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Preface

Molecular docking, the first algorithms of which were written in the 1980s, has now 
become a routine computational method in the discovery of effective molecules 
(high-throughput screening, drug repurposing) for curable and even incurable 
diseases. It is used to elucidate receptor–ligand intermolecular interactions at the 
atom level and to predict the possible binding conformations of molecular com-
plexes (DNA–protein, RNA–protein, protein-protein, or protein-small molecule) 
whose crystal structure is still unknown. Although these are among the routine 
uses of molecular docking, from a reductionist scientific point of view, the capacity 
of this technique to illuminate different molecular phenomena is limited only by 
 imagination, and its use in biology and medicine is diversifying day by day.

With the outbreak of the COVID-19 pandemic worldwide, it became clear how this 
technique, which made a very rapid entry into the biological sciences in the last 
decade, has contributed greatly to new drug discovery and drug development. It has 
also made a significant contribution to the identification of new molecular targets 
related to COVID-19 treatment. In addition, multiple human protein targets were 
determined in the treatment of COVID-19 via the molecular docking technique, 
which led to the adoption of the ‘multi-target’ approach in drug screening studies. 
Strikingly, although molecular docking is used quite frequently in hit identification 
and lead optimization, it has also begun to be used in bioremediation for predicting 
pollutants that can be degraded by different enzymes.

Despite molecular docking being a promising technique in biology, biochemistry, and 
medicine, the conformation of the obtained molecular complexes and the compat-
ibility of the binding energies with the experimental data is still debatable and, thus, 
more refinement of scoring functions is required. Hopefully, with the development 
of new docking algorithms and approaches (e.g., flexible docking, solvated docking, 
covalent docking, and consensus docking), the prediction of molecular complexes 
in accordance with experimental data can now be made more accurately. In addition, 
the contribution of molecular dynamics simulations and free energy calculations in 
refining the molecular docking binding energy is invaluable and cannot be ignored.

This book presents current studies on computational molecular docking as well as 
discusses the fundamentals of the technique. It is designed for researchers of all levels.

Dr. Erman Salih Istifli
Biology, Faculty of Science and Literature,

Cukurova University,
Adana, Turkey
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Chapter 1

Introductory Chapter: Molecular 
Docking – The Transition from the 
Micro Nature of Small Molecules to 
the Macro World
Erman Salih Istifli

1. Introduction

Molecular docking is a frequently employed bioinformatics method that is 
capable of predicting with great accuracy (when the initial structure preparation is 
done properly) the conformation of small molecular weight ligands (Latin ligandus, 
gerundive of ligare “to bind”) within the binding sites of proteins, enzymes, RNA or 
DNA macromolecular targets [1–5]. Since the development of its first algorithm in the 
1980s, molecular docking has been an indispensable tool in drug discovery, however, 
following the further recognition of its ability to highly predict intermolecular 
interactions by researchers, it has also found widespread use in biochemistry, medici-
nal chemistry, pharmacy, microbiology, genetics, advanced biophysics, and even the 
textile industry. Although it is not the specific subject of this introductory chapter, the 
main principle of molecular docking, as software, is based on two main processes: a. 
conformational search, and, b. determination of the binding energetics. In the conforma-
tional search step, the most likely conformation (minimum energy solution) of the 
ligand on the target receptor is identified by modifying its structural parameters, such 
as torsional, translational, and rotational degrees of freedom. In the calculation step 
of the binding energy of the ligand-receptor complex, which is predicted by confor-
mational search, a binding constant (Kd or Ki) and Gibbs free energy value  
(ΔG°=kcal/mol) are produced using different scoring functions [1, 6–11].

2. What advantages did molecular docking technique offer us?

In the last two decades, molecular docking has found significant use in the disci-
pline of molecular biology in addition to structure-based drug design (SBDD). For 
instance, while the molecular docking method predicts the interactions between 
enzymes and their substrates, quite accurately in terms of binding free energy and 
conformation [12–15], it has also proven its ability to calculate the negative functional 
effects of induced mutations in proteins as well as the effects of naturally occurring 
point mutations on enzyme-substrate binding [16–19]. Thus, molecular docking 
offers a powerful option for investigating the correlation between structure and 
function. While the utilization of molecular docking in biochemistry is generally 
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aimed at confirming data related to enzyme inhibitory activity, such as experimental 
dissociation constant (Kd) or half-maximal inhibitory concentration (IC50) [20–24], in 
microbiology, it is widely used to theoretically verify the minimum inhibitory con-
centration (MIC) values of natural herbal extracts or synthetic components targeted 
against bacterial enzymes [25–29]. Recently, although molecular docking programs 
have not been specifically designed to characterize ligand-DNA interactions, the 
molecular docking method has now been frequently used to predict the binding 
modes and affinity of small molecules on DNA, especially in genotoxicity studies 
[30–35]. Last but not least, the inherent nature of molecular docking, which is based 
on biochemistry and biophysics, has allowed it to take place even in the COVID-19 
pandemic, which has severely affected the world agenda, societies, and the global 
economy for about 2 years. This method has ultimately become a principle compo-
nent in bioinformatics-based drug-discovery campaigns against the SARS-CoV-2 
virus [36–41].

3.  Molecular docking is in principle closely connected with molecular 
dynamics simulations

As commonly known, intracellular receptor-ligand interactions are dynamic 
phenomena by nature, where ions and water molecules in this milieu have undeniable 
importance during these intermolecular reactions. At the same time, the inherent 
flexibility of the interacting protein partners and ligands is an important variable that 
has to be taken into account in docking calculations. Therefore, considering these 
variables, molecular docking techniques have evolved further over time and new 
docking algorithms (ex. flexible receptor-flexible ligand docking or solvated dock-
ing) have been developed to produce more accurate receptor-ligand poses [42–45]. 
However, simulating the movements of all types of atoms around the reaction site 
is still beyond the limits of the molecular docking technique. In this context, the 
molecular dynamics simulations have proved to be indispensable molecular interac-
tion simulation methods used as a complement to the molecular docking technique in 
order to study the receptor-ligand binding dynamics and the time-dependent evolu-
tion of the resulting complex. Therefore, the molecular docking technique should be 
supported by molecular dynamics simulations, regardless of which biological prob-
lem it is used to solve.

4. Conclusion

A feature of biological macromolecules or synthetic chemical compounds is 
that the basic building blocks come together to form larger building blocks, which 
then come together to form even larger structures, and the process continues in the 
same way. The structure and function of these macromolecules composed of small 
monomers are frequently quite different from the building blocks that compose them, 
and such phenomena are referred as ‘emergence’ if you ask physicists or biologists. 
Consequently, it is almost impossible to explain the basis of the emergence phenom-
enon using scientific reductionism. However, molecular docking, which is one of the 
most powerful supportive tools of scientific reductionism today, can now display 
atomic interactions (with almost all the details) in intermolecular reactions on a com-
puter screen, which was almost impossible until about 45–50 years ago. Furthermore, 
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with the ever-developing disciplines such as genomics, molecular biology, biochemis-
try, and genetics, molecular docking has become a more powerful tool today and the 
scientific disciplines it can directly contribute to are increasing at the same rate. Thus, 
the importance of scientific reductionism, therefore molecular docking, in imagin-
ing the ‘big biological window’ seems likely to continue with increasing importance. 
In summary, this book is an ultimate reference guide for researchers working in the 
fields of experimental biology and bioinformatics who would like to understand the 
principles of the molecular docking technique and integrate it into their research 
areas, as well as students who are prospective in increasing their knowledge about 
molecular simulations.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 2

Fundamentals of Molecular 
Docking and Comparative Analysis 
of Protein–Small-Molecule Docking 
Approaches
Sefika Feyza Maden, Selin Sezer and Saliha Ece Acuner

Abstract

Proteins (e.g., enzymes, receptors, hormones, antibodies, transporter proteins, 
etc.) seldom act alone in the cell, and their functions rely on their interactions 
with various partners such as small molecules, other proteins, and/or nucleic acids. 
Molecular docking is a computational method developed to model these interac-
tions at the molecular level by predicting the 3D structures of complexes. Predicting 
the binding site and pose of a protein with its partner through docking can help us 
to unveil protein structure-function relationship and aid drug design in numerous 
ways. In this chapter, we focus on the fundamentals of protein docking by describ-
ing docking methods including search algorithm, scoring, and assessment steps as 
well as illustrating recent successful applications in drug discovery. We especially 
address protein–small-molecule (drug) docking by comparatively analyzing available 
tools implementing different approaches such as ab initio, structure-based, ligand-
based (pharmacophore-/shape-based), information-driven, and machine learning 
approaches.

Keywords: molecular docking, drug design, drug discovery, protein interactions, 
machine learning

1. Introduction

The molecular machines of the cell, i.e., proteins, are essential to many cellular 
processes such as signal transduction and cell regulation. Proteins seldom act alone in 
the cell, but they function through interacting with other small or macromolecules. 
Therefore, understanding protein interactions at the atomic level is critical to under-
standing biological processes [1]. Primary structure, i.e., amino acid sequence, of the 
interacting proteins is a necessary but insufficient source of information at the atomic 
level. After being synthesized, proteins fold and acquire a stable native structure, 
i.e., tertiary structure that can be defined in a three-dimensional (3D) plane in order 
to be functional. It is known that proteins with different sequence information can 
have similar functional structures, that is, different amino acid sequences can show 
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similar folding trends in 3D space and structure is more conserved than sequence [2]. 
Therefore, it is crucial to understand the interaction details at the structural level. 
Proteins physically interact with their partners via non-covalent associations, namely 
H-bond, hydrophobic, and electrostatic interactions, with the exception of covalent 
disulfide bridges. These intermolecular physical forces also dominate the protein 
folding process.

The 3D structure of the macromolecules can be determined using the experimen-
tal methods such as X-ray crystallography, nuclear magnetic resonance (NMR), and 
cryo-EM and then deposited in the Protein Data Bank (PDB) (https://www.rcsb.
org). However, there is a huge gap between the number of known protein sequences 
and structures [3, 4]. Computational modeling approaches that can predict 3D 
structures of macromolecules can help to bridge this gap. A recent machine learning 
algorithm developed by DeepMind, called AlphaFold [5], can predict 3D structures 
of proteins using the sequence information with high accuracy and has been accepted 
as a breakthrough in the structural biology field. In 1 year, approximately 1 million 
new structures have been predicted and deposited at AlphaFold Protein Structure 
Database (https://alphafold.ebi.ac.uk/). In order to have a complete understanding 
of the proteome, computational techniques are not only needed for modeling single 
protein structures, but also the interactions between them.

Molecular docking is a method used to predict the structures of proteins in complex 
with other proteins, nucleic acids, or small molecules. It can be defined as predicting 
the appropriate low-energy binding pose of the ligand in complex with the target 
structure, by randomly colliding proteins and their potential partners in space, first 
creating a rigid complex structure model, and then focusing on the binding sites of 
that model with flexible interface refinement [6]. Energy minimization of randomly 
docked conformations in space requires a multidimensional calculation. Initially devel-
oped molecular docking method was treating ligands and receptors as rigid bodies 
without considering any conformational changes [7]. However, interactions between 
proteins can become quite complex even with small changes in the conformation of the 
structures [7], and docking algorithms may not physically solve this complex prob-
lem correctly [8]. The main factor that creates computational difficulties in docking 
algorithms is when the protein backbone changes its conformation significantly upon 
binding [9, 10]. To address this problem, different techniques that consider backbone 
flexibility have been successfully implemented in docking algorithms [10].

Many diseases today, such as cancer, are likely to be linked to problems in protein-
protein interactions and targeting them can therefore enable the development of 
next-generation therapeutic methods [11]. Modeling the complex structures formed 
by proteins with other proteins or small molecules holds the key to understand 
many biological processes such that modeling enzyme-substrate or protein-drug 
interactions can reveal insights into binding sites/interface regions, function, and 
mechanism of action. The main protein–small-molecule docking applications in drug 
discovery include drug repositioning, structure- and ligand-based (pharmacophore−/
shape-based) drug design approaches using virtual and reverse screening [11–14]. 
Today, with the continuously developing technology; targeted drug design, drug 
target search, evaluation of the side effects of existing drugs, or finding new targets 
for these drugs can be achieved with the help of molecular modeling and machine 
learning methods [12]. Deep learning neural network models have strong computa-
tional ability on big data and attract attention in structural biology field [15]. There 
are antibiotic discovery studies using deep neural networks [16] and deep learning 
studies adapted to drug design [17].
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In this chapter, we focus on the protein–small-molecule docking fundamentals 
and the steps of the docking algorithm and procedure in detail. We then give recent 
successful applications in drug design and discovery that use different docking 
approaches, namely virtual screening, reverse screening, and machine learning. 
Lastly, we comparatively analyze some of the available protein–small-molecule 
docking tools using the structure of SARS-CoV-2 main protease in complex with a 
non-covalent inhibitor Jun8-76-3A as a case study.

2. Fundamentals of protein–small-molecule docking

Protein–small-molecule interactions are essential for the sustainability of 
 biological processes such as enzymatic catalysis and overall homeostasis in the body [18]. 
The engineering of protein–small-molecule interactions is one of the computational 
approaches used to solve critical problems in biology [18]. Protein–small-molecule 
docking, i.e., modeling the interaction between chemical compounds and their 
target protein receptors at the atomic level, is an effective tool in drug design. In the 
structure-based design of small-molecule drugs, a good estimation of the binding 
pose is required to clearly demonstrate important interactions and design drugs with 
increased selectivity and efficacy [19]. The procedures that can be followed and the 
tools that can be used before, during, and after molecular docking are explained in the 
following subsections and summarized in Figure 1.

2.1 Before docking: molecule preparation

Before starting the docking studies, first of all, the most suitable protein 
and ligand structures should be selected [20]. There are databases to access the 
experimentally determined structures of target proteins such as PDB, Uniprot, and 
Therapeutic Target Database (TTD). If the experimental structure is not available, 
modeled structures can be obtained from AlphaFold Database or can be modeled 

Figure 1. 
The procedures that can be followed and the tools that can be used before, during, and after protein-ligand 
molecular docking in drug design.
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using relevant structure modeling software. The most frequently used databases for 
getting the small-molecule ligand/chemical structures are: DrugBank [21], PubChem 
[22], ZINC [23], ChEMBL [24], and Chemspider [25] (Figure 1). DrugBank, 
Chemspider, and ZINC databases include more than 500,000, 100 million, and 230 
million compounds/drug molecules, respectively.

The molecular docking algorithms may require preliminary preparation of the 
structures that are obtained in PDB format (lacking H atoms). There are tools avail-
able for such preliminary preparations such as Open Babel [26] and AutoDockTools 
(Figure 1) [27].

It is also of crucial importance to guide docking with preliminary information 
on the binding site. Otherwise, there are no binding site constraints, blind docking 
takes place, and it is more difficult to detect the correct binding poses when the ligand 
search space is large. There are various guiding algorithms for active site prediction 
that can be used when binding sites are not known. Some of them can be listed as: 
GRID [28], SurfNet [29], COACH [30], SCFbio [31], CASTp [32], DeepSite [33], and 
PUResNet (Figure 1) [34].

The capabilities of docking algorithms can differ from each other, and in this 
respect, it is important to carefully choose the algorithm to use in accordance with the 
purpose of the study before starting the docking.

2.2 Docking algorithm steps

There are many approaches and algorithms for molecular docking, based on 
different parameters, and they aim to perform the protein-ligand docking with the 
best performance [12]. The steps of molecular docking algorithms can be summarized 
as follows: molecule flexibility, conformational search algorithms (ligand sampling), 
and scoring functions (Figure 2) [12, 35].

2.2.1 Molecule flexibility

During molecular docking, structures can be considered rigid or flexible. Rigid 
docking takes into account only the translation and rotation degrees of freedom. 
Providing flexibility means also considering the rotation about single bonds so that 
they have the same bond lengths and angles but different torsion angles. Although 

Figure 2. 
Methods for protein-ligand molecular docking.
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flexible docking approach is more realistic than rigid docking, when there are 
many rotatable bonds, the ligand conformational search space becomes so 
large that it is difficult to find the correct binding pose with the lowest binding 
free energy (global minimum solution). Some algorithms, such as HADDOCK 
[36], first treat the structures as rigid to increase time efficiency and then per-
form flexibility improvements on the poses of molecules with the best energy 
scores. Molecular docking software can be grouped according to the flexibility 
treatments of molecules such as Rigid Docking, Semi-Flexible Docking, and Soft 
Docking [35, 37].

In rigid docking, protein and ligand molecules are treated as rigid entities [37, 38]. 
During docking, the positions of the molecules change without losing their shape 
[37], i.e., only translation and rotation but no conformational degrees of freedom are 
considered.

Semi-flexible docking is based on the principle of keeping the protein structure 
rigid and letting the ligand structure be flexible by allowing rotatable bonds. Thus, 
various conformational poses of the ligand on the protein are sampled [35, 37, 38]. It 
gives more accurate results than rigid docking [37].

In soft docking, van der Waals interactions between atoms are softened, making 
the structures of both receptor and ligand molecules implicitly flexible as overlap is 
allowed to a small extent [39, 40]. Soft docking process is carried out realistically by 
ensuring that both the protein and the ligand are rotatable as in their natural states 
[37, 38]. It is an advantageous method due to its computational efficiency and ease of 
application [35, 37].

2.2.2 Conformational search algorithms

Conformational search algorithms can identify different conformational orien-
tations (poses) of the ligand sampled around the experimentally determined active 
site or other binding sites on the protein [35, 41, 42]. These algorithms are gener-
ally classified as: shape matching, systematic, stochastic, and simulation methods 
[35, 38, 43].

Shape matching algorithms have the advantage of speed over other algorithms  
[35, 44] and adopt a sampling principle in which the conformation of the ligand 
should be structurally complementary to the protein binding site [38]. It ensures that 
the ligand is positioned in such a way that best complements the molecular surface 
of the binding site on the protein [35]. Some example software using shape matching 
are: DOCK [45], FLOG [46], EUDOC [47], Surflex [48], LibDOCK [49], SANDOCK 
[50], and MDock [51].

Using systematic search algorithms, a large number of possible binding poses 
can be obtained by gradually changing the degrees of freedom of the ligands [35, 52] 
toward the direction of minimum energy. Systematic search algorithms can be 
divided into two as exhaustive search and fragmentation (incremental structure) 
[35, 41, 53]. Exhaustive search algorithm is based on systematically generating flex-
ible ligand conformations by rotating the rotatable bonds in the ligand [35]. If the 
number of rotatable bonds is large, there is a combinatorial explosion in the number 
of poses, i.e., the search space, so that some filtering and optimization procedures 
are applied for practical purposes [35]. Glide [54] and FRED [55] are example 
docking software using exhaustive conformational search algorithms. In the frag-
mentation method, the ligand is divided into smaller fragments, each fragment is 
placed and augmented at the binding site gradually through covalent bonding to the 
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previous one [35]. DOCK [56], LUDI [57], FlexX [58], and eHiTs [59] are example 
software using fragmentation.

The algorithms used in stochastic search methods are more efficient but do not 
guarantee an accurate result as they are based on generating random ligand confor-
mations, and therefore, the docking process is iterative in these algorithms [41, 44]. 
Monte Carlo, swarm optimization, evolutionary algorithms, and Tabu search meth-
ods are among the most used stochastic algorithms [35, 38, 52]. Example software 
using stochastic conformational search method include AutoDock [60], GOLD [61], 
DockThor [62], and MolDock [63].

Simulations of the obtained ligand poses (simulation methods) represent protein 
and ligand flexibility better than the other algorithms but have a slow flow and can 
make insufficient sampling [38, 44]. For this reason, they are used as a complement to 
other conformational search methods [38].

2.2.3 Scoring functions

In the previously described conformational search step, many structures are cre-
ated and most of them should be eliminated by selecting the biologically appropriate 
structures. Therefore, the possible poses created by conformational search algorithms 
are evaluated and ranked by using a scoring function [35]. The scoring function is a 
measure to evaluate the docking poses obtained [35, 38, 52] in terms of their binding 
free energies [11, 44, 64].

With the scoring functions that estimate the binding energies of the created 
complex structures, various physicochemical properties should be evaluated in order 
to distinguish good results from the bad ones. These physicochemical properties can 
be intermolecular interactions, desolvation from solvent, electrostatic and entropic 
effects, etc. [65]. As the number of evaluated parameters increases, the accuracy 
of the scoring function will increase; but the computational load will also increase. 
Therefore, scoring functions with ideal efficiency, especially when working with 
large ligand sets, are those that are balanced in terms of accuracy and speed [11]. The 
scoring functions can be classified as: force-field-based, empirical, knowledge-based, 
and consensus scoring.

The Force Field Scoring Function (FFSF) is designed to work with multiple force 
fields such as AMBER [66], CHARMM [67], GROMOS [68], and OPLS [69] individu-
ally or in combination. The designed FFSFs estimate the free energy of ligand binding 
by considering van der Waals energy terms such as electrostatic interactions and 
hydrogen bonds [35, 38].

Empirical scoring functions use simpler energy terms to estimate the free energy 
of ligand binding such as hydrogen bonds and ionic interaction, and they can be 
calculated more easily and faster than FFSFs [35, 38, 52]. Some examples of empirical 
scoring functions are GlideScore [54], PLP [70], LigScore [71], LUDI [72], SCORE 
[73], and X-Score [74].

Knowledge-based scoring functions use statistical analysis of protein-ligand com-
plex structures to derive protein-ligand distance [44]. These functions can show high 
performance in a short time [52]. They can also model some uncommon interactions, 
such as sulfur-aromatic, that other functions do not address [44].

Consensus scoring function, not a specific scoring system, aims at an effective 
scoring with a combination of multiple scoring functions with the idea of minimizing 
the possible error margins of existing scoring systems [35, 38, 44].
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2.3 After docking: evaluation of the results

After performing protein-ligand docking studies, the accuracy of pose estima-
tions needs to be evaluated [41, 52]. The best way to evaluate the docking algorithm 
is to compare the predicted binding pose of the ligand with position of the reference 
ligand in the experimentally determined structure, if possible. The structural com-
parison is quantified by using root mean squared deviation (RMSD) (Eq. 1), with the 
unit of Å [41, 75]. It is preferred that this value is between 2 and 4 Å or less for a good 
docking. RMSD calculations are simple, but this metric is not normalized to number 
of atoms and therefore should not be considered as an absolute measure [76]. As a 
more systematic approach, in order to ensure the consistency of the docking algo-
rithm used, it should be checked whether the same poses are obtained by repeating 
the docking process [52] at least 50 times and clustering the poses of the side chains 
and references according to a certain threshold value [77]. With this method, whether 
the docking algorithm correctly and consistently creates a pose in the right position 
can be determined [41, 44, 78].
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Eq. (1) Root mean squared deviation for the coordinates of two molecules, a and b, 
with N atoms.

Modeling successes and capabilities of docking algorithms are being evaluated in 
a competition called CAPRI (Critical Assessment of Protein Interactions) (https://
www.capri-docking.org/) since 2001 [79, 80]. Experimentally determined complex 
structures that have not yet been published in PDB are submitted to CAPRI and 
without knowing the experimental structure of the complex, the participants try to 
predict the most similar structure to the experimentally determined complex struc-
ture through docking algorithms [79]. A solution set of 10 models is presented to the 
CAPRI committee for evaluation based on the geometry similarity and biological 
relevance of the predicted complex structures. The results of CAPRI show very good 
predictions for easy targets with simple conformational changes, but rather worse 
ones for difficult targets with conformational changes upon binding [9].

3. Molecular docking approaches and applications in drug design

Computational methods have become an important part of the drug discovery 
process with increasing accuracy of algorithms. Various docking methods based 
on different algorithms are constantly being developed to determine the structural 
relationships of potential drug molecules and their targets [44]. In addition, studies in 
this area shed light on the candidate drugs in terms of the pharmacodynamic proper-
ties, affinity, and selectivity [11]. The main molecular docking applications in drug 
discovery include drug repositioning (repurposing), structure- and ligand-based 
drug design approaches using virtual and reverse screening [11–14].

Drug repositioning seeks out new targets for natural compounds, drugs currently 
in use, or candidate ligands to reveal their unknown therapeutic potentials [81]. Many 
successful repositioning studies are available in the literature [81–83]. Virtual screen-
ing (VS) and reverse screening (RS) techniques are frequently used in drug discovery 
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and repositioning. VS offers a more effective and rational approach compared with 
traditional methods [36]. The atomic-level analyzable results presented to us by 
virtual screening studies guide us in understanding the function of the target and 
in new drug discoveries [5, 36, 55]. In the RS approach, interest is on a single ligand 
molecule, and there is a search for a biological target for this molecule [12]. Unlike 
virtual screening (VS), the search library consists of potential target receptors. RS 
approach has the potential to lead studies such as testing toxicity or side effects of the 
existing drugs [38]. The potential side effects of a drug need to be evaluated in the 
drug discovery process. Molecular docking studies can offer an important perspective 
in this regard, and there are inverse (reverse) docking studies that provide bioactiv-
ity data by detecting off-target bindings [25]. Lastly, the subclasses of Artificial 
Intelligence (AI): Machine Learning (ML) and Deep Learning (DL) methods have 
significant contributions in pharmaceutical industry [84]. AI can be applied to dif-
ferent steps such as drug design with VS, de novo generation of drug molecules, and 
computational planning of drug synthesis [85]. Recent developments are promising 
that molecular docking methods may benefit from the machine learning methods 
more in the future [84].

3.1 Virtual screening

Virtual screening (VS) approach uses a target receptor and a library of small 
molecules. Libraries can be created manually, or already existing libraries can be used. 
The library consists of a large number of chemically diverse bioactive small molecules 
with a high probability of binding to the receptor. This virtual computing technique 
is considered as the in silico equivalent of in vitro methods such as high-throughput 
screening (HTS) [11]. VS is preferred as a guide in scientific studies because its 
success rate is 400 times higher [86], less costly, faster, and requires less labor com-
pared with high-throughput screening methods [87]. VS studies aim to reduce a large 
number of potential drug candidates to manageable numbers applying various filters. 
The biggest challenge in VS is the detection of false negatives [19].

Ligand-based VS methods conduct research by identifying common properties 
of compound sequences, such as molecular volume and protonation state [11]. In 
addition to chemical similarity [88] and rule-based [89] software included in filtra-
tion strategies, there are also various software such as freely add-on pharmacophore 
and quantitative structure-activity relationship (QSAR) models [87, 90]. The most 
commonly used ligand-based virtual screening method is the QSAR method. Ligand-
based VS does not contain structural information about the receptor, it only scans 
using receptor sites known to be active and tries to detect active ligand molecules [85].

Structure-based VS methods are often used when the receptor has different con-
formations. The aim is to predict receptor binding affinity by processing structural 
information using a variety of techniques, such as binding site similarity and phar-
macophore mapping. By estimating the different binding modes, the molecules are 
sorted for evaluation [11]. Analysis of the predicted poses can be done manually using 
visualization programs. It has been reported that nAPOLI, a web server developed in 
recent years, analyzes results automatically [91].

Structure-based pharmacophore generation is one of the most frequently used 
methods for small molecules in the virtual screening method. Here, 3D pharmaco-
phore model interfaces of the scaffolds of the ligands are created, and ligands that will 
adapt to the binding site and provide the desired bioactivity are selected. Some of the 
programs that use pharmacophore modeling are HipHop [92], PHASE [93], MOE, 
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which are commercial, SCAMPI [94], PharmaGist [95], ALADDIN [96], which are 
suitable for academic use.

A recent example of VS application on the non-structural protein of SARS-CoV-2, 
nsp1, one of the virulence factors causing viral infection, is by G. O. Timo et al. [74]. 
They estimated the exact pattern of nsp1 interaction through molecular simulation 
studies and analyzed 8694 potential inhibitors from the DrugBank database using 
the virtual screening method and proposed 16 inhibitor molecules with the best 
binding energy scores [74]. There is another recent study on the transcription factor 
BRF2, which is among the therapeutic targets as its upregulation is observed in the 
formation of various types of cancer, but there is no available specific drug targeting 
BRF2. By performing drug repositioning through virtual screening of drug mol-
ecules that are potential candidates for BRF2 inhibition, Rashidieh et al. found that 
the bexarotene molecule led to a serious decrease in the proliferation of this type of 
cancer cells [97].

