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Preface

This book discusses several topics in modern physics, including spinor fields, key 
outcomes of 5D relativity, dissipative quantum system and energy balance, centrifu-
gal acceleration in relativistic astrophysics, and time-dependent photoluminescence 
and photoluminescence excitation in exciton systems and related phenomena.

Chapter 1, “Spinor Fields”, proposes a spinor representation of the generalized 
energy-momentum density 4-vector. In geometry and physics, spinors are elements 
of a complex number-based vector space that can be associated with Euclidean space. 
A spinor transforms linearly when the Euclidean space is subjected to an infinitesimal 
rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative 
when the space rotates through 360 degrees. It takes a rotation of 720 degrees for a 
spinor to go back to its original state. This property characterizes spinors. Spinors 
can be viewed as the “square roots” of vectors, although this is inaccurate and may be 
misleading. They are better viewed as “square roots” of sections of vector bundles; 
in the case of the exterior algebra bundle of the cotangent bundle, they thus become 
“square roots” of differential forms. It is also possible to associate a substantially simi-
lar notion of spinor to Minkowski space, in which case the Lorentz transformations 
of special relativity play the role of rotations. Spinors were introduced in geometry 
by Élie Cartan in 1913. In the 1920s, physicists discovered that spinors are essential to 
describe the intrinsic angular momentum or “spin” of the electron and other sub-
atomic particles.

The proposed spinor representation corresponds to the classical representation of the 
particle’s own rotation, which is described by the diagonal matrix of the moment of 
inertia. The concept of self-angular rotation of a particle is defined as a spatial char-
acteristic of the field, at each point of which there is a local vortex rotation with an 
angular velocity Ω – a spinor field. The matrix representation of the vortex rotation Ω 
(spinor) and the values of the components of such a representation are derived from 
the matrix representation of the Lorentz transformation. The traditional concept of 
spin–orbit interaction, as the interaction of the magnetic moment of a particle with 
the magnetic field of orbital motion, is presented as the interaction of a charged 
particle with a spinor field. Solutions to the problems of particle motion in an external 
spinor field in the case of a hydrogen-like atom and planetary motion, splitting of the 
electron energy levels of an atom in an external magnetic field, deflection of a photon 
by the gravitational field, and representations in metric spaces are presented. 

Chapter 2, “Key Outcomes of 5D Relativity”, discusses Kaluza–Klein theory, which is 
general relativity extended to 5D. The gravitational constant is substituted by a scalar 
field, making it variable. This scalar field is predicted to change under strong dynamic 
electromagnetic fields. Deriving the equation of motion from this 5D metric pre-
dicts a fifth force. In physics, Kaluza–Klein theory is a classic unified field theory of 
gravitation and electromagnetism built around the idea of a fifth dimension beyond 
the common 4D of space and time and considered an important precursor to string 



theory. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth compo-
nent was added to the electromagnetic vector potential, representing the Newtonian 
gravitational potential and writing the Maxwell equations in five dimensions. 

The 5D theory was developed in three steps. The original hypothesis came from 
Theodor Kaluza, who sent his results to Einstein in 1919 and published them in 1921. 
Kaluza presented a purely classical extension of general relativity to 5D, with a metric 
tensor of 15 components. Ten components are identified with the 4D space-time 
metric, four components with the electromagnetic vector potential, and one compo-
nent with an unidentified scalar field sometimes called the “radion” or the “dilaton.” 
Correspondingly, the 5D Einstein equations yield the 4D Einstein field equations, the 
Maxwell equations for the electromagnetic field, and an equation for the scalar field. 
Kaluza also introduced the “cylinder condition” hypothesis that no component of the 
5D metric depends on the fifth dimension. Without this restriction, terms are intro-
duced that involve derivatives of the fields with respect to the fifth coordinate, and 
this extra degree of freedom makes the mathematics of the fully variable 5D relativity 
enormously complex. Standard 4D physics seems to manifest this “cylinder condi-
tion” and, along with it, simpler mathematics. 

The Pioneer 10 and 11 spacecraft were not where they were supposed to be. These 
missions, launched in 1972 and 1973, have covered hundreds of millions of kilome-
ters, heading toward the edge of our solar system. But something was holding them 
back. Each year, they fell behind in their projected travel by about 5000 kilometers 
(3000 miles). In the end, after the recovery of the data and years of painstaking work, 
the researchers concluded that anisotropic thermal radiation (heat radiating from 
the spacecraft unevenly in many directions) explained the mystery of the Pioneers’ 
deceleration. No revolution in physics was needed.

Chapter 3, “Dissipative Quantum System and Energy Balance”, discusses how various 
parts of a quantum many-body system exchange energies at thermal equilibrium. 
The author assumes a quantum system is coupled to a many-body environment (at 
thermal equilibrium with a bigger environment) consisting of a large number of inde-
pendent and non-interacting quantum harmonic oscillators above a stable ground 
state. Once the coupling to a large environment is switched on, the system dissipates 
its energy continuously to the environment until it reaches equilibrium with the latter. 
The author uses the Quantum Langevin equation to show such energy exchange at 
equilibrium and concludes that different parts of a physical system can exchange 
energies even at absolute zero temperature. The author computed the instantaneous 
power supplied by the fluctuating (random) force, which provides information 
about the work done by the random force on the quantum subsystem of interest. The 
quantum formalism is used here to verify that, at equilibrium, the work done by the 
fluctuating force balances the energy lost by the quantum subsystem to the heat bath. 
The quantum subsystem chosen to couple to the heat bath is the charged oscillator 
in a magnetic field. The calculations were done using the Drude regularized spectral 
density of bath oscillators instead of using a strict ohmic spectral density that gives 
memoryless damping.

Chapter 4, “Centrifugal Acceleration in Relativistic Astrophysics”, is devoted to the 
centrifugal acceleration of astro-particles to relativistic energies that might take place 
in rotating astrophysical objects. It is strongly believed that active galactic nuclei and 
IV

pulsars have rotating magnetospheres; therefore, they potentially can drive charged 
particles to high and ultra-high energies. It is a proposed explanation for ultra-high-
energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding 
the Greisen–Zatsepin–Kuzmin limit. The author gives a brief review of the theoretical 
ideas and results related to Machabeli and Rogava gedankenexperiment (1994) and 
their astrophysical implications. In particular, three astrophysical cases, including 
acceleration of particles by rotating magnetospheres in AGNs, centrifugal accelera-
tion and gamma flares in Crab nebula, and self-trapping as a beaming mechanism for 
Fast Radio Bursts, are discussed.

Although direct centrifugal acceleration has limitations, analysis shows the effects of 
rotation still might play an important role in the processes of acceleration of charged 
particles. Generally speaking, it is believed that the centrifugal relativistic effects may 
induce plasma waves, which under certain conditions might be unstable efficiently 
pumping energy from the background flow. In the second stage, the energy of wave 
modes can be transformed into the energy of plasma particles, leading to consequent 
acceleration. In rotating magnetospheres, the centrifugal force acts differently in dif-
ferent locations, leading to the generation of Langmuir waves or plasma oscillations 
via the parametric instability. One can show that this mechanism efficiently works in 
the magnetospheres of AGN and pulsars.

Chapter 5 is titled “Time-Dependent Photoluminescence and Photoluminescence 
Excitation in Exciton Systems and Related Phenomena”. When an electron is excited 
into a higher energy state, either through absorption of a photon or another excita-
tion method (such as in electroluminescence), this creates a positively charged 
space in the lower energy level known as a “hole.” This results in the formation of an 
electron–hole pair. In some cases, these two particles exist in a bound state, form-
ing a single quasi-particle known as an exciton. Within an exciton, the electron and 
hole are bound together by Coulombic interactions, and the strength of this bond is 
quantified by its exciton binding energy. Excitons can be grouped into two categories: 
Frenkel excitons and Wannier–Mott excitons. Frenkel excitons are tightly bound 
excitons that have a radius similar in magnitude to the crystal unit cell or atomic 
radii. These are often found in insulators or organic semiconductors, as they are 
often bound to specific atoms or molecules. Alternatively, Wannier–Mott excitons 
have a larger excitonic radius. The exciton therefore encompasses many unit cells 
and thus can move more freely through the crystal structure. These are commonly 
found in inorganic semiconductors, and their excitonic bonds can be overcome at 
room temperature. Generally, organic matter such as fullerenes and insulators tend 
to exhibit Frenkel excitons with a larger binding energy. These are sometimes known 
as bound electrons. Most inorganic or hybrid semiconductors (such as perovskites) 
have Wannier–Mott excitons and free excitons that can travel through the crystal 
structure. Investigations of exciton systems represent one of the fastest-growing, 
multifaceted, and productive areas of modern solid-state physics and material 
science. Particularly noteworthy in this regard is the deployment of state-of-the-art 
spectroscopic techniques (e.g., tr-ARPES and femtosecond optical spectroscopy) to 
better elucidate the structural, dynamical, and quantum mechanical properties of 
exciton systems.

Selected topics presented in the chapters come from very different fields, including 
theoretical physics, astrophysics, and solid-state physics. The analysis of the chapters 
VXIV
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requires the reader to have very advanced knowledge of mathematics, theoretical 
physics, and so on. However, even a reader unfamiliar with the topic can learn about 
new directions or tendencies in contemporary physics.

Zbigniew Piotr Szadkowski
Faculty of Physics and Applied Informatics,

Department of Intelligent Systems,
University of Lodz,

Lodz, Poland
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Chapter 1

Spinor Fields
Vahram Mekhitarian

Abstract

A spinor representation of the generalized energy-momentum density 4-vector is
proposed, and examples of such representations for various particles and fields are
given. This representation corresponds to the classical representation of the particle’s
own rotation, which is described by the diagonal matrix of the moment of inertia. The
concept of self-angular rotation of a particle is defined as a spatial characteristic of
the field, at each point of which there is a local vortex rotation with an angular
velocity Ω – a spinor field. The matrix representation of the vortex rotation Ω (spinor)
and the values of the components of such a representation are derived from the matrix
representation of the Lorentz transformation. The traditional concept of spin-orbit
interaction, as the interaction of the magnetic moment of a particle with the magnetic
field of orbital motion, is presented as the interaction of a charged particle with a
spinor field. Solutions to the problems of particle motion in an external spinor field in
the case of a hydrogen-like atom and planetary motion, splitting of the electron energy
levels of an atom in an external magnetic field, deflection of a photon by the gravita-
tional field, and representations in metric spaces are presented.

Keywords: spinor fields, relativistic and quantum mechanics, spin concept, Lorentz
transformation, spinor fields representation

1. Introduction

When I meet God, I am going to ask Him two
questions: Why relativity? And why turbulence?
I really believe He will have an answer for the first.

Attributed to Werner Heisenberg (1901–1976).

The material presented in this chapter is based on the new approaches of relativis-
tic and quantum mechanics developed in the works [1–4]. Equations, which are
obtained by applying the invariance principle for the total four-dimensional momen-
tum of the system “field + particle,” have some significant advantages as compared
with its analog equations such as the Klein-Fock-Gordon and Dirac equations. For
instance, the problem of a hydrogen-like atom has solutions for an arbitrary value of
the interaction constant not restricted to whatever the atomic number of the nucleus
(we recall that for the Dirac equation the atomic number is restricted to Z < 137).

In contrast to the well-known equations of relativistic and quantummechanics, the
energy levels of the ground state of the particle for the considered equation prove to
be limited by the size of the spatial characteristic. This property directly reflects the
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uncertainty principle in that, irrespective of the well depth value, the particle can be
localized in a bound state only if the well width is larger than the half-wavelength of
the particle.

For the problem of the passage of a particle through a potential barrier, if the
energy of the particle does not exceed the height of the potential barrier, then the
transmission coefficient is equal to zero regardless of the height of the barrier. In this
case, there is no contradiction like Klein’s paradox.

The equations are applicable for different types of particles and interactions. The
analysis of the solutions shows full compliance with the principles of relativistic and
quantummechanics, and the solutions are devoid of any restrictions on the nature and
magnitude of the interactions.

Representation of the generalized momentum

P ¼

mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ q
c
φ,

mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ q
c
A

0
BBB@

1
CCCA

P2 ¼ ε2 � p2 ¼ I2 6¼ invariant

P ¼

mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ q
c
φþ β � Affiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p ,

mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ q
c
φβþ A∥ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ q
c
A⊥

0
BBB@

1
CCCA

P2 ¼ ε2 � p2 ¼ I2 ¼ invariant

Invariant of the generalized momentum

P2 ¼ ε– q
c φ

� �2 � p– q
cA

� �2 ¼ mcð Þ2 P2 ¼ ε2 � p2 ¼ mcþ q
c φ

� �2 � q
cA
� �2

Space-time interval

ds2 ¼ I2 dτ2 � dx2 � dy2 � dz2
� � ¼ gikdx

idxk

I2 ¼ mcð Þ2
ds2 ¼ I2 dτ2 � dx2 � dy2 � dz2

� � ¼ gikdx
idxk
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φ

� �2
� q
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Hamilton-Jacobi relativistic equation

∂S
∂τ � q

c φ
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∂τ
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c φ
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Hamilton-Jacobi-Einstein equation

gik
ffiffiffiffiffiffi�gp ∂S
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Klein-Fock-Gordon equation in metric spaces
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Dirac equation in 1/2 spin spaces

ε̂� q
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ε̂� q
c
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� �
χ� q

c
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Table 1.
Old and new [1–4] concepts and equations of relativistic and quantum mechanics.
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However, this new theory was presented without an explicit representation of the
spinor properties of fields and systems (Table 1). In this chapter, based on the
representation of local relativistic rotation by the Lorentz transformation matrix, the
representations of the four-dimensional energy-momentum vector for various spinor
fields and systems, the results of corresponding solutions of the new equations of
relativistic and quantum mechanics are given.

Since within the framework of the new, generalized relativistic theory, there is an
exact correspondence between the representations of relativistic, quantum mechan-
ics, and general relativity, in the chapter spinor properties and equations are also
presented in metric spaces.

2. The spin concept

Although in physics the concept of spin arose as a property of the proper rotation
of a particle (electron, G. E. Uhlenbeck, S. Goudsmit), as a result of quantization of
the self-angular momentum, further development by W. Pauli and P. Dirac led to the
description of spin as a property of space itself, in which we describe particles. Their
interactions corresponded to the data of the physical experiment, when they were
presented in spinor spaces.

One of the first, the Dirac equation, which describes systems in spaces with spin 1/
2, the solution in the case of the hydrogen atom gives a very good match with the real
spectrum of the hydrogen atom. But the hydrogen atom problem (Figure 1),

which consists of a proton and an electron, is solved for a generalized particle with
the reduced massm of an electronm1 and a protonm2 (the two-body problem), whose
coordinates r do not coincide with either the coordinates of the electron r1 or the
coordinates of the proton r2, and the spin of this generalized particle (the sum of the
spins of the proton and electron) can only have values of 0 or 1.

Obviously, Dirac’s spin 1/2 refers to the properties of the space in which the
hydrogen atom is described, not to an electron, a proton, or a hydrogen atom.
Similarly, regardless of the spin of the nucleus and the spin of the electron shell of
hydrogen-like atoms, the spectrum, and fine splitting is described by solving the Dirac
equation with spin 1/2. The same is true for other problems, regardless of the proper-
ties of the components of the physical system themselves—solutions to the Dirac
equations describe systems with only a spin of 1/2.

Figure 1.
The problem of the motion of two bodies can be represented as a problem of the motion of one body.
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Naturally, the spinor properties of space do not in any way describe the
physical properties of the self-angular momentum of a particle or a vortex (turbulent)
field (the flow of a liquid or gas) in the classical sense, and therefore, the statement
arose that spin has no classical analog (Figure 2). And the problem of describing
the self-angular momentum of the particles and the vortex field remained unresolved.

Note that the description of the motion of an asymmetric spinning top,
represented by the tensor of the moment of inertia, has no analog in quantum
mechanics since the modern concept of spin does not imply any representations of the
concept of the moment of inertia (Figure 2). But in the case of nonspherical nuclei
(Figure 3), the projection of the self-angular momentum must have different spin
values relative to the main axes of inertia (rotation) of the nucleus.

The main, fundamental physical variable, for which the variational principles and
equations of relativistic and quantum mechanics are formulated, is the energy-
momentum density 4-vector, so all the properties of the system, also spinor, must be
initially reflected in the representation of the energy-momentum 4-vector P ¼ ε, pð Þ.

3. Orbital and vortex motions of the continuous media

Imagine holding a bicycle wheel by the axle at a distance l and rotating around its
axis with an angular velocity of Ω (Figure 4).

Since the wheel rotates freely around its axis, there is no moment of own rotation
of the wheel itself, and it makes an only translational motion (movement without its
own rotation). Energy W is expressed by the usual formula of kinetic energy through
the mass m and velocity v of the wheel movement W ¼ mv2=2 ¼ ml2Ω2=2.

If there is any friction of the axle, then the rotational motion of the axle will
gradually be transmitted to the wheel and eventually, the wheel will rotate with the
same angular speed. Note that in this case, we considered the option of a rigidly fixed

Figure 2.
The concept of spin in quantum mechanics does not describe the physical properties of the vortex motion or proper
rotation of bodies in the classical sense.

Figure 3.
The projections of the self-angular momentum (spin) of nonspherical nuclei have different values in the directions
of the main axes of inertia.
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axis (rigidly fixed center of mass) wheel. This corresponds to a rigid spin-orbit
interaction when the angular velocities of rotation are the same.

In this case, the energy is equal to the sum of the kinetic energy of the wheel and
the energy of the wheel’s own rotation with the moment of inertia I (a sample
conclusion of the Huygens-Stern theorem)

W ¼ mv2=2þ IΩ2=2 ¼ ml2 þ I
� �

Ω2=2: (1)

In other cases, in terms of energy, there will be other ratios of translational
energy and energy of its own rotation (spin). In particular, the motion of the
Moon corresponds to the case of a rigidly fixed center of mass (the Moon is constantly
facing the Earth on the same side), and the movement of the Earth around the Sun
corresponds to the case of a freely fixed center of mass (the tilt of the axis, the period
of its own rotation is in no way related to the movement around the Sun).

Note that regardless of the distance from the center of rotation, the angular
velocity of its own rotation and energy is constant. If the system is represented as a
medium with distributed local rotation, then it can be described by the energy density
of vortex rotation with an angular velocity Ω. A good example of such a system is a
permanent magnet, where at each point of the medium there are eddy currents
(rotating electric field) and, accordingly, the magnetic field of these currents (rotating
electric field).

To illustrate the vortex motion of the distributed systems, let us consider an
example of a large, thin hard disk on which much identical small metal (heavy)
spinners of mass m and moment of inertia I are attached perpendicularly and densely
(Figure 5). The mass of the disk relative to the total mass of spinners Σm can be
neglected. If the spinners do not have axial friction, then when the disk rotates, the
spinners will rotate around the axis of the disk, but will not rotate around their own
axis—the arrows will always be turned toward the original direction (Figure 5). In
this case, the rotation energy of the system W is determined only by the sum of the
kinetic energies of the orbital rotation of the spinners W ¼ Σmvi

2=2 ¼ Σmri2Ω2=2
relative to the axis of the disk, and when the disk stops, the energy of the system
becomes zero.

In the case when the spinners have some small axial friction (like the spin-orbit
interaction of an electron in an atom or the connection of the moon’s rotation with the
Earth’s rotation due to tides), then when the disk rotates, due to friction, after some

Figure 4.
Bicycle wheel at a distance l rotating around axis with an angular velocity of Ω.
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time the spinners will begin to rotate around its own axis and with the angular speed
of rotation of the disk Ω (Figure 6). In this case, during rotation, the spinners are at
any moment oriented toward the center of the disk axis (like a Moon), which corre-
sponds to the rotation of the disk with the axes of the spinners fixed rigidly—at each
point, the spinners rotate around their own axis with the angular speed of rotation of
the disk. The energy of the system will be represented as the sum of the kinetic energy
of the orbital rotation and the energy of the own rotation of the spinners in the form of
W ¼ Σmri2Ω2=2þ ΣIΩ2=2.

If we stop the rotation of the disk in such an established stationary state, then the
energy of the orbital motion of the spinners will be reset, but the energy of its own
rotation ΣIΩ2=2 will be preserved (Figure 7).

The picture, obtained after stopping the disk, represents a distributed system with
local vortex motion. Regardless of the distance from the center of the disk, the angular
velocity of rotation and energy of the spinners are constant. If the system is
represented as a medium with distributed local rotation, then it can be described by
the energy density of vortex rotation with an angular velocity Ω.

Figure 5.
Spinners of mass m and moment of inertia I are perpendicularly and densely fixed on the thin hard disk.

Figure 6.
Spinners rotate around their axis with the angular velocity of the disk Ω.
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Let us emphasize that although the described system does not have orbital
momentum, the generalized angular momentum and the total energy of the system
are not zero and have minimal internal angular momentum and energy. It should be
noted that in the ground state, both the angular momentum and the energy of the
system have corresponding minimum values due to the internal rotation—spin.

A good example of such a system is a permanent magnet, where eddy currents
(rotating electric field) and, accordingly, the magnetic field of these currents (rotating
electric field) exist at each point of the medium (Figure 8).

Vortex and circular fields should be distinguished: in vortex fields, the rotor is
nonzero at any point in the field, and in circular fields, it is zero (Figure 9). Such is the
electric field outside the alternating current solenoid, where the magnetic field is zero.

A time-varying magnetic field in the solenoid generates, induces an electric field E,
which is described by Maxwell’s equations. Such a field is described in cylindrical
coordinates and is represented by the vector potential A ¼ A r, tð Þ in the form [5].

A r, tð Þ ¼
1
2
B tð Þ � r½ �, r≤RS;

RS
2

2 x2 þ y2ð Þ B tð Þ � r½ �, r>RS;

8>><
>>:

(2)

where RS is a radius of the solenoid.

Figure 7.
The spinners keep spinning after the disk has stopped.

Figure 8.
Eddy currents and magnetic field exist at each point of the medium.
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For the fields of the solenoid, we have

B ¼ rotA ¼ B, r≤RS,

0, r>RS:

�
E ¼ � 1

c
∂A
∂t

¼
1
2c

r� ∂B
∂t

� �
, r≤RS,

RS
2

2c x2 þ y2ð Þ r� ∂B
∂t

� �
, r>RS:

8>>><
>>>:

(3)

Inside the solenoid, the electric field is vortex – rotE 6¼ 0, and outside the solenoid
it is circular and the magnetic field is zero – rotE ¼ 0.

4. Representation of the spinor fields in Minkowski spaces

When representing continuously distributed systems, one should average the
energy of the spinners over the occupied volume and describe the continuous medium
with the energy-momentum distribution density.

If we want to describe the spatial properties of the vortex fields, then rotation
angular velocity Ω at a given point in space can serve as such a kinematic variable. The
occurrence of vortex rotation distributed in space in the framework of the relativistic
theory is described by the Lorentz transformation, calculating the energy-momentum
distribution density of local rotations.

For fields, we have [6]

φ0, A0ð Þ ¼ φþ β �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
φβþ qA∥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p þ qA⊥

 !
¼

φ, Að Þ þ γ � 1ð Þφþ γβ �A, γφβþ γ � 1ð Þ A � βð Þβ=β2� �
:

(4)

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
is a Lorentz factor. This transformation can be presented in

matrices form

φ0, A0ð Þ ¼ φ, Að Þ þ T̂ φ, Að Þ: (5)

where a Lorentz transformation has a form [1].

Figure 9.
Vortex and circular fields of the solenoid.
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T̂ ¼ γ

0 β1 β2 β3
β1 0 0 0

β2 0 0 0

β3 0 0 0

���������

���������
þ γ � 1ð Þ

1 0 0 0

0
β1β1
β2

β1β2
β2

β1β3
β2

0
β2β1
β2

β2β2
β2

β2β3
β2

0
β3β1
β2

β3β2
β2

β3β3
β2

���������������

���������������

: (6)

The matrices of the invariant representation of a four-dimensional vector, which
preserves the vector module in four-dimensional space, form the Poincare group
(inhomogeneous Lorentz group). In addition to displacements and rotations, the group
contains space-time reflection representations P̂, T̂ and inversionP̂T̂ ¼ Î.

