matrix entries are not Gaussian distributed but use the same test statistics as
in Gaussian case. Numerous studies using field data [25, 26] demonstrate that M-P
Law is universally valid with moderate matrix sizes, such as tens. This is the very
reason why RMT is widely used in engineering.

2.4.2 Linear eigenvalue statistics and its properties

Consider a random matrix Γ∈RN � T, and M is the covariance matrix M = 1/TΓΓH.
The LES τ of Γ is defined in [27].

τφ ¼
XN
i¼1

φ λið Þ ¼ Trφ Mð Þ, (4)

Law of Large Numbers tells us that N�1τϕ converges in probability to the limit

lim
n!∞

1
N

XN
i¼1

φ λið Þ ¼
ð
φ λð Þρ λð Þdλ (5)

where ρ(λ) is the probability density function, which is given in Eq. (4). Therefore,
we deduce that

τφ ¼
XN
i¼1

φ λið Þ ¼ Trφ Mð Þ ¼ N
ð
φ λð Þρ λð Þdλ (6)

The Central Limit Theorem (CLT) for LES is studied as the natural second step:

σ2 τφ
� � ¼ 2

cπ2

ð ð

�π
2< θ1, θ2 < π

2

ψ2 θ1, θ2ð Þ 1� sin θ1 sin θ2ð Þdθ1dθ2

þ κ4
π2

ðπ
2

�π
2

φ ζ θð Þð Þ sin θdθ
 !2

(7)

See [25] for details.

2.4.3 LES-based hypothesis testing for random matrix

LES τ, as a positive scalar random variable defined in Eq. (5), is studied instead of
the probability distribution of eigenvalues in Eq. (4). It can be viewed as a
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mathematically rigorous dimensionality reduction—the N � T random matrix is
reduced to a positive scalar random variable.

As N!∞, the asymptotic limit of LES τ expectation and variance, i.e., E(τ) and σ2

(τ), is given, respectively, in Eqs. (7) and (8). These two equations are sufficient to
study the scalar random variable τ. Universal principle, as well as engineering experi-
ences, demonstrate that moderate values of N and T are accurate enough for our
practical purposes. LES τ is robust against data flaw and insusceptible to noises [10].
All of these statistical properties make LES a good SA indicator.

2.5 High-dimensional situation awareness indicator system and its properties

According to Eq. (5), numerous LESs can be designed from a certain spatial-
temporal data Γ. Similarly, other high-dimensional indicators, for instance, statistic
indicators, deep features, and electrical features, are calculable as the outputs of data
tools according to Figure 4. They are tied together to provide an insight into domain-
specific SA criteria for detection, prediction, etc. The details about the high-
dimensional SA indicator system and its successful application cases can be found in
ref. [15].

With these indicators, the high-dimensional indicator system is built; it supplies a
multiple view angle to gain insight into the system. Aiming to provide a domain-
specific SA task, the test function ϕ plays a role as a flexible filter depending on our
task. Table 1 lists the properties of LES indicators and makes a comparison with
classical ones.

Table 1 tells that LES provides a better indicator system in the 4th Paradigm. The
relation of the LES indicators to the classical ones, in some sense, is just like that of
quantum physics to the classical one. Comparing experimental values with ideal
theoretical values, LES conducts SA in a complex system statistically.

High-dimensional (LES) Indicators Classical indicators

Data-driven (Mechanism) model based

Supported by data science Supported by physical laws or experience

Maybe unclearly defined in engineering Clearly defined

Often probabilistic value Often determined one

Often in high dimensions Often in low dimensions

Able to harness the spatial-temporal data
flexibly

Only a few data are available

Robust against bad data and insensitive to
data selections

Susceptible to data selections (usually a single
measurement at a time slice)

Pure statistical procedure System errors are inevitable

Naturally coupling/decoupling for data block Coupling/decoupling based on assumptions and
simplifications

Random errors can be estimated with the
model size (N,T)

Errors accumulation are inevitable and difficult to
evaluate

Table 1.
High-dimensional indicator system for EIoT.
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In short, RMT supplies us with a data-driven approach to indicator extraction for
the informatization of a real system via sampling spatial-temporal data. A cluster of
statistical indicators, via a mathematical procedure, is formed as a new epistemology
for the system. Some advantages—such as data-driven and model-free mode, theo-
retic guided, fast in speed, reasonableness, sensitivity, flexibility, and robustness
against bad data—have already been shown in our previous work [10, 17].

2.6 LES-based hypothesis testing for random matrix

To study the convergence as a function of N, we study LES instead of the proba-
bility distribution of eigenvalues in Eq. (4). For an arbitrary test function with enough
smoothness, LES τ (see it as a random variable Y) is a positive scalar random variable
defined in Eq. (5). As N!∞, the asymptotic limit of its expectation, E(Y), is given in
Eq. (6), and the asymptotic limit of its variance, σ2 (Y), is given in Eq. (7). These two
equations are enough to study the scalar random variable Y. This approach can be
viewed as a dimensionality reduction—the random data matrix of size N � T is
reduced to a positive scalar random variable Y! This dimension reduction is mathe-
matically rigorous only when N,T!∞, but N/T! c. Experiences demonstrate,
however, that moderate values of N and T are accurate enough for our practical
purposes. Moreover, our previous work shows that LES is robust against data errors
(e.g., data loss, data out-of-synchronization) and insusceptible to (independent) ran-
dom noises (not limited to white noises), which is not true to those low dimensional
statistics, such as mean and variance of any single variable. All these statistical prop-
erties make LES a good matrix-based variable for a hypothesis testing design aiming to
provide anomaly detection task.

We formulate the hypothesis testing in terms of the statistical properties of LES.
Referring to the Gaussian property and standard scores, the detection is modeled as a
binary hypothesis testing: the normal hypothesis H0 (no anomaly present) and the
abnormal one H1, denoted by:

ℋ0 :
τφ �  τφ

� �

σ τφ
� �

�����

�����< ϵ,

ℋ1 :
τφ �  τφ

� �

σ τφ
� �

�����

�����≥ ϵ,

(8)

where ϵ is a threshold value that needs to be preset—e.g., at a significance level of
0.05, the ϵ should be set at 1.96.

3. Conclusion

This chapter, motivated for the future’s electrical grid, studies the nonlinear anal-
ysis based on RMT. Three ingredients are discussed in detail: 1) data modeling—
modeling the spatial-temporal data as a sequence of random matrices, which are
naturally connected to RMT. 2) data analytics—conducting high-dimensional analysis
to obtain the statistical indicators. 3) interpretation—interpreting the indicator by
studying its properties for a better understanding of the system.
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The experimental indicators, which are fully derived from the sampling data, are
applicable to various engineering functions. For example, by comparing the LESs with
their theoretical prediction, anomaly detection can be implemented.

Future research directions include: (1) Model validation with different
implementations of the grid, ranging from statistic, dynamic and real-world systems;
(2) Data fusion with a number of random data matrices, using mathematical tools
such as free probability; and (3) The use of Gaussian random matrices in replacement
for general data matrices that are obtained from the electrical grid. The universality
principle of RMT says that this replacement causes negligible errors.
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Chapter 7

Structural Properties
and Convergence Approach for
Chance-Constrained Optimization
of Boundary-Value Elliptic Partial
Differential Equation Systems
Kibru Teka, Abebe Geletu and Pu Li

Abstract

This work studies the structural properties and convergence approach of chance-
constrained optimization of boundary-value elliptic partial differential equation sys-
tems (CCPDEs). The boundary conditions are random input functions deliberated
from the boundary of the partial differential equation (PDE) system and in the
infinite-dimensional reflexive and separable Banach space. The structural properties
of the chance constraints studied in this paper are continuity, closedness, compact-
ness, convexity, and smoothness of probabilistic uniform or pointwise state
constrained functions and their parametric approximations. These are open issues
even in the finite-dimensional Banach space. Thus, it needs finite-dimensional and
smooth parametric approximation representations. We propose a convex approxima-
tion approach to nonconvex CCPDE problems. When the approximation parameter
goes to zero from the right, the solutions of the relaxation and compression approxi-
mations converge asymptotically to the optimal solution of the original CCPDE. Due
to the convexity of the problem, a global solution exists for the proposed approxima-
tions. Numerical results are provided to demonstrate the plausibility and applicability
of the proposed approach.

Keywords: chance-constrained optimization, structural properties, state-constrained
boundary-value PDE, probabilistic state constraints

1. Introduction

Partial differential equations (PDEs) are widely used to describe the spatial
variations of physical, biological, and social systems as well as processes in mechanical
engineering, thermodynamic, chemical engineering, medicine, industrial
manufacturing, etc. [1, 2]. Moreover, practical PDE models involve uncertainties
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arising from imprecise model parameters and the system’s operational environment.
In real-life applications, external influences have a non-negligible impact and seri-
ously affect system behaviors [2–6]. For example, ambient temperature, wind, and
pressure are uncertain external influences that seriously impact system performances.

External input uncertainties will cause output uncertainties in system state
variables [4, 7–11]. Such random inputs usually affect the boundary of the system and
thus should be compensated by distributed boundary control. Hence, we consider in
this study the randomness of the boundary condition of elliptic PDE systems and solve
the chance-constrained optimization problems of such systems [12].

This study is an extension of the previous works in [13, 14] in which the random-
ness from the model parameters of a PDE system was considered but without consid-
ering boundary-valued control. In the present study, we consider the randomness
from a nonhomogeneous boundary condition of a PDE system, which implies that the
required state solution of the chance-constrained optimization of boundary-value
elliptic partial differential equation (CCPDE) is a random field [15]. The control input
is applied deterministically at the boundary function to compensate for the random
disturbances. As a result, the study addresses the issue of chance-constrained
optimization of a randomly boundary-valued PDE system.

Mathematically, in this work, we consider a random parameter ξ∈Ω coupled
with a spatial variable x∈D at the boundary condition of the PDE system. We
assume that the uncertainty is under a given probabilistic measure Pr of the complete
probability space Ω,Σ,Prð Þ where Σ is a sigma-Algebra in the Borel set Ω. This study
analyzes the properties of infinite-dimensional optimization problems in the
reflexive and separable Bochner space with the elliptic PDE system as equality
constraint and its probabilistic state constraints as inequality constraints. In general,
for CCPDE problems, significant difficulties arise from chance constraints.
Specifically, the main structural properties such as continuity, compactness, convex-
ity, and differentiability of the probabilistic state-constraint functions are
difficult to analyze. In addition, solving chance-constraints problems is generally not
a trivial task.

Therefore, our investigation first focuses on the theoretical analysis of the
main structural properties of the probability pointwise state-constrained functions
in the CCPDE. The presence of uncertainties on the nonhomogeneous and
nonlinear Dirichlet boundary conditions impacts the required state solutions. It
is necessary to investigate the optimality conditions to the existence and uniqueness
of the solution to the CCPDE problem. Subsequently, since such CCPDE
problems are generally difficult to solve directly and also potentially nonsmooth
[6, 16], this work proposes smoothing approximation methods to address this
difficulty [2, 13].

The numerical computation for solving the CCPDE problem needs a finite-
dimensional representation of the infinite-dimensional space through a discretization
coupled with an appropriate sampling of the random variables by the multilevel
Mont-Carlo method (ML-MCM). Since the resulting finite-dimensional chance-
constrained optimization problem is generally nonsmooth, nonconvex, and difficult
to solve directly, we use the recently proposed inner-outer approximation approach
[6] for the solution of the CCPDE problem. Several structural properties of the inner-
outer approximation-based CCPDE are also analyzed in this study. In the previous
work, [13] the convexity of the outer approximation was investigated. In this study,
we address the convexity issue of the inner approximations to guarantee the optimal
global solution of the CCPDE.
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2. Problem definition

We consider chance-constrained optimization of a boundary-value elliptic PDE
system (CCPDE),

CCPDE : min
u

E J y, u, ξð Þ½ �≔ E y� yd
�� ��2

H1
g Dð Þ

� �
þ ρ

2
∥u∥2
� �

L2 Dð Þ

� �

subject to :

(1)

�∇: κ xð Þ∇yð Þ ¼ f xð Þ inD�Ω, (2)

yj
∂D ¼ g x, u, ξð Þ, ξ∈Ω, x∈ ∂D, u∈U (3)

Pr ymin xð Þ≤ y x, u, ξð Þ≤ ymax xð Þ� �
≥ α, x∈D, (4)

umin ≤ u xð Þ≤ umax, u∈U (5)

where D⊂n is a given bounded convex open spatial domain with Lipschitz
boundary ∂D and n≥ 2, ρ is a given regularization parameter, Dc is a given compact
subset of the closure D of D. ∇: and ∇ represent the divergence and gradient operator
w.r.t. x in the weak sense of Sobolev spaces, respectively. The state function
y x, u, ξð Þ : D�U � Ω↦ is a random continuous function in H1

g Dð Þ ¼
Γ∈W1,2 Dð Þ j Γ xð Þ ¼ g xð Þ, x∈ ∂D
� �

with H1
g Dð Þ being a closed subspace of the Sobolev

space H1 Dð Þ ¼W1,2 Dð Þ for any ξ∈Ω. yd ∈H1 Dð Þ is a given function describing the
desired profile of the state and is assumed twice differentiable w.r.t. x∈D.1

With < h, g> H1
g Dð Þ and < h, g> H1 Dð Þ, we denote the related standard scalar product

(see [1–5, 7, 8, 17, 18] for more details on Sobolev spaces).
The triple Ω,Σ,Prð Þ represents a complete probability space, with a set of all

possible outcomes Ω⊂p, with σ-Algebra Σ⊂ 2Ω and probability measure Pr �ð Þ :
Σ↦ 0, 1½ � and Pr Ωð Þ ¼ 1. The parameter ξ represents uncorrelated input random vector
variables distributed homogeneously acting on the system through the boundary ∂D.
Such disturbances are position-dependent random parameters and distributed inside
or outside of the boundary of the spatial domain ∂D. In general, such infinite-
dimensional random parameters can be treated by a dimensional-reduction method
using the Karhunen-Loeve (KL) expansion (see [19]) or a finite-dimensional
representation using a discretization method [3, 4].

The input data g x, u, ξð Þmight vary randomly from one point of the boundary
domain ∂D to another point and thus their uncertainty should be described in terms of
random fields, which can be dealt with a sampled covariance from multilevel Monte
Carlo method (MLMCM) [2, 9, 20]. The expected value E �½ � is taken with respect to
the probability space and the probability measure possesses the Radon-Nikodym
derivative ϕ w.r.t. the Lebesgue measure μ, i.e., dPr ξð Þ ¼ ϕ ξð Þdμ ξð Þ. Moreover, we
suppress the measure μ and write simply dPr ξð Þ ¼ ϕ ξð Þdξ. The random variable ξ is
assumed to have a continuous probability density function ϕ ξð Þ with Ω being its
sample space of the support set. For each u∈U, due to the random variable ξ, the
solution y of the boundary values (2)–(3) is a stochastic linear boundary value state
function indicated by y u, ξ; xð Þ.

1 The space H1 Dð Þ is a Hilbert space with norm ∥ � ∥H1 Dð Þ. The Sobolev space H1 Dð Þ is the completion of

C1 D
� �

w.r.t. ∥ � ∥H1 Dð Þ.
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After the solution of the PDE system, Eq. (4) expressed by P :, xð Þ ¼
Pr y x, u, ξð Þ≤ ymax xð Þ� �

≥ α,∀x∈D defines a single pointwise probability state con-
straint, for each x∈D, to be satisfied with a given reliability level α, where α∈ 0, 1ð �. It
should be noted that chance constraints for the PDE system considered in this study
can be expressed in the following two forms:

1.Single chance constraints

Pr ymin xð Þ≤ y x, u, ξð Þ≤ ymax xð Þ� �
≥ α,∀x∈D, (6)

2. Joint chance constraint

Pr ymin ≤ y xi, u, ξð Þ≤ ymax,∀xi ∈D
� �

≥ α, (7)

The first one describes the chance constraints imposed on individual points in D
(i.e., pointwise chance constraints), while the second one requires the satisfaction of
the constraints at all points with a probability level. In this study, only the form of
single pointwise constraints is considered. A joint CCPDE is mathematically complex
and needs further studies.

The right-hand side of Eq. (2) is assumed to be a function in L2 Dð Þ. Due to (3), y
depends on u and ξ, and therefore, we need to analyze the existence and uniqueness of
a weak solution. In Section 3, we will prove these by verifying the continuous-bilinear
and coercivity form in the Bochner space with the associated expectation of the norm
Eð∥ � ∥H2 Dð ÞÞ based on the Lax-Milgram theorem.

Specifically in this study, (2) and (3) lead to a boundary value of an elliptic PDE
system with nonhomogeneous Dirichlet boundary condition yj

∂D ¼ g x, u, ξð Þ, ξ∈Ω
and u∈U. u is a control variable bounded by umin and umax by (5). Since the output y is
constrained, we have to find an optimal control profile w.r.t. x∈D, in the admissible
set Uadmð Þ by variational analysis.

Now, we define a separable and reflexive Bochner space by mapping
W≔L Ω;W Dð Þð Þ from the Borel space to the Sobolev space W Dð Þ

H Ω;W Dð Þð Þ ¼ v : Ω!W Dð Þ : v is measurable, ∥v∥Wf
¼
ð

Ω
∥v �, ξÞ∥2W Dð Þϕ ξð Þdξ< þ∞
� o (8)

From the PDE system defined in (2)–(3), the related function spaces of individual
inputs are defined as follows:

H≔L2 Ω;H1
g Dð Þ

� �
, L≔L2 Dð Þ,G≔L2 Ω,H2 Dð Þ� �

,B≔L2 Ω,H1=2 Dð Þ
� �

,K≔L∞ Dð Þ:
(9)

Since the spaces defined above are separable, the weak measurability for the
random PDE system is equivalent to the strong measurability (see [[21], Section 3.5
Cor. 2]).

In addition, we define scalar products in L and H spaces, respectively,

a, bh iL ¼
ð

Ω

ð

D
a x, ξð Þb x, ξð Þdxϕ ξð Þdξ, ∥a∥2L ¼ < a, a> L, (10)
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a, bh iH ¼
ð

Ω

ð

D
a x, ξð Þb x, ξð Þdxϕ ξð Þdξþ

ð

Ω

ð

∂D
∇a x, ξð Þð Þt∇b x, ξð Þdxϕ ξð Þdξ, (11)

∥a∥2H ¼ < a, a>H ¼ < a, a> L þ <∇a,∇a> L, (12)

for a, b∈L and a, b∈H, respectively. In addition, in (9),

B ¼ v : Ω!W ∂Dð Þ : v is measurable; L2 Ω�H�1=2 ∂Dð Þ
� �

! 
n o

,

vk kB ¼
ð

Ω
vk k2H�1=2 ∂Dð Þϕ ξð Þdξ

� �1=2

¼ vk k2L2 Ω�∂Dð Þ þ
X

mj j¼ s½ �

ð

Ω

ð

∂D

∂
mv x1ð Þ � ∂

mv x2ð Þj j2
x1 � x2j jnþ2þ2 s� s½ �ð Þ dσϕ ξð Þdξ

" #1=2
,

vk k2B ¼ vk k2L2 Ω�∂Dð ÞÞ þ
ð

Ω

ð

∂D

jv x1ð Þ � v x2ð Þð Þ2j
x1 � x2j jsþ12

dσϕ ξð Þdξ
" #

<∞, s ¼ 1=2,

(13)

is a norm of trace function in the boundary space H of the boundary value with a
compact embedding from B where dσ is the surface measure at the boundary of D
[22]. Finally, the space of the model parametric coefficient K ¼ fv : L∞ Dð Þ !  :

v is measurable : ∥v∥L∞ Dð Þ ¼ maxsupn!∞ vnj j2 <∞g. Thus, v∈H, it implied that
v �, ξð Þ∈H1

g Dð Þ and E½∥v �, ξð Þ∥2H1
g Dð Þ�< þ∞.

The probability density ϕ is assumed to be Lebesgue measurable and almost
everywhere positive on Ω. Hence, the spaces L, G, and ℋ are a reflexive Bochner
space, e.g., Hilbert spaces using the standard equivalence classes. Note also that
G,H,K,B are dense subspaces of L in the topology of L.

The variable u∈L2 Dð Þ is a decision variable that belongs to the set of admissible
decisions

Uadm ≔ u xð Þ∈L2 Dð Þ j ua ≤ u xð Þ≤ ub
� �

, ∀x∈D, for ua ≥ umin and ub ≤ umax, (14)

where ua, ub ∈L2 Dð Þ are given functions with ua ≤ ub. Observe that equalities
and inequalities of functions in the Lebesgue space L2 Dð Þ and corresponding Sobolev
spaces are valid only almost everywhere on D: The term almost everywhere (a.e.) will
be suppressed in this study assuming almost surely (a.s.) without any confusions aris-
ing. Note that Uadm is a nonempty, convex, closed, and bounded subset of L2 Dð Þ.

In the elliptic PDE system (2)–(3), the random parameters in the boundary condi-
tion in B2 represent the effect of external and internal disturbances such as ambient
temperature, pressure, and wind; also, there is a factor of imprecise model parame-
ters, while those in the forcing term f are nonrandom input function. For the sake of
simplicity of presentation, the coefficient and forcing term (κ, f ) respectively are

2 The boundary of the elliptic operator needs to be C1 smooth for ensuring x↦y u, x, ξð Þ∈H1=2
∂Dð Þ

(see: [7]).
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considered as nonrandom input functions in this study. Moreover, the forcing term is
continuous w.r.t. x∈D a.s. and f xð Þ∈L:3.

As a result, pointwise probabilistic state constraint P :,xð Þ ¼ Pr ymin≤ y≤ ymax

� �
≥α,

overall the spatial region x∈Da:s:, is conservative (worse-case) if, its reliability
level α ¼ 1, with no chance of constraints violation. The internal function
ymin ≤ y≤ ymax,∀x∈D cannot be computed deterministically. Hence, the expression
in (4) defines a chance (probabilistic) constraint by stipulating the satisfaction of
the inequality constraint on y∈H with a given probability value of a reliability level
α∈ 0:95, 1½ Þ. Moreover, (4) represents a pointwise chance constraint, i.e., the
constraint on the state variable is required to hold with the same reliability level α at
each individual point of x∈D.

The required random state solution y x, u, ξð Þ is a function in the infinite-
dimensional space H, so that, the infinite number of probabilistic constraints make
sense whenever in the equivalence class y is w.r.t. x a continuous element, which is
ensured by Sobolev embedding theorems in L2ðΩ,H2 Dð Þ∩H1

g Dð Þ), excellent proper-
ties of the inhomogeneity term f , and the convexity of D. From the embedding theory
of Sobolev space, one can use a more general setting in Hp ¼W1,p with p> d and
sufficient regular D. Thus, the convexity of D can be relaxed. We give here only one
opportunity, where it works. It is essential for our approximation approach (see, e.g.,
theorem 3.5 continuity of y, that space for y can be continuously embedded in the
space of continuous functions).

For instance, at some critical spatial locations x∈Dc ⊂D, the reliable level
α∈ 0:95, 1½ Þ can be chosen, as a result, this study focuses on the solution of CCPDE
with pointwise constraints but considers reliable level independent of x for simplicity
of representation, and it is not trivial to directly extend our inner and outer approxi-
mation concept in [6] to joint and uniform chance constraints for the infinite number
of x∈D. Therefore, solving the CCPDE problem is not a trivial task since there is no
simple equivalent deterministic representation. Also, there is no closed-loop analytic
representation for the probabilistic state constraint in the equation expressed in (4).
The structural properties of (4) are not yet analyzed properly, generally unknown,
nondifferentiable, and nonconvex.

3. Existence of the solution of the PDE system

In this paper, we need to solve the weak variational form of the random PDE
system with nonhomogeneous Dirichlet boundary value of the elliptic PDE system as
we defined in equations expressed (2) and (3), the control is applied on the boundary
of polygonal spatial domain D and the control u∈L2 Dð Þ,

�∇ � κ xð Þ∇y xð , ξð Þ ¼ f xð Þ, on D�Ω a:s:, (15)

y x, u, ξð Þjx∈ ∂D ¼ g x, u, ξð Þ, ξ∈Ω a:s: (16)

For every test function v∈H, we can apply integration by part,

3 The density function ϕ ξð Þ ¼Q∞
i¼1ϕi ξið Þ is infinite-dimensional probability density function, where ξi ∈Ω

is distributed homogeneously through the boundary of the spatial domain ∂D: It has a finite-dimensional

representation from KL expansion [19].
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E
ð

D
κ x, �ð Þ∇y xð , �Þ∇v x, �Þdxð � ¼ E

ð

D
f xð Þv xð , �Þdx

� �
þ E

ð

∂D
g u, x, �ð Þv xð , �Þds

� �
,∀v∈H,

�

(17)

which is the weak form of the PDE system (15)–(16) with f xð Þ in the Hilbert space
L and solution y :ð Þ∈H. The relevant functions of the inputs are in separable and
reflexive Bochner space. Since f xð Þ∈L, κ∈K, and g∈B, the spatial domain D is
convex, the well-known shift statements (see, for instance, [[23], Th. 3.30]; i.e., higher
regularity of f is shifted to higher regularity of y) imply that x↦y u, x, ξð Þ∈C D

� �
. Since

the continuity of x↦y u, x, ξð Þ is required only on the subset D, the convexity of D is
not necessary whenever the critical spatial domain Dc ⊂ intD, intD is the interior of
space D. However, to guarantee the well-posedness of the weak form, our investiga-
tion is based on the following standard assumptions.

