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Preface

RNA virus infections are a major health problem. There has been a sudden increase in 
cases of infectious diseases worldwide, including swine flu, MERS-CoV, and influenza 
virus SARS-COV2, which caused a devastating pandemic that killed millions of 
people. Since 1900, there have been ten pandemics, with viral orthomyxovirus and 
coronavirus being mostly responsible for eight. It might be genetic reassortment 
among human and animal viruses by the antigenic shift that results in new pandemic 
viruses; however, most research has revealed that origin is related to the zoonotic or 
interspecies transmission of viruses (e.g., coronavirus). Climate change also plays a 
significant role in the risk of arboviruses and rodent-borne viruses. To prevent future 
pandemics of RNA virus infections, constant surveillance in humans and animals as 
well as laboratory testing and screening, improved biosecurity measures, and more 
effective vaccines and broad-spectrum antivirals are needed.

This book examines pandemic-causing RNA viral infections, including SARS-CoV2, 
respiratory syncytial virus (RSV), influenza, HIV, and others. It provides information 
on molecular epidemiology features, transmission dynamics, pandemic outbreaks, 
pathogenesis, laboratory diagnosis, and prevention and control of RNA viruses using 
the One Health approach. Chapters address such topics as chronic inflammatory bowel 
disease and central nervous system demyelination, the role of IL6 in RNA virus infec-
tion, neurotropic virus-induced meningoencephalomyelitis, COVID-19 prevention 
through vitamins and supplements, aging and HIV risk in nonpregnant persons, RNA 
viruses in the tropics, and much more. Keywords: RNA virus, SARS-CoV2, Climate, 
Epidemiology, Diagnosis, Vaccine, One health.

Yogendra Shah
COVID-19 PCR Lab,

Seti Provincial Hospital,
Dhangadhi, Nepal
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Chapter 1

Introductory Chapter: Plan and 
Preparedness to Prevent and 
Combat against the Pandemic RNA 
Virus Infection
Yogendra Shah and Jagadish Joshi

1. Introduction

Emerging and re-emerging of infectious diseases are one of the major public 
health threats for human health population globally [1, 2]. Nonetheless, infec-
tious disease remains huge burden in the least developing countries with low and 
lower-middle incomes [1]. Additionally, more deaths were records from emerging 
and re-emerging viral diseases and new virus infections in contrast to seasonal 
and endemic infection that continued throughout the twenty-first century [3]. For 
example, the world has been struggling with the epidemic of dengue virus, severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV2), Middle East respiratory 
syndrome (MERS), Zika virus, influenza virus, rabies virus, Nipah virus, and Ebola 
virus as in Table 1 [4].

Among infectious diseases, RNA viruses are one of the primary causes of human 
infection and the prognosis of wherever new RNA viruses are likely to be exposed is 
an important public health alarming like ongoing pandemic (SARS-CoV-2), and the 
causative agent of coronavirus disease 2019 (COVID-19) pandemic has been infected 
more than 5,20,373,492 million people with over 6,270,232 deaths globally as reported 
by WHO, May 14, 2022 [5]. For instance, COVID-19 pandemic had caused a huge 
devastating influence on lives and livelihoods around the worldwide [3]. Therefore, 
emerging and re-emerging infectious diseases remain as the significant causes of 
human and animal morbidity and mortality to significant health care expenses in 
developing as well as developed countries [1]. Mostly, human RNA virus can be 
evolved and discovery owing to socioeconomic, land use, climate, and biodiversity 
variables. Abnormally, vector-borne viruses and severely zoonotic viruses are more 
related to climate and biodiversity, whereas non-vector-borne viruses and human 
transmissible viruses are more connected with urbanization. According to previous 
studies, it is revealed that predicted areas are in three new regions including East and 
Southeast Asia, India, and Central America from 2010 to 2019, probably by increasing 
surveillance and diversity of their virome [6].

Monkey pox is caused by chicken pox virus, one of the viral zoonotic diseases 
that was first recognized in human in 1970 at Democratic Republic of the Congo in 
a 9-year-old boy and also has been reported since 1970 from 11 African countries. 
Monkey pox has been reported to be outbreak leading to more than 70 cases of 
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monkey pox from US (September 2018), UK (September 2018; December 2019; 
May 2021; and May 2022), Singapore (May 2018), and USA (July–November 2021). 
According to promedmail.org, recently have been identified the confirmed cases 
of monkey pox virus from Spain (14 cases; May 2022), France (1 cases; May 20, 
2022), Belgium (2 cases), Germany (1 case), Italy (1 case; May 19, 2022), Sweden 
(1 case, May 19, 2022), Portugal (14 cases), UK (9 cases, May 6, 2022), Canada 
(2 cases), and Australia (1 cases, May 20, 2022) with cases fatality ratio around 
3–6% [7, 8]. Additionally, WHO have been also reported the virus named called 
as acute hepatitis of unknown origin as April 21, 2022 with at least 169 cases from 
11 countries located in the WHO European Region and one country in the WHO 
Region of the Americas (Table 1) [9].

One health approach should be rigorously engaged to detect new RNA virus cases, 
by surveillance as well as isolated and separate the suspected human and animal, labo-
ratory diagnosis of infectious and zoonotic diseases, and treating them by providing 
early warning to veterinary and human public health authorities [10–13]. This chapter 
will provide the overview essence on globally concern and emerging public health 
RNA virus infections such as SARS-CoV2, RSV, Influenza virus, HIV, and others. The 
main importance of this chapter was to clearly understand the molecular epidemiology 
pattern, transmission dynamics, host response, viral evolution, molecular biology, 
pathogenesis mechanism of viral infection, diagnosis, and control about the RNA virus 
infection. This study will be help to provide the updating research information to the 

Years Pandemics Pathogens Reservoir 
Host

Deaths 
(Mortality 

rate)

Reproduction 
number

Reference

1889–1893 Russian flu Influenza 
A/H3N8?

Avian 1.5million 
(1.56%/1000)

2.15% [10]

1918–1919 Spanish Flu Influenza 
A/H2N2

Avian 50 million 2.4–10.6% [10]

1957–1959 Asian Flu Influenza 
A/H2N2

Avian 1.5–2 million 
(1.2–2.6%)

1.8% [10]

1968–1970 Hong Kong 
Flu

Influenza 
A/H3N2

Avian 1 million 
(0.10–0.28%)

1.06–2.06% [10]

2002–2003 Severe 
acute 

respiratory 
syndrome 

(SARS)

SARS-
CoV1

Bats, palm 
civets

811 (9–10%) 2–4% [10]

2009–2010 Swine Flu Influenza 
A/H1N1

Pigs 18,209 [10]

2015- Middle East 
respiratory 
syndrome 
(MERS)

MERS-CoV Bats, 
dromedary 

camels

858 (30%) 048–8.59% [10]

2019-ongoing COVID-19 SARS-
CoV2

Bats, 
pangolins, 

civet cat

7 million 
(0.6–2%)

1–2.56% [10]

Table 1. 
Pandemic of RNA viruses causing infection globally from 1983 to 2022.
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Chapter 2

Respiratory Syncytial Virus
Sattya Narayan Talukdar and Masfique Mehedi

Abstract

Respiratory Syncytial Virus (RSV)-driven bronchiolitis is one of the most common 
causes of pediatric hospitalization. Every year, we face 33.1 million episodes of RSV-
driven lower respiratory tract infection without any available vaccine or cost-effective 
therapeutics since the discovery of RSV eighty years before. RSV is an enveloped RNA 
virus belonging to the pneumoviridae family of viruses. This chapter aims to elucidate 
the structure and functions of the RSV genome and proteins and the mechanism of 
RSV infection in host cells from entry to budding, which will provide current insight 
into the RSV-host relationship. In addition, this book chapter summarizes the recent 
research outcomes regarding the structure of RSV and the functions of all viral 
proteins along with the RSV life cycle and cell-to-cell spread.

Keywords: RSV, RNA virus, RNA genome, replicative cycle, fusion protein, cell-to-cell 
spread, filopodia

1. Introduction

Human respiratory syncytial virus (RSV), despite being a human virus, was 
first isolated in 1955 from a chimpanzee with respiratory illness [1]. Since its first 
discovery, it did not take long to isolate RSV from infants with respiratory diseases. 
Indeed, serological studies verified the existence of RSV infection in infants and 
children [2, 3]. Now, RSV infection is a prominent cause of lower respiratory tract 
diseases (bronchiolitis and pneumonia) and hospitalization in children worldwide 
[4]. According to the most recent virus taxonomy, RSV now belongs to a new family 
Pneumoviridae of the order Mononegavirales [5].

2. RSV virion

RSV is an enveloped and cytoplasmic virus with non-segmented, negative-sense, 
single-stranded RNA genome [6]. RSV virions are known to bud out on the infected 
cell surface. The filamentous virion is up to 12 μm in length and 60 to 200 nm in 
diameter (Figure 1) [7–9]. RSV virions can be irregular-shaped spherical particles 
with a diameter ranging from 100 to 350 nm. Both filamentous and spherical virus 
particles mostly remain cell-associated [9].



RNA Viruses Infection

8

3. RSV strains

There are two RSV strains as RSV A and RSV B and are categorized on basis of 
genetic and antigenic differences [10]. However, mostly extensive antigenic and 
nucleotide sequence variation was observed between RSV A and RSV B, however, 
genetic as well as antigenic variability was also studied within the individual groups of 
RSV [11]. Multiple studies demonstrated the differences in viral replication between 
these two groups; specifically, RSV A replicated to higher titers than RSV B viruses 
in both cell culture and animal models [12–16]. In addition, RSV A infection is more 
virulent and severe than RSV B [17].

4. RSV RNA and proteins

The RSV genome is a single-stranded, negative-sense RNA whose length is 
ranging from 15,191 to 15,226 nucleotides [9]. The RSV genome contains ten genes in 
the order 3′-NS1-NS2-N-P-M-SH-G-F-M2-L-5′ that are transcribed sequentially into 
10 independent messenger RNAs (mRNAs) (Figure 2). Each RSV mRNA encodes a 
single major protein except for M2, which encodes two separate open reading frames 
(ORF) for M2–1 and M2–2 proteins, respectively [9, 18–20]. The M2–1 and M2–2 
ORF are located in the upstream and downstream parts of the mRNA, respectively 
[9]. Like many RNA viruses, RSV brings ribonucleoprotein (RNP) complex as a piece 
of transcriptional machinery for its genome transcription and replication inside the 
infected cell cytoplasm. The RNP complex consists of the viral genome, nucleoprotein 
(N), phosphoprotein (P), and RNA-dependent RNA polymerase [L) [21].

Figure 1. 
RSV virion. A photomicrograph of an RSV filamentous virion. The image was taken under electron microscope.

Figure 2. 
Schematic of an RSV genome. RSV genome is a negative-sense non-segmented single-stranded RNA. The genome 
contained 10 genes oriented from 3′ end: NS1, NS2, N, P, M, SH, G, F, M2 (M2–1 and M2–2), and L.
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4.1 Nucleoprotein (N)

The RNA genome is wrapped by N (391 amino acids) to create a nuclease-resistant, 
helical RNP complex called nucleocapsid (NC), and it functions as the template for 
both replication and transcription [22, 23]. RSV virus genome for replication does 
not follow the “rule of six” [24], which is common to most paramyxoviruses [25]. The 
three-dimensional (3D) crystal structure revealed a decameric, ribonucleoprotein com-
plex of N protein and RNA with 3.3 A° resolution and suggested N protein can function 
as a helicase to separate temporary double-stranded RNA during RNA synthesis [23]. 
As a decameric structure, every N subunit has a core region comprising two domains, 
N-terminal and C-terminal, which are linked by a hinge region and the RNA genome 
turns inside a basic surface groove located at the interface of N-terminal/C-terminal; 
specifically, every N subunit interacts with seven ribonucleotides of RNA [23].

4.2 RNA-dependent RNA polymerase (L)

The L protein (2165 amino acids) has three enzymatic domains including RNA-
dependent RNA polymerase (RdRp) domain, polyribonucleotidyl transferase domain 
which is essential for capping located in its N-terminal, and methyltransferase 
domain which is necessary for cap methylation located in C-terminal [26–29]. Viral 
mRNA undergoes a post-transcriptional modification before translation and meth-
yltransferase plays a significant role by catalyzing the methylation of cap structure at 
both N7- and 2′-O-positions because N7-methylation is vital for viral RNA translation 
and 2′-O-methylation is important for hiding viral RNA from the innate immunity 
system [30].

4.3 Phosphoprotein (P)

The P protein (241 amino acids) is a homotetrameric protein consisting of 
N-terminal domain, oligomerization domain, and C-terminal domain and it functions 
as a cofactor of RdRp and plays a significant role in transcription and replication by net-
working with other RSV proteins [31–35]. P protein functions as a multimodular adaptor 
for RNA synthesis by interacting with N-RNA, L, and M2–1 [36]. P can act as a chap-
erone for newly synthesized N (N0) protein by forming an N0-P complex that prevents 
the association of N0 with host RNA [37]. This protein is heavily phosphorylated by host 
kinase enzymes and it has 41 serine and threonine residues as potential phosphorylation 
sites; specifically, phosphorylation at residues T105, T188, T210, and S203 are essential 
for replication, and phosphorylation at residue S156 is vital for viral RNA synthesis [38].

4.4 RSV glycoproteins

As an enveloped virus, the RSV lipid envelope contains three transmembrane gly-
coproteins including a fusion (F) protein, an attachment glycoprotein (G), and a small 
hydrophobic (SH) protein; F and G proteins are essential for viral attachment and 
entry whereas SH protein is less likely involved in viral entry and budding [39, 40].

4.4.1 Fusion (F) protein

Fusion protein is a type 1 transmembrane protein (574 amino acids including a 
cytoplasmic tail domain of approximately 24 residues) involved in viral entry and 
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assembly [39, 41]. Initially, F protein is synthesized as F0 protein and subsequently, 
F0 undergoes post-translational modification with multiple N-linked glycosylations 
depending on RSV strains [42]. To obtain fusion competence, precursor F0 protein 
(approximately 68–75 KDa) undergoes proteolytic cleavage by furin-like protease 
which cleaves two polybasic sites and removes a glycosylated peptide of 27 amino 
acids (Peptide 27 or Pep27) [43, 44]. This cleavage process occurs in the trans-Golgi 
network and then fusion protein transport to plasma membrane generating two 
subunits: one is amino-terminal F2 subunit (approximately 15–20 KDa) and another 
is carboxy-terminal F1 subunit (approximately 50–55 KDa) [45, 46]. A heterodimeric 
protomer is formed by F1 and F2 subunits covalently connected by disulfide bonds 
and three protomers combinedly form the matured trimeric form of F protein [47]. 
After trimerization, F protein exists as a prefusion conformation remaining approxi-
mately 12 nm above the membrane of the virus [48]. This prefusion conformation 
is not a stable form and undergoes a refolding process [6, 49]. This refolding process 
creates a more stable post-fusion conformation of F protein remaining approximately 
17 nm above the viral membrane [50, 51]. The sequence difference of F ectodomains is 
almost 5% between RSV A and RSV B and therefore, F protein undergoes less anti-
genic drift and gets preference for suitable vaccine candidates [52].

4.4.2 Attachment glycoprotein (G)

In RSV-infected cells, G protein can exist in two forms; one is a membrane-bound 
form responsible for viral attachment and another is a secreted isoform responsible 
for immune evasion [53, 54]. The membrane-bound form (298 amino acids) is a type 
2 integral membrane protein [55]. G protein has an amino-terminal cytoplasmic 
domain and a hydrophobic transmembrane domain; moreover, its ectodomain which 
undergoes post-translational modification with 4–5 N-linked glycans and 30–40 
O-linked glycans, has two mucin-like regions and heparin-binding domains [55–57]. 
The translation of secreted G protein starts at an alternative AUG (Met48) located 
in the transmembrane domain allowing the ectodomain to secrete from the cell [58]. 
Both membrane-bound and secreted forms of G proteins are thought to be involved 
in RSV pathogenesis [59]. The higher variation of the mucin-like domain caused two 
subtypes of RSV: RSV A and RSV B [60].

4.4.3 Small hydrophobic (SH) protein

SH glycoprotein is a small transmembrane protein (64 amino acids for RSV A 
and 65 amino acids for RSV B) attached by a hydrophobic signal-anchor sequence 
closer to the N-terminal with extracellular C-terminal orientation; in addition, this 
protein is considered as less immunogenic because of smaller size and lower abun-
dance during RSV infection [61]. It can exist in several forms including full-length 
form or post-translational modified form by glycosylation and phosphorylation 
[62]. Although its function is not clearly understood like other glycoproteins, several 
studies suggested SH protein can play an auxiliary role during viral fusion along with 
F glycoprotein; however, SH protein is not crucial for viral entry and syncytium for-
mation [63–65]. SH protein primarily amasses in the lipid raft membrane of the Golgi 
complex and endoplasmic reticulum; however, lower levels of SH protein are associ-
ated with the envelope of filamentous virus [40]. SH protein did not play an essential 
role during viral replication in cell culture but SH-deleted RSV infection caused 
10-fold lower titers in animal models [39, 66]. It can induce membrane permeability 
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and form pentameric ion channels suggesting its role as viroporins which are short 
(approximately 100 amino acids) membrane proteins forming oligomers to act as ion 
channels [67]. Moreover, SH protein is essential to activate the NLRP3 inflammasome 
[68, 69]. The role of SH protein on apoptosis is not clear because RSV infected A549 
cells produced TNF-α and cells were not sensitive to TNF-α-induced death but cells 
demonstrated a higher level of apoptosis after SH-deleted RSV infection indicating 
that RSV SH protein may affect the TNF-α pathway resulting in apoptosis delay by an 
alternative mechanism [70].

4.5 RSV matrix proteins (M and M2)

RSV has two matrix proteins including M protein and M2 protein [58].

4.5.1 M protein

M protein (256 amino acids) is a non-glycosylated protein located in the innermost 
part of the viral envelope [71]. It is the main protein responsible for viral assembly 
and budding by interacting with the cell membrane, viral envelope, and viral nucleo-
capsid [72, 73]. M protein has a zinc finger domain, two clusters of basic amino 
acids indicating a nuclear localization signal and two nuclear export signals and its 
N-terminal has lower hydrophobicity; in contrast, C-terminal has higher hydro-
phobicity [74]. M protein contains multiple phosphorylation sites and undergoes 
phosphorylation during infection but it is unclear whether these phosphorylations 
control its function [75]. During the early phase of infection, M protein is present in 
the host nucleus and inhibits host cellular transcription [76]. During the late phase of 
infection, M protein is mostly cytoplasmic, interacts with nucleocapsid, and inhibits 
the activity of viral transcriptase [77]. M protein is located in the cytoplasmic part 
of the plasma membrane-associated with the lipid rafts along with G and N proteins 
implying that lipid rafts can function as a platform for the assembly and budding of 
RSV [73]. M protein is active in a dimer form and the conversion of M-M dimer to 
oligomer is essential for viral assembly because the interference of dimer formation 
reduces viral filament maturation and budding [21].

4.5.2 M2 (M2-1 and M2-2) protein

M2–1 and M2–2 are nucleocapsid associated proteins [78]. RSV M2 gene has two 
overlapping ORFs as M2–1 and M2–2 [79]. The recent crystal structure of the M2–1 
(194 amino acids) protein has revealed its native tetrameric form with 2.5 Å resolu-
tion and each of its monomers contains three domains including zinc-binding, 
oligomerization, and core domains [80, 81]. M2–1 functions as a transcriptional 
anti-terminator and processivity factor [79, 82]. M2–1 did not affect genome and 
antigenome synthesis indicating that M2–1 is not involved in RNA replication 
[79, 83]. M2–2 protein (90 amino acids) acts as a regulatory factor switching from 
transcription to RNA replication because mRNA accumulation was intensely 
higher after 12–15 hours of infection and then flattened in case of wild-type virus 
infection but M2–2 knockout virus infection showed continued accumulation [80]. 
Another study showed M2–2 protein could negatively regulate transcription and 
positively modulate RNA replication because recombinant RSV infection without 
NS1 and M2–2 protein demonstrated ten times lower viral growth kinetics in the 
upper respiratory tract of infants [84].
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4.6 RSV nonstructural (NS) proteins (NS1 and NS2)

RSV NS proteins including NS1 (139 amino acids) and NS2 (124 amino acids) play a 
crucial role in interfering with host innate immunity by forming a “Nonstructural degra-
dosome complex” which can act as a proteasome-like complex that disintegrates a massive 
number of proteins involved in the innate immune system [85, 86]. Infection with NS1 
and NS2 single- and double-gene-deleted RSV demonstrated that both proteins function 
individually and jointly to accomplish the complete inhibitory effect on type I and III IFNs 
whereas NS1 has a more individual function [87, 88]. Both NS1 and NS2 target retinoic 
acid-inducible gene I (RIG-I) like receptors (RLRs), which are considered as host pattern 
recognition receptors for RIG-I and melanoma differentiation-associated gene 5 (MDA5) 
[89]. Both NS1 and NS2 induce multiple chemokines and cytokines like RANTES, IL-8, 
TNFα during viral infection [90]. RIG-I activation by ubiquitination is vital for stimulat-
ing antiviral response and tripartite motif-containing protein 25 (TRIM25)-mediated 
K63-polyubiquitination is essential for RIG-I activation [91]. NS1 protein inhibits RIG-I 
ubiquitination by interacting with TRIM25 and eventually suppresses type-I interferon 
(IFN) signaling [92]. Cytosolic NS1 can go to the host nucleus and interacts with the gene 
regulatory domains of immune response genes, which can control gene transcription and 
eventually modulates host response against RSV infection [93]. NS1 localized to mitochon-
dria inhibits type-I interferon (IFN) signaling by binding with mitochondrial antiviral 
signaling protein (MAVS) because the MAVS-RIG-1 complex is essential for type-I IFN 
activation [94]. NS1 also stimulates miR-29a expression, which affects mRNA coding for 
interferon alpha/beta receptor 1 (IFNAR1) [95]. NS1 enhances autophagy by the mTOR 
pathway, which is beneficial for RSV replication but inhibits apoptosis and multiple 
inflammatory cytokines and IFN-α [96]. Recombinant RSV (NS-deficient) infection 
showed that mostly NS1 (partially NS2) inhibits the maturation of Dendritic cells, which 
in turn activates B and T cell responses [97]. NS1 can also inhibit the anti-inflammatory 
effect of glucocorticoids [98]. The recent X-ray crystal structure of NS2 reveals that it has 
a unique fold that allows to target molecules different from NS1 and activates distinct IFN 
antagonism pathway compared to NS1 [99]. Recombinant RSV virus without NS2 showed 
lower viral growth indicating the role of NS2 in viral replication by evading host immunity 
[100]. The increased level of IFNβ was not as high when recombinant RSV without NS1 
or NS1/NS2 were applied suggesting that both NS1 and NS2 work together for interferon 
signaling suppression [84]. NS2 also plays a significant role in NF-κB activation, which can 
initiate a cascade by binding transcription promoters of several proinflammatory cyto-
kines along with IRF-3 and IFN-α/β [90]. In addition to innate immunity, NS2 interferes 
with adaptive immunity by suppressing CD8+ T-cell responses as a consequence of 
controlling type 1 IFN [101]. Mostly NS2 along with NS1 play a role in delaying apoptosis, 
which can enable prolonged RSV replication by activating 3-phophoinositide-dependent 
protein kinase (PDK)-RAC serine/threonine-protein kinase-glycogen synthase kinase 
(GSK) pathway [102]. In addition, NS2 plays a significant role in modulating cell morphol-
ogy, which causes the shedding of infected cells and the spreading of RSV virions [103].

