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Preface

Autonomous mobile mapping robots produce digitized maps of their environment and 
are typically equipped with lidar, a camera, an inertial measurement unit, odometry, 
and sometimes GNSS for precise positioning. One of the challenges for these machines 
is simultaneous localization and mapping (SLAM), which is regarded as a “chicken and 
egg” problem: on one hand, the robot needs to be aware of its trajectory in order to con-
struct a map; on the other hand, it needs to know the map in order to perform localiza-
tion. There are several types of robots: unmanned ground vehicles (UGV), unmanned 
aerial vehicles (UAV), and unmanned surface vehicles (USV). Recent research has 
tended to equip all these robots with the same sensory setups, enabling common SLAM 
technology to be applied in all domains: air, ground, underground, and surface.

Air and surface applications can use GNSS and GPS efficiently, as there are usually no 
obstacles. The biggest challenge for autonomous mobile mapping ground robots is to com-
bine all functionalities in a common framework, enabling missions to be executed without 
collisions with obstacles. Another important challenge is the limited mobility of wheeled 
robots. Recent work on ledge-climbing robots shows that these robots are capable of 
performing complex autonomous mapping missions, such as underground mining map-
ping, nuclear plant mapping, and many others. Thus, ledge-climbing robots are desirable 
for ground and underground autonomous mobile mapping tasks. In the air, the problem of 
obstacles affecting the mission is not present. Recent commercial drones are capable of col-
lecting data autonomously or even performing SLAM on board. Challenges remain, such 
as underground mapping using drones. Fortunately, recent advances in on-board on-line 
lidar odometry provide efficient solutions for localization in hazardous environments.

This book consists of eight chapters in four sections. Following an introduction, the 
first section investigates alternative approaches to mobile 3D scanning. The second 
section considers key software components used for building autonomous mobile 
robots, including lidar odometry, loop closure, pose graph SLAM, map refinement, 
path planning, and coverage algorithms. The third section discusses multi-robot map-
ping approaches and scalable algorithms used in SLAM. The fourth section describes 
important urban search and rescue applications of aerial 3D mapping and automotive 
SLAM in urban environments.

I would like to thank Prof. Andreas Nuechter and Prof. Piotr Skczypczyński for their 
detailed contributions on real-world experiments.

Janusz Będkowski
Polish Academy of Science, 

Institute of Fundamental Technological Research IPPT,
Warsaw, Poland
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Chapter 1

Introductory Chapter: Autonomous 
Mobile Mapping Robots – Current 
State and Future Real-World 
Challenges
Janusz Będkowski

1. Introduction

The concept of autonomous mobile mapping robots is composed of many  
technological advances, such as AI (Artificial Intelligence), sensors, locomotion, path 
planning, and data fusion. A great example of the research journey to autonomous 
robots is the autonomous car concept related to a certain level of autonomy. The first 
level assumes the driver support functionalities improving overall safety and the last 
level of autonomy assumes no driving wheel inside the vehicle. Obviously, mapping 
the world by single car is rather impossible due to the coverage required to build such 
digital representation. For this reason, autonomous cars will use existing maps and, 
if necessary, they will provide updates to them. A great example of an autonomous 
mobile mapping robot is a drone capable of executing flying missions and delivering 
data for further offline 3D map processing. This robot flies autonomously truth a 
predefined path and records all necessary data. Most of these robots are not capable 
of avoiding obstacles, but it is not relevant since the sky is rather empty space in most 
of the applications. Another example of an autonomous mobile machine is a cleaning 
robot performing cleaning mission on a predefined path. In this application, robot 
could be equipped with AI (Artificial Intelligence) capability to redefine the path 
according to sudden events, such as obstacle, not defined dirt on the path, etc. Most 
of the potential applications of the autonomous mobile mapping robots are related 
with the scenarios where human activities have to be reduced or even impossible to 
perform, such as space exploration or NPP (Nuclear Power Plant) inspection, during 
high radiation determined by accident.

Recent advances in robotic perception, such as non-repetitive scan pattern lidars 
[1], show a great decrease in the lidar cost, making it an affordable solution for 
massive autonomous robotic mobile mapping applications, such as aerial 3D map-
ping [2]. Non-repetitive scan pattern lidars are comparable with multi-beam lidars 
within the context of accuracy and temporal stability [3]. It is evident in the literature 
a great interest in this affordable perception plays an important role in expanding 
building 3D maps [4] in many applications. During last years, it was not so obvious 
that these narrow field-of-view lidars will be competitive with multi-beam lidars. Due 
to an integrated IMU (Inertial Measurement Unit), it is possible to perform online 
lidar odometry [5] without any additional engineering effort. Thus, recent advances 
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in mobile mapping algorithms show great improvement in lidar 3D mapping even 
looking from the perspective of other applications such ADAS (Advanced Driver 
Assistance Systems) [6] (related to future autonomous driving).

Autonomous mobile mapping robots play important roles in many commercial appli-
cations, such as aerial mapping, underground mapping, search and rescue applications, 
space exploration, delivery robotics, and many others. These applications produce 3D 
maps with the trajectory as a core component. A trajectory is a set of consecutive poses 
(translation and rotation) with timestamps. These timestamps are crucial for retrieving 
poses for every measurement. Once we have the trajectory and calibration parameters 
of the mounted sensors (lidars, IMU, and cameras), it is possible to reconstruct the 
map. It is important to mention that we do not consider that the single source of truth 
(e.g., derived from GNSS signal) exists, thus a SLAM (Simultaneous Localization and 
Mapping) problem-solving is considered. Obviously, on one hand, we can consider 
GNSS as ground truth, on the other hand, we can find in the literature a comprehensive 
study that such a single source of truth can be improved by a data fusion approach [7]. 
Autonomous mobile robots equipped with multi-modal sensors (lidar, camera, and 
IMU) should consider the fact that a single source of truth does not exist, thus these 
machines should be equipped with the capability of data fusion. This solution provides 
an optimal result by combining trajectory calibration, observations, and maps.

2. Historical perspective

The core component of the autonomous mobile mapping robot is SLAM capa-
bility [8, 9]. The term SLAM [4, 5] corresponds to the so-called “chicken and egg 
dilemma”—what was first the chicken or the egg? For this reason, at the same time, 
robot should be equipped with efficient map representation to localize within this 
map, and at the same time the robot should provide accurate localization for building 
the map. SLAM is considered as an already solved mathematical problem, but it is 
evident looking at many robotic challenges that an efficient implementation does not 
exist. Recent advances in lidar technology show a great positive impact.

3. Real-world challenge

Mapping of large constriction sites and large urban buildings is a potential 
application for autonomous mobile mapping robots. An example is the boiling water 
reactor of the Zwentendorf Nuclear Power Plant (NPP Zwentendorf, Figure 1), which 
is the world’s only nuclear power plant that has been completed but never put into 
operation. Thanks to EnRiCH [10] robotic trial it is evident that Zwentendorf areas 
are easily accessible, which in other NPPs can only be visited under severe difficulties. 
In active nuclear power plants extensive safety precautions are needed for human 
personnel due to the high level of radioactivity. Instead, in the NPP Zwentendorf 
engineers have transformed the plant and turbine halls into a training facility. Repair 
and dismantling measures but also critical incidents and disaster scenarios can be 
trained under realistic conditions, also autonomous mobile mapping robots are tested 
once every 2 years in so-called EnRiCH—European Robotics Hackathon [10].

To demonstrate the complexity of the mapping challenge Figure 2 shows photos 
from a mapping survey performed with an affordable mobile mapping backpack 
system [11]. Figure 3 shows that more than three-kilometer length trajectory is 
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required to cover the entire scene. The result of the mapping—registered 3D point 
cloud representing the Zwentendorf Nuclear Power Plant is shown in Figures 4 and 5.

This challenge shows fundamental requirements for an autonomous mobile 
mapping robot that should be capable traverse a 3.5 km length trajectory, including 15 
levels of stair. At the current stage of robotic technology, only a swarm of ground and 
air robots can reach such a level of autonomy and coverage.

4. Conclusion

On one hand, we can observe that SLAM problem is already solved, on other hand 
many real-world challenges [12, 13] in autonomous mobile mapping robots prove 

Figure 1. 
Large urban building—the boiling water reactor of the Zwentendorf Nuclear Power Plant.

Figure 2. 
Mapping survey performed with an affordable mobile mapping backpack system [11].
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great interest in this domain. The main problem is the cost of the robot capable of per-
forming missions in hazardous environments. For this reason, this research activity is 
not so popular, therefore the technological improvements are rather incremental than 
revolutionary. An opportunity is in the autonomous car driving domain and delivery 

Figure 5. 
Result of the mapping—registered 3D point cloud representing the Zwentendorf Nuclear Power Plant.

Figure 3. 
The more than three-kilometer length trajectory required to cover the entire scene of the Zwentendorf Nuclear 
Power Plant.

Figure 4. 
Perspective and top view, the result of the mapping—registered 3D point cloud representing the Zwentendorf 
Nuclear Power Plant.
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robotics since it requires collecting high volume, large scope data, and executing 
SLAM by many agents. To conclude, autonomous mobile mapping robots are fascinat-
ing and require many efforts to deliver satisfactory results.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 2

Unconventional Trajectories for
Mobile 3D Scanning and Mapping
Fabian Arzberger, Jasper Zevering, Anton Bredenbeck,
Dorit Borrmann and Andreas Nüchter

Abstract

State-of-the-art LiDAR-based 3D scanning and mapping systems focus on scenarios
where good sensing coverage is ensured, such as drones, wheeled robots, cars, or
backpack-mounted systems. However, in some scenarios more unconventional sensor
trajectories come naturally, e.g., rolling, descending, or oscillating back and forth, but
the literature on these is relatively sparse. As a result, most implementations developed
in the past are not able to solve the SLAM problem in such conditions. In this chapter,
we propose a robust offline-batch SLAM system that is able to address more challenging
trajectories, which are characterized by weak angles of incidence and limited FOV while
scanning. The proposed SLAM system is an upgraded version of our previous work and
takes as input the raw points and prior pose estimates, yet the latter are subject to large
amounts of drift. Our approach is a two-staged algorithm where in the first stage coarse
alignment is fast achieved by matching planar polygons. In the second stage, we utilize a
graph-based SLAM algorithm for further refinement. We evaluate the mapping accu-
racy of the algorithm on our own recorded datasets using high-resolution ground truth
maps, which are available from a TLS.

Keywords: 3D LiDAR, mobile mapping, scanning, spherical robot, pendulum,
descent, small FOV, Livox, Intel, RealSense

1. Introduction

Mobile systems increasingly gain astonishing capabilities when it comes to 3D
sensing, mapping, and environment reconstruction (Figure 1). Nowadays, there exist
many mobile systems in different shapes and sizes that are able to perform these tasks,
e.g., drones, wheeled or tracked robots, or backpack-mounted systems, just to name a
few. A key aspect of fulfilling their purpose is the estimation of the systems inertial
frame of reference, i.e., the systems local coordinate system, with respect to a global
reference frame. This global reference frame has an origin somewhere in the respec-
tive environment and is usually initialized with the systems starting position and
orientation (pose). By expressing the local measurements in the global frame, the
system is able to create a map of the environment whilst localizing itself in it. This
process is called simultaneous localization and mapping (SLAM), and only works if
the initial pose estimation of the system is sufficiently accurate. The types of robot

9



designs mentioned earlier are often favored since they have access to quite accurate
prior pose estimates (GNSS, odometry, visual odometry, etc.) and reliable coverage
while sensing the environment with cameras or laser scanners. In such conditions, it is
typically easy to perform laser-based SLAM, either online (for autonomous mobile
robots) or as a post-processing step. Yet, there are still many situations where condi-
tions are poor, inferring uncertainties to prior pose estimates and thus degrading
SLAM performance. Visual feature tracking with a camera, for example, only works in
good lighting situations, and GNSS might not be available. Using IMUs as the only
pose estimation device usually is also not an option, due to the large accumulation of
measurement errors caused by noise and drift which makes position estimation diffi-
cult. Even high-end devices, e.g. in aviation systems, must be combined with other
references like GNSS in order to be reliable. The ability of LiDAR-based SLAM algo-
rithms to deal with degradation puts constraints on current mobile system designs, as
well as their applications. Therefore, extending the capabilities of SLAM algorithms to
more unusual scenarios opens up interesting design choices for mobile systems, espe-
cially in hazardous environments. The intention of this chapter is to provide a general
and robust LiDAR-based solution for the SLAM problem, which is independent with
respect to the executed trajectories and sensor setups. We note the utilization of a
Livox Mid-40 scanner, which is considered a solid-state LiDAR in [1]. Yet in [2], the
family of Livox scanners is only considered to be “semi solid-state” LiDARs, due to
their non-repetitive scanning pattern. Solid-state LiDAR got a lot of attention in the
past years due to “their superiority in cost, reliability, and [… ] performance against
the conventional mechanical spinning LiDARs [… ]” [3]. While traditional LiDAR is
based on electro-mechanic parts which move the sensor head, solid-state LiDAR relies
on micro-electro-mechanical systems (MEMS), optical-phase arrays (OPA), or Risley
prisms. Despite their potential advantages, solid-state laser-scanners impose new
challenges for established SLAM algorithms, e.g., small FOV, an irregular scanning
pattern with non-repetitive scanning which makes feature extraction more difficult,
and increased motion blur. In this work, we address these challenges by making the
assumption that planar structures are available in the environment. Due to the utili-
zation of planes, the envisioned applications are in human-made environments, e.g.,
old buildings that are in danger of collapsing, narrow underground tunnels, construc-
tion sites, or mining shafts. Many mobile mapping systems present in the current
literature have access to accurate pose estimates, as well as good sensing coverage.
We present four notably interesting experimental setups which do not meet those

Figure 1.
(Left) post-processed 3D point cloud acquired by a sensor that is rotating freely while being descended with a crane
from a fire truck. Prior pose estimates are available from three IMUs and an angular encoder, which encodes the
rotation of the cable reel. (Center) the firetruck. (Right) the sensor, which is mounted to the crane of the firetruck.
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conditions. The main sensor in each scenario is a LIVOX MID-100 laser scanner,
which is inconvenient due to its limited FOV and unique scanning pattern. Figure 2
illustrates the different executed motions. (1) We descent a freely rotating 3D sensor
from a crane. Prior pose estimates are available from three IMUs and a rotary encoder
on the cable reel. (2) Further, we use the sensor as a pendulum, oscillating back and
forth while walking. The robot obtains prior pose estimates from a T265 tracking
camera, which uses its own internal IMU. (3) Moreover, we roll the sensor around on
flat ground. An IMU-only-based approach with three units estimates the pose of the
system [4]. The approach combines two popular filters (Madgwick- and
Complementary-filter) and estimates the position by relating the rotational velocity
and radius of the sphere to its traveled distance. Further constraints are present in the
filter to account for slippage and sliding effects of the sphere. (4) Finally, we repeat
the previous experiment but substitute the 3D sensor with a 2D sensor, which mea-
sures parts of the environment in planar slices. Rotating the planar slice thus results in

Figure 2.
Illustration of the executed sensor trajectories (left) and images of system setups during operation (right).
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a 3D reconstruction of the scene. For pose estimates, we use a rotary encoder and a
single IMU. Section 4 describes all experimental setups in more detail. The prior pose
estimates are subject to a significant amount of noise and drift. Some scenarios are
more difficult than others since the robot locomotion mechanism causes the sensor to
move in five, or even all six degrees of freedom (DOF). In this work, we refine our
offline-batch SLAM system from [5] to make it more robust, such that it is able to
address the unfavorable conditions imposed by more challenging trajectories. Section
3 introduces the two-staged SLAM algorithm, where the first stage uses a polygon-
based approach for a fast coarse alignment, and a graph-based method in the second
stage for slow further refinement. We evaluate the accuracy of the resulting maps by
means of ground truth point clouds, which are available from high precise terrestrial
laser scanning (TLS). Note that in this initial study, no trajectory ground truth has
been recorded. This is a task for future work. In particular, the contributions of this
work are as follows:

• Fixing the open problem mentioned in previous work [5], where after the
application of the SLAM algorithm the resulting trajectories were jagged instead
of smooth.

• Reducing the number of hyperparameters for our SLAM algorithm [5] by seven,
without the sacrifice of flexibility or performance. We achieve this by
substituting the iterative optimization using AdaDelta with a closed-form
solution based on singular value decomposition (SVD).

• Introducing major technical improvements regarding our SLAM procedure from
previous work [5], which increase the robustness of the algorithm. These include
the substitution of the local planar clustering (LPC) with a different plane
detection framework according to [6], as well as the implementation of a simple
global plane model that builds up sequentially as new range measurements arrive.

• Introducing a globally consistent graph-based method, “semi-rigid SLAM,”
according to [7] as an additional post-processing step, to further decrease the
amount of accumulated registration errors.

• Publishing the challenging datasets themselves, as we encourage readers to try
their own SLAM algorithms on them. A more detailed description of the datasets
is found in Section 4.

2. Related work

Many state of the art 3D scanning and mapping approaches for mobile systems are
based on wheeled robots, drones, or backpack-mounted solutions. On the other hand,
the literature regarding mobile mapping systems with more unconventional trajecto-
ries is relatively sparse. In the most recent past, our lab has addressed the subject more
frequently with the “RADial LasER scanning device” (RADLER) [8], the “Laser-
Mapping Unidirectional Navigation Actuator” (L.U.N.A.) [9], and another publica-
tion regarding rolling 3D sensors in human-made environments [5]. RADLER is a
modified unicycle where a SICK LMS141 2D scanner is fixed to the wheel. As far as we
know it was one of the first systems where the same rotation that is used for
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locomotion is also utilized to actuate the sensor. L.U.N.A. extends this idea by
employing a self-actuated locomotion approach using internal flywheels. Another
noticeable trend, despite being only a concept so far, is the European Space Agency’s
(ESA) interest in spherical robots capable of SLAM, called DAEDALUS [10]. In their
Concurrent Design Facility (CDF) study, we developed a mission to autonomously
explore underground caves and lava tubes on the moon with DAEDALUS [11], which
emphasizes the potential of this type of system design for hazardous environments.
More examples of scanning mobile systems with unconventional trajectories include
Zebedee [12], a handheld 2D range scanner mounted on a spring that estimates its
pose using an IMU, or VILMA [13], an IMU-less rolling system that uses only range
measurements for localization. It later advanced into a commercial solution called
“ZEB-Revo” [14]. Leica also provides a handheld sensor for mobile mapping purposes
with their BLK2GO [15]. Alismail and Browning [16] provide a marker-less calibration
procedure for spinning actuated laser scanners, where the extrinsic parameters with
respect to the spinning axis are estimated. In this initial study, we go without fine
calibration of extrinsic as the constant calibration errors are less significant than the
errors introduced by the factors stated in the previous section. In terms of laser-based
SLAM, many algorithms for 6 DOF are available, often based on the well-known
Iterative-Closest-Point (ICP) algorithm [17]. Lu and Milos [18] derive a graph-based
2D variant that considers all scans simultaneously in a global fashion. Later, their
approach got adopted for 3D point clouds in 6 DOF [19] and extended further to a
semi-rigid continuous-time method [7]. This is the method we use in this work as an
additional post-registration step, to reduce the amount of accumulated errors during
the first scan-matching stage. Another recent continuous-time graph-based frame-
work is “IN2LAAMA” [20], which is able to perform localization, mapping, and
extrinsic calibration between a laser-scanner and IMU at the same time. It is an
offline-batch method optimized for 360° FOV multichannel LiDAR devices and has
been extensively tested with a Velodyne VLP-16, yet is not suited for the application
to recently arising solid state laser-scanners. There also exist continuous-time graph-
based online methods, such as [21] which organize and optimize the system poses
using a multilevel hierarchical graph. This method achieves comparable accuracy as
similar offline-batch methods by means of multiresolution surfel-based registration.
However, the approach is also optimized for traditional multichannel laser scanners
and has been tested on carefully controlled micro aerial vehicles (MAVs), which
ensures good coverage. More approaches to laser-based SLAM exist that do not rely
solely on point-to-point optimization as ICP does. Popular model-based optimization
methods often deal with finding planes in the environment, as considering planes is
more robust to outliers and noise than considering only points. In Ref. [22], Förster
et al. successfully use plane-to-plane correspondences for optimization. Their
approach assumes that planar patches got pre-extracted from the point cloud with a
method of choice, and incorporates possible uncertainties in the plane model. Further
recent examples of laser-based SLAM approaches making use of the existence of
planes include [23–26]. Similar registration procedures to ours are [27], which uses
plane-to-plane correspondences for pre-registration and point-to-plane correspon-
dences afterward, and [28], which uses point-to-point, as well as plane-to-plane
correspondences based on their availability. Two more recent and very interesting
SLAM approaches which specialize more on the massivley produced LiVOX devices,
are “Loam-livox” [3] and “Livox-mapping” [29]. The former is based on the well-
known LOAM [30] algorithm, while the latter is provided directly by Livox. Both
have been especially optimized for small FOV devices and offer a feature extraction
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approach which is suitable for the never repeating, flower-shaped scanning pattern.
However, they have been designed with the intention of using them for autonomous
driving cars, which follow simpler trajectories compared to this work.

3. SLAM approach

To address the unconventional trajectories, we use a flexible two-staged SLAM
approach, which is described in this section. We initially proposed a version of the
first stage in [5]. The approach is based on finding planar polygons in the scans and
matching them against a global model. In this section, we build upon our previous
work and introduce several changes. The second stage of our algorithm is “Semi-Rigid
SLAM” [7], which further decreases accumulated registration error from the first
stage. It is a continuous-time method where each frame is optimized simultaneously
using a partially connected pose graph. Figure 3 shows a block diagram representing
the information flow of the SLAM system, including the additions made in this work.
Some basic derivations stay the same (see [5] for further details). Let a point in 3D
space be defined as pi ¼ xi, yi, zi

� �τ. Further, a homogeneous transformation of
that point along the translation t ¼ tx, ty, tz

� �τ and rotation defined using the
roll-pitch-yaw (φ� ϑ� ψ) Tait-Brian angles is given:

T pi

� � ¼
xiCϑCψ � yiCϑSψ þ ziSϑ þ tx

xi CφSψ þ CψSφSϑ
� �þ yi CφCψ � SφSϑSψ

� �� ziCϑSφ þ ty
xi SφSψ � CφCψSϑ
� �þ yi CψSφ þ CφSϑSψ

� �þ ziCφCϑ þ tz

2
64

3
75, (1)

where Ca and Sa denote cosine and sine with argument a. Additionally, let a plane
in 3D space be defined as ρk ¼ nρk , aρk

� �
, where nρk is the normal vector of the plane

and aρk is its supporting point. The problem we must solve is an optimization problem,
where the following error function E has to be minimized:

Figure 3.
Overview of the proposed SLAM system. The polygon map represents a set of flat, convex-shaped bounding boxes of
dominant planes. This model is used to find similarities between polygons from subsequent sensor data.
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E Tð Þ ¼
X
ρk

X
pi ∈ ρk

∥nρk � T pi

� �� aρk
� �

∥2 , (2)

Note that point-to-plane correspondences (pi ∈ ρk) have to be available, which we
establish by matching polygons similar to [5]. However, the global polygon model in
this work is not extracted only once as an initialization step, as in our previous work. It
is instead a new global model, which is initialized and then updated sequentially. Our
plane detection approach does also not rely on local planar clustering (LPC) anymore.
The old method is a region-growing-based approach to cluster points with similar
normals, whereas the new approach uses a Hough-transformation (HT) framework as
in Ref. [6]. We describe the abovementioned additions in the following subsections in
more detail.

3.1 Local and global plane model

As mentioned earlier, in our previous work [5], we rely on LPC to identify planes
in each scan, as well as the points that belong to those planes. The approach calculates
normal vectors for each point and clusters them into planar patches based on their
distance and angle. Then, after each point in a scan was potentially identified to
belong to one plane, correspondences have to be established with respect to the global
model. In Ref. [5], we obtain the global model by extracting planes from only a few
initial measurements according to Ref. [6].

In this work, we replace LPC with that same approach [6] to identify planes in
each scan. The new approach is based on a randomized version of the well-known
Hough transformation (see Algorithm 5 in Ref. [6]). After a plane has been identified
in the Hough space, all the points belonging to that plane are considered, and their
convex hull is calculated. However, instead of deleting all the points close to the newly
identified plane, we save them in a point cluster and link it to the corresponding plane.
That way, we are still able to establish point-to-plane correspondences as in our
previous work. Figure 4 illustrates how the extracted planes from each frame are used
to sequentially update the global model. The upper sequence of Figure 4a shows the
abovementioned point clusters with their corresponding planes for different frames.
Note that in the last figure of the sequence, identical planes from the different frames
are merged after registration. The bottom Figure 4b shows the resulting global plane
model, as well as the point cloud after registration of all frames. Merging two planes
works by considering all the points on both convex hulls, and recalculate the convex
hull and normal vector from those points. Note that this is not fully a dynamic model,
as polygons are added sequentially but never refined or even falsified after being
added, leading to registration errors such as duplicate and misaligned walls. Now that
we have a global plane model, as well as planar point clusters in each subsequent
frame, we use the matching function from our previous work [5] to establish corre-
spondences between the two. In the next subsection, we use these correspondences to
minimize Eq. (2).