Assumption 3.1. (A1.1) The domain D is convex, the set Dc ⊂D is compact and
yc ∈C Dð Þ∩H1

g Dð Þ, yd ∈H1
g Dð Þ∩H2 Dð Þ.

(A1.2) The coefficient κ �ð Þ∈K is positive and bounded such that

0< κmin ≤ κ xð Þ≤ κmax, x∈D a:s:, (18)

where κmin, κmax are finite constants.
(A2.1) For each u∈L2 Dð Þ, the random forcing term u↦f u, �ð Þ : L2 Dð Þ ! L is

continuous.
(A2.2) For each u∈L2 Dð Þ, the random forcing term u↦f u, �ð Þ : L2 Dð Þ ! L is

continuously Fréchet differentiable.
(A3) The forcing term has a Taylor expansion form m f x, uð Þ ¼ u xð Þ þP∞

n¼0f
n x0ð Þ= n!ð ÞÞ ∗ x� x0ð Þn, where u∈L2 Dð Þ and f 0 ∈L.

(A4) For each u∈L2
∂Dð Þ, the random forcing term u↦g u, � , �ð Þ : L2

∂Dð Þ ! L is
continuous. For each u∈L2

∂Dð Þ, the random forcing term u↦g u, � , �ð Þ : L2
∂Dð Þ ! L

is continuously Fréchet differentiable. and g is linear w.r.t. u:

(A5) The random variables ξΤ ¼ ξ1, … , ξp
� �

are independently, identically

distributed with a continuous joint multivariate probability density function ϕ ξð Þ ¼
Πp

i¼1ϕi ξið Þ and the set Ω ¼ Πp
i¼1Ωi, where Ωi ⊂, i ¼ 1, … , p, such that

f x, uð Þ ¼ u xð Þ þ
X∞
n¼0

f nð Þ x0ð Þ= n!ð Þ ∗ x� x0ð Þn (19)

g ¼ u xð Þ þ g0 ξð Þ ∂y0 xð Þ
∂x0

� �
þ
Xn
n¼1

gk ξð Þ ∂y xð Þ
∂xk

¼ u xð Þ þ
XN

k¼1
gk ξð Þ ∂yk

∂xk
(20)

with u, ak ∈L2 Dð Þ, k ¼ 0, 1, 2, … , n:.
In the assumption A5, f and g are commonly given as a series, which is called

finite-dimensional noise representation (20) (see [4, 5, 20]) for the boundary condition
g. In fact, for numerical computations, it is essential to reduce the dimension of the
uncertainties in g from KL dimension reduction method.

135

Structural Properties and Convergence Approach for Chance-Constrained Optimization…
DOI: http://dx.doi.org/10.5772/intechopen.104620



3.1 Solution of the random PDE with nonhomogeneous boundary control

From the equations expressed in (15) and (16), we have to show that the Lax-
Milgram theorem of the continuous-bilinear and coercivity property for every test
function in v∈H,

� ∇ � κ0∇yð Þ þ y
∂D

� �
v x, ξð Þ ¼ fv x, ξð Þ þ gv x, ξð Þ: (21)

This implies for v∈H,

�
ð

Ω

ð

D
ð∇ � κ0∇yþ y

∂DÞ
� �

v x, ξð Þdxϕ ξð Þdξ

¼
ð

Ω

ð

D
fv x, ξð Þdxϕ ξð Þdξþ

ð

Ω

ð

∂D
gv x, ξð Þdσϕ ξð Þdξ:

(22)

It implies the following integration functions of the expectation,

�E
ð

D
∇ � κ0∇yþ y

∂DÞ
� �

v x, ξð Þdx
� �

¼ E
ð

D
fv x, ξð Þdx

� �
þ E

ð

∂D
gv x, ξð Þdσ

� �
, ∀v∈H:

(23)

The Sobolev space plays several roles in the study of stochastic PDE system [7].
The space L2 Dð Þ ¼ H0 Dð Þ equivalence class of real-valued Lebesgue measure and
square integrable function defined on the spatial domain D. Let H1 ¼ H1 Dð Þ denote
the vector subspace of H defined by H1= v∈H1 : ∇vxi ∈H1� �

i ¼ 1, 2, 3, … , n the
equipped with the norm

∥v∥2H1 ¼ ∥v∥2L2 Dð Þ þ ∥∇xiv∥
2
L2

∂Dð Þ: (24)

Space H1 Dð Þ is Hilbert space, and it is known as the Sobolev space of order 1. Let
Domain Dð Þ denote the C∞ Dð Þ with a compact support. The closure of Domain Dð Þ is
norm topology of H1 Dð Þ, the required random solution is in H1

g Dð Þ is subspace of
H1 Dð Þ: The dual of H1

g is H
�1, is the dual space of continuous linear function on H1

g,

both of Sobolev space H1
g and H�1 are space of functional distributions in the sense of

Schwartz and have nonunique representations, and the functional at boundary has a
polynomial approximation in Eq. (20), with gk ξð Þ and ∂y

∂xk
xð Þ for k ¼ 1, 2, 3:… , n:

Where the derivative of yk xð Þ is understood in the sense of distribution. Generally, the
input random boundary conditions,

g∈L2 Ω;H1=2
∂Dð Þ

� �
� B, (25)

that defined by above expansion of orthonormal function the adjoint is in
L2 Ω;H�1=2 ∂Dð Þ�

for the defined ξ∈Ω. Since there is nonzero and nonlinear random
function g 6¼ 0 at the Dirichlet boundary condition. The boundary g is approximated
by Fourier transform, and one can define Sobolev space one can define Sobolev space
Hs for all real numbers s, s<0 these are genuine distributions as characteristic
function, for s ¼ 0, we have H0 ¼ L2 Dð Þ for s>0 these are the regular function spaces
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contained in H1, for example, y belongs to H1
g Dð Þ see [21, 24]. There is the trace

operator Γ : L2ðΩ;H1
g Dð ÞÞ↦ L2 Ω;H1=2

∂Dð Þ,Γ yð Þ ¼ y ¼ g for x∈ ∂D
�

. The space

Hm ⊂Hm�k for k>0 and the injection is compact. The trace function loses its interior
smoothness and may be a distribution on the boundary as ∂y

∂n belongs to H�1=2 ∂Dð ÞÞ, n
is a normal to the test function v, i.e., ∂y

∂v ∈H�1=2 ∂Dð ÞÞ. We shall define the inner
product space (.,.) or ≺:, :≻ by the double integral function on the set D and Ω, there
is the duality pairing between H1 and H ∗

1 at the trace operator. In each case of
boundary-value condition of bilinear-continuity form a y, vð Þ and coercive (elliptic)
form, we can formulate the following equation:

a y, vð Þ � f , vð Þ � g, vð Þ ¼
ð

Ω

ð

D
v Ly� fð Þdxϕ ξð Þdξþ

X
aik∂ky� g½ �vds (26)

that vanishes the right-hand side of second integral, and L and aik are the linear
and differential operators, respectively [7]. The weak PDE system gives

�E
ð

D
∇ � κ0∇yð Þv x, ξð Þdx

� �
¼ E

ð

D
fv x, ξð Þdx

� �
þ E

ð

∂D
y� gð Þv x, ξð Þdσ

� �
, v∈H:

(27)

Definition 3.2. The system of elliptic PDE in Eqs. (2) and (3) has a weak solution
y∈L2ðΩ;H1

g Dð ÞÞ, if there exists a measurable random variable y w.r.t. ξ defined in Ω
such that E a y, ϑð Þ½ � ¼ E l y, vð Þ½ � ¼ E f , ϑð Þ þ E g, ϑð Þ½ �½ for all ϑ∈H ¼ L2ðΩ;H1

g Dð ÞÞ: The
operator a satisfies the continuous bilinear and coercive form.

Definition 3.3. The system of elliptic PDE said to be stable in L2ðΩ;H1
g Dð ÞÞ, if it has

a weak solution y∈L2ðΩ;H1
g Dð ÞÞ and the forcing term f ∈L expressed in Eq. (9) and

the boundary input g∈L2 Ω,H1=2
∂Dð Þ�

. The solution y is continuous depending on the
random parameter, i.e., E y½ � ¼ E y f , gð Þ½ �. The subspace of all function form
L2 Ω,Hl Dð Þ�

whose generalized derivatives up to order l exist and belong to
L2 Ω,Hl Dð Þ�

. The space Hl Dð Þ ¼Wl
2 Dð Þ is called Sobolev space order l:.

Theorem 3.4. Lax-Milgram Theorem: Let κ :ð Þ∈L∞ Dð Þ be a functional, and there
exists a constant κmin >0 and κmax > κ xð Þ> κmin almost surly and the test function v∈H ¼
L2ðΩ�H1

g Dð ÞÞ, g∈L2 Ω�H1=2
∂Dð Þ� �

and f xð Þ∈ H1 Dð Þ� � ∗ . The operators a and l
defined in Eq. (25) hold continuous-bilinearity and coercivity. Thus, the variational prob-
lem defined in Eq. (1) and (2) has unique solution y∈L2ðΩ,H1

g Dð ÞÞ for all ξ∈Ω.
Proof. The elliptic PDEs in Eqs. (15) and (16) have weak solution if there exists a

test function v∈H, this boundary condition g moves to left-hand side

�∇ κ :ð Þ∇yð Þv ¼ f xð Þv inD;

y� g :, ξ, uð Þð Þv ¼ 0onU � ∂D�Ω;

)
ð

Ω

ð

D
� ∇κ :ð Þ∇y:vdxΦ ξð Þdξ

¼
ð

Ω

ð

D
fvdxΦ ξð Þdξþ

ð

Ω

ð

∂tD
g � yð Þ :, ξ, uð Þ:vdσΦ ξð Þdξ:

(28)
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Where dσ ¼ n :ds
 

is the surface measure at the boundary of D from integration
by part,

)
ð

Ω

ð

D
κ :ð Þ∇y:∇vdxΦ ξð Þdξ�

ð

Ω

ð

∂D

∂y
∂n

ξ, xð Þv ξ, xð Þ:dσΦ ξð Þdξ

¼
ð

Ω

ð

D
fvdxΦ ξð Þdξþ

ð

Ω

ð

∂D
g � yð Þ:vdσΦ ξð Þdξ

(29)

Since y:v ξ, xð Þ ¼ 0 for x∈ ∂D because the unit normal vector is perpendicular to
the boundary ∂D. Let

a y, vð Þ ¼
ð

Ω

ð

D
κ :ð Þ∇y:∇vdxΦ ξð Þdξ;

l y, vð Þ ¼
ð

Ω

ð

D
fvdxΦ ξð Þdξþ

ð

Ω

ð

∂D
g :, ξ, uð Þ:vdσΦ ξð Þdξ;

) a y, vð Þ ¼ l y, vð Þ:

(30)

We need to show that continuous-bilinear and coercivity form. These two proper-
ties are sufficient for the existence and uniqueness of weak solution [7, 8]. The input
random functions are in a reflexive and separable Bochner space. Thus, weak solution
is the same as the classical solution, the weak measurability is also similar to the strong
measurability seen in [24].

) ∣a y, vð Þ∣ ¼ ∣
ð

Ω

ð

D
κ xð Þ∇y:∇vdxΦ ξð Þdξ∣ ≤ ∣k xð Þ∣

ð

Ω

ð

D
∣∇y:∇vdxΦ ξð Þdξ∣

≤ ∥k :ð Þ∥L∞ Dð ∥∇y∥L2 Ω�Dð Þ∥∇v∥L2 Ω�Dð Þ
≤∥κ :ð Þ∥L∞ Dð ∥y∥L2Ω�H1

g Dð Þ∥v∥L2 Ω�Dð Þ:

(31)

Hence, the operator a is continuous bilinear. The same case for l y, vð Þ this is
integral of duality product between a mapping in Hölder theorem

∣l y, vð Þ∣ ¼
ð

Ω

ð

D
fvdxΦ ξð Þdξþ

ð

Ω

ð

∂D
g:vdσΦ ξð Þdξ

����
����

≤
ð

Ω

ð

D
fvdxΦ ξð Þdξ

����
����þ

ð

Ω

ð

∂D
g:vdσΦ ξð Þdξ

����
����

≤∥f∥ L2 Dð Þð ∥v∥ L2 Ω�Dð Þð þ ∥g∥ L2 Ω�∂Dð Þð ∥v∥ L2 Ω�∂Dð Þð

≤∥f∥ H1 Dð Þð ∥v∥ L2 Ω�Dð Þð þ ∥g∥ L2 Ω,H1=2
∂Dð Þð Þð Þ ∗ ∥v∥ L2 Ω, ∂Dð Þ:ð

(32)

Therefore, both a and l are continuous bilinear form. To see coercivity, ∀v∈V
Fubini theorem implies that ∣a v, vð Þ∣ ¼ ÐΩ

Ð
D∣κ xð Þ∇v:∇vdxΦ ξð Þdξ∣ ≥ κmin

Ð
Ω

Ð
D∣∇v:

∇vdxΦ ξð Þdξ∣ because κmin is bounded from below a.s., and independent of random ξ,
κmin xð Þ is lower bounded as well. Thus, ∣a v, vð Þ∣ ≥ κmin

Ð
Ω

Ð
D∥∇v∥

2
VdxΦ ξð Þdξ≥ kmin=C

∥v∥2V Where C ¼ c2 by Poincare-Friedrichs inequality ∣a v, vð Þ∣ ≥ κmin=c2∥v∥2H ≥
κmin=c2∥v∥2V the same for l. The required numerical solution is obtained from
stochastic finite difference method (SFDM) or finite element method (SFEM), for the
indexed x∈D the numerical solution
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y x, u, ξð Þ ¼ A�1 f ij= κð Þ uð Þ þ gij u, ξð Þ∀x∈Da:s:
�

(33)

The y x, u, ξð Þ have a linear property w.r.t. u, ξ jointly. This case the matrix A
obtained from the discretization operator a is positive definite [22]. Therefore,
the weak solution y∈L2 Ω�H1

g Dð Þ� �
exists and is unique. We will analyze

the continuously dependent of the solution y∈L2 Ω�H1
g Dð Þ� �

on f , g, u and
k,∀ξ∈Ω: □

Theorem 3.5. Suppose the coefficient operator κ ¼Pijκijx
i ωð Þxj ωð Þ and

κij xð Þ∈L∞ Dð Þ is nonrandom, is independent of ξ seen in [7] and deterministic coefficient
function of κ :ð Þ is indexed by x∈D. There exists a lower bound number κmin >0 such that
κmin ≤ κ xð Þ≤ κmax a.s. and

P
ijκijx

ixj ≥ κminx2 for x∈D subset of n. Thus elliptic PDE

system is L2 stable in the sense of distribution in Definition (3.2) and Definition (3.3). There
exist c>0, c is independent of f, g for all fixed x∈D, and c is dependent only κ, such that

E ∥y f , gð Þ∥2� �
H1 Dð Þ ≤ c E ∥f∥2

� �
H1 Dð Þ þ E ∥g∥2

� �
H�1=2 ∂Dð ÞÞ

n o
(34)

∀f ∈H1 Dð Þ and g∈L2 Ω,H
�1
2 ∂Dð Þ

� �
,E ∥f∥2
� � ¼ ÐΩ∥f∥2Φ ξð Þdξ ¼ ∥f∥2

Ð
ΩΦ ξð Þdξ ¼

∥f∥2: This theorem is proved and extended in the work [25].
Remark: For dimension n≤ 3, the map of the solution is continuous embedding

from L2 Ω�H1 Dð Þ� �! L2 Ω� H1 Dð Þ� � ∗ ∩L2 Ω�H�1=2 ∂Dð Þ� ��
is fulfilled and the

mapping is continuous and linear E ∥y∥H1
g Dð Þ

h i
≤ c ∥f∥∗

H1 Dð Þ
h i

þ E ∥g∥H1=2
∂Dð Þ

h in
} for

each ξ a.s., see the prove in [7].
Theorem 3.6. Let U and V be Hilbert spaces. Then, the linear mapping L : U ! V is

an isomorphic mapping if and only if the associated form a : U � V↦ satisfies

i. Continuity, there exists C>0 such that ∣a u, vð Þ∣ ≥C∥u∥U∥v∥V for all u∈U

ii. Inf-sup condition, i.e., there exists c>0 such that sup a u, vð Þ
∥v∥V

� �
≥ c∥u∥U, ∀u∈U:

iii. For every v∈V, there exists u∈U with a u, vð Þ 6¼ 0 and if we assume continuity
and inf- sup conditions above, then L : U ! v∈V : a u, vð Þ ¼ 0,∀u∈Uf g⊂V is

an isomorphism. Thus, the equation sup a u, vð Þ
∥v∥V

� �
≥ c∥u∥U is equivalent to

∥Lu∥V ≥ c∥u∥U, ∀u∈U: It follows the equivalent formulation

inf u∈U supv∈V
a u, vð Þ

∥v∥V∥U∥U

� �n o
≥ c>0.

Proof. We need to show that injective and surjective map L : U ! V. The equiva-
lence of continuity of L : U ! V, L u1ð Þ ¼ Lu1 ¼ L u2ð Þ ¼ Lu2, u1, u2 ∈U

) a u1, vð Þ ¼ a u2, vð Þ,∀v∈V (35)

) a u1 � u2, vð Þ ¼ 0 implies u1 � u2 ¼ 0: For the surjective ∀f ∈L uð Þ,L uð Þ from the
image of the pre image u. There exists a unique u ¼ L�1 fð Þ: Thus,
c∥u∥U ≤ sup a u, vð Þ

∥v∥V

� �
¼ sup a f , vð Þ

∥v∥V
¼ ∥f ∗ ∥

�
. □
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3.2 Reduced optimization of PDE with random data

The problems of CCPDEs are not properly studied. Moreover, the pointwise or
uniform probabilistic state-constrained function is a nonsmooth, nonconvex, intrac-
table, and infinite-dimensional state constraints. The following assumptions are
needed for reducing dimension and variability for analyzing the structural properties
of CCPDE.

Assumption 3.7. Assume that the functionals

1.The κ xð Þ∈K of Eq. (9), the g x, :, :ð Þ∈B, the f :ð Þ∈H ∗ , the H ∗ is the dual in
Sobolev space of H defined by Eq. (9) and Dc is subset of convex set D have
Lipschitz smooth boundary ∂D.

2.The control functional u :ð Þ∈L is compact and convex, the L is subset of the
admissible set Uadm.

3.The objective functional E[J(y(u))] is mapping from L2 Ω,H2 Dð Þ� �Þ �
L2 Ω,H1=2

∂Dð Þ� �Þ !  is weakly sequentially lower semicontinuous (wsls) and
bounded below by ρ

2 ∥u∥
2
L2 Dð Þ.

4.The E J y uð Þð Þð Þ is a convex w.r.t. u.

5.The f w.s.l.s w.r.t. x∈D and g are w.s.l.s and convex w.r.t u, ξð Þ simultaneously.

The optimization problem of

min
u :ð Þ∈L

E J y x, ξð Þð , u :ð ÞÞ½ � (36)

subject to:

P u; xð Þ ¼ px uf g ¼ Pr y x, u, ξð Þ≤ ymax

� �
≥ α, x∈D (37)

the random variable ξ∈Ω have a log-concave density function ϕ ξð Þ. If the objec-
tive function in Eq. (36) is convex, then the chance-constrained programming is a
convex optimization problem and has a globally optimal solution.

Proof. The functional J is a convex function from the convexity property of norm.
The expectation E is the integral of the convex function, is convex. Moreover, the
solution of the PDE system y is a linear w.r.t x, ξð Þ. The internal functional γ ¼ y� ymax
is a quasiconcave from proposition (3.4), then Px uð Þ is a convex w.r.t. u. Suppose the
constrained P ¼ u∈U=P u; xð Þ> αf g is a convex set [26]. Hence, the composition
functional E J y uð Þð Þð Þ is the composition of convex and lower-continuous function.
Therefore, E J y uð Þð Þð Þ is a convex function and the set B ¼ L2 Ω,H1=2

∂Dð Þ⊂P∩Uadm
�

,
convex intersection of convex set is convex. □

The optimization problem of CCPDE reduced to the following programming
form and the solution y is continuous dependent on the parameters f and g in
theorem (3.5),

min
u :ð Þ∈P∩Uadm

q u :ð Þð Þ ¼ E J y f xð Þðð , g xðð , ξÞ, u :ð ÞÞ½ �, (38)
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where the probability function in Eq. (37) expressed P :, xð Þ ¼
Pr γ ¼ y f xð Þ, g ξð Þ, u :ð Þð Þ � ymax ≤0,∀x∈D
� �

, the set P ¼ u∈U=P x; uð Þ> αf g this opti-
mization problem admits unique optimal solution. The random variable ξ∈Ω has a
log-concave density function ϕ ξð Þ. If the objective function in Eq. (47) is a convex,
then the chance-constrained programming is a convex optimization problem and has
a global optimal solution.

3.3 The structural property of probabilistic constrained function

Most of the recent research works on the chance-constrained optimization prob-
lems do not include a probabilistic state constraints. In this study, we have deliberated
a pointwise probabilistic state constraints, which are expressed in Eq. (41). The
structural properties of the probabilistic state-constrained function are not properly
analyzed. The continuity, differentiability, compactness, and convexity properties of
the state constraints are important for guaranteeing the optimality criteria. The func-
tion of state constrained looks like,

P u; xð Þ≔ px uf g≔Pr y x, ξð Þ, uð Þf Þ≤ ymax, ∀x∈Dg≥ α: (39)

The internal part of the probability function is

γ u, x, ξð Þ ¼ y x, ξð Þ, uð ÞÞ � ymax ≤0, ∀x∈D, (40)

which is a continuous differentiable function from the equation expressed (33), it
does not imply the continuity and differentiability of the probability function in
Eq. (41). The following propositions guaranteed the structural properties for the
probabilistic uniform constrained functions, and these are a strong form of a
pointwise state constrained,

P u; xð Þ≔ px uf g≔Pr y x, ξð Þ, uð Þf Þ ¼ ymax, ,∀x∈Dg ¼ 0: (41)

it holds the measure zero property

P u; xð Þ≔ px uf g≔Pr y x, ξð Þ, uð Þf Þ ¼ ymax, ,∀x∈Dg ¼ 0: (42)

Proposition 3.8. Assume that γ x, :, ξð Þ are Borel measurable w.r.t ξ∈Ω for all u∈U
and for all x∈D and γ x, :, ξð Þ are weakly sequentially lower semicontinuous (wsls) or
weakly sequentially upper semicontinuous (wsus) vice versa for x∈D and ξ∈Ω. Then,
P u; xð Þ ¼ Pr γ x, u, ξð Þ≤0ð Þ is wsls or wsus vice versa and γ x, u, ξð Þ ¼ y� ymax ≤0, ∀x∈D.
The same case, for fixed x∈D the function P uð Þ ¼ u∈Uadm : P :, xð Þ≥ αf g is wsls or wsus
vice versa.

Proof. From a given assumption, P is well defined by Borel measurability of
γ x, u, :ð Þ w.r.t. ξ∈Ω in the second argument. Fix an arbitrary û and let un ∈Uadm,
un ! û, arbitrary weakly convergent sequences in Uadm and any arbitrary fixed
x∈D and let xn ∈D, xn ! x̂. Denote by unl a subsequence such that
liminf n!∞P unð Þ ¼ lim l!∞P unl

� �
: The variable of the decision u ¼ u xð Þ linearly con-

tinuous dependent on x∈D:.
Define the sets P ¼ ξ∈Ω : γ x, u, ξð Þ≤0,∀ξ∈Ωf g and Pn ¼ ξ∈Ω : γ x, un, ξð Þ≤0∀ξf

∈Ωg, n≥ no ∈N : Since, by γ being wsls in the first argument, we have
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liminf n!∞γ x, un, ξð Þ≥ lim l!∞γ x, unl , ξ
� �

≥ γ x, û, ξð Þ, ∀ξ∈Ω=P: (43)

Consequently, γ x, un, ξð Þ<0, ∀ξ∈Ω=P and all n≥ n0, ξ∈Ω.
Denoting by

h ξð Þ ¼ 1 if ξ∈P
0 if ξ ∉ P

�
(44)

the characteristic function of a set Uadm, this entails that h Pn ξð Þð Þ ! 0 as n!
∞, ∀ξ∈Ω=P: By the Lebesgue dominance convergence theorem,Ð
Ωh γ x, un, ξð Þϕ ξð Þdξ! 0½ for all ξ∈Ω=P.

