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Preface

Multi-agent technologies (MATs) and machine learning (ML) are among the most
advanced directions of modern computer science and its applications due to their
ability to reduce the complexity of and time spent on knowledge acquisition and
maintenance. They are also able to achieve high-quality solutions to various problems.

MATs, which arose from agent-based programming, are an efficient tool for the creation
and evolutionary development of multi-agent systems (MASs), representing the logic
of solution of various non-trivial tasks from multiple problem areas as well as the logic
of behavior of various objects, operating in complicated and volatile environments. The
great flexibility of MATS, achieved due to the representation of a task or a system as an
easily modified set of interacting objects named agents, enables their wide application
as well as their software and even hardware implementations. Today, many successful
applications of MATSs in engineering, physics, medicine, energy, economy, banking,
social management, ecology, and more demonstrate the great power of this tool.

Machine learning ML as a segment of artificial intelligence (AI) arose primarily from
neural networks (NNs), which are efficient and widely used for solving tasks requiring
massive parallelism for processing intensive data flows originating primarily from
various sensors. The most well-known application of NNs is image processing, which
enables online monitoring of wide areas covered by video cameras and/or measurement
devices. A great achievement of ML associated with NNs is its implementation in
teaching NNs by input—output sets (“training samples”). Thus, a work of a learning
person in this case is reduced to the presentation of an a priori accumulated set of
training samples to an NN, transferred to a teaching regime. Moreover, there are ML
paradigms such as unsupervised learning and reinforcement learning (or learning with
feedback) that do not require a person at all or require them in a very limited capacity.

Since some period of mutually isolated research of MATs and ML, it has become

clear that there is much promise in combining the advantages of both approaches: the
generality and flexibility inherent to MATs with the low-cost knowledge acquisition
inherent to ML. There may be different approaches to constructive development and
implementation of this basic idea, for example, the creation of MASs with self-learning
agents or MASs with adaptive agents set, and thus investigation of ways of integrating
MATs and ML is an interesting and promising area of research.

This book consists of six chapters in three sections. Section 1, which includes
Chapters 1 and 2, discusses the integration of MATs and ML. Chapter 1 reviews
current research in MASs combined with various ML techniques. It analyzes features
of MASs from the ML point of view, classifies applications of MASs integrated

with ML methods, and presents a density map of applications in manufacturing,
commerce, and E-learning. Chapter 2 discusses deep multi-agent reinforcement
learning methods for solving problems with MASs consisting of very large numbers
of heterogeneous agents. Such methods have significant scalability potential and



inter-agent coordination capabilities in large-scale and complex multi-agent settings.
The chapter uses air traffic management as a practical background for comparative
consideration of the described methods.

Section 2, which includes Chapters 3 and 4, describes the most interesting and refined
applications of MATs combined with ML. Chapter 3 is a comparative study of differ-
ent design approaches to a corporative multi-agent system for optimal scheduling. The
authors propose creating a dataset using multiple algorithms with different performance
metrics to find the best one. This dataset may be imported into some ML tools for train-
ing and predicting, based on the selected performance metrics. The chapter examines
three approaches: first come first serve, round robin, and ant colony. The chapter
shows that the ant colony algorithm achieves the best results. Chapter 4 describes an
architecture of a knowledge-based multi-agent system (KBMAS) demonstrating inter
alia capabilities, which open due to the integration of advantages of MATs and ML. It
proposes an approach to the development of applied software agents that combines
knowledge-based reasoning with neural network models. It also considers the method
of reinforcement learning, the system of rules, and the queries to the knowledge base.

Section 3, which includes Chapters 5 and 6, describes advanced results in MATs and

ML that may be used as a background for their further integration and extension of an
area of their combined theoretical consideration and application. Chapter 5 discusses
the multi-agent modeling of a charging station of an electric vehicle. Power engineering
applications, such as power system optimization and restoration, electric energy market
modeling, and smart grid control are among the most topical and successful MATs. The
described MAS illustrates how MATs enable adequate modeling of power-supplying
devices with a non-trivial physical background. Such models of the lowest-level devices
may be easily implanted into a model of a power system of any static or mobile power-
consuming object, thus demonstrating an “additivity” of MATSs, enabling their efficient
application in multiple problem areas. Chapter 6 presents the useful application of ML
to the development of one of the most interesting and practically valuable problems

of operations research: approximate dynamic programming. It proposes an efficient

ML algorithm for two-stage stochastic programs. The optimization framework makes

it easy to introduce changes to the already obtained decisions as well as to capture the
collective intelligence of the experienced decisions. Such features are hardly (or even
not) available inside classic operations research approaches. Moreover, as computational
results indicate, the proposed ML-based algorithm explicates rapid convergence.

Overall, this volume provides a comprehensive overview of the current state and
perspectives of MATs—-ML integration and application in a wide set of practical
and theoretical problems.

Igor A. Sheremet

Full Member of the Russian Academy of Sciences,

Scientific Supervisor and Chair of the Science-Technological Board
of the National Computer Corporation (NCC),

Moscow, Russia
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Chapter1

A State-of-the-Art Survey on
Various Domains of Multi-Agent
Systems and Machine Learning

Aida Huerta Barrientos and Alejandro Nila Luevano

Abstract

Multi-agent systems (MASs) are defined as a group of interacting entities or
agents sharing a common environment that changes over time, with capabilities of
perception and action, and the mechanisms for their coordination provide a modern
perspective on systems that traditionally were regarded as centralized. The main
characteristics of agents are learning and adaptation. In the last few years, MASs
have received tremendous attention from scholars in different fields. However, there
are still challenges faced by MASs and their integration with machine learning (ML)
methods. The primary goal of the study is to provide a broad review of the current
developments in the field of MASs combined with ML methods. First, we present fea-
tures of MASs considering the ML perspective. Second, we provide a classification of
applications of MASs combined with ML methods. Third, we present a density map
of applications in E-learning, manufacturing, and commerce. We expect this study to
serve as a comprehensive resource for researchers and practitioners in the area.

Keywords: machine learning, multi-agents, simulation, optimization, neural networks

1. Introduction

At the beginning of the 1990s, agent-based programming became an important
part of simulation [1]. Although there is currently no formal definition of what an
agent is, the term is used to describe self-contained programs that can control their
own actions based on perceptions of their operating environment [2]. The goal of
agent-based programming is to create programs that intelligently interact with their
environment. The software used to program agents has its origins in the field of arti-
ficial intelligence, especially in the subfield of distributed artificial intelligence [3, 4],
whose objective is the study of the properties of agents and the design of interaction
networks between them.

In the same 1990s, as is suggested in Ref. [5], computational agents are typically
characterized by:

* Autonomy: The agents had direct control of their actions and their internal state.
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* Social skills: Agents interacted with other agents through a computational
language.

* Reaction: Agents were able to perceive their environment and respond to it. The
environment could be the physical world, a virtual world, or a simulated world
that includes other agents.

* Proactivity: Because agents reacted to their environment, they themselves had to
take goal-oriented initiative.

A typical agent-based model contains the following four elements [6]:

* Agents: Their attributes and environment.

* Relationships between agents and methods of interaction.

* A connectivity topology that defines how and with whom agents interact.

* Agent environments: Agents live and interact with their environment and with
other agents.

In most of the agent-based models, agents are able to move within their environment
through sensors through which they perceive their local neighbors. Communication
between agents is usually done by sending messages. For this action, the agents must
be able to listen to the messages that come from their environment and send messages
to the environment.

1.1 Multiagent systems

According to Garro et al. [7], a system comprising a number of possibly interacting
agents is called a multiagent system (MAS). In this direction, MASs are defined as a
group of multiple autonomous interacting entities or agents sharing a common envi-
ronment that changes over time, with capabilities of perception and action, and the
mechanisms for their coordination provide a modern perspective on systems that tra-
ditionally were regarded as centralized. The main characteristics of agents are learn-
ing and adaptation. The main feature achieved when developing multi-agent systems
is flexibility, since a multi-agent system can be added to, modified, and reconstructed,
without the need for detailed rewriting of the application [7]. Cooperation is other
feature that has been studied in MASs. In this direction, as suggested by Al-Jumaily
and Al-Jaafreh [8], the MASs are divided into theory and application phases. On the
one hand, taxonomy, cooperation structure, cooperation forming procedure, and
others are related to the theory phase. On the other hand, mobile agent cooperation,
information gathering, sensor information, and communication are related to the
applications phase.

1.2 Machine learning

Machine learning (ML) is a subset of artificial intelligence (AI) that concerns the
development of algorithms, which allows the machine to learn via inductive inference
based on observation data that represent incomplete information about statistical
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phenomena [9]. To carry out the learning process an algorithm is used based on
examples of the task we want to solve (data) and letting the computer find patterns
and make inferences that optimize the decision-making according to a user-defined
objective [10]. Based on the training strategy, ML can be divided into three classical
categories with different learning approaches: supervised learning, unsupervised
learning, and reinforcement learning [10]. The first one includes classification and
regression tasks, in the second one the widely used task is clustering, and the third
one consists of the process of training a model on a series of actions thatlead to a
particular outcome, where the system receives rewards for performing well and
punishment for performing poorly directly from its environment [10].

In the last years, MASs integrated with ML have received tremendous atten-
tion from scholars in different fields such as Computer Science, Engineering,
Mathematics, Material Science, Neuroscience, Energy, Physics and Astronomy,
Social Sciences, Environmental Sciences, Business, Management, and Accounting.
The overview of MASs integrated with ML in these fields will be presented in the
following sections. MASs have been used in areas of e-learning, manufacturing, and
commerce combining mathematical methods, optimization methods, Markov pro-
cesses, learning algorithms, and artificial intelligence techniques. The reinforcement
learning method jointly with MASs has been applied in e-learning, manufacturing
(multi-agent reinforcement learning), and commerce (machine learning and learning
automation) areas. While deep reinforcement learning and adaptive learning have
been applied jointly with MASs in manufacturing and commerce areas. However,
there are still challenges faced by MASs and their integration with ML. The primary
goal of the study is to provide a broad review of the current developments in the field
of MASs combined with ML methods.

This chapter is prepared as follows: the methodology followed to carry out the
state-of-the-art survey on various domains of multi-agent systems and machine
learning is described in Section 2. Features of MASs considering the ML perspective
are presented in Section 3. A density map of applications in e-learning, manufac-
turing, and commerce is provided in Section 4. Concluding remarks are drawn
in Section 5.

2. Methodology

We followed the methodology proposed by Machi and McEvoy [11]. Figure 1
shows the steps for conducting the systematic literature review.

2.1 Step 1. Select a topic
The topic for this study was MASs combined with ML methods.
2.2 Step 2. Search the literature

The data for this study was extracted from the Scopus database (accessed on July
2022) based on the string multi-agent AND systems AND machine AND learning. In
this case, 2869 relevant results were found. Then, the publication date of documents
was limited from 2017 to 2022, the last five years. Also, the document type was
limited to articles and book chapters. In this direction, the search was based on the
following string:
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Step 1. Select a
topic
Step 6. Write Step 2. Search
the review the literature

Step 5. Critique Step 3. Develop
the literature the argument

Step 4. Survey
the literature
Figure 1.

The literature review model. Machi and McEvoy [11].
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Figure 2.
Trends in the number of articles and chapter book by year that were published between 2017 and 2022.

TITLE-ABS-KEY (multiagent AND systems AND machine AND learning) AND
(LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO
(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR,
2018) OR LIMIT-TO (PUBYEAR, 2017)) AND (LIMIT-TO (DOCTYPE, “ar”) OR
LIMIT-TO (DOCTYPE, “ch”)). In this case, 552 relevant articles and book chapters
were found. All the information was exported in RIS format to VOSviewer software
[12, 13] to generate the author collaboration and word co-occurrence networks.
Figure 2 shows the trends in the number of articles and book chapters published
annually between 2017 and 2022. Figure 3 depicts the fluctuating trend in the num-
ber of articles and chapter book published annually by the top-five sources, which
reached a peak in 2019 by IEEE Access, and from then on it has gradually descended.

2.3 Step 3. Develop the argument

In this chapter, a broad review of the current developments in the field of MASs
combined with ML methods is presented.
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Figure 4.
Documents by the author published between 2017 and 2022 on multi-agent systems and machine learning
applications.

2.4 Step 4. Survey the literature

Figure 4 summarizes the top ten authors in terms of contribution to the number
of papers and chapter book published on multi-agent systems and machine learning
applications. Even though Yu [14-18] as coauthor is the main contributor in the area.
He accounts for five articles, followed by Li [19-22], Mohammed [23-26], Wong
[27-30], Yap [27-30], and Yaw [27-30] with four articles each one. Figure 5 pres-
ents the coauthor collaboration network from articles and chapter book published
during the 2017-2022 period time, on multi-agent systems and machine learning
applications, based on full counting. Each circle represents an author. The size of a
circle reflects the number of publications of the corresponding author. The distance
between two circles indicates the relatedness of the authors [13]. Colors represent
clusters of authors with strong coauthorship links. A total of 1,718 different authors
are in the collaboration network.

The top-ten fields in terms of applications on multi-agent systems and machine
learning applications during the 2017-2022 period is showed in Figure 6. Even
though Computer Science is the main field contributor, it only accounts for 37.4%,
followed by Engineering (26.9%) and Mathematics (7.8%). The visualization
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Figure 5.
Visualization by VOSviewer™ software of coauthor collaboration network from documents published between
2017 and 2022 on multi-agent systems and machine learning applications.

Other (8.79) \

Business, Manag... (1.79)
Environmental S... (1.8%)
Social Sciences... (2.2%)
Physics and Ast... (2.6%) 3
Energy (2.7%) /\
Neuroscience (2.8%)

Materials Scien... (5.4%) g

= Computer Scienc... (37.4%)

Mathematies (7.8%)

Engineering (26.9%)

Figure 6.
Percentage of documents by subject fields that were published between 2017 and 2022.

in Figure 7, based on full counting, shows the co-occurrence network, distinct
groups of keywords can be easily distinguished. Each circle represents a keyword.
The size of a circle reflects the number of occurrences of the corresponding key-
word. A total of 5,155 different words presented in the titles and abstracts of the
552 documents published between 2017 and 2022 were analyzed to establish the
co-occurrence network, generating clusters associated with the research topic on
multi-agent systems and machine learning applications. The colors used indicate
the evolution of the time period of the different clusters. The blue cluster contained
research topics published in 2019, while the green cluster contained research topics
published in 2020, and the yellow cluster contained research topics published in
2021 and forward.
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Figure7.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications.

2.5 Step 5. Critique the literature

The critique of the scientific literature of MASs integrated with ML in Computer
Science, Engineering, Mathematics, Material Science, Neuroscience, Energy, Physics
and Astronomy, and Social Sciences fields will be presented in the following sections,
highlighting their potentiality and limitations.

3. Review of state-of-the-art
3.1 Computer science

Computer Science turned out as the top field contributor as indicated by the
retrieved data, with 440 documents on multi-agent systems and machine learning
applications during the 2017-2022 time period. Figure 8 shows the terms with high
co-occurrence frequencies in this field, distinguishing a color pallet from blue to
yellow based on the publication year. In Figure 8, each term is represented by a circle,
where the diameter of the circle and size of its label represents the frequency of
the term, and its proximity to another term indicates the degree of relatedness of the
two terms.

3.1.1 Potentiality

The network in Figure 8 clearly indicates that multi-agent systems and machine
learning have received tremendous attention from scholars. In 2019, the research was
focused on topics such as embedded systems, robots, and forecasting, whereas in
2020, it was focused on topics such as intelligent agents, decision-making systems,
optimization, IoT, stochastics systems scheduling, wireless sensor networks, compute
games, and energy and efficiency of systems, which were broadly studied. More
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Figure 8.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Computer Science field.

recently, in 2021 resource allocation, heuristics algorithms, decision trees, real-time
systems, distributed optimization, and predictive analysis jointly with multi-agent
systems were applied to study street traffic, manufacture, and cognitive radio.

3.1.2 Limitations

ML algorithms and multi-agent systems showed potentially significant combina-
tion/integration in the Computer Sciences field. However, the studies in this field had
several limitations. First, they had a small number of applications. Second, the ML
algorithms are limited to deep reinforcement. Finally, it is unclear which software is
used to integrate multi-agent systems and ML algorithms.

3.2 Engineering

Engineering turned out as the second contributor as indicated by the retrieved data,
with 317 documents on MASs and ML applications between 2017 and 2022. Figure 9
shows the terms with high co-occurrence frequencies in this field. In Figure 9, each
term is represented by a circle, where the diameter of the circle and size of its label
represent the frequency of the term, and its proximity to another term indicates the
degree of relatedness of the two terms.

3.2.1 Potentiality
As is depicted in Figure 9, MASs researchers are very enthusiastic about learning

algorithms to study vehicular networks, traffic control, 5G mobile communications
networks, image communication systems, multi-robots systems, wireless sensor
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Figure 9.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Engineering field.

networks, manufacture, digital storage, electric power utilization, cyber-physical
systems, embedded systems, electric vehicles, electric power transmission, and
e-learning, and have proposed reinforcement learning and deep reinforcement learn-
ing to be integrated to MASs.

3.2.2 Limitations

Although, MASs interacting with reinforcement learning and deep reinforcement
learning algorithms showed potentially significant application in the Engineering
field. However, there were several potential limitations, such as small minority of
optimization techniques, traditional simulation approaches, and little information
about the integration of optimization algorithms and simulation software.

3.3 Mathematics

Mathematics field turned out as the third contributor as indicated by the retrieved
data, with 92 documents on MASs and ML applications between 2017 and 2022.

3.3.1 Potentiality

The number of publications increased noticeably in the past two years. The
scientific landscape of main research areas of MASs and ML applications in the
Mathematics field are bibliometrically explored by way of co-occurrence term map
presented in Figure 10. In Figure 10, each term is represented by a circle, where the
diameter of the circle and size of its label represent the frequency of the term, and its
proximity to another term indicates the degree of relatedness of the two terms.

11



Multi-Agent Technologies and Machine Learning

Figure 10.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Mathematics field.

The most used theoretical tools were deep learning, neural networks, intelligent
agents, Markov process, scheduling algorithms, q-learning algorithms, decision trees,
and game theory. While the most important application areas were decision mak-
ing, job scheduling, power control, cloud computing, energy efficiency, fertilizers,
e-commerce, speech processing, cooperative behaviors, quality of service, resource
allocation, forecasting, and manufacturing.

3.3.2 Limitations

A considerable amount of literature has been published on multi-agent systems
and machine learning applications in the Mathematics field. However, the reinforce-
ment learning method has been recently used in specific areas such as manufacturing
and job scheduling supporting decision making. Optimization algorithms based on
warm intelligence were used in the past as well as supervised learning methods. Much
of the recent literature in this field has limited applications that are centered on cloud
computing.

3.4 Materials science

Materials Science field turned out as the fourth contributor as indicated by the
retrieved data, with 63 documents on MASs and ML applications between 2017 and
2022. Figure 11 shows the mapping and clustering of terms over time. A co-occur-
rence network was built using words present in titles and abstracts of documents
published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Materials Science field. In Figure 11, each term is represented by a
circle, where the diameter of the circle and size of its label represent the frequency of
the term, and its proximity to another term indicates the degree of relatedness of the
two terms. The network can be seen to contain four clusters of co-occurring terms.
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Figure 11.

Visualization by VOSviewer™ software of word co-occurvence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Materials Science field.

The royal blue cluster is predominately associated with documents published in 2019,
the turquoise cluster is associated with documents published in 2020, the yellow-
green cluster is associated with documents, and the yellow cluster is associated with
documents recently published in 2022.

3.4.1 Potentiality

For the period of 2017-2022, multi-agent reinforcement learning, deep learning,
deep reinforcement learning, complex networks, multi-agent systems, stochastic
systems, and game theory remained among the top major topics. It has been demon-
strated that deep reinforcement learning methods have been combined with game
theory and deep neural network techniques. Additionally, complex networks have
considered computational complexity.

3.4.2 Limitations

Although there are many studies, the research in multi-agent systems and machine
learning applications in the Materials Science field remains limited. First, the applica-
tion areas have been centered on traffic studies, scheduling, Internet of Things, crowd
simulation, and more recently in energy efficiency and wireless networks. Second,
the learning algorithms are mainly based on deep learning. Additionally, optimization
is based on the particle swarm algorithm, mainly.

3.5 Neuroscience
Neuroscience field turned out as the fifth contributor as indicated by the

retrieved data, with 33 documents on MASs and ML applications between 2017 and
2022. Figure 12 depicts the terms with high co-occurrence frequencies in this field.
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Figure 12.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Neuroscience field.

In Figure 12, each term is represented by a circle, where the diameter of the circle and
size of its label represent the frequency of the term, and its proximity to another term
indicates the degree of relatedness of the two terms.