5. Replicative cycle of RSV

5.1 Entry

RSV infection mostly occurs in the apical side of ciliated cells and type 1 
pneumocyte; however, several reports suggested the presence of RSV RNA in the 
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extrapulmonary sites and fluids, but more investigations are required [104–107]. 
RSV entry has two major phases; the first step is virion attachment to the host cell 
and the next step is the fusion of viral and host cell membranes in which host factors 
can involve in both or any individual phases [52]. Heparin-binding domain located 
between mucin-rich domains of G protein interacts with the unbranched disaccharide 
polymers specifically glycosaminoglycans (GAGs) connected to transmembrane 
proteins on the cell surface for the attachment observed in multiple cell culture stud-
ies [108–110]. Variation of G protein lacking heparin-binding domain showed viral 
attachment indicating the involvement of other regions of G protein during attach-
ment [108]. Negatively charged regions of heparin sulfate contribute mostly and 
iduronic acid-containing GAG contributes minimally to the attachment [111–113]. 
Heparan sulfate proteoglycans (HSGP) act as the receptor for G protein in cell lines; 
however, recombinant RSV without G protein showed its infectivity; in contrast, 
HSGP does not express in ciliated epithelial cells, but G protein is still essential for 
infection in vivo [114–116]. However, the apical side of ciliated cells, which is the 
major site of RSV infection lack heparin sulfate indicating the involvement of other 
host factors, specifically, fractalkine receptor CX3C-chemokine receptor 1 (CX3CR1) 
bind to CX3C motif of G protein for the attachment [117, 118]. CX3CR1 expressed on 
the ciliated cells, acts as the receptor of G protein by interacting with its CX3C motif 
and mutations in the CX3C motif of G protein reduces RSV infection in vivo  
[117, 119–121]. F protein is involved in the viral attachment because RSV lacking G 
and SH proteins grows in cell culture studies and it interacts with heparin sulfate like 
G protein causing attachment and subsequent infection [63, 122, 123]. Almost 50% 
infection was observed after heparinase treatment and without GAG synthesis while 
RSV has F protein suggesting the interaction of F with other host factors; particularly, 
F protein facilitates entry by interacting with intercellular adhesion molecule 1, insu-
lin-like growth factor 1, epidermal growth factor receptor, and nucleolin [124–127]. 
Host and viral membrane then fuse after attachment so that viral particles can enter 
the cytoplasm and this fusion process is pH-independent and insensitive to lysosomal 
acidification [128, 129]. RSV infection induces an actin mediated rearrangement fol-
lowed by plasma membrane blebbing and excess fluid uptake causing internalization 
of viral particles in a Rab5 positive macropinisome and this endocytic entry depends 
on the activation of F protein by a second proteolytic cleavage catalyzed by furin-like 
enzymes after endocytosis observed in A549 cell [130].

5.2 Transcription and replication

RSV replication and transcription are dependent on viral components including 
viral RNA, N, P, L, and M2–1 [131]. RSV utilizes its own machinery (RNP complex) to 
replicate in the host cytoplasm [132]. Inclusion body formation is a hallmark of RSV 
infection produced by multiple viral proteins including N, P, L, and M2–1 and this 
cytoplasmic structure is increased with RSV infection in epithelial cells  
[72, 133, 134]. Specifically, N and P proteins are important for inclusion body forma-
tion because the expression of these proteins with or without RSV infection showed 
inclusion body formation [135]. P protein can hijack host cell machinery by forming 
a complex with host phosphatase (PP1) and this P-PP1 complex dephosphorylates 
M2–1, as a result, P protein can recruit M2–1 protein in the inclusion body to facilitate 
viral RNA synthesis [136]. M protein is also reported to localize in inclusion bodies 
mediated by M2–1 protein [137]. The inclusion body is thought to be the first place 
where M protein interacts with the ribonucleoprotein complex and M protein is 
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involved in the release of RNP from inclusion bodies towards budding [138]. Host 
actin cytoskeleton and Hsp70 proteins are also observed in inclusion bodies, but their 
role is not clear yet and they perhaps facilitate viral machinery [139]. RSV infection 
causes vigorous stress on the host cell resulting formation of cytoplasmic stress gran-
ules, which are different from cytoplasmic inclusion bodies and these stress granule 
formations facilitates viral replication [140].

Both viral RNA replication and mRNA transcription start from the same single 
promoter in leader (le) region (44-nucleotide long) at the 3′ end of RSV genome 
and it produces methyl-guanosine capped and polyadenylated mRNA during tran-
scription and antigenome during replication [20, 141–143]. Each RSV gene has two 
conserved cis-acting elements including a gene start (gs) signal at the beginning and 
a gene end (ge) signal at the end [144]. The promoter of leader (Le) region at the 3′ 
end of RSV genome has two initiation sites, one is at position +1 or 1 U required for 
replication and another one is at position +3 or 3C required for transcription [145]. 9 
out of 10 gs signaling sequences are highly conserved whereas the tenth one has mini-
mal sequence difference in RSV genome [19]. During transcription, both gs and ge 
signaling sequences play significant role, specifically, gs signal provides direction to 
RNA-dependent RNA-polymerase (RdRp) for initiating RNA synthesis and ge signal 
provides direction to RdRp to polyadenylate and release the mRNA [146, 147]. Then 
RdRp connected to the template can initiate transcription again at the next gs signal 
and this process persists along RSV genome [144]. During replication, RdRp attaches 
a similar promoter sequence in le region, but it ignores ge signal and continues to pro-
ceed throughout the genome to produce an antigenome, which is a full-length posi-
tive-sense complement of RSV genome [145]. Viral genome and antigenome RNA are 
encapsidated in RSV nucleoprotein whereas viral mRNAs are not encapsidated [145]. 
Every nucleoprotein monomer interacts with 7 nucleotides of viral RNA and this 
complex forms a helical nucleocapsid acting as a template for the next RNA synthesis. 
This encapsidation is thought to increase RdRp activities to override ge signal during 
replication, therefore, encapsidation is the distinguishing factor between replication 
and transcription [23, 148, 149]. The trailer (tr) region (155-neucleotide long) at the 
3′ end of RSV antigenome has a promoter, which allows RdRp towards RSV genome 
synthesis [142, 143, 150]. The first 12 nucleotides of tr promoter are like those of the 
le promoter and the signal starts from position +1 and + 3 undergoes replication and 
transcription, respectively, but tr promoter cannot produce capped and polyadenyl-
ated mRNA because of lacking ge signal sequence adjacent to tr promoter [151, 152]. 
However, it is reported that tr promoter can initiate transcription of short RNA, 
which can inhibit cellular stress granules [153]. The concentration of ATP or GTP can 
determine the fate of replication and transcription at positions +1 (1 U) or position 
+3 (3C) observed at in vitro model, specifically, higher ATP concentration stimulates 
initiation from 1 U and evades initiation at 3C, in contrast, higher GTP concentration 
displays opposite effect [154]. Overall, L and P proteins form the core RdRp and L-P 
complex then form L-P-N and L-P-M2–1 complex to initiate replication and transcrip-
tion, respectively [79, 155].

5.3 Virion assembly and budding

Both assembly and budding of RSV occur at the apical side of ciliated cells [156]. 
RSV assembly is associated with lipid microdomain or lipid raft rich in cholesterol 
and sphingolipids; specifically, RSV filament formation observed in caveolin-1 and 
lipid-raft ganglioside GM1 rich regions of host cell surface membrane [157–159]. 
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RSV assembly into viral filament occurs at the cell surface requiring the activity 
of F protein cytoplasmic tail and M protein and this process are not dependent on 
actin polymerization [160]. However, Mehedi et al., showed the depletion of ARP2 
resulted in perturbation of RSV progeny virion on the infected cell surface, conse-
quently reducing viral shedding [8]. Viral assembly requires the activity of F protein 
cytoplasmic tail and M protein because both proteins accumulate in inclusion bodies 
cytoplasmic tail of F protein enables the release of the complex of matrix and RNP 
from inclusion bodies [161]. Although previous studies showed that three proteins 
including M, P, and F proteins are enough to create virus-like particles, a recent 
nuclear magnetic resonance study suggests that three novel interaction sites of M 
on P including site I in αN2 region, site II in 115 to 125 region and oligomerization 
domain where oligomerization domain is necessary for virus-like structure forma-
tion and virus release [137]. The incorporation of RSV proteins into lipid microdo-
mains during virus assembly can cause the interaction of F protein with host factors 
including caveolin-1, CD44, RhoA, causing microvillus-like projections essential for 
virus filament and syncytium formation [162, 163]. Actin cytoskeleton and actin-
associated pathways linked with PI3K and Rac GTPase are involved in RSV assembly 
[164]. M protein can bind DNA as well as RNA and it localizes into the nucleus 
mediated by importin-β1 nuclear import receptor, which forms a complex with 
guanine nucleotide-binding protein Ran and binds M protein amino acid 100–183  
[165, 166]. During the early phase of infection, nuclear accumulation of M protein 
was observed when M protein interacts with nuclear components mediated by 
its zinc finger domain resulting in the inhibition of host cell transcription [165]. 
During the later phase of infection, M protein undergoes phosphorylation induc-
ing nuclear export mediated by Crm1 by unmasking the nuclear export signal [78]. 
Therefore, M protein is thought to play a regulatory role as a transcription inhibitory 
factor by inhibiting viral transcriptase to facilitate RSV assembly and budding  
[77, 167]. RSV glycoprotein and RNP vesicles combined together prior to the 
filamentous virus formation and G protein recycling has been observed via clathrin-
mediated endocytosis, which might be connected with filamentous RSV formation 
[168]. RSV budding preferentially appears at the apical membrane of epithelial cells 
by an apical recycling endosome (ARE)-mediated apical protein sorting pathway 
[169]. RSV budding is independent of the endosomal sorting complex necessary for 
transport (ESCRT) mechanism controlled by ARE-associated protein, Rab11 family 
interacting protein 2 (FIP2) [170]. Recently, ARP2 is identified as a novel host factor 
of RSV budding and cell-to-cell spread [8].

6. RSV cell-to-cell spread

Although RSV progeny virions mostly remain cell-associated, virus shedding 
occurs from the infected cell’s surface and through cellular protrusions namely 
filopodia [8, 9]. RSV-induced syncytium (multinucleated cell) formation is a common 
feature of RSV infection in vitro. The syncytium involves the merging of infected 
cells with the adjacent uninfected cells, which allows the transfer of viral components 
from infected cells to the adjacent uninfected cells [171] (Figure 3). Mehedi et al., 
first showed that RSV uses a novel filopodia-driven cell-to-cell spread mechanism in 
the lung epithelial cells in vitro (Figure 4). It appears that RSV infection modulates 
cellular actin dynamics; particularly, actin-related protein 2/3 (ARP2/3) complex-
driven actin polymerization contributes to lamellipodium and filopodium formation 
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of cell motility. They showed the depletion of ARP2, a major constituent of the 
ARP2/3 complex resulted in a substantial reduction of RSV budding and filopodia-
driven cell-to-cell spread [8, 172–174].

Figure 4. 
Filopodia-driven RSV cell-to-cell spread. A549 cells were infected with RSV-WT (strain A) at a multiplicity of 
infection of 1. At 24-hour post-infection, cells were fixed, permeabilized, and stained for RSV F protein by using 
F-specific immunofluorescence (IFA) (green). F-actin was detected by rhodamine phalloidin staining (red). The 
image was taken under a stimulated emission depletion (STED) microscope.

Figure 3. 
RSV-induced syncytium (multinucleated cell) formation. A549 cells were infected with GFP-expressing RSV 
(RSV-GFP) at a multiplicity of infection of 1. At 48-hour post-infection, cells were fixed and imaged under an 
epifluorescence.
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Influenza Viruses: Targetting 
Conserved Viral Ha-Stem, Matrix 
and Nucleo-Proteins to Disarm a 
Resilient and Recurring Pandemic
Babayemi Olawale Oladejo and Covenant Femi Adeboboye

Abstract

Much to the current worldwide pandemic caused by the SARs-Cov-2 virus, common  
flu caused by Influenza virus remain a long-standing mayhem to global health. 
Influenza viruses are important human pathogens responsible for substantial seasonal 
and pandemic morbidity and mortality. Despite the efficiency of widely available antivi-
ral neuraminidase (NA) inhibitor drugs, and multiple formulations of the influenza 
vaccines, including inactivated influenza vaccines (IIV); a recombinant inactivated  
vaccine (RIV); and a live, attenuated influenza vaccine (LAIV), Influenza virus infec-
tion still remains an ongoing health and economic burden causing epidemics with pan-
demic potential keeping scientist on their toes in researching to combat the complexity 
often associated with the pathogenesis of these viral infection and perhaps its associated 
genetics. Most recent strides and advances within the global research landscape has seen 
efforts channeled towards the discovery and production of universal vaccines in a bid 
to address the unique challenge associated with the multiple viral strain explosion often 
encountered with influenza viruses. An important strategy for accomplishing this is to 
provoke an immune response to the virus’s “Achille’s heel”, i.e., conserved viral proteins, 
through targeting the hemagglutinin (HA) glycoprotein or protein domains shared by 
seasonal and pre-pandemic strains.

Keywords: influenza virus, ARDS, hemagglutinin, neuraminidase, universal vaccines

1. Introduction

Influenza viruses are RNA viruses that cause infectious respiratory diseases that 
are majorly characterized by fever, congestion, and myalgia, which ranges in severity 
from mild to life-threating, and they are estimated to cause about 250,000 to 500,000 
deaths globally per year [1]. They are single-stranded, helically shaped, and belongs to 
the orthomyxovirus family consisting of 5 influenza virus genera, ranging averagely 
from 80 to 120 nm in size [2]. They often contain 8 gene segments that encodes 11 
proteins (Figure 1). These segments encode viral proteins including hemaggluti-
nin (HA), neuraminidase (NA), nonstructural 1 (NS1), NS2, matrix 1 (M1), M2, 
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nucleoprotein (NP), nuclear export protein (NEP), polymerase acid (PA), poly-
merase basic 1 (PB1) and PB2 [3]. Influenza viruses are uniquely known to express 
spike glycoproteins such as hemagglutinin (HA) which facilitates viral recognition of 
host receptor binding site and neuraminidase (NA) which also aids viral release after 
replication within the host cells [2, 4]. HA binds Sialic acid bonded with galactose, 
in avian influenza (H5N1) affinity binding occurs with the α-2,3 sialic acid galactose 
receptor complex of birds in contrast with the α-2,6 binding in human Influenza virus 
A infections [1, 4, 5].

Till date, three types of influenza virus have been known to cause infection in 
humans: A, B, and C. Type A influenza has subtypes determined by the surface 
antigens hemagglutinin (HA) and neuraminidase (NA). There are 18 different H 
subtypes and 11 different N subtypes. Eight H subtypes (H1, H2, H3, H5, H6, H7, 
H9, H10) and six N subtypes (N1, N2, N6, N7, N8, and N9) have been detected in 
humans. Type B influenza is classified into two lineages: B/Yamagata and B/Victoria 
[2]. Influenza B commonly affects children while Influenza C is rarely reported 
as a cause of human illness, which is probably because most cases are subclinical. 
Influenza C has still not been associated with any epidemic disease outbreak so far. 
WHO currently classifies influenza A(H1N1) and A(H3N2) as circulating seasonal 
influenza A virus subtypes, while also classifying avian influenza virus subtypes 
A(H5N1) and A(H9N2) and swine influenza virus subtypes A(H1N1) and (H3N2) as 
zoonotic or variant influenza [2, 6].

Enormous efforts are currently aimed at preventing and treating influenza 
infections, including seasonal and pandemic influenza, however, outbreaks still 
remain a major public health challenge globally [1, 4]. This is majorly due to influ-
enza viruses rapidly undergoing genetic mutations that restrict the long-lasting 
efficacy of vaccine-induced immune responses and therapeutic regimens [1]. These 

Figure 1. 
Showing all the eight gene segments and encoded proteins of influenza A virus. Influenza virus’s genome is eight-
segmented and encodes for two surface glycoproteins which includes neuraminidase (NA) and hemagglutinin 
(HA); matrix protein 2 (M2) ion channel that are securely buried into the viral lipid envelope; matrix protein 
1 (M1) which lies beneath the membrane; protein-basic protein (PB1, PB2) protein-acidic protein (PA) which 
makes up the RNA polymerase complex that is associated with the encapsilated genome; nucleoprotein (NP) 
which coats the viral genome and nonstructural proteins (NS1 and NS2) which suppresses host cell’s mRNA 
production and serves as interferon antagonism.
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major viral genetic changes involve Antigenic Drift, which is caused by point muta-
tions in genes encoding HA and N glycoproteins spikes thereby allowing for viral 
immune invasion against host responses and generated antibodies like vaccines. 
Similarly, antigenic shift which occurs in influenza virus A, caused by viral genome 
reassortment/swapping mechanisms among two different subtypes of influenza 
A which are replicating within the same host causing a jump to new species of 
host, and a highly diverse structure of virus able to cause the occasional pandemics 
seen in the world [2]. A combination of antiviral agents and vaccines remains the 
general prevention and treatment measures for influenza-related morbidity and 
mortality, however complications arising from viral genetic changes has bolstered 
scientific efforts on a journey to the discovery of universal vaccines.

2. Pathophysiology

Following respiratory transmission, human influenza virus attaches to and 
penetrates the respiratory epithelial cells in the trachea and bronchi. Other cell types 
often affected in the respiratory tract includes several immune cells, which can be 
infected by the virus and initiate viral protein production. However, the efficiency 
of replication varies among various affected cell types, and, in humans, the respira-
tory epithelium is the only site where the hemagglutinin (HA) molecule is effectively 
cleaved [5, 7]. The primary mechanism of influenza pathophysiology is a result of 
lung inflammation and compromise that is caused by direct viral infection of the 
respiratory epithelium, combined with the effects of lung inflammation also caused 
by immune responses recruited to handle the spread of the virus [7]. Influenza-
mediated respiratory tract damage is caused by a combination of events, including:  
a) intrinsic viral pathogenicity due to its affinity for host airway and alveolar epithe-
lial cells; and b) a robust host innate immune response, which, while aiding in viral 
clearance, can aggravate the severity of lung injury [7].

The host cell is then destroyed as a result of viral replication. Viremia, or the 
presence of a virus in the blood, has, on the other hand, is seldomly observed 
and never widely documented. Virus is released in respiratory secretions for 5 
to 10 days, peaking 1 to 3 days after disease start [5, 7]. Inflammation caused by 
influenza pathogenic events can extend systemically and appear as multiorgan 
failure, the most common of which are lung compromise and severe respiratory 
distress [8]. Some links have also been found between influenza virus infection 
and cardiac complications, such as an increased risk of myocardial illness in the 
weeks following infection. Beyond the basic inflammatory profile, several of these 
processes remain uncertain [9, 10]. Researchers find it theoretically helpful to 
divide the progression of IAV infection into three stages, with the idea that many 
of these processes occur concurrently throughout the injury. The first is viral 
infection and replication in the airway and alveolar epithelium, during which 
methods that restrict viral entrance or replication might prevent or reduce the 
severity of the infection. The innate immune response to the virus is followed by 
the adaptive immunological response, which is crucial for viral clearance but may 
also cause severe damage to the alveolar epithelium and endothelium. The third 
step is the establishment of long-term immunity to the infecting virus strain, 
which is followed by the resolution of infiltrates and regeneration of damaged lung 
tissue, during which time the patient is more vulnerable to secondary bacterial 
infection [4, 5, 7].
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2.1 Acute respiratory distress syndrome

The influenza viruses are significantly important human pathogens. In humans, 
infection of the lower respiratory tract of can result in flooding of the alveolar 
compartment, development of acute respiratory distress syndrome and death from 
respiratory failure. The extent to which the virus infiltrates the lower respiratory 
tract is an important factor in determining the degree of associated disease compli-
cations [8]. Infection of alveolar epithelial cells appears to cause the development 
of severe illness by damaging important mediators of gas exchange and permitting 
viral exposure to endothelial cells. Early interactions between the influenza virus, 
alveolar macrophages in the lung airways, and the epithelial lining are significant 
determinants of alveolar disease development [9]. Once this delicate barrier is pen-
etrated, cytokine and viral antigen exposure to the endothelium layer can exacerbate 
inflammation, with endothelial cells being a primary source of pro-inflammatory 
cytokines that influence the amount and nature of future innate and adaptive 
immune responses [10].

