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Preface

Although artificial neural networks (ANNs) have been around for decades, they 
have only begun to be used in fields such as health care, energy management, supply 
chains, inventory management, and transportation due to unprecedented advances in 
information and communication technologies.

This book explores the potential of ANNs for applications in different fields. It 
includes eight chapters that discuss deep learning, ANN tools, and other cutting-edge 
technologies. It also suggests avenues for further research into ANN techniques for 
medical imaging to detect breast tumors, classification of COVID-19 surveillance 
datasets, health management, estimation of materials processing parameters, solar 
energy management, and control of a petrochemical unit.

Patrick Chi-Leung Hui
Department of Computing,

Hong Kong Polytechnic University,
Kowloon, Hong Kong
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Chapter 1

Artificial Intelligence at the 
Service of Medical Imaging in the 
Detection of Breast Tumors
Alio Boubacar Goga

Abstract

Artificial intelligence is currently capable of imitating clinical reasoning in order 
to make a diagnosis, in particular that of breast cancer. This is possible, thanks to the 
exponential increase in medical images. Indeed, artificial intelligence systems are 
used to assist doctors and not replace them. Breast cancer is a cancerous tumor that 
can invade and destroy nearby tissue. Therefore, early and reliable detection of this 
disease is a great asset for the medical field. Some people use medical imaging tech-
niques to diagnose this disease. Given the drawbacks of these techniques, diagnostic 
errors of doctors related to fatigue or inexperience, this work consists of showing 
how artificial intelligence methods, in particular artificial neural networks (ANN), 
deep learning (DL), support vector machines (SVM), expert systems, fuzzy logic can 
be applied on breast imaging, with the aim of improving the detection of this global 
scourge. Finally, the proposed system is composed of two (2) essential steps: the 
tumor detection phase and the diagnostic phase allowing the latter to decide whether 
the tumor is benign or malignant.

Keywords: breast cancer, artificial intelligence, artificial neural network, deep learning, 
expert system, fuzzy logic, medical imaging, big data

1. Introduction

Breast cancer is a disease in which cells in breast tissue change and divide in an 
uncontrolled manner, usually producing a lump or lump. Most breast cancers start in 
the lobules (mammary glands) or in the ducts that connect the lobules to the nipple. If 
not diagnosed early, it can lead to death. It can be divided into two (2) groups: normal 
and abnormal and it can also be divided into two (2) categories: benign (not danger-
ous) and cancerous (malignant). Benign tumors grow quite slowly and do not invade 
neighboring tissues or spread to different parts of the body [1]. The early and reliable 
detection of it focuses on reviewing data from past diagnoses and gathering valuable 
information from past data. Currently, the early detection and diagnosis of tumors 
using image processing techniques and artificial learning can be of great help in 
improving the accuracy of a breast cancer diagnosis. Secondly, medical imaging plays 
a major role in the clinical diagnosis of diseases, the evaluation of treatment and the 
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detection of abnormalities in different organs of the body such as [2, 3]. In addition, 
several researchers have focused intensively on the production and interpretation of 
medical images to identify the majority of diseases including breast cancer. These 
images thus facilitate the identification of the disease and help in the detection of a 
pathological lesion, in the clinical treatment of the patient. Artificial intelligence has 
played a major role in the medical field, such as the analysis of medical images. It is 
the most effective way to detect breast cancer, with regular use of different modalities 
such as MRI, mammography, computed tomography and radiographic ultrasound. 
The most frequently used images are mammography, ultrasound, MRI, histology and 
thermography [4]. Mammography can detect and diagnose breast cancer in women. 
Mammography images can be examined by professional radiologists to determine 
if there are any abnormalities in the breast. She may show breast changes for up to a 
year or two before the patient or the doctor sees the symptoms. The American Cancer 
Society (2019–2020) recommends a mammogram once a year for all women over 
40. Dense breast tissue during a mammogram may appear white or light gray. This 
may make it easier to view mammograms in younger women who appear to have 
thicker breasts. Therefore, it is ineffective in patients under 40 years of age, with 
dense breasts and less sensitive to small tumors. Most breast diseases look like signs 
of cancer and require tests to identify them, and often a biopsy [5]. Another method 
of breast cancer screening is ultrasound imaging which can be used to supplement 
mammography by determining the liquid or solid nature of a lesion, especially in 
women with large breasts [6]. Magnetic resonance imaging (MRI) is another tech-
nique for early detection of cancer cells, in addition to ultrasound and mammography 
techniques [7]. Despite rapid advances in medical research, the benchmark for cancer 
diagnosis remains histopathological diagnosis [8]. Another breast cancer imaging 
modality is thermography or thermal imaging of the breast which is a painless and 
non-invasive method that is often used to detect changes in the breast that may indi-
cate this global scourge [9]. Finally, the use of artificial intelligence makes it possible 
to identify candidate biomarkers for medical imaging [10].

2. Artificial intelligence and medical imaging

Artificial intelligence is at the crossroads of several fields. Among these fields we 
can cite computer science, mathematics, medicine, physics, philosophy, etc. Early 
detection plays a very important role in the diagnosis of cancer, especially the diag-
nosis of breast cancer. It can promote the chances of recovery from it, therefore it is 
able to improve the long-term survival rates of patients. Note that, medical imaging 
has long been used to perform early detection of breast cancer, its monitoring and 
post-treatment follow-up, nevertheless, the direct interpretation of a large number of 
medical images is a difficult task. and depends on the expertise of the radiologist. In 
fact, the interpretation of medical images still relies today on the eye of the radiolo-
gist or the doctor. Several imperfections mar this process. The human eye is fallible, 
fatigable, subject to many cognitive biases, and its performance depends on its experi-
ence. In addition, its relevance depends on the visibility (salience) of the images to 
be located. A large lesion, of which the contrast is high will be easily detected, this is 
not the case when the lesion is small and of low contrast and if it is located outside 
the nosological field questioned. To solve this problem, ordinary assisted diagnostic 
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systems were developed as early as the early 1980s. Initially, from the 1970s to the 
1990s, medical image analysis was performed from sequential treatments from the 
treatments of. low level (denoising, contrast enhancement, detection of edges and 
lines, segmentation of regions) up to pattern recognition through mathematical 
modeling. Then, to develop automatic analysis systems, the researchers drew inspira-
tion from the human brain to build expert systems, which use artificial intelligence 
techniques [11, 12].

AI applied to medicine aims to:

• automate the detection of pathological images;

• treat large cohorts of patients;

• allow the detection of incidental lesions, not sought “a priori”;

• make the interpretation of images more reliable;

• identify patterns, allowing the classification of lesions;

• establish standardized reports.

Finally, “supervised” artificial intelligence requires a large amount of data allow-
ing the learning of AI methods. The French society of Radiology and the National 
Federation of Radiological Doctors have decided to create an “ecosystem” of 500 
million imaging files thus making a medical imaging database available to researchers 
[13, 14]. 400 million would be truly exploitable for the development of AI algorithms. 
This database should also be continuously updated. The potential French database has 
many advantages and is recognized internationally [15].

3. Artificial intelligence and big data

The exponential increase or the quantitative explosion of data has forced research-
ers in data science, then in medical science, to transform the way they see and analyze 
the world. In medicine, this increase is caused by the number of medical images 
produced. Thus, for mammographic examinations, two (2) or four (4) mammograms 
are performed per patient and this at the rate of one or two mammograms per breast. 
Therefore, a woman can have at least two (2) medical images in this context. In this 
case, it is about understanding new ways to capture, search, share, store, analyze and 
present data whose order of magnitude grows exponentially. These large-scale data 
(Big Data) are generally analyzed using artificial intelligence methods. Note that 
these two (2) concepts are increasingly applied in medical research [16]. There are 
several sources of medical “ big data “, we can cite clinical data from databases such 
as health insurance, private mutuals or the pooling of cohort data, or even digital 
traces (keywords typed into an internet server); but also data from medical imaging 
(a single imaging test that may contain millions of pixels), or even biological data. So, 
for better data exploitation, Big Data is analyzed by methods derived from AI and its 
sub-specialty, artificial learning (Machine Learning) [17, 18].
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4. Artificial intelligence and data mining

The ability to make good use of data, particularly that of medical imaging, is at 
the heart of the challenges of tomorrow’s medicine. We can cite the development of 
diagnostic aid tools, radiomics which consists in extracting quantitative data in order 
to identify potential imaging biomarkers, the development of in-silico models making 
it possible to accelerate medical research, formulation and validation of hypotheses 
from the retrospective use of several independent cohorts, patient screening to better 
target patients eligible for a clinical trial [19]. Indeed, data exists in abundance, 
nevertheless the exploitation of this “big data” is a very difficult task for doctors and 
other actors in their specific fields.

5. Artificial intelligence and cognitive psychology

It is certain that the observation, modeling, understanding of cognitive activity 
and intelligence are, as natural sciences, the responsibility of cognitive psychology, or 
more generally of cognitive ethology. According to Margaret Bogden artificial intel-
ligence is the art of simulating intelligence using a computer, this clearly falls under 
the science of the artificial. Insofar as it draws its inspiration from cognitive psychol-
ogy and cares about psychological realism, it can be an experimental counterpoint all 
the richer for cognitive psychology (or cognitive ethology) as experimentation using 
software does not pose the ethical problems posed by human or even animal experi-
mentation. Indeed, cognitive psychology and artificial intelligence present themselves 
as sister disciplines. AI will have two sides [20]:

• predominantly psychological, it is above all concerned with the realism of 
simulations of the functioning of the human mind;

• redominantly computer science, it seeks intelligent global behavior, human or 
not; In addition to purely practical reasons, we can also consider that the human 
mind probably does not have a monopoly on intelligence, and would benefit 
from being helped by other forms of intelligence.

6. Artificial intelligence in computer vision

Computer vision is an AI technology. There are interactions between artificial 
intelligence and computer vision, from the point of view of knowledge-based sys-
tems for the interpretation of images and scenes, and for the recognition of shapes, 
structures or objects in images. The general objective of these approaches is to add 
semantics to images, by associating visual information extracted from images on the 
one hand and knowledge or models on the other hand [21].

7. The use of artificial intelligence in clinical practice

The analysis of current medical imaging applications using artificial intelligence 
for current clinical use provides information on the directions of scientific research 
to be considered in this field. The first half of 2018 was marked by the arrival of three 
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(3) AI players in imagery. Their solutions have all been approved, for the first time, by 
the United States Food and Drug Administration (FDA). This is especially the applica-
tion Viz.ai (San Francisco, CA, USA) for acute stroke, using the deep learning (Deep 
Learning) for automatic detection of occlusion of cerebral vessels to the angio-CT and 
the immediate call of the interventional radiologist on call. This is also the case with the 
IDx-DR software capable of detecting diabetic retinopathy on the fundus without even 
the intervention of an ophthalmologist. This app can be used in theory by paramedics 
for early detection action. According to these authors, its reliability is high. It relates 
to a clinical study (NCT02963441) of eye funds on 10 American centers with 900 
diabetic patients in whom, in 90\% of cases, the IDx-DR solution (Coralville, Iowa, 
USA) allowed the correct diagnosis [22]. Finally, Osteodetect from the company Imagen 
(New York, USA) is another tool which makes it possible to accelerate the detection 
of wrist fractures on standard 2D digitized radiologies. This assisted detection uses 
artificial intelligence techniques to enable faster diagnosis based on an initial retrospec-
tive analysis of 1000 images per second at 24 centers. The device has been announced 
by its developer to be dedicated above all to non-radiologist nursing staff (general 
practitioners, emergency physicians, resuscitators, etc.). The site emphasizes that it is a 
complementary tool and not a software to replace the expertise of radiologists. In [23], 
these three (3) examples confirm the importance of AI methods in clinical practice.

8. Role of artificial intelligence in medical imaging

The aim of artificial intelligence systems is not to replace radiologists but rather, 
to provide them with convincing help. So, let the practicing doctors handle the use of 
artificial intelligence in their specialty [24]. The fields of application of AI techniques 
in medical imaging are numerous: the creation of examination protocols, improve-
ment of image quality and reduction of the irradiation dose, reduction of acquisition 
times in MRI, optimization of programming, presentation of images for interpreta-
tion, development of detection assistance tools, post-processing assistance, quanti-
fication tools, segmentation, image registration, analysis the quality of the images 
produced, realized production [25].

9. Some definitions

Here are some definitions of artificial intelligence (AI) techniques [26–29]:

• Artificial Neural Networks (ANNs): These are AI techniques aimed at simulating 
the functioning of neural cells to mimic the functioning of the human brain. 
They are mainly used in the recognition of speech and images. These techniques 
can be simulated in software or with specialized electronic circuits.

• Deep learning (DL): it is an extension of artificial learning integrating super-
vised learning and self-learning functions based on complex and multidimen-
sional data representation models. It is an evolution of the ANNs which have 
multiple layers and sub-layers of neurons.

• The support vector machine (SVM): it is an algorithm which will classify data 
according to a linear threshold and whose objective is to solve the problems of 



Artificial Neural Networks - Recent Advances, New Perspectives and Applications

6

classification or discrimination in two classes. Note that there is a modification of 
this algorithm which allows it to be used for the regression.

• Expert systems: these are AI systems based on high-level knowledge modeling 
with predicate logics (if this then that, if the patient has her symptoms then the 
patient has breast cancer, etc.) and rule engines.

• Fuzzy logic: it is an AI technique created by Lofti Zadeh in the 1960s and repre-
senting information not in binary form but in fuzzy form between 0 and 1. It is 
sometimes used in rules engines of expert systems.

10. The application of artificial neural networks

This artificial intelligence technique is used to detect breast cancer. In [30], breast 
cancer is detected using two electronic noses (EN) to analyze breath and urine 
samples. Exhaled breath samples were taken from 48 breast cancer patients and 
45 healthy patients who served as a control group while urine samples were taken 
from 37 breast cancer patients. Breast based on mammographic tests and 36 healthy 
patients. These two ENs made it possible to analyze exhaled respiration on the one 
hand, and on the other hand the authors used gas chromatography mass spectrometry 
(GC-MC) to analyze the substances present in the urine. The first EN used was the 
MK4 model. The second EN used was Cyranose 320. Indeed, the model obtained, 
that is to say the artificial neural network on the basis of the analysis carried out by 
the MK4 and Cyranose 320, made it possible to classify the patients suffering from 
dystrophy. ‘breast cancer with an accuracy, on average, of more than 95%.

In [31], the proposed method is based on the representation of images using dis-
crete Haar wavelets. Then, they are introduced into artificial neural networks. These 
digital images are obtained by biopsy from the Near East University Hospital. The 
images are classified using two classifiers including the Backward Propagation Neural 
Network (BPNN) and the Radial Basis Function Network (RBFN).

In [32], to help radiologists quickly detect breast cancer, these authors proposed a com-
putational model based on an artificial neural network. This is able to detect the presence 
or absence of an abnormality on a mammogram. In order to train or train their model, 
they used a database of digital mammograms generated by MIAS (Mammographic Image 
Analysis Society). Then, they used 60 images divided into 30 normal images and 30 
images including anomalies. This has been confirmed by expert radiologists. The artificial 
neural network model created in this study has the following advantages: simplicity of 
extracting the descriptive parameters of each mammogram, automatic and rapid detec-
tion of the presence or not of an anomaly on a mammogram, possibility of adapting the 
template to other images from different medical bases with different resolutions. Finally, 
they demonstrated the performance of the model obtained for the detection of breast 
cancer on a mammogram with a correct recognition rate of 91.66%.

11. The application of deep learning

Deep learning is another form of artificial neural networks. It is the most widely used 
artificial intelligence method when it comes to the classification of breast cancer on med-
ical images. In [5], in order to help medical experts quickly diagnose breast cancer, the 
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authors presented the Convolutional Neural Network Improvement Algorithm for Breast 
Cancer Classification (CNNI-BCC). Indeed, the sensitivity of the convolutional neural 
network (CNN) to radiological images prompted the authors to improve CNN. To detect 
and categorize into malignant, benign, and normal, the CNNI-BCC method uses data 
extension by functionality (FWDA) algorithms, convolutional neural network-based 
classification (CNNBS), and lesion locator based on interactive detection (IDBLL). 
This model can be incorporated on portable devices such as smartphones. The materials 
used in this work are digital mammography databases. These bases were prepared and 
supplied by MIAS. Then the experiments are applied to 21 mild cases, 17 malignant cases 
and 183 normal cases. CNNI-BCC has achieved an accuracy of 90.50%.

In [33], to alleviate the lack of early detection of breast cancer, the authors pro-
posed a cancer detection approach based on a convolutional neural network (CNNs). 
This technique can simultaneously locate and classify the mass as benign or malignant 
on a mammogram image. Then, to train or train, validate and test the method, datas-
ets were collected at various sites, in particular at St Gebriel Hospital, Grum Hospital, 
Betezatha Hospital, Korean Hospital, Kadisco Hospital and at Pioneer Diagnostic. 
Indeed, the mammogram images were collected with their document reports that 
show the results of screening and diagnosis of the patients. Overall, the proposed 
approach includes the following steps:

• Data collection in different hospitals in Ethiopia,

• Preprocessing mammographic images to improve data quality and prepare them 
appropriately for deep learning,

• After the preprocessing, the noise on the images is eliminated by applying 
Gaussian filtering, median filtering and bilateral filtering,

• And later images were enhanced using Adaptive Contrast Limited Histogram 
Equalization (CLAHE),

• Finally, a morphological operation is performed to extract the breast region from 
the background and to remove part of the mammographic image such as arti-
facts, labels, patient profiles and the like.

Ultimately, the model was trained and evaluated via mammographic images and 
achieved an accuracy of 91.86%.

In [34], in order to help radiologists more precisely diagnose breast cancer, this 
research proposes the development and validation of a new scheme called SD-CNN 
(Shallow-Deep Convolutional Neural). This method combines image processing and 
machine learning techniques to improve diagnosis using full field digital mammogra-
phy (FFDM) by leveraging information available from contrast enhanced digital mam-
mography (CEDM). The first hypothesis posed by the authors is that the application of 
a deep CNN (Deep-CNN) to CEDM is able to take advantage of recombinant imaging 
to improve the classification of breast lesions. Second, with the aim of extending 
the advantages of the CEDM imaging modality to the FFDM imaging modality, they 
hypothesized that a shallow CNN (Shallow-CNN) is capable of uncovering non-
mapping. Linear between the LE images that is to say the low energy (LE) and recom-
bined images. The objective of this study is to validate these two hypotheses using a 
single study procedure and two separate data sets, including a data set acquired from a 
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tertiary medical center (Mayo Clinic Ari-zona) and a set public data file from INbreast. 
They first developed a CEDM Shallow-CNN to discover the relationships between LE 
images and recombinant images. This Shallow-CNN is then applied to FFDM to restore 
“virtual” recombined images. In collaboration with FFDM, a trained Deep-CNN is 
introduced for feature extraction, followed by classification models for diagnosis. The 
approach proposed by the authors had an accuracy of 90%.

In [35], manual segmentation is time consuming and does not take into account 
the appearance of anatomical structures. So to solve this problem the authors pro-
posed a method of auto-segmentation of the clinical target volume (CTV) called 
deeply dilated residual network (DD-ResNet). It performs automatic segmentation 
in order to plan the computed tomography or scanner. They used data from early-
stage breast cancer patients who only underwent breast-conserving therapy from 
January 2013 to December 2016 at the Radiation Oncology Department of the Cancer 
Hospital of the Chinese Academy of Medical Sciences. To evaluate their method, they 
performed a comparison between self-segmentation and manual segmentation. This 
comparison is based on images from different patients and also of different sizes. The 
results show that the self-segmented contours of the CTV were close to the manually 
segmented contours in shape, volume and location. The deep learning algorithm 
(DD-ResNet) proposed by the authors, could be used to improve consistency in 
bypassing and streamlining breast cancer radiotherapy processes.

12. The application of support vector machines

This method is also useful in the detection of breast cancer. In [36], the authors 
propose a wide-margin separation technique to perform the stain classification in the 
context of breast cancer detection. This method is called, the Support Vector Machine 
(SVM). In this study, they also dealt with character extraction using the Hough 
transform. The latter makes it possible to detect the characteristics of the mammo-
graphic image in order to provide the values to the classifier, that is to say SVM. The 
mammography images used are collected from the Mammography Image Analysis 
Database Company (MIAS). Among the 322 images of this company, 95 images were 
taken to carry out this work. Note that SVM has a success rate of 94%.

In [37], the use of machine learning algorithms such as Support Vector Machine 
(SVM), decision trees (C4.5), Naive Bayes (NB) and K nearest neighbors (K-NN for 
K-Nearest Neighbor in English) in medical sciences can classify and predict breast 
cancer. The authors compared the performance of these algorithms using Wisconsin 
breast cancer datasets from the UCI machine learning repository. They managed to 
prove that SVM has the highest accuracy (97.13%) and the lowest error rate (2%).

13. The application of expert systems

This technique is useful in the diagnosis of breast cancer. In [38], the need for a 
powerful diagnostic tool motivated the authors to create an expert system for breast 
cancer diagnosis called Ex-DBC to effectively diagnose breast cancer. To perform the 
diagnosis, the system uses fuzzy rules. In this study, the mammography mass dataset is 
provided by the UCI Machine Learning Repository. This dataset can be used to predict 
the severity (benign or malignant) of a mammographic mass lesion from the attributes 
of the Breast Imaging Recording And Data System (BI-RADS) and the patient’s age. It 



9

Artificial Intelligence at the Service of Medical Imaging in the Detection of Breast Tumors
DOI: http://dx.doi.org/10.5772/intechopen.108739

contains a BIRADS assessment, the patient’s age and the three BI-RADS attributes as 
well as the ground truth (the gravity field) for 516 benign masses and 445 malignant 
masses that were identified on mammographic images collected at the radiology 
institute of Erlangen-Nuremberg University between 2003 and 2006. Note that the 
expert system Ex-DBC has a powerful inference engine containing fuzzy rules that can 
detect hidden relationships in the unrecognized case by the human expert. The goal 
of the Ex-DBC is to minimize human error by capturing and interpreting points that 
may not be recognized by the radiologist. Ultimately, the expert system created in this 
study can make an important contribution to the prevention of unnecessary biopsy in 
the diagnosis of breast cancer and it can also be useful in training medical students.

14. The application of fuzzy logic

This technique can detect and diagnose breast cancer. In [39], it is difficult to 
improve the image and remove noise at the s-ame time. This prompted the authors 
to propose a new contrast enhancement algorithm based on fuzzy logic and fuzzy 
entropy. The principle of maximum fuzzy entropy is used to map the original image, 
then the characteristics of the American image are taken into account. More precisely, 
the edge and texture information is extracted to evaluate the characteristics of the 
lesions and the phenomenon of diffusion of the American images and the local 
information is used to define the enhancement criterion. The algorithm improves 
the details and characteristics of lesions using local fuzzy information. The proposed 
method includes the following steps: image normalization, image fuzzification, edge 
information extraction, texture information extraction and contrast enhancement. 
Indeed, the images of the American breasts used in this study were provided by 
the Second Affiliated Hospital of Harbin Medical University (HMU). The database 
included a total of 86 images from 49 cases, and each unique lesion is in an image. Of 
the 49 cases, 14 were benign solid lesions (30 images) and 35 were malignant solid 
lesions (56 images). Finally, the proposed approach will be useful for the analysis of 
images of the breast of American women and computer-aided diagnostic systems.

15. Architecture of the proposed system

Figure 1 shows the architecture of our system.

Figure 1. 
Architecture of the proposed system (SI2AD for artificial intelligence system aided detection and Diagnosiss).
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16. Description of the database used in this study

To carry out our comparative study between artificial intelligence techniques, we 
chose a breast cancer database extracted from the UCI repository https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnosi29. This database 
describes the characteristics of the cell nuclei present in the image. A few of the 
images can be found at http://www.cs.wisc.edu/~street/images/. Here is the informa-
tion about this breast cancer database:

• Number of instances: 569

• Number of attributes: 32 (ID, diagnosis, 30 real-valued input features)

• Attribute information:

 ○ ID number

 ○ Diagnosis (M = malignant, B = benign) 3–32

Ten real-valued features are computed for each cell nucleus:

a. radius (mean of distances from center to points on the perimeter).

b. texture (standard deviation of gray-scale values).

c. perimeter.

d. area.

e. smoothness (local variation in radius lengths).

f. compactness (perimeter^2/area - 1.0).

g. concavity (severity of concave portions of the contour).

h. concave points (number of concave portions of the contour).

i. symmetry.

j. fractal dimension (“coastline approximation” - 1)

• Class distribution: 357 benign, 212 malignant

17. Performance evaluation measure

    Accuracy correct predictions True Positive True Negativeor
all predictions all predictions

+
=  (1)
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18. Results

In this section, we will present our comparative study. We compared artificial 
intelligence techniques: Logistic Regression, Gradient Boosting Classifier, Random 
Forest, XGB Classifier, Support Vector Machine, Decision tree, KNeighbors and ANN. 
The choice of these techniques is based on their very frequent use in the literature.