In the case of a vortex field, each point can be attributed to a local rotation with an
angular velocity Ω and velocity v ¼ Ω� r½ � at a distance r from the chosen point of
rotation. First, we consider rotation only around one axis of the coordinate system ẑ.
Then, when choosing a cylindrical coordinate system, we have

γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=cð Þ2

q
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω� r½ �2=c2

q
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r=rhð Þ2

q
, (7)

T̂ ¼ γβ

0 cos ϕð Þ sin ϕð Þ 0

cos ϕð Þ 0 0 0

sin ϕð Þ 0 0 0

0 0 0 0

�����������

�����������

þ

γ � 1ð Þ

1 0 0 0

0 cos 2 ϕð Þ sin ϕð Þ cos ϕð Þ 0

0 sin ϕð Þ cos ϕð Þ sin 2 ϕð Þ 0

0 0 0 0

�����������

�����������

,

(8)

were rh ¼ c=Ω the event horizon radius. At each point in space, we must average
the value of the energy-momentum and assign it to the selected point. From (7), (8) it
follows that when averaging in volume πrh2d(dis the thickness of the disk), only the
average values of the diagonal elements of the matrix are nonzero:

T̂ ¼ 1
V

ð

V

T̂dv ¼

1
πrh2d

ðd

0

dz �
ðrh

0

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2=rh2
p � 1

 !
dr �

ð2π

0

1 0 0

0 cos 2 ϕð Þ sin ϕð Þ cos ϕð Þ
sin ϕð Þ cos ϕð Þ 0 sin 2 ϕð Þ

��������

��������
dϕ ¼

1 0 0

0 1=2 0

0 0 1=2

��������

��������
,

(9)
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where

2π
πrh2

ðrh
0
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=rh2

p � 1

 !
dr ¼

ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � 1
� �

2xdx ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� x2

���
1

0
¼ 1:

(10)

Averaging over the entire volume to the event horizon rh, we obtain a result
independent of the speed of angular rotation Ω This seemingly unexpected result is
due to the inverse dependence of the event horizon rh ¼ c=Ω on the angular velocity of
rotation. The greater the speed of angular rotation, the greater the relativistic com-
pression and, accordingly, the increase in energy density due to a decrease in the
volume of integration, so the integral does not depend on the angular velocity Ω This
means that own rotation, spin is an invariant for any reference frames, in the
approaches of general relativity.

Based on the principle of superposition and additivity, such elementary excitations
of the generating field in a unit of volume can be any integer, so that in the general
case n

Ω̂ ¼
1=2 0 0

0 1=2 0

0 0 0

������

������
ẑ

! � 1
2
� n ¼ sz !

sz 0 0

0 sz 0

0 0 0

�������

�������
ẑ

, (11)

where is a Ω̂ representation matrix of the rotation (spinor), and Ωx ¼ Ωy ¼ sz –
the value of components for the x̂, ŷ axis’s when rotating around an axis ẑ. As
we see, the rotation along the selected axis generates two equal perpendicular
spatial components of the generalized momentum with half-integer coefficients
(Figure 10).

Accordingly, taking into account the independent rotations in all axes, for the
matrix of the spinor representation we have

Figure 10.
Rotation along the selected axis generates two equal perpendicular spatial components with half-integer
coefficients.
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Ω̂ ¼
0 0 0

0 sx 0

0 0 sx

��������

��������
x̂

þ
sy 0 0

0 0 0

0 0 sy

��������

��������
ŷ

þ
sz 0 0

0 sz 0

0 0 0

��������

��������
ẑ

¼

sy þ sz 0 0

0 sx þ sz 0

0 0 sx þ sy

��������

��������
:

(12)

Thus, the spinor, the averaged Lorentz transformation for local rotations, is
represented by a diagonal matrix or column as

Ω̂ ¼ sy þ sz, sx þ sz, sx þ sy
� �

, sx, sy, sz ¼ 0, � 1
2
, � 1, � 3

2
, … , � n

2
, …

Ω̂2 ¼ 2 sx2 þ sy2 þ sz2 þ sxsy þ sxsz þ sysz
� �

:

(13)

The index symbols of the components of the matrix are specifically selected to
indicate from rotation around which axes these components originated:

Ωx ¼ sy þ sz, Ωy ¼ sx þ sz, Ωz ¼ sx þ sy: (14)

Negative signs of the projections of the spinor matrix Ω̂ appeared during the
transformation of reflections and inversions (antiparticles).

T̂ ¼

�m 0 0 0

0 sy þ sz 0 0

0 0 sx þ sz 0

0 0 0 sx þ sy

�����������

�����������

,

T ¼ �m, sy þ sz, sx þ sz, sx þ sy
� �

:

(15)

where m is integer.
If a scalar field φ is given in space, at each point of which the vortices are excited,

then the vector potential of such a field can be represented as A ¼ φΩ, and the
generalized energy-momentum P as (Table 2)

P ¼ φ, Að Þ ¼ φ, φΩð Þ, P2 ¼ φ2 1�Ω2� �
,

1�Ω2 ¼ 1� 2 sx2 þ sy2 þ sz2 þ sxsy þ sxsz þ sysz
� �

:
(16)

If for qualitative evaluation, we assume that the energy of such elementary excita-
tion corresponds to the quantum of the rotator energy E ¼ mc2 ¼ ℏΩ, then we get

ƛ ¼ ℏ=mc ¼ c=Ω ¼ rh, (17)

that is, the event horizon radius (“particle size”) is the wavelength of the particle
rh ¼ ƛ.

Since the spin of the field has been determined locally, its direction from point to
point can change, provided that the internal structure is preserved. The spinor field, as
in the general case of any vector potential A ¼ φΩ, must satisfy the basic equations for
the fields [2].
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Spin is invariant from the point of view of general relativity since it does not
depend on the state of motion—the speed and rotation of the reference frame, in
which we describe the spinor field.

The spinor properties of fields are unchanged and do not depend on the method
and sources of their creation. For each case of motion of a particle in a given field, the
spinor properties of the field are determined by the physical nature of the field itself.
Spin is a fundamental, unchanging characteristic of the field. Whichever way it is
created, it will be with the same back.

Spin in the expression of potential energy describes the system of particle + field,
the spinor properties of which are described by the above expressions, regardless of
which components are included in the system. The new field of interaction is also
represented by one of the above configurations. Whether the spinor field of interac-
tion is a simple sum of spinor fields or another configuration can be found by com-
paring with experimental data. For each system, a spin configuration should be
selected so that the results of the calculation coincide with the experimental data or
with the already known characteristics of the system.

The spin of the nucleus and the presence of other electrons with their spins do not
determine the spin of the electromagnetic field created by it in atoms. Fine splitting,
which directly depends on the spin of the interaction field, does not depend on the spin
of the nuclei and electron shell of the atoms. For example, the value of fine splitting of
isotope atoms Potassium 39K, 41K, and 40K with spines 3/2, 3/2, and 4; Rubidium 87Rb
and 85Rb with spines 3/2 и 5/2; Hydrogen 1H, 2H, 3H with spines 1/2, 1, 1/2 [7].

Also in the solar system, the spin of the gravitational field does not depend on the
positions of celestial bodies and their rotation.

Saying that a particle has spin, within the framework of the foregoing, means that
the particle has a spinor field, and this property manifests itself at any point in space
during any interactions. Spin is a spatial characteristic and is not attributed to any
point particle. Therefore, the spin of elementary particles is not determined by their
internal structure, but is determined by the spin of the interaction fields created by
these particles. The phrase “spin-orbit interaction” in this case means the interaction
of the orbital moment with the spinor field.

sy þ sz, sx þ sz, sx þ sy
� �

Ω2 1�Ω2 sy þ sz, sx þ sz, sx þ sy
� �

Ω2 1�Ω2

(1/2, 1/2, 0) 1/2 1/2 (2, 1, 0) 5 –4

(1, 0, 0) 1 0 (3/2, 3/2, 1) 11/2 �9/2

(1, 1/2, 1/2) 3/2 �1/2 (2, 1, 1) 6 �5

(1, 1, 0) 2 �1 (5/2, 1/2, 0) 13/2 �11/2

(3/2, 1/2, 0) 5/2 �3/2 (2, 3/2, 1/2) 13/2 �11/2

(1, 1, 1) 3 �2 (5/2, 1, 1/2) 15/2 �13/2

(3/2, 1, 1/2) 7/2 �5/2 (2, 2, 0) 8 �7

(2, 0, 0) 4 �3 (5/2, 3/2, 0) 17/2 �15/2

(3/2, 3/2, 0) 9/2 �7/2 (2, 3/2, 3/2) 17/2 �15/2

(2, 1/2, 1/2) 9/2 �7/2 (3, 0, 0) 9 �8

(2, 1, 0) 5 �4 (2, 2, 1) 9 �8

Table 2.
Possible structures and invariants for spinor fields (component signs are arbitrary).
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5. Examples of spinor fields representation

5.1 Electromagnetic wave: photon

The spin of an electromagnetic wave with potential φ is represented as a rotating
electric field with a vector potential A ¼ Ωφ. Given that the magnetic field B of the
wave is defined as the rotor of the vector potential

B ¼ rot φΩð Þ ¼ � Ω� ∂φ

∂r

� �
¼ Ω� E½ �, (18)

and must satisfy the condition div φΩð Þ ¼ Ω � E ¼ 0, get B2 ¼ Ω2E2. So how for an
electromagnetic wave B2 ¼ E2, Ω2 ¼ 1 and the invariant is zero, then the only struc-
ture corresponding to these conditions is Ω ¼ 1, 0, 0ð Þ (Table 2) with a single
projection on the axis of propagation (spin) 1. Thus, the four-dimensional vector of
the electromagnetic wave is represented as

P ¼ φ, φΩð Þ ¼ φ, φ, 0, 0ð Þ ¼ φ, φnð Þ, P2 ¼ 0, (19)

where n is the unit vector in the direction of wave propagation.
For a monochromatic wave propagating in the direction of the axis ẑ with a

potential φ x, yð Þ and wavelength λ, we have

P ¼ ε, pð Þ ¼ φ x, yð Þ exp τ � z
λ

i
� �

1, ẑð Þ, P2 ¼ 0,
∂ε

∂τ
þ divp ¼ 0: (20)

For transverse waves of other fields, you can select one-component structures with
other integers in the form Ω ¼ m, 0, 0ð Þ, m ¼ 1, 2, 3, … (Table 2).

5.2 Stationary magnetic field

P ¼ 0, φΩð Þ; B ¼ rot φΩð Þ ¼ Ω� ∂φ

∂r

� �
¼

Ωy
∂φ

∂z
� Ωz

∂φ

∂y
, � Ωx

∂φ

∂z
þΩz

∂φ

∂x
, Ωx

∂φ

∂y
� Ωy

∂φ

∂x

� �
¼ 0, 0, Bð Þ:

(21)

For solenoidal magnetic fields having cylindrical symmetry, we have Ωz ¼ 0 and
Ωx ¼ Ωy ¼ 1=2. The solution for such a system is the vector potential in the form of a
structure. Ω ¼ 1=2, 1=2, 0ð Þ, Ω2 ¼ 1=2 (Table 2) with one of the linear functions as
an electric field potential

φΩ ¼ φ 1=2, 1=2, 0ð Þ; φ ¼ φ0 x� yð Þ; B ¼ Ω� E½ � ¼ 0, 0, Eð Þ: (22)

5.3 Spinor field with potential φ ¼ α=r

For the potential in the form of φ ¼ α=r we have
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P ¼ α

r
,

α

r
Ω

� �
¼ α

r
1, Ωð Þ, P2 ¼ α2

r2
1�Ω2� �

(23)

The spinor field of this potential can have different structures and invariant
values 1�Ω2. For Coulomb interaction Ω ¼ 1, 1, 0ð Þ, 1�Ω2 ¼ �1, and
gravity – Ω ¼ 2, 2, 0ð Þ, 1�Ω2 ¼ �7 (Table 2). Such structures and values of the
spinor representation provide an accurate description of the spectrum of hydrogen-
like atoms, the value of fine splitting, the secular shift of Mercury’s perihelion, and the
angle of deflection of the light beam by the gravitational field of the Sun.

6. Equations of relativistic and quantum mechanics with spinor fields

Adding spinor fields in the equations of relativistic and quantum mechanics for a
particle in an external field (Table 1) is not associated with any difficulties, since the
spin properties of the field are clearly represented as the vector potential of interaction
A ¼ φΩ. Equations can be represented as

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ mc2 þ qφð Þ2 � qφð Þ2Ω2

c2
: (24)

∂
2ψ

∂τ2
� ∂

2ψ

∂r2
¼ � mc2 þ qφð Þ2 � qφð Þ2Ω2

ℏ2c2
ψ : (25)

Accordingly, the Hamiltonian of the system can be represented as an expression (4)

H ¼ E2 �m2c4

2mc2
¼ p2

2m
þ qφþ q2φ2

2mc2
1�Ω2� �

: (26)

By presentingmomentumasp ¼ p0 þ qφΩ=c, theHamiltonian can be represented is as

H ¼ 1
2m

p02 þ qφ
mc

p0 �Ωþ qφþ q2φ2

2mc2
, (27)

and we see that the angular momentum and energy of the particle in the ground
state have additional angular momentum and spin state energy. And the expression
qφp0 �Ω=mcis “spin-orbit interaction”—the interaction of a particle with a spinor field.

If other external fields are present, such as a field with a vector potential A, then
the equations are represented as

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ mc2 þ qφð Þ2 � q2 Aþ φΩð Þ2
c2

(28)

∂
2Ψ
∂τ2

� ∂
2Ψ
∂r2

¼ � mc2 þ qφð Þ2 � q2 AþΩφð Þ2
ℏ2c2

Ψ: (29)

The Hamiltonian of the system can be represented as

H ¼ E2 �m2c4

2mc2
¼ p2

2m
� qφ� q2φ2

2mc2
1�Ω2� �� qφ

mc2
Ω �A� q2

2mc2
A2 (30)
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By presenting momentum as p ¼ p0 þ q φΩþ qAð Þ=c, the Hamiltonian can be
represented is as

H ¼ 1
2m

p02 þ q
mc

p0 � φΩþAð Þ þ qφþ q2φ2

2mc2
: (31)

7. Some results of solutions of equations of relativistic and quantum
mechanics with spinor fields

7.1 Secular shift of Mercury’s perihelion

Let us consider the motion of a particle with the massm in the field of a point body
of mass m0. Then the problem reduces to an investigation of the motion of the particle
in the centrally symmetric gravitational field with the potential �Gm0=r, where G is
the gravitational constant, rg ¼ Gm0=c2.

Choosing the polar coordinates r,φð Þ in the plane of motion, we obtain the
Hamilton-Jacobi (24) equation in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

¼ mcð Þ2 1� 2rg
r

� Ω2 � 1
� � rg2

r2

� �
: (32)

Let us represent the action S in the form

S ¼ �ετ þMφþmcf rð Þ, (33)

where ε and M are the constant energy and angular momentum, respectively. As a
result, we obtain

∂f rð Þ
∂r

� �2

¼ ε

mc

� �2
� 1� 2rg

r
� M=mcð Þ2 � Ω2 � 1

� �
rg2

r2
(34)

and

f rð Þ ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε

mc

� �2
� 1þ 2rg

r
� M=mcð Þ2 � Ω2 � 1

� �
rg2

r2

s
dr: (35)

We find trajectories from the condition ∂S=∂M ¼ 0, with the use of which we obtain,

φ ¼ �
ð

M=mcrgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
mc

� �2 � 1þ 2 rg
r � M=mcrg

� �2 � Ω2 � 1
� �2� �

rg2

r2

r d
rg
r
, (36)

which results in the solution

r ¼ rg
M

mcrg

� �2

þ 1

 !
�

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε
mc

� �2 1þ M
mcrg

� �2� �
� M

mcrg

� �2s
cos φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω2 � 1

� � mcrg
M

� �2q� � :
(37)
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The secular shift for the gravitational field (23) with Ω ¼ 2, 2, 0ð Þ, 1�Ω2 ¼ �7
is calculated by the formula

Δφ ¼ 2π � 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω2 � 1

� �
Gmm0

cM

� �2q ≈� 7π G
mm0

cM

� �2

: (38)

For the Schwarzschild metric, the formula is: �6π Gmm0=cJð Þ2 [6].

7.2 Photon deflection by the gravitational field of the sun

For a photon whit energy E and equivalent massm ¼ E=c2, from (20) the Eq. (24)
represented in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ mcð Þ2 1� rg
r

� �2
� Ωp þ

rg
r
Ωg

� �2� �
¼

mcð Þ2 � 2rg
r

þΩp �Ωg
2rg
r

þ 1�Ωg
2� � rg2

r2

� �
:

(39)

Choosing the polar coordinates r,φð Þ in the plane of motion, we obtain the
Hamilton-Jacobi (24) equation in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

¼ mcð Þ2 � 2rg
r

� Ωg
2 � 1

� � rg2
r2

� �
(40)

In this case, we used the choice of special directions of the spins of the particle and
the field when Ωp �Ωg ¼ 0, 0, 1ð Þ � 2, 2, 0ð Þ ¼ 0(spin-spin interactions are absent).

Let us represent the action S in the form

S ¼ �mcτ þMφþ f rð Þ ¼ �mcτ þmcRφþ f rð Þ, M ¼ mcR, (41)

where M and R are the constant angular momentum and impact parameter,
respectively. As a result, we obtain

f rð Þ ¼ mc
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2rg
r

� R2 � Ωg
2 � 1

� �
rg2

r2

s
dr: (42)

We find trajectories from the condition ∂S=∂M ¼ 0, with the use of which we obtain,

φ ¼ �
ð

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rg

r � R2� Ωg
2�1ð Þrg2
r2

q d
1
r
: (43)

The photon deflection is calculated by the formula

Δφ ¼ 2 arcsin
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ωg
2 � 1

� � rg
R

� �2q ≈� 2
ffiffiffi
7

p rg
R
¼ �2

ffiffiffi
7

p
Gm0=c2R ¼ �5:3Gm0=c2R:

(44)
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For the Schwarzschild metric, the formula is: Δφ ¼ �4Gm0=c2R [6].

7.3 The hydrogen atom problem

For the problem of a hydrogen-like atom without external fields, we have [4].

1
r2

∂

∂r
r2
∂ψ

∂r

� �
þ 1
r2 sin θ

∂

∂θ
sin θ

∂ψ

∂θ

� �
þ

1
r2 sin 2θ

∂
2ψ

∂φ2 þ
1

ℏ2c2
E2 � mc2 � Ze2

r

� �2

þ Z2e4

r2
Ω2

 !
ψ ¼ 0

(45)

For the radial part of the solution get

d2R
dρ2

þ 2
ρ

dR
dρ

� l lþ 1ð Þ þ 1�Ω2� �
Z2α2

ρ2
R ¼ � N

ρ
� 1
4

� �
R, (46)

Energy levels of the hydrogen atom are (Figure 11a)

Еn,l ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

nr þ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 � Z2α2

q� �2

vuuuut
: (47)

The fine splitting value

Е2,1 � Е1,0 ≃ � Z2α2

12
: (48)

The ground states are

Еn,j ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 � Z2α2

q� �2

vuuuut
, lþ 1=2>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zα� 1=2

pq
:

(49)

Ground state with Z > 68 has a l more than 0, and the greater the atomic number,
the discretely it increases in increments of 1.

Figure 11.
Fine splitting structures.
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From the Dirac equation with Ω ¼ 1, 1, 0ð Þ, Ω2 ¼ 2 we get [4].

Еn,j ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

nr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1=2ð Þ2 � Z2α2

q� �2

vuuuut
: (50)

The fine splitting value

Е2,3=2 � Е1,1=2 ≃ � Z2α2

32
: (51)

The ground states are (Figure 11a)

Еn,j ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

jþ 1=2ð Þ2 � Z2α2

s
, jþ 1=2>

ffiffiffi
2

p
Zα: (52)

Ground state with Z > 1=
ffiffiffi
2

p
α≃ 97 has a jmore than 1=2, and the greater the atomic

number, the discretely it increases in increments of 1.
As we can see, the magnitude of the spin-orbit interaction is obtained with a reverse

sign and is twice as large as the relativistic splitting of the electron energy levels, which
leads to a shift and a change in the order of the splitting levels (Figure 11a).

Dirac’s solution prompt that if 1/2 is added to the orbital momentum l )
lþ 1=2 ¼ j and 1 to nr ) nr � 1=2 in solutions without spatial spin (47), then the
results of the solutions will be the same. That is, it should be taken into account that in
the expression of the orbital moment and energy there are initially present (26–27),
independent of the state and fields of the system, a spatial spin with the corresponding
value j ¼ lþ 1=2and energy n ¼ nr þ lþ 1 ) nþ jþ 1=2.

7.4 Hydrogen atom in a magnetic field

For the hydrogen atom problem in a constant homogeneous magnetic field B we
have (30)

q2

2m2c4
Q
r
Ω� 1

2
B� r½ �

� �2

¼ α2 2Z2 ƛ
2

r2
þ 1
2

r
rh

� �2

sin 2θ þ Z
ƛ
rh

sin θ

 !
, (53)

where

ƛ ¼ ℏ
mc

, α ¼ e2

ℏc
, rh ¼ c

ω
; ω ¼ eB

2mc
: (54)

As we can see, the splitting of levels in a constant magnetic field due to the linear
dependence on the field Zα2 ƛ=rhð Þ sin θdoes not depend on the state of the atom.

7.5 About hyperfine splitting

On hyperfine splitting: why when an electron interacts with nuclear spin, there are
only two levels, and a complex structure manifests itself only in the external magnetic
field (Figure 12).
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As has been shown in solutions to the hydrogen-like atom problem for spinor
fields, the magnitude of the spin-orbit interaction L � Sis obtained with a reverse sign
and is twice as large as the relativistic splitting of the electron energy levels, which
leads to a shift and a change in the order of the splitting levels (Figure 11a). In the
ground state, when the nuclear spin I interacts with the spinor field (Figure 11b), the
spin-spin interaction of the nucleus I � S, there will be two times less orbital interaction
and relativistic splitting (convergence points of black lines in Figure 12) will be
accurately compensated by the magnitude of the spin-spin interaction of the nucleus
(red lines).

8. Representation of the relativistic and quantum mechanics equations in
metric spaces

The representation of the equations of relativistic and quantum mechanics in
metric spaces means that coordinate transformations have been proposed that bring
the equations from Table 1 to equations with a constant, unit invariant on the right
part

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ I2 ) gik
ffiffiffiffiffiffi�g

p ∂S
∂xi

∂S
∂xk

¼ 1,

∂
2ψ

∂τ2
� ∂

2ψ

∂r2
¼ � I2

ℏ2 ψ ) 1ffiffiffiffiffiffi�gp ∂

∂xi
gik

ffiffiffiffiffiffi�g
p ∂ψ

∂xk

� �
¼ �ψ :

(55)

For clarity, consider the problems with spherical symmetry. For the Hamilton-
Jacobi equation in spherical coordinates we have

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

� 1
r2 sin 2θ

∂S
∂θ

� �2

¼ I rð Þ2: (56)

Figure 12.
Theoretical magnetic field dependence of Fg = 2, 3 ground hyperfine levels of 85Rb. Red lines: Calculations by the
coupled basis theory; black lines: Calculations as given by Eq. (12) (HPB regime). Ground levels for the transitions
4–9 are indicated as (4)g � (9)g [8].
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and after the coordinates are transformed τ, r ! τ0, r0, they must be represented
in metric spaces as

∂S
∂τ0

� �2

� g2 r0ð Þ ∂S
∂r0

� �2

� 1
r02

∂S
∂φ

� �2

� 1
r02 sin 2θ

∂S
∂θ

� �2

¼ 1: (57)

To do this, divide the Eq. (56) by I rð Þ2

1
I2

∂S
∂τ

� �2

� 1
I2

∂S
∂r

� �2

� 1
I2r2

∂S
∂φ

� �2

� 1
I2r2 sin 2θ

∂S
∂θ

� �2

¼ 1: (58)

and we immediately find an implicit transformation forr

I rð Þr ¼ r0: (59)

and

r2

r02
∂S
∂τ

� �2

� r2

r02
∂S
∂r

� �2

� 1
r02

∂S
∂φ

� �2

� 1
r02 sin 2θ

∂S
∂θ

� �2

¼ 1: (60)

It is convenient to choose a new coordinate system associated with a particle,
where the velocity is zero dr0=dτ0 � 0. Then,

dτ ¼ ∂τ

∂τ0
dτ0 þ ∂τ

∂r0
dr0 ¼ ∂τ

∂τ0
þ ∂τ

∂r0
dr0

dτ0

� �
dτ0 ¼ ∂τ

∂τ0
dτ0:

∂S
∂τ

¼ ∂S
∂τ0

dτ0

dτ
þ ∂S
∂r0

dr0

dτ0
¼ ∂S

∂τ0
∂τ0

∂τ
: (61)

and we get

r2

r02 ∂τ
∂τ0
� �2

∂S
∂τ0

� �2

� r2

r02 ∂r
∂r0
� �2

∂S
∂r0

� �2

� 1
r02

∂S
∂φ

� �2

� 1
r02 sin 2 θð Þ

∂S
∂θ

� �2

¼ 1: (62)

g r0ð Þ ¼ r
r0
=
∂r
∂r0

(63)

Note that if the I rð Þ ¼ const, then g r0ð Þ ¼ 1 – only the linear scale changes.