In the final pathological stages, just like in the SARS-CoV-2 infection, where 
reports from Lancet on COVID-19 pathogenesis reveals that acute respiratory distress 
syndrome (ARDS) is the main cause of death in most patients [11–14], influenza 
virus infection also initiates hypoxia and progression to ARDS [15]. ARDS is majorly 
experienced as shortness of breath and it’s also a common immunopathological event 
in SARS-CoV and MERS-CoV infections [11]. Clinically, severe Influenza A Virus 
infection can cause bilateral lung infiltrates and hypoxaemia, which are symptoms 
of acute respiratory distress syndrome (ARDS), and death from hypoxaemic respira-
tory failure is a major contributor to mortality [16–21]. The cumulative incidence of 
ARDS related to seasonal IAV infection has been estimated to be 2.7 cases per 100,000 
person-years, accounting for 4% of all respiratory failure hospitalizations throughout 
the influenza season [22].

2.2 Clinical manifestations and complications

In most cases, influenza produces a simple respiratory illness with a cough, fever, 
myalgias, chills or sweats, and malaise that lasts two to eight days. The onset is usually 
quick. Children might have unusual gastrointestinal symptoms such as vomiting 
and diarrhea. A small percentage of patients, particularly elderly individuals, young 
children, and those with medical comorbidities, will develop severe illness from viral 
or secondary bacterial pneumonia, resulting in respiratory and multiorgan failure. 
Extrapulmonary events are extremely uncommon [23, 24].

Common symptoms such as running nose, sore throat, muscle pains, fever, head-
aches and fatigue can trigger the release of pro-inflammatory cytokines and chemo-
kines such as tumor necrosis factor or interferon from infected cells might be capable 
of producing a life-threatening cytokine storm [25]. Influenza does cause tissue 
damage compared to common cold that is caused by rhinovirus and as such symptoms 
might not entirely depend on inflammatory response. Also, the large amounts of cyto-
kines have been observed to be dependent on the levels of viral replication produced 
by the strains [26]. Flu epidemics are difficult to control due to their rapid spread. 
However, influenza virus has a short generation time of two days (the time from being 
infected and then to infect the next person). Individuals can become infectious before 
being symptomatic thus quarantines following noticeable sign and symptom of the 
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infection is not an effective public health intervention [27]. The virus shedding in an 
average person peak on day two while symptoms becoming apparent on day three [28].

3. Prevention and treatment

Early anti-influenza drugs were synthesized by large scale screening methods 
without the knowledge of their chemical structures and mechanisms of action 
[29], whereas, the recent antivirals have been discovered based on the structure of 
influenza virus protein as drug targets using X-ray crystallography method. This is 
structure based, involving the use of organic compounds that are able to bind to viral 
target protein receptors [30]. These structures have high binding affinity to the viral 
target following chemical synthesis and effective antiviral screening using standard 
in vitro assays such as cell based antiviral screening [31] and biochemical evaluation 
[32]. Some cell based antiviral screening includes plaque assays for studying replica-
tion in virus, yield-reduction assays for quantifying specific viral antigens and dye 
uptake for measuring cytopathic effect. The application of bioinformatics, robotics, 
miniaturization strategies have led to an advanced and high-throughput drug screen-
ing of large drug libraries with unique chemical structures [33] and computational 
screening [34]. In vivo drug screening using various animal models such as chicken, 
mouse, ferret have been used to evaluate new drugs [35] this is followed by clinical 
trials to study its bio-safety, kinetics and tolerance in human [36].

Advances has since then seen the treatment of influenza virus infection basically 
through vaccines, monoclonal antibodies and antivirals drugs. Antiviral influenza 
drugs are mostly NA inhibitors; however, they generally have short therapeutic 
window and current show emerging drug resistance [37]. Till date, four (4) antiviral 
drugs have been approved for the treatment of influenza: the NA inhibitors oselta-
mivir (Tamifu), peramivir (Rapivab), zanamivir (Relenza), and the cap-dependent 
endonuclease inhibitor baloxavir (Xofuza) [23, 37]. Oseltamivir is the preferred 
treatment for patients with severe influenza. Intravenous peramivir is an option for 
these patients if there are contraindications to or concerns about reduced bioavailabil-
ity of oral oseltamivir [24]. Baloxavir is preferred for the treatment of uncomplicated 
influenza in patients of age 12 years and older. A study was conducted to compare 
baloxavir with oseltamivir and placebo in 1436 healthy people between 12 to 65 years 
of age who had influenza, baloxavir and oseltamivir reduced symptom duration 
by approximately one day compared with placebo. Adamantanes (amantadine and 
rimantadine [Flumadine]) are also approved for influenza treatment but are not 
currently recommended because these medications are not active against influenza 
B, and most influenza A strains have shown resistance to adamantane for the past 
10 years [24].

Vaccines remain extremely essential to the prevention of the infection. Vaccination 
is the most preferred method for prevention, and routine chemoprophylaxis within 
the community is not recommended. The first influenza vaccine was developed in 
1945, and since seen several others produced. Multiple formulations of the influenza 
vaccine are available, including inactivated influenza vaccines (IIV); a recombinant 
inactivated vaccine (RIV); and a live, attenuated influenza vaccine (LAIV). LAIV 
shows one of the best efficacies at around 70% and tends to be more effective in 
children. It delivers more NA and M2 antigens, triggers mucosal responses including 
IgA, and has the potential for inducing CD8 T cell responses [38].
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As a primary prophylactic countermeasure, annual influenza vaccination is 
engaged globally with the aim of limiting influenza burden. However, the effective-
ness of the current available influenza vaccines is limited because they only confer 
protective immunity when there is antigenic similarity between the selected vaccine 
strains and circulating influenza isolates. The consequences of antigenic drift or 
shift, results in an antigenic mismatch between the current vaccines and circulating 
influenza isolates. Accumulation of mutations, especially at key antigenic sites in the 
HA globular head, due to the absence of the proofreading activity of the viral RNA 
polymerase and then to the selective pressure exerted by the host immune system 
is often responsible for the escape of influenza virus from pre-existing immunity in 
the case of antigenic drift [39]. There is therefore a crucial need to develop a more 
effective broadly-reactive (universal) influenza vaccine with the capability to confer 
protection against both seasonal and newly emerging pre-pandemic strains.

3.1 The journey to a universal flu vaccine

In influenza virus vaccine design, the major targets of the antibody response 
against the virus are the surface glycoprotein antigens hemagglutinin (HA) and 
neuraminidase (NA). As earlier stated, Hemagglutinin (HA) and neuraminidase 
(NA), are the main surface glycoproteins on influenza viral particles. NA is however 
less abundantly expressed on the virion in comparison HA expression, with HA to NA 
ratio often ranging from 4:1 to 5:1 [38]. The influenza HA is responsible for bind-
ing to sialic acid, the receptor on target host cells, and there are approximately 500 
molecules of HA per virion [40]. The mature form of the HA glycoprotein exists as 
a homotrimer containing three HA monomers that are composed of a globular head 
and a stem/stalk region. The receptor binding site (RBS) is present in the globular 
head, which is however a hypervariable region of the protein, while the stem region is 
majorly involved in the pH-induced fusion event triggered by endosome acidification 
following viral adsorption. The stem/stalk region of the HA is more conserved among 
and across HA subtypes belonging to the same group [38]. Antibody response elicited 
against this stem/stalk region forms one of the major approaches towards develop-
ing a more responsive vaccine to both current and future strains of influenza viruses 
(Figure 2).

3.1.1 Stem-based universal vaccine approaches

Influenza virus infection can elicit neutralizing antibodies against both the globu-
lar head and the stem structures of the HA viral protein. Currently, ongoing strategies 
for more efficacious vaccine development is aimed at eliciting antibodies that target 
the conserved stem region of HA since previously existing influenza vaccines only 
show minimal induction of stem-directed humoral immunity [3]. Several studies 
describe ongoing approaches to elicit stem-directed antibodies including sequential 
immunization with heterologous influenza strains, immunization with modified 
proteins by removing or glycan-masking the globular head, referred to as headless 
HA, through minimizing epitopes of the stem region, hyperglycosylated HA head 
domain, Chimeric HA, and Mosaic HA [3, 38]. Self-reactivity of this antibodies may 
occur due to their polyreactive profile and the proximity of the HA stem region to the 
cell membrane which is a crucial limitation described by scientists to this approach.

Nachbagauer et al. [40] recently presented a unique concept in the stem-based 
approach using the context of a LAIV with a H8 head domain and an H1 stem domain 
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(cH8/1) and a split-inactivated vaccine with an H5 head domain and an H1 stem 
domain (cH5/1) [40]. Using preclinical ferret investigations, the scientists assessed 
protection against pandemic H1N1 virus challenge using several sequential prime-
boost combinations and vaccination regimens. These studies show that a sequential 
live-attenuated followed by split-inactivated viral vaccination strategy provides 
superior protection against pandemic H1N1 infection. Scientists have characterized 
this notion as a sequential immunization and chimeric HA proteins approach to stem-
based universal vaccine design.

Furthermore, in a stem-based immunogens approach to the universal influenza 
vaccine design, based on the H1 subtype, Impagliazzo et al. created stable mini-HA 
stem antigens, where the best candidate demonstrated structural and binding charac-
teristics with widely neutralizing antibodies equivalent to full-length HA, indicating 
correct folding. This immunogen totally protected mice in lethal heterologous and 
heterosubtypic challenge scenarios and lowered fever in cynomolgus monkeys follow-
ing a sublethal challenge [42]. However, determining the effectiveness of antibodies 
targeting conserved epitopes in the HA stem region to offer protection remains a 
critical challenge [43].

3.1.2  Consensus based approach: computationally optimized broadly reactive 
antigens (COBRAs)

Furthermore, in order to overcome the extreme variability of influenza HA, 
in particular at the head region, Giles and Ross, [44] described the generation of 
computationally optimized broadly reactive antigens (COBRAs) for the influenza 
HA. The COBRA-based approach is a classic reverse vaccinology approach based on 
multiple layering of consensus HA protein sequences, followed by the generation 
of a final consensus sequence capable of recapitulating, in a unique protein, amino 
acid changes undergone by influenza virus from the past years to the present [45]. 
In this approach, a phylogenetic tree is inferred using hemagglutinin (HA) amino 

Figure 2. 
Showing the phylogenetic trees of (a) hemagglutinin (HA) and (b) neuraminidase (NA). The primary surface 
glycoproteins of influenza viruses, HA and NA, are divided into several categories and subtypes. During the last 
century, only viruses producing H1, H2, or H3 HAs and N1 or N2 NAs (such as H1N1, H2N2, or H3N2; circled in 
purple) have spread widely in the human population. The scale bars represent a 6% change in amino acid levels 
(source: [41]).
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acid sequences. Primary and secondary consensus sequences are constructed, and 
the secondary consensus sequences are subsequently aligned to provide the resultant 
consensus, known as COBRA. In multiple clinical investigations, a firm called Sanofi-
Pasteur used this method with a mechanism called Elicite HAI+ antibodies [46–49].

More specifically, vaccination of mice with H1N1-based COBRA candi-
dates resulted in broad HAI activity against a panel of 17 H1N1 virus strains. 
Furthermore, when inoculated mice were challenged, there was little or no detect-
able viral replication, as found in animals immunized with a matching approved 
vaccine [46]. Similarly, previous studies describing the design and generation 
of H5N1-based COBRA found that mice, ferrets, and nonhuman primates 
(Cynomolgus macaques) vaccinated with COBRA clade 2 HA H5N1 virus-like 
particles (VLPs) had higher HAI antibody titers recognizing different isolates 
representing divergent subclades [44, 49].

Aside from the COBRA-based strategy, there are several potential vaccines 
targeting the HA head. Song et al. [50] demonstrated the production of a fusion 
protein comprised of the globular HA head domains (HA1–2, spanning amino acids 
62–284) from H7N9 and the Salmonella typhimurium flagellin (fliC) produced 
in Escherichia coli (E. coli). The authors chose fliC as a potent Toll-like receptor-5 
(TLR5) ligand in order to induce an innate immune response with subsequent 
induction of cytokine production and dendritic cell activation, ultimately leading 
to higher titers of antigen-specific IgG recognizing different isolates representing 
divergent subclades [44, 49].

3.1.3 Vaccines targeting internal viral proteins

Internal influenza virus proteins are often highly conserved, making them viable 
targets for a universal vaccination. Although these proteins are rarely detected on 
virions or cell surfaces, making them inaccessible to antibodies, they are abundant in 
infected cells, where they are also processed and presented to T cells through major 
histocompatibility complex molecules. T cells have therefore been proven to play a 
significant role in influenza virus immunity. In this approach, NP and M1 have been 
widely studied as possible targets for universal T cell–based vaccine. Virus-based and 
DNA vaccination approaches have been shown in animal models to induce protec-
tive immune responses, and they are now being studied in a variety of clinical trials 
[41]. Over two consecutive influenza seasons, Evans et al. [51] conducted a phase 2b, 
randomized, placebo-controlled, double-blind trial of a recombinant viral-vectored 
vaccine (modified vaccinia Ankara expressing virus nucleoprotein and matrix protein 
1; MVA-NP + M1), which has been shown to induce both CD4 and CD8 T cells, at 
eight outpatient clinical trial sites in Australia. They wanted to see if generating extra 
responses to conserved CD4 and CD8 T-cell antigens improves routine influenza 
vaccination. Based on their findings, they concluded that MVA-NP + M1 was well tol-
erated, with no vaccine-related major side effects. When administered within 28 days 
of normal QIV immunization, a vaccine intended to stimulate modest T-cell responses 
to cross-reactive internal proteins of influenza A did not result in an increase in 
incidence.

Finally, another notable vaccine technique is the epitope-based Multimeric-001 
(M-001) candidate vaccine, which is now being tested in clinical trials. This vac-
cine, initially published by Ben-Yedidia et al. and later produced by BiondVax 
Pharmaceuticals Ltd., is made up of B- and T-cell epitopes taken from influenza A and 
B strains, containing nine conserved epitopes from the HA (including the globular 
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head), NP, and M1 proteins [38, 52, 53]. To compensate for M-001 peptides’ poor 
immunogenicity and expensive cost, the epitopes are concatenated in triplicate into 
a single recombinant protein generated in E. coli. M-001 has been evaluated in both 
preclinical and clinical research, and it has been shown to protect mice against infec-
tion with various influenza strains while also being safe and generating both B- and 
T-cell specific immune responses [38, 53]. However, M-001 alone does not elicit HAI 
antibodies, which can only be generated when M-001 is followed by a boosting with 
seasonal or pandemic strain specific vaccinations [54].

4. Conclusion

Influenza virus infection is a continuing health and economic burden that causes 
epidemics with pandemic potential, impacting 5–30% of the world population 
each year and resulting in millions of hospitalizations and thousands of fatalities. 
Because of its great vulnerability to antigenic variation, influenza A is the type most 
responsible for pandemics. Influenza is extremely infectious, with symptoms includ-
ing fever, cough, chills or sweats, myalgias, and malaise. The hypervariability of the 
amino acid sequences encoding HA and NA is primarily responsible for epidemic and 
pandemic influenza epidemics, which are the result of antigenic drift or shift. As a 
result, research on an effective broadly-reactive influenza vaccine capable of provid-
ing protection against both seasonal and pandemic influenza is now underway.
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Chapter 4

COVID-19 Prevention through 
Vitamin C, D, and Zinc 
Supplementation: A Small Clinical 
Study in Two Parts
Chanda Siddoo-Atwal

Abstract

At the time of this study India had the third highest COVID-19 infection rate in 
the world after the US and Brazil, but that statistic was in flux due to rapidly chang-
ing variables and, therefore, it seemed an appropriate setting for a supplementation 
study. Following a successful first trial of vitamin C, D and zinc supplementation in 
2020 with the staff at a small medical clinic in India, a second opportunity arose to 
continue the trial from January-March 22nd due to an urban coronavirus outbreak 
during the beginning of March 2021. It resulted in nearly a doubling of COVID-19 
cases within the country in two weeks (March 8th - March 22nd) possibly due to the 
new, highly infectious, Indian Delta variant with multiple mutations and/or other 
international variants like the UK Alpha variant that were also present in the popula-
tion by this time. As a result, a nighttime curfew and other restrictions were imposed 
for the whole month. An outbreak also occurred locally in a nearby city where the 
incidence of coronavirus cases increased and this happened prior to vaccination of the 
medical staff as part of the country’s universal inoculation campaign for healthcare 
workers, which began in January 2021 (one clinic clerk who travelled to the district 
civil hospital to receive the vaccine during the course of this second study was dis-
qualified; all other clinic staff were inoculated after March 22nd). Although the clinic 
had closed during the first lockdown between March and mid-June 2020, it remained 
open to the public for this second wave in March 2021. During this period, the medical 
& non-medical staff continued following the same supplementation regimen as they 
had in July-December 2020 for Part I of this trial with positive results. Once again, 
in Part II of the trial, there were no COVID-19 cases recorded among any of the staff 
members at the clinic, which is situated in a rural community. It was concluded that 
targeted vitamin/mineral supplementation may be a useful addition to the anti-
COVID-19 arsenal for health professionals at higher than average risk of infection. 

Keywords: novel coronavirus, SARS-CoV-2, COVID-19, vitamin C, vitamin D, zinc
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1. Introduction

A baffling number of disparate symptoms have been ascribed to COVID-19 
infection including respiratory, gastrointestinal, circulatory, urinary tract and nerve 
dysfunction that has resulted in multi-organ failure in some cases. An array of risk 
factors has also been identified ranging from age, sex, obesity, diabetes, and hyper-
tension to cigarette smoking that can increase mortality rate dramatically [1]. So far, 
a surprising number of deaths have been recorded worldwide due to the coronavirus 
pandemic and the figure has surpassed the 5.5 million mark [2].

1.1 Symptoms

In general, COVID-19 infection is associated with the increased production of 
pro-inflammatory cytokines, C-reactive protein, increased risk of pneumonia, sepsis, 
acute respiratory distress syndrome, and heart failure [3]. Early reports from China 
suggested the most common symptoms of COVID-19 infection were fever (88%) 
and dry cough (67.7%). Rhinorrhea (4.9%) and gastrointestinal symptoms (diarrhea 
4–14%) were less common [4].

It has been concluded that COVID-19 may predispose to both venous and arterial 
thromboembolism due to excessive inflammation, hypoxia, immobilization, and 
diffuse intravascular coagulation [5]. In addition, the COVID-19 pandemic is associ-
ated with neurological symptoms and complications including anosmia, hypogeusia, 
seizures, and stroke [6]. COVID-19 complications in the brain can include delirium, 
inflammation, and encephalitis [7]. A temporary loss of smell (anosmia) can be a 
consistent indicator of COVID-19 infection [8]. COVID-19 is now recognized as a 
multi-organ disease with a broad range of effects. An unusually long recovery period 
also seems to be a common aftermath of COVID-19 (post-acute COVID-19 syndrome 
or, popularly, long-COVID) and may involve one or more of various clinical mani-
festations including fatigue/muscular weakness, joint pain, dyspnea, cough, sleep 
and cognitive disturbances, headaches, anxiety/depression, palpitations, chest pain, 
thromboembolism, chronic kidney disease, and hair loss [9].

Even though, initially, children were thought to be unaffected by the novel coro-
navirus, a cluster of children with hyperinflammatory shock and features similar to 
Kawasaki disease and toxic shock syndrome was first reported in England. Almost all 
these pediatric cases had positive SARS-CoV-2 test results. This hyperinflammatory 
condition can include serious inflammation of the blood vessels and coronary arteries. 
Consequently, this illness has been termed COVID-19-associated multisystem inflam-
matory syndrome [10].

1.2 Internal risk factors

Some scientists have opined that COVID-19 is highly contagious and highly lethal 
to a small subset of the population, while it produces milder symptoms in most 
people. Although, the SARS-CoV-2 virus infects people of all ages, the World Health 
Organization (WHO) has determined that the evidence to date suggests that older 
adults and adults with underlying medical conditions are at a higher risk of develop-
ing severe COVID-19 disease [11]. However, recent new mutations in variants of the 
virus may be shifting the age demographic to include younger populations under the 
age of 60 as reflected in the sudden rise in fatalities among young and middle-aged 
adults after identification of the Brazilian Gamma variant [12].
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One large study seems to indicate that obesity, high blood pressure, and diabetes 
are strong risk factors for COVID-19 [13]. It has also been observed that cardiovascu-
lar disease and respiratory diseases could greatly affect the prognosis [14]. In fact, in 
an interesting study involving autopsies on 12 COVID-19 patients, the results revealed 
that coronary heart disease and asthma were common comorbid conditions in 50% 
of the deceased [15]. Other research suggests that certain cancer patients are more 
vulnerable to COVID-19 infection [16]. In addition, a surprising gender disparity 
appears to be present about SARS-CoV-2 infection. Statistics from Australia, Belgium, 
Germany, Italy, the Netherlands, South Korea, Spain, the UK and the US reveal 
that mortality rates from the virus are significantly higher in infected males than in 
infected females [17]. In the largest Chinese study to date assessing the severity of 
coronavirus infection in smokers, it was found that higher percentages of current and 
former smokers needed ICU support or mechanical ventilation. Higher percentages of 
smokers among the severe cases also died [18].

1.3 External risk factors

Italian researchers have proposed an association between higher mortality rates in 
Northern Italy and peaks of particulate matter concentrations in this region. The most 
polluted northern provinces of Italy were found to have more infection cases than the 
less polluted southern provinces and this correlated well with ambient particulate 
matter concentrations that often exceeded the legal limit in these areas [19].

This could have been a significant factor in the spread of the coronavirus in highly 
polluted and populated cities like Mumbai, India. Social conditions such as crowding 
in slums have also been considered contributory to the dispersal of the virus in devel-
oping countries like Brazil and India. Proximity to infected individuals increases the 
risk of person-to-person transmission since the SARS-CoV-2 virus is spread mainly by 
respiratory droplets, but can be aerosolized, as well [20].

No matter how healthy an individual may be, the more exposure they have to a 
particular virus, the greater risk they have of contracting the disease. The greater the 
number of particles of the virus one is exposed to, the greater the chance that they 
will overwhelm the body and immune responses. This is the reason that frontline 
healthcare workers have been getting serious cases of COVID-19 and, particularly, 
middle-aged male general practitioners have been dying at a higher frequency than 
the general population [21, 22].

1.4 Rise of the coronavirus variants

According to available information, during the first part of this study initiated in 
July 2020, the original strain of the novel coronavirus from Wuhan, China was the 
main agent of infection in India due to business travel, tourism, and trade between the 
two neighboring nations before lockdown and no vaccines were available [1]. In China, 
this would extend in the form of a ban on non-resident travelers from March 2020 and 
lifting it would not be contemplated until the February 2022 Winter Olympics.