19. Discussion

This work put more emphasis on one of the most powerful algorithms in artificial 
intelligence. These are convolutional neural networks (CNN). This technique is part 
of deep learning algorithms. The choice of this method is based on its power, notably 
allowing the recognition of images by automatically attributing to each image provided 
as input, a label corresponding to its class of membership. Then, in Figure 1, there is 
the absence of the feature extraction step, this proves that we chose CNN over other AI 
methods, not by preference but rather on convincing arguments. We know that Artificial 
Neural Networks (ANNs) like Multilayer Perceptron only contain a classification part, 
so in systems that use ANNs and want to extract features, it is necessary before applying 
ANNs before perform a feature extraction step while the CNN contains the two parts: a 
convolutional part whose final objective is to extract the characteristics specific to each 
image and a classification part allowing to classify the image. Also, it is sure and certain 
and all data scientists will tell you that deep learning methods are data and computation-
ally intensive. However, today we see the exponential growth of data in all fields, in 
particular that of health, in particular with the exponential increase in the number of 
mammographic images produced. The use and improvement of this method is therefore 
possible thanks to this big data and the computing power. Here are the essential steps of 
our proposed system: a tumor detection phase and a diagnostic phase to classify the tumor 
(benign or malignant). In addition, the proper functioning of our system will be validated 
in collaboration with experts, in particular doctors, or by using a local database or others. 
This step is called the validation phase. Finally, our results obtained show that artificial 
neural networks are efficient, even if the database used in this study is very small.

20. Conclusion

Ultimately, artificial intelligence can play an important role in the early detection of 
diseases, especially breast cancer. Currently, we are witnessing an exponential increase 

Artificial Intelligence Methods Accuracy

ANN 0.97

Decision Tree Classifier 0.94

XGB 0.95

SVM 0.98

Kneighbors Classifier 0.94

Ramdom Forest Classifier 0.95

Gradient Boosting Classifier 0.96

Logistic Regression 0.97
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in large-scale data (or Big Data) in our hospitals. This is caused by the number of medi-
cal images produced, the vast majority by women. Thus, in this study, we have shown 
that it is possible to create robust artificial intelligence systems from medical imaging 
databases. These systems use machine learning methods in particular deep learning 
in image classification. In order to facilitate the detection and early diagnosis of breast 
cancer, we have proposed an aid system called SI2AD as future work.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 2

Pre-Informing Methods for ANNs
Mustafa Turker

Abstract

In the recent past, when computers just entered our lives, we could not even
imagine what today would be like. If we look at the future with the same perspective
today, only one assumption can be made about where technology will go in the near
future; Artificial intelligence applications will be an indispensable part of our lives.
While today’s work is promising, there is still a long way to go. The structures that
researchers define as artificial intelligence today are actually programmed programs
with limits and are result-oriented. Real learning includes many complex features such
as convergence, association, inference and prediction. It has been demonstrated with
an application how to transfer the input layer connections in human neurons to the
artificial learning network with the pre-informing method. When the results are
compared, the learning load (weights) was reduced from 147 to 9 with the proposed
pre-informing method, and the learning rate was increased between 15–30%
according to the activation function used.

Keywords: ANN, pre-informing, AHP, modified networks, interfered networks

1. Introduction

The learning mechanism makes human beings superior to all other creatures.
Despite the fact that today’s computers have much more processing power, the human
brain is still much more efficient than any computer or any artificially developed
intelligence.

Building a perfect learning network requires more than just cell structures and its
weights. The human brain has a very complex network, and each brain is unique for
itself. Today’s technology is not enough to explain all the details of how our brain
works. My observation of how our brain works starts from defining items. Every item
has a key cell in our brain. Defining process is done by visuals, smell, feeling, linguistic
name, hearing its sound. If these key cells match any of these information from body
inputs, thinking and learning continues, if there is no key cell defined before, new cell
is assigned for this item. Then, your brain wants to explore these item’s behavior. You
start to take this item in your hand and start the psychical observation. When the
psychical observation is satisfied, your brain starts to categorize it. After categoriza-
tion, your brain checks other items for same categorization and determines what other
information can be learned. Whenever you see someone has more knowledge from
you, then you want to speak about this newly learned item, or you want to do research
on it. This key cell started to develop itself with explored information. Each key cell
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and its network can also connect to each other in any part, if there are logical connec-
tions that exist.

Today’s artificial intelligence studies are a little simple compared to reality. Math-
ematical modeling of learning in an artificial cell and solving the problem with an
optimization mechanism has resulted in success in most areas. However, this success
is due to the fast processing capacity of computers rather than the perfect modeling of
machine learning. In this case, researchers need to work on developing artificial neural
networks close to the real learning.

In this study, the pre-informing method and rules in artificial neural networks are
explained with an example in order to establish a more conscious and effective learn-
ing network instead of searching for relationships in random connections.

2. ANN structure

In the literature of ANN design, the first principles were introduced in the middle
of the 20th century [1, 2]. Over the following years, network structures such as
Perceptron, Artron, Adaline, Madaline, Back-Propagation, Hopfield Network,
Counter-Propagation Network, Lamstar were developed [3–10].

The complex behavior of our brain artificially imitated through layers is most
network configuration. Basically, an artificial neural network has 3 types of layer
group: input layer, hidden layers, output layer (See Figure 1). And all cells in these
layers connected each other with artificial weights [1, 2].

Input layer is the cluster of cells present the data that has influence on learning.
Each cell represents a parameter with a variable data value. These values are scaled

Figure 1.
Basic ANN structure.
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according to the limits of the activation function used in the next layers. The selection
of input parameters requires knowledge and experience on the subject to be created
artificial intelligence. In fact, this process is exactly the transfer of natural neuron
input parameters from our brain to paper. However, this is not so easy because a
learning activity in our brain is connected by a huge number of networks managed
subconsciously. To explain this situation, sometimes our minds make some inferences
even on subjects we have no knowledge of, and we can make correct predictions about
this subject. In some cases, we feel the result of an event that we do not know, but we
cannot explain it. In fact, the best example of this is falling in love. No one can tell why
you fall in love with a person, it happens and then you look for the reason. This is
proof that the subconscious mind plays a major role in learning. This means that there
may also be some input parameters that we did not notice. Therefore, it is necessary to
focus on this layer and define the input parameters.

Hidden layer(s) is the layer where the data of the input parameters are interpreted,
and the learning capability of the network is defined. Each cell in these layers transfers
the data from the input layer cells or previously hidden layer cells with the defined
activation function and sends it to all cells in the next layer. Learning of nonlinear
behavior takes place in this layer. Increasing the number of layers and cells in this
group does not always work, but provides memorization, not learning. This also
increases the number of connections and thus highly increases the required experi-
enced data to determine the weight values of these connections.

In general, the basic mechanism of an artificial neuron consists of two steps:
summation and activation [1]. Summation is the process of summing the intensities of
incoming connections. Activation, on the other hand, is the process of transforming
the collected signals according to the defined function (See Figure 2).

There are many activation functions. The purpose of these functions is to emulate
linear or non-linear behavior. The sigmoid function is one of the most commonly used
activation functions.

Mathematically, the summation and activation process of an artificial neuron is
expressed as below (See Eqs. (1) and (2)).

u ¼
Xm
n¼1

xi ∗wi � θ (1)

y ¼ f uð Þ (2)

In these equations,

• xi: Input value or previous cell output value for previous layer cells,

• wi: Weight value of the connection for previous layer cells,

Figure 2.
Artificial neuron structure.
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• θ: Bias value,

• u: Net collected output value of the cell,

• y: Activated output value of the cell.

In some cases, the learning network cannot find a logical connection between the
results and the inputs, so that this does not stop learning, a bias value can be used for
each cell. A high bias coefficient means that learning is low, and memorization is high.

The output layer is the last layer in the connection and receives inputs from the last
set in the hidden layer. In this layer, data is collected and as a result, output data is
exported in the planned method.

The learning process of the network established with the input, hidden and output
layers is actually an optimization problem. The connection values between the cells of
the network converge to reach the result depending on the optimization technique. A
training set consisting of a certain number of input and output data is used for this
purpose. If desired, a certain amount of data set is also tested to measure the consis-
tency of the network. When the learning is complete, the values of the weights are
fixed, and the network becomes serviceable. If desired, the mathematical equation of
the network can be derived by following the cells from back to forward.

3. Pre-informing of ANNs

Pre-information, unlike pre-training, is the processing of a certain information or
rule into the structure of the network. In reality, a person learns under some preju-
dices while learning something. These prejudices are a mechanism that allows us to
make predictions about the event that will occur, and they make these inferences by
utilizing similar events. With these prejudices, the number of training data required
for learning decreases by a considerable ratio. As a result, you have a clean and
efficient way of learning.

For example, for a child who goes out for the first time, his mother advises never to
talk to strangers, and he guesses that if the child talks to a stranger, the result may be
bad. In this case, the people to talk to are the input parameters, the possibility of
something bad happening as a result of the conversation is the output parameter. If
the mother did not give advice to her child, the child would talk to everyone and
eventually learn that talking to a stranger is bad and dangerous. As a result of the
mother’s suggestion, the weight of strangers among the input parameters (people to
talk to) increased before they even experienced it.

In order to transfer prejudices to artificial neural networks, some rules must be
followed:

1.The pre-Informed network structure consists of 3 layers; input layer, hidden
layer, output layer. The hidden layer consists of a single sublayer.

2. Input parameters should be grouped, if possible. For example, in a learning
network that predicts heart attack, personal characteristics are one group, bad
habits are another group, genetic diseases are another group. If there is no group,
it should be considered as 1 group. These inputs should be scaled according to the
activation function that will be used in the hidden layer.
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3.The information to be processed (pre-informing) should be in the weights
between the input layer and the hidden layer.

4.An artificial neuron cell is placed for each input group in the hidden layer to
represent each group. This cell consists of 3 steps: summation, scaling, activation.
Two or more different activation functions can be used in cells in the hidden
layer. In this case, for each input group, same number of representation cells
should be defined in the hidden layer.

5.The connections of cells in the input layer to the representation cells of other
groups other than their own are considered 0.

6.The representation cells in the hidden layer are directly connected to the output
layer.

7.Optimization optimizes the weights of the connections between the hidden layer
cells and the output layer cells.

8.The connection values of the input layer groups to the representation cells in the
hidden layer are determined and fixed for each group using the techniques
in the literature.

In Figure 3, a total of 23 input parameters belonging to 3 input groups, these three
groups are represented by two separate cells with hyperbolic tangent and sigmoid
activations, and a hidden layer consisting of a total of 6 cells, and finally an output
layer are described.

After the network structure is established, the next step is pre-informing the
network. This stage is the transfer of information from the subconscious to network
weights. This stage should be done for each group, and each group should be consid-
ered separately. The best method of this process is using AHP (Analytic Hierarchy
Process) evaluation methods. In AHP evaluation methods, each parameter is com-
pared with the other using verbal expressions. A simple superiority scale is used in this
comparison. This means you can prepare a questionnaire and get the superiority
information of parameters from an expert mind. After some calculations you will have
the weights. These weights will be used in the network directly. The beauty of using
this technique is consistency analysis can be done. In the end, if the input parameters
are defined correctly, you will have 100% academically proofed subconscious
information extraction.

AHP is a multi-criteria decision making (MCDM) method. The earliest reference
to AHP is from 1972 [11]. Afterwards, Saaty [12], fully described the method in his
article published in the Journal of Mathematical Psychology. AHP makes it possible to
divide the problem into a hierarchy of sub-problems that can be more easily grasped
and evaluated subjectively. Subjective evaluations are converted into numerical values
and each alternative is processed and ranked on a numerical scale. Schematic AHP
hierarchy is given in Figure 4 below.

At the top of the hierarchy is the goal/purpose, while at the bottom there are
alternatives. Between these two parts are the criteria and their sub-criteria. The
most important feature that makes AHP important is that it can make comparisons
both locally and globally when comparing the effect of sub-criteria at any level on
alternatives.
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Data corresponding to the hierarchical structure is collected by experts or decision
makers by pairwise comparison of alternatives within the scope of a qualitative scale.
Experts can rate the comparison as equal, less strong, strong, very strong and
extremely strong. A general table, as shown in Figure 5, is used for expert evaluation
of pairwise comparisons and data collection. This design can be customized for pur-
pose, method and user usage.

Comparisons are made for each criterion and converted to quantitative numbers
according to Table 1.

The pairwise comparison values of the criteria arranged in a matrix shown in
Table 2.

Figure 4.
AHP hierarchy.

Figure 5.
Pairwise comparison chart of alternatives A and B. B is very inferior compared to A.

Scale Definition Description

1 Equal The two criteria are equally important.

3 Little Superior One of the criteria has some superiority based on experience and judgment

5 Superior One of the criteria has many advantages based on experience and
judgment.

7 Very Superior One criterion is considered superior to the other

9 Extreme Superior Evidence that one criterion is superior to another has great credibility

2, 4, 6, 8 Intermediate
values

Intermediate values to be used for reconciliation

Table 1.
Comparison scales and explanations.
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In next step, each aij value is normalized by dividing by the corresponding column
sum, and the weights shown in the table above are obtained with the corresponding
equation shown in the Table 3 above.

Network connections of input parameters using AHP are explained as shown
above. Next step is how to assign weights. Figure 6 shows how the AHP weights are
defined to the network.

In this way, a large number of connections are canceled and a fast, efficient and
less data-needing network is obtained.

4. Estimation of the severity of occupational accidents with using
pre-informed ANN

The pre-informed neural network method was used by Turker [13] to predict the
severity of occupational accidents in construction projects. In this study, it has been
estimated how the accidents will result if they happen instead of the possibility of
their occurrence. The scope of the study was made for the 4 most common accident
types in the world. These are falling from high, hit from a thrown/falling object,
structural collapse, electrical contact. In this study, 23 measures to be taken in occu-
pational accidents are discussed in 3 groups. These measures have been associated
with occupational accident severity in the artificial intelligence network (Table 4).

First of all, defined measures in occupational accidents, which are the input
parameters, were turned into a questionnaire by creating paired comparison questions
for comparison within their own groups. Occupational health and safety experts
working professionally in the sector were reached through a professional firm. The
questionnaires were administered online and recorded. Survey results were taken and
converted to weights with AHP matrices. Weights are shown in Tables 5–7.

C1 C2 C3 Cn

C1 a11 ¼ 1 a12 a13 a1n

C2 1=a12 a22 ¼ 1 a23 a2n

C3 1=a13 1=a23 a33 ¼ 1 a3n

Cn 1=a1n 1=a2n 1=a3n ann ¼ 1
P

a S1 ¼
Pn

i¼1ai1 S2 ¼
Pn

i¼1ai2 S3 ¼
Pn

i¼1ai3 Sn ¼ Pn
i¼1a

Table 2.
Pairwise comparison matrix of criteria.

K1 K2 K3 Kn wi

K1 a11=S1 a12=S2 a13=S3 a1n=Sn w1

K2 a21=S1 a22=S2 a23=S3 a2n=Sn w2

K3 a31=S1 a32=S2 a33=S3 a3n=Sn w3

Kn an1=S1 an2=S2 an3=S3 ann=Sn wn

P
a S1=S1 S2=S2 S3=S3 Sn=Sn wi ¼

Pn
j¼1

aij
Sj

� �h i
=n

Table 3.
Obtaining the weights of the normalized comparison values of the criteria.
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After obtaining the preliminary information weights, 3 different artificial intelli-
gence networks were created (Table 8). 140 historical accident data were collected on
selected accidents within a company. These data include the precautions taken at the
time of the accident and how the accident resulted. Accident results are divided
into 4 categories: near miss, minor injury, serious injury, death. For each accident,

Collective protection measures
(TKY)

Personal protective equipment
(KKD)

Control, training, inspection
(KEM)

(TKY-1) Constr. site curtain
system
(TKY-2) Colored excavation net
(TKY-3) Safety rope system
(TKY-4) Guardrail systems
(TKY-5) Facade cladding
(TKY-6) Safety Field Curtain
(TKY-7) First aid kit, fire
extinguisher
(TKY-8) Facade safety net
(TKY-9) Mobile electrical dist.
panel
(TKY-10) Warning and info signs

(KKD-1) Safety Helmet
(KKD-2) Protective Goggles
(KKD-3) Face Mask
(KKD-4) Face Shield
(KKD-5) Working Suit
(KKD-6) Reflector
(KKD-7) Parachute Safety Belt
(KKD-8) Working Shoes
(KKD-9) Protective Gloves

(KEM-1) OHS specialist
(KEM-2) Occupational Doctor
(KEM-3) Examination
(KEM-4) OHS trainings

Table 4.
Risk reduction measures in occupational accidents.

Figure 6.
Connections of two input groups to three different types of representation cells and implementation of AHP weights.
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35 datasets were collected and a total of 120 datasets were used in training the network
and 20 datasets were used in testing the network.

Three alternative network structures were trained with the same data. As a result,
the pre-informed neural network provided a better learning rate of 5% in the training

Code Structural collapse Falling from high Object hit Contact w/ Electricity

TKY-1 0,000 0,000 0,000 0,000

TKY-2 0,000 0,000 0,000 0,000

TKY-3 0,555 0,398 0,109 0,000

TKY-4 0,000 0,185 0,109 0,000

TKY-5 0,000 0,102 0,000 0,000

TKY-6 0,252 0,099 0,109 0,107

TKY-7 0,097 0,039 0,406 0,120

TKY-8 0,000 0,126 0,000 0,000

TKY-9 0,000 0,000 0,000 0,411

TKY-10 0,097 0,052 0,269 0,361

Table 5.
AHP weights of collective protection measures group.

Code Structural collapse Falling from high Object hit Contact w/ electricity

KKD-1 0,195 0,243 0,225 0,076

KKD-2 0,095 0,050 0,080 0,098

KKD-3 0,044 0,044 0,035 0,039

KKD-4 0,072 0,050 0,091 0,100

KKD-5 0,071 0,093 0,106 0,179

KKD-6 0,039 0,044 0,050 0,058

KKD-7 0,337 0,388 0,252 0,086

KKD-8 0,081 0,045 0,087 0,142

KKD-9 0,066 0,045 0,074 0,222

Table 6.
AHP weights of personal protective equipment group.

Code Structural collapse Falling from high Object hit Contact w/ electricity

KEM-1 0,481 0,167 0,399 0,426

KEM-2 0,210 0,167 0,161 0,134

KEM-3 0,098 0,167 0,083 0,067

KEM-4 0,210 0,500 0,357 0,372

Table 7.
AHP weights of control, training, inspection group.
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set and 15% in the test set compared to the neural network without a pre-informed
stage. The configuration using parabolic activation function from pre-informed arti-
ficial neural networks provided 1% better learning rate in the training set and 15%
better in the test set compared to the configuration using hyperbolic tangent. Other
configurations with activation functions were not included in the comparisons
because of their low learning rates. As a result, it has been seen that the preliminary
information phase significantly increases the learning performance in artificial neural
networks. In addition, it has been observed that the parabolic activation function
performs better than the hyperbolic tangent in relation to the prevention methods in
occupational accidents and the result of the accident (Table 9).

Network Regular ANN Pre-informed ANN Pre-informed ANN

Software SPSS – Neural Networks
Engine

EXCEL VBA +
SOLVER

EXCEL VBA +
SOLVER

Network Structure Multilayer Perceptron (MP) MP MP

Number of Hidden
Layers

1 1 1

Cells in Hidden Layer 6 (Cells) + 1 (Bias) 6 (Cells) + 3 (Bias) 6 (Cells) + 3 (Bias)

Activation Function
in Hidden Layer Cells

Hyperbolic Tangent
(6 Cells)

Hyperbolic Tangent
(6 Cells)

Parabolic
Functions
3 Cells; f xð Þ ¼ x2

3 Cells; f xð Þ ¼ x

Output function f xð Þ ¼ x f xð Þ ¼ x f xð Þ ¼ x

Scaling Method (x- x̄) / Standard Dev. (x- x̄) / Standard Dev. (1–x) * 10

Optimization Algorithm Gradient Methods Gradient Methods Gradient Methods

Randomizer Mersenne Twister algorithm Mersenne Twister Mersenne Twister

Initial Value 10 10 0,1

Table 8.
3 alternative ANN structures.

Network Regular ANN Pre-informed ANN Pre-informed ANN

STRUCTURAL
COLLAPSE

Training Set 26/30 (87%) 29/30 (97%) 30/30 (100%)

Test Set 2/5 (40%) 4/5 (80%) 4/5 (80%)

CONTACT w/
ELECTRICITY

Training Set 27/30 (90%) 30/30 (100%) 30/30 (100%)

Test Set 2/5 (40%) 4/5 (80%) 5/5 (100%)

OBJECT HIT Training Set 30/30 (100%) 30/30 (100%) 30/30 (100%)

Test Set 4/5 (80%) 3/5 (60%) 5/5 (100%)

FALLING
FROM HIGH

Training Set 30/30 (100%) 30/30 (100%) 30/30 (100%)

Test Set 4/5 (80%) 4/5 (80%) 4/5 (80%)

TOTAL Training Set 113/120 (94%) 119/120 (99%) 120/120 (100%)

Test Set 12/20 (60%) 15/20 (75%) 18/20 (90%)

Table 9.
3 alternative ANN structure results.
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5. Conclusions

In this study, how the learning ability of artificial neural networks should be
increased with the pre-informing method is explained with rules and demonstrations.
It is not possible to implement this method with the existing ready-made ANN soft-
ware on the market. Instead, ANN should be expressed mathematically, and pre-
informing method should be applied using programming languages such as MATLAB,
Excel VBA, Python.

In this section, the application of this method has been demonstrated in an artifi-
cial neural network in which the precautions in occupational accidents are associated
with the results of the accident and high performance has been achieved. With the
application of the specified rules, this method can be used to solve many problems. In
future studies, it can be investigated which other methods such as AHP can be used
for the preliminary information phase.

Conflict of interest

The authors declare no conflict of interest.

Author details

Mustafa Turker
Gorkem Construction Company, Ankara, Turkiye

*Address all correspondence to: mustafaturker@yahoo.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

28

Artificial Neural Networks - Recent Advances, New Perspectives and Applications



References

[1] Graupe D. Principles of artificial
neural networks. 3rd ed. In: Advanced
Series in Circuits and Systems.
Singapore: World Scientific Publishing
Co. Pte. Ltd.; 2013. DOI: 10.1142/8868

[2] McCulloch WS, Pitts W. A logical
calculus of the ideas immanent in
nervous activity. The Bulletin of
Mathematical Biophysics. 1943;5(4):
115-133

[3] Rosenblatt F. The perceptron: A
probabilistic model for information
storage and organization in the
brain. Psychological Review. 1958;
65(6):386

[4] Graupe D, Lynn J. Some aspects
regarding mechanistic modelling of
recognition and memory. Cybernetica.
1969;12(3):119

[5] Hecht-Nielsen R. Counterpropagation
networks. Applied Optics. 1987;26(23):
4979-4984

[6] Hopfield JJ. Neural networks
and physical systems with
emergent collective computational
abilities. Proceedings of the National
Academy of Sciences. 1982;79(8):
2554-2558

[7] Bellman R, Kalaba R. Dynamic
programming and statistical
communication theory. Proceedings of
the National Academy of Sciences. 1957;
43(8):749-751

[8] Widrow B, Winter R. Neural nets
for adaptive filtering and adaptive
pattern recognition. Computer. 1988;
21(3):25-39

[9] Widrow B, Hoff ME. Adaptive
Switching Circuits. Stanford, CA:
Stanford University; 1960

[10] Lee RJ. Generalization of learning in
a machine. In: Preprints of Papers
Presented at the 14th National Meeting
of the Association for Computing
Machinery (ACM ’59). New York, NY,
USA: Association for Computing
Machinery; 1959. pp. 1-4. DOI: 10.1145/
612201.612227

[11] Saaty TL. An Eigenvalue Allocation
Model for Prioritization and Planning.
Pennsylvania, USA: University of
Pennsylvania; 1972. pp. 28-31

[12] Saaty TL. A scaling method for
priorities in hierarchical structures.
Journal of Mathematical Psychology.
1977;15(3):234-281

[13] Turker M. Estimation of the Severity
of Occupational Accidents in the
Building Process with Pre-informed
Artificial Learning Method. Gazi: Gazi
University; 2021

29

Pre-Informing Methods for ANNs
DOI: http://dx.doi.org/10.5772/intechopen.106906





Chapter 3

Artificial Neural Network
Logic-Based Reverse Analysis
with Application to COVID-19
Surveillance Dataset
Hamza Abubakar and Muntari Idris

Abstract

The Boolean Satisfiability Problem (BSAT) is one of the crucial decision problems
in the fields of computing science, operation research, and mathematical logic that is
resolved by deciding whether or not a solution to a Boolean formula exists. When
there is a Boolean variable allocation that induces the Boolean formula to yield TRUE,
then the SAT instance is satisfiable. The main purpose of this chapter is to utilize the
optimization capacity of the Lyapunov energy function of Hopfield neural network
(HNN) for optimal representation of the Random Satistibaility for COVID-19 Sur-
veillance Data Set (CSDS) classification with the aim of extracting the relationship of
dominant attributes that contribute to COVID-19 detections based on the COVID-19
Surveillance Data Set (CSDS). The logical mining task was carried based on the data
mining technique of the energy minimization technique of HNN. The computational
simulations have been carried using the different number of clauses in validating the
efficiency of the proposed model in the training of COVID-19 Surveillance Data Set
(CSDS) for classification. The findings reveals the effectiveness and robustness of k
satisfiability reverse analysis with Hopfield neural network in extracting the dominant
attributes toward COVID-19 Surveillance Data Set (CSDS) logic.