8.1 Field with scalar potential φ rð Þ ¼ �rg=r

For an invariant in the form I rð Þ ¼ 1� rg=r (Coulomb, gravitational field) we find

r0 ¼ rI rð Þ ¼ r� rg, r ¼ r0 þ rg,
∂r
∂r0

¼ 1, (64)

τ ¼ r
r0
τ0 ¼ 1þ rg

r0
� �

τ0,
∂τ

∂τ0
¼ r

r0
¼ 1þ rg

r0
, (65)

g r0ð Þ ¼ r
r0
=
∂r
∂r0

¼ 1þ rg
r0
: (66)
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From (43), (67), we get

∂S
∂τ0

� �2

� 1þ rg
r0

� �2 ∂S
∂r0

� �2

� 1
r02

∂S
∂φ

� �2

� 1
r02 sin 2 θð Þ

∂S
∂θ

� �2

¼ 1: (67)

If the field is spinor with invariant I2 ¼ 1� rg=r
� �2 � Ωrg=r

� �2, then from getting

r ¼ rg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þΩ2rg2

q
, τ ¼ r

r0
τ0 ¼ rg

r0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ2rg2=r02

q� �
τ0: (68)

and

g2 r0ð Þ ¼ 1þΩ2 rg
2

r02

� �
1þ re

r0
þ Ω2rg2=r0

2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ2rg2=r02

q

0
B@

1
CA

2

: (69)

8.2 Stationary magnetic field

For a magnetic field with invariant I2 ¼ 1� r2=rB2, where rB the magnetic event
horizon (54), is in cylindrical coordinates we have

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

� ∂S
∂z

� �2

¼ I2 ¼ 1� r
rB

� �2

, (70)

and we get (τ and z are transforming similarly)

∂S
∂τ0

� �2

� 2
1� 2r0=rBð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r0=rBð Þ2

q ∂S
∂r0

� �2

� 1
r02

∂S
∂φ

� �2

� ∂S
∂z0

� �2

¼ 1: (71)

g2 r0ð Þ ¼ 2
1� 2r0=rBð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r0=rBð Þ2

q (72)

8.3 Representations of the space-time interval and the wave equation

The results of the metric representations are easily portable to represent the space-
time interval (it should be noted that for the space-time interval, the metric tensor is
inverse). For example, for a gravitational field with a potential rg=r0, we have (68)

ds2 ¼ I2 dτ2 � dr2 � r2dφ2 � r2 sin 2 θð Þdθ2� � ¼

¼ dτ02 � dr02

g2 r0ð Þ � r02dφ2 � r02 sin 2 θð Þdθ2,

ds2 ¼ ds02 ¼ dτ02 � 1

1þ rg=r0
� �2 dr02 � r02dφ2 � r02 sin 2 θð Þdθ2:

(73)

and the wave equation in cylindrical and spherical coordinates (τ and z are
transforming similarly)
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∂
2ψ

∂τ02
� 1þ rg

ρ0

� �2
∂
2ψ

∂ρ02
� 1
ρ0

1þ rg
ρ0

� �
∂ψ

∂ρ0
� 1
ρ02

∂
2ψ

∂φ2 �
∂
2ψ

∂z02
¼ ψ , (74)

∂
2ψ

∂τ02
� 1þ rg

r0
� �2 ∂2ψ

∂r02
� 2
r0

1þ rg
r0

� �
∂ψ

∂r0
� 1
r02

∂
2ψ

∂φ2 �
1

r02 sin θð Þ
∂

∂θ
sin θð Þ ∂Ψ

∂θ

� �
¼ ψ

(75)

For more complex cases, we will only point out that first, you need to convert the
coordinates to bring the expression of the invariant to a diagonal (spherically or
cylindrically symmetric) form, and then transform the resulting equation and
invariant in the above way.

8.4 Inverse problem

If an equation is given in metric space that has spherical symmetry, it is easy
to perform inverse transformations and find the corresponding invariant (field)
from (59), (64)

g r0ð Þ ¼ r
r0

dr0

dr
;

dr
r
¼ dr0

r0g r0ð Þ ; r ¼ e

ð
dr0

r0g r0ð Þ, I rð Þ ¼ r0

r
: (76)

Within the framework of developed approaches, there is an exact correspondence
of representations of equations in metric spaces. This is important because it is
possible to unambiguously find out which fields correspond to given metric spaces
and vice versa.

Naturally, all solutions of equations in metric spaces correspond to solutions of the
original equations of relativistic and quantum mechanics having corresponding tra-
jectories of motion and describing the quantum properties of systems.

8.5 Equations in the gravitation field

From the point of view of general relativity, the gravitational field is universal, and
all physical processes are described already in metric space. In general, the equations
can be represented as follows:

gik
ffiffiffiffiffiffi�g

p ∂S
∂xi

∂S
∂xk

¼ I2, (77)

1ffiffiffiffiffiffi�gp ∂

∂xi
gik

ffiffiffiffiffiffi�g
p ∂ψ

∂xk

� �
¼ � I2

ℏ2 ψ : (78)

where gik is the metric tensor determined by a given gravitational field.
After the appropriate conversion x ! x0

∂S
∂τ0

� �2

� ∂S
∂r0

� �2

¼ Ig2 x0ð ÞI2 x x0ð Þð Þ

∂
2ψ

∂τ02
� ∂

2ψ

∂r02
¼ � Ig2 x0ð ÞI2 x x0ð Þð Þ

ℏ2 ψ :

: (79)
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For example, if a hydrogen-like atom is in a constant homogeneous gravitational
spinor field φ0,φ0Ωð Þ, in the field in which the particle has an invariant Ig ¼
1� 2φ0 � φ0

2 Ω2 � 1
� �� �

is considered, we get

∂S
∂τ0

� �2

� ∂S
∂r0

� �2

� 1
r02

∂S
∂φ

� �2

� 1
r02 sin 2 θð Þ

∂S
∂θ

� �2

¼ Ig2Ie2 ¼

1� 2φ0 � φ0
2 Ωg

2 � 1
� �� �

1� 2re
r r0ð Þ � Ωg

2 � 1
� � re2

r2 r0ð Þ
� �

:

(80)

A constant homogeneous gravitational field changes the scale of the coordinates by
a constant coefficient.

9. Conclusion

Spinor representation of the generalized energy-momentum density 4-vector is
proposed, based on the representation of local relativistic rotation by the Lorentz
transformation matrix. This representation corresponds to the classical representation
of the particle’s own rotation, which is described by the diagonal matrix of the
moment of inertia.

The spin of the field is invariant from the point of view of general relativity, it does
not depend on the state of the system and the sources of its creation.

Spin is a fundamental, unchanging characteristic of the field. Whichever way it is
created, it will be with the same back. The spin of particles is not determined by their
internal structure, but is determined by the spin of the interaction fields created by
these particles.

Spin is a spatial characteristic and is not attributed to any point particle. The phrase
“spin-orbit interaction” in this case means the interaction of the orbital moment with
the spinor field.

Solutions to the problems of the motion of particles in various external spinor
fields are presented. The results of solving these problems show that the developed
approach correctly describes the physical properties of the interaction of particles
and fields.

The proposed representation of spinor fields applies to the equations of relativistic
and quantum mechanics and their representation in metric spaces.

On the other hand, these proposed approaches are still new and need more detailed
theoretical and experimental studies and a more developed and rigorous formulation
of the mathematical foundations of the new theory.

All aspects and a more complete presentation of the new theory will be presented
shortly in the author’s book “Relativistic and Quantum Mechanics – with new formu-
lations of principles and theory”.
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Chapter 2

Key Outcomes of 5D Relativity
Detlef Hoyer

Abstract

Interstellar travel needs enormous amounts of energy to accelerate
payload, structure, and propellant to high speeds. For a travel to a distant star all
three have to be huge. Chemical propellant needs more than 90% of the whole
start weight, even from an orbit around the Moon. Most of the energy is necessary to
increase kinetic energy. Because kinetic energy depends on inertial mass, a reduction
of effective energy could reduce the amount of energy needed. As inertial mass and
gravitational mass are the same following the equivalence principle of General Relativity
and gravity depends on the gravitational constant, a local variation of the gravitational
constant might result in variation of the effective mass. A varying scaling between
mass/energy and spacetime could also cause a new force as known form the Pioneer
anomaly. Kaluza-Klein Theory is General Relativity extended to 5 dimensions (5D).
The gravitational constant is substituted by a scalar field making it variable. This scalar
field is predicted to change under strong dynamic electromagnetic fields. Deriving the
equation of motion from this 5D-metric predicts a fifth force.

Keywords: 5D relativity, 5D electromagnetism, scalar field, fifth force,
interstellar travel

1. Introduction

The basic idea of classical Kaluza-Theory [1] is briefly presented. Many following
introductory and basic passages and also figures are taken from a conference paper
published with the ASCEND 2021 conference [2]. The focus here is on the didactic
presentation of the results in the form of 10 key statements, which are listed and
explained in different sections. This 5D Relativity theory is named “induced matter
theory,” because no extra 5D stress-energy-momentum tensor is necessary, but the
known 4D stress-energy-momentum tensor is generated or “induced” by curvature of
an empty 5D space. The key results are as follows:

i. the 4 off-diagonal elements of the new fifth column g5α represent the 4-vector
potential A of moving charges

ii. the 5th diagonal element takes the role of the gravity constant

iii. there is an inhomogeneous wave equation for the scalar field with excitation
by electromagnetic fields
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iv. in the vicinity of a charge the gravitational constant becomes larger

v. the electric field lines of a charge are caused by pressure only, because the
positive field energy of the electric field and the negative field energy of the
scalar field cancel each other out

vi. a charged black hole in 5D has only one event horizon in contrast to the
Reissner-Nordström-solution, which in 4D has two event horizons and a
repulsive gravitational field between them

vii. there is a static soliton solution consisting of a cloud of radiation particles of
the scalar field (radions, dilatons, scalarons, axions) with kinetic mass around
the mass center

viii. a dependence of the elements on the 5th coordinate can generate mass,
pressure, momentum, and energy

ix. there is an inhomogeneous wave equation for the scalar field with excitation by
variation of the ten 4D gravitiy-potentials with the 5th dimension

x. there is a new rectilinear component of the Lorentz force that causes
acceleration that could look like a reduction in inertia.

2. Classical electrodynamics retrospected

Maxwell’s eqs. (3D plus time) specify sources and curls for electric field E and
magnetic field B by which the whole fields are determined according to Helmholtz’s
theorem [3]. As basic mathematical laws they do not reveal which quantity is a cause
and which is a consequence. This way the 3rd Maxwell equation

∇� E ¼ �μ0
∂B
∂t

(1)

only declares two simultaneously occurring effects always as equal (non-causal).
The cause for all electric and magnetic fields are always charges and currents (charges
at rest and charges in motion) [4]. The coupling of the fields E and B by Maxwell’s
equations means that both appear as a dual entity. So both are parts of one electro-
magnetic field with six components (3 electric and 3 magnetic) and instead of
electricity and magnetism we speak about electromagnetism.

2.1 Electric and magnetic field derived from four scalar potentials

From Maxwell’s equations follows that both fields can be derived from potentials.
Maxwell’s 2nd equation states that there are no sources and only curls for magnetic
fields; thus, the magnetic field B can be written as rotation of another vector field
A(r, t) which depends on position and time:

∇ � B ¼ 0⇔ B ¼ ∇�A with A ¼ A1,A2,A3ð Þ (2)
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The vector potential A can be used in the 3rd Maxwell equation (Eq. (1)) and we get:

0 ¼ ∇� Eþ μ0
∂

∂t
∇�A ¼ ∇� Eþ μ0

∂A
∂t

� �
(3)

Because the term in the brackets has a curl of zero, it can be written as a gradient of
a scalar potential φ:

E ¼ �μ0
∂A
∂t

þ ∇φ r, tð Þ (4)

Thus, it is possible to calculate B and E also from A and φ. The electromagnetic
potentials introduced in classical theory—formally as helping quantities—appear in
other theories as real necessary fields with physical meaning (e.g., Schrödinger-
equation, QED, Proca-equation [3]).

2.2 Electromagnetic field tensor: a dual entity derived from 4-dimensional
rotation of four vector potential

In special Relativity (4D) the electromagnetic potentials A and φ are combined to a
4-vector, setting A0 or A4 to φ. The Faraday tensor or field tensor is defined by the 16
components [5]:

Fik ¼ ∂Ak

∂xi
� ∂Ai

∂xk
with i, k ¼ 1,2,3,4 (5)

These are the partial derivatives of 4-dimensional (4D) rotation of Ai. They also
occur in 3D rotation and in the gradient, that way the Faraday-tensor contains directly
electric and magnetic field components. In Cartesian coorinates they represent
Eqs. (1) and (2):

Bx ¼ ∂A3

∂x2
� ∂A2

∂x3
Ex ¼ ic

∂A4

∂x1
� ∂A1

∂x4

� �

By ¼ ∂A1

∂x3
� ∂A3

∂x1
Ey ¼ ic

∂A4

∂x2
� ∂A2

∂x4

� �

Bz ¼ ∂A2

∂x1
� ∂A1

∂x2
Ez ¼ ic

∂A4

∂x3
� ∂A3

∂x4

� �
(6)

which were derived from 2nd and 3rd Maxwell’s equation. The tensor Fik is the 4D
rotation of four vectors Ai. It can be written this way with use of the electromagnetic
field quantities:

F ¼ Fikð Þ ¼

0 Bz �By � i
c
Ex

�Bz 0 �Bx � i
c
Ey

By Bx 0 � i
c
Ez

� i
c
Ex � i

c
Ey � i

c
Ez 0

2
66666666664

3
77777777775

(7)
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This tensor is a physical quantity, which unifies electric and magnetic field
components into one dual entity: the electromagnetic field tensor F.

2.3 Stress-energy-momentum tensor

The Maxwell stress tensor σ (3D) is used in classical electromagnetism to represent
the interaction between electromagnetic forces and mechanical momentum ([6],
p. 72, 931). Starting with the Lorentz force law F ¼ q Eþ v� Bð Þ the force per unit
volume is f ¼ ρ Eþ j� B. Replacing sources ρ and curls jwith Maxwell’s equations by
functions of the fields E and B, eliminating the curls by vector calculus identities [7]
and writing the result in a more compact way one gets:

σij ¼ ε0EiEj þ 1
μ0

BiBj � 1
2
δij ε0E2 þ 1

μ0
B2

� �
in SI units (8)

Which is explicitly in cartesian coordinates

σ ¼

ε0ExEx þ 1
μ0

BxBx � 1
2

E2 þH2� �
ε0ExEy þ 1

μ0
BxBy ε0ExEz þ 1

μ0
BxBz

ε0EyEx þ 1
μ0

ByBx ε0EyEy þ 1
μ0

ByBy � 1
2

E2 þ B2� �
ε0EyEz þ 1

μ0
ByBz

ε0EzEx þ 1
μ0

BzBx ε0EzEy þ 1
μ0

BzBy ε0EzEz þ 1
μ0

BzBz � 1
2

E2 þ B2� �

0
BBBBBBB@

1
CCCCCCCA

(9)

This stress tensor can be used to derive the Lorentz force per unit volume by the
divergence of the stress tensor as

f ¼ div σ þ ε0μ0
∂S
∂t

with Poynting vector S ¼ 1
μ0

E� B (10)

With potentials instead of fields (Eq. (6)) and using the definition of the field
tensor Fμλ (Eq. (5)) one gets the relativistic electromagnetic stress–energy-momentum
tensor Tμν (4D):

Tμν ¼ 1
μ0

FμλFλν þ 1
4
δμν FκλFκλð Þ

� �
(11)

which is explicitly in matrix form (in SI units):

T ¼ Tikð Þ ¼

1
2

ε0E2 þ 1
μ0

B2
� �

Sx=c Sy=c Sz=c

Sx=c �σ11 �σ12 �σ13

Sy=c �σ21 �σ22 �σ23

Sz=c �σ31 �σ32 �σ33

2
666664

3
777775

(12)

where S ¼ 1
μ0
E� B is the Poynting vector, σij ¼ ε0EiEj þ 1

μ0
BiBj �

1
2 ε0E2 þ 1

μ0
B2

� �
δij is the Maxwell stress tensor, and the speed of light is c ¼

ffiffiffiffiffiffiffi
1

μ0ε0

q
.

Eq. (10)—the Lorentz force per unit volume - can be rewritten as:
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f ¼ div T (13)

3. Electromagnetism from 5D

Kaluza found that the relativistic electromagnetic stress–energy-momentum tensor
T from Eqs. (11) and (12) is mathematically structural equal to a part of a 5D curva-
ture tensor. To see this, the electromagnetic vector potential A, which had initially 3
spatial components Ax,Ay,Az and was extended by a fourth (time) component At,
now is extended again by a fifth component Al to a 5-vector

A ¼ At,Ax,Ay,Az,Al
� �

: (14)

The component along the ℓ-axis shall have constant length and may be slanted
giving a picture (Figure 1) like the hairs of a horses coat or fur, in a pelt or like the
tufts of a carpet:

Φ is the component orthogonal to all spacetime components, which are also per-
pendicular to each other, so the sum

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

t þ A2
x þ A2

y þ A2
z þΦ2

q
(15)

is the length of A. To show the capabilities of the Ricci curvature tensor in 5D we
take the Minkowski metric and add the 5-vector A as fifth row and column.

gAB ¼

1 0 0 0 At

0 �1 0 0 Ax

0 0 �1 0 Ay

0 0 0 �1 Az

At Ax Ay Az �Φ2

0
BBBBBB@

1
CCCCCCA

(16)

With Al ¼ 1 and At ¼ φ ¼ q
r the fifth diagonal element becomes

Figure 1.
4-brane (x,y,z,t) with upright 5th component ℓ (axes of a pyramid).
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Φ2 ¼ A2
l � A2

t ¼ 1� φ2 ¼ 1� q2

r2
(17)

and setting Ax ¼ Ay ¼ Az ¼ 0 (no magnetic field) we get with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

gAB ¼

1 0 0 0
q
r

0 �1 0 0 0

0 0 �1 0 0

0 0 0 �1 0
q
r

0 0 0 � 1� q2

r2

� �

0
BBBBBBBBB@

1
CCCCCCCCCA

(18)

Applying the 5D Einstein tensor GAB ¼ RAB � 1
2 gAB R multiplied by two we get

(Maple-instruction: 2*Einstein[�]):

2 � GAB ¼

� q2

r4
0 0 0 �

ffiffiffi
2

p
q3

r5

0 qx
r3
� �2 � q2

2r4
qx
r3

qy
r3

qx
r3

qz
r3

0

0
qy
r3

qx
r3

qy
r3
� �2 � q2

2r4
qy
r3

qz
r3

0

0
qz
r3

qx
r3

qz
r3

qy
r3

qz
r3
� �2 � q2

2r4
0

ffiffiffi
2

p
q3

r5
0 0 0 � 2q2

r3
þ 1

2
6666666666666664

3
7777777777777775

(19)

With: e!r ¼ x̂iþŷjþzk̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p , E
! ¼ q

r e
!
r ¼ q x̂iþŷjþzk̂ð Þ

x2þy2þz2ð Þ3=2 .

an identification of the electric field components in (19) is possible:

E2 ¼ q2 x2 þ y2 þ zð Þ
x2 þ y2 þ z2ð Þ3 ¼ q2

r4

Ex ¼ î � E! ¼ qx

x2 þ y2 þ z2ð Þ3=2
¼ qx

r3

Ey ¼ ĵ � E! ¼ qy

x2 þ y2 þ z2ð Þ3=2
¼ qy

r3
(20)

Ez ¼ k̂ � E! ¼ qz

x2 þ y2 þ z2ð Þ3=2
¼ qz

r3

E2
x �

1
2
E2 ¼ q2x2

x2 þ y2 þ z2ð Þ3 � 1=2
q2

x2 þ y2 þ z2ð Þ2

and it becomes obvious, that the first 4 rows and columns represent the
electromagnetic energy-stress-momentum tensor Tik of (11) and (12).

Key result (i): This was only a demonstration which shows that the 5th row and
5th column are related to the electromagnetic 4-vector. Next has to be taken into
account, that energy causes a gravitational field.
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4. Field of a charged mass at rest in 5D

In the previous section was shown how the 5D Einstein tensor produces the electro-
magnetic energy-stress-momentum tensor Tμν. Because the 5D Einstein tensor already
includes the electromagnetic energy-stress-momentum tensor, there is no need for
anything besides the Ricci curvature tensor and solutions shall fulfill (symbols with a
tilde mark 5D quantities) the 5D equation ~RAB ¼ 0 which infers ~R ¼ 0 and ~GAB ¼ 0.

We start with a 5D line element (with capital S as mark for a 5D quantity) in a form
which can be found in ([8], p. 128):

dS2 ¼ B
E
� EA2

� �
d ctð Þ2 � 1

B
dr2 � r2dθ2 � r2 sin θ2 � 2 EA dt dl� E dl2 (21)

To be a solution of RAB ¼ 0 the functions A, B, and E have to be:

E rð Þ ¼ 1þ q2

2mr
, B rð Þ ¼ E� 2m

r
, A rð Þ ¼ � q

E r
(22)

Inserting the solution into the the line element gives:

dS2 ¼
1þ q2

2Mr
� 2M

r

1þ q2

2Mr

� q2

1þ q2

2Mr

0
BB@

1
CCAd ctð Þ2 � 1

1þ q2

2Mr
� 2M

r

dr2 � r2dθ2 � r2 sin θ2

�2
q
r

dt dl� 1þ q2

2Mr

� �
dl2

(23)

In matrix form this is:

~gAB ¼

1� 2M
r

0 0 0
q
r

0
1

1� 2M
r

þ q2

2Mr

0 0 0

0 0 �r2 0 0

0 0 0 �r2 sin θð Þð Þ2 0
q
r

0 0 0 �1� q2

2Mr

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(24)

Calculating the Ricci curvature with computer algebra software one gets:

~RAB ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBB@

1
CCCCCCA

(25)

The 5D-Monopole metric ~gAB of Eq. (24) thus is a solution of equation ~RAB ¼ 0.
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4.1 Projection of 5D solutions onto 4D space

We start with a common fully covariant 5D line element and use a latin letters to
mark 5D components ([8], p. 118)

dS2 ¼ γAB dxAdxB (26)

To get the 4D line element and 4D metric tensor from 5D, the part along the fifth
coordinate is split into an orthogonal part and a tangent part in relation to the 4D
hyper-surface. A unit vector along the fifth coordinate is (because
γ55 ¼ γ251 þ γ252 þ γ253 þ γ254 þΦ2):

ΨA � δA5ffiffiffiffiffiffiffiffi
εγ55

p γAB ¼ 1ffiffiffiffiffiffiffiffiffi
εγ55

p γ51, γ52, γ53, γ54,Φð Þ (27)

This will enable us to split the 5D metric into a part parallel to ΨA and a 4D part
orthogonal to it. We define a projector:

gAB � γAB � εΨAΨB (28)

where by definition of Ψ follows

gAB ¼ γAB �
γ5Aγ5B
γ55

(29)

This has only 4 rows and 4 columns:

g55 ¼ g5A ¼ 0 (30)

so the 5D line element becomes the sum of a 4D line element and an extra part:

dS2 ¼ gμνdx
μdxν þ γ55 dx5 þ γ5α

γ55
dxα

� �2

(31)

ds2 � gμνdx
μdxν (32)

Let us introduce a 4-vector and a scalar field

Aμ � γ5α
γ55

(33)

Φ2 ¼ εγ55 (34)

With these we get

dS2 ¼ ds2 þ εΦ2 dx4 þ Aμdx
μ� �2

(35)

This line element rewritten in matrix form is ([8], p. 135):

~gAB ¼
gμν �Aμ

�Aν � 1
Φ2 þ AαAα

2
4

3
5, ~gAB ¼ gμν �Φ2AμAν �Φ2Aμ

�Φ2Aν �Φ2

" #
(36)
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With the assumption that the ~gAB are functions only of xμ and do not depend on x5,
meaning

∂

∂x5
~gAB xμð Þ ¼ 0 (37)

we get the following expression

~G
αβ � ~R

αβ � 1
2
~gαβ~R

� �
(38)

¼ Rαβ � 1
2
gαβR

� �
þ 1
2
Φ2 Fα

λF
βλ � 1

4
gαβFμνFμν

� �
� 1
Φ

Φα; β � gαβΦμ
; μ

� �
(39)

¼ Gαβ þ 1
2
Φ2 Tαβ

em þ Tαβ
sc (40)

� 0 (41)

Key result (ii): here the scalar field plays the role of the gravity constant via 1
2Φ

2.
For the components with A ¼ 5 or B ¼ 5 two more equations can be derived: a

Maxwell-like equation, where the source depends on the scalar field

Fλ
α; λ ¼ � 3

Φ
ΦλFλα (42)

Φα
; α ¼ � 1

4
Φ3FμνFμν (43)

and a wave-like equation for the scalar field itself—Key result (iii).