Subsequently, the Alpha coronavirus variant, which had spread at least 50% 
faster than earlier lineages was linked to a rise in cases in southeast England by public 
health officials in November 2020. Approximately around the same time, the Beta 
variant was detected in South Africa and linked to the second wave of infections in 
the country. Not long after, the highly transmissible Gamma variant was localized 
to Amazonas state in Brazil. These three variants shared some common mutations, 
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particularly in key regions of the spike protein that is involved in recognizing the 
host-cell ACE2 receptors used by the virus for entering human cells [1, 23].

Thus, by the time the second part of this study was undertaken in January 2021, 
the Alpha, Beta, and Gamma variants were also present within the Indian popula-
tion and the UK variant became the dominant strain in Punjab state mainly due to 
unimpeded travel abroad [24]. Simultaneously, the homegrown Delta variant with 
multiple mutations had become dominant in the Indian state of Maharashtra and 
several factors such as large public gatherings at celebrations like Holi, which were not 
tightly restricted, are likely to have contributed to the precipitous rise of Delta within 
the country. Moreover, people had started to mingle socially without restraint and to 
travel to adjoining states thereby distributing the virus and its variants, notably Delta 
[24]. This is probably what lead to nearly a doubling of cases in March [23]. Up to this 
point, vaccines had not been available, but became available to the clinic staff shortly 
after in April, 2021. Soon, the Delta variant had been exported all over India, back to 
China, and around the world, where it became the predominant strain in many places 
due to its high transmissibility [24, 25].

2. Methods

Just until recently, India has had the second or third highest COVID-19 infection 
rate in the world. However, the mortality rate has been comparatively low, possibly 
due to a relatively younger average age of the general population. There is another 
current hypothesis that a national Bacillus Calmette-Guérin (BCG) vaccination 
program in countries seems to be associated with reduced mortality from  
COVID-19 and India has such a program [26]. This purely observational study to 
establish dosage and tolerance of prolonged vitamin and mineral supplementation 
was carried out at a private clinic located in a small town in the District of Nawan 
Shahr near the historic city of Rahon in North India (Kapoor Singh Canadian 
Hospital). There were 7500 inhabitants in the town and a total of five COVID-19 
cases (4 male and 1 female) between March (when the epidemic began in India) 
and December 2020. Interestingly, there were no mortalities among these patients 
who were quarantined in a neighboring city and one of the main treatments current 
in India at this time was the malarial medication, chloroquine, which also displays 
anti-inflammatory activity [27]. There was a total state-wide lockdown between 
March and mid-June 2020. The clinic decided to re-open in July 2020 following the 
lockdown in the absence of any available coronavirus vaccine. During the second part 
of the study (January–March 22, 2021), approximately 50 coronavirus cases were 
recorded in this small town & adjoining village with a total of 1 or 2 deaths as a result 
of COVID-19 infection. At this stage, treatment at civil hospitals included steroids 
and antibiotics such as azithromycin for secondary infections [28]. Testing was also 
more widely available during this second surge, which started in March, peaked in 
May, and started to subside in October 2021.

The clinic that took part in this trial employed a total of 15 staff members; 9 men 
and 6 women. They included 2 doctors (one male, one female), 3 nurses, 2 laboratory 
technicians, 1 security guard, 1 cleaner and 6 general maintenance staff. All partici-
pants consented to take part in the study. Although, all 15 staff members participated 
in the first part of the study, one general staff member (a clinic clerk) dropped out of 
the second part of the study as a result of being vaccinated and thereby reduced the 
test group to 14. Although, the medical staff (7) were aware of the potential benefits 
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of supplementation, the non-medical staff members (7/8) were not aware of the 
potential health benefits. However, they were informed that the supplements were 
not harmful in any way. In addition, all the non-medical staff was not equally exposed 
to patients as the medical staff. Each staff member took part voluntarily in the first 
trial that was initiated on July 1, 2020 and extended to December 31, 2020 and in 
the second trial that was initiated on January 1 and extended to March 22, 2021. It is 
unlikely that the townspeople were taking oral dietary supplements of any kind since 
they are not that popular in India and provided the background population for this 
study. The background population establishes the presence of active coronavirus cases 
in the community and forms a basis for comparison.

Vitamin, mineral, and amino acid supplementation is not an uncommon practice at 
European health clinics. For example, specific combinations of vitamins and miner-
als may be used to promote general good health. One such formula prescribed at a 
German vegetarian health clinic (Schlosspark Klink) included CoQ-10 (which stimu-
lates ATP production), vitamin D3, and zinc. Supplementary protein pills were used 
regularly to complement the diet and boost the body’s overall metabolism in patients. 
Moreover, during the SARS-CoV-2 pandemic, they routinely recommended 20,000 IU 
per week of vitamin D3 (spring to fall) and 40,000 IU per week of vitamin D3 (winter 
months) as a preventive measure to their guests based on laboratory blood tests, even 
to those who regularly included meat and fish in their diet. Vitamin D was measured 
in blood samples from patients as 25-hydroxycholecalciferol and a minimum concentra-
tion of 55 ng/ml was recommended by the clinic doctors (whereas the sufficiency scale 
range is 20–70 ng/ml); although anything below this value was not deemed as repre-
senting a deficiency, it was judged as being too low for effective COVID-19 prevention.

Thus, in addition to standard precautionary measures adopted universally during 
the pandemic, a careful selection of vitamin and mineral supplements was made to help 
protect the staff at the Indian clinic participating in this particular study from coronavi-
rus infection. The supplements selected for the staff included a combined daily dose of 
vitamin C (500 mg) and zinc (20 mg) in tablet form [Indian Drugs & Pharmaceutical 
Co.] plus a weekly dose of vitamin D3 (60,000 IU) capsules [Dr Morpen; Cipla; or, 
Cadila Co.]. The corresponding daily dose of vitamin D3, which is significantly higher 
than that normally recommended in Germany (800 IU per day) and in other countries 
around the world such as the US (2000 IU per day), is commonly prescribed as a 
therapeutic dose in India possibly due to the popularity of vegetarianism. The reason for 
this choice of combined supplements above biological doses was as follows:

2.1 Vitamin D

Vitamin D3 (25-hydroxycholecalciferol) is the most bioavailable form of vitamin 
D for the human body and the bioactive form (1,25-dihydroxycholecalciferol) is 
synthesized by its enzymatic hydroxylation mainly in the kidney. This bioactive form 
of vitamin D also functions as a hormone that regulates calcium and phosphorus 
metabolism via a nuclear receptor that can alter the expression of genes in the intes-
tine, kidney, and bone [29].

Vitamin D enhances cellular innate immunity partly through the induction of 
antimicrobial peptides, including human cathelicidin, and, defensins. Cathelicidins 
exhibit direct antimicrobial activities against a spectrum of microbes including many 
types of bacteria, enveloped and nonenveloped viruses, and fungi. The main action of 
these host-derived peptides is to kill the invading pathogens by perturbing their cell 
membranes. Moreover, it is effective in reducing concentrations of pro-inflammatory 
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cytokines that produce the inflammation that injures the lining of the lungs leading 
to pneumonia during viral infections like COVID-19 and increasing concentrations of 
anti-inflammatory cytokines [3].

Vitamin D deficiency is a worldwide problem, but is particularly pronounced in 
the elderly, who are at the greatest risk of contracting severe COVID-19 infection. 
The release of pro-inflammatory cytokines is one of the major causative factors in 
serious COVID-19 infections. However, vitamin D modulates its presence in the 
body by preventing macrophages from releasing too many inflammatory cytokines 
and chemokines. Calcitriol has also been found to exert an influence on ACE-2 
receptors. Thus, it is not surprising that vitamin D deficiency has been correlated 
with COVID-19 cases and an increased risk of mortality in a European study [30]. 
Conversely, medical doctors in Eastern Europe have rarely found COVID-19 patients 
with vitamin D sufficiency to require ICU stays in hospital (personal communication 
from Dr. Martin von Rosen, MD).

2.2 Zinc

RNA synthesis occurs in the life cycle of the SARS-CoV-1 virus to reproduce its 
genetic material and is catalyzed by an RNA-dependent RNA polymerase, which is 
the core enzyme of a multiprotein replication/transcription complex. In the case of 
SARS-CoV-1, an excess of intracellular zinc ions has been found to efficiently inhibit 
the RNA-synthesizing activity of this replication and transcription multiprotein. 
Enzymatic studies in vitro have revealed that zinc directly blocks the activity of the 
RNA polymerase by inhibiting elongation and reducing template binding. This RNA 
polymerase core, which is a central component of the coronaviral replication/tran-
scription machinery, is well conserved among the members of the coronavirus family 
including SARS-CoV-2 [31, 32]. Therefore, it is quite possible that zinc treatment 
would have a similar biochemical effect on SARS-CoV-2 and interfere with its ability 
to replicate.

In the human body, zinc displays antiviral effects by modulating the type I 
Interferon response and performs a variety of vital antioxidant functions [33]. Inside 
the cell, the harmful effects of free radicals are balanced by the action of antioxidant 
enzymes (such as copper-zinc superoxide dismutase) and non-enzymatic antioxi-
dants (such as metallothioneins), which utilize zinc and help to regulate its intracel-
lular levels [34, 35]. There are several other ways zinc functions in both adaptive 
and innate immune systems, as well. It regulates the proliferation, differentiation, 
maturation and functioning of lymphocytes, and other leukocytes. In addition, zinc 
regulates the immune response, and its deficiency increases susceptibility to inflam-
matory and infectious diseases, including pneumonia. Moreover, zinc deficiency 
may be present in 17% of the world’s population [36]. Interestingly, a trial with four 
COVID-19 patients suggested that therapy with high dose zinc salt oral lozenges [up 
to 200 mg/day] initiated a significant reduction of disease symptoms within 24 hours 
[37]. Short-term zinc use at these doses is considered safe [38]. Thus, low-risk ways 
of increasing zinc bioavailability in the body above biological levels can be safely 
considered.

2.3 Vitamin C

Vitamin C is known as an essential anti-oxidant that efficiently quenches damag-
ing free radicals produced during normal metabolic respiration by the body and it 
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functions as an enzymatic co-factor for physiological reactions such as hormone 
production, collagen synthesis and immune potentiation [39]. In addition, the anti-
inflammatory action of ascorbic acid is evidenced in several cytoprotective functions 
under physiological conditions, including the prevention of DNA mutation induced 
by oxidation. In fact, it has been established in in vivo studies that the consump-
tion of vitamin C-rich foods is inversely correlated with the level of oxidative DNA 
damage [40]. Moreover, vitamin C is a well-known anti-viral agent that has been 
demonstrated to show anti-viral immune responses, especially against the influenza 
virus at the onset of infection by the increased production of IFN-α/β [39]. There 
has also been some interesting evidence that oral vitamin C (2–8 g/day) may reduce 
the incidence and duration of respiratory infections, while intravenous vitamin C 
has been shown to reduce mortality, ICU and hospital stays, and time on mechanical 
ventilation in severe respiratory infections. Vitamin C deficiency has been observed in 
many respiratory infections, as well, and a recent study from New Zealand reported 
that patients with pneumonia had depleted vitamin C levels as compared with healthy 
controls suggesting that it may be potentially helpful in the treatment of COVID-19 at 
therapeutic doses [41].

3. Results

On average, the clinic was visited by 60 patients per day during July–December, 
2020 and 45 patients per day during January–March 22, 2021. Thermal scanning 
was instituted at the clinic gates and any patient with a fever was seated outside and 
given a week’s supply of vitamin C plus zinc tablets, vitamin D capsules, and aspirin. 
The patients without fever were allowed inside the clinic compound after receiv-
ing hand sanitizer and a disposable mask. They were instructed to keep a 2-meter 
distance between themselves and other patients as they waited on chairs outside the 
clinic. Only 6 patients were allowed into the clinic waiting room at one time (while 
10–12 is the usual number). All patients with cold symptoms other than fever also 
received oral vitamin C/zinc and vitamin D3 supplements. All the hospital staff 
wore medical masks. PPE was not considered necessary as there were relatively few 
coronavirus cases locally and anyone with a higher than the normal temperature was 
not allowed inside the clinic. So, the hazard was not deemed to be extreme. Infected 
individuals in the district were immediately removed to pre-designated quarantine 
locations by government health inspectors where they received medical treatment 
for 2 weeks.

There were no adverse reactions to the special selective supplementation in any 
of the staff members during the first or second trial. There were no COVID-19 cases 
recorded among any of the staff members for the duration of this preliminary study, 
even though, approximately a third of them were living in and commuting from 
nearby towns and cities where the incidence rate was higher. The length of this trial 
suggests that there was ample opportunity for COVID-19 infection to occur in any of 
the subjects, especially since routine social distancing was not being observed during 
much of this time in India. All the subjects would have been exposed to potential 
virus carriers during work hours at the clinic (via asymptomatic carriers or those 
with cold symptoms other than fever), on public transport, and at home in their 
social circle. Similarly, the townspeople often traveled on public transport to other 
towns and cities and would have been exposed to potentially infected individuals at 
social gatherings.



RNA Viruses Infection

56

4. Discussion

Although, there is much interest in vitamin C, D, and zinc in the coronavirus 
literature, currently there is scant data about the potential synergistic role of these 
three supplements in COVID-19 prevention and clinical studies are lacking. Clinical 
trials for treating COVID-19 patients with these supplements are slightly more com-
mon; however, they usually do not focus on all three supplements together. Thus, the 
clinical study presented here appears to be the first of its kind [42].

A small two-part clinical trial with 14–15 subjects was undertaken to test the 
feasibility of taking specific supplements with anti-viral properties to aid in the 
prevention of COVID-19 infection, namely, vitamin C (500 mg/day), vitamin D 
(60,0000 IU/week), and zinc (20 mg/day) before the availability of any vaccine. It 
was concluded that this type of targeted supplementation of medical professionals 
and healthcare workers in an environment of potentially heightened exposure to 
coronavirus could be beneficial at the established dosages, which were non-biological 
doses well above corresponding biological doses. The combination of vitamins and 
mineral included in this preliminary study was selected for its special qualities in 
potentially combatting the coronavirus and was well-tolerated. On a biochemical 
level, the vitamin C likely acted by increasing the production of anti-viral Interferon 
α/β; vitamin D stimulated the secretion of antimicrobial peptides (defensins and 
cathelicidins) which perturb microbe cell membranes; and, zinc boosted the immune 
response in the subjects to ward off infection. Zinc may also have provided a second-
ary defense to clinic staff members by interfering with the SARS-CoV-2 replication 
machinery and disabling the viral RNA polymerase of invading virus particles. No 
other supplements aside from these three were provided to the participants to mini-
mize confounding variables.

Even though, a variety of vaccines did become available following this study and 
all the clinic staff opted to be fully vaccinated (the vaccine supplied to healthcare 
workers in India was mainly Covishield), it was decided to continue with this special 
supplementation regimen (the vitamin D3 dose was gradually reduced to 30,000 IU 
per week), even after the six-month and two-and-three quarter month trial periods 
for several reasons. Firstly, it is not known, yet, exactly how long the antibody immu-
nity generated by these vaccines lasts (although an estimate of 3–6 months has been 
suggested) and, therefore, there may be a lag period during which recipients are not 
protected. Lasting immunity following acute viral infection is variable and pathogen-
specific ranging from life-long for smallpox or measles, to highly transient for com-
mon cold coronaviruses (CCC). It often requires maintenance of both serum antibody 
and antigen-specific memory B and T lymphocytes. Secondly, as new variant strains 
of the novel coronavirus continue to appear and change beyond recognition, many of 
the vaccines may become less effective or even ineffective at some point as antibodies 
can no longer recognize their corresponding antigens. For example, the Alpha, Beta, 
and Delta coronavirus mutant strains appear to have a modified spike protein with an 
increased binding capacity. The Gamma variant carries some of the same spike muta-
tions [23]. This feature may render vaccines that target solely the novel coronavirus 
spike protein irrelevant. Evidence is already emerging that suggests fast-spreading 
coronavirus variants like Omicron with an ever-increasing number of multiple muta-
tions in the spike protein may evade the main immune responses triggered by many 
vaccines and natural infection [43–47] possibly excluding T cell immunity [48, 49]. 
Thus, it is preferrable to seek protection simultaneously from several biochemical 
sources that disable different parts of the viral machinery. Thirdly, even though it is 
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possible to alter existing vaccines to target these new variants, it takes some time to 
re-engineer them, so it is not desirable for recipients to have an unprotected interval. 
Finally, there is the question of how many vaccines an individual can safely receive 
each year without engendering negative physiological consequences or increasing the 
chances of experiencing long-term side-effects.

As an example, thimerosal is a mercury-containing organic compound (approxi-
mately 50% mercury by weight) that has been widely used as a preservative in many 
inactivated-virus vaccines since the 1930s [50]. Mercury is toxic to both animals 
and humans and is associated with several adverse health effects including anemia, 
cardiovascular disease, developmental abnormalities, neurobehavioral disorders, 
kidney and liver damage, and brain cancer [51]. Although, it is claimed that thi-
merosal is safe in small doses, it is unlikely that experiments have been conducted 
on human subjects receiving two to three or more vaccines per year as seems to be 
required in the case of coronavirus. Not all the new coronavirus vaccines like the 
mRNA vaccines contain thimerosal, but there may be other ingredients with unin-
tended future consequences, which have not been adequately tested. Naturally, these 
could have the greatest negative impact on younger members of the population. 
Therefore, the most prudent approach for government health agencies to adopt may 
be to continue to offer annual booster vaccines for those 60 years or over and to other 
vulnerable members of society.

Further issues with the various available vaccines have also come to light. For 
example, in rare instances, the AstraZeneca COVID-19 vaccine has been linked to 
blood clots, while the Pfizer and Moderna vaccines have been associated with severe 
allergic reactions in rare cases [52, 53]. It may be possible to mitigate some of these ill-
effects by adjusting the vaccine dose according to a recipient’s weight (for example, a 
person who weighs 45 kg might receive a lesser dose than someone who weighs 90 kg 
or double their weight). Moreover, COVID-19 vaccination is associated with a lower 
risk of several, but not necessarily all, COVID-19 symptoms in those with break-
through SARS-CoV-2 infection including long-COVID features, renal disease, mood, 
anxiety, and sleep disorders [54]. However, there were no breakthrough cases of 
COVID-19 between April and December 2021 in any of the 14 hospital staff members 
who had been vaccinated, but simultaneously continued with supplementation. No 
mild cold-like symptoms were observed in any of the subjects either. It is also worth 
noting that none of the staff received a booster vaccine during this period, which 
would only become available to healthcare workers and medical professionals in 
January 2022. Thus, this study successfully spanned the rise of Alpha to Delta variants 
(pre-vaccine), while breakthrough cases were averted during the peak and decline of 
Delta and the onset of Omicron in India (post-vaccine).

Unfortunately, the small sample size (14, 15) of the test group in these trials could 
not be analyzed statistically in relation to the much larger population in the town, 
which merely formed a general basis for comparison. So, this may be regarded as 
an uncontrolled study without matched controls. Ideally, another private clinic of 
similar size with equivalent numbers of medical and non-medical staff members, 
who were not receiving supplementation, could have participated as the control 
group. A second similar placebo group might also have been informative. However, 
this would not be possible in any future studies as vaccines have become widely 
available to healthcare workers all over the country. At the same time, it is likely that 
the other hygienic practices adopted at the clinic during the pandemic may have 
contributed to the positive result. Moreover, the annual incidence of coronavirus 
cases was relatively low in the town as compared with urban centres and must also 



RNA Viruses Infection

58

be taken into consideration. Nevertheless, it is more than likely that the clinic staff 
were exposed to persons infected with the coronavirus during the study (initially, the 
original strain, followed by the Alpha variant, at least, according to the region, and, 
then, later, the Delta variant), but local sequencing data was not available. Therefore, 
some interesting insights into supplementation with specific vitamins and minerals 
of medical personnel may have been gained as a result of these initial findings as no 
COVID-19 infections occurred among the unvaccinated hospital staff between July 
1, 2020 and March 22, 2021 (Tables 1 and 2). No breakthrough infections occurred 
either in the staff members, who were fully vaccinated with the Covishield vaccine, 
between April and December 2021 with continued supplementation (Table 3). These 
results may prove useful for further clinical research into COVID-19 prevention, but, 
due to the small sample size, future studies should be conducted with much larger test 
groups, equally matched controls, placebo groups, and a complete statistical analysis. 
It may be particularly relevant for lower-income countries without immediate access 
to vaccines always and as an added precaution for healthcare professionals at higher-
than-average risk of infection. This is also especially applicable in the event of waning 
vaccine efficacy as may be the case with the Omicron variant and some of its sub-
variants, which seem equipped to evade antibody immunity (not necessarily T cell 
immunity), cause breakthrough infections, and initiate reinfections [55].

Participant’s 
position

Daily supplement [vitamin 
C/Zn] (500 mg/20 mg)

Weekly supplement 
[vitamin D]  
(60,000 IU)

Coronavirus incidence 
(among 14 subjects)

2 doctors + + −

3 nurses + + −

2 lab techs + + −

1 security guard + + −

1 cleaning staff + + −

5 general staff + + −

Table 2. 
Oral supplementation of staff members—Part II; pre-vaccine (January 1–March 22, 2021).

Participant’s 
position

Daily supplement [vitamin 
C/Zn] (500 mg/20 mg)

Weekly supplement 
[vitamin D]  
(60,000 IU)

Coronavirus incidence 
(among 15 subjects)

2 doctors + + −

3 nurses + + −

2 lab techs + + −

1 security 
guard

+ + −

1 cleaning staff + + −

6 general staff + + −

Table 1. 
Oral supplementation of staff members—Part I; pre-vaccine (July 1–December 31, 2020).