3.2 Reverse screening

Reverse screening (RS) is also called inverse docking, reverse docking, inverse 
virtual screening, or target screening. Libraries are more limited for target hunting 
and profiling [12] and can be created manually using the most common acces-
sible databases such as PDB [98] and TTD [12, 99]. But this process requires a long 
preparation time and effort. There are various algorithms used to detect interactions 
by reverse screening. Some web platforms (INVDOCK [100], idTarget [101], ACTP 
[102], etc.) have been developed for reverse docking, which use libraries prepared 
for specific diseases and docked using programs such as standard AutoDock and 
AutoDock Vina [12].

A recently developed Consensus Reverse Docking System (CRDS) detects 
potential binding sites by screening approximately 5200 candidate proteins for the 
ligand molecule using three different scoring methods [103]. In another example, 
Stepanova et al. tested the antimicrobial activity against Mycobacterium tuberculosis 
strain by reverse screening for chemicals that had been successful in experimental 
studies and determined the most appropriate target as aspartate 1-decarboxylase by 
performing docking studies using 35 different target protein structures [104]. Reverse 
screening was also used for Bazedoxifene, an FDA-approved drug for the prevention 
of postmenopausal osteoporosis, and Xiao et al. defined the inhibitory power of 
Bazedoxifene on IL-6/GP130 signaling pathway (critical for cancer survival) by using 
computational techniques and confirmed the result with in vivo studies [83].

3.3 Machine-learning-based approaches

Machine learning techniques take information from biological data and make 
predictions about them, thus contributing to building a structural model [9]. Once a 
model is built, it must be improved so that the state with the lowest potential energy 
(global minimum) can be reached. Global minimum means a stable and sterically 
acceptable structure, and reaching it without being stuck at the local minima is 
very important in the field of bioinformatics and computational structural biology. 
A recent machine learning algorithm developed by DeepMind, called AlphaFold 
[5], implements deep learning and can predict 3D structures of proteins using the 
sequence information with high accuracy and has been accepted as a breakthrough in 
the structural biology field.
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Machine learning makes classifications by learning on datasets and needs human 
intervention to evaluate possible outcomes. Deep learning is a more advanced model 
having the neural network with ability to decide the right result without human 
intervention (Figure 3). Machine learning can use supervised or unsupervised learn-
ing. Supervised learning performs machine learning on datasets that we know about, 
whereas unsupervised learning detects and labels similarities and orientations in a 
created cluster [38, 90].

The training set used in machine learning constitutes the performance of the algo-
rithm. Machine learning studies in the field of virtual screening are generally focused 
on improving the performance of the scoring function [85]. Studies have shown that 
working with small subsets of the same family, which consists of similar structures, 
gives better scoring results rather than working with large data from different com-
plexes [105]. Working with subsets of interest is also a better approach in terms of 
computational requirements [38].

Machine learning and deep learning can describe more diverse data than other 
computational systems and can be representative of structural biology. Nonparametric 
machine learning has great potential to be the next step in computer-based program-
ming to improve the accuracy of molecular docking studies [41]. Machine learning can 
be used to refine predetermined function data as well as provide high-quality data to 
complement pharmaceutical discovery research and development.

4. Case study: comparison of docking tools

As a case study for comparing different protein-ligand docking tools, the crystal 
structure of the SARS-CoV-2 (COVID-19) main protease in complex with its non-
covalent inhibitor Jun8-76-3A (PDB ID: 7KX5) is used as the experimental refer-
ence structure to evaluate the accuracies of the complex structures predicted using 

Figure 3. 
Schematic illustration of artificial intelligence subfields: Machine learning and deep learning.



23

Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule…
DOI: http://dx.doi.org/10.5772/intechopen.105815

AutoDock Vina, HADDOCK, and SwissDock programs and changing some of the 
parameters to test their effects on prediction capabilities. The inhibitor in the experi-
mental protein structure is removed and then molecular docking is performed using 
the initial coordinates of the main protease structure of SARS-CoV-2 and its inhibitor 
Jun8-76-3A, separately.

4.1 Docking with AutoDock Vina

AutoDock is a free software that predicts the binding compatibility of small 
ligands to macromolecule targets with a flexible-rigid (semi-flexible) docking 
approach [27]. It uses a grid-based method to place the ligand in the active region 
determined on the macromolecule [106]. AutoDockTools (http://mgltools.scripps.
edu/downloads) is the user interface to produce and examine grid information 
required for the preparation of the protein and ligand structures in the relevant 
format and the configuration file [27].

As a docking input in AutoDock Vina, a configuration file, which contains the 
coordinate information of the protein and ligand structures and the ligand-binding 
region on the receptor, is required. For docking the case study ligand to the receptor 
using AutoDock Vina, the structure file was downloaded from RCSB PDB database 
(https://www.rcsb.org) in .pdb format (PDB ID:7KX5). AutoDockTools (v1.5.6) inter-
face was used to prepare input files, such that, water molecules in the relevant protein 
structure were deleted, polar H bonds were added to the structure and both the 
receptor and ligand structures were saved in .pdbqt file format. After preparing the 
ligand and protein structures, the most important input information for AutoDock is 
the docking parameter. The docking parameter involves determining the coordinates 
of the ligand-binding region on the target protein. While determining the docking 
parameter, if the binding region on the protein is not known, blind docking can be 
performed by putting the whole protein in the grid box (Figure 4A), or a small grid 
box can be placed in the specific known/predicted ligand-binding region on the pro-
tein (Figure 4B). Lastly, after determining the region on the protein where the ligand 
is to be bound by using the “grid box” in AutoDockTools, the protein coordinates were 

Figure 4. 
Grid box usage in docking: (A) blind docking with a grid box of size: × ×44 72 68  and center coordinates: 10.711, 
0.0, 3.782, (B) specific docking with a grid box of size: × ×14 14 16  and center coordinates: 10.735, −2.409, 21.173.
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specified in the input configuration file. Preparing all the required inputs, docking 
was performed using AutoDock Vina by repeating each docking process three times in 
order to observe the consistency of the algorithm (Table 1).

In order to examine the accuracy of the docking results, the poses obtained from 
AutoDock Vina were aligned with the original PDB structure by using the PyMol 
program [107]. When the energies of the poses predicted with specific docking 
(i.e., using specific grid on the binding site) and blind docking are compared, 
although the energy scores of the blind docking results are better, the comparison 
of the poses with the reference ligand shows that the most accurate binding is 
achieved with specific docking (Figure 5). Alignment of the first poses (with the 
lowest energy score) predicted with specific docking (green) and blind docking 
studies (blue) with the reference ligand (red) shows that the specific docking pose 
was in a more similar position with the reference ligand (green vs. red), than the 
blind docking pose (blue vs. red).

4.2 Docking with HADDOCK

An integrative platform called High Ambiguity-Driven biomolecular DOCKing 
(HADDOCK) is used for molecular docking of two or more molecules [108] and is 
a popular algorithm [36]. Although it is mainly suitable for protein-protein interac-
tions, it can also be applied to model the protein–small-molecule complexes [109]. 
HADDOCK automatically decides the most suitable configuration of the ligand 
according to the given restrictions [108]. Protein-protein docking is more complex 
than protein–small-molecule docking, as the proteins are flexible and the conforma-
tional space is larger [110].

HADDOCK does not require CPU and allows the user to see all the docking steps 
from start to finish. It should be noted that the success of HADDOCK studies is 
directly related with the amount of data entered into the system [36]. HADDOCK 
allows processing different types of molecules with the help of different platforms 
such as WHATIF, ProDRG, PDB. There is no need to create different conformer 

Mode Specific docking Blind docking

Affinity (kcal/mol) Affinity (kcal/mol)

Rep1 Rep 2 Rep 3 AVG Rep1 Rep2 Rep3 AVG

1 −8.9 −8.8 −8.9 −8.9 −8.9 −8.9 −9.0 −8.9

2 −7.3 −8.7 −7.3 −7.8 −8.2 −8.2 −8.3 −8.2

3 −7.2 −7.2 −7.3 −7.2 −8.1 −8.0 −8.1 −8.1

4 −6.8 −7.0 −7.0 −6.9 −7.9 −7.8 −8.0 −7.9

5 −6.8 −6.9 −7.0 −6.9 −7.9 −7.5 −8.0 −7.8

6 −6.8 −6.8 −6.9 −6.8 −7.7 −7.4 −7.8 −7.6

7 −6.7 −6.5 −6.8 −6.7 −7.7 −7.4 −7.8 −7.6

8 −6.4 −6.4 −6.8 −6.5 −7.6 −7.2 −7.6 −7.5

9 −6.3 −6.4 −6.7 −6.4 −7.5 −6.9 −7.4 −7.3

Table 1. 
Specific and blind docking studies with AutoDock were repeated three times.
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sequences as the system selects the most compatible conformers based on the shape 
constraints. With restriction files, we can set clear target sites, binding distances, 
or select active or passive residues (areas that are likely to interact). Defining 
 semi-flexible regions is also allowed.

HADDOCK algorithm consists of three stages: rigid-body minimization and 
randomization of orientations (it0), semi-flexible simulated annealing in torsion 
angle space (it1), and refinement in 3D space with explicit solvent (water) (https://
www.bonvinlab.org/education/HADDOCK-protein-protein-basic/). it0 stage treats 
structures as rigid solids and 1000 poses with the best score are selected. it1 optimizes 
orientations by allowing different docking poses from it0 to have different flexible 
regions defined. Two-hundred models with the best energy pass to the final stage. In 
the final step, a complex solvent medium (DMSO or water) is considered to improve 
the interaction energy and the final models are automatically aggregated.

To dock the case study inhibitor-protein complex (PDB ID:7XK5), the guideline 
tutorial (HADDOCK small-molecule binding site screening protocol) [111] was fol-
lowed and two different approaches were tested: (i) using an unambiguous (distance) 
restraint file, indicating the target that should bind the ligand, (ii) by defining the 
active and passive residues. This case study consists of a pre-docking for the detection 
of the binding region and a second docking for the detection of binding pose.

First, we tested HADDOCK’s accuracy of binding site detection. Two different 
binding sites were detected in the top 10 clusters with the best energy scores and 70% 
(7 out of 10) of the clusters were in the correct binding site (Figure 6A). Secondly, an 
ambiguous and unambiguous restraint file was created by identifying the region with 
the highest number of interactions between the ligand and the receptor. The restraint 
files can be created manually or using the link in the protocol. However, it may be 
necessary to make corrections in the distance restraints. The structure with the best 
energy is visualized in Figure 6B. Secondly, active and passive residues were defined 
on the system, and the pose with the best energy result is visualized in Figure 6C. 
HADDOCK results are summarized in Table 2.

Comparison of the results shows that HADDOCK is successful in detecting the 
binding site. However, according to the results obtained in the second stage, the 

Figure 5. 
Crystal SARS-CoV-2 main protease structure (white, PDB ID: 7KX5_chain (A) in complex with the blind 
docking (blue), specific docking (green) poses predicted with AutoDock Vina and the reference ligand Jun8-76-3A 
inhibitor (red, PDB ID: 7KX5_chain B). This figure was drawn with PyMol 2.5.2.
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algorithm was not successful enough to find the correct conformation of the ligand 
in binding site. Defining ambiguous/unambiguous restraint files or selecting active 
and passive residues did not make a significant contribution in detecting the correct 
binding pose (Figure 6B and C). Docking with both approaches was repeated several 
times and no significant similarity was detected.

4.3 Docking with SwissDock

SwissDock is a database to improve protein–small-molecule docking using amino 
acid sequence information from genome projects. Moreover, it is a web browser and 
programmatic interface that enables creating three-dimensional protein models 
from protein amino acid sequences [112]. It also has user interfaces such as Swiss-
Pdb Viewer (DeepView) to simultaneously analyze several proteins [113]. Using 
the SwissDock web server, the starting crystal structures of the target proteins can 

Figure 6. 
Crystal SARS-CoV-2 main protease structure (gray, PDB ID: 7KX5_chain (A) in complex with the docking poses 
(blue) predicted with HADDOCK and reference ligand Jun8-76-3A inhibitor (red, PDB ID: 7KX5_chain B). 
A. Top 10 clusters for binding site determination. B. Pose with the best energy using ambiguous/unambiguous 
restraints. C. Pose With the best energy using active/passive restraints. This figure was drawn with PyMol 2.5.2.
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be searched and fetched from protein and ligand structure databases. If there is no 
crystal structure available to compare, it provides homology modeling of the studied 
protein. During the docking process, the user does not have to do any calculations 
because all calculations are handled by the server side [112]. As a docking constraint, 
the ligand binding region can be defined or blind docking can be applied with no 
information.

Using the case study, both specific and blind dockings were performed on the 
SwissDock server, and the results were compared. The server presented 256 poses. 
The best scores obtained by specific docking (green) blind docking (blue) were −9.88 
and −9.35 kcal/mol, respectively (Figure 7). Although both of the predicted poses 
did not show the same conformation with the reference ligand, it was observed that 
the pose obtained from the specific docking (green) was more similar to the reference 
ligand (red) (Figure 7).

Binding site 
detection

Ambiguous/
Unambiguous restraints

Active/passive 
restraints

HADDOCK score −53.4 ± 1.5 −52.1 ± 0.5 −21.9 ± 2.7

Cluster size 69 5 13

RMSD from the overall lowest-
energy structure

0.3 ± 0.2 0.1 ± 0.1 0.2 ± 0.0

Van der Waals energy −40.3 ± 1.2 −41.6 ± 0.2 −32.4 ± 4.5

Electrostatic energy −22.1 ± 1.9 −15.2 ± 6.0 −25.8 ± 7.3

Desolvation energy −10.9 ± 2.5 −9.0 ± 0.2 −6.7 ± 0.3

Restraints violation energy 0.0 ± 0.00 0.7 ± 0.2 198.5 ± 78.0

Buried Surface Area 795.4 ± 21.9 781.6 ± 5.2 783.0 ± 9.4

Z-Score −1.7 −2.4 −1.3

Table 2. 
HADDOCK results.

Figure 7. 
Crystal SARS-CoV-2 main protease structure (white, PDB ID: 7KX5_chain (A) in complex with the blind 
docking (blue), specific docking (green) poses predicted by SwissDock and the reference ligand Jun8-76-3A 
inhibitor (red, PDB ID: 7KX5_chain B). This figure was drawn with PyMol 2.5.2.
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5. Conclusions

Molecular docking is a computational method that predicts the 3D structures of 
receptor-ligand complexes. Modeling the atomic details of the ligand pose with the 
receptor protein by molecular docking can assist in understanding protein structure-
function relationship and in drug design studies in several ways. Computational 
modeling approaches complement and/or lead experiments by eliminating irrelevant 
drug candidates and selecting the ones with the best binding properties. With the 
continuously developing technology, there are many different approaches and algo-
rithms for molecular docking studies, and they are successfully used in therapeutic 
applications such as targeted drug design, drug target search, evaluation of the side 
effects of existing drugs, or finding new targets for these drugs.

The crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex 
with its non-covalent inhibitor Jun8-76-3A (PDB ID: 7KX5) was used as an experi-
mental reference case study to compare and evaluate the prediction accuracies of 
AutoDock Vina, HADDOCK, and SwissDock programs as well as to test the effects of 
some parameters on their prediction capabilities. One of the main observations is that 
the ligand poses with the lowest binding energy scores are not necessarily the best 
solution. Therefore, docking results should always be evaluated in terms of biologi-
cal relevance. Moreover, when a priori information about the ligand-binding site 
is included as grid box placement and size in AutoDock Vina and as ligand binding 
residues in SwissDock, the binding accuracy is improved significantly.

In summary, before starting the molecular docking, it is of crucial importance to 
obtain detailed information on the target protein and ligand from various sources and 
servers and to decide which docking algorithm to use. Moreover, the top predicted 
poses with the best scores should not be unquestioningly accepted as the best solu-
tions but further structural analyses and evaluations should be incorporated in the 
decision process.
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Abstract

Molecular docking is recognized a part of computer-aided drug design that is 
mostly used in medicinal chemistry. It has proven to be an effective, quick, and 
low-cost technique in both scientific and corporate contexts. It helps in rationalizing 
the ligands activity towards a target to perform structure-based drug design (SBDD). 
Docking assists the revealing of novel compound of therapeutic interest, forecast-
ing ligand-protein interaction at a molecular basis and delineating structure activity 
relationships (SARs). Molecular docking acts as a boon to identify promising agents 
in emergence of diseases which endangering the human health. In this chapter, we 
engrossed on the techniques, types, opportunities, challenges and success stories of 
molecular docking in drug development.

Keywords: molecular docking, drug discovery, ligand-protein interaction, SAR, 
molecular recognition, drug design

1. Introduction

Medicinal chemistry relates to the design and production of compounds that can be 
used in medicine for the prevention, treatment or cure of human and animal diseases. 
Medicinal chemistry includes the study of existing drugs for their biological properties 
and structure activity relationships (SARs) [1, 2]. The discovery and development of 
a new drug with desired therapeutic activity is a long, tedious and expensive process. 
The industry statistics suggest that up to 10,000 compounds are synthesized and 
tested, up to 100 compounds are assessed for safety and only 10 compounds are tested 
clinically in humans for every drug that is approved for medical use. Today it takes 
approximately ten years and requires high cost to bring a new drug in market. In spite 
of the tremendous costs involved the payoff is also high and improvement made in 
preventing and controlling human disease. Even when the new drugs come in the 
market its success is not assured [3, 4]. Many centuries ago, human beings started 
using chemicals to treat the diseases. Hippocrates recommended the use of metallic 
salts such as copper and zinc, iron sulphate and cadmium oxide as drugs. In 1500 A.D., 
Carpensis employed mercuric compounds to treat syphilis. Urea was the first organic 
compounds to be synthesized in laboratory by Wohler in 1852. Between eighteenth 
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and nineteenth century, several organic compounds were synthesized which included 
drugs such as salicylic acid (Kolbe), antipyrine (Knorr), aspirin (Dresser), barbital 
(Emil Fischer and Mering), prontosil, the first sulpha drug (G. Domagk), chlor-
promazine (Charpentier), phenyl magnesium bromide (Victor Grignard), polyethers 
(Charles J. Pedersen) and others [5]. Except, the therapeutic utility of these agents, 
nothing more was known about their mechanism of action and it was only believed 
that they were effective because of their physicochemical parameters like partition 
coefficient, hydrogen bonding, van der Waal’s forces, dipole-dipole interactions 
and anionic bonds, etc. [6, 7]. Earlier to the chemical era, it was the natural prod-
ucts mostly from plant sources, which were used in therapeutics. Later, progress in 
knowledge of chemistry helped to isolate and identify the active ingredients in plants. 
Some of the outstanding achievements of such phytochemical approach include the 
discoveries such as digitalis glycosides from foxglove plant by William Withering in 
1785; the opium alkaloids like morphine and codeine from poppy plant by Serturner 
in 1806; anti-malarial such as quinine, quinidine, cinchonine from cinchona bark by 
Pelletier and Dumas in 1823; belladonna alkaloids like atropine and scopolamine by 
Mein in 1833; rauwolfia alkaloids (reserpine and deserpidine) by Muller et al. in 1952, 
etc. In addition, many important natural products like antibiotics, steroids and peptide 
hormones, vitamins, enzymes, prostaglandins and pheromones were discovered in 
the concurrent period [8, 9]. The synthesis of compounds is followed by screening 
of its pharmacological actions. The observation of interest and repeatable biological 
activity in such screening had always opened the pathways for additional chemical 
research to prepare their analogs so as to obtain significant newer medicinal products. 
A small change in structure frequently leads a profound change in the pharmacological 
effect. This logic has prompted to synthesize derivatives of natural compounds and the 
structural analogues of biologically interesting substances with the “lead” (prototype) 
compound [10]. Many of the currently used antispasmodics [11–14] (dicyclomine, 
cyclopentolate, clidinium bromide, mebeverine, metoclopramide, tropicamide), anti-
biotics [15–20] (penicillins, cloxacillin, amoxacillin, ampicillin, cefadroxil, cefaclor, 
cefixime, cefepime), sulphonamides [21–25] (sulphacetamide, sulphadiazine, sul-
phasalazine, sulphamethoxazole), anthelmintics [26–28] (albendazole, mebedazole, 
pyrantel pamoate, piperazine, diethylcarbamazine citrate, praziquantel, niclosamide), 
antimycobacterials [29–31] (clofazimine, dapsone, ethambutol, isoniazid, benzo-
thiazole, sulphonamide, rifampin), analgesics [32–35] (aspirin, diclofenac sodium, 
ibuprofen, indomethacin, ketoprofen, naproxen, piroxicam), anticonvulsants [36–40] 
(phenytoin, ethosuximide, carbamazepine, sodium valproate, riluzole), antitumours 
[41–46] (amsacrine, azacitidine, chlorambucil, cyclosporine, fluorouracil), diuretics 
[47–51] (acetazolamide, chlorothiazide, furosemide, triamterene, spironolactone), 
antimalarials [52–56] (chloroquine, primaquine, amodiaquine, proguanil, pyri-
methamine), antifungals [57–60] (griseofulvin, nystatin, miconazole, tolnaftate, 
clotrimazole), antihistaminics [61–65] (chlorpheniramine maleate, promethazine, 
astemizole, cetirizine hydro-chloride, fexofenadine) have been obtained by synthetic 
or semi-synthetic approach. In recent years, the molecular studies are more directed to 
discover new targets for better treatment of the disease. In addition, newer screening 
methods of assays, studying the effect of drug on the cell lines, availability of purified 
or recombinant enzymes and improved understanding about the nature and properties 
of receptor systems immensely boosted the drug research. It is well recognized that 
a medicinal chemist had been a key person in the discovery of a new drug. He syn-
thesizes a new drug, isolates and characterizes natural products and in association of 



39

Molecular Docking: Metamorphosis in Drug Discovery
DOI: http://dx.doi.org/10.5772/intechopen.105972

pharmacologist establishes a rational SAR. Moreover, SAR had proved to be vital and 
fundamental to drug discovery [66].

1.1 Discovery of drugs of the future

Traditionally, new medications have been discovered by screening a large number 
of synthetic chemical compounds or natural items for desired effects. Although this 
method of developing novel pharmacological agents has proven to be successful in 
the past, it is not optimal for a variety of reasons. The most significant disadvantage 
of the screening approach is the demand for a proper screening procedure. Another 
problem with the screening process is that because of its random nature, it is inher-
ently repetitious and time consuming just to find a chemical with the desired activity 
[67, 68]. Drugs can be created particularly to interact with the target molecule in 
such a way that the disease is disrupted after the disease process is understood at the 
molecular level and the target molecule (s) is defined. Because of the large quantity of 
data that must be gathered in order to produce medications using this method, here is 
where computer-aided drug design will have the most influence [69, 70].

In discussing various techniques of finding new drugs described in Figure 1, it is 
important to remember that drug discovery is both a cumulative and a reiterative pro-
cess. Drugs developed mechanistically will likely to be screened and later modified in 
order to produce the best candidate design [71]. The use of stiff constructs for structure 
and targets is common in the early stages of using molecular modelling to create medi-
cations. In medication design, the flexibility of molecular information, both in single 
molecules and in molecules interacting with each other, is a crucial and difficult subject.

Since, the discovery of morphine in 1806 lot many important drugs came for 
remedy of humans, important results in drug discovery during last three centuries is 
shown in Table 1.

Figure 1. 
Lead optimization cycle.
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Year Drug Biological action Year Drug Biological action

1806 Morphine Hypnotic agent 1990 Ondansetron Antiemetic agent 
(5-HT3 blocker)

1875 Salicylic acid Anti-inflammatory 
agent

1991 Sumatriptan Anti-migraine agent 
(5-HT1 blocker)

1884 Cocaine Stimulant, local 
anaesthetic agent

1993 Risperidon Antipsychotic agent 
(D2/5-HT2 blocker)

1888 Phenacetin Analgesic and 
antipyretic agent

1994 Famciclovir Anti-herpes (DNA 
polymerase inhibitor)

1899 Acetylsalicylic acid Analgesic and 
antipyretic agent

1995 Losartan Antihypertensive 
agent (A II antagonist)

1903 Barbiturates Sedatives 1995 Dorzolamide Glaucoma (carbonic 
anhydrase inhibit.)

1909 Arsphenamine Antisyphilitic agent 1996 Nevirapin HIV reverse 
transcriptase inhibitor

1921 Procaine Local anaesthetic agent 1996 Indinavir, 
Ritonavir,

HIV protease 
inhibitors

1922 Insulin Antidiabetic agent 1997 Saquinavir HIV protease inhibitor

1928 Estrone Female sex hormone 1997 Finasteride Hair loss

1928 Penicillin Antibiotic agent 1998 Sibutramine Adipositas (lipase 
inhibitor)

1935 Sulphachrysoidine Bacteriostatic agent 1998 Orlistat Adipositas (lipase 
inhibitor)

1944 Streptomycin Antibiotic agent 1999 Sildenafil Erectile dysfunction

1945 Chloroquine Antimalarial agent 2000 Celecoxib, 
Rofecoxib

Anti-arthritis agents 
(COX-2 inhibitors)

1952 Chlorpromazine Neuroleptic agent 2001 Amprenavir HIV protease inhibitor

1956 Tolbutamide Oral antidiabetic agent 2002 Cyclosporine A Thrombosis (synthetic 
LMWH)

1960 Chlordiazepoxide Tranquillizer 2002 Imantinib CML (specific 
ABL-TK inhibitor)

1962 Verapamil Calcium channel blocker 2005 Telmesetan Potassium pump 
inhibitor

1963 Propranolol Antihypertensive agent 
(beta-blocker)

2007 Oseltamavir Antiviral

1964 Furosemide Diuretic agent 2008 Saxgliptin Antidiabetic (DPP-4 
inhibitor)

1971 l-dopa Anti-Parkinson agent 2010 Fingolimod Multiple sclerosis

1975 Nifedipine Calcium channel blocker 2012 Avanafil Erective dysfunction

1976 Cimetidine Anti-ulcers agent (H2 
blocker)

2013 Riociguat Hypertension

1981 Captopril Antihypertensive agent 
(ACE inhibitor)

2014 Dapagliflozin Type II diabetes

1981 Ranitidine Anti-ulcers agent (H2 
blocker)

2015 Ivabradin Heart failure

1983 Cyclosporine A Immunosuppressant 2016 Rucaparib Ovarian cancer
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1.2 Computer-aided drug design

Drug research and discovery is a time-consuming and costly procedure. In order 
to get a medicine to market, it takes an average of 10–15 years and $500–800 million 
dollars [72]. This is why, in order to speed up the process, computer-assisted drug design 
(CADD) technologies have become popular in the pharmaceutical business. CADD, as 
shown in Figure 2, assists scientists in focusing on the most promising compounds in 
order to reduce the amount of time and money spent on synthetic and biological testing.

In reality, the availability of experimentally defined 3D (three-dimensional) struc-
tures of target proteins usually determines which CADD techniques are used. If the 
structure of a protein is unknown, ligand-based drug design methods such as quan-
titative structure activity relationship (QSAR) and pharmacophore analysis can be 
used. If the target structures are known, structure-based techniques such as molecu-
lar docking can be utilised to create novel active molecules with improved potency 
using the target 3D structures. The accuracy of prediction is anticipated to improve 
as more structures become accessible. In the absence of the receptor 3D information, 
lead identification and optimization depend on available pharmacologically relevant 
agents and their bioactivities [73, 74]. The computational approaches include QSAR, 
pharmacophore modelling and database mining. QSAR can be taken as an example to 

Year Drug Biological action Year Drug Biological action

1984 Enalapril Antihypertensive agent 
(ACE inhibitor)

2017 Plecanatide Chronic constipation

1985 Mefloquine Antimalarial agent 2018 Annovera Contraceptive

1986 Fluoxetine Antidepressant (5-HT 
transporter)

2019 Ubrogepant Migrain

1987 Artemisinin Antimalarial agent 2021 Pafolacianine Cancer

1988 Omeprazole Anti-ulcer agent (H/K-
ATPase inhibitor)

2022 Pafolacianine Insomnia

Table 1. 
Important results in drug discovery.

Figure 2. 
Computer-aided drug design.
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illustrate the workflow. A mathematical relationship between structural features and 
target properties of a group of compounds is described by QSAR. Over the last few 
decades, many various 2D (two-dimensional) and 3D QSAR techniques have been 
developed [75]. Chemical descriptors and mathematical procedures used to build the 
association between the goal attributes and the descriptors are two key differences 
between these strategies.