5. Projection of a 5D-monopole onto 4D

To get the 4D-metric of the 5D-Monpole solution one has to perform the projection
of Eq. (29). Because only the first 4 rows need a projection and components γ52, γ53
and γ54 are zero, the only projection which has to be done is the one with γ51:

g11 ¼ γ11 �
γ251
γ55

(44)

We have γ11 ¼ B
E � EA2, γ51 ¼ �EA and γ55 ¼ �E, so

g11 ¼
B
E
� EA2 � E2A2

�E
¼ B

E
¼ 1� 2m

rE
¼ 1� 2m

r 1þ q2
2mr

� � ¼ 1� 4m2

2mrþ q2
(45)

The 4D line element is then

ds2 ¼ B
E

d ctð Þ2 � 1
B

dr2 � r2dθ2 � r2 sin θ2 (46)

or as matrix
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gμν ¼

� 4m2 þ 2mrþ q2

2mrþ q2
0 0 0

0
2mr

4m2 � 2mr� q2
0 0

0 0 �r2 0

0 0 0 �r2 sin θð Þð Þ2

0
BBBBBBBB@

1
CCCCCCCCA

(47)

Now that the 4D metric for the 5D-Monopole is known, one can calculate the
4D-Einstein tensor:

Gαβ ¼

0 0 0 0

0
q2

r2 2mrþ q2ð Þ 0 0

0 0
q2 20m3rþ 4m2q2 � 4r2m2 � 4mq2r� q4ð Þ

4rm 2mrþ q2ð Þ2 0

0 0 0
q2 sin θð Þð Þ2 20m3rþ 4m2q2 � 4r2m2 � 4mq2r� q4ð Þ

4rm 2mrþ q2ð Þ2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(48)

which after (38) is equal to 1
2Φ

2 Tαβ
em þ Tαβ

sc with 1
2Φ

2 ¼ g.

As stated, the scalar field plays the role of the gravity constant g ¼ 1
2 1þ q2

2mr

� �
.

Key result (iv): with smaller radius r the gravity constant g increases and the
electromagnetic energy generates a stronger gravity field in the vicinity of the charge
than from pure 4D theory.

Key result (v): Because G00 is the energy component and is zero, this means scalar
and electric energy cancel out and there are only pressure terms left to generate force
and field lines.

5.1 Comparison with Reissner-Nordström metric

The 4D line element of the Reissner-Nordström metric is known as

ds2 ¼ 1� 2m
r

þ q2

r2

� �
d ctð Þ2 � 1

1� 2m
r þ q2

r2

dr2 � r2dθ2 � r2 sin θ2 (49)

which is as matrix

gμν ¼

1� 2m
r

þ q2

r2
0 0 0

0 1� 2m
r þ q2

r2

� ��1
0 0

0 0 �r2 0

0 0 0 �r2 sin 2 θð Þ

0
BBBBBBB@

1
CCCCCCCA

(50)

Both are solution of

Gμν ¼ Rμν � 1
2
R ¼ q2

r4
gμν ¼ Tμν

� �
(51)
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The electromagnetic stress-energy-momentum tensor as matrix:

Tμν ¼

�2mq2rþ q4 þ q2r2

r6
0 0 0

0
q2

2mr3 � q2r2 � r4
0 0

0 0 � q2

r2
0

0 0 0 � q2

r2
sin 2 θð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(52)

Key result (vi): The Reissner-Nordström solution has a negative inverse r term 2m
r

and a positive inverse r2 term q2

r2 which can result in 2 event horizons. The 4D projec-
tion of the 5D Monopole can have only one event horizon.

Both differ only in the near field. The expansion of g00 of the 4D projection of the
5D Monopole shows a vanishing difference to g00 of the Reissner-Nordström solution
with increasing r:

1� 2m
r

þ q2

r2
� 1
2

q4

mr3
þ 1
4

q6

m2r4
� 1
8

q8

m3r5
þ O r�6� �

(53)

6. Neutral soliton solution with a static scalar field

Setting the electromagnetic 4-potential components g5α ¼ 0 results in an electri-
cally neutral solution. Only g55 is nonzero and varies with distance r. With a function

A rð Þ ¼ 1� 2m
r

(54)

the line-element of the solution is

ds2 ¼ Aadt2 � A� aþbð Þdr2 � A1�a�br2 dθ2 þ sin θ2
� �� Abdℓ2 (55)

which is in matrix form

1� 2m
r

� �a 0 0 0 0

0 � 1� 2m
r

� ��a�b 0 0 0

0 0 �r2 1� 2m
r

� �1�a�b 0 0

0 0 0 �r2 sin θð Þ2 1� 2m
r

� �1�a�b 0

0 0 0 0 1� 2m
r

� �b

0
BBBBBBBB@

1
CCCCCCCCA

(56)

Calculating the Ricci tensor for this metric results in
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0 0 0 0 0

0
2m2 a2 þ 2abþ b2 � 1

� �

r2 �rþ 2mð Þ2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(57)

and requests the condition:

a2 þ abþ b2 � 1 ¼ 0 (58)

Since a 6¼ b in general, the metric (52) is bivalent in the sense that it has gravita-
tional and scalar contributions to the energy. Calculating the total energy of a soliton
gives (a + b/2) M [7] where M is the mass seen from infinity.

Key result (vii): since there are no electromagnetic sources in the metric (56) and
all of its associated matter outside of the central source comes from the last term, the
logical consequence is that the cloud of radiation around a soliton is not photons but
scalerons, or quanta of the scalar field (radions, dilatons, axions).

6.1 Neutral soliton solution with a dynamic scalar field

There is also a dynamic (isotropic) solution of a soliton, where the scalar field
quanta vanish to infinity whith an analog of a Hubble-constant leading to a Black Hole
without a scalar field:

ds2 ¼ ar� 1
arþ 1

� � 4ffiffi
3

p

dt2 � a2r2 � 1
a2r2

� �
ar� 1
arþ 1

� � 2ffiffi
3

p

1þHtð Þdσ2

� a2r2 � 1
a2r2

� �
ar� 1
arþ 1

� � 2ffiffi
3

p

1þHtð Þ�1 dℓ2

(59)

7. Induced matter

In the preceding section, there was no explicit dependence on ℓ. Now, we allow all
potentials gAB to depend on ℓ and again work with electric neutral matter (see matrix
form in Eq. (36) with condition Eq. (37)):

gαβ ¼ gαβ xA
� �

g5α ¼ 0 g55 ¼ Φ xA
� �2

(60)

dS2 ¼ gAB dxAdxB (61)

Next, we can split the 5D Ricci tensor in its 4D analog and terms belonging to the
5th dimension, which can be taken as terms of a stress-energy-momentum tensor.
Derivations of the 5th dimension with respect to ℓ are denoted with a star:
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~Rαβ ¼ Rαβ þ Γ4
αβ

� �
,4
� Γ4

α4

� �
,β þ Γλ

αβΓ
4
λ4 þ Γ4

αβΓ
D
4D � Γ4

αλΓ
λ
β4 � ΓD

α4Γ
4
βD

¼ Rαβ �Φα; β

Φ
þ 1
2Φ2

Φ
∗
g
∗
∗ αβ

Φ
� g

∗ ∗

αβ
þ gμν g

∗

αλ
g
∗

βμ
�
gμν g

∗

μν
g
∗

αβ

2

0
BB@

1
CCA

¼ Rαβ � Tαβ þ 1
2

gαβ T � 0

(62)

Key result (viii): the dependence of the elements on the coordinate can generate
mass, pressure, momentum and energy (tensor Tαβ).

The fifth diagonal element of the 5D-Ricci tensor is also required to be zero:

~R55 ¼ Φ□Φ� ∗ g ∗ λβ ∗ gλβ
2

� g λβ
∗ ∗

∗ gλβ
2

� ∗Φ gλβ ∗ gλβ
2Φ

� gμβ gλσ ∗ gλβ ∗ gμσ
4

� 0

(63)

Key result (ix): and yields a wave equation for the gravitational constant.

8. Geodesic motion in 5D and extension of Lorentz force

In the preceding section, a new energy-momentum-tensor Tαβ
sc occurred. Its diver-

gence should yield in force density (force per unit inertial mass). For that reason, the
equation of motion is interesting. Using the Lagrangian approach minimizing the dis-
tance between two points in 5D, the equation of geodesic motion becomes ([7], p. 154):

duμ

ds
þ Γμ

βγu
βuγ þ gμα � 1

2
dxμ

ds
dxα

ds

� �
dℓ
ds

dxβ

ds

∂gαβ
∂ℓ

¼ 0 (64)

The first two terms describe geodesic motion in 4D, so we split the equation and
define a force density:

duμ

ds
þ Γμ

βγu
βuγ ¼ f μ (65)

f μ � �gμα þ 1
2
dxμ

ds
dxα

ds

� �
dℓ
ds

dxβ

ds

∂gαβ
∂ℓ

¼ 0 (66)

The new force density is nonzero if the 4D metric depends on the fifth coordinate
∂gαβ
∂ℓ

� �
and there is motion in the fifth dimension dℓ

ds

� �
. A force Fμ can be split into a

normal component Nμ in relation to the 4D velocity and a tangent or parallel compo-
nent Pμ in relation to the 4D velocity, thus Fμ ¼ Nμ þ Pμ giving force densities:

nμ ¼ �gμα þ uμuαð Þuβ ∂gαβ
∂ℓ

(67)

pμ ¼ � 1
2
uμ uαuβ

∂gαβ
∂ℓ

� �
dℓ
ds

(68)
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Key result (x): the force P parallel to 4D velocity u is new and occurs only if there
is fifth dimension dependency ([7], p. 157). In the preceding section, we had condition
(37) wherefore there a fifth force does not occur.

9. Conclusions

From five dimensional metrics with unrestricted dependence from all five coordi-
nates resolving the equation RAB ¼ 0 many inductively gained physical laws can be
deduced: Newton’s gravity law, Coulomb law, Faraday induction law, Ampère’s cir-
cuital law, Maxwell Equations, Einstein’s Gravity law, Einstein-Maxwell equation.
Because of further degrees of freedom a scalar wave equation for the gravity constant
is gained, yielding in an additional energy and an additional force. For 4D assemblies a
reduction of inertia is predicted. The gravity constant corresponds to a scalar field
which is part of the 5D metric as the 15th potential.

This 15th component of the metric varies in the vincinity of a charge and seems to
behave like the potentials of the electromagnetic 4-vector-potential which is able
detach from the sources, giving reason to the assumption that changes of the gravity
constant could emerge into the surrounding spacetime.

Aiming at the reduction of inertia and an accelerating fifth force, for interstellar
travel or asteroid deflection missions a change from analytical to numerical calculation
methods will be necessary.

Recent experiments investigate the possible effects of a fifth force with neutron
beam scattering on silicon crystals [9]. Neutrons have internally two negative charges
and a double positive charge in the smallest space and in the near field the scalar
potential causes the greatest deviations.
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Nomenclature

a acceleration
A electromagnetic vector potential
Aμ component of electromagnetic 4-vector
B magnetic field
β rapidity v

c
c velocity of light, displacement of a field source
ds line element, 4D
dS line element, 5D
dt time step multiplied with c (velocity of light)
E electric field
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ε sign + or – (factor + 1 or � 1)
ε0 dielectric constant
f force density (force per unit inertial mass)
F force, electromagnetic Field tensor, Farady tensor
Fμν component of the Farady tensor
φ electric potential
Φ component along the 5th coordinate
g metric tensor, 4D
gμν component of 4D metric tensor
gAB component of 5D metric tensor
γ gravity constant, index for 4D, Lorentz factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
, 5D metric tensor

Γi
kl Christoffel symbol of the second kind

î, ĵ, k̂ Cartesian unit basis vector (Maple notation)
j current density
ℓ fifth coordinate (besides x, y, z, ct)
m mass
μ0 magnetic permeability
q charge
r radial distance
R curvature scalar
Rμν Ricci curvature tensor, 4D
RAB Ricci curvature tensor, 5D
Rσ
μνκ Riemann curvature tensor

ρ charge density
S Poyting vector
σ Maxwell stress tensor
Tμν electromagnetic stress energy tensor
v velocity
x,y,z Cartesian component indexes (of a force)
xi covariant coordinates
xi contravariant coordinates
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Chapter 3

Dissipative Quantum System and
Energy Balance
Jishad Kumar

Abstract

We discuss how various parts of a quantum many-body system exchange energies
at thermal equilibrium. To show this, we assume a quantum system is coupled to a
many-body environment (at thermal equilibrium with a bigger environment)
consisting of a large number of independent and non-interacting quantum harmonic
oscillators above a stable ground state. Once the coupling to a large environment is
switched on, the system dissipates its energy continuously to the environment until it
reaches equilibrium with the latter. We use the Quantum Langevin equation to show
such energy exchange at equilibrium. We conclude that different parts of a physical
system can exchange energies even at absolute zero temperature.

Keywords: open systems, quantum dissipation, fluctuations, instantaneous power,
the charged oscillator in a magnetic field

1. Introduction

Isolating a quantum system from its environment is not possible since the coupling
energy plays a pivotal role in the low-temperature properties of the system. Moreover,
a complete understanding or control of the huge environment is also not feasible. How
one will study the properties of the quantum system? A working method is to partition
the whole system into two different parts, viz., the system and the environment or heat
bath, and eliminate the bath degrees of freedom after carefully considering the effects
of the heat bath on the system parameters. This makes the system essentially an open
one and the study of open systems has been very crucial in many applications of
quantum mechanics [1]. There are consequences due to the establishment of a cou-
pling between the system and the heat bath. Firstly, there may be an irreversible
transfer of energy from the system to the environment (dissipation), next there is
Brownian motion - fluctuations in the system’s degrees of freedom due to the noisy
force exerted on the system by the environment. There is decoherence, a purely quan-
tum mechanical phenomenon where the system-bath coupling destroys the coherent
superposition of states. The first two processes have classical counterparts which have
been extensively studied by many authors in the literature. A more detailed under-
standing shows that the fluctuating force from the environment induces decoherence
and damping in the system properties.
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The well-known model of the system-plus-bath approach to open quantum
systems stems from classical physics. The underlying phenomenon is the classical
Brownian motion where a test system undergoes random motion due to the “kicks”
received by the former from the surrounding particles when immersed in a suitable
medium (Figure 1). In the classical setting, dissipation is introduced in the system “by
hand” by inserting a time-dependent damping term into the equation of motion.
However, this naive approach never works in the quantum domain where everything
is governed by certain principles like Heisenberg’s uncertainty relation. Moreover, the
physical quantities are operators in quantum mechanics and these operators must
satisfy certain commutation relations. The damping term inserted in the equation of
motion violates the uncertainty principle. The role of fluctuating/random forces is
crucial in order to preserve the canonical structure. The knowledge of the details of
the processes including dissipation in the system may not be explicitly known so
sometimes the dissipation mechanism is globally described by friction, resistance,
viscosity, etc. These parameters are introduced in order to compensate for the infor-
mation loss due to dissipation. In this microscopic system-bath model, friction comes
about by the irreversible transfer of energy from the system to its environment. The
environment is modeled such that no energy, which is transferred, may come back to
the system within any physically relevant time periods. That means the so-called
Poincaré recurrence time is infinity. A really necessary condition for the full Hamil-
tonian is that, under certain conditions, the known classical results must be recovered.
Quantum dynamics at arbitrarily low temperatures and (or) with strong damping can
be studied within the system-plus-bath approach, regardless of whether the bath is
ohmic, sub-ohmic, or super-ohmic. The key thermodynamical quantity of a quantum
dissipative system is the reduced density operator ρ tð Þ ¼ trBρT tð Þ, i.e., the partial trace
of the total system plus bath density operator ρT over the bath degrees of freedom.
Here t denotes time. Quantum dissipation theory describes not only the evolution of
ρ tð Þ but also the equilibrium behavior of the reduced system as ρ t ! ∞ð Þ ¼
ρeq Tð Þ∝trBe�HT=kBT, where T is the temperature, kB is the Boltzmann constant and HT

is the total Hamiltonian. The latter property is also referred as the detailed balance

Figure 1.
(a) Schematic representation of Brownian motion. The jittering motion of a large mass immersed in the medium
containing a large number of particles/molecules is the phenomenon of Brownian motion. The random kicks the
mass received from its environmental particles make the motion stochastic. (b) The famous system-plus-bath
arrangement. The test system with one or few degrees of freedom is assumed to be in contact with its environment
containing a large number of independent and identical harmonic oscillators. The individual masses of the
oscillators in the environment m1, m2, m3:…mN are assumed to be smaller than the mass M of the test system.
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relation of the quantum dissipation theory [2]. The description of the dissipative
system is recovered by the reduced density matrix obtained by eliminating the bath
degrees of freedom which imparts damping and fluctuations.

The system plus reservoir (bath) approach to open quantum systems, was origi-
nally introduced by many authors [3–9] and popularized later in the literature by
many others [10–12]. The idea here is to couple a system with a finite degree of
freedom (system under study) with a reservoir consisting of an infinite number of
independent and non-interacting harmonic oscillators. This model has been discussed
in the literature both for harmonic systems [7, 8, 13, 14] and anharmonic systems [15].
Once the coupling is established the reservoir imparts fluctuations in the system
coordinates which thereby causes the system under observation to lose energy rapidly
(and is irrevocable) to the bath. Because of this fluctuating or random force, the
system undergoes Brownian motion. The reservoir is commonly known as a heat bath
because the system dissipates its energy continuously and the former distributes this
dissipated energy it its various energy-infusing modes. The relevant variables of the
heat bath are averaged out later from the larger Hilbert space of the full system-plus-
bath setup, to obtain an effective description of the test system alone. The projected
dynamics of the test quantum system belonging to the truncated Hilbert space
appear dissipative due to the bath-induced decoherence effects. Usually, either a
formal path integral approach in the Schrödinger picture [16] or the quantum
Langevin equation in the Heisenberg picture [12] is used to eliminate the heat bath
degrees of freedom.

2. Theoretical framework

The system-plus-bath model for dissipative quantum systems is described as
follows. A quantum system of a finite degree of freedom is coupled to a heat bath
consisting of independent and non-interacting harmonic excitations above a stable
ground state. The interaction between the quantum system and an individual oscilla-
tor of the heat bath is inversely proportional to the total volume V of the bath, thereby
ensuring that the individual coupling is a linear function of bath coordinates. This nice
property further allows one to eliminate the bath degrees of freedom easily. Because
the number of oscillators in the bath is very large, the weak perturbation of any
individual bath oscillator on the quantum system does not necessarily mean that the
coupling of the system and the bath is weak. This model, even if the individual
oscillators of the bath couple weakly to the system, allows the inclusion of strong
damping also [11].

We write the total Hamiltonian for the “full” system as

H ¼ HS þHB þHSB, (1)

where the system Hamiltonian is given by

HS ¼ p2

2M
þ V qð Þ, (2)

where M is the mass of the quantum system which is moving in a potential V qð Þ,
with q being the coordinate of the system. The heat bath Hamiltonian is written as the
sum of N non-interacting oscillators

45

Dissipative Quantum System and Energy Balance
DOI: http://dx.doi.org/10.5772/intechopen.106474



HB ¼
XN
j¼1

p2j
2mj

þmj

2
ω2
j x

2
j

 !
: (3)

The possibility of revival of the initial state after a course of time, since one can
pass on to the normal coordinates with the heat bath consisting of harmonic oscillators
and V qð Þ as a harmonic potential, can be overcome with heat bath having sufficiently
many oscillators so that the Poincaré recurrence time becomes infinity [17]. The third
contribution, the interaction Hamiltonian can be written as

HSB ¼ �q
XN
j¼1

Cjxj þ q2
XN
j¼1

C2
j

2mjω2
j
, (4)

which is bilinear in the system and bath coordinates. The last term (which depends
on the coupling constants Cj and only contains an operator in the system Hilbert
space) in the interaction Hamiltonian is included as a counter term to ensure that the
dissipation is homogeneous in all spaces. Since the coupling is via the position
variables, if this term is not included, then the coupling becomes different wherever
the quantum particle is located. Or in other words, the model is not translationally
invariant and that will result in an unphysical renormalization of the potential.
Therefore, one must understand that the counter term in the interaction Hamiltonian
is included to make sure of the fact that dissipation has been introduced solely by the
coupling to the reservoir not by a renormalization of V qð Þ. If it was not included, then
the minimum of the potential surface of the global system for a given q is at xj ¼
Cjq=mjω2

j for all j . This result in an ‘effective’ potential renormalized by the coupling
which is given by

Veff qð Þ ¼ V qð Þ �
XN
j¼1

C2
j q

2

2mjω2
j
: (5)

This becomes clear if we consider the minimum of the Hamiltonian with respect to
the system and environment coordinates. From the requirement

∂H
∂xj

¼ mjω
2
j xj � Cjq ¼ 0, (6)

we obtain

xj ¼
Cj

mjω2
j
q: (7)

Using this result, we determine the minimum of the Hamiltonian with respect to
the system coordinate and is given by

∂H
∂q

¼ ∂V
∂q

�
XN
j¼1

Cjxj þ q
XN
j¼1

C2
j

mjω2
j
¼ ∂V

∂q
: (8)
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The second term in Eq. (4) thus ensures that this minimum is determined by the
potential V qð Þ only. Before we start writing equations of motion, for simplicity, we
write the full Hamiltonian as

H ¼ p2

2M
þ V qð Þ þ

XN
j¼1

p2j
2mj

þ 1
2
mjω

2
j xj �

Cjq
mjω2

j

 !2
8<
:

9=
;: (9)

2.1 Quantum mechanical derivation

We need to look at the reduced equation of motion for the system coordinate.
In this section, we derive the quantum Langevin equation for our test system
coordinate under the influence of the heat bath induced fluctuation effects. In
the quantum domain, all the parameters are quantum variables and are operators.