COVID-19 Prevention through Vitamin C, D, and Zinc Supplementation: A Small Clinical…
DOI: http://dx.doi.org/10.5772/intechopen.103963

59

Author details

Chanda Siddoo-Atwal1,2,3,4

1 University College London, England

2 Simon Fraser University, Canada

3 Medical College Wisconsin, United States

4 President and Primary Biochemist of Moondust Cosmetics Ltd., Canada

*Address all correspondence to: moondustcosmetics@gmail.com

Finally, there is no doubt that there will be ever new SARS-CoV-2 variants in the 
future, which may be less virulent, or possibly more so. As the virus evolves, these 
variants may become more transmissible and even better able to evade vaccine and 
natural immunity. These currently unknown mutants are beyond the scope of this 
book or chapter. However, the approach remains the same and we must be prepared 
with an artillery of weapons against the novel coronavirus rather than just relying 
on one.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

Participant’s 
position

Daily supplement [vitamin 
C/Zn] (500 mg/20 mg)

Weekly supplement 
[vitamin D]  
(30–60,000 IU)

Coronavirus incidence 
(among 14 subjects)

2 doctors + + −

3 nurses + + −

2 lab techs + + −

1 security guard + + −

1 cleaning staff + + −

5 general staff + + −

Table 3. 
Oral supplementation of staff members—post-vaccine (April 1–December 31, 2021).
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Chapter 5

Chronic Inflammatory Bowel 
Disease and Demyelination of the 
Central Nervous System: A Report 
on Two Cases
Oumerzouk Jawad, Klevor Raymond, Chraa Mohamed, 
Louhab Nissrine and Kissani Najib

Abstract

The objective of this article is to investigate the link between chronic inflammatory 
bowel disease (IBD) and central nervous system (CNS) demyelination. CNS demy-
elinating disorders in IBD are rare complications and are due to a dysimmune mecha-
nism. We report the clinical cases of two patients followed for IBD. The first patient 
had Crohn’s disease for 12 years and developed acute disseminated encephalomyelitis 
(ADEM) 1 month after the first course of the anti-tumor necrosis factor alpha (anti-
TNF-alpha), infliximab. The second patient, treated for ulcerative colitis with sala-
zopyrin, developed multiple sclerosis (MS) 5 months after the start of her disease. MS 
and optic neuritis remain the inflammatory demyelinating diseases of the CNS most 
frequently associated with IBD. The activation of T lymphocytes during IBD plays 
an essential role in the pathogenesis of MS and ADEM in a genetically predisposed 
population. It is currently recommended that patients with IBD be evaluated clini-
cally and by MRI for subclinical demyelinating lesions in order to guide  therapeutic 
management.

Keywords: chronic inflammatory bowel diseases, multiple sclerosis, encephalomyelitis

1. Introduction

1.1 Clinical case 1

We report the clinical history of a 45-year-old patient, followed up for 12 years for 
Crohn’s disease. The patient was initially treated with sulfasalazine during the first 
2 years of the disease and then, following an exacerbation of the disease, with azathio-
prine 100 mg/day and prednisolone 80 mg/day. The evolution was marked by a stabili-
zation of the disease with the occurrence of complications of long-term corticosteroid 
therapy including adrenal insufficiency and steroid-induced diabetes for which he was 
placed on hydrocortisone and insulin therapy. However, given the persistence of active 
and fistulizing bowel involvement on thoraco-abdomino-pelvic computed tomography, 
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the patient was started on anti-TNF-alpha (infliximab), after gradual reduction of oral 
corticosteroid therapy. The evolution was marked 1 month after the first infliximab 
treatment, by the rapidly progressive onset over 5 days, of weakness on the right side of 
his body with dysarthria, in a context of apyrexia without constitutional symptoms. The 
patient did not report any history of infection or vaccination in the month preceding the 
onset of this clinical picture. The neurological examination showed a spastic right hemi-
paresis, predominantly in the right lower limb with bilateral Babinski, and the fundus 
showed signs of periphlebitis in the peripheral retina. Brain MRI showed a left capsulo-
thalamo-lenticular lesion with poorly defined margins, which appeared hypointense 
on T1 and hyperintense on T2, Fluid-attenuated inversion recovery (FLAIR), and 
diffusion sequences. The lesion was not enhanced after injection of contrast medium 
and exhibited hemorrhagic changes with significant perilesional edema exerting a 
discrete mass effect on the ventricular system. A second lesion was noted at the right 
capsulo-lenticular level, of smaller volume, also with hemorrhagic changes (Figure 1). 
The spectro-MRI data were compatible with an inflammatory process, and the angio-
graphic sequences did not show venous thrombosis or signs of cerebral vasculitis. At 
this stage, in consultation with the neuroradiologist, we considered the diagnoses of 
acute disseminated encephalomyelitis (ADEM) and certain opportunistic infections, 
notably cerebral toxoplasmosis. The spinal cord MRI was unremarkable, and the lumbar 
puncture showed aseptic lymphocytic meningitis with 73 white blood cells/mm3 (100% 
lymphocytes), zero red blood cells, elevated Cerebrospinal fluid (CSF) proteins of 
0.70 g/l, CSF glucose of 0.87 g/l (glycemia = 1.47 g/l) without intrathecal synthesis of 
immunoglobulins. Inflammatory and immunological tests, biopsy of the accessory 
salivary glands, angiotensin-converting enzyme assay, viral and toxoplasmosis serolo-
gies, PCR for Mycobacterium tuberculosis, and the rest of the biological workup were 
unremarkable. The diagnosis of ADEM associated with Crohn’s disease was retained, 
and the patient received a bolus of methylprednisolone 500 mg/day for 6 days, followed 
by oral corticosteroid therapy (prednisolone 40 mg/day) with progressive tapering 
over 5 weeks. The clinical evolution was marked by the progressive recovery of muscle 
strength on the right side of the body, and the control brain MRI, 1 month after the halt 
of oral corticotherapy showed an almost complete disappearance of the lesions previ-
ously found. The biotherapy was stopped, and the decision to restart it was deferred.

Figure 1. 
Brain MRI, T2 (A) and FLAIR (B) sequences, showing bilateral and asymmetric, poorly demarcated T2 and 
Flair hyperintensities in the left thalamo-capsulo-lenticular and right capsulo-lenticular areas, with hemorrhagic 
changes.
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1.2 Clinical case 2

This is a 32-year-old patient, followed for 5 months for ulcerative colitis under 
salazopyrin, and admitted to the emergency room with a gait instability of rapidly 
progressive onset over a week and accompanied by a rotatory vertigo. The patient 
also presented a spontaneously regressive episode of numbness with paresthesias 
of the left lower limb lasting 1 month. Clinical examination found a statokinetic 
cerebellar syndrome, a left lateralized central vestibular syndrome with a tetrapyra-
midal syndrome. The fundus was normal, and magnetic resonance imaging showed 
multiple T2 and FLAIR signal intensities of the white matter in the frontal, bilateral 
parietal, occipital, corpus callosum, and inferior cerebellar peduncle, without 
contrast (Figure 2). These radiological images were suggestive of a demyelinating 
disease such as multiple sclerosis (MS). The spinal cord MRI was unremarkable, and 
the lumbar puncture showed a clear fluid with two white blood cells/mm3, zero red 
blood cells, a protein level of 0.24 g/l with intrathecal immunoglobulin synthesis; the 
visual evoked potentials were unremarkable. The immunological and inflammatory 
workup, as well as the rest of the biological workup, was unremarkable. The patient 
received a bolus of methylprednisolone at a dose of 3 g, then was placed on a disease-
modifying treatment, interferon β 1a. The evolution was marked by the regression of 
the cerebellar syndrome and vertigo, without neurological or digestive relapse with 
an aborted progression of disease for 18 months.

2. Discussion

Neurological complications of idiopathic chronic inflammatory bowel disease 
(IBD), with an estimated prevalence between 47 and 50% depending on the series, 
normally appear after the diagnosis of IBD, coinciding or worsening with the exacer-
bation of IBD [1–3]. This neurological involvement is often related either to a dysim-
mune mechanism or to a prothrombotic state [4, 5]. However, multiple sclerosis (MS) 
and optic neuritis remain the most common inflammatory demyelinating diseases of 
the central nervous system (CNS) associated with IBD [1, 6, 7].

Figure 2. 
Sagittal brain MRI, FLAIR sequence, showing multiple signal intensities involving the corpus callosum and 
inferior cerebellar peduncle.
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This is explained by the disruption of T cell function, as well as that of antigen-
presenting cells, which is common between the two diseases [1, 2, 8, 9]. Therefore, 
cellular immune suppressive therapies are effective in treating both diseases [10, 11]. 
Activation of these T cells against the major determinants of myelin (myelin basic 
protein; MBP, proteolipid protein; PLP and myelin oligodendrocyte protein; MOG), 
through a mechanism of molecular mimicry (cross-immune response), also plays an 
essential role in the pathogenesis of ADEM [3, 4, 12].

In addition, proinflammatory cytokines (TNF-α, interleukin-2, and interferon-γ) 
associated with IBD may be a potential etiological factor in ADEM [4]. Therefore, 
IBD may represent a chronic pre-demyelinating condition and the equivalent of a 
triggering factor, and ADEM may represent an extraintestinal manifestation of IBD, 
through cross-autoimmunity [5, 11].

However, it is still initially difficult to differentiate between CNS involvement 
secondary to cerebral vasculitis lesions involving small vessels, cerebral venous 
thrombosis, and primary CNS demyelination associated with IBD [2, 3, 8, 9]. Cases of 
necrotizing vasculitis may result in forms similar to acute hemorrhagic encephalomy-
elitis, a variant of ADEM [5]. In addition, animal studies have shown that demyelinat-
ing lesions such as MS or ADEM in IBD patients correspond to lesions of cerebral 
venous thrombosis [3, 5, 9]. Perivenous demyelination is thought to be secondary to 
edema following blockage of venous drainage [11].

Finally, demyelinating lesions of the CNS pose a problem of differential diagnosis 
with demyelinating lesions secondary to the use of immunosuppressants and immu-
nomodulators and with demyelinating lesions secondary to opportunistic infections in 
these immunocompromised patients [1–3, 8]. In fact, biotherapy (anti-TNF-alpha) may 
be responsible for the onset or worsening of CNS demyelinating disease in genetically 
predisposed individuals, opportunistic infections, or reactivation of latent infections, 
as well as thromboembolic complications and cerebral vasculitis [4, 7, 12]. The time 
interval between the start of anti-TNF-alpha administration and the onset of neurologi-
cal symptoms is highly variable, with an average of 5 months [11]. In fact, TNF-alpha, 
which is a pro-inflammatory cytokine that plays a pivotal role in chronic inflammatory 
reactions in the gut and brain, is essential for CNS remyelination in the late stages 
of the disease through an anti-inflammatory action, and suppression of TNF-alpha 
action may therefore potentiate inflammation and demyelination [5, 8, 11]. It is cur-
rently advocated that before initiating anti-TNF-alpha therapy in patients with IBD, 
they should be well evaluated neurologically, clinically, and with MRI, for subclinical 
demyelinating lesions [12].

In conclusion, in our patient followed up for active Crohn’s disease, ADEM could 
be secondary either to a cross-immune reaction coinciding with the worsening of IBD 
or a side effect of biotherapy, given the time interval between the beginning of treat-
ment and the neurological symptoms. It would be plausible to stop the biotherapy and 
discuss other therapeutic alternatives.
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Chapter 6

Neurotropic Virus-Induced 
Meningoencephalomyelitis
Fareeha Saadi, Debanjana Chakravarty, Grishma Kasle  
and Jayasri Das Sarma

Abstract

Meningoencephalomyelitis emanates under the umbrella relating inflammatory 
changes of the Central Nervous System (CNS). Meningitis denotes inflammation 
in the meningeal layers, encephalitis is an acute diffuse inflammation of the brain, 
and inflammation in the spinal cord is denoted as myelitis. These can be interrelated 
or independent of each other depending on the etiology. The entire mechanism of 
meningoencephalomyelitis is governed by an acute innate inflammatory branch 
followed by a chronic progressive, adaptive branch of immunity with clinical signs 
like hyperthermia, weight loss, hypoxia, leukocytosis. This book chapter will focus 
on viral-induced meningitis, encephalitis, and myelitis. Thirty years of experience 
working with a murine-β-coronavirus (m-CoV); Mouse hepatitis virus (MHV)-A59 
induced experimental model system provided us a thorough understanding of 
neuroglial cell-mediated acute neuroinflammation, denoted by the accumulation 
of leukocyte-common-antigen (LCA) positive or CD45+ leukocytes in perivascular 
infiltrates referred to as perivascular cuff formation and microglial nodules in the 
brain parenchyma, which mimics specific pathology of human neurological disease 
multiple sclerosis (MS). Additionally, in this chapter, we summarized the role of CNS 
resident microglial activation and its interaction with peripheral migratory T cells in 
mounting neuropathogenesis and host immunity in different families of neurotrophic 
encephalomyelitis viruses that cause CNS inflammation.

Keywords: meningioencephalomyelitis, demyelination, axonal loss,  
murine-β-coronavirus (m-CoV), neuroinflammation, multiple sclerosis (MS)

1. Introduction

Encephalitis is a pathological entity that refers to the inflammation of the encephalon 
or the brain parenchyma due to infection, autoimmunity, and brain injury. It is a 
rare medical condition with clinically serious consequences ranging from headaches, 
fever, seizures, permanent disability, and brain damage. Encephalitis majorly affects 
infants and the elderly above the age of 65, whereas, the incidence is transitional in 
the youth and is of significant public health importance because of the associated 
morbidity and mortality [1]. It results in varied clinical symptoms, such as mild fever 
and headaches to severe cognitive impairment accompanied by loss of physical vigor 
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and unconsciousness or even life-threatening symptoms that can result in perma-
nent brain damage [2, 3]. It is believed that the severe inflammation associated with 
encephalitis causes swelling in the brain, which in turn gives rise to headaches, stiff 
neck, mental confusion, and even seizures [1, 4]. Though cases are recognized in all 
populations and ages, pediatric populations, young adults, and especially males have 
a higher propensity to encephalitis [5–7].

Infection by a virus is the most common and important cause of encephalitis [8]. 
Virus infections can also cause aseptic meningitis and myelitis [9, 10]. Research on 
viral encephalitis has gained much momentum with the recognition of encephalitis in 
human immunodeficiency virus (HIV) infection of the CNS and the emerging viruses 
such as West Nile virus (WNV), Nipah virus, and severe acute respiratory syndrome 
viruses (SARS-CoV and SARS-CoV-2) [11]. Members of several virus families like 
flaviviruses, paramyxoviruses, alphaviruses, bunyaviruses, orthomyxoviruses, 
arenaviruses, enteroviruses, rhabdoviruses, and astroviruses are also known to cause 
encephalitis [12].

Viruses may directly enter into the CNS or replicate away from the CNS at first and 
gain entry to the CNS through various routes [13, 14]. Local factors, like pH, mucosal 
immune responses, or the integrity of skin and mucosal barriers, govern the entry of 
the virus into the CNS and resultant encephalitis. Virus entry and replication activate 
the CNS resident immune cells, which, together with peripheral leukocytes, induce 
host immune response and promote encephalitis and neuroinflammation, resulting 
in multiple changes to the CNS physiology [15]. Histopathologically, characteristic 
microglial nodule formation, i.e., the accumulation of activated microglia in the brain 
parenchyma and the perivascular cuff formation, is observed in encephalitic brains 
[16–18]. Once the virus clears, the acute behavioral symptoms are resolved; however, 
long-term psychiatric, neurocognitive, and degenerative issues persist due to the 
ongoing immune responses in the CNS even after pathogen clearance [18, 19].

Interestingly, people infected with neurotropic viruses may not always develop 
encephalitis, indicating that host cell factors may play a critical role in regulating 
the outcome of the disease process. While mounting shreds of evidence are avail-
able to understand these host factors, limited information is available to understand 
the genomic control of the pathogenic properties and host factors that mediate a 
balance between neurovirulence and neuroprotection. Host cell response pathways 
like UPR and ER stress and oxidative stress may alter due to robust viral replication 
and intracellular assembly, causing imbalance between reactive oxygen species and 
antioxidants. These are governed by a battery of cellular mediators like DJ-1, Nrf-2, 
catalase, HMOX, MMPs, NADPH oxidase, cytokines, chemokines, and secondary 
messengers. These mediators are either CNS resident proteins or may be produced 
by the CNS resident neuro-glial cells like microglia, astrocytes, endothelial cells, and 
peripherally derived leukocytes that enter the CNS upon inflammation and breaching 
of the blood-brain barrier [13]. The nexus of these immune-inflammatory mediators 
with endogenous host proteins are well studied for ages in mounting host immunity. 
The question lies in whether host immunity plays a protective or pathogenic role.

Moreover, understanding the inflammatory mechanisms of meningioencephalo-
myelitis is a challenge in human patients due to the unavailability of the high through-
put data from non-invasive techniques like MRI, fMRI, CT, and detailed invasive 
histopathological data from punched-biopsy/autopsy tissues. Thus, a thorough 
understanding of the cellular factors ranging from genomic control of pathogenic 
properties to viral host factors and immunomodulatory effects requires cause-effect 
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relationship experimental animal models/systems that can provide detailed insight 
into the disease process instrumental in the diagnosis and designing therapeutics. 
Though the use of mouse models to understand human disease has its limitations, 
critical pathological features of encephalitis can be efficiently reproduced in viral-
induced experimental models. This book chapter will majorly summarize studies 
on viral encephalitis and its consecutive neuroinflammatory demyelination and 
axonal loss.

2. Routes of infection emanating to neurotropic virus infection

The term “neurotropic” refers to affinity towards the nervous system and displays 
the properties of neuroinvasion (entry into the CNS), and has direct neuroglial 
tropism. The viral entry to the neuroglial cells may be via receptor-mediated endo-
cytosis and its fusion with the cell cytoplasm. It may also enter via direct endocytosis 
irrespective of engaging a receptor. Mounting shreds of evidence reported that neu-
rotropic virus enters the brain parenchyma from the olfactory epithelium or retinal 
ganglionic cells via retrograded axonal transport. Upon entry to the brain paren-
chyma, infectious virus particles may also follow anterograde axonal transport via the 
optic nerve to reach retinal ganglionic cells and also can spread to different anatomic 
regions of the brain like the hippocampus, cortex, anterior commissure, basal fore-
brain, amygdala, brain stem as well as down the spinal cord. The neurotropic viruses 
can also travel through the lung-brain axis and cause inflammation in the brain stem 
region, the respiratory center. Neurotropic viruses can also access brain parenchyma 
via the gut-brain axis through the vagus nerve.

3.  Neurotropic virus infection in mice is employed as an experimental 
model system to understand the underlying mechanisms of 
encephalitis, poliomyelitis, neuroinflammation, and demyelination 
concurrent with axonal loss

Neuroinflammation is responsible for initiating direct neuroglial dystrophy, which 
in turn can activate CNS resident microglia to release immune modulators. Microglia, 
the major resident immune cells in the central nervous system (CNS), are considered 
as the key cellular mediators of neuroinflammatory processes. Microglial research has 
become a central focus in cellular neuroimmunology and neuroinflammation in the 
past few years. Chronic/remitting neurological disease such as multiple sclerosis (MS) 
has long been considered an inflammatory autoimmune disease with the infiltration 
of peripheral myelin-specific T cells into the CNS. With the rapid advancement in the 
field of microglia and astrocytic neurobiology, the term neuroinflammation progres-
sively started to denote chronic CNS cell-specific inflammation in MS. The direct 
glial responses in MS are different from conventional peripheral immune responses. 
This book chapter attempts to summarize current findings of neuroinflammatory 
responses within the CNS by direct infection of neural cells by mouse hepatitis virus 
(MHV) and the mechanisms by which glial cell responses ultimately contribute 
to the meningioencephalomyelitis and demyelination concurrent with axonal loss 
(Figure 1). Microglia can be persistently infected by MHV. Microglial activation 
and phagocytosis are recognized to be critically important in the pathogenesis of 
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demyelination. Emerging evidence for the pathogenic role of microglia and the 
activation of inflammatory pathways in these cells in MHV infection supports the 
concept that microglia-induced neuroinflammation is an amplifier of virus-induced 
neuropathology. Conventional understanding was that the peripheral immune cells 
are the major players for mounting CNS inflammatory responses. But the current 
studies revealed that if microglial activation and its immune modulators can check 
the infection, then the peripheral immune system need not be involved in mounting 
host immunity, and meningioencephalomyelitis may not shadow. In most cases, CNS 
resident microglial activation sets the stage for innate immune inflammation that 
results in the proinflammatory milieu of cytokines and chemokines, known as cyto-
kine storm, which, while trying to combat pathogens, also causes damage to the CNS 
tissues. Amelioration of the proinflammatory condition requires anti-inflammatory 
cytokines where the peripheral immune system plays a major role. A series of recent 
studies on neurotropic murine β-coronavirus demonstrated acute-innate neuroin-
flammation mediated by CNS resident microglial interplay with peripheral leucocytes 
comprising monocytes and neutrophils NKT cells, CD4+ and CD8+ T cells to eradicate 
the pathogen and protect host tissue against aberrant tissue damage (Figure 2). In 
the below-mentioned sections of this book chapter, we are discussing in detail MHV 
infection as a prototype of β-coronavirus infection and its pathogenesis to understand 
the underpinning mechanism of meningioencephalomyelitis, demyelination and 
axonal loss.

Figure 1. 
Disease kinetics and pathological manifestations of murine β-CoV, MHV-A59 intracranial inoculation in 
C57BL/6 mice, a model to understand viral induced meningioencephalomyelitis and demyelination concurrent 
with axonal loss. (A) Shows the timeline of infection namely acute stage and its corresponding neuropathologies: 
meningitis denoting inflammation in the meningeal layers, encephalitis,an acute diffuse inflammation of 
the brain, and inflammation in the spinal cord denoted as myelitis and chronic progressive demyelination 
characterized by myelin loss concurrent with axonal loss. (B) Kinetics of MHV-A59 replication and viral clearance 
represented by viral RNA and infectious viral particles respectively and occurrence of demyelination [20].
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3.1 MHV

Mouse hepatitis virus (MHV) is a β-CoV of the family Coronaviridae. It poses no 
threat to humans but shows similarities with other human viruses of the same fam-
ily, such as SARS-CoV, MERS-CoV, and SARS-CoV-2 though they are evolutionarily 
distinct. MHV can infect the CNS and cause white matter lesions, which makes it an 
excellent viral model of neuroinflammatory demyelinating disease. Depending on the 
inoculation route and the strain of MHV-CoV, different outcomes are expected [21].