3.5.1 Potentiality

The number of publications increased noticeably in the past two years on
multi-agent systems and machine learning applications in the Neuroscience field.
The terms on the left of the network shown in Figure 12 represent the contribu-
tions developed in 2018. Here, mathematical models, simulation models, as well
as analytic and optimization methods were broadly used. The group of terms at
the center of the diagram characterizes the contributions developed between 2019
and 2020. Here, artificial neural networks, nonlinear systems, graph theory, and
simulation were the theoretical tool mainly used. The right of the diagram contains
terms related to contributions in the last year. Here, the learning and reinforcement
algorithms have been broadly applied.

3.5.2 Limitations

ML algorithms and multi-agent systems showed potentially significant
combination/integration in the Neurosciences field. However, the studies in this field
had several limitations. First, the applications are centered on autonomous systems that
learn using deep learning and reinforcement learning algorithms. Second, the reward
concept is minimum exploited in reinforcement learning. The software to implement
multi-agent systems has little attention. Finally, computer simulation was relevant in
studies developed in 2018 but is not included in the studies recently developed.
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Figure 13.
Visualization by VOSviewer™ software of word co-occurvence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning

applications in the energy field.

3.6 Energy

Energy field turned out as the sixth contributor as indicated by the retrieved data,
with 32 documents on MASs and ML applications between 2017 and 2022. Figure 13
shows the terms with high co-occurrence frequencies in this field. In Figure 13, each
term is represented by a circle, where the diameter of the circle and size of its label
represent the frequency of the term, and its proximity to another term indicates the
degree of relatedness of the two terms.

3.6.1 Potentiality

A number of specific research topics show significant active growth and
may be considered to be emerging topics on multi-agent systems and machine
learning applications in the Energy field. Reinforcement learning is the dominant
algorithm used followed by deep learning and deep reinforcement learning.
Optimization is based on learning algorithms. The main applications in this field
are electric machine control, electric vehicles, housing, fertilizers, smart grid,
electric power transmission networks, microgrids, energy management, and
energy utilization.

3.6.2 Limitations
There are two major limitations in the applications of multi-agent systems
and machine learning in the Energy field. First, the more recent applications are

centered on model predictive control. Second, the electric cost is evaluated in a
few studies.
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Figure 14.

Visualization by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in the Physics and Astronomy field.

3.7 Physics and astronomy

Physics and Astronomy field turned out as the seventh contributor as indicated by the
retrieved data, with 31 documents on MASs and ML applications between 2017 and 2022.
Figure 14 illustrates the network of terms with high co-occurrence frequencies in this
field. In Figure 14, each term is represented by a circle, where the diameter of the circle
and size of its label represent the frequency of the term, and the distance between any
two possible terms reflects the relatedness of the terms as closely as possible. In general,
the stronger the relationship between two terms, the smaller the distance between the
terms on the map. The network can be seen to contain four clusters of co-occurring terms.

3.7.1 Potentiality

After careful analysis, in 2019, three topics can be distinguished (the royal blue
biggest circles in Figure 14). The first is learning algorithms, the second topic is sen-
sor nodes, and the third topic is game theory.

In 2020, six topics (the turquoise biggest circles in Figure 14) were the most often
discussed of the last three years. The observation that reinforcement learning is one
of the most occurring terms in the Physics and Astronomy field does not come as a
surprise Internet of Things.

In 2021, six topics (the yellow biggest circles in Figure 14) were the most predomi-
nant of the last three years. The prominence of neural networks may be explained by
the fact that is linked directly to machine learning approaches, constituent models,
and multilayer neural networks.

3.7.2 Limitations

Although, MASs interacting with reinforcement learning and deep reinforce-
ment learning algorithms showed potentially significant application in Physics
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and Astronomy field. However, there were several potential limitations, such
as small minority of simulation and optimization models, learning algorithms,
and software.

4. Applications of MASs combined with ML

Density map assists in the understanding of active growth areas, research trends,
emerging topics, and hot topics in MASs combined with ML. Figures 15-17 illus-
trate the density map of applications in E-learning, manufacturing, and commerce,
respectively.

Figure 15.

Density map by VOSviewer™ software of word co-occurvence netwovk built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in E-learning.

Figure 16.

Density map by VOSviewer™ software of word co-occurrence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in manufacturing.
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Figure 17.

Density map by VOSviewer™ software of word co-occurvence network built using words present in titles
and abstracts of documents published between 2017 and 2022 on multi-agent systems and machine learning
applications in commerce.

5. Conclusions

The primary goal of the study was to provide a broad review of the current
developments in the field of MASs combined with ML methods. The trend
on MASs and ML is the use of reinforcement learning algorithms integrated
with optimization and simulation models. Artificial neural networks, nonlinear
systems, and graph theory are the theoretical tool mostly used. We want to empha-
size that it is unclear which software is used to integrate multi-agent systems and
ML algorithms. In most studies, optimization algorithms were based on warm
intelligence.
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Chapter 2

Deep Multiagent Reinforcement
Learning Methods Addressing the
Scalability Challenge

Theocharis Kravaris and George A. Vouros

Abstract

Motivated to solve complex demand-capacity imbalance problems in air traffic
management at the pre-tactical stage of operations, with thousands of agents (flights)
daily, even in a restricted airspace, in this paper, we review deep multiagent rein-
forcement learning methods under the prism of their ability to scale toward solving
problems with large populations of heterogeneous agents, where agents have to
unavoidably decide on their joint policy, without communication constraints.

Keywords: deep reinforcement learning, multiagent systems, scalability

1. Introduction

Scalability in training large numbers of deep reinforcement learning agents, which
must decide on actions jointly, is a major issue that becomes apparent in many real-life
problems. This issue is related to numerous aspects of deep multiagent reinforcement
learning (DMARL), such as assignment of credits to the learners for their choices,
assumptions regarding homogeneity or interchangeability of the agents, society
structure due to interaction of agents’ decisions, agents’ communication require-
ments, abilities, and constraints.

In this chapter, we provide a review of deep multiagent reinforcement learning
(DMARL) methods, examining their ability to scale up to large agent populations.
“Large” here could mean anything from hundreds up to several thousands of agents.

We are motivated to solve complex demand-capacity balancing problems in air
traffic management (congestion problems regarding air sectors), where we may have
6000 flights daily, even in a restricted airspace (e.g., the Spanish airspace). Specifi-
cally, in the air-traffic management (ATM) domain, demand and capacity balancing
problems (DCBs) are a kind of congestion problems that arise naturally whenever
demand of airspace use exceeds capacity, resulting to “hotspots.” Hotspots are resolved
via capacity management or flow management solutions, including regulations that
generate delays and reroutings to flights, causing unforeseen effects for the entire
system, and increasing uncertainty regarding the scheduling of (ground and airspace)
operations. For instance, flight delays cause the introduction/increase of time buffers
in operations’ schedules and may accumulate demand for resources within specific
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periods. These are translated into costs and negative effects on airlines’ reliability,
customers’ satisfaction, and environmental footprint. Representing flights by self-
interested, heterogeneous agents (each with its own possible regulations, preferences,
and constraints), the automation of problems’ resolution requires agents to jointly
decide on their policies regarding their own regulations [1]. Driven by the resolution
of problems at the pre-tactical phase of operations (i.e., from some hours to few days
before the actual flights), there are no communication or observation constraints for
agents: In any case, agents need to coordinate with any agent with whom they partic-
ipate to any specific congestion problem, given also that these problems may emerge
dynamically in space and time.

In such large-scale, complex multiagent settings, we need to consider quality of
solutions (as regulations incur additional costs to operations) and DMARL methods’
training scalability. Factors that affect training scalability are as follows:

* The training paradigm adopted: Agents may train independent, centralized, or
shared models.

* The types of models learnt following any paradigm: A policy model, a value model,
or both types of models may be fit, following any of the training paradigms.

o Assumptions vegarding agents homogeneity: Agents may be considered to be
heterogeneous, homogeneous (i.e., following the same policy, which may be
however differentiated due to contextual features), or even interchangeable.

* Effectiveness of communication: Communication between agents may be explicit
(i.e., passing information by any means) or implicit (i.e., via the environment, or
via sharing models’ parameters), and orthogonal, either be performed in a global
(e.g., broadcasting messages to all agents) or local scale (i.e., ina
“neighborhood”). Here, optimality of communication is something that agents
could learn via elaborated (e.g., attention) mechanisms.

In addition to the above factors, decomposing rewards among agents is a relevant
issue, affecting both scalability and the quality of joint policies. This issue of credit
assignment concerns designating high reward to the agents with a desirable behavior,
thus avoiding agents enjoying the rewards without contributing in achieving the
intended joint goal.

2. Deep MARL

Tabular function representations in reinforcement learning (RL) have many suc-
cesses [2] in relatively low-dimensional problems, but it has two major drawbacks: (a)
The designer of the application had to hand-craft the state representations, and (b)
methods store each state or state-action value (V-value or Q-value, respectively)
independently, resulting in slow learning in large state-action spaces and poor gener-
alization abilities.

To resolve these problems, the deep Q-network [3] method successfully combined
RL with neural networks (NNs). It is well established that the combination of RL with
nonlinear function approximators such as NNs can be unstable and result in diver-
gence [4]. This instability has several causes: the correlations present in the sequence
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of observations, the fact that small updates to Q values may significantly change the
policy—and therefore change the data distribution of the samples produced by the
rollouts, and the correlations between the action values and the target values. Deep Q-
Network (DQN) [3] uses an NN to approximate Q-values, modeling the agent’s policy.

Two vital elements of DQN that address these issues are the target network and the
experience replay memory. The target network mitigates the effect of constantly
moving targets, by incorporating a second network from which the targets are sam-
pled. This network is periodically updated with the weights of the online network. The
addition of a uniform experience replay memory decorrelates the samples collected
during rollouts, by randomizing over the data, thereby smoothing over changes in the
data distribution. During learning, the method applies Q-learning updates on samples
(or minibatches) of experience drawn uniformly at random from the pool of samples
stored.

Since the original DQN publication, many extensions have emerged [5-9], with
double DQN [10] and prioritized experience replay [11] being the most well known.
Double Q learning was originally introduced by H. Hasselt [12] and aims to address
the problem of overestimating action values, a phenomenon inherent to the Q-
learning method. This addition to the original method is considered to be standard
practice and is particularly useful in the multiagent domain, where nonstationarity is a
common phenomenon. Originally, the idea behind this method is to utilize two inde-
pendent tabular representations of the Q function during training, where each Q
function is updated with targets produced from the other Q function. Double DQN
transfers this approach in the Deep RL setting, by exploiting the second approximator
using a target network.

In the initial DQN approach, experience transitions are uniformly sampled from a
replay memory. This approach ignores the significance of samples, replaying them at
the same frequency that they were originally observed in the environment. Prioritized
experience replay [11] enforces a priority over the samples, aiming to replay impor-
tant transitions more frequently, and subsequently improve learning efficiency. In
particular, the method proposes to assign higher priority to transitions with high
expected learning progress, as measured by the magnitude of their temporal-
difference (TD) error.

This new paradigm of combining Q-learning with NNs swiftly crossed over to the
multiagent (MAS) field. Tampuu et al. [13] studied cooperation and competition
between two DQN agents. The publication investigates the interaction between two
agents in the well-known video game Pong, by utilizing two independent DQN archi-
tectures, one for each agent. By solely adjusting the rewarding scheme, competitive
and collaborative behaviors emerge.

Deep deterministic policy gradient (DDPG) [14] combines DQN with determinis-
tic policy gradient (DPG) [15] to address continuous actions. As a variant of actor-
critic algorithms it incorporates two separate NNs: the actor, which models the policy,
and the critic, which provides feedback on the desirability of an action 4 in a state s.
This desirability can be expressed by means of learnt V-values, Q-values, or advan-
tages. MADDPG [16] extends DDPG in MAS settings: Each agent is given a dedicated
policy network. This approach renders the method not scalable: It is not viable to
maintain and train hundreds, if not thousands, of policy networks. In addition, detri-
mental to the scalability is the fact that, during training, the method utilizes a cen-
tralized critic, which takes as input the observations and actions of all agents. The
input size of the critic can explode, depending on the size of the agent population and
the state dimensions.
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Multiagent deep deterministic policy gradient (MADDPG) employs a technique
that has many variants and is vital in understanding deep MARL. This technique is
called centralized training and decentralized execution (CTDE). A naive way to pro-
vide agents with a joint policy is to train in parallel independent policies, one for each
agent, following the independent learners paradigm. This approach can produce
results in low-dimensional problems, but in real-world scenarios is inefficient and
unstable. In order to alleviate these problems produced by the nonstationarity of an
MAS environment, many algorithms, one of which is MADDPG, employ some form
of centralized training, thus exploiting information that is available during training
but often unavailable during execution. In particular, MADDPG trains a centralized
critic, which takes as input the global state and agents’ joint action. During the
execution phase, this information is inaccessible by agents, and agents act in a
decentralized manner. Another well-known application of CTDE is QMIX [17]. Dur-
ing training, the learning algorithm has access to all local action observation histories
and global state, but each agent learns a policy that conditions actions on local agent
observations.

Parameter sharing, first introduced by Gupta et al. [18], is the extreme case of
CTDE: It learns a single policy shared by many agents. The main idea is that this single
policy should be able to adequately describe the behavior of different agents with the
same goals. Immediately apparent is the important assumption that the agents are
homogeneous, meaning that they decide on the same state-action space. This
assumption is relaxed by the same publication [18], which “tagged” observations with
agent identifiers, allowing differentiating agents according to their goals, and
responding accordingly. The resulting policy can be more robust, given the fact that it
has been trained with samples that potentially belong to different parts of the state
space, explored by different agents. We consider the parameter sharing approach to
be the cornerstone of any scalable algorithm.

Castafieda proposes two multiagent variants of DQN [19]. Repeated update
Q-learning extends DQN by updating each action inversely proportional to the
probability of selecting it, practically changing the learning rate based on the action
probability. It is designed to mitigate the inherit overestimation of state values by
Q-learning, much like double Q-learning [10]. Loosely coupled Q-learning defines a
diffusion function and utilizes eligibility traces in order to associate negative rewards
with states. The combination of the diffusion function with eligibility traces is used to
define a function, which indicates the necessity for cooperation, expressing the
probability of an agent carrying on an action independently. It combines this with
Dec-MDP and two Q-value functions, one for independent acting (when appropriate)
and one for coordinating with others.

Credit assignment concerns the difficulty to give credit and provide higher reward
to the agents with a desirable behavior, thus accelerating learning in MAS settings. A
common phenomenon, called “lazy agent,” occurs when an agent does not participate
actively in a cooperative solution, enjoying the rewards resulting from the cooperation
of others. Various approaches have been proposed to deal with this problem, with the
difference reward [20] and reward shaping [21, 22] being the most well known.

Difference reward [20] introduces a method to visualize the desirable properties of
a reward function, thus facilitating the creation of new reward structures based on the
specific needs of the domain. Specifically, the authors in [20] focus on two aspects of
the reward function. The first is called factordness and expresses how well the reward
promotes coordination among agents in different parts of a domain’s state-space. The
second is called learnability and expresses how easy it is for an agent to learn to
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maximize its reward, by measuring the reward’s sensitivity to the agent’s actions. The
main idea behind reward shaping is to utilize some prior knowledge while engineering
the reward function, in order to reduce the training time, by reducing the number of
suboptimal actions taken [22]. In the most general form, reward shaping can be as
simple as R’ = R + F, where R is the original reward and F a positive scalar reward,
designed to encourage the agent to move toward the goal. Here, most of the research
focuses on the principles, which would lead to an effective reward design, as well as
how the optimal policy changes as an effect of reward design.

Value decomposition network (VDN) [23] is the first DMARL method that
addresses the credit assignment problem. VDN represents joint action value as a sum-
mation of local (individual agents’) action values conditioned on agents’ local observa-
tions. The fact that the agents’ local value function depends only on local observations
facilitates agents’ understanding of the received rewards. This method is not scalable,
because it utilizes distinct NNs for each agent’s policy. QMIX [17] provides a more
general case of VDN using a mixing NN that combines all independent Q-values into
Qyor» thus approximating a broader class of functions for joint action values. Specifically,
moving from the VDN’s assumption of additivity, QMIX’s mixing network can approx-
imate monotonic relations between individual and the global Q-values. Both works are
based on the individual-global-max (IGM) principle, according to which, the joint
greedy action should be equivalent to the set of individual greedy actions of agents.

VDN and QMIX address a subset of factorizable MARL tasks due to their structural
constraint in factorization of additivity and monotonicity, respectively. Later works
have improved the representation ability of the mixing network. QTRAN [24]
achieves more general factorization by transforming the original joint action-value
function into a new, easily factorizable one with the same optimal actions as the
original. NDQ [25] combines value function factorization learning with communica-
tion learning, by introducing an information-theoretic regularizer, aiming to reduce
interagent communication while maintaining performance.

ROMA [26] combines MARL, mixing networks in particular, with the role concept
[27-33]. A role is a comprehensive pattern of behavior, often specialized in some
tasks. Agents with similar roles will show similar behaviors and thus can share their
experiences to improve performance. The main drawback of this approach is the
demand of exploitation of prior domain knowledge in order to decompose tasks and
predefine the responsibilities of each role, which necessitates adding to role-based
MAS dynamic and adaptive abilities to perform effectively in dynamic and
unpredictable settings. However, the specification of roles may not be appropriate for
any domain. ROMA introduces two regularizers to enable roles to be dynamically
identifiable, in order to exploit the benefits of both, role-based and learning para-
digms. Following the QMIX [17] framework, it utilizes independent policy networks
and a centralized mixing network.

QPLEX [34] focuses on ensuring that the IGM principle (as specified above)
stands, while reformalizing it as an advantaged-based IGM. QPLEX replaces the
original mixing network of QMIX [17] with a duplex dueling network architecture [5],
which induces the joint and local (duplex) advantage functions, to factorize the joint
action-value function into individual action-value functions. This duplex dueling
structure encodes the IGM principle into the neural network architecture. The archi-
tecture uses an individual action-value function for each agent in combination with
the centralized duplex dueling component. The method manages to achieve higher
win rates in numerous Starcraft II scenarios [35] against multiple baselines such as
VDN, QMIX, and QTRAN [17, 23, 24] in experiments with up to 27 agents.
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Another well-known approach is the counterfactual multiagent policy gradients
method (COMA) [36]: It decomposes the global reward to the agents, utilizing a
counterfactual baseline inspired by difference rewards [20]. Similarly to MADDPG,
COMA utilizes a centralized critic and each agent has a distinct policy network, so the
drawbacks regarding scalability are common to MADDPG.

Concluding the above, the line of research on value decomposition has different
focal points rather than scalability, thus does not produce methods ideal to scale up to
thousands of agents. In addition to that, as far as credit assignment problem is
concerned, although a vital aspect of MARL, we do not consider that the resolution of
this problem is a prerequisite toward methods’scalability. However, it is a related
issue in settings where rewards are not inherently decomposed to individual agents.

3. Scalable deep MARL

Differentiable interagent learning (DIAL) [37] is the first proposal for learnable
communication utilizing DQNs. Agents generate real-valued messages, which are
broadcasted to the other agents. During centralized training, these messages are prac-
tically gradients, allowing end-to-end training across agents. During decentralized
execution, messages are discretized and mapped to a predefined set of communication
actions. There are two major reasons that this approach can not scale effectively: With
no parameter sharing in place, each agent uses its own, independent policy NN. Also,
every agent communicates with everyone else throughout training. This, beyond the
communication cost, could result in agents receiving misleading or noisy information,
in the form of gradients.

CommNet [38] aims to learn a communication protocol alongside the policies of
cooperating agents. CommNet consists of a centralized feed-forward NN, with the
observations of all agents as input and their actions as output. Each layer represents a
communication step between the agents and consists of one decision module per
agent. While the first layer uses an encoder function, every hidden layer module takes
the internal state / as well as the broadcasted communication vector ¢ as input and
outputs the next internal state. These internal states are averaged and broadcasted as
the next communication vector. CommNet has three major limitations regarding
scalability. First, all agents use the same centralized network, which has to be big
enough to accommodate this design approach, due to the size of the input in the form
of the global state. In addition, this renders the method unsuitable for heterogenous
agents. Second, CommNet calculates the mean of messages between layers, therefore
assuming that all agents are of equal importance, which could be unsuitable in some
settings. Finally, the most important disadvantage is the fact that all agents have to
communicate with everyone. This could result in significant communication overhead
with noise in the communication channel: e.g., an agent could receive a communica-
tion vector consisting of the average observations of irrelevant agents. The last draw-
back could be mitigated by the local connectivity model extension proposed in the
original CommNet publication [38]. According to this extension, agents can only
receive messages from a dynamic group of agents, which are within a certain range.
However, no experiments are provided for this extension.

Toward resolving the mandatory global communication problem, an extension of
CommNet, called vertex attention interaction network (VAIN) [39], employs an
attention mechanism. This attention mechanism improves the performance of the
original method by modeling the locality of interactions and thus determining which
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agents will share information. The authors claim that this method can make CommNet
suitable for as many as 1000 agents. In the experiments provided, VAIN achieved
better score than CommNet, although for a small number of agents.