In the literature, Magalinski i
^

[14] showed that the elimination of the environmen-
tal degrees of freedom leads to a damped equation of motion for the system
coordinate. The time evolution of an operator A, in the Heisenberg picture, is
given by

dA
dt

¼ i
ℏ

H, A½ �: (10)

From Eq. (9) we obtain the equations of motion for the bath degrees of freedom

_pj ¼ �mjω
2
j xj þ Cjq (11)

_xj ¼
pj
mj

, (12)

and, similarly, the equations of motion for the system degree of freedom are
given by

_p ¼ � ∂V
∂q

þ
XN
j¼1

Cjxj � q
XN
j¼1

C2
j

mjω2
j
, (13)

_q ¼ p
M

: (14)

We treat the system coordinate q tð Þ as if it were a given function of time, we
then solve the environmental equations of motion and it turns out to be an
ordinary second order linear inhomogeneous differential equation with the solution
of the form

xj tð Þ ¼ xj 0ð Þ cos ωjt
� �þ pj 0ð Þ

mjωj
sin ωjt
� �þ Cj

mjωj

ðt
0
ds sin ωj t� sð Þ� �

q sð Þ: (15)

Inserting Eq. (15) into Eq. (13), we obtain an effective equation of motion for the
system coordinate
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M€q�
ðt
0
ds
XN
j¼1

C2
j

mjωj
sin ωj t� sð Þ� �

q sð Þ þ ∂V
∂q

þ q
XN
j¼1

C2
j

mjω2
j

(16)

¼
XN
j¼1

Cj xj 0ð Þ cos ωjt
� �þ pj 0ð Þ

mjωj
sin ωjt
� �" #

:

This is further simplified by partially integrating the second term of the LHS and
that yields

M€qþM
ðt
0
dsγ t� sð Þ _q sð Þ þ ∂V

∂q
¼ f tð Þ, (17)

where the damping kernel is given by

γ tð Þ ¼ 1
M

XN
j¼1

C2
j

mjω2
j
cos ωjt
� �

: (18)

It can also be expressed alternatively as

γ t� t0ð Þ ¼ Θ t� t0ð Þ 1
M

XN
j¼1

C2
j

mjω2
j
cos ωj t� t0ð Þ� �

: (19)

The operator-valued random force in Eq. (17) takes the form

f tð Þ ¼
XN
j¼1

Cj xj 0ð Þ � Cj

mjω2
j
q 0ð Þ

 !
cos ωjt
� �þ pj 0ð Þ

mjωj
sin ωjt
� �" #

: (20)

The statistical average of this fluctuating force vanishes when the average is taken
over the total density matrix of the bath degrees of freedom and the coupling. That is

f tð Þh iρ BþSBð Þ
¼ TrB f tð Þ exp �β HB þHSBð Þð Þ½ �

TrB exp �β HB þHSBð Þð Þ½ � ¼ 0, (21)

where ρ BþSBð Þ is the shifted canonical equilibrium distribution of the heat bath
which is given by

ρB ¼ Z�1
B exp �β

X
j

pj 0ð Þ2
2mj

þmjω2
j

2
xj 0ð Þ � Cj

mjω2
j
q 0ð Þ

 !2
0
@

1
A

2
4

3
5, (22)

where ZB is the partition function of the bath oscillators. Also

f tð Þf t0ð Þh iρ BþSBð Þ
¼ MkBTγ t� t0ð Þ: (23)

This is the fluctuation-dissipation relation. For weak coupling, we seperate the
transient term (or the initial slip) Mγ tð Þq 0ð Þ which is of second order in the coupling
constant Cj and write the random force as [18].

f tð Þ ¼ ζ tð Þ �mγ tð Þq 0ð Þ: (24)
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Therefore the generalized Langevin equation takes the form

M€q tð Þ þM
ðt
0
dt0γ t� t0ð Þ _q t0ð Þ þ V 0 qð Þ ¼ ζ tð Þ �Mγ tð Þq 0ð Þ, (25)

where

ζ tð Þ ¼
X
j

Cj xj 0ð Þ cos ωjt
� �þ pj 0ð Þ

mjωj
sin ωjt
� � !

: (26)

The integration in the forward direction of time in Eq. (25) ensures that it breaks
the time reversal invariance explicitly thereby introducing irreversibility in the prob-
lem. When taken an average of the Eq. (26) with respect to the canonical classical
equilibrium density operator of the unperturbed bath

ρB 0ð Þ ¼ Z�1
B exp �β

X
j

pj 0ð Þ2
2mj

þmjω2
j

2
xj 0ð Þ2

 !" #
, (27)

we obtain

ζ tð Þh iB ¼ TrB ζ tð Þ exp �βHBð Þ½ �
TrB exp �βHBð Þ½ � ¼ 0, (28)

and the unequal time correlation

ζ tð Þζ t0ð Þh iρB 0ð Þ ¼ MkBTγ t� t0ð Þ: (29)

From Eq. (20), it is clear that the force operator depends explicitly on the initial
conditions of the bath positions and momenta and also on an inhomogeneous slip term
Mγ tð Þq 0ð Þ. Usually, this term is neglected under the Markovian/Ohmic limit, when
the friction assumes the ohmic form γ tð Þ ! 2γδ tð Þ [18].

Now, we calculate the correlation function of the random force. We may use either
f tð Þ with respect to ρ BþSBð Þ or equivalently ζ tð Þ with respect to ρB. Eqs. (20) and (24)
gives

ζ tð Þζ 0ð Þh iB ¼
X
j, l

CjCl xj 0ð Þ cos ωjt
� �þ pj 0ð Þ

mjωi
sin ωjt
� � !

xl 0ð Þ
* +

B

: (30)

At thermal equilibrium, the second moments of the position and momentum of the
bath are calculated and yields

xj 0ð Þxl 0ð Þ� �
B ¼ δjl

ℏ
2mjωj

coth
ℏβωj

2

� �
, (31)

pj 0ð Þxl 0ð Þ
D E

B
¼ � iℏ

2
δjl: (32)

Incorporating Eqs. (31) and (32), the noise correlation in Eq. (30) can be expressed as

ζ tð Þζ 0ð Þh iB ¼
XN
j¼1

ℏC2
j

2mjωj
coth

ℏβωj

2

� �
cos ωjt
� �� i sin ωjt

� �� �
: (33)
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It is to be noted that the noise correlation contains an imaginary part. This is due to
the fact that ζ tð Þ and ζ 0ð Þ are now operators in quantum mechanics and, in general, do
not commute with each other. We have obtained all the relations corresponding to the
classical counterparts, here. Now, we need the reduced description of the quantum
system alone and to get such an expression we have to eliminate the bath degrees of
freedom from the total picture. The formal way of doing that is to introduce the
“spectral density” of the bath oscillators which contains all the information about the
heat bath. The spectral density is given by

J ωð Þ ¼ π
XN
j¼1

C2
j

2mjωj
δ ω� ωj
� �

, (34)

so that the damping kernel takes a form

γ tð Þ ¼ 1
M

XN
j¼1

C2
j

mjω2
j
cos ωjt
� � ¼ 2

M

ð∞
0

dω
π

J ωð Þ
ω

cos ωtð Þ: (35)

The most widely used form of the spectral density is of the following form

J ωð Þ ¼ Mγω, (36)

which is called the ohmic and it apparently produces a memoryless friction

γ tð Þ ¼ 2γδ tð Þ: (37)

But this is an ideal situation. In real physical situations, the spectral density falls off
in the ω ! ∞ limit. The above form (cf. Eq. (36)) of the spectral density, in the large
ω limit, gives divergences in certain physical quantities like the momentum disper-
sion. It is then customary to introduce a cut-off to the spectrum with which the
specturm vanishes above that cutoff. Such a spectrum is known as a Drude regularized
spectral density [1] and is given by

J ωð Þ ¼ Mγω
ω2
D

ω2 þ ω2
D
, (38)

where ωD is a cutoff to the spectrum of bath oscillators above which the spectral
density vanishes. From Eq. (35), for positive arguments t>0, the damping or memory
kernel takes a form

γ tð Þ ¼ γωD exp �ωDtð Þ: (39)

We need ~γ ωð Þ, the Fourier transform of Eq. (39), for our forthcoming calculations
and is written as

~γ ωð Þ ¼ γωD

ωD � iω
, and ℜ ~γ ωð Þ½ � ¼ γω2

D

ω2
D þ ω2 : (40)

The “tilde” sign is used to denote the Fourier transform of a function throughout
the chapter. One can still use the terminology “ohmic damping” even if the Eq. (38)
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does not hold above a critical frequency, provided all the typical frequencies
appearing in the dynamics should be much lower than this critical frequency. In the
strict ‘Ohmic’ limit the generalized Langevin equation becomes memoryless and cor-
responds to the classical Langevin equation.

3. The model and the calculation of instantaneous power

We discussed the theoretical descriptions to understand how a dissipative system
behaves when connected to a heat bath at equilibrium. The quantum system was
considered to be not in equilibrium prior to the coupling. Once the coupling is
established the quantum system continuously transfers its energy to the equilibrium
bath and eventually, the system reaches thermal equilibrium (asymptotically) with
the heat bath. Thermal equilibrium is said to have reached when a quantum system
explores its phase-space fully. From here onwards we discuss the various energy
exchanges that happen in a many-body system at equilibrium. The thermal properties
of the quantum system can be calculated by assuming that the entire system-plus-bath
arrangement is embedded in an infinitely large environment which provides the
working temperature. Therefore, from here onwards we denote the quantum system
as a subsystem of the bigger bath. Of course, the heat bath withN oscillator modes can
also be considered as a subsystem of the bigger bath. Put it differently, the quantum
system of our interest and the heat bath with which it is connected became the
constituents of a large environment (Figure 2). Now we discuss how the energy
exchange processes within this ‘envelope’. We show here how the random force
balances the energy lost by the quantum subsystem to the heat bath. It is enough to
calculate the work done by the random force to that it compensates for the energy lost
from the subsystem. Moreover, this work done by the random force is necessary to
maintain equilibrium.

To proceed further, we need a working model for the subsystem. We choose the
charged oscillator in a magnetic field as our quantum subsystem. Hence our system of

Figure 2.
Pictorial representation of various constituents of a bigger bath. The quantum system as well as the heat bath are
now two different parts of the larger environment. The terminology “subsystem” makes better sense in this context.
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study is the dissipative charged oscillator in a magnetic field not the uncoupled
charged oscillator in a magnetic field. A damped harmonic oscillator was used as a
quantum subsystem in the literature [19, 20]. Magnetic field effects in the domain of
dissipative quantum physics are of great interest in various phenomena including the
quantum Hall effect [21] and superconductivity [22]. Studies on the dissipative
charged oscillator in a magnetic field using the system-plus-reservoir approach were
originally carried out by Li et al. [23, 24]. This model, later, was used by many others
[25–30] in different contexts (Figure 3).

HS represents the Hamiltonian of the charged magneto-oscillator. It is given by

HS ¼ 1
2M

p� eA
c

� �2

þ 1
2
Mω2

0r
2, (41)

where M is the mass of the quantum subsystem. The two dimensional vectors p
and r represent the momentum and position coordinates of the subsystem respec-
tively. Here A is denotes the magnetic vector potential, e is the charge of the electron,
and c is the velocity of light. The Hamiltonian for the bath and the coupling, i.e.,
HB þHSB, can be expressed as

HB þHSB ¼
XN
j¼1

p2
j

2mj
þ 1
2
mjω

2
j xj �

Cjr
mjω2

j

 !2
8<
:

9=
;: (42)

mjs and ωjs are the masses and frequencies of the individual bath oscillators
respectively. Cjs are the coupling between the system and the heat bath oscilators. The
two dimensional vectors pjs and xjs represent the momentum and the position
coordinates of the bath oscillators respectively. The position and momentum vectors
of the subsystem and the heat bath are operators and they satisfy the following
commutation relations

Figure 3.
(a) Electron motion under a perpendicular uniform magnetic field. The trajectories are helical in nature, but the
projection of an individual electron’s trajectory onto a two-dimensional plane shows a circular motion around the
magnetic line of force. (b) The mexican-hat potential. We take this potential to confine the electron under
perpendicular magnetic field and the whole arrangement can be simply called a “charged oscillator in a magnetic
field”. This real physical model is very useful and studied extensively in the condensed matter realm in various
contexts. Studies on quantum dots and wires rely on this model heavily.
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ri, pk

� � ¼ iℏδik, xji, plk

� � ¼ iℏδjlδik: (43)

Following the steps given in the previous section, we use the Heisenberg equations
of motion from the total Hamiltonian, we obtain the equations of motion for the
subsystem and the bath coordinates. Eliminating the bath variables yields the general-
ized equation for the system coordinate (which is an operator) and that is given by [30]:

M€rþ
ðt
0
dt0 _r t0ð Þγ t� t0ð Þ � e

c
_r� Bð Þ þMω2

0r ¼ �Mγ tð Þr 0ð Þ þ F tð Þ: (44)

This is an initial value equation and has an exact solution as well [30, 31]. Like we
saw in the previous section, the spurious initial slip term is here as well. We may
define an auxiliary random force K tð Þ ¼ �Mγ tð Þr 0ð Þ þ F tð Þ just for esthetics. The
Langevin equation is shown to be independent of any particular choice of gauge since
it does not explicitly contain the magnetic vector potential A. The appearance of
external magnetic field is via the quantum version of the Lorentz force term in the
equation. The memory friction function γ tð Þ is defined already in the previous section.
The stochastic Brownian noise F tð Þ, depends explicitly on initial coordinates and the
momenta of the bath oscillators, is given by

F tð Þ ¼
X
j

Cjxj 0ð Þ cos ωjt
� �þ Cjpj 0ð Þ

mjωj
sin ωjt
� �( )

: (45)

It is necessary to note that the damping γ tð Þ and the operator valued Gaussian
random force remain unchanged by the external magnetic field. The random force
(45) satisfies the following relations [23, 24, 26, 28–30].

Fα tð Þ, Fκ t0ð Þf gh i ¼ δακ
2
π

ð∞
0
dωℜ ~γ ωþ i0þð Þ½ �ℏω

�coth
ℏω
2kBT

� �
cos ω t� t0ð Þ½ �, (46)

Fα tð Þ, Fκ t0ð Þ½ �h i ¼ δακ
2
iπ

ð∞
0
dωℜ ~γ ωþ i0þð Þ½ �ℏω

� sin ω t� t0ð Þ½ �, (47)

where α, κ ¼ x, y, z and ~γ zð Þ ¼ Ð∞0 dt exp iztð Þγ tð Þ, ℑz>0ð Þ. For the Drude regular-
ized Ohmic spectral density, using Eq. (38), the Eqs. (46) and (47) can be written as

Fα tð Þ, Fκ t0ð Þf gh i ¼ δακ
2γω2

D

π

ð∞
0
dω

ℏω
ω2
D þ ω2

�coth
ℏω
2kBT

� �
cos ω t� t0ð Þ½ �, (48)

Fα tð Þ, Fκ t0ð Þ½ �h i ¼ δακ
2γω2

D

iπ

ð∞
0
dω

ℏω
ω2
D þ ω2

� sin ω t� t0ð Þ½ �: (49)
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The anti-symmetric correlation can also be written as

Fα tð Þ, Fκ t0ð Þf gh i ¼ 2δακ

ð∞
0
dωG ωð Þ cos ω t� t0ð Þ½ �, (50)

where G ωð Þ is called the power spectrum, and is given by

G ωð Þ ¼ γω2
D

π

ℏω
ω2
D þ ω2 coth

ℏω
2kBT

� �

¼ 2γω2
D

π ω2
D þ ω2

� � ℏω
2

þ ℏω
eℏω=kBT � 1

� �
: (51)

The fluctuation dissipation theorem ensures that the symmetric combination and
the commutator structure of the random force are (i) proportional to the friction
constant γ, and (ii) are independent of the external potential V rð Þ. From Eq. (52), we
observe that the power spectrum of the random force is the Planck spectrum, with an
extra term due to the zero point fluctuations. Needless to say, in the limit of ℏ ! 0 the
spectrum becomes the flat spectrum of the white noise.

We now calculate the expectation value of the instantaneous power supplied by
the random force. Since we work with operators, we use the symmetric form of the
power. The power can be written as

PF ¼ 1
2

v tð ÞF tð Þ þ F tð Þv tð Þh i, (52)

with v tð Þ ¼ _r tð Þ. We define the variables Z ¼ xþ iy, F ¼ Fx þ iFy, and

γ tð Þ ¼ γ tð Þ
m þ iωc, to re-write the Langevin equation given in Eq. (44) as [30].

€Z þ
ðt
0
dt0γ t� t0ð Þ _Z t0ð Þ þ ω2

0Z ¼ �γ tð ÞZ 0ð Þ þ F tð Þ
M

, (53)

where ωc ¼ eB=mc is the magnetic cyclotron frequency. The new position
coordinate is Z and its derivative with respect to time represents the velocity operator.
Using Laplace transform and with the aid of fundamental solutions, we find the
solution of the Langevin equation given in Eq. (53) as [30, 31].

Z tð Þ ¼ M _χ tð ÞZ 0ð Þ þMχ tð Þ _Z 0ð Þ þ
ðt
0
dτχ t� τð ÞF τð Þ, (54)

where χ tð Þ is called the response function of the system and is defined as [30, 31].

χ t� τð Þ ¼ 1
2πi

ðþi∞

�i∞
dsχ̂ sð Þ exp s t� τð Þð Þ: (55)

The Laplace transform of the response function is written as

χ̂ sð Þ ¼ 1
M

1
s2 þ ω2

0 þ sγ sð Þ , (56)
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with the Fourier transform

χ t� τð Þ ¼ 1
2π

ðþ∞

�∞
dω~χ ωð Þ exp �iω t� τð Þð Þ, (57)

where the dynamical susceptibility is given by

~χ ωð Þ ¼ 1
M

1
�ω2 þ ω2

0 � iωγ ωð Þ : (58)

We have, here, γ ωð Þ ¼ iωc þ ~γ ωð Þ. The memory kernel γ tð Þ typically falls to zero in
the bath relaxation time. As a result, the initial slip term in Eq. (44) (and subsequently
in Eq. (53)) vanishes for very long times (can be experimental time scales) compared
to the system’s characteristic decay time. Therefore, for longer times compared to the
system’s relaxation time, the quantum Langevin equation (cf. Eq. (53)) becomes a
stationary one with the lower limit of integration �∞, i.e., [30]

€Z þ
ðt
�∞

dt0γ t� t0ð Þ _Z t0ð Þ þ ω2
0Z ¼ F tð Þ

M
, (59)

with the solution, which is a stationary process, is given by

Z tð Þ ¼
ðt
�∞

dτχ t� τð ÞF τð Þ: (60)

We note from the expressions (Eqs. (53) and (57)) that, so long as ω0 remains non-
zero, the response function χ t� τð Þ vanishes exponentially for longer times. This, in
fact, is in close proximity with the Tauberian theorem which states the asymptotic
behavior of a function depends on the low frequency behavior of its Fourier trans-
form. Hence for very longer times, the dependence of Z tð Þ on the initial values (cf.
Eq. (54)) completely disappears and that yield [30, 31].

Z tð Þ ¼
ðt
0
dτχ t� τð ÞF τð Þ: (61)

Upon comparing Eq. (61) with Eq. (60), we conclude that Z tð Þ in Eq. (61) is the
solution of the stationary Langevin equation in Eq. (59). With these remarks in mind,
we write the Langevin equation in Eq. (44) as

M€rþM
ðt
�∞

dt0 _r t0ð Þγ t� t0ð Þ � e
c

_r� Bð Þ þMω2
0r ¼ F tð Þ: (62)

Using Eqs. (52) and (62), we write the power as

PF ¼ d
dt

1
2M

P� eA
c

� �2

þ 1
2
Mω2

0r
2

* +

þ
ðt
�∞

dt0γ t� t0ð Þ 1
2

_r tð Þ _r t0ð Þ þ _r t0ð Þ _r tð Þh i: (63)
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Since the Langevin equation describes a stationary process the first term is zero
because for a stationary process the expectation values of time dependent quantities
must be time translational invariant or, in other words, they are constant. This
becomes clear when we evaluate the expectation value of an arbitrary time dependent
operator W tð Þ . We write [19].

W tð Þh i ¼ Tr e�βHeiHt=ℏW 0ð Þe�iHt=ℏ
� �

Tre�βH ¼ Tr W 0ð Þf g
Tre�βH , (64)

where β ¼ 1=kBT. The cyclic property of the Trace operation is used to get the
desired result. Thus it becomes clear that W tð Þh i is time independent for a
canonical ensemble and the derivative of it must be zero. Our task is just to find the
second term in Eq. (64). We use Eq. (61) to compute the velocity autocorrelation

function. It is to be noted that the real part of the quantity 1
2

_Z tð Þ, _Z
†
t0ð Þ

n oD E
is

equivalent to 1
2 _r tð Þ _r t0ð Þ þ _r t0ð Þ _r tð Þh i.

We write [30].

1
2

Z tð Þ, Z† t0ð Þ� �� � ¼ 1
2m2

ðt
0
dτ
ðt0
0
dτ0χ t� τð Þχ ∗ t0 � τ0ð Þ F τð Þ, F† τ0ð Þ� �� �

, (65)

where, using (47), we write [30].

F τð Þ, F† τ0ð Þ� �� � ¼ Fx τð Þ, Fx τ0ð Þf gh i þ Fy τð Þ, Fy τ0ð Þ� �� �
,

¼ 4
π

ð∞
0
dωℜ ~γ ωþ i0þð Þ½ �ℏω� coth

ℏω
2kBT

� �
cos ω τ � τ0ð Þ½ �:

After some algebra, we obtain [30].

1
2

Z tð Þ, Z† t0ð Þ� �� � ¼ ℏ
Mπ

ðþ∞

�∞
dω ωℜ

~γ ωð Þ
m

� �
~χ ωð Þ~χ ∗ ωð Þ

�coth
ℏω
2kBT

� �
e�iω t�t0ð Þ, (67)

where

~χ ωð Þ ¼ � 1
M

ωþ iωDð Þ
ωþ iλ1ð Þ ωþ iλ2ð Þ ωþ iλ3ð Þ , (68)

Here λjs are the roots of the cubic equation

ω3 þ iω2 ωD þ iωcð Þ � ω ω2
0 þ γωD þ iωcωD

� �� iω2
0ωD ¼ 0: (69)

Similarly, the complex conjugate ~χ ∗ ωð Þ of Eq. (68) is given by

~χ ∗ ωð Þ ¼ � 1
M

ω� iωDð Þ
ω� iλ10ð Þ ω� iλ20ð Þ ω� iλ30ð Þ , (70)
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with the λ0js are the complex conjugates of λjs. Since Eqs. (68) and (70) satisfy the
following relation

Mωℜ ~γ ωð Þ½ �~χ ωð Þ~χ ∗ ωð Þ ¼ 1
2i

~χ ωð Þ � ~χ ∗ ωð Þ½ � ¼ ~χ00 ωð Þ, (71)

we obtain [30].

1
2

Z tð Þ, Z† t0ð Þ� �� � ¼ ℏ
Mπ

ðþ∞

�∞
dω ~χ00 ωð Þcoth ℏω

2kBT

� �
e�iω t�t0ð Þ, (72)

where ~χ00 ωð Þ is given by

~χ00 ωð Þ ¼ 1
M

ω~γ ωð Þ
ω2
0 � ω2 þ ωωc

� �2 þ ω2~γ2 ωð Þ
: (73)

Taking the derivatives of Eq. (72) with respect to t and t0 yields the velocity
autocorrelation

1
2

_Z tð Þ, _Z
†
t0ð Þ

n oD E
¼ ℏ

Mπ

ð∞
�∞

dω ω2 ~χ00 ωð Þcoth ℏω
2kBT

� �
e�iω t�t0ð Þ: (74)

Substituting the real part of the velocity autocorrelation into the equation for the
power yields

PF ¼
ðt
�∞

dt0γ t� t0ð Þ ℏ
Mπ

ð∞
�∞

dω ω2 ~χ00 ωð Þ

�coth
ℏω
2kBT

� �
cos ω t� t0ð Þ½ �: (75)

Since the damping γ tð Þ is 0 for negative t and ~γ ωð Þ ¼ Ð∞0 dtγ tð Þeiωt, ℑω>0, the upper
limit of the integral in Eq. (44) can be replaced with þ∞. Therefore

PF ¼ ℏ
Mπ

ðþ∞

�∞
dω
ð∞
�∞

dt0 γ t� t0ð Þ cos ω t� t0ð Þ½ �

�ω2 ~χ00 ωð Þcoth ℏω
2kBT

� �
: (76)

It is possible to write

ðþ∞

�∞
dt0γ t� t0ð Þ cos ω t� t0ð Þ½ � ¼ ℜ

ðþ∞

�∞
dt0γ t� t0ð Þeiω t�t0ð Þ

� �
: (77)

Since the bracketed term is just the Fourier transform ~γ ωð Þ of γ t� t0ð Þ, we write
Eq. (77) as

PF ¼ ℏ
Mπ

ð∞
�∞

dω ω2 ~χ00 ωð Þℜ ~γ ωð Þ½ �coth ℏω
2kBT

� �
: (78)
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It is immediately observed that only the even part of the above integral
contributes. We know that ~γ �ωð Þ ∗ ¼ ~γ ωð Þ and ~χ �ωð Þ ¼ ~χ ωð Þ, so that ~χ00 ωð Þ is an odd
function of ω and ℜ ~γ ωð Þ½ � is an even function of the frequency ω. Upon using the real
part of ~γ ωð Þ, we write

PF ¼ ℏ
Mπ

ð∞
�∞

dω ω2 ~χ00 ωð Þ γω2
D

ω2
D þ ω2 coth

ℏω
2kBT

� �
: (79)

This is the instantaneous power supplied by the random force for our particular
model and the above expression is positive quantity always.

To check the result, we evaluate the power supplied by the random force at high
temperatures (or in the classical case). After some tedious mathematical manipula-
tions we obtain [32].

PF ¼ 4kBTγ
M

2þ ω2
0=ω

2
D þ γ=ωD

� �

2þ ω2
0=ω

2
D þ γ=ωD

� �2 þ 2ωc=ωDð Þ2
h i , (80)

which in the large cutoff (strict ohmic) limit (ωD ! ∞) yields the form

PF ¼ 4kBTγ
M

: (81)

This clearly indicates to us that the rate of work done by the random force on the
quantum subsystem is indeed proportional to the damping/dissipation strength γ. This
in turn tells us that, at equilibrium, the energy lost by the quantum subsystem due to
dissipation is compensated by an amount of energy received from the random force.
As a consequence of the fluctuation-dissipation theorem, the Eq. (81) does not contain
any term from the external potential (and magnetic field), in the strict ohmic limit.