On the other way E h γ x, un, ξð Þ½ �≤E h γ x, u, ξð Þ½ � ¼ 1, ∀ξ∈P½½ .
Therefore,

limP unl
� � ¼ lim l!∞Pr γ x, unl , ξ

� �
≤0

� � ¼ lim l!∞

ð

Ω
h γ x, unl , ξ
� �� �

ϕ ξð Þdξ

¼ lim l!∞

ð

Ω=P
h γ x, un, ξð Þϕ ξ½ �dξþ lim l!∞

ð

P
h γ x, un, ξð Þϕ ξð Þdξ½

�

≥ lim l!∞ inf
ð

Ω=P
h γ x, un, ξð Þϕ ξ½ �dξþ lim l!∞ inf

ð

P
h γ x, un, ξð Þϕ ξð Þdξ½

�

≥ lim l!∞ inf
ð

P
h γ x, un, ξð Þϕ ξð Þdξ½ (45)

≥ lim l!∞ inf
Ð
Pϕ ξð Þdξ ¼ Pr ξ∈P½ � ¼ Pr ξ∈P : γ x, :, ξð Þ≤0½ � ¼ P ûð Þ. Thus, the

function P is wsls from the equation in above liminf n!∞P unð Þ ¼
lim l!∞P unl

� �
≥P ûð Þ: For wsusc property, related propositions also proved in work of

[11, 16]. □
Proposition 3.9. Assume that D is compact subset of n, if γ is wsus then P u, xð Þ is wsus

at ∀u∈U satisfying pr γ ∗ u, ξð Þ ¼ 0ð Þ ¼ 0, this is said to be measure zero property where
γ ∗ ¼ inf γ x, u, ξð Þð Þ defined in proposition (3.8).

The prove is the similar to the proof of (3.8), has been proved in [16]. Let x∈D be
fixed. We need to show the convexity property of probability function u! p u, ξð Þ
needs convex property with respect to u, ξð Þ along the continuous probability density
function ϕ ξð Þ. From the solution of PDE system, we have a continuous y in Bochner
space and y x, ξ, uð Þ ¼ A�1

� �
= kð Þ� �

jH f xð Þ þ kg u, :, :ð Þð Þ x:ξð Þ� �
∀x∈D, ∀ξ∈Ω. Thus,

γ x, :, :ð Þ ¼ A�1
� �

= kð Þ� �
jH f xð Þ þ k g u, :, :ð Þð Þ x, u, ξð Þ � ymax

� �
≤0

�
and Pr A�1

� ���
jH f xð Þ þ kð Þg u, :, :ð Þð Þ x:ξð Þ � kð Þymax

� �Þ≤0g≥ α is a convex w.r.t. u, ξð Þ jointly from the
linearity of the internal function for any fixed x∈D: Therefore, it is a sufficient in the
finite-dimensional optimization, continuity, and linearity of y guarantee for continuity
and convexity of P u; xð Þ [26, 27]. Our aim is to extend it to infinite-dimensional case.

Remark: Assume that γ u, x, ξð Þ ¼ A�1= kð Þ� �
jHf xð Þ� �þ g x, :, :ð Þ � ymax is a concave

w.r.t.ξ∈Ω, ∀u∈U and ∀x∈D, for each u there exists random vector ξ∈Ω such that
γ ≤0, ∀x∈D then, ξ has a density ϕ ξð Þ distributed continuously and

Pr γ ∗ u, ξð Þ ¼ 0f g ¼ 0 ¼ Pr A�1= kð Þ� �
jHf xð Þ� �þ g u, :, :ð Þ x, ξð Þ ¼ ymax

� � ¼ 0, ∀x∈D,

(46)
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where, γ ∗ ¼ inf γ x,u,ξð Þð Þ¼ inf u A�1= kð Þ� �
jHf xð Þ� �þ g u, :, :ð Þ x,ξð Þ� ymax,∀x∈D

� �
:

Proposition 3.10. Let U be Banach space and D be arbitrary index set. Let the n-
dimensional random vector ξ∈Ω have a log-concave density, i.e., density of its logarithm is
possibly extended valued concave function. Assume that the function γ x, u, ξð Þ ¼
A�1= kð Þ� �

jH f xð Þð Þ þ g u, :, :ð Þ x, ξð Þ� �� ymax is quasi-concave for all x in D, then the set
M ¼ u∈U=P u; xð Þ> αf g is a convex set.

Proof. From structural property of wslsc on the proposition (3.8) pick up γ ∗ ¼
inf u γ x, u, ξð Þð Þ and we defined P u; xð Þ≔Pr γ ∗ x, u, ξð Þ≤0ð Þ for all u in Banach space
Uadm ¼M⊂U to fix arbitrary elements in U, u1, u2 ∈U and quasi concavity of γ ∗ such
that ξ1 and ξ2 in Ω and u1, ξ1ð Þ, u2, ξ2ð Þ∈U �Ω and λ∈ 0, 1½ � there exists indexed x∈D
such that γ ∗ λ u1, ξ1ð Þ þ 1� λð Þ u2, ξ2ð Þð Þ≥ min γ ∗ u1, ξ1ð Þ, γ ∗ u2, ξ2ð Þð gf and the density ξ
having log-concavity density shown in Prekopa ([11, 28] Theorem [4.2.1]) for the
given log-concave distribution. The pr ξ∈ λPþ 1� λð Þqð Þ≥ pr ξ∈ pð ÞλPr ξ∈ qð Þ1�λÞ for p
and q are convex subset of Ω. We need to show the convexity of set M in u1 and u2 in
M and λ∈ 0, 1ð Þ we define a map H : U !  u in U observe that H u1ð Þ and H u2ð Þ are
the convex set an immediate consequence of the quasi concave on γ ∗ . The sets
λH u1 þ 1� λð ÞH u2ð Þð Þ⊂H λu1 þ 1� λð Þu2ð Þ. Thus, H is a concave set (γ is a quasi-

concave). In other words, let ξ1 ∈H u1ð Þ and ξ2 ∈H u2ð Þ, ξ∈P λu1 þ 1� λð Þu2ð Þ ¼
pr ξ∈H λu1 þ 1� λð Þu2ð Þ½ �≥ pr ξ∈H u1ð �λ ∗ pr ξ∈H u2ð Þ½ � 1�λð Þ ¼ αλα 1�λð Þ ¼ α,

h
for reli-

able level α. The ξ ¼ λξ1 þ 1� λð Þξ2 ∈Ω, γ ∗ u1, ξ2ð Þ, γ ∗ u2, ξ2ð Þ≤0 obtaining from the
quasi concavity of γ ∗ we have γ ∗ λu1 þ 1� λð Þu2, ξð Þ ¼ γ ∗ λu1, ξ1ð Þ þ 1� λð Þ u2, ξ2ð ÞÞ≥
min γ ∗ u1, ξ1ð Þ, γ ∗ u2, ξ2ð Þð Þ≥0. Finally, the result is proved the convexity of chance-
constrained, λu1 þ 1� λð Þu2 ∈M. Hence, M is a convex set. □

Proposition 3.11. Let M ¼ U be separable Banach space defined in proposition of the
convexity (3.10) and M ∗ is a dual space of M, assume that the γ x, :, :ð Þ≤0 is a weakly
sequentially upper continuous (w.s.u.s) for each u∈M and x∈D. Then, it satisfies the
following three conditions and the three statements are equivalent [11, 16].

i. The γ x, u, :ð Þ is a Borel measurable function w.r.t. ξ∈Ω ∀u∈M and x∈D.

ii. The set M ¼ u∈M : P u; xð Þ≥ αf g is weakly closed.

iii. The P u; xð Þ is weakly sequentially upper continuous (wsus).

Proof. From the assumption, the function γ x, u, :ð Þ : n !  upper semicontinuous
for each u∈U and each x∈D. Consequently, the sets ξ∈Ω : γ x, u, ξð Þ≤0, ∀x∈Df g
are closed, which implies the Borel measurability w.r.t. ξ (i). The proposition (3.8)
explains the continuity property with measure zero property in (42), justifies to talk
about probability of events as in (i) and (iii). It is an immediate consequences of (ii).
Hence, in order to (i) prove (ii) let P uð Þ in  be arbitrary and consider weakly
convergent sequences un ! u has a convergent subsequence unl ∈M with un ∈M for
all n, it is from Arzela-Ascoli, every sequence of a given family of real-valued contin-
uous functions defined on a closed and bounded interval has a uniformly convergent
subsequence. We have to show that u in M we define H uð Þ ¼ ξ∈Ω : γ x, u, ξð Þ≤0f g
from un ∈M, and P ξ=H unð Þ≥ αf g. Boundness of un by weak convergence implies that
there is some closed ball B with sufficiently large radius such that u in B for all n. From
separability of U ∗ , the weak topology B metrizable w.r.t. ξ for fixed x. Regarding the
finite-dimensional case, it has been proved in work [16].
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Lemma 3.12. All the assumptions of Proposition (3.11) are true, there are constants
ε>0, σ >0, such that with d referring to the Hausdorff distance from the point on Uadm to
the set in probabilistic set Px u; ξð Þ such that d ∈Uadm, u∈P : P u, xð Þ≥℘f g≤ð
σmax log ℘ð Þ � log Px u, xð Þð Þ, 0f g,∀℘∈ α� ε, αþ ε½ �.

For an infinite-dimensional problem of CCPDE, we have proved it in the previous
work [14, 25]. This lemma has been verified for the finite-dimensional problem
without the PDE system in [16]. It needs Arzela-Ascoli theorem, this CCPDE
constrained function also holds bounded and continuous property [16, 21]. The
Lax-Milgram theorem is sufficient for the bounded and continuous property from the
continuous bilinear and coercivity form; see in the theorem (3.4).

4. Approximation for CCPDE by inner and outer functions

The approximation of the probability constrained function has been analyzed in
the previous work [6, 14]. This proposed approach is a smooth parametric approxi-
mation for the nonsmooth and intractable probability function. This study will ana-
lyze some open issues related to the topological and structural properties of the
CCPDE. Some of the issues are continuity, differentiability, closedness, compactness,
and convexity of the inner and outer approximation functions in the infinite-
dimensional Bochner space. They are significant for assuring the optimality criteria
for the existence and uniqueness of the optimal control. Furthermore, the conver-
gence approach and the numerical results are studied properly.

The smooth parametric inner and outer approximations are analyzed in the work
[6]. This section briefly analyzes the parametric functions to define a smooth approx-
imations to the optimal control of the boundary-value CCPDE. The optimal control of
the CCPDEs is approximated by the family of the sequence of solutions of the inner-
outer approximation problems, when the approximation parameter τk tends to zero as
k goes to infinity. In case of convexity and norm convergence of the approximate
solutions to a solution of CCPDE can be proved and to some extended the structural
analysis of the proposed approach for guaranteeing the optimality criterion of CCPDE.
For this purpose, we employ and extend our recent work [6, 13, 14, 25], where the
inner-outer approximation methods, for finite-dimensional and smooth CCPDE, were
proposed to solve the reduced CCPDE problem.

We consider the parametric Geletu-Hofmann function

θ τ, sð Þ ¼ 1þm1τ

1þm2τ exp � s
τ

� � , for τ∈ 0, 1ð Þ, s∈ (47)

to approximates a nonsmooth problem of the CCPDE in the work [13]. If we fix the
parameters m1 ¼ 0,m2 ¼ 1=τ, the parametric function θ τ, sð Þ is the same as the sig-
moid function. Thus, we can approximate the probabilistic constraint by sigmoid
function in terms of θ τ, sð Þ: Unfortunately, the sigmoid function is not bound to the
probabilistic constrained function from the below, and the computation is a too
slowing in comparison with θ τ, sð Þ: The advantage of theta is bound to the probabilis-
tic function from above and below. Thus, the probabilistic constraint of CCPDE is
bounded by the family of smooth functions of inner E θ τ,�γ u, ξ; t, xð Þ�ð Þ½ and outer
1� E θ τ, γ u, ξ; t, xð Þ�ð Þ½ approximations from the lower and upper bound, respectively.
We have a piecewise continuous function,
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h sð Þ ¼ 1 if s≥0

0 if s<0:

�
(48)

Multiplied by the discontinuous function, with jump nonlinear function and an
infinitely differentiable function E h sð Þ½ �, where s ¼ γ x, u, ξð Þ is defined above in
Eq. (48). Then, the product is infinitely differentiable, and the difference of approx-
imation on the parametric functions in the region 0< x< ε that is tiny for small
positive number epsilon but the probabilistic constraint has measure zero property
defined in Eq. (42). This makes the approximation functions a nice function property.
The m1 and m2 are positive constants, the parametric family each property of θ
function is written and proved in [6, 13] together with its continuity, differentiability,
and convexity of its approximation functions. The following well-known identities are
obtained

p u; xð Þ ¼ E h �γ u, ξ; xð Þð Þ½ � ¼ 1� E h γ u, ξ; xð Þð Þ½ �, (49)

despite the appealing expected value E h γ u, ξ; xð Þð Þ½ � ¼ ÐΩh γ u, ξ; xð Þð Þϕ ξð Þdξ
representation of probability functions in (49), the missing smoothness of the unit
jump function does not provide computational advantages. Nevertheless, the function
h provides an insight for the construction of a smoothing approximation for the
probability function p and the internal function θ τ, γð Þ, τ∈ 0ð , 1Þf g of functions θ :
0, 1ð Þ � ! þ possessing the following strict monotonicity and uniform limit
properties.

Assumption 4.1. Suppose there is a parametric family of a functions θ τ, sð Þ, which
possess the following properties such as monotonic (strictly increasing) uniform limit
properties

i. There is a constant C with 1<C<∞ such that C> θ τ, sð Þ> h sð Þ, ∀s∈ and
∀τ∈ 0, 1ð Þ.

ii. The parametric θ τ, sð Þ is strictly increasing in all s∈ and τ∈ 0, 1ð Þ.

iii. The parametric θ τ, sð Þ is continuous and infinitely differentiable smooth
function.

iv. The infimum inf τ∈ 0,1ð Þ θ τ, sð Þð Þ ¼ h sð Þ,∀s.

v. The limsupτ!0þ θ τ, sð Þð Þ � h sð Þ ¼ 0, τ∈ 0, 1ð Þ and s∈ �∞, 0ð Þ∪ 0,∞ð Þ.

vi. The parametric θ τk, sð Þ uniform convergence and lim k!∞sup
∂θ τk, sð Þ

∂s ¼ 0, for
τk ! 0 as k! ∞.

Thus, from the above boundedness property of jump function in above assumption
we have,

1� θ τ, sð Þ≤ h �sð Þ≤ θ τ,�sð Þ, (50)

It follows that, E 1� θ τ, sð Þð Þ≤E h �sð Þð Þ≤E θ τ,�sð Þð Þ, from property of
expectation. Hence,
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p u; xð Þ≔Pr y uðf , ξ, xÞ≤ ymaxg≥ α, ∀x∈D) Pr ξ∈Ω : γ xðf , u, ξÞ≤0g ¼ E h sð Þð Þ��s¼γ x,u,ξð Þ≤0 ≥ α, ∀x∈D:

Now, based on the parametric function θ, the following functions are defined

φ τ, u; t, xð Þ≔E θ τ,�γ u, ξ; t, xð Þ�ð Þ,½ (51)

ψ τ, u; t, xð Þ≔ 1� E θ τ, γ u, ξ; t, xð Þð Þ½ �, τ∈ 0, 1ð Þ: (52)

Under the measure zero property and smoothness properties of γ u, ξ; t, xð Þ, the
functions ψ τ, u; t, xð Þ and φ τ, u; t, xð Þ can be shown to be smoothing approximations of
1� p u; t, xð Þ and p u; t, xð Þ, respectively (see Geletu et al. [6]). Moreover, the following
convergence properties

inf
τ∈ 0, 1ð Þ

φ τ, u; t, xð Þ ¼ p u; t, xð Þ; (53)

sup
τ∈ 0, 1ð Þ

1� ψ τ, u; t, xð Þð Þ ¼ p u; t, xð Þ; (54)

and the Lebesgue dominance convergence properties analyze the almost
indeed convergence properties of the inner and outer function sequence. The
detail convergence approach of the outer approach to CCPDE has been studied in
the work [6, 13]. However, the convergence analysis for the inner approximation
to the optimal solution of CCPDE of the smooth function IAτ has not been properly
analyzed in the previous work [13] because the study needs the convex
approximations and subdifferentiability for probabilistic constraints as the
convergence of stationary points of IAτ is very relevant for the existence of the
optimal solution.

For several chance constraints pi uð Þ≥ α, i ¼ 1, 2, … ,m, the regularity is given by
u∈Ujpi uð Þ≥ α, i ¼ 1, 2, … ,m
� � ¼ cl u∈Ujpi uð Þ> α, i ¼ i ¼ 1, 2, … ,m

� �
[29]. For

continuously differentiable probability functions pi, a sufficient condition for the
validity of the regularity assumption is the satisfaction of the Mangasarian-Fromowitz
constraint qualification (MFCQ) at the active points, [16, 29] Proposition 3.7.

The respective feasible sets of inner and outer approximations are defined as
follows:

M τð Þ≔ u∈U j ψ τ, u; xð Þ≤ 1� α, xð Þ∈Df g; (55)

S τð Þ≔ u∈U j φ τ, u; xð Þ≥ α, xð Þ∈Df g: (56)

As a consequence of the properties of the functions ψ τ, u; xð Þ and φ τ, u; xð Þ, we
have the following relations among the feasible sets of CCPDE, IAτ, and OAτ. That is,

M τð Þ⊂P ⊂ S τð Þ, forτ∈ 0, 1ð Þ: (57)

The tightness property of the relaxation of IA and compression of OA sequentially
analyzed in the previous work [29], if 0< τ2 ≤ τ1 < 1, then.

M τ2, xð Þ⊂M τ1ð Þ⊂P xð Þ⊂S τ1, xð Þ⊂S τ2ð Þ: (58)

It leads lim τ!0þS τð Þ ¼ ∩ τ∈ 0,1ð ÞS τð Þ ¼ P and lim τ!0þM τð Þ ¼ Cl ∪τ∈ 0,1ð ÞM τð Þ� � ¼
P: Both M τð Þ and S τð Þ are closed sets as τ! 0þ; see the property in proposition 5.1
and 5.2 in the next section.
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The new monotonic properties of the objective function E J T u, :ð Þð Þð Þ with respect
to τ are a continuous function on u∈Uadm. If 0< τ1 < τ2 < 1 with inf ∅½ � ¼ ∞,

inf u∈M τ2ð Þ E J T u½ �ð Þð Þ½ �≥ inf u∈M τ1ð Þ E J T u½ �ð Þð Þ½ �≥ inf u∈P E J T u½ �ð Þð Þ½ �
≥ inf u∈ S τ1ð Þ E J T u½ �ð Þð Þ½ �≥ inf u∈ S τ2ð Þ E J T u½ �ð Þð Þ½ �, ∀τ∈ 0, 1ð Þ: (59)

It implies the following compact form conditions of nondegenerate fuzzy
optimality,

inf u∈M τ2ð Þ½E J T u½ �ð Þð Þ þ μiðα� 1� ψ i uið Þð Þ�≥ inf u∈M τ1ð Þ½E J T u½ �ð Þð Þ þ μiðα� 1� ψ i uið Þð Þ�
≥ inf u∈P E J T u½ �ð Þð Þ þ μiðα�P i uið Þ½ �≤ inf u∈S τ1ð Þ½E J T u½ �ð Þð Þ þ μiðα�φi uið Þ�

≥ inf u∈S τ2ð Þ E J T u½ �ð Þð Þ þ μi α�φi uið Þð �,∀τ∈ 0,1ð Þ:½
(60)

The complementary property of the probability function 1�
p u; xð Þ≤ψ τ, u; xð Þ≤ 1� α and φ τ, u; xð Þ≥ p xð Þ≥ α, forx∈D hold true. Now, using the
parametric functions φ τ, �ð Þ and φ τ, �ð Þ, we define the following problems with the
same objective function q in the equation given (38) as in CCPDE.

min
u

q uð Þ IAτð Þ
s:t:

ψ τ, u; xð Þ≤ 1� α, x∈Dc

u∈U,

min
u

q uð Þ OAτð Þ
s:t:

φ τ, u; xð Þ≥ α,

u∈U:

(61)

The feasible set of CCPDE defined in the above set P in Eq. (41) has a property that
satisfies Mangasarian-Fromowitz constraint qualification (MFCQ). It is an important
prerequisite for applying the necessary optimality criteria in nonlinear optimization.
The MFCQ is a condition for the regularity of a permissible point. The MFCQ is in one
of point x, and if this point is a local minimum, then the Karush-Kuhn-Tucker condi-
tions are met at this point. If the MFCQ is valid, it is easy to check whether a given
point is optimal or not; see the work [13]. From Section 6 proposition (3.10), it follows
that the convexity of inner approximation is convex conservative, ψ is concave
function or all fixed x in D and ξ∈Ω. The convexity of φ analyzed in the work [13].
The Slater condition is a sufficient condition for strong duality to hold for a
convex optimization problem named after Slater; for further analysis, please see the
work in [13].

The necessary optimality condition is not valid for expressing local optimal solu-
tion in this technique, but can be shown to hold true for generalized stationary points
of Fritz–John types [27, 29]. This essentially requires the uniform convergence of
partial gradients of inner and outer functions φi τ, u, ξð Þ and 1� ψ i τ, u, ξð Þ of
∇φi τ, u, ξð Þ ¼ 0 and ∇ 1� ψ i τ, u, ξð Þð Þ ¼ 0, for τk ! 0þ, as k! ∞ on bounded subsets
W of Uadm [29]. In addition, each strict local minimum of CCPDE is a cluster point of
local minima of the inner approximation problems IAτ under the satisfaction of
tightness or the outer approximation problems OAτ; see ([29], Proposition 3.3–3.7).
The following sections are more about the structural properties of approximation
functions such as closedness, convergence, and differentiability of IAτ and OAτ; those
properties are not properly analyzed.
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5. Closedness, convergence, and differentiability of IAτ and OAτ

5.1 Closedness property of M set of IAτ and S set of OAτ

The nice properties of the parametric function are given in assumption (4.1);
closedness property is defined by the distance from a particular point on the P to set
MorS (this distance is close to zero). It is called Hausdorff distance (point to set
distance). The specific point of P is closed under the arbitrary sequence of the set Mn
and Sn: This property is an essential property for the compactness of the specified M
and S. In this case, compactness is boundedness, closedness, and any convergent
sequence has a convergent subsequence with the same limit point. The boundness
and subsequential convergence property have been clear from (4.1) and tightness
property.

Let u∈Uadm be separable Banach space and Uadm
∗ is dual space of Uadm, assume

that the γ x, :, :ð Þ are the continuous differentiable functions as shown in proportions
(3.8) and (3.9) for the continuity property of Px uð Þ for any fixed x∈D. Then, it
satisfies the compactness of set P, which is a feasible set of CCPDE and the conditions
as shown (proposition 3.7 in the work [11]). The γ x, u, :ð Þ is a Borel measurable w.r.t.
ξ∈Ω, thus, P ¼ u∈Uadm : P uð Þ≥ αf g is weakly closed in the proposition (3.11), it is
from the property of the wssc of P. Now, the closedness property ofM and S proved in
the following proposition.

Proposition 5.1. Assume that the γ u, :, xð Þ are Borel measurable for all u∈U and
x∈D and γ :, x, ξð Þ are weakly sequentially semicontinuous (wss) for x∈D and ξ∈Ω. Then
φ γ x, u, ξð Þ, τð Þ and ψ γ x, u, ξð Þ, τð Þ are wssc and γ x, u, ξð Þ ¼ y� ymax ≤0, ∀x∈D.

Proof. This is extension of the proposition 3.1 and 3.2. The prove is directly related
with proofs of those propositions. Observe first, that ρ is well defined by Borel
measurability of γ in the second argument. This γ is wssc, then the parametric function
θ γ, τð Þ is wssc. It satisfies the six properties of monotonicity, smoothness, bounded-
ness, and uniform convergence property are expressed in Assumption 4.1. The inner
function and outer functions are continuous.