3.2 Closed-form solution with singular value decomposition

In our previous work [5], the minimization of Eq. (2) is achieved by the AdaDelta
[31] method, which is based on analytical jacobians and stochastical gradient descent
(SGD). However, SGD-based methods require multiple iterations until they converge
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to a solution. Furthermore, a hyperparameter is added for each of the six degrees of
freedom, as well as an additional parameter specifying the maximum number of SGD
iterations before updating correspondences. These parameters are not required any-
more, as we now introduce a closed-form solution based on singular value decompo-
sition (SVD). The first appearance of SVD in the context of point set registration is in
Ref. [32]. The solution assumes that point-to-point correspondences exist, instead of
point-to-plane correspondences. To this end, we must first calculate the projection
point from our source point to the target plane. Therefore, the source point gets
shifted onto the target plane in the direction of the plane’s normal vector. Let D be the
signed distance of the point to the plane in the normal direction:

Di
k ¼ nρk � T pi

� �� aρk
� �

: (3)

Then, the projection point onto the plane is given as:

Pi
k ¼ T pi

� ��Di
k � nρk : (4)

We use this point for point-to-point correspondence. However, we note that Pi
k is

also on the corresponding plane, thus solving the point-to-point problem with SVD
also minimizes our initial Eq. (2). First, we need the correspondence centroids, i.e.,
the centroid of all the plane projection points, and the centroid of all the data points.
Let N be the number of correspondences, then the centroid of plane projections is as
follows:

Figure 4.
Illustration of how the global plane model is obtained and sequentially extended from individual measurements.
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cm ¼ 1
N

X
pi ∈ ρk

Pi
k , (5)

and the centroid of data points is as follows:

cd ¼ 1
N

X
pi ∈ ρk

T pi

� �
: (6)

We set up the real 3x3 correlation matrix M as follows:

M ¼
X
pi ∈ ρk

T pi

� �� cd
� �

Pi
k � cm

� �τ
, (7)

which is decomposed using SVD as follows:

M ¼ UΣVτ : (8)

The interested reader might consider [33] for a detailed description on how the
decomposition works. We set up another real 3x3 rotation matrix R, which solves the
rotation needed to minimize Eq. (2):

R ¼ VUτ : (9)

From this, the translation that minimizes Eq. (2) is calculated as follows:

t ¼ cm � Rcd : (10)

Note that this is a closed-form solution that does not need any hyperparameters. In
contrast, AdaDelta [31] needs a hyperparameter for each of the 6 degrees of freedom
plus an additional parameter for the maximum number of inner iterations.

3.3 Condense and atomize

Our previous work [5] mentions that after the application of the algorithm, i.e., the
first stage in this work, the resulting paths look distorted. This is due to two reasons:
(1) The individual frames are “condensed” into metascans, which are referenced with
only one pose. We call a collection of multiple subsequent scans, which are
represented using a shared coordinate system, a metascan. (2) Some scans do not
contain any points due to minimum scanning range, e.g., when rolling over the floor,
thus they are not optimized. We fix these problems by introducing the inverse oper-
ation to “condense,” which is able to distribute the relative transformation that got
applied to the metascans, back onto the individual scans. This back-distributing oper-
ation is what we call “atomize.” Figure 5 illustrates the process of condensing, regis-
tration in the condensed domain, and atomizing. During the condense operation, one
has to transform all points from different frames in the same reference coordinate
system. Note that we start counting the frames with one. Let J be the number of all
frames, which should be condensed to a total number ofM frames, where M≤ J. Let S
be an arbitrary integer chosen from the interval 1, ⌊ J

M⌋
� �

. The number S defines which
frame we pick as a reference coordinate system for the points from the other scans in
the interval. Next, consider all J frames, given has homogeneous 4x4 matrices,
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H1, H2, ⋯, HS, ⋯, H2S⋯HJ
� �

. The frames with indices m � S (where m≤M) are the
indices of the metascan frames, where all points from the other frames, corresponding
to the same interval, must be transformed in. Thus, the relative transformation
between any single frame with index j≤ J and metascan frame with index m is as
follows:

Hm,j ¼ H�1m�SHj : (11)

We apply this transformation to every point in the j-th frame, for all J frames. Now
we have a total of only M metascan frames Hm�S, i.e., HS, H2S, ⋯, HM�Sf g, which are
input to our first SLAM stage. After the application of the first stage, there are M
optimized frames Ĥm�S, which we denote with a hat. The atomize operation has to
apply the relative pose change between Hm�S and Ĥm�S, back onto the individual scans.
Thus, the new optimized frames for all J original frames are as follows:

Ĥj ¼ Ĥm�SH�1m�S
� �

Hj : (12)

After distributing the relative pose-change onto the individual scans in that way,
the second stage of our approach begins. In the second stage, every individual frame is
considered simultaneously in a pose graph.

3.4 Post-registration with semi-rigid SLAM

In our first SLAM stage, each scan is considered sequentially. That way, the algo-
rithm creates a global plane model of the environment, without the knowledge of
future measurements. This leads to registration inaccuracies during the first stage,
which is why we use a second stage afterward: “Semi-Rigid Registration” (SRR) [7].
The method considers all scans simultaneously in a continuous-time fashion using a
pose graph. In the graph, each pose is represented by a node and is connected via
edges to other poses if the overlap between the corresponding scans is large enough.
After one iteration of the algorithm, SRR re-calculates the edges. Figure 6 illustrates
the behavior of SRR on a dataset recorded by a spherical system rolling on a flat
ground. Section 4.2 describes the experimental setup and evaluation of the dataset. In

Figure 5.
Trajectories are drawn in blue and result from connecting every subsequent pose with a straight line. From left to
right: (1) full point cloud with all initial poses. (2) “condensed” point cloud with only 12 poses. A total of 1000
linescans get combined into one metascan, which has its origin at the pose of the middlest scan. Further, we
subsample and filter the metascans themselves. (3) the point cloud from 2 after registration. Only 12 poses got
optimized in “condensed” domain. (4) full point cloud and all optimized poses after the “atomize” operation,
which is the inverse to “condense.” from the optimized poses in 3, we calculate the relative transformation that has
to be applied to all initial poses.
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the given example, the initial pose estimates are subject to a large amount of drift.
Although SRR has been designed to also reduce such large-scale errors, the method
alone is not able to perform well on more complex trajectories shown in this work.
However, if the input to SRR is already coarsely aligned, the quality of point clouds
and trajectories improves, as shown in Figure 7. The images in the left column show
the resulting point cloud after the application of the first stage. The walls are not
perfectly aligned, yet the side view reveals that the trajectory is planar. In the centered
column, SRR is not able to register the measurements in a meaningful way, using the
initial pose estimates. Moreover, the point cloud and trajectory are less planar. In the
right column, both stages get applied, resulting in better overall map quality. Using
the input from the first stage, the graph-based second stage is able to reduce the
accumulated registration error from the first stage.

3.5 Comparison with ICP

The previous section has demonstrated that using SRR alone is not an option with
the given trajectories. Figure 6 shows how SRR is not able to converge to a meaningful
solution when being applied to a dataset from a rolling spherical system. For this
reason, the input to SRR is usually preregistered using the well-known ICP algorithm.

Figure 6.
Illustration of multiple iterations of “semi-rigid registration” (SRR) [7]. From left to right: (1) resulting point
cloud with initial pose estimations, zero iterations. (2) resulting point cloud after 50 iterations of SRR. (3) after
100 iterations. (4) after 150 iterations.

Figure 7.
Comparison of the first stage, second stage, and first stage followed by the second stage. Upper row: Point clouds in
birds-eye view, with the sliced ceiling. Lower row: Point clouds in side view, aligned to the initial orientation. The
initial input to the algorithms is shown in the most left image in Figure 6. From left to right: (1) first stage only.
(2) second stage (SRR) only. (3) first stage is followed by the second stage.
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The SRR preregistration uses a highly precise metascan implementation, available
from 3DTK—The 3D Toolkit [34]. However, the polygon-based approach
outperformes ICP, which is illustrated in Figure 8. In the images of the left column,
one sees a birds-eye view of the input to both algorithms. The center images show the
resulting point cloud and trajectory after ICP. Due to the given trajectory, the algo-
rithm is not able to establish meaningful point-to-point matches on the dataset, thus
the output is no longer planar. The first stage we present in this work is shown in the
images in the right column. Although some walls are not algined, the result is more
planar and resembles the environment better than the output of ICP. Using this
method before applying SRR leads to a faster convergence and more accurate solution
in the second stage. In the next section, we analyze the accuracy of the resulting maps
qualitatively, as well as quantitatively using high-precise ground truth point clouds.

4. Experiments

In this section, we describe the system setup and procedure of four experiments,
which demonstrate unconventional trajectories. Note that all datasets are available at
http://kos.informatik.uni-osnabrueck.de/3Dscans/. We compare three systems to each
other that have been tested in the same environment. One other system had to be
tested in a different building, which allowed for a long descent from a crane, which we
therefore analyze separately. For our experiments, we use three kinds of motion:
rolling on the ground, moving forward while swinging, and descending while rotat-
ing. All motion profiles were shown previously in Figure 2a. A birds-eye view of the
environments in which the experiments were carried out is illustrated in Figure 9. In
the left image, a square hallway can be seen which we used for the pendulum and
rolling experiments, whereas the right image shows the firefighter school which we
used for the descending experiment. We use the same LiDAR sensor in three experi-
ments: the Livox Mid-100. It produces 300.000 points per second using three beams
that scan in a non-repetitive, flower-shaped fashion, thus point density increases over

Figure 8.
Comparison of point clouds and trajectories after application of different SLAM algorithms. Upper row: Birds-eye
sliced view of the point clouds. Lower row: Side-view of the point clouds, aligned with the initial orientation. From
left to right: (1) initial point cloud and trajectory. (2) after ICP, metascan variant, available in 3DTK—The 3D
toolkit [34]. (3) after the first stage of the proposed method.
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time. Each beam has a circular field of view (FOV) of 38.4°. Thus, three beams aligned
in a row create a vertical FOV of 38.4° and horizontal FOV of 98.4°. The precision at
20-meter scanning distance is 2 cm and the angular accuracy is 0.1°. Further, the
minimum scanning distance of the laser scanner is 1 m and the output frequency is set
to 10 Hz. The maximum output frequency of the sensor is 50 Hz, yet point density
then decreases. In future work, though, we want to test the systems also with 50 Hz
LiDAR frequency. For all setups, a ROS installation on a Raspberry Pi 4 is used for
onboard controlling and recording data. Additionally, we apply the rolling motion to a
SICK LMS141 2D laser scanner with a maximum range of 40 m that operates at a
scanning frequency of 50 Hz and resolution of 0.5°. Here a Raspberry Pi 3 is used for
data collection. Inertial measurements are performed by PhidgetSpatial Precision 3/3/
3 IMUs. The post-processing is performed after the experiments on a separate server.

4.1 Pendulum

As to the pendulum setup the system is equipped with an Intel T265 tracking
camera, which uses a combination of feature tracking and internal IMUs to estimate
its pose. The T265 unfortunately has been discontinued by Intel and is only available
on the secondary market, which increased its price. As a budget alternative, we
consider the Intel T261, which is still available, or performing visual-inertial-
odometry manually, e.g. Intels RealSense-SLAM or VINS-Fusion [35] with Intels
D435i. To test this setup in the hallways of an office-like environment (cf. upper left
image of Figure 2b), we put the sensors inside a trailer net and swing them back and
forth while walking. The movement itself consists of de- and accelerations to the front
and back and slight movements up and down. Depending on the walking speed of the
person, even an overall negative velocity of the sensor is possible if the pendulum
swings faster backward than the person moves forward. Note that the view of the
tracking camera is partially obscured by the trailer net, reflections off the shell, and

Figure 9.
Birds-eye view of the ground truth point clouds, acquired with a terrestrial laser scanner (TLS). The ceiling has
been cropped for a better view. Left: Ground truth point cloud of an office hallway used for the rolling and
pendulum experiments. Right: Ground truth point cloud of the state firefighters school in Würzburg, used for the
descending experiment.
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the thread of the shell. As the camera and laser scanner are mounted near to each other
with the same orientation, we assume that their coordinate systems coincide and thus,
use no external calibration between the two. The duration of this motion was 281 s and
covered a total distance of approx. 162 m (only walking, oscillation not included).

4.2 Rolling on flat surfaces

In this experiment, we put the sensors inside a spherical plastic shell and roll it on a
flat surface manually (cf. bottom left image of Figure 2b). This time there is no
tracking camera included. Rather, rotation, as well as position, estimates come from a
combination of three Phidget 3/3/31044-0b IMUs. We use an IMU filter that is
specialized for pose estimation of spherical robots [4]. The rolling duration was 691 s
and covered the same distance as before of 162 m. Further, a similar experiment has
been executed in the same environment and with the same trajectory, with the
RADLER system as described in [8]. RADLER is a modified unicycle where the 2D
laser scanner is mounted with its scanning plane parallel to the wheel axle thus
creating a radial scanning pattern while rotating.

4.3 Crane descending

Unlike the previous experiments, this one was executed in a different environment
that allowed for a long descent, i.e., in the building of the state firefighters school in
Würzburg. We connected the robot to an outsourced processing machine via a 50 m
tear-resistant tether cable (Fathom ROV Tether by BlueRobotics) which was rolled
around a coil to perform the descending and ascending movement (cf. right image of
Figure 2b). In this experiment, the sensor unrestrictedly rotates around the descending
axis, corresponding to the cable direction. Note that the rotation itself is induced by the
internal twist of the cable, not by any actuators. A spin encoder estimates the position,
as it measures the rotation of the coil which directly corresponds to the height of the
robot according to the helix arc length formula. The descent of the sphere covered a
distance of 22 m and was performed within a duration of 402 s.

5. Evaluation

The resulting point clouds after application of the presented SLAM approach are
now analyzed in terms of their accuracy, which we do by matching them against high-
precise ground-truth models of the environment, given by a RIEGL VZ400 terrestrial
laser scanner (TLS). It has an angular resolution of 0.08° and an accuracy of 5 mm. For
the evaluation, we consider histograms that show a distribution of point-to-point
errors. To create such histograms, we match the resulting point clouds against the
corresponding ground truth maps, using ICP from 3DTK [34]. Then, we create a
three-dimensional difference image by measuring all point-to-point errors. When
calculating the difference images for any dataset, we use an octree-based filter where
the voxels are smaller than 10 cm with a maximum of 5 points. Thus, the resolution of
the different images is the same, i.e., histograms do not depend on point density
anymore and are comparable to each other as long as they have been created for the
same environment. Figure 10 contains three histograms that were created in the office
hallway environment. Broadly speaking, a distribution is better if its tail is short and
its peak is located toward the left, i.e., zero point-to-point error. In particular, the
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quantity of most interest is the distribution mean, as it tells you the average point-to-
point error. The individual histograms correspond to the pendulum, spherical system,
and RADLER results, respectively. From the naked eye, one might suspect that
RADLER performed best, while the spherical system performed worst. The following
sections confirm this statement quantitatively and give a more detailed interpretation
of the results.

Figure 10.
Birds-eye view of point clouds acquired with the different setups. The ceiling has been cropped for a better view. A
profile view showing sensor poses after registration, movement from left to right is also shown. Left column:
Unprocessed point cloud with initial pose estimates, from IMUs and tracking camera (pendulum), IMUs and wheel
encoder (RADLER) and IMUs only (spherical). Center column: Post-processed point cloud after application of
proposed SLAM algorithm. Right column: Histograms showing the occurrences of certain point-to-point errors from
the compared post-processed 3D point clouds to the reference ground truth point cloud. The colors denote distance,
where blue corresponds to zero distance and red corresponds to 50 cm distance or more. (a): Pendulum setup. Mean
point-to-point error is 28.31 cm with peak at 10.94 cm. (b): Spherical system. Mean point-to-point error is
28.70 cm with peak at 11.64 cm. (c): RADLER. Mean point-to-point error is 24.48 cm with peak at 12.10 cm.
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5.1 Pendulum

Figure 10a shows that the initial pose estimations using the Intel T265 tracking
camera is the most accurate, when compared to the methods without feature tracking
(cf. left image of Figure 10b and c). In the other datasets, the IMUs struggle with yaw
angle estimations especially at the corners, whereas here the feature tracking com-
pensates for that. After registration, the map represents the environment better as
before since there are no duplicate corridors left in the point cloud, and the optimized
poses are consistent with the map. Yet the result is not perfect, e.g., the walls appear
thick due to the large amount of motion distortion, the pillars are not perfectly
aligned, and a sizeable duplicate wall remains uncorrected. Note that this is presum-
ably because there is no external calibration between the tracking camera and laser
scanner. Employing such is a task for future work and potentially increases the
mapping accuracy. According to the mean point-to-point error (E) from the histo-
grams in Figure 10, this result (E ¼ 28:31 cm) resembles ground truth better than the
rolling system (E ¼ 28:70 cm), but worse than RADLER (E ¼ 24:48 cm).

5.2 Rolling on flat surfaces

The following sections sum up the results for the mobile systems with rolling
sensor trajectories, i.e., RADLER and the spherical system. As mentioned above,
RADLER has the best similarity to ground truth according to Figure 10, whereas the
spherical system has the worst.

5.2.1 2D LiDAR

Figure 10b presents the results of the experiment with RADLER, which were
carried out in the same environment as before. The left image shows that the initial
pose estimates have significantly more drift compared to the pendulum system, espe-
cially regarding the yaw angle. However, the walls appear thinner, and there is overall
less noise due to the missing shell. After our SLAM, there are a few spots where the
walls are not perfectly aligned, and a lot of noise remains between the walls. In
comparison to the maps created with the pendulum and spherical system, though,
RADLERs result resembles ground truth best. We suppose that this is because
RADLER’s 2D scanner operates at a higher frequency (50 Hz) and uses the rotational
encoder in addition to the IMU for determining the systems pitch. The Livox Mid-100
scanner used for the other experiments operates on only 10 Hz, which is why fast
trajectories lead to a more obscure scan and, thus thicker walls. Further, the 2D
scanner from SICK is optimized for short-range measurements, whereas the 3D
scanner from Livox is for long medium- to long-range measurements.

5.2.2 3D LiDAR

Figure 10c shows the results of the experiment with the spherical system. The
initially estimated trajectory distance is the largest when compared against the other
datasets (211.77 m compared to RADLER: 141.01 m, and pendulum: 148.30 m), indi-
cating an overestimated radius parameter in the pose estimation model [4]. The
resulting map resembles the actual scale of the environment better, the pillars are well
aligned, and the corrected poses are consistent with the map. However, there are also
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duplicate walls, remaining outliers, and noise due to remaining registration errors.
According to the histograms in Figure 10, the resulting map has the least similarity to
ground truth when compared to the pendulum and RADLER, which is consistent with
previous observations. Note that in this dataset, the shell is attached to the sphere,
which makes range measurements more noisy and adds outliers due to reflections off
the shell.

5.3 Crane descent

This section presents the results for the crane descent experiment, which was
conducted in a different environment than the previously mentioned results. Thus,
the histogram is not really comparable to the ones in Figure 10, although it uses the
same voxel filter to create the distance image. We still analyze the shape and mean
point-to-point error of the distribution and to interpret them. The upper half of
Figure 11 shows a birds-eye view of the 3D point clouds in the same fashion as before.
Note that the initial pose estimates are especially erroneous in one rotational dimen-
sion. This is the yaw rotation, which is especially difficult to detect for IMUs without
the use of a magnetometer. As this experiment originated in the context of a space
mission, using the magnetometer for inertial measurements was not an option. In the
first stage of an out SLAM algorithm, we locked each other dimension but yaw from
being optimized. The resulting map resembles the environment well, yet error
remains due to low scanning frequency and motion distortion. The mean point-to-
point error when comparing against ground truth (cf. right image of Figure 9) is
31.6 cm. However, the peak of the historgram is located at 3.60 cm, indicating that
there is room for further improvement. We seek to improve on these results by
accounting motion distortion and further reducing IMU drift in future work.

6. Conclusion

We have shown in this work that unconventional trajectories still pose problems
for current SLAM algorithms, especially when using low FoV LiDARs. We built a

Figure 11.
In the images of 3D point clouds, the ceiling has been cropped for a better view. From left to right: (1) birds-eye
view of the resulting 3D point cloud, acquired with the descending system using a spin-encoder and IMUs for pose
estimation. (2) birds-eye view of the post-processed 3D point cloud. (3) profile view of the mobile systems pose,
movement from top to bottom. (4) histogram showing the occurrences of certain point-to-point errors to ground
truth. The colors denote distance, where blue corresponds to zero distance and red corresponds to 1 m distance or
more. Mean point-to-point error is 31.6 cm with peak at 3.60 cm.
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flexible SLAM approach that shows the capabilities to register unconventional trajec-
tories with large-scale pose estimation errors reliably. Further, we tested our SLAM
system with three different unconventional movements: rolling, pendulum, and
rotating crane descend. According to the previous accuracy evaluation, rolling on the
floor is the most difficult scenario. The spherical shell of the system adds noise and
outliers to the range measurement. Additionally, low overlap and sometimes no over-
lap make scan matching hard, even using polygons. Therefore, the success of SLAM
using this trajectory type, compared with the other scanning methods, relies the most
on the initial pose estimations. Moreover, this scenario has the most difficult initial
pose estimation, due to the large accumulation of errors both in translation and
rotation, which makes SLAM especially difficult. RADLER seems to have the best
results regarding accuracy. This is because of the higher scanning frequency compared
to the other experiments, but also because the rotational encoder on the wheel helps a
lot with position estimation when compared to the spherical setup, which relies on
constrained IMU integration. Therefore, it is sufficient to compensate mostly the
accumulated rotational error via SLAM. Descending from the crane shows similar
behavior: the rotational encoder on the cable reel makes position estimation fairly
easy. Further, there are only negligible rotations in two principal axes. However, the
faster and uncontrolled rotation around the cable leads to a much larger error in the
corresponding axis of revolution, as well as to larger motion distortion. Since pose
errors mostly accumulate in one rotational degree of freedom, our SLAM is still able to
correct these via constrained optimization in the first stage. The pendulum setup, on
the other hand, shows almost no rotational error in the initial pose estimations,
because the visual-inertial odometry (VIO) of the Intel T265 camera compensates for
IMU drift. VIO works reliably although the view of the camera is partially obscured by
the trailer net, the thread of the shell, and reflections from the shell. Yet the
relocalization module of the camera, which uses an internal feature map, fails once, as
the visual features of the hallways are ambiguous. This leads to large positional errors
in the initial pose estimates at the end of the trajectory. Our SLAM is able to correct
these errors using the polygon-based optimization in the first stage. However, a lot of
work remains to be done. In particular, we need to address the large drift of the IMUs
and employ a more accurate external calibration, to improve the initial pose estimates
even more. Furthermore, we aim to improve the quality of the maps by revisiting the
global polygon model of the algorithms first stage and making it more dynamic.
Moreover, we want to mitigate the effects of motion distortion in future work. Finally,
the pose estimations need to be evaluated in terms of the achieved positional and
rotational errors, e.g. with an external optical tracking system. Nevertheless, we
provide significant insight and datasets with ground truth maps and are excited to
contribute more to this rather unexplored field of research in future work.
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Chapter 3

Autonomous Mobile Mapping
Robots: Key Software Components
Janusz Będkowski and Jacek Szklarski

Abstract

This chapter discusses key software components of autonomous mobile mapping
robots equipped with an inertial measurement unit (IMU) and light detection and
ranging (LiDAR). In recent years, new LiDARs with nonrepetitive scanning pattern
have appeared in the market. They are also equipped with an IMU; thus, the front end
of simultaneous localization and mapping (SLAM)—a robust LiDAR-inertial
odometry framework—significantly improves unmanned ground vehicles (UGVs)
and unmanned aerial vehicles (UAV) in 3D mapping scenarios. Our study incorpo-
rates FAST-LIO as the front end of SLAM. The main focus is a lightweight back-end
implementation of pose graph simultaneous localization and mapping (SLAM). It is an
alternative solution to state-of-the-art g2o or GTSAM implementations. We also elab-
orate on iterative closest point, normal distributions transform, and their extension
for multiview 3D data registration/refinement. It is based on C++ using Eigen library.
This chapter also discusses path planning in already mapped environment. All soft-
ware components are available as open-source projects.

Keywords: multiview normal distributions transform, SLAM, path planning,
coverage

1. Introduction

This chapter presents key software components for autonomous mobile mapping
robots shown in Figure 1 (software components are available in [1, 2]). This set of
consecutive functionalities is composed of robust light detection and ranging
(LiDAR)-inertial odometry FAST-LIO [3], pairwise matching algorithm (iterative
closest point [ICP] or normal distributions transform [NDT]) [1] for minimizing an
error for loop closures, pose graph simultaneous localization and mapping (SLAM)
[2], final refinement (multiview NDT) [1], and path planning. These functionalities
are the core components for autonomous mobile mapping robots equipped with an
inertial measurement unit (IMU) and LiDAR.

Autonomous mobile mapping robots have already been widely investigated within
the context of commercial applications, for example, power line inspection [4], smart
factory production [5], offshore oil plant [6], and nuclear power plant (NPP) inspec-
tion [7]. Robots improve rescue missions in hazardous environments [8]. The research
related to COVID-19 and public support for autonomous technologies shows great
interest in artificial intelligence (AI) direction [9]. There are plenty of areas for
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autonomous mobile mapping robots such as floor scrubbing, delivery, warehouse, and
service robots. The rapid improvements in autonomous mobile mapping are evident
for LiDAR with a nonrepetitive scanning pattern [10]. This LiDAR is capable of
acquiring massive 3D data in short time with a limited field of view. The advantage is
the long range, even up to 500 meters and high density of points covering entire
measurement cone in short time. Narrow field of view can be extended by multiple
LiDAR systems [11]. Owing to synchronized IMU data and robust feature classifica-
tion, a robust LiDAR-inertial odometry framework significantly improves unmanned
ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) in 3D mapping
scenarios [3, 12]. Moreover, the overall cost of such LiDAR is rather small compared
with its competition. It is advised to study [13] for further precision and accuracy
comparative evaluation.