Many graph theoretic indices-based 2D QSAR algorithms have been thoroughly 
researched. Although the physical significance of these indices is unknown, they 
do indicate various characteristics of molecular structures. It’s been used to predict 
biological activity in analytical chemistry, toxicology analysis, and other fields. To 
overcome the shortcomings of 2D QSAR techniques, such as their inability to dif-
ferentiate stereoisomers, 3D QSAR approaches have been developed. Molecular shape 
analysis (MSA), distance geometry, and Voronoi procedures are examples of 3D 
methodologies. The most well-known example of 3D QSAR is comparative molecular 
field analysis (CoMFA). By elegantly merging the power of molecular graphics and 
the partial least square (PLS) technique, it has been widely employed in medicinal 
chemistry and toxicity studies. The linear relationship between a target property and 
molecular descriptors is frequently assumed in QSAR approaches. However, the rapid 
development of structural and biological data has put this assumption to the test. To this 
goal, a number of nonlinear QSAR algorithms have been presented, the majority of 
which are based on artificial neural network (ANN) or machine learning techniques 
[76]. Scientists had always concentrated on the development and application of auto-
mated algorithms for QSAR studies, including genetic algorithms (GAs)-partial least 
squares, k-nearest neighbour (k-NN), and support vector machine (SVM). Learning 
approaches have been widely used in cheminformatics and molecular modelling. For 
instance, SVM was found to yield better results compared to multiple linear regres-
sions (MLR) and radial basis functions (RBF).

SBDD (structure-based drug design) has played a significant role in drug develop-
ment and discovery [76]. Understanding receptor–ligand interactions is required 
for this strategy. The target 3D structure can be used to develop new ligands if it is 
known. X-ray crystallography, NMR, and homology modelling are all used to obtain 
structural information. SBDD methods are used to assess complementarities and 
anticipate potential binding modes and affinities between small compounds and their 
macromolecular receptors. SBDD’s success is extensively proven, and computational 
approaches differ greatly in methodology, performance, and speed. Some can provide 
accurate binding modes, while others are better suited to scanning vast datasets 
quickly [77].

2. Molecular docking study

The production, manipulation, or representation of 3D structures of molecules 
and their associated physicochemical properties is referred to as molecular docking. 
It entails a variety of computational strategies for predicting chemical and biological 
properties based on theoretical chemistry methodologies and experimental data. The 
subject is sometimes referred to as “molecular graphics,” “molecular visualisations,” 
“computational chemistry,” or “computational quantum chemistry,” depending on 
the context and rigour. The molecular docking techniques are based on Huckel and 
Mullikan’s conceptions of molecular orbitals and Westheimer et al. classical's mechani-
cal programming.' The foundation of SBDD is 3D molecular structure [78, 79]. 
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Separate data for protein structure and medication data are available, but no correlated 
data is accessible. Docking is the process of fitting two molecules together in compli-
mentary styles in 3D space and designing the molecules rationally, as seen in Figure 3. 
Modeling a drug’s interaction with its receptor is a difficult task. Hydrophobic, disper-
sion or van der Waals, hydrogen bonding, and electrostatic forces all play a role in 
intermolecular interaction. Hydrophobic interactions appear to be the dominant force 
for binding, whereas hydrogen bonding and electrostatic interactions appear to influ-
ence the specificity of the binding [80, 81].

2.1 Theory of docking

The objectives of molecular docking is to forecasting the ligand-receptor complex 
by using computer method. Docking is partitioned into two steps that is sampling 
ligand and scoring function. Sampling algorithms aid to find the energetically most 
favorable conformations of the ligand in the active site of the protein with their bind-
ing mode and further ranked these conformations using a scoring function.

2.1.1 Sampling algorithms

There are a great number of potential binding modes between two molecules due 
to the six degrees of translational and rotational freedom as well as the conformational 
degrees of freedom of both the ligand and protein [82]. Unfortunately, computing all 
of the conceivable conformations would be too expensive. In molecular docking soft-
ware, various sampling techniques have been developed and are frequently utilized. In 
terms of shape features and chemical information, matching algorithms (MAs) based 
on molecular shape map a ligand onto an active site of a protein [83]. Pharmacophores 
represent the protein and the ligand. Each pharmacophore distance within the protein 
and ligand is determined for a match; the distance matrix between the pharmaco-
phore and the associated ligand atoms governs new ligand conformations. During the 
match, chemical parameters such as hydrogen-bond donors and acceptors might be 
considered. Because MAs are fast, they can be used to enrich active chemicals from 
vast libraries. DOCK, FLOG, LibDock and SANDOCK programme provides ligand 
docking MAs [84–86]. The ligand is placed in an active site in a fragmented and 
incremental manner using incremental construction methods (ICMs). By breaking the 
ligands rotatable links, it is separated into many fragments, one of which is chosen to 
dock into the active site first. This anchor is typically the biggest fragment or the piece 

Figure 3. 
Molecular docking process.
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that has a functional purpose or interacts with protein. The remaining pieces can be 
added in stages. The ligand’s flexibility is realized by generating different orientations 
to fit in the active site. DOCK 4.0, FlexX and SLIDE all use the ICM. In supplement to 
ICM, fragment-based approaches such as multiple copy simultaneous search (MCSS) 
and Ligue Universitaire D’ Improvisation (LUDI) are used to create new ligands and 
modify existing ligands to improve their binding to the target protein. At the force field 
of the protein, MCSS creates 1000–5000 copies of a substituent, which are randomly 
put in the binding site of interest and subjected to simultaneous energy minimization 
and/or quenched molecular dynamics. Copies solely interact with proteins; interac-
tions between copies are not included. Based on the interaction energies, a collection 
of energetically favorable binding sites and orientations for the functional group is dis-
covered. Different functional categories are used to map the binding site. The linking 
of those different functional groups can be used to create new molecules that perfectly 
match the binding site [87]. The hydrogen bonds and hydrophobic interactions that 
potentially occur between the ligand and protein are the focus of LUDI. Interaction 
sites, which are discrete positions in space appropriate for establishing hydrogen bonds 
or filling a hydrophobic pocket, are the core notion. Using the rules or scanning the 
database, a set of interaction sites is constructed. After that, the fragment is fitted onto 
the interaction sites and distance criteria are used to evaluate it. The merging of some 
or all of the fitted fragments to a single molecule is the final stage. By randomly chang-
ing a ligand conformation or a population of ligands, stochastic methods seek the 
conformational space. Another well-known class of stochastic approaches is genetic 
algorithm (GA). The GA was inspired by Darwin’s theory of evolution. The ligand’s 
degrees of freedom are represented as binary strings called genes. These genes make 
up the “chromosome,” which indicates the ligand’s position. In GA, there are two types 
of genetic operators: mutation and crossover. Crossover swaps genes between two 
chromosomes, while mutation produces random changes to the genes. A novel ligand 
structure is created when genetic operators impact genes. New structures will be evalu-
ated using a scoring system, and those that survive will be employed in the upcoming 
generation. AutoDock, GOLD, DIVALI, and DARWIN all use GAs [88–91].

2.1.2 Scoring functions

The scoring function’s goal is to distinguish between proper and inappropriate 
poses, or binders and inactive substances, in a very short time. Scoring functions, on 
the other hand, require guessing rather than computing the protein-ligand binding 
affinity and through these functions, numerous assumptions and simplifications are 
used. There are three types of scoring functions: force-field-based, empirical, and 
knowledge-based. Basic force-field-based scoring functions calculate the sum of 
non-bonded (electrostatics and van der Waals) interactions to determine the bind-
ing energy. A Columbic framework is used to determine the electrostatic terms. Due 
to the difficulty of representing the protein’s true environment with point charge 
calculations, a distance-dependent dielectric function is commonly utilized to 
regulate the contribution of charge–charge interactions [92–94]. A Lennard-Jones 
potential function describes the van der Waals terms. The “hardness” of the potential, 
which regulates how close a contact between protein and ligand atoms can be toler-
ated, can be varied by using different parameter sets for the Lennard-Jones potential. 
The processing speed of force-field-based scoring functions is also an issue. To 
address non-bonded interactions, cut-off distance is used. As a result, the accuracy 
of long-range effects involved in binding is reduced. Hydrogen bonds, solvations, 
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and entropy contributions are considered in extensions of force-field-based scoring 
functions. DOCK, GOLD, and AutoDock are examples of software applications that 
provide these features [95]. They differ in their treatment of hydrogen bonding, the 
structure of the energy functions and other aspects. Furthermore, the accuracy of 
estimating binding energies can be improved by using other techniques also including 
linear interaction energy and free-energy perturbation methods (FEP) to refine the 
findings of docking with force-field-based functions. Binding energy is decomposed 
into multiple energy components in empirical scoring functions, including hydrogen 
bonds, ionic interactions, hydrophobic effect, and binding entropy. To arrive at a 
final score, each component is multiplied by a coefficient and then added together. 
Regression analysis fitted to a test set of ligand-protein complexes with known bind-
ing affinities yields coefficients. The energy terms in empirical scoring functions are 
quite simple to evaluate the affinities. Beyond the training set, however, it is unknown 
how well they are suited for ligand-protein complexes. Furthermore, various software 
may treat each term in empirical scoring functions differently, and the amount of 
terms included may differ as well. Examples of empirical scoring functions include 
LUDI, piecewise linear potential (PLP), and ChemScore. The interatomic interaction 
frequencies and/or distances between the ligand and protein are calculated using 
statistical analysis of ligand-protein complex crystal structures. They are founded 
on the notion that the more beneficial an encounter is, the more likely it will occur 
[96, 97]. Pairwise atom-type potentials are created from these frequency distribu-
tions. Within a particular cutoff, the score is derived by prioritizing favorable contacts 
and penalizing repulsive interactions between each atom in the ligand and protein. 
Knowledge-based functions are appealing because of their computational simplicity, 
which can be used to screen enormous compound datasets. They can also represent 
some unusual interactions, such as sulphur-aromatic or cation- that are frequently 
overlooked in empirical approaches. However, some interactions are underrepre-
sented in the limited training sets of crystal structures, and the bias inherent in the 
selection of proteins for successful structure determination, so the obtained param-
eters may not be suitable for widespread use, particularly with implicating metals or 
halogens. knowledge-based functions such as DrugScore, SMoG, and Bleep that differ 
mostly in training set size, energy function shape, atom type definition, distance 
cutoff, and other characteristics [98–100]. Consensus scoring is a new technique for 
assessing docking conformation that combines numerous different scores. When a 
ligand or possible binder poses well in a number of different scoring schemes, it may 
be accepted. In virtual screening, consensus scoring usually enhances enrichment and 
improves the prediction of bound conformations and poses. However, binding ener-
gies predictions may still be wrong. When terms in distinct scoring functions are sub-
stantially connected, the utility of consensus scoring decreases. DOCK, ChemScore, 
PMF, GOLD, and FlexX scoring functions are all combined in CScore [101–103].

2.2 Docking methodologies

2.2.1 Docking of rigid ligand and rigid receptor

The search space is highly constrained when the ligand and receptor are both 
considered as rigid entities, with only three translational and three rotational degrees 
of freedom. In this scenario, ligand flexibility might be addressed by allowing for a 
degree of atom–atom overlap between the protein and the ligand, or by using a pre-
computed set of ligand conformations. Early versions of DOCK, FLOG, and certain 
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protein-protein docking systems like FTDOCK used a mechanism that kept the ligand 
and receptor stiff during the docking process [104, 105].

DOCK is the world’s initial automated process for docking a molecule into a 
receptor site, and it’s still evolving. The ligand and receptor are represented as sets 
of spheres that can be superimposed using a clique detection approach. The ligand-
receptor complexes are scored using geometrical and chemical MAs, and steric fit, 
chemical complementation, and pharmacophore similarity are all taken into account. 
To account for ligand flexibility, incremental construction approach and exhaustive 
search have been included to the enhanced versions.

The extensive search generates a user-defined number of conformers at random, 
which is a multiple of the ligand’s rotatable bonds. In terms of scoring, DOCK 6.4 now 
includes AMBER derived forcefield scoring with implicit solvent. Also, the molecu-
lar mechanics methodologies such as Poisson–Boltzmann or generalized Born and 
surface area continuum solvation (MM/PBSA and MM/GBSA) methods are used to 
determine the chemisorption which estimate the free energy of the binding of small 
ligands to biological macromolecules [106].

FLOG creates ligand conformations based on distance geometry and calculates 
the sets of distances using a search technique. For some flexibility, up to 25 specified 
conformations of the ligand might be employed to dock. Users can identify critical 
sites that must be associated with ligand atoms using FLOG. If a critical interaction 
is already known before docking, this method is useful. Van der Waals, electrostatics, 
hydrogen bonding, and hydrophobic interactions are all taken into account when 
scoring conformations [107].

2.2.2 Docking of flexible ligand and rigid receptor

As both the ligand and the receptor change conformations to form a minimum 
energy perfect-fit complex in systems that follow the induced fit paradigm, it is critical 
to consider the flexibility of both the ligand and receptor. However, when the recep-
tor is also flexible, the cost is very high. As a result, the most typical technique is to 
consider the ligand as flexible while keeping the receptor stiff during docking, which 
is likewise a trade-off between accuracy and computational time. Almost all docking 
applications, such as AutoDock and FlexX, have embraced this concept [108–110]. 
To mimic ligand flexibility while keeping the receptor stiff, AutoDock 3.0 uses Monte 
Carlo simulated annealing, evolutionary, genetic, and Lamarckian genetic algorithm 
(LGA) approaches. The AMBER force field, which includes van der Waals, hydrogen 
bonding, electrostatic interactions, conformational entropy, and desolvation compo-
nents, is used to calculate the scoring function. An empirical scaling factor derived 
from experimental data is used to weight each term. By enabling side-chains to shift, 
AutoDock 4.0 can model receptor flexibility. In this version of AutoDock, you may 
also test the interaction of protein-protein docking [111–114]. The latest version of 
AutoDock Vina for molecular docking and virtual screening was recently published. 
By redocking the 190 receptor-ligand complexes that had been utilised as a training set 
for the AutoDock 4, AutoDock Vina demonstrated a two-order exponential increase 
in speed as well as a considerable improvement in binding mode prediction accuracy 
[115]. FlexX samples ligand conformations using an incremental building approach. 
By matching hydrogen bond pairings and metal and aromatic ring interactions 
between the ligand and protein, the base fragment is docked into the active site. The 
remaining components are then built up incrementally in line with a set of preset rotat-
able torsion angles to complete the structure. Electrostatic interactions, directional 
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hydrogen bonds, rotational entropy, and aromatic and lipophilic interactions are all 
included in the present edition. The relationships between functional groups are also 
considered when group types and geometry are assigned [116].

2.2.3 Docking of flexible ligand and flexible receptor

In flexible docking, the docking of the ligand and receptor is difficult task due to 
protein intrinsic mobility and ligand binding affinity. MD simulations might theoreti-
cally model all degrees of freedom in the ligand-receptor combination. However, 
MD has the previously discussed issue of insufficient sampling. Another stumbling 
block is the method’s high computing cost, which prevents it from being employed in 
large-scale chemical database screening [117]. Several theoretical models, including 
conformer selection and conformational induction, have been presented to illustrate 
the flexible ligand-protein binding process in addition to the historic induced fit. 
Conformer selection refers to a process in which a ligand selects a favourable con-
formation from a variety of protein conformations, while conformational induction 
describes a process in which the ligand induces the protein to adopt a conformation 
that it would not adopt spontaneously in its unbound state. This conformational 
change is sometimes compared to a partial refolding of the protein [118]. The most 
basic is “soft-docking,” which lowers the van der Waals repulsion energy term in 
the scoring function to allow for some atom-to-atom overlap between the receptor 
and the ligand. This strategy could be lacking in versatility. Nonetheless, it has the 
advantage of computational efficiency because the receptor coordinates are fixed, and 
the van der Waals parameters are readily adjusted. To deal with side chain flexibility, 
AutoDock 4 uses a simultaneous sampling technique. Users can select multiple side 
chains of the receptor and sample them simultaneously with a ligand using the 
same methods. During sampling, other parts of the receptor are handled strictly 
using a grid energy map. Grid energy maps were established to hold receptor energy 
information and facilitate ligand-receptor interaction energy calculations [119]. 
Another approach to dealing with protein flexibility is to use an ensemble of protein 
conformations, which corresponds to conformer selection theory. Instead of docking 
into a single rigid protein conformation, a ligand is docked into a set of hard protein 
conformations and the results are merged using the method of choice. This method 
was first used in DOCK, which constructs an ensemble’s average potential energy grid 
and has since been extended in a variety of programmes. Discrete protein conforma-
tions are sampled in a combinatorial approach during the gradual building of a ligand. 
Based on a comparison of the ligand and each alternative, the highest scoring protein 
structure is chosen (Table 2).

Because there are so many degrees of freedom and little knowledge of the effect 
of solvent on the binding relationship, modelling the intermolecular interactions in a 
ligand-protein complex is difficult. The docking of a ligand to a binding site attempts 
to emulate the natural course of interaction between the ligand and its receptor by 
taking the shortest path possible. Although there are straightforward ways for dock-
ing rigid ligands with rigid receptors and flexible ligands with rigid receptors, dock-
ing conformationally flexible ligands and receptors is more difficult. The interaction 
of macromolecular receptors and tiny drug molecules is a crucial stage in regulatory 
systems, drug pharmacology, hazardous side effects, and other processes.

The structure of protein-ligand or protein-protein binding sites is exploited in 
SBDD, however the site is not always known at the outset. Even if the site is identified, 
researchers may want to look for other potential binding sites that could lead to distinct 
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biological effects or a new class of drugs. In lead optimization, it’s also critical to know 
how well known binders or docking hits fulfil or violate the receptor’s complementarity. 
One component of molecular modelling is molecular mechanics, which refers to the use 
of classical/Newtonian mechanics to describe the physical basis of the models. In most 
molecular models, atoms (the nucleus and electrons combined) are described as point 
charges with a mass. Spring-like interactions (representing chemical bonds) and Van 
der Waals forces describe the interactions between nearby atoms. The Lennard-Jones 
potential is often used to characterise Van der Waals forces. Coulomb’s law is used to 
calculate electrostatic interactions. Atoms are given coordinates in Cartesian space or 
internal coordinates, and in dynamical simulations, they can also be given velocities. 
The atomic velocities are proportional to the system’s temperature (a macroscopic 
quantity). A potential function is a mathematical expression that is related to the 
system’s internal energy (U), which is equal to the sum of potential and kinetic energies 
(a thermodynamic quantity). Energy reduction techniques (e.g., steepest descent and 
conjugate gradient) are used to reduce potential energy, whereas molecular dynamics 
methods are used to predict the behaviour of a system with time propagation [120–130].

As previously stated, molecular docking’s role in drug design has been divided 
into two paradigms: one focused on the structure-activity problem, which attempts 
to rationalise in the absence of detailed 3D structural information about the receptor, 
and the other focused on understanding the interaction seen in the receptor-ligand 
complex, which uses the known 3D structure of the therapeutic target to design novel 
drugs. A binding relationship between a small molecule ligand and an enzyme protein 
can cause the enzyme to be activated or inhibited. Ligand binding may cause agonism 
or antagonism if the protein is a receptor. The most common application of docking is 
in the field of medication design. The most medications are tiny organic compounds 
and docking may be applied as follows,

• Hit identification: Docking paired with a scoring algorithm can be used to swiftly screen 
vast databases of prospective medications using hit identification. To find compounds 
that are likely to bind to a protein target of interest in silico (virtual screening).

• Lead optimization: Docking can be used to anticipate whether and where a ligand 
binds to a protein in terms of relative orientation (also referred to as the binding 
mode or pose). This knowledge could be used to create more potent and selective 
analogues.

• Bioremediation: Protein ligand docking can be used to predict which contami-
nants enzymes can digest.

Molecular docking not only contributes to the design of potent compounds but 
also assist various steps in development of new drugs from laboratory to clinic. Few 
examples of contribution of molecular modeling are design of thimidylate synthetase 
inhibitors as anticancer agents, HIV protease inhibitors as antiviral agents, neutrophil 
elastase inhibitors as agents for emphysema, carbonic anhydrase inhibitors as antiglu-
coma agents and in discovery of novel sweeteners-taste receptor models [131–133]

In addition to the existing large number of docking programs, there are also many 
molecular mechanics programs applicable to these problems. Of course, there are 
some programs that are very widely used. Nevertheless it seems that the programs are 
not that easy to use and require some understanding of the underlying computational 
principles. Some of the software system are listed below [134–139].
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Drug design 
targets

Molecules Outcome (brand 
name of drugs and 
category)

Method employed Research 
group

Thrombin 
inhibition

  
Napsagatran

Napsagatran: 
Direct thrombin 
inhibitor

Iterative cycles 
of modelling, 
synthesis and 
crystallography 
to optimise 
hydrophobic sites.

Hoffman-La 
Roache, Ltd.

Thrombin 
inhibition

[d-Phe-Pro-Arg-Pro-(Gly)4-Asn- Gly-
Asp-Phe-Glu-Glu-Ile-Pro- Glu-Glu-
Tyr-Leu] Bivalirudin

Bivalirudin: 
Thrombin inhibitor 
in cardiovascular 
events

Based on 3D model 
of thrombin, 
bifunctional 
peptide inhibitors 
were designed.

Biogen, Inc.

Neuramini-dase 
inhibition

 
Desipramine

Desipramine: 
Treatment of 
irritable bowel 
syndrome, 
depression, 
vulvodynia, 
dysautonomia and 
effective against 
influenza A and B 
viruses

Use of primary 
amine probe from 
GRID for the 
neuraminidase 
binding site.

Monash 
University/G 
laxo 
Wellcome 
Lab.

Purine 
nucleoside 
phosphorrylase 
inhibition

  
BCX-34 (Peldesine)

BCX-34: In 
HIV-infected 
patients and as an 
anticancer agent.

Modelling, 
synthesis and 
crystallography to 
screen synthetic 
candidates.

Biocryst 
pharmaceuti 
cals, Inc.

Thymidylate 
synthase 
inhibition

 
Thymitaq

Thymitaq, 
Nolatrexed: 
Treatment of 
leukaemia

Modelling, 
synthesis and 
crystallography to 
screen synthetic 
candidates. GRID 
program.

Agouron 
Pharmaceuti 
cals, Inc.

Carbonic 
anhydrase 
inhibition

 
Dorzolamide

Dorzolamide: 
Inhibitor 
of carbonic 
anhydrase, 
inhibiting. 
Commonly used to 
treat glaucoma.

Multiple crystal 
structure 
determination 
combined 
with ab initio 
conformational 
analysis.

Merck 
Research Lab.

Human 
rhinovirus-14 
inhibition

  
WIN 54954

WIN 54954: 
Made it past 
phase I clinical 
trial as a new 
broad-spectrum 
antipicornavirus 
drug, as a potential 
treatment of 
common cold.

Multiple crystal 
structure analysis 
and Volume map 
analysis

Sterling 
Winthrop 
Lab.
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AutoDock: To generate a set of potential conformations, AutoDock use Monte Carlo 
simulated annealing and the LGA energy minimization is employed as a local search 
strategy and LGA is used as a global optimizer. The AMBER force field model is used 
in conjunction with free energy scoring functions and a wide set of protein-ligand 
complexes with known protein-ligand constants to analyse possible orientations. 
AutoDock’s web pages are more informative than its competitors’, and its free academic 
licence makes it a nice place to start if you’re new to molecular docking software.

DOCK: DOCK is one of the most well-known and widely used ligand-protein 
docking tools. The initial version employed hard ligands; flexibility was later added by 
building the ligand in the binding pocket incrementally. DOCK, as previously stated, 
is a fragment-based technique that uses complimentary shape and chemistry meth-
odologies to generate various ligand orientations. Three distinct scoring systems can 
be used to score these orientations; however, none of them include explicit hydrogen-
bonding terms, solvation/desolvation words, or hydrophobicity parameters, limiting 
their usefulness. DOCK appears to handle polar binding sites well and is beneficial for 
quick docking, but it isn’t the most precise programme available.

FlexX: FlexX is a fragment-based approach that uses hard proteins and flex-
ible ligands. It creates conformers using the MIMUMBA torsion angle database. 
MIMUMBA is a database of intermolecular interaction patterns that uses interaction 
geometry to precisely define them. The Boehm function is used for scoring (with 
slight adjustments for docking). FlexX is used to emphasise the significance of 
scoring functions. Despite the fact that FlexX and DOCK are both fragment-based 
approaches, they give very distinct outputs. FlexX behaves in an entirely different 
way than DOCK, which works well with polar binding sites. It has a slightly lower hit 
rate than DOCK, but it produces superior Root Mean Square Distance estimates for 
compounds with accurately predicted binding modes. FlexE, a FlexX extension with 
flexible receptors, has been demonstrated to yield better outcomes with substantially 
shorter run times.

Gold: Because of its strong outcomes in independent tests, gold has gained a lot 
of new users in recent years. It has a good overall hit rate, although it struggles a little 
when dealing with hydrophobic binding pockets. To offer docking of a flexible ligand 
and a protein with flexible hydroxyl groups, Gold use a GA. Aside from that, the 
protein is considered stiff. When the binding pocket contains amino acids that create 
hydrogen bonds with the ligand, this makes it a favourable choice. Gold employs 

Drug design 
targets

Molecules Outcome (brand 
name of drugs and 
category)

Method employed Research 
group

Aldose reductase 
inhibition

 
Tolrestat

Tolrestat: It was 
approved for 
marketed in 
several countries as 
antidiabetic agent. 
It was discontinued 
by Wyeth in 1997 
because of the 
risk of severe liver 
toxicity and death.

Extended Huckel 
molecular orbital 
calculations, QSAR 
methodology

Ayerst 
Laboratories 
Research, 
Inc.

Table 2. 
The successful application of computer assisted drug design approach to biological targets.
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a scoring system based on favourable conformations discovered in the Cambridge 
Structural Database as well as empirical evidence on weak chemical interactions. The 
current focus of GOLD development is on enhancing the computational algorithm 
and introducing parallel processing capability.

3. Toxicity prediction and prediction adverse drug reaction

Any chemical’s harmful or adverse effects are called as toxicity. Toxicity, such as 
carcinogenicity or genotoxicity, can be quantitative (e.g., lethal dose to 50% LD50 of 
tested individuals) or qualitative (e.g., toxic or nontoxic). In studies of toxicity the use 
of acute-exposure (single dose) or multiple-exposure (multiple dose) to determine 
detrimental effects of chemicals on humans, animals, plants, or the environment 
(multiple doses). Chemical toxicity is determine through several factors like the 
mode of exposure (oral, cutaneous or inhalation), dose, exposure frequency (single 
or multiple), exposure duration, qualities of chemical, biological properties (age, 
gender) and absorption, distribution, metabolism, excretion (ADME). Generally, 
animal models have been used for long time for toxicity testing. Nowadays advance-
ments in high throughput screening, in vitro toxicity testing are easily achievable. 
Computational toxicology is one of the best toxicity assessment tool that establish, 
analyses, models, simulates, visualize or prediction of chemical toxicity. The simula-
tion tools like algorithms, softwares, data, etc., which are projected in vitro toxicity 
experiments in order to avoid the animal models and cost effective toxicity testing 
which expands toxicity prediction and safety evaluation. Moreover, additional 
computational tools have the distinct benefits of being able to predict toxicity of 
substances even before they are created (Figure 4) [140].

Softwares (generating molecular descriptors):

• Simulation tools (systems biology and molecular dynamics)

• Modelling methods (toxicity prediction models)

• Statistical tools (generating prediction analysis)

Figure 4. 
In silico toxicology tools, steps to generate prediction models, and categories of prediction models [140].
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• Expert system (include pre-built models in web serves or standalone application 
for predicting toxicity)

• Visualization tools

By and large, modeling approaches comprise five major steps while developing 
prediction models.

3.1 Why exploration of toxicity prediction is important?

Optimization of molecule is important during initial drug development for good 
efficacy as well as for pharmacokinetics (PKs) and toxicological properties predic-
tion. Appropriate balance of target potency, selectivity, suitable ADME, and safe 
preclinical properties all together leads to the choice and clinical development of a 
potential new drug moiety. In clinical phase I trial the characteristic compound have 
to undergo years of preclinical testing and acquire only 8% chance of getting to the 
market. The failure of development of new drug cause by its toxicity. Therefore, 
executing toxicity analysis to be done in the early phase of the development process 
which gives significant potential to make value.