Another method with scalability potential is BiCNet, [40]. BiCNet is an extension
of the actor-critic formulation where agents use a bidirectional recurrent NN (RNN)
[41]. The recurrent network serves as a bidirectional communication channel but also
as a local memory saver: Each agent is able to maintain its own internal states, as well
as to share information with its neighbors. Similarly to CommNet, the communication
channel serves to broadcast agents’ local observations. Contrary to CommNet agents,
BiCNet agents utilize additive messages, while the method makes no assumptions on
agents’ homogeneity/interchangeability. The major drawback is that, similarly to
CommNet, all agents communicate with everyone. Later works [42] show that the
ability of BiCNet to learn effective policies is reduced as the number of the agents
increases. This deterioration of effectiveness is attributed to the lack of a mechanism
capable of capturing the importance of information from different agents.

TarMAC [43] proposes an architecture designed specifically to allow each agent to
chose to which other agents to address messages to, as well as to which messages it will
pay attention to. It introduces a signature-based soft attention mechanism with a key,
which encodes properties of intended recipients (as opposed to specific agent identifi-
cation), to be part of the message. The receiver of the message takes this key into
consideration and decides whether it is relevant. The method is enhanced by multiple
rounds of communication and collaborative reasoning. TarMAC utilizes the actor-critic
framework, with a shared policy network and a centralized critic. It is evaluated on four
diverse environments against CommNet [38], as well with variants of itself without the
attention mechanism or communication at all. The sophistication of the communication
scheme could be a disadvantage regarding scalability, as multiple rounds of communi-
cation between thousands of agents would result in significant overhead. The main
drawback of the method though, with scalability in mind, is the usage of a centralized
critic, which takes as input the predicted actions and hidden states of all agents.

Coder [44] is a hierarchical approach, with three distinct hierarchical levels to
solve a traffic congestion problem with agents being the traffic intersections. First, a
centralized base environment is trained, which is a small and simple subproblem
compared with the original one, i.e., a single intersection managing incoming traffic.
Here, two training alternatives are considered, a DQN variant and a DDPG variant
called Wolpertinger architecture [45]. The next step is called regional DRL, where the
parameters of the base environment are shared to a small number of neighboring
agents controlling similar but not identical parts of the environment (e.g., different
traffic dynamics). To tackle these differences, additional refinement through training
is required. The final level combines all regional policies and adds a global dense layer.
In order to choose actions while incorporating some form of coordination between the
regional policies, an iterative action search is employed. This search starts with the
concatenation of the actions produced by the regional nets and attempts to find a
globally better alternative. This approach is shown to work with a maximum size of 96
adjacent intersections. A similar approach to Coder [44], we call it here KT DQN [46]
expands DQN. Aiming to speed up training and produce better results, it uses single
agent training before applying the policy to MAS settings. In doing so, the method
freezes all the weights of the single-agent policy network model that are transferred to
the MAS scenario, with the exception of the ones between the last hidden layer and
the output. Coder and KT DQN utilize a hierarchical approach that initializes learning
from a simplified single agent environment. This can indeed speed-up learning, in
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contrast to start learning from scratch. However, this approach is not straightfor-
wardly transferable between applications. For example, using the regional DRL step of
coder calls for a separate design, i.e., decomposing the problem into subproblems, for
different applications.

An interesting take on how to utilize an agent population in order to facilitate
exploration is presented by J. Leibo [47]. The method proposed is a variant of
IMPALA [48]: In the simulation used every agent is a member of an animal species.
These homogeneous agents share the same policy network. The paper does not
address interagent communication or cooperation, explicitly. Instead, it utilizes the
multiagent framework mainly to encourage a more robust exploration. Cooperative
behavior emerged when incentives are given to the agents: For example, experiments
are presented with agents rewarded for specializing in eating a specific kind of food.
The total number of agents present in the simulation reported are 960, and the
population is considered to be dynamic.

Mean field MARL [49] proposes two algorithms with the explicit aim to improve
MARL scalability. The main idea is to calculate the mean action of an agent’s neigh-
borhood, considering that each agent interacts with a virtual mean agent instead of
agents. The two proposed alternatives are mean field Q (MF-Q) and mean field actor-
critic (MF-AC), among which the MF-Q approach has superior sample efficiency,
which becomes more apparent as the number of agents gets bigger. MF-Q has been
empirically shown to scale up to 1000 agents. Mean field MARL does not explicitly
address credit assignment, but provides rigorous mathematical proof of convergence
to Nash equilibrium. Although both algorithms are scalable, their main drawback lies
in the coordination scheme: Averaging the neighborhood of an agent can result in loss
of important information and lackluster cooperation [50].

Inspired by the factorization machines [51, 52], FQL [53] utilizes a composite deep
neural network architecture, combining Q and V nets, for computing a low-rank
approximation of the Q-function, by reformulating the multiagent joint-action Q-
function into a factorized form. Depending on agent roles, agents are divided into G
groups, and agents within each group share network parameters. While ensuring
efficiency, the uniformity assumption between agents might not be suitable for vari-
ous real-world applications. In addition, since the factorized Q-function for each agent
requires the knowledge of the other agents’ current states and their last actions for
both training and execution, the algorithm mainly addresses the MARL problems with
a central controller that communicates the global information to all the agents. In the
experimental section, the method produces competitive results in settings with agent
populations as large as 500 agents. As the size of the agent population is increased,
from 100 to 500, MF-Q [49], which is one of the baselines used, seems to be a more
suitable method.

CoLight [54] aims to enable agent cooperation in a large-scale road network with
hundreds of traffic signals, recognizing that RL-based methods at the time fail to reach
optimal interagent communication. To achieve this, authors introduce the utilization
of graph attentional networks. At the core of the method is a Q-value prediction deep
network. This network incorporates an observation embedding layer, the hidden
neighborhood cooperation layers, and the output Q-value prediction layer. Similarly
to mean field MARL [49], the method “averages” neighbors’ influence in the broad-
casted messages. Although experiments with simulated as well as real-world data
involve up to 196 agents, authors claim scalability to thousands of agents, based on
method’s complexity analysis [54]. Contrasted against various baselines, CoLight
shows advanced scalability, as well as sample efficiency.
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As already pointed out, many major approaches such as DIAL, CommNet, and
BicNet [37, 38, 40] suffer from the lack of agents’ ability to differentiate between
useful information driving interagent cooperation from noisy or misleading informa-
tion. ATOC [42] strives to eliminate this specific issue by proposing an attentional
communication model that achieves interagent communication between a large
amount of agents. The method expands DDPG and uses an attention module as well as
a bidirectional LSTM, which serves as a communication channel. The LSTM module
plays the role of integrating neighboring agents’ internal states, thus creating a mes-
sage from their combined intentions, and guiding the agents toward coordinated
decision-making. Actor and critic networks share parameters to ensure scalability.
Indeed, the method seems to challenge the known approaches (DDPG [14],
CommNet [38], and BicNet [40]), while agents show division of work and meaning-
ful cooperation.

Graph convolutional reinforcement learning (DGN) [50] has the explicit goal to
handle highly dynamic environments, where agents constantly change neighbor-
hoods. Toward this goal, the paper proposes an MAS framework in which agents are
connected in a graph where each agent is a node and edges connect neighbors.
Neighborhoods are determined by agent distance or other measures, e.g., communi-
cation range or critical interactions, and can vary over time. Communication is
allowed only between neighbors, in order to minimize inefficiency. DGN consists of
an observation encoder, convolutional layers with relation kernels, and a Q network.
The method was compared against well-known algorithms such as CommNet [38] and
MFQ [49] and is shown to achieve very competitive results in environments with up
to 140 agents. However, experiments with greater agent population are needed in
order to assess the effectiveness of the method as the environment gets more complex.

Lin et al. [55] proposes two distinct methods, which, very closely to our aims, aim
to solve large-scale demand-capacity imbalance problems in the air traffic manage-
ment domain. The environment simulates a population of approx. 5000 homogeneous
agents, acquiring identical rewards. Both methods assume that agents have the same
action values. In practice, this assumption means that the agents are not simply
homogeneous, but interchangeable. This assumption allows the building of a central-
ized action-value table, which is utilized for coordination of agents’ actions. The first
method is called contextual deep Q-learning. It utilizes a table with centralized action
values to form a collaborative context, which prevents agents from choosing
suboptimal actions, thus avoiding unwanted or redundant behavior such as agents
exchanging positions with one another. The second proposed method, called contex-
tual actor-critic, describes an actor critic variant of the contextual DQN. It uses a
centralized value function shared by all agents and a parameter-sharing policy net-
work.

Closely related works, with scalability in mind, are those presented by Nguyen
et al. [56-58]. In particular, AC for CDec-POMDPs [57] is based on the FEM algorithm
[56] and presents an actor-critic algorithm for optimizing collective decentralized
POMDPs. It achieves extreme scalability and provides experiments with up to 8000
agents. Subsequent work proposes MCAC [58], which focuses on difference rewards,
also addressing the credit assignment problem. A fundamental idea underlining the
work described in these papers and a vital aspect in order to achieve scalability is
exploiting the count of agents taking the same action « in a state s. This count, as well
as other, more complex measures based on this, serves a statistical basis for training,
eliminating the need to collect trajectory samples from every agent. Instead, the
resulting policy is dependent on count-based observations. Therefore, this method
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does not explicitly assume communication. It rather assumes full access to all the

count-based information during training. During execution, agents execute individual

policies without accessing centralized functions. Similarly to contextual DQN [55],

Method QNet V Net Agents Communication MAS
(s) population
DQN [3] I — Het — 2
PS DQN [18] PS — Hom Impl, global (policy) 200
MADDPG [16] 1 C Het Impl, global (critic) 6
VDN [23] I — Het Impl, global (policy) 2
QMIX [17] I — Het Impl, global (mixing net) 8
QTRAN [24] 1 C Het Impl, global (mixing net) 4
NDQ [25] I C Het Expl, local (message encoder) 10
ROMA [26] 1 C Het Impl, global (mixing net) 27
QPLEX [34] 1 C Het Impl, global 27
COMA [36] I C Het Impl, global (critic) 5
DIAL [37] I — Het Expl, global (messages) 4
CommNet [38] C — Hom Expl, global (communication 500
vectors)
VAIN [39] C — Hom  Expl, local (attention mechanism) 50
BiCNet [40] PS PS Het Expl, global (messages in RNN) 32
TarMAC [43] PS C Hom Expl, local (soft attention 20
mechanism)
Coder [44] PS PS Hom Impl, global (policy) 96
(KT) (KT)
KT DQN [46] PS — Hom Impl, global (policy) 20
(KT)
MF-Q [49] PS —_ Hom Expl, local (mean agent) 1000
MF-AC [49] PS PS Hom Expl, local (mean agent) 1000
FQL [53] PS PS Het Impl, global (policy) 500
CoLight [54] PS — Hom  Expl, local (attention mechanism) 196
ATOC [42] PS PS Hom  Expl, local (attention mechanism/ 100
LSTM)
DGN [50] PS — Hom Expl, local (observations in conv 140
layers)
cDQN [55] PS — IC Expl, local (collaborative context) 5000
cA2C [55] PS C IC Expl, local (collaborative context) 5000
FEM [56] PS PS IC Impl, global (policy) 20
AC CDec-POMDPs PS PS IC Impl, Global (policy) 8000
[57]
MCAC [58] PS PS IC Impl, Global (policy) 8000
Table 1.

Reviewed methods’ characteristics.
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this approach assumes that the agents are interchangeable. This assumption is neces-
sary to achieve the required scalability, but is not applicable to every problem.

4. Concluding remarks

In this paper, we provide a review of state of the art DMARL methods with
significant scalability potential and interagent coordination capabilities in large-scale
MAS settings. Table 1 lists all the reviewed methods with the characteristics, which
are considered essential for their scalability, as mentioned in the introductory section.
The abbreviations used are the following: Independent learners (I), Parameter Sharing
(PS), Centralized model (C), Knowledge Transfer (KT), Hetero/Homo-geneous
agents (Het/Hom), Interchangeable agents (IC), Implicit (Impl), Explicit (Expl).

The first conclusion we can draw is the importance of parameter sharing in large
agent populations. As the number of agents grows, parameter sharing shows by far the
most potential for scalability. It is impractical to train thousands of independent
networks for each agent or to utilize a centralized approach whose input size would
explode as the number of agents and the size of their observations grow larger. We
can clearly see in Table 1 that all works that provide experiments with large agent
populations concur on that approach.

Another important conclusion from this study is the fact that, as scalability poten-
tial gets more prominent, stricter assumptions are made on the agents and on their
environment. Specifically, the approach that manages to scale up to the largest agent
population [57] assumes interchangeable agents. In order for these methods to find
broad practical applicability, such assumptions have to be relaxed. In numerous prac-
tical applications, agents are not homogeneous, but more importantly, interchange-
able agents are a more rare occurrence. Additions to the methods, in order to
incorporate heterogeneous agents, would be of great value. An important point here is
that parameter sharing assumes homogeneous agents. Further research and
experimenting on the direction of techniques such as labeling agents, as proposed in
the original parameter sharing publication [18], should be beneficial in that regard.

Finally, we can conclude that as the need for scalability becomes more prevalent,
targeted and detailed communication becomes more challenging to achieve. For
example, MF-Q [49], a method that shows great scalability capabilities, assumes that
all agents affect the recipient of their messages equally. Local communication, on the
other hand, affects the scalability of methods, while further studies on the use of
attention and messages’ combination mechanisms are necessary to prove the potential
to operate in environments with thousands of agents.
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Abstract

Scheduling is regarded as one of the vital decision-making processes used fre-
quently in many real-time cases. It manages everything from resource allocation to the
task completion, with the goal to optimize the desired objectives. Subject to the
problem, the resources, tasks, and goals can differ. The aim is to design a corporative
multiagent system for optimal scheduling. Many of the scheduling available algo-
rithms calculate optimality based on different perspectives. The proposal is to create
the dataset using multiple algorithms with different performance metrics to find an
optimal one. This data can be imported into machine learning tools for training and
predicting, based on the selected performance metrics. The algorithm considered in
the empirical analysis includes first come first serve, Round robin, and Ant colony
approach. The major finding shows that scheduling using Ant colony is an optimal
algorithm, which is based on speed and velocity. The future extension would be to
check the correctness of optimality using machine learning tools.

Keywords: optimality, scheduling, machine learning

1. Introduction
1.1 Scheduling

The scheduling task can be comprehended as a distributed consecutive decision-
making process, which is designed using multiagent reinforcement learning algo-
rithms. These algorithms provide the agents with effective learning as they involve
frequent interactions with the environment, thereby enhancing their relevance to
numerous real-time cases. The scheduling entities used are resources and tasks, which
are interchangeably assigned to each other. The resources can be classified as hetero-
geneous and homogeneous. Based on the generation of throughput, resources are
classified as homogenous resources with similar or uniform throughput and heteroge-
neous refers to distinct type. Dependent tasks are interconnected job endeavors, in
which the task cannot initiate until the accomplishment of a separate task. The char-
acteristics based on defining the task include priority and QoS. Another widely used
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scheduling mechanism is based on the notion of priority rules. In this method, the
resource allocation and task execution are scheduled by designating some priorities to
them as per the situation, demand, requirement, or need.

The priority can be based on the deadline and load. The magnitude of work carried
out to processes for manufacturing components is termed as load, which must be
balanced to execute fair scheduling. Deadlines are the limits or constraints to complete
the job, which can be classified as firm, soft, and hard. Based on the applicability the
classification is named as soft if is not rigid, or if some limited consideration is given
then it is firm, or if it is not accepted after the time limit then hard The components
used for the entities are depicted in Figure 1.

1.2 Optimal schedule

Optimality can be measured with respect to task or resource using multiple met-
rics, as shown in Figure 2. Most of the optimization practices are extremely nonlinear
and cross-media under different contexts and constraints with high convergence
performance and low computational cost. It can be classified as gradient or derivative,
stochastic or deterministic, or population-based or trajectory-based.

The word optimal means the best and most desirable solution and scheduling means
arranging, controlling, and optimizing work and workloads. From that sequence of job,
there should be maximum utilization of machines and less waiting time for the job and
maximum work should be done by satisfying various constraints. It is an optimization
problem in scheduling where the input to the machine is the list of jobs and the output is
the schedule of all the jobs on the particular machine. The schedule should optimize the
throughput and resource utilization. This is also known as machine scheduling, processor
scheduling, multiprocessor scheduling, or just scheduling. The jobs can be scheduled on
single machine or multiple machines based on the requirements. Either a set of jobs given
to only one machine or parallel to more than one machine.

Scheduling

Entities
|
Resources - R el Task
Heterogenous Independent
characteristics + I *
Priority QOS requirement
WMLt
Wort
Deadline Lioed

Figure 1.
Scheduling entities.
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Figure 2.
Criteria for optimal scheduling.

The criteria for scheduling a resource are its proper utilization, generating mini-
mum makespan, and maximum throughput. Utilization refers to the instance of
manufacturing a component based on its real-world or commercial usage. Makespan
refers to the time taken by the units of resources to properly complete executing all
the jobs. Throughput refers to the process of executing the job in a unit amount of
time.

There are various parameters considered to get the optimal job or task for setup.

* Start dates and deadlines of the job

* Costs depend on the completion times of activities

* Possibilities of leaving some jobs “unperformed.” due to some interrupt.

* Initial Setup times and costs.

If there is a machine M with a set of jobs J1, J2, and J3 that needs to be executed by

M, with maximum work in minimum time to complete all jobs with the best sequence
is called optimal job scheduling.

1.3 Types of scheduling

There are many algorithms for scheduling of dependent or independent tasks in a
single processor or multiprocessor environment with different speeds. And using
dynamic programming algorithms, the best optimal scheduling can be obtained by
considering the time taken to complete the job or priority of the job and any other
constraints need to satisfy to finish the particular tasks.
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Figure 3.
Types of scheduling.

The effective allocation of the order of the jobs to a machine to get the maximum
profit and minimum cost from the process leads to optimal scheduling is depicted in
Figure 3.

Classification of the scheduling can be preemptive or nonprimitive, in which the
decision to take the resource from the low-priority process and allocate it to a higher
priory one is taken. For the simultaneous, linear or nonlinear class of execution, the
second level of classification is used. Finally, the decision to distribute the resource
can be done at central, distributed, or combined by using different environments
based on the demand and architecture used. The most widely used scheduling algo-
rithms are Round-robin, First come first serve, Shortest job first, Earliest Deadline
First, Priority Scheduling, Multi-Level Queue Algorithm, Multi-level Feedback Queue
Scheduling Algorithm, and shortest Remaining Time.

1.4 Approaches used in machine learning

Reinforcement learning, which is usually preferred is an area of machine learning
which emphasizes how intelligently an agent decides an environment to achieve the
optimum reward. This mechanism allows learning using trial-and-error communica-
tion with the environment. Scheduling helps to interpret the data accurately, if col-
laborated with machine learning as it generates the optimal results based on
predictions as depicted in Figure 4. Through frequent trials, the agents come upon
different possible outcomes for an action and thereby find the most appropriate action
to be done in any given situation.

For instance, upon encountering an unexpected situation, reinforcement learning
can be found helpful, as it enables learning from prior results and altering the param-
eters as per the need before passing for the subsequent iterations thereby ensuring
that the solutions are as desired and robust.

The learning algorithms could benefit from this idea, by associating the priorities
with the feedback signal the agents receive when executing the actions. Later by
incorporating the priority rules with the feedback received for each action, the learn-
ing algorithm can be improvised. The aim is to generate multiple cases from different
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Machine learning and optimality.

algorithms and train a machine with the data generated from execution, to validate
the optimality of scheduling using machine-generated test results.

1.5 Applications

Based on the usage of multitask applications in every field, a need for efficient
utilization of optimal multiagent scheduling algorithms is highlighted. Machine learn-
ing algorithms are widely used to improve the optimality of multiagent scheduling in
the field of production and transportation. The major domains where some of these
challenges can be improved have been discussed below.

1.5.1 Transportation domain

Every individual had to rely on some mode of transportation which can be through
land, air, or water. With the advancement of technology, the usage of air and land
transportation has drastically improved due to efficient time management and com-
fort. The development of many multiagent system software has been of the major
reasons for this. Though the multiagent scheduling softwares still exist, there are some
challenges that need to be improved.

1.5.2 Railway domain

Transportation is the major source of people especially above 75% of people
relies on railway networks throughout the globe. When it comes to railway net-
works, most railways run on a single line where more limitations exist for
decades. Although multiagent systems have applied to this, many of the existing
challenges are unavoidable. The train delay rate is a challenging issue to date, even
with the advances in technology, it cannot be handled perfectly. With the advance-
ment of machine learning algorithms, we can find a path with the optimal
multiagent scheduling algorithm. Electricity transport management plays a vital
role, especially in railway networks with the utilization of machine learning
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algorithms. We can find an optimal solution for scheduling the multiagent system to
choose the proper routing to overcome the major challenges faced by the
transportation domain.

1.5.3 Airline veservation domain

Airline flight bidding software mostly uses multiagent system prototype
software, where the buyers buy the e-ticket. The optimal multiagent scheduling
algorithm with machine learning can direct the buyer to a better price line system
through which buyers take preferences and correlate the parameters with the
available flights.