Proposition 5.2. The function 1� ψ u, xð Þ of M of IAτ and φ u, xð Þ of OAτ are
continuous from the continuity property θ τ, γð Þ. The set M of IAτ and the set S of OAτ are
closed if the following Hausdorff distance holds true, and there are constants ∀ε>0, σ >0,
such that with d referring to the Hausdorff distance
d u, u∈Uadmjφ u, xð Þ≥ αf gð Þ≤ σmax log αð Þ � log φ u, xð Þð Þ, 0f g, ∀α∈ 1� ε, 1½ �. The same
case for IA, there are constants ∀ε>0, σ >0, such that with d referring to the Hausdorff
distance d u, u∈Uadmj1� ψ u,xð Þ≥αf gð Þ≤σmax log αð Þ � log 1� ψð Þ, 0f g,∀α∈ 1� ε, 1½ �.

Proof. The proof directly follows from the nice property of expectation in the given
assumptions (4.1, i–vi). Moreover, the proposition (3.11), the inequality E h γð Þð Þ≥ α is
bounded by the two parametric functions φ u, xð Þ, and 1� ψ u, xð Þ. This is a direct
extension of the lemma (3.12), we have shown that, for arbitrary u1, u2 ∈Uadm and
λ∈ 0, 1½ � the inequality φ λu1 þ 1� λð Þu2ð Þ≤ λφ u1ð Þ þ 1� λð Þφ u2ð Þ and
1� ψ λu1 þ 1� λð Þu2ð Þð Þ≥ λ 1� ψð Þ u1ð Þ þ 1� λð Þ 1� ψ u2ð Þð Þ hold true from convexity
property in (3.10), so ψ uð Þ is a concave function. This means that logφ, log 1� ψð Þ are
the log-convex functions and, hence, the inequality μ φ uð Þð Þ≥ α and μ ψ uð Þð Þ≤ 1� α is
equivalent with P̂ uð Þ≤ � log αð Þ, where P̂ uð Þ≔ � logP is a log-convex function. The
Proposition (3.11), P(u) is wsus, the expectation of P(u) is P̂, is wsls from continuity
property in proposition (3.8) and (3.9). The function given in proportion (3.10) is a
convex function. From Robison-Ursescu theorem ([16], Lemma 4), the continuous
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convex function is closed. Therefore, the probabilistic constrained function P(u) is
closed.

We have proved that the sets M and S are defined in the following section, are the
convex feasible sets. It has a closed and convex graph. Consider an arbitrary sequence
un, tnð Þ ! û, t̂ð Þ with un ∈M of IA and un, tnð Þ ! û, t̂ð ) with un ∈ S of OA. Then,
un ∈Uadm and, hence,u∈Uadm by closedness of Uadm see in Proposition (3.11).

Moreover, φ̂ unð Þ≤ tn and ψ̂ unð Þ≤ tn. Since φ̂ and ψ̂ are wsls, we derive that
φ̂ ûð Þ≤ liminf n!∞φ̂ unð Þ≤ liminf n!∞tn ¼ t̂ and ψ̂ ûð Þ≤ liminf n!∞ψ̂ unð Þ≤ liminf n!∞tn
¼ t̂. So, t̂∈M ûð Þ and t̂∈ S ûð Þ implying that the graph of M is closed.

The same case for OA, we have that ψ̂ u1ð Þ≤ t1 and ψ̂ u2ð Þ≤ t2. Then, convexity of
hatφ yields that ψ̂ λu1 þ 1� λð Þu2ð Þ≤ λt1 þ 1� λð Þt2. In other words, λt1 þ
1� λð Þt2 ∈ S λu1 þ 1� λð Þu2ð Þ, proving that the graph of S is also convex. Further
analysis on the convexity of IA is in the following section.

For the properties of closedness of IA and OA in the infinite-dimensional space, we
need further analysis of Robinson- Ursescu theorem; see [16]. It is depend on the
Hausdorff distance between the point of the set and the set of probabilistic
constrained function expressed in Eq. (41). Thus, closedness and boundedness are
sufficient for compactness in the finite-dimensional case.

Lemma 5.3. Under the assumptions of Proposition 3.7, there are constants ε>0, σ >0,
such that with d referring to the Hausdorff distance d u∈M, u∈Uadmjψ u, xð Þ≤ 1� τð Þ
≤ σmax log τð Þ � log ψ u, xð Þð Þ, 0f g∀τ∈ α� ε, αþ ε½ � for IA and
d u∈ S, u∈Uadmjφ u, xð Þ≥ τð Þ ≤ σmax log τð Þ � log φ u, xð Þð Þ, 0f g∀τ∈ α� ε, αþ ε½ �.

The prove of this lemma is analyzed in [16].

5.2 Convergence of the stationary points and differentiability of IAτ and OAτ

The continuity and continuous differentiability of the functions ψ s, τð Þ,φ s, τð Þ
are directly from the continuity and continuous differentiability of the parametric
function θ τ, sð Þ. The expectation of a continuous function is also continuous.
Additionally, the expectation of a continuously differentiable function is continuously
differentiable.

The associated probability functions Px uð Þ≥ α,∀x∈D, in the chance constraints,
are allowed to be lower semicontinuous or continuous in Proposition (3.8). Also, it
cannot be differentiable. Hence, the characterization of optimality properties of
CCPDE calls for generalized subdifferentiation such as Fréschet, Clarke, and
Mordukhovich subderivative and implicit formula of gradient computations on the
reflexive and separable Bochner space. It is analyzed in the previous submitted work
in [25]. This concept is applicable to lower semicontinuous (lsc) functions. Further-
more, the epigraph of lsc function is closed everywhere. These subdifferentials assure
the optimality criteria for the CCPDE. Also, the Px uð Þ≥ α, x∈D are Lipschitzian
functions, assuring the explicit formula for the Clarke subgradient under special
conditions.

For each u∈Uadm, there is some neighborhood W ⊂Uadm and some measurable
function q : n ! þ such that, for continuously partially differentiable up to order b
on uo ∈Uadm for ξ∈Ω almost surely (a.s.),

supuj ∈W maxPn

j¼1mj
∣

∂

P
liγ

∂um1
1 ∂um2

2 ∂um3
3 :… ∂umj

j

∣ ≤ q ξð Þ; (62)
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E qð Þ ¼
ð

Ω
q ξð Þϕ ξð Þdξ<∞, (63)

for b ¼Pn
j¼1lj ≥

Pj
i¼1mi. Suppose each property above holds true. Then, for the

parametric function θ ¼ H, the functions φ γ, τð Þ and ψ γ, τð Þ are continuously partially
differentiable w.r.t. u up to order b on Uadm, for all τ∈ 0, 1ð Þ. The higher derivatives

∂

Pn

j¼1lj 1� ψ H τ, uð Þð Þð
∂um1

1 ∂um2
2 ∂um3

3 :… ∂umj

j

¼
ð

Ω

∂

Pn

j¼1ljψ γ, τ, uð Þϕ ξð Þdξ
∂um1

1 ∂um2
2 ∂um3

3 :… ∂umj

j

ϕ ξð Þdξ; (64)

for the case for outer approximation,

∂

Pn

j¼1ljφ H τ, uð Þð
∂um1

1 ∂um2
2 ∂um3

3 :… ∂umj

j

¼
ð

Ω

∂

Pn

j¼1ljφ γ, τ, uð Þϕ ξð Þdξ
∂um1

1 ∂um2
2 ∂um3

3 :… ∂umj

j

ϕ ξð Þdξ; (65)

for
Pn

j¼1lj ≥
Pj

i¼1mi. Further analysis of convergence approach and uniform con-
vergence gradient of the approximation functions are seen in [29, 30] of proposition
4.2. All the above properties ensure the application of Lebesgue’s dominating conver-
gence theorem [29] for interchanging the integration and differentiation operations.
Observe the chain rule yields powers E J T uð Þð Þð till order l ¼ k in the upper estimation
of the integrand. The differentiability up to order k of the lower and upper approxi-
mating functions E H τ, γð Þð Þ and E H τ,�γð Þð Þ converges to the corresponding order
derivative of p x, uð Þ∀t∈ Ia:s: It depends mainly on the existence of the corresponding
derivatives of the internal function γ w.r.t.u and the finite expectation of these
derivatives, uniformly on some neighborhood ofW ¼ B u, rð Þ, whenever the familyH
is suitably chosen. Thus, it needs the newly generalized derivative in the neighbor-
hood set of W, such as Fréchet and the weak derivatives (Clarke and Mordukhovich
derivatives) for computing gradient, stationary points, and their conveniences; see in
the previous work [25].

Assumptions on the properties P1 to P5, together with additional properties in
above γ, it is smooth function w.r.t. u. Because the random state solution T is smooth
w.r.t u. The differential operator A computed from coercivity properties of a and l, A
is invertible and ∂T

∂u ¼ A.
Assumption 5.4. Assume that u∈P, is a neighborhood of the set M and super-set S

in Eq. (55). This set P is a connected neighborhood super set S of the OAτ and inside
the interior set M of IAτ, the following conditions hold true for the approximation
smooth functions.

i. The support of the probability density function (pdf) supp ϕf g is compact.

ii. The pdf is continuous on some set P.

iii. The internal function γ and ∇u γð Þ ¼ A are continuous on the set P � supp ϕf g.
The functions ∇γ and ϕ ξð Þ vanish over P � Ω=supp ϕf g.

iv. The ∇γ is continuous at Γ uð Þ the boundary of S and M, and ∇γ 6¼ 0 for any
ξ∈Γ uð Þ in boundary of M and S.
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Theorem 5.5. If the assumption (5.4) holds true for any family of the parametric
function θ si uð Þðf , τÞgjsi¼γi for any i∈ I, the probabilistic function p uð Þ has a continuous
differentiable or a continuous gradient in some open ball W around point u∈Uadm and
the gradient of inner and outer approximation functions respectively converges uniformly
to the gradient of p uð Þ on W for any decreasing sequence τkf gk∈N ∈ 0, 1ð Þ for any i∈ I
such that

lim k!∞ inf u∈W∇u 1� ψ i τk, uð Þð Þ ¼ ∇upi uð Þ; (66)

lim k!∞supu∈W∇uφi τk, uð Þ ¼ ∇upi uð Þ; (67)

for a particular τ! 0þ , all of the gradient of the functions is zero. Thus, as k! ∞,

lim τk!0þ inf u∈W∇u 1� ψ i τk, uð Þð Þ ¼ ∇upi uð Þ ¼ 0; (68)

lim τk!0þsupu∈W∇uφi τk, uð Þ ¼ ∇upi uð Þ ¼ 0: (69)

This theorem has been proved in the previous submitted work [25]. Suppose each
property above assumption (5.4) holds true. Then, for the appropriate parametric
function θ � H the functions φ γ, τð Þ and ψ γ, τð Þ are continuously partial differentiable
w.r.t. u up to order b on Uadm, for all τ∈ 0, 1ð Þ. The higher derivatives,

∂

Pn

j¼1ljE H τ, γð Þ=∂u1∂u2∂u3:… ∂uj ¼
ð

Ω
∂

Pn

j¼1ljψ γ, τð Þ=∂u1∂u2∂u3:… ∂ujϕ ξð Þdξ:
�

(70)

And the case for outer approximation

∂

Pn

j¼1ljE H τ,�γð Þ=∂u1∂u2∂u3:… ∂uj ¼
ð

Ω
∂

Pn

j¼1ljφ γ, τ, uð Þ=∂u1∂u2∂u3:… ∂ujϕ ξð Þdξ:
�

(71)

Further analysis of convergence approach and uniform convergence gradient of
the approximation functions are seen in [29] of proposition 4.2.; thus, the equation
given in (70) and (70) are equivalent.

6. Convexity property of inner and outer approximations

We notice that the coefficient parameter is either constant or depends on the
x∈D, and the convexity issues depend on the following three cases.

Case 1 κ is constant dependent of x.
Then u, ξð Þ↦y u, x, ξð Þ : U � Ω!  is linear by see Eq. (16), hence, jointly convex

w.r.t. u, ξð Þ, for each x∈D (see Theorem 5.4 of the continuous dependent of the
solution on the random parameter.

Case 2 κ is a positive independent x but depends on random variable, and concave
function.

Case 3 κ depends on x, positive and nonlinear; we have to use linear approximation
of order 1 such as Taylor approximation of order one for k.

For the above two cases, κ∈K, the elliptic PDE system defined in Eqs. (3)–(4)
becomes
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�Δy x, ξð Þ ¼ 1
κ
f u, xð Þ, for x∈D, (72)

y x, u, ξð Þ ¼ g x, u, ξð Þ, forx∈ ∂D, ξ∈Ωa:s: (73)

For all three cases, the κ is independent or depends on xwe can solve the PDE system
by stochastic finite difference method (SFDM). It follows A κð Þð Þ�1 ¼ 1

κA
�1 and thus

y u, x, ξð Þ ¼ 1
κ
A�1 jH f �ð Þð Þ þ kg �ð , ξÞÞ� �

xð Þ≤ ymax: (74)

It is equivalent to

A�1jH f ij �ð Þ
� �

þ kgij �ð , ξÞÞ
h i

xð Þ � κymax xð Þ≤0: (75)

The expression on the left-hand side of the last inequality is jointly convex w.r.t.
u, ξð Þ because of the linearity of f w.r.t. u, ξð Þ, the concavity of κ and the nonnegativity
of ymax. Since

Pr y u, x, ξð Þ≤ ymax, ∀x∈D
� � ¼ Pr A�1 jH f xð Þð Þ þ kg �ð , ξÞÞ� �� κymax xð Þ≤0, ∀x∈D

� �
:

(76)

is valid, in Proposition 4.2 [13] yields the following result with measure zero
property. Hence, for any arbitrary random function g∈B, the internal part of the
probabilistic function is a linear, it implies the quasi-concavity/quasi-convexity of γ.
Hence, the probabilistic uniform-constrained function is a convex; see proposition
(3.10). For any general case, the convexity of the proposed approach is proved in the
following proposition.

Proposition 6.1. Let γ x, u, ξð Þ ¼ y� ymaxd ≤0, ∀ξ∈Ω, u∈Uadm with a measure zero
property see in the proposition 4.2. and x∈D: If γ x, u, ξð Þ is quasi convex or quasi concave,
then the approximation functions ψ i τ, u, ξð Þ ¼ 1� E θ γ x, u, ξð Þ≤ 1� αðð and φi τ, u, ξð Þ ¼
E θ τ,�γ x, u, ξð Þð Þ≥ αð are convex.

Proof. The outer approximation convexity is proved in [13, 29]. Let m sð Þ ¼ e�s=τ

is a quasi-convex function for all s∈ and τ∈ 0, 1½ �. Then, the sum and the constant
multiple of quasi-convex functions are a quasi-convex. Also, based on this statement
l sð Þ ¼ 1þm2τe�s=τ is a quasi-convex function. The reciprocal of l sð Þ which is

l sð Þð Þ�1 ¼ 1þm2τe�s=τ
� ��1

, (77)

is said to be reciprocally quasi-concave [31]. It is from

∂ l sð Þ�1
� �

∂s
¼ m2τe�s=τ 1þm2τe�s=τ

h i�2
, (78)

∂ l sð Þð Þ�1
∂s ¼ 0, as τ! 0þ. The second derivative with respect to s is negative at the

stationary point τ! 0þ. To check convexity property through the second-order
derivative test

∂
2 l sð Þ�1
� �

∂s2
¼ � m2τe�s=τ

� �
1þm2τe�s=τ
h i�2

1� 2m2τe�s=τ
� �

<0, (79)

152

Nonlinear Systems - Recent Developments and Advances



not valid for 0<m2 ≤m1= 1þm1ð Þ and 2m2τe�s=τ > 1. The function l is a strictly
concave function for every τ∈ 0, 1ð �: Every concave function is a quasi-concave. There-

fore, l sð Þð Þ�1 ¼ 1þm2τe�s=τ
� ��1

is a concave function. Also, it holds the quasi-concavity

property. It follows that θ τ, sð Þ ¼ 1þm1τð Þ: ∗ l sð Þ�1
� �

is a constant multiple of concave

function and a concave function. The negative of concave function is a convex, it
implies that �θ τ, sð Þ ¼ � 1þm1τð Þ: ∗ l sð ÞÞ is a convex function. Since, the integral of the
convex function is convex,�E θ τ, sð Þ ¼ �ÐΩ 1þm1τ: ∗ l sð Þð Þϕ ξð Þdξ�

is a convex function.
Furthermore, ψ τ, sð Þ ¼ 1� E θ τ, sð Þð Þ≥ α is a convex function, based on the convexity
property, which stipulates that the sum of convex functions is convex. Therefore, the
inner approximation is generally a convex function.□

Theorem 6.2. The properties of the functions E θ τ, sð Þð Þ ¼ 1� ψ τ, sð Þ≥ α and
φ τ, u, ξð Þ ¼ E θ τ,�sð Þð Þ≥ α are convex in the proposition (6.1). The regularization
parameter ρ≥0, the objective function E J y :ð Þð Þð Þ is convex in Eq. (38), If P(u,x)is a
continuous and convex function w.r.t. u, then the IAτ and the OAτ have the unique optimal
solutions as τ! 0þ : The optimal solutions of the approximations converge to the optimal
solution of CCPDE.

This theorem has been proved in the work [13].

7. Numerical implementation and case study

This work considers the stationary boundary value elliptic PDEs, where the
randomness comes from the boundary conditions of the PDE system. It analyzes the
observed temperature variation and distribution processes widely used in biological
applications, such as hyperthermia treatment of cancer tissue in human body organs.
This work is an extension of the previous works Kibru et al. [13, 14]. The optimal
heating of an enclosed, thermally well-insulated, spatial domain Dc ⊂D to the desired
temperature yd is given. The heat injection is elected through a distributed stationary
heat source (y u ∗ð Þ ¼ T u ∗ð Þ) [20, 32].

The heat source is assumed to be highly affected by uncertainties, e.g., due to
inaccuracies arising from heating devices and inlet heating processes. The boundary
condition is supposed to be nonhomogeneous and nonlinear depending on random
parameters so that the thermal conductivity is spatially constant, which is not pre-
cisely known or position-dependent x∈D. Furthermore, despite the specified overall
desired temperature yd is deterministic. The required state solution is y x, u ∗ , ξð Þ is
random, and it should be kept below a maximum allowed value ymax with a high-
reliability level α≤0:95 in a given subset Dc of D. More practical applications are
studied in the work [14, 33].

The numerical random state solution y is obtained from the stochastic finite
difference method (SFDM [34]). We have discretized 10,000 points from the x1 and
x2 axes with the mesh generation. After the solution y x ¼ x1, x2ð Þ, u, ξð Þ obtained from
the infinite-dimensional space D of the PDEs, the optimization problem is reduced to
finite-dimensional reduced CCPDEred. The nonsmooth analysis is relevant for solving
this nondifferentiable CCPDE where the random fluctuation comes from the system’s
boundary. We have developed a smooth parametric approximation called IA and OA
in equations.

The variables ξ∈Ω are identical independently distributed (iid) as standard nor-
mal distributed random variables. The samples for the random variable are generated
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by using the multilevel Monte Carlo method (ML-MCM) sampling approach. Subse-
quently, the PDE system is solved through the SFDM using a MATLAB implementa-
tion at each step of the optimization algorithm. After discretization, the inner and
outer approximation problems are solved using the MATLAB Optimization function
fmincon.m, each decreasing values of τ ¼ 10�k, k ¼ 1, … , 4.

In our previous work, we have considered practical applications on hyperthermia
treatment (HT) and planning as a case study Kibru et al. [14]. The HT and planning
are used as an accompanying strategy in modern clinical cancer therapy [20].
Hyperthermia treatment consists of the heating of tumor tissue in order to subdue or
eradicate the growth of tumor cells from a given organ. The hyperthermia
treatment procedure aims to heat the tumor tissue in the human body to a given
temperature without causing damage to healthy surrounding sensitive tissue due to
overheating.

The heating is usually done through multiple electromagnetic (EM) sources, where
each EM source generates an electric field G xð Þ of the heat capacity c and density ρ the
phases and amplitude p. As a result, the electric fields facilitate a net power deposition
on the tumor region given by [20] (e.g., Q xð Þ ¼ σ ξð Þ

2 G xð Þj j2, where G xð Þ ¼PN
j¼1pjGjx

is a linear superposition of the individual fields and σ xð Þ the electric conductivity. In
general, the phases and the power Q, corresponding to each individual antenna, are
not known in advance.

Figure 1 displays the surface of the state solution y x, u ∗ , ξð Þ and the adjoint
operator P for the optimality criteria of the infinite-dimensional CCPDE problem
where

S ∗ y� yd
� �þ ρ u� u ∗ð ÞÞ≥0, ∀u∈Uadm, (80)

where S : Uadm↦H is a control to state map,

y ∗ ¼ S u ∗ð Þ, (81)

is the optimal state of CCPDE, since CCPDE is a convex optimization problem w.r.
t. u in the proposition expressed (3.10), and

P ¼ S ∗ y� yd
� � ¼ S ∗ S uð Þ � yd

� �
(82)

Figure 1.
The solution of PDEs and adjoint P. (a) State y. (b) Adjoint P.
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are displayed Figure 1 in (a) and (b), respectively. Hence, the state and adjoint are
depending on the random variable. So, they are the random state and adjoint func-
tions. The solution of boundary value PDEs is displayed in (a) and (b) from SFDM in
this Figure 1.

The controls obtained from IA and OA are displayed in Figures 2 and 3 with
different values of τ ¼ 10k for k ¼ 1, … , 4: the optimal controls from the optimization
approach of the IA and OA are displayed in (a) to (d) respectively.

The error between the IA and OA is displayed in (a–d) Figure 4, when τ is
reduced, that mean τ! 0þ the error is near to zero. This shows that the controls of
inner and outer approximation are equal at τ ¼ 0:001.

Figure 2.
The control IAτ. (a) IA, tau=0.1 (b) IA, tau=0.01 (c) IA, tau=0.001 (d) IA, tau=0.0001.

Figure 3.
The control OAτ . (a) OA, tau=0.1 (b) OA, tau=0.01 (c) OA, tau=0.001 (d) OA, tau=0.0001.

Figure 4.
The errors of IAτ, OAτ, Obj. (a) Error of IA and OA, tau=0.1; (b) Error of IA and OA, tau=0.01; (c) Error of IA
and OA, tau=0.001; (d) Error of IA and OA, tau=0.0001; (e) Error of IA and OA, objective of OA and IA.
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Finally, the Figure 4e shows the objective functions of JIA τð Þ and JOA τð Þ when
τ! 0þ , the IA � OA, τ ¼ 10�4. The error is zero when tau is less than 0.001 in
Figure 4a.

Example: To solve the following CCPDE, where ξ are iid μ ¼ 0 and σ ¼ 1:

�∇ κ xð Þ∇yð Þ ¼ Δ yð Þ, κ xð Þ ¼ 1, f xð Þ ¼ 0, g u, ξ, xð Þ ¼ u xð Þ � yð Þξ, ymax ¼ 2:999; (83)

yd ¼ 2� 2: ∗ x1: ∗ x1� 1ð Þ þ x2: ∗ x2� 1ð Þð Þð Þ, umin ¼ 0:5, umax ¼ 4:5; (84)

ρ ¼ 10�3, α ¼ 0:95; (85)

D ¼ 0, 1½ � � 0, 1½ �: (86)
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Chapter 8

Isochronous Oscillations of
Nonlinear Systems
Jean Akande, Kolawolé Kêgnidé Damien Adjaï,
Marcellin Nonti and Marc Delphin Monsia

Abstract

Real-world systems, such as physical and living systems, are generally subject to
vibrations that can affect their long-term integrity and safety. Thus, the determination
of the law that governs the evolution of the oscillatory quantity has become a major
topic in modern engineering design. The process often leads to solving nonlinear
differential equations. However, one can admit that the main objective of the theory
of differential equations to obtain explicit solutions is far from being carried out. If we
know how to solve linear systems, the case of systems of nonlinear differential equa-
tions is not in general solved. Isochronous nonlinear systems have therefore received
particular attention. This chapter is devoted to presenting some recent developments
and advances in the theory of isochronous oscillations of nonlinear systems. The
harmonic oscillator as a prototype of isochronous systems is investigated to state some
useful definitions (section 2), and the existence of second-order isochronous
nonlinear systems having explicit elementary first integrals with an exact sinusoidal
solution and higher-order autonomous nonlinear systems that reproduce the dynam-
ics of the harmonic oscillator is proven (section 3). Finally, higher-order
nonautonomous nonlinear systems that can exhibit isochronous oscillations are shown
(section 4), and a conclusion for the chapter is presented.