4. Discussion of the result

The full quantum many-body system has an infinite number of degrees of freedom
each with its corresponding zero-point oscillations. The full system must be in the
ground state at the absolute zero of temperature (T ¼ 0). This further implies that no
work is done on or by the system. However, for any finite coupling (irrespective of the
strength of the coupling), HS does not commute with H. That means the ground state
of H is not the ground state of HS. Therefore, even at absolute zero temperature, the
energy of the charged oscillator in a magnetic field must fluctuate. Mathematically,
this statement can be expressed as

ΔH2
S ¼ H2

S

� �� HSh i2 6¼ 0, (82)

the mean square fluctuations of HS is not equal to zero. No matter how weak the
coupling between the subsystem and the bath, the fluctuation of the subsystem Ham-
iltonian does not vanish at T ¼ 0. This fluctuation is obviously driven by the random
force. Therefore, the work done per unit time by this random force is, indeed, bal-
anced by the dissipative loss of the subsystem. Hence there is no net work done on the
subsystem. To evaluate the RHS of Eq. (82) we resort to Eq. (41). We write
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HSh i ¼ 1
2M

p� eA
c

� �2
* +

þ 1
2
Mω2

0 r2
� �

, (83)

In the new variable Z ¼ xþ iy, the subsystem Hamiltonian can be written as [30].

HS ¼ 1
2
M _Z _Z

† � 1
2
ℏωc þ 1

2
Mω2

0ZZ
†: (84)

Therefore

HSh i ¼ 1
2
M _Z _Z

†
D E

� 1
2
ℏωc þ 1

2
Mω2

0 ZZ†
� �

: (85)

We need to compute the unequal time correlation functions Z tð ÞZ† t0ð Þ� �
and

_Z tð Þ _Z†
t0ð Þ

D E
. To get this, we only evaluate the symmetric combination of Z tð Þ and

Z† t0ð Þ. The anti-symmetric combination vanishes in the analytic continuation t0 ¼ t to
obtain the equilibrium values [30].

Using Eqs. (72) and (74), at T ¼ 0, we compute Eq. (85). We get [30].

HSh iT¼0 ¼ ℏγ
π

ln
ωD

ω0

� �
þ ℏω2

0

π

1
Λ

ln
λ1
λ2

� �
þ 1
Λ0 ln

λ01
λ02

� �� �

� ℏ
4π

γ2

Λ
ln

λ1
λ2

� �
þ γ ∗ 2

Λ0 ln
λ01
λ02

� �� �
, (86)

where Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 4ω2

0

q
and Λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ ∗ 2 � 4ω2

0

q
. Also λ1,2 ¼ γ=2� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � γ2=4

q
and

λ01,2 ¼ γ ∗ =2∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � γ ∗ 2=4

q
. For weak dissipation γ, γ ∗ ≪ 2ω0,

HSh iT¼0 ¼ ℏγ
π

ln
ωD

ω0

� �
� ℏγωc

2πω0
ln

γ=2þ iω0ð Þ γ ∗ =2� iω0ð Þ
γ=2� iω0ð Þ γ ∗ =2þ iω0ð Þ

� �

þ iℏ γ2 þ ω2
c � 4ω2

0

� �
4πω0

ln
γ2 þ ω2

c � 4ω2
0

� �þ 4iγω0

γ2 þ ω2
c � 4ω2

0

� �� 4iγω0

( )
: (87)

In the absence of the magnetic field (ωc ¼ 0) we get

HSh iT¼0 ¼ ℏω0 þ ℏγ
π

ln
ωD

ω0

� �
, (88)

which is nothing but the result for a two dimensional isotropic oscillator. Since r
and _r (or Z and _Z) are Gaussian operators with zero mean values, H2

S

� �
(cf, Eq. (41))

can be readily expressed in terms of products of r2
� �

and _r2
� �

(or using Z2 and _Z
2
with

Eq. (84)). We evaluate the H2
S

� �
in the absence of magnetic field to just show the

concerned point. Magnetic field has no significant role in the present evaluation to
show that the mean square fluctuation of the subsystem Hamiltonian does not vanish.
With the aid of Eq. (88), we write

ΔH2
S ¼ HSh iℏγ

π
ln

ωD

ω0

� �
: (89)
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Even for a very weak damping, the mean of the subsystem energy is above its
ground state energy and that the fluctuations in this energy do not vanish. This tells us
that one part of a physical system in its ground state can and does exchange energy
with another part. The formalism we have chosen to show the energy balance is an
exact one. We use the Langevin equation to calculate the expectation values after
taking the time derivative of the subsystem Hamiltonian.

d
dt

HSh i þ γ _r2 tð Þ� � ¼ 1
2

_r tð ÞF tð Þ þ F tð Þ _r tð Þh i: (90)

The exact equation given above is obtained under the strict ohmic limit of the
Langevin Equation in Eq. (62). The expectation values appearing above are equal time
expectation values and are independent of time as the total physical system is invari-
ant under the time translation. The first term in the above relation is zero. The rest of
the equation then describe that the power (RHS) is actually proportional to the
dissipation constant γ. Power does not vanish even at absolute zero temperature and
this indicates that different parts of the physical system can and do exchange energy
even at absolute zero temperature.
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Chapter 4

Centrifugal Acceleration in
Relativistic Astrophysics
Andria Rogava

Abstract

Particles moving along prescribed, relativistically rotating trajectories may exhibit
quite unexpected, interesting kinematic behavior. Their dynamics may lead to a number
of physical processes that could have various important consequences in a wide variety
of relativistic astrophysical objects. In this chapter the author gives brief review of the
theoretical ideas and results related to Machabeli and Rogava gedankenexperiment (1994)
and their astrophysical implications. In particular three astrophysical cases—accelera-
tion of particles by rotating magnetospheres in AGNs, centrifugal acceleration and
gamma flares in Crab nebula, and self-trapping as a beaming mechanism for Fast Radio
Bursts—are discussed. Conclusions and future research prospects are briefly outlined.

Keywords: special relativity, fundamental problems and general formalism, relativity
and gravitation, centrifugal acceleration, relativistic astrophysics

1. Introduction

Crisis is a Hair
Toward which forces creep
Past which forces retrograde… .
- Emily Dickinson.

Christiaan Huygens introduced the concept of the centrifugal force in the manu-
script entitled “De vi Centrifuga” written in 1659 [1] and published posthumously in
Leiden, in 1703. Since then, the concept of the centrifugal force became an integral part
of the essential vocabulary of physics and a topic of different interpretations in the
philosophy of the physical science. It proved to be a useful notion for studies of a wide
variety of problems involving rotation and dynamics of particles/bodies in rotating
frames of reference. Rotation is omnipresent in the nature; as long as the humans
advanced in the space exploration, it became increasingly evident that the physical
processes related to the presence of rotation play an important, often decisive, role in
the complex and still incompletely understood texture of the physical universe.

From the very beginning, there was a certain kind of dichotomy in the understand-
ing of the centrifugal force. According to Newton and basic principles of the classic
mechanics, the magnitude and the direction of the centrifugal force, acting on matter
in a rotating frame of reference, are not connected with motion of the matter, but are
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entirely and explicitly determined by the rotation of the reference frame. On the basis
of this postulate, the centrifugal force is defined in terms of the angular velocity of the
instantaneously corotating reference frame and a displacement of the moving body
(particle) from the instantaneous rotation axis. Consequently, the direction of the force
is always unequivocally determined by the direction of the displacement vector and it
always points outward. However, it has to be remembered that the original concept of
the centrifugal force, outlined by Huygens [2], emphasized another, drastically differ-
ent, aspect of the force. In particular, Huygens’ idea was the following: “centrifugal force
should not be connected to rotation of a reference frame, but to motion along a curved path in
space.” Within the framework of classic, nonrelativistic physics, the difference
between these two postulates does not lead to a quantitative difference, because in the
Newtonian gravitation theory, based on Euclidean geometry, these two definitions are
equivalent. But in Relativity, when the space–time is not Euclidean, they differ from
each other [2] and may lead to different results.

In recent decades, the increase of interest in the phenomenon of relativistic rota-
tion was largely due to series of significant results by M. Abramowicz and his collab-
orators [2–5] related to physics of relativistic rotation in the vicinity of black holes. In
particular, it was found that under certain circumstances, the centrifugal force attracts
toward the rotation axis even in the case of a nonrotating Schwarzschild black hole.
This outstanding fact led to a number of unusual rotational effects considered and
discussed in these publications.

About 30 years ago, Machabeli and Rogava considered [6] a “gedankenexperiment”
(viz. an experiment carried out in thought only): centrifugally driven motion of a bead
inside a long, straight pipe rotating with a constant angular velocity ω ¼ const around
an axis normal to its symmetry axis. The motion of the bead was studied in the frame
of reference of the rotating pipe. Different classes of exact analytic solutions were
found, exhibiting puzzling regimes of motion: it was discovered that centrifugally
driven bead could both accelerate and decelerate, and the acceleration could change
its sign; actual modes of motion strongly depended on the value of the initial velocity.
The purpose of the idealized “gedankenexperiment” was to mimic the motion of cen-
trifugally driven charged particles in various astronomical situations. The possible
importance of this result in the context of centrifugally driven dynamics of particles in
rapidly rotating pulsar magnetospheres and astrophysical jets was later repeatedly
pointed out [7] and extensively studied in a number of subsequent publications
[8–12]. Namely, particle acceleration by rotating magnetospheres in active galactic
nuclei was investigated [13]; the role of radiation reaction forces in the dynamics of
centrifugally accelerated particles was explored [14]; centrifugal acceleration was
studied in isotropic photon fields [15] and in wormhole metrics [16].

In this chapter of the present book, I will try to give a brief but systematic
overview of the Machabeli & Rogava gedankenexperiment and its astrophysical impli-
cations. The material is divided into two sections: the next one is dedicated to the
theoretical ideas and results, while the final one deals with astrophysical applications
of the theory. The latter also contains a very short description of unresolved issues and
possible directions for further, both physical and astrophysical, research.

2. Theoretical background

In this section, a brief overview of theoretical ideas and results related to the
centrifugally driven motion of particles along prescribed trajectories is given. Firstly,
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main characteristics of the original gedankenexperiment [6] are derived and discussed
in detail. Secondly, it is shown how the idea developed and what is the range of related
physical results disclosed in the process.

2.1 Original gedankenexperiment: Rotating frame study

In Ref. [6], a straight pipe rotating around an axis normal to the pipe, and a small
bead moving inside the pipe without the friction were considered; radii of the bead
and the pipe being equal to one other. According to Newtonian mechanics the bead
would move with ever-increasing acceleration, if at the moment t ¼ 0 it was located
just above the axis pivot (r0 ¼ 0) and had an initial velocity v0 6¼ 0, then the solution
of Newton’s second law of motion would imply that the radial distance r tð Þ from the
axis would increase in time as:

r tð Þ ¼ v0=ωð Þ sinh ωtð Þ, (1)

while the bead’s radial velocity vr tð Þ along the pipe would monotonously increase as:

vr tð Þ ¼ v0 cosh ωtð Þ: (2)

However, relativity-related common sense tells us that if the pipe is long enough and
its walls are absolutely rigid, then the bead’s increasing velocity sooner or later would
become relativistic, v≪ c condition sooner or later ceases to hold and the bead’s motion
has to be scrutinized by means of special relativity. Intuitively it seems evident that the
increase of the velocity would somehow be limited since the total velocity of the bead
vtot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ r2ω2

p
cannot exceed the speed of light. Therefore, the problem has to be

considered within the framework of a relativistic theory. Hereafter, we shall use geo-
metrical units, in which G ¼ c ¼ 1. If the bead would reach the light cylinder (defined as
the radial distance r ∗ � 1=ω, that is, vϕ tð Þ � ωr ∗ ¼ 1) its radial velocity at r ∗ should fall
to zero value, implying that the radial velocity vr tð Þ, being increasing at the initial stage
of the motion, must become decreasing as the bead approaches the light cylinder.

In Ref. [6] the problem was considered in a reference frame of the rotating pipe
(rotating frame, hereafter referred to as RF), where the dynamics of the bead motion
appeared to be the simplest: one-dimensional, radial motion along the straight pipe. If
the space–time in the laboratory frame (hereafter referred to as LF) is Minkowskian
with the metric:

ds2 � �dτ2 ¼ �dT2 þ dX2 þ dY2, (3)

then applying the transformation of variables: T ¼ t,X ¼ rcos ωtð Þ,Y ¼ rsin ωtð Þ it
can be rewritten in the following form:

ds2 � �dτ2 ¼ � 1� ω2r2
� �

dt2 þ dr2, (4)

where τ is a proper time of the moving bead, defined in the standard way. The
Lagrangian for the derived “1 + 1” space–time metric (4) may be defined as [17]:

L � gαβ
2

_xα _xβ ¼ 1
2

� 1� ω2r2
� � dt

dτ

� �2

þ dr
dτ

� �2
" #

: (5)

65

Centrifugal Acceleration in Relativistic Astrophysics
DOI: http://dx.doi.org/10.5772/intechopen.109684



Components of the corresponding Lagrange equation:

d
dτ

∂L
∂ _xα

� �
¼ ∂L

∂xα
, (6)

may be written in the following way:

� 1� ω2r2
� � dt

dτ

� �
¼ const � �E, (7)

d2r
dτ2

¼ ω2r
dt
dτ

� �2

: (8)

A simpler equation for d2r=dτ2 may be derived by combining (7) with the algebraic
relation between 4-velocities, resulting from their normalization gαβu

αuβ ¼ �1 condi-
tion:

� 1� ω2r2
� �

dt=dτð Þ2 þ dr=dτð Þ2 ¼ �1: (9)

The result of a simple calculation is:

dr
dτ

� �2

¼ �1þ E2

1� ω2r2
: (10)

On the other hand, rewriting (9) as

dt
dτ

� �2

¼ 1� ω2r2 � dr
dt

� �2
" #�1

, (11)

and expressing from (7) dt=dτ by means of E, we can write down the following
first-order differential equation for the function r tð Þ:

drdt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2r2ð Þ 1� 1� ω2r2ð Þ

E2

� �s
: (12)

A constant parameter E ¼ �Ut, coming into view in these equations, may be
treated as an energy of the moving bead in the RF and may be determined through
initial conditions. For the above-mentioned case, when at the moment t ¼ 0, the bead
was at the position r ¼ r0 and had a velocity vr ¼ v0, we can easily find out that

E ¼ 1� ω2r02ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2r02 � v02

p : (13)

Obviously, 0<E<∞. If, for example, r0 ¼ 0 and v0 6¼ 0 then E ¼ 1� v20
� ��1=2 and

is more than unity (E≫ 1, if v0 ≈ 1). While, if v0 ¼ 0 and r0 6¼ 0 then we see that

E ¼ 1� ω2r20
� �1=2, certainly, is less than unity. Note also that E≈0 if ωr0 ≈ 1.

It must be noted that in the nonrelativistic limit the energy of the moving bead
reduces to the following expression:
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Enr ¼ 1þ v2=2� ω2r2=2, (14)

where a unity evidently describes rest mass energy (per unit mass) of the bead,
while remaining terms have clear “nonrelativistic” physical meaning. In particular,
v2=2 is a kinetic energy corresponding to radial motion in the RF, while �ω2r2=2 is a
“centrifugal energy” [18], known from classical mechanics.

One can also derive a differential equation for a radial acceleration of the bead
d2r=dt2. The result is:

d2rdt2 ¼ ω2r
1� ω2r2

1� ω2r2 � 2
dr
dt

� �2
" #

, (15)

at its left-hand side appears a radial acceleration of the bead as measured in the RF.
Note that in nonrelativistic limit, it reduces to the conventional expression for the
centrifugal force f cf ¼ w2r.

In Ref. [6] it was shown that the exact analytic solution of (12) may be expressed
by means of elliptical functions. It was derived by introducing two auxiliary variables
θ � arccos ωrð Þ and λ � ωt; and a parameter m � 1=E2, reducing (12) to:

dθ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2θ

p
: (16)

The solution of this equation may be written as:

λ ¼
ðφ0

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2θ

p �
ðφ
0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2θ

p , (17)

with φ0 ¼ arccos ωr0ð Þ. It can be rewritten as:

φ ¼ am λ ∗ � λð Þ, (18)

where am is an amplitude of Jacobian elliptic functions [19] and we have
introduced an additional parameter:

λ ∗ �
ðφ0

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2θ

p : (19)

Recovering physical variables t and r one comes to the following explicit solution:

r tð Þ ¼ 1
ω
cn λ ∗ � ωtð Þ (20)

where cn is Jckobian elliptic cosine [19].
It is the general solution to the problem. In Ref. [6] a particular case was consid-

ered, specified by above-mentioned initial conditions: r ¼ 0 and v0 6¼ 0 at t ¼ 0. For
the case,m ¼ 1� v20 and λ ∗ ¼ K, where K is a complete elliptical integral of the first kind
[19]. It allows rewriting the general solution (20) in a different way:

r tð Þ ¼ 1
ω
cn K � ωtð Þ ¼ v0

ω

� � sn ωtð Þ
dn ωtð Þ , (21)
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where sn and dn are Jacobian elliptical sine and modulus, respectively [19]. The
corresponding solution for the radial velocity vr tð Þ is:

vr tð Þ ¼ v0
cn ωtð Þ
dn2 ωtð Þ : (22)

Both asymptotic limits—nonrelativistic and ultrarelativistic—of the solutions (21)
and (22) are easy to specify. When an initial radial velocity of the bead is nonrelativ-
istic (v0 ≪ 1), m≈ 1 and recalling an asymptotic behavior of Jacobi’s elliptic functions
[19] sn ! tanh , cn ! sech, dn ! sechð Þ we can see that the solutions reduce to above-
mentioned (1) and (2) Newtonian expressions. Whereas in the ultrarelativistic limit
(v0 ≈ 1), m≈0, hence sn ! sin , cn ! cos , dn ! 1 and consequently
r tð Þ≈ v0=ωð Þ sin ωtð Þ, and vr ≈ v0 cos ωtð Þ.

Figure 1 is taken from Ref. [6]. It shows the temporal evolution of the radial
velocity of the bead vr (dashed line) and the quantity vφ � ωr (solid line), which is
equal to the azimuthal velocity of the bead in the laboratory frame. The curves
correspond to four different values of v0. Namely, Figure 1(a) is drawn for the case
v0 ¼ 0:001. Initially, both velocities (vr and vφ) grow almost synchronously, but later
radial velocity slows its increasing pace, it reaches its maximum value (vmax ≈0:5) and
begins to decrease, while vφ continues increasing and reaches vφ ¼ 1 value at the
moment t ∗ ¼ K=ω, when the bead is at the distance r ¼ r ∗ from the rotation axis and
its radial velocity becomes zero. This is a “turning point” since here vr tð Þ changes its
sign, and the bead begins to move toward the rotation axis with increasing speed. A
modulus of the radial velocity in the time interval t ∗ < t< 2t ∗ varies exactly in the
same way as in the previous interval 0< t< t ∗ . At the moment t ¼ 2t ∗ the bead is at its
starting point r ¼ 0 just above the rotation axis and it has the same velocity v0 but is
directed, this time, in the opposite direction. Therefore, the bead passes over the

Figure 1.
Dependence of the bead’s radial velocity vr (dashed line) and azimuthal velocity vϕ�ω r (solid line) for four
different values of initial velocity: (a) v0 = 0.001, (b) v0 = 0.3, (c) v0 ¼ ffiffiffi

2
p

=2, and (d) v0 = 0.99.
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rotation axis and, in the interval, 2t ∗ < t<4t ∗ repeats in the left half of the pipe the
same kind of motion. Figure 1(b) is drawn for the case v0 ¼ 0:3. Qualitatively it
resembles the previous case. However, a maximum value of vr is slightly larger and an
average radial velocity of the motion is apparently higher.

An interesting “threshold” case v0 ¼ ffiffiffi
2

p
=2 is represented in Figure 1(c). From (15)

we can see that for this particular case, initial radial acceleration is equal to zero.
Therefore, originally, the bead moves almost uniformly, but further on it continues to
move with a decreasing radial speed. Other qualitative features of the motion remain
the same as in above-specified cases. Finally, Figure 1(d) represents the case of a
strongly relativistic initial speed v0 ¼ 0:99. It corresponds to the asymptotic case
m≈0 discussed above and consequently the curves for vr and vφ would be well
represented by usual trigonometric cosine and sine, respectively.

Thus, we see that the character of the bead motion is “oscillatory.” The period of
the “oscillations” P � 4t ∗ ¼ 4K=ω. The period tends to infinity when v0 ! 0 (as it
should be), while when v0 ! 1, the period naturally tends to: P ! 2π=ω.

In Ref. [6] the authors introduced the concept of an “effective potential” U rð Þ,
which turns out to be quite useful for shedding more light on the qualitative charac-
teristics of derived solutions. Substituting dr=dt (15) from (12) it is possible to rewrite
the equation of motion as:

d2r
dt2

¼ ω2r 2m� 1ð Þ � 2mω2r2
� � � � dU rð Þ

dr
, (23)

and for our particular case (r0 ¼ 0, v0 6¼ 0), taking into account (13), we can
rewrite it in the following way:

d2r
dt2

¼ ω2r 1� 2v20
� �� 2 1� v20

� �
ω2r2

� �
, (24)

while the explicit expression for U rð Þ is:

U rð Þ ¼ ω2r2

2
1� 2mð Þ þmω2r2

� �
: (25)

In Figure 2, which is also taken from [6], the function U xð Þ x � ωrð Þ is shown for
four different values of v0, corresponding to the cases shown in Figure 1(a–d). It
provides graphic illustration of the bead’s motion in terms of its motion in the specific
kind of potential “well.” Namely, in (a) and (b) cases, the curves have “secondary”
minima, ascertaining that the bead beginning motion from the point x ¼ 0 accelerates
while “rolling down” to the “secondary” minimum point, then hampers until it
reaches the point x ¼ 1, and stops and begins to move toward the rotation axis. Case
(c) is represented by a “potential well” with an almost flat bottom, where initially, as
we have seen earlier, motion happens to be almost uniform. For the fourth case, the
form of the “well” naturally implies the motion with the negative radial acceleration
during the whole course of the motion.

Recently the gedankenexperiment in the RF was reconsidered by Khomeriki and
Rogava [20] and the exact solutions for the bead motion were found and analyzed for
most general sets of initial conditions. The qualitative nature of the motion is largely
the same, but there are interesting quantitatively new classes of solutions. We address
the interested reader to this publication for more details.
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It must be noted that in Ref. [6], Gia Machabeli and I have interpreted the sur-
prising behavior of the bead in terms of reversal in direction of a centrifugal force.
Criticizing that interpretation, Miller and Abramowicz [21] pointed out the connec-
tion of the bead’s behavior with relativistic dependence of its mass on velocity. They
recommended defining the relativistic centrifugal force in the way that excludes the
“reversal” of the force and argued that the deceleration of the bead has to be ascribed
to the relativistic mass variation. In Ref. [22], F. de Felice considered relativistic
dynamics on a rotating disk and for the case of radially constrained motion, he
interpreted the vanishing of the bead’s radial velocity at the light cylinder as the result
of an infinite Doppler shift experienced by the inertial observer.

If we follow the standard definition and assume that the centrifugal force is an
“apparent” force, appearing only in non-inertial frames of reference then one may
wonder: is it possible to derive above-described dynamics of the bead inside the
rotating pipe in the laboratory inertial frame (LF), relative to which the pipe rotates?
Below it will be shown that all quantitative results of Ref. [6] are not related at all to
peculiarities of the frame in which the problem is considered. We shall discuss also
two other interesting aspects of the problem, viz. surprising and remarkable analogy
of the “pipe+bead” gedankenexperiment with: (a) motion of classic simple gravity
pendulum, and (b) the radial geodesic infall motion of a test particle in Schwarzschild
geometry.

2.2 The original solution: LF study

In this section, we reconsider the gedankenexperiment in the LF, where the space–
time is Minkowskian. Our purpose is to show that the peculiar dynamics of the system

Figure 2.
Effective potential as a function of the quantity vϕ�ω r for four different values of the initial velocity: (a)
v0 = 0.001, (b) v0 = 0.3, (c) v0 ¼ ffiffiffi

2
p

=2, and (d) v0 = 0.99.

70

Recent Topics and Innovations in Quantum Field Theory



disclosed in the RF are not related at all to the arguable concept of a reversible or
irreversible centrifugal force; on the contrary, it can be easily derived within the LF
where no inertial forces are present.