The major reasons that impede pharmaceutical companies to conduct earlier 
screening for toxicity like the big amount of compounds required for in vivo studies, 
the deficiency of in vitro assay predictions through high throughput along with inabil-
ity of in vitro and animal models to proper prediction of toxicity in humans. The devel-
opment of computational tools or in silico tools for prediction of toxicity are required 
to avoid above mentioned hurdles. These tools are structure based or using modeling 
techniques on human data, which provides approaches for removing the toxic effect 
in humans before the physical appearance of compound. The importance of computa-
tional tools arises from their applicability early in development stage. During the last 
few years, computational toxicology prediction system tremendously increased their 
forecasting ability but still unable to achieve the significant achievement because of 
deficit of big datasets contain toxicological effects like hepatotoxicity, teratogenicity, 
etc. The development of low throughput data with generations and coordinated efforts 
and set up on big historical background of experience and trained with small addi-
tional efforts may save a big investment and avoid use of animals (Table 3) [141].

• QSAR, expert systems, grouping and read-across techniques are used in struc-
ture activity modelling.

• Chemoinformatics: generating molecular descriptors for toxicity prediction 
using computational tools such as quantum chemical methods and molecular 
dynamics simulations;

• Databases and biological data that contain relationships between chemicals and 
toxicity endpoints, databases for storing data about chemicals, toxicity, and 
chemical properties;

• Data mining and analysis: calculating molecular descriptors, generating a predic-
tion model, and evaluating the model;

Studies in laboratory animals have traditionally been used to determine the 
possible risks of chemicals, with modifications in clinical pathology and histology 
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compared to untreated controls defining an adverse effect. In recent decades, there 
has been a greater degree of agreement in the definition of adversity in experimental 
animals caused by chemically produced effects, as well as in the assessment of human 
relevance. More recently, a paradigm change in toxicity testing has been proposed, 
largely as a result of animal welfare concerns, but also as a result of the development 
of new technologies. In vitro methods, toxicogenomic technologies, and computa-
tional tools are already available to provide mechanistic insight into the toxicological 
mode of action (MOA) of deleterious effects found in laboratory animals. Tox21c 

In Silico methods Description Software/databases

Quantitative structure-
activity relationship models

Use of molecular descriptors to predict 
chemical toxicity

OECD QSAR

TopKat

Derek Nexus

VEGA

METEOR

vLife-QSARpro

Structural alerts and rule-
based models

Chemical structures that indicate or 
associate to toxicity

OECD QSAR

Toxtree

OCES

Derek Nexus

HazardExpert

Meteor

CASE

PASS

cat-SAR

Read-across Predicting unknown toxicity of a 
chemical using similar chemicals with 
known toxicity from the same chemical 
category

OECD QSAR

Toxmatch

ToxTree

AMBIT

AmbitDiscovery

AIM

DSSTox

ChemIDplus

Dose–response and time–
response models

Relation between doses (or time) and 
the incidence of a defined biological 
effect.

CEBS

PubChem

ToxRefDB

PK and pharmacodynamics 
(PD) models

PK models calculate concentration at a 
given time. PD models calculate effect at 
a given concentration

WinNonlin

Kinetica

ADAPT

Table 3. 
In silico tools used for predicting toxicity endpoints of chemicals/drugs.



Molecular Docking - Recent Advances

54

(toxicity testing in the twenty first century) is an idea that intends to forecast in vivo 
toxicity using a bottom-up strategy, starting with an understanding of MOA based on 
in vitro data and eventually predicting detrimental effects in humans [142].

Data sets and metrics used for drug side effect prediction:

• Important data sets for drug side effect prediction

• Metrics for drug side effect prediction

• Literature survey

 ○ Docking-based approaches

 ○ Network-based approaches

 ○ Machine learning-based approaches

Figure 5 depicts the categorization as well as the numerous approaches within 
each of the categories. The next sections discuss each of these categories and describe 
some of the most important efforts in the field of drug side effect prediction that have 
been done in each of these categories.

• Docking-based approaches: The preferred orientation of one molecule with 
another to form a stable compound is referred to as docking. Docking is one of 
the most used strategies for designing drugs based on structural data. The ability 
of targets to bind to one another is a critical property that impacts the efficiency 
of biochemical processes. When a medicine attaches to a certain protein, it can 
produce side effects. Drug side effect prediction using docking-based techniques 

Figure 5. 
Classification of drug side effect prediction approaches [143].
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identifies possible drug binding sites. Many adverse effects are thought to be 
caused by an unexpected interaction of a medication molecule with a specific 
protein [144]. Side effects occur when a medication molecule is overregulated or 
communicates with a protein in an unexpected way. A molecular docking-based 
method for finding these target proteins has been presented INVDOCK. Various 
side effect–protein relationships were discovered during the method’s evaluation. 
Various publications supporting the indicated side effect–protein relationships 
were discovered by searching the PubMed data collection.

• Network-based approaches: Drugs, targets, and side effects are viewed as nodes 
in a graph by networks. Edges are used to represent nodes. This graph-based 
visualization is used in network-based approaches to side effect prediction to 
identify pharmacological side effects. Side effects are induced by a variety of 
circumstances, including incorrect dose, binding to non-targets, and insufficient 
metabolization among others. To gain a better understanding of the factors that 
influence a disease, the actions of pharmaceuticals and their accompanying side 
effects, chemical substances, and associated targets are seen as a network.

• Machine learning-based approaches: Machine learning encompasses a variety of 
strategies and algorithms for gaining access to data and using it to learn about 
a certain area. Based on the training data, the various machine learning clas-
sifiers divide the observations into different classes. Machine learning-based 
approaches, on the other hand, use a variety of classifiers to solve the prediction 
problem. To improve prediction efficiency, the employment of SVM, naive 
Bayes, RF, and other methods has been recommended. In addition, as compared 
to other methods, machine learning-based methods take up less computing time. 
As a result, they can be used in post-market drug screening.

• Miscellaneous approaches: Miscellaneous approaches also provide valuable inter-
action prediction strategies. The SCCA-based method is also efficient in terms 
of computing time. Diverse scoring systems are used to quantify the chance of 
medicinal compounds interacting with their protein targets in various techniques 
to predict pharmacological side effects. The scoring approaches are effective in 
terms of computational complexity.

4. Polypharmacology and drug repositioning

Polypharmacology, a new paradigm in drug discovery that focuses on multi-target 
medicines (MTDs), has applications in drug repurposing, the process of finding new 
uses for already-approved pharmaceuticals, off-target toxicology prediction, and 
rational MTD design. In this situation, computational approaches have shown great 
promise in predicting polypharmacology and assisting with pharmaceutical repur-
posing [145].

The goal of polypharmacology is to identify a small ligands with off-target 
activities. Polypharmacology and chemogenomics have a high level of interaction. 
Chemogenomics is the study of the relationship between targets and their ligands 
in terms of structure and activity. The information about a target’s ligands and its 
distance from other targets in biological space can be used to aid in the evaluation of 
new compounds for one or more novel targets. Both approaches can be employed in 
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the early stages of development to screen out compounds and reduce the probability 
of failure due to significant adverse effects. When used on known medications, 
polypharmacological approaches can lead to a compound’s repurposing for a new 
indication. Drug repurposing is suitable for marketed medications or development 
candidates that have failed in clinical trials due to lack of efficacy but have a strong 
safety profile and PK features [146]. Because prior clinical trial studies provide valu-
able data on drug PKs/PDs and toxicity profiles, repurposing previously approved 
pharmaceuticals saves time and money in drug development when compared to 
generating novel drugs from scratch. Sildenafil (Viagra®), a medicine that was 
originally created to treat hypertension but is now marketed to treat penile erection 
dysfunction, is a well-known example of drug repositioning [147].

Most pharmaceutical corporations and specialized service providers are increas-
ing their medication repurposing activities in response to the present productivity 
problem and the need to minimize attrition rates in drug development. Because large 
pharmaceutical corporations, in particular, have a large pool of unsuccessful drug 
candidates, dedicated divisions have been formed and collaboration agreements have 
been negotiated. As a result of the endeavour, there has been a rise in the development 
and application of in silico approaches in this field. Due to computational constraints, 
in silico approaches for polypharmacology analysis and medication repurposing have 
primarily relied on 2D representations of small compounds. First, 3D approaches 
have already been outlined, but further research will allow for the discovery of target-
target correlations that are not conceivable in the 2D world. This, together with recent 
breakthroughs in 3D tool computational throughput, suggests that these methods will 
be able to be used on the same scale as 2D tools in the near future [148]. Because of its 
potential applications and recent successes, polypharmacology has inspired a lot of 
interest in drug discovery [149]. Polypharmacology is exemplified by kinase inhibitors. 
Imatinib, for example, was developed to target the BCR-ABL protein and was licenced 
by the Food and Drug Administration to treat chronic myelogenous leukaemia [150].

High-throughput virtual screening (HTVS) is a simple tool for detecting hits in 
a single-target drug discovery project, but it is insufficient when several targets are 
investigated at the same time. In order to address polypharmacology, a multi-target 
approach must be developed. In order to identify the “magic shotgun” that can target 
numerous receptors at the same time, inverse docking techniques must be used. This 
enables the bioactivity and secondary effects of a potential new drug to be predicted, 
as well as the repositioning of existing treatments. Polypharmacology of known drugs 
and novel compounds is predicted in silico using structure-based and ligand-based 
approaches, as well as the rational design of MTDs.

In silico approaches have advanced as a valuable strategy in early drug develop-
ment, and as additional target structures, structural bioactivity data, and therefore 
enhanced chemoinformatic tools become accessible, their influence will certainly 
grow. Because medications with a certain polypharmacologic profile will allow for 
better treatment of certain diseases, one of the most important computational chal-
lenges ahead is the application and development of algorithms for identifying suitable 
molecules (Figure 6).

Polypharmacology can be predicted using computational methods. Statistical data 
analysis and bioinformatics, ligand-based, and structure-based approaches can be 
used singly or in combination to take use of each approach’s unique characteristics 
and strengths. The figure’s lower half depicts three separate proteins (A–C) interact-
ing with the same ligand, emphasising that the ligand’s final pharmacological effect is 
the product of synergistic effects emerging from interactions with all targets.
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Structure-based approaches, ligand-based methods, and systems biology methods 
are the three categories of methodologies that can be used to anticipate unknown 
targets for small compounds.

• Structure-based methods: Inverse docking, binding site similarities, inverse 
pharmacophore modelling, molecular dynamics simulations, and fragment-
based multi-target drug design are examples of structure-based techniques. 
Currently, the Protein Data Bank (PDB) has substantially includes 3D protein 
structures that refined by protein crystallography, nuclear magnetic reso-
nance spectroscopy, and electron microscopy. Due to the availability of such 
structural data, inverse docking algorithms have been developed, with the 
primary goal of docking a small molecule into binding sites of many targets 
for hit identification. INVDOCK, TarFisDock, and idTarget are some of the 
modified scoring functions that have been developed specifically for target 
ranking in recent years. Binding site similarity-based search, in addition to 
inverse docking, is commonly employed for target prediction. It’s based on the 
idea that structurally comparable proteins have similar chemical functions, 
thus they’ll probably bind to structurally similar substances. Combining the 
GRID Molecular Interaction Fields with pharmacophoric characteristics, the 
Fingerprints for Ligands and Proteins (FLAP) algorithm was recently devel-
oped. Drug repurposing and hit identification can both benefit from binding 
site similarity technologies. It can also be employed in the lead optimization 
process by comparing binding locations. Advanced pharmacophore approaches 
have recently been developed to connect structure-based pharmacophore mod-
els of targets with small molecule pharmacophoric features to small molecule 
pharmacophoric features. Fragments are smaller, simpler chemical entities 
than drug/lead-like compounds, and they have a higher promiscuous nature. 
Fragment-based techniques boost the likelihood of obtaining hits and aid in 
the discovery of novel compounds because a small number of pieces can cover 
a large chemical search area. As a result, they can be utilised for hit detection, 
lead generation, and lead optimization.

Figure 6. 
Polypharmacology can be predicted using computational methods [148].
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• Ligand-based methods: The characteristics and activities of compounds are used 
to anticipate unknown targets utilising ligand-based techniques. This is based on 
the notion that structurally similar molecules attach to similar targets. The simi-
larity ensemble approach (SEA) is a similarity-based method for determining 
the likelihood of a molecule binding to a target based on topological similarities 
between the ligands. Recently smooth surface triangulator (SMART) algorithm, 
pair-wise kernel method (PKM), Gaussian interaction profile, Laplacian regu-
larized least squares (LapRLS), kernel regression, kernelized Bayesian matrix 
factorization with twin kernels (KBMF2K), and bipartite local method have been 
developed.

• Systems biology methods: With the development of high-throughput techniques 
yielding massive amounts of data in domains like genomics and proteomics, 
understanding diseases, especially complex ones, has never been more detailed. 
The term “Network Pharmacology” was coined to propose that combining 
chemogenomics data with network biology might aid in the development of new 
ways to target disease-causing networks rather than specific genes or targets. The 
database, which contains over millions of drug-induced gene expression pat-
terns, can be utilised to find new polypharmacology medicines.

The concept that comparable drugs bind to similar targets still underpins the 
majority of polypharmacology research. The development of precise and robust scoring 
algorithms that can rank targets rather than tiny molecules is a big challenge. Novel 
approaches to rational design of multi-targeting small molecules are now being investi-
gated. Apart from traditional structure- and ligand-based approaches, there has been an 
upsurge in interest in system biology and bioinformatics-based methodologies, as well 
as community-wide activities. These approaches have been demonstrated to not only 
anticipate new small molecule targets, but also to aid in the understanding of disease 
dynamics and the molecular interaction pathways that lie beneath. Polypharmacology, 
which can predict both on-target and off-target therapeutic effects, could help in illness 
targeting. As a result, the rational polypharmacological drug design (PDD) holds a lot 
of promise and possibility for drug discovery in the future. However, in order to reach 
such ambitious aims and, eventually, translate information into successful patient 
therapy, we must overcome a number of flaws and roadblocks [151].

The field of computational polypharmacology has progressed to the point where 
concrete hypotheses may be formulated using prediction results to guide wet-lab 
research. The field of computational polypharmacology has advanced to the point 
where concrete hypotheses may be established and used to guide wet lab research 
utilizing prediction results. Furthermore, the majority of contemporary approaches 
are implemented as web servers or standalone applications. As community efforts 
become more essential, it will be necessary to create portable programming librar-
ies that community developers can use to alter existing toolkits or create new ones. 
More cell-free, cell-based, and animal models are needed in experimental assays to 
examine the impact of drugs on various targets or functions at the same time.

5. Opportunities and challenges

There are six components to the CADD challenges. Chemical and biological space 
are the two major categories. The term “chemical space” refers to the large number 
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of possibilities for discovering hit substances. Third is methodologies challenges, in 
which for designing and optimizing drug candidate’s computational methods could 
be used. Last one is the proper training of newcomers like investigators of CADD for 
multidisciplinary work (Figure 7) [152–155].

The topic of drug repurposing is gaining impetus toward novel therapeutic mol-
ecule development, aided by an ever-increasing number of innovative computational 
techniques and enormous sequencing databases. Antibiotic resistance among key 
clinical pathogens is a grim prospect, as per infection-related death rate continues to 
rise despite a slowing rate of new antibiotic discovery.

6. Applications and limitations

CADD is useful in the treatment of neurodegenerative disorders particularly tar-
geting Amyloid-β in case of Alzheimer’s disease. For nearly two decades, in pharma-
ceutical research docking calculations have been used. Virtual screening using protein 
templates differs from virtual screening approaches based on molecular similarity 
and ligands beneficial for de novo identification of active complex. Three important 
factors in CADD pays close attention include: (1) As per target structure, screening a 
large number of molecules, which can then be assessed using both experimental and 
computational techniques; (2) as per affinity, criteria on toxicity and PK study, guid-
ing the optimization of lead compounds and (3) based on the structure, supporting 
in the design of novel compounds to recover functions of drug. For modelling of drug 
the CADD approach is extremely helpful. Computed chemistry and bioinformatics, 
as well as combinatorial chemistry, are used to handle the many issues connected 

Figure 7. 
In silico methods showing outstanding challenges during drug discovery and design.



Molecular Docking - Recent Advances

60

with the drug discovery pipeline in less time and expense. As per Figure 8, general 
advantages of CADD are found to be cost effective, with higher efficiency, speed and 
accuracy in results [156–159].

FDA approved drugs like human immunodeficiency virus (HIV)-1-inhibiting 
drugs identified by SBDD available on the market. Other example is thymidylate 
synthase inhibitor, raltitrexed, by protein modelling, inhibitor of HIV protease, 
amprenavir is discovered. Computer assisted techniques are hypothetical and results 
must be confirmed in real-world systems, and pharmacological activities discovered 
through CADD in lead compounds have failed. Most of the methods of CADD 
methods like QSAR, molecular dynamics, molecular docking, etc. have their specific 

Figure 8. 
Advantages of CADD.

Figure 9. 
Limitations of CADD.
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Chapter 4

Molecular Docking in the Study of
Ligand-Protein Recognition: An
Overview
Iqbal Azad

Abstract

Molecular docking is a bioinformatics-based theoretical simulation strategy. It is
employed to study ligand-protein interaction profiles and predict their binding con-
formers and affinity through computational tools. Since the 1980s, computational tools
have been used in the drug discovery process. The initial molecular modeling
approaches available at the time focused on a rigid view of the ligand-protein interac-
tion due to the limited computational capabilities. The advancement of hardware
technology has made it possible to simulate the dynamic character of the ligand-protein
interactions throughout time. The current chapter deals with an outline of the progres-
sion of structure-based drug discovery methodologies in the investigation of the ligand-
protein interaction profiles from static to improved molecular docking strategies.

Keywords: Molecular docking, AutoDock, Vina, AutoDockFR, iGEMDOCK, Drug
discovery process, Virtual screening

1. Introduction

Docking tools have simplified the study of interactions between drug molecules
and receptor proteins, DNA, or biological molecules [1]. These interactions take place
covalently. Furthermore, critical molecular mechanisms, ligand binding approaches,
and factors influencing the ligand-protein interaction profile can be estimated with
the help of the docking results [2, 3]. Docking suites can be used to calculate the
binding energies associated with the most stable conformation of drug-receptor inter-
actions (Figure 1) [4, 5].

2. Types of docking

In 1982, Kuntz et al. developed the first molecular docking algorithm through the
estimation of the released binding energy [6, 7]. Docking evaluations are performed to
regulate the interaction profile between the ligand and target and to search for the
most suitable conformation of the ligand in the complex. Empirical scoring functions
are also explored, which transform binding energy into the docking score [8]. There
are numerous free online tools available to generate 3D ligand and target interaction
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profiles, such as Biovia DSV, Pymol, Chimera, Rasmol, SwissPDB viewer, etc.
Docking is broadly classified into three classes, discussed below:

2.1 Flexible docking

In flexible docking, the side chains of the protein and ligand are kept flexible. The
general principle of flexible docking is based on the induced-fit hypothesis offered by
Daniel Koshland in 1958 [9]. As a result, it is also known as “induced-fit docking,” in
which the binding energies of various conformations of the proposed ligand are
calculated at protein or receptor pockets [10, 11]. Furthermore, the target chain
should be flexible enough to combine with the conformational modifications of the
receptor and ligand. Various altered possible conformations of the ligand can be
predicted, which makes it the most accepted and accurate technique, but it is time-
consuming and costly at the same time [12].

2.2 Semi-flexible docking

In this approach, the ligand molecule is the only flexible element while the protein
is rigid [13]. In addition to the six translational and rotational degrees of freedom, the
conformational degrees of freedom of the ligand are also tested [14]. These approaches
assume that a protein’s fixed conformation is capable of recognizing the ligands to be
docked. As previously stated, this assumption is not always validated [15].

2.3 Rigid docking

In rigid docking, the main geometry of the target and ligand is retained and frozen
during docking analysis [16]. The basis of this type of docking analysis is the ‘Lock and

Figure 1.
General modes of molecular docking simulation.

74

Molecular Docking - Recent Advances



Key’ hypothesis, proposed by Emil Fischer in 1894 [17]. Thus, it is defined as lock and
key docking, which also leads to several problems. The analysis of ligand-target
docking is very significant for observing drug-target interaction, but a problem is
associated with it when the ligand is docked at the pocket site of a receptor protein.
Due to the rigid structure of both, observation of interactions becomes very challeng-
ing and the most suitable confirmation of ligand is not easily obtained [18]. Sometimes
ligands do not enter the pocket site of a protein, leading to weak interactions that are
not enough to show satisfactory results. Internal flexibility is necessary for good
docking interaction. In various cases, the structural modifications that are essential for
binding are negligible in rigid docking. Rigid docking is only enough to observe the
interaction [11]. Some other benefits of rigid docking are its simplicity and a short
period of run time.

3. Docking interactions

Docking is performed to establish the most suitable interaction profile for a ligand
inside the target protein. It is also employed to estimate the energy evolved during the
interaction between the ligand and protein [19]. Various forces influence docking inter-
actions. The total energy released during these interactions is calculated through the
empirical formula and displayed in the form of total binding energy [11, 18]. Based on
the different forces, docking interactions are categorized as electro-dynamic forces (like
van der Waals), electrostatic forces (charge-charge, dipole-dipole, and charge-dipole),
steric forces (observed between closer molecules and influence the reactivity as well as
the chemical reactivity), solvent-related forces (occurring due to interaction among the
solvent and protein/ligand) and conformational modifications in the ligand) [20].

4. Types of energies

The preliminary objective of docking analysis is to obtain the best conformation of
the drug during the drug-receptor interactions in support of the lowest binding free
energy [21]. Molecular docking tools frequently calculate the scoring functions to
evaluate the binding energies of drug-receptor interactions [11]. The resultant binding
energy (ΔG bind) is calculated in the form of a combination of different energies such
as H-bond, torsional free, electrostatic, unbound system’s desolation, total internal,
dispersion, and repulsion, etc. The dissociation constant (Kd) is used to signify the
binding energy in terms of Gibbs’ free energy (ΔG) [22]. The predication of drug-
receptor binding depends on the some factors such as intermolecular interactions,
desolation, and entropic effects. Upon increasing the estimation of the physio-
chemical parameters, the accuracy of the scoring function is also increased [23].

An example of a scoring function is as follows:

The empirical scoring function of any docking program.

Fitness ¼ vdWþH bondþ Elec:

Binding Energy.

ΔGbind ¼ ΔGvdw þ ΔGhbond þ ΔGelect þ ΔGconform þ ΔGtor þ ΔGsol (1)
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5. Docking algorithms

The docking algorithms display a new dimension to evaluating the interaction
profile of the ligand-receptor complex [24]. It calculates all possible conformations of
the ligand under investigation during the interaction with the receptor. It also delivers
the most suitable conformational pose with minimum binding energy [24, 25]. The
most common algorithms apply for various docking evaluations (Flexible, Semi-
flexible, and Rigid Docking) are (Figure 2):

5.1 Flexible docking with single protein conformation

5.1.1 Side-chain flexibility docking

The side-chain flexibility docking approach introduces different conformations for
various protein side-chains [26]. This is usually accomplished by utilizing rotamer
library databases. Various docking approaches like GOLD use their search engine to
sample some degrees of freedom. Large conformational fluctuations of the protein are
ignored by these approaches due to side-chain flexibility [27].

5.2 Soft docking

In 1991, Jiang and Kim first described the soft docking strategy, which is based on
the understanding of protein flexibility [28]. The VdW revulsion is also working in force
field scoring functions because it reduces collisions and allows for more compact ligand-
protein packing. In this method, an induced fit is recreated. As a drawback, this method
can only simulate faint protein motions, which can lead to erroneous poses [24].

5.3 Flexible docking with multiple protein conformations

For the same target, multiple experimental structures may be offered [29]. Fur-
thermore, computational approaches such as Monte Carlo or Molecular Dynamics

Figure 2.
Various docking algorithms.
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simulations can be used to obtain an ensemble of protein conformations [30]. The goal
behind multiple protein conformation docking is to consider all of the potential
configurations by employing various strategies:

5.3.1 Individual conformations

The target structures are viewed as conformations that could be attached to the
ligand. Therefore, several docking scores are undertaken, assessing the ligands on all
of the target conformations [31]. Furthermore, to filter the structures, an initial
standard to evaluate the presentation of distinct target structures in a docking inves-
tigation was also performed in individual conformations [32, 33].

5.3.2 United description of the protein

The structures are utilized to build the best-performing “chimaeras” protein
instead of collapsing into an average grid [34]. Like FlexE, it selects structurally
conserved areas from the ensemble’s structures to build a rigid configuration. This
section is attached to the ensemble’s flexible portions in a combinatorial method,
resulting in a pool of “chimaeras” that can be docked [35].

5.3.3 Average grid

The ensemble’s structures are combined to form a typical solitary grid [36].

5.4 Semi-flexible docking algorithm with simulation approaches

A well-known model of this class is molecular dynamics. This approach defines a
system’s temporal evolution [37]. The molecular dynamics unit provides a more
detailed explanation [38]. Energy-saving strategies are also included in this category,
but these strategies are rarely utilized as standalone search engines [39]. Energy
minimization is a local optimization approach for obtaining a system with certain
potential energy [40].

5.5 Semi-flexible docking algorithm with stochastic methods

In this approach, the values of the degrees of freedom of a system are changed
randomly rather than systematically like in stochastic algorithms [41]. The speed of
these procedures is beneficial, as they might potentially locate the best answer very
quickly. The main disadvantage of this approach is that it does not confirm a compre-
hensive investigation of the conformational space, which denotes the actual solution,
which may be overlooked. Increase the number of iterations of the method to partially
solve the lack of convergence. The following are the most well-known stochastic
algorithms [42]:

5.5.1 Swarm optimization (SO) methods

Several swarm optimization approaches are based on the behavior of swarms [43].
The knowledge supplied by previously sampling good poses guides the sample of a
ligand’s degrees of freedom. PLANTS use an Ant Colony Optimization (ACO) algo-
rithm, which simulates the behavior of ants, and uses pheromones to find the quickest
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way to a food position [44]. Each degree of freedom is coupled with a pheromone in
this system. Successful ants contribute to pheromone deposition, while virtual ants
choose conformations based on pheromone values.

5.5.2 Evolutionary algorithms (EA)

The most prominent evolutionary algorithms are genetic algorithms (GAs), which
are based on the idea of biological evolution [45]. The genes, chromosomes, muta-
tions, and crossover concepts are all taken from biology. Genes are represented in the
form of the degrees of freedom as well as ligand conformation, which is defined by a
chromosome that is awarded a fitness score [46]. Within a population of chromo-
somes, mutations and crossovers occur, and the chromosomes with greater fitness
survive and replace the ones with lower fitness. rDock, PSI-DOCk, AutoDock, and
GOLD are the most well-known instances [46–50].

5.5.3 Tabu search methods

Tabu search strategies are used to avoid exploring zones of the conformational/
positional space that have already been explored. At each cycle, random alterations are
made to the ligand’s degrees of freedom. The previously sampled conformations are
recorded, and a new stance is allowed only if it is distinct from any previously investi-
gated pose. This category includes programs like PRO LEADS and PSI-DOCK [47, 51–54].

5.5.4 Monte Carlo (MC) methods

The Metropolis Monte Carlo algorithm, which presents a recognized measure in
the development of docking exploration, is the basis for Monte Carlo approaches [55].
Each repetition of the algorithm involves a casual adjustment of the degrees of free-
dom of the ligand. The Metropolis algorithm in its basic form, although it is
implemented in a variety of ways in docking software, AutoDock Vina, MCDOCK,
QXP, ICM, and AutoDock [30, 42, 44, 56].

5.6 Semi-flexible docking algorithm with efficient exploration techniques

In an efficient exploration, a collection of findings is associated with each degree of
freedom, and all the values of each coordinate are examined in a combinatorial
manner [56]. These approaches are classified into the following categories:

5.6.1 Conformational ensemble

Rigid docking approaches can easily be supplemented with a certain amount of
flexibility. If an ensemble of previously produced ligand conformers is docked to the
target using a conformational variation approach on the ligand complement, an
example is MS-DOCK [57].

5.6.2 Fragmentation

DesJarlais et al. in 1986 described an approach to fragmentation of the ligand. The
first application of ligand flexibility in docking was the hard docking of fragments into
the reaction site and the subsequent connecting of the fragments [58]. Partial
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flexibility is achieved at the junctions among the fragments in this manner. Additional
approaches, known as incremental building, initially dock one fragment and then add
the rest, one by one. FlexX [59] and Hammerhead [60] are two approaches that use
fragmentation [61].