Keywords: artificial neural network, Hopfield neural network, random satisfiability,
reverse analysis, logic mining

1. Introduction

The COVID-19 pandemic is still having a significant impact on people’s health and
quality of life all around the world. Effectively identifying and isolating affected
people is the most crucial step in stopping COVID-19. Clinical medicine can identify
COVID-19 instances thanks to the discovery that patients with the infection exhibit
anomalies in CT imaging. Additionally, CT scans can be used to determine the severity
of an illness, which is useful for selecting the right course of action. Many deep
learning-based COVID-19 case identification techniques have recently been put out,
some of which have had good success. The biggest obstacle to increasing COVID-19’s
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classification accuracy is currently the small number of training instances and anno-
tations. Additionally, due to the poor contrast of CT scans, deep learning-based
classification systems struggle to comprehend ambiguous and imprecise information,
such as pixels near boundaries and pictures related to COVID-19 instances. We sug-
gest a belief function-based classification network to categorize COVID-19 cases using
semi-supervised learning to address the aforementioned issues, and we acknowledge
the research community’s open-source COVID-19 dataset [1–3].

Neural networks are used extensively in many fields of study originated in math-
ematical neurobiology. This can be because these networks are attempts to simulate
human brain capabilities. Neural networks have been utilized since the last decade as a
theoretically sound alternative to traditional statistical models. It is also effective in
classifying data into identifiable groups or characteristics. When used in a hybrid
framework with the many forms of predictive neural networks, the classification of
neural networks becomes very efficient. Machine-learning methods including artifi-
cial neural networks (ANN) have been used in recent times as tools for decision,
prediction, classification, and diagnosis [4–11]. It has been used in medical approaches
to digenesis, predict, and detect diseases using effects on development, such as fibro-
sis prediction, cirrhosis, and prediction of response therapy in patients with hepatitis
C [12–21].

Artificial neural network (ANN) models have been widely used in data mining for
a wide range of medical, science, engineering, and industry issues. Logic mining is one
of the key data mining fields. It has been shown that knowledge in a logical or
symbolic form can be represented [22]. Recent data mining studies have led to the
emergence of various types of artificial neural network models such as Hopfield
neural network (HNN), Radial Basis Neural Network, Convolution neural network,
and other machine learning tools that can foster logic mining through knowledge
extraction process [23, 24]. Consequently, data mining practitioners assimilate
multidisciplinary knowledge such as Artificial neural networks, mathematics,
artificial intelligence, machine learning, and statistics to create logic for data mining
techniques for finding underlying information based on the behavior of databases or
data sets. Therefore, data mining can be improved in the neural network to cater to
various problems. As for this work, the incorporation of Random k Satisfiability
(RANkSAT) propositional logic is utilized with the proposed to introduce a
comprehensive model to solve real-life applications. Artificial neural network (ANN)
possesses a comprehensive structure of training and testing stages thus, ANN has
emerged as one of the most efficient tools extend in finding patterns and extracting
information to solve real-life applications. Therefore, we presume that this research
contributes to amplifying the efforts to enhance the capability of fundamental ANN
with the inclusion of a recurrent type of network known as Hopfield neural network
(HNN). Propositional logic based on Random-k Satisfiability (RANkSAT) is consid-
ered a suitable approach to represent logical rules in neural network for optimal
classification of real-world problem. By considering only maximum of three literals
per clause, the logical complexity in learning the relationship between the variables in
real-life problem decreases.

In this work, Random k Satisfiability-based Reverse Analysis method
(RANkSATRA) has been proposed to obtain the logical COVID-19 Surveillance Data
Set (CSDS). The aforementioned studies, which offer a different perspective on
describing the real data in the form of logical representation, have demonstrated the
usefulness of diverse logic programming in HNN. In order to depict the behavior of
the COVI-19 data sets, we require a very well, intelligent logical rule. However, there
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is no effort to bridge RANkSAT logical representation in Hopfield neural network for
COVID-19 classification. This is crucial because an artificial neural network algorithm
can cater variation and randomness in COVID-19 analysis and larger searching space.
Therefore, the contributions of this research are presented as follows: The contribu-
tions of this work are as follows: (a) to convert the COVID-19 surveillance data set
(CSDS) into intelligent systematic form based on RANkSAT logical clauses. (b) To
propose random k satisfiability reverse analysis method as an alternative approach in
extracting the relationships between the factors or attributes that contribute to the
knowledge extraction based on COVID-19 surveillance data set (CSDS) obtained from
a UCI machine learning repository. (c) To assess the capability and accuracy of three
variants of the satisfiability proposed method based on Random k satisfiability,
Random maximum k satisfiability, and Horn k satisfiability logical representation in
completing the COVID-19 surveillance data set (CSDS) extraction with a different
number of clauses. The performance evaluation metrics will be adopted to evaluate
the effectiveness of both the proposed method and logical representations as an
alternative data extraction method to the COVID-19 data set. The general implemen-
tation of random k satisfiability reverses the analysis method and HNN in extracting
logic in COVID-19 data. The construction of our proposed model, would exhibit better
performance in the training stage and successfully interprets real-life datasets to
detect which factors are more prominent than others that contribute to the optimiza-
tion problems. Our findings showed that the proposed model executing the best
performance in terms of attaining small errors and efficient computational time com-
pared to other existing models. This study has been organized as follows. Material and
method including, Random k Satisfiability Logic, Hopfield Neural Network (HNN),
and random k satisfiability-based reverse analysis method (RANkSATRA) have been
described in Section 2. In Section 3 Implementation procedure for classifying the
COVID-19 data set was presented. Section 4 reported model simulations and
experimental setup, and section. 5 reported performance evaluation metrics Section 6
presented the result and discussion. The chapter concludes with future works
presented in Final Section.

2. Materials and methods

2.1 Random k satisfiability logic

Propositional satisfiability logic can perceive as a logical rule that consists of
clauses that contain literals or variables. Random k Satisfiability (RANkSAT) is a class
of non-systematic Boolean logic representation, consists of a random number of
literals (can be the negated literals) per clause. Non-systematic Boolean Satisfiability
logic (RANkSAT) has been proven effective to represent simulated applications [25].
There is no study that utilizes the non-systematic behavior of Random k Satisfiability
in discrete HNN for application real data set classification problems. The formulation
of RANkSAT has the following properties:

a. A set of variables x1, x2, x3, … , xnf g, in a clause Ci where i ¼ 1, 2, 3, … , n that
consists of x or¬x.

b. Randomly select 2 variables from the set of n variables with a 0.5 probability of
negating each variable in the clause.
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c. Each xi in Ci is connected by a disjunction ∨ð Þ:

d. Each clause Ci is connected by a conjunction ∧ð Þ.

The Boolean values for each xi are bipolarxi ∈ �1, 1f g that exemplifies the notion of
FALSE and TRUE respectively. The general formulation FRAN3SAT is represented in
Eq. (1) as follows.

FRANkSAT ¼ ∧t
i¼0C

3ð Þ
i ∧n

i¼0C
2ð Þ
i ∧m

i¼0C
1ð Þ
i (1)

where t, n,m∈ 1, 2, ::k½ �, ∀t, n,m>0. The clause FRAN3SAT is defined as a random
3-SAT which consists of a clause C kð Þ

i described in Eq. (2). as follows.

C kð Þ
i ¼

τi ∨ αi ∨Ψið Þ, k ¼ 3

τi ∨ αið Þ, k ¼ 2

λi, k ¼ 1

8><
>:

(2)

where τi ∈ τi, ¬τi½ �, αi ∈ αi, ¬αi½ �, Ψi ∈ Ψi, ¬Ψi½ �, and λi ∈ λi, ¬λi½ � represent literals and
their negation respectively. In particular, the first and second-order clauses are

denoted as C 1ð Þ
i , C 2ð Þ

i , and C 3ð Þ
i , respectively. In this chapter, Fr is a Conjunctive Normal

Form (CNF) formula where the clauses are chosen uniformly, independently without

replacement among all 2r
mþ n
v

� �
nontrivial clauses of the length r. Note that, Ai

exists in the C kð Þ
i , if the C kð Þ

i contains either Gi or ¬Gi and the mapping of V Frð Þ !
�1, 1f g is called logical interpretation. The Boolean value for the mapping is expressed

as 1 (TRUE) and � 1 (FALSE). In theory, the example of RANkSAT formula for k≤ 3
is given as.

FRAN3SAT ¼ τ1 ∨ ¬τ2 ∨ τ3ð Þ∧ ¬α1 ∨ α2ð Þ∧¬λ1 (3)

According to Eq. (3), FRANkSAT comprises of Eq. (4)–(6) as follows.

C 3ð Þ
i ¼ τ1 ∨ ¬τ2 ∨ τ3ð Þ (4)

C 2ð Þ
2 ¼ ¬α1 ∨ α2ð Þ (5)

C 1ð Þ
1 ¼ ¬λ1 (6)

Therefore, the outcome of Eq. (3) is satisfied if.
Eqs. (4)–(6) are satisfied. i.e.,

C 3ð Þ
i ¼ C 2ð Þ

1 ¼ C 1ð Þ
2 ¼ 1 (7)

In this study, FRANkSAT will be embedded in the proposed model based on reverse
analysis technique for COVID-19 data classification. FRANkSAT will cater the modified
networks to unveil the true pattern or behavior of the real data sets involved. Note
that FRANkSAT is a symbolic form representation thus it is appropriate to be integrated
in these networks as HNN is a nonsymbolic platform.
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2.2 Hopfield neural network (HNN)

Hopfield type of neural network (HNN) is a recurrent neural network (RNN) that
mimics the human biological brain learning structure. The architecture of HNNmodel
consists of interconnected neurons and a powerful feature of content addressable
memory that is crucial in solving various optimization and combinatorial tasks [26].
The system consists of structured N neurons, each of which is represented by an Ising
variable. The neurons in discrete HNN are utilized in bipolar representation whereby
Si ∈ 1,�1f g, which strictly considers values of 1 and � 1 [27]. The fundamental
overview for neuron state activation in HNN is shown in Eq. (4)

Si ¼
1 , if

P
j
TijSj >ω

�1 ,Otherwise

(
(8)

where Tij is the synaptic weight from unit j to i. Sj is the state of neuron j and ω is
the predefined threshold value. Barra et al. (2018) specified that ω ¼ 0 to certify the
network’s energy decreases. The connection in Hopfield net contains no connection
with itself as follows.

T 3ð Þ
ijk ¼ T 3ð Þ

kij ¼ T 3ð Þ
kji (9)

T 2ð Þ
ji ¼ T 2ð Þ

ij (10)

T 1ð Þ
i ¼ T 1ð Þ

j (11)

Tjj ¼ Tii ¼ 0 (12)

In resulting, HNN holds symmetrical features in terms of architecture. HNN
model has similar intricate details to the Isingmodel of magnetism [28]. As the neuron
state is termed in bipolar Si ∈ 1,�1f g representation, the spin points follow in the
direction of a magnetic field. This causes each neuron to flip until the equilibrium is
reached. Thus, it follows the dynamics Si ! sgn hi tð Þ½ �where hi is the local field of the
connection of the neurons. The sum of the field induced by each neuron is given as
follows.

hi ¼
XN

k

XN
j

TijkSjSk þ
XN
j

TijSj þ Ti (13)

The task of the local field is to evaluate the final state of neurons and generate all
the possible RAN-SAT-induced logic that was obtained from the final state of neurons.
One of the most prominent features of the HNN network is the fact that it always
converges to stable states (Hopfield, 1982). The Lyapunov energy function (LEF)
utilized in HNN for RANkSAT logic programming is presented as follows

HF ¼ … � 1
3

XN
i¼1

XN

j6¼k

XN

k¼1, i 6¼k

T 3ð Þ
ijk SiSjSk � 1

2

Xm

i¼1, i 6¼j

Xm
j¼1

T 2ð Þ
ij SiSj �

Xm

i¼1, i6¼j

T 1ð Þ
i Sj (14)

The energy function of the HNN model is especially critical since it will decide the
interoperability of the network. The value obtained from the equation will be verified
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as global or otherwise. The network would generate the right response when the
induced neuron state reached global minimum energy. There are minimal works to
integrate HNN with RANkSAT as a single computational network.

2.3 Random k satisfiability reverse analysis (RANkSATRA)

The central emphasis of logic mining is to extract useful logical rules from the data
sets provided. One of the extraordinary fields of data mining is logic mining proposed
by [22]. It was shown that the information can be expressed in logical form. As a
logical rule, the reverse analysis approach (RA) was implemented to derive useful
knowledge from real-life data based on the horn clause [22]. In this study, Random k
Satisfiability enhanced reverse analysis method or abbreviated as (RANkSATRA) is
proposed to extract the optimum RANkSATRA logical rule to explain the behavior of
the COVID-19 data sets. In this context, RANkSATRA is a logic extraction method
that uses the HNN-RANkSAT model structure to extract from the data set the valu-
able logical rule (COVID-19 data set). Because of its non-systematic behavior, the
RANkSAT logical rule would be used to describe and chart the data sets due to
flexibility and convenience. In particular, the RANkSATRA approach can derive the
ideal logic representing the relationship between the actual data set attributes of the
COVID-19. Pursuing that, to be used in classification or estimation, the secret infor-
mation in the data set is retrieved.

In our hybrid HNN model, RANkSATRA is performed out to represent a data
classification framework in data mining. Inside the RANkSAT clauses, each of the
attributes can be translated into atoms. To construct the RANkSAT logical rule, seven
attributes from the data sets are then chosen by considering k≤ 3. Logic mining is a
method that extracts information from a data set using logic programming. In this
regard, this section will clarify how our HNN-RANkSATRA model implements the
logic mining technique called the random 3-satisfaction-based reverse analysis process
(RAN3SATRA) to obtain the relationship of COVID-19 data entries. By acquiring the
synaptic weight between 3 neurons, RAN3SATRA might be able to reveal the level of
their connectedness.

Consider n attributes of the COVID-19 data sets S1, S2, S3, … , Snð Þ, where
Si ∈ 1,�1½ �. All entries are represented in bipolar states. Since this chapter considers
FRAN3SAT, the arrangement of each Sm consists of Si, Sj, Sk where i 6¼ j 6¼ k. For Sm
those leads PRANkSATlearn ¼ 1, we assign

Sm ¼ Smax n sið Þ½ �
i ∨ S

max n sjð Þ½ �
j ∨ Smax n skð Þ½ �

k

� �
(15)

Si ¼
Si, Si ¼ 1

¬Si, Si ¼ �1

�
(16)

Based on the obtained Sm, we can formulate PRANkSATbest:

PRANkSATlearn ¼ ∨ k
m¼1Sm (17)

For example, we will choose G1 ¼ S1 ∨ ¬S2 ∨ ¬S3ð Þ if Smax n S1ð Þ½ �
1 ¼ S1, S

max n S2ð Þ½ �
2 ¼

¬S2, and Smax n S3ð Þ½ �
3 ¼ ¬S3. PRANkSATbest will be embedded into HNN. Henceforth, we

will obtain the states of Si that correspond to EFRAN3SATbest
! 0. By comparing Eq. (3)
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with Eq. (14), the corresponding Tijk will be obtained. During the testing phase, the
induced states, SBi , will be obtained by obeying Eq. (13). Subsequently, the induced
logic PB

i will be constructed according to logical rule given in Eq. (2). Finally, the
chosen induced logic obeys PB

i ¼ Ptest
i (Training data). Figure 1 demonstrates how

RANkSATRA has been implemented in the HNN model to classify COVID-19 sur-
veillance data set (CSDS). In this study, RANkSATRA, is used to determine the
relationship among the data set. In learning COVID-19 surveillance data set,
{detected, not detected} would be converted into bipolar representation {1,-1},
respectively. Each objective taken would be represented in terms of neurons in
RANkSATRA. Hence, there would be a total of seven neurons being considered in
this data set. Each neuron will be represented with entries COVID-19 surveillance
data set.

Figure 1.
Implementation of RANkSATRA for COVID-19 surveillance data set.
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2.4 RANkSATRA experimental setup

The simulation has been developed to explore the capacity of the Random
kSatisfiability reverse analysis (RANkSATRA) in Hopfield neural network for
COVID-19 surveillance data set classification. Sixty percent (60%) of the data points
in the databases were used for learning data collected, and four ty percent (40%) were
used for testing. Microsoft Visual C++ applications running on Windows 8.1, 64-bit,
4.40 GHz CPU, 4GB RAM, and 400 GB hard drive specifications were adopted. For
both learning and testing, the overall CPU time is 24 hr. If the model crosses the
recommended processor time threshold, the recommended algorithm structure
cannot train HNN-based RANkSATRA using real life. In terms of the logical rule that
will be embedded inside HNN, the existing work of Sathasivam and Abdullah [29]
that implemented HORNSAT in their proposed reverse analysis method.
RANMAXkSAT has been proposed [30] and RANkSAT has been proposed in [31].
Both of these proposed models were considered the only existing logic mining in the
literature.

2.5 Implementation of COVID-19 surveillance data set

In this chapter, COVID-19 surveillance data set was occupied in RANkSATRA,
HORNkSATRA, and RANMAXkSATRA for classification COVID-19 data set collected
from UCI machine learning repository. It contains information about the data set and
contains different purposes. The original data contains 7 instances with nine attributes
with two classes. The classes are detected and not detected. But, to find out more
relevant features from a COVID-19 data set, feature selection methods are applied to
the data set. In this experiment, our aim is to that utilize the same data set. The details
of COVID-19 are shown in Table 1.

3. Performance evaluation metrics

In this section, simulation experiments were performed to assess the performance of
the proposed logical rule model on a different number of clauses. The performance
evaluation indicators are deployed to analyze the effectiveness of our SATRA model in
extracting important logical rule for CSDS. The metrics used in this study measure the
performance of the training phase of HNN models. The metric solely indicates the
performance of the retrieved neuron state that contributes to the best CSDS classifica-
tion. During the learning phase, the performance of the RANkSAT representation that
governs the network will be evaluated based on the following fitness equation:

f k ¼
XNC

k¼1

Ck (18)

NC is the number of clauses for any given PB
k . According to Eq. (18) Ck is defined

as follows.

Ck ¼
1 True
0 False

�
(19)
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The measurements are evaluated based on the accuracy, and errors accumulation
that reflects the network complexity based on the number of neurons using the
following formula.

TRANING_MAE ¼
Xn
i¼1

1
n

f max � f k
�� �� (20)

TRAINMING_RMSE ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

f max � f k
� �2

r
(21)

where f max and f k are the output value and target output value, respectively, and n
is a number of the iterations.

TRAINING_BIC ¼ nIn MSEð Þ þ pa:In nð Þ (22)

where n, pa, andMSE indicate the number of solutions obtained, their parameters,
and the mean square error used in the model, respectively. Since the HNN is free from
any pa [33], the equation is re-written as follows.

TRAINING_BIC ¼ nIn MSEð Þ (23)

where the MSE is measured in calculating BIC and n depicts the number of
iterations during the simulation. Hence, the formula of MSE is given as follows,

TRAINING_MSE ¼ 1
n

Xn
i¼1

f max � f k
� �2 (24)

Details of each attribute Output FRANkSAT

T1 Fever or history of fever

To classify between
FRANkSAT ¼ 1(Detected) and FRANkSAT ¼ �1
(not detected)

T2 signs and symptoms of respiratory
distress e.g., cough, cold, and sore throat

T3 Acute and/or severe pneumonia or
Respiratory Infections (ARI)

T4 There are no other causes based on convincing clinical
descriptions

T5 In the last 14 days before the
symptoms have a history of
travel or living abroad who
reported local transmission

T6 In the last 14 days before the
symptoms have a history of
travel or stay in the local
transmission area in Indonesia

T7 Contact with Coronavirus Disease
2019 (COVID-19) confirmation cases in the last
14 days before symptoms

Table 1.
List of attributes for COVID-19 surveillance data set (CSDS) [32].
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where f i and f max describe the fitness value observed during each of the execution
and the maximum fitness, respectively.

TRAINMING_ACCURACY ¼ PCorrect
induced

NPtest

� 100% (25)

The performance of the HNN on the proposed logical rule is presented in
Table 2.

4. Result and discussion

The performance of the simulated program with different complexities for
neurons in the HNN-RANkSATRA model will be evaluated with the existing models
HNN-HORNSAT [29] and RANMAXkSAT [34] in terms of root mean square error
(RMSE), mean absolute error (MAE), Bayesian information criterion (BIC), accuracy,
and CPU time. Figures 2 and 3 illustrate the root mean square error (RMSE) and
mean absolute error (MAE) of HNN models during the training process. This analysis
only considers 1≤NC≤ 10. The COVID-19 surveillance data set (CSDS) data have
successfully been embedded into the network and forming variants of learnable
Boolean k Satsifiability logic, RANkSAT with the existing HORNSAT and
RANMAXkSAT. A comparison has been made between the variants of satisfiability
logic for COVID-19 surveillance data set (CSDS) data classification. As seen in

Logical rule MAE RMSE ACCURACY

RANkSATRA 1.6140 0.466 96.1

RANMAXkSTARA 3.921 1.170 83.3

HORNkSATRA 2.145 0.845 88.5

Table 2.
Training error and accuracy for all HNN models.

Figure 2.
MAE evaluation of HNN models for COVID-19 classification.
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Figure 2, HNN-RANkSATRA with NC = 1 until NC = 10 has the best performance in
terms of RMSE compared to HNN-HORNkSATRA and RANMAXkSATRA. This is
because the HNN-RANkSAT utilizes random logical inconsistencies to derive the
optimum synaptic weight for HNN. Optimal synaptic weight is a building block for
optimum CSDS classification. The RMSE result from Figure 2 has been supported by
the value of MAE in Figure 3.

The investigation of a model’s performance is separated into two parts. The first
significant part is to examine the quality of the solution generated by different
searching techniques by employing suitable training errors. Secondly is to analyze the
robustness and efficiency of the proposed model by comparing CT and Q needed to
execute the models’ mechanism. There are five performance evaluation metrics
involved to analyze the training and testing stage of our modified models as presented
in the performance evaluation section. Therefore, this research’s main contribution is
to portray the competency of HNN in SAT in outperforming the existing models.

In Figure 2, HNN-RANkSATRA with NC = 2 has the best performance in terms of
MAE. It can be observed that MAE for NC = 2 is equal to 0.027 compared with NC = 10
which recorded 1.3515. The searching process of HNN for HORNkSTRA and
RANMAXkSTRA displayed a similar error trend with RANMAXkSTRA has the highest
error at NC = 8. In Figure 3, HNN-RANkSATRA has the best performance in terms of
RMSE. It can be observed at NC = 1, the RMSE is equal to 0.0323 and 1.3995 was
recorded at NC = 10, which are lower than HNN-HORNSAT and HNN-RANMAX-
kSTRA. The HNN-RANMAXkSTRA recorded the highest RMSE with 0.832 at NC = 1
and 10.4602 at NC = 10. The searching process of HNN for RANkSTRA and
HORNkSATRA displayed a similar RMSE trend with closed merging. As the number of
neurons increased, the learning phase of HNN models was convoluted because the
network required to find the consistent interpretation for the best logic for optimal
COVID-19 surveillance data set (CSDS) classification. In this case, the learning phase of
HNN for both RANMAXkSTRA and HornkSATRA was trapped in the trial and error
search process, which resulted in high RMSE and MAE accumulations. However, the
RMSE and MAE recorded by HNN-HORNSAT and RANMAXkSTRA were to some
extent higher than the RANkSTRA. At NC = 5, the value of MAE and RMSE are
approximately 57% times bigger thanNC = 10 because for the network to converge into

Figure 3.
RMSE evaluation of HNN models for COVID-19 classification.
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full fitness (learning completed), more iterations are needed. Therefore, a similar trend
can be seen in the HNNmodel as the complexity increases. Thus, HNN model works
optimally in learning the variants of satisfiability logic entrenched to the network
before being stored into content addressable memory. The complete learning process
will ensure the network generates the best logic to represent the characteristic of the
HNN for optimal COVID-19 surveillance data set (CSDS) classification.

In contrast, the learning phase in HNN-HORNSAT and HNN- RANMAXkSTRA
were computationally expensive as more iterations were needed leading to higher
RMSE and MAE values compared to HNN-RANkSATRA. All in all, SATRA contrib-
utes to generating the best logic to represent the relationship between each instance
and the verdict of HNN for COVID-19 surveillance data set (CSDS) classification. The
MAE and RMSE results displayed in Figures 2 and 3 were supported by BIC in
Figure 4. The “best” model will be the one that neither under-fits nor over-fits.
Although the BIC will choose the best model from a set of models, it will not say
anything about the absolute quality of the model. However, the HNN-RANkSATRA is
the best choice for COVID-19 surveillance data set (CSDS) classification. In terms of
BIC, HNN-RANkSATRA outclasses other models. The accumulation of MSE tends to
penalize the values of BIC. The BIC for HNN-RANkSATRA is, therefore, the lowest
compared to the other two models.

Table 3 displays the CPU Time results for the HNNmodels, respectively. To assess
the robustness of the models in logic mining, CPU time is recorded for the learning
and retrieval phase of HNN. HNN less CPU time is required to complete one
execution of learning and testing for CSDS classification when the number of NC
deployed is less. As it stands, HNN-RANkSATRA model, when the complexity is
higher, models take a long time to finish the learning process. Overall, the HNN
continues to be proficient at reducing the k Satisfiability inconsistencies and
computing the global solution in a reasonable amount of time on the CPU. Because
there are more instances to handle during the learning and testing phase of HNN,
the CPU Time for HNN-RANMAXkSAT is consistently greater than HNN-
RANkSATRA and HNN-HORNSATRA. However, the CPU time recorded for the
existing methods was higher due to more iterations needed in generating the best logic
for the HNN.