Owing to the symmetry of the system, it is convenient to write the spatial part of
the metric in polar coordinates:

ds2 � �dτ2 ¼ �dt2 þ r2dφ2 þ dr2, (26)

The metric has three nonzero Christoffel symbols:

Γr
ϕϕ ¼ �r, Γϕ

rϕ ¼ Γϕ
ϕr ¼ 1=r: (27)

The radial velocity and angular velocity of a bead/particle are defined as:

v � dr=dt, ω � dϕ=dt, (28)

while the Lorentz factor is:

γ � dt=dτ ¼ 1� r2ω2 � v2
� ��1=2

, (29)

The motion of the bead is free in the radial direction, while the pipe wall acts on
the bead with tangential force of reaction. The radial component of the equation of
motion

d2r
dτ2

þ Γr
αβ

dxα

dτ
dxβ

dτ

 !
¼ 0, (30)

is reduced to:

d2r
dτ2

¼ r
dϕ
dτ

� �2

¼ rω2γ2: (31)

As far as dr=dτ ¼ γv and

dγ
dt

¼ γ3v ω2rþ dv
dt

� �
, (32)

it is quite easy to calculate that:

d2r
dτ2

¼ γ2 1þ γ2v2
� � d2r

dt2
þ ω2rγ2v2

" #
, (33)

and it is equally straightforward to show that:

1� γ2v2 ¼ γ2 1� r2ω2 � 2v2
� �

, (34)

1þ γ2v2 ¼ γ2 1� r2ω2� �
, (35)

which, in turn, after taking into account (31) and (33), allows us to derive the
following equation:
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d2rdt2 ¼ ω2r
1� ω2r2

1� ω2r2 � 2v2
� �

: (36)

One can easily see that it is exactly the same Eq. (15), which has been derived in
the previous subsection within the RF analyses of the same problem!

It is worthwhile to note that taking into account (34) and (35), we can rewrite this
equation in the following, surprisingly beautiful, form:

d2r
dt2

¼ 1� γ2v2

1þ γ2v2

� �
ω2r: (37)

Apart from its elegant form, this equation turns out to be quite informative
because it distinctly shows asymptotic peculiarities of the bead dynamics. Namely, if
the motion is nonrelativistic (γv≪ 1), (37) reduces to the usual classical equation for
centrifugal acceleration: d2r=dt2 ¼ ω2r; while in the ultrarelativistic limit (γv≫ 1), the
sign of the right-hand side of (37) changes (!) to the opposite: d2r=dt2 ¼ �ω2r. Note,
furthermore, that when γ0v0 ¼ 1 (viz. v0 ¼ 1=

ffiffiffi
2

p
) above-mentioned remarkable

acceleration sign reversal occurs from the very beginning of the motion!
Another mathematically elegant feature of the problem is that (36) can be rewrit-

ten as a differential equation for the function y � v2 rð Þ. The resulting equation is:

d2y
dt2

þ 4ω2r
1� ω2r2

y ¼ 2ω2r, (38)

with the solution, which can be written as:

y rð Þ ¼ 1� ω2r2
� �þ const � 1� ω2r2

� �2
: (39)

In particular, for the “conventional” initial condition when initially (t ¼ 0) the
bead is situated on top of the pivot r0 ¼ 0 and has a velocity v0 6¼ 0, the latter equation
implies that const ¼ v20 � 1. Therefore, for the function v rð Þ we obtain the result that
had been derived in Ref. [6]:

v rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2r2ð Þ 1� 1� ω2r2ð Þ

γ20

� �s
: (40)

2.3 An interesting pendulum analogy

The gedankenexperiment reveals” surprising dynamics of relativistically rotating
particles. But it happens to be remarkable also due to a couple of nontrivial and
noteworthy analogies.

One of them shows when we introduce new set of variables:

ϕ � 2 arccos ωrð Þ (41)

λ � ωt (42)

Ω2 � 1� v20 (43)

and after, some uncomplicated calculations, find out that our equation of motion
reduces to the following, remarkably familiar equation:

72

Recent Topics and Innovations in Quantum Field Theory



d2ϕ
dλ2

þ Ω2sinϕ ¼ 0, (44)

we arrive at the well-known pendulum equation!
Note that one could easily derive (44) from (43) by rewriting it in above-

introduced notation as dϕ=dλ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω2 sin 2 ϕ=2ð Þ

q
, and taking one more deriva-

tive by λ. It is common knowledge that (44) describes nonlinear oscillations of a free
“simple gravity” pendulum. In fact, it is closely related to another big achievement for
Christiaan Huygens, who studied in his “Horologium Oscillatorium” in 1673. With
this analogy, now being so apparent, the striking resemblance of Ref. [6] solutions
with a pendulum motion becomes more transparent and understandable. If we intro-
duce the concept of an “analogous pendulum”, governed by (44), then the initial
conditions (r0 ¼ 0, dr=dtð Þt¼0 ¼ v0) are replaced by ϕ0 ¼ π and dϕ=dλð Þλ¼0 ¼ �2v0.
Therefore, it turns out that the analogous pendulum rotates in a vertical plane with the
effective frequency Ω. Remarkably enough, the time interval, needed by the bead to
reach ωr ¼ 1 (“light cylinder”), corresponds to the time needed by the analogous
pendulum to reach its stable equilibrium (ϕ ¼ 0) point. This time interval is finite, as
it, certainly should be.

2.4 A captivating black hole analogy

Another striking analogy turns out to be even more unexpected. One can show that
the “bead-pipe” gedankenexperiment features an unusual analogy with a specific kind
of geodesic motion in Schwarzschild geometry!

Let us consider a radial geodesic “fall” of a test particle onto a Schwarzschild black
hole with M mass. Let a radial velocity of the particle at infinity be V∞ pointed

inwards. If one denotes by E ¼ γ∞ � 1� V∞
2� ��1=2

> 1 the specific energy of the
particle per its rest mass, then for its radial velocity relative to the observer at infinity
Vr̂ � ffiffiffiffiffigrr

p dr=dt one gets

Vr̂
2 ¼ E2

4
� E

2
� 1
E

1� 2M
r

� �� �2
, (45)

(See, e.g., Ref. [23], where this equation is written in different notation). For the
quantity dVr̂=dt (called by McVittie “nontenzor radial acceleration of the particle”)
one gets:

dVr̂

dt
¼ 2M

Er2
E
2
� 1
E

1� 2M
r

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

r
: (46)

Inspecting the expression it is easy to see that the acceleration of the particle is
negative (that is, the modulus of the particle’s infall velocity is increasing), until the
particle reaches the radial distance r1 ¼ 4M= 2� γ∞

2ð Þ, where the acceleration changes
its sign, and Vr̂ reaches its maximum velocity Vmax ¼ γ∞=2.

More precisely, we have the following regimes of the motion:

• V∞ ≪ 1 (γ∞ ≈ 1): the particle begins to move with increasing speed, at r1 ≈ ¼ 4M
the speed reaches its maximum value (Vmax ≈ 1=2) and further on it decelerates,
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down to zero radial velocity, when the particle approaches the black hole horizon
r ! 2M;

• V∞ ¼ ffiffiffi
2

p
=2, (γ∞ ¼ ffiffiffi

2
p

): the “threshold” case; with dVr̂=dt ¼ 0 (Vmax ¼ V∞,
r1 ! ∞), and the particle decelerating smoothly, all along, down to the horizon;

• V∞ >
ffiffiffi
2

p
=2: the acceleration is positive during the whole course of the motion.

It is easy to notice that this scenario remarkably resembles (even quantitatively!)
the one in Ref. [6] gedankenexperiment. This likeness happens due to the remarkable
similarity between (45) and the corresponding equation for dr=dt from Ref. [6], which
may be written as:

dr
dt

� �2

¼ E2

4
� E

2
� 1
E

1� ω2r2
� �� �2

, (47)

The resemblance is not incidental, of course, but is related to the likeness of the
space–time (4) in the rotating pipe:

dsp
2 ¼ � 1� ω2r2

� �
dt2 þ dr2, (48)

with the Schwarzschild space–time along a radial geodesic (θ ¼ const, φ ¼ const):

dss
2 ¼ � 1� 2M=rð Þdt2 þ dr2

1� 2M=r
: (49)

Comparing, for example, lapse functions for these two metrics
(αp � ffiffiffiffiffiffiffiffiffi�gtt

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2r2

p
, and αs � ffiffiffiffiffiffiffiffiffi�gtt

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
) one can see that αp and αs

become infinite at the light cylinder and horizon, respectively. Obviously, the likeness
is not complete: the spatial part of the rotating pipe metric is flat, while the spatial part
of (49) metric is curved (grr 6¼ 1). The latter difference is also essential: it ensures
finiteness of the time t ∗ [6], needed by the bead to reach the light cylinder r ∗ � ω�1.
As it is well known, an analogous time interval for a test particle to reach the
Schwarzschild black hole horizon, as measured by the distant observer, is infinitely
long!

2.5 A centrifugal force “reversal”?!

It is well known that a generalization of Newton’s second law

F
! ¼ dp!=dt ¼ d mv!

� �
=dt (50)

is the most useful and convenient definition of a (three-) force F
!
in special rela-

tivity. According to Rindler ([24], p. 88) “This definition has no physical content until
other properties of force are specified, and the suitability of the definition will depend on
these other properties.”

For real applied forces, arising in relativistic dynamics, this definition is physically
self-consistent and proved to be the most appropriate. But, how one should define
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inertial forces in relativity!? Miller and Abramowicz suggested [21] using the same
general method for these forces as well. The approach is fully justified but we would
like to emphasize one aspect of the problem.

The definition contains a quantity m tð Þ ¼ m0γ tð Þ, which has, clearly, the meaning
of the relativistic mass in the LF. However, note that this quantity is used for the
definition of another physical quantity—centrifugal force—which exists in another
non-inertial frame of reference. A question arises: is it self-consistent to define a
physical variable in one frame by means of another variable defined in another frame?
Certainly, the time-variable mass may be defined also in RF, but it would not be equal
to m tð Þ. The important point is that γ tð Þ, having in the LF the meaning of Lorentz
factor, has not the same meaning in the RF because Lorentz factor of the moving
particle is not invariant between frames [24].

This circumstance appears evident in the “1þ 1” formulation of the same problem.
In fact, for the two-dimensional curved metric (4) in the RF V � v=αp, and

Γ ¼ 1� ω2r2ð Þ= 1� ω2r2 � v2ð Þ½ �1=2. Accordingly, it is possible to define relativistic
mass in the RF as M tð Þ � m0Γ and to write, instead of Eq. (50), the following
definition:

F ∗ ¼ d
dt

MVð Þ ¼ Mω2r
αp

: (51)

This definition is already made by means of the true Lorentz factor of the bead as
measured in the RF. Just like (50) it, also, gives “irreversible” centrifugal force but
lacks the attractive simplicity of (50). However, we should always remember that the
mass, which the RF observer actually measures, is M tð Þ and is not m tð Þ. It seems,
therefore, more consistent to express the physical quantity existing in the particular
frame (centrifugal force f c, which exists in the RF) through the other physical quan-
tity M tð Þ defined and measured in the same frame.

Despite this uncertainty, we should like to note that the importance of the mass
variation effect, noticed by Miller and Abramowicz, is a very remarkable and impor-
tant feature of this problem. As it appears, the capability of mass to vary drastically
affects the dynamics of the motion. But, is it appropriate and logically justified to
describe this secondary dynamical effect as the action of some “negative self-thrust”
force!? Saying “secondary”we do not mean its significance but, rather, its status in the
causal order of true physical reasons. If one introduces it that would be yet another
“apparent” force, like the centrifugal force. Actual dependence of the bead mass on
time is governed explicitly by the concrete kind of its motion in the LF, which is
entirely determined by the outer real force, tangential pipe reaction force, applied to
this moving body.

3. Astrophysical applications and conclusions

In 2003, the problem of motion of particles on relativistically rotating prescribed
trajectories considered in Ref. [6] for a straight trajectory case (gedankenexperiment)
was generalized. Rogava, Osmanov, and Dalakishvili considered the motion of
rotationally driven particles along flat trajectories of arbitrarily curved shape [7]. In
this paper, the problem was again studied on the level of the idealized gedankenexper-
iment, both in the laboratory (LF) and in the rotating (RF) frames of reference. For
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the simple example of the Archimedes spiral, it was found that the dynamics of these
particles may involve both accelerative and decelerative modes of motion. Moreover,
it was also found that there are special solutions, which remain force-free during the
whole course of the motion.

Additionally, basic equations were outlined and the scheme for the solution of the
more general version of the same problem was given, where the angular velocity of
the rotating system is not assumed to be constant. Instead, it is required that the full
triple system—rotator+pipe+bead—is conservative and the rotator is allowed to
exchange perceptible portions of energy with the bead. The latter setup is a significant
step closer to real astrophysical situations where, for instance, a rapidly rotating
neutron star acts as a rotator and its magnetic field lines play the role of wires (pipes)
along which particles are centrifugally accelerated.

One astrophysically important difference from the linear pipe case [6] is that for
curved prescribed trajectories and the motion of the accelerated particle is not any
more radially bounded: there exist regimes of motion when the bead may reach
infinity! This result has a simple physical explanation. For the case of the linear pipe,
rotating with the constant angular velocity, the natural limit of the radial motion is
given by the light cylinder radius. However, in the case of the curved pipe, even
when it rotates at the constant rate, the bead moves both in radial and azimuthal
directions, following the curvature of the prescribed trajectory and having a
variable angular velocity Ω tð Þ. It means that now the role of the “effective light
cylinder is played by the time-dependent quantity RL tð Þ ¼ Ω�1 tð Þ, and all those
radial distances for which r tð Þ<RL tð Þ become accessible! Therefore, if both r tð Þ and
RL tð Þ are monotonously increasing functions, but the former stays always smaller than
the latter (e.g., that is the case for the Archimedes spiral) then the bead can reach
infinity because wherever it is at any given moment of time, the light cylinder is still
ahead of it and the centrifugally accelerated bead will never “overtake” the light
cylinder!

4. Acceleration of particles by rotating magnetospheres in AGN

It is well-known that some blazars, such as Mrk 421, Mrk 501, PKS 2155–304, 1ES
2344–514, H1426 + 428, and 1ES 1959 + 650, emit ultra-high-energy, several TeV
1 TeV � 1012 eV
� �

photons and constitute a special class of so-called “TeV blazars”.
The standard model for a blazar assumes the presence of a supermassive black hole,
surrounded by an accretion disc and ejecting twin relativistic jets, one of which is seen
by a terrestrial observer almost end-on. Usually, broadband emission spectra of these
objects contain two components: the low-energy (from radio to optical/UV) part
associated with synchrotron radiation and the high-energy (X- and γ- rays) compo-
nent formed by the inverse Compton scattering (ICS) of softer photons. The presence
of the latter part of the spectrum is normally explained on the basis of the synchrotron
self-Compton (SSC) model. However, the origin of accelerated electrons, the physical
mechanism responsible for their efficient acceleration is a matter of uncertainty.

Proposed mechanisms such as the Fermi-type acceleration processes or repetitive
acceleration of electron-positron pairs as a feedback mechanism could account for the
observed high energy emission up to 20 TeV. However, the Fermi-type acceleration in
relativistic jets is efficient only if the seed population of “pre-accelerated” electrons is
present, possessing high enough (γmax ≥ 102) Lorentz factors. The provenience of the
“pre-acceleration” is not well-understood.
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Since pioneering work by T. Gold [25, 26] it has been proposed that centrifugally
driven outflows (CDOs) consisting of centrifugally accelerated particles may acquire
extremely high energies. The idea has often been discussed [8, 27] in the context of
pulsar emission theory. Moreover, regarding the AGNs, it has been shown that CDOs
from accretion disks may occur if the poloidal magnetic field lines are inclined at an
angle ≤ 60∘ to the equatorial plane of the disk [28].

Osmanov et al. [9] argued that the presence of the CDO would imply that despite
the intense energy losses via UV radiation (when due to ICS, soft photons are
upscattered on electrons and gain energy from them), electrons may still reach very
high, γmax � 105, Lorentz factors. It was surmised that if robust enough, this mecha-
nism could account not only for the “pre-acceleration” of electrons but could be
considered as an independent bona fide alternative mechanism for the generation of
high-energy emission (up to �20 TeV) of TeV blazars!

Gangadhara and Lesch [29] examined the role of the centrifugal force on the
dynamics of electrons moving along straight magnetic field lines, situated in the
equatorial plane and corotating with the spinning AGN. They showed that an
upscattering of low-energy photons against accelerated electrons may readily lead to
the generation of the nonthermal x-ray and γ-ray emission. Later on, the problem was
critically re-examined by Rieger and Mannheim [13], checking whether the rotational
energy gain of charged particles, moving along straight magnetic field lines, is limited
not only by ICS but also by the expected breakdown of “the-bead-on-the-wire”
approximation. The latter is a synonymous term for the “bead+pipe” approximation
used in our gedankenexperiment. The breakdown happens in the vicinity of the light
cylinder, where a Coriolis force acting on the particle and trying to “tear it off” the
field line would exceed the Lorentz force “binding” the particle to the field line.

Bearing in mind that in real, three-dimensional astrophysical situations (e.g., jets),
the magnetic field lines are not localized in the equatorial plane but are inclined with
respect to it. Osmanov et al. [9] examined the same problem considering the wide
range of possible inclinations. It was shown that for a wide range of AGN, the
mechanism responsible for limiting the maximum Lorentz factors is ICS, but under
favorable conditions, it can allow particles to reach quite high Lorentz factors
γmax ≥ 105. The breakdown of the-bead-on-the-wire approximation becomes impor-
tant for the low luminosity (< 1041 erg=s) AGN, when γmax � 108. For higher lumi-
nosities (> 1041 erg=s), it can be dominant only for relatively small inclination angles
of the magnetic field lines with respect to the rotation axis (≤ 10∘).

Therefore, it was argued [9] that CDOs could indeed be amply efficient to account
for the TeV blazar emission. For the wide range of cases, ICS remains the dominant
factor in limiting the maximum Lorentz factor of accelerated particles, letting them
produce very high-energy photons [1–20] TeV. Obviously, an important restriction of
the [9] approach is that only straight magnetic field lines were considered, whereas, in
realistic astrophysical situations, the magnetic field lines are curved. It might be
especially important if one considers particle dynamics on a longer time scale and over
larger length scales when the curvature of the field lines cannot be neglected. As a
matter of fact, the mathematical formalism for such a study is described in [7].

4.1 Centrifugal acceleration and gamma flares in Crab nebula

The Crab nebula is a source of almost steady high-energy emissions. Observations
made from orbital probes (Fermi, SWIFT, and RXTE) showed evidence of its
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variability in the X\x-ray range. Several years ago the Fermi and AGILE satellites
detected dazzling, brief, and strong bursts of gamma radiation above 100 MeV, with
its source located in the Crab Nebula. Since then, several gamma-ray flares have been
reported.

The most obvious source of radiation power in the nebula is the rotational energy
damping dE=dt ¼ IΩdΩ=dt ¼ 5 � 1038erg= sec of the pulsar PSR 0532. Machabeli et al.
[30] demonstrated that via the centrifugal acceleration mechanism, it is possible to
pump energy from the neutron star’s vast rotational kinetic energy storage, � 5� 1038

erg s � 1, to proper electrostatic plasma (Langmuir) oscillations. Furthermore, it was
shown that the growth rate of the perturbations is maximum in the “superluminal”
area, where the phase velocity of perturbations exceeds the speed of light. That is why
in this region, the condensate of plasmons is formed, which is transferred to the Crab
Nebula. The transfer of the energy of the plasmon condensate from the pulsar mag-
netosphere to the nebula over a huge distance, 3� 1017cm, takes place practically
without any tangible losses.

But in the nebula, unlike the pulsar magnetosphere, apart from electrons and
positrons, there are also protons. That is why a modulation instability is developed,
which leads to the collapse of Langmuir waves; viz. a cavity is formed, which col-
lapses, and on the final stage of the collapse, involved particles attain very high
Lorentz factors, resulting in the powerful synchrotron emission of the nebula. The
collapse stops at the scale of a few Debye radii.

It was also shown that in the course of the active phase of the collapse in the
cavity due to the influence of nonlinear processes on the polarization properties of
the medium, self-trapping [31] of the synchrotron radiation (generated within the
cavity) takes place. If the conditions for the appearance of the self-trapping are
fulfilled for certain values of emitted wave frequencies, for others, both higher and
lower values of the frequency, they are not satisfied. It means that giant bursts of
energy release have to happen in narrow energy (frequency) ranges. Therefore, it
would naturally explain abrupt, burst-like increases of the radiation intensity within
narrow bands, impressively explained by self-trapping in the framework of
nonlinear optics (so-called “Askaryan effect” [32]). Waves propagating in the non-
parallel direction to the line of sight are bent and directed to the observer due to
self-trapping. Ultimately it leads to the required increase of the radiation intensity
and, at the same time, unlike other mechanisms, it does not require any additional
sources of energy.

4.2 Self-trapping as a beaming mechanism for Fast Radio Bursts!?

Bearing in mind what we have just said about self-trapping, it is most reasonable to
assume [33] that the principal reason for the beaming of electromagnetic radiation
leading to Fast Radio Bursts (FRBs) could be the nonlinear self-trapping phenomenon.
This mechanism implies that the part of the radiation beam directed toward the
observer is augmented by its outer part, which in the absence of the self-trapping
would not be focused toward the same point. As a result, the observer, while the beam
is being self-trapped, sees an enhanced intensity of radiation in a very narrow fre-
quency range. This scenario is robust and fully autonomous because unlike many
other mechanisms, it does not require additional external sources of energy. Besides,
self-trapping depends on quite a large number of parameters, in particular, on a
specific proper value of the ratio of the wave amplitude to the amplitude of an
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incident electrostatic wave, on the temperature of the medium, and on the direction of
these waves relative to the line of sight. Any, even the slightest, deviation of any of
these parameters from ‘favorable’ values may lead to the disappearance of an observ-
able radiation burst. This is why this is an extremely finely tuned, random, and rarely
occurring event. This circumstance guarantees that an FRB event, if indeed being
caused by the arrival of the self-trapped self-focused enhanced beam to the observer,
is a totally random and extremely rare natural phenomenon.

If our model is correct and relevant to actual FRBs, the self-trapping condition may
hold in a given direction only for a very short interval of time. Hence, it is logical to
surmise that the probability of the coincidence between the line of sight and the
direction of self-trapping has to be quite small. Paradoxically enough, what could be a
serious drawback for a commonly occurring phenomenon that in this case ‘works’ just
in the opposite way, it strengthens our confidence that self-trapping could be an
important physical factor contributing to the appearance of this extremely rare and
energetic phenomenon—fast radio bursts or FRBs.

Obviously, the self-trapping mechanism does not exclude other physically
plausible, repetitive or non-repetitive and catastrophic or non-catastrophic mecha-
nisms proposed for FRBs. We tend to believe that self-trapping may be one of a
number of very efficient ‘beaming’ mechanisms that might be needed for
interpreting FRBs as narrowly beamed radio bursts [34]. We suppose that the prime
reason for any single burst appearance could be related to its generic source, located in
a distant galaxy, and causing a giant outburst in the radio range. The mechanism of
this primary outburst may be related to one of the previously suggested plasma
mechanisms.

Presumably, these outbursts might be observed without any additional amplifica-
tion if they occur on intergalactic distance scales. That was Machabeli et al. guessed in
Ref. [33]. Shortly afterward first-ever FRB from within our galaxy was detected [35],
confirming our expectation since it was associated with a rapidly rotating neutron
star, magnetar SGR 1935 + 2154 about 30,000 light-years away in the Vulpecula
constellation. The STARE2 team independently observed the burst [36], detected its
fluence, and confirmed the connection between this burst (FRB 200428) and FRBs at
extragalactic distances. Needless to say, a magnetar is a plausible candidate for the
centrifugally driven relativistic acceleration of electrons with subsequent Langmuir
collapse and self-trapping as the beaming mechanism. It only strengthened our
expectation that FRB could be akin to, for instance, giant radio pulses occasionally
observed from pulsars within our own Galaxy [33]. Actually, for intergalactic giant
pulses, the beaming mechanism may not be even necessary for the burst to be detect-
able. But in order to make FRBs visible on extragalactic distance scales, some powerful
additional beaming/amplification is required and this is where we believe self-
trapping could play its important role.