SLAM is a core component of the autonomous mobile mapping robot that builds a
map based on the estimated trajectory and estimates this set of consecutive poses
based on this map [14]. SLAM is composed of front-end capable reconstructing
smooth and continuous trajectory from onboard sensors. This trajectory is affected by
constantly growing error. To reduce this error, the additional measurements should be
incorporated into the back end as the so-called loop closure. The back end is typically
solved using the pose graph SLAM method implemented in g2o [15] and GTSAM [16]
frameworks. An alternative implementation is available in [2] that extends the possi-
bility of rotation matrix parameterizations. Pose graph SLAM optimizes a graph com-
posed of vertices (poses) and edges (consecutive odometry readings, loop closures,
and other constraints); thus, it is supposed to preserve the shape of an initial trajectory
(motion model) and minimize an error between observed (current relative pose) and
measured (desired relative pose) loop closure edges. For the calculation of desired
relative pose between two scans, an iterative closest point [17] or normal distributions
transform [18] can be incorporated. The final step of the 3D mapping can be the final
refinement of all 3D measurements performed with, for example, multiview normal
distributions transform [19]. A similar approach is evident in general mobile mapping
applications [20, 21].

The last functionality elaborated in this chapter is path planning being a funda-
mental software component of the autonomous mobile mapping system dedicated for
missions where full coverage is desirable [22]. Examples are nuclear power plan
inspection [23] and cleaning robotics [24]. In order to perform a mapping task, a
mobile robot has to act according to some kind of a motion planning algorithm. This is
also true for other related tasks such as inspecting, searching, cleaning, image
mosaicking, etc. There are many factors that determine which algorithm should be
used for the path plan generation:

• Is the map of the environment known in advance?

• What are the available sensors (LiDARs, RGB(D) cameras, proximity sensors,
etc)?

Figure 1.
Scheme of key software components elaborated in this chapter.
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• Howmany robots participate in the task? If more than one, what are the means of
communication between units?

• How the environment map is represented? Is the map 2D or 3D? Does robot move
on a planar space or is it a UAV (six degrees of freedom)?

• What are the available computational resources for path calculations and what is
the required working regime: real-time online or offline planning?

• What is the ratio of covering radius to the size of the robot?

All the aspects mentioned above profoundly impact the algorithms necessary to
guide the mobile robot position. For example, if the map of the environment is not
known in advance, one should focus on a version of SLAM with exploration algo-
rithm. If, on the other hand, the map is known and offline planning is allowed, one
may use a solver that generates plan giving some near-optimal path plan. The optimal
criteria can also vary depending on a specific application: minimization of coverage
time, minimization of energy, prioritization of certain regions, etc. If there is a group
of robots involved, the question of equal workload distribution must also be
addressed.

A path planning algorithm should also take into account kinematic properties of
robots involved in the process. A different algorithm will be applied for path genera-
tion for aircraft taking aerial images for mosaicking and a different one for a mobile
robot cleaning floor in a warehouse.

For the autonomous mapping of unknown environments, in order to obtain a map
of the environment, a robot should be able to simultaneously localize and map and, at
the same time, explore the environment. Path planning, in this context, is related to
the exploration process. The robot should gradually explore the environment, and a
map is incrementally built for new poses, while the robot localizes itself in this map.
New, temporary goal poses are often chosen by means of frontier extraction [25].
Frontier areas represent boundary regions between known (mapped) and unknown
regions of the environment. Robot motion between its current position and such
temporary goal is realized by a typical path planning, which navigates between
waypoints while avoiding obstacles. Details regarding the frontier exploration vary
depending on application and may also include exploration in 3D, for example, [26].

One of the fundamental applications of mobile robots is to perform a coverage
task. Such tasks that the robot will visit points in the environment, eventually visiting
(or observing) the entire region of interest. This is necessary for tasks like cleaning,
mowing, harvesting, planting, spraying, mapping, searching, painting, mosaicking,
etc. Normally, the first step for such application is to obtain the map, for example, by
means of exploration with SLAM. If the map is known, and the robot is able to localize
itself using the map, a coverage path planning (CPP) algorithm should be employed in
order to find consecutive waypoints. The area of interest will be covered entirely after
the robot will visit all the points. The problem of CPP is well known and well studied
in the field of robotics [27, 28]. Nevertheless, it remains challenging and even the
simplest variants, like the lawnmower problem, are NP-hard [29]. There exist a large
number of exact, approximate, and heuristic algorithms to solve many variations of
both types of CPP [30–32].

The rest of this chapter is organized as follows. Section 2 discusses key software
components for SLAM. Section 3 addresses path planning in known environments.
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Section 4 shows an example of mobile mapping applications. Finally, Section 5
concludes this chapter.

2. Key software components for SLAM

In this section, the key software components are elaborated. The fundamental
element of SLAM is an observation equation. The set of optimization equations builds
an optimization system. Finding an optimal solution results in the final map and
trajectory. The proposed lightweight implementation uses symbolic computing in
Python (SymPy) [33] to generate C++ code for each observation equations. An open-
source project is available in [2].

2.1 Observation equations

Observation Eq. (1) is composed of a target value yi, a model function Ψ β½ � xið Þ, and
its residual ri defined as the difference between the target value and the value of the
model function for xi and state vector β

ri|{z}
residual

¼ yi|{z}
target value

� Ψ β½ � xið Þ|fflfflfflffl{zfflfflfflffl}
model function

(1)

where β is the vector of n optimized parameters. The weighted nonlinear least
squares optimization method finds the optimal n parameter values (β) by minimizing
the objective function being a sum of C squared residuals

Sum ¼
XC
i¼1

r2i ¼
XC
i¼1

yi �Ψ β½ � xið Þ� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

objective function

: (2)

Therefore, the optimization problem is defined as

β ∗ ¼ min
β

XC
i¼1

yi � Ψ β½ � xið Þ� �2 (3)

where there are C observation equations. It is efficiently solved using the iterative
Levenberg-Marquardt algorithm [34]. A single kth iteration provides an update for β
given as

βkþ1 ¼ βk þ J⊺
Ψ
W J

Ψ
þλI

� ��1

J
Ψ
⊺Wr βk

� �
(4)

where I is the identity matrix, J
Ψ
is the Jacobian of the model function, andW is the

weight matrix modeling the impact of the observation equation into the optimization
process. λ starts from an initial small value. During the optimization process, λ
increases once Sum ¼PC

i¼1r
2
i decreases; otherwise, λ decreases and the optimization
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process starts from the previous step. The observation equation for pose graph SLAM
is given as

tδx
tδy
tδz
ωδ

φδ

κδ

2
6666664

3
7777775

|fflffl{zfflffl}
residuals

¼

tx

ty

tz

ω

φ

κ

2
6666664

3
7777775

|ffl{zffl}
target values

�m2v tx,ty,tz,ω,φ,κ½ � R, t½ �12
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
model function

(5)

where tδx tδy tδz ωδ φδ κδ
h i⊺

are residuals, tx ty tz ω φ κ
� �⊺ are target values,

and m2v β½ � R, t½ �12
� �

is the model function. Target values describe the desired edge
(relative pose expressed as translation (tx, ty, tz) and orientation (ω, φ, κ) between two
optimized vertices (poses) of the graph. Relative pose R, t½ �12 from pose R, t½ �1 to pose
R, t½ �2 is given as

R t
01�3 1

� �

12
¼ R t

01�3 1

� �

1

� ��1 R t
01�3 1

� �

2
: (6)

Function m2v β½ � R, t½ �12
� �

retrieves β ¼ tx, ty, tz,ω,φ, κ
� �⊺ for the Tait-Bryan

parametrization of the rotation matrix. This parameterization is essential to preserve
the orthonormality of the rotation matrix during the optimization process. It is
important to notice that other parameterizations exist, such as quaternion, Rodrigues,
etc., but this is not the main topic of this chapter.

The iterative closest point algorithm finds the relative pose between two point
clouds by incorporating the following source-point-to-target-point observation
equation:

xδ

yδ

zδ

2
4

3
5

|fflffl{zfflffl}
residuals

¼
xtg

ytg

ztg

2
4

3
5

|fflffl{zfflffl}
target values

�Y R,t½ � R, t, xl, yl, zl
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
model function

(7)

where, xδ yδ zδ
� �⊺ are residuals, xtg ytg ztg½ �⊺ are target values, and

Ψ R,t½ � R, t, xl, yl, zl
� �

is the model function that transforms 3D points xl, yl, zl
� �

expressed
in the local coordinate system into the global one.

The normal distributions transform algorithm is an alternative solution for
pairwise matching with ICP, and it can be easily extended for multiview point cloud
data registration (final refinement of the 3D map). It decomposes the 3D scene into a
regular grid where for each cell, the centroid μ and the covariance Σ are calculated
with formulas (8) and (9). These formulas incorporate all points Pg

k in a single cell
expressed in the global coordinate system

μ ¼ 1
m

Xm

k¼1

Pg
k (8)
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Σ ¼ 1
m� 1

Xm

k¼1

Pg
k � μ

� �
Pg
k � μ

� �⊺
: (9)

The NDT observation equation is given as

xδ

yδ

zδ

2
4

3
5

|fflffl{zfflffl}
residuals

¼
μx

μy

μz

2
4

3
5

|fflffl{zfflffl}
target  values

�Y R,t½ � R, t, xl, yl, zl
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
model function

(10)

where the target value is μ and Σ�1 ¼ W for each NDT observation equation
incorporated in the Levenberg–Marquardt algorithm from eq. (4).

3. Path planning in known environments

In this section, we will focus on a practical example of a cleaning robot whose task
is to clean a large area. Therefore, one needs to apply a path planning algorithm for a
single device that moves in a known environment, and the map of static obstacles is
known in advance (c.f. [35]).

3.1 Map decomposition

A cleaning robot has the coverage area equal to the area of its cleaning/sweeping
device. For industrial cleaners, it is a dedicated brush equipped with a water and soap
reservoir. Consequently, the size of the coverage area, being a circle with radius rcov, is
comparable with the size of the robot. The area to be cleaned is a large warehouse with
the total area A, so it should be assumed that rcov ≪A. From this assumption, it
follows that any grid-based approach for planning should be avoided. This is because
in most grid-based methods, the time for finding a solution grows significantly with
the grid size (for many methods even exponentially [28]). For the discussed problem,
the number of grid cells would be too large to come up with a feasible solution.

It should be noted that this is not always the case for coverage problems. For
example, photo mosaicking has much larger rcov than the size of the robots, for
example, UAVs equipped with cameras. Area being photographed is much larger than
the area of the device. Such problems may use a different planning approach than the
one for cleaning robots.

Consequently, a solution based on the geometric decomposition of the grid map
into a set of polygons should be considered. Afterward, a path on this set of polygon is
found in a way that minimizes a given optimization criterion, in this case the total
coverage time. The pipeline for the system is depicted in Figure 2.

After mapping the environment with SLAM and the proper optimization, a grid
map of static obstacles is obtained. There are a number of ways to convert such a grid
map into a set of polygons. This process is known as map decomposition. The most
well-known method of decomposition is the trapezoidal decomposition where the grid
map is “scanned” line by line along one direction and trapezoids are found, which
cover the free space completely. Afterward, trapezoids are covered by simple back-
and-forth motion patterns.
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The main drawback of this simple decomposition is the fact that it generates only
convex polygons, and therefore, it results in a large number of polygons and
suboptimal sweeping patterns (c.f. Figure 3). Another possibility is to apply the so-
called boustrophedon cellular decomposition (BCD), which also generates nonconvex
cells [36]. However, these polygons can also be covered only by zig-zag motions,
usually in a more efficient way than for the trapezoidal decomposition. It should be
noted that some more sophisticated decompositions have been proposed in the litera-
ture, for example, [37]. In such an approach, optimization is focused in the decompo-
sition process itself. Here, however, we optimize the path by finding proper sweeping
patterns at a later stage.

After the decomposition, a set of polygons is obtained. A geometrical relation
between these polygons may be represented by the so-called Reeb graph. The Reeb
graph is a special type of a graph for environment representation, in which each link
corresponds to a polygon and each node represents an adjacency between the poly-
gons. Consequently, the problem may be treated with the help of existing solutions
known from graph theory. This can be done by formulating the optimization problem
into a variant of the traveling salesman problem and employing some known efficient
solvers.

Figure 2.
A processing pipeline for the generation of a coverage path plan for a single robot operating in an environment that
is first mapped with the SLAM method.

Figure 3.
An example of trapezoidal and boustrophedon decompositions into cells together with theirs Reeb graphs (bottom).
The latter decomposition allows for better sweeping pattern fit (the dashed line).
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3.2 Finding near-optimal sweeping patterns

Let us consider the covering process for a single polygon. Usually, in order to
minimize the coverage time, one needs to minimize the number of turns since, for
each turn, a robot must slow down, stop, turn, and accelerate again to its maximum
velocity. For a single polygon, various points of entrance for the zig-zag pattern
should be considered (see Figure 4).

After the decomposition process, the entire environment is represented as a Reeb
graph. The order of visiting all the links, that is, polygons, determines entry points to
each of them and, therefore, the time cost associated with covering it. It can be shown
that finding the minimum of the total time required for covering all the polygons is
equivalent to solving the equality generalized traveling salesman problem (EG-TSP)
[38]. This is an NP-hard problem for which approximate heuristic solvers may be
applied. The results presented in this section are obtained with the use of a memetic
solver, as proposed in [38].

4. Example applications

4.1 Robust LiDAR-inertial odometry and multiview NDT

Figure 5 demonstrates the result of FAST-LIO [3] as the 3D point cloud of under-
ground garage recorded using Livox AVIA LiDAR. This robust LiDAR-inertial
odometry provides an input for multiview NDT shown in Figure 6.

4.2 Pose graph SLAM

This section demonstrates the pose graph SLAM functionality available with data
in [2]. Figure 7 demonstrates the 2D case and Figure 8 is related to the 3D case. Pose
graph SLAM implementation efficiently solves the optimization problem represented
as a consecutive set of poses (trajectory) connected via odometry readings (edges)
and loop closure edges. This is a core component of the autonomous mobile mapping
robot.

4.3 Final refinement with NDT

Multiview normal distributions transform 3D data registration is capable to
increase the accuracy of the 3D map, as shown in Figure 6. The implementation is
rather offline since it requires plenty of calculations. These calculations are related

Figure 4.
For each cell, the coverage time is determined by sweeping direction and entry point into the cell (i.e., start and end
vertices). The figure depicts some possible entry/exit points and directions for a sample trapezoid.
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mostly to 3D data decomposition, where for each 3D bucket, the mean value and
covariance are calculated. This method is efficient mostly for urban environments
with many planar shapes.

4.4 Path planning

As an example of a real-world application of a coverage task, let us consider the
cleaning process of an underground garage. First, the garage is scanned with 3D laser
scanners; it is optimized and flattened to a 2D obstacle map (see Figure 9, top).
Afterward, the map is used for robot motion planning and navigation.

The result of boustrophedon decomposition for this map is shown in Figure 9
(middle). In this particular case, it consists mostly of rectangles. The next stage is to
find the covering path that connects all these polygons. In order to formally state the
optimization goal, one needs to define kinematic characteristics of the robot. Here, we
assume realistic parameters: amax ¼ 0:3 ms�2 and vmax ¼ 1 ms�1. This corresponds to
real devices that are being used for the cleaning tasks [35]. After using the memetic
solver for the associated EG-TSP, a trajectory for the robot is obtained. It is shown at
the bottom of the figure. For the depicted scale and the assumed kinematic model, the
total time for coverage is 2302 s in this case.

In order to validate the approach for path planning and to estimate its usefulness,
one should use a large number of maps, perform planning, and measure efficiency.
One possibility is to use a synthetic albeit realistic set of layouts provided by Li et al.
[39]. Based on real experiments with LiDARs, the authors have developed a method to
generate about 60,000 various maps, which can be used by researchers to test various
algorithms. Some example layouts together with the planned coverage paths are
depicted in Figure 10.

Figure 5.
Result of robust LiDAR-inertial odometry FAST-LIO [3] as the 3D point cloud of underground garage.

41

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



Figure 6.
Top: input data produced by robust LiDAR-inertial odometry FAST-LIO [3] from Figure 5. Bottom: result of
final refinement with multiview NDT.
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Figure 7.
Top: input data for pose graph SLAM (purple dots: graph vertices, blue lines: graph edges). Bottom: result of pose
graph SLAM, 2D case.
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5. Conclusion

This chapter elaborates key software components of autonomous mobile mapping
robots equipped with Livox AVIA LiDAR. It is new LiDAR with a nonrepetitive
scanning pattern equipped also with the IMU. LiDAR and IMU are synchronized;
thus, this advantage is addressed by the robust LiDAR-inertial odometry framework
FAST-LIO. It improves unmanned ground vehicles (UGVs) and unmanned aerial

Figure 8.
Top: input data for pose graph SLAM (purple dots: Graph vertices, blue lines: Graph edges). Bottom: result of pose
graph SLAM, 3D case.
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vehicles (UAVs) in 3D mapping scenarios. Our study incorporates this robust LiDAR-
inertial odometry framework FAST-LIO as the front end of SLAM. The main focus is a
lightweight back-end implementation of pose graph simultaneous localization and
mapping (SLAM). This lightweight implementation is an alternative solution to state-
of-the-art g2o or GTSAM implementations. We also elaborate iterative closest point,
normal distributions transform, and their extension for multiview 3D data registra-
tion/refinement. It is based on C++ using Eigen library. This chapter also discusses

Figure 9.
Top: a grid representing obstacles in an underground garage. Pixel size is 3 cm � 3 cm. Middle: the result of a
boustrophedon decomposition. Bottom: A trajectory for a single robot.
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path planning in already mapped environment. All software components are available
as an open-source project. This chapter provides insights for useful software
components for building autonomous mobile mapping robots.

Figure 10.
Covering path plans for a small subset of the realistic, synthetic dataset of building layouts [39]. The covering area
is a circle with diameter equal to 0:5 m. Notice various scales for the xandy axes and—Consequently—Various
times required for the complete coverage (indicated above the plots).

46

Autonomous Mobile Mapping Robots



Acknowledgements

The authors acknowledge the financial support of National Centre for Research
and Development, project POIR.01.01.01-00-0206/17”Designing an autonomous
platform which operates in an industrial production environment.”

Author details

Janusz Będkowski* and Jacek Szklarski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

*Address all correspondence to: januszbedkowski@gmail.com

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

47

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



References

[1] Janusz Bedkowski. Hdmapping. 2022.
Available from: https://github.com/Ma
psHD/HDMapping

[2] Janusz Bedkowski. Observation
equations. 2022. Available from: github.c
om/JanuszBedkowski

[3] Wei Xu and Fu Zhang. Fast-Lio: A
Fast, Robust Lidar-Inertial Odometry
Package by Tightly-Coupled Iterated
Kalman Filter, 2020

[4] Yang L, Fan J, Liu Y, Li E, Peng J,
Liang Z. A review on state-of-the-art
power line inspection techniques. IEEE
Transactions on Instrumentation and
Measurement. 2020;69(12):9350-9365

[5] Hercik R, Byrtus R, Jaros R, Koziorek
J. Implementation of autonomous mobile
robot in smartfactory. Applied Sciences.
2022;12(17):8912

[6] Nagatani K, Endo D, Watanabe A,
Koyanagi E. Design and development of
explosion-proof tracked vehicle for
inspection of offshore oil plant. In:
Hutter M, Siegwart R, editors. Field and
Service Robotics, Results of the 11th
International Conference, FSR 2017,
Zurich, Switzerland, 12–15 September
2017. Vol. volume 5 of Springer
Proceedings in Advanced Robotics.
Springer; 2017. pp. 531-544

[7] Zhang Zhonglin F, Bin LL, Encheng
Y. Design and function realization of
nuclear power inspection robot system.
Robotica. 2021;39(1):165-180

[8] Nagatani K, Kiribayashi S, Okada Y,
Otake K, Yoshida K, Tadokoro S, et al.
Emergency response to the nuclear
accident at the Fukushima daiichi
nuclear power plants using mobile
rescue robots. Journal of Field Robotics.
2013;30(1):44-63

[9] Horowitz MC, Kahn L, Macdonald J,
Schneider J. Covid-19 and public support
for autonomous technologies—Did the
pandemic catalyze a world of robots?
PLoS One. 2022;17(9):1-18

[10] Lin J, Zhang F. R3 live: A robust,
real-time, rgb-colored, lidar-inertial-
visual tightly-coupled state estimation
and mapping package. In: 2022
International Conference on Robotics
and Automation, ICRA 2022,
Philadelphia, PA, USA, May 23–27, 2022.
IEEE; 2022. pp. 10672-10678

[11] Wang Y, Lou Y, Zhang Y, Song W,
Huang F, Zhiyong T. A robust
framework for simultaneous localization
and mapping with multiple non-
repetitive scanning lidars. Remote
Sensing. 2021;13(10):2015

[12] Li K, Li M, Hanebeck UD. Towards
high-performance solid-state-lidar-
inertial odometry and mapping. IEEE
Robotics and Automation Letters. 2021;
6(3):5167-5174

[13] Kelly C, Wilkinson B, Abd-Elrahman
A, Cordero O, Andrew Lassiter H.
Accuracy assessment of low-cost lidar
scanners: An analysis of the velodyne
hdl32e and livox mid40 temporal stability.
Remote Sensing. 2022;14(17):4220

[14] Thrun S. Simultaneous Localization
and Mapping. Berlin Heidelberg, Berlin,
Heidelberg: Springer; 2008. pp. 13-41

[15] Kümmerle R, Grisetti G, Strasdat H,
Konolige K, Burgard W. G2o: A general
framework for graph optimization. In:
ICRA. IEEE; 2011. pp. 3607-3613

[16] Michael Kaess. Gtsam library, 2015

[17] Besl PJ, McKay ND. A method for
registration of 3-d shapes. IEEE

48

Autonomous Mobile Mapping Robots



Transactions on Pattern Analysis and
Machine Intelligence. 1992;14(2):
239-256

[18] Biber P, Strasser W. The normal
distributions transform: A new approach
to laser scan matching. In: Proceedings
2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453). Vol. 3.
2003. pp. 2743-2748

[19] Jihua Zhu, Di Wang, Jiaxi Mu,
Huimin Lu, Zhiqiang Tian, and Zhongyu
Li. 3dmndt:3d Multi-View Registration
Method Based on the Normal
Distributions Transform, 2021

[20] Bosse M, Zlot R. Continuous 3d
scan-matching with a spinning
2d laser. In: ICRA. IEEE; 2009.
pp. 4312-4319

[21] Kaul L, Zlot R, Bosse M. Continuous-
time three-dimensional mapping for
micro aerial vehicles with a passively
actuated rotating laser scanner.
Journal of Field Robotics. 2016;33(1):
103-132

[22] Lin H-Y, Huang Y-C. Collaborative
complete coverage and path planning for
multi-robot exploration. Sensors. 2021;
21(11):3709

[23] Iqbal J, Tahir AM, Islam R u, Nabi R
u. Robotics for nuclear power plants —
Challenges and future perspectives. In:
2012 2nd International Conference on
Applied Robotics for the Power Industry
(CARPI). 2012. pp. 151-156

[24] Woohyeon Moon, Bumgeun Park,
Sarvar Hussain Nengroo, Taeyoung Kim,
and Dongsoo Har. Path planning of
cleaning robot with reinforcement
learning, 2022 IEEE International
Symposium on Robotic and Sensors
Environments (ROSE), Abu Dhabi,
United Arab Emirates, IEEE, 2022

[25] Yamauchi B. A frontier-based
approach for autonomous exploration.
In: Proceedings 1997 IEEE International
Symposium on Computational
Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational
Principles for Robotics and Automation’.
IEEE; 1997. pp. 146-151

[26] Belavadi SS, Beri R, Malik V.
Frontier exploration technique for 3d
autonomous slam using k-means based
divisive clustering. In: 2017 Asia
Modelling Symposium (AMS). IEEE;
2017. pp. 95-100

[27] Almadhoun R, Taha T, Seneviratne
L, Zweiri Y. A survey on multi-robot
coverage path planning for model
reconstruction and mapping. SN Applied
Sciences. 2019;1(8):1-24

[28] Yan Z, Jouandeau N, Cherif AA. A
survey and analysis of multi-robot
coordination. International Journal of
Advanced Robotic Systems. 2013;10

[29] Arkin EM, Fekete SP, Mitchell JSB.
Approximation algorithms for lawn
mowing and milling. Computational
Geometry. 2000;17(1–2):25-50

[30] Choset H. Coverage for robotics–a
survey of recent results. Annals of
Mathematics and Artificial Intelligence.
2001;31(1):113-126

[31] Galceran E, Carreras M. A survey on
coverage path planning for robotics.
Robotics and Autonomous Systems.
2013;61(12):1258-1276

[32] Saeedi S, Trentini M, Seto M, Li H.
Multiple-robot simultaneous localization
and mapping: A review. Journal of Field
Robotics. 2016;33(1):3-46

[33] Meurer A, Smith CP, Paprocki M,
Čertík O, Kirpichev SB, Rocklin M, et al.