Figure 4.
BIC evaluation of HNN models for COVID-19 classification.
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Table 2 displays the testing error and accuracy data collected for each model when
the HNN was tested. As a result, for each of NC = 1 through NC = 8, the testing RMSE,
MAE, and accuracy recorded for HNN-RANkSATRA, HNN-RANMAXkSAT, and
HNN-HORNSAT were consistently identical. The ability of our suggested network,
SATRA and HNN-kSAT, to produce the optimal logic during the learning phase,
which contributes to a very low error, is thus demonstrated by this. According to
performance evaluation metrics captured during simulation, the learning mechanism
in SATRA is capable of deriving the best logic to map the relationships between the
characteristics in HNN. 96.30 percent accuracy was attained by the suggested model,
as measured by the accuracy that each model recorded. The existing works on logic
mining in HNN can still achieve up to 80% of the CSDS classification accuracy. To
sum up, HNN-RANkSATRA is the best model for learning and testing HNN due to
lower values of RMSE, MAE, and the highest accuracy for a logical rule. Hence, the
logical rule obtained from HNN-RANkSATRA will benefit the healthcare sector in the
CSDS classification problem.

5. Conclusion

In this research, the formulation of constructing HNN proved to be adequate to
represent the mechanism in RANkSAT the implementation of EA with standalone
HNN framework with reverse analysis proved to be effective in solving real-life data
sets. In order to optimally express the relationship in a data set, we successfully turned
the COVID-19 data set into an ideal logical representation in the form of RANkSAT
representation in this chapter. Furthermore, we used COVID-19-RANkSATRA as a
substitute method for identifying correlations between the variables that correspond
to classification between FRANkSAT ¼ 1 (Detected) and FRANkSAT ¼ �1 (not detected)
of the COVID-19 data set. To work, the neural network needed to be trained. Because
the structure of a neural network (NN) differs from the structure of microprocessors,
it must be imitated. For large neural networks, it required a lot of processing time and
space in weight training and adjustment, system adaptation for determining the
number of layers, node transfer functions, retrieval phase, and learning rules.

NC RANk
SATRA

RANMAXk
SATRA

HORN
SATRA

1 0.643 1.8232 1.735

2 0.835 2.0279 2.8006

3 1.9707 5.3258 6.1323

4 3.2358 11.1566 13.004

6 9.7422 19.434 24.9292

7 18.46 22.5552 35.1675

8 25.2815 36.9081 42.005

9 37.958 65.6528 58.0088

10 72.312 91.41 76.234

Table 3.
Computation (CPU) time(s) for the HNN model.
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One of the limitations of Hopfield type of artificial neural network is that it
sometimes gets trapped at the local solution (premature convergence) instead of the
global one. Our Future direction is to incorporate novel metaheuristics algorithms
such as Election algorithm, genetics algorithm, dragonfly algorithm, etc. to enhance
the performance of Hopfield type of artificial network for better training and retrieval
process in preventing the Hopfield type of artificial network in settling in the local
solution for better searching and classification problems. We will further utilize other
variants of Boolean satisfiability such as k-SAT, Rondom Half-SAT, MAX-kSAT,
Random NAE-SAT, and XOR-SAT for better optimization problems. Various type of
data set, such as agriculture, financial, actuarial as well as environmental data set will
also be used in our future studies.
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Chapter 4

Industrial Fluids Components 
Health Management Using Deep 
Learning
Vidyadevi G. Biradar, H.C. Nagaraj, S.G. Mohan  
and Piyush Kumar Pareek

Abstract

The fatigue state of fluid components such as valves, metal surfaces in gas or oil 
carrying pipelines is important to monitor on regular basis and plan for repair work 
to avoid risks associated with them, this becomes more crucial when the pipelines 
are supplying hazard prone fluids. There exist methods for detection of corroded 
surfaces, scratches and fractures in pipelines, valves, and regulators etcetera. The 
conventional methods are based on sensors and chemical analysis methods. There are 
challenges with conventional methods pertaining to the desired metric of scalability 
and disadvantages of these methods is they are contact based and destructive meth-
ods. Therefore, to overcome these limitations of existing methods there is a need for 
development of non-contact and nondestructive methods. The recent advancements 
in Artificial Intelligence technology in every domain including health care monitor-
ing, agriculture sector, defense applications and civilian applications etc., have shown 
that deep learning methods can be explored in industrial applications to develop fault 
tolerant systems which help fluid components state of health monitoring through 
computer vision. In this chapter proposes various methods for analysis of health state 
of fluid components using deep convolutional neural networks and suggest the best 
models for these applications.

Keywords: deep learning, fluid component, convolutional neural network

1. Introduction

In oil and gas transportation industry metal pipelines are the major transport 
means for transporting fluids such as crude oils, petrochemical products for long 
distance. Due to various environmental conditions and fatigue induced in pipelines 
as a result of fluid pressure over a period time of operation the health of pipelines 
will be deteriorated due to corrosion, dents, and damages and other reasons which 
leads to various types of pipelines defects [1]. Therefore, timely maintenance of 
pipelines plays vital role in avoidance of untoward incidents and economic loss 
etc. the early detection of pipeline defect helps in planning preventive mainte-
nance to mitigate corrosion progression, obstacle in flow etcetera and thus reduce 
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maintenance costs [2, 3]. The conventional methods such as crack detection using 
camera, magnetic field, acoustic methods, and thermal camera are very useful 
methods and demonstrate satisfactory performance [4], however, these are tedious 
and dependable on environmental conditions. Therefore, there is a need for auto-
matic techniques. Typical pipeline defects are caused due to metal loss, dents, stress 
induced cracks, gouge, and coating damage etc. The quick and reliable detection of 
leakages is very much essential to avoid hazards. It is required to ensure that these 
fluids are safely transported to the destination.

Identifying leaks at right time is essential to avoid serious problems. Methods 
used for leakage detection are, i) Distributed temperature monitoring approaches 
utilizing optical fibers to identify and localize leakages, ii) acoustic impact monitor-
ing method, iii) artificial neural network technique and, Leakage detection tech-
niques needs improvement to achieve greater precision in identification of defect 
location [3].

The objectives of books chapter are listed below.

1. To understand the importance of fluid components health

2. Deep learning models

3. Pre-trained convolutional neural network models for fluid components health 
monitoring

4. Transfer learning

5. Conclusion and future scope.

The first objective of the chapter is discussed in introduction section, Section 2 
gives insight into deep learning methods for fluid component damage detection 
and design of convolutional neural networks, Section 4 gives guidelines for trans-
fer learning strategies and Section 5 presents conclusion.

This chapter provides insight into the alternate method for pipeline damage detec-
tion is deep learning paradigm. This chapter presents practical perspectives of 
convolutional neural network and provides guidance on transfer techniques to 
tune the pretrained model to solve the problem.

2. Deep learning models for pipeline damage detection

In industries defect detection is performed by an expert human expert to analyze 
the defect patterns [5], manual analysis by experts is tedious and time-consuming job, 
therefore, there is a need for automated technique. The automated techniques which 
utilize computer vision help to solve these challenges.

The identification and classification of pipe damages such as cracks with image 
analysis combined with neuro fuzzy algorithms are presented in [6], here the signifi-
cant features considered for characterization were features from Hough transforms, 
morphological operations, shape statistics, regression analysis and eigen vector 
analysis. The defects are classified using back propagation algorithm.

Artificial neural networks (ANNs) possess learning skills and capable of adapt-
ing themselves to alterations in the training phase. ANNs are interrelated groups of 
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neurons, neural networks are used in modeling complex connections between inputs 
and outputs, neural networks gave good results in detection of cracks in pipelines [3].

Pipe cracks detection using computer vision helps to solve the issues of conven-
tional methods, however, with complex background content in the image makes 
problem solving a challenging job. A method based on computer vision is presented in 
[7]. The methodology of detecting cracks apply image filtering for background sub-
traction using tuned adaptive thresholding technique and crack contour is extracted 
using morphological operator. To understand the depth of the crack 3D visualization 
is performed using successive images [8].

Pipeline cracks are detected and classified using image processing techniques, 
a method which converts RGB into gray scale image, apply Sobel operator to edge 
points extraction and through edge linking judge the artifacts are holes, cracks etc., is 
presented in [5].

Deep learning models provide flexibility in the process of defect detection as the 
model adapts to the dataset in learning relevant features and therefore give higher 
success rate of defect identification and classification. The purpose of defect detection 
depends on the application. In some cases, just detecting the presence of a defect is 
sufficient and others, classification and labelling are important [3, 9].

Image processing and machine learning algorithms largely depend on the accuracy 
of image feature extraction which is a challenging job and which intern depends on 
the image quality. Therefore, automatic feature extraction using data driven methods 
come for rescue. The convolutional neural networks are widely used for automatic 
feature extraction and classification. The deep learning models have shown highest 
success among the state-of-the-art approaches to solve computer vision problems 
[10]. A deep convolutional neural network with configurations of convolutional 
layers, filters, batch normalization and pooling in different combination are experi-
mented for determining optimal hyperparameters of the model and encouraging 
results are obtained.

3. Convolutional neural networks

The convolutional neural networks (CNN) consist of various types of layers with 
specific functionality. The convolutional layer convolves input image with various 
filters whose co-efficient are determined during the run of backpropagation algo-
rithm in number of iterations. The convolution operations are carried out using a set 
of filters to extract images features. The CNN may have any number of convolutional 
layers as shown in the Figure 1, in this, initial layers extract primitive level features 
from input image such as edges whereas later layers extract high levels features such 
as shape features and contour etc. The pooling layers reduces feature dimension by 
extracting significant pixels and down sampling images, min, max, avg. pooling are 
the typical available options. The drop out layer dynamically changes the pool of 
neurons in the network to improve the generalization of the model to avoid overfit-
ting, fully connected layer classify the images based on the features extracted by the 
series of convolution layers [11]. To improve the speed of the model training and 
avoid vanishing gradient problem activation layer are added to CNN network, differ-
ent types of activation functions such as Tanh, ReLu, Sigmoid and Softmax are used. 
Among these the popular one is ReLu and its variants [12].

An input layer, hidden layers, and output layer are different types of layers in 
CNN. The design of the neural networks is the way human brain works. Input layers 
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collect inputs, process them, and produces the result. CNN has many hidden layers 
which perform convolution operations to extract features from the input image. The 
features are classified by the fully connected layer. There are different types of CNN 
models, all types have convolutional and pooling layers.

Figure 2 depicts convolution operation, in this operation a filter or kernel is con-
volved with the input image. The next layer takes in the output generated by first layer 
and so on. Convolutions operation in image processing are applied to sharpen, blur 
images and edge detection etc. CNNs establish a connection pattern between neurons 
of adjacent layers with drop out technique.

The layer of CNN generates number of activation maps from the input image, 
and these are then fed to the subsequent layers, this process in shown in Figure 3. 
The primitive features such as horizontal and vertical edges are most of the times 
extracted in the earlier layers. The later layers extract high level features like objects, 
shape of the object and features which helps in making sense of features.

Pooling Layer – the dimension of feature map is reduced by pooling layers. 
This in turn reduces the number of parameters of the network and computation 
time.

Figure 1. 
Architectural components of CNN.

Figure 2. 
Convolution operation.
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The down sampling of image using max pooling operation is shown in the Figure 4 
it selects max pixel value from 2x2 image patch and uses this single value to represent 
feature in the image. In a similar manner, min pooling and average pooling works 
where in these choose min and average pixel values respectively.

4. Pretrained models for pipeline health detection

This section gives an insight into detailed methodology which is suitable for fluid 
components health detection using deep convolutional neural networks and covers 
image augmentation techniques.

The deep learning models automatically determining features are of interest for 
pipelines defect classification based on the knowledge acquired during training of 
huge dataset. To understand the behavior of the AI model, model interpretation tools 
such as Heat maps and Grad CAM tools are used. A U-Net architecture-based model 
is presented in [13], a method based on YOLOv5 model demonstrated in [14] which 
uses X-Ray images for detection of pipeline weld defects, the results indicated that 
YOLOv5 performs better than R-CNN interns of metrics such as speed of detection 
and classification accuracy.

Figure 3. 
Feature extraction in CNN.

Figure 4. 
Max pooling operation.
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The detection of cracks which are thin, irregular in shape and with complex 
texture background in the image makes crack detection task challenging. The deep 
learning models show improved performance in cracks detection in fluid compo-
nents, however, there are many bottlenecks for achieving the best performance. These 
include inadequate training data, imbalanced data and manually labeled data and 
absence of ground truth information. In addition to this, the computational require-
ments are very high as deep learning involve training periods [9].

The research work in [15], combines fuzzy digital twin (FDT) and support vector 
machine (SVM), with backstepping (BS) and good improvement in accuracy com-
pared other methods.

Deep learning tools aid in identification of pipeline damages at the earliest 
time. This paper utilizes convolutional neural networks for diagnosis of pipeline 
threats [3].

The CNN model deployed on AUV (autonomous underwater vehicle) is used for 
detection of underwater pipeline detection, the challenges addressed were distortion 
in the focus, contrast, and color. The scarcity of the balanced dataset is another issue 
as number of damaged pipeline sample were less compared to the total number of 
pipelines. The dataset is preprocessed through augmentation techniques such as flip, 
scale, shift etc. and generate pipeline sample images which fall in small subset. The 
issue of color distortion is eliminated by converting images into gray scale, back-
ground is eliminated using segmentation. The various models that are experimented 
for pipeline damage detection are custom architecture CNN, VGG and MobileNet, 
and among these models, MobileNet outperformed the other models [16].

5. Image augmentation

Additional images are generated from the original by slightly modifying it by add-
ing noise, cropping, changing the contrast and by rotating etc.

The image can be flipped vertically and horizontally, it can be rotated left and 
right by any angle, the size of the image can be changed, regions of interest can be 
cropped to generate additional sample images, image can be translated in left, right 
direction and various types of noises can be added [17].

6. Transfer learning

Transfer learning eliminates the dependency of deep learning models on huge 
dataset which are required for learning features. The process of transfer learning 
involves application of a pre-trained model for classification of specific domain image 
dataset. To customize pretrained model for specific dataset, minor changes to the 
original architecture can be done and fresh training of convolutional layers can be 
done. However, the model tuning process is based on trial-and-error method and the 
model hyperparameters are experimentally determined. A comprehensive survey on 
transfer learning techniques is given in [18]. A classical example of transfer learning 
in the context of solving classification of COVID-19 images is discussed in [19].

A typical CNN has two parts, they are convolution layers and classification layers. 
In transfer learning, the classifier is changed as per the new classification problem. 
There are different possible ways of finetuning the model, it requires training the 
model on a new dataset to learn problem specific features.
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Hyperparameters of CNN include Learning rate, Momentum, Epochs, Batch size, 
Filter size, Activation layers, Number of hidden layers, Filter coefficient initialization 
and Dropout which are very important to achieve the performance of the model. The 
setting optimal values for these hyperparameters is important to achieve desired level 
of model accuracy and avoid model overfitting [20, 21].

7. Guidelines for training of pre-trained model for repurposing

Select suitable pretrained model for new problem, the options available are VGG, 
InceptionV3, and ResNet5, DarkNet and YOLO etc., presented in [22], the guideline 
is, select pretrained model which has been trained on some medical images in case 
repurpose to classify another type of medical images. As it discussed in the previ-
ous sections in the technique of transfer learning, earlier layers of CNN are freezed 
and layer set of layers are unfreezed and retrained to learn knowledge from the new 
dataset. Now, decision must be made on how many layers to freeze and how many 
to unfreeze and retrain. This depends upon the similarity and size of the present 
dataset with the dataset on which the model is pre-trained. The guideline is, i) if the 
size of the present dataset is large in size then reuse the architecture and retrain all 
the layers of pretrained model, ii) if the dataset is similar to the dataset on which the 
model is pretrained and the present dataset is large, then just retrain the classifier 
layers, iii) the present dataset is small in size and different from the dataset used while 
pretrained model, this is a difficult situation, here the dataset needs to be enlarged 
through augmentation and by generating synthetic images. The pre-trained model 
must be trained considering the fact that freshly training deeper layers require high 
end computational GPPs and time.

8. Conclusion

In oil and gas industry timely metal pipelines damage detection plays important 
role for planning on maintenance planning which is essential in avoiding hazard and 
reducing economic loss. The pipelines are regularly inspected for damage detection, 
the maintenance is carried out by conventional methods with human expert investi-
gations. These methods are time consuming and sometimes are subjective in nature. 
Therefore, there is need for an automatic tool for pipelines damage detection. There 
exist several methods which are based on image processing, computer vision and 
machine learning. However, the correctness of these systems is largely dependent on 
the extraction of robust features techniques. The feature extraction step is the bottle-
neck for most of the classification algorithms. In recent years deep learning models 
have outperformed all other methods, these models automatically extract required 
features and makes classification task more accurate. The deep convolutional neural 
networks are very popular in solving classification problems. In this chapter convolu-
tional neural networks are investigated for pipelines damage detection and classifica-
tion. The contributions of this work include guidelines on design and implementation 
of convolutional neural networks, and directions are given for carrying out transfer 
learning to repurpose pretrained models. This chapter provides brief discussion on 
various methods of pipeline damage detection using convolutional neural networks 
by conducting survey of state-of-the-art-techniques. This chapter also provides 
insight into design and working of convolutional neural networks.
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Chapter 5

Determination of the Elastic
Constants of a Metal-Laminated
Composite Material Using Artificial
Neural Networks
Marta Eraña-Díaz and Mario Acosta-Flores

Abstract

This chapter explores the use of an artificial neural network (ANN) to obtain the
elastic constants of the components of a metal laminated composite material (MLCM).
The dataset for the training and validation of the ANN was obtained by applying an
analytical model developed for the study of stresses in MLCM. The information used
in the dataset corresponds to MLCM configurations and data generated with variants
registered in the structural presentation of the inputs and outputs. The best configu-
ration found for the generation of the ANNmodels yielded an average relative error of
less than 4% in relation to the results of the constants evaluated and published in a
previous article. As shown in this research, it is important to have a clear definition of
the problem as well as an effective selection and preparation of the characteristics of
the training data during the constitutive modeling of composite materials and the
correct application of the ANN.

Keywords: elastic constants of laminated composite materials, artificial neural
networks, composite materials, constitutive model of composite materials,
training dataset

1. Introduction

Artificial neural networks (ANN) are an efficient artificial intelligence (AI) technique
applied in several areas such as bioinformatics [1] for classification, function approxima-
tion, and knowledge discovery, as well as for data visualization in medical diagnosis [2].

Various numerical models and experimental techniques have been applied in rela-
tion to ANN in the investigation and obtention of the mechanical properties of com-
posite materials, such as Young’s Modulus (E), Rigidity Modulus (G), Elastic Limit,
and Maximum Tensile Stress [3, 4]. In [5], the different elastics constants of the face-
centered cubic austenitic stainless steel are determined. In [6], elastic parameters of
an orthotropic material are obtained based on experimental data and using the finite
element method (FEM) applied to ANN. The method described in [7] combines the
FEM and deep neural networks to obtain constitutive relationships from indirect
observations. Acosta et al. [8] use a linear constitutive analytical model proposed in
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[9] for the analysis and obtention of elastic constants of laminated composite mate-
rials with metallic layers. The elastic constants of a laminate’s component are obtained
through an axial load experimental test.

In the constitutive modeling of composite materials, the ANN applications’state of
the art, [10] exposes the obstacles that have been encountered due to the difficulty of
having a large amount of constitutive experimental training data.

This research presents a method to obtain the elastic constants of one of the
components of a MLCM using ANN. The amount of data needed for training was
obtained using constitutive models of composite materials proposed by [8].

2. Artificial neural networks (ANN)

ANN are a model inspired by the functioning of the human brain and are made up
of connected node set (artificial neurons) that transmit signals to each other from an
input stage to generate an output, in order, to improve their learning process by
automatically modifying each other. There are several types of neural networks
[11, 12] including recurrent neural networks (RNN) and feed-forward neural net-
works. The latter is an artificial neural network where the connections between the
units do not form a cycle and where the information only moves forward.

This research used feed-forward ANN, made up of neurons grouped in layers
alongside an input layer, one or more hidden layers, and an output layer. Each
network neuron has a weight, a numerical value that modifies the received input. The
new modified values are output from the neurons, if the output of any individual
neuron is above the specified threshold value the neuron fires and sends data to the
next layer of the network, otherwise, the data does not go through. This operation can
be appreciated in Figure 1.

The Hj neuron has an assigned weight to each of its inputs (Eq. (1)); the assigned
weight by Hi to Hj is represented as wij. The threshold represents the neuron’s degree of
inhibition, and it is represented as ai(t). Eq. (2) is calculated with an activation function
f(t), which can be linear (Eq. (3)), tangential (Eq. (4)), or hyperbolic tan, (Eq. (5)).

Hj ¼
Xi

n¼1

wijai þ Bi (1)

ai tð Þ ¼ f i Hið Þ (2)

Figure 1.
Example of a feed-forward ANN configuration with i-inputs (X1… Xi) in the input layer, bias1 and j neurons in
hidden layer one (B1, H1, … , Hj), bias2 and k neurons in hidden layer two (B2, H1, … , Hk), and bias3 in the
output layer (B3, Y1, Y2) for the two outputs.
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f tð Þ ¼ t (3)

f tð Þ ¼ 1
1þ ⅇ�t (4)

f tð Þ ¼ ⅇt � ⅇ�t

ⅇt þ ⅇ�t (5)

Thus, each ANN neuron, except those in the input layer and the bias neurons,
processes all its inputs and provides its own activation as an output.

Once the ANN has been designed, the training process begins to ensure that the wij

given by each neuron is set correctly so that the entire network provides an acceptable
output.

During this process, the neural network is capable of storing knowledge from a
subset of data containing information on both the inputs and their corresponding
outputs, which are known as “desired outputs.” The network’s obtained outputs are
compared with the desired outputs, thus updating the synaptic weights (wij) so as to
reduce the margin of error in the network results. This procedure is repeated until the
network reaches a satisfactory performance. One of the used methods to train the
ANN is backpropagation [13, 14], where the wij update is done by gradient descent,
minimizing the mean squared error (MSE) (Eq. (6)).

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yPred,i � yact,i
� �2

vuut (6)

Overfitting, an ANN flaw [15–17], prevents it from obtaining acceptable outputs
from unobserved data, that is, those not used in training. Ying X [18] proposes the
following strategies to minimize the effects of overfitting: (1) stop training before
finding the optimal MSE; (2) exclude any noise in the training set; and (3) expand the
training data.

3. Methodology of determining the elastic constants of a metal laminated
composite material using artificial neural networks

Obtaining efficient and consistent results when calculating the elastic constants of
a MLCM using an ANN with a constitutive model of composite materials, requires a
clear and complete understanding of the analytical model presented in [8] for the
efficient preparation of the training data and the correct application of the ANN. The
methodology used in this work is as follows:

1.Physical description of the linear analytical model of the axial load of composite
laminated materials identifying the role of the implicit variables and parameters
present in the model.

2.Definition of the objectives to be solved and identification of the sufficient and
necessary parameters that will be used during the training phase. The
composition of the composite (position and dimension of the components), the
boundary conditions, the geometry, and the dimensions are defined on this
stage. The values of the strains are obtained through those parameters and
through applying the analytical models.
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3.With the application of ANN comes a description of their operation and
processes, as well as the characteristics of the training and test data that
correspond to the different selected laminated composite materials. The
quantitative value of the data in the dataset is delimited depending on the model,
the use of the ANN and the final application to obtain one of the MLCM
components’ elastic constants. The ANN were trained using the R software
“neuralnet.”

4.The process of applying neural networks to determine elastic constants is carried
out using the trained ANN and the data presented in [8].

5.Finally, the analysis of results is carried out by means of the percentages of the
relative error (RE) of each of the obtained configurations from the ANN in
relation to the data of [8].

4. Analytical model of linear of axial load of composite laminate materials

This study uses a linear analytical model of a composite laminated material made
up of layers of metallic material. It is assumed the laminate components are relatively
thin, homogeneous, with elastic and linear properties and that the union between
them, is perfect.

There is a global uniaxial stress problem, a homogeneous state of strain is consid-
ered throughout the laminate as well as in the layers, each point of the laminate
presents a state of plane stress.

At the local level, the problem is each layer is biaxial of stresses and the normal
stresses have a constant average distribution throughout the thickness of the layers.
The state of plane stress generated at the internal points of each of the layers (local
analysis) will be referred to as intralaminar state of stress while the stress components
of layer i in directions 1 and 2 will be called intralaminar stresses (σxi and σyi).

The linear analytical model allows the application of the superposition principle
(SP) considering the general problem as a set of individual problems. Therefore, for

Figure 2.
Representation of the stress state, global, and local models [8].
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each load condition, the state of global stresses (average or total) σGx and σGy are the
sum of the states of individual stresses (local) in each layer, see Figure 2. The analyt-
ical model’s global–local equation (Eq. (7)) is as follows:

σGx ¼ nIσxI þ nIIσxII þ nIIIσxIII þ … þ niσxi
σGy ¼ nIσyI þ nIIσyII þ nIIIσyIII þ … þ niσyi (7)

σxi and σyi represent intralaminar stresses and σGx and σGx are the global average of
the stresses in both x and y directions. ni represents the volumetric fraction of material
layers, nI ¼ hi=h, where

1 ¼ nI þ nII þ nIII þ … þ ni (8)

The values of ni are the volumetric fractions of material with different properties,
and h and hi are both the total thickness and the thickness of the layers or layers
groups, respectively.