With improved capabilities of several wide-field, broad-band surveys that recently
became operational the observational situation may change dramatically. It is
expected that the FRB field will change from the presently available small-number
statistics up to hundreds or even thousands [37] of new FRBs per year. Therefore, in
forthcoming years, one might expect that the number of detected FRBs will increase
by orders of magnitude, and we could be able to see primary outbursts leading to FRBs
without a need for their additional ‘self-trapping-related’ or any other kind of ampli-
fication. But within this large number of events, there will be a relatively small
fraction of peculiar bursts undergoing secondary self-trapping amplification and
having distinctly peaked structures.
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5. Conclusions and future prospects

Above given three examples of supposed astrophysical appearance were meant to
emphasize that centrifugal acceleration may certainly be one of most efficient con-
verters of rotational energy into the energy of directed motion and may lead to the
generation of powerful observational signatures. The universe is full of rotating
plasma flows containing enormous amounts of kinetic energy. There are a few phys-
ical mechanisms able to transform a considerable part of the mechanical energy into
radiation energy. For instance, so-called “nonmodal” processes [38, 39], taking place
in flows with nonuniform velocity fields (shear flows), are capable to infuse a part of
the regular rotation-related energy in waves and instabilities appearing in these flows
[40, 41]. However, none of these nonmodal mechanisms has efficiency even remotely
comparable with the efficiency of the centrifugal acceleration mechanism.

Obviously, centrifugal acceleration has to be of particular importance in objects
with ultra-strong magnetic fields: pulsars, magnetars, AGN, etc. In these astronomical
situations, magnetic field lines provide proper “prescribed trajectories” for relativistic
particles and can accelerate them up to very high Lorentz factors. That is why the
issue of centrifugal acceleration occupies an important role in the domain of relativis-
tic astrophysics.

Theoretically speaking the most principal, crucial challenge is to move from highly
idealized, “gedankenexperiment” setups, and various “toy” problems up to more
realistic models, replacing mechanical “bead-on-wire” approximation with real,
strong magnetic fields serving as genuine accelerators of relativistic particles in related
astronomical objects. We could easily envisage that with the development of observa-
tional capabilities in relativistic astrophysics possible areas of applications for the
centrifugal acceleration mechanism in high-energy astrophysics will widen further.
Obviously, a number of intriguing problems remain to be understood. For instance,
how centrifugal acceleration operates in conjunction with space–time “rotation”
nearby black holes!? In Refs. [10, 20], a theoretical formalism was developed allowing
to study of centrifugally induced phenomena in general static and isotropic metrics,
associated with rotating relativistic bodies. One can imagine, for example, that in a
Kerr black hole ergosphere, the interlace of centrifugal acceleration with Penrose
process [42] may lead to interesting physical peculiarities, some of which may turn
out to be important in the astronomical-observational context.
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Chapter 5

Time-Dependent
Photoluminescence and
Photoluminescence Excitation
in Exciton Systems and Related
Phenomena
John W. Kenney III, Joshua Jacobsen, Amanda Renfro,
Isaac Muñoz and Ruth Christian

Abstract

The term “exciton” covers an extremely diverse range of materials, phenomena,
processes, interactions, and experimental techniques. This review provides a general
introduction-with selected descriptive examples-of excitonic systems with an empha-
sis on excitonic photoluminescence and photoexcitation spectroscopy in the ultrafast
time-resolved femtosecond time domain.

Keywords: exciton, Frenkel, Wannier-Mott, hole, electron, time-resolved,
femtosecond, ultrafast, luminescence, photoluminescence, graphene, graphene
quantum dot, single-walled carbon nanotube, quasiparticle, 2D material,
Bose-Einstein condensate

1. Introduction

The simplest example of an exciton is that of an electron (e�) attracted to a hole
(h+) via the Coulomb force. The electron charge and hole charge are equal in magni-
tude and opposite in sign

∣e�∣ ¼ ∣hþ∣ ¼ e (1)

where e = 1.602� 10�19 C is the fundamental unit of electrical charge. The magnitude
of the Coulomb force acting between the electron and the hole is given by the expression

F ¼ e2

4πε0r2
(2)

where r is the distance of separation between the electron and the hole and
ε0 = 8.854 � 10�12 C2/N�m2 is the vacuum permittivity of free space. This electron–
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hole unit is termed a quasiparticle. Excitons may be produced by bombarding the
material of choice with photons whose energy hν is greater than the energy band gap
between the between the valence and conduction bands of the medium

hν>Ec � Ev ¼ Eg (3)

If this condition is met, negatively charged electrons are displaced within the
medium and positively charged holes are formed in the medium, leaving the crystal
lattice or material electrically neutral overall. A positively charged electron hole is thus
created if the condition described in Eq. (3) is also met. The positive electron hole in
the conduction band has diminished affinity for this localized hole due to repulsive
Coulomb forces from large numbers of electrons that surround the hole and excited
electron. Also, in a medium, Coulomb’s law of force is modified by adding in a
dimensionless dielectric constant term K to the Coulomb’s Law expression given in
Eq. (2).

F ¼ e2

4πε0Kr2
(4)

In a vacuum, K = 1.000, but in a medium, K > 1.000. Thus, the attractive Coulomb
force that acts between the electron and hole in an exciton is considerably less than the
attractive Coulomb force that acts between the “orbiting” electron and the proton
nucleus in a hydrogen atom.

The symmetry of the wavefunctions of an excitonic quantum system is virtually
the same as the symmetry of the corresponding wavefunctions of the quantum system
of atomic hydrogen. In atomic hydrogen, however, the electron e� orbits around a
positively charged nucleus, a proton p+. In contrast, in an exciton, the electron e�

orbits around a positive hole h+. The associated hydrogenic excitonic wavefunction
exhibits symmetry properties quite similar to the symmetry properties exhibited by
atomic hydrogen excitonic states (e.g., S, P, D… ).

Frenkel (in 1931) first proposed the idea of excitons as a means by which to
describe the excitations of atoms (e.g., Na, K, Cl) embedded in a lattice of insulators
(e.g., diamond, NaCl, CaCO3). He further proposed that this excited atom-insulator
system would be capable of supporting intra-lattice particle-like movements without
net charge transfer. Excitons are typically treated in terms of two limiting cases of the
dielectric constant K expression in Eq. (4):

Small K: Frenkel (F) Excitons Large K: Wannier-Mott (WM) Excitons.
The electron and hole in an exciton may each exhibit parallel or anti-parallel spins.

The exchange interaction couples the spins, which yields exciton fine structure.
An exciton may also show momentum dependence (i.e., k-vector dependence) in
periodic lattices [1].

1.1 Frenkel excitons

The electron–hole Coulomb attraction may be strong, and its excitons will tend to
be small (e.g., size of a unit cell) in a F exciton (Figure 1). It is even possible for
molecular level excitons to be confined to a single molecule, as is often the case in
fullerenes. Typical binding energies are on the order of 0.1 eV to 1.0 eV. F excitons
occur frequently in excited d-d transition metal complexes and related systems with
partially filled d-orbitals, such as a transition metal cation embedded in an insulator or
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semiconductor matrix. While d-d transitions are forbidden by symmetry (i.e., all
electronic states are g = gerade in the group Oh to which a ML6 transition metal
complex with six identical monodentate ligands belongs), these transitions can
become weakly allowed by a lower symmetry vibration (u = ungerade), a crystal
defect, or a lattice relaxation. Photon absorption by molecular organic crystals com-
prised of aromatic molecules (e.g., anthracene, tetracene, 1,0-phenanthroline, 2,20-
bipyridine) can give rise to the creation of a F exciton. Alkali halide crystals are also
excellent substances from which F excitons may be generated [1].

1.2 Wannier-Mott excitons

In contrast to F excitons, which are characterized by small dielectric constants, the
dielectric constants of WM excitons in many semiconductor systems can be quite
large.

KWM >KF: (5)

This results in a reduction of the Coulomb force between the electron and the hole
and a consequent increase in the exciton radius in WM systems, such that the exciton
radius may well become larger than the lattice spacing. The low effective mass of the
electrons in a WM exciton is typical of semiconductors. For example, in the semicon-
ductor gallium arsenide, GaAs, the relative permittivity is K = 12.8, the electron mass
is me = 0.067mo, and the hole mass is mh = 0.2mo where the electron rest mass is
mo = 9.109 � 10�31 kg. WM excitons are primarily found in semiconductor crystals.
These crystals are characterized by a small conduction-valence band energy gap ΔECV

and high dielectric constant K. However, some WM excitons have been observed in
liquids such as liquid Xe. In the literature, these excitons may also be referred to as
large excitons [1].

1.3 Mixed WM and F excitons

A mixture of WM and F character may be observed in those excitons produced in
single wall carbon nanotubes (SWCNTs). This situation arises because the dielectric
function K of the nanotube is sufficiently large to allow the spatial aspect of the
wavefunction to extend over one to several nm along the tube axis. If the screening in
the dielectric or vacuum environment outside the nanotube is poor, large binding
energies (0.4 eV to 1.0 eV) may be observed [1].

Figure 1.
F exciton in a lattice, showing the displaced electron in red and the hole in blue. The distance between the electron
and hole in Eq. (2) is r. Image from public domain.
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2. Ultrafast time-dependent photoluminescence and excitation
spectroscopy of excitons: introduction

The classic spectroscopic probes of exciton structure and dynamics in many-body
systems are steady-state PL spectroscopy, steady-state PL excitation spectroscopy,
and steady state excitation spectroscopy, all ranging from the ultraviolet (UV) to the
terahertz (THz). Raman and infrared spectroscopy also turn out to be quite useful in
the study of excitons. More recently, many transient PL studies have been reported in
the literature. Especially notable are optical-pump-THz-probe excitations and emis-
sions facilitated by the rapid development of affordable and robust transient THz
spectroscopic technology. For example, transient excitation (TE) spectroscopy was
employed to measure the time-dependent excitation spectra of individual aligned
SWCNTs previously selected and oriented by resonance Raman spectroscopic tech-
niques on metallic SWCNTs (see [2]). Resonance Raman, atomic force microscopy,
and TE were employed in concert on the same nanotube. TE ushers in the possibility
of supplying both spectroscopic and dynamic information on individual SWCNT
systems. These types of time-dependent, multi-spectroscopic measurements on
precision-aligned samples provide the basis for exciting new opportunities that prom-
ise to unravel energy relaxation and energy migration pathways of excitons in metallic
SWCNTs and elucidate the role of the substrate in the spectroscopy and dynamics of
these fascinating materials. This transient femtosecond TE technique is especially
useful when the sample is non-luminescent or only weakly luminescent and PL spec-
troscopy is not a viable option, which is often the case with weakly emitting metallic
SWCNTs [3].

3. Excitons and angle resolved photoemission spectroscopy (ARPES)

Angle resolved photoemission spectroscopy (ARPES) is based on a straightforward
application of Einstein’s photoelectric effect. ARPES is a “photon in electron out”
technique in which an incoming photon collides with a medium, ejecting an electron.
Information about the medium under interrogation by ARPES is extracted from
combined measurements of photon energy and the energy, momentum, and scatter-
ing angle of the ejected electron. ARPES is a valuable technique for the study of
excitons. A beam of white light is generated in a beam line undulator and subse-
quently passed through a tunable grating monochromator to block all output
photons except for those of wavelength λ needed for a specific ARPES specific
experiment [4].

3.1 Excitons and angle time-resolved photoemission spectroscopy (tr-ARPES)

The impressive capabilities of the conventional time-independent, ARPES experi-
ment to elucidate the nature and behavior of exciton systems can be further extended
by the addition of time-resolved capabilities to the widely deployed angle-resolved
capabilities. This addition yields essentially simultaneous time- and angle-resolved
ARPES (tr-ARPES). Stroboscopic time resolution extends down to the ultrafast fem-
tosecond (10�15 s) domain, providing high resolution temporal snapshots of exciton
dynamics [5].
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4. Linear and circular polarizations of exciton photoluminescence

Measuring the linearly polarized and circularly polarized PL spectra of an excitonic
system can yield valuable information about the nature of the exciton from which the
emission emerges. Simultaneous measurement of exciton PL spectra as a function of
time, temperature, polarization, and pressure can provide exciting new insights
regarding the nature of excitonic systems. Dynamic polarization measurements now
exist that rely on an optical photoelastic modulator and a 1/4 wave plate to extract
polarization-dependent spectral features. For example, circular polarized lumines-
cence has been used to probe exciton coherence in disordered helical aggregates [6].

5. Temperature-dependence of excitons

The temperature dependence of exciton systems arises from several causes: PL
intensity shifting, wavelength shifting, and exciton lifetime. The first major change is
typically a decrease in PL intensity as the temperature is raised. Also, as temperature
increases, there is a slight redshift of the peak wavelength. Finally, as temperature
decreases, the lifetime of the exciton increases.

5.1 Changing photoluminescence intensity (Arrhenius formula)

I Tð Þ ¼ I0

1þ Ae
�Ea
kBT

(6)

The Arrhenius formula (Eq. 6) connects intensity, I(T), of the PL at a given
temperature for a specific material to the temperature T. I0 is the PL intensity at 0
Kelvin (K), Ea is the activation energy due to thermal quenching, A is a constant, and
kB is the Boltzmann constant. This formula shows that as temperature decreases, the
PL intensity of the exciton increases [7].

5.2 Temperature dependence of PL wavelength (Varshni formula)

The Varshni formula describes the relationship between energy band gap Eg and
temperature T.

Eg Tð Þ ¼ Eg 0ð Þ � αT2

β þ T
(7)

The graph of Eq. (7) (Figure 2) shows the correlation between Eg and T. Recall
that Eg(0) is the gap in energy between the bound state and the free state, α is the
temperature coefficient, and β is the approximation to the Debye temperature. Note
that the equation is only for materials that have a non-zero band gap, as is seen in
some semiconductors. This shows that as temperature increases, the band gap
becomes less restrictive, allowing electrons to pass through at a lower energy, causing
the PL band to red-shift. The reason for this is phonon-exciton interactions [7].
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5.3 Exciton lifetime

The lifetime of an exciton is determined by its size and the temperature. An
increase in temperature will increase the decay rate regardless of the size. A larger
exciton will have a faster decay rate than a smaller exciton at the same temperature.
A difference in size means a difference in surface-to-volume ratio; as the diameter
decreases linearly, the volume decreases exponentially. However, because of the
exponential decrease in volume, this increases the surface area to volume ratio,
resulting in a slower decay rate for smaller diameter excitons. Regardless of size, as the
temperature increases, the lifetime of an exciton decreases [7] (Figure 3).

5.4 Phonon-exciton interactions

The total PL emission width is describable as the sum of an inhomogeneous
broadening parameter (Γinh) and several parameters representing homogeneous
broadening arising from acoustic (ΓAC) and optical (ΓLO) phonon-exciton interactions

Figure 2.
Energy band gap (eV) with respect to temperature. Reprinted with permission from reference [8].

Figure 3.
Lifetimes of different sizes of excitons with respect to temperature. Permission requested from reference [9].
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Γ Tð Þ ¼ Γinh þ ΓACT þ ΓLO e
ELO
kBT � 1

� ��1

(8)

where Γ(T) is the overall broadening parameter at temperature T, and ELO is the
longitudinal optical phonon energy [10].

6. Pressure modulation of exciton PL in the ultrafast femtosecond time
domain

Recently, ultrafast femtosecond spectroscopic techniques have been adapted to
produce pressure modulation of structure and exciton kinetics in the 1 � 15.45 GPa
range in two-dimensional (2D) halide perovskites (see [11]). A time-resolved ultrafast
femtosecond PL investigation of excitonic systems as a function of pressure at low
temperature has also been reported, along with pressure-tuned photon emission of
trions and excitons in monolayer MoSe2 in a diamond anvil cell (DAC) [12]. Work has
also been done regarding pressure-induced ultrafast spectroscopic dynamics study of
excitons in stretch-oriented poly(p-phenylenevinylene) (PPV) (see [13]).

7. Graphene and low-dimensional materials

Over the past two decades, graphene has emerged as one of the most interesting
materials in carbon science, due to its chemical and thermal stability, mechanical
flexibility, and high electron mobility [14]. Graphene is very similar to, and in fact a
derivative of, the more common material, graphite (Figure 4). Graphene is a 2D sheet
of carbon atoms arranged in a hexagonal honeycomb pattern, and graphite is the
combination of many of these graphene sheets stacked on top of each other [15, 16].
Decades before this structure was ever realized in the real world, theoreticians coined
the term “graphene” for these then imaginary 2D sheets. It was 17 years later, in 2004,
that researchers Geim and Novoslov first synthesized the material at Manchester
University, a feat for which they were awarded the Nobel Prize in Physics in 2010
[15, 17]. The low-dimensional nature of graphene, carbon nanotubes, and graphene

Figure 4.
A structural comparison of graphite and graphene. Reprinted with permission from Techinstro.
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quantum dots (GQDs) gives rise to unusual optical phenomena that can be interro-
gated using PL spectroscopy [18].

7.1 Two-dimensional graphene

Femtosecond laser irradiation of graphene has produced unique spectra that have
significant blue-shifted components, which is noteworthy due to the contrast between
graphene’s spectra and the spectra of traditional materials, whose spectra are normally
dominated by their red-shifted components. This is due to the energy range that
excitons formed by the irradiation populate. The photon collision initially creates
excitons in graphene’s conduction band at an energy E0 of

E0 ¼ ℏω0

2
¼ hν0

2
(9)

where ω0 is the angular frequency of the photon and ν0 is the photon frequency.
The excitons are then able to disperse throughout an energy of level from 0 to 2E0, due
to graphene’s zero-band-gap. Exciton recombination in the in the range from E0 to 2E0

then produces blue-shifted photons. The 2D nature of graphene is the source of its
zero-band-gap, and thus is the source of its strange PL spectra [18].

7.2 One-dimensional carbon nanotubes

There are three types of carbon nanotubes (CNTs): SWCNTs that are made up of
one graphene wall, double-walled carbon nanotubes (DWCNTs) that consist of two
graphene walls with one on the outside of the other, and multiwalled carbon
nanotubes (MWCNTs), which have three or more graphene walls [19] stacked
together concentrically (Figure 5). SWCNTs are quasi-one-dimensional [20] and can
vary in structure; their geometry is determined by the chiral indices (n,m) [21] which
specify the perimeter vector (chiral vector), of the CNT. The perimeter vector of a
SWCNT is defined by

Â ¼ n, mð Þ ¼ nâ1 þmâ2 (10)

Figure 5.
Structure of a SWCNT and how multiple nanotube layers fit together to form a MWCNT. Reprinted with
permission from cheaptubes.com.
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where Â, is the perimeter vector and (n m) are the chiral indices, and â1 and â2 are
basis vectors. The magnitude A is

A ¼ a0 n2 þm2 þ nm
� �1=2

(11)

where a0 is a basis vector of the graphene net and a0 = 0.246 nm [22].
SWCNT PL originates in the lowest-energy band edge exciton state, but by

obtaining and observing SWCNTs of increasing diameter, there is a possibility to tune
PL to higher wavelengths [21]. Doing so results in an overall better understanding of
SWCNTs. The diameter d of a SWCNT is [22]

d ¼ A
π
� a0

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
(12)

The challenge in tuning PL to higher frequency is finding a red-shifted wavelength
that works, since there is a broad diversity of nanotube structures generated in typical
synthesis procedures [21]. This is because SWCNTs are highly sensitive to the cou-
pling with their environment which can have a dramatic impact on their electronic
and optical properties. One of the most sensitive explorations of such environment-
induced effects is the luminescence of semiconducting SWCNTs [23]. The structure
variance is important to note because some structures are easier to study and there
have been advancements made for selective growth of some structures but not others.

Recent advances in SWCNT separations have provided multiple different avenues
that generate high-yielding, high-volume samples with single chirality purities of 90% or
higher, which has allowed for accelerated progress in the understanding and control of
nanotube photophysics [21]. Recently, chemical doping using local chemical functiona-
lization, which is a type of local defect doping, has allowed for the enhancement of the
near-infrared (NIR) PL from SWCNTs [19]. Chemical doping changes the crystalline
structure of the nanotube, thus shifting the PL of the CNT. For example, oxygen doping
in SWCNTs produces a much greater red-shifted and bright PL compared to the original
SWCNT PL [21]. Oxygen-doping is performed to regulate the PL properties of SWCNTs
by introducing luminescent defects on them. Luminescent defects are deviations in the
atomic arrangement that change the periodicity of the luminescence. Oxygen-doped
infrared SWCNTs (lf-SWCNTs) exhibit a PL with a high quantum efficiency in the
wavelength (photon energy) range of 100–200 nm longer than the intrinsic first sub-
band exciton PL peak of the original, pure SWCNTs (Figure 6) [19].

A reduced band gap and exciton energy of the dopant-induced local states is the
cause of the red-shifted PL feature of the doped nanotubes. The red shift caused by
oxygen doping can be clearly seen through brighter PL exhibited by the oxygen-doped
If-SWCNT (Figure 6).

7.3 Zero-dimensional graphene quantum dots

Graphene quantum dots (GQDs) display some of the most interesting
photoluminescent qualities, due to their zero-dimensional (0D) nature. GQDs are a
type of carbon dot that are typically less than 100 nm in diameter, a size so small that
they are practically 0D, and have an internal graphene lattice [24]. They are a rela-
tively new material; the first synthesis of them was performed by Ponomarenko and
Geim in 2008, just 4 years after graphene was first synthesized [17]. Because of their
infinitesimally small size, carriers (which become excitons when optically excited)
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within them are said to be confined, since the size of the particle is similar to the Bohr
radius of the carrier, which depends on the material [25]. Current quantum confine-
ment theory generalizes that, the smaller the particle, the more blue-shifted its PL
spectrum will be [24]. GQDs, however, seem to be an exception to this rule. It has
been shown that larger GQDs, on the scale of 60 nm, emit stronger PL in the blue
region than smaller GQDs, on the scale of 1.5–5 nm, do.

This strange phenomenon does have an explanation, though, owing to excitons
and the unique surface geometry of GQDs. There are two different kinds of excitons
that are involved in the PL spectra of GQDs: interior excitons, which are confined in
the whole of the QD, and surface excitons, which are confined in edge microstructures
on the surface of GQDs. The geometry of GQDs is not as neat as Figure 7 depicts;
rather, the edges of these nanostructures are irregular and take their own shapes,
which can change depending on the environment the GQD is in. These edge micro-
structures have their own localized excitons, which are confined even further than the
interior excitons in the body of the GQD. Since these excitons are confined so
severely, it follows from quantum confinement theory that they would cause a signif-
icant blue shift in the PL spectrum. Larger GQDs are more affected by this simply
because they have more surface area than the smaller GQDs, and therefore more edge
microstructures that can confine their own excitons [14].

Figure 7.
WM exciton showing movement in a crystal lattice. Image from public domain.

Figure 6.
PL spectral changes of semiconducting (6,5) SWCNTs dispersed in ozone-containing water after UV irradiation.
The photon energy of the PL peak labeled (6,5)* corresponds to red-shifted PL peak of the doped (6,5) SWCNTs.
Permission requested from reference [19].

94

Recent Topics and Innovations in Quantum Field Theory



8. Bose-Einstein condensation

Excitons are the quanta of excitation of a medium and are composite particles
made of an electron in the conduction band paired with a hole in the valence band.
Both the hole and the electron are fermions, meaning they follow the Pauli exclusion
principle. However, at sufficiently low density approaching the dilute limit, the parti-
cles are spaced far enough to act as a gas of bosons and may undergo a phenomenon
known as Bose-Einstein Condensation. At high density and extremely low tempera-
tures, around 0 K to 10 K, this process can occur spontaneously. Bose-Einstein con-
densation occurs when bosonic atoms or particles have a quantum wavelength on the
same order as their spacing. This occurs at temperatures near 0 K and at sufficiently
high density, where the spacing approaches the Bohr radius of the particle, upon
which the excitons all occupy one quantum state and transition phases into a Bose-
Einstein condensate. Then, each exciton has the same energy, and the entire system is
one macroscopic quantum wave function. This coherence of state is like the single
state of a laser. Bose-Einstein condensation can be used to create spontaneous coher-
ence of a single state in semiconductor, like excitation by a laser. The electron–hole
pairs in semiconductors may cohere into a Bose-Einstein condensate at low tempera-
tures, minimizing resistance [26–29].

9. Conclusion

Investigations of exciton systems represent one of the fastest growing, multiface-
ted, and productive areas of modern solid state physics and material science. Particu-
larly noteworthy in this regard is the deployment of state-of-the-art spectroscopic
techniques (e.g., tr-ARPES and femtosecond optical spectroscopy) to better elucidate
the structural, dynamical, and quantum mechanical properties of exciton systems.
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