5.6.3 Exhaustive search

Exhaustive exploration is an efficient method in austere intelligence, as it examines
all of the ligands’ rotatable bonds systematically. To limit the search space and avoid a
combinatorial explosion, several limitations and termination criteria are usually
defined. The software Glide’s docking pipeline [62, 63] includes an exhaustive
search stage.

6. Some common docking software

6.1 AutoDock

AutoDock is an open-source and automated docking package introduced by the
Molecular Graphics Lab, Scripps Research Institute, La Jolla, CA 92037, USA. It is
effectively applied to the calculation of the binding sphere of biological macromole-
cules like proteins and enzymes, as well as ligands (small molecules) [25]. The
AutoDock docking suite offers the minimum binding energy of interaction obtained
between the ligand and the receptor protein. The binding energy calculation is based
on the formula offered in the form of the scoring function. Using the Lamarckian
genetic algorithm (LGA), the AutoDock scoring function is established on the AMBER
force field as well as through linear regression analysis [64]. It deals with reinforcing
docking evaluation for ligands through almost zero to ten flexible bonds. The default
settings of AutoDock are tremendously effective and are commonly applied to search
for the interaction profile of a drug candidate. Furthermore, it is also extensively used
for virtual screening. For each docking, the AutoDock is performed for a considerable
duration to provide frequently docked conformations of the ligand concerning a
receptor protein [65]. Examples: drug-receptor docking; protein-protein docking;
molecule optimization; analysis oscillating from structure-based drug design;
validation of the action mechanism of drug molecules; etc.

6.2 Handling tips of AutoDock

AutoDock tools offer multiple approaches for docking simulation, such as alter-
nating from simple docking to advanced docking procedures [66]. The successful run
of AutoDock requires four different files, such as ligand coordinates, target coordi-
nates, grid parameters, and docking parameters [67, 68]. These files are prepared with
the help of AutoDock Tools (ADT)/MGL Tools and their preparatory procedures are
as follows:

6.3 Preparation ligand coordinate file

AutoDock accepts PDB or mol2 files as an input. In the novel compound, the first
three-dimensional (3D) structure of the compound is prepared. The two-dimensional
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(2D) structure of the proposed compound can be prepared with the help of
ChemDraw or ChemDoodle (https://web.chemdoodle.com/demos/sketcher/) and
saved as a SMILES file. The SMILES file is pasted into the online CORINA Classic
service (https://www.mn-am.com/online_demos/corina_demo) to prepare meals or.
pdb files, but it needs further structural optimization through a suitable method such
as Merck Molecular Force Field (MMFF). On the other hand, for simple preparation to
optimize 3D structures, the online molsoft (https://www.molsoft.com/2dto3d.html) is
recommended. It can prepare 2D as well as 3D structures in a single place. During the
conversion of a 2D structure into 3D, it automatically optimizes the structure through
MMFF. It has been found that the most accurate, optimized structure can be offered
by DFT, but MMFF is still useful for an organic molecule. If the proposed compound
has a known structure, then its crystalline 3D structure can be obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov)and ChemSpider (http://www.che
mspider.com/), etc. The coordinate setting of proposed compounds needs the addition
of hydrogen atoms that are included in the 3D structure [69]. The proposed com-
pound’s open 3D structure is selected as a ligand in ADT, and the ‘edit’ button is
clicked to add polar hydrogens, Gasteiger charge, number of torsions, and detect root.
At this moment, the ligand will be visible on the screen in which aromatic carbons
appear green and another fragment looks red. Now click ‘ok’ and save it as a ligand
pdbqt file.

6.4 Preparation of target coordinate file

ADT also requires preparing the coordinates of a biological macromolecule such as
a protein or enzyme. The PDB file of the receptor can be downloaded from the Protein
Data Bank (www.pdb.org), the Cambridge Crystallographic Database (ccdc.cam.ac.
uk), etc. To generate the target coordinate file, all hydrogen atoms, need to be added.
The 3D coordinates of the target can be taken from the PDB, and it requires the
removal of water, ligands, cofactors, ions, etc. Click on ‘Edit’ to incorporate polar
hydrogen, Kollman charge, Marge nonpolar hydrogen, and macromolecules are saved
as target pdbqt.

6.5 Preparation grid parameter file

ADT needs a pdbqt file to prepare the grid parameter file (gpf). In a new window
to set the grid, click on Grid > Macromolecule > Open and open the target pdbqt file
by macromolecule. Similarly, click on Grid > Set map type > Open and open the
ligand pdbqt file of the proposed small molecule or ligand, and then set the grid map,
grid size, as well as grid center in x, y, and z-direction by clicking on “grid > Grid
box”. After that, the output file can be saved as a gpf file.

6.6 Preparation docking parameter file

For the preparation of the docking parameter file (dpf), click on Docking >
Macromolecule > Set rigid filament > Open in the ADT window to open the target
PDBQT. Similarly, ligand pdbqt can also be opened by clicking on Docking > Ligand >
Open. Then, set the algorithm by clicking on Docking > Search Parameters > Genetic
algorithm and setting docking parameters. Finally, click on Docking > Output >
Lararckian GA and save it as a dpf file. Then ADT is ready to run. Firstly, it runs. It
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required a proper time and needed the grid parameter file as well as a docking
parameter file.

6.7 Analysis of docking result

ADT also offers to evaluate docking interactions and binding energies of a mini-
mum of ten conformations along with a docking inhibition constant (Ka). By selecting
Analyze > Docking > Open, you may view the findings by opening the dlg file. A
popup will open, click “OK” and then further click Analyze > Conformation > Play >
& > Show info.

The AutoDock scoring function can be calculated based on the following formula:

Free binding energy ¼ Final intermolecular energyþ Final total internal energy

þ Torsional free energy ‐ Unbound system’s energy:

Where, total energy of van der Waal energy, hydrogen bond energy, electrostatic
energy and dissolved energy equals to final intermolecular energy.

7. AutoDock Vina

AutoDock Vina was established by Oleg Trott in the Molecular Graphics Lab at the
Scripps Research Institute in 2010 [70]. It is a relatively new, freely available tool for
molecular docking, drug discovery, and virtual screening. It also offers high perfor-
mance, multi-core proficiency, greater accuracy, and a simple handling protocol. Vina
itself predicts the grid maps and clusters. Vina considerably enhances the accuracy of
the interaction mode calculations as associated with AutoDock. Vina has been found
to predict more accurate results as compared to other tools [71].

7.1 Handling tips of AutoDock Vina

The input and output files of Vina are pdbqt. It is essential to prepare the ligand as
well as the target coordinate file in pdbqt format. Both coordinate files are prepared
similarly as in AutoDock. Vina does not require a grid parameter file and a docking
parameter file [72]. Additionally, it requires a text configuration file. Complete
handling of AutoDock Vina is discussed below.

7.2 Preparation of configuration file

A new window of ADT is opened after the preparation of the ligand and target
coordinate file. Click on Grid >Macromolecule > Open and open the target pdbqt file.
Click “YES” to save the present modifications in the folder, and then press “OK” to
receive them. Sometimes a warning window is also opened if there are minor indis-
cretions in charge. Ignore it by pressing “OK.”

Then, click Grid > Set map types > Open and open the ligand pdbqt file. The grid
map, grid size, and grid center of the analysis space are then described in a new
window that is opened by selecting Grid > Grid box. To begin the box built on the
ligand, click Center > Center on the ligand. Here, thumbnails are available for the
manual changes in the values of grid size and center, along with other options. Press
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file > close to save the current after adjusting the grid’s size and center. To complete
the setup, select Docking > Output > Vina Configuration and click “SAVE” to provide
a text configuration file with the default name of config.txt.

7.3 Run AutoDock Vina

The default setting of AutoDock Vina is not enough to accurately evaluate the
interaction profile and binding energies. Vina offers a factor known as exhaustiveness
to adjust the computer-aided strength utilized during a docking analysis. In Vina, the
default value of exhaustiveness is 8. For greater accuracy, the default value of
exhaustiveness is changed and set to about 24. It will provide more accurate docking
findings. The most well-known way to run Vina is via ADT. ADT offers to click “run”
to run AutoDock Vina. Open a window to start the route of the Vina executable file by
pressing the browse option, and then press the launch button to operate the Vina. The
second path is through the command line. Open a terminal window and modify the
directory that encompasses the coordinate files as well as the configuration file. The
command line is edited to adjust the values of exhaustiveness (like: /Vina–config
config.txt-exhaustiveness = 24). This command accepts that the AutoDock Vina
executable Vina is also found in a similar directory.

7.4 Analysis of Vina docking result

ADT also offers the ability to visualize the outcomes of docking from AutoDock
Vina. Open a new ADT window and select the working directory. Analyze > Docking
> Open the AutoDock Vina result and select the output file obtained from step II.
Then select the default single molecule with numerous conformations followed by
pressing “OK” to visualize the coordinates for all docked outcomes through arrow
keys. To visualize the target coordinate file, select Analyze > Macromolecule > Open
and open the target pdbqt file. Similarly, open the ligand coordinate file by clicking on
File > Read molecule > Open and open the ligand pdbqt file to read the crystallo-
graphic location of the ligand. It offers the ability to evaluate the ligand as well as
docked conformation. Select Analyze > Docking > Show interactions to examine the
ligand-target complex’s interaction profile.

The estimated scoring function of AutoDock Vina is based on the following
formula:

ΔG bindingð Þ ¼ ΔG vdWð Þ þ ΔG H bondð Þ þ ΔG Elec:ð Þ þ ΔG E desolv:ð Þ (2)

Where ΔG denotes Gibbs’ free energy, ΔG (vdW) denotes van der Waal’s free
energy, and ΔG (H bond) denotes hydrogen bond free energy. ΔG (Elec.) stands for
electrostatic free energy; ΔG (E dissolv.) stands for dissolved free energy. Torsional
free energy is denoted by the symbol ΔG (tors).

8. AutoDock FR

AutoDock FR (ADFR: AutoDock for Flexible Receptors) was developed by Dr.
Pradeep Anand Ravindranath in the Integrative Structural and Computational Biology
Lab at the Scripps Research Institute in 2015. The ADFR is a newly designed docking
tool built for the AutoDock scoring function. The ADFR was deliberately designed to
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study the interaction of small flexible ligands with the target protein [69, 73]. It offers
preparation of side-chains of target proteins flexibly to simulate induced-fit without the
knowledge of the side-chain conformational alterations [73]. The ADFR regulates up to
14 targets with side-chain flexibility. The proficient growth rate of docking realization is
more than 50%. On the cross, docking is investigated along with up to 12 flexible
receptor side-chains. The ADFR displays superior results as compared to AutoDock
Vina. Vina requires uncontrolled run time for docking by increasing the number of
flexible receptor side chains. On the other hand, ADFR requires linear run time [73].

8.1 Handling tips of AutoDockFR

The input format of ADFR is pdbqt format. ADFR requires the preparation of
coordinate files of ligand and target. Coordinate files are prepared with the help of
ADT. To perform docking through ADFR also requires the generation of affinity maps
and translational points that are probable ligand binding areas. The step-by-step
handling protocol of ADFR is discussed below.

8.2 Prepare affinity maps and translational points

Open a new ADFR window, select the receptor PDBQT > Open, and upload the
target coordinate file in pdbqt format to run the docking analysis. Similarly, the ligand
pdbqt file is uploaded by selecting Open under ligand PDBQT. Then press the box
entire ligand button to surround the ligand with a docking box or grid box, followed
by clicking on the center view of the docking box to center the docking position. In the
docking box, along with ligand, amino acid residues can also be labeled by clicking on
“show receptor residue labels.” ADFR is the only tool to select the amino acid residue
up to 14 at a time with a single click. To select the amino acid residues for docking
investigation, click on flexible residues and select the amino acids from the list. The
selected side chains of the amino acid are presented as orange balls-sticks and the
other portions remain the same. Then click the green checkmark.

For the prediction of binding pockets, click on the ‘compute pockets’ button. Auto
Site recognizes multiple pockets in the docking box and selects those at which the
actual ligand is found in higher volume. These binding pocket fill-points appear as a
green mesh, denoted as translational points. If the binding pocket fills-points button is
green, then generating maps is supported. To generate affinity maps, press the
Generate maps button and save the maps as a zip file in the working folder.

8.3 Run ADFR

Open the command window, adjust the working directory, and type the following
windows command to run the ADFR: “c:\Program Files\MGL Tools 2-latest\adfr.bat”
random pdbqt -m generate.zip -r ligand pdbqt -job Name Result –seed �1. To visual-
ize the docking result, a visualization tool like Biovia DSV is used to generate the
interaction profile of the ligand-target complex.

9. iGEMDOCK

The iGEMDOCK tool was established by the Institute of Bioinformatics at National
Chiao Tung University, Taiwan for docking, drug design, screening, and post-
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screening analysis. It is an automatic multipurpose graphical package [74]. For
docking evaluation on the iGEMDOCK, initially prepare the coordinate files of the
ligand as well as the target. Coordinate files are prepared similarly as in AutoDock by
adding torsions, bond orders, hydrogen atoms, and charges. These parameters are
assigned to both the ligand and the target. The input and output files of the
iGEMDOCK are PDB and Mol. IGEMDOCK automatically selects the most suitable
conformation of the ligand and gives the total binding energy [74]. The iGEMDOCK
scores are calculated using an empirical formula or fitness score, denoted as.

Van der Waal energy + Hydrogen bond energy + Electro-statistic energy equals
fitness score.

During the docking evaluation, the estimation of target binding sites and structure
optimization are very significant. The hydrogen bonds found in the docked complex
strongly impact the scoring function. This possibility reduces the number of suspected
H bonds significantly. Additionally, internal H bonds, as well as internal electrostatic
interaction, are predicted as sp2-sp2 torsions from the interaction complex. The
iGEMDOCK works, since the generic evolutionary method (GA), provides three
effective docking methods, viz., standard docking, stable docking, and accurate
docking. Accurate docking is a very slow docking protocol and offers a maximum of
80 numbers of runs or generations, 800 population size, 8000 interactions, and 10
numbers of the solution, along with 100-threshold energy. For every single step,
torsions, translations, and rotations are verified. For a better result, the hydrophobic,
as well as electrostatic preferences are set to 1.00. The iGEMDOCK automatically
selects the lowest energy conformation. When the iGEMDOCK calculates unfavorable
electrostatic interaction, then a positive energy value is obtained. To rectify this
problem, check the docked position and restart; or if the docked pose is closer to the
listed ligands, define the RMSD threshold and add an energy penalty (i.e., the 100-
energy penalty, 2.00 RMSD threshold, and atom ID (fast) RMSD calculations were
set.) In the scoring function, the docking tool resolves and emphasizes the results of its
previous search and finds their variations. Then ligand-target docking proceeds and
results are obtained in the form of binding affinities (kcal/Mol) and docking run time.
The minimum binding energy conformation is automatically selected as the best
finding. The overall docking performance of the iGEMDOCK as compared to other
docking tools is simple and better.

9.1 Handling tips of iGEMDOCK

The iGEMDOCK is a complete package of automated docking and screening. It is a
combination of two main parts; the first part predicts the interaction profile among
the ligand-target complex in the 3D structure, while the second part predicts the
suitable pose of the ligand-target complex along with post-analysis. The docking
evaluation with the iGEMDOCK begins with the preparation of ligand and target
protein coordinate files. Both coordinate files are prepared like AutoDock. The
iGEMDOCK input and output file formats are mol, mol2, and PDB.

9.2 Target binding site preparation

In the iGEMDOCK operator, a distinct binding site of the target protein/enzyme or
complete target structure is selected. If the target’s input file contains a natural
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Server/Software Availability Developer City/
Country

Web link

Free
standalone
program

The Scripps
Research Institute

La Jolla, CA/
US

http://autodock.sc
ripps.edu/

Free
standalone
program

The Scripps
Research Institute

La Jolla, CA/
US

http://vina.scripps.
edu/

Free/open-
source
platform

BioXGEM Lab.
Institute of
Bioinformatics
National Chiao-
Tung University

Hsinchu/
Taiwan

http://gemdock.life.
nctu.edu.tw/

Free/open-
source
platform

University of
California, San
Francisco

San
Francisco,
California/
USA

http://dock.compb
io.ucsf.edu/

GOLD

Commercially
available

The Cambridge
Crystallographic
Data Centre

Cambridge/
USA

https://www.ccdc.
cam.ac.uk/
solutions/csd-
discovery/
components/gold/

Commercially
available

Schrödinger, LLC New York/
USA

https://www.schrod
inger.com/glide

Commercially
available

BioSolveIT GmbH Sankt
Augustin/
Germany

https://www.b
iosolveit.de/FlexX/

Free
webserver

Swiss Institute of
Bioinformatics

Lausanne/
Switzerland

http://www.swissad
me.ch/

CDOCKER Commercially
available

BIOVIA San Diego/
California,
USA

https://www.3dsb
iovia.com/

Pharmer
Free/open-
source
platform

Department of
Computational
Biology, University
of Pittsburgh

Pittsburgh/
Pennsylvania

http://smoothdock.
ccbb.pitt.edu/pha
rmer/

Table 1.
The server/software of the molecular docking analysis.
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physiological ligand, it will automatically determine the target’s binding site. To begin
docking, upload the target’s coordinate file (PDB) by clicking “Prepare binding site >
Browse > Open” in the “Protein-ligand docking/screening” window. To select the
binding site of the target, click on “By bounded ligand” and then define the binding
site center by selecting the available ligand which you want to study. It also offers to
set the binding site radius; by default, its value is 8.0 Å. Uncheck the “Retain reference
ligand” box, and then click “OK” to save the defined parameter to the chosen binding
site. This will delete the physiological ligand. Select “by a current file” to specify the
binding sites of the new target protein.

9.3 Ligand preparation

The iGEMDOCK provides two methods for ligand preparation. To begin, for
“single ligand,” upload the ligand coordinate file (single/many) directly by clicking
“Prepare compounds > Ligands > Open” and pressing “OK” at the “docking/screen-
ing” window. The iGEMDOCK recommends preparing the ligand coordinate file in
mol. It does not assign charges and hydrogen to all of the ligand’s atoms. For the
“ligand database”, the ligand library is also prepared as mol. To upload the list of
compounds, click “Prepare compounds,” then “import list,” “Open,” and “OK.”

9.4 Run iGEMDOCK

Set the output path before the start of docking evaluation. Set the output path by
clicking on the “Set output path”. Then choose the desired file and press “OK.”

Set the GA Parameters: iGEMDOCK works based on the generic evolutionary
method (GA) for docking performance. It automatically calculates the ligand confor-
mation as well as orientation compared to the interaction site of the target. The
following default GA parameters are generally recommended: population size: 200;
generations: 70; and a number of solutions: 3.

Advanced Options: The iGEMDOCK offers an advanced option for the adjustment
of the scoring function, saving/loading configurations, and generating docking poses.
It also allows setting the internal energy of the ligand in docking prediction or the
addition of certain molecular filters. It automatically produces a configuration file
with the name config.dock file in the directory “/bin/”. Set up all the parameters in the
configuration file and run it with the help of command mode.

Start Docking: After the setting of coordinate files of ligand and target along with
output path and docking parameters, press “start docking” and observe the status of the
job on the screen. After the completion of docking, a default alert is opened. To close it,
click “OK,” then press “View docked poses > post-analyze” to visualize the docking
poses and the complete binding energy of the docked complex. These docking poses will
be saved in the “best_pose” and “fitness.txt” at the output site, respectively (Table 1).

10. Use of molecular docking

In the last decade, technologies like high-throughput sequencing and X-ray crys-
tallography have been regularly updated. The crystal structures of large numbers of
proteins have been defined. Consequently, the structural and functional significance
of biological macromolecules (like proteins and enzymes) has been expanded and
many novel drug targets also have been identified [75]. Due to the revolution of
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computational science in various fields of research, the utilization of virtual screening
and molecular docking in DDD has been significantly stimulated. The development of
a novel drug is time-consuming, costly, and needs more manpower [76]. Currently,
computer-aided technology has become a key tool in DDD. Through molecular
docking simulation, the analysis of the mutual interaction of drug and receptor
becomes very easy along with high accuracy and boosts the drug development
procedure by reducing the time [77].

Reverse molecular docking is a particularly fresh and innovative significant of
molecular docking. It precedes the library of small molecules as a key structure to
execute molecular docking in the spatial or 3D target database and evaluate the
conceivable larger entities to conclude the three-dimensional structure and energy of
identical assessment. That is to say, it identifies the most suitable target with mini-
mum binding energy. For that reason, the development of reverse molecular docking
provides a new route to discover the suitable target of a drug compound and reveal the
drug action mechanism [78].

11. Conclusion

The findings of this chapter demonstrate that docking programs are highly focused
on the development of new pharmaceutical compounds using molecular modeling. In
this decade, new docking software designs are emphasized. These trends are focused on
improving docking accuracy by using more accurate molecular energy calculations
without any fitting parameters, such as quantum-chemical methods, implicit solvent
models, and new global optimization algorithms that can treat ligand flexibility and
protein atom mobility at the same time. Current docking applications are not reliable
enough to estimate binding affinity due to the insufficient molecular structure and the
inadequacies of the scoring algorithm. However, by including a huge amount of biolog-
ical data into the scoring function, the present molecular docking technique can be
improved. Finally, it is demonstrated that all of the conditions for improving docking
accuracy may be met in practice. Furthermore, some expanded sampling strategies are
no longer an exclusive methodological exercise but have become accessible to a wide
range of research organizations, with real-world applications in drug discovery. Molec-
ular docking, technological advancements, and novel MD computational approaches
have all made it possible to simulate increasingly large conformational shifts. By pro-
viding a mechanical understanding of binding pathways, the ability to recreate present
folding and binding processes can be used to address the long-standing argument
regarding “induced-fit” and “conformational selection” binding theories.
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Chapter 5

Development of Nucleic Acid
Targeting Molecules: Molecular
Docking Approaches and Recent
Advances
Mohit Umare, Fai A. Alkathiri and Rupesh Chikhale

Abstract

Molecular docking is a widely used and effective structure-based computational
strategy for predicting dynamics between ligands and receptors. Until now the
docking software were developed for the protein-ligand interactions and very few
docking tools were developed exclusively for the docking of small molecules on
the nucleic acid structures like the DNA and RNA. The progress in algorithms
and the need for deeper understanding of ligand-nucleic acid interactions more
focused, and specialized tools are being developed to explore this hindered area
of drug discovery. This chapter is focused on and discus in details about various
tools available for docking with nucleic acids and how the rejuvenation of machine
learning methods is making its impact on the development of these docking
programs.

Keywords: nucleic acids, molecular docking, docking algorithms, machine learning,
non-canonical DNA, RNA

1. Introduction

Computer-Aided Drug Design (CADD) has evolved as a cost-effective method of
producing potential medications for the treatment of a wide range of diseases [1]. The
use of the CADD technique in pharmaceutical research is becoming more common.
Recently, there has been a trend in drug design to strategically create effective thera-
pies with multi-targeting effects, better effectiveness, and tolerability, particularly in
terms of toxic effects [2, 3]. To assist the exploration, a mix of modern computer
approaches, biological research, and synthesizing molecules was developed, and this
combinational methodology increased the scope of discoveries [4, 5].

CADDmay be generally defined as encompassing both structure- and ligand-based
drug design (SBDD and LBDD) [6]. SBDD approaches are based on evidence acquired
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from an understanding of a target’s three-dimensional structure, and they allow rating
databases of compounds based on the affinity of ligands to a specific target [7, 8].
LBDD provides a generic technique for understanding links between the structural
and compositional features of molecules and their bioactivities. When three-
dimensional data for a protein of interest is lacking, this strategy is used [9]. The
existing knowledge on molecules and their bioactivity are employed in this approach
to produce new possible therapeutic molecules. In this regard, molecular docking is a
widely used and effective structure-based computational based strategies for
predicting dynamics between ligands and physiological receptors [10, 11].

The molecular docking procedure consists of two main stages: projection of a new
molecular configuration including its pose inside the peptide-binding pocket, and
evaluation of the pose quality using a scoring function [11, 12]. Around 1975, high-
throughput protein isolation, [13] nuclear magnetic resonance spectroscopy, and X-
ray crystallography [14] have advanced, primarily leading to improved knowledge of
the structural properties of ligand and molecule complex [15].

MD studies, along with many other in silico technologies, have grown more fre-
quent and simpler to use in drug development; yet it is not wholly reliant on molecular
libraries. Since its inception in the 1980s as among the most mostly utilized proce-
dures, the experimental data collected by MD techniques has developed at an acceler-
ating rate [16]. Nearly annually, programs configured using various methods for MD
analysis are produced, considerably boosting pharmaceutical research. The scoring
function calculates the binding affinities of produced poses, ranks them, and selects
the most advantageous ligand and protein binding modes [17].

The scoring function of an optimum search algorithm should be capable of
assessing the physical and chemical characteristics of compounds and the thermody-
namics of interactions [18]. The earliest algorithms were created to deal with protein
interactions [19]. Over the previous few decades, the progressive development of
efficient and comprehensive algorithms with the inclusion of new variables has mir-
rored computing technical breakthroughs. Kuntz and colleagues at UCSF then utilized
a shape pairing method algorithm to keep looking for alternative combinations based
on the geometric length between the target and the ligand molecule [20].

The molecular docking technique has risen to prominence in the realm of drug
development. Times over the past twenty years, molecular docking has developed as a
vital tool for computational drug development, and it has been proved to be more
systematic than conventional drug development approaches [16]. The enormous
increase in computational capabilities and the rising access of molecule and protein
libraries have considerably aided molecular docking. Several docking methodologies
have been implemented over the last several years that may be used to dock proteins
on peptides with diverse levels of accuracy. Molecular docking was initially intended
to be done between a ligand and a target protein, but there is a significant focus on
docking between proteins, and nucleic acid-protein-ligand docking, nucleic acid-
ligand docking in the recent decade [21].

Methods for addressing the shortcomings of the docking approach are still being
researched [22]. Results can be refined, for example, by employing consensus pro-
cedures, implementing more stringent scoring techniques to a portion of the filtered
library, or employing filters that include interaction fingerprints [23]. Significant
effort has also been undertaken to collect inputs from potential binding waters. Iden-
tified water molecules as critical for molecule recognition can be considered part of
the binding pocket, and prediction can be enhanced by energy contribution by
displacing water molecules [24].
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2. Methods in molecular docking

2.1 Monte Carlo

In molecular docking studies, the Monte Carlo technique is the use in creation of a
randomized conformation of a molecule in a targets active site. The advantage is that
this method uses equilibrium statistical method. Rather than attempting to mimic a
system’s dynamics, it develops states based on the suitable Boltzmann distribution
[25]. It determines the initial configuration value. Further, it generates and evaluates a
new configuration. Through using Metropolis criteria, it assesses whether the new
configuration should be preserved [26]. The Metropolis criteria states that if a new
strategy provides better conformation than the previous one, it is recognized imme-
diately. If the combination is not innovative, a probability assessment based on
Boltzmann’s law is used. If the conclusion passes the likelihood function test, it is
approved, and the other arrangement is discarded [27].

2.2 Ligand fit

Ligand fit denotes to a rapid and accurate approach for docking small molecules into
targets active sites while considering form as a complementarity. The technique of cavity
identification is used in the procedure to discover and produce cavity in the protein as
probable binding site locations [28]. For producing ligand poses that are compatible with
the receptor binding site shape, a shape similarity screening is paired along with a Monte
Carlo parametric analysis. A grid-based technique for analyzing energies between protein
and ligand is used to reduce candidate poses with respect to the active site. A non-linear
interpolation approach drastically reduces errors caused by grid interpolation [27, 28].

2.3 Point complimentary

Here on grounds of the complementarity of the interatomic contacts, a technique
for docking a drug into a binding pocket in an enzyme is disclosed. Docking is
accomplished by increasing a complementarity function that is reliant on the atomic
surface area of contact as well as the elemental composition of the interacting atoms
[29]. Although the target and ligand molecules are viewed as inflexible entities,
mobility of a restricted range of residues bordering the binding site can also be
considered. These techniques of molecular docking are focused on comparing the
shapes and/or chemical properties of different molecules [26].

2.4 Fragment based

Fragment-based drug discovery (FBDD) is a novel strategy that is increasingly
being used to improve hit recognition for previously thought intractable biological
targets. FBDD, in specifically, uncovers small ligands (300 Da) capable of binding to
pharmacologically important macromolecules with micromolar affinity [30].