4.1 Definition of the experimental and illustrative example problem
and identification of parameters to consider

The application of the ANN technique requires a data set that helps the network to
learn certain patterns related to the analyzed problem. The variables and parameters
that will be considered as input and output data during the numerical application of
the ANN must be those necessary and sufficient so that the problem is representative.
If some key parameters are not considered in the problem, the performed study will
be an incomplete and poorly formulated problem, implying a deficient solution.

In a mechanical problem, the state of stress is a function of the position, geometry,
boundary conditions, and material. For the discussed problem here, the applied
stresses at their σGx and σGy boundaries were uniformly distributed. Considering the
strain state was homogeneous, the state of the plane stresses at a point was indepen-
dent of the position within each component.

For the analyzed case in [8], which uses a laminated composite material
consisting of metallic layers of two different materials (isotropic, homogeneous, and
elastic-linear), Eqs. (7) and (8), globally and locally, respectively, are as follows:

σGx ¼ n1σxM1 þ n2σxM2

σGy ¼ n1σyM1 þ n2σyM2 (9)

σxM1 ¼ Q11M1εx1 þQ12M1εy1
σyM1 ¼ Q21M1εx1 þQ22M1εy1
σxM2 ¼ Q11M2εx2 þQ12M2εy2
σyM2 ¼ Q21M2εx2 þ Q22M2εy2 (10)

And considering the engineering constants:

Q 11M1 ¼ Q22M1 ¼
EM1

1� v2M1

� �

Q 12M1 ¼ Q21M1 ¼
vM1EM1

1� v2M1

� �
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Q 11M2 ¼ Q22M2 ¼
EM2

1� v2M2

� �

Q12M2 ¼ Q21M2 ¼
vM2EM2

1� v2M2

� � (11)

Eq. (10) can be represented as follows:

σxM1 ¼ EM1

1� ν2M1

� � εx1 þ νM1EM1

1� ν2M1

� � εy1

σyM1 ¼ νM1EM1

1� ν2M1

� � εx1 þ EM1

1� ν2M1

� � εy1

σxM2 ¼ EM2

1� ν2M2

� � εx2 þ νM2EM2

1� ν2M2

� � εy2

σyM2 ¼ νM2EM2

1� ν2M2

� � εx2 þ EM2

1� ν2M2

� � εy2 (12)

Here, Q11M1, Q12M1, Q22M1, Q11M2, Q12M2, and Q22M2 represent the material’s stiff-
ness constants. The engineering constants for each layer were Young’s moduli (EM1
and EM2) and Poisson’s ratios (νM1 and νM2). The deformation states were defined for
each layer through their longitudinal strains: εx1, εy1 and εx2, εy2.

5. Neural network training process

5.1 ANN arguments

As mentioned in Sections 2 and 3, the used software to train the ANNs was R [19]
and the used library was “neuralnet” [20], the used parameters are shown in Table 1.

Formula Description of the model

data Dataset of variables specified in formula

hidden Number of hidden layers and number of neurons

stepmax Maximum steps for the training

threshold Value for the error function as stopping criteria

rep Number of repetitions for the training

startweights Starting values for the weights

learningrate Lowest and highest limit for the learning rate

algorithm Name of type to calculate the ANN

err.fct Function that is used for error

act.fct Name of the activation function

linear.output Boolean value for output layer

constant.weights The weights that are exclude from training

Table 1.
Arguments for the neuralnet function.
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The used learning algorithm was resilient backpropagation [21, 22], which modifies the
updated values for each weight, wij according to the sign sequence behavior of
the partial derivative equations in each dimension of the weight space, this reduces the
number of steps compared to the original gradient descent backpropagation procedure.

The procedure to obtain a good ANN begins with the generation of the dataset
through a normalization process that allows scaling the data values to improve learning.
The process utilized scaling over the maximum value of the inputs as seen in Eq. (13).

xi ¼ xi
max x1, … , xnð Þ ∀ⅈ ∈ 1, … , nf g (13)

The best and final dataset built for this study consisted of 253 pieces of data, 76% of
which were used for training (data1), 14% for testing (data2), and the remaining 10%
for model validation (data3) (192, 36, 25). A final dataset (data4) was built for the
ANN application as indicated in Section 7.3 with results as published in [8].

The variants in the arguments for ANN generation in this study were 2 or 3 hidden
layers, with either the hyperbolic tangent (tanh) activation functions (Eq. (5)) or the
logistic function (Eq. (4)) The number of neurons in each hidden layer was chosen to
obtain the lowest RE in both the training dataset and the test dataset. All this is
depicted in Figure 3.

It should be noted that some variations in the structural presentation of the inputs
and outputs were made for the elaboration of the dataset, this was necessary since
high MSE values were obtained during the ANN training.

5.2 Generation of training data from the analytical model for the ANN

As seen in Eqs. (10) and (12), the necessary and sufficient variables that define the
plane stress models, based on the stiffness constants and the engineering constants, are:

Figure 3.
Procedure diagram for the ANN training process.
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a. the material’s volumetric fraction of the components in the laminate (ni).

b. the stress components of the global stress state (σGx and σGy).

c. the local stress state in each component (σxi and σyi).

d. the elastic constants of the known components (EM1, EM2, νM1, and νM2 or
Q11M1, Q12M1, Q11M2, and Q12M2Þ.

e. the strains state equal for all points of the laminate: εx1, εy1, εx2, and εy2.

As seen in Eqs. (10) and (12), the necessary and sufficient variables that define the
state of plane stress models based on the stiffness constants and engineering constants
are the material concentration of the components in the laminate (niÞ; the stress
components of the global state of stress σGx and σGy; the local states of stress in each
component (σxi and σyi); and the elastic constants of the known components (EM1,
EM2, νM1, and νM2 or Q11M1, Q12M1, Q21M1, and Q22M1Þ.

When the ANN objective is directly to determine the engineering elastic constants
of one of the components of the laminate, the input parameters are Eqs. (9) and (12):
n1, n2, σGx, σGy, εx1, εy1, εx2, εy2, EM1, νM1 and outputs EM2, νM2, the EvANN was
constructed. And a QANN was constructed for Eqs. (9) and (10): with input param-
eters n1, n2, σGx, σGy, εx1, εy1, εx2, εy2, Q11M1, and Q12M1. and outputs Q11M2 and Q12M2:

5.3 Specification of quantitative ranges of input data

As described in the methodology, the input data must establish:

a. The parameters that define the problem, identifying inputs and outputs.

b. The quantitative ranges in the boundary conditions, global stresses (σGx
and σGyÞ:

c. The quantitative ranges in the volumetric fractions of each of the components in
the laminate (n1 and n2).

d. The elastics constants (E and ν) of the MLCM component materials.

e. The global strains (εxM1, εyM1 and εxM2, εyM2) for a simple tension problem.
These dependent and necessary data for training were obtained from the
analytical model. Eqs. (10) and (12) were solved using MAPLE 2018 [23], for
strains, see Eqs. (14) and (15).

εx ¼ σGx Q11M1n1 þQ11M2n2ð Þ
Q2

11M1n
2
1 þ 2Q11M1Q11M2n1n2 þQ2

11M2n
2
2 � Q2

12M1n
2
1 � 2Q12M1Q12M2n1n2 �Q2

12M2n
2
2

εy ¼ � σGx Q12M1n1 þQ12M2n2ð Þ
Q2

11M1n
2
1 þ 2Q11M1Q11M2n1n2 þQ2

11M2n
2
2 �Q2

12M1n
2
1 � 2Q12M1Q12M2n1n2 �Q2

12M2n
2
2

(14)
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and

εx ¼ σGx EM1n1ν2M2 þ EM2n2ν2M1 � EM1n1 � EM2n2
� �

E2
M1n

2
1ν

2
M2 þ 2EM1EM2n1n2νM1νM2 þ E2

M2n
2
2ν

2
M1 � E2

M1n
2
1 � 2EM1EM2n1n2 � E2

M2n
2
2

εy ¼ � σGx EM1n1ν2M2 þ EM2n2ν2M1νM2 � EM1n1νM1 � EM2n2νM2
� �

E2
M1n

2
1ν

2
M2 þ 2EM1EM2n1n2νM1νM1 þ E2

M2n
2
2ν

2
M1 � E2

M1n
2
1 � 2EM1EM2n1n2 � E2

M2n
2
2

(15)

The maximum and minimum quantitative value of the boundary conditions in the
training data was established using the values found in [8] as a reference. Between 1
and 22 MPa for the global input stress. The components concentrations in the MLCM
were bounded for values between 0 and 1 for 2, 3, 4, 5, and 6 layers of two metallic
components assumed to have the same thickness. Tables B1–B4 in Appendix B show
various scenarios evaluated during the study.

The considered scenarios were:

a. Different MLCM configurations with different concentrations and different
components.

b. Different global stress values (σGx and σGy).

c. Two ANN targets for each configuration, one to obtain the elastic constants of
one of two MLCM components M1, and another to obtain the constants of M2.

The obtained training data from the model were adjusted so that there was not
much difference in the order of the values, the stress was given inMPa, the Q’s and E’s
in GPa and the strains in με.

An EvANN model to determine engineering constants and another to determine
stiffness coefficients, QANN model, were presented to contextualize the effect that
occurs when an ANN model is trained from simple knowledge or general knowledge,
their implications can be seen in Eqs. (14) and (15).

The nomenclature used in the analytical model and the ANN network formulas is
shown in Appendix A Table A1.

5.4 EvANN

As mentioned above, this ANN was trained using the engineering constants and
the R software. The settings for the “neuralnet” function are given in Table 2, where
the output variables are the second material constants.

Starting from the first dataset training was carried out obtaining a MSE of 1.186e
+09 and 4.391 for unnormalized and normalized data. Because of this, the dataset was
extended considering a larger number of MLCM configurations with variations in n
concentrations and global stress ranges, as well as, for the same mechanical problem,
was done an inverted request in the elastic constants of component M1, for one case,
and M2 for another.

Table 3 shows the configured EvANNs and specifies the activation function, the
number of hidden layers, the number of neurons in each layer, the MSE, the threshold
reached, and the number of steps performed. The dataset used can be found in
Appendix B.
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The third EvANN configuration and its graph is shown in Figure 4 along with the
relative error percentages in Figures 5 and 6, the RE was calculated with Eq. (16).

RE ¼ jReal Value� ANN Value
Real Value

j ∗ 100 (16)

A second ANN was generated for the same problem now defined in terms of Q11
and Q12.

Formula EM2 + vM2 � SGX + SGY + CON1 + CON2 + EX + EY + EM1 + vM1

data dataset (192 training, 36 test, 25 validation)

hidden c(a,b) or c(a,b,c) where a,b,c are the number of neurons

stepmax 1.00E+07

threshold 0.01

rep 1

startweights NULL

learningrate 0.0001

algorithm rprop (resilient backpropagation)

err.fct sse (sum of squared errors)

act.fct tanh (tangent hyperbolicus) or logistic (logistic function)

linear.output TRUE

const.weights TRUE

Table 2.
“Neuralnet” Argument functions for training EvANN.

ID Activation
function

Hidden
layers

Neurons per
layer

MSE ANN Reached
threshold

Steps

1 tanh 2 12,4 0.04742882 0.00801973 5612

2 logistic 2 12,4 0.01112887 0.009550541 15,577

3 tanh 2 12,6 0.02183281 0.009768165 30,691

4 logistic 2 12,6 0.03428463 0.009515263 7269

5 tanh 2 12,8 0.05968034 0.009165002 29,721

6 logistic 2 12,8 0.02881464 0.008727336 4276

7 tanh 2 14,8 0.04617885 0.008214281 37,203

8 logistic 2 14,8 0.03225161 0.009175114 4013

9 tanh 3 14,6,4 0.01818992 0.009329059 3394

10 tanh 3 12,8,4 0.01749427 0.009955628 5562

11 tanh 2 18,8 0.04391595 0.00908179 12,742

Table 3.
EvANN Configurations with different activation function, hidden layer, and number of neurons.
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Figure 4.
EvANN topology image. Input layers and (EM2) and (vM2) in output layers.

Figure 5.
% RE training EvANN Configuration 3.

Figure 6.
%RE, test dataset ANN Configuration 3.
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5.5 QANN

A second model with stiffness coefficients was now developed with the results
being the coefficients of the second material, Q11M2 and Q12M2, Figure 7 and
Table 4. The settings for the “neuralnet” function are given in Table 4.

The generated configurations with their respective achieved values are shown in
Table 5.

The second QANN configuration and its graph is showed in Figure 7 with
the relative error percentages, Figures 8 and 9, RE which computes with
Eq. (16).

Figure 7.
QANN topology image. Input layers and Q11 Material 2 (Q11M2); Q12 Material 2 (Q12M2) in output layer
configuration 2.

Formula Q11M2 + Q12M2 � SGX + SGY + CON1 + CON2 + EX + EY + Q11M1 + Q12M1

data dataset (192 training, 36 test, 25 validation)

hidden c(a,b) or c(a,b,c) where a,b,c are the number of neurons

stepmax 1.00E+07

threshold 0.01

rep 1

startweights NULL

learningrate 0.0001

algorithm rprop (resilient backpropagation)

err.fct sse (sum of squared errors)

act.fct tanh (tangent hyperbolics) or logistic (logistic function)

linear.output TRUE

constant.weight TRUE

Table 4.
“Neuralnet” argument functions for training QANN.
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6. Neural network validation process

Once an ANN has been trained and tested, it is evaluated by applying it to an
equivalent problem but with different structural values from those used in the
training. The results for the different scenarios are in Table 6 and Figures 10 and 11.

Configurations 3 and 2 were selected for the evaluation of both, EvANN and
QANN, based on their performance in the test dataset.

Table 6 and Figures 10 and 11 depicts the configuration and attributes selected for
each ANN.

The RE for each ANN is shown in the plots in Figures 10 and 11.

ID Activation function Hidden layers Neurons MSE ANN Reached threshold Steps

1 tanh 2 12,6 3.09E-02 9.93E-03 4.49E+04

2 tanh 2 12,8 2.03E-01 8.57E-03 5.50E+04

3 logistic 2 12,8 5.02E-02 9.41E-03 2.15E+04

4 tanh 2 16,6 2.01E-01 7.51E-03 2.08E+04

5 logistic 3 16,6 5.02E-02 9.90E-03 2.67E+04

6 tanh 3 16,6,4 3.43E-03 7.57E-03 1.17E+04

7 logistic 3 16,6,4 5.68E-03 9.70E-03 5.52E+03

Table 5.
QANN Configurations with different activation function, hidden layer, and number of neurons.

Figure 8.
% RE training QANN Configuration 2.

Figure 9.
% RE, test dataset QANN Configuration 2.
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As can be seen in the tables, the maximum RE obtained are up to 58.5% for the
EM2 output and up to 7.5% for vM2.

When looking at QANN, the tables show the maximum RE obtained was up to
4.48% for Q11M2 production and up to 3.71% for Q12M2.

7. Results of application

In this section, the contrasting results of EvANN and QANN RE for data3 and
compute with the results published in the article [8], data4 are presented .

7.1 Validation process (Data3)

The training data was expanded and a configuration that is not close to the optimal
MSE value was selected to avoid overfitting. For the EvANN, this occurred with

Activation function Hidden layers Neurons MSE ANN Reached threshold Steps

EvANN tanh 2 12,6 2.18E-02 9.83E-03 3.07E+04

QANN tanh 2 12,8 2.03E-01 8.57E-03 5.50E+04

Table 6.
Configurations selected for EvANN and QANN.

Figure 10.
% RE validation dataset EvANN Model.

Figure 11.
% RE QANN validation dataset.
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configuration 3, which has a higher MSE than configurations 2, 9, and 10, as shown in
Table 3. For the QANN, configuration 2 was selected, which has two hidden layers
with 12 and 8 neurons, respectively, with the tanh activation function (hyperbolic
tangential), as shown in Table 5. The selection criterion was to obtain the lowest
average RE in the two output variables.

The RE of EvANN and QANN outputs is shown in Table 7, where the QANN
outputs were converted to engineering constants (Eqs. (17) and (18)).

EM2 ¼ Q2
11M2 �Q2

12M2

Q 11M2
(17)

νM2 ¼ Q 12M2

Q 11M2
(18)

Young’s Modulus E Poisson’s Ratio v

Constants model of three
material

Constants
evaluated

%
RE

Constants
model

Constants
evaluated

%
RE

EvANN 67 65.45 2.31 0.33 0.3293 0.22

QANN 67.08 0.12 0.3298 0.05

EvANN 100 61.76 38.24 0.31 0.3266 5.37

QANN 101.02 1.02 0.3102 0.05

EvANN 200 178.04 10.98 0.29 0.2952 1.80

QANN 202.25 1.12 0.2902 0.06

Table 7.
Comparison of results for EvANN and QANN for three materials in dataset 3 for the engineering constants.

Figure 12.
MLCM test tubes used in the final ANN application.
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7.2 Real case data (Data4)

The different MLCMs used in this stage (Figure 12) are (1) Aluminum-Brass-
Aluminum (A-B-A), (2) Brass-Aluminum-Brass (B-A-B) and Copper-Aluminum
(C-A) (Figure 3). The properties and volumetric fractions of the materials in the
MLCM are given in Tables 8 and 9.

7.3 Real case data compute in QANN and EvANN

Continuing with the real case, the contrasted RE of EvANN and QANN results are
presented as shown in Figure 13. The QANN model shows a better performance.

Table 10 shows the averages of the RE obtained for each of the outputs when
checking the application of the model obtained using QANN for the results in [8].

Configuration two, which has two hidden layers with 12 and 8 neurons in relation
to the tanh (hyperbolic tangential) activation function, was selected. The selection

MCLM Aluminum
volumetric
fractions, n

Brass volumetric
fractions, n

Aluminum
volumetric
fractions, n

Copper
volumetric
fractions, n

Aluminum-
brass-aluminum

0.671 0.329

Brass-
aluminum-brass

0.338 0.662

Aluminum-copper 0.516 0.484

Table 8.
Volumetric fractions of materials in the MLCMs.

Material Young’s Modulus (E), Gpa Poisson’s Ratio (υ)

Aluminum 67 0.345

Brass 101 0.313

Copper 109 0.33

Table 9.
Elastic constants of the MLCM components.

Figure 13.
Comparison of EvANN and QANN results based on engineering constants, EVM2, vM2.
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criterion was to obtain the smallest average percentage of error in the two output
variables, Q11M2 and Q12M2 as in Section 7.1, which obtained smaller RE for data3
using the QANN.

Table 11 shows the results and the contrast in RE average percentage of all the
considered outputs from the final results, obtained for the ANN, for the stiffness
constants (QANN) and for the engineering constants (EvANN).

The values of the engineering constants as a function of Q were determined from
the identity equations (Eqs. (17) and (18)), and the obtained average for each of the
specimens in Table 12. The table also shows that the results for each configuration line
should be very approximate since these were acquired from linear multiplication, but
have variations.

Finally, the QANN configuration that shows the best results during validation was
applied to the MLCMs analyzed in [8]. The value of the final average constants is
presented in Table 13.

8. Discussion

The different conditions described in Section 5, were evaluated as a result of the
used study to obtain a trained and efficient ANN, the most important of which were
the following:

1.The values of all data used in the training were selected and restricted in such a
way that their values, corresponding to the MLCM of [8] (Aluminum-brass-

ID Activation
function

Num
layers

Neurons Q11M2 Q12M2

RE
media

Standard
deviation

Min Max RE
media

Standard
deviation

Min Max

1 tanh 2 12,6 8.72 9.86 0.72 50.00 37.20 80.76 0.84 301.50

2 tanh 2 12,8 5.46 4.37 0.34 21.87 4.63 3.89 0.18 18.82

3 logistic 2 12,8 12.17 8.15 0.91 49.29 11.45 6.07 0.88 33.17

4 tanh 2 16,6 5.33 6.68 0.37 36.97 5.30 5.63 0.72 31.28

5 logistic 3 16,6 7.28 10.18 0.22 55.73 6.35 7.01 0.13 36.56

6 tanh 3 16,6,4 5.64 12.40 0.06 71.24 5.40 9.57 0.10 51.09

7 logistic 3 16,6,4 6.63 14.73 0.23 84.72 6.31 10.71 0.37 57.61

Table 10.
Means and standard deviation of RE for different configurations of the QANN application with the article results.

ANN, Applied Average RE %

Constants EM2 Constants vM2

EvANN 12.54 3.15

QANN 6.184 3.58

Table 11.
Average percentages RE for the stiffness and engineering constants.
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aluminum (A-B-A), Brass-Aluminum-brass (B-A-B), and Copper-aluminum (C-
A) were located at a mean value. An observed case that showed the need for this
step was in the training validation, the stress values (σGx and σGy) in the input
were out of range compared to those used in the training, the results had larger
differences between 20 and 80%, from when these were close to the mean.

2.The selected materials for training were randomly taken from the literature as
only values approximating those needed for the final ANN application were
needed (see Appendix B Table B1).

3.The homogeneous unit strains were obtained from the model, Eqs. (10) and (12),
the MLCM configuration, the elastic constants of its components and the
different values of global stresses applied on their boundaries. Thus, the training
tables and the ANN validation, Appendix B Table B2, were generated.

4.The data for the same MLCM and the same boundary conditions were duplicated
for training purposes by inverting the requested outputs: in one case, the
objective elastic properties of one of the MLCM components and, in another,
those of the other component. This is all depicted in Appendix B Table B1. It is
important to mention that this activity was relevant because it improved the
ANN results by 4.36% in the MSE, where the average of the EvANN
configurations is 0.03283643, Table 4.

5.Regarding the real case, only one data was available for each MLCM, but since it
was a linear mechanical problem, the values were multiplied in boundary
conditions and four input configuration lines were obtained for the same piece of
data. The presented results in Appendix B, Table B4 showed the importance of
this step, because although these were performed only four times, it was
observed that for the same case of the MLCM (A-L-A) the results that ANN had,

Young’s Modulus (E) Poisson’s Ratio υð Þ

Expt
constant

Article
constant

RE
%

Evaluated
constant

RE
%

Expt
constant

Article
constant

RE
%

Evaluated
constant

RE
%

Aluminum-Brass-
Aluminum

Aluminum 67 72 7.5 65.11 2.8 0.345 0.34 1.4 0.34 1.4

Brass 101 97.6 3.4 86.8 14.1 0.313 0.318 1.6 0.3148 0.6

Brass-Aluminum-
Brass

Aluminum 67 72 7.5 65.81 1.8 0.345 0.34 1.4 0.33 4.3

Brass 101 97.6 3.4 106.33 5.3 0.313 0.318 1.6 0.311 0.6

Aluminum-
Copper

Aluminum 67 64.4 3.9 66.41 0.9 0.345 0.33 4.3 0.34 1.4

Copper 109 106.2 2.6 116.8 7.2 0.33 0.32 3 0.3148 4.6

Table 13.
Average final elastic constants obtained with QANN.

77

Determination of the Elastic Constants of a Metal-Laminated Composite Material Using…
DOI: http://dx.doi.org/10.5772/intechopen.108601



were different with variations of up to 30%, when these should be the same.
However, uncertainty risks are avoided by averaging the obtained values for
each output as shown in Table 13.

6.A further important point that showed an overview of simplicity in the training
setup was found when evaluating two cases: one in the training phase and the
other in the output data request. The first one required the engineering constants
while the latter required the stiffness constants. In the first case average RE of
12.54% E and 3.15 for υ were obtained; in the second case, the RE for E and υ
were 6.18% and 3.57%, respectively. From the above and observing (Eqs. (14)
and (15)), it is assumed that the analytical model in terms of Q’s is simpler than
the model in terms of engineering constants.

9. Conclusions

This chapter, using ANN, establishes a method to determine the engineering
constants of metallic laminated composite material layers, shows the importance of
adequately defining the problem to be solved, analyzing concepts, establishing scopes
and constraints, and selecting sufficient and necessary training parameters, based on
the obtained results. The importance of the following was identified by evaluating
several scenarios to generate the ANN dataset: (a) the qualitative ranges of the
parameters in the input data; recommending that the values of the application data
should be in the mean of the training data, (b) variations in the structure of the
dataset (different outputs for the same MLCM problem), and (c) simplicity in the
dataset; the ANN showed better results when stiffness constants were requested in the
output data; the analytical solution, is simpler in terms of stiffness constants than in
terms of engineering constants.

Several configurations with different activation functions, number of layers, and
number of neurons per layer were tested in the study, finding better results for this
problem with a medium MSE when compared with the lowest MSE trained. This
action may be due to the fact that there is no overfitting.

Based on this research, it is recommended to use the analytical model applied here
to generate an ANN dataset for the study of the constitutive modeling of composite
materials in plane stress problems.