49

Autonomous Mobile Mapping Robots: Key Software Components
DOI: http://dx.doi.org/10.5772/intechopen.110549



Sympy: Symbolic computing in python.
PeerJ Computer Science. 2017;3:e103

[34] Marquardt DW. An algorithm for
least-squares estimation of nonlinear
parameters. SIAM Journal on Applied
Mathematics. 1963;11(2):431-441

[35] Szklarski J. Multi-robot coverage
with reeb graph clustering and
optimized sweeping patterns. Computer
Assisted Methods In Engineering And
Science. 2022;29(4):379-395

[36] Choset H. Coverage of known
spaces: The boustrophedon cellular
decomposition. Autonomous Robots.
2000;9(3):247-253

[37] Nielsen LD, Sung I, Nielsen P.
Convex decomposition for a coverage
path planning for autonomous vehicles:
Interior extension of edges. Sensors.
2019;19(19):4165

[38] Bähnemann R, Lawrance N, Chung
JJ, Pantic M, Siegwart R, Nieto J.
Revisiting boustrophedon coverage path
planning as a generalized traveling
salesman problem. In: Field and Service
Robotics. Springer; 2021. pp. 277-290

[39] Li T, Ho D, Li C, Zhu D, Wang C,
Meng MQ-H. Houseexpo: A large-scale
2d indoor layout dataset for learning-
based algorithms on mobile robots. In: In
2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems
(IROS). IEEE; 2020. pp. 5839-5846

50

Autonomous Mobile Mapping Robots



51

Chapter 4

Coverage Technology of 
Autonomous Mobile Mapping 
Robots
SeungHwan Lee

Abstract

The coverage technique is one of the essential applications of autonomous mobile 
mapping robots. There are various approaches for coverage depending on the model 
(model/non-model), robot systems (single/multi), and its purpose (patrol/cleaning). 
Coverage components include viewpoint generation and path planning approaches, 
which are described as CPP research work. Particularly, in surveillance systems, 
coverage techniques, such as spanning tree, cyclic coverage, and area-based coverage, are 
reviewed specifically, which can be expanded for multi-robot systems. In addition, 
required coverage techniques according to conditions for intelligent surveillance 
systems are summarized. Lastly, several issues on coverage, specifically cyclic coverage, 
are described and considered.

Keywords: coverage, surveillance systems, issues on coverage, multi-robot patrol systems

1. Introduction

Coverage path planning (CPP) is the process of calculating a viable path through 
all points in a region of interest to scan or investigate a region of interest in the 
environment [1]. As shown in Figure 1, it is largely applied to the coverage problem of 
patrol robots and cleaning robots.

Early CPP studies [2] defined six robot requirements as follows:

1. Robot should move through all the points in the target area covering it completely.

2. Robot should cover the region without overlapping paths.

3. Continuous and sequential operation without any repetition of paths is required.

4. Robots should avoid all obstacles.

5. Simple motion trajectories (e.g., straight lines or circles) should be used (for 
simplicity in control).

6. An “optimal” path is desired under available conditions.
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In addition, it requires robot positioning, autonomous driving capabilities, path 
planning, detection, and recognition. However, these conditions are not always pos-
sible in complex environments. Thus, sometimes only a few conditions are needed.

As aforementioned, CPP is the process of navigating or exhaustively searching a 
workspace. The CPP must also determine all locations to be visited while avoiding 
all possible obstacles [2, 3]. Essentially, applications, such as structural painting, 
object reconstruction, lawn mowing, surveillance, geospatial mapping, agricultural 
surveying, and floor cleaning, require full coverage. In general, in CPP, it is common 
to construct a model in real time using a sensor mounted on a robot and to provide 
information, such as a region of interest in advance [4–7].

The three main components of CPP are viewpoint generation, path planning, and 
coverage integrity quantification. In each implementation, CPP can be performed 
online or offline. Offline CPP requires a reference model. On the other hand, in the 
case of online CPP, since it is necessary to utilize sensor information, a step to process 
sensor information is required.

2. Model/non-model-based CPP

There are several research methods for performing CPP using a single robot. 
These methods can be broadly divided into model-based approaches and non-
model-based approaches. In Ref. [8], a heuristic-based approach based on the 
art gallery problem (AGP) approach [9] was proposed. Figure 2 shows a visual 
representation of the AGP. In addition, this method solved the traveling salesman 
problem (TSP) to generate optimized routes for each structure and then randomly 
assign them based on the time constraints of the UAV and the travel routes of the 
traveling salesman.

There is also an example of performing a TSP algorithm using PSO [10]. PSO is a 
particle swarm optimization technique that progressively finds an optimal solution 
using N particles. The solution giving the best score among particles is the output 
of the PSO. Figure 3(a) shows the structure of the PSO algorithm. It can be seen 
that the algorithm is configured in the form of finally finding the optimal solution 
while optimizing the objective function until the termination condition is satisfied. 
Figure 3(b) shows how each particle converges.

The second approach of the single-robot CPP approach follows a non-model-
based approach. The work presented in Ref. [12] proposed an extended CPP 
approach [13] by utilizing surface information to plan coverage paths online using 

Figure 1. 
Various robot platforms with coverage algorithms. (a) K5 robot, (b) D-Bot, (c) Samsung robot cleaner, and  
(d) Mi robot cleaner.
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truncated signed distance fields (TSDF). The search space is divided into a surface 
area and a cuboid area, which are used to create a volume map of the bounding area. 
The volume map is used to calculate the information gain by considering the cube 
volume and path length. The Hamiltonian path problem is to compute the visit order 
for each cuboid while generating the path using the generalized TSP. As shown in 
Figure 4, the Hamiltonian path problem can be solved by finding out a path through 
all vertices once in graph theory.

In Ref. [15], another non-model-based approach, that is, a search algorithm, was 
presented that selects the next best view (NBV) that maximizes the predicted infor-
mation gain, taking into account distance and battery life cost. The proposed task 
dynamically builds a hull surrounding a predefined bounding box that updates based 
on new information. The visited points are uniformly sampled with a fixed number 
pointing to the vertical axis through the center of the bounding box. The planning 

Figure 2. 
Visual representation of AGP [9]. This problem refers to the problem of protecting the entire museum with the 
minimum number of guards. In general, AGP is to ensure that the guard represented by a point on a polygonal 
map is sufficient to detect all spaces.

Figure 3. 
The representation of the PSO algorithm and convergence [11]. The pseudo-code of PSO is represented in (a). The 
movements of particles are shown in (b). (a) PSO algorithm (b) visualization of PSO.
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approach follows a probabilistic approach using utility functions that reduce 3D 
reconstructed model uncertainty, divert combat paths, and generate safe paths based 
on time constraints. The energy aspect of the non-model-based single-robot approach 
is considered an important part, especially since the CPP is performed online. Using 
this type of approach on a single robot makes it difficult to achieve high coverage 
ratios and increases computational complexity. This difficulty arises from the com-
plexity of environments that contain enclosed areas that are difficult to find with a 
single robot and require a lot of time to navigate. Single-robot CPP approaches were 
reviewed and analyzed in Ref. [16].

3. Single/multi-robot

For large areas and structures, leveraging a multi-robot CPP strategy can be a huge 
advantage to quickly achieve full coverage. Using one robot to cover a large structure 
or a large area has various disadvantages, such as time, length, robot energy, and 
quality and quantity of information [6, 7]. The multi-robot CPP approach follows the 
same approach as single-robot coverage, but requires additional factors and require-
ments to be considered. These factors include the type of collaboration, information 
sharing, robustness of agent failure handling, level of autonomy, robot durability, and 
task assignment. It is necessary to explore different approaches utilizing multi-robot 
systems in terms of CPP components, including viewpoint generation and path plan-
ning approaches. Path planning approaches can be divided into grid-based navigation 
approaches, geometric approaches, reward-based approaches, NBV approaches, and 
random incremental planning approaches.

Performing CPP using a multi-robot system for model reconstruction and map-
ping requires various aspects to be considered. Two key CPP-related aspects for 
creating feasible coverage routes include viewpoint generation and path planning. The 
remaining aspects are communication/task assignment and mapping in multi-robot 
systems, which are important to model or construct regions of interest using the 
collected data.

Figure 4. 
Hamiltonian path generation problems [14]. Hamiltonian path generation results for various examples are shown.
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3.1 Viewpoint generation

In most studies, the coverage search method is largely divided into the model-
based method and the non-model-based method. Model-based methods rely on a 
reference model of the environment or structure provided first, whereas non-model-
based ones perform planning and exploration without prior knowledge of the struc-
ture or environment [4, 5]. Based on these classifications, viewpoints are generated to 
form the search space of the planner. Some methods of generating them are uniformly 
generated due to the existence of structural or regional models and their dependen-
cies on specific regional or structural models. Other types of viewpoint generators 
are also randomly assigned due to lack of knowledge of structural or domain models. 
Viewpoint generation is treated as important in the multi-robot CPP process because 
it aims to output a set of optimized routes that represent an acceptable set of view-
points containing the structure or environment of interest. Depending on the search 
method used and the scope of its application, various techniques for performing 
viewpoint generation are mentioned in the relevant papers.

3.2 Path planning

The multi-robot CPP approach is being pursued in various studies describing 
challenging problems and proposed solutions. All of these approaches have a similar 
goal of providing a collision-free path that achieves the full extent of a structure or 
area. As a representative method, the visibility graph is used for path generation [17]. 
Visibility graphs contain a set of points and obstacles where nodes represent loca-
tions, and edges consist of line segments that do not pass-through obstacles. Examples 
of visibility graphs and generated paths are shown in Figure 5.

Geometric approaches such as shortest Euclidean path finding and polygonal area 
coverage are used in many domains. The most popular geometric-based method in 
multi-robot CPP is the Voronoi diagram. In [19], a dynamic path planning approach 
was proposed for heterogeneous multi-robot sensor-based coverage (DPP MRSBC) 

Figure 5. 
Examples of visibility graphs and generated paths [18].
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considering energy capacity. The environment was modeled as a generalized Voronoi 
diagram (GVD) that obscures the edges of the diagram. The proposed algorithm starts 
with an undirected graph and creates a directed subgraph.

3.3 CPP research work

The main components of the CPP process used in the work recently investigated 
in this article are summarized in Figure 6. Figure 6 summarizes recent research 
on multi-robot CPP, which includes the evaluation metrics for the environment 
type, algorithm processing technique, viewpoint generation method, application 
path generation method, and application method. According to the researched 

Figure 6. 
Summary of CPP research work [1]. It includes the evaluation metrics for the environment type, algorithm 
processing technique, viewpoint generation method, application path generation method, and application method.
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literature, there are many problems that block the progress of efficient multi-robot 
cooperative CPP. These issues include heterogeneity, prioritization, robustness, 
communication, adaptability, open systems, collective intelligence, and multi-robot 
scheduling.

4. Coverage for patrol robots

With the development of robot technology, research and interest in unmanned 
patrol robots have been increasing in various fields that require monitoring and 
security, such as social safety and national defense [20–24]. In particular, research 
on multi-object systems consisting of two or more patrol robots in a wide area is 
being actively conducted [25, 26]. These systems were essentially trying to solve the 
problem of multi-robot patrols. The challenge is to find the optimal solution for given 
tasks, that is, monitoring, information gathering, object discovery, anomaly detec-
tion, and so on (Figure 7).

Several studies have been attempted to solve the monitoring and security problems 
of multi-agent systems, and through this, the necessary parts for an intelligent moni-
toring system are as follows. Given an environment map, we need to (1) extract nodes 
automatically to generate a robot roadmap. In particular, when generating nodes, it 
is necessary to obtain sophisticated node extraction results by reflecting the normal 
vector direction of the map and the sensing range of the sensor. (2) You need to solve 
the TSP to create a full patrol route. (3) In order to assign a patrol route to a multi-
agent system, it is necessary to represent the relation between the maximum number 
of robots, the maximum patrol period, and the maximum speed of the robots. As a 
result, the patrol paths assigned to each agent can be derived. (4) If the environment 
map or the obstacle probability map according to the density of obstacles other than 
the point of interest is given, it is necessary to change the maximum velocity of the 
robot in the corresponding area or to allocate a dedicated robot. A summary of this 
can be found in Table 1.

Among them, the study of P. Fazli [26] is shown in Figure 8. Several concepts 
are also represented. First, the path between robots should not overlap, and it is an 
approach that increases the frequency of visits by reducing the visit period. The 
method is done according to following process.

Figure 7. 
The components of the multi-robot surveillance system [20]. (a) Multi-robot monitoring. (b) Multi-robot patrol 
mission.
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1. Select the position where the fixed guard should be located as the region of inter-
est and use the field of view of the robot at this time.

2. Complete graph G based on the location of the fixed guards and obstacles of the 
given polygon. (using visibility graphs or Delaunay triangulation)—complete 
robotic roadmap.

3. The graph uses the reduced visibility method or the reduced CDT method to 
reduce the number of connected nodes.

4. Perform cluster-based coverage algorithm: Divide the given graph into small 
pieces of area and assign them to robots. This will soon be the full patrol route 
for each robot. (There are uniform clustering method, edge-based clustering 
method, and node-based clustering method.)

5. In the cluster-based method, patrol routes may not be made similar, so a  
circular coverage algorithm can be performed for equidistant route assign-
ment. (This method creates the shortest traversal path and assigns it uniformly 
to each robot.)

Figure 8. 
Schematic diagram of the path overlap problem and the visiting frequency problem [26].

Map condition Robot condition Required essential techniques

Environments # of robots, patrol interval, 
patrol frequency, robot 
maximum vel, sensing range

Graph reconstruction for robot road map
path generation for N robots

Environments + Obstacle 
information

# of robots, patrol interval, 
patrol frequency, robot 
maximum vel, sensing range

Obstacle-based local path regeneration

environments + Region of 
interests

# of robots, patrol interval, 
patrol frequency, robot 
maximum vel, sensing range

Path regeneration technology considering 
dedicated robot assignment

Table 1. 
Coverage techniques and conditions for intelligent surveillance systems.
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6. Finally, the path generation algorithm is performed using a double-minimum 
spanning tree or a linked Lin-Kernighan algorithm to create a path that traverses 
the start and end of the graph assigned to each robot.

4.1 Spanning tree-based coverage (STC)

The input to the STC algorithm is a constrained planar environment, partially filled 
with smooth and stationary obstacles. The algorithm first subdivides the working area 
into 2D-sized cells and discards cells partially covered by obstacles. The graph structure 
G(V, E) is defined as a line segment that defines the center point of each cell as node V 
and the centers of adjacent cells with edge E. The following algorithm constructs a span-
ning tree for G and uses this tree to generate coverage paths as shown in Figure 9.

4.2 Cyclic coverage algorithm

The cyclic coverage suggested by P. Fazli is similar to the cluster-based coverage 
algorithm, and the cyclic coverage approach finds the guards, builds a graph (VG), 
and then reduces the graph, named reduced Vis. It uses the Chained LinKernighan 
algorithm to generate a path for the entire reduced Vis. The proposed algorithm then 
distributes the robot equidistantly around the tour and moves it recursively. The 
cyclic coverage approach produces an optimal or near-optimal solution for a single 
robot in terms of full path length and total worst-case visit duration.

4.2.1 Issues of cyclic coverage

There are about seven issues that are mainly dealt with in the cyclic coverage prob-
lem as shown in Table 2. The goal can be reviewed as a problem of minimizing the 
worst-case frequency or maximizing a random patrol target. However, most coverage 
problems were handled by minimizing the worst visiting frequencies. The environ-
ment can be largely divided into an indoor environment (corridor space) and an out-
door environment (open space). The third is whether there are any restrictions on the 
sensor. In practice, it is necessary to approach the problem of limited detection range 
and deal with it in detail. Agents can be viewed in static or dynamic environments and 

Figure 9. 
Coverage path generation result [27]. It is based on the spanning tree for graph G.
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are usually defined in a goal-oriented fashion, which can be different depending on 
the given problem. If there are no communication restrictions, centralized control can 
be conducted to the robots, and the patrol policy can be defined as an area patrol that 

Interests Considerations

Objective a. Minimize the worst frequency

b. Maximize the probability of detection

Environment a. Open space

b. Corridor space (complex)

Sensors a. Limited range

b. Unlimited range (like vision)

Agents a. Goal oriented

b. Reactive

Controller a. Centralized control

b. Distributed control

Patrol policy a. Area patrolling

b. Boundary patrolling

Solution a. Optimal

b. Near-optimal

Table 2. 
Issues of cyclic coverage methods.

Figure 10. 
The simulation results of the cyclic coverage method. The SLAM maps are built using the SLAM dataset.
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covers all areas. If it is a border patrol problem, then the method produces how agents 
approach the border. Since in most cases the exact solution is not known, the goal is to 
get near-optimal in terms of time and distance.

4.2.2 Simulation result of cyclic coverage

The cyclic coverage method [28] can be applied to various maps as shown in Figure 10. 
(SLAM data set published on Ref. [29]). Three robots were considered for three maps in 
this simulation. The first figure in Figure 10 is the result of generating a graph (consisting 
of nodes marked in green and edges) considering the detection range of the robot. By cre-
ating a single robot path from this graph and removing redundant paths (leaving unique 
paths), the path can be represented piecewise. The final result is obtained by merging a 
number of paths equal to the number of robots and assigning those paths to each robot. 
From the simulation results in Figure 10, it can be seen that each robot’s coverage area is 
properly allocated.

5. Area-based coverage

Path distribution techniques can give poor results depending on the presence 
and geographic location of overlapping paths. To solve this problem, the process of 
area allocation can be applied. One method is the DARP (region segmentation based 
on the robot’s initial position) method [30]. This method divides the area based on 
Voronoi segmentation and the initial position of the robot. It also scales the area 
through the metric function. The method has been improved according to the form of 
versions, such as 0.5, 1.0, and so on.

6. Conclusion

In this chapter, coverage techniques have been reviewed in terms of the model, 
robot systems, and their purpose by showing their procedures and simulation results. 
Particularly, in surveillance systems, coverage techniques, such as spanning tree, 
cyclic coverage, and area-based coverage, were described specifically, which can be 
expanded for multi-robot patrol systems. In addition, several issues on coverage were 
described and considered.
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Chapter 5

Multi-Robot Mapping Based on 3D
Maps Integration
Michał Drwiega and Elżbieta Roszkowska

Abstract

An unknown environment could be mapped more efficiently by a group of robots
than a single robot. The time reduction due to parallelization is crucial in complex area
mapping. There are two general solutions used in the multi-robot mapping. In the first
one, robots exchange raw data from sensors. The second approach assumes that each
robot creates a local map independently that is exchanged with other robots and
integrated. In this chapter, we present a 3D maps integration algorithm that utilizes
overlapping regions in the feature-based alignment process. The algorithm does not
need any initial guess about the transformation between local maps. However, for
successful integration, maps need to have a common area. We showed that the
implemented method is effective in various environments. The approach has been
verified in experiments with wheeled mobile robots and using public datasets with
octree-based maps.

Keywords: multi-robot mapping, MR-SLAM, feature-matching, octomaps, ICP

1. Introduction

The development of autonomous mobile robots is accelerated by various applica-
tions like underground exploration [1, 2], planetary exploration, autonomous cars,
search and rescue, reconnaissance, home cleaning, lawn mowing, or industrial appli-
cations. In many of these implementations, Multi-Robot Systems (MRS) have several
advantages over a single robot. First of all, task execution time may be reduced due to
parallelization. Moreover, the multi-robot system can provide a higher level of reli-
ability. Even in the case of a single robot failure, other robots can complete the task.
These features are crucial, for example, in search and rescue applications when robots
find survivors in the extreme underground environment after accidents.

The multi-robot mapping of unknown environments can also be performed more
efficiently than a single robot mapping. It is essential in the case of large and complex
area mapping. Moreover, the robots can be equipped with different kinds of sensors to
create more accurate world models. Nonetheless, several challenges specific to multi-
robot systems arise, for instance, proper coordination of robots or handling the com-
munication between them.

In general, there are two solutions used in multi-robot mapping. In the first one,
robots exchange raw data from sensors. The second approach assumes that each robot
creates a local map in the local coordinate system independently. Then local maps are
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exchanged between robots and integrated into one global map [3]. This chapter
focuses on the second solution.

The key part of the map merging process is an estimation of the transformations
between maps. The map alignment process is more challenging than consequent
sensor data frames matching because of larger displacement between maps or mea-
surements. There are several possible solutions on how to find this transformation.
One of them assumes using the robots’ initial poses and their local localization sys-
tems. However, it is not possible in all cases because of localization drift.

Another approach is to exchange and merge maps only during robot meetings. It
assumes the use of additional sensors or methods to detect other robots when they see
each other. Even partial information could be helpful during the transformation
estimation, so in some systems, only the distance between robots is calculated based
on the signal time-of-flight.

It is also possible to use a feature matching-based approach to get the relative poses
of robots. In this case, the features are extracted from maps and matched. However, the
transformation could be estimated successfully only if maps have an overlapping area.

This paper presents the design and implementation of the global 3D maps integra-
tion method with the alignment based on feature matching which does not require an
initial transformation estimation.

1.1 Related work

One of the basic tasks of multi-robot mapping is a merging of local maps from
individual robots into one global map [4–6]. As mentioned before, the most challeng-
ing part of the maps merging is finding the transformation between partial maps.

Some approaches use additional information about transformation between maps.
For instance, it can be acquired by visual or range measurements during the robots
meeting. In ref. [7], an approach has been presented that is based on the direct
measurements between robots. Each direct detection creates a hypothesis that is
validated during the next meetings of the same robots but in other locations. Maps are
merged only if robots meet again and the hypothesis is accepted.

Map merging methods are also based on the idea of finding and matching the
overlapping area in the maps. Such overlapping areas are not known before. In ref.
[8], the system for detection of overlapping regions in maps created with ceiling-
vision-based SLAM has been described. The algorithm can detect the overlapping
regions and estimate transformations between partial maps.

Another approach has been included in ref. [9]. It uses an omnidirectional visual
system and the initial version was intended for only one robot that creates partial
maps. Nevertheless, the method can be applied also to multi-robot systems. The
algorithm uses a vision system to generate coarse transformations between partial
maps. The additional level of validation is based on the calculated bounding boxes
with the Haar-based place recognition method.

The next group includes methods based on sensor measurements matching, for
example, scan matching. In [10], the 2D local maps were merged with SIFT (Scale-
Invariant Feature Transform) algorithm that allows to extract, describe and match fea-
tures. Another optimization technique that was used is the ICP (Iterative Closes Point)
[11, 12] which finds a rigid transformation between two point sets. It has been utilized
to find a transformation between consecutive 2D scans during the map creation process.

In ref. [13], it has been presented as a spectral information-based method dedi-
cated to 2D maps. It assumes that the map merging problem is a binary image
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matching problem. The algorithm allows using for instance Hough transforms to
decompose the transformation into separate rotation and translation. Another method
that uses geometric and topological similarities of vertices and edges to find a match
between two maps has been presented in ref. [14].

A major part of the mentioned methods was supposed to be used with 2D maps.
However, 3D maps have received much attention in recent years due to the growing
demand for robotics services in complex environments to coexist with humans but
also challenging extreme underground or underwater scenarios. The world represen-
tation in three dimensions allows robots to operate in multi-level buildings, in
cluttered rooms but also in rough terrain. Moreover, such maps have better perfor-
mance in heterogeneous multi-robot systems [15–17], especially when robots are
equipped with different sensors. Several studies, for example [18, 19], have proposed
solutions for the octomaps [20] integration problem with local alignment methods like
ICP. It is worth mentioning that the octomap [21] is a tree-based representation built
upon a multiple dividing of the world into eight cubic parts. Such representation is
memory efficient and could be successfully used for large environments.

The mentioned map integration methods have a significant drawback. They do not
optimize solutions in the background. It means that once maps are aligned the trans-
formation is not corrected anymore. To solve this issue graph-based methods were
developed [22] that benefit from backend graph optimization.

In ref. [23], local alignmentmethodNDT (Normal Distributions Transform) has been
presented.The comparisonofNDTwith ICP[24] shows that it ismore efficient and inmost
cases, it converges fromabroader rangeof initial poses.However, authorshavenoticedalso
that theNDT is less predictable than ICP in caseswith smaller initial pose errors.

The ref. [25] presents the 3D point sets alignment algorithm that utilizes the
transformation into the Radon/Hough domain.

As in opposition to the methods based on the local features description and
matching, in ref. [26], an approach with higher-level descriptors based on lines or
planes has been presented. Authors have noticed that higher-level descriptors improve
performance in the case of small maps overlapping.

1.2 Contribution

This chapter presents a developed global 3D maps integration algorithm with the
alignment based on feature matching. In contrast to many other approaches, it does
not require an initial transformation estimation and is not sensitive to the local min-
ima. The approach is based on a classic computer vision pipeline that has been mod-
ified and applied to the 3D maps integration. Moreover, the introduced model division
into submodels procedure improves the feature matching process performance and
increases the efficiency of data processing in many cases.

Themethod uses octree-basedmaps (octomaps) which allow to utilize the additional
information like nodes’occupancyprobability in the alignment process. The approachwas
verified inmultiple test cases based on data from real robots. Furthermore, the algorithm
has been implemented in C++ and released as open-source software (3d_map_server [27]).

1.3 Problem statement

Let us consider a system ofN robots, in which each robot creates its partial mapMn

in a local coordinate system Tn. Each map consists of a set of Nn nodes
Mn ¼ m1, m2, … , mNnf g. The maps integration problem can be defined as the creation
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of the consistent model of the world M based on a set of k separate models M0 ¼
M1, …Mkf g (Figure 1).
In the next part of the chapter, the problem has been narrowed down to only two

input models. However, in the case of more than two maps, they can be integrated
sequentially.

2. Maps integration method

The presented maps integration algorithm consists of a few processing steps
(Figure 2). On the input, there are two 3D maps (octomaps). To integrate them
successfully, they must have an overlapping area. The map merging process consists
of two major steps: finding the transformation between maps and data aggregation.
On the output of the algorithm, there is an integrated map.

The most complex part of the algorithm is the process of the transformation
finding. It consists of three steps: model extraction, global alignment, and local align-
ment. In the presented pipeline, map 2 is used entirely but map 1 is used to extract n
models.

In the global alignment, there are common operations for both maps, like filtra-
tion, keypoints detection, and feature description. The feature descriptors from both
maps are matched to each other with dedicated algorithms. Because one map has
been divided into multiple models, the result of the initial alignment consists of n
hypotheses H ¼ h1, … , hnf g (each for a separate model).