1.5.4 Manufacturing domain

Every business domain has its own production department where different jobs
have to be scheduled with multiagent approaches. Machine Learning usage has
become unimaginable heights in the last few years where the manufacturing
industry’s economic growth rate can be improved with the utilization of optimal
multiagent scheduling algorithms.

1.5.5 Electronic commerce domain

This domain will show its increased growth rate in the near future as most of the
day-to-day transactions are carried out these days through e-commerce combined
with the multiagent scheduler and machine learning algorithms.

2. Literature review

The proposal by Kumar et al. [1] is to enterprise a scheme for processing tasks to
allocate resources at runtime. The experimentation was performed on Cloudsim to
validate the effective technique for optimum solutions. The proposal aims at
tracing results with initial high velocity, which is gradually decreased improved
exploitation.

The proposal of reinforcement learning is used by author Chi Zhang et al. [2], to
achieve corporation in the scheduling of multiagent working in a team, which is an
agent feedback-based learning used to learn from the results of the environment and
perform action. The concept of Markov chain and Proximal Policy Optimization is
used to check for optimal scheduling. The performance metrics used are load con-
sumption and price of electricity to check for optimal results. The optimality of the
results is based on the trained dataset or historical data used. Multiagent reinforce-
ment learning is used when manifold inhabitants with multiple global constraints
interact with different scheduling errands. This approach is used in a realistic
environment to obtain optical results using predictions.

The population diversity control problem is selected in the proposal by author Zha
oyun Song, Bo Liu et al. [3] to improve optimization. The method is based on the run-
time selection for adaptive and diversified controlling parameters. The accuracy is
calculated for the cluster of movable particles.

The concept of using low voltage over harmonic distortion of modulated index is
used to set the image threshold for increasing the image accuracy by the author [4].
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The scheduling of multiagent in a cooperative, spatial and temporal constraints is
used by the author Julie Shah [5] to obtain an optimal task assignment. The experi-
mental analysis is done on the hill climbing algorithm using intricate computation and
the accuracy versus optimality is compared with the conventional algorithm. An
empirical result proves that the optimality of hill climbing is better using the mixed
integer collaboration approach of linear programming.

The author Khaled M. Khalil [6] has used the Netlogo simulator for experimenta-
tion. The aim is to maximize the agent group by maximizing the reward to the agent
working in the group using Q-learning algorithm (action value function) along with
working in an interactive, autonomous, and seamless environment. The approaches of
high relevance to realistic solutions grounded on Al was proposed by authors Martin
Riedmiller et al. [7] to optimize, manufacture and control the scheduling based on
distributed sequential approaches for employment related decision making with multi
agent reinforcement learning.

The Authors E. Grace Mary Kanaga [8] have used an approach of ANT colony for
an optimal scheduling algorithm. The continuous optimization problems are solved
using velocity, inertia weight location of the particle, and global and local best
positions. Scheduling patients for an optimal accurate solution is performed.

Zhi hui et al. [9] have aimed to implement adaptive behavior for population
distribution along with fitness.

The target is to improve and validate the global convergent ability by authors
Jianchao Zeng, Jing Jie et al. [10]. Kennedy et al. [11] have invented the perception
using non-linear functions of Ant colony using particle swarm methodologies for
optimization. Kennedy et al. [11] is the inventor behind the use of non-linear
functions to design methodologies based on cluster optimization. The relationships
amongst PSO and its integration with artificial life using genetic algorithms are
proposed and discussed.

The author Wilfried Brauer et al. [12], aims at scheduling multimachine,
and assigning jobs based on demand like cost, the effectiveness of results, and
time. The approach of artificial intelligence is used to collect and train the data
in distributed, parallel, asynchronous and corporative multi-agent environments.

To generate the results two learning steps known as successor selection and estimate
adjustment are repeatedly applied and experimented on individual machines.

3. Proposal

The idea is to generate optimal scheduling, which is tested for set of scheduling
algorithms and the major finding is ANT colony scheduling gave the best results. The
algorithm aims to predict and generate the best position using parameters like inertia,
weight, speed, velocity, distance, acceleration constants, direction, and local and
global position. The local and global positions are the best positions for each and the
group of jobs, respectively.

The movement of the job is in the direction of the best location value. The velocity
is calculated using Eq. (1).

Vel = wVe? + acyp, (Lbst” — x*) 4+ acyp, (Gbstk — XZ) (1)
i i i i i
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Lbst is the minimum value of the experience position of each job and the group’s
minimum value of experience position is Gbst. The movement is monitored using the
k™ step of i job to get the next new place. The first term of Eq. (1) gives the inertia
with respect to previous velocity; second and third terms are used to fetch the
direction of each and group of job respectively. An accelerating object (ac) is used to
persuade a uniform alteration in its velocity at each instant. Acceleration constants
used in Eq. (1) are acl and ac2. The random numbers are p1 and p2 [0, 1] of range are
chosen. Velocity and Position update is derived using Eq. (1) as given by Kennedy and
Eberhart [11].

Xz+1 = x? + Vez+1 (2)
j ) )

Eq. (2) is used to get the new position from the previous position and the velocity
of its movement. After getting the best and optimal position, all the particles syn-
chronize with each other. According to Kennedy et al. [11], the search space is epito-
mized in a D-dimensional vector and the velocity and position update are calculated
using Egs. (1) and (2). The j™ particle’s position in D-dimensional vector is calculated

using Eq. (3). The local best (Lbst) and the global best (Gbst) of the jth particle are
denoted in Eqgs. (3) and (4) respectively.

X = (X1, Xi2> Xj3> Xjk> -+ » Xid) 3
vex; = (le, Xj25 Xi35 Xjks v > xjd) (4)
L = (Xj1> X2, Xj3> Xk e > Xjd) (5)
g = (x1j> X2j> X35 Xijs v > Xjd) (6)

For scheduling a process with recourse, the problem is to schedule ‘n’ jobs with
appropriate resources; each process has a set of sequential tasks (operations) and an
index of the job. The count of operations used in scheduling is denoted by D in (7).

D= Zni (7)

i—1
Y = Z n;+1 (8)
i=1

3.1 Optimization for job scheduling

To generate an ideal solution for Job-scheduling multiple scheduling algorithms
are available, which works on different parameters. To generate an optimal one, the
need to select the parameter for performance metric becomes mandatory, based on
which the complete experimentation can be carried out. Let the proposal be defined
on the continuous optimization parameters like particle position xj, Velocity vej,
acceleration coefficients acl and ac2, and inertia weight ®. Scheduling a task is a
conjunctional and feasible optimization with sequence of selected resource along
with its operation. The aim is to find an optimal schedule without busy waiting and
with fair scheduling.
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3.2 Task scheduling with optimization

The scenario consisting of n task (or jobs) denoted asJ = {J1, J2, ..., Jn}, sequential
task T={1...n}, Resource R = {Ry, Ry, ..., Ry}, and Oj; are the operations with i, j are
the indices of the jobs and task respectively. Every task of the v'" job is numbered as v
and for same number of v tasks in Table 1, and y is defined in Eq. (8). One sample
representation of the job for optimization of scheduling is depicted in Table 1.

a. Phase I: Scheduling for three jobs with three resources is depicted in Table 2.
The experimentation is done in multiple permutations (3p3 ways for 3,3 job,
resource allocation) giving in total 9 such task possibility. Table 2 uses a few of
the nine possible permutations, where R1, R2, and R3 are the distinct resources.
The example for job representation along with position and velocity vector
initialization of scheduling is given in Table 3.

Initialization of the particle position is done with random numbers from X, to
Kmax> aNd Xpin 1S set to 0 and Xy, is set to 2. The velocity vector is initialized with
the random numbers limitation of Vi, as —4 and V.« as 4 as shown in Table 3.

b. Phase II: Decoding Particles with job solutions: An integration of optimizing for
job scheduling cannot be deployed directly as a solution to particle position.
Hence, indirect ways are adopted to decode particle representation as a solution
to schedule job problem. For decoding jobs into a schedule, the algorithmic steps
are listed below:

Task 1 2 - A\ . n
Position Xj; Xi1l Xi2 Xiy Xid
Table 1.

Job’s representation for resource scheduling.

Job Arrival Task Processing time Age
time Sequence
1 1 R1R2R3 2 1 3 38
2 3 R2R3R1 1 3 2 40
3 5 R3R2R1 3 1 2 44
Table 2.

Job scheduling problem for 3:3 jobs and resource allocation.

Task 1 1 1 2 2 2 3 3 3

Position xij xil (.81) xi2 xi3 xi4 xi5 xi6 xi7 (.68) xi8 xi9

(Values) (1.12) (1.86) (1.09) (.56) (0.93) (1.95) (1.76)

Velocity vij vil vi2 vi3 vi4  vi5-3.63  vi6 vi7 vi8 vi9

(Values) (-296) (1.67) (-293) (.99) (.86) (—3.10) (3.26) (.09)
Table 3.

Job rvepresentation along with initialization of position and velocity vector for i™ job.
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Task unit 2.1 3.1 11 2.2 2.3 1.2 3.2 1.3 3.3
Position Xi5 Xi7 Xil xi6 Xi4 Xi2 Xi9 xi3 Xi8
Pijj
(Values) 0.56 0.68 0.81 0.93 1.09 112 1.76 1.86 1.95
Order of 1 2 3 4 5 6 7 8 9
execution

Table 4.

Result obtained for sequenced particles after phase II.

R3 J31 J2.2 J13
R2 J21 J12  J32
R1 J11 J33 J2.3
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
slot
Table 5.

Decoded schedule with optimization.

Step I: sort in ascending order the values of the position vector.
Step II: arrange the tasks in the corresponding order of the values of the position
vector obtained in step I.

Step III: The resultant is with sequential order of task along with the corresponding
positions as shown in Table 4.

Using the sequence obtained with operation-based permutation is
n = (2,3,1,2,2,1,3,1,3). An element of n with a value i for Job Ji. The jth occurrence of i
in n refers to operation Oij for the jth task (operation) of Job ith. The precedence of the
task is determined simply by the order of the elements of 7 and all the task are ready
for scheduling as per the first row of Table 4. Based on the permutation, the first
element selected for scheduling according to the permutation is 2, therefore, first unit
of the third Job is processed on resource R3.

Followed with the first task of the second Job is processed on R2, and then the first
unit of the taskl is scheduled on R1. The obtained decode schedule is shown in
Table 5.

Jobs 1,2, and 3 complete the execution at 9, 8, and 6 time respectively as concluded
from Table 5 after applying optimization algorithm based on the order of tasks, as
depicted below:

0 = {031, 021, 011, 012, 022, 032, 033, 013, 023}

It is optimal scheduling as all the processes have been completed within time limit
of 9, with the time of completion for jobs as {J1, J2, J3 as 9,8,6}.

3.3 First come first server algorithm

The working concept of FCFS is to serve the first in jobs on high priority, and
results obtained after applying the scheduling are shown in Table 6.
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R3 J1.3 J22 J3.1

R2 J12  J21 132

R1 J11 J23 J3.3

Time 1 2 3 4 5 6 7 8 9 10 1 1 1 14 1 1 1 1 1 2

slot 1 2 3 5 6 7 8 9 0
Table 6.

Decoded schedule with FCFS.

R3 12,2 3.1 12.3 13
R2 21 J12 132
R1 J1,1 J3.3

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
slot

Table 7.
Job decoded schedule using priority.

Jobs 1,2, and 3 complete the execution at 6, 11, and 16 times respectively after
applying the FCFS scheduling algorithm as concluded from Table 6. The order is
based on first-entered jobs and would be the first to be catered.

The selected operation of tasks is as depicted below:

0 = {011, 012, 021, 013, 022, 031, 023, 032, 033}

Hence, the conclusion is drawn as FCFS is not optimal when compared to optimi-
zation algorithm. Job 1 has arrived first and he/she is processed for task 1 on resource
R1 which is available. Next Job 1 task 2 has to be processed on resource R2 and after
completion of the task; Job 1 has to get the resource R3 for task 3. Thus, based on the
FCFS description Table 6 decoded schedules are obtained. Based on FCFS the calcu-
lated total job completion time is:

{J1=6,J2=11and J3 =16}

3.3.1 Based on age priority (using preemptive manner)

The working concept of priority is based on age priority, and results obtained after
applying the scheduling are depicted in Table 7.

Job 1 is processed on task 1 with a request for resource R1, Job 2 needs resource R2 for
its first task and based on its availability is allocated for 1 slot. Makespan time for jobs is
{J1=14-1=13,]2=14-3 = 4,]J3 = 12-5 = 7}, i.e{]1, J2, J3 is 13, 4 and 7, respectively}.

4, Conclusion

Multi-agent technologies and approaches can be applied to machine learning,
based on their capabilities of flexibility, adaptability and self-sufficiency. The appli-
cations designed using these methodologies are realistic, dynamic and distributive in
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nature. The idea is to build a best decision making model using the latest approaches
of machine learning. The experiments are tested for four types of Scheduling Round
robin, FCFS, Priority-based and Ant colony or particle swarm optimization technique.
The results validate the Ant colony approach with the optimal answer. The dataset
generated with this experimentation for multi-agent scheduling is collected with
different performance metrics. The future work of this proposal is to justify the
validation of multiagent scheduling using a machine learning tool, by training the
machine using the generated dataset.
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Chapter 4

On an Approach to Knowledge
Management and the Development
of the Knowledge-Based
Multi-Agent System

Evgeniy Zaytsev and Elena Nurmatova

Abstract

The chapter discusses the architecture of the Knowledge-Based Multi-Agent
System (KBMAS) and describes the software agent models. The purpose and func-
tional organization of the system software agents used for planning and management
of computing resources of the KBMAS are considered. An approach to the applied
software agent’s development that integrates knowledge-based reasoning mechanisms
with neural network models is proposed. The structure of the problem-oriented Multi-
Agent Solver, including groups of reactive and cognitive software agents used to solve
complex ill-formalized problems, is considered. The interaction diagram of reactive
agents and the states and transitions diagram of cognitive agent of the computing
node are given. The control scheme is shown that includes methods for determining
the availability of microservices used by agents, reliability assurances and coordinated
operation of the system’s computing nodes. The method of reinforcement learning,
the system of rules (productions), and the queries to the knowledge base are
described. Methods of distribution of software agents in the KBMAS computing
nodes, as well as construction of an optimal logical structure of the Distributed
Knowledge Base, which has minimal information connectivity and ensures effective
operation of the system on multicomputers, are proposed.

Keywords: distributed system, multi-agent system, knowledge-base, intelligent
software agents, Fuzzy system, reinforcement learning, data localization optimization

1. Introduction

The Knowledge-Based Multi-Agent System is a Distributed Artificial Intelligence Sys-
tem that uses intelligent applied and system software agents. Knowledge-based reasoning
mechanisms and artificial neural networks are integrated into the model of applied soft-
ware agents, which are designed to solve complex, ill-formalizable problems [1-4].

System software agents are used to effectively manage computational processes
and provide application software agents with access to information-computing
resources of the multicomputer.
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Applied software agents function using Event-Driven Microservices (EDM) —
independent, autonomous resources designed as separate interacting processes with
lightweight interprocess communications. Microservices can be implemented as
autonomous processes or as functions, they may or may not store state.

A feature of the microservice architecture is that microservices are loosely coupled.
EDM communicates not through request-response API (Application Programming
Interface), but through events defined in event streams, which are neutral with
respect to one technology or another. This allows you to choose the most appropriate
tooling to implement each job, allowing you to achieve the required level of
performance.

In today’s EDM architecture, information is exchanged by issuing and consuming
events, which may be transferred through simple notifications as well as complex
structures with state support. The events are not destroyed when consumed, as in
conventional messaging systems, but remain available to other consumers, who can
read them as needed.

Microservices consume events from input event streams, process information,
generate their own outgoing events, provide data for to implement a request-response
access scheme, exchange information with third-party APIs, or perform other neces-
sary actions.

Unlike Service-Oriented Architecture (SOA), which typically uses web service
standards like SOAP (Simple Object Access Protocol), microservice architecture uses
simpler protocols. A microservice can be designed as a stand-alone service on a PAAS
(Platform As A Service), or it can be a process of its own Operating System.

In traditional Operating System architectures, information-computing resources
are hidden behind universal APIs that do not allow the KBMAS developer to imple-
ment problem-dependent optimization. Effective implementation of KBMAS is possi-
ble on the basis of an exokernel OS and event-driven intelligent system software
modules.

High performance is achieved through the implementation of special mechanisms
for managing information and computing resources, as well as the possibility of direct
access to hardware [5, 6].

Using the services of an exokernel OS, the KBMAS designer is able to choose or
implement his own System Libraries (LibOS). For example, specialized VMM (Virtual
Memory Management) or IPC (InterProcess Communication) modules defined in
LibOS can work much faster than general-purpose software modules doing a similar
job in a monolithic or microkernel Operating System. System software agents can
effectively manage information-computing resources using exokernel OS services,
which is the basis for creating high-performance knowledge processing systems.

Currently, in distributed systems, hypervisors are usually used instead of
exokernel architecture. Hypervisors of the first type do not use OS services, they
directly control the hardware. In hypervisors of the second type, instead of an
exokernel that provides untrusted servers with a low-level interface to access com-
puting resources, the host OS runs. Guest OSs are used instead of user (unprivileged)
mode servers. The advantage of building an exokernel virtualization system instead of
using hypervisors is that, in this case, an extra layer of mapping is eliminated.

Unlike a hypervisor, which must support disk address translation tables (and other
tables to convert virtual resources to physical resources), there is no need for such
reassignment when using an exokernel OS. The exokernel only needs to keep track of
which Virtual Machine (VM) has been given certain hardware resources. The
exokernel architecture does not require creating a copy of a real computer and
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isolating virtual machines from physical resources. In this case, each VM is provided
with a subset of the real computer resources. The exokernel OS operates in privileged
mode, distributing computing resources between VMs and controlling them so that
none of the machines tries to use not intended for this VM computing resources.

Virtual machines can serve as containers that contain software agents (processes
and threads) and their surroundings. It is easier to provide mobility of software agents
together with their VM than to move individual agents around. When using a virtual
machine, the local group of software agents is moved together with the necessary
environment for it (configuration files, system tables, etc.).

Development of KBMAS on the basis of exokernel OS includes creation of system
and applied software agents, definition of their states and actions, as well as events
(messages), delivery environment properties, and other characteristics describing the
agents and their interaction. Development of a problem-oriented KBMAS can be
performed using a special Multi-Agent-KB5 software toolkit [4], which allows knowl-
edge engineers to design a distributed intelligent system based on high-level abstrac-
tions implemented by high-performance specialized system software modules. Using
the Multi-Agent-KB5 toolkit, a knowledge engineer can create groups of applied
software agents that act rationally, are able to respond in a timely manner to environ-
mental events and learn in this environment.

In a broad sense, rationality is the ability to do the right thing. Ideal rationality,
that is, choosing the optimal (best) action in a given situation, is not always achievable
and may require large computational resources. The concept of rationality in the
KBMAS uses to both applied and system software agents.

In logic programming paradigm, the rational behavior of an applied software
agent is realized by means of logical inference methods (resolutions and unifications).
A software agent can act rationally without using logical inference. In some situations,
a reflex action may be more successful than a slower action taken after logical
inference.

Problem-solving in the KBMAS is done by decomposing a complex problem into
subtasks, which are jointly solved by rational applied software agents. Horizontal and
vertical decomposition is used. Horizontal decomposition results in a multi-connected
system with a flat structure. Vertical decomposition results in a hierarchical system
with multiple levels. The levels are vertically subordinate to each other and have their
own goals and functions, the implementation of which is aimed at achieving the global
goal of the intelligent system.

Two types of applied software agents are used in the KBMAS to solve applied
problems: cognitive and reactive. Mathematical models of these types of agents are
described in [4].

KBMAS is an emergent system that implements the principle of self-organization.
In the self-organizing KBMAS software agents are capable of making decisions under
conditions of incompleteness, vagueness, and fuzziness of knowledge.

2. Structural and functional organization of the KBMAS

In traditional Knowledge-Based Systems, problems are solved by a single intelli-
gent solver. This intelligent solver is designed as a monolithic application. It is
assumed to use a complete and consistent Knowledge Base and has a global view of the
problem. This model uses monotone logic (closed-world), the intelligent solver search
by AND/OR-connection (reduction) graph (Figure 1).
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The reduction graph shown in Figure 1 corresponds to the following fragment
of the formalized description of the problem domain (in the language of logical
programming):

RCSF(A,B,C,...,G,F) :- RCSF(A,B,C,...,G, f1); ... ; RCSF(A,B,C,...,G, fn).

RCSF(A,B,C,...,G,f1) :- RCS(A,B,C,f1), VS(G,A,B,C,f1).

RCS(A,B,C,F) :- SOVA(A,B,F), SOVB(B,C,F), SC(C,A).

SOVA(X,Y,F) :- SA(X,Y), FR1(X,Y,F).

SOVB(K,L,F) :- SB(K,L), FC(L,F).

FR1(G,M,R) :- FA(G,R), FB(M,R).