Nomenclature

ANN Artificial neural network
MLCM Metal laminated composite material
MCL Metallic composite
E Young’s Modulus
G Rigidity Modulus
MSE Mean squared error
EvANN ANN that directly determine the engineering elastic constants of one of

the components of the laminate
QANN ANN to determine the stiffness coefficients of one of the components of

the laminate
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Appendix A:

Parameter Name in Model Name in ANN formula

Global stress in x (MPa) σGx SGX

Global stress in y (MPa) σGy SGX

Material concentration coefficient 1 n1 CON1

Material concentration coefficient 2 n2 CON2

Strain in x εx EX

Strain in y εy EY

Young’s Modulus, Material 1 (GPa) EM1 EM1

Young’s Modulus, Material 2 (GPa) EM2 EM2

Poisson’s Relation, Material 1 νM1 vM1

Poisson’s Relation, Material 2 νM2 vM2

Stiffness constants, material 1 Q11M1, Q12M1 Q11M1, Q12M1

Stiffness constants, material 1 Q11M2, Q12M2 Q11M2, Q12M2

Table A1.
Nomenclature used for the analytical model and ANN formula.
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Chapter 6

Optical Soliton Neural Networks
Eugenio Fazio, Alessandro Bile and Hamed Tari

Abstract

The chapter describes the realization of photonic integrated circuits based on
photorefractive solitonic waveguides. In particular, it has been shown that X-junctions
formed by soliton waveguides can learn information by switching their state. X junc-
tions can perform both supervised and unsupervised learning. In doing so, complex
networks of interconnected waveguides behave like a biological neural network,
where information is stored as preferred trajectories within the network. In this way,
it is possible to create “episodic” psycho-memories, able to memorize information bit-
by-bit, and subsequently use it to recognize unknown data. Using optical systems, it is
also possible to create more advanced dense optical networks, capable of recognizing
keywords within information packets (procedural psycho-memory) and possibly
comparing them with the stored data (semantic psycho-memory). In this chapter, we
shall describe how Solitonic Neural Networks work, showing the close parallel
between biological and optical systems.

Keywords: Nonlinear optics, photorefractive soliton, solitonic waveguide, supervised
learning, unsupervised learning, Machine Learning, biological neural network,
Artificial Intelligence, optical psycho-memory, optical neural network, photonics

1. Introduction

Software artificial intelligence (AI) and the neuromorphic approach, both electronic
and optical, are born to reproduce the learning capacity of the biological neural system.
AI software has now proved to be fundamental in many fields, although with the limits
imposed by the tools used [1]. These represent the pretext for developing neuromorphic
hardware capable of overcoming these limitations [2]. Neuromorphic optics has shown
great versatility. However, current technologies reproduce only some aspects of neural
biology without grasping the overall view. Works such as [3] implement fundamental
units capable of reproducing excitability, or spiking properties, while others are focused
on synaptic connections [4]. An overview is missing. The biology of the brain [5]
teaches us that it is a system with local properties that can have global effects. In other
words, learning is a process that affects entire regions of the neural network and
manifests itself through a structural organization of the connections between neurons.
In this way, real neural maps are built, whose development includes learning and
memorization of information. Soliton neural networks (SNNs), exploiting the typical
plasticity of photorefractive materials, are dynamic entities capable of self-modifying to
process, learn and memorize information. Furthermore, they are able to do so selec-
tively at the information level, exactly as it happens in the human brain. By physically
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combining the processing and memory units, SNN networks functionally approach the
biological nervous system. Now learning and memorization are two events that occur at
the same time through modifications of the spatial geometries.

2. Photorefractive solitons and solitonic waveguiding

2.1 Spatial solitons

The possibility of a beam becoming self-confining and propagating without diffrac-
tion was first studied about 50 years ago by E.T. Chiao, E. Garmire, and C.T. Townes [6]
who in that year received the Nobel Prize for his studies on the maser and the laser. So
they interpreted the phenomenon: “We shall discuss here conditions under which an
electromagnetic beam can produce its dielectric waveguide and propagate without spreading.”
Eight years later, V. E. Zakharov and A. B. Shabat formulated the theory of solitons [7].

The first experimental verification of self-confined beams arrived 13 years later, in
1985, by A. Bartelemy et al. [8] exploiting the Kerr-type nonlinearity of a liquid CS2
cell and, 5 years later in 1990, within a glass planar waveguide [9].

It was immediately evident that the applicability of Kerr solitons was not simple: in
fact, the low values of the nonlinearity of the excitable Kerr type in the glass required
either very high intensity (GW/m2) or very long propagations (being cumulative),
and only planar geometries (Kerr solitons are stable only in 1D and not in 2D geome-
tries). Over the years, it has been clear that these nonlinearities could be exploited
only to realize temporal soliton behaviors (pulses without dispersion) in optical fibers
by adopting long propagations but not within the chips.

However, in those years, and in particular in 1992–1996, the very first theoretical
and experimental works on the formation of spatial solitons in photorefractive mate-
rials came out [10–21]. Only later on, at the beginning of the 2000s, bright solitons
have been observed in lithium niobate (LN) [22] the most widely used nonlinear
material for integrated devices. Since then, spatial solitons in LN have been largely
used as waveguides in devices.

However, the first use of solitons as waveguides started early: in 1991, De la Fuente
et al. [23] used Kerr solitons as waveguides. Almost 9 years later, E. Fazio et al
repeated the same experiment in a glass chip [24] and used spatial soliton interaction
for signal processing [25].

2.2 Theory of photorefractivity and solitons

A photorefractive crystal is typically a semiconductor that has a second-order
nonlinearity of the electro-optical type, that is, the possibility of varying its refractive
index as a function of an applied static electric field. Mathematically this can be
represented in terms of the nonlinear polarization intensity vector:

P
!

ωð Þ ¼ ε0 χ
$ 1ð Þ

∙ E
!

ωð Þ þ χ
$ 2ð Þ

: E
!

0ð ÞE! ωð Þ
h i

(1)

where E
!

ωð Þ represents the electric field associated with the light and E
!

0ð Þ the
static one. Putting in evidence the light field we obtain

P
!

ωð Þ ¼ ε0 χ
$ 1ð Þ þ χ

$ 2ð Þ
∙ E
!

0ð Þ
h i

∙ E
!

ωð Þ (2)
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which shows that the electric susceptibility, and consequently the dielectric tensor,
gets a linear dependence from the static field:

ε
$ ¼ ε0 1þ χ

$ 1ð Þ þ χ
$ 2ð Þ

∙ E
!

0ð Þ
h i

(3)

for this reason, it is also called the “linear Pockels effect.” Typically, the refractive
index of crystals is described by an ellipsoid of the type:

x2

nx2
þ y2

ny2
þ z2

nz2
¼ 1 (4)

and, as a consequence, its variation is expressed by the variation of

1
n2

ðtermsÞ

Δ
1
n2i

� �
¼

X
j

rijEj 0ð Þ (5)

that corresponds to a decrease of the refractive index:

ni E 0ð Þ½ � ¼ ni,0 � 1
2

X
j

n3i0rijEj 0ð Þ (6)

where i represents one of the crystallographic directions (x,y,z) and ni0 describes
the linear refractive index along the i-th direction.

There are two critical points in the discussion that has followed so far:

1. the local electrostatic field must give a local distribution to induce an electro-
optical variation of the refractive index capable of self-confining the laser beam
and originating spatial solitons

2.the electro-optical effect decreases the refractive index of the material (see
Eq. (6)) while to self-confine the light a waveguide must have a higher refractive
index than the surrounding environment.

For these reasons, it is necessary to follow a small procedure, a kind of small trick,
to achieve a positive variation of the refractive index capable of self-confining the
light: this can be done by applying a bias field to the whole material that lowers its
index everywhere, and screening it in a small region where the light is, in order to
raise back its value. As a consequence, the bright photorefractive spatial solitons are
usually called screening solitons. Here is how this happens.

Let us consider a photorefractive medium as a semiconductor doped by a donor
medium. Donor states (ND) are usually localized energetically within the energy gap:
which means that light can induce electron transitions from the donor states to the
conduction bands. Consequently, two charge populations are generated so far: ionized
donors, that is holes (ND

+), which are physically localized, that is, are not free of
moving because are connected to the physical position of the dopant ions, and
electrons, which instead can go everywhere being in delocalized conduction states.

The donor rate equation is:

∂nþD
∂t

¼ σFnD � γnþd ne (7)
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where σ is the absorption cross-section, F the photon flux, and γ the relaxation
rate. The electron rate equation follows the donor one, with the inclusion of the
diffusion-conduction terms:

∂ne
∂t

¼ ∂nþD
∂t

� μ∇
!
∙ neE

! þ kBT
q

∇
!
ne

� �
(8)

where μ is the electron mobility, kB the Boltzmann constant, and T the temperature.
Electrons and holes constitute the local charge density ρ:

ρ ¼ q nþD � ne
� �

(9)

which generates, through Gauss’s theorem, a local electric field that screens the
applied bias:

ε∇
!
∙ E
!
SC ¼ ρ ! E

!
local ¼ E

!
bias þ E

!
SC (10)

Applying a bias field along the extraordinary ĉ the crystallographic direction of a
uniaxial photorefractive crystal, the refractive indices get the expressions

nx ¼ ny ¼ n0

nz ¼ ne � 1
2
n3e r33Ez�local

8<
: (11)

The nonlinear light propagation is then described by the nonlinearwave equation [13]:

∂

∂x
� i
2k

∂
2

∂y2
þ ∂

2

∂z2

� �� �
A x, y, zð Þ ¼ ik

n
δn Elocalð ÞA x, y, zð Þ (12)

where the field amplitude, in the case of a self-confined solitonic solution, should be
factorized into an amplitude, independent from x, and a propagative term as follows:

A x, y, zð Þ ¼ u y, zð Þei ωt�Γxð Þ (13)

as done for every kind of soliton, not only the photorefractive ones. Many groups
have tried to solve analytically Eq. (12) without real success. Semi-analytical solutions
are indeed reported in the literature showing that such complex problems can support
bright solitons. In order to observe the soliton formation, a numerical integration
(FDTD—Finite Difference in Time Domain) is performed of all Eqs. (6)–(11). Often, an
approximated equation is considered, taking into account the saturable behavior of
the nonlinear dielectric constant:

∂

∂x
� i
2k

∂
2

∂y2
þ ∂

2

∂z2

� �� �
A ¼ � ∈ NLEbias

1þ Aj j2
ASATj j2

A (14)

2.3 Experiments on photorefractive solitons

The experimental set-up for spatial solitons is shown in Figure 1 [22]. A laser beam
(soliton beam) is focused down to about 10–12 μm FWHM onto the input face of a
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sample. To generate suitable refractive index modulation, the sample must be biased
along its optical axis.

The value of the electric field to bias strongly depends on the crystal type and its
electro-optic coefficient: for example, using strontium barium niobate crystals (SBN)
which have a very high electro-optic coefficient, the electric field ranges from a few
hundred V/cm up to some kV/cm [26]; lithium niobate (LN) has a lower electro-optic
coefficient and requires several tens of kV/cm [22]; in materials with high optical
activity like Bi12SiO20 (BSO), the applied bias must be as high as 55 kV/cm or higher to
induce the light to reach a nonlinear polarization regime and to self-confine [27–29].
Chauvet et al. [30, 31] proposed an interesting innovative solution for the bias appli-
cation: induce an internal electric field by applying a thermal gradient and take
advantage of the pyroelectric effects that some crystals have, for example, LN. Indeed,
this is a major improvement in the technology, as it eliminates any conductive con-
tacts/plates, thus leaving the sample completely free and accessible from all sides for
further applications.

Background illumination can be provided also, to stabilize the solitonic beam
during propagation (i.e., prevent beam self-deflection [32–35]).

Finally, an optical imaging system is placed after the sample to monitor the output
face of the sample using a camera. The typical evolution of the soliton formation is
shown in Figure 2 where the light intensity at the output phase is shown.

A key feature of photorefractive solitons is the very low power required for their
writing. Photorefractive solitons require very low powers, of the order of microwatt in
continuous [36]. This means that they can be made both with coherent light from
continuous or pulsed lasers at the fundamental or second harmonic frequency
[37–40], even in the femtosecond regime [41, 42], and with incoherent light from
fluorescent bulbs [43] or even ion fluorescence [44].

E. Fazio et al. [22] have shown experimentally that the solitonic solution gives a
hyperbolic transverse profile which can be easily identified by plotting the transverse
intensity distribution in a semi-log scale (Figure 3). A laser beam has usually a
Gaussian profile that, in a semi-log plot, gets a negative parabolic shape. As soon as it
evolves into a soliton, the Gaussian profile rearranges into a hyperbolic one. This
transformation can be monitored in the semi-log graph, where the hyperbolic profile
gets a triangular shape (a linear rise and fall tuned together on the vertex).

Figure 1.
Experimental set-up for screening photorefractive solitons [22].
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2.4 Photorefractive soliton waveguiding

Among the possible applications of soliton beams, one of the most important is
their use as waveguides. Compared to traditional techniques, writing solitonic wave-
guides has many advantages in terms of construction costs, 3D geometries, propaga-
tion characteristics, and time durations.

Regarding costs, solitonic waveguides can be written with extremely low laser
powers and above all in continuous mode: therefore, practically at no cost, since they
can also be written by laser diodes for a few euros.

With regard to 3D geometries, a soliton guide can be written in any position within
a nonlinear substrate, allowing full exploitation of the entire available volume. This

Figure 2.
Experimental images of the soliton formation and stabilization [22].

Figure 3.
A Gaussian laser beam modifies into a hyperbolic secant beam when becomes spatial solitons [22].
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was not possible before with traditional waveguide construction techniques, which act
mainly on the surface of the substrate or at most by penetrating a few microns.

Regarding the propagative characteristics, the performances of a solitonic guide
are amazing, significantly improving the specifications of traditional waveguides.

Table 1 shows some characteristic values of a soliton guide made of lithium
niobate. As you can see, the waveguides are relatively wide and with a rather low
refractive index contrast. These factors are related to the applied bias electric field:
Low fields originate wide beams with a modest contrast; very high fields can originate
narrow beams and, consequently, high refractive index contrasts.

However, the fundamental characteristic of soliton waveguides is linked to the
propagative losses, extremely low in the order of 0.07–0.04 dB/cm (limit of measur-
ability), much lower than commercial waveguides (a guide obtained by ion exchange
typically has 1 dB/cm as propagative losses). This factor is related to the nature of
solitons: unlike traditional guides in which the index profile is made artificially, in this
case, it is precisely the light that chooses the best index profile to be able to propagate
self-confined, that is, without diffraction. This leads to ultra-very low losses and low
modal dispersion (since the guides are almost single-mode).

Another fundamental characteristic of solitonic guides is their transient, permanent
or semi-permanent character: using substrates with a very rapid dielectric relaxation
and/or using thin films, as soon as the writing light is turned off the associated guide
disappears, with times even of a few nanoseconds. By using substrates with extremely
slow dielectric relaxations [45, 46], waveguides can survive for a long time, even
months. When writing solitons with very intense femtosecond pulses, the material can
undergo permanent changes and the waveguides no longer erase.

3. Stigmergy, reinforcement learning, and photorefractive plasticity

3.1 Stigmergy

Stigmergy was first proposed by French entomologist Pierre-Paul Grassè in
the1950s when studying the activities of social insects [47]. The word Stigmergy is a

Writing powers From nW up to mW (typically μW)

Full Width Half Maximum Typically 10–18 μm (min 2–3 μm)

Propagation Measured up to 2–3 cm

Refractive index contrast Typically 10�3÷10�4

Refractive index profile Hyperbolic secant—Gaussian

Waveguide modal dispersion 0.6 � 0.2 fs/mm1

Lithium Niobate chromatic dispersion 9.9 � 0.2 fs/mm2

Waveguide propagation losses 0.07–0.04 dB/cm

Waveguide lifetime From few ns to months
1Measured at 800 nm with 75 fs pulses within waveguides written at 514 nm2Measured at 800 nm with a CW laser beam

Table 1.
Performances of typical photorefractive solitonic waveguides.
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combination of the Greek words ``stigma” (outstanding sign) and ``ergon” (work),
signifying that some activities of agents are prompted by external traces, which
themselves are generated by the agent’s activities [48]. Stigmergy allowed Grassè to
explain how insects with fractional intelligence, without obvious communications,
can collaboratively engage in complex tasks, such as building a nest simply by follow-
ing very naive rules. In general, the paradigm of social insect societies is a distributed
system that, despite the lack of sophistication of their individuals, offers a highly
structured social organization. For instance, as a result of this organization, ant colo-
nies can carry out complex assignments that in some cases are beyond the capacities of
a single ant [49]. A study of their behavior indicates that in the heart of their
commotional random movements, there can be seen the trace of a series of behaviors
that are driven by repeated stimulus-response cycles [50]. For example, when
searching for food, ants initially explore the area surrounding their nest randomly and
while moving, they leave a chemical pheromone trail on the ground (Figure 4). Once
an ant finds a food source, it evaluates the quantity and the quality of the food and
carries some of it back to the nest [52].

During the return trip, the quantity of pheromone that an ant leaves on the ground
may depend on the quantity and quality of the food. The pheromone trails will guide
other ants to the food source and subsequently, the shortest path to the food source
will be reinforced as the result of a higher probability of feedback concerning the long
paths [51]. This environment-intermediated type of communication has captivated
researchers in many dissimilar fields. For example, it can be referred to all those
protocols for the optimization of multi-variable problems known as genetic algo-
rithms, which exploit the rules of genetics to solve mathematical problems with many
independent variables, or neural networks, mathematical systems that base the calcu-
lation on a “learning” database that the system has previously prepared. All these
typical problems that would require smart signal processing, are called “reinforcement
learning” [53]. This expression is commonly used in computer science to describe
those algorithms “of machine learning inspired by behaviorist psychology, which is

Figure 4.
Basic scheme of the search for food by the ants. The system is based on the two fundamental decision-making
principles of following a trace of pheromone and of changing track when a more marked one is met [51].
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connected with how software agents ought to take actions in an environment to
amplify some impulse of cumulative reward [54].

3.2 Reinforcement learning

Reinforcement learning concerns neural networks or artificial intelligence proto-
cols that self-set by reinforcing specific information identified by feedback in the
system in order to solve complex problems. This procedure is indeed inspired by
nature, adopting its Stigmergy in order to transfer information in decentralized sys-
tems, thus realizing distributed cognitive processes through many small, simple elab-
orations [55]. The basic idea of reinforcement learning is to consider the feedback
derived from the dynamic interaction of the learning agent with the surrounding
environment. Guiding autonomous agents to act optimally through trial-and-error
interaction with the corresponding environment is the primary goal in the field of
artificial intelligence and is regarded as one of the most important objectives of
reinforcement learning [56]. During the learning process, the adaptive system tries
some actions (i.e., output values) on its environment, then, it is reinforced by receiv-
ing a scalar evaluation (the reward) of its actions feedback [57]. As a result, the
reinforcement learning algorithms selectively retain only the outputs that maximize
the received reward because of the higher repetition rate over time [53].

Unfortunately, software-based protocols need solution times that increase expo-
nentially with the size of the problem; after many years of research, no improved
algorithm has been found to solve these problems within a polynomial time using a
deterministic Turing machine. For this reason, hardware approaches have been pro-
posed in the past [58, 59]. Among all, optical solutions to supercomputing seem to win
for versatility [60] in terms of increased fan-in and fan-out, energy consumption, and
recursive preprocessing. However, the proposed optical solutions [61, 62] neither
reduce the complexity of the problem nor offer technologically efficient procedures
without exponentially increasing the demand for physical resources [63].

Very recently, an alternative approach was proposed to realize photonic hardware
able to perfectly simulate the Stigmergy processes adopted by ants searching for food.
This alternative approach was published in the paper by M. Alonzo et al. entitled “All-
Optical Reinforcement Learning in Solitonic X-Junctions [55].” In this work, the
pheromone trajectories are represented by paths of the light through a nonlinear
photorefractive material and the trajectory of the light is represented as the modified
refractive index of the host material. Such modifications behave as induced wave-
guides, that is, regions that confine optical information which can travel inside them
without being dispersed (as signals in optical fibers). The refractive contrast between
the induced channel and the surrounding medium depends on the intensity of the
writing beam. Consequently, it behaves like the pheromone quantity in the ant’s path:
it can be strengthened or weakened with the writing light intensity. This decision-
making process can be represented by a nonlinear modulation of the crossing point
between these paths. The strengthening of one path in an X-crossing point would
correspond to making it a preferential trajectory, where the light will be conveyed
more easily. It behaves as a channel of water whose banks have been made deeper and
therefore more capacious: when two channels meet, more water will flow into the
deepest channel rather than inside the shallowest one. Such addressable behavior has
been induced into a nonlinear optical X-junction. The junction has been realized by
injecting two absorbed beams that cross each other in the middle of the host
photorefractive medium. Each beam modulated the refractive index of the host
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medium according to its intensity. A signal beam (unable to modify the host medium)
is injected inside one channel and consequently reaches the X junction. It represents
the information that propagates inside the photonic structure. If the writing beams
have the same intensities, the junction is perfectly symmetrical, meaning that 50% of
the information beam emerges from one channel and 50% from the other one
(Figure 5). When the writing light is unbalanced or writing feedback is injected from
the output, the X-junction switches to an asymmetric behavior, for which 80% of the
information beam is now conveyed inside the strengthened channel and the
remaining 20% remains in the weaker one.

3.3 Photorefractive plasticity

In neuroscience, this phenomenon is the basis of the selective memorizing-
forgetting process that characterizes the memory of the events in the brain [64]:
information pieces that are no longer reinforced will gradually be lost concerning
recently reinforced ones. This capability arises owing to the considerable plasticity of
the individual building block of the nervous system which allows animals to adapt to
changing internal and external environments. During development, learning, and
ongoing behavior, individual neurons, synapses, and circuits form short-term and
long-term changes as a result of experience. This is the basis of the learning in a neural
network which governs neuroplasticity, that is the ability of a system to modify the
synaptic interconnection network according to its own needs, both to carry out “rea-
soning” and to recover unused areas (e.g., reusing regions that are inhibited due to
trauma or injury) [65]. Neuroplasticity occurs at all levels, from the behavior of a
single ionic channel to the morphology of neurons and large circuits and over

Figure 5.
Numerical simulation (top) and experimental results (below) of a stigmergic photonic x-junction [51].
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timescales ranging from milliseconds to years [66]. Each level of the elementary unit
is connected in parallel to each other, which performs simple operations of the storage
and processing of information in successive cascading levels. Similar to the perfor-
mance of the ants in the colony the information processed by a group of neurons is
sent to the next level of neurons by opening and/or closing specific synaptic intercon-
nections. In this way, the memory and subsequent reasoning consist of trajectories
within the network, the mapping of which represents the set of stored information,
which can be kept over time or deleted as needed. This is the way of “learning” and
“remembering” a biological neural network. Any further information will follow its
path: if the new path coincides with an active trajectory, then the information will be
recognized, otherwise, the signal will be blocked, sooner or later, by inactive synaptic
interconnections [67].

In this way, the neural network simultaneously remembers and processes, in a
spatial coexistence where, the traditional computers cannot do this: in fact, they are
based on the Von Neumann architecture which provides one or more processors
connected to various external, separate peripherals, including memory. Whenever the
computer needs information, it must access the memory to take and bring data back
to the processor. This operation requires machine time and costs, in terms of energy
consumption. Whereas, the neuromorphic paradigm, on the other hand, wants to
unify the two areas of processing and memory, as happens in the biological field.
However, overcoming the dichotomy between processing and memory is possible by
creating neuromorphic architectures. By exploiting the typical functional geometries
of the nervous system, information can be stored and processed in the same physical
location, unifying memory and processor. In 2011, C. David Wright introduced the
use of PCM for arithmetic and bio-inspired calculation [68], and provided the princi-
ple experimental proof of “processor” based on PCM for the first time, demonstrating
the four basic operations of addition, multiplication, division and subtraction, and
storing the results at the same time. In the same year, D. Kuzum reported new
nanoscale electronic synapses based on PCM for optical data storage and non-volatile
storage [69]. Continuous resistance transitions in PCM [70] and saturable absorber
composite materials are used to simulate the properties of biological synapses so as to
realize synaptic learning rules [71]. In 2017, Alexander N. Tait of Princeton University
published a paper referred to neuromorphic silicon photonics, introducing the world’s
first integrated photonic neural network [72], It uses a neural compiler to program a
silicon photonic neural network with 49 nodes, each node operates at a specific
wavelength, light from each node is detected and summed before it is fed into the
laser, then the output will be feedback to create a feedback loop with nonlinear
characteristics. Tait et al. simulated traditional neural networks demonstrated how
photonic neural networks can solve differential equations and found that photonic
neural networks using silicon photonic platforms can be connected to ultrafast infor-
mation processing environments for radio control and scientific computation.

It should be noted that most of the platforms that have been introduced as photonic
or electronic neural networks are fixed structures that rigidly perform the calculation
without the capability of changing the interconnections as requested [73]. This last
aspect requires the use of modifiable plastic materials and/or devices, that is, capable of
assuming different behaviors depending on the information to be stored. In these
structures, the configuration of the neurons and their interconnections are written and
predefined. So, they are only capable of doing certain limited functions, whereas the
biological neurons can dynamically modify the interconnections in the procedure of
training. They can establish new interconnections or if requires they can diminish or
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strengthen the weight of specific interconnections in synaptic points. Recently, inspired
by the biological brain, reinforcement learning methods based on the memory of past
experiences have been realized in photonic platforms via solitonic interconnections.
Thanks to the plasticity of photorefractive materials, the light beam itself is able to
locally vary the refractive index of the host material and create a channel within which
it can propagate without diffraction. This solitonic signal will change the refractive
index of the medium similar to the pheromone-mediated indirect communication.
Obviously, the repetition and intensity profile of the incoming signals will affect the
formation of the waveguide channel by exploiting the nonlinearity of the refractive
index. This channel can also be used by other beams that recognize it as a waveguide.
Also, these interconnections have a specific lifetime and their weight’s strength is
dependent on the extent of their exploitation. The interconnection’s existence and
strength is a self-driven process in which the signal itself can reconfigure its pathway by
its occurrence redundancy. Consequently, any interconnection which is not activated
for a long time will be diminished and taken out of the computation cycle, at the
expense of the highly exploited ones. Depending on the material used, this waveguide
will then cancel itself completely when the writing light is switched off (rapid dielectric
relaxation) or survive for a shorter or longer time (slow dielectric relaxation).