Each hypothesis is validated with quality measures, for example, the fitness score.
Finally, the best solution is selected from the set of accepted hypotheses HA. If at least
one hypothesis is accepted then the maps merging process is continued and the final
result is the transformation that transforms one of the maps into the coordinate
system of the other map. Otherwise, the processing is stopped at this point.

If the solution has been found in the previous step, then it is corrected with a local
alignment algorithm. To generate the final map that consists of partial maps, it is
necessary to transform maps to the common coordinate system and aggregate data
from them into one model.

2.1 Models extraction

As mentioned before, one map is divided into multiple rectangular blocks that are
used as models. Several cases of relations between maps have to be considered
(Figure 3). The map integration can be finished successfully only in the first three
cases when the area that corresponds to the model could be found in another map. In

Figure 1.
Partial maps created by robots and merged into one model.
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the last case, the integration method will be stopped because there is no common area
that could be matched.

The maps integration process can be speeded up when robots start exploration
from the same place and explore separate parts of the environment. Therefore,
excluding the kidnapped robot problem, and a case when one of the maps is entirely
included in the second one, the overlapping area begins on the borders of both maps.

Figure 2.
The architecture of the developed maps integration algorithm.

Figure 3.
Maps overlapping cases (I-III) and the case when there is no common part between maps (IV).
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Because of that, the processing of the map starts from the outside part and proceeds in
a spiral toward the center of it. Concurrent models are processed in parallel until an
acceptable solution is found.

If robots move on a flat surface, maps are limited on the Z axis and wider in x and y
axes. In such a case, the map division in two dimensions is sufficient. Nonetheless, in
specific cases like multi-level building maps, the model can be extracted from one of
the maps based on the 3D grid (Figure 4).

2.2 Data preprocessing

The first step of data processing is pass-through filtration which rejects points that
are not inside the specific area. For instance, the maps are reduced in the z-axis to get
rid of the ground and reduce the number of points, and speed up further calculations.

Then, the point cloud is downsampled with a voxel grid filter. The idea behind it is
to divide space into voxels with specified sizes and represent each voxel by a center
point calculated as an approximation of all original points from this voxel.

The last step is outliers removal based on a statistical analysis of neighboring
points. The points that do not meet the requirements are removed from the set.

2.3 Keypoints selection

The feature description is a computationally expensive operation. Therefore, the
descriptors are computed only in carefully selected points - key points. The keypoints
should be distinctive and repeatable to deal with noises and different points of view.

In this work, the ISS (Intrinsic Shape Signatures) [28] detector has been used. The
ISS detector determines the relevance of the point based on eigenvalues of the matrix
created for the support (local neighborhood) of a specific point. Let X ¼
x1, x2, … , xNf g be a support of the keypoint k. Then,

Σk ¼ 1
N

XN
i¼1

xi � pk
� �

xi � pk
� �T, (1)

be covariance matrix calculated for the support of k, where

pk ¼
1
N

XN
i¼1

xi (2)

Figure 4.
The models extraction procedure with processing order - 2D (a), 3D case (b), and an example with real map (c).
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is a mean point. The keypoint is relevant only if

λ2
λ1

≤ γ12∧
λ3
λ2

≤ γ23, (3)

where γ12 i γ23 are arbitrary selected parameters and λ1 < λ2 < λ3 are eigenvalues of Σk.

2.4 Features description

Features description creates a local surface representation that could be easily
compared what is crucial in the process of similar features finding. Therefore, the local
descriptor is computed in each keypoint (Figure 5). Local descriptors describe a local
neighborhood of a query point.

A local descriptor that was used is a SHOT (Signature of Histograms of Orientations)
descriptor [29]. It uses the spherical support that is divided into spatial segments
(Figure 6). For each segment, it is calculated a histogram representing the distribu-
tion of the cos θi, where θi is the angle between the surface normal in each point from
the support and the surface normal vector n in the query point. Finally, all local
histograms are combined into a vector that is the descriptor. It is also possible to
utilize texture information like a point color received from the RGB-D sensor.

Figure 5.
Points on the example map, for which descriptors were calculated.

Figure 6.
The spherical support of SHOT descriptor divided into 32 spatial parts and histogram of cos θi.
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2.5 Feature matching

To estimate the transformation between maps, it’s necessary to find similar fea-
tures in two maps and matched them to each other. The first feature descriptors set
DM is created for the keypoints of the model M0 ¼ mijmi ∈3, i ¼ 1, … , NM

� �
and

the second set Ds for the scene S0 ¼ sijsi ∈3, i ¼ 1, … , NS
� �

. During the matching
process, for each keypoint from the set M0, it should be found the point in S0 with a
similar feature descriptor. Finally, it is calculated a transformation that minimizes
distances between pairs of descriptors.

Two matching methods were used. The first is a randomized algorithm SAC
(Sample Consensus) [30]. The idea behind it is to use a random search of
corresponding features in two sets. The algorithm in each iteration consists of three
steps:

• Randomly select k points from the set M0 and add them to set
P ¼ pijpi ∈3, i ¼ 1, … , k

� �
,

• For each pi ∈P, find points with similar descriptors in S0 and randomly select
from them the one that will make a pair with the point from P,

• For each pair of corresponding points, compute the transformation between
points and check the error metric.

The second global alignment method is a GCC (Geometry Consistency Clustering)
[31]. It uses the correspondences grouping based on the geometrical distances
between them (Figure 7).

2.6 Local alignment

Finally, to improve the previous solution, the local alignment is applied. For this
purpose, the scene is cropped to the size of the model inflated by a distance dm
(Figure 8). Then, the ICP-based algorithm is used to correct a transformation
between the scene S ¼ sijsi ∈3, i ¼ 1, … , NS

� �
and the model

M ¼ mijmi ∈3, i ¼ 1, … , NM
� �

. The method matches one map (scene) S to the
second one M called model in a way that minimizes distances between pairs of points

Figure 7.
Correspondences c1,… ,cn grouping in GCC method based on distances between point features in two sets.
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(nearest neighbors) from both sets. It is done in multiple iterations and a single k-th
iteration consists of the following steps:

• ∀mk
i ∈M find the closest point (nearest neighbor) ski ∈ S,

• Minimize distances between corresponding points pairs with the least squares
method

E R, tð Þ ¼ 1
NM

XNM

i¼1
Rmi þ t� ski
�� ��2, (4)

• Transform model according to estimated rotation R and translation t

Mkþ1 ¼ RMk þ tk, (5)

• Terminate if the error value is below the threshold τ.

Also, other methods were used for the local corrections. The first is the OICP
(Occupancy Iterative Closest Point) which is a variant of ICP that utilizes additional
information - occupancy in minimized goal function. Such information is included in
occupancy-based maps like octomaps. The second method was the NDT [23] which
divides space into voxels and estimates normal distribution parameters in each voxel.
Parameters of the normal distributions are calculated with Eqs. (1 and 2).

2.7 Transformation evaluation

The solutions have been evaluated with a computed fitness score

f s ¼
Pn
i¼1

pi � qi
�� ��

2

nw
wi, if nw ≥ nth

þ∞, otherwise

8><
>:

: (6)

It represents the mean error between n pairs of corresponding points pi, qi
� �

from
two data sets P ¼ pijpi ∈3, i ¼ 1, … , n

� �
and Q ¼ qijqi ∈3, i ¼ 1, … , n

� �
. Never-

theless, the basic fitness score that is a mean distance is not very robust, for instance, it

Figure 8.
The scene cropped to the size of the inflated model. On the right side, there is a model matched to the scene.
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can be calculated on the basis of a small number of pairs. Because of that, binary
weights

wi ¼ 1, if pi � qi
�� ��≤ dth

0, otherwise

(
, (7)

were calculated for each pair depending on the maximum distance between
corresponding points dth. Due to that, only pairs with smaller distances are considered
in calculations. Also, if the number of pairs with a positive weight

nw ¼
Xn
i¼1

wi (8)

is below the threshold value nth, the fitness score is set to infinity. The presented
metric avoids false good nodes matching because of the use of a threshold. Without it,
it is possible to get a low fitness score only based on a small number of points pairs.

3. Validation

The presented maps integration method has been validated in numerous experi-
ments. The first set of experiments was based on data from public datasets from
Freiburg University. Another experiment contains data from two Tuerlebot robot
runs. Finally, different map alignment methods were compared.

3.1 Experiments with public datasets

The dataset prepared at Freiburg University has been released under the Creative
Commons Attribution License CC 3.0 [32]. It contains maps created with a 2D SICK
LMS laser scanner that was placed on a pan-tilt unit to get the additional dimension.
As a result, the accuracy of maps is quite better than the accuracy of maps created
with the RGB-D sensor but they do not provide information about the surface color.

Figure 9.
Global alignment example. A model (yellow) has been extracted from the one map (red) and it was matched to
the second map (blue).
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Figure 9 shows the example of the global alignment process. The selected results of
the maps integration have been placed in Figures 10 and 11. Other results are shown
in Table 1, where:

• n1 and n2 are sizes (a number of nodes) of input maps,

• TR is a real transformation between maps in format x, y, z, roll, pitch, yawð Þ,

• r is an approximated size of an overlapping area of both maps as a percentage of
the full map,

• f s is a fitness score,

Figure 10.
Indoor maps integration (a) and an integrated map (b).

Figure 11.
Outdoor maps integration (a) and the integrated map (b).

n1 n2 TR x, y, z, R, P, Y
� �

r f s [m] Terr t [s]

51k 67k (10, 1.5, 0.1, 3°, 2°, 25°) 12% 0.02 0.6 4.3

(10, 1.5, 0.1, 3°, 2°, 25°) 24% 0.002 0.16 2.1

(10, 1.5, 0.1, 0,0,0°) 36% 0.0006 0.10 1.9

(12, 6, 0.5, 5°, 5°, 60°) 24% 0.0009 0.21 2.4

Table 1.
Results of transformations estimation.
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• Terr is an error value between real and estimated transformation and is calculated
as matrix norm Terr ¼ ∥Test � T�1R � I4∥F,

• t is a processing time in seconds.

3.2 Experiment with turtlebots robots

To validate the integration algorithm with data captured with RGB-D sensor, the
experiments with two mobile robots Turlebots (Figure 12) were carried out. The
Turtlebots were equipped with an odometry system, lidar Hokuyo UST-10LX and
RGB-D sensor Intel RealSense D435.

The system used for the octomaps creation (Figure 13) was built upon the ROS
framework and the GMapping SLAM. During the online session, the 2D SLAM

Figure 12.
Turtlebot robot equipped with multiple sensors used for localization and mapping.

Figure 13.
The high-level control system of the mobile robot used to create the octomap.
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algorithm estimated robot pose based on data from IMU, lidar, and odometry. On the
other hand, the offline 3D map creation (octomap) used data from RGB-D sensor and
pose estimated by SLAM.

The experiments with mobile robots were carried out in a robotics laboratory and
corridor localized on the campus of Wrocław University of Science and Technology
(Figure 14). Experiments results have been shown in Figures 15 and 16.

Figure 14.
The paths of two robots followed during the experiment. The paths are presented on the 2D map created for the
same localization with lidar and GMapping SLAM.

Figure 15.
An experiment with a mapping of the laboratory in WrocÅ‚aw University of Science and Technology. The figure
shows maps before merging (a) with extracted (yellow) and matched model (green). On the other side, there is a
merged map (b).

Figure 16.
Integration of maps from the same location but with different initial poses of robots.
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3.3 Comparison of the alignment methods

The performance of alignment algorithm variants has been evaluated in
multiple testing cases which contain distinctive maps. The mean value Terr has
been calculated for all testing cases. Additionally, it was verified if a division of one
map into models (model extraction process) could speed up the alignment
procedure. Therefore, there are the comparison of two kinds of methods, with DIV
postfix and without it. Added postfix means that method uses a model extraction
procedure.

The diagram (Figure 17) shows mean errors for different local alignment and
global alignment methods checked separately. On the other hand, the diagram
(Figure 18) contains mean errors for combinations of local and global alignment
methods. Additionally, Figure 19 shows how map overlapping percentage affects the
alignment error.

Figure 17.
Mean error between real and estimated transformations for (a) local alignment methods, and global alignment
methods.

Figure 18.
Mean error between real and estimated transformations for combination of global, and local alignment methods.
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4. Conclusions

The chapter presents a 3D maps integration algorithm that does not need initial
knowledge about the relative poses of robots. Instead, it uses the feature extraction
and matching idea. Therefore, the algorithm needs an overlapping area between maps
to integrate them successfully.

The algorithm validation is based on public datasets with octomaps and experi-
ments with two mobile robots. Multiple variants of the method have been validated
and compared, especially different combinations of local and global alignment
methods, but also additional model extraction procedure.

The results show that the approach is effective in various environments, especially
if maps have at least 15% of common area. The best results have been noticed for
probabilistic SAC method with local alignment OICP and enabled models extraction
procedure.

On the other hand, the maps integration method has some limitations. The com-
putational cost of the data processing is significant, especially the cost of the global
alignment step that is necessary always during the first maps exchange between
specific pair of robots. The whole integration process takes about 5 seconds in the case
of two maps with sizes about 20m� 20m� 2m and resolution equal to 5 cm. It has
been also noticed that it is hard to find a transformation between maps that contain a
ground plane because the ground plane does not contain enough distinctive features.
Nonetheless, it can be easily improved, by removing the ground plane from maps. The
scaling also needs some attention, as the method was already tested only with two
robots.

A significant drawback of the approach that is still not addressed is the loop closure
problem. In the current version, it was assumed that local alignment errors are small
enough and their influence is negligible. However, it is not true and multiple maps
integrations lead to increased errors, what has an impact on the quality of the output
map. This issue may be solved by providing a high-level graph-based approach with
graph optimization to manage multiple partial maps from robots.

Figure 19.
Comparison of mean error depending on maps overlapping percentage.
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Chapter 6

Scalable Algorithms for
Simultaneous Mapping and
Localization of Mobile Robot
Swarms
Anton Filatov and Kirill Krinkin

Abstract

The chapter is devoted to the development of scalable algorithms for multi-agent
solution of the SLAM problem. These algorithms are applicable to robots with limited
computational resources, having limited computational power and memory, small
spatial size, and power from a portable battery. To simplify the description, only
robots equipped with LIDAR are considered. The main focus is as follows: a scalable
multi-agent SLAM algorithm based on Dempster-Shafer theory; an algorithm for
filtering two-dimensional laser scans to free up computational resources; evaluation of
the accuracy of the map and trajectory constructed by the multi-agent algorithm;
performance evaluation on resource-limited computing devices.

Keywords: autonomous systems, mobile robots, artificial intelligence, localization,
SLAM

1. Introduction

Service robots become more and more common every year. There are a lot of areas
where they can be applied: medicine, i.e., COVID robots, delivery, rovers, etc. One of
the tasks that a service robot faces is an orientation on the environment. The accuracy
of the map in the onboard computer’s memory, according to which the robot is
moving, determines how precisely it will move. The determination of the robot’s own
position on this map is also significant. Usually it is necessary to determine its own
position to an accuracy of centimeters, no satellite location system is capable of it.

To ensure accurate localization, algorithms that solve the problem of SLAM
(Simultaneous Localization And Mapping) are used. If it is known that the environ-
ment may dynamically change, then the most reasonable approach is to build a map
online instead of using a pre-constructed one. For example, a car driving on public
roads must avoid potholes on the road or avoid temporarily blocked sections of road.
Equipping an unmanned car with such information in advance is a challenge. So using
a pre-constructed map is certainly helpful, but it is also necessary to update the map as
you drive.
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Using multiple agents working together and building a map of the environment
together allows for both faster map building and more accurate localization for each
robot individually. The acceleration is achieved due to the fact that the researched area is
divided into sections, and each section is studied by only a subgroup of agents, and then
all the studied sections of the map are combined. The increase in accuracy compared
with the single-agent algorithm is achieved due to the fact that each agent not only
complements but also verifies the map of other agents. This allows correcting possible
errors that occur in calculating its own position and constructing the map on the fly.

The goal of this work is to develop scalable algorithms for multi-agent SLAM,
applicable to robots with limited computational resources. To increase the accuracy of
the map construction, it is proposed to use the Dempster-Shafer theory [1] instead
of the classical Bayesian one. Experiments have shown that the use of this theory
increases the accuracy of the SLAM algorithm. In addition, the developed algorithms
can be applied to robots with limited computational resources. In the context of this
paper, a robot is a mobile platform equipped with a computing device and a LIDAR—
a sensor that can measure the distance to obstacles surrounding the robot. Resource
constraints are applied to the computing device, the applicability of different LIDARs
is not analyzed in this paper. Thus, a robot with limited computational resources is a
robot with limited computational power and RAM, small size, and power from a
portable battery. At the moment, typical representatives of such devices are
Raspberry Pi or Jetson Nano products.

2. Swarm

First of all, it is necessary to introduce the notion of “swarm,” which is the
executor of the multi-agent SLAM algorithm. A swarm of robots is a set of autono-
mous robots with comparable technical equipment for observing the environment in a
limited area, they have no hierarchy and exchange information with each other to
mark the environment together. Therefore, each robot in the swarm performs the
same functions, there is no vertical hierarchy in the swarm. There is no central node—
the server, whose absence could cause the entire system to stop working.

There are various papers describing the solution to the SLAM problem, both for a
single robot and for a swarm. For example, in the works [2–4], the single-agent
algorithms that are popular at the time of these works are listed and compared. There
are algorithms that were directly developed as multi-agent algorithms. Usually their
peculiarity is that there is some hierarchy and distribution of roles in the swarm.
However, there are approaches where robots are independent agents and exchange
data with each other asynchronously. In addition, there are a number of studies where
single-agent pipelines were augmented with communication modules, and thus, the
single-agent algorithm was “extended” to the multi-agent case. More details about the
overview of such approaches are written in the papers [5–7]. In the current paper, it is
considered the latter approach of those described above.

Each agent in the swarm independently determines the moment when it is neces-
sary to start exchanging information with other agents. Naturally, the bases for such a
decision are the same for all members in the pack. The model of this behavior for two
robots in the swarm is presented in Figure 1.

The central node here is the communication module, which can perform a combi-
nation of its own data with another agent data. If communication with other robots in
the swarm is not required, the communication module processes only its own data.
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3. Algorithm description

The developed algorithm will be used by the agents in an indoor environment. This
means that the size of the studied space does not exceed several hundred square
meters. In this case, it is impossible to use GPS, because the error of positioning using
GPS is several meters, which is unacceptable. One can use a LIDAR as a sensor, the
effective radius of which is measured in tens of meters. Choosing a LIDAR as a sensor
allows you to build a map in the form of a grid of occupancy. Thus, the map
constructed as a result of the algorithm will be a plan of the building on which the
agents move.

Important fact is that the problem of controlling the mobile platform to explore the
environment is not considered. The task of the developed algorithm includes only the
processing of measurements obtained from the LIDAR and the odometry sensor and
the construction of the map.

The indoor environment in which agents move should not contain dynamically
changing areas. The appearance of rare and small noises is possible (e.g., the move-
ment of people or other mobile platforms). However, moving furniture or columns in
the room, especially at times when the agent is not observing the relevant part of the
environment, is not allowed.

It is mandatory that all agents executing the SLAM algorithm must be equally
equipped: not only have the same computing capabilities, but also the same mobile
platform and the same LIDARs. This requirement is due to the fact that each agent
executes the same algorithm, so the output data structure of the agents must be the
same. If, for example, the computing power of one of the agents is greater than that of
the other, the quality of the map generated by the agent with less power will be worse
due to the lack of time for data processing. In this case, the map obtained as a result of
the merging will not only contain areas with different degrees of clarity, but if some
areas intersect, the less accurate map can introduce a significant error in the result.

Figure 1.
The model that describes the considered multi-agent SLAM algorithm.

89

Scalable Algorithms for Simultaneous Mapping and Localization of Mobile Robot Swarms
DOI: http://dx.doi.org/10.5772/intechopen.108315



3.1 Description of the features of the multi-agent algorithm core

In order for the algorithm to work robustly, it is necessary to get laser scan data
and odometry data as inputs. It has already been said that odometry is not a manda-
tory parameter; however, it serves to increase accuracy.

Odometry (as a prior estimation of position), together with the new laser scan and
the currently constructed map, is passed to the input of the scan matcher [8].

The task of this module is to calculate the difference between a prior position
estimation and the true position. The true position is the one from which a given laser
scan can be captured. A laser scan may contradict the map due to errors of the scan
matcher in previous steps or due to an incomplete map; the goal is to compute the
most likely scan position.

To calculate the most likely position, one can use a Bayesian approach to probabil-
ity calculation. The probability of a position is then calculated as the average sum of
the probabilities of all scan points overlaid on the map from a given position. Each
point of the scan denotes an obstacle, and under ideal conditions each point should be
located in an occupied cell of the map. However, it is not enough to introduce a binary
division into occupied and unoccupied cells. In reality, a map cell may be too large,
and the scan points may be placed in it, as shown in Figure 2.

It is logical to assume that the cell has some probability of being occupied. This
probability is based not only on the fact that at least one point of the laser scanner hits
the cell, but also on howmany beams from the LIDAR can pass through the cell before
hitting an obstacle. This cell structure opens up the possibility of calculating the
probability of position. The position probability can be calculated as the average sum
of the probabilities of the cells in which the laser scanning points hit:

ppose scanð Þ ¼
X

p∈ points

op � ωp (1)

Figure 2.
An example of a part of a laser scan. A lot of scanning points fall on a cell, but such a cell cannot be considered
occupied.
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where p is a scan point, op is an occupancy of the point p, ωp is a weight of the scan
point.

The weight of the scan point is introduced to make the algorithm more stable in
corridor conditions. In this case, different robot positions along the corridor direction
have very close probability values. Differences in the values of probabilities are intro-
duced by scan points that are different from the corridor walls. Usually such points are
located in the direction of movement of the mobile platform. Consequently, laser
scanning points located directly opposite the laser rangefinder have a greater weight.

The scan matcher’s goal is to calculate the position with the highest probability
(when the laser scan points released from that position hit the squares on the map that
have the highest probability of being occupied).

The approach to calculating such a position can be arbitrary. In this paper, theMonte
Carlo scanmatcher [9] is taken as the basis, the idea of which is a stochastic search of
positions. Once a positionwith higher probability than all previous positions is found, the
search begins in a lower radius around that position. This process is shown in Figure 3.

Figure 3 shows the sequence of steps. Position 1 is a prior estimate of the position.
With some radius around it, the positions are being chosen stochastically and their
probabilities are calculated. The enumeration is carried out until position 2 with a
higher probability than the probability of position 1 is found. The radius around
position 2 is smaller than the radius around position 1. Then the operation is repeated
several times. Practical application of this algorithm shows that it is sufficient to set a
threshold for the number of calculations of position probabilities in general, instead of
for the number of such positions. A guarantee of finding a solution by such an
algorithm exists only if there are no distinct local maxima of position probabilities in
the stochastic search area. Otherwise, it is necessary to increase the search radius, as
well as the number of positions to search.

3.2 Applying Dempster-Shafer theory to increase the accuracy of the algorithm

According to the Bayesian approach, each cell in the map contains a number from
0 to 1 that determines the probability of a cell of being occupied. To calculate this

Figure 3.
The visualization of an iterative algorithm for stochastic search for a position with the highest probability.
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probability, it is needed to estimate the position of specific scan points in the cell
relative to the point from which the laser scan was observed. Each cell on the map has
probability p of being occupied and probability q of being free. These probabilities are
related by the equation p + q = 1. However, under real-world conditions, the
“unknown” state should also be introduced. The cell may have such a state when it is
in an unexplored region. Also, the cell may be in the “unknown” state when two
consecutive scans contradict each other.

Thus, a cell is described by three probabilities: the probability of being occupied p,
the probability of being free q, and the probability of being unknown u. These three
probabilities are related by the identity p + q + u = 1. Unlike the previous approach,
where one probability is expressed through another, this approach allows each prob-
ability to be expressed through a pair of others. The question arises how to combine
cells following these rules.

To answer this question, the Dempster-Shafer theory is applied [1, 10]. To strictly
follow this theory, it is also necessary to introduce a state of conflict in the cell of themap.
From a natural point of view, conflict is the state of a cell not being in any of the possible
states. But in reality, no cell in themap can be in a state of conflict, whichmeans that this
probabilitymust be distributed among the other states. It should be noted: if a cell is in an
unknown state, then it is simultaneously in free and occupied states.

In the context of the problem at hand, the Dempster-Shafer theory is applied
during the scan matcher, when it is necessary to find out the probability of a map cell
being occupied. Immediately after the scan matcher runs, the second step of applying
this theory is to place the probabilities of being free and occupied into the empty map
cells that have appeared in the LIDAR observation area. To do this, the rule of
combining probabilities, described by the equation below, is applied.

m1,2 ¼ 1
1� K

X
B∩C¼A6¼0

m1 Bð Þ �m2 Cð Þ (2)

where m is the probability of the state, A,B,C are the different states: whether the
cell is free, occupied, or unknown (free or occupied), K is calculated by the formula

K ¼
X

B∩C¼0
m1 Bð Þ �m2 Cð Þ (3)

3.3 Description of the multi-agent SLAM algorithm

The distinctive feature of the proposed algorithm is that each agent has no knowl-
edge of the other agents at any time. This allows the system to remain operational
when one or more agents fail, or when only one agent remains in the system. Infor-
mation is exchanged between agents only when two agents are in close proximity to
each other.

Based on the described methods and hypotheses, one can construct an algorithm
that solves the problem for a swarm of robots. The algorithm is an extension of the
single-agent laser single-hypothesis algorithm, which uses an occupancy grid as a
map. Each cell, in addition to the probability of being free, also contains a probability
of being occupied and of being unknown. These probabilities follow Dempster-Shafer
theory. The scheme of such a multi-agent algorithm is shown in Figure 4.