There are effective parallel algorithms for reduction graph processing. However,
these algorithms can be used only in Shared Memory Processors systems (SMP).
These algorithms are not suitable for multicomputers, which use a completely differ-
ent model of concurrency — message-based distributed computing.

To implement parallel search algorithms on the reduction graph in multicomputer
(cluster) systems, as an option, it would be possible to organize a single virtual address
space (Distributed Shared Memory, DSM) using page swap. However, in the case of the
DSM mechanism, which is implemented by the Operating System or middleware, system
performance is low. A more complex but predictable message-based model is preferable.

The Knowledge-Based Multi-Agent System uses a network of cooperating software
agents instead of a single intelligent solver performing a parallel search on the
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Ih Il
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Figure 1.
AND/OR-connection graph.
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reduction graph. Each individual software agent has only partial knowledge of the
problem and can solve only some subtask.

The KBMAS integrates models, methods, and tools of Distributed Artificial Intel-
ligence, parallel computing, and Event-Driven Microservices technology. The soft-
ware agents of the KBMAS are loosely coupled intelligent software modules that can
be distributed, often on a large scale (Figure 2).

The use of decoupled components is a basic requirement for successful scaling. The
opportunity to realize decoupled software modules is provided by the methodology of
Object-Oriented Analysis and Design. The idea of decoupling underlies most of the of
Object-Oriented patterns, which can be successfully used to create a Knowledge-
Based Multi-Agent System.

Computing nodes of the KBMAS are multiprocessors with shared memory. Software
agents of the same node communicate with each other using a Local InterProcess
Communication (LIPC). To improve performance the LIPC is implemented using spe-
cialized system libraries (LibOS). Software agents of the different nodes communicate
through message exchange implemented using standard libraries and middleware.

Figure 3 shows the structure of a Multi-Agent Solver for one of the KBMAS nodes.
Two types of applied software agents are used in the Multi-Agent Solver: cognitive
and reactive. Applied software agents processing the domain knowledge use special
Cognitive Data Structures (CDS). Four types of methods are implemented for work of
applied software agents with the knowledge base: comparison (CMP), association
(ASS), analysis (ANS), and specification (VAL). CMP method is called when
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Figure 2.
Structure of the KBMAS.
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Figure 3.
Moulti-Agent Solver of the KBMAS node.

comparing events or objects; ASS method is used to get answers to queries about
relations between objects and events; ANS method implements logical analysis of
events. For object specification (VAL-method) can be used both clear queries to the
knowledge base and fuzzy queries [7].

Different types of membership functions can be used to implement fuzzy queries.
Figure 4 shows the examples of membership functions (p;) for two linguistic
variables: Correctness and Completeness.

Figure 5 shows the result of a fuzzy query that uses these membership functions.

In the problem-oriented Multi-Agent Solver presented in Figure 4, the priorities of
the applied software agents are set according to the sequence number of the software
agent. In this case, the first software agent uses the tables TableU_1 and TableSovU_1.
The software agent with number N has the lowest priority and is associated with table
TableU_N.

Cognitive applied software agent coordinates the work of a group of reactive
software agents. As an example, Figure 6 shows the diagram of the states and
transitions of one of the cognitive applied software agents.
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Examples of the membership functions.

ID Denomination
1 NI 47 3,2
2 N2 25 1,5
3 N3 26 3,9
4 N4 31 4,8
5 N5 23 2,5

SELECT *from TableU_1 where (Correctness = "high" AND Completeness = "slight"")
3 N3 26 39 0,8
N4 31 48 0,7

Figure 5.
Example of the result of a fuzzy query.
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Figure 6.
State and Transition Diagram.

After initialization, the transition to the “Selection” state occurs, in which the

cognitive software agent selects the necessary knowledge source, taking into account
the informative signals from the reactive agents. The cognitive agent then goes into a
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“Coordination” state in which it coordinates the actions of the reactive software
agents. If at the next step, the reactive agents do not find a coordinated solution,
cognitive agent backtracking to the previous state of partial solution to the problem.

The diagram of one possible option of interaction between the reactive agents of a
node, each of which is connected to only one neighbor, is shown in Figure 7.

The organization of the Multi-Agent Solver is described in more detail in the
paper [4].

Computing node of the KBMAS can use the concurrency model in which several
computing threads are in the execution state, and only one of the threads is actually
executing on the processor at any given time. This concurrency model uses shared
memory to exchange information. Competitive threads are described by the consis-
tency model, which defines the order in which operations performed by local agents
in a node should be executed, and the order in which the results of these operations
should be transmitted to the group members.

In addition to competitive concurrency computations, simultaneous concurrency
computations can be implemented in the KBMAS nodes. To implement parallel com-
puting, Uniform Memory Access (UMA) multiprocessors are usually used. In this
case, the whole set of software agents is divided into subsets (groups). Agents that
belong to different groups can act simultaneously.

The execution of computing processes (threads) associated with groups of applied
software agents is coordinated by system software agents, which provide access to
information-computing resources of the multicomputer.

The agents are dynamically divided into groups using the compatibility matrix S
and the inclusion matrix R. The compatibility matrix S has the following form (1):

0 sp sz - siy| S
s 0 53 e s | 2
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Figure 7.
Interaction scheme of the veactive software agents.
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where s;=1, if the agents A; and A; use different computing resources and work in
parallel, otherwise s;=0.
The distribution of agents into groups is based on the inclusion matrix R (2):

711 712 1M Rq
a1 Yp e Ty R,

R= (2)
YH1 TH2 *t THM Ry

where M is the number of agents, H is the number of groups. rj; = 1if the agent A; is
included in the group Y;. The agent A, is included in the group Y;jif S; N R; = &, that is
the matrix rows do not intersect. For optimal partitioning into subsets, it is necessary
to consider the functional features of the software agents, their requirements for
computing resources, as well as know the structural organization of the KBMAS node
used to implement parallel computations.

In the process of solving subtasks, software agents use microservices, which can be
duplicated on different nodes of the computing system. The system software agents
distribute the computational load and control the microservers based on the data
provided by the agents-monitors.

The behavior of applied software agents becomes more rational by repeatedly
solving the same problem. The applied software agent learns through a series of
rewards and punishments. The agent’s actions change the environment to a new state.
The environment returns the next state and reward to the agent. The cycle “state —
action — reward” repeats until the problem is solved (Figure 8).

Signals s; correspond to a state, a, to an action, r; to a reward at time t. The strategy
according to which the agent chooses actions is a function that maps a set of states into
a set of actions. The agent’s task is to choose (by trial and error) the best action that
maximizes the target function, which is the sum of the rewards received by the
software agent.

Various reinforcement learning algorithms can be used. The most effective is the
Actor-Critic algorithm [8-10] in which the strategy generates action, and the value
function critiques the actions.

The basis of reinforcement learning is function approximation. As a method of
function approximation, KBMAS uses a multilayer neural network that models both
policy functions and value functions.

state s, rewards r, action a,

St

Environment

Figure 8.
The reinforcement learning control loop.
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The advantage function A=Q(s,a)-V(s) is used to generate reinforcing signals.
Benefit V(s) which can be obtained by achieving a particular state (s) is evaluated by
the agent before the action, and the value function of the action Q(s,a) — after the
action has been taken.

3. Aggregation of distributive information structure

Created information data structures can have a large volume and dimension, so
their loading and implementation is carried out in fragments. Logically interrelated
data should be divided into a number of clusters that have the smallest interconnec-
tion under constraints on the dimensionality of clusters, as well as on the degree of
semantic proximity of logical records included in the clusters. No less important is the
question of choosing the type of data storage systems used [11, 12].

Let us introduce the variable B'y;, which characterizes the handling by the k-th
query of the i-th information element, which is in the j-th logical record. Variable
Xj; = 1if the i-th data partition is selected in the j-th logical record; X;; = 0 otherwise.
Variable a; = 1if the i-th data partition is included in the k-th query; otherwise a;. = 0.

Variable B characterizes the use of the j-th logical record by the k-th query (3):

i
1, when ) agxij >1;
. =
By = l I ®3)
0, when ) agx; = 0;
i=1

Note that the results obtained in solving such a problem are important from a
practical point of view, given the constraints for designing an acceptable data structure
and the ability to generate fast queries for sampling and editing distributional structures.

Let’s analyze this algorithm step by step.

4. Approximate algorithm for distributing data clusters between the
server and local network clients

At this stage, the distribution of data batches for storage and processing is
determined by the criterion of minimum total traffic.

We reduce the canonical graph of the data structure to an uncoupled graph and
calculate the weight of each data batch, summarily consisting of the weight of the
batch itself and the weight of arcs (links), taking into account the requirements of the
network clients (4):

W, = W Wi (4)

where, W2 — total weight of data partitions (5); Wl’"k— the weight of the arcs of
the canonical data structure graph (6).

ko Po

pm Z Z kap(skp’gP’ ®)
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ko Po 1
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k=1 p=1 qFi

The weight of the i-th data batch is calculated by the formula (7):

ko Po

I

_ Q Q G

Wi = kz; Z; e g Ipqati 7)
=1 p= q7i

where, y,%—the frequency of generation of user requests; 6,%7— elements of the
matrix for generating user queries; 9,,— the matrix for using data partitions when
executing queries; ag— the semantic contiguity matrix of data partitions.

In the next step, the local network graph is converted into an unconnected graph
with the calculation of the weight of each node (8):

Ro
W, =t + Ztrm (8)

m#r

where ¢, — the total average duration of data processing in the r-th node,
consisting of the time of decomposition of the query into subqueries, route selection
and connection establishment, etc.;

tm — the average duration of data transmission between nodes, determined based
on the matrix of logical distances between the servers of the nodes of the local network.

Next, the matrix V = ||w;,|| is formed, the elements of which are the Cartesian
product of the weights of each node by the weights of each data partition (9):

a)iVZWiXWy fori = ,I;V:1,Ro. (9)

I Ry
r{nir}l E E @iy Xy (10)
S =

is solved under the constraints:

* by the number of data partitions, the localization of which is possible on one node
(11)

1
inr SNV’V = m (11)
i=1

* on the permissible redundancy of groups by network nodes (12)

4
E Xir SMi,i = 1_31 (12)
r=1

* on the amount of available external memory of the data storage system (13)
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1
> xipm <nfoM (13)
i=1

where, p; — the vector of group lengths in bytes; x; — the vector of number of instances
in groups; nfOM — the amount of available memory on the server of the -th host; x;, = 1, if

the i-th data partition is included in the r-th network node; x;, = 0 — otherwise.

5. Problem of distributing data parties of each agent to the types of logical
records

The problem posed at this stage is solved taking into account the criterion of the least
total time of local data processing in each network node by agents. The number of
aggregation tasks for this stage is determined by the number of local network nodes.

The initial data are the subgraphs of the graph of the canonical data structure, as
well as the temporal and volumetric characteristics of the subgraphs of their canonical
structure, a set of requests from users and network nodes.

The aggregation problem is solved here using approximate algorithms with restrictions:

* on the number of groups (14):

I
int <F,;, Vt = 1,ty, where, F; — number of groups in t — record, (14)
i=1

* on the non-repeatability of including groups in a record (15):

to
Y xe=1Vi=1I (15)
t=1

* on the cost of information storage.

The main cost characteristics of the distributive data structure are the cost of
storing E,, information; the cost of executing EX requests and transactions at a given

time interval; the cost of transmitting information via ES, communication channels.
The sum of these components determines the total cost (16):

E=E;+E2 +E°

run run

(16)

The cost of storing distributed information is determined by the physical volume
of information Ver and the cost of storing a unit of information volume (one logical
record) on the server. If we assume that the cost of storage in all nodes of the local
network is a constant value, then E;; = Vi eky;.

That is, the product of the logical volume of stored information (V) and the
coefficient that takes into account the storage capacity on the media when organizing
the database (k; in practice, it is approximately equal to 1.2-1.5).

The cost of executing multiple user requests at a given time interval is the sum of
the cost of servicing multiple user requests on servers and the cost of transmitting
information through communication channels during the execution of user requests.
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The cost of performing transactions at a given time interval is also determined by the
sum of the cost of performing steps (tasks) of transactions on server nodes and the
cost of transferring transaction requirements to server nodes, fixing transactions and
removing locks.

* from the total time of servicing operational requests on servers (17):

ro_ _to

Z Z o(ty +4)<T, (17)

re=1 t=

where T, — additional service time of the p-th operational request; t, — average
duration of generation of one request (or transaction task step); t; — average
processing time for one logical record on a local network host/server.

Variables B, determine the types of logical records used by the p-th query in the

r-th node of the computing system.
As a result, logical database structures are determined for each network node.

6. Localization of data by network nodes

This step uses the results of the previous steps and the characteristics of the data
warehouse.

As a result of the proposed algorithm, localization matrices for a set of batches of
data are formed by types of logical records (the result of the first stage), and then
groups of records by local network nodes. In this case, the running time of the
algorithms is additionally estimated.

7. Conclusion

The chapter examined the structural and functional organization of the Multi-
Agent System, which uses intelligent applied and system software agents. To support
the process of developing a problem-oriented KBMAS based on the considered agent-
based models, the Multi-Agent-KB5 toolkit is used. This toolkit includes interactive
wizards and property panels that allow creating groups of applied (reactive and
cognitive) software agents. Inclusion of system software agents into KBMAS, which
implement algorithms for planning and management of computational resources,
taking into account the specifics of the interaction of applied agents, increases the
performance of the system. KBMAS performance is also improved by optimizing the
logical structures of the distributed knowledge base.
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System
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Abstract

Agent-based models(ABMs) are a type of simulation in which a large number of
self-sufficient agents interact in a way that combines stochastic and deterministic
behavior. Recently, there have been reestablished interests in utilizing multiagent
systems (MASs) to get more granular data relating to specific conditions. MESA is an
ABM framework for Python. It enables users to quickly develop ABMs with built-in
core components, view them with a browser-based interface, and evaluate their find-
ings with Python’s data analysis capabilities. This chapter depicts an ABM of a photo-
voltaic (PV)-powered electric vehicle (EV) charging station in a university car park
modeled using MESA. The goal is to determine the preliminary requirements for PV-
powered EV charging stations, which would result in increased PV and cost benefits.

Keywords: agent-based model (ABM), MESA, multiagent system (MAS),
photovoltaic (PV), EV charging station

1. Introduction

Agent-based applications are becoming the mainstream in a wide range of
domains, including e-commerce, logistics, supply chain management, telecommuni-
cations, healthcare, engineering, and manufacturing, as technology advances [1].
Multiagent systems (MASs) emerge as new software technologies that combine a
number of artificial intelligence (AI) techniques. It provides a more efficient and
natural alternative to building intelligent systems, thereby providing a solution to the
current complex real-world problems that must be solved. Autonomy, complexity,
adaptability, concurrency, communication, distribution, mobility, security and pri-
vacy, and openness are some of the properties of MASs [2, 3]. The concept of MAS is
also a trending technology in power engineering applications, such as power system
restoration, power system optimization, market simulation/electricity trading, and
smart grid control [4]. The MASS ability to deal with complex problems through
agents, which has been highlighted in various research works, is the basis of using the
MAS in many applications.
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MAS-based models are used globally to implement demand-side management
(DSM) systems, cost optimization, robustness management in microgrids (MGs), and
controlling voltage and thermal constraints in distribution networks.

In [5], an MAS-based online voltage monitoring system was proposed. In [4, 6], a
dual-layered advanced control and security system based on the MAS, as well as an
automated meter reading facility in a smart grid distribution network, was proposed.
DSM has been activated from a global research standpoint by maximizing the use of
distributed energy sources, environmentally friendly technologies, optimizing algo-
rithms, and the implementation of renewable energy (RE) resources [7-10]. The use
of renewable energy sources in smart grid distribution systems, as well as the multi-
MG model, lowers consumer electricity costs [11, 12].

As the number of electric vehicles (EVs) increases, better charging infrastructure is
required to provide the necessary energy for mobility with the cost benefits. MASs have
seen a surge in popularity in recent years, and they are now widely used in EV-based
power system research studies. In [13], a multiagent system (MAS)-based modeling tool
has been proposed to assess the effects of EV charging on Singapore’s energy grid. This
study looked into the effects of EV temperature (air conditioning) and EV charging load
during the charging. In [14], a state of charge (SOC)-based charging algorithm has been
suggested, which is divided into two categories: controlled and uncontrolled charging
(vehicle to grid—V2G) and grid to vehicle (G2V). This reduces the number of cars that
run out of power on their next trip. In [15], a decentralized and intelligent MAS for
controlling and managing EV charging in low-voltage (LV) distribution networks was
presented. In this context, three case studies were investigated: without EV charging
regulation-uncoordinated case or dumb charging; with EV charging regulation and
without the voltage charging control; and with EV charging and voltage droop control.
The simulation results showed that charging regulation provides significant benefits in
terms of voltage control when compared to the other two situations. The proposed
solution in [14] has been improved with active demand (AD) program management in
[16]. It enabled the incorporation of EVs into the system while mitigating their negative
impact on voltage regulation.

Lee et al. [17] discussed the impact of EVs on the electric grid; it was tested using
real data from the “My Electric Avenue” initiative with ABM. It looked at how
consumers’ use of time-of-use (ToU) tariffs and vehicle range (battery capacity)
preferences affect total and peak demand fluctuations at the local substation. In order
to depict the complexity of an electric transportation system, an EV implementation
based on agents was created [18]. After implementing various charging powers and
charging patterns, the results were generated in a qualitative manner. In [19], the
effects of influencing variables on EV charging demand, such as driver behavior,
charging station location, and electricity pricing, were investigated. An ABM on Net
Logo was used in this study to precisely simulate human aggregate behavior and its
impact on load demand due to EV charging. In [20], the results of a study that used
ABM simulation to simulate alternative charging infrastructure rollout techniques to
allow for large-scale EV adoption were presented. The simulation included a variety of
user types (residents, visitors, taxis, and sharing), as well as various types of charging
infrastructure (level 2, clustered level 2, and fast charging).

An EV powered by an intermittent power source is an excellent way to ensure low-
cost, emission-free mobility. An energy storage management hybrid optimization
algorithm was presented in [21]. This algorithm flipped between deterministic and
rule-based modes of operation depending on the power pricing band allocation. The
cost degradation model and the levelized cost of photovoltaic (PV) power were
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Figure 1.
An overview of this study and its state of the art.

combined in the case of PV-integrated charging stations with on-site energy storage
systems. An agent-based charge station model utilizing renewable energy (RE) was
proposed in [22]. Charging patterns were determined by scenarios including various
RE capacities, policy interventions, limited versus unlimited charging capacity, social
charging, and the existence or absence of central control. It was determined that in
order to improve sustainable charging, policymakers should employ various incen-
tives for different categories of EV drivers.

To aid comprehension of the state-of-the-art review and to clarify the study’s
contributions, Figure 1 is added.

The rest of this chapter is structured as follows. Section 2 presents the modeling of
an ABM of a PV-based charging station. Section 3 includes the simulation results and
analysis of various scenarios. Section 4 draws the conclusion.

1.1 Solar PV-based EV charging station: Application of MAS

This chapter discusses the development of an agent-based EV charging station on
university premises. It is primarily being developed as a solar PV-powered charging
system. The objectives of this AB charging system are to optimize the benefits of cost and
direct solar supply in a quantitative manner. This study makes two major contributions:

* The MAS simulation model for solar PV charging station for EV is proposed and
developed using the motor vehicle database, which is assumed to be as EVs on
university premises for the future energy distribution.

* The developed MAS provides a unique ABM simulation platform based on MESA
software. It is able to incorporate energy optimization algorithms between
interacting agents as SOC-based and TOU-tariff-based scenarios.

A survey was used to collect information about the available motor vehicles in the
university car parks. A future EV integration database has been created in accordance
with that.

1.1.1 Modeling of the system

The simulation model is built with a variety of agents, including an EV agent, a
weather agent, a solar panel agent, a main control agent (MCA), a utility agent, a
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Figure 2.
The system architecture of the multiagent simulation platform.

charging control agent (CCA), and a charge station battery agent. The solar panel
agent generates energy based on the weather condition’s temperature and irradiance
value, which can be accessed via the weather agent. The university weather broad-
casting inverter portal was used to create the weather agent database. Each charging
control agent in the developed agent-based system can manage the EVs’ charge while
taking into account energy prices and the EV agent’s requirements (EVs’ SOC during
arrival, charging option, and arrival time), which is based on one of the following two
scenarios: SOC-based or TOU-based tariffs. The EV agent represents the EV owner,
who has the option of interacting/charging with the user interface in a range of ways.
The charging control agent’s energy scheduling is sent to the main control agent,
which evaluates the overall energy supply agents’ (utility agent, solar panel agent, and
charge station battery agent) performance using optimizing algorithms. An illustra-
tion of the agent-based EV charging station system is presented in Figure 2.

1.1.2 Agents’ validation

Each of the agents was validated with proper testing results before starting to
simulate the system.

L.Solar panel agent: A PV array power calculation system of Homer Pro 3.14 was
used to validate the solar panel agent. The results revealed the least amount of
variation, which is included in Table 1.