Keywords: nonlinear dynamic systems, Hamiltonian systems, higher-order
autonomous and nonautonomous equations, isochronous oscillations

1. Introduction

The enormous literature generated by the qualitative theory of dynamic sys-
tems suggests that all questions about nonlinear systems are well studied and
answered. Far from it, we can see that there are many interesting questions that
are not fully resolved. We must note that a dynamic system is a time-dependent
system that can undergo regular or chaotic processes. The dynamics of such
systems are often described by finite-difference equations (discrete dynamic sys-
tems) or differential equations (continuous dynamic systems). Since many prob-
lems in engineering physics, biology, and applied mathematics are formulated in
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terms of differential equations, continuous dynamic systems have been the subject
of an intensive investigation in the literature. In particular, planar polynomial
dynamic systems given by [1–4]

_x ¼ P x, yð Þ, _y ¼ Q x, yð Þ, (1)

where overdot indicates differentiation with respect to time, and P and Q are
polynomials in x and y, are widely investigated from the perspective of the existence
of isochronous centers, limit cycles, and elementary first integrals. One question that
has been the object of special attention is the determination of the maximum number
of limit cycles of the polynomial system (1), motivated by the second part of the
Hilbert 16th problem [1]. Another important question is the determination of polyno-
mial and rational first integrals that ensure the complete integrability of polynomial
dynamic systems of type (1) inspired by the work of Darboux [2–4]. When the first
integrals do not explicitly depend on the time, the system is said, in the case of
autonomous systems, conservative system and can exhibit periodic solution. A proto-
type of dynamic systems that can experience conservative oscillations is the harmonic
oscillator described by [5–7]

€xþ x ¼ 0, (2)

such that

x tð Þ ¼ cos t: (3)

The harmonic oscillator (2) is characterized by a fixed constant period T ¼ 2π.
Therefore, the system (2) is said to be an isochronous dynamic system in contrast to
dynamic systems exhibiting amplitude-dependent frequency oscillations known as
nonlinear systems. Nonlinear systems differ from linear systems that exhibit
amplitude-independent frequency. A typical example of a nonlinear dynamical sys-
tem is given by the well-known cubic Duffing equation [5–8]

€xþ a1 _xþ a2xþ a3x3 ¼ 0, (4)

which can exhibit a1 ¼ 0, an amplitude-dependent period, and experience
softening and hardening phenomena under a periodic forcing function, where
a1 >0, a2 >0, and a3 are constants. Linear systems, such as Eq. (2), cannot exhibit
softening and hardening, leading in general to fatigue and failure of material
systems [9, 10]. Consequently, the problem of finding dynamic systems, more
precisely nonlinear dynamic systems since real-world systems are nonlinear sys-
tems, preserving the feature of amplitude-independent frequency, has become a
vital question for modern engineering design. Thus, the design and identification
of nonlinear isochronous systems have generated a major and attractive research
field in the theory of dynamic systems such that the well-established qualitative
theory of dynamic systems has been widely applied to identify isochronous cen-
ters or systems that can exhibit amplitude-independent periods. In this way,
theorems for the existence of a center and an isochronous center are established,
particularly for the system (1), where P x, yð Þ and Q x, yð Þ are not necessarily
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polynomials in x and y [5, 6, 11–17]. Additionally, a multitude of approximation
methods for periodic solutions has been developed in the literature on the basis of
the predictions of the qualitative theory of differential equations and numerical
results, while no exact explicit solutions are known. However, many of these
studies are not mathematically consistent, as shown by the recent developments
and advances in the theory of differential equations due to the considerable
contribution of Monsia and coworkers. Consider as an example of illustration the
unusual Lienard equation

€x� axffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 � x2

p _x ¼ 0, (5)

investigated by Akande et al. [18], where a and μ are constants. The authors [18]
showed that Eq. (5) has the exact isochronous harmonic solution

x tð Þ ¼ μ sin �a tþ Kð Þ½ �, (6)

where a<0, μ>0, a 6¼ �μ and K is an arbitrary constant, while Eq. (5) obviously
does not satisfy the classical existence theorems for a center for the Lienard equation
of the form

€xþ f xð Þ _xþ g xð Þ ¼ 0, (7)

where f xð Þ and g xð Þ are functions of x [5, 11, 14, 16, 17]. The inadequacy of the
mentioned theorems can also be shown by considering the following exceptional
quadratic Lienard-type [19]

€xþ u0 xð Þ
u xð Þ _x

2 ¼ 0, (8)

where u xð Þ is a function of x and prime means differentiation with respect to x.

The authors [19] proved that Eq. (8) can exhibit, for example, that when u xð Þ ¼
μ2 � x2ð Þ�1

2, the exact isochronous harmonic solution

x tð Þ ¼ μ sin b tþ K1ð Þ½ �, (9)

where μ>0, b>0, and K1 are arbitrary parameters such that b 6¼ μ. Eq. (8) belongs
to the general class of Lienard-type equation

€xþ ϑ xð Þ _x2 þ g xð Þ ¼ 0, (10)

where ϑ xð Þ is a function of x. Eq. (10) can be generalized in the form

€xþ h x, _xð Þ _xþ g xð Þ ¼ 0, (11)

where h x, _xð Þ is a function of x and _x. Obviously, Eq. (8), where
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u xð Þ ¼ μ2 � x2
� ��1

2, (12)

does not satisfy the classical theorems for the existence of at least one
periodic solution [5, 6] or for the existence of an isochronous center, as stated in
Refs. [12, 16, 17]. Other counterexamples of classical existence theorems can be seen
in Refs. [20–27]. If some progress has been made with the work of Calogero and
coworkers [28], it will be very difficult to say the same thing concerning the dynamic
systems represented by nonlinear differential equations having an exact elementary
function solution, more precisely an exact explicit isochronous sinusoidal solution
before the contribution of Monsia and his group (see Refs. [29–31] and References
therein). The work of Monsia and his group revealed not only the inadequacy of the
qualitative theory of dynamic systems to predict the effective behavior of nonlinear
systems but also showed the existence of many autonomous and nonautonomous
nonlinear dynamic systems with an exact explicit isochronous sinusoidal solution of a
second and high order. The present chapter aims to contribute to these recent devel-
opments and advances in identifying and generating second-order and higher-order
autonomous and nonautonomous nonlinear dynamic systems with an exact isochro-
nous sinusoidal solution. To do so, we study the harmonic oscillator considered as the
prototype of isochronous systems (section 2), the isochronous oscillations of higher-
order autonomous nonlinear systems (section 3), and the isochronous oscillations of
higher-order nonautonomous nonlinear systems (section 4). Finally, we present a
conclusion for the chapter.

2. Harmonic oscillator

The equation of the harmonic oscillator (2) can be rewritten as a dynamical system
in the form

_x ¼ y, _y ¼ �x, (13)

such that the integral curves are given by

dy
dx
¼ � x

y
: (14)

By separation of variables and integration, we have

H x, yð Þ ¼ 1
2
y2 þ 1

2
x2, (15)

where H is a constant of integration known as the Hamiltonian or

H x, _xð Þ ¼ 1
2
_x2 þ 1

2
x2, (16)

so that Eq. (2) is said to be a Hamiltonian system. When H x, _xð Þ ¼ 1
2, the formula
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x tð Þ ¼ cos tþ φð Þ, (17)

such that

_x tð Þ ¼ � sin tþ φð Þ, (18)

where φ is an arbitrary constant, verifies the first integral (16). Thus,
Eq. (17) is the general solution of the harmonic oscillator (2), which exhibits
periodic oscillations of period T ¼ 2π, independent of the oscillation amplitude,
as shown in Figure 1.

Such oscillations are said to be isochronous. Since all solutions given by Eq (17) are
periodic with a fixed constant period T, the harmonic oscillator is called an isochro-
nous system. Therefore we can state the following definitions.

Definition 1: A system exhibits isochronous oscillations if the period T is independent of
amplitude.

Definition 2: If the periodic general solution with a fixed constant period T of a system
(S) verifies H x, _xð Þ ¼ c where c is a constant, then such a system (S) of differential
equations corresponding to the Hamiltonian H is an isochronous system.

On the basis of these definitions, we can investigate the isochronicity of nonlinear
systems below.

Figure 1.
Typical behavior of solution (17) when φ ¼ 0.
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3. Autonomous nonlinear systems

Recently, Monsia and coworkers introduced a new class of first integrals in the
literature [29, 30, 32]. This type of class of first integrals contains nþ 1ð Þ first integrals
H x, _xð Þ such that H x, _xð Þ ¼ c when x tð Þ ¼ cos tþ φð Þ, where n≥0 is an integer. The
corresponding nþ 1ð Þ second-order autonomous nonlinear differential equations
admit the exact sinusoidal general solution cos tþ φð Þ. In this part, we consider such
classes of first integrals to secure isochronous oscillations of autonomous nonlinear
systems.

3.1 Isochronous nonlinear systems

Consider a second-order autonomous equation

E x, _x, €xð Þ ¼ 0: (19)

Thus, we have the following results.
Theorem 1.1: Assume that

H1 x, _xð Þ ¼ b ¼ _x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2, (20)

is a class of nþ 1ð Þ first integrals of Eq. (19), where b is a constant and n≥0 is an
integer. Then, Eq. (19) takes the form

d
dt

H1 x, _xð Þ ¼ €x 2 _x
Xn
ℓ¼0

x2ℓ þ 3 _x2 þ x2 � 1

 !
þ 2 _x _x2

Xn
ℓ¼0

ℓx2ℓ�1 þ x _xþ nþ 1ð Þx2nþ1
" #

¼ 0,

(21)

with the exact sinusoidal general solution

x tð Þ ¼ cos tþ φð Þ (22)

where φ is an arbitrary constant.
Proof. Differentiating with respect to time, the first integral (20) immediately

yields Eq. (21). To prove that formula (22) is a solution of Eq. (21), it suffices to prove
that Eq. (22) verifies Eq. (20). However, it is also possible to give direct proof by
substituting Eq. (22) into Eq. (21). From Eq. (22),

_x tð Þ ¼ � sin tþ φð Þ, (23)

and

€x tð Þ ¼ � cos tþ φð Þ, (24)

Inserting Eqs. (22)–(24) and the trigonometric equation

cos 2 tþ φð Þ þ sin 2 tþ φð Þ ¼ 1, (25)

into Eq. (21), leads to
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€x 2 _x
Xn
ℓ¼0

x2ℓ þ 3 _x2 þ x2 � 1

 !
þ 2 _x _x2

Xn
ℓ¼0

ℓx2ℓ�1 þ x _xþ nþ 1ð Þx2nþ1
" #

¼ � cos tþ φð Þ �2 sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓ tþ φð Þ þ 3 sin 2 tþ φð Þ þ cos 2 tþ φð Þ � 1

" #

� 2 sin tþ φð Þ sin 2 tþ φð Þ
Xn
ℓ¼0

ℓ cos 2ℓ�1 tþ φð Þ � cos tþ φð Þ sin tþ φð Þ
"

þ nþ 1ð Þ cos 2nþ1 tþ φð Þ
#

¼ 2 sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓþ1 tþ φð Þ � 3 cos tþ φð Þ sin 2 tþ φð Þ � cos 3 tþ φð Þ þ cos tþ φð Þ

� 2 sin 3 tþ φð Þ
Xn
ℓ¼0

ℓ cos 2ℓ�1 tþ φð Þ þ 2 cos tþ φð Þ sin 2 tþ φð Þ

� 2 nþ 1ð Þ sin tþ φð Þ cos 2nþ1 tþ φð Þ

¼ 2 sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓþ1 tþ φð Þ � cos tþ φð Þ sin 2 tþ φð Þ � cos 3 tþ φð Þ þ cos tþ φð Þ

� 2 sin tþ φð Þ 1� cos 2 tþ φð Þ� �Xn
ℓ¼0

ℓ cos 2ℓ�1 tþ φð Þ � 2 nþ 1ð Þ sin tþ φð Þ cos 2nþ1 tþ φð Þ

¼ 2 sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓþ1 tþ φð Þ � cos tþ φð Þ sin 2 tþ φð Þ þ cos 2 tþ φð Þ � 1
� �

� 2 sin tþ φð Þ
Xn
ℓ¼0

ℓ cos 2ℓ�1 tþ φð Þ þ 2 sin tþ φð Þ
Xn
ℓ¼0

ℓ cos 2ℓþ1 tþ φð Þ

� 2 nþ 1ð Þ sin tþ φð Þ cos 2nþ1 tþ φð Þ

¼ sin tþ φð Þ
Xn
ℓ¼0

2ℓþ 2ð Þ cos 2ℓþ1 tþ φð Þ � sin tþ φð Þ
Xn
ℓ¼0

2ℓ cos 2ℓ�1 tþ φð Þ

� 2 nþ 1ð Þ sin tþ φð Þ cos 2nþ1 tþ φð Þ

¼ sin tþ φð Þ
Xn�1
ℓ¼0

2ℓþ 2ð Þ cos 2ℓþ1 tþ φð Þ �
Xn
ℓ¼0

2ℓ cos 2ℓ�1 tþ φð Þ
" #

¼ sin tþ φð Þ 2 cos tþ φð Þ þ 4 cos 3 tþ φð Þ þ 6 cos 5 tþ φð Þ þ … þ 2n cos 2n�1 tþ φð Þ
"

�
Xn
ℓ¼0

2ℓ cos 2ℓ�1 tþ φð Þ
#

¼ sin tþ φð Þ
Xn
ℓ¼0

2ℓ cos 2ℓ�1 tþ φð Þ �
Xn
ℓ¼0

2ℓ cos 2ℓ�1 tþ φð Þ
" #

¼ 0,

(26)

such that Theorem 1.1 is proved.
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Remark 1. The nþ 1ð Þ first integrals given by Eq. (20) are the nþ 1ð ÞHamiltonians of
the nþ 1ð Þ equations given by the class of Eq. (21). Theorem 1.1 shows that H1 x, _xð Þ is a
time-independent constant. One can check that H1 x, _xð Þ ¼ 1 under x tð Þ ¼ cos tþ φð Þ.
Therefore, the nþ 1ð Þ systems of differential Eq. (21) are isochronous and exactly reproduce
the dynamics of the harmonic oscillator. These results are impossible to predict by the
qualitative theory of dynamic systems, mainly by the classical existence theorems [5, 6].
Indeed, the class of Eq. (21) can be rewritten as

€xþ 2 _x2
Pn

ℓ¼0ℓx
2ℓ�1 þ x _xþ nþ 1ð Þx2nþ1� �

3 _x2 þ x2 � 1þ 2 _x
Pn

ℓ¼0x2ℓ
_x ¼ 0 (27)

Eq. (27) has the form of the mixed Lienard-type differential Eq. (11), where

h x, _xð Þ ¼ 2 _x2
Pn

ℓ¼0ℓx
2ℓ�1 þ x _xþ nþ 1ð Þx2nþ1� �

3 _x2 þ x2 � 1þ 2 _x
Pn

ℓ¼0x2ℓ
, (28)

Figure 2.
Phase portrait and vector field of Eq. (27) for n ¼ 1.
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and

g xð Þ ¼ 0: (29)

Since h 0, 0ð Þ ¼ 0 is not negative, g xð Þ ¼ 0 for x 6¼ 0 and g xð Þ is not odd, then
Eq. (21) does not satisfy the classical theorems for the existence of at least one periodic
solution (see Theorem 11:2 of ([5], p. 387) and the Lienard-Levinson-Smith theorem of
[6]) in contrast to Theorem 1.1. As an example of illustration, let n ¼ 0. Thus, Eq. (27)
becomes

€xþ 2x 1þ _xð Þ
3 _x2 þ 2 _xþ x2 � 1

_x ¼ 0 (30)

The phase portrait and vector field of Eq. (27) are shown in Figures 2 and 3 for
n ¼ 1 and n ¼ 2. Consider now the class of the first-order differential equation

Figure 3.
Phase portrait and vector field of Eq. (27) for n ¼ 2.
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H2 x, _xð Þ ¼ b ¼ _x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2, (31)

where n≥0 is an integer and b is a constant. Therefore, we have the following theorem.
Theorem 1.2: If Eq. (31) is a first integral or Hamiltonian of Eq. (19), then Eq. (19)

can be written as

€x 3 _x2 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ 2 _x
Xn
ℓ¼0

x2ℓ þ x2nþ4 � 1

" #

þ _x3
Xn
ℓ¼0

2ℓþ 2ð Þx2ℓþ1 þ _x2
Xn
ℓ¼0

2ℓx2ℓ�1 þ 2nþ 4ð Þx2nþ3� �
_xþ 2nþ 2ð Þx2nþ1

( )
_x ¼ 0,

(32)

with the exact general solution

x tð Þ ¼ cos tþ φð Þ: (33)

Figure 4.
Phase portrait and vector field of Eq. (36).
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Proof. By differentiation with respect to time, Eq. (31) immediately leads to
Eq. (32). It suffices to show that Eq. (33) verifies Eq. (31) to prove that formula (33) is
a solution of Eq. (32). Substituting Eqs. (22)–(25) into Eq. (31) yields

H2 x, _xð Þ ¼ sin 2 tþ φð Þ
Xn
ℓ¼0

cos 2ℓ tþ φð Þ � sin 3 tþ φð Þ 1þ
Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ
" #

� sin tþ φð Þ cos 2nþ4 tþ φð Þ � 1
� �þ cos 2nþ2 tþ φð Þ

¼ 1� cos 2 tþ φð Þ� �Xn
ℓ¼0

cos 2ℓ tþ φð Þ � sin tþ φð Þ 1� cos 2 tþ φð Þ� �
1þ

Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ
" #

� sin tþ φð Þ cos 2nþ4 tþ φð Þ � 1
� �þ cos 2nþ2 tþ φð Þ

¼
Xn
ℓ¼0

cos 2ℓ tþ φð Þ �
Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ � sin tþ φð Þ

� sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ þ sin tþ φð Þ cos 2 tþ φð Þ

þ sin tþ φð Þ
Xn
ℓ¼0

cos 2ℓþ4 tþ φð Þ � sin tþ φð Þ cos 2nþ4 tþ φð Þ þ sin tþ φð Þ

þ cos 2nþ2 tþ φð Þ

¼ sin tþ φð Þ cos 2 tþ φð Þ þ
Xn
ℓ¼0

cos 2ℓþ4 tþ φð Þ �
Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ
"

� cos 2nþ4 tþ φð Þ
#
þ
Xn
ℓ¼0

cos 2ℓ tþ φð Þ �
Xn
ℓ¼0

cos 2ℓþ2 tþ φð Þ þ cos 2nþ2 tþ φð Þ

¼ sin tþ φð Þ cos 2 tþ φð Þ þ cos 2nþ4 tþ φð Þ þ
Xn�1
ℓ¼0

cos 2ℓþ4 tþ φð Þ � cos 2 tþ φð Þ
"

�
Xn
ℓ¼1

cos 2ℓþ2 tþ φð Þ � cos 2nþ4 tþ φð Þ
#
þ
Xn
ℓ¼0

cos 2ℓ tþ φð Þ

�
Xn�1
ℓ¼0

cos 2ℓþ2 tþ φð Þ � cos 2nþ2 tþ φð Þ þ cos 2nþ2 tþ φð Þ

¼ sin tþ φð Þ
Xn�1
ℓ¼0

cos 2ℓþ4 tþ φð Þ �
Xn
ℓ¼1

cos 2ℓþ2 tþ φð Þ
" #

þ 1þ
Xn
ℓ¼1

cos 2ℓ tþ φð Þ �
Xn�1
ℓ¼0

cos 2ℓþ2 tþ φð Þ
" #

¼ sin tþ φð Þ cos 4 tþ φð Þ þ cos 6 tþ φð Þ þ … þ cos 2nþ2 tþ φð Þ
"

�
Xn
ℓ¼1

cos 2ℓþ2 tþ φð Þ
#
þ 1þ

Xn
ℓ¼1

cos 2ℓ tþ φð Þ
"

� cos 2 tþ φð Þ þ cos 4 tþ φð Þ þ … þ cos 2n tþ φð Þ� �#

¼ 1þ sin tþ φð Þ
Xn
ℓ¼1

cos 2ℓþ2 tþ φð Þ �
Xn
ℓ¼1

cos 2ℓþ2 tþ φð Þ
" #

þ
Xn
ℓ¼1

cos 2ℓ tþ φð Þ �
Xn
ℓ¼1

cos 2ℓ tþ φð Þ
" #

¼ 1,

(34)

proving Theorem 1.2.
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Remark 2. Eq. (32) takes the form

€xþ _x3
Pn

ℓ¼0 2ℓþ 2ð Þx2ℓþ1 þ _x2
Pn

ℓ¼02ℓx
2ℓ�1 þ 2nþ 4ð Þx2nþ3½ � _xþ 2nþ 2ð Þx2nþ1� �

3 _x2 1þPn
ℓ¼0x2ℓþ2

� �þ 2 _x
Pn

ℓ¼0x2ℓ þ x2nþ4 � 1
� � _x ¼ 0,

(35)

Obviously, Eq. (35) has the form of Eq. (27), so the classical existence theorems
cannot predict its general solution (33). As previously stated, Eq. (35) contains nþ 1ð Þ
nonlinear isochronous Hamiltonian oscillators. One can verify thatH2 x, _xð Þ ¼ 1, when
x tð Þ ¼ cos tþ φð Þ. As an example of Eq. (35), put n ¼ 0. Then, Eq. (35) becomes

€xþ 2x _x3 þ 4x3 þ 2xð Þ _x
3 _x2 1þ x2ð Þ þ 2 _xþ x4 þ x2 � 1

_x ¼ 0: (36)

The phase diagram and vector field of Eq. (36) are shown in Figure 4. Figures 5
and 6 show the phase portrait and vector field of Eq. (35) for n ¼ 1 and n ¼ 2.

Figure 5.
Phase portrait and vector field of Eq. (35) for n ¼ 1.
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3.2 Higher-order nonlinear equation

Nonlinear systems have been extensively investigated from the perspective of
chaotic behavior. Chaos in higher-order systems has been widely studied in the liter-
ature since they are subject in general to a dramatic change in their qualitative behav-
ior under a small change in initial conditions. Consequently, the determination of
exact explicit solutions has been less explored in the literature. It follows the high
importance of finding higher-order systems that admit a general solution with a
regular predictable behavior when the initial conditions change. In this regard, higher-
order systems having a sinusoidal general solution such as the harmonic oscillator
cannot, in an analytic way, exhibit chaotic behavior. We, therefore, focus on these
systems in this part. It is obvious that [30, 32], if

H x, _xð Þ ¼ b, (37)

where b is a constant, and

x tð Þ ¼ cos tþ φð Þ (38)

then

dm

dtm
H x, _xð Þ � b½ � ¼ 0, (39)

where m≥0 is an integer, with the exact solution (38). Indeed

dm

dtm
H x, _xð Þ � b½ � ¼ dm�1

dtm�1
d
dt

H x, _xð Þ � b½ �
� �

¼ 0: (40)

Therefore, the following theorems have been proven.
Theorem 1.3: Consider the Hamiltonian (20). Then, the equation

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
¼ 0, (41)

where b ¼ þ1, has the general solution

x tð Þ ¼ cos tþ φð Þ: (42)

Remark 3. Eq. (41) is a class of nþ 1ð Þ nonlinear mþ 1ð Þth order autonomous systems
that can exhibit isochronous oscillations.

Theorem 1.4: Consider the Hamiltonian or first integral (31), where b ¼ 1. Then,
equation

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2

" #
¼ 0, (43)

possesses the general and harmonic isochronous solution

x tð Þ ¼ cos tþ φð Þ: (44)
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Remark 4 . Eq. (43) is a class of nþ 1ð Þ nonlinear mþ 1ð Þth order autonomous systems
that can exhibit isochronous oscillations. It is interesting to note that the constant φ can be
determined by using two initial conditions

x t ¼ 0ð Þ ¼ x0, _x t ¼ 0ð Þ ¼ v0 (45)

whereas the Cauchy initial value problem requires q initial conditions for qth order
systems of differential equations. Additionally, we can prove the following results.

Theorem 1.5: Let

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
x

( )
¼ 0: (46)

Then, Eq. (46) has the general and exact isochronous harmonic solution

x tð Þ ¼ cos tþ φð Þ: (47)

Figure 6.
Phase portrait and vector field of Eq. (35) for n ¼ 2.
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Proof. Eq. (46) can be rewritten in the form

_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
dmx
dtm

þx dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
¼ 0:

(48)

Since _x2
Pn

ℓ¼0x
2ℓ þ _x3 þ _x x2 � 1ð Þ þ x2nþ2 � 1 ¼ 0, when x tð Þ ¼ cos tþ φð Þ, the

first term of Eq. (48) is zero. The second term is also zero under Theorem 1.3. Thus,
Theorem 1.5 is proved.