For example, a highly neurovirulent strain of MHV, JHM, J2.2-V-1, upon intracra-
nial inoculation, induces a monophasic disease course, characterized by inflammatory 
cell infiltrates in the CNS with subsequent demyelination and clinical symptoms of 
hind limb weakness, ataxia, and paralysis [22, 23]. No auto-reactive T cells have ever 
been found in the CNS of J2.2-V-1-infected mice, and the disease is the resultant of 
virus-specific T cells, which indicated that virus alone can cause myelin destruction. 
Earlier it was believed that demyelination in JHM infection may be solely due to the 
lytic oligodendrocyte infection [24], but with the application of immune-deficient 
animal models, it became clear that immune-mediated mechanisms may be more 
important [25].

Figure 2. 
Temporal kinetics of CNS resident glial cell activation associated with peripheral cell migration in response 
to RSA59 infection in the mouse CNS is key to cause meningioencephalomyeltits. Intracranial inoculation of 
RSA59 directly infects CNS resident neuroglial cells that in-turn activates CNS resident immune-glial cells like 
astrocytes and microglia. Activated CNS resident cells secrete a large number of inflammatory mediators like 
pro-inflammatory cytokines and chemokines. Microglial activation and its pro-inflammatory mileu in the 
inflamed CNS make a chemoattractant gradient to help the migration of peripheral leukocytes in the CNS. A 
differential infiltration of total myeloid (neutrophils, macrophages/monocytes, and microglia) and lymphoid 
(CD4, CD8, and NKT) cell populations observed at different time post infection is critical for orchestration of 
the clearance of the viral particle mounting host immunity by balancing the pro-inflammatory condition with the 
anti-inflammatory condition and restoring the CNS homeostasis.
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MHV-A59, a hepatotropic and neurotropic MHV strain, caused demyelination in 
C57BL/6 mice even in the absence of B and T cells [20]. The disease upon MHV-A59 
intracranial administration also follows a biphasic course, where encephalomyelitis 
is characteristic of an acute phase peaking during days 5/6 post infection (p.i.) and 
chronic stage where demyelination and axonal degeneration peak on day 30 p.i. 
[26–29]. Thus, it can be said that different, but related MHV strains may induce 
demyelination via distinct mechanisms. MHV-A59 induced neuroinflammation and 
neuroimmune modulation mediated neuroglial dystrophy is triggered by the activa-
tion of cellular censors like Toll-like receptor (TLRs)/Rig-I-like receptor (RLRs)/syn-
thase for the second messenger cyclic GMP-AMP and the cyclic GMP-AMP receptor 
stimulator of interferon genes (cGAS-STING) which can further activate the inter-
feron regulatory factors (IRFs), nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and downstream type I interferon (IFN) genes. Acute-innate 
neuroinflammation is rather dependent on the CNS resident immune cell activation 
in association with peripheral derived myeloid cells, which in turn involve lymphoid 
cells in ameliorating proinflammatory condition and bring the anti-inflammatory 
condition in order to restore the homeostasis of the CNS compartment [30].

Studies are focused on understanding mechanisms from cellular sensing to the 
disease outcome comprising the MHV-A59 induced neuroinflammation encompass-
ing encephalitis and microglial nodule formation and its progressive myelin pathology 
concurrent with axonal pathology. We have used and compared spike gene recom-
binant strains of MHV, a demyelinating strain (DM) RSA59, and non-demyelinating 
strain (NDM) RSMHV2 to understand the genomic control of encephalitic properties. 
A plethora of studies from the eminent scientists in this field, along with ours, have 
contributed to understanding the pathogenesis of MHV infection. Strains of MHV 
can cause direct CNS cell infection or access the CNS via retrograde axonal transport, 
but irrespective of the route, they cause encephalitis [31–33].

3.1.1  Comparative studies between spike gene recombinants murine 
coronaviruses RSA59 and RSMHV2 to understand the genomic control of 
meningioencephalomyelitic properties

Using targeted RNA recombination, two isogenic spike protein recombinant 
strains of MHV, RSA59, and RSMHV2 (background is from demyelinating strain 
MHV-A59) were generated. For RSA59, the spike was taken from the parental 
demyelinating strain MHV-A59, and RSMHV2 had the spike from the parental non-
demyelinating MHV-2 strain. Enhanced green fluorescent protein (EGFP) was also 
inserted in the recombinants by replacing the nonessential gene 4a and part of 4b in 
the MHV-A59 genome by heterologous targeted recombination [34].

Comparative studies between the two recombinants revealed similar pathology to 
their parental strains for RSA59 and RSMHV2, respectively. Intracerebral (IC) inocu-
lation of RSA59 in 4-week-old C57BL/6 mice caused acute hepatitis, neuroinflam-
mation comprising of meningitis, encephalitis, myelitis, and chronic demyelination 
and axonal loss, characterized by lymphocytic infiltrates and microglial nodules with 
focal neuronophagia associated lepto-meningitis [29, 35]. IC inoculation of RSMHV2 
caused acute stage hepatitis, meningitis, and encephalitis but no myelitis or chronic 
demyelination. The encephalitis was indeed more robust compared to RSA59. MHV-2 
does not induce encephalitis; it cannot even enter the brain parenchyma and restricts 
to the meninges inducing meningitis alone [34].
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Both RSA59 and RSMHV2 showed similar infection in the brain where they 
successfully infected and replicated in meninges, the site of inoculation (near the 
lateral geniculate nucleus), ventral striatum/basal forebrain, hippocampus, and 
brainstem, and infect the neurons, astrocytes, microglia, and oligodendrocytes 
in the brain. However, they show different tropism in the spinal cord. DM infects 
the grey matter neurons and takes an axonal route to be released at the nerve end, 
whereas in the white matter, it preferentially infects oligodendrocytes [36]. By day 
7 p.i. most of the viruses have traversed to the spinal cord white matter. Though 
NDM can also infect the neurons in the grey matter, they fail to infect the white 
matter oligodendrocytes [35, 36] due to their inefficiency to translocate through 
neurites and fusion at the nerve end [37]. The difference in the disease outcome 
can be attributed to their differential spinal cord tropism and persistence. Thus, 
it can be inferred that the combined action of spike mediated axon transport of 
DM strain to evade the heightened immune response and ability to infect the white 
matter oligodendrocytes and persist in the white matter could be the key to inducing 
demyelination and axonal loss during the chronic phase of neuroinflammation. DM 
strain-induced axonal loss and myelin loss are associated with profuse accumulation 
of macrophages filled with myelin debris within the demyelinating plaques which 
is not observed in NDM strain infection. High resolution TEM microscopy revealed 
that microglia/macrophages are indeed responsible for direct myelin stripping, 
 leading to demyelination [29, 35, 38].

It is important to note that neuroinflammation and encephalitis in MHV infec-
tion is accompanied with pronounced activation of CNS resident immune cells, 
microglia, and astrocytes. Upon activation, they take their characteristic activated 
phenotype and start expressing microglia/macrophage-specific protein Iba1 (ionized 
calcium-binding adaptor molecule 1), which promotes ruffling and phagocytosis 
[20, 38]. Detailed Affymetrix microarray analysis revealed that both RSA59 and 
RSMHV2 initiate innate immune responses during the acute phase with the expres-
sion of chemokines like CXCL10, CXCL9, CCL5, and CCL12 and other CD molecules 
that represent activation of microglia/macrophages [39]. Results also showed the 
induction of antiviral host response represented by the expression of perforins and 
IFN gamma signaling genes. Together, the acute stage innate-immune responses and 
encephalitis were comparable in both RSA59 and RSMHV2 infection [39].

The inflammatory responses gradually declined in RSMHV2 infection follow-
ing virus clearance, but RSA59 chronic infection showed persistent microglia in the 
demyelinating plaques and the production of microglia-associated inflammatory 
mediators. Studies have shown that IFN responses can promote phagolysosomes 
maturation and autophagy in the persistently activated microglia/macrophages, 
which can promote myelin sheath engulfment leading to demyelination. This evi-
dence demonstrated that RSA59 induced demyelination could occur through innate 
immune neuroinflammation denoted by meningioencephalomyelitis triggered during 
the acute infection stage. Although innate immune responses contribute partially 
towards controlling of initial virus spread, virus-specific T cell effector functions are 
essential to eliminate the infectious virus load during most acute infections. Control 
of m-CoV spread requires the functioning of both CD4+ and CD8+ T cells [40]. CD8+ 
T cells are the primary effectors but require support from CD4+ T cells. A recent study 
in CD4−/− mice showed impaired RSA59 clearance, despite the presence of functional 
CD8+ T cells, demonstrating the importance of CD4+ T cells for the efficient function-
ing of CD8+ T responses [41].
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The distinct cause-effect relationship-driven studies demonstrate that RSA59 
infection can be instrumental towards understanding a direct CNS resident immune 
cell-mediated as well as antibody-mediated encephalomyelitis and demyelination 
pathologies.

Both DM and NDM strains show a reduction in the expression of genes respon-
sible for innate immune response, and this reduction is more pronounced in the NDM 
strain-infected mice. In contrast, the genes involved in adaptive immune cell response 
are upregulated only in DM strain, specifically during the chronic stage of spinal cord 
infection. A significant upregulation of genes involved in T helper cell signaling path-
ways, B-cell development, and communication between innate and adaptive immune 
cells as well as of the expression of IgG genes are observed in the DM strain infection 
leading to chronic pathology but not in NDM strain [42].

While MHV infection in mouse is a prototype to understand the cellular and 
molecular consequences of encephalitis and demyelination, Theiler’s murine enceph-
alomyelitis virus (TMEV) in SJL mice also serves as another excellent experimental 
model of MS because of its histopathological and immunological similarities with MS.

3.2 Theiler’s murine encephalomyelitis virus (TMEV) induced encephalitis

TMEV is a non-enveloped, single-stranded positive-sense RNA virus belonging 
to the family Picornaviridae and also used as a model to understand the immune-
mediated mechanism of demyelination [43, 44].

Upon intracranial (i.c.) infection in SJL mice induces characteristic polioencepha-
lomyelitis in the CNS. In a biphasic CNS disease, first, during the acute phase immune 
cells including the CD4+ T cells and CD8+ T cells infiltrate the CNS in response to 
profuse virus replication, and inflammation [45]. They exert rather protective effects 
by helping clear the virus from the grey matter and result in immune-mediated 
encephalomyelitis [46]. During the chronic phase, TMEV persistently infects glial 
cells and macrophages in the white matter, further, there is an infiltration of leuko-
cytes, including macrophages, TMEV-specific T cells and antibodies. The immune 
effectors (CD4+ and CD8+ T cells) that exerted protective functions during the acute 
phase exert detrimental effects in the chronic phase by participating in epitope 
spreading to myelin antigens resulting in severe immune pathology in the white mat-
ter of the spinal cords, which causes demyelination [47]. White matter lesions harbor 
monocytes/macrophages and a few B cells in addition to the T lymphocytes [48]. 
Initially, the CD4+ T cells recognized the abundant myelin protein PLP, but later, the 
CD4+ T cells subsets start to recognize subdominant myelin protein epitopes and led 
to autoreactivity [47]. Additionally, the CD8+ T cells have also been suggested to func-
tion as autoreactive cytotoxic cells or regulatory cells in TMEV infection [49]. TMEV 
induced CNS pathology is immunologically mediated like in MS, wherein MHC plays 
an important role, and substantial similarities exist in neuropathology, including 
axonal damage and remyelination [43]. Also, like MS, T-cell apoptosis is less in TMEV 
induced disease [50].

Cytokines are known to play important functions in the induction and regulation 
of immune responses against the neurotropic virus. Similarly, the cytokine produc-
tion by the CNS resident cells astrocytes and microglia, as well as the peripheral 
immune cells such as T cells and macrophages heavily, influence the encephalitic 
response induced by TMEV infection [51, 52]. Studies have shown that a critical 
balance between the inflammatory cytokines governing the propagation of anti-
viral response to clear the virus during early infection and controlling of immune 
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pathology and establish homeostasis during the late stage. That being said, no par-
ticular cytokine pattern is yet established and successfully associated with resistance 
or susceptibility to TMEV-induced encephalitis and demyelination by the differ-
ent strains of the virus. A study compared the cytokine response between TMEV 
DA-infected susceptible (SJL) and resistant (B6) mice. Results showed a high expres-
sion of proinflammatory cytokines (IFN-γ, TNF-α, IL-1, IL-2, and IL-6) and low 
levels of anti-inflammatory cytokines (IL-4, IL-5, and IL-10) in the brains of both SJL 
and B6 mice during the early acute phase decreasing thereafter [51]. However, only 
in the SJL mice after a peak of the inflammatory response during day 8–12 p.i. in the 
brain with a minimum recorded during days 20–25 p.i., the second wave of inflamma-
tory cytokine production was observed later in the spinal cord, which could explain 
the inflammatory demyelination only in the SJL mice. TGF-β, an important anti-
inflammatory cytokine, has shown a significantly higher upregulation in SJL mice 
compared to B6 [51]. TGF-β can specifically inhibit the cytotoxic T lymphocyte (CTL) 
response [53] which is noted to be significantly impaired in the SJL mice resulting in 
reduced TMEV clearance and persistence, leading to virus-mediated encephalitis and 
demyelination.

4.  Overview of microglial activation in encephalomyelitis: amplifier of 
virus-induced neuropathology

In the context of viral encephalitis that is characterized by an inflammatory 
response with meningeal, perivascular, and parenchymal infiltrates of peripheral leu-
kocytes, studies have revealed that microglial activation acts as a double-edged sword 
[16]. On the one hand they promote multiple antiviral functions; microglia sense 
the ATP released by virus-infected neurons through the purinergic receptor P2Y12 
and quickly migrate towards the infected neurons to exert their phagocytic activity 
[54]. They directly exert their antiviral effect by producing type 1 interferon (IFN-1), 
inducing IFN-stimulated gene (ISG) to activate corresponding signaling pathways 
[55]. Additionally, microglia induce autophagy and secrete cytokines to clear the virus 
from the tissue [56–58]. On the other hand, their persistent activation leads to tissue 
damage due to autophagy and apoptotic pathway activation, presynaptic membrane 
damage in the hippocampus mediated by the complement system activation, which 
further results in long-term memory impairment and cognitive dysfunction in 
patients with viral encephalitis [59–62].

The most common and important example of virus-induced chronic brain infec-
tion is the HIV [63]. HIV-induced encephalitis is typified by the accumulation of acti-
vated microglia in nodules-like phenotype throughout the parenchyma [64, 65]. HIV 
enters the CNS via the myelomonocytic cells such as monocytes, perivascular cells, 
and microglia [66]. HIV particularly targets and disables microglia in the CNS and 
T cells in the periphery, the key players in neuroinflammation [64, 67]. In fact, the 
persistence of HIV in microglia indicates that the virus uses the cells as the reservoir 
[68]. Even though reports suggest that microglia may perform protective functions 
early on during HIV infections, their functions are considerably compromised. Most 
studies suggest that active infection of microglia results in their secretion of a variety 
of neurotoxins, increasing neural apoptosis and neuronal autophagy [16]. Astrogliosis 
is another characteristic pathology following microglial activation that, together with 
microgliosis, ultimately leads to myelin paleness and neuronal loss. Patients with 
advanced AIDS are likely to develop severe encephalitis upon human cytomegalovirus 
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(HCMV) infection [69, 70]. HCMV infection is characterized by microglial nodular 
encephalitis consisting of microglia, astrocytes, and giant cells, and ventriculoen-
cephalitis and is the main cause of dementia in AIDS patients [71].

Microglia are susceptible to congenital Zika virus (ZIKV) infection [61]. 
Histopathological analysis showed that ZIKV infects and activates microglia in the 
perivascular regions causing localized neuroinflammation [61]. Further, the virus 
is disseminated throughout the parenchyma, which is later associated with neuron 
damage, especially in the cortical regions [72]. Pronounced neuronal injury results in 
microcephaly noted in many cases of congenital ZIKV infection [72].

E3 ubiquitin ligase pellino (pelia) expressed by microglia promotes the replication 
of West nile virus (WNV) in microglia and neurons [73]. It also induces NF-κB and/
or p38-MAPK signaling in the microglia that causes an upregulation of inflammatory 
cytokines and chemokines, leading to peripheral leukocytes infiltration [73, 74]. The 
robust neuroinflammation may lead to lethal WNV encephalitis.

It is interesting to note that many viruses from diverse families of viruses have 
been studied in microglia depletion models. Results from most studies showed 
increased viral replication upon microglial depletion [16, 75–77]. Additionally, 
microglial depletion was also associated with overt neurological symptoms and/or 
death along with high viral burden, which indicated their importance in survival in 
encephalitis [77]. Though confirmatory results on how these protective functions are 
exerted by microglia are lacking, some studies show a dependence of T cell responses 
on microglia activation.

Studies on several mouse models of viral encephalitis have shown that viral clear-
ance depends on efficient T cell responses, including WNV, MHV, and TMEV [78–81]. 
TMEV model shows strain-specific differences in disease phenotype and viral 
clearance, which was associated with underlying differences in CD8+ T cell responses 
subject to Treg suppression [82, 83]. Further investigation revealed that microglia 
depletion did not impact CD8+ T cell recruitment but resulted in increased infiltra-
tion of Tregs, which caused clinical severity in C57BL/6 mice which is normally not 
susceptible to TMEV induced disease [84]. In the MHV-induced neuroinflamma-
tion model, both CD8+ and CD4+ T cells are implicated in viral clearance, but CD4+ 
T cells have also been reported to contribute to pathogenesis [80, 85, 86]. A study 
showed that microglial depletion in mice infected with JHMV strain of MHV, rJ2.2 
significantly reduced the infiltration of CD4+ T cells and Tregs in the CNS along with 
a significant reduction in IFN-γ expression by CD4+ T cells, but there was no impact 
on the CD8+ T cell population [77]. Thus, showing the importance of microglia in 
especially orchestrating virus-specific CD4+ T cell response.

In addition to these studies using the JHMV strain, MHV-A59 or its isogenic 
recombinant strain RSA59 have also elucidated a critical communication between 
microglia and CD4+ T cell response. Using a CD4−/− mice model very recent study 
demonstrated for the first time that the mice are highly susceptible to RSA59 induced 
chronic demyelination with axonal loss [80]. Though the overall inflammation was 
not affected during the early time-points (day 5–6) i.e., the acute neuroinflamma-
tion phase, the CD11b + microglial activation was significantly impaired. The entire 
inflammatory response was skewed towards an M2 type which was also reflected in 
the persistence of characteristic amoeboid shaped phagocytic microglia in the CNS of 
the mice during the chronic phase (day 30 p.i.). Encephalitis, which usually resolves 
after the acute phase in RSA59 infection, persisted for as long as day 30 p.i. The brain 
stems of CD4−/− mice were populated with CD11b + microglia surrounding bulbar 
vacuolated pathology, which signified axonal death and damage [80]. Additionally, 
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CD4+ T cell deficiency resulted in severe grey matter inflammation in the form 
of poliomyelitis in the spinal cords as well as the dorsal root ganglion (Figure 3). 
Together these results showed a critical interdependence of microglia and CD4+ T 
cells in RSA59 infection. Typically, M2 microglial activation fails to resolve during 
the chronic infection, rendering mice more susceptible to demyelination and axonal 
bulbar vacuolation [80].

A very recent study on neurotropic coronavirus MHV-RSA59 infection in 
Ifit2−/− mice revealed that Ifit2 protects mice from uncontrolled replication and 
spread throughout the brain parenchyma as well as the spinal cord. Ifit2 deficiency 
showed pronounced morbidity and mortality in RSA59 infected mice. Furthermore, 
microglial activation in the CNS was impaired in infected Ifit2−/− mice compared to 
WT infected mice, and as a consequence, peripheral lymphocyte specifically NK1.1 T 

Figure 3. 
CD4 deficiency causes poliomyelitis and the dorsal root ganglionic inflammation at acute phase and abnormal 
bulbar vacuolation at chronic phase of RSA59 infection. Serial sections of spinal cord, dorsal root ganglion 
and brain from CD4+/+ and CD4−/− mouse were immunostained with anti-CD45, LFB and/or H&E. CD45 
immunostining showed heightened poliomyelitis/inflammation of gray matter and inflammation of the dorsal 
root ganglia in the CD4−/− mice compared to CD4+/+ mice at the acute phase of infection. Spinal cord sections 
form these mice when further analyzed at chronic stage for demyelination by LFB showed increased myelin loss 
in CD4−/− mice compared to CD4+/+ mice, CD45 + inflammatory cells were observed in demyelinating lesions of 
both wildtype and CD4 deficient mice but were elevated in case of CD4−/− mice. Sagittal sections of the brain at 
chronic stage, stained with H&E showed large number of vacuoles in the brain stem region denoting abnormal 
bulbar vacuolation which was populated with and Cd11b + micgrogila/monocyte macrophages. Adapted from 
Chakravarty et al [41].
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cells and CD4+ T cells migration to the CNS was restricted in the Ifit2−/− mice possibly 
contributing to the lack of viral clearance. Impaired microglial activation and reduced 
migration of inflammatory cells in the CNS may be associated with less encephalitis 
and devoid of mounting host immunity. These deficiencies were associated with a 
lower level of microglial expression of CX3CR1, the cognate receptor of the CX3CL1 
(fractalkine) chemokine, which plays a critical role in both microglial activation and 
leukocyte recruitment. These findings highlighted a pivotal role of interferon stimu-
lating genes and its tetratricopeptide protein as host cell factors in the induction of 
encephalitis and uncovered a new potential role of an interferon-induced protein in 
immune protection (Figure 4) [30].