The total PV array output Power (one day) Simulation Model Homer Model Error%

108.60 kWh 108.47 kWh —0.123%

Table 1.
Total PV arvay output from the simulation model and Homer software.
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City_FC HW_FC Combined_FC

Standard energy consumption (kWh/100 km) 17.2 21.2 19.1
Standard fuel economy (km/Wh) 0.006424 0.005212 0.005879
Without auxiliary (simulation)  Fuel economy (km/ Wh) 0.0056755  0.005286 0.005500
Error (SID=Simulation)q, —15.348 —0.778 —9.542
With auxiliary (simulation) Fuel economy (km/ Wh)  0.00543755  0.005172 0.005318
Error (STD=Simulation) oy ~11.652 1422 ~6.439
Table 3.

The EPA testing results of the simulation.

Drive cycle RMS current (A) Test/simulation (SIM) Error (W)%
Uso6 71.12 Test 1.38
721 SIM
HW 36.18 Test 0.06
36.2 SIM
USSD/FTP 23.85 Test 1.68
24.25 SIM
Table 4.

The EPA testing vesults for EV battery simulation.

ILEV agent: The EV agent was validated using the New European Driving Cycle

(NEDC), Environmental Protection Agency (EPA), and Worldwide harmonized
Light Vehicle Test Procedure (WLTP) tests. That was handled in two scenarios:
no auxiliary device is used and certain auxiliary devices are turned on (with a
power rating of 300 W based on the literature). The Nissan Leaf 2018 model was
chosen to simulate testing with a test mass as the curb weight of 1573 kg and an
additional payload of 100 kg. The results of the tests within the acceptable range
are given in Tables 2 and 3.

III.Charge station battery agent: Lee et al. [23] explored the design and validation of

a hardware-in-the-loop lithium-ion battery pack for EPA testing (US06, HW,
and USSD/FTP). A two-time constant equivalent circuit battery cell model, as
well as a lumped capacitance thermal model, was included in the battery pack
model. To test the battery model in an EV as well as the charge station battery, a
concurrently operating Li-ion battery from a Nisan Leaf 2012 vehicle power
profile has been used. The results are given in Table 4.

2. ABM with MESA

2.1 MESA simulation software

The ABM of the EV charging station is modeled based on a multigrid scenario in

MESA. MESA, a platform that provides a Python environment for agent behavior, is
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used to implement the agent-based control system. It contains the model (model,
agent, schedule, and space), analysis (data collector and batch runner), and visualiza-
tion (visualization server and visualization browser page) [24]. The portion of the
Python-based MESA simulation source code is depicted in Figure 3.

The interaction of agents begins with the EV agent, which sends SOC information
and charging requirements to its charging control agent (CCA). The request is then
sent to the main control agent (MCA) by each CCA. The MCA sends requests to each
energy resource, including the solar agent, charge station battery agent, and utility
grid agent. The MCA then calculates the optimal charging schedule based on the
charging scenarios (SOC-based and TOU-tariff-based). The MCA coordinates each
step with each energy resource until the charging process is complete. Each iteration
does its internal operations, such as calculations for energy management in MESA.
Each agent is responsible for its own tasks.

Solar agent: It generates solar energy as per temperature and irradiance data, which
is accessed from the weather agent.

maodel.py

Figure 3.
The portion of source code—model.py.
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The activity diagram of the ABM.

Utility agent: In this ABM, there is no power limit for the utility agent. It serves as a
backup supply, allowing PV sources to sell excess energy and EVs to obtain power,
depending on the power management strategy.

Main control agent: It serves as a coordinator, receives requests for EV charging
from each charge pole agent, and performs internal calculations in accordance with
management scenarios.

The ABM’s activity diagram is depicted in Figure 4. It shows the information flows
as well as agent internal operations.

2.2 Knowledge representation of agents

ABM with Al provides a real-time application that is extremely beneficial to all
industries. Its popularity stems from its adaptability in different subfields
(reasoning, knowledge representation, machine learning (ML), planning, coordina-
tion, communication, and so on). First, consider a few advantages of this combined
technique: ABM drives emergent phenomena, precisely defines a natural system, and
is flexible [2, 25].

Most complex real-world systems are only partially decomposable, and one solu-
tion would be to give the components the ability to decide on the nature and scope of
their interactions at run time. Still, when combined with ML, ABM has the potential to
create a new type of computing based on agents—by learning agents’ behavioral
patterns.

Many ABMs can easily incorporate various ML techniques such as genetic algo-
rithms (GAs), neural networks (NNs), and Bayesian classifiers. It has two interlocked
cycles for examining input, making decisions, and producing output. The ML algo-
rithm uses the ABM as an environment for this framework, while the ABM uses the
ML algorithm to maintain the agents’ internal models [26]. The framework has
described how ML techniques are used in ABM in Figure 5.

The weather agent in our solar-powered EV charging station model is updated with
ML techniques to update its temperature and irradiance value. Excel is also used to
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Figure 5.
The integrated cycles of ABM and ML [26].

generate the observed dataset from the faculty weather portal for an ML tool. Excel

can be a valuable addition to your ML toolkit. This can aid in the visualization and
analysis of smaller datasets.

2.3 Simulation and results

The simulations are evaluated in terms of direct solar benefit (DSB) and cost-
benefit analysis. DSB defines the solar PV contribution to requested EV demand,
which is calculated from Eq. (1).

Total DSB(%) — et Sd;;;?%%}:izi\g charging . 1009 1)

where

Direct solar supply for EV charging = Available solar generation

— Remaining solar energy.

The system is simulated in 5-min intervals. This is simulated in two ways:
SOC-based charging with a flat tariff and TOU-tariff-based charging.

The ABM of EV charging stations initially investigated using an SOC-based flat
charging scenario. For EVs, three charging algorithms have been developed:
uncontrolled, vehicle to grid (V2G), and grid to vehicle (G2V). TOU-tariff-based
charging is simulated with slow, average, and fast charging options. The simulations
have yielded numerical results for DSB and cost benefits.

2.3.1 SOC-based charging with flat tariff

Uncontrolled charging: This implies that when the EV is connected to the university
charging station, the battery is charged until it reaches maximum SOC or disconnection.
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Vehicle to grid (V2G): It converts EVs into energy storage systems, allowing any
excess energy stored in the EV’s battery to be injected back into the grid, which is
enabled by the SOC values of EV. When the EV’s battery pack SOC falls below 50%, it
begins charging by fast charging (30 kW); otherwise, it charges by average charging
(6.6 kW) until the EV reaches 80%. If the EV’s SOC is greater than 80%, the energy in
the EV battery can be pushed back into the electrical grid.

Grid to vehicle (G2V): It allows the EVs to charge with controlled charging
while parked in the university car park. If the EV’s SOC falls below 50%, it
immediately begins charging either through fast charging or through average
charging.

Figures 6-8 show the simulation of the above three charging scenarios. GE—grid
energy, BSE—battery storage energy, and SE—solar energy.

When the PV energy supply is insufficient to fully charge the EVs, the stationary
storage charges the EV, and the energy is supplied by the public grid. The main
drawback is that PV energy supply does not completely benefit EV charging and that
reliance on the public grid increases when charging is uncontrolled.

This ABM is modeled to serve as a university charging station (workplace
charging). A large number of EVs are likely to be parked for a longer duration. To
increase the direct solar benefit of EV charging, slow charging (2.3 kW) is combined
with G2V charging.

Total Grid, Ex.Battery and Solar Energy in kWh

Figure 6.
Grid, station battery, and solar energy distribution for uncontrolled charging.

Total Grid, Ex.Battery and Solar Energy in kWh

] MmcA1 : GE (i) [—] MCAT1 : BSE (KWh) Solar! : SE (k\Wh)

287

I MCA1 : GE (kWh): 0
WMCA1 : BSE (kWh): 0
Il Solar1 : SE (KWh): 0

Figure 7.
Grid, station battery, and solar enevgy distribution for V2G charging.
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Figure 8.
Grid, station battery, and solar enevgy distribution for G2V charging.

Flat cost charging is used to simulate SOC-based charging; the three charging
modes have the same unit cost. Figures 6-8 show how uncontrolled charging and G2V
result in the highest demand peak from the grid. The V2G has a lower peak because it
allows only a few EVs to charge. According to our database, the majority of EVs are
not far from our faculty. We also include simulation assumptions, such as when the
EVs begin their journey with 100% SOC each day. When EVs arrive at the faculty,
they have an average of more than 80% since they are not far away from the faculty. It
causes them to inject excess energy into the grid as an energy source until it reaches
80% of SOC. It helps in reducing the grid’s need for additional energy generation and
the demand for power supply resources. Figure 9 shows the simulation observation of
G2V slow charging (Figure 9).

However, V2G and G2V permit obtaining energy consumption from energy
resources and charging the vehicle when implementing controlled charging. When the
SOC exceeds 50%, fast charging begins to preserve the lifetime of the battery from the
full depth of discharge.

G2V controlled charging is combined with slow charging to improve DSB. It
reduces grid dependability while improving DSB, as illustrated in Figure 9.

Figure 10 shows that DSB is calculated for all charging strategies based on SOC
charging. EVs charge in average charging (6.6 kW) mode when uncontrolled charging
and G2V charging mode are enabled. Both have almost the same DSB. In V2G, few

Total Grid, Ex Battery and Solar Energy in kWh

] MCA1 : GE (Wh) ] MCA1 : BSE (kW Solar1 : SE (Kih)

285

] 2 WMCA1 : GE (kWh): 0
- [ MCA?1 : BSE (Kivh): 0
|l Solar1 : SE (KWh): 0

Figure 9.
Grid, station battery, and solar energy distribution for G2V combined with slow charging.
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Figure 10.
DSB percentage for SOC-based charging scenarios.

cars need to be charged by the charging station, resulting in a moderate DSB value.
When G2V is paired with slow charging, the DSB rises.

2.3.2 TOU-tariff-based charging

The TOU-based charging scenario simulates three different charging options. It
includes slow, average, and fast charging. The charging powers are 2.3 kW, 6.6 kW,
and 30 kW, respectively. In TOU-tariff-based charging, two major streams are con-
sidered: cost and direct solar benefit. The charging station’s various start times are
simulated to determine the most advantageous point of solar PV-based charging. The
simulation observations are depicted in Figures 11-13.

This system is simulated with different station charging start times for the EV to
see how PV energy affects EV charging. Figure 14 summarizes the simulation results.

According to the findings, charging that begins at 11 a.m. has a higher DSB.
However, our database shows that the few cars left the faculty before 11 a.m. Fast
charging is assumed to have a 30-kW unit charge power excess for a few EVs in this
simulation. As a result, the total demand to be achieved is reduced. Aside from that,
the charging start time of 10 a.m. has a higher DSB. The slow and average charging
have better DSB than the fast charging. The proportion of PV charging has increased,
while the reliance on the public grid has decreased.

Total Grid, Ex Battery and Solar Energy in kWh

[ MCA1 - GE (ki) ] MCA1 : BSE (kivh) Solart : SE (ki¥h

z
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Figure 11.
Grid, station battery, and solar energy distribution for slow charging.
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Grid, station battery, and solar energy distribution for average charging.
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Grid, station battery, and solar enevgy distribution for fast charging.
Direct solar benefit for EVs

__ 60.00%
= 49.18%
w 50.00% 43.53%
ga 38.86%
5 9000% -32.55%
G
& 3000 19.96%
5 20.00% 15.52% 15.10% 15.30%
=
s 4.90%
5 10.00% I 4.20% l I 2.13% 4.34%
2 0.00% = L -
&f Slow  Average Fast Slow  Average Fast Slow  Average Fast Slow  Average Fast
& Charging Charging Charging Charging Charging Charging Charging Charging Charging Charging Charging Charging
©
® Charge station available from Charge station available from Charge station available from Charge station available from
g 8AM SAM 10AM 11AM
=

Figure 14.
The DSB results for EVs under TOU tariff.

Besides that, the stationary storage lasts longer, preventing rapid discharge. It does
not exceed its minimum SOC (20%). The stationary storage energy decreases as it
approaches its capacity limit with minimum SOC, and it is then supplied by the public
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Station battery SOC pattern for slow charging at 10 a.m.
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Station battery SOC pattern for average charging at 10 a.m.
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Station battery SOC pattern for fast charging at 10 a.m.

grid during off-peak hours. The charge station battery SOC pattern is shown in
Figures 15-17 for slow, average, and fast charging, respectively.

As per the results, in slow and average charging modes, PV and stationary storage
share more power. DSB is also increased when the charge station charging time is set
to 10 a.m. in the university charging unit.

TOU tariff charging is expected to be cost-effective in PV-powered EV charging
stations when compared with SOC-based charging. This creates a win-win situation
for both charging station operators and EV owners. Figures 18-20 show the graphical
representation of the total and profit costs for both EV users and station owners.
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The cost benefit was calculated compared to the Ceylon Electricity Board’s (CEB’s)
current EV charging price. As previously discussed, fast charging did not meet the
total EV demand. Aside from that, slow and average charging has lower costs for both
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charge station operators and EV owners, which is more beneficial at 10 a.m. charging
time. Fast charging also provides a higher grid-injected price benefit at the 10 a.m.
start time to charge station operators than the other two start times.

3. Conclusion

There have been many exciting developments in ABM recently, and the use of truly
adaptive agents within ABM is one promising guarantee that is still being explored.
ABM is more than a simulation tool; it also aids in the reduction of operational risk and
the development of new strategies for the organization. The incorporation of ML
techniques into ABM should enable the creation of new and unique models.

Simulation model discussed focuses on the preliminary requirements and cost-
effective model for charging in a university car park. Two main strategies were
presented, SOC-based and TOU-tariff-based, which demonstrated improvements in
terms of DSB and cost benefits. When compared to an uncontrolled charging strategy,
SOC-based charging is safe and has many benefits. Uncontrolled EV charging causes a
significant increase in power demand, which may cause power congestion or voltage
issues in the power system. On the contrary, G2V charging with a slow charging mode
has the advantage of distributing the charging load over time by limiting the peak
power demand.

It is shown that the proposed system can effectively improve the DSB as well as
cost benefits by implementing TOU-tariff-based charging. It is cost-effective for both
charge station operators and EV owners. Two charging modes are advantageous for
the requirements and feasibility conditions in the university car park: slow and
average charging.

Our ABM charging station can communicate and collaborate with each agent to
achieve the required system behavior. The MAS must be coordinated with its
characteristics in order to attain the purpose [2, 3]. Scalability is an essential aspect to
consider when creating practical MASs. The simulation model will expand the
interaction between the agents without hesitation or delay as the number of EVs in the
model expands.
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Chapter 6

Approximate Dynamic
Programming: An Efficient
Machine Learning Algorithm

Zhou Shaorui, Cai Ming and Zhuo Xiaopo

Abstract

We propose an efficient machine learning algorithm for two-stage stochastic
programs. This machine learning algorithm is termed as projected stochastic hybrid
learning algorithm, and consists of stochastic sub-gradient and piecewise linear
approximation methods. We use the stochastic sub-gradient and sample information
to update the piecewise linear approximation on the objective function. Then we
introduce a projection step, which implemented the sub-gradient methods, to jump
out from a local optimum, so that we can achieve a global optimum. By the innovative
projection step, we show the convergent property of the algorithm for general two-
stage stochastic programs. Furthermore, for the network recourse problem, our algo-
rithm can drop the projection steps, but still maintains the convergence property.
Thus, if we properly construct the initial piecewise linear functions, the pure piece-
wise linear approximation method is convergent for general two-stage stochastic pro-
grams. The proposed approximate dynamic programming algorithm overcomes the
high dimensional state variables using methods from machine learning, and its logic
capture the critical ability of the network structure to anticipate the impact of deci-
sions now on the future. The optimization framework, which is carefully calibrated
against historical performance, make it possible to introduce changes in the decisions
and capture the collective intelligence of the experienced decisions. Computational
results indicate that the algorithm exhibits rapid convergence.

Keywords: stochastic programming, piecewise linear approximation, machine
learning, network, approximate dynamic programming

1. Introduction

Optimal learning addresses the challenge of how to collect information, as effi-
ciently as possible, to make a decision in the present such that it minimizes the
expectation of costs in the future with uncertainty. Collecting information is usually
time consuming and expensive. For example, several large shippers, such as Amazon,
Walmart, and IKEA, need to decide the quantity of products to ship from plants to
warehouses to satisfy the retailers’ demand. The retailer usually makes their decisions
before knowing the real demand. Then, after they know the retail demand, they
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optimize the shipping plans between retailers and warehouses. The aforementioned
problems generally can be treated as the two-stage stochastic programs. The decisions
that the retailer made now (Stage 1) will determines the state while solving the
problem in future (Stage 2). Therefore, an optimal decision can be made now if we
can compute the expected cost function (the recourse function) of Stage 2. In this
chapter, we propose an efficient machine learning algorithm that can collect informa-
tion very efficiently based on the knowledge gradient and solve the problem opti-
mally. The main gap between MAT and proposed algorithm is that our proposed can
collect the information based on knowledge gradient and overcomes the “curse of
dimensionality”. Besides, it can transfer the problem into a polynomial solvable
problem and has been proven convergent theoretically.

1.1 Motivation

Optimal learning is a rich filed that includes contributions from different commu-
nities. At the moment, this chapter focus on optimal learning in two-stage stochastic
program, which is a practically important problem. Problems of this type arise in
several areas in dynamic programming, in which the decision maker need to make
temporal and spatial decisions before realizing events that will influence the decisions.
For example, in empty container repositioning problems [1], shipping companies
need to reposition empty containers before realizing the demand. In locomotive
planning problems [2], railroads have to decide the schedule of trains in which loco-
motives are assigned before disruptions occur across the railway network. For relief
distribution problems [3], humanitarian decision makers need to distribute emer-
gency aid to disaster locations when the emergency aid materials are very scarce
amidst great uncertainties. For job scheduling problems [4], the managers need to
decide initial staffing levels and their working plans before the demand are realized.
Most of the aforementioned applications are fully sequential problems, and they can
be modeled as two-stage stochastic programming problems. Hence, the research of
two-stage stochastic optimization in this chapter is very important. However, the
main obstacle in most practical problem is that the expected cost function in Stage 2 is
quite complex due to uncertainty. In this chapter, we propose a hybrid learning
algorithm called projected stochastic hybrid learning algorithm (ProSHLA) to approxi-
mate the expected recourse function for two-stage stochastic programs. In order
to demonstrate the efficiency of the algorithm, we also theoretically prove the
convergence of the proposed algorithm mathematically.

In essence, ProSHLA is a hybrid of stochastic sub-gradient and piecewise linear
approximation methods. The core of ProSHLA consists of a series of learning steps
those provide information for updating the recourse function through a sequence of
piecewise linear separable approximations, and a series of the projection steps those
can guarantee convergence by implementing the stochastic sub-gradient method. The
mathematical analysis and the computational results all demonstrates that when the
initial piecewise linear approximation function is properly constructed for two-stage
stochastic programs with network recourse, the learning algorithm can drop the
projection steps without sacrificing convergence. Moreover, without the projection
step, the learning algorithm only consists of a series of learning steps through a
sequence of piecewise linear separable approximations, and can solve the practical
complex problems very efficiently. Our innovative finding can help the practitioner
and the scholar to understand the open problem that has puzzled them for decades:
why does the piecewise linear approximation method can be efficient and convergent
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for stochastic programs with network recourse in practice. In this chapter, we provide
the first theoretical support by our analytical results for the use of the piecewise linear
approximation method in solving practical problems.

1.2 Literature review

In this chapter, we consider the two-stage stochastic programming problem as
follows:

min chx + E,[Q(x, »)] (1)
s.t.,

Ax =Db,

x>0,

where X C " denotes a convex compact set and the recourse function Q (x, ®)
denotes the optimal value of the second stage problem:

Q(x, w) = mincly(w) @)
s.t.,

W(w)y = h(w) — T(0)x,
y(w)>0(w).

In the above model, variables x and y denote the decision variables of stage 1 and 2
problems, respectively. A, W(w) are constraint matrices, and parameters c¢g and ¢;
denote the first and second stage vectors of cost coefficients, respectively.

Stochastic programming models and solution methods has been examined by
many researchers. Comprehensive reviews and discussions were performed by
Wallace and Ziemba [5]. The expected recourse function is extremely complex
to evaluate except for a few special cases. There are various approximation

methods those can be categorized into four groups. Let Q(x) denote the approximate
function. The first group includes scenario methods which use the sample average of
Q(x, w;) for several samples, w1, s, ... wN, to approximate the expected recourse
function [6]. The approximation function is usually successively updated by the
following function:

A _ ZfilQ(x’ wi)

Generally, the scenario method is very efficient, but it cannot guarantee to obtain
the convergent solution.

The second group consists stochastic gradient techniques [7, 8], which updates
solutions by using stochastic sub-gradients as directions. Usually, the approximate
function can be successively updated by the following function:

QAx) = @) 'x 3)
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where g* denotes a smoothed estimate of the gradient of the expected recourse
function at x for iteration k. This method can be proven convergent by projection [9]
or recursive linearization [10], although the drawback of this method is that it is
time-consuming.