Consider the algorithm from the point of view of one particular agent, which
solves the SLAM problem. The agent possesses only its own computational resources,
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which are aimed at constructing a map and determining its own position on it. When
another agent enters the field of view of the first agent, they begin the process of
exchanging all the knowledge accumulated during the past time. It needs to be deter-
mined that the other agent has entered the field of view without using sensor data.
Otherwise, it would be necessary to label the robot to distinguish it from its environ-
ment. And since the algorithm must operate in a situation with no prior knowledge of
the environment, the approach that requires labeling the robot is not applicable.

Consequently, it is necessary to determine that one agent is in the direct line of
sight of the other by means of some separate sensor. The choice of such a sensor is
outside the scope of this work, but as an example, one can use the Bluetooth data
transmission technology, the range of which is just a few meters. You can also use the
wifi signal and based on the strength of the signal determine the distance between
agents. It is possible to equip agents with radio sensors and calculate the distance
between them using the radio signal.

When the agents are in close proximity, they can begin the process of exchanging
the maps they have built. These maps definitely have a common part, since the data
transfer takes place when the agents are almost in the same position and observe the
same part of the environment. In addition to the maps, the agents pass each other the
current laser scan, which allows applying a scan matcher algorithm that is similar to
the one running in each agent’s core in a SLAM algorithm.

Thus, an agent receives a laser scan from another agent. Using the scan matcher, it
overlays this scan on its own map and determines how far apart the agents are in
relation to each other. Consider in more detail the applicability of the scan matcher
algorithm to determine such relative position. In general, the scan matcher takes as
input the prior agent position, the current laser scan, and the constructed map. The

Figure 4.
The scheme of the multi-agent SLAM algorithm.
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output parameters for calculating relative position are the vector by which a prior
position estimate must be changed in order to calculate its posterior estimate. In other
words, the scan matcher calculates the difference between the position obtained from
the input and the position from which the resulting laser scan can actually be seen,
given the resulting map.

This description of the scan matcher assumes that when it receives a laser scan
from another agent as input, it will get the distance between the agents as output. The
condition that the part of the environment captured on the scan is present in the map
must be satisfied. The fulfillment of this condition is guaranteed. The scan matcher
algorithm will be discussed in more detail in a further analysis.

After determining the mutual position of the agents, it is possible to start merging
the maps. To do this, the second agent passes the first constructed map. Provided both
maps obtained are error-free, map merging is a straightforward operation, where it is
sufficient to go through each cell of both maps and choose either the largest, smallest,
or average occupancy of the corresponding cells. The nature of the algorithm embed-
ded in the core of each agent allows errors to occur during the map construction
process that will never be corrected in the future. In particular, a single-agent SLAM
algorithm may be not multi-hypothesis nor graph-based. Then the map constructed
by one agent or the other may contain errors. Nor is it known whether the same error
is contained in only one map or in both maps. To avoid this, the Dempster-Shafer
theory is used.

The pseudocode of the multi-agent SLAM algorithm is presented below.
function MATCH(observation, pose, map)

for random position∈ neighborhood(pose) do
pose_score try_insert(positionþ observation,map)

end for
return position best_score½ �,best_map

end function
while True do

posei, mapi  MATCH(observationi,posei�1,mapi�1) ► a single SLAM routine
if another_robot_is_near() then
foreign_mapi, foreign_observationi  receive_foreign_state()
foreign_pose MATCH(foreign_observationi, posei, mapi)
relative_pose posei � foreign_pose
mapi  combine_with_thDS(mapi, foreign_mapi, relative_pose)

end if
end while

4. Laser scan filtering algorithm

LIDARs, as input data providers, have a common flaw: they collect too little and
too much data at the same time. On the one hand, there is little data, because it is
impossible to smooth or approximate it without significant loss of accuracy; on the
other hand, there is a lot of data, because it takes a lot of memory to store and process
data from modern laser scans, which are taken more than 30 times per second [11].

The need to develop a filter for laser scans arises. Normally one does not need to shoot
laser scans as often, unless the scanner ismounted on a vehicle traveling at 60 km/h. In this
case, the environment can change dramatically in 0.03 seconds. On the other hand, if the
robot is moving indoors and has an average velocity of about 0.5–1m/s [12, 13], such a

94

Autonomous Mobile Mapping Robots



number of dense point clouds from the laser rangefinder is redundant. The idea of the filter
is based on storing several consecutive scans in a slidingwindow and comparing each new
scanwith the scans from that window. If each new scan correlates strongly with each scan
from thewindow—it should be discarded.

The basic idea of the developed algorithm is to compare the current laser scan with
the previous one. If a new scan is similar to a previous one, it should not be processed;
and in order to avoid noise in the observations, the current scan should be compared
with several previous scans instead of just one. Thus, a sliding window of scans
appears, which is capable of evaluating each new incoming scan.

Usually a laser scan consists of several thousand points. Calculating the correlation
of scans by brute force method requires O n2ð Þ operations, which may exceed a million
iterations. To reduce this amount, special points on the scan can be singled out, which
would take a lot of time. Instead of using the raw laser scan data to calculate the
correlation, it is proposed to build a histogram for each scan.

Consider the method of constructing a division histogram by distance ranges. For
each scan, the maximum and minimum values of the distance to obstacles are known.
Consequently, it is possible to divide this range spread into several interval, and then
calculate the number of points corresponding to each interval. Two consecutive scans
usually should not differ significantly, so the distance histograms should be close to
each other. In practice, if the robot is not rotating, the difference between the two
scans is insignificant, and the values of each column of the histogram change little. If
the robot is rotating, the difference is more significant. However, you can update the
approach: instead of calculating the number of points in each column, you can calcu-
late the median value of distances for each interval. In this way, the two consecutive
histograms become more diverse.

4.1 Correlation criteria

The next step after creating the histograms of each scan is to calculate their
correlation. Here one can use the methods of mathematical statistics and consider the
histogram as a random variable with an unknown distribution. Since all the histo-
grams from the window are generally similar to each other, it is assumed that the
distribution is the same.

There are several well-known ways to calculate the correlation of random
variables: Pearson correlation [14], Spearman correlation [15], and Kendall
correlation [16]. The simplest is the Pearson correlation coefficient. It is calculated by
the equation

PX,Y ¼ cov X, Yð Þ
σXσY

(4)

where X,Y are some random variables, cov is covariance of random variables, σ is
the variance of a random variable.

If a random variable consists of n observations, and xi is the observed value of this
variable at the i-th step, the Pearson coefficient can be calculated by the following equation:

PX,Y ¼
n
Pn

i¼1xiyi
� �� Pn

i¼1xi
� � Pn

i¼1yi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
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n
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2
i �

Pn
i¼1yi

� �2h ir (5)

95

Scalable Algorithms for Simultaneous Mapping and Localization of Mobile Robot Swarms
DOI: http://dx.doi.org/10.5772/intechopen.108315



The value of this coefficient ranges from�1 to 1. A value of 1 is a complete positive
linear correlation, 0 is no linear correlation, and minus 1 is a complete negative linear
correlation. This correlation is called linear because of the following geometric inter-
pretation. Place the value of the first variable on the abscissa and the value of the
second variable on the ordinate of the graph. If the points with the resulting coordi-
nates belong to the same line with a positive derivative, then their correlation is 1. If
the derivative is negative, then the Pearson coefficient is minus 1. If no line can be
drawn, then the coefficient is 0.

Kendall and Spearman coefficients are used to measure the ordered relationship
between two measured variables [17]. It is a measure of rank correlation: the similarity
of the rank of the data when ordered by each of the variables. The Spearman coeffi-
cient is defined as the Pearson coefficient between ranked variables.

The Kendall correlation coefficient is calculated as follows:

PX,Y ¼ number of concordant pairs� number of discordant pairs
n
2

� � (6)

To summarize, there are three well-known approaches to calculating correlation.
The main drawback of the Kendall coefficient is algorithmic complexity. It requires
calculating the rank of a random variable and then calculating the number of matched
pairs. In the worst case, this may require Nlog Nð Þ operations. The Spearman coeffi-
cient is less complex, but it also requires the introduction of an order relation. Since
correlation is computed for histograms of consecutive scans, correctly ranking the
values in the histograms is a difficult task. For histograms that are similar in general,
every small variation in values must be captured. Consequently, the order function
must be sensitive to these fluctuations and at the same time show the true correlation.
Therefore, the Pearson correlation coefficient is the most appropriate for the algo-
rithm in question. Its complexity is O nð Þ, it does not require an order function, and it
is sufficiently sensitive to fluctuations in the values in the histograms.

4.2 Parameters and constants in the scan filtering algorithm

There are four parameters in the proposed algorithm, the fine-tuning of which
must be paid attention to:

• The number of columns in the histogram and, therefore, the number of laser scan
points in each column;

• the size of the sliding window;

• Ppair intra-window correlation threshold (how much the new scan should
correlate with each scan in the window);

• discard threshold – value of total correlation of scan with scans in the window
Pcommon.

These four parameters affect the number and nature of the filtered scans. The first
is the number of columns in the histogram. All histograms considered have a common
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feature: the more columns contained in the histogram, the more details are processed
for each scan. Consider the LIDAR used in the MIT dataset, which captures laser scans
consisting of about 1000 points. Dividing these points into 50 columns means that
each group of points contains an average of 20 points. Dividing into 10 columns
results in groups of 100 points each.

Despite the intuitive notion that the higher the sensitivity, the higher the accuracy,
in real data high sensitivity can be the other way around. For example, if a moving
object appears in the field of view of a laser scan, it inevitably leads to a difference in
two consecutive scans. Moreover, each sensor contributes noise to the observations,
and sometimes (at short distances) this noise can be misinterpreted as a difference
between scans. The results of the experiments presented in Section 4.5 show that for
1000 laser scanning points with an angle of view of should be grouped into 15 or 30
columns.

Another important constant is the size of the window in which the previous laser
scans are located. The correlation estimate of the current scan is equal to the product
of the correlation value of each scan from this window and the current scan. Pearson’s
correlation coefficient is taken as the correlation value. It is obvious that if the robot
with the laser scanner moves fast, then a large number of different scans in the
window decreases the final correlation estimate of the new scan. This means that the
higher the velocity of the robot, the fewer scans should be stored in the window.

There is the experimentally obtained equation that relates the window size to the
average velocity of the robot. The average velocity here is the average distance, in
centimeters, that the robot travels between two laser scan images. This equation is a
heuristic and allows us to relate the scanning capture property (speed) and the filter
property (the amount of information that should be in the window).

Window_size ¼ 27
v2

(7)

where v is an average velocity in centimeters.
To determine the effect of the window size, it is necessary to consider two param-

eters closely related to each other and to the window size. The first parameter is the
threshold for the Pearson correlation coefficient for each pair of scans. The second is
the total correlation coefficient, which is equal to the product of the coefficients. Since
the Pearson correlation coefficient is calculated for two consecutive scans obtained
with a small time difference, it is obvious that they are highly correlated on average.
Therefore, the threshold for a pair of scans should be at least 0.95, or better, 0.98.
After calculating the correlation coefficient of a new scan with each scan in the
window, all coefficients must be combined. A well-known way to do this is to
multiply them. For example, the threshold for a window containing five scans and a
pairwise correlation of 0.98 is 0:985 = 0.904.

4.3 Evaluation of the quality and accuracy of the laser scan filter

For testing the scan filter was included in the operation of two SLAM algorithms:
vinySLAM [18] and Google Cartographer [19]. The filter determines whether the scan
should be processed or discarded before it is passed to the scan matcher of each of the
listed algorithms. Consequently, if the scan must be processed, the time required for
filtering is added to the total processing time of the scan. Therefore, it is necessary to
estimate the algorithmic complexity of the filtering process and then present the
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results of applying such a filter to real MIT dataset [20]. It is also required to estimate
the proportion of scans that can be discarded without loss of overall accuracy
(Table 1).

5. Accuracy measures of the multi-agent SLAM algorithm

The data flow exchanged between the main nodes in the developed software can
be seen in the sequence diagram shown in Figure 5. For simplicity, this diagram shows
only the two main nodes, the scan matcher and the detector. The other nodes are
omitted, since interaction with them can be considered atomic operations that do not
require additional actions. One can also assume that the scan matcher has all the
information about the current map, the position of the robot, and the current
observation.

In order to assess the accuracy of the SLAM algorithm, it is necessary to quantita-
tively compare the artifacts obtained during its operation: the map and trajectory of
the robot with the true map and trajectory. Quantitative comparison of maps is a task
of image analysis. The characteristics of such a comparison are quite comprehensive
and require specific knowledge of the true map [21]: scale, permissible error in draw-
ing the image, and others. It is also necessary to calculate what part of the true map the
robot had time to observe.

Therefore, to evaluate the quality of the SLAM algorithm, a comparison of the
trajectory is used as a sequence of positions obtained during the execution of the
SLAM algorithm with the true trajectory. The datasets in question are not accompa-
nied by a true trajectory. However, the MIT University dataset comes with a table that
can be used as input to solve the localization problem (in other words, together with a
utility that allows you to calculate the trajectory of the robot in the recorded dataset,
based on the solution of the localization problem).

Since the true trajectory of the robot for each MIT dataset is known, namely the
robot position and the timestamp corresponding to this position, it is possible to

The sequence vinySLAM vinySLAM
filter

Cartographer Cartographer
filter

% dropped

2011-01-20-07-18-45 0.062 � 0.004 0.078 � 0.004 0.131 � 0.058 0.139 � 0.041 59

2011-01-21-09-01-36 0.080 � 0.018 0.089 � 0.013 0.153 � 0.072 0.163 � 0.094 56

2011-01-24-06-18-27 0.096 � 0.007 0.111 � 0.013 0.183 � 0.015 0.181 � 0.014 59

2011-01-25-06-29-26 0.094 � 0.006 0.100 � 0.002 0.176 � 0.010 0.179 � 0.012 63

2011-01-27-07-49-54 0.170 � 0.019 0.121 � 0.006 0.248 � 0.014 0.251 � 0.007 52

2011-03-11-06-48-23 0.534 � 0.085 0.543 � 0.034 0.586 � 0.174 0.642 � 0.191 58

2011-03-18-06-22-35 0.090 � 0.020 0.090 � 0.003 0.130 � 0.025 0.119 � 0.017 52

2011-04-06-07-04-17 0.183 � 0.014 0.213 � 0.027 0.188 � 0.011 0.185 � 0.011 51

2011-01-19-07-49-38 0.305 � 0.174 0.289 � 0.181 0.188 � 0.004 0.189 � 0.005 50

2011-01-28-06-37-23 0.361 � 0.175 0.348 � 0.152 0.378 � 0.025 0.399 � 0.030 47

Table 1.
RMSE values and percentage of dropped scans for vinySLAM and cartographer on MIT dataset.
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calculate the deviation at each time point. From such an array of deviations, the
standard deviation is calculated as a characteristic of the quality of performance of the
SLAM algorithm. The disadvantage of the proposed approach is the probability of
error in calculating the true trajectory when solving the localization problem. How-
ever, it is the most reliable way to quantify the algorithm accuracy.

It is not enough just to calculate the standard deviation from the true trajectory, it
is also necessary to determine how small it is. Therefore, a reliable algorithm is needed
for solving the SLAM problem and comparing the standard deviation of different
algorithms. As an estimating algorithm, gmapping [22] is often used or cartographer.
In this paper, the comparison will be made with the cartographer algorithm, as well as
with the vinySlam algorithm.

Thus, the first experiment to calculate the accuracy of the multi-agent algorithm
consists of the following steps.

1.Run the algorithm on one of the data sequences from the MIT dataset emulating
one robot from the swarm.

2.Run the algorithm on another data sequence from the same MIT dataset. You
need to make sure beforehand that these sequences are written given the
existence of a moment in time when the robots from both sequences are close to
each other.

3.At the moment when the robots are close to each other, manually send a
command to exchange the current observations and maps.

Figure 5.
UML sequence diagram in developed software.
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4.After exchanging data and updating maps, the agents continue executing the
algorithm until the end of the recorded data sequence.

5.After completing the data set replay, each agent compares the trajectory it built
with the trajectory built by the single-agent algorithm on the same data
sequence.

The goal of experiment # 1 is to show that using another robot’s map does not
reduce accuracy compared with the single-agent algorithm and also allows the agent’s
map to be supplemented with areas it has not visited so far. This speeds up the work
by matching the laser scan to an already constructed map, an algorithmically less
costly operation than embedding the scan into an unknown map.

The second experiment consists of running the same sequence twice at the same
time. One copy is played without change, and the second copy is played backward. This
case guarantees that in the middle of the sequence there will be a point where both
agents will be in at the same time. The sequence of steps in experiment 2 is as follows.

1.Run the algorithm on one of the data sequences from MIT.

2.Run the algorithm on the same sequence reproduced in the other direction.

3.When the robots are at the same point, send them a signal to exchange current
observations and maps.

4.After exchanging data and updating maps, the agents continue executing the
algorithm until the end of the recorded data sequence.

5.When the dataset is complete, each agent compares the trajectory it built with
the trajectory built by the single-agent algorithm on the same data sequence.

The key feature of such an experiment is to demonstrate how using exactly the
part of the map that the robot will move on in the future affects the accuracy of the
results (Tables 2 and 3).

The results prove the accuracy of the proposed algorithm, since the RMS error is
always less than 0.5 m and is almost always lower than that of the google cartographer
graph algorithm. This result is mainly based on the accuracy of the single-agent

The sequence Trajectory
length, m

Multi-agent RMSE,
m

Core RMSE,
m

Cartographer RMSE,
m

2011-01-20-07-18-45 76 0.045 � 0.005 0.062 � 0.004 0.131 � 0.058

2011-01-21-09-01-36 87 0.080 � 0.018 0.080 � 0.018 0.153 � 0.072

2011-01-24-06-18-27 87 0.096 � 0.011 0.097 � 0.007 0.183 � 0.015

2011-01-25-06-29-26 109 0.094 � 0.009 0.094 � 0.006 0.176 � 0.010

2011-01-28-06-37-23 145 0.395 � 0.190 0.361 � 0.175 0.201 � 0.011

2011-01-27-07-49-54 94 0.167 � 0.018 0.170 � 0.019 0.248 � 0.014

Table 2.
RMSE values for experiment # 1 in comparison with RMSE of core SLAM algorithm and Google cartographer.
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version of the vinySlam algorithm. The largest error can arise if the result of calculat-
ing the mutual arrangement of the agents during map merging is a rotation error.
Despite the fact that in this case the output map will be consistent, the output trajec-
tory may differ markedly. It is fair to note that this problem occurs in any multi-agent
algorithm; and even a graph algorithm can correct for it only under certain conditions,
when the agents visit the most inconsistent part of the surrounding world several
times.

In addition to estimating accuracy, it is necessary to determine the performance of
the multi-agent algorithm on different hardware configurations. The goal of this
experiment is to determine the applicability limits on low-performance computing
devices. The performance measurements should be divided into two stages:

1.Determination of measurement processing rate during execution of the single-
agent part of the algorithm

2.Determination of the rate of data exchange during the encounter, as well as the
rate of mutual positioning and map updating

The performance measurements were made on the following configurations.

1.Raspberry Pi 3 Model B (Broadcom BCM2837 processor, 1GB LPDDR2 RAM,
Ubuntu Xenial x64 operating system).

2.Raspberry Pi 3 Model B+ (Broadcom BCM2837B0 Quad Core 1.2GHz processor,
1GB LPDDR2 RAM, Ubuntu Xenial x64 operating system).

3.Raspberry Pi 4 Model B (Quad Core 1.5GHz Broadcom BCM2711 processor,
LPDDR4 2GB RAM, Ubuntu Xenial x64 operating system).

4.Personal computer (Processor: Intel Core i7-860 4x2.8GHz, DDR3 8GB RAM,
Ubuntu Xenial x64 operating system).

The evaluation was performed on Raspberry Pi computers [23], since they are
inexpensive and very popular computing devices used in robotics. The experiment
was also conducted on virtual machines with resources comparable to those of the
Raspberry Pi. The results were too similar, so they are not presented in a separate

The sequence Trajectory length, m ‘Forward’ RMSE, m ‘Backward’ RMSE, m

2011-01-20-07-18-45 38 + 24 0.044 � 0.015 0.021 � 0.005

2011-01-21-09-01-36 43 + 31 0.080 � 0.011 0.068 � 0.012

2011-01-24-06-18-27 43 + 41 0.106 � 0.009 0.091 � 0.003

2011-01-25-06-29-26 33 + 61 0.033 � 0.013 0.097 � 0.016

2011-01-28-06-37-23 part 1 41 + 39 0.184 � 0.093 0.231 � 0.040

2011-01-28-06-37-23 part 2 41 + 39 0.311 � 0.187 0.272 � 0.195

2011-01-27-07-49-54 31 + 62 0.142 � 0.019 0.161 � 0.022

Table 3.
RMSE values for experiment # 2.
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graph. Therefore, it can be assumed that other boards with similar resources can be
used instead of Raspberry products to obtain performance characteristics.

Figure 6 shows the number of scans per second that can be processed on the listed
configurations. As a conditional boundary is taken the input data processing fre-
quency of 30 scans per second, which is comparable with the processing frequency of
the human eye. Therefore, one can conventionally consider that if the algorithm is
executed with a frequency of more than 30 scans per second, then it works in real-
time mode.

6. Conclusion

According to the results of theoretical and experimental studies presented in this
paper, the following conclusions can be made.

• Abandoning the graph structure along with the application of Dempster-Shafer
theory allows us to achieve good performance of multi-agent SLAM algorithms
running on low-powered robots. The rejection of role specialization in a swarm of
agents provides good scalability and robustness.

• The application of a filtering algorithm based on the calculation of the correlation
of the nearest two-dimensional laser scans allows increasing the frame processing
speed up to 40%.

• The conducted experiments show the high accuracy of lightweight algorithms
comparable with resource demanding algorithms, such as Google Cartographer.
In particular, the root-mean-square error of the multi-agent algorithm was
9.4 cm at a distance of 100 meters covered by one agent, subject to a single
synchronization with another agent. The error in determining the position of the
robot is comparable to its dimensions.

The application of Dempster-Shafer theory can be promising for data filtering,
leader election in graph-based algorithms, and for increasing the accuracy of combin-
ing maps with more than two agents.

Figure 6.
The amount of processed scans per second in different computational configurations.
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Chapter 7

Aerial 3D Mapping with
Continuous Time ICP for Urban
Search and Rescue
Helge Andreas Lauterbach and Andreas Nüchter

Abstract

Fast reconnaissance is essential for strategic decisions during the immediate
response phase of urban search and rescue missions. Nowadays, UAVs with their
advantageous overview perspective are increasingly used for reconnaissance besides
manual inspection of the scenario. However, data evaluation is often limited to visual
inspection of images or video footage. We present our LiDAR-based aerial 3D map-
ping system, providing real-time maps of the environment. UAV-borne laser scans
typically offer a reduced field of view. Moreover, UAV trajectories are more flexible
and dynamic compared to those of ground vehicles, for which SLAM systems are
often designed. We address these challenges by a two-step registration approach
based on continuous time ICP. The experiments show that the resulting maps accu-
rately represent the environment.

Keywords: UAV, mobile mapping, USAR, continuous time ICP, rescue robotics

1. Introduction

Reconnaissance is the basis for SAR missions and essential for strategic decisions.
With the growing size of the site, it becomes difficult for officers in charge to get an
overview of a disaster scenario, even in more frequent urban scenarios like houses on
fire. Nowadays the main tools for scenario exploration used by firefighters are still 2D
maps in command vehicles. Assessment is still done mainly by human visual inspec-
tion. Besides safety risks, this is a difficult and time-consuming process either for data
collection and evaluation. Accordingly, this process aims the risk of missing important
information.

In recent years, video footage in visible and thermal spectrum from small UAVs is
increasingly used for scenario assessment and search operations [1]. UAV images are
advantageous due to their overhead perspective and their capability to reach other-
wise inaccessible areas. However, in practice, data evaluation is time-consuming
likewise and faces the challenge of spatial correlation. Creating 3D maps in real-time is
one useful approach to improve the evaluation process [2].

UAV-based approaches to 3D mapping often rely on structure from motion (SfM)
techniques. Such approaches often do not provide 3D maps immediately, as dense

109



mapping has high computational requirements [3]. Photogrammetric approaches are
therefore mostly applied to large-scale scenarios like earthquakes [4, 5]. In [6], 3D
point clouds generated from UAV images with SfM are used to localize and navigate
unmanned ground vehicles. In large-scale scenarios, the immediate response phase
has a time scale of hours to weeks [2], rather than minutes to hours as in more
frequent urban scenarios, like houses on fire.

LiDAR-based mapping systems have the advantage of providing spatial informa-
tion directly. Here the key issue is the implementation of an adequate SLAM
approach. Unlike unmanned ground vehicles, UAVs are constantly in motion. Thus,
the rigidity assumption does not hold true for sensors like laser scanners. To compen-
sate for motion distortion in laser scans a continuous time formulation of the SLAM
problem is convenient. [7] presents an application of continuous-time SLAM in UAV
mapping. Groups of scans in a sliding window fashion are registered and the com-
puted corrections are interpolated along the trajectory. In a second offline step, the
trajectory is optimized globally. [8] use a map-centric approach. Instead of pose graph
optimization, the map itself is deformed in case of loop closures.