Taking the above-mentioned experimental evidence of the role of CD4+ T cells 
and monocyte/macrophage activation in viral-induced neuroinflammation, further 
studies were geared to explore the interactome between the CD4+ T cell expressed 
CD40 Ligand and CD40 expressed on microglia. CD40-CD40L dyad is an important 
immune dyad that controls both CD4+ T cell and microglia functions [87, 88]. Our 
studies in CD40L−/− mice showed that the absence of CD40L renders mice highly 
susceptible to RSA59 infection due to reduced microglia/macrophage activation 
during the acute phase of infection required to eliminate the virus (Figure 5) [89]. 
Effector CD4+ T recruitment to the CNS is significantly dampened, and due to the 

Figure 4. 
Ifit2−/− mice upon a murine β-CoV RSA59 infection show increased viral spread and decreased microglia/
macrophage activation. About 4–5-week-old Ifit2−/− mice upon RSA59 infection showed a robust viral replication 
and antigen spread throughout the brain parenchyma compared to the wildtype mice infection. Infectious viral 
load was significantly higher in the Ifit2−/− mice when assessed by plaque assay (A). The cryosections form Ifit2−/− 
and wildtype mice brain sections showed similar overall distribution of RSA59 but the total EGFP expression 
(viral antigen) was more in Ifit2−/− mice (A). At day 5 p.i. H&E staining for the sagittal sections of the whole 
brain form WT (B) and Ifit2−/− mice (I) showed much milder meningitis (J) and encephalitis characterized 
by perivascular cuffing (K) and microglial nodule (L) formation in the Ifit2−/− compared to WT (C–E) mice. 
Similarly activated microglia/macrophage were much less in the Ifit2−/− mice (M–O) compared to the WT (F–H) 
mice as seen in Iba1 immunostaining. (P) Brain section of Ifit2−/− mice showed heightened viral infection as 
evident by the profuse viral N protein immunostaining. Ifit2−/− mice however showed a comparatively decreased 
Iba1 immunostaining indicative of impaired activation of microglia/macrophages compared to the wildtype mice. 
Adapted form Das Sarma et al [30].



85

Neurotropic Virus-Induced Meningoencephalomyelitis
DOI: http://dx.doi.org/10.5772/intechopen.102674

impaired CD40-CD40L signaling in CD40L−/− mice, their priming is reduced substan-
tially in the draining lymph nodes [89]. Effector CD4+ T cell population was reduced 
as well as the antiviral response was diminished, and phagocytic microglia persisted 
in the CNS at a substantial amount in the CD40L−/− mice. As a result, CD40L−/− mice 
exhibited greater demyelination, axonal loss, and persistent poliomyelitis at the 
chronic phase of infection [89]. Together, these studies highlight that migration of 
peripheral T cells and their interaction with microglia via CD40-CD40L is essential to 
eliminate the virus and provide long-term neuroprotection.

Independent of the effect on T cells, IFN produced by microglia acts on other cells 
that exert indirect antiviral effects [90]. For example, microglia induce antiviral func-
tions in neurons via STING signaling and stimulate IFN-1 production in astrocytes 
by the TLR3 pathway [91]. Studies have shown that the Type 1 IFNAR signaling in 
astrocytes helps to protect the blood-brain barrier against virus infection and immu-
nopathology [92]. Depletion of IFNAR signaling in astrocytes resulted in increased 
inflammatory cytokines and chemokines production, which caused blood-brain 
barrier inflammation during neurotropic viral infection [92].

Additionally, microglia also mediate viral clearance by autophagy [59]. Viral 
infections induce NFkB-dependent inflammatory effectors that produce antiviral 
molecules, including those promoting autophagy. ZIKV infection in Drosophila induces 
a stimulator of interferon genes (dSTING) in the brain, which promotes autophagy and 
helps protect the brain [93]. In mammals, autophagy has been shown to restrict HSV-1 
infection [94]. Autophagy by microglia helps to clear the virus without causing cell 
death which protects mature neurons. Microglial phagocytosis is another mechanism 
that helps protect the neurons from severe damage. Microglia and neurons express 
C3aR that recognizes C3 cleavage products. In response to C3 and its cleavage products, 
microglia surround the neurons and phagocytose the presynaptic ends of the neurons 
[95]. This prevents the trans-synaptic spread of the virus and keeps neurons from fir-
ing abnormal signals that may result in cognitive impairment and physical disabilities.

Figure 5. 
RSA59 infection in CD40L deficient mice showed impaired microglia/macrophage activation during acute phase 
of neuroinflammation but causes profuse chronic demyelination concurrent with diminished PLP staining.  
(a and b) CD40L−/− and WT mice at day 5 upon RSA59 infection showed acute encephalitis and myelitis.Iba1 
immunostaining in these brain and spinal cord sections showed that the CD40L−/− mice showed reduced Iba1+ cells 
compared to WT mice. (c) At day 30 p.i., spinal cord of CD40L−/− mice showed more intense demyelination and 
reduced PLP staining compared to wildtype mice. Adapted from Saadi et al [89].
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Additionally, detrimental effects of microglia are also reported in many studies on 
viral encephalitis. Microglia are reported to remain persistently activated in several 
viral infections [80, 89]. Their activation is further associated with the production of 
TNF-α [96, 97], which can activate the astrocytic TNFR-1 pathway [98]. This signal-
ing accentuates their crosstalk with neurons leading to modification of the excitatory 
synapses, which emerges in cognitive disabilities. TNF-α secreted by microglia can 
directly affect synaptic transmission and plasticity [62]. ZIKV infection has been 
associated with neurological damage among infants. Studies have found that ZIKV 
majorly infects the fetal microglia and activates them [61]. This induces an intense 
pro-inflammatory response by the secretion of mediators like IL-6, TNF-α, IL-1β, 
and MCP-1 [61]. Also, in HIV encephalitis, many microglia genes undergo significant 
changes, including immune activation and function, kinases, phosphatases, and pro-/
anti-apoptotic and neurotrophic factors, which indicates that microglia functions are 
compromised and skewed towards pro-inflammation [99].

Thus, it can be ascertained that, microglia are not only important to maintain 
homeostasis in the CNS but are also critical for responding to injury, infection, 
and neurodegeneration. Often microglia act quickly in response to injury but with 
varied stimuli received, their activation profile can differ and may result in harm-
ful or beneficial effects. It is true that viral encephalitis has caused high morbidity, 
which is a grave concern, but it is also imperative that research on microglia and viral 
encephalitis can provide new and efficient targets for treatment. Considering the 
unique response of microglia with different viral infections and at different stages 
of encephalitis, it is needless to say that the current research on microglia and viral 
encephalitis remains is at a nascent state. Depending on the type of encephalitis, care-
ful fine-tuning of microglial activation has the potential to improve the therapeutic 
effect of encephalitis, its prognosis and also reduce the sequelae of encephalitis.

5. Encephalitis caused by several other neurotropic virus families

Many viruses from numerous virus families in different geographical areas can 
induce immediate or delayed neuropathological manifestations in humans and ani-
mals [18, 100]. Infection by neurotropic viruses and their resultant immune response 
has the potential to irreversibly disrupt the complex structural and functional 
dynamics of the central nervous system, frequently leaving the patient with a poor or 
fatal prognosis. The incidences of virus-induced CNS disorder are significantly higher 
than the damage caused by other pathogens.

Members of several virus families are known to be neurotropic, e.g., herpes family 
viruses, flaviviruses, paramyxoviruses, alphaviruses, bunyaviruses, orthomyxovi-
ruses, arenaviruses, enteroviruses, rhabdoviruses, coronaviruses, and picornaviruses. 
Specifically, some of the viruses from these families are viruses like SARS-CoV, 
MERS-CoV, herpes simplex virus, poliovirus, West Nile virus (WNV), Chikungunya 
virus (CHIKV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), La Crosse 
encephalitis (LACV), Epstein-Barr virus (EBV), measles, and mumps viruses, among 
many others [100, 101]. These viruses have been frequently associated with signifi-
cant encephalitis, as well as meningitis and myelitis in the CNS. The clinical disease 
outcome of the CNS virus infection depends on several factors, like the host immune 
status, viral genomic constitution, and other environmental factors [100]. There 
is also evidence suggesting coronaviruses such as α-CoVs (NL63 and 229E) and the 
β-CoVs (OC43, HKU1) being positive-sense single-stranded, enveloped RNA viruses, 
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can induce numerous neurological manifestations along with systemic inflammations 
in humans. A very recent outbreak of human β coronavirus SARS-CoV-2 is primarily 
known for its ARDS and paramount evidence suggest that it may enter the brain via 
olfactory route or can enter through the lung brain axis or gut-brain axis and is also 
known to cause meningitis, encephalitis, and demyelination [102–104].

The etiology of CNS infections induced by viruses can also depend on and vary 
across variable geographical locations. For example, reports have shown that herpes 
simplex viruses are the most common pathogens observed among both children and 
adults in the United States (US), Australia, and Italy. In contrast, in Southeast Asian 
countries like southern Vietnam, the Japanese encephalitis virus has been shown to 
be one of the most frequent inducers of viral encephalitis, especially among children. 
Enteroviruses have been commonly isolated to be involved in causing encephalitis in 
several parts of India. At the same time, HSVs have been observed to be more preva-
lent in the eastern parts of India, both among adults as well as children. Furthermore, 
the virulence of the viruses also varies geographically [105]. Therefore, understand-
ing the etio-biology and epidemiology of neurotropic viruses is paramount in 
 designing the targeted intervention.

Therefore, based on epidemiological prevalence and episodic occurrence evidence 
as well as the employment of these viruses as experimental model systems for human 
disorders, this book chapter will also briefly discuss some of the other viruses.

Flaviviruses are the enveloped, single-stranded, positive-sense RNA viruses 
that consist of the world’s most clinically critical viruses like the following spe-
cies: Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and 
Powassan encephalitis virus (POWV), as well as other mosquito-borne viruses, 
like Dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), St. 
Louis encephalitis virus (SLEV), and Zika virus (ZIKV) [106, 107]. JEV is highly 
prevalent in the Southeast Asian countries as well as the Indian subcontinent, affect-
ing infants and children, and can also be transmitted to the fetus during pregnancy 
[108, 109]. The incidences of Tick-borne encephalitis (transmitted to humans by the 
bites of ticks) are progressively expanding in European and Asian countries with 
severe neurological complications [110]. WNV infection is endemic in temperate and 
tropical regions throughout the world, triggering yearly outbreaks of encephalitis 
[111]. St. Louis encephalitis virus (SLEV) is found predominantly in North, Central, 
and South America and accounts for nearly 35–60% of meningitis in all symptomatic 
cases in children [112, 113]. Zika virus is also an emerging pathogen with substantial 
clinical impact significantly on the CNS, as reported, in the form of severe congenital 
malformations (microcephaly) and neurological complications, mainly Guillain-
Barré syndrome (GBS) [114]. It has shown explosive outbreaks in African, South, and 
Central American countries [112, 115].

Alphaviruses like Eastern equine encephalitis virus (EEEV), Western equine 
encephalitis virus (WEEV), and Venezuelan equine encephalitis virus (VEEV), 
as well as the Mayaro virus (MAYV), Una virus (UNAV), and Chikungunya virus 
(CHIKV) are the small, enveloped viruses with a single-stranded, positive-sense 
RNA [100, 113]. The most critical neurotropic alphavirus is VEEV, which induced 
many outbreaks in South, Central, and North America [116]. CHIKV has also caused 
severe neurological complications in humans at all age groups, especially in infants, in 
Europe, Asia, and Africa [117, 118]. EEEV can also induce encephalitis in humans in 
about 50–75% of the cases [8, 119].

Herpes family viruses which are double-stranded DNA viruses, have been com-
monly associated with severe encephalitis and meningitis in the CNS and have been 
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distributed globally. The members of herpes family viruses that are shown to be 
neurotropic include HSV types 1 and 2, varicella-zoster, Epstein-Barr virus, and cyto-
megalovirus [120, 121]. Both children and immunocompromised individuals are most 
vulnerable to herpes simplex meningoencephalitis [120]. Another critical property to 
herpes family viruses, especially varicella-zoster virus, is reactivation [122]. Primary 
infection with VZV during childhood induces chickenpox, but the virus becomes 
latent in the spinal and cranial ganglia. However, deteriorating cellular immunity 
with senescence or immunocompromised conditions may lead to virus reactivation 
that promotes zoster (shingles) [123, 124].

Paramyxoviruses that induce neurological diseases are from genera Rubulavirus 
(consisting of the mumps virus), which is neurotropic [125]; Morbillivirus 
 genera (consisting of measles virus) [126] and Henipavirus with the emerging Nipah 
virus (NiV) being one of the neurotropic variants [127]. These are single-stranded, 
nonsegmented RNA viruses [128]. Measles virus-induced encephalitis is one of the 
leading causes of morbidity and mortality in the developing world [129]. Nipah virus 
is one of the emerging viruses that present with numerous cases of acute encephalitis 
in humans [127, 130].

Lymphocytic choriomeningitis virus (LCMV) belonging to the family 
Arenaviridae is an enveloped, single-stranded RNA virus. Although its primary host is 
mice, it is also present in other rodents and has the ability to infect humans, especially 
laboratory workers, pet owners, and individuals living in impoverished conditions. It 
is predominant in Europe, Asia, American continents, and Africa [131–133].

Picornaviruses are single-stranded, non-enveloped RNA viruses encompassing 
enteroviruses (echoviruses, coxsackieviruses) and parechoviruses (PeVs) pathogenic 
against humans. Infants and children are highly susceptible to human pathogenic 
picornaviruses that induce aseptic meningitis and meningoencephalitis [134, 135]. It 
is highly predominant in the UK, Ireland, the US and some Southeast Asian countries 
[105, 136, 137].

6. Chronic viral encephalitis and neurodegeneration

The research on viral encephalitis is a rather dynamic and large field. However, its 
relationship with neurodegeneration is less explored. As research on viral encephalitis 
and neurodegenerative disease is progressing on diverse fronts many similarities are 
being identified between the classical neurodegenerative pathways and viral-induced 
neurodegeneration [138, 139]. It is well established that many neurotropic viruses 
result in neuronal dysfunction which can have devastating life threatening conse-
quences for the host [138, 140, 141]. Virus can either directly infect the neurons and 
kill the cells directly by replication and lysis or by apoptosis as observed in poliomy-
elitis [139, 142]. Additionally viral-induced encephalitis can damage the neurons in 
an immune mechanism as all neurotropic virus infections irrespective of the route 
of entry can trigger both innate and adaptive immune responses [139, 143, 144]. 
Supporting this concept, a number of viruses have been associated with neurodegen-
eration outcomes [141]. For example, In addition to causing encephalitis, CMV infec-
tion can result in transverse myelitis [145], HIV is associated with severe dementia 
[146] and Echo virus can cause neuro-muscular disorder [147]. Additionally, yearlong 
infection with JEV in humans can cause postencephalitic parkinsonism (PEP) which 
shows symptoms similar to sporadic Parkinson’s disease (PD) [148]. Evidence also 
suggests that H5N1 influenza virus induces many PD-like symptoms [149, 150]. 
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Specifically, the virus first infects the peripheral nervous system (PNS) and later 
gains entry into the CNS where it causes degeneration of susceptible dopamine (DA) 
neurons in midbrain regions similar to PD patients [149, 151]. Another influenza 
virus strain H3N2 causes many neurodegenerative symptoms like amyotrophy, MS 
flares and relapsing delirium [152, 153]. However, the direct role of viruses in neuro-
degeneration is less understood. Most likely, several viruses have developed means to 
evade the immune response and are present in subclinical levels [154–156]. The local 
inflammatory response in the CNS in response to persistent virus infections results in 
chronic encephalomyelitis even without overt cell death which may lead to neuronal 
damage resulting in degeneration.

HSV-1 is one of the most common virus infections that can remain dormant in 
the neurons for life-long [157]. It is highly neurotropic and periodic reactivation is 
observed to establish productive infection of the neurons [140]. It is one of the largely 
associated viruses with Alzheimer’s disease (AD) [158]. The virus presence is detected 
in the AD brains, in fact the presence of HSV-1 DNA on APOE gene carriers is a risk 
factor for AD [159]. Studies also showed HSV-1 DNA and amyloid β to be present 
in close proximity in AD plaques [160, 161]. Mechanistically, HSV-1 infection can 
promote neurotoxic Aβ accumulation, tau phosphorylation and cleavage as observed 
in vitro [161–163]. In addition to the direct interaction which the virus exploits to 
travel to the cell surface it also interferes with post-transcriptional regulation by up 
regulating microRNA-146a, which is another marker for AD [164].

Parkinson’s disease (PD) the second most common neurodegenerative disorder has 
been linked to Influenza viruses [140, 165]. Highly neurotropic and pathogenic H5N1 
virus can enter the CNS, induce encephalitis associated with microglial activation, 
loss of dopaminergic neurons and accumulation of α-synuclein aggregates in infected 
regions resembling PD symptoms and pathology [149, 166]. It is well documented 
that with the 1918 epidemic of H1N1 has greatly increased the incidence of PD [166]. 
Both H1N1 and H5N1 are found in the substantia nigra region which is also majorly 
affected in PD patients [167]. In fact, post-mortem brain sections from PD patients 
show the presence of influenza A virus [168]. No direct mechanism is yet established 
but is majorly thought to be a contribution of the neuroinflammation process acti-
vated by the virus in the CNS [151]. Moreover, HIV infection of the CNS is associated 
with amyotrophic lateral sclerosis (ALS), which is a fatal neurodegenerative disease 
with characteristic degeneration of the spinal cord and cortical neurons [169, 170]. 
Several other neurological symptoms are associated with HIV infections; the most 
common is HIV-associated dementia which shows certain complications presented 
with MS [171, 172]. HIV-associated dementia (HAD) also has many similarities with 
AD and PD including the target anatomical region hippocampus and substantia 
nigra [173]. The similarities of HAD with neurodegenerative disorders is reported at 
genomic, proteomic as well as transcription levels [140].

Modern times have seen a drastic increase in the average life expectancy which 
has come with its own limitation i.e., the incidence of ageing disorders. As discussed, 
virus infection can significantly act as co factors of neurodegeneration if not the 
causative agents. Also, the mechanism of viral and non-viral neurodegeneration 
is not very different [138, 140]. Both show an involvement of immune system by 
means of neuroinflammation and direct or indirect damage of neurons. Viruses can 
significantly modulate the structure and function of cytoskeletal proteins that are 
instrumental in neuronal dysfunction associated with neurodegeneration [174]. 
Thus, neurotropic virus infection for encephalitis and neuroinflammation can 
serve as excellent models for understanding neurodegeneration. Moreover, a better 
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understanding of targeting the immune system, which has profound implications, 
especially in viral-induced neurodegeneration and deciphering the critical overlaps 
and distinctions between classical neurodegeneration and viral-induced neurodegen-
eration, can lead to developing new and efficient therapeutic strategies.

7. Conclusion

Encephalitis was considered a rare syndrome, but the incidence of encephalitis is 
likely to be elevated than previously estimated. This underrated approach towards 
understanding encephalitis prevails because it is challenging to diagnose, manage 
and study. Encephalitis is a condition with multiple etiologies and pathogeneses, 
ranging from direct infectious to immune-mediated; however, each of these specific 
mechanisms is diverse and often incompletely understood. Accurate diagnosis 
of encephalitis cases is made complicated because of the difficulties involved in 
distinguishing between encephalitic and non-encephalitis mimics, autoimmune 
vs. infectious encephalitis, and the limitation of standard clinical case/laboratory 
definitions. Ancillary testing, and clinical correlations, along with a clinical follow-
up, are important to establish more specific diagnoses. Determining the etiology is the 
key first step to improving patient outcomes, and it needs advanced neuropathologic 
and clinical algorithms. Furthermore, the most recent antibody-associated forms of 
encephalitis also pose a challenge due to their significantly varying clinical manifesta-
tions. Understanding the antigenic specificity of intrathecal IgGs found in the CSF 
may help to identify clues to the cause of infection or inflammation in several cases of 
encephalitis.

Also, it is critical to study host-immune responses and other host factors to design 
novel therapeutic interventions, given the paradoxical role of the immune system in 
encephalitis. The increased urbanization, travel, and climate change are some of the 
factors, which contribute to the evolution and spread of new pathogens. Infectious 
diseases are emerging profoundly. Neuroinfectious diseases might occur as occur-
rences in small, localized regions or may rapidly spread over large geographical 
areas as pandemics, just like SARS-CoV2. Understanding emerging viruses need 
better experimental animal models, which will help to comprehend the cause-effect 
relationship between the virus and its associated neuropathogenesis. Strong consider-
ation should be given to trials of combination therapy that include treatment strate-
gies with both anti-inflammatory and anti-pathogen drugs.
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Abstract

Although the infection with the severe acute respiratory syndrome (SARS-CoV-2) 
virus affects primarily the respiratory system, it became evident from the very 
beginning that the coronavirus disease 2019 (COVID-19) is frequently associated 
with a large spectrum of cardiovascular involvements such as myocarditis/pericar-
ditis, acute coronary syndrome, arrhythmias, or thromboembolic events, explained 
by a multitude of pathophysiological mechanisms. Individuals already suffering of 
significant cardiovascular diseases were more likely to be infected with the virus, had 
a worse evolution during COVID-19, with further deterioration of their basal condi-
tion and increased morbidity and mortality, but significant cardiac dysfunctions 
were diagnosed even in individuals without a history of heart diseases or being at low 
risk to develop such a pathology. Cardiovascular complications may occur anytime 
during the course of COVID-19, persisting even during recovery and, potentially, 
explaining many of the persisting symptoms included now in terms as subacute or 
long-COVID-19. It is now well accepted that in COVID-19, the occurrence of cardio-
vascular impairment represents a significant negative prognostic factor, immensely 
rising the burden of cardiovascular pathologies.

Keywords: COVID-19, inflammation, cytokine storm, myocardial injury, heart failure, 
thromboembolic events, arrhythmias

1. Introduction

Since the end of 2019, when the first cases were documented in Wuhan (China), 
the corona virus disease 2019 (COVID-19), a zoonotic infection caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly and 
rampantly, raising major concerns regarding public health, while applying an unprec-
edented, continuous strain, on the global medical infrastructure. COVID-19 was offi-
cially declared a pandemic by the World Health Organization on 11 March 2020 [1], 
and since then it has affected over 400 million people worldwide, with a cumulative 
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mortality rate of under 2% [2] and recent alleviation of clinical outcomes due to 
the development and widespread implementation of efficient vaccination. Taking 
into account the extreme polymorphism of clinical presentations, ranging from 
asymptomatic to severe systemic effects, mainly involving the respiratory and cardio-
vascular systems, and fatal, rapidly progressing, acute respiratory distress syndrome 
(ARDS), the containment of transmission, at least in the pre-vaccination era, and the 
therapeutic management of COVID-19 and its systemic complications, has proven to 
be quite a challenge for clinicians, especially in the case of high-risk patients [3].