The third group mainly consists of primal and dual decomposition methods. The
use of primal and dual decomposition methods dates back to Benders decomposition
[11]. Van Slyke and Wets [12] first adopted the L-shaped algorithm into the applica-
tion of Benders decomposition to two-stage stochastic programs. Pereira and Pinto
[13] proposed the stochastic dual dynamic programming (SDDP) method, which has
been widely applied in many areas. SDDP uses Benders cuts to compute an outer
approximation of a (convex) recourse function, and constructs feasible dynamic
programming policies. SDDP has led to numerous related approximation methods
those are based on the same logic but seek to improve the approximation procedures
by exploiting the underlying structure of the particular applications. These methods
consist of use of inexact cuts [14], risk-averse variants [15], embedding SDDP in the
scenario tree framework [16]. The convergence of SDDP and related methods has
been proven by [17], for linear programs by Girardeau et al. [18].

The fourth group includes separable approximation methods [19, 20]. This type of
methods usually replaces the expected recourse function in Eq. (1) with separable
approximation functions as follows:

1
Q) =Y Qi) )

If the separable functions Q;(x) are piecewise linear or linear, we can replace the

expected recourse function in Eq. (1) with Q(x). Then we can solve the problem as a
pure network flow problem for network recourse problems, which is polynomial
solvable. Thus, it is very efficient. For example, Godfrey and Powell [21] proposed an
adaptive piecewise concave approximation (CAVE) algorithm, and the experimental
performance of the algorithm shows exceptionally good. However, there was none
provable convergent results in their study. In order to provide convergent solutions,
Cheung and Powell [19] proposed an approximation algorithm (SHAPE), which uses
sequences of strongly convex approximation functions. However, the strongly convex
functions require to construct a nonlinear term, and the strongly convex term might
damage the pure network structure and need additional computational effort. This
chapter intends to introduce an accurate and efficient approximations with the
convergence property.

1.3 Contributions of the algorithms

In this chapter, we aim to develop a convergent method that can efficiently
approximate the expected recourse function for two-stage stochastic programs. The
main contributions are listed as following:

1.We propose a new convergent hybrid learning algorithm to approximate the
expected recourse function for two-stage stochastic programs.

2.Through rigorous mathematical analysis, we prove the convergence of the
proposed algorithm for general two-stage stochastic programs. The
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computational results and mathematical analysis both reveals that the

algorithm can drop the projection step without sacrificing the convergence for
two-stage stochastic programs with network recourse if we can properly
construct the initial piecewise linear approximation functions. That means that
a pure piecewise linear approximation can be indeed convergent, which is
highly consistent with industry practices. This interesting finding answers the
open question which has puzzled scholars for more than a decade: why does

the piecewise linear approximation work well for two-stage stochastic

programs in industry? Our mathematical analysis can provide the first theoretical
support.

3.A series of performance analysis has been conducted. The computational results
reveal the efficiency of the proposed algorithms and the proposed algorithms are
distribution-free. Furthermore, the convergence rate can be affected by the
granularity of the initial function (6). Small granularity usually leads to a high
convergence rate. Finally, the computational results also show that the proposed
algorithm is very competitive for high dimensional problems.

4.Compared with MAT, the proposed algorithm can collect the information based
on knowledge gradients and use it to update the recourse function by learning
steps. It can overcome the “curse of dimensionality”. Moreover, it can transfer
the problem into a polynomial solvable problem.

The remainder of this chapter is organized as follows. Section 2 presents the
description and convergence analysis of the algorithm for general two-stage stochastic
programs. The algorithm (without projection steps) for two-stage stochastic
programs with network recourse are shown in Section 3. Section 4 demonstrates
computational experiments based on an application of the empty container
repositioning problem. Section 5 presents the conclusions and outline directions for
future research.

2. Description and convergence analysis of ProSHLA for general
two-stage stochastic programs

In this section, ProSHLA is first introduced. Subsequently, we analyze the
convergence of ProSHLA for general two-stage stochastic programs.

2.1 Description of ProSHLA

To present ProSHLA mathematically, we let, at each iteration &,
o = (possibly random) positive step size;
Q(x) = expected recourse function, that is, E,[Q (x, ®)];

~k

Q (x) = a convex differentiable approximation of Q (x);

(x) = a subgradient of Qk (x) at x, that is ﬁk(x) € 0Qk (2);

2" = a smoothed estimate of the gradient of Q (x) at iteration k;

gk = a stochastic subgradient of Q (x) at x*, that is, gk € 0Q(x",a* * 1);
Hj, = {w1, @, ... oy } = the history up to (and including) iteration k.

=%
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For a general non-smooth convex function Q (x), its sub-differential can be defined
as follows:

0Q(x) = {Gx) €®" : Q) - Q) 2G(x) (=) }.

We combine Egs. (1), (3), and (4) to form an approximation at iteration k as
follows:

min chx + QO (x) + (gk)Tx (5)

In this study, we approximate the expected recourse function at iteration k via a
convex, differentiable approximation (AZO (2) with a linear correction term (g"")Tx. At
each iteration, the linear correction term (gk)Tx are introduced to improve the initial
approximation QO (x). Note that here we use a convex initial approximation function

QO (%), whereas SHAPE uses strongly convex approximation functions. SHAPE will
introduce a nonlinear term in the approximation function to maintain the strong
convexity property, and it might destroy the pure network flow problem structure
and demands additional computational effort. Moreover, we do not calculate g* in the
usual manner to obtain stochastic sub-gradients in this study. We use the following
form in our model instead:

min ch + Qk (x) + (gk — @k(x))Tx, (6)

where (Alk (x) is updated as follows:

~k+1

Qw0 =0 (g -7'w) * %

. .okl . . .
The greatest merit of updating Q  (x) in the above way is that it can retain the

stochastic sub-gradients (ﬁk (x*) ,ﬁkfl o h,...3° (xo)) used in the previous itera-

tions. Thus, in iteration k&, the objective function involves a weighted average of
stochastic sub-gradients in the past (k — 1) iterations. As shown later in Lemma Z,gk
in Eq. (5) is a linear combination of g!, g2, ... g* L.

Let Px : R" — X be the orthogonal projection onto X [9]. Then, we can obtain a
sequence of solutions {x*} using the following procedure (Figure 1).

Generally, ProSHLA consists of two-level loops. In the first-level loop, there exists
a series of passes, and in the second-level loop, the exists a series of projection steps,
which include the step 5 and 6. We first construct an initial bounded and piecewise

-0
linear convex approximation function Q (x) at the beginning of the first pass, then
the initial solution x° can be obtained by solving problem (1). A realization of the
random quantity @ € Q can be drawn, and then we can obtain a stochastic sub-

gradient of Qo (x) by solving the resulting deterministic problem. Compared with the
slope of QO (x) and the stochastic sub-gradient at x = x°, the difference of these two

-0
slopes can be used as a linear term to update Q  (x). Subsequently, we can obtain a
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ProSHLA

Step 1. Let the pass counter m = 0 and the iteration counter £ = 0. Construct an initial convex function
(° (x). Let M be the number of the first iteration of the m pass. Maintain a sequence of points:
{x*}.
Step 2. Obtainx’= argmin §° (x).
Step 3. Obtain §%(x¥) and g*. Let M =k, x™ = x*, and §"(x™) = §*(x*). §° (x) can be
updated by
GF1(x) = @4 () + e g* — ¥ (x)"x.
Step 4. Obtain x*** by
2 = argmin 0% (x). (8)
Step 5. If |§™(x**Y) — §™(x™)| >0 or x**' = x™, then update the pass counter m =m + 1
and go to step 7; otherwise, go to Step 6.
Step 6. Obtain x*** by
= Pe(x* — aygh). 9y
Thereafter, go to Step 5.
Step 7. Check for convergence (e.g. an improvement in Q% in the last K iterations). If the check fails,

set k =k + 1 and go to Step 3; otherwise, terminate.

Figure 1.
The procedure of ProSHLA.

*+ 1 using the updated approximation function. If the sub-gradient

k o+ 1

new solution x

vectors 'q\ﬁ(xk“) of the newly obtained solution x* * * are equal to sub-gradient of

solution x™, that is §" (x™), the piecewise linear approximation might have jumped
into a local optimum. Subsequently, ProSHLA need to jump out from local optimum

by implementing projection steps in the second-level loop. If we obtain a new solution

x* * *in the second-level loop and the sub-gradient @m(xk“) is different from sub-

gradient §” (x), then ProSHLA can jump out the second-level loop, and comes to the
end of second pass. Thus then, we can repeat the entire process. Finally, ProSHLA will

N/
be terminated when the total absolute change in Q (x) over a certain number of

iterations is low (e.g. Zf:k7M+1||Ql (x) — Qlil(x)l <9).

Here we point out the main difference between SHAPE and ProSHLA. The most
remarkable difference is that ProSHLA uses convex approximation functions while
SHAPE uses strongly convex approximation functions. The strongly convexity always
maintains a nonlinear term in the approximation function. And this term might
destroy the pure network flow structure and causes additional computational effort.
To overcome the drawback of the SHAPE, we introduce the projection step in the
second-level loop and construct approximation functions. Particularly, the approxi-
mation functions in the ProSHLA is NOT strictly convex, while it needs to be strictly
convex in SHAPE. Without the projection step in the second-level loop, the ProSHLA
might stuck in the corner local —optimum for stochastic linear programs. Thus,
ProSHLA can work well for most practical stochastic linear programs, because most of
practical stochastic programs are piecewise convex problems.

2.2 Convergence analysis of ProSHLA

Firstly, we demonstrate the convergence theorem of ProSHLA in this subsection.
Then, several properties of approximation are presented. Finally, we use these
properties to prove the convergence of ProSHLA.
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Without loss of generality, the following assumptions are listed.
(A.1) X cR" is compact and convex.
(A.2) E,Q(x1, ®) is convex, finite and continuous on X.

(A.3) g’e is bounded such that Hgk || <c¢q foreachwe Q;’q\k is bounded such that

HﬁkH <c¢; for each w € Q.

~k
(A.4) Piecewise linear function Q (x) are convex, implying that

~k

Q (x1) — Qk()’l) ﬁk(xl)T(xl _J’l)'

(A.5) The stepsize ;, are H), measurable and satisfy

0<a<1, > E{a}}<oo
k=0

Except for the assumption from (A.1) to (A.5), we also introduce the
following assumption to characterize the piecewise linear convex approximation
functions.

(A.6) There exists a positive b and a constant §, such that for any two points
x1,); €X, iflxr — y,| > 5, then [g(x1) — §(¥;)| > blx1 — y,|. If there exists §(x1) and G (y,)
such that §*(x1) — 3" (y,) = 0, then |x; — y,| <5.If 5 — 0, then the function corre-
sponds to a strongly convex function, if § — oo, then the function becomes purely
linear.

Given assumption (A.1)-(A.6), we obtain the following theorem of ProSHLA.

Theorem 1. If assumptions (A.1)-(A.6) are satisfied, then the sequence of {x%}
generated by algorithm ProSHLA converges almost surely to the optimal solution
x; €X" of problem (1).

In order to prove the Theorem 1, we need to use the following Martingale conver-
gence theorem and three lemmas.

Martingale Convergence Theorem. A sequence of random variables {W*},
which are H,, measurable, is said to be a super-martingale if there exists the
sequence of conditional expectations E{{W*"!|},} and satisfies
E{{WFH,} <W*

Theorem 2. (From reference [22]) Let W* be a positive super-martingale. Then,
W* converges to a finite random variables a.s.

From the above theorem, we can conclude that W* is a stochastic decreasing
analogue essentially.

Based on the convexity property, the optimal solution for problem (8) at iteration
7 can be characterized by the following inequality:

(’q\m (x?))T(xl —x7)20, Vxi€X (8)

To obtain Theorem 1, the following three lemmas are required. The first lemma
shows that the difference between the solutions of two consecutive update processes
will be bounded by the step-size and the stochastic gradient. The second lemma

indicates that the approximation Qk (1) is finite. The third lemma shows that T*
(which will be denoted in Lemma 3) is bounded.
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Lemma 1. For any two iterationsj € [m +1,m + 2), i€ [ﬁ, m+ 1), solutions xi1 and
x' obtained by ProSHLA can be characterized by the following inequality:

g™ (x’1 - 9‘]1) < (amer)?/b )

Proof. Consider a special case, where i and j corresponds to two consecutive
iterations. Leti =m +1—1andj = m + 1. Based on (10), we can obtain that,

- _ T _
(ﬁmﬂ (xg"“)) (xl — xi"“) >0,Vx1€X (10)
According to the approximation function’s updating rule, we can conclude that,

R . - JR— _ T -
(/q\mﬂfl (xi”“) + a4 (gm“_l — ’q\'”H*l (xg’”’l_l))) (xl — xi”“) >0,Vx;€X

(11)
Substituting x; with xq”_ﬂ’l in Eq. (13), we can obtain
i1 omti1( a1\ (et _ mrd
(= () ) ()
(12)

T __ J—
~m+1-1( m+1 m—+1 m+1-1
2q (x 1 ) (x 1 T X% )

If we arrange the above terms, then we can obtain the inequality below:

_ T JRE— T JR— J—
~m+1-1(_ m+1 m+1 m—+1-1 ~m+1-1( m+1-1 m-+1 m—+1-1
27" () (T ) e (T () (T )

(13)
When iteration m + 1 — 1 and m + 1 are not in the same update process, then it
means that " (xm’l> Aq" (xﬁ) According to assumption (A.6), we can

conclude that |§m+171 (xg'”l*l) _ q’”H*l (xg”“) | 2b|x§”+1*1 _ x§n+l|.

According to Egs. (10) and (13), and 0 <a,,—5_, <1, we can obtain

A (gm_1) T (x;n_-o—l—l N xrln_—H)
_ _ 2 I _ T, _
Zbe;rH-l—l _ x;n+1H + (- ) (gmﬂfl (xgn—o—l—l)) (xTH _ x;n+1—1)
— 2
Zbe;nﬂq 7x§”+1H '
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Applying Schwartz’ inequality, we can get the inequality below:

_ T, —
m+1-1 m+1— 1_ m+1 m+1-1 m+1-1 m+1
R |2 (e™) (17 -T)

2
>bH m+i-1 x;n-%l”

Therefore,

mi-1 m+1H<a

X7 —x <@, 1%c1/b. We can obtain the inequality below:

_ T, -
U 1<gm+171) (x;nﬂil - x;nH) < ( Olm—H,lCl)z/b (14)
Foranyi€ [,m+1-1,¢ =g" =¢"" 1and 7 (x1) =7 (x1) = ﬁ"”l Y(xp).
Thus,

am (@) (¥ —x7"T) < (amer)’ /b (15)

Foranyi€ m,m+1—1andje[m+1,m+2—1],¢ — g™ = gm 21 for
any x; € X. Thus,

am(g™)" (x; _ xg) < (amer)? /b (16)
O

Lemma 2. In iteration k, the approximation function Qk (21) can be written as
Qk (x1) = QO (1) + (gk)Txl, where g* is a finite vector.

Proof. According to Eq. (5) in Proposition 1, we can conclude that g*! is a linear
combination of g1,g2, ...,g*. Since g* and §° (x;) are finite, there will exists a finite and

positive vector d such that
d> mkaXLg'k —3° ()] (17)

According to Lemma 2 in [19], we can conclude thatgje+1 >;i\ O

Let T* = Qk () — Qk (%), where x; represents the optimal solution. The
following Lemma characterizes the difference between T%** and T*.

Lemma 3. For any two iterationsi € [m — 1,m — 1] andj € [m,m + 1 — 1], T' and
T satisfy

T - T <an(g") (# - ) +an(e™) (x; — ). (18)

Proof. The special case is first considered. Let i = % and j = m + 1. By re-writing
xf —x"™asxy —x™ +x™ — x™*1, we can obtain the following equation:

~m+1 ~m+1-1 — 7 T
_ m+1l-1 -m+1-1( myi-1
() = Q" (o) gy (¢ - ()

= Q" (x1) + am (gﬁ -q" (x?))Txl
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Then,

Con51der1ng each part individually, given that g q [S de( ), by convexity of

Q (x1 ), we can obtain

Q") - Q" (7)< @) (<7 -7 0

Thus, the following expression is applicable.

Am(x?) - (xyln+1) < (aﬁ>T<x1 x71n+1)
() () <) ()

Given Eq. (10) and 0 < ai <1, we know that (/) <0. Additionally, from Eq. (10)
and 0 < az <1, we know that (17) > 0.

Thus, y AR <am (gﬁ)T(X? mH) +am (gm) ( X

(20)

=3
S—

Foranyi€ [,m + 1—-1,g =g" =g and §'(x1) =7 (x1) = ¢ (1) for
any x1 € X. Therefore,
m+1 i ] m+1 i\ T (. i
T - T ()" (wh =7 + () (v — ) (21)

~m+1 ~m+2-1

Foranyi€ [m,m+1—1]andje m+im+2-1,Q =Q" = for
any x1 € X. Therefore,

T =T <an(@) (¥~ #)) + an(e™) (x5 — ) 22)

O

To the proof of Theorem 1, we here consider two scenarios. For the first scenario,
ProSHLA does not stop in a given update process. Thus, any update process exhibits
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finite iterations before the algorithm stops, which means m + 1 — 7 <M for any m (M

represents a large number). For the second scenario, ProSHLA might terminate in a

given update process. In the following text, Theorem 1 is proven for each scenario.
Scenario 1: ProSHLA does not stop in a given update process.

In the first scenario, a subsequence of {x¥}, {x]'} are considered. We will prove
that the subsequence {x7'} converges to the true optimal x; . According to the
definition of g¥ € 0Q (x¥, @**1), we can obtain the following inequality

(@) (xf — ) <Qxf, 0t ") — Q(h, ') (23)

where Q (x1, @**1) represents the operational cost function given the outcome w**™.

According to Lemma 1, we can obtain the following inquality:
am(e”)" (x} — %)) < (amer)’/b (24)
On the basis of Lemma 3, the difference T™ 1 _ T™ can be described as follows:

T

< an(q”)' (o —47) +anle”) (35 —)
< —an(Q(F,0™) ~Q(si,0™)) +omle) (< —T) @9
<

e (@(e5.07) (s ) + o

Conditional expectation of Eq. (27) with respect to H}, can be taken on both side
and then we can obtain

E( T Hz) ST - am(Q(<7) - Q7)) + (amer)* /b

where Q (x) represents the expected recourse function, that is E,Q (x1, ®). Given
the conditioning on Hj,, T™,a; and X7’ on the right-hand side are deterministic. The

conditioning H}, cannot provide any information on ™1, Hence, we replace
Q(xl, a)’”_“) (for x1 = x’f and x; = x;) with its expectation Q(x1). Given that
a7 (Q(x7") — Q(x7)) =0, the sequence

W7 = T" 4 (ager)* /b (26)

is a positive supermartingale. Theorem 2 implies the almost sure convergence
of W™, Hence,

™ > T* as. (27)
We perform the summation of Eq. (27) from 0 to M and obtain the following
inequality:
_ M o M
™ _T0< _ Zaﬁ(Q<x§”,me) — Q( : m“)) +3 (amer)/b (28)
m=0 =0
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We take the expectation of both sides. We take the conditional expectation with
respect to Hz; and then over all Hz; for the first term on the right-hand side.

E(TM_+1 - TO)

e+ o 55

m=0

IA
|
3
H|M§I
oy
=
s
'52
3|
—~
Q
x
=3
i
+
N
~—
~—
—
—
o
x®
S

B _ M
We take the limit as M — oo and use the finiteness of T and Y~ E{aZ} to
m=0

obtain

E{aﬁ (Q(x?, a)’"_“) - Q(xl* , a)m_“)) |Hﬁ} <oo (29)

M=

0

3
I

I — M
Given that Q(x’{’, a)’”“) - Q(xl* , a)’”“) >0and Y E{a%} = oo(a.s.), there exists
m=0
a subsequence {7} such that
QT) - Q) as
By continuity of Q, the sequence converges. Hence,

m *
X7 —x; as.

Subsequently, we construct another subsequence {x7"!}. Based on Eq. (27),

O (Q (xm’l, wm—”’l) — Q(xl* , a)m—”’1)> + ( (xmcl)z/b

M=l

E( TM—+2—1 _ TI\/I—H—l) < —
0

3|
Il

Like-wise, the following approximation can be proved:

- xt oas.
By analogic condition, a very general subsequence {x’l}, i€ [ﬁ, m+1— 1] will
almost surely converge to x; . Here, we term this type of subsequence X;.
In the procedure of ProSHLA, the number of all update iterations is finite. Thus,
for any subsequence of {x¥}, we can obtain a subsequence that always belongs to X;.
Then, the following conclusion can be obtained:
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X - x as.

Scenario 2: ProSHLA halts in a given update process.

For the second scenario, ProSHLA halts in a projection procedure which generates
a convergent sequence.

Hence, the conclusion of Theorem 1 can be finally obtained. [].