Theorem 1.6: Let

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
ex

( )
¼ 0: (49)

Then, Eq. (49) admits the general and exact isochronous sinusoidal solution

x tð Þ ¼ cos tþ φð Þ (50)

Proof. Writing Eq. (49) yields

_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
ex

þex dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
¼ 0:

(51)

allows us to note that the second term is zero under Theorem 1.3. Since
_x2
Pn

ℓ¼0x
2ℓ þ _x3 þ _x x2 � 1ð Þ þ x2nþ2 � 1 ¼ 0 for x tð Þ ¼ cos tþ φð Þ, the first term of

Eq. (51) is equal to zero, so Theorem 1.6 is proved.
Theorem 1.7: Let

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
x

( )
¼ 0 (52)

Then, Eq. (52) exhibits the general and exact isochronous harmonic solution

x tð Þ ¼ cos tþ φð Þ: (53)

Proof. Eq. (52) can take the form

_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
dmx
dtm

þx dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
¼ 0

(54)
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Since _x2
Pn

ℓ¼0x
2ℓ þ _x3 1þPn

ℓ¼0x
2ℓþ2� �þ _x x2nþ4 � 1ð Þ þ x2nþ2 � 1 ¼ 0 when

x tð Þ ¼ cos tþ φð Þ, the first term of Eq. (54) is equal to zero. The second term is equal
to zero under Theorem 1.4. Therefore, Theorem 1.7 is proved.

Theorem 1.8: Let

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
ex

( )
¼ 0: (55)

Then, Eq. (55) admits the general and exact isochronous solution

x tð Þ ¼ cos tþ φð Þ: (56)

Proof. Applying the rule of differentiation of a product of two functions, Eq. (55)
can be written as

_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
exþ

ex
dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1

" #
¼ 0:

(57)

Under Theorem 1.4, the second term of Eq. (57) is equal to zero when x tð Þ ¼
cos tþ φð Þ. The first term is also zero when x tð Þ ¼ cos tþ φð Þ since

_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x2nþ4 � 1
� �þ x2nþ2 � 1 ¼ 0:

This completes the proof of Theorem 1.8.
Remark 5. If H x, _xð Þ ¼ b, when x ¼ cos tþ φð Þ, then

dm

dtm
H x, _xð Þ � b½ �Q x, _xð Þf g ¼ 0, (58)

has the exact solution cos t, where Q x, _xð Þ 6¼ 0 is a function of its arguments. Now,
we can investigate higher-order nonautonomous nonlinear systems.

4. Nonautonomous nonlinear systems

In recent decades, nonautonomous systems have been the subject of intensive
investigation in the literature, given their applications in physics and applied mathe-
matics [33–35]. In particular, these systems have been used to describe time-varying
parameter processes in many areas of physical and life sciences [33, 35].
Nonautonomous systems are generally investigated within the framework of the
qualitative theory of differential equations. The Lyapunov method is often used to
study the stability, boundedness, and conditions for the existence of periodic solutions
of these systems. However, the recent literature shows that the classical existence
theorems are not sufficient to predict the behavior of nonlinear dynamic systems.
Additionally, qualitative results are not sufficient for engineering and industrial
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applications [23]. By definition [34, 35], a nonautonomous dynamic system is distin-
guished from an autonomous system by the fact that the solution of the associated
initial value problem depends not only on the elapsed time t� t0 but also on the initial
time t0. In this part, we prove the existence of nonautonomous dynamic systems
whose solution to the initial value problem does not depend on the initial time t0. To
that end, we have the following result.

Theorem 1.9: Consider the Hamiltonian H x, _xð Þ such that

H x, _xð Þ ¼ b, (59)

when x ¼ cos tþ φð Þ, where b and φ are constants. Then, the nonautonomous
equation

dm

dtm
H x, _xð Þ � b½ �Q tð Þ ¼ 0, (60)

has the general and exact isochronous sinusoidal solution

x tð Þ ¼ cos tþ φð Þ, (61)

where Q tð Þ 6¼ 0 is a function of t.
Proof. Using the rule of differentiation of a product of two functions, we can

rewrite Eq. (60) in the form

H � bð Þ d
mQ tð Þ
dtm

þQ tð Þ d
m

dtm
H � bð Þ ¼ 0: (62)

From Eq. (59), the first term of Eq. (62) is equal to zero for x tð Þ ¼ cos tþ φð Þ. Now
dm
dtm H � bð Þ ¼ dm�1

dtm�1
d
dt H � bð Þ� �

so that d
dt H � bð Þ� � ¼ dH

dt ¼ 0, using Eq. (59) when
x tð Þ ¼ cos tþ φð Þ. This completes the proof of Theorem 1.9.

4.1 Examples of illustration

4.1.1 Example 1

Let us consider Eq. (20), where b ¼ 1. Then, the nonlinear mþ 1ð Þth order
nonautonomous equation

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 þ _x x2 � 1
� �þ x2nþ2 � 1

" #
cos t

( )
¼ 0, (63)

exhibits isochronous oscillations corresponding to the general and exact sinusoidal
solution

x tð Þ ¼ cos tþ φð Þ: (64)

Solution (64) is also the general and exact isochronous sinusoidal solution of the
harmonic oscillator

€xþ x ¼ 0: (65)
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Thus, the constant φ can be determined using two initial conditions

x t ¼ 0ð Þ ¼ x0, _x t ¼ 0ð Þ ¼ v0 (66)

such that, as is well-known, solution (64) does not depend on the initial time t0.

4.1.2 Example 2

Consider Eq. (31) where b ¼ 1. Then, we have the nonlinear mþ 1ð Þth order
nonautonomous equation

dm

dtm
_x2
Xn
ℓ¼0

x2ℓ þ _x3 1þ
Xn
ℓ¼0

x2ℓþ2
 !

þ _x x4nþ2 � 1
� �þ x2nþ2 � 1

" #
cos t

( )
¼ 0,

(67)

that can exhibit isochronous sinusoidal oscillations with the general and exact
solution cos tþ φð Þ. It is interesting to note that the classes of Eqs. (63) and (67)
contain nþ 1ð Þ nonlinear mþ 1ð Þth order nonautonomous systems that reproduce in
an exact way the isochronous harmonic oscillations of the harmonic oscillator. In this
context, we can present a conclusion for the chapter.

5. Conclusion

In this chapter, we explicitly proved some results concerning isochronous sinusoi-
dal oscillations of nonlinear systems. These results contribute to recent developments
and major advances in the field of second-order and higher-order autonomous and
nonautonomous nonlinear dynamic system theory.
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Chapter 9

Control Configuration Selection
for Nonlinear Systems
Sujatha Vijayaraghavan

Abstract

Very popular research in the field of Modern control Engineering is design of
controllers for nonlinear systems. It is obvious that all the real-world systems are
multivariable and nonlinear in nature which is highly challenging to control these
nonlinear systems as it exhibits complexity. In addition to these, all the real systems
exhibit uncertainty due to slow or sudden changes in process parameters. Hence, the
design of robust nonlinear controller should have an ability to handle these uncer-
tainties. The design of controllers for nonlinear system needs proper selection of
appropriate input–output pairing. This book chapter focus on the conventional and
proposed method of control configuration selection for nonlinear systems.

Keywords: input–output pairing, closed loop undesired responses, benchmark
nonlinear systems, linearization, control configuration, nonlinear controller

1. Introduction

Research in nonlinear systems is developing rapidly and it is observed that useful
results tend to appear. The classical approach in nonlinear system is linearization and
thereby design of linear controllers. This classical approach is recommended when the
nonlinearities are mild. Also, this approach is not recommended when the nonlinear-
ities are pronounced more. For such case, variable transformation techniques are
adopted and hence effective controllers are designed. The philosophy of nonlinear
controller design is indicated using following four schemes: i. Local linearization, ii.
Local linearization with adaptation, iii. Linearization using variable transformations
and iv. Special purpose procedure.

Most of the nonlinear systems exhibit sustained oscillations for wide range of
operating point. Investigation of stability for nonlinear systems is based on lineariza-
tion of nonlinear system around the steady state. If the linearized system is stable at
the vicinity, then it is concluded that the corresponding nonlinear system will be
stable in the vicinity of the point.

There are four methods involved to analyse the dynamic behaviour of nonlinear
systems. Rigorous analytical approach is used to characterise qualitatively the dynam-
ics of nonlinear system. Analytical approach will evolve to the state of the nonlinear
system. Exact linearization by variable transformation technique will first carry out
the transformation, then dynamic analysis on linear transformed version and finally
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transforming back to original variables. Numerical analysis will processes the numer-
ical values at specific points in time. Finally in approximate linearization method
nonlinear system will be approximated to linear system.

Many researchers from ‘drive by wire’ cars to ‘fly by air’ flight control systems
have shown interest in analysis and design of nonlinear control strategies. This grow-
ing interest in design of nonlinear control is due to improvement in linear control
system and hard nonlinearities analysis. Hence researcher need to deal with model
uncertainties and robust design.

Modern technology requires high speed and accurate robots. Inverted pendulum is
an example of nonlinear system which finds application in positioning of robots and
control of manipulators. As the nonlinear systems exhibit limit cycle, it is not ease to
use Kalman test for checking controllability and observability. Also, stability is not
simply location of poles as the system is having multiple stable/unstable equilibrium
points.

In eighteenth century, nonlinear control was introduced to control steam engine
by using centrifugal flyball governor reviewed by Jamshed Iqbal et al. [1]. Lyapunov
[2] in 1892 proposed the stability for nonlinear system by finding stability of linear
approximation of nonlinear system at equilibrium point is equivalent to analysing
stability for nonlinear system at vicinity of equilibrium point. Two benchmark
nonlinear system on Duffing’s research [3] in 1918 on nonlinear vibrations and van der
pol findings [4] in 1926 on electronic oscillations representing nonlinear control sys-
tems. The various phenomenon in nonlinear systems is jump resonance, limit cycle,
subharmonic oscillations and frequency entrainment. Control Engineering in 1930
[5], Poincare approximated servomechanisms to second order system using phase-
plane method. During second world war, research in nonlinear control led to control
of guided vehicles for defence. In the year 1940–1960, nonlinear systems are
represented analytically using describing function and phase plane method [6]. Mod-
ern era for nonlinear control was developed in the year 1960. The key applications of
nonlinear control are defence sector and industrial arena. As nonlinear real-world
systems are multivariable, high dimensional, poorly modelled which is outside the
boundary of classical control theory. Thus, nonlinear control falls under the modern
control Engineering in which digital controllers are used Fuller 1979 [7, 8]. In 1970,
scientist proposed dynamic system can be viewed as energy transformation mecha-
nism. Sontag and Wang [9] in 1995 proposed input–output stability of nonlinear
system using elementary subsystems. By the introduction of geometric control theory
by Isidori [10] in 2013 to analyse the stability of nonlinear system. 1990s is considered
as decade of ‘activation process’ in nonlinear control systems.

The aim of this chapter is to analysis the nonlinear system and nonlinear
control. The rest of the chapter is carried out as follows: Section 2 discusses
benchmark nonlinear system. Conventional method of input–output pairing is
explained in Section 3. The proposed method of control structure selection and
determination of input/output pairs are given in Section 4. At the end, conclusion
is drawn.

2. Process description

A nonlinear system does not obey the principle of superposition. In this system, the
response to sum of inputs is not equal to sum of individual responses. Also, response
to step input of magnitude A is not equal to A times magnitude of step, step-down
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response is not equal to mirror image of step-up response. A sinusoidal input to
nonlinear system will not lead to perfect sinusoidal response.

Most of the chemical processes are nonlinear. Some of the examples of nonlinear
chemical process [11] are as follows:

1.The blending process

2.Stirred mixing tank process

3.Nonisothermal CSTR process - mildly nonlinear system [12]

4.pH neutralisation process–moderate to high nonlinear system and

5.Distillation column–highly non-linear system

2.1 The blending process

In the blending process shown in Figure 1, it is required to blend the pure material
A and pure material B whose respective flowrates FA and FB. The objective of blending
process is to control the flow rate and composition.

Representing the mathematical modelling of blending process:
Total mass balance:

F ¼ FA þ FB (1)

Component A mass balance:

x ¼ FA=FA þ FB (2)

On linearizing, the process transfer function is obtained as:

G11 sð Þ ¼ R0 sð Þ
W 0

1 sð Þ ¼ 10�3 (3)

G12 sð Þ ¼ R0 sð Þ
W 0

2 sð Þ ¼ 10�3 (4)

Figure 1.
Blending process.
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G21 sð Þ ¼ X0 sð Þ
W 0

1 sð Þ ¼
�2:5 ∗ 10�6
sþ 4 ∗ 10�4

(5)

G22 sð Þ ¼ X0 sð Þ
W 0

2 sð Þ ¼
�2:5 ∗ 10�6
sþ 4 ∗ 10�4

(6)

2.2 Stirred mixing tank reactor

The stirred mixing tank reactor is having two input variables: hot and cold stream
flowrate and two output variables: liquid level and temperature of the liquid in the tank.

For this stirred mixing tank reactor in Figure 2, assume cross sectional area is
uniform, liquid physical properties are constant. The mathematical model of the tank
reactor is

Ac
dh
dt
¼ FH þ FC þ FD � k√h (7)

ρCpAc
d hTð Þ
dt
¼ ρCp (8)

This process is considered as nonlinear because of square root term and product
functions of h and T.

Process transfer function for stirred mixing tank reactor is:

G sð Þ ¼
0:7

1þ 9s
0

2
1þ 8s

0:4
1þ 9s

2
664

3
775 (9)

2.3 CSTR process

One of the nonlinear chemical processes is nonisothermal CSTR shown in Figure 3.
In this process, irreversible chemical reaction takes place, where the feed material

having composition C moles/volume enters the reactor at the temperature, Tf.

Figure 2.
Stirred mixing tank reactor.
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Assuming the concentration and temperature are uniform throughout, exit tempera-
ture and composition are also same as within the reactor.

The mathematical model for this process is:

dCA

dt
¼ �1

θ
cA � k0e�

E
RTð ÞcA þ 1

θ
cAf (10)

dT
dt
¼ �1

θ
T þ βk0e�

E
RTð ÞcA þ 1

θ
Tf � χ (11)

The CSTR process is having two manipulated variables and two controlled vari-
ables (reaction temperature and concentration). Based on mathematical model of
CSTR process, it is observed that the nonlinearities are due to nonlinear function of
temperature – involving exponential of temperature and products of concentration
and function of temperature.

The process transfer function matrix of CSTR process is presented in Eq. (12):

CA

T

� �
¼

0:022e�0:33s

15sþ 1
5e�0:33s

21sþ 1
0:0056e�6s

21sþ 1
5:9e�0:33s

21sþ 1

0
BB@

1
CCA

F
Fj

� �
(12)

2.4 pH neutralisation process

Most of the pH processes exhibit nonlinear behaviour to degree of either mild or
high. The pH neutralisation process is shown in Figure 4.

The dynamic model of pH neutralisation system is derived using conservation and
equilibrium relations. Assuming perfect mixing, constant density and complete solu-
bility of the ions involved.

The following differential equations for the effluent reaction invariants can be
derived:

A1h1
dWa4

dt
¼ q1e Wa1 �Wa4ð Þ þ q2 Wa2 �Wa4ð Þ þ q3 Wa3 �Wa4ð Þ (13)

A1h1
dWb4

dt
¼ q1e Wb1 �Wb4ð Þ þ q2 Wb2 �Wb4ð Þ þ q3 Wb3 �Wb4ð Þ (14)

Figure 3.
The nonisothermal CSTR.
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The pH and level transmitters are modelled as first order transfer functions. The
desired flow rates q1 and q3 serve as setpoints.

The process is treated as square MIMO systems where pH2 and h2 are to be
controlled variables using Q4 and Q6 as the manipulated variables with Q1 and Q3 held
constant.

The resulting process transfer functionmatrix is represented in the following Eq. (15).

pH2

h2

� �
¼

�0:32e�0:8s
2:36sþ 1

0:32e�0:4s

2:03sþ 1
0:42e�0:4s

3:32sþ 1
0:41e�0:1s

2:07sþ 1

0
BB@

1
CCA

Q4

Q6

� �
(15)

2.5 Distillation column

The design of binary distillation process shown in Figure 5 is a highly nonlinear
chemical process.

The potential manipulated variables of the distillation process are reflux (FR) and
reboiler flow rate (FV) whereas distillate (XD) and bottom composition (XB) are the
controlled variables here. This nonlinear system is having 3 input variables and 2
output variables.

The transfer functions are obtained for the distillation column is described by the
following equation.

XD sð Þ ¼ 0:0747e�3s

12sþ 1
FR sð Þ � 0:0667e�2s

15sþ 1
FV sð Þ þ 0:7e�5s

14:4sþ 1
XF sð Þ (16)

XB sð Þ ¼ 0:1173e�3:3s

11:7sþ 1
FR sð Þ � 0:1253e�2s

10:2sþ 1
FV sð Þ þ 1:3e�5s

12sþ 1
XF sð Þ (17)

Figure 4.
pH neutralisation process.
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whose transfer function matrix Eq. (18) is described as:

XD sð Þ
XB sð Þ

� �
¼

0:0747e�3s

12sþ 1
�0:0667e�2s

15sþ 1
0:1173e�3:3s

11:7sþ 1
�0:1253e�2s
10:2sþ 1

0
BB@

1
CCA

FR sð Þ
FV sð Þ

� �
(18)

3. Conventional method of loop pairing for nonlinear systems

For all the processes namely SISO and MIMO it is required to pair the input and
output variables before designing the controller. Later the controller can be designed
according to any one of such input–output pair. Further any one of this configuration
will lead to better overall system performance.

For the linear systems, Relative Gain Array (RGA) is obtained based on transfer
function models [11]. Interaction analysis using RGA is based on steady-state infor-
mation. But for nonlinear systems, by assuming that process model is available, two
approaches are used to obtain RGA.

1.Using steady state version of nonlinear model from first principles, it is possible
to obtain the analytical expressions.

2.By linearizing the nonlinearmodel around a steady state using approximate Kmatrix.

3.1 RGA based loop pairing for blending process

RGA is computed using the steady state version of nonlinear model for this process.
For the blending process, two input variables are u1 and u2 and the two output

variables are F and x.

F ¼ u1 þ u2 � Linear (19)

Figure 5.
Binary distillation tower.
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X ¼ u1=u1 þ u2 �Nonlinear (20)

For this 2x2 MIMO process, the elements of RGA is given by:

λ ¼
dF
du1

� �
bothloopsopen

dF
du1

� �
secondloopclosed

(21)

From Eq. (19), when both loops open, dF
du1

� �
bothloopsopen

¼ 1:

Upon closing the second loop, what value u2 will take in order for any change in u1,
x is restored to desired steady state value x*. Solving for u2 in terms of u1 and x*.

u2 ¼ u1
x
� x (22)

Thus, when the second loop is closed, subs Eq. (22) in Eq. (19)

F ¼ u1þ
u1
x
� x

F ¼ u1
x

(23)

Differentiate F w.r.t u1, we get dF
du1

� �
secondloopclosed

¼ 1
x

Finally, λ ¼ 1
1
x

λ ¼ x (24)

Therefore, RGA for blending system is

λ ¼ x 1� x
1� x x

� �
(25)

where x is the mole fraction of species A in the blend.
RGA depends on only one steady state operating point, x whose value lies between

0 and 1.
Loop pairing for blending process:

1.When x* is closer to 1, recommended pairing is F-u1 and m-u2.

2.When product composition is closer to 1, recommended pairing is F-u1 and m-u2.

3.When product composition is closer to 0, recommended pairing is F-u2 and m-u1.

4.When x* = 0.5, which input variable is used to control which output variable.

3.2 RGA based loop pairing for stirred mixing tank reactor

Using the technique of approximating the nonlinear model around the steady state
value, RGA is obtained for stirred mixing tank reactor.
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Steady state gain matrix for the reactor is

K ¼ G 0ð Þ ¼ 1
k

2
ffiffiffiffi
hs
p

2
ffiffiffiffi
hs
p

TH � Tsð Þffiffiffiffi
hs
p TC � Tsð Þffiffiffiffi

hs
p

2
4

3
5 (26)

Two output variables are y1 – liquid level and y2 – temperature
Two input variables are u1 – hot stream flowrate and u2 – cold stream flowrate
RGA for this system at steady state operating point TS,

Λ ¼ TC � Ts

TC � TH

� TjjH � Tsð Þ
TC � TH

� TjjH � Tsð Þ
TC � TH

TC � Ts

TC � TH

� �
(27)

For illustrations, numerical values of TC ¼ 15°C and TH=65°C
Condition 1: TS > 40°C, (TS = 55°C)

Λ ¼ 0:8 0:2

0:2 0:8

� �
(28)

RGA recommends (u1-y1) and (u2-y2) pairing.
Condition 2: TS < 40°C, (TS = 25°C)

Λ ¼ 0:2 0:8

0:8 0:2

� �
(29)

RGA recommends (u2-y1) and (u1-y2) pairing.
Condition 3: TS = 40°C,

Λ ¼ 0:5 0:5

0:5 0:5

� �
(30)

Here either pairing is equally bad.
Condition 4: TS = TH

Λ ¼ 1 0

0 1

� �
(31)

Here we can achieve the perfect control.

3.3 RGA based loop pairing for mild, mild to high and high nonlinear process

RGA for mild, mild to high and high nonlinear processes are given in Table 1 based
on steady state value of process transfer function matrix.

It is clear that from RGAmatrix for all the benchmark process, the desirable input–
output pair is (y1-m1); (y2-m2).

4. Proposed loop pairing for the nonlinear process

The proposed method is based on finding the area under the closed loop undesired
response and choosing the pair based on minimum area under the response [13, 14].
The controllers are designed using the method proposed by Panda [15] Figures 10
and 11.
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4.1 Loop pairing for blending process

Case 1: Diagonal pairing
Based on the comparing the area tabulated in Table 2 under undesired response

for both diagonal and off diagonal shown in Figures 6–9, the recommended input
output pairing is 1–1/2–2 using the proposed method.

Blending Process

(y1-u1); (y2-u2) pairing (y2-u1); (y1-u2) pairing

y2 1.0393e-05 y2 �3.8772e-24
y1 6.6693e-05 y1 �9.0875e-06

Table 2.
Comparison of area under undesired response of blending process.

S.No Process Relative Gain Array

1 CSTR 1:2750 �0:2750
�0:2750 1:2750

� �

2 pH 0:4940 0:5060
0:5060 0:4940

� �

3 Distillation column 6:0937 �5:0937
�5:0937 6:0937

� �

Table 1.
Conventional method of loop pairing for nonlinear chemical process.

Figure 6.
Closed loop undesired response (y1) for diagonal pairing.

Figure 7.
Closed loop undesired response (y2) for diagonal pairing.
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4.2 Loop pairing for stirred mixing tank process

Case1: Diagonal pairing: Figures 10 and 11
Case 2: off-diagonal pairing: Figures 12 and 13
Closed loop undesired response is shown in Figures 9–12 and area is compared

in Table 3 conclude that off diagonal pairing is the recommended input output
pairing.

4.3 Loop pairing of CSTR process

By assuming both the diagonal and off diagonal pairing, responses are obtained
and its area under the responses are compared to find the desired input output pairing.

Figure 9.
Closed loop undesired response (y2) for off diagonal pairing.

Figure 8.
Closed loop undesired response (y1) for off diagonal pairing.

Figure 10.
Stirred mixing tank undesired response (y1) for diagonal pairing.
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Figure 12.
Stirred mixing tank undesired response (y1) for off diagonal pairing.

Mixing stirred tank reactor

(y1-u1); (y2-u2) pairing (y2-u1); (y1-u2) pairing

y2 0.6568 y2 0

y1 0 y1 0.6325

Table 3.
Area under the undesired response.

Figure 13.
Stirred mixing tank undesired response (y2) for off diagonal pairing.

Figure 11.
Stirred mixing tank undesired response (y2) for diagonal pairing.
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Case 1: Diagonal pairing: (y1-m1); (y2-m2) pairing
Figure 14 represents the closed loop undesired response, y2 of CSTR process by

assuming the diagonal pairing when there is change in input m1 while m2 = 0.
For CSTR process, the closed-loop undesired response, y1 when there is change in

m2 for diagonal pairing of CSTR process is represented in Figure 15.
Case 2: Off-diagonal pairing: (y2-m1); (y1-m2) pairing
Figure 16 shows that for CSTR process, the closed loop undesired response y2 for

the change in m2 by assuming off-diagonal pairing.

Figure 14.
Closed loop undesired response for diagonal pairing (y2/m1).

Figure 15.
Closed loop undesired response for diagonal pairing (y1/m2).

Figure 16.
Closed loop undesired response for off diagonal pairing (y2/m2).
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The closed loop undesired response y1 for the change in m1 for off diagonal pairing
in CSTR process is represented in Figure 17.

4.4 Loop pairing of pH process

For the pH process, closed loop undesired responses are obtained for both
diagonal and off-diagonal pairing as shown in Figures 18–21. The areas obtained
under these curves are given in Table 4 and the same is compared to obtain the
desired input–output pair based on minimum value.