2.5 Distance geometry

Even though it is primarily known as a tool for predicting the solution conforma-
tion of compounds from NMR data, distance geometry is a basic and effective tool for
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generating approximation models of complicated chemical formations [31]. Distance
geometry is a basic geometrical approach that builds structures directly to fulfill
model requirements; this does not involve an initial conformational or force field
variables. The approach simply handles flexible rings without any extra attention or
adjustment. Distance geometry is also distinct in that it works well together with
qualitative data: a significant number of estimated distance boundaries are more
useful in creating a model than a limited handful of highly exact distances [12, 31].

3. Nucleic acid docking

Nucleic acids (NAs) are biological macromolecules which can be broken down into
phosphoric acid, sugars, and mixture of organic bases like purines and pyrimidines
[32]. These can occur in various forms and constitute the building blocks like the DNA
and RNA. These are essential for various cellular process including cell division and
protein synthesis [33, 34]. Due to their crucial role in cell division, DNA, RNA, and
their alternate structures have become target of choice for drug discovery in case of
cancer drug discovery, infectious diseases, and rare diseases [35–38]. The NA modu-
lators act by interfering with DNA replication process which affect the cell prolifera-
tion, transcription and ultimately inhibition of gene expression [39]. These agents can
modulate the functioning of the RNA resulting in altered transcription and translation
processes [40]. These modulators could be small molecule ligands, peptide or macro-
molecules, these can interact with the NAs by various mechanisms like intercalation,
molecular cross-linking, DNA or RNA strand cleavage, and interference at the site of
NA-protein interactions (Figure 1) [40, 41].

Figure 1.
The commonly known NA structures with and without bound ligands; (A) duplex DNA structure with a bound
antitumour drug, distamycin, PDB: 2DND [42]; (B) duplex RNA structure with a bound aminoglycoside
antibiotic, apramycin, PDB: 2OE5 [43]; (C) DNA G-quadruplex in complex with the di-substituted amino
alkylamido acridine compound (G4), PDB: 1L1H [44]; (D) RNA G-quadruplex (G4) crystal structures of TO1-
biotin complexes of mango-III, a structure-guided mutant mango-III (A10U), PDB: 6E8S [45]; (E) i-motif
DNA, a fragment of the vertebrate telomere which folds intramolecularly, PDB: 1ELN [46]; (F) i-motif RNA, a
oligodeoxynucleotides with stretches of cytidine residues associate into a four-stranded structure, PDB: 1I9K [47];
(G) DNA hairpin, solution structure of the PdG-containing hairpin PDB: 1LAE [48]; (H) RNA hairpin, solution
structure of RNA hairpin loop, PDB: 1HS2 [49].
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Recent advancement in crystallization techniques, oligonucleotide synthesis,
methods for structure determination like the NMR, crystal diffraction and cryo-EM
has allowed for enrichment of structural data for NAs [50, 51]. The protein data bank
(PDB) is an open source repository where these structures are deposited and curated
[52]. There are more than 730 DNA-ligand and 523 RNA-ligand co-crystallized struc-
tures in the PDB and these would keep increasing [53]. Structural data of NAs helps in
the investigation of the possible binding of ligands into the target, a co-crystallized
structure provides with a bound ligand which helps understand the binding or active
site in the given NAs. These co-crystallized molecules offer an excellent opportunity
to perform structure-based and ligand-based drug discovery experiments and apply
various other computational methods for drug discovery of NAs therapeutics. The
most widely used method in computational drug design is molecular docking studies.
The algorithms available for performing molecular docking are basically made for
ligand-protein docking. There are several similarities like the protein and NAs follow
similar physicochemical binding principles. However, these algorithms often fail to
lack of sufficient sampling of the conformation space in case of NA docking to reasons
of non-specific scoring functions [54]. Most of the target protein molecules contain a
hydrophobic binding site whereas, the NAs consist of a rather more solvent-exposed
binding pocket with higher polarity and charge density [55]. These are the major
differences between the proteins and NAs as targets in molecular docking. Most of
these algorithms are focused on the protein target molecules and need to consider
parameters that need to be included in the program for NAs docking. NAs particularly
the RNAs are very flexible owing to their charge, intrinsic atomic arrangements, and
movements due to the presence of ligands. This flexibility is not considered by most of
the programs as they consider NAs as rigid bodies [56]. Some programs like MORDOR
are available that allows for the flexibility of the NAs and the ligands [57]. It applies
molecular mechanics minimisation restraints based on the data from the X-ray and
NMR experimental data [58]. There are several shortfalls to these methods, they are
marred by slow speed, minimisation stages are slow, and time consuming, and large
library screening is not feasible. Other NA specific methods reported were ensemble
docking based on structural information from the X-ray structures or NMR or struc-
tures from the normal-mode analysis of an MD simulation [59–61]. The presence of
water molecules and metal ions add to the complications in NAs docking. The water
molecules and metal ions are essential for the stability and functioning of the NAs, this
makes their presence in any docking protocol imperative. The metal ions in case of
NAs like the i-Motif and G-quadruplex are necessary for the formation and stability of
the structure [62, 63]. Various algorithms that considers these challenges in NAs
docking are discussed in the section scoring function.

4. Recent developments in docking tools for nucleic acid

There are several types of small molecules that interact with the NAs and its
alternate forms. These can be subdivided into double stranded DNA/RNA (ds-DNA
and ds-RNA) binding, G-quadruplex DNA/RNA (G4-DNA and G4-RNA) binding, i-
Motif DNA/RNA (iM-DNA and iM-RNA) binding ligands and ligands interacting
with other DNA structures like hairpins [62, 63]. These ligands can also be classified
based on their mechanism of binding to the DNA, for example covalent binding and
intercalators. Several review articles have discussed these ligands in more details in the
past [64]. The lab-based experiments and further crystallization experiments are
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costly and time consuming and hence to assist with these efforts molecular modeling
and docking tools are used widely to find the most suitable ligand. Most of the
available molecular docking tools have been developed for protein-ligand docking.
These tools have been used for NA-ligand docking irrespective of the fact that these
tools do not consider the NAs as flexible moieties and thus do not consider the most
important feature of NAs. The other type of docking interaction that NA undergo is
with the proteins, Protein-NAs docking [65]. There are several algorithms that are
used to perform NA-protein docking as mentioned in the table number 1. Earlier
reports in NA-ligand docking dealt with finding correct docking conformations based
on RMSD to the native co-crystallized ligand. Autodock and Surflex were used to dock
several ligands like pentamidine, daunorubicin, distamycin and ellipticine in the
minor groove of the ds-DNA. It was observed that Surflex performed better over
Autodock in speed of operation and results with lower reference RMSD [66]. Several
algorithms have been published and are available for NAs-ligand docking like,
GRAMM, FTDock, 3D-DOCK, HEX, Dot and DoT2, HADDOCK, PatchDock,
SymmDock, ParaDock, GOLD, Glide [67], NPDcok and HDOCK (Table 1). The most
recent NA-ligand docking tools are NLDock, LigandRNA and DOCK 6.

The DOCK algorithm developed by the Kuntz lab has been traditionally a protein-
ligand docking program. However, the most recent development of the series is

Algorithms Acronym Principle Reference

Geometric Recognition Algorithm
to identify Molecular surface
complementarity.

GRAMM Rigid docking uses fast Fourier
transformation, shape-based
complementarity.

[68]

Fourier Transform rigid-body
Docking

FTDock Use and implementation of the
biochemical and electrostatic
information of the DNA and host
protein or DNA.

[69]

Initial grid-based shape
complementarity search

3D-Dock Featured backbone refinement, side
chain optimization and energy
calculations.

[70]

Spherical polar Fourier correlations HEX Docking pairs of proteins by using
spherical polar Fourier correlations to
accelerate the search for candidate
low-energy conformations.

[71]

Rapid computation of the
electrostatic potential energy
between two proteins or other
charged molecules.

Dot and Dot2
(Daughter of
Turnip)

Automated construction of improved
biophysical models based on molecular
coordinates, provides for flexibility
with grid size and allows improved
rescoring method. Uses Poisson-
Boltzmann methods.

[72]

High Ambiguity Driven protein-
protein Docking

HADDOCK Uses Ambiguous Interaction Restraints
(AIRs), takes up information form the
biophysical, biochemical interactions
found in the NMR or crystal structure.

[73]

Geometry-based molecular docking
algorithm

PatchDock Aims at finding good molecular shape
complementarity.

[74]

Geometry-based docking algorithm
for the prediction of a cyclically
symmetric complex

SymmDock It aims to find symmetric cyclic
transformations.

[75]
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Algorithms Acronym Principle Reference

ab initio protein–DNA docking
algorithm

ParaDock Geometric complementarity-based
docking.

[76]

Protein-Nucleic acid docking NPDock It predicts the protein–nucleic acid
structures interactions by clustering
the best-scored models and ranking
the refined solutions.

[77]

Hybrid docking HDOCK Template based modeling and free
docking.

[78]

Genetic Optimisation for Ligand
Docking

Gold Explores full range of ligand
conformational flexibility, loosely
bound water molecules in the binding
site or the active site.

[79]

RNA � ligand interactions DrugScoreRNA Uses experimental structures as
reference and applies distance-
dependent pair potentials with
reference.

[80]

Molecular Recognition with a
Driven dynamics Optimize R

MORDOR Explores the electrostatic, van der
Waals forces. Takes consideration of
dihedral angle, torsion angle, and bond
lengths. CHARMM or AMBER based
scoring functions and uses implicit
solvent models.

[61]

Binding mode predictions AutoDock
AutoDock
Vina

Uses simulated annealing method for
docking, flexible ligand and some
extent of receptor flexibility.

[81–84]

Fully automated flexible docking Surflex Uses surface-based molecular
similarity method to generate suitable
poses for molecular fragments.

[85]

RiboDock rDock It uses stochastic and deterministic
search techniques and generates low
energy ligand poses.

[86]

Nucleic acid-Protein Docking NPDock Makes use of clustering of best score
models.

[77]

Nucleic acid-Ligand Docking NLDock ITScore-NL scoring function used, it
makes the use of stacking and
electrostatic potentials.

[87, 88]

RNA-Ligand docking LigandRNA Makes use of grid-based algorithm and
potentials derived from
experimentally solved RNA-ligand
complexes.

[89]

Iterative knowledge-based scoring
function for nucleic acid–ligand
interactions

ITScore-NL Physics based iterative methods used.
Makes use of atomic and distance
dependent pair potentials. Uses
stacking interactions and electrostatic
effects.

[88]

Ranking-based sampling algorithm DOCK 6 Dominant electrostatics and charges
from waters were considered.

[90]

Table 1.
List of NA-ligand docking tools with their names and principle of working and algorithms.
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DOCK6 which has the special feature to dock small molecules on the NAs. DOCK6
have significant progress in ligand orientation and conformational sampling which has
led to significant improvement in the accuracy of docking for the large and flexible
molecules over the NAs. It uses a sampling algorithm ‘anchor-and-grow’ which allows
a cluster-based pruning with controlled cut-off of 25 kcal/mol. This flexibility in the
upper limit allows for ranked orientation and improves prediction near the binding
site. DOCK 6 uses the MD parameters like the AMBER GB/SA and PB/SA for
predicting and ranking the poses and the effect of presence of metal ions and the
water molecules in the binding site. The NLDock developed by the Huang lab uses
ITScoreNL which is an iterative knowledge-based scoring function. The ITScoreNL
uses a statistical mechanics based interactive algorithm. It uses the information from a
training set of experimentally determined structures in the protein data bank (PDB).
This scoring function consist of atomic, distance dependent pair potential, stacking
interaction, and electrostatic effects. Results from ITScoreNL significantly improve
the performance in binding and affinity prediction for the NAs-ligand complex.
Recent advances and enrichment of the RNA structures in the PDB let to the devel-
opment of LigandRNA. It uses the 3D information from the available RNA structures.
A potential is obtained using the inverse Boltzmann scheme which considers the
ligand poses that are favorable and exhibit interactions fitting the maxima of the
statistical distribution of RNA-ligand atom contacts derived from the RNA-ligand
co-crystal structures. This method is dedicated to scoring and ranking ligand poses in
their RNA three-dimensional structure with correct intramolecular interactions while
maintaining high accuracy and precision. These recent tools have given larger
momentum to screening of ligands for NAs with better accuracy and speed.

5. Scoring functions

Molecular docking is quickly becoming a valuable technique in drug development
and molecular modeling fields. The precision of the selected scoring function, that can
lead and identify ligand positions when hundreds of potential ligand positions are
created, determines the effectiveness of molecular docking [11, 91, 92]. The scoring
function can also be used to forecast binding affinity and discover possible drug
candidates for a specific protein of interest, as well as to define the binding mode and
location of a molecule [93]. In lead optimization, scoring functions serve three main
purposes: first, they recognize the best location of a ligand’s binding to a protein
based on the scoring function; second, they estimate the absolute binding affinity
between the protein and ligand; and third, they perform virtual screening, which can
identify possible drug leads for a given target protein by finding a sizable molecule
database [93].

The most recent scoring functions for protein-ligand interactions using a new
categorization that divides the scoring functions into force-field-based, empirical, and
knowledge-based SFs. Ongoing study has drastically enhanced the research for
scoring functions, particularly in protein-ligand interactions.

5.1 Physics-based scoring functions

Direct computation of the associations between both the atoms of a protein and a
ligand is possible using physics-based SFs. Owing to the consideration of solvation,
enthalpy, and entropy, physics-based SFs are suited to calculate binding free energy
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among proteins and ligands with significantly improved prediction performance than
other forms of SFs [94]. These are founded on solvation models, force fields, and
quantum mechanics techniques. The van der Waals and electrostatic interactions
between the protein and ligand atom pairs are added up in the conventional force
field-based SF, which considers the energy-contributing role of enthalpy, to estimate
the binding energy [95].

Pairwise atomic interactions between the ligand and protein are the focus of the
fundamental equation in the classical method. R is the distance between atomic centres,
q is the fractional charge on every atom, and e is the dielectric constant. The A and B
parameters are determined for every pair of various atom type combinations [96].

ΔGbind ¼
Xligand

i¼1

Xprotein

j¼1

Aij

R12
ij
–
Bij

R6
ij

þ
qiqj
εRij

" #

5.2 Empirical scoring functions

Empirical SFs calculate a complex’s binding energy by adding up the essential
energy components for binding affinity, such as hydrophobic effects, hydrogen
bonds, steric conflicts, and so on. There are two study paths in empirical SFs. One
approach is to use a usually high labeled training data to optimize protein complexes;
the other is to pick appropriate energy terms using progressive parameters and
methodical selection of the target molecule [92, 97].

5.3 Knowledge-based scoring functions

Predicated on the reverse Boltzmann statistic concept, knowledge-based SFs com-
pute the appropriate pairwise potential in terms of 3D structures of a wide range of
complexes. The rate of distinct atom pairs at different distances is thought to be
connected to the interactions between two atoms, which translates the rate through
the distance-dependent potential of mean force [18]. When tried to compare to
physics and empirical SFs, knowledge-based SFs have the largest benefit in terms of
processing cost and prediction accuracy. Unfortunately, knowledge-based SFs have a
tough time locating the reference state [98].

5.4 DrugScoreRNA

Interactions of protein with protein, DNA, and ligand have all been studied using
knowledge-based techniques. DrugScoreRNA is the first knowledge-based technique
to scoring RNA-ligand complexes. Because of the small percentage of experimental
measurements of RNA-ligand combinations, it was thought that obtaining statistically
meaningful potentials was improbable [80].

The fact that the binding (free) energy landscape derived by such prospects is more
focused than in the context of all other knowledge-based SFs or AutoDock may be taken
into consideration as one of the factors contributing to DrugScoreRNA’s effectiveness in
docking [18]. This is anticipated to result in a quicker docking converging to a global
solution, or, put another way, a lower probability that the configurational search would
get stale in a local minimum. Reasonable correlation exists between experimental bind-
ing free energies and binding scores estimated by DrugScoreRNA [99].
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5.5 RiboDock

The growing understanding of the significance of RNA in fundamental biological
processes has lately made them more appealing as prospective therapeutic targets. To
find small compounds that may selectively bind to identified locations in RNA mole-
cules and inhibit or otherwise modify their function, a greater number of scientifically
confirmed RNA three- dimensional structures were available. This allowed for
structure-based searches for these molecules [100]. The access to high resolution
structures of RNA-ligand complexes substantially facilitates the investigation of the
atomic intricacies of RNA-ligand contacts. Furthermore, it is difficult to determine the
physical structure of RNA and its interactions, and it is now unable to do so in a high-
throughput way. This is what inspired the creation of source code for simulating the
configurations of RNA-ligand complexes based on the known structures of RNA
targets. Many of these advancements were motivated by comparable strategies used
earlier for protein-ligand complex modeling [89, 100].

One of the first to develop a scoring function specifically for RNA-ligand com-
plexes was done in 2004 by Morley and Afshar. They added the empirical regression-
based tool RiboDock (or rDock) to their own high-throughput docking tool to handle
RNA-ligand structures [101]. This technique was, unfortunately, parameterized and
tested on a small sample size of just 10 RNA molecules. Ligand intramolecular,
intermolecular, site intramolecular, and external constraint factors are weighted
together to form the rDock master score function. The major terminology of impor-
tance is Sintra, which stands for the RNA-ligand interaction score. According on the
provided ligand configuration, Sintra provides the ligand’s energy transfer. Similar to
Ssite, this term denotes the comparative energy of the active site’s variable regions
[100, 101].

5.6 LigandRNA

As discussed in the above section, the importance of RNA in fundamental biolog-
ical processes has grown the scientific community interest in the research area of
Nucleic Acid-Ligand docking. Another Scoring function developed for the similar
function was LigandRNA [89].

The RNA-ligand complexes were computationally solved using the LigandRNA
approach, which uses a grid-based algorithm and a knowledge-based SFs obtained
from ligand-binding domains. LigandRNA requires two files as inputs: an RNA recep-
tor file and a ligand poses file. It produces a list of poses ranked by their score as an
output [100]. The potential is calculated using the inverse Boltzmann method, which
assumes that only ligand poses with interactions that meet the maximum of the
statistical distribution of RNA-ligand atom contacts generated from empirically
established structures of RNA-ligand complexes are advantageous. Thus, according to
their value, the supplied ligand poses are sorted, and this score would be used to assess
the relative effectiveness of binding [89].

5.7 MM/PBSA and MM/GBSA

The molecular mechanics energies combined with the Poisson–Boltzmann or gen-
eralized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) are
the popular techniques for estimating the free energy of the binding of ligand
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molecules to the target protein. In MM/PBSA, the free energy of a state, that is, P, L or
PL in the following equation, is estimated from the following sum [102].

G = Ebnd + Eel + EvdW + Gpol + Gnp - TS.
Ebnd: Bonded (bond, angle and dihedral) energy.
Eel: Electrostatic Energy.
EvdW: van der Waals interactions.
Gpol: polar contribution to the solvation free energy.
Gnp: non-polar contribution to the solvation free energy.
To calculate the MM/GBSA free energy, the system of relevance is first modeled

either using Metropolis Monte Carlo or molecular dynamics (MD), with pose is being
obtained at set intervals and for each pose the free energy is calculated by the above
equation. The continuum-solvation technique, the dielectric constant, the charges, the
sample selection, and the entropies have a significant impact on the outcomes. The
approaches frequently exaggerate the differences between different ligand groups
[103]. In actual use, it frequently produces outcomes of middling quality, frequently
outperforming docking, and scoring. However, because of the findings’ substantial
reliance on the continuum solvation used, either the absolute affinities or the meth-
odology is invalid [103, 104].

5.8 Molecular recognition with a driven dynamics optimizer (MORDOR)

The fixed nature of the protein target is drawback in most of the docking tools. To
overcome this and to explore the dynamic nature of the target Molecular Recognition
with a Driven dynamics Optimizer (MORDOR) tool was developed. MORDOR allows
induced-fit type of docking algorithm. A new RNA stabilizing loop can be formed by
the ligand, which could move bases [105].

MORDOR uses a unique conformational field search technique to achieve this goal,
enabling a productive thorough search while docking. Utilizing a driving force to
move the ligand, this method combines molecular minimization technique. By apply-
ing an extra RMSD kind of force, the ligand explores the receptor surface after
beginning from any pose in and around the receptor. It is crucial to research induced
fit with MORDOR when docking proteins, especially RNA. Drugs do not often bind a
conventional form of nucleic acid, according to the architectures of nucleic acid-drug
complexes. Also, more control over the docking process is provided by the allowance
of an infinite number of restraints. Contrarily, it seems from known drug-nucleic acid
binding structures that the small molecule ligands frequently replace bases, leading to
a local restructuring of the nucleic acid. A drug development process will have a far
better chance of being successful if flexible docking for RNA is used [61, 105].

5.9 Dock-RNA

Numerous biological activities, including the production and control of gene
activity, depend on nucleic acid-ligand interactions. As a result, nucleic acid molecules
like RNAs have grown in importance as pharmacological targets and knowing the
structural characteristics of RNA-ligand complexes is essential to deriving treatment
strategies. The nucleic acid-ligand docking method is divided into two stages: The
model chooses a preliminary set of potential poses during the first stage using a
different computer algorithm for the Born radiuses in the electrical charges; with in
second stage, a stringent scoring function is utilized to arrange the poses to identify
the top molecules [106].
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The scoring function of the molecular docking program is dependent on the shift
in free energy caused by RNA-ligand binding. It aggregates comparable ligand poses
into clusters based on geometrical similarity and ranks the grouped poses based on the
binding affinity. Because it separates itself from other models by sampling all potential
interaction site and poses globally, the findings above highlight the relevance poses.
Unfortunately, the RLDOCK approach is difficult to apply to big target and ligand
sets. The time-consuming selection of the complex formation produces prohibitively
small processing effectiveness of the approach in complexes with a big RNA such as
ribosomal RNA or ligands with the more than 12 rotatable bonds [107, 108].

6. Role of machine learning and artificial intelligence

Machine learning (ML) specially the Deep learning methods (DL) and Artificial
intelligence (AI) has rapidly developed and is being used in drug discovery. ML in
drug discovery is used to improve the existing scoring functions or to develop a new
scoring function for virtual screening studies. The existing scoring functions can be
improved by refining their empirical function’s weights. Most of the ML based scoring
function improvements has been seen in the protein-ligand docking and their virtual
screening domain. The ML methods being used are Random Forest methods [109],
Gradient boosting trees method [110], Support vector machine methods [111], Multi-
layer perceptron methods [112], Convolutional neural network methods [113], and
Graph neural network [114]. The scoring functions for NAs-ligand interactions can be
classified into force-field based, empirical, knowledge-based and machine learning
based. The machine learning based scoring functions can capture intrinsic nonlinear-
ities in the training set without imposing a predetermined functional form. The most
important feature that separates the ML methods from others is that ML maps the
ligands to a potential energy landscape, it is inherently flexible, and the mapping
relationship works without the addition of extensive physicochemical knowledge.
However, the use of ML in NAs binding ligands discovery comes with certain chal-
lenges as well. First, the mapping relationships generated by ML are not always
interpretable and the second, ML models for NAs could find difficult to make accurate
predictions for complexes out of the training sets.

For the NA-ligand complex interactions two ML based scoring functions were
recently developed, RNAPoser [115] and AnnapuRNA [116]. The RNAPoser uses a set
of 80 RNA-ligand experimental structures as dataset and investigates the ‘nativeness’
of the RNA-ligands poses. This program uses machine learning methods to train a set
of pose classifiers that would estimate the position of the ligands in the experimental
structures. These poses are defined as fingerprints which are encoded as local RNA
environment surrounding the ligand. This method uses the leave-one-out training and
testing approach where about 80% of the native poses were recovered within 2.5 Å.
The classification is done based on ranking of ligands and scoring from machine
learning classifiers, which were able to recover the native like poses. The validation set
for the method returned recovery of native poses for more than 60% of the cases.
These were found to be better than the poses with higher docking scores. Another
recent development in the NA-ligand docking improvement is AnnapuRNA. It is a
machine learning-based statistical scoring function which can evaluate the quality of
RNA-Ligand complex structure predicted by a computational docking program and
thus help in validation of the docking results. It uses the information like the initial
ligand conformation, the docking program and the scoring function used by the
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docking program. The training set is derived from the experimental data available on
the PDB and it uses the kNN (k-Nearest Neighbors) and Deep Learning (multi-layer
feedforward artificial neural network) as ML algorithms. This program supports a
various docking program like the AutoDock, AutoDock Vina, Dock6, rDock, iDock,
LigandRNA, and several other NAs specific programs.

7. Conclusion

In this chapter we have overviewed various important aspects in development of
small molecule inhibitors for NAs and various docking software specific and non-
specific for NAs-ligand docking. We have also reviewed various docking programs,
algorithms and scoring functions, their advantages and lacune and challenges in the
discovery of novel NAs binding ligands. Until recently most of the algorithms were
focused on protein-ligand docking but now slowly programs specific for NAs are
appearing in the molecular docking space. The progress in ML and AI has led to an
advantage for development of NA specific algorithms. However, there is lot of scope
for development of NA-docking specific programs, structural variations of NA also
pose a challenge for the new programs. However, it is possible to convert these
challenges into opportunities as the need for better NA targeting ligands are high in
demand specifically due to the resurgence of viral infections and other infectious
disease.
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Chapter 6

Repurposing Drugs as Potential
Therapeutics for the SARS-Cov-2
Viral Infection: Automatizing a
Blind Molecular Docking
High-throughput Pipeline
Aldo Herrera-Rodulfo, Mariana Andrade-Medina
and Mauricio Carrillo-Tripp

Abstract

In the context of the COVID-19 pandemic, scientists worldwide have been looking
for ways to stop it using different approaches. One strategy is to look among drugs
that have already proved safe for use in humans and tested for other illnesses. Several
components from the virus and the infected cell are the potential therapeutic targets
from a molecular perspective. We explain how we implemented a cavity-guided blind
molecular docking algorithm into a high-throughput computational pipeline to auto-
matically screen and analyze a large set of drugs over a group of SARS-CoV-2 and cell
proteins involved in the infection process. We discuss the need to significantly extend
the conformational space sampling to find an accurate target-ligand complex. Our
results identify nine drugs with potential multi-target activity against COVID-19 at
different stages of the infection and immune system evasion. These results are
relevant in understanding the SARS-CoV-2 drug’s molecular mechanisms and
further clinical treatment development. The code developed is available on GitHub
[https://github.com/tripplab/HTVS].

Keywords: SARS-CoV-2, COVID-19, drug repurposing, cavity-guided blind
molecular docking, high-throughput virtual screening

1. Introduction

The coronavirus disease-2019 (COVID-19) is the third documented viral outbreak
caused by a member of the Coronaviridae family. From 2002 to 2004, the severe acute
respiratory syndrome coronavirus (SARS-CoV) spread to 29 countries, causing 8422
confirmed cases and 916 deaths, and is considered the first emerging epidemic of the
twenty-first century [1, 2]. Later in 2012, the middle-east respiratory syndrome coro-
navirus (MERS-CoV) caused 2585 confirmed cases and 890 deaths to date [3]. In less
than two decades since the appearance of SARS-CoV, the severe acute respiratory
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syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has spread world-
wide ever since by human-to-human transmission. As of April 29, 2022, there are
more than 510 million confirmed cases and 6.2 million deaths related to SARS-CoV-2
infection, and it continues to increase at present [4]. The Coronaviridae family com-
prises a group of enveloped crown-shaped single-stranded positive-sensed RNA
viruses (ssRNA+) with multiple domestic and wild animal reservoirs [5]. Lessons
from previous and current outbreaks have shown the severity of cross-species trans-
mission, which has led to concerns about health emergencies, such as COVID-19. The
transmission of this disease occurs through an infected person’s respiratory droplets
carrying the SARS-CoV-2, and the severity ranges from asymptomatic cases, mild and
moderate flu-like symptoms, to critical illness requiring intensive care with mechan-
ical ventilation, and death [6]. Global contributions and efforts following the COVID-
19 outbreak have unraveled a considerable amount of information about viral infec-
tion, transmission, infection cycles, and immune evasion. Currently, the three-
dimensional proteome structures of the SARS-CoV-2 are available on the RCSB pro-
tein data bank [7]. Therefore, it is feasible to evaluate drug-like small molecules
against relevant targets in the viral infection cycle through a structure-based molecular
docking approach. Blind molecular docking, unlike traditional molecular docking, does
not require prior knowledge of target binding sites, which simplifies the automatizing of
the process since it only needs the structural information of the target. In the past, this
process was considered less accurate than the traditional. However, methods, such as
CB-dock, have overcome this limitation by reducing the nonrelevant conformation
sampling by directing the molecular docking on putative sites instead of the whole
protein structure [8]. The integration of this tool into our customized high-throughput
virtual screening pipeline allows the screening of N sorted-by-size cavities. The cavity-
based search is an exciting scenario because protein-ligand interactions usually occur in
large protein cavities or pockets that frequently contain the active site [9]. Moreover,
the exploration of cavities in the vicinity of protein-protein interfaces (PPI) is also an
attractive approach to searching for effective inhibitors since it plays an essential role in
nearly all biological processes, including SARS-CoV-2 infection [10, 11]. In this context,
screening already-known drugs with described pharmacology, dose, toxicity, formula-
tion, and proven to be safe for use in humans represents a low-risk and cost-effective
strategy to considerably shorten the time required for drug approval [12, 13]. We
present an in-house customizable pipeline that integrates a cavity-guided blind molec-
ular docking algorithm to extend the conformation space sampling on putative sites
significantly. We also report the methodology to follow and results of the virtual
screening of 47 drugs for potential repurposing against 16 structures of 10 viral and cell
targets that are key in the SARS-CoV-2 infection cycle.