The above analytical processes demonstrate the convergence property of

ProSHLA. According to the above results, we require the function Q(x) to be piece-
wise linear convex. However, for practitioners are interested in a practically scenarios,
in which they usually use separable functions to approximate the expected recourse
function for stochastic programs with network recourse. Based on Eq. (4), if the
separable functions are piecewise linear or purely linear, then practitioners can easily
solve this network recourse problem, because a pure network flow problem is poly-
nomial solvable. In the following section, we will discuss this special practice scenario.

3. Application for two-stage stochastic programs with network recourse
using separable piecewise linear functions

In this section, we will discuss the scenario where Q (x) is separable for two-stage
stochastic programs with network recourse. For this scenario, we can simplify
implement ProSHLA without projection step. We denote this simplified version as
the Stochastic Hybrid Learning Algorithm (SHLA), which is described as follows
(Figure 2).

Essentially, SHLA is not convergent. However, if it is applied to two-stage sto-
chastic programs with network recourse, SHLA will enjoys several merits as follows:
(1) the solution of Q(x,®) is naturally integer; (2) at each iteration, problem Q(x,w) is
simple network flow problem that can be solved by polynomial algorithm.

Here, if we use separable functions, then assumption (A.6) can be satisfied by the
following artificially expression:

73 (x:) <q°(x; +6)

Note that for both ProSHLA and SHLA, it allows to choose initial approximation
function with different value of § flexibly. Thus, if § is set to be 1 for any 7, then we can
guarantee the following expression:

SHLA

Step 1. Set the iteration counter & = (. Construct an initial piecewise linear convex function 0°(x).

Maintain a sequence of points {x*}.
Step 2. Solve the problem x*= argmin @¥(x) and obtain §*(x).
Step 3. Obtain g*. Update (G*(x) by

Q¥ (x) = §%(x) + ax( g* - @) x (321

Step 4. Check for termination (e.g. an improvement in (% (x) in the last K iterations). If the check

fails, then set k= k + 1 and go to Step 2; otherwise, terminate.

Figure 2.
Description of SHLA.
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32 () <GP (xi + 8). (A7)

Then, we can reach Theorem 3 below.

Theorem 3. If (A.7) is satisfied, SHLA is always convergent for two-stage stochas-
tic programs problem with network recourse.

Proof. For any x,y € X, if there are unequal, we can obtain the following expres-
sion according to (A.7).

Thus,

7°(x) —3* (91> 0

Hence, if we set 5§ = 1 and apply ProSHLA for two-stage stochastic programs with

network recourse, then ProSHLA can drop the projection step because ﬁk(x) and ﬁk(y)
are always unequal. In this situation, ProSHLA is equivalent to SHLA, so SHLA is
convergent.

According to the above analysis, we have provided first theoretical convergence
support for SHLA-type algorithms which are widely used in numerous applications as
mentioned in introduction part. Compared with SHAPE, SHLA does not contain any
nonlinear terms so that it can be very efficient. Besides, SHLA can automatically
maintain the convexity of the approximation function if the initial piecewise linear
functions are properly constructed.

4. Experimental results for performance analysis

In this section, we use two experimental designs to evaluate the performance of the
algorithms: (1) An empty container repositioning problem which arises in the context
of two-stage stochastic programs with network recourse; and (2) a high dimensional
resource allocation problem as an extension experiment. In this section, the empty
container repositioning problem is first introduced and then we present the efficiency
of ProSHLA and SHLA. Sub-sequentially, we present the convergence of ProSHLA
and SHLA, and examine how & affects convergence performance, and compare the
performance under different distributions of random demands. Finally, an extension
experiment on a high dimensional resource allocation problem is conduncted to
evaluate the efficiency our algorithms.

4.1 Problem generator for the empty container repositioning problem

In this subsection, we test our algorithms in an empty container repositioning
problem faced by a major Chinese freight forwarder, who need to manage their
numerous empty container in a port network which is located in Pearl River Delta in a
fixed route from [23]. The port network contains several hubs (large ports) and
spokes (small ports). And the demand of empty container is usually uncertain. When
the forwarder need to decide the quantity of empty container to ship from one port to
another, they did not know the exact demand of container in the future [24, 25].
Thus, we can formulate the problem as a two-stage stochastic programs with
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network recourse. Before we formally introduce the problem, we present the
following notations.

L = setof ports;

d;; = demand from port i to portj in stage 1;

Dj =  demand from port i to portj in stage 2;

i = initial number of empty containers at port i;

S; = number of empty containers at port i in stage 2;

Cij = cost for moving an empty container from port i to portj;

¥ij = profit for moving a laden container from port i to portj;

Xjj = number of laden containers shipped from port i to portj in stage 1;
Vi = number of empty containers shipped from port i to portj in stage 1;

Then, the problem can be formulated as follows:

min ZZ{—Vljx,j + ci]yij} +E,[Q(x, w)], (30)

i€LjeLl

s.t.,

Z{x,] +yi].} =5, Viel (31)

jeL
S{xi+y;f =5 veL (32)

el
9,20, Vi,jeL (33)

where the recourse function Q (x, w) is given as follows:

Q(x,w) = min ZZ{_VUXZJ(Q)) + cyyl](a))} (34)

ieLjel
s.t.,
Z{xlj(a’) +yij<w)} =s, VieL (35)
jeL
2{’“’1(“’) ”fj(“’)} =5, VEL (36)
i€
¥;(®)20, Vi,jeL (37)

In order to evaluate the algorithm, a set of problem instances are created. In this
study, the problem generator creates ports in L in a 100-mile by 100-mile rectangle.
We simply use the Euclidean distance between each pair of ports as the corresponding
travel distance. We set the holding cost for a demand to 15 cents per time instance. We
set the net profit for a demand to 500 cents per mile. The empty cost is set to 40 cents.
The demand D;; between locations i and j is set as follows:
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Dj; = out; - in; - v,

where

out; = outbound potential for port j;

in; = inbound potential for port 7;

v = random variable.

The outbound and inbound potentials for each port represent the capability of the
location to generate outbound demand or attract inbound containers. In the generator,
We draw the inbound potential, in;, for port i between 0.2 and 1.8 uniformly, while
the corresponding out; is set as outj = 2 — in; . The reason for this setting is that in real-
world regions, large inbound flows port usually exhibits small outbound flows. We
also include a random number » with mean 30, that is, the typical daily demand
between each pair of locations to capture the randomness in demand. In order to test
the performance of the algorithms under different distributions, we also evaluate the
performance under exponential, normal and uniform distribution. We set the
stepsize oy, to 1/k.

We solve a deterministic network flow problem to construct an initial piecewise
linear functions as described in [1], and we replace the random demand by their mean
values in the deterministic problem. Then, we can obtain § = {S1,$,, ..., S, }. For

~0 —
eachi €L, we generate the initial approximation function Q; (x) = ¢(x — Si)z,x =
0,5, ..., kb, ... Kb, where ¢ is a positive parameter and x € [0, K§]. In the projection
step, a least-squares problem is solved as following:

K = argmin(xk+1 - (xk +ap gt (xk)))z,ka eX.
4.2 Effectiveness and efficiency performance

To test the efficiency of the algorithm, we use a myopic algorithm, a posterior
bound (PB), the L-shaped algorithm [12] and the inexact cut algorithm [15] as
benchmarks. The myopic algorithm simply solves a static deterministic assignment
problem at the current stage while ignoring uncertainties in the second stage. It is
necessary to solve a deterministic network flow problem with all realized demands to
obtain PB. Note that such a posterior optimization involves no uncertainty since
decisions are allowed to anticipate future demand. Thus, the cost of PB is the lowest
and normally unreachable. As for the L-shaped algorithm and the inexact cut algo-
rithm, a group of linear programming problems with valid cuts should be solved.

We use 8 instances, in which the number of empty containers is ranged from 400
to 3200, and the corresponding number of ports is ranged from 5 to 40. For each
instance, 2000 samples are implemented and we obtain the solutions of the myopic
algorithm and the sample means of PB, the inexact cut algorithm, the L-shaped
algorithm, SHLA and ProSHLA. For SHLA, two classes of initial functions with § = 1
and 6 = 2 are selected, whereas we select § = 2 for ProSHLA.

We show the experiment results on total cost in Table 1. In Table 1, column 1
presents the number of ports, and column 2 shows the number of the empty con-
tainers. The PB bounds are contained in column 3. Columns 4-9 contain the solutions
achieved by the myopic algorithm, the L-shaped algorithm, the inexact cut algorithm,
SHLA-1, SHLA-2 and ProSHLA, respectively. From the table, it clearly demonstrates
that the inexact cut algorithm, the L-shaped algorithm, SHLA, and ProSHLA can
achieve optimal or very-near-optimal solutions, which are closer to the PB (lowest)
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Ngr N, Computation time (s)
Inexact cut L-shaped ProSHLA SHLA-1 SHLA-2
400 5 76 153 43 28 28
800 10 382 535 148 90 95
1200 15 598 1140 332 224 217
1600 20 1084 2277 628 417 420
2000 25 1843 4190 1107 676 790
2400 30 2338 5491 1559 1112 1066
2800 35 4249 8075 2341 1539 1531
3200 40 8154 18,636 5307 3010 3428
Table 2.

Computational time of ProSHLA and SHLA.

bounds than those of the myopic method. Moreover, the solutions of the L-shaped
algorithm are the best solutions known, which are slightly better than the inexact cut
algorithm because the latter produces valid cuts that are inexact in the sense that they
are not as constraining as optimality cuts in the Lshaped algorithm. In addition, the
performance of SHLA (5 = 1) outperforms that of SHLA (5 = 2) and ProSHLA (6 = 2),
the reason is that small 6 can lead to good performance. A specific discussion with
impact of § will be demonstrated later. The performance of ProSHLA (§ = 2) is slight
better than SHLA (8 = 2). Because the projection steps in ProSHLA help improve the
solution. Considering the speed of convergence is quite important in practical prob-
lems, we will focus on the computational time for different algorithms, which is
shown in the Table 2 below.

As shown in Table 2, ProSHLA and SHLA are more efficient than the inexact cut
algorithm and the L-shaped algorithm because ProSHLA and SHLA can utilize the
network structure while using the stochastic sub-gradient to approximate the recourse
function. From the table, we find that the inexact cut algorithm and L-shaped algorithm
are time-consuming, the reason is that here are 2000 samples, and it corresponds to a
very large number of cuts for the inexact cut algorithm and L-shaped algorithm. It can
also be observed that the computational time of the inexact cut algorithm is smaller than
that of the L-shaped algorithm, and the reason is that the optimality cut in L-shaped is
more than the valid cuts in the inexact cut algorithm. Moreover, the computational time
of SHLA (6 = 1) is almost equal to that of (§ = 2), which reveals that the computational
time canot be affect by the choice of 6. In contrary, ProSHLA(S = 2) requires more
computational time than SHLA (6 = 2), and the reason is that the projection step in
ProSHLA are time-consuming. In the following text, we focus on the convergence
performance of SHLA and ProSHLA. Thus, only the results of the myopic algorithm,
PB, ProSHLA and SHLA are demonstrated, and we use the solutions of the myopic
algorithm and PB as the upper and lower bounds, respectively.

4.3 Analysis of convergence performance

In this subsection, a set of experiments are conducted to evaluate the convergence
performance of SHLA and ProSHLA, and we choose the second instance (N = 800

109



Multi-Agent Technologies and Machine Learning

100+——+——+—+—+ T+
99.95r .
g
99.9- 1
& ——PB
E
£ —— ProSHLA
© 99.851 1
o ——SHLA
3
5 99.8r 1
a
99.75¢ .
1 1 1 1 1
o 100 200 300 400 500 600

Number of Samples

Figure 3.
Convergence vate of ProSHLA and SHLA.

GaptoPB (%)

400 T
300 =

Number Of Samples 100

Figure 4.
Gaps to PB for various 6.

110



Approximate Dynamic Programming: An Efficient Machine Learning Algorithm
DOT: http://dx.doi.org/10.5772/intechopen.106691

Total Cost

& 0 7m0 a0 W

Iteration Number

Figure 5.
Comparison of ProSHLA and SHLA for various 6.

and Ny, = 10) as the experimental illustration. The range of the sample number is set
from 20 to 640, and we record the result of each combination of Nz and N;, at each
iteration. We can seem from Figure 3 that the convergence rate of SHLA-1 and
ProSHLA is remarkably high.

To further evaluate how & affects the algorithm’s convergence performance, a set
of computational experiments are conducted. We increase & from 1 to 16 and the
number of samples from 20 to 640. Here are many combination of § and the number
of samples. We record the sample means of the solutions of SHLA and ProSHLA, PB
and the myopic method for each combination. We demonstrate the 3D plots of the
solution in Figures 4 and 5. As in Figure 4, the layers of ProSHLA and SHLA are
extremely close to the PB layer, and this implies the ProSHLA and SHLA are conver-
gent rapidly for various §. Furthermore, it can been seem that the performance of
ProSHLA can slightly exceeds that of SHLA. In order to further investigate the differ-
ence between SHLA and ProSHLA, we demonstrate the performance of ProSHLA and
SHLA separately in Figure 5 (without the myopic algorithm and PB). As described in
Figure 5, the choice of § can affect the performance of ProSHLA and SHLA, and a
small 6 usually leads to a good solution.

We provides more details on the convergence performance of ProSHLA and SHLA
for various 6 in Table 3 below, which clearly demonstrates that in conjunction with
the small 6, the performance of SHLA and ProSHLA is close to that of PB.
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Total cost—% gap to PB (computational time in seconds)

3 PB Myopic SHLA ProSHLA

1 —59,397,423 1.6251% 0.0989%(909.5) 0.0989% (1441.5)
2 —59,397,423 1.6251% 0.0997%(907.9) 0.0995% (1506.5)
4 —59,397,423 1.6251% 0.1001%(901.8) 0.0997% (1503.6)
6 —59,397,423 1.6251% 0.1005%(911.5) 0.1004% (1553.5)
8 —59,397,423 1.6251% 0.1028%(901.7) 0.1024% (1535.6)
16 —59,397,423 1.6251% 0.1189%(920.3) 0.1150% (1565.4)

Table 3.

Performance under various & (no. of samples is 2000).

4.4 An extension experiment on a high dimensional resource allocation problem

Due to the limitation of the container setting, an extension experiment on a higher

dimensional problem is considered in this subsection. In this problem, there exists

several retailers R and many production facilities (with warehouse) L. In stage 1, an
amount x;; is moved to a warehouse or retailer or location j from production facility i
before the retail demand is realized. When we know the consumer’s demand, then y;

products are moved to retailer location j from production facility i. Besides, the type of

the consumer’s demand at each location j is different, we denote the type ast€ T, we
set the consumer’s demand of type ¢ at location j as D¢, and provide p! unit of type ¢ at

production location i. We denote the production capacity of location i by cap,. This
problem is a non-separable problem.
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Subsequently, we formulate the problem as follows:

min Z Z cl-ljylj +E,[Q(x, )]

i€eLjeLUR
subject to
Z xijj <cap;, Vi€L
jELUR
inj =55 V]'ELUR
i€l

xij,stO, VZ.EL,V].ELUR

where the recourse function Q (x, w) is given as follows:

Q(x, w) = min Z chyy - ZZV’Epf

i€LURj€R i€RteT
subject to

VieLUR

E )‘1] = Si»

jER

(38)

(39)

(40)

(41)

(42)

(43)
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> ;=D pl, VieR (44)

i€LUR teT

pj<Di(w), Vt€LUR,Yj€R,teT (45)

In the first stage, we set c}j = c§, + cid;j, where d;; is the Euclidean distance between

locations i and j, and ¢}, is the production cost for each product and ¢! is the transpor-
tation cost per mile. For the second stage costs, we set

2 cidy if icLori=j
7\ +3djificRandi #j

c2 is the transportation cost per mile in the second stage, and ¢} represents the fixed
charge for moving each product from one retailer location to another retailer location.
For one unit of the demand type ¢ occurring in retailer location 7, a revenue 7 will be
obtained. Our problem instances differ in the number of products and |[L UR|, and it
determines the dimensionality of the recourse function.

Similarly, we use the inexact cut algorithm [15] and the L-shaped algorithm [12] as
benchmarks, and these two algorithms are Benders decomposition based methods.
Considering the convergence rate is quite important practically, in this part, our main
focus is on the speed of convergence. In order to evaluate the speed of convergence of
different methods, each algorithm is implemented for 40, 160, 640, 1200, and 4000
iterations, and a side by side comparison of the algorithms has been made when the
number of iteration increases. For the L-shaped and inexact cut algorithms, the num-
ber of iterations refer to the number of cuts used to approximate the expected
recourse function. For ProSHLA (6 = 2), the number of iterations refer to the number
of demand samples used.

Table 4 below shows the experiment results. In the experiment, the L-shaped
algorithm has been used to help find the optimal solution. In the table, the numbers
denote the percent deviation between the optimal value and the objective value.

For all problem instances, we use the L-shaped algorithm to find the optimal
solution. The numbers in the table represent the percent deviation between the objec-
tive value and the optimal value obtained after a certain number of iterations. The
computational time per iteration are also listed in Table 4. The computational results
on 5 scale of dimensionality instances.

In Table 4 above, column 1 presents the number of the locations, and column 2
shows the number of the products. Column 3 presnets the method that we used in the
experiment. The percent deviation from the optimal value are contained in columns 4
to 8. Column 9 lists the computational time per iteration. According to results in
Table 4, ProSHLA is able to obtain high quality solutions very efficient for different
problem instance, and it can maintain the consistent performance in problem of
different sizes, especially for large problems. This performance characteristic makes
ProSHLA promising for large-scale application. In comparison with these two Benders
decomposition-based methods, ProSHLA is competitive for high dimensional prob-
lems. The reason is that separable approximations usually scale much more easily to
very high dimensional problems. Note that in the first problem instance, when the
number of location is 6 and the number of resource is 10 (the inventory in a location
might be 0, 1, 2), the result of ProSHLA seems to be breakdown, because the problem
instance in this subsection is non-separable, which may introduce errors when we use
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Number of iterations

NiLug| Np Algorithm 40 160 640 1200 4000 Sec./iter.
ILUR|=6 10 ProSHLA 13.26 8.61 2.93 2.92 2.73 0.01
L-shaped 1.17 0 0 0 0 0.07
Inexact cut 0.96 0 0 0 0 0.05
ILUR| =10 200 ProSHLA 10.58 3.01 0.61 0.29 0.12 0.07
L-shaped 1.85 0 0 0 0 0.26
Inexact cut 1.31 0 0 0 0 0.21
[ILUR] =20 400 ProSHLA 7.22 1.22 0.42 0.23 0.05 0.30
L-shaped 10.46 1.16 0 0 0 113
Inexact cut 6.63 0.98 0 0 0 1.04
[ILUR| =40 800 ProSHLA 6.03 0.82 0.34 0.17 0.02 0.83
L-shaped 23.57 3.23 0.31 0.02 0 9.53
Inexact cut 17.16 2.24 0.13 0.01 0 8.72
|ILUR| =100" 2000 ProSHLA 5.68 0.78 0.15 0.04 00.03 2.68
L-shaped 44.84 14.51 138 0.5 36.53
Inexact cut 29.56 8.14 0.91 0.25 0.03 30.98

Note. Figures represent the deviation from the best objective value known.
*Optimal solution not found.

Table 4.
Percent ervor over optimal solution with different algorithms costs.

the separable approximations to approximate the expected recourse function. How-
ever, it will not happen on large problems. As for large problems, the separable
approximations are nearly continuous, rather than being just piecewise continuous.

According to the above computational results, ProSHLA is a promising method for
two-stage stochastic programs, but more comprehensive numerical work is needed
before using it in a particular problem. Owing to its efficient performance and
simplicity, ProSHLA is a very promising candidate for high-dimensional problems.
Moreover, we can use it as an initialization routine method for high-dimensional
stochastic programming problems, and it can exploit high-quality initial feasible
solution.

5. Conclusion

In this study, we propose an efficient machine learning algorithm for two-stage
stochastic programs. This machine learning algorithm is termed as projected stochas-
tic hybrid learning algorithm, and consists of stochastic sub-gradient and piecewise
linear approximation methods. We use the stochastic sub-gradient and sample infor-
mation to update the piecewise linear approximation on the objective function. Then
we introduce a projection step, which implemented the sub-gradient methods, to
jump out from a local optimum, so that we can achieve a global optimum. By the
innovative projection step, we show the convergent property of the algorithm for
general two-stage stochastic programs. Furthermore, for the network recourse prob-
lem, our algorithm can drop the projection steps, but still maintains the convergence
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property. The computational results reveal the efficiency of the proposed algorithms
and the proposed algorithms are distribution-free. Furthermore, the convergence rate
can be affected by the granularity of the initial function (5). Small granularity usually
leads to a high convergence rate. Finally, the computational results also show that the
proposed algorithm is very competitive for high dimensional problems. Compared
with MAT, the proposed algorithm can collect the information based on knowledge
gradients and use it to update the recourse function by learning steps. It can overcome
the “curse of dimensionality”. Moreover, it can transfer the problem into a polynomial
solvable problem.
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