Figure 17.
Closed loop undesired response for off diagonal pairing (y1/m1).

Figure 18.
Closed loop undesired response for diagonal pairing (y2/m1).

Figure 19.
Closed loop undesired response for diagonal pairing (y1/m2).
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Case 1: Diagonal pairing: (y1-m1); (y2-m2) pairing
Figure 18 represents the closed loop undesired response y2 for the change in m1 for

diagonal pairing of pH process.
For diagonal pairing in pH process, closed loop undesired response y1 for change in

m2 is shown in Figure 19.

Figure 20.
Closed loop undesired response for off diagonal pairing (y2/m2).

Figure 21.
Closed loop undesired response for off diagonal pairing (y1/m1).

CSTR Process

(y1-m1); (y2-m2) pairing (y2-m1);(y1-m2) pairing

y2m1
� �

0.0036 y2m2
� �

0.0637

y1m2
� �

15.7309 y1m1
� �

0.8989

pH Process

y2m1
� �

0.3333 y2m2
� �

0.2539

y1m2
� �

0.8328 y1m1
� �

1.0930

Distillation column

y2m1
� �

51.0823 y2m2
� �

29.0406

y1m2
� �

26.0268 y1m1
� �

45.7813

Table 4.
Proposed loop pairing - Comparison of areas under the load responses.
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Case 2: Off diagonal pairing (y2-m1); (y1-m2) pairing
For the pH process, the closed loop undesired response y2 for change in m2 is

represented in Figure 20 for off-diagonal pairing.
For off diagonal pairing in pH process, Figure 21 represents the closed-loop

undesired response y1 for the change in m1.

Figure 23.
Closed loop undesired response for diagonal pairing (y1/m2).

Figure 24.
Closed loop undesired response for off diagonal pairing (y2/m2).

Figure 22.
Closed loop undesired response for diagonal pairing (y2/m1).
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4.5 Loop pairing of distillation column

Similar to CSTR and pH process, the pairing for distillation column is also carried
out to choose the correct input–output pairing.

Case 1: Diagonal pairing:
Closed loop undesired response for diagonal pairing of distillation column is

represented in Figure 22.
Figure 23 shows that closed loop response of distillation column for diagonal

pairing.
Case 2: Off- diagonal pairing
For the distillation column, closed loop undesired response y2 for the change in m2

for off diagonal pairing is shown in Figure 24.
Figure 25 represents that the closed loop undesired response y1 for off diagonal

pairing of distillation column
Similarly, Figures 22–25 represent undesired responses for distillation column and

its area is given in Table 4.
From the Table 4, for the CSTR, pH and distillation column benchmark nonlinear

chemical processes, it is clear that the minimum area is obtained only for (y1-m1);
(y2-m2) pairing. Hence, desirable pairing for all these processes is (y1-m1); (y2-m2).

5. Conclusion

As real-world physical systems are nonlinear, it is required to control these
nonlinear processes. In order to design the nonlinear controller, one needs to choose
the proper input–output pair. This chapter discusses the conventional method of loop
pairing for the class of benchmark nonlinear system. RGA is calculated based on
steady state information for the nonlinear system. The proposed method of input–
output pair is also calculated for nonlinear benchmark process. The proposed method
of input–output pair is validated with the conventional method. The proposed control
configuration selection is based on closed loop response whereas the conventional
method of pairing is based on gain. Thus, using the proposed method of control
configuration selection one can design the good nonlinear control.

Figure 25.
Closed loop undesired response for off diagonal pairing (y1/m1).
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Chapter 10

Feedback Linearization Control of
Interleaved Boost Converter Fed by
PV Array
Erdal Şehirli

Abstract

One of the powerful methods of nonlinear control is the feedback linearization
technique. This technique consists of input state and input-output linearization
methods. In this chapter, the feedback linearization technique, including input state
and input-output linearization methods, is described. Then, input-output lineariza-
tion method is used for output voltage control of interleaved boost converter. Firstly,
mathematical model of the interleaved boost converter is derived after that the
method is applied. Besides, the interleaved boost converter is fed by a PV array under
irradiation level and ambient temperature change. As a result of the simulation study,
output voltage control of interleaved boost converter under reference voltage change
is realized as desired.

Keywords: feedback linearization, interleaved, boost, PV

1. Introduction

In nature, most of the system is nonlinear. However, the analysis and design of a
nonlinear controller require complex mathematical procedures. On the other hand,
linear methods provide easy analysis and design of control systems. Nonetheless
conducting the control of a wide range and with parameters changes, linear control
and analysis methods are not so powerful, especially in the power electronics system.
Power electronics systems have a highly nonlinear nature because of the switching
states of the power switch. So, for designing the proper controller for such systems,
the usage of nonlinear control methods is required.

In literature, [1–3] give the fundamental analysis, design, and methods of
nonlinear systems. Ramirez and Ortega [4] applies nonlinear control methods to the
basic power electronics converters. Kazimierczuk [5] describes the design analysis and
operation of power electronics converters, including buck, boost, and buck-boost
converters. Feedback linearization technique classified under nonlinear control is
applied to fundamental power electronics converter, including boost converter in
[6, 7], buck converter in [8], buck-boost converter in [9, 10]. Sira-Ramirez et al.
[11, 12] present another nonlinear control method that is a sliding mode controller for

201



boost converter, [13] buck converter, and [14] buck-boost converter. Furthermore,
adaptive-based nonlinear controller is presented for boost converter [15], buck con-
verter [16], and buck-boost converter [17]. Robust nonlinear controller is designed for
buck in [18], boost in [19], and buck-boost converter in [20].

In this chapter, firstly feedback linearization technique, one of the most useful
nonlinear methods, is described. Then, input-output linearization method classified
under the feedback linearization technique is applied to the interleaved boost con-
verter. Besides, as a power supply of interleaved boost converter, PV array is used
with solar irradiation and ambient temperature changes. Furthermore, a nonlinear
controller is designed to control the output voltage of the interleaved boost converter.
After designing the nonlinear controller of interleaved boost converter, it is compared
to a linear controller. As a result of the simulation study, it is concluded that a
nonlinear controller for the output voltage of interleaved boost converter gives better
results than a linear type controller.

2. Feedback linearization

Feedback linearization techniques have become very popular in recent years
because of providing the linear equivalent systems of nonlinear systems by exact
linearization. Feedback linearization techniques provides the transformations
of nonlinear systems into fully or partly linear systems, algebraically so that linear
control techniques can be used. In feedback linearization, linearization is realized by
exact state transformation and feedback, making these techniques different from
conventional linearization aiming linear approximation of the system.

Feedback linearization technique can be classified into two methods that are input-
state linearization and input–output linearization.

2.1 Input-state linearization

In input-state linearization method, it is aimed to linearize state Eq. (1) completely.
In order to cancel the nonlinearities in the original system, state transformation and
input transformation are used. After applying the proper transformation, nonlinear
system is transformed into the linear system [2].

If there is a nonlinear system given with the form of Eq. (1).

_x ¼ f x, uð Þ (1)

There should be a state transformation given in Eq. (2) and an input transforma-
tion in Eq. (3) in order to apply input-state linearization.

z ¼ z xð Þ (2)

u ¼ u x, vð Þ (3)

There are some points to bear in mind about applying input-state control, which
are as follows:

• Even though the results obtained by input-state linearization control is valid in a
large region, they may not be global. There may also occur some singularity
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points, while the initial state is at those points, controller may not bring the
system to the equilibrium point.

• To apply control law, state transformation in Eq. (2) should be available. If state
components are not physically meaningful or could not be measured, original
states should be used to compute state components.

• If there is uncertainty in the model or in any parameters of the system, it causes
an error in the calculation of new state z and control input u.

2.2 Input-output linearization

Another feedback linearization method is input-output linearization method. In
this method, the main process is to generate a linear differential relation between the
system output and new control input. This method can be summarized in three stages,
as follows [1, 2]:

1.Differentiate the system output till control input appears,

2.Select new control input in order to guarantee tracking convergence and cancel
nonlinearities,

3.Examine the stability of internal dynamics.

In order to explain input-output linearization method, think about a system given
in Eqs. (4) and (5).

_x ¼ f xð Þ þ g xð Þu (4)

y ¼ h xð Þ (5)

To have input-output relation, output should be differentiated till input appears.
After differentiating Eq. (5), Eq. (6) is acquired as in refs. [1, 2, 10].

_y ¼ ∂h
∂x

f xð Þ þ g xð Þu½ � ¼ Lfh xð Þ þ Lgh xð Þu (6)

Lfh and Lgh in Eq. (6) are described as Lie derivatives of f(x) and h(x) and given in
Eq. (7).

Lfh xð Þ ¼ ∂h
∂x

f xð Þ, Lgh xð Þ ¼ ∂h
∂x

g xð Þ (7)

After rj times derivation of the output, considering the condition in Eq. (8), Eq. (9)
is acquired.

LgiLr�1
f hi xð Þ 6¼ 0 (8)

yrii ¼ Lri
f hi þ

Xn
i

LgiL
ri�1
f hi

� �
ui (9)
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If there is a multi-input, multi-output system, considering to apply Eq. (9) to all
outputs, Eq. (10) is obtained.

yr11
…
…

yrnn

2
6664

3
7775 ¼

Lr1
f h1 xð Þ
…
…

Lrn
f hn xð Þ

2
6664

3
7775þ

Lg1Lr1�1
f h1 ⋯ LgnLrn�1

f h1

⋮ ⋱ ⋮
Lg1Lrn�1

f h1 ⋯ LgnLrn�1
f hn

2
64

3
75

u1

…
…

un

2
6664

3
7775 ¼ α xð Þ þ E xð Þu

(10)

After selecting new control variable, input–output linearization is acquired as in
Eq. (11).

u1

…
…

un

2
6664

3
7775 ¼ �E

�1

Lr1
f h1 xð Þ
…
…

Lrn
f hn xð Þ

2
6664

3
7775þ E�1

v1
…
…

vn

2
6664

3
7775 (11)

The relation between system output y and new control input v is given in Eq. (12).
In Eq. (12), k is constant to be chosen ensuring the stability of the system.

yr11
…
…

yrnn

2
6664

3
7775 ¼

v1
…
…

vn

2
6664

3
7775,

v1
…
…

vn

2
6664

3
7775 ¼

�k1 r�1ð Þyr�1 … � k11 r�1ð Þy1 � k10 y1 � y ∗
1

� �

…
…

�kn r�1ð Þyr�1 … � k21 r�1ð Þy1
� k20 yn � y ∗

n

� �

2
6664

3
7775 (12)

Also Eq. (13) gives the closed loop error dynamics relating to system output,
reference values, and k constants as in Ref. [21].

e

…
…

er

2
6664

3
7775 ¼

y� y ∗

…

yr � y ∗ r

2
64

3
75,

er1 þ k1 r�2ð Þer�11 þ … þ k11e11 þ k10e1
…

ern þ kn r�1ð er�1n þ … þ k21e1n þ k20en

2
64

3
75 ¼

0

…
…

0

2
6664

3
7775 (13)

2.3 Interleaved boost DC-DC converter

Circuit structure of interleaved boost DC-DC converter is shown in Figure 1. It is
seen that two separate boost converters are connected to the DC bus. The difference of
interleaved boost converter from boost converter is that both switches are conducted
with time delay in order to have input current having less ripple content.

Operation of the interleaved boost converters can be summarized as follows:
When S1 is in switch-on position, S2 is turned off, L1 current increases linearly, L2
current decreases, and D2 conducts. When S1 is switched off, S2 is switched on and L2
current increases linearly, L1 current decreases, and D1 conducts. While the inductor’s
current decreases, inductors transfer their energy to the load. Passive components
of the interleaved boost converter can be chosen by using Eqs. (14) and (15) as in
Ref. [5].
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L ¼ RD 1� Dð Þ2
2fs

(14)

C ¼ DVo

fsRΔVC
(15)

While deriving a mathematical model of interleaved boost DC-DC converter,
model of boost DC-DC converter can be used. A mathematical model of the boost
converter is obtained by switching on and off positions, shown in Figure 2. By
applying Kirchhoff voltage and current laws for both circuits, a mathematical model
of the boost converter is written.

At switch-on interval, after applying Kirchhoff voltage and current law, Eqs. (16)
and (17) are obtained. The model for switch-on interval can be written in Eq. (19)
with the form Eq. (18) of state-space representation.

diL
dt
¼ Vin

L1
(16)

dVo

dt
¼ � Vo

RC
(17)

Figure 1.
Interleaved boost DC-DC converter.

(a) (b)

Figure 2.
(a) Switch-on, (b) switch-off position of the boost converter.
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_x ¼ Axþ Bu (18)

_iL
Vo

� �
¼ 0 0

0 �1=RC

� �
iL
Vo

� �
þ

1=L

0

� �
Vin (19)

At the switch-off interval, Kirchhoff voltage and current law are applied to
Figure 2b and Eqs. (20) and (21) are obtained. It is also written in the form of Eq. (22).

diL
dt
¼ Vin

L1
� Vo

L1
(20)

dVo

dt
¼ � iL

C
� Vo

RC
(21)

_iL
Vo

� �
¼ 0 �1=L

1=C �1=RC

� �
iL
Vo

� �
þ

1=L

0

� �
Vin (22)

Mathematical model of the boost converter can be derived in Eq. (24) by using
state-space average technique given in Eq. (23).

A ¼ dA1 þ 1� dð ÞA2, B ¼ dB1 þ 1� dð ÞB2 (23)

_iL
Vo

� �
¼ 0 �1þd=L

1�d=C �1=RC

� �
iL
Vo

� �
þ

1=L

0

� �
Vin (24)

State-space mathematical mode in Eq. (24) can be reordered as in Eq. (25) to apply
input–output linearization technique. As a system input in Eq. (25), d is chosen.

_iL
Vo

� �
¼

Vo=Lþ Vin=L

iL=C� Vo=RC

� �
þ

Vo=L

�iL=C

� �
d (25)

The purpose of the control is to regulate output voltage Vo, so as an output variable
Vo is chosen as in Eq. (26).

y ¼ h xð Þ ¼ Vo (26)

The way of using input–output linearization techniques is to derive system output
until system input is obtained in output. So, after derivation of system output Vo,
Eq. (27) is obtained.

_y ¼ _Vo ¼ iL=C� Vo=RC�iLd=C (27)

It is observed in (27) that at the first derivation, system input is found at system
output. It means that the relative degree of the system is “1.” Eq. (27) is rearranged in
Eq. (28) with respect to system input.

d ¼ � _Vo þ iL=C� Vo=RC
� �C

iL
(28)

The next stage is to choose a new control input. The control input is chosen
regarding to relative degree in Eq. (29).
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y1 ¼ V1 (29)

After choosing new control input as in Eq. (30), and replacing it in Eq. (28),
Eq. (31) is obtained. Eq. (31) is the system input, nonlinear controller is operated with
respect to it.

V1 ¼ k1 Vo � V ∗
o

� �
(30)

d ¼ �k1 Vo � V ∗
o

� �þ iL=C� Vo=RC
� �C

iL
(31)

In order to provide the operation of the interleaved boost converter, S1 is switched
by using the duty cycle calculated in Eq. (31), and S2 is switched by using the same
duty cycle having 90° delay.

3. Simulations

Interleaved boost DC-DC converter fed by PV array is controlled by input–output
linearization technique by means of the simulation. Simulation study is realized by
Matlab/Simulink software. The circuit diagram of the study is shown inFigure 3. It is seen
in the figure that there is a nonlinear controller that is based on the Eq. (31) in chapter 2.

It is seen that interleaved boost converter is connected to the output of the PV
array. Because of the interleaved nature of the converter, input current has a lower

Figure 3.
PV-fed interleaved boost DC-DC converter with nonlinear control.
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ripple than the classical boost converter. The simulation diagram of the circuit is
shown in Figure 4.

Parameters used in the simulation are given in Table 1.

Figure 4.
PV-fed interleaved boost DC-DC converter simulation diagram.

L1, L2 C R fsw PV Array PV Array

600 μH 1000 μH 250 Ω 69 kHz 40 prl, 2 srs 305 W Pmax, 64.2 Voc

Table 1.
Parameter values used in the study.

Figure 5.
Irradiation level and ambient temperature change of PV array.
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Simulation studies are realized under irradiation and ambient temperature change
of the PV array; these changes are sketched in Figure 5.

Output voltage under reference change is obtained as in Figure 6 by the nonlinear
controller. Reference voltage is changed from 150 V to 200 V at 1 s, from 200 V to
250 V at 2 s, from 250 V to 200 V at 3 s, and from 200 V to 150 V at 4 s. Under the
reference changes, output voltage is achieved as desired with �0.2 V at 150 V
reference, �0.5 V at 200 V reference, �1.1 V at 250 V reference, steady-state error.
Also, steady-state error is obtained as 0.015 s at 150 V reference, 0.005 s at 200 V

Figure 6.
Output voltage of interleaved boost DC-DC converter.

Figure 7.
Output voltage of interleaved boost DC-DC converter with PI and nonlinear controller.
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reference, 0.008 s at 250 V reference, and 0.07 s at second 200 V reference, 0.125 s at
second 150 V.

In order to compare the performance of the nonlinear controller, the same system
is controlled by the PI controller. In Figure 7, the results obtained by both controllers
are sketched.

Figure 7 shows that by PI controller desired reference voltages are not acquired,
however, nonlinear controller provides desired reference voltages.

4. Conclusions

In this chapter, firstly feedback linearization techniques, including input-state and
input–output linearization, are described. Then input–output linearization technique
is applied to interleaved boost converter that is connected to the output of the PV
array. Besides, solar irradiation and ambient temperature of PV array are changed
during the simulation study.

The result obtained by the nonlinear controller is compared to the linear PI con-
troller. It is determined by the study that the nonlinear controller ensures the desired
output voltage with a maximum 1.1 V steady-state error and 0.125 s settling time,
whereas the linear PI controller could not provide the reference voltage as it desired.

In future work, the implementation of the study is targeted to be carried out.
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Chapter 11

Nonlinear Intelligent Predictive
Control for the Yaw System of
Large-Scale Wind Turbines
Dongran Song, Ziqun Li, Jian Yang, Mi Dong,
Xiaojiao Chen and Liansheng Huang

Abstract

This chapter presents a nonlinear intelligent predictive control using multi-step
prediction model for the electrical motor-based yaw system of an industrial wind
turbine. The proposed method introduces a finite control set under constraints for the
demanded yaw rate, predicts the multi-step yaw error using the control set element
and the prediction wind directions, and employs an exhaustive search method to
search the control output candidate giving the minimal value of the objective func-
tion. As the objective function is designed for a joint power and actuator usage
optimization, the weighting factor in the objective function is optimally determined
by the fuzzy regulator that is optimized by an intelligent algorithm. Finally, the
proposed method is demonstrated by simulation tests using real wind direction data.

Keywords: nonlinear model predictive, intelligent algorithm, yaw control, wind
turbine

1. Introduction

With the increase in social demand, the scale of wind power generation continues
to expand. The total installed capacity of global wind power in 2020 has reached
743GW, which means that wind turbines (WTs) are moving towards large-scale and
high-capacity. Typical WT controls include pitch, torque, and yaw control, of which
about 80% of the research is on the first two, while yaw control has received limited
attention [1]. Meanwhile, with the large-scale development of WTs [2], problems
such as power reduction and load increase caused by the yaw misalignment can no
longer be ignored. According to the investigation result, the potential energy loss due
to yaw misalignment is about 2.7% and the failure rate of yaw system accounts for
approximately 12.5% of the total failure rate of WTs [3]. Therefore, there is an urgent
need to improve the yaw control performance of WT.

Yaw control changes the direction of blade rotating surface by turning the nacelle
horizontally. Traditional yaw control methods include Logic Control [4], PID, fuzzy PID
[5], and so on. Yet, wind direction sensor suffers from the disturbance of rotor rotation,
whichmakes it difficult to accurately measure the incoming wind direction. In order to
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avoidmeasurement error, some wind direction estimationmethods are proposed, includ-
ing the hill-climbing search algorithm [6] and so on. However, these improvedmethods
have limited effect on large-scaleWTs, and they are rarely applied in industry. In short,
with the development ofWT towards large-scale, traditional yaw control methods gener-
ally have shortcomings, which promote the development of newmethods.

As the development of advanced prediction technologies like LiDAR [7], more
recent research has concentrated on the advanced predictive controls [8]. Model
predictive control (MPC) is a typical representative of predictive control, which has
been proposed for the torque and yaw control of WTs, and has achieved good control
performance [9–11]. The MPC for yaw system involves performance indicators such
as energy capture efficiency and yaw actuator usage [12]. By adding weight coeffi-
cients, each performance indicator can be combined into a single objective function.
Obviously, the setting of weight coefficient could influence the control performance.
In order to find the connotative knowledge, potential regulations and methods, the
Pareto optimization theory is used in [13] to explore and gives the suggestion that
weight coefficients should be regulated according to the wind characteristics. How-
ever, how to effectively adjust the weight coefficients in real time remains unsolved.

Fuzzy logic (FL) is a potential solution to regulate the weight coefficient for
model-predictive yaw control. FL is an abstraction of the approximate reasoning
characteristics of human decision-making, which has been applied in many fields
[14]. Yet, the excessive dependence of FL on expert experience leads to artificially set
membership functions (MFs) and fuzzy rules that could limit the control perfor-
mance. To this end, the optimization of FL is proposed to enhance its effect [15]. In
summary, the advantages of FL and the potential room for optimization make it
possible to effectively regulate the weight coefficient of MPC.

Motivated by above observations, in this study, the nonlinear MPC (NMPC) method
with multi-step prediction models for the yaw control system is proposed. Specifically,
an “ideal” NMPC controller that employs perfect previewed wind directions into the
prediction model is used in this study and the NMPC problem is solved by using an
exhaustive search method based on the sequential diagram. Further, a novel method of
using the mind of FL to dynamically regulate the weight coefficient of the NMPC is
proposed, which is called as fuzzy inference weight coefficient regulator (FIWR).
Specifically, the fuzzy rules and MFs of FIWR are simultaneously optimized by an
advanced intelligent algorithm, so as to fully exert the advantage of FIWR. By doing so,
it is achieved the deep optimization of NMPC performance for yaw system.

2. Model and methodology

This study aims at proposing and studying the NMPCmethod for the yaw control
system on a horizontal-axisWT. The yawmodel forWTswill be introduced first, followed
by the design of finite-set NMPC. On this basis, a weight coefficient regulator based on
fuzzy inference is proposed, and the multi-objective optimization problem of fuzzy infer-
ence is summarized. Then a proposed solution strategy for this problem is introduced, and
amulti-objective intelligent optimization algorithm is improved to solve it.

2.1 Yaw system modeling

The yaw system can be modeled according to the three types of yaw dynamics:
rigid yaw, flexible yaw, and controlled yaw torque. Since the yaw rate of large WTs is
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very slow, the yaw rate is set to a fixed value of 0.5 deg./s. There are three yaw
situations for WTs: no deflection (0 deg./s), clockwise deflection (0.5 deg./s) and
counterclockwise deflection (�0.5 deg./s). In realistic operation, considering the
safety requirement of the yaw actuator, the yaw rate at current moment is affected by
the yaw rate at previous moment and meets following constraint:

_θnp kþ 1ð Þ ¼
0:5deg=s ∃ _θnp kð Þ∈ 0, 0:5deg=sf g
0deg=s ∃ _θnp kð Þ∈ 0, 0:5, � 0:5deg=sf g
�0:5deg=s ∃ _θnp kð Þ∈ 0, � 0:5deg=sf g

8><
>:

(1)

where _θnp kð Þ is the yaw rate in k-th control period, and _θnp kþ 1ð Þ is the yaw rate in
(k + 1)-th control period. According to Eq.(1), in a certain state at current moment,
the control action of the system at next moment is an element in a finite set. This yaw
action mode provides the basis for the finite-set NMPC.

2.2 Nonlinear model predictive control

The NMPC for the yaw system aims at maximizing energy capture through track-
ing the wind direction while avoiding over-usage of the yaw actuator. Accordingly,
the yaw error and the yaw actuator usage are used to form the overall objective
function. In the following, the proposed NMPC method will be specified in terms of
the prediction model, the objective function, and the finite-set NMPC solver.

2.2.1 Multi-step prediction model

The primary control objective of the yaw control system is to minimize the yaw
error. Thus, the yaw error θye is selected as the state variable, and its one-step
prediction model in the form of the discrete equation can be given as follows:

θye kþ 1∣kð Þ ¼ θwd kþ 1∣kð Þ � θnp kþ 1∣kð Þ (2)

where k is the k-th control period; θye kþ 1jkð Þ, θwd kþ 1jkð Þ and θnp kþ 1jkð Þ are the
next-step prediction values of yaw error,wind direction, and nacelle position, respectively.