2. Overview of the SARS-CoV-2 infection cycle

The initial stage of the infection cycle starts with the recognition and anchoring of
the SARS-CoV-2 spike protein complex into the host angiotensin-converting enzyme 2
(ACE2) through the receptor-binding domain (RBD) located at each one of the 3S
proteins [14]. Then, the activation of the spike occurs at the surface or endosome level
by transmembrane serine protease 2 (TMPRSS2) or cathepsin B/L proteases, respec-
tively, to allow viral entry [15]. Once the virus membrane merges with the cell
membrane, the genomic material enters the cell. The cell’s ribosomes then translate
the viral RNA into pp1a/ab polyproteins, which will be later processed by cleavage
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through the enzymatic activity of the main protease (Mpro) and the papain-like prote-
ase (PLpro) [16]. This process will release 16 non-structural proteins (NSPs), including
the RNA-dependent RNA polymerase (NSP12) and co-factors NSP7, and NSP8 of the
RNA-replication machinery (Rdrp). After replication, expression of the structural pro-
teins occurs, the genomic material is packaged, and the virion is assembled on a lipid
membrane and matured for subsequent exocytosis. In addition, evidence suggests that
the SARS-CoV-2 proteases and some of their cleavage products, besides their critical
function for the proper infection process, interplay with the host’s innate immune
response through different mechanisms [17]. In particular, PLpro-ISG15 interaction
allows the virus to evade the innate immune response through deubiquitination and
deISGylation activities of the protease [18, 19]. Interestingly, the process occurs at the
same binding cavity as the PLpro known inhibitor, GRL0617 [20].

3. Methods

The code for the cavity-detection guided blind docking (CB-Dock) [8] stand-alone
version is freely available at Yang Cao’s Lab webpage [http://clab.labshare.cn/cb-doc
k/php/manual.php#download].

The customized high-throughput virtual screening pipeline we developed can be
accessed at GitHub [https://github.com/tripplab/HTVS].

3.1 Drug selection and modeling

We conducted an extensive scientific literature search for drugs reported as
potentially able to prevent SARS-CoV-2 infection. The search included in silico,
in vitro, and in vivo studies, covering different stages of the viral cycle. We grouped
the reported ligands into five sets: the fusion and viral entry into the host cell (RPA),
the polyprotein processing by viral proteases (RPB and RPD), the RNA replication
machinery (RPC), and other drugs with alternative or unknown mechanisms (EXT).

We performed the molecular in silicomodeling of each ligand’s configuration using
the PubChem compound identifier (CID) or, in its absence, using UCSF chimera 1.15
from scratch [21]. The solvent, ions, and other small molecules were removed in all
cases, while charges and hydrogens were fixed at neutral pH. Then, ligands were
subjected to energy minimization by 10,000 steepest descent steps and 1000 conju-
gate gradient steps to ensure the proper molecular conformation, saving the final
structure in MOL2 format. The next step was to generate the files in PDBqt format
using AutoDock Tools, considering the torsional degrees of freedom [22]. We used the
PDBqt and MOL2 files as input for the high-throughput virtual screening pipeline. A
list of all the ligands studied in this work is shown in Table 1.

3.2 Target selection and modeling

We included viral and cellular targets involved in the SARS-CoV-2 infection cycle,
covering the entry, polyprotein processing, and replication. The targets’ three-
dimensional structures were obtained from the Research Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB) in PDB format [65]. The complete structure
of the spike homotrimer complex (PDB: 6VXX-1-1-1) was retrieved from the
CHARMM-GUI Archive-COVID-19 proteins library [66]. We took special consider-
ation to the spike complex given its large size and quaternary structure. We focused
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ID Drug CIDa References

RPA01 Losartan 3961 [23, 24]

RPA02 Telmisartan 65,999 [23, 25]

RPA03 Arbidol 131,411 [26, 27]

RPA04 Camostat mesylate 5,284,360 [26, 28]

RPA05 Rimantadine 5071 [29]

RPA06 Chloroquine 2719 [26, 30]

RPA07 Hydroxychloroquine 3652 [26, 30]

RPA08 Baricitinib 44,205,240 [31, 32]

RPA09 Colchicine 6167 [33, 34]

RPA10 Disulfiram 3117 [35, 36]

RPA11 Ebselen 3194 [35–37]

RPA12 Hesperidin 10,621 [38, 39]

RPA13 Qingdainone 3,035,728 [40]

RPA14 Nafamostat 4413 [41, 42]

RPA15 Dipeptidyl nitrile-derivative Compound 10 [43]

RPB01 Lopinavir 92,727 [26, 44]

RPB02 Ritonavir 392,622 [26, 44]

RPB03 Darunavir 213,039 [29, 45]

RPB04 Cobicistat 25,151,504 [45]

RPB05 Isatin-derivative Compound 26 [46]

RPB06 Rupinatrivir 6,440,352 [47, 48]

RPB07 E-64 123,985 [49]

RPB08 N3 inhibitor 405,067,310 [50]

RPC01 Ribavirin 37,542 [51, 52]

RPC02 Sofosbuvir 45,375,808 [51, 52]

RPC03 Molnupiravir 145,996,610 [51, 52]

RPC04 Nilotinib 644,241 [53–55]

RPC05 Saquinavir 441,243 [29, 51, 52, 55]

RPC06 Tipranavir 54,682,461 [51, 52, 55]

RPC07 Lonafarnib 148,195 [55]

RPC08 Tegobuvir 23,649,154 [51, 52, 55]

RPC09 Simeprevir 24,873,435 [51, 52]

RPC10 Filibuvir 54,708,673 [51, 52, 55]

RPC11 Cepharanthine 10,206 [55]

RPC12 Redemsivir 121,304,016 [26, 51, 52]

RPC13 Favipiravir 492,405 [26, 51, 52]

RPD01 rac5c 76,853,649 [19]

EXT01 Ascorbic Acid 54,670,067 [56]
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on four independent spike-based structures to extend the cavity sampling: the full-
length spike’s homotrimer complex, the homotrimer head (S1), 1 S protein monomer,
and one isolated receptor-binding domain (RBD).

Water, ions, glycosylations, and co-crystallized ligands were removed from all
targets. Charges and hydrogens were fixed at neutral pH using chimera 1.15, their
structure optimized, and the final configuration saved in PDB format [21]. In total, 16
structures of 10 targets were curated, as summarized in Table 2.

3.3 Extended conformational space sampling maximizes the prediction accuracy
of the target-ligand complex

Molecular docking is a computational method that allows to sample the conforma-
tional space and rank the ligand poses through an energy scoring function. It attempts
to generate an optimized target-ligand complex conformation with the lowest binding
free-energy change estimate, predicting the interaction of the two molecules in the
energy minimum. This task is a cyclic process performed by systematic or stochastic
search methods. However, the latter is the choice of preference since it increases the
probability of finding an energetic global minimum conformation because the search
initiates from different random points [78]. For this reason, the results of two or more
molecular docking cycles are not necessarily the same due to the random nature of the
conformational search method. Therefore, performing as many cycles as necessary to
get as close as possible to the energetic global minimum conformation is essential.

Easy customization of this parameter in the developed high-throughput virtual
screening code offers the user the possibility of an exhaustive sampling of the confor-
mational space that maximizes the accuracy of target-ligand complex prediction.

3.4 High-throughput virtual screening pipeline

We have developed in-house bash scripts that integrate the CB-Dock’s cavity-guided
blind molecular docking method, which automatically identifies binding sites by calcu-
lating putative cavities through a curvature-based detection approach. Molecular

ID Drug CIDa References

EXT02 Ergocalciferol 5,280,793 [57, 58]

EXT03 Cholecalciferol 5,280,795 [57, 58]

EXT04 Ivermectin 6,321,424 [59]

EXT05 Azithromycin 447,043 [60]

EXT06 Heparin 772 [61]

EXT07 Methylprednisolone 6741 [62]

EXT08 Carvacrol 10,364 [63]

EXT09 Ursolic acid 45,358,157 [64]

EXT10 Oleanolic acid 485,707 [64]
aIn the absence of the CID, the reference to the original investigation and the compound number are provided.

Table 1.
Ligand information, CID number, and reference of 47 drugs with potential activity against the SARS-CoV-2 viral
cycle.
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docking analysis is conducted in these putative cavities to sample and rank ligand poses
and estimate the best target-ligand complex binding energy scores per cycle.

The pipeline has three phases comprised of nested loops, schematized in Figure 1 as
a flowchart. First, each target T is subject to a cavity detection step based on a spatial
geometry measure of curvature distribution on the protein surface [79]. Cavity identi-
fication is achieved by clustering the resulting surface points by density and curvature
factor [80]. All cavities are then sorted by size, considering their solvent-accessible
surface area. Second, the algorithm automatically configures a docking box for each
cavity by defining its center and size, considering the cavity space location and the
ligand L size. Finally, in the third step, the blind molecular docking is performed by the
AutoDock VINA algorithm [8, 81] for the user-defined top N cavities for each ligand L
and each target T. This protocol will be repeated for K-independent rounds.

In our study, we found that the optimal number of independent rounds is K ¼ 30
since it is at this point that the conformational search converges to the lowest energy
binding pose; that is, more rounds do not improve the prediction. The calculations
were performed on the top N ¼ 10 cavities for each T � L pair to significantly extend
the cavity and conformational space sampling. The value of these parameters is easily
customizable at the top section of the bash script.

3.5 Target-ligand co-crystallization complex prediction

The method we used for automatizing the virtual high-throughput screening pro-
cess is blind; that is, it does not require any information on the binding site. Hence, we

ID Target PDB IDa SARS-CoV-2 infection step References

H00 ACE2 1R4L_A Viral recognition [67]

H01 ACE2 (B0AT1 closed complex) 6M18_B Viral recognition [68]

H02 ACE2 (B0AT1 open complex) 6M1D_B Viral recognition [68]

H03 TMPRSS2 7MEQ_A Viral priming [69]

H04 Cathepsin B 3AI8_B Viral priming [70]

H05 Cathepsin L 2NQD_B Viral priming [71]

V01 Spike homotrimer 6VXX1-1-1 Viral recognition [72, 73]

V01H Spike homotrimer head 6VXX1-1-1 Viral recognition [72, 73]

V02 S protein 6VXX1-1-1 Viral recognition [72, 73]

V02R S protein’s RBD 6VXX1-1-1 Viral recognition [72, 73]

V03 Mpro 6LU7_A Polyprotein processing [74]

V08 PLpro 7JRN_A Polyprotein processing [20]

V04 NSP12 7AAP_A RNA replication [75]

V05 NSP7 6M71_C RNA replication [76]

V06 NSP8 6NUR_B RNA replication [77]

V07 Rdrp-complex (NSP12-NSP7-NSP8) 6M71_ABC RNA replication [76]
aUnderscore denotes the chain selected from PDB coordinates files.

Table 2.
Structural information and PDB entries of viral (V) and host (H) targets included.
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validated its predictions by reproducing the enzymatic targets’ experimental binding
complexes. We gathered a set of ligands with available complex co-crystallized data.
Eight known enzymatic inhibitors were modeled, optimized, and evaluated under the
same methodology conditions as the rest of the ligands included in this study. The
ligands in the control set are listed in Table 3.

Furthermore, at this time, a small drug-like co-crystallized molecule in complex
with the spike homotrimer does not yet exist. We included amantadine (INV05) in
our set as a negative control since it inhibits the SARS-CoV-2 infection but does not
prevent spike-ACE2 interaction [83].

3.6 Data analysis and selection criteria

We inspected the top 10 size-ranked putative cavity sites screened for each target.
We selected those that either had the active site (targets ACE2, TMPRSS2, cathepsin
B/L, Mpro, and NSP12), or were inside a quaternary interface (targets spike, PLpro,
and Rdrp). We selected the T � L complex conformation with the best affinity
estimation, that is, the conformation with the lowest energy scores after K ¼ 30
independent rounds for each target-ligand pair. We organized the data in matrix form
and analyzed it with the statistical R package function heatmap.2. Rows (ligands) or
columns (targets) were scaled to have average = 0 and standard deviation = 1 and
generated a Z-score heatmap representation. Finally, we identified potential drugs for
repurposing as those ligands with the best energy score estimate at least one standard
deviation away from the mean toward more negative values. The data matrix of the
VINA scores of the conformation with the lowest scores after K ¼ 30 independent

Figure 1.
Flowchart of the customized high-throughput virtual screening pipeline implemented in this work. Four phases are
involved, i) target and ligand molecular modeling (blue), ii) target cavity detection (green), iii) docking box
optimization (orange), and iv) target-ligand docking (red).
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cycles of each target-ligand pair for known inhibitors and the set of ligands evaluated
are provided in the appendix section as Tables A-1 and A-2.

4. Results

4.1 Blind docking correctly reproduces co-crystallized known-inhibitor binding

We found that the T � L complex conformation with the lowest energy for the
known co-crystallized inhibitors in our control set successfully reproduces the ligand
binding at the active site with an RMSD below 1 Å in most cases, as shown in Figure 2.
These findings strongly suggest that the implemented high-throughput blind docking
cavity-guided protocol can accurately predict the binding mode of the T � L data in
the experimental set.

4.2 Statistical analysis of the data: Sorting results by target

After doing all the blind docking calculations with an extended conformation
sampling, we analyzed the most negative energy scores. We performed a Z-score
transformation of the data for each independent column in the matrix (targets T). The
graphical representation of the results is shown as a heatmap in Figure 3 using a
six-color code based on the Z-score value.

Since each column gathers the results for a different target, it is thus possible to
identify which ligands had the best scores for each target (in green). It is worth noting
that cathepsin L (H05) and PLpro (V08) co-crystallized inhibitors give a good binding
free-energy estimate. Most of the co-crystallized inhibitors remained near the mean

Target
ID

Target
name

Ligand PDB
ID

Reference

1. Co-crystallized reproducibility

INH01 ACE2 MLN-4760 1R4L [67]

INH02 TMPRSS2 4-Guanidinobenzoic acid 7MEQ [69]

INH03 Cathepsin B Nitroxoline 3AI8 [70]

INH04 Cathepsin L 4-Bipheylacetyl-cys-(D)-ARG-TYR -N-(2-Phenylethyl)
Amide

2NQD [71]

INV01 Mpro Narlaprevir 7JYC [20]

INV02 NSP12 Remdesivir 7BV2 [82]

INV03 NSP12 Favipiravir 7AAP [75]

INV04 PLpro GRL0617 7JRN [20]

2. Negative controla

INV05 Spike Amantadine NA [83]
aDoes not prevent ACE2-Spike interaction despite inhibiting in vitro SARS-CoV-2 replication.

Table 3.
Modeled ligands to validate that the method is capable of reproducing the co-crystallized complex conformations
and previous in vitro findings (negative control).
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(in black, with respect to the experimental drug set), except for amantadine (INV05),
which presents a positive Z-score value for the spike’s RBD (in red). The latter is
concomitant to previous works, where amantadine fails to prevent the spike-ACE2
quaternary interaction [83].

4.3 Nine ligands showed potential for drug repurposing against targets involved
in SARS-CoV-2 infection

Out of the 47 drugs screened, nine showed potential inhibition against viral or host
targets of the SARS-CoV-2 infection cycle. Saquinavir, simeprevir, nilotinib, an isatin-
derivative, telmisartan, tegobuvir, qingdainone, rac5c, and nafamostat achieved the
selection criteria. Interestingly, all but rac5c and nafamostat showed the best scores
against more than one target. The schematic representation of these results is
summarized in Table 4.

4.4 Sorting results by ligand: The screened ligands showed a preference for
ACE2, Spike, and PLpro targets

Also, we inspected the results by ligand, performing a Z-score analysis by row
(ligands). Since the rows gather data from the L� T complex, it is thus possible to
identify which ligand had the best scores on any particular target, that is, which target
T might be a potential pharmacological target for the ligand L. The results are
presented in Figure 4 with a heatmap, using the same color-based code as previously
described (see Section 4.2). The targets having most of the ligands in the experimental
set with a negative Z-score are ACE2 H00, H01, and H02, and the spike protein
structures V01, V01H, and V02 (see Table 2). The results suggest a greater accep-
tance of those two targets for the ligands as drug-like molecules, at least in the cavities

Figure 2.
Target-ligand complex superimposition of native co-crystallized inhibitors (yellow) and the best-predicted ligand
conformation after K ¼ 30 independent blind docking pipeline rounds (green). The molecular targets (orange) are
ACE2 labeled as H00,TMPRSS2 (H03), cathepsin B (H04), cathepsin L (H05), Mpro (V03), NSP12 (V04),
and PLpro (V08), created with the visual molecular dynamics (VMD) [84].
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evaluated. These findings are not a minor fact because those targets are directly
involved in the first step of the viral infection.

The ligands such as arbidol, colchicine, qingdainone, nafamostat, and carvacrol
exhibit a binding preference to PLpro (V08). It is important to highlight the essential
function of the protease PLpro for processing the viral proteome and evading the
host’s innate immune system. In the latter case, PLpro cleaves off post-translational
modifications, such as ubiquitin and ubiquitin-like proteins from cell proteins,
disrupting the inflammatory signaling pathway necessary for an appropriate immune
response [18, 85]. Noteworthy, the potential PLpro inhibitors we have identified in
the present work as repurposed drugs form a T � L complex in the cavity where
GRL0617 binds, located in the USP domain [20]. The inhibition of this site means
blocking the interaction with the ubiquitin-like protein ISG15, evading the immune
mechanisms and compromising its canonical enzymatic activity due to the proximity
of the assessed site to the active site.

Figure 3.
Target (columns) and ligand (rows) complex docking results. Heatmap of binding free-energy change estimates,
using a color-based code according to the Z-score value through column analysis. Targets are grouped as host
proteins (blue) and virus proteins (pink). Ligands are grouped by control set (green), potential repurposing drugs
(orange), and others (brown). IDs correspond to those defined in Tables 1–3. Black shades represent ligands
around the set’s mean. In green shades, ligands with at least one negative standard deviation from the mean. Red
shades represent ligands with at least one positive standard deviation from the mean.
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5. Scientific evidence to support our findings

5.1 Saquinavir and simeprevir targeting viral entry and Rdrp quaternary complex
formation

Saquinavir is a peptide-mimetic HIV inhibitor. However, some reports suggest
potential inhibitory activity against SARS-CoV-2 proteases [86–88] and other targets
involved in the viral infection, such as the Rdrp replication complex [55, 89] and the

ID Drug Target VINA score Z-scorea

RPC05 Saquinavir ACE2 (H00) �12.9 �1.70

RPB05 Isatin-derivative ACE2 (H01) �10.7 �2.06

RPC04 Nilotinib �10.2 �1.72

RPD01 rac5c �9.9 �1.51

RPC04 Nilotinib ACE2 (H02) �10.7 �1.85

RPC09 Simeprevir �10.4 �1.62

RPC04 Nilotinib TMPRSS2 (H03) �8.9 �1.58

RPC05 Saquinavir �8.8 �1.49

RPC04 Nilotinib Cathepsin B (H04) �9.6 �1.64

RPC09 Simeprevir �10.3 �2.20

RPA02 Telmisartan Spike (V02) �9.4 �1.63

RPB05 Isatin-derivative Spike (V01H) �10.9 �1.67

RPA13 Qingdainone Mpro (V03) �9.4 �1.56

RPC04 Nilotinib �9.7 �1.80

RPC09 Simeprevir NSP12 (V04) �9.1 �1.60

RPA13 Qingdainone NSP7 (V05) �7.4 �1.69

RPC08 Tegobuvir �7.3 �1.59

RPC09 Simeprevir �7.6 �1.89

RPA02 Telmisartan NSP8 (V06) �8.8 �1.65

RPC04 Nilotinib �8.9 �1.73

RPC05 Saquinavir �9 �1.80

RPC09 Simeprevir Rdrp (V07) �10 �1.96

RPA13 Qingdainone PLpro (V08) �9.9 �1.72

RPA14 Nafamostat �10.1 �1.88

RPC04 Nilotinib �9.8 �1.65

RPC08 Tegobuvir �9.8 �1.65
aZ-scores were calculated by the target.

Table 4.
Potential drugs for repurposing with the most negative free-energy change score found and their corresponding Z-
score value grouped by the target.
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spike-ACE2 PPI [90]. In our study, saquinavir showed the best energy scores against
TMPRSS2, ACE2, and the NSP8-NSP12 interface of the Rdrp complex, as shown in
Figure 5. The transmembrane serine protease 2 (TMPRRS2) is essential in several viral
infections. Previous reports have shown that the inhibition of this target significantly
reduces SARS-CoV-2 entry in lung cells at nM concentrations and therefore the viral
infection [91]. Saquinavir also presented the best energy scores against the ACE2
active site, a critical host target needed to initiate entry through the formation of the
spike-ACE2 quaternary complex. In this scenario, conformational changes upon
ligand binding into the catalytic cavity may shift the relative positions of the receptor’s
interface residues that bind to the spike protein and prevent the anchoring of the spike
on host cells [92]. However, because saquinavir targets the catalytic site of ACE2, the
main activity of this enzyme in the renin-angiotensin system requires further investi-
gation of its biological effect as a competitive inhibitor [93]. In addition, our results
show that this drug targets the Rdrp replication complex, which is consistent with the
previous results reported in the literature [55, 94]. Interestingly, saquinavir appears to

Figure 4.
Target (columns) and ligand (rows) complex docking results. Heatmap of binding free-energy change estimates,
using a color-based code according to the Z-score value through row analysis. Targets are grouped as host proteins
(blue) and virus proteins (pink). Ligands are grouped by control set (green), potential repurposing drugs (orange),
and others (brown). IDs correspond to those defined in Tables 1–3. Black shades represent ligands around the set’s
mean. In green shades, ligands with at least one negative standard deviation from the mean. Red shades represent
ligands with at least one positive standard deviation from the mean.
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target two essential steps, compromising the entry and viral replication of the SARS-
CoV-2.

On the other hand, simeprevir also showed the best energy scores on targets
relevant to viral entry and replication, including the active cavities of ACE2, cathepsin
B, NSP12, and the Rdrp complex interface. We show a molecular visualization of these
results in panels A, C, and G of Figure 5. This drug is a protease inhibitor that has
presented potent in vitro suppression of SARS-CoV-2 replication at μ M range in Vero

Figure 5.
Target-ligand complex conformations of potential drugs for repurposing. Molecular docking against viral and host
targets relevant in the SARS-CoV-2 infection cycle. A. Superposition of ACE2 target (H00, H01, and H02)
docked with saquinavir (cyan), isatin-derivative (red), nilotinib (pink), rac5c (brown), and simeprevir
(yellow). B. TMPRSS2 docked with saquinavir (cyan) and nilotinib (pink). C. Spike docked with telmisartan
(purple) and isatin-derivative (red). D. Cathepsin B docked with nilotinib and simeprevir (yellow). E. Mpro
docked with nilotinib (pink) and qingdainone (orange). F. PLpro docked with nafamostat (green), nilotinib
(pink), qingdainone (orange), and tegobuvir (dark orange). G. Superposition of NSP12 and NSP7 and NSP8
cofactors docked with simeprevir (yellow), tegobuvir (dark orange), nilotinib (pink), telmisartan (purple),
qingdainone (orange), and saquinavir (cyan), created with the visual molecular dynamics (VMD) [84].
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E6 cell lines [95]. It is a macrocyclic drug that forms a non-covalent bond within the
active site of the hepatitis C virus (HCV) NS3/4A protease, which has a similar three-
dimensional arrangement to SARS-CoV-2 Mpro catalytic residues [96]. Simeprevir
binds to ACE2 in a quaternary complex inhibition mechanism, analogous to saquina-
vir, concomitant with the reported disruption of spike-ACE2 PPI [90]. However, the
binding does not occur directly at the active site as saquinavir but in the same but
larger cavity. Additionally, this drug targets the peptidase activity of cathepsin B,
which is a crucial step in spike activation and viral entry. ACE2 was previously
proposed as a strategic target to limit viral infection by targeting the cathepsin-
mediated entry pathway, decreasing the viral infection efficiency [15, 97]. Simeprevir
also showed the best results for the Rdrp complex. Consistent with our results,
biochemical assays show low Rdrp replication efficiency after treatment with this
drug [95].

5.2 Nilotinib targeting viral entry, polyprotein processing, and Rdrp quaternary
complex

Nilotinib is used to treat chronic myelogenous leukemia as a Bcr-Abl tyrosine
kinase antagonist. Our results suggest the potential inhibition of six targets involved in
the SARS-CoV-2 infection process, including the catalytic cavities of enzyme targets
ACE2, TMPRSS2, cathepsin B, Mpro, and the PLpro-ISG15 and Rdrp’s NSP8-NSP12
interfaces. We show a molecular visualization of these results in Figure 5. Reports
suggest that nilotinib can inhibit the SARS-CoV and SARS-CoV-2 infection processes,
but not MERS-CoV. Interestingly, the latter does not use ACE2 as a cell receptor
[98, 99]. This observation is particularly interesting since other reports suggest that
nilotinib can destabilize the SARS-CoV-2 spike-ACE2 complex [54]. According to our
results, nilotinib might prevent the spike priming and activation since it showed the
best energy scores against TMPRSS2 and cathepsin B at the active site cavities. These
findings represent a potential inhibition of two independent priming pathways.
Moreover, nilotinib potentially inhibits the Mpro and Rdrp complex and is consistent
with previous in vitro and in silico results [55, 100].

Interestingly, nilotinib also had the best energy scores against PLpro. In addition to
PLpro’s essential protease activity in the processing of pp1a polyprotein, it is also
implicated in host immune innate response evasion mechanisms as described in Sec-
tion 4.4. The inhibition of PLpro decreases the exacerbated immune response, as
described by other members of the Bcr-Abl inhibitors family, for example, ponatinib,
which protects against cytokine storm in mouse models [101, 102].

5.3 An isatin-derivative and telmisartan targeting SARS-CoV-2 entry

Isatin-derivatives have shown potential antiviral properties, some of them with
promising results against HCV, SARS-CoV [103, 104], and SARS-CoV-2 [46]. In
particular, the compound 1-(naphthalen-2-ylmethyl)-2,3-dioxoindoline-5-
carboxamide inhibits Mpro from SARS-CoV-2. Therefore, we decided to evaluate it
against our whole set of targets. It presented the best score against the ACE2 active
site, which might disrupt the spike-ACE2 interaction as discussed previously (see
Section 5.1). Moreover, it also showed the best energy scores against the spike protein,
precisely in the quaternary interface region of the homotrimer complex, and thus a
plausible termination of the viral cycle at an early stage in the replication process.
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Telmisartan is an anti-antihypertensive. There is evidence of a morbidity and
mortality reduction in hospitalized patients infected with SARS-CoV-2 treated with
this drug [105]. Telmisartan showed the best energy scores against a spike’s cavity in
the homotrimer quaternary interface. Therefore, the isatin-derivative could inhibit
two targets involved in the viral entry (spike and ACE2), while telmisartan might
prevent the spike homotrimer formation and the Rdrp complex. We show the
molecular visualization of these results in panels A, C, and G of Figure 5.