The solitonic guides are, therefore, completely plastic guides, which are induced
by a modification of the material and can be suitably shaped by other light passing
through them. Now there is no artificial neuroplastic hardware, that its networks be
able to reorganize themselves autonomously, although this is the only way to repro-
duce artificial systems similar to biological ones. An extremely promising way to
achieve them is represented by soliton optical neural networks, able to exploit the
plasticity of the refractive index to create circuits whose interconnections can be
activated or inhibited as required by the information to be stored or processed. In
2018, a collaboration between Sapienza and Nanyang Technological University in
Singapore demonstrated that X-junctions formed by soliton waveguides learn infor-
mation [55]. Recently, it has been shown that X-junctions can perform both super-
vised and unsupervised learning, behaving as if they were neurons that fully exploit
the plasticity of the substrate both to write the circuit and to post-modification based
on the evolution of the system [74]. By exploiting the X junctions as elementary units,
it is possible to create complex neural networks capable of storing information as
specific trajectories within the circuit network [75].

4. Solitonic X-junctions as photonic neurons: Supervised and
unsupervised learning

The solitonic neuron is a device capable of reproducing the fundamental charac-
teristics of the learning and memorization processes typical of biological neurons.
From a biological point of view, the neuron, a fundamental unit of the nervous
system, is a dynamic unit capable of self-assembling and self-modifying according to
the information that arrives. These structural changes are the mirror of the unfolding
of learning and memorization [76]. The capacity for self-organization is not local, that
is, it does not affect the individual units independently as if they were non-
communicating structures. Whenever a certain type of information presents itself at
the gates of the nervous system, through the different types of receptors of which it is
composed, an enlarged (global) mechanism is set in motion, influencing pathways
within the nerve mapping, affecting neurons through connections both in parallel and
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in series. This characteristic interconnectedness underlies the functional complexity of
the nervous system and at the same time represents its strength. This is why an event,
at a precise point on the neural map, can trigger a succession of changes culminating
in a complete reorganization of entire neural regions. One of the properties we have
already talked about previously but that needs to be brought to attention perhaps with
greater energy is the concept of plasticity. This is a key feature for various reasons. A
good approximation of the concept of plasticity can be defined through the expression
“dynamic self-organization” [44]. It is typical of systems that do not remain identical
to themselves neither at the functional nor at the structural level [77]. More precisely
plastic hardware overlaps these two nuances: function becomes synonymous with
structure. This is one of the fundamental properties of biological neural tissue. Con-
ceiving the implementation of an artificial hardware neuron that works on the bio-
logical model, there are therefore some characteristics that should be kept in mind.
First of all, it must have a dynamic structure that is able to adapt to the evolution of
the environment and provide a response to it in a nonlinear way. Furthermore, it is
necessary to keep the chronology of the information processed at the same time as the
analysis and learning operations. A schematic of the functional blocks which charac-
terize the “modus conoscendi” of a neuron is shown in Figure 6a.

We can highlight a tripartite structure: the neuron receives signals through the
dendrites, small branches acting as input channels. The information is collected
through these and conducted to the soma, the central body of the neuron which acts as
a real microprocessor. Here the signals are “read” and analyzed through weighing and
comparison operations with respect to a threshold value. A signal above the threshold
is highly informative so it must be stored and propagated along the neural mapping.
On the contrary, a sub-threshold signal is judged not important at the informational
level and, therefore, its transmission is stopped [78]. The axon is a long channel with
the task of carrying the signal out and distributing it to the neurons that follow
through special connections called synapses. These are the basis of the communication
between different units and correspond to the entities that allow the realization of
complex neural mapping. The soliton photon neuron, which the research group of the

Figure 6.
(a) Fundamental scheme of a biological neuron. (b) the solitonic neuron X-junction structure. (c) Perfectly
balanced X-junction.
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Smart and Neuro Photonics Lab has designed and built, has a functional geometry
very close to the one just described. A soliton neuron [55] is characterized by an X-
junction structure [79], as shown in Figure 6b obtained through the intersection of
self-written waveguides by two self-confining and non-diffracting laser beams. Using
the technology of spatial solitons obtained through the Pockels effect [13, 80], the
writing takes place through a local variation of the refractive index induced by the
incoherent laser light beams. All materials with a saturating nonlinear electro-optical
coefficient can be used. The input channels functionally represent the dendrites that
collect the input signals. The soliton soma coincides with the region in which the two
laser beams progressively approach until they overlap. It is in this region, which by
assonance with the ML models we call the solitonic node, that the nonlinear energy
transfer between the channels takes place which, as we will see shortly, allows the
learning process. The output channels, which allow a subsequent redistribution of the
propagated signal, replicate the functional action of the axon. In order for the soliton
soma to form and be active at a functional level, it is necessary that the laser beams
arrive at the input face of the crystal at an extremely small angle with respect to the
normal, between 0.8° and 1°. For different angles, the node is characterized by an area
that is too limited which determines a low coupling between the waveguides. The
soliton neuron can perform supervised and unsupervised learning tasks [55, 74]. From
a theoretical point of view, supervised learning is performed using a fundamental
truth, or in other words, there is prior knowledge of what the output values to learn
should be [81–83]. If the learning is unsupervised, on the contrary, there is no a priori
knowledge of the desired output, which is identified at the same time as learning
[84, 85]. The substantial difference lies in the way in which the already written
waveguide structure is modified. In the supervised case, indeed, it is necessary to
know the target and therefore to guide the learning. The X junction is modified using a
feedback system that locally alters the refractive index contrast, depending on the
information received, through successive cycles (Figure 7). This mechanism is fully

Figure 7.
The X-junction neuron switches from the balanced outputs (a) to the unbalanced behaviors, either due to feedback
on the alpha channel (b) or due to feedback on the beta channel (c). Learning dynamics of the solitonic junction:
starting from the initial neutral condition 50/50, the junction recognizes the input and switches accordingly.
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explained in [74], where a numerical code FDTD solving the nonlinear equation
(Eq. (1)) reported below, shows the morphological evolution of the neuron
(see Figure 7), index of learning what is happening.

∇2Ai ¼ � ∈ NLEbias

1þ A1j j2þ A2j j2
ASATj j2

Ai (15)

where εNL is the nonlinear dielectric constant, Ebias is the electrostatic bias field
that allows the formation of photorefractive solitons and ASATj j2 the saturation inten-
sity. In this type of learning, only the A1 and A2 beams are able to excite the
nonlinearity underlying the index modification. The information signal is indeed
represented by a laser with a different wavelength, with respect to which the refrac-
tive index is not sensitive. The initial situation is represented by a perfectly balanced X
junction, as shown in Figure 7a1, which is characterized by a symmetrical structure
obtained by using two laser beams at the same power input. The injected signal,
having reached the solitonic node, “perceives” the same index and divides itself
perfectly 50% into the two output channels. By using different power ratios in the
writing phase, it is possible to build asymmetrical structures Figure 7a1 and 7b3. In
this case, the index will begin to differentiate already within the area of the soliton
soma and will result in an unequal division of the input information in the two out-
puts. However, the soliton neuron is also able to perform unsupervised learning tasks.
In this case, the refractive index of the crystal is also sensitive to the wavelength of the
signal, which, by propagating within the previously written structure, is able to
change it. The information becomes directly responsible for the asymmetrization of
the junction. For unsupervised learning, the Helmholtz equation becomes:

∇2Ai ¼ � ∈ NLEbias

1þ A1j j2þ A2j j2þη A3j j4 1�e�
t
γ

� �
ASATj j2

Ai (16)

where A3 represents the information signal and η an efficiency coefficient for the
nonlinear process that depends on the wavelength and the material used. These
structural variations can be the result of numerous successive propagation cycles or
single events characterized by much higher powers. This is another point of similarity
with the biological case. The biological signal, called spike, is propagated toward the
axon when the combination of input signals is above the threshold. This can occur as a
consequence of the accumulation of numerous inputs, spike trains, in a limited time
interval, or by virtue of a very intense signal.

In the solitonic case, learning is, therefore, identified with the process of changing
the refractive index and therefore has its own physical translation. What about mem-
ory? Many neuromorphic implementations, both in electronics and in optics, have
achieved remarkable results in the reproduction of a neural system, however, there is
always a great difficulty in defining a memory that is present at the same time as the
processing unit. The soliton X junction introduces a new paradigm in the field of
neuromorphic research, approaching the nature of biological neurons. The index mod-
ification is in general a semi-permanent property with times that depend on the partic-
ular material used. The input information is therefore saved in the particular
morphological structure obtained during the learning phase. In, the authors show the
possibility of building soliton neurons in bulk LiNbO3 crystals. This represents the first
supervised realization. The neuron is able to convey information, represented by a
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signal with a different wavelength, traveling within the waveguides in the directions
declared by the local refractive index. Starting from these results and integrating them
with the technology of spatial solitons in thin films in lithium niobate [86], in [87] the
possibility of implementing soliton neurons in 8 μm films of lithium niobate is demon-
strated. This technology brings with it numerous new benefits. First of all, its extreme
compactness makes them a useful tool for integration into small devices. Furthermore,
the Lithium Niobate layers show focusing dynamics of two orders of magnitude faster
than the bulk counterparts. Finally, the films offer greater control over the propagation
of the beams within the crystal, ensuring considerable precision which results in greater
coupling and, ultimately, in a more performing soliton soma. By virtue of their plastic
behavior, soliton X-junction neurons can be interfaced in more complex structures, to
give rise to complex neural mappings capable of functionally replicating biological
neural tissue. This perspective represents the great innovation of the soliton
neuromorphic, which is not limited to reproducing a unity or a connection, as in
previous neuromorphic models, but is able to reach a higher and more complete level of
complexity, through the realization of a whole neural environment.

5. Bit-to-bit data storage and recognition

Solitonic neurons can be interconnected to form complex neural maps, and soliton
neural networks (SNNs) [75]. Their functioning is based on the movement of
photogenerated electrical charges that assume the same role played by neurotrans-
mitters in biological neural networks (BNN). Both regulate the intensity with which a
synaptic connection, solitonic or biological, is built, modified, or destroyed. Further-
more, the solitonic synapse, exactly as in the biological case, is the basis of the
memorization processes. The repetition of information results in synaptic strengthen-
ing, which is synonymous with information memorization [88]. Therefore, learning
and memorization are processes that occur through structural changes. In Figure 8,
the summary diagram of the functionality of the BNNs and SNNs.

Figure 8.
Functional diagrams on the left of a BNN network and on the right of an SNN network. Both are able to self-
modify their structure according to the information signals received to process and store them in precise neural
patterns [75].
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Recently, an SNN has been studied which is able to carry out a 4-bit recognition. It
is formed by X-Junction channels written with equal power beams in order to create
50–50 junctions. SNNs are divided into successive layers as reported in Figure 9.

The first layer corresponds to the input face and is characterized by a number N of
channels corresponding to the number of information (bits) to be processed and to the
number of incoming laser sources. The SNN exploits the phenomenon of total reflec-
tion at the edge in correspondence with the even layers, which are therefore charac-
terized by N/2–2 neural units. While the odd layers are characterized by N/2
fundamental units.

This network is able to learn by switching the propagating signal between the two
outputs of each X-Junction. By appropriately increasing the size of the matrix it is
possible to obtain the representation of any SNN. Each channel, therefore, has its own
weight which is modified over time based on the information received as reported in
equation.

Y
_
¼ W EBIAS, X_

� �
� X
_

(17)

For an in-depth analysis of the SNN, we recommend reading [75].
An SNN network, at present, is able to perform an Episodic recognition. This term

derives from psychology studies that have made it possible to identify three ways of
working with memory, episodic, procedural, and semantic [89]. Memory is of an
episodic type if it records an event photographically, that is, it fails to decontextualize
the subjects present [90]. Let us consider the picture of a dog running in the moun-
tains. The dog subject is recognized only in that environment, mountains, and in that
position, running, if moved then it will be identified as different. Procedural memory,
on the other hand, identifies a mechanism and learns its rule. Finally, semantic mem-
ory contains these mechanisms within itself, thus reaching abstraction through the
analysis of details.

Figure 9.
Structure of a 4-bit SNN network. W is the weight of the junction point. In particular, W(1) is the weight relative
to the node of the first solitonic neuron in layer 1, W(2) is the weight relative to the node of the second solitonic
neuron in layer 2, and so on. The information inputs are represented by xi while yi the processed signals [75].
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The solitonic technology has allowed, until now, to successfully realize an episodic
memory able to save information through precise neural mapping. As information
flows into the SNN it modifies the refractive index of the network, determining
precise paths.

Learning the SNN takes place in two stages. The first phase, defined as Training,
consists in administering the information pattern to be learned to the network several
times. The network changes morphology accordingly. Then we try to understand how
profound the changes have been, or how much the information has been learned and
memorized. This phase is called validation. The network acts as a filter letting only the
saved information propagate.

Figure 10 was realized starting from the results proposed by [75]. It shows the
learning of 1-bit in four different cases corresponding to the four input channels. In
Figure 10a, the first line shows the network training with the four 1-digit in each
channel while the others are set to 0. The images below report the SNN recognizing
process: it uses the stored information to operate the comparison. Therefore, if digit 1

Figure 10.
In (a) training and validation processes of a 4-bit SNN are reported in 1-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].

Figure 11.
In (a) training and validation processes of a 4-bit SNN are reported in 2-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].
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of the new number corresponds to digit 1 of the training number, the output of the
network is high and the information is recognized. Otherwise, the output is low,
which means no recognition. Figures 11 and 12 report the learning cases of 2-digit and
3-digit, following the scheme already illustrated in Figure 10.

The SNN recognizes through a threshold process. If the output is higher than a
threshold, determined experimentally, then the recognition has occurred. This proce-
dure can be generalized to N bits according to the equation shown below.

Ioutputik ≥ θIinputik (18)

where θ is the pure number (�0.7).
Therefore, Optical Soliton Neural Networks are systems characterized by a struc-

tural dynamism, based on the plasticity of the refractive index, which can self-modify
to recognize previously learned or new signals. Learning and memorization occur at
the same time as physical evolutions.

6. Conclusions

Artificial intelligence is marking a profound innovation in everyday life. To over-
come the limitations of AI software, research has developed the neuromorphic
approach, which consists in reproducing the functional blocks of the human brain. A
first attempt was carried out by electronics, which however suffer from a structural
rigidity that does not match neural geometries. One of the fundamental qualities that
characterize them is in fact plasticity, that is to say, the ability to self-modify one’s
units to trap, learning, and memory, in its structure. The solitonic optical approach
that we have described in this chapter bases its effectiveness precisely on the concept
of plasticity and self-assembly. Compared to other optical technologies, which focus
on single neural properties (first of all excitability), soliton networks are able to
reproduce complex behavior by exploiting the local differences in refractive indices to
build specific trajectories for each information through the propagation of solitons.
SNNs are currently able to reproduce a specific type of psycho-memory, episodic

Figure 12.
In (a) training and validation processes of a 4-bit SNN are reported in 3-digit recognition case. The first line is
related to the training phase while in the following rows validation steps are reported. In (b) the signal output
amplitudes for different training numbers are reported: Only the trained channel is above the threshold (dotted
line) [75].
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memory, in a particularly effective way, that is, with small powers (nW-μW) and
with extremely low losses. SNNs capable of reproducing procedural and semantic
memories are currently being studied. Once these objectives have been achieved,
hardware that is functionally very close to biological neuronal dynamics will be avail-
able. In the biological neural system, the synaptic connections are created and deleted
following the change in neurotransmitter density, in the soliton paradigm that we
propose, the birth and modification of X-junction neurons depends on the density of
photo-excited electric charges.
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Chapter 7

Application of Artificial Neural
Network in Solar Energy
Bin Du and Peter D. Lund

Abstract

Accurate prediction of system performance is very important for the optimal
planning of solar energy systems. The latest research of artificial neural network
(ANN) technology for predicting the efficiency of solar thermal systems and the
performance of photovoltaic system is reported here. Application of ANN to perfor-
mance assessment of solar collectors is briefly reviewed including novel all-glass
straight-through evacuated tube collectors. An overview of the most recent work of
ANN for combined photovoltaic/thermal panels (PV/T) and concentrating photovol-
taic collectors is also provided.

Keywords: artificial neural network, solar collector, performance prediction, thermal
efficiency, photovoltaic/thermal, concentrating photovoltaics

1. Introduction

The increase of population and development of world industry requires the mas-
sive use of fossil fuel [1], resulting in environmental pollution and global warming.
Renewable energy is one of the effective technical methods to alleviate this phenom-
enon [2]. Solar Energy is the most rapidly developing and widely used renewable
energy technology. At present, there are many application forms, including solar
power generation [3], seawater desalination [4], heating [5], refrigeration [6], etc. For
the estimation for the efficiency of solar thermal systems, experimental study and
theoretical analytic simulation codes are often utilized [7, 8]. The traditional algo-
rithms usually employed are very complex, including the solution of complicated
different equations, which usually involves large resource and takes a great quantity
of time to give exact solutions [8]. Moreover, traditional analysis methods are often
based on simplified assumptions, as well as simplified models and solving nonlinear
partial differential equations, which reduce the prediction accuracy [9–11]. ANN is a
mathematical method that mimics the behavior of human brain. It has a strong ability
to learn and find nonlinear relationships between input and output in systems [12], so
it has the ability to realize information processing by adjusting the connection
between internal nodes [12]. Unlike complex laws and mathematical routines in
traditional analysis methods, ANN can learn key information patterns in
multidimensional information domain [8]. Therefore, ANN technology has obvious
advantages in speed, organization ability, fault tolerance and adaptability [8]. In
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recent years, ANN has gained more and more applications in the solar energy field,
such as solar radiation prediction [13–17], photovoltaic power generation [18–20],
solar drying [21], etc.

2. Background

The solar collector converts the solar radiation energy into heat and transfers it
to the heat transfer fluid [7]. Recently, the application of ANN technology in the
energy-engineering systems has attracted more and more attention. ANNs have
been utilized by many researchers for modeling and prediction of thermal perfor-
mance of various solar collectors. Delfani et al. [22] employed ANN to determine
the efficiency of direct absorption solar collector with nanofluid, and investigated
the influence of collector depth and length and other important parameters on its
working performance and Nusselt number. Maria et al. [23] built ANN models to
evaluate the efficiency of flat plate solar collectors with silver/water nanofluid, and
the results are in good agreement with the experimental data. Cuma [24] and
Kalogirou et al. [25] studied various methods to predict flat plate solar collectors
and solar water heater with cylindrical concentrator respectively and analyzed them
comparatively. It is evident that the ANN model greatly improved the prediction
accuracy.

Many ANN algorithms are employed to predict the solar heating system
performance. Kumar et al. [26] investigated a roughened solar air heater,
focusing on the comparison of three ANNs to evaluate its exegetic efficiency of
roughened solar air heater and obviously the Radial Basis Function (RBF) model has
the best performance. Abdellah et al. [27] compared the advantages and disadvantages
of traditional theoretical analysis (energy balance-based) method and ANN model
(data based modeling methods) in determining the performance of heat pipe solar
collector. According to the results, ANN was significantly superior to other traditional
theoretical methods. Kumar et al. [28] utilized ANN and multiple linear regression
model to evaluate heat transfer in a solar air heater with a rough absorber and
compared their performance according to a number of statistical criterias. Kumar
et al. [29] further contrasted ANN models with four training functions to estimate the
thermal performance of uniform flow porous bed solar air heater, and the results
showed that the prediction performance of the training function was better than the
other three. They also analyzed the advantages and disadvantages of three ANN
algorithms for thermal performance prediction of a solar air heater with unusual
physical structure [30]. Liu et al. [31] proposed an evacuated solar water heater which
has high collector efficiency by developing a technology based screening method.
Sadeghi et al. [32] studied the factors affecting the exergy and energy efficiency of
collectors and found that the usage of copper oxide/water nanofluid in a parabolic
concentrator improved the thermal efficiency. Diez et al. [33] employed various
methods to evaluate the outlet temperature of working medium, and concluded after
comparison that the generalized regression neural network has the best prediction
effect. ANN technology with above mentioned input to estimate the characteristics of
flat-plate collectors has also been presented. Comparison with conventional analytical
methods indicated the superiority of ANNmodels [34]. Budihardjo et al. [35] modeled
and analyzed heat transfer and fluid flow in single evacuated tubes. Morrison et al.
[36] investigated the influence of circular heat distribution on the performance of
such tubes.
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3. Application of ANN in an evacuated tube solar collector

At present, the most popular evacuated tube solar collector (ETC) in the market is
Dewar-tube [37, 38], because it is cheap and easy to manufacture [38]. As the fluid
flow in Dewar tube is driven by buoyancy [39–41], salt usually deposit at the bottom
of the tube, which worsens heat transfer. But in the all-glass straight-through evacu-
ated tube solar collector, stronger convection promotes heat transfer, reduces heat
losses and improves water quality thus eliminating the main issue of salt precipitation
and weak convective heat transfer inherent in traditional Dewar-tube [37, 42]. Better
performance and high efficiency [36, 43–45] decrease the cost too.

3.1 Experimental set-up

The structure of all-glass straight-through evacuated tube collector is shown in
Figure 1. Both ends of the inner (absorption tube) and outer tube (cover glass tube)
are fused together. The space between the inner and outer tubes is vacuumed with
pressure <0.013 Pa to reduce convective heat loss. The selective absorption coating is
coated on the outer surface of the inner tube. Hence, the working temperature of the
inner tube is higher than that of the outer tube, and the temperature difference leads
to thermal stress. For the safe and stable operation of the evacuated tube, the outer
tube is manufactured of glass with high thermal expansion coefficient, which can
withstand the thermal stress. The detailed structure of the tube is illustrated in
Table 1.

The heat transfer fluid used in the experiment is water, which flows through the
all-glass straight-through evacuated tube solar collector. The collector inlet and outlet
temperatures and ambient temperature were measured by thermocouples and
recorded by a data logger. The water flow rate is measured by the rotameter placed at
the inlet of the tube, as illustrated in Figure 2.

During the experiment, water flows through the evacuated tube driven by a pump,
and the flow is adjusted and stabilized by a valve connected to the flow meter. The
solar radiation intensity is surveyed by a special pyrometer. The experimental site is
Nanjing, China. The collected actual data include solar radiation intensity, wind
speed, ambient temperature, inlet and outlet water temperature and water flow rate
and. The experiment was implemented from 10 a.m. to 4 p.m. every day, and the data
were recorded every 30 minutes [30].

Figure 1.
(a) Overview of the all-glass straight-through evacuated tube (b) Cross-section view of the inlet of the collector
tube [51].
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3.2 Methodology

Most of the solar energy absorbed by the evacuated tube is transferred from the
tube inner wall of the tube to the working fluid flowing through the inner tube by
convection heat transfer. Another part of the energy is transmitted to the inner wall of
the outer glass tube through radiation and convection, and passes through the outer
glass tube through heat conduction. Heat is lost to the environment by convection and
to the sky by radiation from the outer surface of the outer glass tube.

Thermal efficiency is the most important criteria to evaluate the performance of
evacuated tube solar collector. Here, the thermal efficiency is defined as the ratio of
the heat obtained by the heat transfer fluid to the incident solar flux on the tube [30],
and is written as follows [22, 46–48].

Parameter Value

Length, L (m) 1.8

Absorber tube diameter, Dabs (m) 0.047

Outer glass tube diameter, Dgla (m) 0.058

Thickness of glass, ΔH (m) 0.003

Thermal conductivity of absorber, kabs (W=mK) 1.2

Specific heat of absorber, Cabs (J= kg � Kð Þ) 980

Absorptivity of selective coating, ξabs 0.96

Transmissivity of outer glass tube, τgla 0.96

Table 1.
Parameters of an all-glass straight through evacuated tube [11].

Figure 2.
Setup of the experimental system [12].
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ηth ¼ _mfCp Tfo � Tfið Þ
IAp

(1)

where IAp represents the solar radiation on the tube surface, Tfi and Tfo are the
inlet and outlet temperature of water, respectively, _mf means the mass flow rate of
heat transfer fluid, Cp is the specific heat of heat transfer fluid (J= kg �K� �

).

3.3 ANN modeling

The Multiple linear regression (MLR), Support vector regression (SVR), Back
Propagation neural network (BP) and Radial basis function (RBF) are employed here
for thermal efficiency prediction of the all-glass straight-through evacuated tube
collector. The following variables are used as input parameters of the models: water
flow rate mf , inlet water temperature Tfi, wind speed wa, ambient temperature Ta

and solar radiation intensity I. The thermal efficiency of the solar collector ηth is the
output lay. In this work, 70% of the total 158 experimental datasets are regarded as
training dataset and the other 30% is test sets. In ANN models, the optimum number
of neurons in hidden layer is evaluated by the equation which is recommended by
Ghritlahre et al. [7]:

Hn ¼ MþN
2

þ
ffiffiffiffiffiffi
Tn

p
# (2)

where Hn represents the number of hidden neurons, M and N are the input and
output neurons, Tn is the number of training data.

3.3.1 Data preparation

There is likely to be a large dimension and dimension units difference between the
measured data, which will seriously affect the prediction performance. Data normal-
ization is essential to eliminate the dimensional influence among the indices. Here, the
normalization is expressed as:

Ynorm ¼ Yi �mean
std

(3)

where mean represents the mean of the training samples, std. means the standard
deviation of the training samples. The normalized data is distributed in a reasonable
range, which is beneficial for further processing and analysis.