LiDAR odometry and mapping (LOAM) [9] allows for real-time mapping by
utilizing edge and planar features for registration. Distortion is removed by motion
estimation from IMU mechanization and odometry estimation before registering to
the map. An extension with visual odometry [10] was also demonstrated in aerial
mapping [11]. Several approaches use feature extraction from LOAM and introduce
environmental constraints such as ground planes [12] or tightly coupled LiDAR and
INS [13]. They also incorporate loop closing, which LOAM does not. [14] propose
improved edge and planar features. Due to offline batch optimization, the approach is
not real-time capable. The study [15] instead relies on planes as landmarks and bundle
adjustment for optimization. However, both methods are designed for indoor envi-
ronments.

Instead of sampling at scan frequency in [16], the trajectory is modeled as a B-
Spline to allow for interpolation between scan poses. The map is refined by realigning
scans within local submaps. Based on the B-Spline trajectory representation, [17]
registers multiple scans at once in a sliding window fashion to a sparse multiresolution
surfel map, enabling real-time LiDAR odometry.

Thermal imaging is another important tool for firefighters [1]. It is used for navi-
gation under low-sight conditions [18] (e.g., smoke) and to detect sources of fire and
thermal hot spots [1]. Robotic systems equipped with thermal cameras also facilitate
object detection [19] and search for casualties [20].

In a previous work [21], we gave an overview of our UAV system for SAR appli-
cations. Most similar to our setup is the UAV [22], integrated into a multirobot system
with a focus on autonomous exploration [23]. In this paper, we present our mapping
pipeline, generating accurate, temperature-enhanced 3D point clouds. The two-step
registration approach is based on continuous time ICP.

2. Methodology

2.1 System overview

The proposed mapping system for rescue missions is divided into two principal
components, an aerial segment for data acquisition and a ground segment for data
processing and user interaction as depicted in Figure 1. The aerial segment is designed
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as a mapping sensor unit, that is able to operate without a UAV. The main sensor is a
Velodyne Puck VLP16 Lite1 laser scanner. With its low weight of 830 g and typical
power consumption of 8 W, the sensor is appropriate for aerial mapping. It provides
full 360∘ scans at a frequency of 10 Hz with a maximum range of 100 m. The vertical
FoV (field of view) of 30∘ is sparsely covered by 16-line laser scans with an angular
resolution of 2∘ vertically. The laser scanner is mounted at a pitch angle of 45∘,
resulting in a reduced usable horizontal FoV. This is a compromise between maxi-
mizing the ground coverage and ensuring a convenient overlap between consecutive
scans for scan matching. As a second sensor, the system features an Optris PI 640LW2

thermal camera to enrich the map with registered temperature information. In order
to maximize the overlap with the laser scanner a wide-angle lens with an FoV of 90∘ x
64∘ is used. Thermal images are captured at a resolution of 640 px � 480 px with a
frequency of 10 Hz. As an aerial platform, several Dji3 UAVs are used that provide
enough payload capacity to lift the sensor unit for a long period. The sensor unit
mounted on the UAV is depicted in Figure 2 on the left. For initial pose estimation, we

Figure 1.
System overview. The aerial segment is used for data acquisition while the ground segment runs the mapping
pipeline and user interaction.

Figure 2.
UAV with mounted mapping payload in front of simulated facade fire (left) and the firefighter command vehicle
(right).

1 https://velodynelidar.com/products/puck-lite/
2 https://www.optris.com/thermal-imager-optris-pi-640
3 https://www.dji.com
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rely on the trajectory reported by the flight control unit (FCU) of the UAV. This
control system fuses three sets of redundant sensors, each of them including an IMU, a
barometer and a GPS sensor.

The second component of our mapping system is the ground segment. Apart from
communication for telemetry and data transmission, its main task is to run the map-
ping pipeline described in Section 2.2. As we focus on mapping rather than autono-
mous operation, a rough initial localization with UAV sensors is sufficient and
onboard data processing is omitted. Furthermore, the ground segment offers online
map visualization and a user interface for managing automated flights.

For this purpose, a workstation based on an Intel i7 8700 Hexacore running at
3.2 GHz and 16 GB RAM is integrated into a vehicle based on a german standard
command vehicle (ELW1), depicted in Figure 2 on the right.

2.2 Workflow

This subsection gives an overview of the processing pipeline, also visualized in
Figure 3. Data acquired by the UAV is transmitted to the ground station. In the
preprocessing stage, a pose for each laser scan is estimated by GNSS/INS localization. To
reduce the computational effort, a keyframe approach is used. A new keyframe is
selected only if the change in pose exceeds a defined threshold w.r.t. the previous
keyframe, e.g., 1 m. We drop all scans that do not contribute to the map significantly,

Figure 3.
Workflow of our UAV mapping system.
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since for this application we are mainly interested in a map rather than navigation tasks.
Selected frames are then undistorted based on the initial trajectory to compensate for
motion. In an optional step, the laser scans are enriched with temperature information.

The mapping process is divided into two stages, for registration in a coarse to fine
manner as shown in Figure 4. The core of the first registration stage is a continuous
time ICP approach described in Section 2.4. This stage aims to reduce gross errors in
the initial trajectory and to improve the map globally. Therefore a loop-closing tech-
nique adopted for the continuous time ICP is applied. This results in a coarse map of
the environment, suitable for online inspection.

The second stage is run as a postprocessing step to further refine the trajectory and
fine-register the laser scans. Here we use an upsampling approach to deal with the
sparse nature of point clouds from a Velodyne VLP16 laser scanner. Details are given
in Section 2.6.

The map is enriched with temperature information. Therefore, for each laser scan,
we estimate the transformation between the poses of laser scanner and thermal camera
at their current time stamps based on the GNSS/INS trajectory and project the thermal
image on the laser scan. In our setup, this is done before matching the laser scans to
enable fast thermal inspection of the coarse map. Note that by this approach only 3D
points in the overlapping FoV of laser scanner and camera get temperature values
assigned. Thus the temperature-enhanced map is less dense than the original map. In
postprocessing, the mean temperature value of each voxel of the map is assigned to all
points in the voxel. An example of the resulting representation is given in Figure 5.
A facade fire scanned by the UAV is shown on the left, the corresponding temperature-
enhanced 3D point cloud representation from our approach is shown on the right.

Figure 4.
Example for improved point clouds by proposed registration steps.

Figure 5.
UAV scanning a simulated facade fire on the campus of the Bavarian firefighter school Würzburg (left) and the
corresponding 3D model colored by temperature (right). Red indicates high temperatures.
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2.3 Continuous time SLAM

The movement of a mobile robot creates a trajectory T ¼ X0, … , Xnf g where Xi is
the 6-degree of freedom pose of the vehicle at time ti. Using T a map P ¼ p0, … , pn

� �
of the environment is derived, by transforming the set of timestamped measurements
M ¼ m0, … , mnf g into the global coordinate system with pi ¼ Xi ⊕mi ¼ Ri �mi þ ti.

Given a sufficiently estimated trajectory, in [24], the map quality is improved by
optimizing the trajectory, based on the ICP concept known for rigid registration.
Similar to our graph-based SLAM algorithm [25], the n-scan registration problem is
considered, but with a finer discretization of time, e.g., segments of a 3D scan or even
single points. Under the assumption, that the error of the estimated trajectory is
negligible for a short time interval the error function to be minimized is given by:

Ei,j ¼
XiþN

k¼i�N
Xi ⊕mk �Xj ⊕m0k
�� ��2 (1)

where a small neighborhood of 2N points close in time to mi the closest point
m0k ∈Mn mi�N, … , miþNf g is selected.

In other words, the measurements are grouped into overlapping submaps
Mi ¼ mi�N, … , miþNf g, wheremi denotes the reference measurement of the submap,
that defines the corresponding pose Xi. These submaps are then matched using the
automatic high-precision registration of terrestrial 3D scans, i.e., the graph-based
SLAM approach presented in [25, 26]. The graph is estimated using a heuristic that
measures the overlap of the submaps based on the number of closest point pairs.

After applying globally consistent scan matching on the submaps the actual con-
tinuous time matching, as described in [24], is applied. Using the results of the rigid
optimization as starting values for T, the numerical minimum of the underlying least
square problem is computed.

2.4 Continuous time ICP

In contrast to the continuous-time SLAM approach, in ICP registration only the
current pose is optimized with respect to its predecessor or a fixed map. Again
consider the error of the initially given trajectory to be negligible in a small time
interval before and after a pose Xi. The positional error of Xi is then given by

Ei ¼
XiþN

k¼i�N
Xi ⊕mk � p0k
�� ��2 (2)

where p0k is the closest point to mk in Pn pi�N, … , pn

� �
. Note, that all poses Xj with

j< i�N are fixed.
For efficiency, we subsample the trajectory at 2N steps, as is done in the continu-

ous time SLAM approach. The measurements mk with k ¼ i�N then form a submap
with pose Xi. These submaps are then registered rigidly using plain ICP. Afterward
the transformation update is locally distributed to all 2N poses between Xi and Xi�1.
Although not constrained, a linear distribution of translation and SLERP interpolation
of rotation shows to be sufficient for small trajectory errors. For practical implemen-
tation, we form groups of 10 to 15 Velodyne VLP16 scans.
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2.5 Loop closing

A common strategy in loop detection is, to rely on a heuristic based on pose-to-
pose distance. This works well for trajectories with low drift, if either the flat surface
assumption holds true, e.g., on ground vehicles and or if omnidirectional perception is
available. In UAV laser scanning, both requirements are often not fulfilled. In our
mapping system for instance the laser scanner is tilted by 45∘, thus the effective FoV is
reduced to less than 180∘ horizontally depending on the flight altitude and surround-
ing environment. As a consequence, there is often no overlap between loop closure
candidates, or the overlap is small if the difference in orientation is high between the
submaps. Instead, we search for poses with a maximum distance to the tilted plane,
spanned by x and y coordinate of the sensor. Due to the reduced FoV, loop closure
candidates additionally require an orientation that is similar to the query pose. After
candidates are found, we apply the loop-closing technique ELCH from [27] to the
submaps. To maintain the continuity of the trajectory we then distribute the trans-
formation update of submaps to each laser scan in a similar way as in continuous time
ICP in Section 2.4. An example is given in Figure 6.

2.6 Upsampling registration

Rigid registration of sparse point clouds, as those of a Velodyne VLP16, faces the
problem of inhomogeneous point density in vertical and horizontal directions. The
difference between the angular resolution between two scan lines and within one scan
line is typically in the order of a magnitude. Similar to this, rotating 2D profilers
provide 3D point clouds with a higher angular resolution within a sweep. This inho-
mogeneity in resolution has an impact on registration approaches using point-to-point
distances as the ICP. As a result scan lines are pulled onto each other and the estimated
transformation is distorted. In theory point to plane approaches perform better in
such a case, as the underlying surface structure is estimated by local planar patches.
However, the success of registration depends on the quality of the estimated normals

Figure 6.
Example for detected loop closures. We search for poses close to sensor xy plane. Poses with similar orientation are
accepted as loop closing candidates.
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of the points. The traditional approach of calculating the normals using k nearest
neighbors is affected by the point distribution though.

To mitigate the problems caused by inhomogeneous point density, often assump-
tions about the underlying structure are made. One group of approaches relies on
robust features, such as edges and planes [9]. The second group of approaches
coarsely reconstructs the surface. [28] interpret a scan of a Velodyne 64 laser scanner
as a range image and compute the linkage of the direct neighbors of a point in the
image. Then they estimate the normal vectors as the average cross product of the
vectors to the neighbors weighted by the linkage and apply a point-to-plane variant of
ICP. A similar strategy is proposed by [29] that is more general in terms of the sensor
model. Using the ordered structure of point clouds provided by sensors, they create a
simple quad mesh to estimate the point normals and then apply a variant of the
generalized-ICP [30]. Similar to this we approximate the surface by upsampling the
point cloud. Inspired by the idea of range images, the sensor data is first organized
into a ring and bin structure, preserving the real measurement. Then for each point,
we create a line with its neighbor in the next ring and linear sample points. Compared
to previous work [31], this simple approach proved to be sufficient due to the high
point density within a ring. As in [29] an edge is rejected if it is nearly parallel to the
line of sight with respect to the scan pose or a depth discontinuity is detected consid-
ering angular and range-dependent thresholds. The set of fitted line points forms a
virtual scan that estimates the underlying surface, as visualized in Figure 7. Octree
reduction generates a homogeneous distribution of points. The virtual scan is then
rigidly registered against previous scans in their original form with ICP, either
sequential or incremental, to further refine the robot trajectory.

2.7 Map organization

In both registration stages, we follow a scan-to-map matching strategy. A key issue
in scan registration is the search for closest point pairs. The implementation of search
trees in 3DTK [32] (e.g. octree) is optimized for fast point query operations and a

Figure 7.
Upsampled 3D laser scan from Velodyne VLP16. The original point cloud is depicted in red, the upsampled point
cloud in black.
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small memory footprint. However, due to their compact representation in memory,
they do not allow for insert operation. Thus the search tree needs to be rebuilt once the
map is updated. To deal with this, an efficient strategy for maintaining the map is
important. For both registration steps, we consider the map to be a set of submaps. In
the upsampling registration step, we follow a keyframe approach. Keyframes are
added to the current active submap. Each keyframe in the active submap provides a
search tree. All search trees of the submap are queried in parallel. Once a submap is
finished, the keyframes are joined and a single search tree for the finished submap is
built. A submap size of 10 to 15 scans has shown to be a good trade-off between
increasing search time and reducing construction time for a new k-d tree containing
the complete submap. To further optimize the runtime, we only consider a ROI
(region of interest) during the registration. Therefore, we select the k nearest submaps
each time starting a new submap. Each scan is then registered against this ROI map.
As with the active submap, the search trees of all submaps are searched in parallel.

In the continuous-time ICP step, the map is organized in a similar fashion. The
major difference is that the active submap is not composed of several search trees.
Note that submaps do not change once they are completed unless a loop closure is
detected. As a consequence, submaps may significantly overlap and thus cause
redundancy. However, the continuity of the trajectory is maintained.

3. Results

To evaluate our approach we acquired a data set at the campus of the Bavarian
Firefighter School Würzburg with our system described in Section 2.1. The UAV (DJI
S1000) was manually flown in several loops at different altitudes above the site of the
school. During the flight of 325 s a trajectory of 862 m was covered. We applied the
pipeline as described in Section 2.2. The initial trajectory was provided by the UAV.
We applied continuous time ICP with a maximum point-to-point distance of 0.75 m
and a submap size of 10 VLP16 scans. The resulting point cloud and the flown
trajectory are visualized in Figure 8.

Figure 8.
Optimized point cloud from bird’s eye view. The red line represents the UAV trajectory.
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For comparison, we also applied BLAM! [33] and Pointmatcher [34] to the data set.
Both approaches are based on ICP registration as our method is. To gain valuable
results, we slightly modified BLAM, such that the UAV trajectory is used as an initial
guess for odometry estimation.

For ground truth comparison we collected 42 highly precise laser scans with a Riegl
VZ400 terrestrial laser scanner to cover the complete area of the firefighter school.
The scans were registered using our ICP and SLAM methods [25] implemented in
3DTK [32] to obtain the reference point cloud.

As an error measure, we use the Absolute Trajectory Error (ATE) following [35]. It
is computed as the root mean square error

ATEpos ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1
i¼0 ∥Δpi∥

2

r

ATErot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1
i¼0 ∥∠ ΔRið Þ∥2

r
,

where Δpi denotes the euclidean distance between the estimated and ground truth
position at time step i of N and ∠ðÞ denotes the rotation angle of the corresponding
rotation ΔRi in angle axis representation [35].

To obtain the ground truth trajectory we first localize each laser scan from the
UAV system in the reference cloud. Then the initial trajectory as well as the optimized
trajectories are aligned to the ground truth trajectory using all pose pairs and the ATE
is calculated. The resulting mean errors are given in Table 1. Figure 9 visualizes the
positional error for all evaluated approaches and Figure 10 the orientation error
respectively.

Compared to the initial trajectory by GNSS/INS the mean error in position reduces
to 0.172 m by applying our pipeline. Especially the drift in z-axis is removed as shown
in Figure 11. Regarding orientation, the pitch angle θy provides the highest errors, as
depicted in Figure 12. One explanation is that clocks of laser scanner and UAV are not
synchronized. Thus the error increases during positive and negative acceleration and
deceleration phases. θx and θz are less affected due to low speed and smooth curves in
the trajectory. The mean rotational error is reduced 0:32∘.

A comparison of the optimized point cloud to the reference point cloud justifies
the results from ATE evaluation. Therefore, we computed the cloud-to-cloud distance
with a maximum point-to-plane distance of 1 m. The results are visualized in
Figure 13 from two views. To support the visual representation, the corresponding
error histogram is given in Figure 14. It shows that 90% of the points feature an error
of less than 0.13 m. The accuracy of the Velodyne VLP16 is specified at �3 cm, which
corresponds with the peak of the histogram and is close to the median.

algorithm ATEpos [m] ATErot [∘]

GNSS 0:718 2:16

Ours 0:172 0:32

BLAM 0:383 1:74

Pointmatcher 0:225 0:32

Table 1.
Absolute trajectory error.
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Note that Figure 13 shows regions of high errors up to 1 m which do not reflect the
low ATE errors discussed before. First, they refer to dynamic objects like cars that
moved between the acquisition of the UAV data and the ground truth data (see
Figure 13, at 1). Second, there are gaps in the ground truth data. Due to restricted
possibilities to position the terrestrial laser scanner, it suffers from occlusions. This
mainly affects the roofs of the buildings, e.g., no. 2 in Figure 13. Those gaps are filled
by the airborne data set. As we used the distance to the closest plane as an error
measure, some points at the borders are wrongly assigned a high error. A similar
effect is present at windows and glass facades, e.g., at no. 4. Static areas, such as
buildings and ground in majority, feature errors less than 0.1 m. Higher deviations
up to 0.4 m, e.g., at no. 3, are explained by the fact, that this area was not directly
overflown by the UAV, as depicted in Figure 8. Hence, the point density is reduced
since the area was less often covered by the sensor and only from the side of the
sensor at larger distances. Points in those areas have less influence on the scan
matching than points in the core of the FoV since the probability to find
corresponding points within the maximum search distance decreases. On the other
hand, small registration errors have a greater impact on the distant areas of a scan.
Moreover, the point density of the reference cloud is reduced in this area, biasing the
error measure as described for number 2.

Figure 9.
Absolute trajectory error in position.
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Figure 10.
Absolute trajectory error in orientation.

Figure 11.
Position error of individual axis. The error of GNSS trajectory (left) is reduced by the proposed pipeline (right).

Figure 12.
Rotational error of individual axis. Error of GNSS trajectory (left) is reduced by the proposed pipeline (right).
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To summarize the results, our approach is capable of generating detailed point
clouds, accurately representing the environment.

Figure 13.
Optimized point cloud from top (above) and oblique view (below). The color decodes the deviation from ground
truth. Higher errors mainly correspond to dynamic objects (1) and occlusions in the reference data (2), as well as
areas not directly overflown (3).
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4. Conclusions

In this paper, we presented our pipeline for aerial 3D mapping in USAR scenarios.
Using a two-step continuous time registration approach the system is able to produce
an accurate representation of the environment. Enhanced with temperature values the
generated 3D maps aim at facilitating the assessment of disaster scenarios. The current
drawback of our approach is that only the first registration stage runs online, produc-
ing a coarse map while the second stage is designed as a postprocessing step producing
an accurate map. Future work includes runtime optimization and further integration
to enable online processing of the entire pipeline. Additionally point cloud analyzing
methods, for instance, to detect heat sources are in work.

Acknowledgements

This work was funded by the projects Eins3D (FZK 13 N14183) and Deals3D (FKZ
13 N15313) from the Federal Ministry of Education and Research, Germany.

This publication was supported by the Open Access Publication Fund of the
University of Würzburg.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

ATE Absolute Trajectory Error
FoV Field of View
GNSS Global Navigation Satellite System
ICP Iterative Closest Points
IMU Inertial Measurement Unit
INS Inertial Navigation System

Figure 14.
Histogram of cloud-to-cloud error.
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Chapter 8

Practical Insights on Automotive
SLAM in Urban Environments
Piotr Skrzypczyński

Abstract

This chapter tackles the issues of simultaneous localization and mapping (SLAM)
using laser scanners or vision as a viable alternative to the accurate modes of satellite-
based localization, which are popular and easy to implement with modern technology
but might fail in many urban scenarios. This chapter considers two state-of-the-art
localization algorithms, LOAM and ORB-SLAM3 that use the optimization-based for-
mulation of SLAM and utilize laser and vision sensing, respectively. The focus is on
the practical aspects of localization and the accuracy of the obtained trajectories. It
contributes to a series of experiments conducted using an electric car equipped with a
carefully calibrated multisensory setup with a 3D laser scanner, camera, and a
smartphone for collecting the exteroceptive measurements. Results of applying the
two different SLAM algorithms to the data sequences collected with the vehicle-based
multisensory setup clearly demonstrate that not only the expensive laser sensors but
also monocular vision, including the commodity smartphone camera, can be used to
obtain off-line reasonably accurate vehicle trajectories in an urban environment.

Keywords: SLAM, LiDAR, vision, GNSS, factor graph, evaluation

1. Introduction

In the last decade, we have witnessed a rapid development of methods, algorithms,
and technologies that make vehicles more autonomous. This trend focuses on self-
driving cars but includes also public transportation vehicles and advanced driver assis-
tance systems. In all cases, the knowledge of the vehicle’s pose and the availability of an
internal world model are enabling conditions for efficient task and motion planning,
reasoning about the environment’s semantics, and man–machine interaction.

Although the most used localization solution in automotive applications is the
global navigation satellite system (GNSS), the availability of GNSS signal is limited in
many practical scenarios, such as driving through a tunnel, maneuvering in an under-
ground parking lot, or navigating among tall buildings in the downtown. Therefore,
simultaneous localization and mapping [1] and visual odometry (VO) [2] are consid-
ered a complementary means of yielding vehicle pose estimates that enable safe
navigation of autonomous or semi-autonomous vehicles. While there is a large body of
research on SLAM and VO, there are still many open issues when it comes to more
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complicated yet more practical cases, including 3D perception and lifelong map
learning [3].

The two sensing modalities that dominate automotive SLAM are passive cameras
and 3D laser scanners, known as LiDARs (light detection and ranging). Both classes of
sensors have important advantages, but also some limitations. Active 3D laser sensors
are well-suited to work under any lighting conditions, while passive cameras struggle
with poorly illuminated scenes and sudden lighting changes. LiDAR sensors provide
reasonably dense depth images within the range of tens, or even hundreds of meters.
These data make it possible to build dense maps of the environment, while passive
vision SLAM systems usually rely on sparse maps of point features. However, passive
cameras are certainly the most affordable and easy-to-use sensors that can be
deployed at minimal cost, while visual SLAM systems can achieve satisfying accuracy
of trajectory estimation [4].

This chapter presents an experimental study on trajectory estimation accuracy by
two popular open-source SLAM systems in the context of navigation for autonomous
vehicles in urban environment. It contributes a unique set of experiments conducted
using an autonomous electric vehicle equipped with a rich set of exteroceptive sen-
sors. An important part of these experiments is the ground truth trajectories collected
using an accurate RTK-GPS (real-time kinematics global positioning system). These
data allow us to test two state-of-the-art SLAM solutions: LiDAR odometry and map-
ping (LOAM) [5] and ORB-SLAM3 [4] using two sensing modalities: LiDAR and
passive vision, respectively.

Additionally, while performing these experiments we collected also images from a
camera of a commodity smartphone attached to the windshield of the vehicle. This
low-cost camera serves as a test bed for minimal-cost localization in urban environ-
ments, as it can be attached to any vehicle.

The aim of the presented research is to answer the question of how accurate are the
trajectories obtained using different SLAM solutions and from different sensing
modalities in scenarios imitating urban driving but under full control of an accurate
GNSS solution providing precise ground truth trajectories.

The collected data are processed off-line, as often SLAM is used to obtain reference
positions for data collected by a vehicle, which is the case of the CityBrands project,
the presented research is part of, where trajectories are collected to identify locations
of billboards and other advertisement installations. One of the purposes of this project
is to verify the thesis that it is possible to obtain vehicle pose estimates of a local
translational error not exceeding 1 m using only a smartphone’s camera as a sensor.

2. Concept and implementation of experiments

The experiments were carried out using a set of integrated sensors attached rigidly
to a common frame and mounted on a vehicle. A Melex electric vehicle (work car)
was used during the experiments. The rigid frame with the sensors was mounted on
its roof, and data was collected by a computer mounted in the luggage compartment,
except for data from a smartphone, stored directly in its memory. The basic compo-
nent is an aluminum frame with a GNSS receiver and an Ouster OS1-128 Gen2 3D
laser scanner with a range of 150 m and a 360° horizontal field of view. Other
components of the system: a Basler acA1440-220um USB3 camera with a Basler
C125-0418-5M F1.8 f4mm lens and an AHRS (attitude and heading reference system)
Xsens MTi-30-2A8G4 sensor (Figure 1A).
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The whole sensor set was calibrated both in terms of internal camera parameters
(intrinsic) and in terms of external parameters (extrinsic) defining transformations
between sensor coordinate systems. All these onboard exteroceptive sensors were
integrated under Linux using robot operating system (ROS) [6] with ROS nodes
deployed for each of the sensors, writing to defined ROS topics, and finally, saving the
data using the flexible “rosbag” format. The ROS system provided also time synchro-
nization to all these nodes by proper time stamping of the messages written to ROS
topics and then to rosbag files.

Including in the multisensory system, a Samsung Galaxy A20 smartphone
(Figure 1B) used as a second camera requires mutual calibration of the external
parameters (translation and rotation) of the smartphone’s camera relative to the
Basler camera (Figure 1C). Since the smartphone runs Android, it is not connected to
the system as a ROS node and is not subject to system time synchronization. The
images from the smartphone’s camera were collected using a dedicated Android
application, as the default Samsung app that supports the camera on the A20 phone
does not allow setting a specific focus value (locking autofocus). With automatic
settings of the camera’s focus and white balance, it was not possible to calibrate it
accurately.