5.4 Tegobuvir, qingdainone, and nafamostat targeting quaternary interface
regions

Tegobuvir is a non-nucleoside inhibitor of the NS5B polymerase of HCV. Our
results suggest that this drug may prevent the formation of the Rdrp quaternary
complex. Previously, in silico results reported tegobuvir as a potential inhibitor of
Rdrp active site [106]. According to our data, tegobuvir did not achieve the selection
criteria at the Rdrp active site. However, it shows a negative Z-score value at the
NSP7-NSP12 interface region, which may compromise the RNA synthesis efficiency
of the complex since its importance along with NSP8 for the Rdrp enzymatic activity
[107]. Moreover, tegobuvir, nafamostat, and qingdainone presented the best binding
free-energy change estimates on a cavity of PLpro in the vicinity of the interface of
this target with ISG15, compromising an adequate immune response. In this manner,
these drugs could avoid the formation of PLpro-ISG15 and the Rdrp quaternary
complexes.

In addition, qingdainone also showed the potential inhibitory activity on Mpro
active site, suggesting that this drug might completely disrupt the polyprotein
processing stage by targeting both proteases, Mpro and PLpro. We show a molecular
visualization of these results in Figure 5.

5.5 Nafamostat and rac5c as potential inhibitors of PLpro and ACE2

We included nafamostat and rac5c in our ligand sets due to evidence suggesting
their inhibitory capacity against TMPRSS2 [108] and PLpro [19], respectively. Neither
ligand achieved the selection criteria for their expected targets despite being on the
borderline with scores of �8.3 and � 9.3 kcal/mol, which indicates the selection
criteria’s exhaustiveness. However, nafamostat does achieve the best scores against
PLpro’s USP domain, while rac5c presented the best score on the ACE2 active site. We
show these results in panels A and F of Figure 5.

6. Conclusions

We have theoretically identified nine drugs or compounds for potential drug
repurposing against SARS-CoV-2 through a cavity-based blind molecular docking
protocol (Figure 6). Interestingly, seven of them present potential inhibitory activity
on multiple targets at different stages of the viral infection cycle, including innate
immune evasion. We have implemented an in-house high-throughput virtual screen-
ing pipeline that successfully reproduces experimental data and findings from previ-
ous works. After the target’s cavity detection and ranking by surface area, we used the
pipeline to perform the numerous independent blind molecular docking rounds to
achieve a sufficiently extensive conformational target-ligand complex search.
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Experimental design is a critical step in every scientific study, for example, method
validation by including a control group. Nonetheless, one has to be wary of the
limitations of the methodology employed. In this case, molecular docking can be a
good estimator for the most energetically favorable T � L complex. However, the
method does not explicitly consider solvent or thermodynamic parameters. Hence,
molecular docking results should be taken as the input of other methodologies to
further the study, for example, molecular dynamics.

We analyzed the molecular binding predictions through rigorous visualization and
Z-score-based statistical algorithms to identify the potential drugs for repurposing. In
this context, our findings suggest that:

• Saquinavir and simeprevir could target viral entry and Rdrp complex quaternary
formation,

• Nilotinib could target viral entry, polyprotein processing, and Rdrp quaternary
complex formation,

• An isatin-derivative and telmisartan could target SARS-CoV-2 entry into the host,

• Tegobuvir, qingdainone, and nafamostat could target quaternary interface Rdrp
regions, and

Figure 6.
Repurposing drugs (left) with corresponding potential inhibitory activity on multiple viral or host targets (right).
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• Nafamostat and rac5c could be potential inhibitors of PLpro and ACE2.

These results are relevant in understanding the SARS-CoV-2 drug’s molecular
mechanisms and further clinical treatment development, either at a single or multi-
target activity.
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Chapter 7

N1-(3-(Trifluoromethyl)Phenyl) 
Isophthalamide Derivatives as 
Promising Inhibitors of Vascular 
Endothelial Growth Factor 
Receptor: Pharmacophore-Based 
Design, Docking, and MM-PBSA/
MM-GBSA Binding Energy 
Estimation
Aliaksandr Faryna and Elena Kalinichenko

Abstract

Targeting protein kinases is a common approach for cancer treatment. In this 
study, a series of novel terephthalic and isophthalic derivatives were constructed 
as potential type 2 protein kinase inhibitors adapting pharmacophore features of 
approved anticancer drugs of this class. Inhibitory activity of designed structures was 
studied in silico against various cancer-related protein kinases and compared with 
that of known inhibitors. Obtained docking scores, MM-PBSA/MM-GBSA binding 
energy, and RF-Score-VS affinities suggest that N1-(3-(trifluoromethyl) phenyl) 
isophthalamide could be considered as promising scaffold for the development of 
novel protein kinase inhibitors which are able to target the inactive conformation of 
vascular endothelial growth factor receptor.

Keywords: terephthalic and isophthalic derivatives, anticancer activity, VEGFR, virtual 
screening, MM-PBSA/MM-GBSA, docking

1. Introduction

Since its approval in 2001, imatinib has revolutionized drug therapy of chronic 
myeloid leukemia (CML) [1, 2]. Imatinib is a selective inhibitor of a specific pro-
tein – BCR-ABL tyrosine kinase, which biosynthesis is encoded by the Philadelphia 
chromosome, which is characteristic for all CML cells [3, 4]. High and uncontrolled 
activity of this protein leads to disruption of cell signaling causing a rapid growth of 
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the tumor tissue. Imatinib has secured more than 80% 8-year overall survival rate in 
patients with CML, almost double compared to the previous drugs generation [5, 6].

The clinical success of imatinib has fueled an explosion in the protein kinase 
inhibitor research. The strategy of blocking signaling pathways mediated by an 
overexpression or deregulation of certain protein kinases has proven to be effective in 
treating many other cancers as well as some non-cancer diseases. More than seventy 
drugs of this class have now been registered, targeting dozens of various kinase 
targets, which constitutes about 10% of the total number of kinases encoded by the 
human genome [7, 8]. Besides BCR-ABL, another large group of drugs targets various 
growth factors receptors (epidermal, platelet, vascular endothelial, etc.) [9, 10].

The use of protein kinase inhibitors for cancer treatment has some limitations. 
First of all, an important problem is drug resistance in patients. Resistance can occur 
initially (primary resistance) or over time (secondary resistance) [11–13]. One of 
the key mechanisms of secondary resistance is the emergence of the mutants of the 
primary target, which appears with the disease progression. Binding affinity of an 
inhibitor to the mutant target is significantly lower. In some cases, such mutations 
completely block binding [14–19].

The second key consideration is inhibitor selectivity. Since all protein kinases 
accept ATP as a substrate, there is a high structural similarity between the active sites 
of different protein kinases. An inhibitor usually does not act exclusively on its main 
target but can suppress, to some degree, the activity of some or many other kinase 
targets. So, such multitargetness can be a positive (e.g. when cancer cells express 
several types of kinases) or a negative factor – side inhibition can be the cause of 
adverse effects [20, 21]. Selectivity modulation becomes even more problematic with 
the disease progression as it is accompanied by further genetic degradation of cancer 
cells [22, 23]. For example, in the case of CML, the optimal choice for a second-line 
therapy inhibitor between dasatinib, bosutinib, and nilotinib can be made based on a 
personalized assessment of the actual kinase overexpression profile [24].

Since the efficacy of treatment with protein kinase inhibitors depends signifi-
cantly on the time of treatment initiation, the most important property of a drug is its 
actual inhibitory activity, including that toward mutant targets. For example, nilo-
tinib, a second-generation structural analog of imatinib, has been initially considered 
as a second-line therapy option [25]. Further investigations have showed that this 
drug could be more effective than imatinib as a first-line therapy being a more potent 
inhibitor of BCR-ABL and its mutants [26, 27].

Therefore, the search for the novel highly effective inhibitors of therapeutically 
relevant protein kinases with a given selectivity and the ability to suppress mutant 
targets is still an important scientific challenge.

In this context, the recent advances in the development of molecular modeling 
techniques for the search of biologically active compounds cannot be overlooked. 
The literature describes cases of successful application of pharmacophore screening 
[28, 29], molecular docking, and molecular dynamics [30–32] to identify new chemi-
cal structures with anti-kinase activity. In addition, the improvements in technical 
and theoretical background of machine learning algorithms have made it possible to 
adapt them, inter alia, for the modeling of protein-ligand interactions [33–36].

The present work continues our previous studies on the design of novel poten-
tial protein kinase inhibitors using directed pharmacophore design and molecular 
modeling [37, 38]. In this case, the object of such studies is new derivatives of tere-
phthalic and isophthalic acids, which are designed in a manner to give the structures 
significant pharmacophore similarity to known type 2 protein kinase inhibitors. 
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The potential anti-kinase activity of the designed terephthalic and isophthalic acids 
derivatives has been investigated by molecular docking, molecular dynamics, as well 
as by using machine learning model for virtual screening RF-Score-VS [39].

2. Materials and methods

2.1 Design of target structures

X-ray diffraction data have revealed a number of common patterns in terms of 
binding of known protein kinase inhibitors to their targets. Two large groups of 
inhibitors can be distinguished. Type 1 inhibitors are direct ATP competitors and bind 
to the active center of the biologically active conformation of a protein kinase. Most 
of the approved inhibitors are type 1 inhibitors. However, in the case of imatinib, 
the binding is of a slightly different nature. The loop that links the two main lobes of 
BCR-ABL tyrosine kinase is flexible and in a certain position opens up an additional 
allosteric pocket adjacent immediately to the ATP binding site, thus extending the 
active center of the enzyme [40]. At the same time, the structure of the ATP pocket 
changes significantly, so it is unable to accept the natural substrate. Such inactive 
conformations can be seen for many others protein kinases. Inhibitors that bind to this 
inactive conformation of a protein kinase target are classified as type 2 inhibitors [41]. 
The described classification to this most common inhibitor classes is not perfectly 
strict, since there are stable intermediate kinase conformations with different vol-
umes of allosteric pocket available and it is hard to classify ligand binding as type 1 or 
type 2 unambiguously [42].

In the structure of type 2 inhibitors, a number of key structural and pharmaco-
phore features can be distinguished. Firstly, there is a benzamide fragment, most 
often with the 3-trifluoromethyl substituent in the benzene ring, which facilitates the 
formation of the necessary interactions, including hydrogen bonds, in the allosteric 
pocket of the active center. Secondly, the structure of type 2 inhibitors contains a 
heteroaromatic system, which in some sense imitates adenine but can form hydrogen 
bonds in the modified ATP pocket, which has been subjected to the structural changes 
upon the transition of a kinase to the inactive conformation. The relative orientation 
of these structural fragments is managed by the linker, which is usually represented 
by a benzene ring containing substituents in different positions [43–46].

In our previous studies, we have used the 4-methylbenzamide linker as a frame-
work for constructing novel type 2 protein kinase inhibitors and that are allowed us 
to identify novel bioactive compounds with actual inhibitory activity against protein 
kinases [37, 38].

In this study, we have proposed that isophthalic and terephthalic acids transform 
into appropriate amides as a promising linkers for developing potential protein 
kinase inhibitors (Figure 1). In our opinion, the use of such linkers may be favorable 
for several reasons. For instance, these structures contain an amide bond, which is 
necessary for the formation of hydrogen bonds in the allosteric pocket of a kinase 
binding pocket. In addition, the overall size of linkers corresponds to those in the 
structures of known inhibitors. Moreover, the presence of a second carboxylic group 
may lead to the formation of hydrogen bonds in the ATP pocket. If compared to 
4-methylbenzamide this linkers are more rigid, which may have a positive effect on 
kinase binding affinity. It is also important to note that we have used both isophthalic 
and terephthalic fragments to more fully study the conformational space of the linker 
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region. By varying the mutual arrangement of carbonyl groups, it could be possible to 
determine which linker is more suitable to be placed in a kinase’s binding site.

On the basis of selected linkers, we have generated a library of novel chemical 
structures by introducing different amines into the carbonyl groups of phthalic acids 

Figure 1. 
Pharmacophore features of approved type 2 protein kinase inhibitors and proposed structures. Structural 
fragments that bind to different regions of binding site are highlighted with red (ATP pocket), blue (allosteric 
pocket), and orange (linker). Interactions were obtained by PLIP [47].
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to study their potential anti-kinase activity by molecular modeling and molecular 
docking. A total of 28 unique chemical structures are generated (Figure 2). As 
substituents at carbonyl groups of phthalic linkers, we have used structural frag-
ments of known inhibitors: 3-trifluoroaniline (nilotinib, ponatinib, and sorafenib), 
4-(4-aminophenoxy)-N-methylpyridine-2-carboxamide (sorafenib), and other 
amines convenient in terms of commercial availability and possibility of further 
derivatization.

2.2 Docking

For molecular docking experiments, 3D structures of studied phthalic acid deriva-
tives are generated using the Cactus service [48]. For docking studies, we have used 
open-source software AutoDock Vina [49] as Qvina 2.1 [50] modification.

The 3D structures of 33 cancer-relevant protein kinases are used as docking recep-
tors. Their structures are obtained from the database of experimental X-ray data The 
Protein Data Bank (PDB) [51]. Most of the receptors are protein kinases of different 
families. Two receptors are poly (ADP-ribose)-polymerases as this protein class is also 
used for targeted cancer therapy [52] (Table 1).

Docking of the constructed ligands and receptors is performed using “each to 
each” scheme. Coordinates of active centers for Qvina are generated based on a visual 
assessment of the location of native ligands from PDB complexes with an increase of 
approximately 10–30% in each dimension. The Qvina search exhaustiveness param-
eter is set to 24. The preparation of receptors and ligands for the docking has been 
performed using Chimera 1.13.1 [54].

Figure 2. 
The generation scheme of studied phthalic acids derivatives. Letters a-h represent amine substituents. Letters I, T, 
and IT represent what type of linker was used for a structure: Isophthalic, terephthalic, or both.
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PDB 
code

Protein 
family

Original (native) ligand Ligand 
binding type

1 1r0p c-Met Alkaloid K-252a 1

2 2bfy Aurora-B Hesperadin 1

3 2hyy Abl Imatinib 2

4 2in6 Wee1 PD311839 1/2

5 2pl0 Lck Imatinib 2

6 2vrz Aurora-B ZM447439 1/2

7 3bbt ErbB4 
(Her4)

Lapatinib 1/2

8 3cs9 Abl Nilotinib 2

9 3gcs P38-Map Sorafenib 2

10 3hng Vegfr1 N-(4-chlorophenyl)-2-[(pyridin-4-ylmethyl)amino]
benzamide

2

11 3og7 Braf V600E PLX4032 2

12 3 pp0 ErbB2 
(Her2)

2-{2-[4-({5-chloro-6-[3-(trifluoromethyl)phenoxy]
pyridin-3-yl}amino)-5H-pyrrolo[3,2-d]pyrimidin-

5-yl]ethoxy}ethanol

2

13 3qrj Abl T315I Rebastinib (DCC-2036) 2

14 3wze Vegfr2 (kdr) Sorafenib 2

15 3zbf Ros1 Crizotinib 1

16 4ag8 Vegfr2 Axitinib (AG-013736) 2

17 4asd Vegfr2 Sorafenib 2

18 4at3 Trkb CPD5N 1/2

19 4b8m Aurora-B VX-680 1/2

20 4c2w Aurora-B ATP 1

21 4dce Alk (3S)-N-(4-methylbenzyl)-1-{2-[(3,4,5-
trimethoxyphenyl)amino]pyrimidin-4-yl}

piperidine-3-carboxamide

1/2

22 4g5p Egfr T790M BIBW2992 1

23 4lmn Mek1 GDC0973 + ATP —

24 4tvj* Parp2 Olaparib —

25 5ew9 Aurora A MK-5108 1

26 5hi2 Braf Sorafenib 2

27 5kup Btk 6-{tert}-butyl-8-fluoranil-2-[3-(hydroxymethyl)-4-
[1-methyl-6-oxidanylidene-5-(pyrimidin-4-ylamino)

pyridin-3-yl]pyridin-2-yl]phthalazine-1-one

28 5kvt Trka Entrectinib 1

29 5toz** Jak3 PF-06651600 1

30 5y5u Syk 4-[(1-methylindazol-5-yl)amino]-2-(4-
oxidanylpiperidin-1-yl)-8H-pyrido[4,3-d]

pyrimidin-5-one

1
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2.3 Molecular dynamics

After the docking step, the most promising protein-ligand complexes have been 
subjected to molecular dynamics simulation for more accurate binding affinity esti-
mation. The complexes for the simulation are selected based on the obtained docking 
scores. The open-source GROMACS 2019.1 [55] software is used to conduct molecu-
lar dynamics experiments. The standard molecular dynamics protocol includes a 
minimization step, two 200 ps equilibration steps, and a final 2 ns simulation. The 
resulting molecular dynamics trajectory is used to estimate the binding energy, which 
is performed in three ways. All ligands are parameterized by Acpype [56]. Complete 
md-protocol is described in previous work [37].

The first two calculation methods include the implementations of the molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-
generalized Born surface area (MM-GBSA) [57]. These methods are widely used to 
estimate inhibitory activity for protein-ligand complexes. Their main advantage is 
the relatively high accuracy of obtained results along with a simpler system setup 
procedure if compared to the thermodynamic integration or free energy perturbation 
methods [58]. A relatively short simulation time is chosen based on the published 
evidence that the accuracy of the MM-PBSA/MM-GBSA protocols is in many cases are 
independent of simulation time, and in some experiments a short simulation time is 
preferable [59].

In our case, the MM-PBSA/MM-GBSA binding energy calculation has been carried 
out using two kinds of softwares: g_mmpbsa [60] and gmx_MMPBSA [61]. The 
main difference between these programs, apart from the technical implementation, 
is that g_mmpbsa only calculates the Poisson-Boltzmann surface area (PBSA) vari-
ant, whereas gmx_MMPBSA allows to also using the generalized Born surface area 
(GBSA) and also provides entropy change estimation.

The third approach used provides the estimation of the binding affinity of the 
studied phthalic derivatives applying the RF-Score-VS (Random Forest-based scoring 
function for Virtual Screening) machine learning algorithm [39]. This algorithm uses 
a “set of decision trees” model trained on a large set of active and inactive docking 
poses. The main purpose of RF-Score-VS is to refine the estimation of docking results. 
In training procedure for this model, a set of deliberately inactive ligands are used 
aimed to increase the probability of distinguish real “hits” between the structures 
with the highest scores. This is what makes RF-Score-VS different from many other 
rescoring protocols, including RF-Score v3 [62] from the same authors, which are 
focused on more accurate numerical estimation of binding energy for known ligands. 
According to the published data [39], the RF-Score-VS model is significantly superior 

31 6kzd Trkc 3-[2-[6-(4-aminofenyl)imidazo[1,2-a]pyrazin-3-yl]
ethynyl]-2-methyl-{N}-[3-(4-methylpiperazin 

−1-yl)-5-propan-2-yl-phenyl]benzamide

2

32 6nec Ret Nintedanib 1

33 7kk4* Parp1 Olaparib —

*A receptor is poly (ADP-ribose)-polymerase.
**A ligand is a covalent inhibitor – it binds to the receptor by forming a chemical bond [53].

Table 1. 
Receptors used for the docking studies.
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to the AutoDock Vina scoring function in terms of the probability of finding a real 
inhibitor. In our study, we have extended the scope of RF-Score-VS uses by apply-
ing it not to the obtained docking pose, but to the frames of the resulting molecular 
dynamics trajectory. In our opinion, this approach can be more accurate as it takes 
into account time-dependent changes of the protein-ligand complex reflected by the 
simulation. At the same time, the computing expenses remain acceptable.

In all three methods, we did not use the full 2-ns-long trajectory of the complex, 
but every 20th frame skipping first 200 ps of the production run.

3. Results and discussion

After docking stage, we obtained 924 complexes of the studied structures along 
with the corresponding docking scores representing binding energy estimation. In 
order to study any binding patterns, the resulting docking poses were filtered based 
on their binding energy. Docking scores better or equal to −11.5 kcal/mol were used as 
a threshold for filtering. This threshold was chosen based on our previous experience. 
After filtering, we obtained 133 docking poses out of 924 that showed such a high 
binding energy. We investigated then the distribution of filtered docking poses by 
linker type (isophthalic or terephthalic), by the most frequent amine fragments and 
by receptor type.

Out of 133 poses with high docking scores, 101 poses corresponded to the struc-
tures containing an isophthalic linker; therefore, 22 poses belonged to the structures 
having terephthalic linker. This ratio remained virtually unchanged when the filtration 
threshold was increased: 63/12 for the threshold of 12.0 kcal/mol and better, 30/8 at 
12.5 kcal/mol, and 20/5 at 13.0 kcal/mol.

The distribution of amine substituents in high-scoring docking poses is shown in 
Figure 3. Amines containing 3-trifluoromethylaniline are the most frequent.

The most frequent receptors in protein-ligand complexes with a score of −11.5 kcal/
mol and better are trkc kinase (PDB: 6kzd), abl family (PDB: 3cs9, 2hyy), and vegfr 
family (PDB: 3hng, 3wze, 4asd), as shown in Figure 4. It is important to note that all of 
these receptors are essentially protein kinases being in inactive conformation accept-
ing type 2 ligands, which indirectly confirms the correctness of the chosen approach to 
the design of studied phthalic derivatives.

The obtained docking results indicate that the isophthalic linker, together with the 
attached 3-trifluoromethylaniline, might be a promising structural fragment in terms 
of its ability to bind to protein kinases as type 2 inhibitor.

At the second stage, we selected 25 complexes of the studied structures that were 
obtained during the docking step to refine ligand binding energies using molecular 
dynamics methods. The complexes for molecular dynamics simulation were chosen 
based on their docking score and to get a certain degree of diversity in chosen linkers 
and receptors. Out of 25 complexes, seven had terephthalic linker and 18 contained 
isophthalic linker.

After conducting a 2-ns simulation for each complex, we calculated the binding 
energy via processing the obtained trajectory frames using three methods: MM-PBSA 
(g_mmpbsa), MM-GBSA (gmx_mmpbsa), and rescoring with the RF-Score-VS scor-
ing function. The last is based on a machine learning model (Table 2).

It was of particular interest for us to compare the results obtained by three 
methods of binding energy estimation. In our case, the values of electrostatic and 
van der Waals interactions obtained by g_mmpbsa (MM-PBSA) and gmx_mmpbsa 
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(MM-GBSA) are in strict linear correlation with each other (Figure 5), which 
indicates that the methods for calculating the molecular-mechanical component of 
binding energy in these two tools are uniform.

When taking into account the solvation component, the correlation between this 
two methods decreases but remains high with the correlation coefficient R2 = 0.76. 
The decrease in correlation can be naturally explained by the differences in the 
estimation of the solvation component of binding energy applying the Poisson-
Boltzmann surface area and the generalized Born surface area. When the entropic 
component of gmx_mmpbsa is added, the correlation coefficient decreases slightly 
more but remains high (R2 = 0.66). Thus, in general, both used programs show similar 
results for the same complexes.

We also compared the results obtained from MM-PBSA/MM-GBSA calculations 
with those of RF-Score-VS machine learning algorithm. The RF-Score-VS values mod-
erately correlated both with the g_mmpbsa (R2 = 0.50) and gmx_mmgbsa (R2 = 0.51) 

Figure 3. 
Frequency of different amine fragments appearing in docking poses with a score of −11.5 kcal/Mol and better.

Figure 4. 
Distribution of docking poses with a score of −11.5 kcal/Mol and better by receptor type.
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final scores. It is noteworthy that the correlation between RF-Score-VS values and 
the van der Waals component of MM-PBSA/MM-GBSA binding energy is quite high 
(R2 = 0.73) and extremely low for the electrostatic component (R2 = 0.13).

All used methods for binding energy estimation are known to be more efficient for 
the relative ranking of potential inhibitors than for the precise calculation of absolute 
binding energy. Therefore, we have used known inhibitors as reference structures. 
In most cases, the studied phthalic derivatives showed worse binding energy scores 

Figure 5. 
Correlations between binding affinities obtained by different approaches.
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compared to known inhibitors. The latter, in turn, were characterized by relatively 
high binding energy scores regardless the applied method for the calculation. Among 
the known inhibitors, the highest RF-Score-VS scores were observed for nilotinib 
(PDB id: 3cs9). Extremely high MM-PBSA/MM-GBSA energies were obtained for the 
native ligand of trkc kinase complex (PDB id: 6kzd). In the case of abl-protein kinase, 
nilotinib, being a second-generation inhibitor, showed higher estimated activity 
compared to the first-generation drug imatinib.

Among the studied phthalic acid derivatives, two structures can be distinguished 
which showed high binding energy scores calculated by all three methods. Both of 
these structures are isophthalic acid derivatives and contain a 5-imidazolyl-3-tri-
fluoraniline fragment of nilotinib. The second carboxyl group in these structures is 
modified by 4-(4-aminophenoxy)-N-methylpicolinamide a (sorafenib fragment) and 
(2-fluorophenyl) (piperidin-1-yl) methanone h, respectively. If compared to known 
inhibitors, high in silico inhibitory activity of these structures was observed for vegfr 
receptors (pdb ids: 4asd, 4ag8, 3wze) and, to a slightly lesser extent, for abl (3cs9).

Several complexes of two aforementioned structures have been subjected 
to hydrogen bonds analysis. For the frames of the molecular dynamics trajectory, 
hydrogen bonds are searched using GROMACS hbond module. The frames with 
the highest number of hydrogen bonds have been visualized. Visualization shows 
that this structures bind to the active center similar to known type 2 inhibitors: the 
3-trifluoromethylaniline fragment occupies the allosteric pocket and the isophthalic 
acid fragment plays a linker role. In both cases, the allosteric amide bond forms two 
hydrogen bonds with amino acid residues of asparagine and glutamine, which is 
typical for type 2 inhibitors (Figure 6). Regarding the ATP binding site, our analysis 
shows that the carbonyl group of phenyl (piperazin-1-yl) methanone may be involved 
in hydrogen bonding. In the case when 4-(4-aminophenoxy)-N-methylpicolinamide 
is located in this region, hydrogen bonds can be formed by oxygen atoms of pheno-
lic and carbonyl groups. Hydrogen bonds of the non-allosteric amide bond of the 
phthalic linker have not been detected.

Figure 6. 
Structure of most promising structures and the visualization of their binding to receptors. The binding of 
3-(4-(2-fluorobenzoyl)piperazine-1-carbonyl)-N-(3-(4-methyl-1H-imidazol-1-yl)- 5-(trifluoromethyl)phenyl) 
benzamide to vegfr is shown on the left (PDB id: 3wze, h-bonds: Cys-106, Asp-183, Glu-72, Arg-164. The binding 
of N1-(3-(4-methyl-1H-imidazol-1-yl)- 5-(trifluoromethyl)phenyl)-N3-(4-((2-(methylcarbamoyl)pyridin-
4-yl)oxy)phenyl) isophthalamide to vegfr is shown on the right (PDB id: 4asd, h-bonds: Cys-151, Asn-155, 
Asp-228, Glu-117).
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4. Conclusions

In this study, 28 unique chemical structures of new derivatives of terephthalic and 
isophthalic acids have been studied. These structures are designed in such a way as to 
give the structures a significant pharmacophore similarity with known type 2 protein 
kinase inhibitors. Three-dimensional structures of 33 protein kinases associated with 
cancer have been used as docking receptors. At the same time, most of the receptors 
represent protein kinases of different families. The obtained docking parameters, the 
binding energy of MM-PBSA/MM-GBSA, and the affinity of RF-Score-VS suggest 
that the isophthalic linker together with the attached 3-trifluoromethylaniline may 
be a promising structural fragment in terms of its ability to bind to protein kinases 
as a type 2 inhibitor. In comparison with known inhibitors, high inhibitory activity 
of isophthalic structures in silico are observed for vegfr (pdb ids: 4asd, 4ag8, 3wze) 
receptors and to a somewhat lesser extent for abl (3cs9). If compared to known 
inhibitors, high in silico inhibitory activity of these structures was observed for 
vegfr receptors (pdb ids: 4asd, 4ag8, 3wze) and, to a slightly lesser extent, for abl 
(3cs9). At the same time, the use of terephthalic acid for this purpose is ineffective. 
The most promising structural fragment is 1-[3-(trifluoromethyl)phenyl]benzene-
1,4-dicarboxamide. By introducing different substituents to the free amino group to 
this structure, the anti-kinase activity of the obtained chemical compounds can be 
expected.
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