Since the nacelle is rotated by the yaw control system at a certain yaw rate, the
predicted nacelle position θnp kþ 1jkð Þ can be obtained by:

θnp kþ 1∣kð Þ ¼ θnp kð Þ þ _θnp kþ 1ð Þ � Ts (3)

where θnp kð Þ is the nacelle position at the k-th control period, Ts is the control
period, and _θnp kþ 1ð Þ is the yaw rate at the (k + 1)-th control period.

By using Eq. (2) and (3), them-step prediction model of the yaw error θye kþmjkð Þ
can be obtained by:

θye kþm∣kð Þ ¼ θwd kþm∣kð Þ � θnp kð Þ �
Xm
i¼1

_θnp kþ ið Þ � Ts (4)

where θwd kþmjkð Þ is the variable that needs to be predicted, which can be
predicted by LiDAR or some prediction methods.
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2.2.2 Objective function

The first goal of yaw control is to improve the energy capture of the WT, and the
second goal is to reduce the yaw actuator usage time. Considering that the energy
capture of the WT has a cosine-squared relation to the yaw error, the two objectives
can be express as:

Ecap ¼
Xkþm

i¼kþ1

1
2
ρArCpV3

0cos
2 θye ið Þ
� �

(5)

tyaw ¼
Xkþm

i¼kþ1
∣ _θnp ið Þ∣>0
� � � Ts (6)

where ρ is air density, Ar is rotor area, Cp is aerodynamic power coefficient, V0 is
the effective wind speed. Considering the dimensional difference, the two control
objectives after normalization can be expressed as follows:

ξ ¼ Eideal � Ecap
� �

Eideal
¼ 1�

Xkþm

n¼kþ1
cos2 θye nð Þ

� �
 !

=m (7)

ζ ¼ tyaw
ttol
¼

Xkþm

n¼kþ1
∣ _θnp nð Þ∣>0
� �

 !
=m (8)

where ξ is the energy capture loss ratio caused by the yaw error, Ecap is the energy
capture considering yaw error, Eideal is the energy capture in an ideal state; ζ is the yaw
actuator usage ratio, tyaw is the yaw time, ttol is the running time of the WT.

By adding a weight coefficient between ξ and ζ, the objective function QF of the
NMPC can be written as:

QF ¼ 1� ωð Þ � ξþ ω � ζ

¼ 1� ωð Þ � 1�
Xkþm

n¼kþ1
cos2 θye nð Þ

� �
 !

=m

 !

þ ω �
Xkþm

n¼kþ1
∣ _θnp nð Þ∣>0
� � !

=m

 !
(9)

where ω is the weight coefficient, which is used to balance energy capture loss ratio
ξ and yaw actuator usage ratio ζ.

2.2.3 Finite-set NMPC solver

So far, the NMPC problem for the yaw system has been formulated by Eq. (1)–(9),
which is a nonlinear optimization issue under constraints. To facilitate the problem
solver, the control horizon is selected to be equal to the prediction horizon. According
to Eq. (1), under the finite prediction horizon, the control law of NMPC always
belongs to a finite set. Thus, the designed optimal problem can be effectively solved
by using an exhaustive search (ES) method.
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Figure 1 illustrates the case of the NMPC with the three-step prediction model,
from which the ES method is explained as follows:

During the initialization period (m ¼ 0), the yaw control system is inactivated,
and thus the total yaw state is 1.

• For m ¼ 1, because the current yaw rate is zero. Accordingly, there are three
potential solutions and the total yaw states are 3.

• For m ¼ 2, the situation is different. Constrained by Eq. (1), there are only two
candidate values in the case of _θnp m ¼ 1ð Þ ¼ �0:5 deg=s, while there are three
candidate values in the case of _θnp m ¼ 1ð Þ ¼ 0. Consequently, along the
sequential order, there are seven potential solutions and the total yaw states are 7.

• For m ¼ 3, the situation becomes slightly complicated but similar to the two-step
prediction model. There are seventeen solutions for the three-step prediction
model and the total yaw states are 17.

2.3 Intelligent fuzzy inference weight coefficient regulator

There is a contradiction between increasing energy capture and reducing yaw
actuator usage. In Eq. (9), ω is used to balance ξ and ζ in QF, so the choice of weight
coefficient affects the performance of NMPC to a large extent. Even if an optimal
constant ω is selected according to the Pareto theory, it cannot ensure that the best
control performance is always provided. Therefore, the FIWR is proposed to dynam-
ically adjust ω according to the predicted wind direction in each control period.
Moreover, to better play the effect of FIWR and avoid the subjectivity of manual
tuning, the intelligent optimization of FIWR is also necessary.

2.3.1 Design of FIWR

The proposed FIWR scheme is shown in Figure 2. This is a fuzzy inference system
with two inputs and one output. InputsWDav andWDstd have three and five linguistic

 
m=0

m=1

m=2

m=3

0

-0.5 0 +0.5

-0.5 0 -0.5 0 +0.5 0 +0.5

-0.5

deg/s

0 -0.5 0 +0.5-0.5 0 -0.5 0 +0.5 0 +0.5-0.5 0 +0.5 0 +0.5

Total state: 1

Total states: 3

Total states: 7

Total states: 17

Figure 1.
Sequential diagram of the ES for a three-step prediction model.
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values, respectively, and output ω has five linguistic values. The initial membership
function (IMF) adopts the equally divided triangular MF. Fuzzy inference adopts
Mamdani-type algorithm and the center of area (COA) is utilized in defuzzification
process.

2.3.1.1 Design of input/output

The yaw error is the core part of the input. Which directly determines the action of
the yaw system. Therefore, the adjustment of ω takes the yaw error as a reference.
Because the future yaw action is the control law to be solved, which is unknown, the
predicted yaw error here refers to the difference between the predicted average wind
direction of the (k + i)-th control period and the first sampled value of the nacelle
position of the current k-th control period, expressed by θye kþ i! kð Þ, which denotes
the difference between the future wind direction obtained by LiDAR and the nacelle
position at the current moment.

Different from the error and error derivative method used by ordinary two-input
fuzzy inference, the designed input of the FIWR is related to the statistical character-
istics of the predicted yaw error. The two inputs are designed as the weighted average
and standard deviation of yaw error in prediction horizon m respectively, named
WDav and WDstd. The calculation of WDav is:

WDav ¼
Xm
i¼1

mþ 1� ið Þ � θye kþ i! kð Þ=
Xm
i¼1

i (10)

where m is the prediction step, and θye kþ i! kð Þ can be calculated by setting the
yaw rate as zero in Eq. (4). Based on WDav, WDstd is calculated by:

WDstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1 θye kþ i! kð Þ �WDav
� �2

=m
q

(11)

In practice, the yaw error might be affected by some subtle factors, so moving
average filter is presented to process the wind direction data. In this study, the filter
value of each sample is the mean value of the N sample values in the sliding window.
For wind direction, N usually takes 12.

Knowledge Base

WDav

WDstd

ω 

Fuzzification

Defuzzification

VS S M L VL
COA

VS S M L VL

S M L

Rule Base

Data Base

Inference

Engine

Figure 2.
The scheme of FIWR.
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2.3.1.2 Design of MFs and fuzzy rules

The IMFs corresponding to input WDav, WDstd and output ω are illustrated in
Figure 3, respectively. The types of IMFs are all selected as sensitive and simple
triangular MFs, with the bottom edge equal and overlapping with adjacent IMFs by
50%. The universe of discourse (UOD) of WDav and WDstd is defined as [0 deg.,
15 deg] and [0 deg., 25 deg] respectively. The best value range of ω is [0, 0.1], so the
UOD of output is defined on [0, 0.1]. The linguistic values VS, S, M, L, and VL
represent very small, small, medium, large, and very large, respectively. WDav and
WDstd are mapped to 3 and 5 linguistic values, respectively, so the fuzzy rule table will
contain 15 different rules. The initial fuzzy rules of the proposed FIWR are listed in
Table 1. The derivation of the fuzzy rules is based on the expert experience, that is, a
larger yaw error and a smaller standard deviation will lead to the yaw action towards
improving energy capture.

2.3.2 Intelligent optimization of FIWR

The advantage of fuzzy inference is that it can fully incorporate expert experience.
However, when the expert experience is insufficient or wrong, the result of fuzzy
inference will no longer be reliable; and the fuzzy relationship under complex input
sometimes cannot be directly given by the expert experience. Therefore, the
optimization of FIWR is proposed.

2.3.2.1 Fuzzy optimization problem formulation

The goal of the proposed FIWR is to reduce the yaw actuator usage and the energy
capture loss, so the optimization problem can be expressed as:

(a) (b) (c)

LS M L

0 157.5
0

0.5

1
S MVS VL

0.1
0

0.5

1

0.04 0.070.01

VS S M L VL

5 2510
0

0.5

1

0 15 20

Figure 3.
Initial membership functions.

WDstd VS S M L VL

WDav S VL L M M S

M S S M L L

L VS VS S L VL

Table 1.
Initial fuzzy rules.

219

Nonlinear Intelligent Predictive Control for the Yaw System of Large-Scale Wind Turbines
DOI: http://dx.doi.org/10.5772/intechopen.105484



min F xmembership, xrule
� � ¼

ð
ξdt
ð
dt

,

ð
ζdt
ð
dt

0
BB@

1
CCA

s:t:
xmembership ∈Ωm

xrule ∈Ωr

( (12)

where xmembership and xrule is the optimization vector of MFs and fuzzy rules,
respectively; Ωm and Ωr is the feasible regions of the two optimization vectors,
respectively.

For Ωm, there are three kinds of constraints: the number constraint of MF, the type
constraint of MF, and the position constraint of MF. As for this study, in order to
simplify the optimization problem, the optimization variables corresponding to the
first two constraints are fixed, that is, the number and type of MF do not need to be
optimized. Assuming that the position of each MF is uniquely determined by a certain
vertex of the triangle, the optimization dimension of MF is further reduced. Obvi-
ously, the optimization of position is subject to constraints, that is, a small linguistic
value cannot exceed a large linguistic value and each MF must be changed within
the UOD.

For Ωr, it is affected by the number of inputs and outputs. For the fuzzy inference
using Mamdani model, the consequence of the fuzzy rule is a certain fuzzy set of
output. If there are s inputs and h outputs in fuzzy inference, the feasible region of the
fuzzy rule can be expressed as:

Ωr ¼ rule
Yh
i¼1

numi

Qs
j¼1

numj

0
@

1
A (13)

where numj is the number of linguistic values of j-th input, and numi is the number
of linguistic values of i-th output.

2.3.2.2 Fuzzy optimization problem simplification

Although Eq. (12) has been simplified, it is still difficult to solve directly. For this
complex problem, it is necessary to simplify the problem as much as possible on the
premise of ensuring a certain solution accuracy. Therefore, a solution strategy is
proposed to simplified the complex optimization problem with the purpose of quickly
and reliably solving FIWR optimization parameters.

As mentioned earlier, the MFs are subject to order constraints that the MF with
smaller linguistic value must be front of the MF with larger linguistic value. This
constraint is to avoid repeated searches and ensure the logical accuracy of fuzzy infer-
ence. However, if the output MF is no longer constrained, the current linguistic value
sequence of output can be used as a reference for the optimization of fuzzy rule.
Therefore, the fuzzy rule is associated with MF, which can greatly reduce the
complexity of optimization problem and ensure the search ability.

Specifically, the output linguistic value sequence after the sequence change can be
expressed as:

B ¼ A � S (14)
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where A is the original sequence, and S is the identity matrix after elementary
transformation, called the transformation matrix.

For example, in a certain change, the output linguistic value sequence is
transformed into [S M L VS VL], then it can be expressed as:

SMLVSVL½ � ¼ VSSMLVL½ �

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

2
6666664

3
7777775

(15)

After each iteration, A and B are known, so S can be calculated according to
Eq. (14). Then the updated fuzzy rule table can be calculated according to S:

Rnew 3� 5½ � ¼ Rold 3� 5½ � � S 5� 5½ � (16)

where Rnew 3� 5½ � and Rold 3� 5½ � are the fuzzy rule tables after and before the
update, respectively, with a size of 3� 5. In order to ensure the exploitation of the
solution process, each linguistic value in the fuzzy rule table is transformed corre-
spondingly with a certain probability. For example, the S linguistic value is changed to
VS with a small probability p. This probabilistic processing procedure can improve the
search ability that find the optimal MF under the current fuzzy rule.

2.3.2.3 Improved AGA-MOPSO solver

Although Eq. (12) is simplified by the solution strategy, its objective function is
complex, which makes it difficult to be solved by ordinary multi-objective optimiza-
tion algorithms. Therefore, an improved multi-objective particle swarm optimization
(MOPSO) algorithm based on adaptive grid algorithm MOPSO (AGA-MOPSO) is
designed. AGA-MOSPO is an efficient variant of PSO for multi-objective problem. By
combining with adaptive grid algorithm (AGA), it achieves nice balance between
exploration and exploitation [16].

For a two-dimensional multi-objective problem, AGA-MOPSO first calculates the

search ranges min f k1, max f k1
h i

and min f k2, max f k2
h i

of the objective space after k-th

iteration, then calculates the grid number of the i-th particle according to the
following equation:

xi1, x
i
2

� � ¼ Int
f i1 � min f k1

max f k1 � min f k1
� �

=M

0
@

1
Aþ 1, Int

f i2 � min f k2
max f k2 � min f k2
� �

=M

0
@

1
Aþ 1

0
@

1
A

(17)

where xi1 and xi2 is the grid numbers of the particles, M is the number of grids, f i1
and f i2 are the fitness values of the two targets respectively, and Int is rounding.

Mwill be adaptively increased with the iteration to balance the computational cost
and accuracy. The density information of each grid can be obtained according to the
grid number. According to the density information, the global optimal particles are
selected and the Archive set is clipped.
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Considering the complexity of the optimization problem, the following improve-
ments are proposed for the selection of the global optimal particle and the truncation
of Archive set in AGA-MOPSO:

(1) First is to use two methods to determine the corresponding gbest for each
particle: 1) Select gbest with the smallest grid density. This method focuses on the
exploration of the search space to improve the ductility of Pareto front (PF). 2) Select
the global optimal particle as gbest according to the technique for order preference by
similarity to an ideal solution (TOPSIS):

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1 � fmin

1

� �2
þ f 2 � fmin

2

� �2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1 � fmin

1

� �2
þ f 2 � fmin

2

� �2r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1 � fmax

1

� �2 þ f 2 � fmax
2

� �2q (18)

where d is the deviation between a certain point and the ideal point. The smaller
the d, the smaller the deviation from the ideal point. This method focuses on the
exploitation of the search space to make PF closer to the real optimal solution. In the
early stage of algorithm, the probability of choosing gbest by the first method is greater,
so as to find as many non-dominated solutions as possible; in the later stage, the
probability of choosing the second method is greater to approximate the true solution.

(2) Second is to truncate the Archive set by adaptive dynamic threshold. It is
calculated using:

Th �M ¼ C (19)

Start

Initialization and first calculation

Find gbest and pbest

Calculate fitness value and Archive set

Truncate Archive set

Calculate grid number and density by (17)

Finish?

End
Y

N

gbest
1) for pre-period
2) for late period

Process constraints
by penalty function

Update
MF

Update fuzzy rule

Determine threshold
by (19)

Figure 4.
The flowchart of the improved AGA-MOPSO.

222

Nonlinear Systems - Recent Developments and Advances



where Th is the threshold, and C is a constant. When the number of particles in the
grid exceeds Th, the grid is truncated; Th is reduced following an increased M. This
ensuring that the number of particles on the PF is relatively stable.

The main procedure of the improved AGA-MOPSO solver is shown in Figure 4.

3. Validation and discussion

The experiment is based on MATLAB/SIMULINK. First, the optimized parameters
of FIWR are obtained by the solution strategy that run on MATLAB. Then, the
proposed FIWR-NMPC controller is simulated in SIMULINK. The common experi-
mental parameters in Table 2 are set to the same value. The UOD is set to a uniform
value [0, 10] to facilitate the handling of the constraints of optimization variables, so
the universe conversion scale coefficients corresponding to WDav, WDstd, and ω are
1.5, 2.5, and 0.01, respectively.

The wind direction data used in the experiment is from the actual wind direction
data of a wind farm in operation for one day with a sampling period of 1 s, as shown in
Figure 5(a). The wind direction after sliding average filtering is shown in Figure 5(b).

3.1 Optimization results

The optimization results are analyzed and discussed first. Taking the case of pre-
diction step m = 6 as an example, the optimization results of AGA-MOPSO are shown
in Figure 6, where the horizontal axis is the yaw actuator usage ratio, and the vertical
axis is the energy capture loss ratio. After 50 iterations, the particles finally converge
to PF. The particles are evenly distributed in the search space near the PF, which
indicate that this associated idea will not lead to the coupling optimization of PF and
fuzzy rule in the search process.

The optimization results of the design variables are shown in Table A in Appendix.
Considering space reasons, only ten points on PF are randomly selected to discuss. The
simplification solution strategy associates fuzzy rule with MF to optimize, so as to
reduce optimization complexity. The MF of ω does not strictly follow the linguistic
value order. This random information is utilized to adjust the fuzzy rule, thereby
simultaneously optimizing the fuzzy rule and the MF.

The prediction step m in the proposed FIWR-NMPC is variable and has a greater
impact on the performance of controller. Therefore, the influence of m on the opti-
mization effect of FDWE is discussed. Figure 7 shows the optimization result under
m = 1–6. In Figure 11, the PF when m =1 is significantly different from the PF when
m = 2–6; as m increases, the yaw actuator usage ratio and energy capture loss ratio

AGA-MOPSO Population size Number of iterations Number of grids

100 50 [10 20]

FIWR Deduction method Defuzzification UOD

COA Mamdani-type [0 10]

NMPC Sampling period(s) Control period(s) Prediction step

1 30 [1 6]

Table 2.
Common parameters in the experiment.
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show a downward trend. This is because m =1 is very short, and the predicted wind
information is very few. But the actual wind direction greatly fluctuates due to the
existence of turbulence, and the yaw system has a large time lag. So, it is difficult for
the yaw system to track the change of the wind direction. When m increases, the
predicted wind direction information increases, and the controller can start yawing
several control periods in advance to compensate for the time lag.

Figure 5.
24-hour wind direction used in experiment: (a) actual wind direction; (b) filtering wind direction.

Figure 6.
Iterative results.

224

Nonlinear Systems - Recent Developments and Advances



Furthermore, in the enlarged part, the PF of m =5 and m =6 is very close, and the
increase of m gradually reduces the improvement effect of the FIWR-NMPC control
performance. These results show that the increase in m can provide better perfor-
mance for FIWR-NMPC, but there is a limit to the performance improvement. Among
the six FIWR-NMPCs with different m, the controller with m =6 provides the best
performance, which is very close to the ultimate performance.

3.2 Simulation results

A specific FIWR-NMPC controller and a baseline NMPC controller is designed
based on the foregoing discussion. The MFs and fuzzy rules in FIWR are shown in
Figure 8 and Table 3. The MFs and fuzzy rules are derived from the optimal solution
obtained through TOPSIS. The remaining parameters of FIWR-NMPC and baseline
NMPC are shown in Table 2, where m =6.

The simulation results are shown in Figure 9. Figure 9(a) and (b) respectively
represent the energy capture loss ratio and the yaw actuator usage ratio of the WT
within 24 hours. Compare with the baseline NMPC, the proposed FIWR-MPC

Figure 7.
Optimization results under different m.

Figure 8.
MFs used by FIWR.
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increases the energy capture by about 0.3% while reducing the yaw actuator usage
ratio by about 1%. This improvement benefits from the dynamically adjusted weight
coefficient, that is, dynamically weighing the two control objectives based on the
predicted wind information to determine the yaw action.

4. Conclusions

In this study, an advanced nonlinear model predictive control solution including
multi-step prediction models has been proposed and investigated for the yaw control
system of a horizontal-axis wind turbine. The noticeable feature of the proposed

WDstd VS S M L VL

WDav S VL L M M VL

M M M L S S

L VS VS S S VS

Table 3.
Fuzzy rules used by FIWR.

Figure 9.
Main performance of the two controllers: (a) energy capture loss ratio; (b) yaw actuator usage ratio.
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solution is to use a finite control set under constraints for the possible demanded yaw
rate, and thus the optimal control demand for the yaw system has been conveniently
solved using an exhaustive search method based on the sequential diagram. On the
other hand, the weighting coefficient in the objective function of NMPC has been
dynamically tuned by employing the fuzzy inference regulator, as the proposed solu-
tion is designed for a joint energy capture and actuator usage optimization which is
basically a two objective tradeoff that depends on the selection of the weighting
factor. To give full play to the ability of the regulator, its parameter tuning is refined
into an optimization problem and a solution strategy is designed to simplify it, and
then the optimal fuzzy rules and membership functions are solved by the improved
AGA-MOPSO algorithm. The final optimized FIWR-NMPC achieves deep optimiza-
tion of wind turbine yaw performance. The important investigation findings include:

• Both fixed-weight NMPC and FIWR-NMPC can achieve higher energy capture
with lower yaw time. NMPC can achieve 96.875% energy capture efficiency at
6.875% yaw time ratio, while FIWR-NMPC can achieve 97.052% energy capture
efficiency at 5.792% yaw time ratio. FIWR-NMPC further improves the yaw
performance by dynamically adjusting ω according to wind direction
information.

• The fuzzy optimization problem simplified by the solution strategy can be solved
reliably by AGA-MOPSO. The optimization method is promising to provide
guidance for the design of fuzzy inference problem.

• Alongwith the extended prediction horizon of theNMPC, the energy capture
performance is enhancedwhile maintaining the same yaw actuator usage, while the
enhanced performance achieved by the NMPC is limited. The simulation results
show thatwhen the predicted horizonm ¼ 6, its influence on the control effect tends
to be stable.

• Future work can be carried out from the following aspects:

• Verify algorithm performance in professional simulation software like Bladed to
further improve the possibility of practical application.

• Another research focus can be focused on adaptive tuning of NMPC control
parameters to further improve yaw performance.

• FIWR provides a promising direction for NMPC research. In addition to the yaw
system, control systems with multiple contradictory targets can use this method
for performance optimization. The application in other WT control systems
could be considered in the future.
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A. Appendix

(a) Optimization results of MFs.

WDav WDstt ω

S M L VS S M L VL VS S M L VL

7.8700 6.6634 2.9170 5.6587 2.9202 3.6664 7.4053 3.2371 3.9158 6.0601 7.5499 0.5157 8.4095

6.0657 7.8755 8.2295 8.9000 4.6107 5.4806 9.7508 3.6173 4.3579 3.0437 3.2677 0.0000 8.0467

6.1503 5.7286 8.3112 7.8680 1.0916 3.3298 5.8968 1.3362 6.4390 4.3686 3.7788 4.4940 5.8137

7.7184 9.6993 7.4724 8.5182 2.2270 5.5094 8.2835 4.7723 4.5060 5.1648 4.5060 1.4068 7.9818

5.0738 6.9428 9.3414 9.1123 2.4585 4.4399 8.0474 2.5071 5.5342 3.1609 3.2971 1.5578 6.9253

5.9604 7.1217 8.0914 8.2626 2.6369 4.7863 7.5243 2.8854 5.0664 3.3863 3.6186 1.9524 6.7971

5.6626 6.3262 7.9887 8.0156 1.9404 3.6519 6.5687 2.2624 5.3948 5.3088 3.5967 2.3074 6.4714

5.1838 7.6663 7.3318 7.9048 4.1286 6.1454 8.4669 3.0868 4.3406 2.4830 3.0608 0.7845 7.3532

6.9129 7.6576 7.2776 9.3193 2.6147 4.9671 8.1121 4.1930 3.9820 2.7621 4.6776 1.6381 7.6662

6.2102 7.5423 7.7496 8.9233 2.9329 5.1472 8.4352 3.7087 4.4784 2.7644 4.3071 1.1391 6.9978

(b) Optimization results of fuzzy rules.

WDav S M L S M L S M L S M L S M L

WDstd VS VS VS S S S M M M L L L VL VL VL

1 VL M VS L S VS S L S M S S VS S VL

2 VS L VS M M VL M L S L M S VL L VS

3 VL L VL L L VL L S L M L L VS L VL

4 VL S VS M M VL S M M M M M VL S VS

5 VL L VS S L VL S M S S S L VS S VL

6 VL S VS S L VL L S M S M S VS S VL

7 VL L VL M M VS M M M L M M VS S VL

8 VS L VS L M VL S S S L L L VL L VS

9 VL S VS S M VL S S M S L L VS L VL

10 VL L VL S S VS M L L L M L VS S VL

Table A.
Design variable optimization results.
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