2.1 Calibration

Calibration is essential in a multi-sensor system that is dedicated to provide data
for comparison of different methods and sensing modalities. In our case, calibration
was performed offline, on data sequences that were collected before starting the tests,
applying a number of different tools.

The main software package used to calibrate the sensors was Kalibr [7], a system
for calibration of multi-camera and camera-IMU (inertial measurements unit) sys-
tems. Kalibr is integrated with ROS, which made many operations on data stored in
rosbag files much easier. The entire calibration process was accomplished in several
steps:

1.Calibration of the Basler camera parameters using Kalibr.

2.Calibration of the Basler camera with the Xsens AHRS (which is a type of IMU),
implemented with Kalibr and the frame with sensors removed from the vehicle,

Figure 1.
Melex electric vehicle with a sensory system configured for the experiments: 1 – Camera, 2 – LiDAR, 3 – IMU,
4 – GNSS, 5 – Smartphone (A), a smartphone visible behind the vehicle’s windshield (B), and a close-up of the
main sensors on the roof (C).
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as the procedure required to move the camera/IMU system in order to produce
appropriate data.

3.Calibration of the Basler camera with the Ouster OS1 LiDAR, which was
conducted using the novel spatiotemporal calibration method [8] that makes it
possible to obtain accurate translation and rotation between the coordinate
systems of both sensors, but provides also an estimate of the time difference
between the image frames and laser scans. Note that in our setup there is no
hardware trigger for the sensors, and the time is only synchronized by ROS time
stamps, which requires estimating the actual difference imposed by hardware.

4.Calibration of the parameters of the Samsung Galaxy A20 camera.

5.Calibration of the external parameters between the Basler camera and the
smartphone’s camera, considered as a stereo pair.

Surprisingly, the last two tasks turned out to be most difficult. An attempt to use
Kalibr for these calibrations failed, probably because the smartphone’s camera has a
rolling-shutter frame, and the Kalibr procedure was unable to find some of the corners
of the checkerboard pattern used for calibration (Figure 2A). The resulting camera
parameters, although looking correct, were inappropriate for the ORB-SLAM3
system, causing problems with the initialization of the system (Figure 2B and C).
Finally, the Galaxy A20 camera was calibrated using the classic approach [9]
and software that allowed us to manually point the calibration corners on the
checkerboard. These parameters allow ORB-SLAM3 to initialize correctly
(Figure 2D). The resulting calibration parameters of the relative translations and
rotations of the sensors were used to build a TF tree in the ROS environment
(Figure 2E).

2.2 Ground truth acquisition

The solution for obtaining the reference (ground truth) trajectory is a satellite
navigation system. In order to achieve the centimeter-level accuracy required in the

Figure 2.
Calibration of the multisensory system on the vehicle: Calibration checkerboard shown to the galaxy A20
smartphone’s camera (A), initialization of the ORB-SLAM3 system on an image from galaxy camera (B), ORB-
SLAM3 incorrectly initialized because of improper calibration of the camera (C), point features tracked correctly
by ORB-SLAM3 when the camera is correctly initialized (D), at the ROS RViz view of the transformations tree in
the fully calibrated multisensory system (E).
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application under consideration, it is necessary to transmit to the RTK-GPS system
corrections coming from a ground station with a known geographic position [10]. The
setup used in the experiments applied an Ublox C099-F9P sensor with a ZED-F9P
module for RTK-GPS, which can provide a localization accuracy of 2 cm with a
position frame rate of 10 Hz when operating in L1/L2 modes. With access to com-
mercial RTK corrections transmitted via the Internet and LTE modem, it was not
necessary to establish a separate reference station at a known position.

3. SLAM problem

Over the past few years, traditional SLAM algorithms based on filtering (extended
Kalman filter, particle filter) [11] have been replaced by methods based on optimizing
graph representations of the SLAM problem [12], most often in the form of a sensor
poses graph [13] or factor graph [14] binding multiple variables subject to optimiza-
tion, describing both the state of the agent (vehicle/sensor) and a map of the envi-
ronment in the form of features.

As shown in [12], the SLAM problem can be viewed in terms of factor graph
optimization. The factor graph formulation can be applied to many forms of SLAM
and localization, regardless of the used sensing modality (e.g., to WiFi fingerprints
[15]), and regardless of the used features/landmarks, for example, visual point fea-
tures [4, 16] or LiDAR-based segment features [17]. The most general form, a method
known in the computer vision field as structure from motion (SfM), assumes that all
historical sensor positions are related to observed features through measurements.
These relationships can be thought of as a random Markov field with variables x
describing the sensor poses and variables f describing the features (Figure 3A). How-
ever, if SLAM is used not for a limited scene, but a large area, the factor graph grows
when new positions are added when the vehicle moves, while new features appear
when the vehicle/sensor explores new parts of the environment.

Processing a very large factor graph should be avoided due to computational
performance limitations. For this reason, pose-based graph SLAM systems marginal-
ize all historical features (and thus do not have an explicit map) and keep only the
pose graph with constraints between them (Figure 3B). These constraints are derived
from the estimated movement of the vehicle and are formed locally, within a certain
window along the trajectory, solving a problem analogous to visual odometry. Con-
straints (factor graph arcs) can also represent loop closures, that is, relationships
between locations that are distant in the position chain but lie close enough spatially to
be observed simultaneously. Constraints on loop closures are essential to the

Figure 3.
Markov random field for the SfM problem (A). Factor graph for position-only SLAM (B) and factor graph for
bundle adjustment SLAM (C). Larger blue circles are vehicle/sensor positions, green circles are features
considered in optimization, empty (white) circles are those features and poses that have been marginalized, graph
arcs are measurements, and rectangles denote factors from pose-to-pose constraints (red) or pose-to-feature
constraints (black).
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successful implementation of the SLAM task, as they allow the system to reduce
trajectory drift compared to a comparable visual odometry system. The constraints are
represented on the graph as factors, shown in Figure 3B by small rectangles. In the
pose graph formulation of SLAM [13] direct observations of the features are not used,
as these measurements are utilized only to compute the constraints between agent
poses in the graph. In pose graph optimization new pose values are estimated that
minimize the following error:

argmin
T1,… ,Tn

X
i

h Ti, Tiþ1ð ÞΩi,iþ1h Tið , Tiþ1Þ þ
X
j

h Tl j, 1ð Þ, Tl j, 2ð ÞÞΩl jð ÞhðTl j, 1ð Þ, Tl j, 2ð Þ
� Þ

!
,

 

(1)

where T1,… ,Tn are the optimized sensor poses, h Ti, Tiþ1ð Þ is the pose error
between the i-th and iþ 1ð Þ-th poses from the measurement of the visual odometry
process, and h Tl j, 1ð Þ, Tl j, 2ð Þ

� �
is the pose error of the j-th loop closure measurement

defined as the error between l j, 1ð Þ-th and l j, 2ð Þ-th poses related by this loop closing
event.

In contrast, a full SLAM system uses a nonlinear estimation technique [18] to
optimize the constraint graph, which, however, has a much larger number of factors
directly linking feature positions to sensor poses (Figure 3C). Also not all poses are
used directly—only those considered as keyframes are stored in the map. The choice
of keyframes strongly depends on the used sensing modality and the processing of
features but is crucial to both the efficiency and robustness of SLAM [19]. An edge
represents the resulting constraint from a sensor measurement between the i-th posi-
tion and j-th feature. The uncertainty of each constraint is represented by its infor-
mation matrix Ω, which can be determined by inverting the covariance matrix of a
particular measurement [19]. This approach is similar to the bundle adjustment (BA)
method used to efficiently solve the SfM problem [20] but can be applied in real time
and used for large optimization problems (thus large maps) due to its computational
efficiency [21]. The optimization step can be described mathematically as:

argmin
T ,F

Xn
i¼1

X
j∈F i

f f i, Tj
� �

Ωi,jf f i, Tj
� �þ

X
k

h Tl k, 1ð Þ, Tl k, 2ð Þ
� �

Ωl kð Þh Tl k, 1ð Þ
�

, Tl k, 2ð ÞÞ
 !

,

(2)

where T is a set of all optimized sensor poses, F is the set of all optimized features,
F i defines the sets of indices of all features visible from i-th sensor pose, and f f i, Tj

� �
is the error function of the measurement between the i-th feature and j-th pose. Note
that the part of the optimization problem related to loop closing is described the same
way as in (1), with h Tl k, 1ð Þ, Tl k, 2ð Þ

� �
being the pose error of the k-th loop closure

measurement. The SLAM formulations (1) and (2) take the notion of topological loop
closing, as defined in [19], which requires detecting the event of revisiting an already
mapped area and constructing an additional pose-to-pose constraint by matching the
reobserved features to the known part of the map. However, [19] points out that there
is also geometric loop closing possible, where the vehicle/sensor does not need to
detect the revisit event but matches the observed features to the known map using
local criteria. These local criteria differ depending on the type of features. In LiDAR-
based SLAM with planar or linear features, geometric distances are applied to
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discriminate incorrect matches [22], while in visual SLAM with point features [16],
robust matching of descriptors can be employed [23]. Anyway, this geometric loop
closing is only local, because if a very large loop has to be closed the accumulated pose
drift may prevent our agent from executing the correct matching of the local features
to the map. This is not the case for the loop closing formulation shown in (1) and (2),
because in topological loop closing the respective locations (poses) are matched using
global, appearance-based methods [24]. Note that the conceptual diagram in
Figure 3C shows both ways of loop closing on a single graph.

3.1 LOAM system

The open-source LiDAR odometry and mapping is a state-of-the-art solution that
ranked first in car localization based on the KITTI benchmark [25]. The processing
of laser scans in LOAM is divided into several stages for feature extraction,
odometry, mapping, and integration. The system operates on detected planar and
edge features, which make it possible to reduce the extensive 3D laser scanner data
stream. These features are then matched between the current and previous scans. In
this step, the LiDAR sensor pose (and indirectly the vehicle pose) is estimated using
constraints set by the associated features. The LOAM system assumes that scanning
takes place continuously while the scanner is in motion. Therefore, after the
odometry stage, the measured points are projected onto the coordinate system asso-
ciated with the starting point of the scanning process, and a geometrically corrected
point cloud is obtained. This corrected cloud is the input to the mapping procedure,
which optimizes the match between the new cloud from the sensor and the global
map (Figure 4A), giving a more accurate pose estimate than that obtained in the
odometry step. Map optimization is performed less frequently (1 Hz) than odometry
(10 Hz) because this step is more computationally intensive. The next localization
step combines the pose from the map optimization with the latest available pose
from laser odometry to provide the best available sensor pose estimate at the time.
Note that LOAM does not use explicit (i.e., topological) loop closing. Although it is
possible to implement this type of loop closing in a LiDAR-based SLAM with planar
and line features [17], LOAM uses an approach that can be rather seen as instanta-
neous, geometric loop closing by matching the local features to the already known
part of the map.

The LOAM system is set up to work with the Velodyne VLP-16 scanner; however,
the scans from the Ouster OS1-128 sensors were used in the described study, modify-
ing the program code accordingly. The modifications made included parameters

Figure 4.
Visualization of the LOAM global point cloud map during one of the experiments (A), the point features extracted
by ORB-SLAM3 in its internal map representation (B), and detected directly on an image (C).
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related to different horizontal and vertical observation angles, as well as necessary
changes in assumptions about how points are acquired in each scan to correctly
represent measurements at the beginning of the scan based on the current motion
estimate.

3.2 ORB-SLAM3 system

The visual SLAM system ORB-SLAM3 is a variant of the ORB-SLAM algorithm
presented in Ref. [16]. It was developed as a monocular SLAM using the concept of
point feature map and bundle adjustment optimization. The third version, available as
open source software [4], can use data from a single camera (monocular SLAM),
stereo camera, or an RGB-D camera providing depth measurements. Constraint graph
optimization is implemented in ORB-SLAM3 using the g2o library [18]. The system
architecture is divided into a front-end and a back-end storing the map (Figure 4B).
ORB-SLAM3 retains all the features of monocular SLAM, also taking into account
features devoid of depth information and optimizing the map only on the basis of
feature reprojection errors in the images. In addition, ORB-SLAM3 fully implements
loop closure based on scene view recognition, using DBoW2 bag-of-visual-words
algorithm [24]. This makes it possible to efficiently close loops of any size, not just
local loops. Note that although the detection of loop closures in ORB-SLAM3 is
appearance-based, the optimization in factor graph after closing a loop is accom-
plished on the level of features rather than pose-to-pose constraints. In ORB-SLAM3,
the fully multi-scale ORB features [26] are used throughout the system: for tracking
sensor motion (Figure 4C), matching the current perception to the map (creating
constraints), and closing loops. ORB-SLAM3 uses optimization with the factor graph
concept at several stages of processing, not only for global optimization, as shown in
(2), but frequently performs local bundle adjustment over several keyframes and their
associated features to obtain local map reconstruction. A robust Huber kernel [27] can
be used for optimization with reprojection error to reduce the influence of spurious
associations.

During tracking, a simple model of camera motion is used, assuming motion at a
constant speed. This model can be considered sufficient in light of the scenarios of the
experiments conducted, in which the Melex vehicle moved at speeds from 10 to
30 km/h. Although ORB-SLAM3 can work also as visual-inertial SLAM, which makes
it much more robust, for the sake of comparison between results from the two
cameras used in the presented setup the application of ORB-SLAM3 was restricted to
monocular SLAM only.

A more challenging aspect of applying ORB-SLAM3 in the conducted experiments
is the use of a smartphone as a camera. The developers of ORB-SLAM3 do not provide
a separate implementation for mobile devices and do not support Android. However,
as offline processing of the collected data is assumed, only the quality of the images
and the availability of correct calibration data are important, because the images from
Samsung A20 are further processed on an x86 computer under Linux.

4. Methodology for assessing the accuracy of SLAM

With regard to the VO and SLAM algorithms, it is possible to talk about the
accuracy of estimation of two components of the created model: the sensor trajectory
and the map itself. Both of these components are of practical importance in the tasks
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of navigation and recognition of the environment, and they are interrelated since the
accuracy of the trajectory estimation determines the accuracy of the registration of the
position of the features that form a map of the environment.

A standard sensor for providing precise reference trajectories in outdoor SLAM is
GNSS, which was used in the form of integrating the RTK-GPS in the sensor test bed
on the Melex vehicle. In order to assess the accuracy of a trajectory estimated to be
either visual or LiDAR SLAM the available ground truth trajectory needs to be com-
pared to the estimated one using a proper method. Such methods have been proposed
in Ref. [28] and now are widely used in robotics localization research. These are
methods for evaluating absolute trajectory error (ATE) and relative pose error (RPE)
of sensor positions. The ATE value is the Euclidean distance between the
corresponding points of the estimated trajectory and the ground truth trajectory.
Thus, the ATE metric allows us to determine how far the estimated position is from
the reference position at a certain moment in time on the estimated trajectory. The
ATE metric is calculated for the entire trajectory as root mean squared (RMS) error,
which allows convenient comparison of results for different SLAM algorithms for the
same test data set. Assuming that two trajectories are given: a ground truth and an
estimated one with the same number of positions n, and the positions of the sensor are
given as homogeneous matrices, the ATE metric for the i-th frame on the trajectory
can be determined as:

EATE
i ¼ Tgt

i

� ��1
Ti, (3)

and then the ATE value for the entire trajectory is obtained by calculating the RMS
error value for all frames. Note that in order to obtain a correct ATE, the trajectories
must be converted to a common global coordinate system before the calculation is
performed. The need for geometric matching occurs in the case of a trajectory esti-
mated by visual odometry or a monocular visual SLAM algorithm because for algo-
rithms of this kind the trajectory scale s is an unobservable variable [19]. For this
reason, the estimated trajectory may exactly reproduce the shape of the reference
trajectory, but have a different scale. It is possible to address the scale problem in
monocular systems if data from additional sensors are available, in particular inertial
measurements from an IMU or AHRS [29]. However, this possibility was not
exploited in this project because the stream of images from the smartphone could not
be synchronized accurately in time with the AHRS measurements, while the aim was
also to compare the trajectories obtained using visual SLAM from the two different
types of cameras mounted on the Melex. On the other hand, the correct scale can be
easily retrieved by processing the trajectory offline and using the Umeyama algorithm
[30] with only several GNSS global pose measurements as reference points.

In the case of LiDAR SLAM, the scale drift problem does not occur. Trajectory
matching is performed offline by finding the transformation that minimizes the
distance between two groups of rigidly connected points representing these trajecto-
ries (vehicle poses), the most commonly used method to accomplish this task is the
Umeyama algorithm [30].

On the other hand, the RPE metric determines the difference in transformation
(separately the rotational and translational parts) that would exist after following the
estimated trajectory and the reference trajectory independently for a given number of
frames/images and then calculating the roto-translation between the estimated trajec-
tory and its ground truth trajectory counterpart. The RPE metric for the i-th image
frame is given by the formula:
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ERPE
i ¼ Tgt

i

� ��1
Tgt

iþ1

� ��1
T�1

i Tiþ1
� �

: (4)

Determining the translational or rotational part, one gets the local translational or
rotational error measure. The values of the RPE metrics for the entire trajectory are
calculated from the corresponding part (translational or rotational) as the RMS error
value for all nodes.

The main measure of sensor position estimation error used in the process of
evaluating the accuracy of the tested algorithms will be ATE for the i-th frame. The
aggregated measure of ATE (RMS) is of lesser importance in this context, since it is
not assumed that the resulting maps will be globally accurate, but that the user can get
reasonably small errors, for example, translational error smaller than 1 meter, in the
coordinate system associated with the local map. This ensures correct recognition of
the road structure by the vehicle, which in turn makes it possible to keep on the
proper lane and to localize some objects in the vicinity of the road.

In this context, the translational part of the RPE metric (RPEt) is also useful, as,
from the point of view of evaluating the results of the experiments performed, the
main advantage of the RPE metric is that it can be directly applied to the evaluation of
the trajectory estimated from a monocular camera, in the presented case both the
Basler camera and the smartphone’s camera. When using the ATE metric, such a
possibility does not exist, because, for monocular SLAM, the estimated trajectory and
the reference trajectory differ in scale.

Roll and pitch angles of the sensor are of lesser importance, as it is assumed that the
vehicle moves on generally flat ground in the urban environment. However, the roll
and pitch angles for the reference trajectory can be read from the AHRS relative to the
gravity vector. This is used to ensure that the assumption of running on a reasonably
flat surface is met for the collected trajectories.

5. Experimental results

Three fully documented experiments were conducted using a pre-calibrated set of
sensors on an electric car. The vehicle traveled at speeds ranging from 10 to 30 km/h
along various routes in the area of the Warta campus of Poznan University of Tech-
nology and the streets adjacent to this area. The routes were documented by plotting
ground truth trajectories (obtained from RTK-GPS) on maps from the
OpenStreetMaps service (Figure 5).

Figure 5.
Ground truth trajectories of three experiments obtained from RTK-GPS and plotted on OpenStreetMaps: Exp. 1 –
A single loop inside the campus (A), exp. 2 – Multiple loops inside the campus (B), and exp. 3 – A large loop
partially outside the campus (C).
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In each run, an estimated vehicle trajectory was obtained from the OS1-128 laser
scanner data, the relative position error of which did not exceed 1 m with respect to
the RTK-GPS data (Table 1). At the same time, all the estimated trajectories are
topologically consistent and not distorted (Figure 6), also characterized by small
absolute ATE errors (the red error lines are faint).

At the same time, the presented experiments confirmed the veracity of the main
these—it is possible to obtain the localization of a vehicle equipped with a single
passive camera with a relative accuracy of no worse than 1 m (Table 1) under
conditions similar to the real operating conditions of urban navigation. The difference
between the conditions of the experiment and the real conditions came down to the
use of a vehicle moving slower than a typical car and the absence of heavy traffic of
other vehicles (with the presence of single vehicles and pedestrians).

There are clearly significant differences in the accuracy of the trajectory estimated
by ORB-SLAM3 depending on the scenario of a given experiment Figure 7. The
decisive influence on the quality of localization is the number of point features
observed and tracked over a sufficient number of frames. The absence of such fea-
tures, for example, because of driving at a great distance from objects with distinct

Exp. No. 1 2 3

RPEt [m] max RMS max RMS max RMS

LOAM Ouster 1.83 0.53 1.93 0.45 1.14 0.51

ORB-SLAM3 Basler 1.71 0.38 0.92 0.27 0.40 0.18

ORB-SLAM3 Galaxy 0.49 0.23 0.43 0.29 0.42 0.18

Table 1.
Relative translational errors of the trajectory estimated by LOAM (LiDAR SLAM) and ORB-SLAM3 (visual
SLAM) for all experiments.

Figure 6.
Plots of the ground truth and estimated trajectories for LOAM/ouster with visualization of the ATE values (red
lines) for exp. 1 (A), exp. 2 (B), and exp. 3 (C).

Figure 7.
Plots of the ground truth and estimated trajectories for ORB-SLAM3/Basler with visualization of the ATE values
(red lines) for exp. 1 (A), exp. 2 (B), and exp. 3 (C).

137

Practical Insights on Automotive SLAM in Urban Environments
DOI: http://dx.doi.org/10.5772/intechopen.108262



surface texture and/or the presence of unstable (weakly repeatable) features gener-
ated on trees, causes a sharp increase in local (relative) errors and, consequently,
distortion of the estimated trajectory. In the case of the second experiment, in which
the vehicle made several passes over the same terrain (loop), it can also be seen that
the data from a single camera (monocular visual SLAM) does not allow in some cases
to accurately close the loop and completely reduce the drift of the trajectory. In the
consequence, the ATE values are much bigger for the vision-based ORB-SLAM3 than
for the LiDAR-based LOAM, as shown in Table 2.

The differences in the accuracy of the trajectory estimated by ORB-SLAM3 from
the low-cost camera of the smartphone measured by the relative measure (Table 1)
are small, and the obtained values of relative translation errors (both RMS and
maximum values) do not differ significantly from analogous values obtained when
estimating the trajectory based on images from a professional camera (Figure 8).

In the case of experiments 2 and 3 for the Basler camera, the maximum value of the
error estimated from the smartphone images is even significantly smaller (0.49 m vs.
1.71 m for the professional camera). This allows us to conclude that the smartphone
camera under proper calibration is a sufficient sensor for feature-based monocular
SLAM, despite having a rolling shutter and simplified lens. It should be noted that an
advantage of the Galaxy A20 smartphone camera (and many others) over the Basler
camera with an f = 4 mm lens is a wider angular field of view in the horizontal plane.
This can increase the number of matching point features during more rapid changes in
vehicle orientation. At the same time, however, the depth of field of the smartphone
camera is noticeably smaller than for the classic camera configuration compared here,
which in turn leads to the detection of fewer point features overall, especially at
greater distances from the vehicle. The number of point features observed and tracked
by a sufficient number of frames has a decisive impact on the quality of pose tracking
(local localization). Lack of a sufficient number of features results in a sharp increase
in local (relative) errors and, consequently, distortion of the estimated trajectory.

Exp. no. 1 2 3

ATE [m] max RMS max RMS max RMS

LOAM Ouster 2.49 1.26 3.11 2.08 6.33 2.55

ORB-SLAM3 Basler 2.59 1.15 12.90 5.72 12.59 6.53

ORB-SLAM3 Galaxy 7.50 3.04 8.29 4.61 70.83 30.07

Table 2.
Absolute errors of the trajectory estimated by LOAM (LiDAR SLAM) and ORB-SLAM3 (visual SLAM) for all
experiments.

Figure 8.
Plots of the ground truth and estimated trajectories for ORB-SLAM3/galaxy with visualization of the ATE values
(red lines) for exp. 1 (A), exp. 2 (B), and exp. 3 (C).
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In the case of experiments 2 and 3, during which the vehicle made several loops
returning to the same areas, it can also be seen that the data from the Galaxy A20
smartphone camera does not allow, in some cases, for accurate loop closure and
trajectory drift reduction. This is particularly evident in Figure 8C—ineffective loop
closing, probably due to too few features, led to a very large ATE error for the long
trajectory (15,288 images were processed), despite the small relative errors.

6. Conclusions

The presented results allow us to conclude that the use of laser scanning to obtain
reference trajectories regardless of the availability of the GNSS signal (which often
disappears in urban environments) is effective, and it can be applied as part of the
methodology for testing vision-based localization systems, as the accuracy obtained is
sufficient.

This research has shown that the trajectories estimated by a state-of-the-art visual
SLAM system are of acceptable accuracy in the context of local navigation in the
urban environment. The obtained accuracy of the vehicle pose estimates is also suffi-
cient for localization of selected objects on the roadsides—such as billboards consid-
ered in the CityBrands project.

The multi-loop paths of the presented experiments, which are not present in the
publicly available datasets for SLAM, for example, KITTI [25] made it possible to
demonstrate the crucial role of topological loop closing in obtaining globally consistent
trajectories. A clear decrease of this global consistency was observed for the trajecto-
ries obtained from the images acquired using smartphone with its rolling-shutter
camera. This can be attributed to the smaller number of point features detected in the
lower-quality images that in some cases were insufficient to detect a loop using the
bag-of-visual-words approach. This was observed for trajectories that otherwise had
local errors not greater than their counterparts estimated from images collected by a
professional global-shutter camera. However, supplementing the SLAM algorithm
with only locally available (at selected points) GNSS data (which here served only as
ground truth) should allow to removal of the observed shortcomings. In general, this
research demonstrated that even low-cost commodity hardware can be used to obtain
useful trajectories of a vehicle in urban environment if recent algorithms are applied
for data processing, and the entire processing pipeline is implemented carefully,
focusing on proper calibration of the sensors.
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