3.3.2 Performance evaluation criteria

Several criteria can be utilized to assess the accuracy of the proposed models. Their
definitions are as follows:

Coefficient of Determination:

R2 ¼ 1�
Pn

i¼1 XA,i �XP,ið Þ2Pn
i¼1X

2
P,i

(4)
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Root Mean Squared Error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

XA,i �XP,ið Þ2
s

# (5)

Mean Absolute Error:

MAE ¼ 1
n

Xn

i¼1

XA,i �XP,ið Þ (6)

where n represents the total number of data, XA,i is the actual efficiency of the
collector, and XP,i means the predicted efficiency value.

3.4 Results and discussion

After evaluation with Eq. (2), selecting 10–16 neurons in hidden layers to verify
with BP algorithm, and it is obvious that the model with 13 neurons is the best.

Table 2 illustrates the comparison of RBF, BP, MLR and SVR models in predicting
the thermal efficiency of all-glass straight-through evacuated tube.

It is evident that the accuracy of RBF is superior to the other methods followed by
the BP model, but obviously the SVR, BP and RBF can all successfully carry out the
prediction. Dealing with nonlinear problems is not the strength of MLR algorithm
[49]. For nonlinear problems, SVR finds a nonlinear mapping to map the input data to
the high-dimension feature space first, so that the separation status is greatly
improved. Then, to classify in such feature space, and after that return to the original
space, and then get the nonlinear classification of the original input space. However,
after all, SVR uses linear algorithm for nonlinear regression in high-dimensional
attribute space. Comparatively speaking, the major benefit of neural network method
is that it is good at solving complex nonlinear relationship among variables efficiently.
Thus, the deviation between the neural network model prediction values of the evac-
uated tube thermal efficiency and the actual data is the minimum.

The comparison between the actual data and the prediction results of the proposed
models is shown in Figure 3. It is evident that the results of RBF model are the closest
to the actual data among the four models investigated.

3.4.1 Sensitivity analysis

Sensitivity analysis refers to finding the sensitive factors that have a significant
impact on the output of the models from many uncertain factors, and analyzing and
calculating their impact and relative importance on the results. In short, sensitivity

Model MAE RMSE R2

MLR 0.0095 0.0121 0.6111

SVR 0.0056 0.0092 0.8447

BP 0.0053 0.0080 0.9059

RBF 0.0043 0.0066 0.9658

Table 2.
Accuracy of the models in performance prediction [11].
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analysis is to see which variable changes the conclusion is sensitive to [50]. Taking the
RBF model in this analysis as an example, the relative importance of every input
parameter to the output result is illustrated in Figure 4. Clearly, the solar radiation has
the largest impact on the efficiency prediction of the proposed evacuated tube,
followed by collector inlet temperature and water flow rate.

The efficiency value calculated by RBF model is illustrated in Figure 5. With the
enhancement of solar radiation and the increase of water flowrate, the convective heat
transfer in the tube is promoted, and the thermal performance of the evacuated tube
rises. Figure 5(b) shows the change of thermal efficiency of evacuated tube with
water flow rate and wind speed when the solar radiation intensity is 900 W=m2. It is
visible that the increase of wind speed promotes the heat dissipation from the surface
of the outer glass tube to the environment, resulting in a rise in the heat loss of the
evacuated tube and a decrease in its thermal efficiency.

3.5 Combining CFD and ANN techniques modeling

The dominant energy equations of the studied all-glass straight-through evacuated
tube solar collector, as well as necessary heat and mass transfer and other related

Figure 3.
(a) Comparison of experimental and MLR, SVR, BP and RBF predicted thermal efficiency. (b) Individual error
with MLR, SVR, BP and RBF models [11].

Figure 4.
(a) Relative importance of input variables based on solar radiation. (b) Relative importance (%) of the inlet
variables on the thermal efficiency of the evacuated tube [11].
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conditions required for theoretical analysis have been explained in detail in [51]. The
3-D model based on these equations and conditions of the proposed evacuated tube is
developed into the computational fluid dynamics (CFD) software ANSYS Fluent
[47, 52, 53] to carry out the heat transfer simulation.

Figure 6 shows the temperature distribution of the evacuated tube obtained by
numerical simulation of the tube model. In Figure 6, the inlet temperature is 298 K,
the mass flow rate is 25 kg=h, and the solar radiation intensity is 1000 W=m2.

The MLR, BP and convolutional neural network (CNN) [54, 55] models were
employed to determine the thermal characteristics of all-glass straight-through evac-
uated tube solar collector. A total of 243 experimental data sets were employed, of
which 70% were used for training and 30% were test datasets. Collector inlet water
temperature, wind speed, water flow rate, ambient temperature and solar radiation
intensity and the values calculated by the theoretical CFD models were used as input,
the collector outlet water temperature and the thermal efficiency of the tube were
regarded as output (see Figure 7). The output values with and without the theoretical
model + CFD were compared with experimental data.

The prediction accuracies of studied models are illustrated in Table 3. The mea-
surement criteria of CNN model with modeled value as one of the input parameters
(CFD-CNN) is the best. Comparing the data in Table 3, when the modeled value of
the collector outlet temperature is taken as one of the inputs, the prediction accuracies
of MLR, BP and CNN models are significantly enhanced (Figure 8).

Figure 5.
(a) Efficiency vs. water flow rate (wind speed 1.5 m/s). (b) Efficiency vs. water flow rate (solar intensity
900 W=m2) [11].

Figure 6.
(a) Temperature distribution alongside the tube. (b) Inlet and outlet temperature. Irradiance is
1000 W=m2 [51].
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4. Application of ANN technique to photovoltaics

Several previous studies have reviewed the application of ANN into solar irradi-
ance and photovoltaics (PV) power production forecasting, anomaly detection (fault
diagnostic) in PV, tracking the maximum power point (MPP), etc. Here an overview

Figure 7.
Illustration of the integrated models [51].

Models R2 RMSE MAE

Water outlet
temperature

Thermal
efficiency

Water outlet
temperature

(°C)

Thermal
efficiency

Water outlet
temperature

(°C)

Thermal
efficiency

CFD-CNN 0.9971 0.9684 0.0823 0.0044 0.0559 0.0028

CNN 0.9629 0.9548 0.3002 0.0051 0.1693 0.0036

CFD-BP 0.9937 0.9434 0.1209 0.0055 0.0910 0.0038

BP 0.9555 0.9192 0.3305 0.0067 0.2219 0.0043

CFD-MLR 0.9924 0.7443 0.0975 0.0108 0.0564 0.0086

MLR 0.7210 0.6736 0.8436 0.0112 0.6920 0.0080

Table 3.
Inaccuracies of the different models [51].

Figure 8.
Prediction error of collector (a) outlet temperature and (b) thermal efficiency by the models [51].
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of the most recent work on ANN for photovoltaic/thermal (PV/T) systems and con-
centrating PV(CPV) is presented.

Ammar et al. [56] investigated a PV/T based water pumping and heating system in
which the PV/T panel simultaneously delivers electrical power P and thermal power Q.
An ANN model was developed to determine the optimal power point (OPOP), which is
defined as the crossing point of the max(P � O) curves. The focus was to calculate the
optimal value of water flow with varying ambient temperature and solar radiation
conditions to ensure maximum electrical power and thermal power output. The pro-
posed neural network model regarded the solar radiation intensity and ambient tem-
perature as the input layer and the output is the corresponding optimal water flow rate.
The normal mean bias error (NMBE) was used to measure the accuracy of the ANN
when the ambient temperature was 5–35°C and the solar radiation varied from 350 to
950 W=m2, yielding a NMBE of �13.05%. The collected data was divided into cold and
hot season according to the weather, for which the OPOP was computed respectively.
The results show that during the hot season, with relatively stable weather conditions,
the accuracy of the estimated value of the neural network model is better. The ANN
algorithm provides a feasible control strategy for similar PV/T systems.

AI-Waeli et al. [57] studied a photovoltaic/thermal system using a special experi-
mental rig for ANN analysis., Three cooling strategies were employed to verify the
effectiveness of the design: PV/T with water-filled container and water as working
fluid, PV/T with PCM-filled container and water as working fluid, PV/T with con-
tainer filled with nanoparticles dispersed in Phase Change Material (PCM) and
nanofluid as working fluid, as well as the conventional PV panel as reference. The
nano-PCM and nanofluid using SiC nanoparticles yielded the best cooling effect
among these methods, and the maximum efficiency reached 13.3%, while the effi-
ciency of conventional PV was 8.1% only. Three ANN models, namely, MLP, SOFM
and SVM, were used to evaluate the performance of the investigated PV/T system
showing slight differences in the performance prediction.

Ahmadi et al. [58] developed ANN models such as multilayer perception (MLP),
RBF, least squares support vector machine (LSSVM) and adaptive neuro-fuzzy infer-
ence system (ANFIS) to model the efficiency of a PV/T plate which contains a full
circle tube as the fluid channel that is bonded to the absorber plate by special adhe-
sives. Solar heat, solar radiation, heat, flow rate, inlet temperature were regarded as
inputs, and the electrical efficiency as the output of these models. By comparing the
RMSE and correlation coefficient (R2), the LSSVM approach gave the best accuracy
with R2 = 0.9867. Using a sensitivity analysis, it was found that the inlet temperature
had the greatest impact on the efficiency of the proposed PV/T system.

ANNmodels were also used to predict the thermal efficiency of a PV/T system that
has a serpentine tube connected to the plate and using water as the cooling fluid [59].
MLP-ANN, ANFIS and LSSVMwere employed to specify the thermal efficiency of the
solar collector as output and inlet temperature, water flow rate and solar irradiance as
input layer. The ANN model provided that best prediction performance when using
the mean squared error (MSE) and determination coefficient (R2) for the comparison.
Also, here the inlet temperature proved to have the greatest impact on the thermal
efficiency of the PV/T panel.

Cao et al. [60] explored six AI models, including least-squares support vector
regression (LS-SVR), adaptive neuro-fuzzy inference systems (ANFIS), and four
ANN methods, i.e., multi-layer perceptron (MLP), cascade feedforward (CFF), radial
basis function (RBF) and generalized regression (GR) for evaluating the electrical
efficiency of a PV/T system cooled by the nanofluids. Through comprehensive
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comparison of statistical indices such as the absolute average relative deviation
(AARD), mean square error (MSE) and coefficients of determination (R2), it was
found that the ANFIS model had the best prediction accuracy for the electrical effi-
ciency of studied PV/T system. The theoretical analysis also showed that the SiC water
nanofluid was the best coolant for the PV/T system.

In [61], three ANN methods, including the radial-basis function artificial neural
network (RBFANN), were employed to predict the performance of a photovoltaic
thermal nanofluid (PVT/N) based collector system which is equipped with a copper
sheet and tube collector and zinc-oxide (ZnO)/water nanofluid as coolant. Ten days
experimental data in various weather conditions were used for training and to test of
the proposed AI approach. Ambient temperature, incident solar radiation and fluid
inlet temperature were regarded as input while fluid outlet temperature and electrical
efficiency were set as the output layer. The ANFIS was more accurate for predicting
the fluid outlet temperature, but the RBFANN was superior to the other methods to
predict the electrical efficiency of the proposed PVT/N unit.

Renno et al. [62] compared the prediction performance of Random-Forest (RF), ANN
and Linear RegressionModel (LRM) approaches to predict the temperature of multi-
junction solar cells. The studied cells constituted of InGaP/GaAs/Ge and InGaP/InGaAs/
Ge under a high concentration Fresnel lens. The input variableswere the local hour, global
radiation, concentration factor and the environmental temperature，and the cell tempera-
ture was used as output. The RFmethod yielded the best performance with the lowest
values of RMSE,MAE andMAPE. It was is observed that the cell temperature increased
with the increasing ambient temperature, solar radiation, and concentration ratio.

In [63], the power output of a V-trough photovoltaic system was predicted with
support vector machine (SVM), ANN, kernel and nearest-neighbor and deep learning
(DL) methods. Through a statistical indices comparison, the support vector machine
gave better performance prediction accuracy, although all the presented algorithms
predicted the PV module power output satisfactorily. Also, the ANN model was not
inferior to the SVM algorithm in evaluating the peak data. The prediction perfor-
mance of DL and ANN were also compared with SVM. The results showed that the
predicted PV power output by DL was higher than the actual data, which was likely
due to the availability of data.

5. Conclusions

Application of artificial neural network for performance prediction of solar energy
collectors has briefly been introduced here including comparison to traditional analy-
sis methods.

Back propagation (BP), radial basis function (RBF), support vector regression
(SVR) and multiple linear regression (MLR) were used to predict the performance of
a novel all-glass straight-through evacuated tube solar collector employing experi-
mental datasets. The RBF and BP outperformed the SVR and MLR methods, but the
accuracy of the first three models mentioned above were well within acceptable limits
(R2s were 0.8447, 0.9059 and 0.9658, respectively). However, the MLR algorithm was
not good in dealing with nonlinear problems. The RBF method showed the best
performance with the lowest RMSE (0.0066) and the lowest MAE (0.0043) for the
solar collector efficiency prediction.

A novel approach combining mathematical performance simulation (CFD) and
neural networks was also investigated for determining the performance of the all-glass
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straight-through evacuated tube. The results show that regarding CFD modeled out-
put as the input of ANN significantly improved the evaluation accuracy of all pro-
posed models including MLR, BP and convolutional neural network (CNN). The CFD-
CNN model is superior to the other studied models with the highest R2 and the lowest
RMSE, 0.9684 and 0.0044 (Table 3).

The research on applying ANN to photovoltaics was also reported with focus on
the utilization of neural networks for output power prediction of photovoltaic/ther-
mal system (PV/T) and concentrating photovoltaics (CPV). The review demonstrated
the usefulness of ANN also for the PV field.

Future work of ANN in solar energy could extend to other design parameters and
meteorological data as input to the neural network model. Also, using new ANN
approaches such as the recurrent neural network could be relevant. Future directions
of interest include the combination of some metaheuristic methods such as gray wolf
optimization (GWO), genetic algorithm (GA), particle swarm optimization (PSO)
and ANN to optimize ANN structure and improve ANN performance. Extensions of
ANN, e.g., extreme machine learning (EML), adaptive network-based fuzzy inference
system can be used to improve prediction accuracy. Based on the work presented
here, it is believed that the artificial neural network will increasingly be applied in the
field of solar energy.
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Chapter 8

Modeling a Petrochemical Unit 
with Artificial Neural Networks 
(ANN)
Shafaati Akbar and Pourazad Hamidreza

Abstract

The purpose of this chapter is to model a petrochemical unit by neural networks 
to estimate the product flow rate of the plant by it. Multilayer perceptron and RBF 
neural networks have been used in this work, and finally, the outputs of both types 
of networks have been compared to choose the more accurate network. The same 
data have been used for training and modeling both networks. The data used for 
this modeling have been collected by measuring the flow rate of input materials and 
output products from the plant in ton per day. Table 1 shows the input materials and 
products.

Keywords: artificial neural networks, RBF, MLP, regression, petrochemical unit

1. Introduction

To model a petrochemical unit by the artificial neural network, the necessary 
acquaintances with artificial neural networks should be made first, and we should 
answer the question of why we should use artificial neural networks instead of 
conventional methods.

The artificial neural network is a complex nonlinear computing system that is 
inspired by nature, and the main advantage of this network in performing calcula-
tions compared with other computing systems is because of its internal structure [1].

Neural networks are composed of a large number of neurons that have extensive 
connections with each other. These neurons have the ability to share information 
with each other. A neural network performs calculations by organizing neurons and 
communication between them and the information stored in them.

Using conventional modeling methods requires a lot of mathematical calculations 
and has many complications, especially when we are dealing with a nonlinear system. 
It takes a lot of time to do this, and if there is an error in the calculations, all the steps 
must be repeated, and the existing error must be identified and fixed. On the other 
hand, all the influencing parameters of the designed model should be considered, 
and a relationship should be defined for how it affects the system, and finding these 
relationships also has complications. Finding these relationships is important because 
it can have a great impact on the accuracy of the designed model’s output. Finally, all 
relevant equations must be solved, which is very time-consuming.
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There is no need to perform complex mathematical calculations in modeling 
with a neural network, and we can save time. Other advantages of neural networks 
compared with other methods include adaptability, nonlinearity, error tolerance, and 
flexibility against changing conditions.

To model with an artificial neural network, a dataset is needed to train the net-
work, and these data must be collected by experimental tests, industrial devices, etc.

For example, in the modeling of a petrochemical unit, the goal is to predict out-
puts according to the flow rate of input to the petrochemical unit, so to prepare basic 
data for training the network, it is necessary to flow rate of inputs and outputs, during 
different operations be measured and entered into the network as training data.

In this modeling, the entire petrochemical unit considered as a black box (Figure 1), 
and only the flow rates of input and output materials are considered as influencing param-
eters. This is because none of the processes that take place inside the petrochemical unit 
are involved in the model designed based on neural networks.

Here are several related works:
Tufaner et al. developed a three-layer artificial neural network (ANN) and 

nonlinear regression model to predict the performance of biogas production from 
the anaerobic hybrid reactor (AHR). In this study, experimental data were used to 
estimate the biogas production rate with models produced using both ANNs and non-
linear regression methods. Moreover, 10 related variables, such as reactor fill ratio, 
influent pH, effluent pH, influent alkalinity, effluent alkalinity, organic loading rate, 
effluent chemical oxygen demand, effluent total suspended solids, effluent suspended 
solids, and effluent volatile suspended solids, were selected as inputs of the model [2].

DS Pandey et al. developed a multilayer feed-forward neural network to predict 
the lower heating value of gas (LHV), lower heating value of gasification products 
including tars and entrained char (LHVp), and syngas yield during gasification of 
municipal solid waste (MSW) during gasification in a fluidized bed reactor. These 
artificial neural networks (ANNs) with different architectures are trained using 
the Levenberg-Marquardt (LM) back-propagation algorithm. Nine input and three 
output parameters are used to train and test various neural network architectures 
in both multiple-output and single-output prediction paradigms using the available 
experimental datasets [3].

M. EI-Sefy et al. developed a feed-forward back-propagation artificial neural 
network (ANN) model and trained to simulate the interaction between the reactor 
core and the primary and secondary coolant systems in a pressurized water reactor. 
A Nuclear Power Plant (NPP) is a complex dynamic system of systems with highly 
nonlinear behaviors. In order to control the plant operation under both normal and 
abnormal conditions, the different systems in NPPs (e.g., the reactor core compo-
nents, primary and secondary coolant systems) are usually monitored continuously, 
resulting in very large amounts of data. The transients used for model training 

Figure 1. 
Assumed structure for the petrochemical unit for modeling by artificial neural network.
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included perturbations in reactivity, steam valve coefficient, reactor core inlet tem-
perature, and steam generator inlet temperature. Uncertainties of the plant physical 
parameters and operating conditions were also incorporated in these transients [4].

1.1 Introduction to radial basis function networks (RBF)

Radial basis neural networks use the radial basis function instead of the logistic 
function as the activation function. The logistic function maps some arbitrary value 
to a 0–1 interval to answer a yes or no question (binary question) [5].

These types of neural networks are suitable for “classification” and “decision-
making systems,” but they are not good in Continuous values. While the basic radial 
basis function answers the question, how far are we from the goal? And this makes 
these neural networks suitable for function approximation and machine control 
(for example, as an alternative to the PID controller) [5].

Radial basis neural networks are special types of natural neural networks that are 
distance-based and measure the similarity between data based on distance.

Unlike MLP networks, which have multiple consecutive layers, the RBF network 
consists of three fixed layers. An input layer, which is the input data entered into the 
network from there, the middle layer, which contains radial basis functions, and the 
output layer, which gives a linear combination of all middle layer outputs.

Output layer uses a linear activation function or can be thought of without any 
activation function [6].

1.2 Introduction to multilayer perceptron networks (MLP)

One of the most basic neural models available is the multilayer perceptron model, 
which simulates the transfer function of the human brain. In this type of neural net-
work, most of the network behavior of the human brain and signal propagation have 
been considered in it, and hence, they are sometimes called feed-forward networks [1].

Perceptron is a machine learning algorithm that is in the field of supervised learn-
ing. This algorithm is known as one of the first artificial neural network algorithms 
used in this field. Perceptron is considered a type of binary classification algorithm, 
which means that this algorithm can decide whether a member belongs to a specific 
category or not [7].

Figure 2. 
Schematic of an RBF neural network.
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A multilayer perceptron neural network consists of at least three layers, which are 
the input layer, a hidden layer, and the output layer. In this type of artificial neural 
network, the outputs of the first (input) layer are used as the inputs of the next 
(hidden) layer. This continues until, after a certain number of layers, the outputs 
of the last hidden layer are used as the inputs of the output layer. All the layers that 
are placed between the input layer and the output layer are called “Hidden Layers” 
(Figures 2 and 3).

2. Modeling by radial basis function networks (RBF) neural network

The necessary dataset for training this network is by measuring the flow rate of 
input materials and products (outputs) that have been collected, which has been mea-
sured every day for a year. Table 1 shows the inputs and outputs of the petrochemical 
unit.

For testing the network, experimental data were given to the network and the 
networks outputs compared with the real outputs of petrochemical unit shown in the 
Figure 4.

The empty circles on the blue graph in Figure 4 indicate the measured amount 
of the products (experimental data or targets), and the empty circles on the orange 
graph also indicate the predicted parameters by the neural network. Some of these 
circles are almost coincident with each other, and some are slightly different from 
each other. In the best case, these points should overlap. The names of each of which 
are indicated by arrows.

To better understand the amount of difference and whether the network has 
provided an acceptable performance or not, we can use linear regression between the 
data estimated by the network and the measured parameters (experimental data). 
Figure 5 shows the regression between the experimental and predicted data used in 
Figure 4.

Figure 3. 
Schematic of an MLP neural network.
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As can be seen, the correlation coefficient between the estimated and experimen-
tal data is 0.987, which is acceptable for the petrochemical unit in non-essential and 
non-sensitive situations.

3. Modeling by multilayer perceptron (MLP) neural network

The multilayer perceptron network considered for this modeling consists of 
three layers. The first layer has 80, the second layer has 35, and the third layer has 13 
neurons.

Figure 4. 
Difference between RBF network’s outputs and experimental data(targets).

Inputs Outputs

SRG POLYETHYLENE

LPG HIPS

PBR GPPS

BENZENE EPS

ACRYLONITRILE ABS

BUTEN-1 TOLUENE

MINERAL OIL BD

GAS(Nm3/d) PENTANE

STEAM PROPYLENE

WATER(m3) C4 RAFFINATE

POWER C.F.O

STYRENE FUEL OIL

— C7-C9

Table 1. 
Inputs and outputs of the petrochemical unit.
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The activation functions considered for each of these layers are Relu for the first 
and second layers and purlin for the last layer, respectively.

The best performance of the network is achieved when it gives the value of the 
error between the network and the experimental data to the lowest possible value, 
and this is done by some functions, which are called performance functions. In this 

Figure 6. 
Difference between multilayer perceptron network’s outputs and experimental data(targets).

Figure 5. 
Regression between predicted data with RFB network and experimental data.
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modeling, the mean square error (MSE) performance function is used. For this 
modeling, the Levenberg Marquardt training algorithm is used [1, 8].

After the training process, the same data used for testing the RBF network in 
Figure 4 are used to test the MLP network, and the results are shown in Figure 6.

Like Figure 4, the blue graph represents the experimental data, and the orange 
graph represents the data estimated by the neural network. The empty circles on the 
blue graph in Figure 7 indicate the measured amount of the products (experimental 
data), and the empty circles on the orange graph also indicate the estimated parameters 
by the neural network.

As before, to better understand the amount of difference and whether the network 
has provided an acceptable performance or not, we can use linear regression between 
the data predicted by the network and the measured parameters (experimental data).

The correlation coefficient between experimental and estimated data by the 
network is equal to 0.995, which indicates the good performance of the network.

4. Conclusion

By comparing the correlation coefficient of the RBF neural network, which is 
equal to 0.987, and the correlation coefficient of the MLP neural network, which is 
equal to 0.995, it can be concluded that the MLP neural network can perform better 

Figure 7. 
Regression between predicted data with MLP network and experimental data.
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in estimating the amount of petrochemical unit products in different conditions. 
Due to the complex processes that are carried out inside the petrochemical unit, by 
which inputs are converted into products, a large number of experimental samples 
are needed for modeling by neural network and its training. In other words, we 
should take samples from everything that has a direct or indirect effect on the system 
under study (petrochemical unit) and changes the amount of products produced by 
the petrochemical unit. It means recording the amount of these changes and finally 
preparing the required dataset. It is obvious that one of the things that have a great 
effect on the amount of products produced from a petrochemical unit is the amount 
of input materials (feed). Therefore, the amount of changes in production products 
that occur due to changes in the amount of feed should be recorded. These changes 
were measured per ton per day. As it was said, complex processes take place inside the 
Petrochemical unit, such as chemical reactors, distillation towers, etc., each of which 
has an effect on the amount of production, but due to the limitation in measuring 
these factors, it was decided to measure only the amount of input feed and changes 
in the amount of produced products, and for this reason, we omitted the details and 
processes within the petrochemical unit. By doing this, the accuracy of the designed 
neural network was disrupted, and to solve this problem, it was decided to increase 
the number of samples collected from the amount of input materials (feed) and 
changes in the products produced, so that the neural network has more data for train-
ing. It took a year to collect this amount of data to complete the desired dataset.
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the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
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