A novel member of the β-coronavirus genus, group 2, the enveloped, positive-
sense RNA single-stranded SARS-CoV-2, has established itself as the third emerging, 
highly pathogenic coronavirus, to infect humans and cause a large-scale outbreak 
since the early 2000s, after severe acute respiratory syndrome coronavirus (SARS-
CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) [4]. Even 
though mortality rates are lower for SARS-CoV2 than for previous related coronavirus 
outbreaks (>35% for MERS-CoV and > 10% for SARS-CoV), contagiousness is much 
higher (MERS-CoV and SARS-CoV had only 10000 cumulative cases between them), 
as transmission is mainly airborne (via respiratory droplets), with multiple alterna-
tive mechanisms being reported (aerosols, direct contact with contaminated surfaces, 
and fecal-oral transmission [4]).

From a genomic viewpoint, SARS-CoV-2 shares ~80% sequence identity with 
SARS-CoV and ~ 50% with MERS-CoV, encoding 16 nonstructural proteins (that 
make up the replicase complex), 9 accessory proteins, and 4 structural proteins – 
spike (S), envelope (E), membrane (M), and nucleocapsid (N). The SARS-CoV-2 
life cycle revolves around the envelope S protein. Direct contact between the Spike 
receptor-binding domain and the innate cellular receptor (angiotensin-converting 
enzyme 2 – ACE2), if provided adequate cleavage of the viral Spike S1/S2 polybasic 
cleavage site by host-cell proteolytic enzymes, will ensure Spike activation in endo-
somes and virus-cell membrane fusion (cell surface and endosomal compartments), 
allowing viral RNA to be released into the host-cell cytosol. Viral replication ensues, 
with subsequent expulsion into the intercellular space [4]. In fact, the S gene of SARS-
CoV-2 represents the distinguishing genomic feature from SARS-CoV, sharing <75% 
nucleotide identity [4].

The main tissue tropism of SARS-CoV-2 is pulmonary, targeting high ACE2 
expression cells (airway/alveolar epithelial cells, vascular endothelial cells, and alveo-
lar macrophages) [5]. Even so, higher levels of ACE2 messenger RNA expression can 
be found in many extra-pulmonary tissues as well and nearly undetectable amounts 
of ACE2 still support viral host-cell entry. Therefore, additional, underappreciated, 
cell-intrinsic factors must also be involved in host-cell entry [4]. Noteworthy, a 
subpopulation of human type II alveolar cells has been documented, which manifest 
abundant ACE2 expression, and concomitant high levels of messenger RNA, specific 
to certain cellular proviral genes (coding elements of the, SARS-CoV-2 cell entry 
facilitating, and endosomal transport system) [6]. Also, ACE2 expression regula-
tion must be considered, as, during viral infection, ACE2 gene expression in human 
airway epithelial cells is upregulated by type I and II interferons [5].

Considering the multitude of the medical literature written on the topic of mul-
tisystem impairment occurred during the infection with the SARS-CoV-2 virus, the 
purpose of our research was to summarize the opinions of experts concerning the 
cardiovascular alterations associated with COVID-19, and for this aim we reviewed 
the most significant articles published on PubMed, Medline, and Research gate on 
these topics and provided individualized summaries of expert opinions.
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2. Effects of the SARS-CoV-2 virus on the cardiovascular system

The COVID-19 pandemic greatly challenged clinicians, both due to the sheer 
number of patients, but also because of the lack of therapeutic consensus and incom-
plete understanding of disease pathogenesis. Most fatal cases of COVID-19 relate to a 
severe atypical pneumonia, accompanied by a sudden systemic deterioration, despite 
therapeutic intervention in the hospital setting.

The infection with the SARS-CoV-2 virus primarily affects the respiratory 
structures, but the involvement of the cardiovascular system is also frequent. 
Cardiovascular complications in addition to respiratory disease may develop in all 
phases of COVID-19, which can start with the dramatic picture of acute heart failure 
(ACF), acute coronary syndrome (ACS), pulmonary venous thromboembolism 
(VTE), or even sudden cardiac death, as shown in Figure 1. The pathophysiological 
mechanisms underlying these disproportionate effects of the SARS-CoV-2 infec-
tion on patients with cardiovascular comorbidities, however, remain incompletely 
understood [7]. Thromboembolic events, usually accompanied by violent, pulmo-
nary, and/or systemic complications, have been described from early on, since the 
beginning of the pandemic, with infectious inflammatory response patterns rapidly 
shifting into a typical systemic inflammatory response syndrome (SIRS) or ARDS, 
which could potentially induce multi-organ failure (MOF) and, subsequently, 
death. As we enter the third year of the pandemic, COVID-19 pathophysiology is 
slowly unraveling as we begin to better comprehend the complex interplay between 
the direct cytotoxic effects of SARS-CoV-2 on pneumocytes and endothelial cells, 
the emerging local and systemic inflammatory response, and the ways in which 
these responses interact with hemostatic homeostasis, a mechanism which has been 
deemed as central and, at least to this extent, unprecedented [8].

2.1 Cardiac tissue damage

COVID-19 was initially considered to be solely a respiratory disease, yet clini-
cal outcomes quickly revealed that, undeniably, this infection implies multi-organ 
involvement. Perhaps most notably, the heart has been shown to represents a target 
organ for SARS-CoV-2-related pathogenesis, with a high prevalence of cardiac injury 
following COVID-19, often diagnosed only through biomarker evaluation. Beyond 
subclinical myocardial damage, SARS-CoV-2 infection may also cause more aggres-
sive, clinically apparent modifications, such as myocarditis, accompanied by a subse-
quent diastolic dysfunction or severe reduction of left ventricle ejection fraction, not 
to mention the fact that heart failure may represent a short−/long-term consequence 
of COVID-19-related inflammatory cardiomyopathy, with dramatic consequences 
regarding prognosis [9].

Regarding myocardial damage in COVID-19, although the full pathophysiology 
is still incompletely understood, multiple mechanisms are most likely incriminated 
(see Figure 2), which, globally, can be divided into two main groups: direct, specific 
modifications, related to the cytopathic effects of SARS-CoV-2 infection, and indi-
rect, general modifications, commonly seen in other severe infections, as well [10].

2.1.1 Direct cytopathic myocardial injury

The aforementioned ACE2, a type I transmembrane protein, highly expressed in 
different organs (heart, lungs, gut, and kidneys), mediates SARS-CoV-2 entry into 
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the host cells, with different clinical implications, depending on the targeted organ, 
and represents the key molecular entity involved in the direct cytopathic effects of 
SARS-CoV-2 infection within the cardiac tissue. After entering the host cell through 
the host ACE2 receptor, SARS-CoV-2 utilizes the host’s RNA-dependent RNA poly-
merase to replicate its own structural proteins, which are then assembled, and the 
newly formed virions are released from the infected cells, perpetuating the viral life 
cycle. Theoretically, as a consequence of this process, infected cells may become dam-
aged/destroyed [11].

This idea is supported by a recent autopsy study, analyzing cardiac tissue from 
39 consecutive patients who died as a consequence of COVID-19, which found viral 
genome in the myocardial tissue, yet in situ hybridization showed that the most likely 
localization of SARS-CoV-2 not to be in the cardiomyocytes, but rather in interstitial 
cells or macrophages invading the myocardial tissue [12]. Even so, in engineered 
heart tissue models of COVID-19 myocardial pathology, SARS-CoV-2 demonstrated 

Figure 1. 
Main COVID-19-associated cardiovascular complications and underlying pathophysiological mechanisms.
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the ability to directly infect cardiomyocytes through ACE2, resulting in contractile 
deficits, cytokine production, sarcomere disassembly, and cell death [9].

Furthermore, ACE2 must not be viewed as a mere bystander in the pathophysiol-
ogy of COVID-19 myocardial injury, seeing as, besides being the host cell receptor 
of SARS-CoV-2, ACE2 is an enzyme involved in the renin-angiotensin-aldosterone 
system (RAAS). Specifically, ACE2 cleaves angiotensin II, a very potent vasoconstric-
tor, into angiotensin 1–7, which manifests vasodilator and anti-inflammatory effects. 
ACE2 also demonstrates a weak affinity for angiotensin I (or proangiotensin, formed 
by the action of renin on angiotensinogen), competitively limiting angiotensin II 
synthesis by ACE. Angiotensin I is converted by ACE2 into the nonapeptide angioten-
sin 1–9, which will manifest vasodilator effects through subsequent angiotensin type 
2 (AT2) receptor stimulation. Therefore, ACE2 can counteract the undesirable effects 
of angiotensin II, demonstrating vasodilator, antioxidant, and anti-fibrotic effects 
[13]. In the context of SARS-CoV-2 infection, after S protein binding is complete, the 
virus attaches ACE2 through membrane fusion and invagination, causing a down-
regulation of ACE2 enzymatic activity [13]. Additionally, ACE2 also demonstrates 
immunomodulatory properties, both directly, via its interactions with macrophages, 
and indirectly, as it reduces expression of angiotensin II, which stimulates inflam-
mation [14]. Thus, ACE2 downregulation in the context of SARS-CoV-2 infection 
may increase angiotensin II levels, favoring AT1 receptor activity, with a subsequent 
vasoconstriction, fibrotic, proliferative, and pro-inflammatory effects [10].

Figure 2. 
Pathophysiology of COVID-19-related myocardial injury [15, 16].
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2.1.2 Indirect mechanisms of myocardial injury

As is the case with all severe respiratory infections, COVID-19 has a general 
deleterious effect on the cardiovascular system, with fever and sympathetic activa-
tion causing tachycardia and implicitly increasing myocardial oxygen consumption 
[9, 10], while prolonged bed rest and systemic inflammation will favor coagulation 
disorders, as supported by clinical findings – both venous and atypical arterial 
thromboembolic events have been documented in COVID-19 patients (see subchapter 
3.4. Thromboembolic events and bleeding risk). Hypoxemia, another hallmark of 
COVID-19, will determine enhanced oxidative stress and increased production of 
reactive oxygen species, with subsequent intracellular acidosis, mitochondrial dam-
age, and cell death [7, 9].

Moreover, another series of indirect mechanisms for COVID-19-related myocar-
dial damage appears as a result of the abnormal inflammatory response which may 
be elicited by SARS-CoV-2 infection (i.e. a pro-inflammatory surge, the so-called 
“cytokine storm,” which may occur as early as 1 week after the initial exposure and 
infection) [15].

Indeed, individual immune response is the cardinal element behind SARS-CoV-2 
infection progression. Upon viral genome expulsion into the host cytosol, SARS-
CoV-2 viral replication begins, with aberrant RNA sequences, byproducts of replica-
tion, being, in turn, detected by intracellular receptors, which activate the cellular 
antiviral response, involving enhanced leukocyte chemotaxis and transcriptional 
induction of type I and III interferons (IFN-I/-III), followed by under-regulation of 
IFN-stimulated genes [16]. Lung cell damage incurred during replication will also 
activate the local immune response, resulting in monocyte/macrophage recruit-
ment [16], while chemokines will induce specific leukocyte subset recruitment and 
coordination [16]. Circulating immune cell relocation in the pulmonary tissue will 
determine additional cytokine/chemokine production, while also creating multiple 
imbalances in immune cell populations – increased leukocyte count and neutrophil-
lymphocyte ratio, with decreased lymphocytes (especially T cells [17]), thus setting 
the scene for immune response dysregulation [3].

In fact, the relationship between SARS-CoV-2 infection and extensive activa-
tion of inflammation signaling pathways has been well documented, representing 
the main immunopathological mechanism through which severe forms occur, in 
susceptible individuals. During the acute phase of the infection, a disproportionate 
response occurs between T helper cell populations (types 1 and 2), characterized 
by high circulating levels of interleukin (IL)-1β, IL-1RA, IL-2, IL-6, IL-7, IL-8, IL-9 
IL-10, interferon gamma-induced protein-10 (CXCL10), monocyte chemoattractant 
protein-1 (CCL2), macrophage inflammatory protein 1α (CCL3) and 1β (CCL4), 
granulocyte colony-stimulating factor, vascular endothelial growth factor (VEGF), 
and tumor necrosis factor (TNF) α [16, 18, 19], which mediate widespread lung 
inflammation, in an attempt to eradicate the pathogen [3]. The resulting hyper-
inflammatory status, as well as the individual excessive levels of certain circulating 
cytokine species, have been independently associated with an unfavorable evolu-
tion and increased mortality [20]. This hyper-inflammatory state seems, at least 
intuitively, to be pivotal in the development of cardiac injury, seeing as positive 
correlations have been established between the increase in inflammatory markers 
and myocardial damage in COVID-19 [21, 22]. Indeed, this idea is additionally sup-
ported by previous studies, in other septic conditions, evidencing that the release of 
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pro-inflammatory cytokines such as TNFα and IL-1β, were responsible for myocar-
dial cells depression through modulation of calcium channel activity and nitric oxide 
production [23].

It may also be the case that the cytokine storm following SARS-CoV-2 infection 
determines the AHF, recurrently seen in severe COVID-19, as the inflammatory 
activation and oxidative stress background are similarly expressed generally in heart 
failure, predisposing to a more severe clinical course [24].

Lastly, the aforementioned marked inflammatory changes will also take place in 
the endothelium, as shown in postmortem histological studies, evidencing lympho-
cytic endotheliitis with apoptotic bodies and viral inclusion in multiple organs [7, 25]. 
Endotheliitis can lead to disseminated intravascular coagulation, with small or large 
vessels thrombosis and infarction, and will determine significant new vessel growth 
through a mechanism of intussusceptive angiogenesis [25].

2.2 Coagulation disturbances

After becoming infected, roughly 20% of COVID-19 patients will be incapable 
of controlling/halting viral replication through their initial immune response, 
which may be aberrant/insufficient or overwhelmed by a high initial viral load, 
or both [26]. This subgroup of patients will thus progress to a more severe disease 
phenotype, with aggravating symptomatology secondary to uncontrolled viral 
replication, leading to host pneumocyte and endothelial cell apoptosis, which in 
turn will activate platelets, induce procoagulant factor expression (fibrinogen, 
factors V, VII, VIII, X, and von Willebrand), and increase inflammatory response, 
as the body tries and fails to keep the infection localized to the lungs [27]. This 
sequence of host responses will additionally damage the pulmonary parenchyma 
(through further destruction of pneumocytes, microangiopathy, and inflam-
matory microthrombi), causing even more severe symptoms and hindering 
oxygenation, thus imposing the need for an additional oxygen supply. Even so, at 
this point, a relative balance between procoagulant and anticoagulant (but also 
pro-inflammatory/anti-inflammatory) factors is still maintained. In only approxi-
mately 5% of symptomatic patients, the pro-inflammatory processes involved in 
the immune response to SARS-CoV-2 infection will derail into the so-called “cyto-
kine storm,” which will fuel pro-inflammatory and pro-coagulatory processes 
even further, resulting in systemic endotheliitis and capillary leakage, cellular 
dysfunction, organ dysfunction (including ARDS), and overt activation of the 
(systemic) coagulation cascade resulting in the need for critical organ support 
[28]. In fact, SARS-CoV-2 infection may trigger endothelial dysfunction not only 
through the direct cytopathic effect of invasion on vascular endothelial cells but 
also through indirect mechanisms, such as hypoxia and the induced inflammatory 
response [27]. Moreover, some patients have also manifested antiphospholipid 
antibodies [28].

Therefore, all factors of the classic Virchow triad are influenced during the course 
of COVID-19, and they contribute synergically to the risk of thromboembolic events: 
hemodynamic changes (increased blood viscosity due to elevated fibrinogen, but also 
venous stasis due to hospitalization and disease-related immobilization); hypercoagu-
lability (due to an overwhelming inflammatory state, occurring early after infection); 
and endothelial injury/dysfunction (ACE2 receptor expression on endothelial cells 
allows viral entry and cytopathic effects – endotheliitis) [3].
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3. Acute cardiovascular complications of COVID-19

3.1 Myocarditis/pericarditis

It is generally accepted that viral infections, and corona viruses even more, are a 
common cause of myocarditis, frequently associated with congestive heart failure 
(CHF), and an increased risk to sudden death due to ventricular arrhythmias [29]. 
Emerging data suggest an increased association between myocarditis and COVID-19, 
observed more frequently in hospitalized patients, associated with an increased risk 
of adverse outcome, including higher mortality rates [30].

According to Dallas criteria, acute myocarditis is defined as “inflammatory 
infiltrate of the myocardium with necrosis and/or degeneration of adjacent myo-
cytes not typical for the ischemic damage associated with coronary artery disease.” 
Proposed pathophysiological pathways are myocardial injury due to the direct action 
of the virus, mediated via ACE2 receptors, and an intense, prolonged inflammatory 
response resulting in the release of high amounts of cytokines [29, 31, 32] together 
with additional factors such as hypoxia, increased metabolic demands, and physi-
ological stress. At biopsy, myocyte and interstitial cells necrosis and mononuclear cell 
infiltrates were detected.

The real prevalence of acute myocarditis in patients infected with the SARS-
CoV-2 virus is difficult to establish. In the medical literature, in these patients, the 
estimated incidence of acute myocarditis ranges from 12–17% or even 22–31% in 
ICU patients [33]. The symptoms vary from mild, nonspecific ones: palpitations, 
breathlessness, chest pain, common in influenza, to the dramatic picture of AHF 
with dyspnea, arrhythmias, or even sudden cardiac death. On the electrocardiogram 
(ECG), there are nonspecific ST, PR, and T-wave abnormalities, but signs mimick-
ing an ACS, tachyarrhythmias, and conduction disturbances associated or not with 
left ventricular echocardiographic alterations and elevated levels of high sensitive 
troponins are also frequently seen [31, 33]. Another aspect is that the main diagnostic 
criteria require endomyocardial biopsy and cardiac magnetic resonance imaging 
(MRI), which are sometimes difficult or even impossible to access in COVID-19 
patients due to the increased risk of contamination [33, 34]. It has been discussed 
that the prevalence of myocarditis rose parallel with the evolving strains of the SARS-
CoV-2 virus being higher in patients infected in 2021 than in 2020 [30].

The incidence of pericarditis in COVID-19 patients ranges from 3% to 4.8%  
[35, 36]. It is often associated with myocarditis in COVID-19 patients with pneumonia 
and elevated inflammatory markers, as demonstrated by Diaz et al. in a meta-analysis 
performed on 33 studies, mainly case reports. The principal mechanism seems to be 
an autoreactive, inflammatory response [36].

Pericarditis manifests itself with a variety of symptoms, such as chest pain, fever, 
and dyspnea [36]. Pericardial friction rub is seldom encountered (9.3%) [36]. The 
predominant characteristic of this type of pericarditis is pericardial thickening 
observed at transthoracic echocardiography (TTE) persisting several weeks during 
recovery [37]. Over 50% of patients have pericardial effusion, mostly small to moder-
ate in size, with 34% having large pericardial effusion, and even pericardial tampon-
ade developed in about half of this last subset of patients [36]. On the ECG, 60% of 
patients present the typical four-stage evolution: diffuse ST elevation with depression 
of the PR segment, normalization of ST elevation, diffuse T-wave inversion, and in 
the end, normalization of the ECG [66]. Some patients presented unspecific signs, 
such as diffuse ST elevation, PR depression, and focal T-wave inversion [36].
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The treatment of acute pericarditis consists in high doses of nonsteroidal anti-
inflammatory drugs (NSAIDs) such as Ibuprofen, Indomethacin, or Naproxen 
recommended until symptom relief is achieved, and in addition, colchicine is recom-
mended to be used for 3 to 6 months. Aspirin may be an alternative to NSAIDs [36]. 
Although low to moderate doses of steroids could be recommended in patients with 
SARS-CoV-2 infection, in most cases, this therapy is started sooner because of the 
associated viral myocarditis [36]. Furthermore, steroids can also be added to NSAIDs 
and colchicine as triple therapy for patients with an incomplete response. In the case 
of cardiac tamponade, pericardial drainage represents the standard of care [36]. 
Usually, the evolution of pericarditis associated with COVID-19 is benign.

3.2 Acute coronary syndrome

An increased incidence of ACS has been reported in several viral infections such as 
influenza, SARS, and MERS, being associated with a 3- to 10-fold increased risk, but 
in COVID-19 exact data are lacking [31, 32]. As principal potential pathophysiological 
pathways are considered: destabilization of atherosclerotic plaques due to systemic 
inflammation with an increased release of pro-inflammatory cytokines, the “cytokine 
storm,” associated microangiopathy, activation of prothrombotic factors, as well as 
other specific changes of immune cell polarization toward more unstable phenotypes. 
Contributing factors also are myocardial oxygen supply/demand mismatch in the 
context of increased metabolic demands due to tachycardia/arrhythmias, fever, and 
hypoxia. These factors probably represent also the best explanation for the increased 
troponin levels observed in many patients with acute COVID-19 in the absence of 
typical cardiovascular manifestations (chest pain, specific ischemic electrocardio-
graphic modification, and parietal hypokinesia at TTE) [31, 32], the more so as some 
other complications such as myopericarditis may have similar symptoms, and often 
patients with COVID-19 may not have typical angina symptoms.

Patients already suffering with coronary artery disease and heart failure may be 
exposed in a greater extent to ACS as a consequence of coronary plaque rupture or 
stent thrombosis in the context of systemic inflammation [31, 32]. For this reason, it 
is strongly recommended that in patients with a previous history of coronary artery 
disease and especially in those with coronary interventions, antiplatelet therapy 
should be continued, eventually even intensified, together with other plaque sta-
bilizing agents such as statins, beta-blockers, and angiotensin-converting enzyme 
inhibitors [27, 30, 38, 39].

In this global health systems crisis, an adequate diagnosis and management of ACS 
is complicate and health care institutions worldwide have reexamined their protocols 
considering the increased risk of contamination of healthcare personal and the high 
requirements for protective equipment [34, 40, 41]. However, risk stratification is 
difficult due to limited bedside approach for an accurate ECG and TTE examination 
[31, 42]. The treatment of acute myocardial infarction (AMI) in COVID-19 patients is 
even more controversial. While in patients diagnosed with non-ST elevation myocar-
dial infarction (non-STEMI), the result of a PCR testing could be expected prior to 
cardiac catheterization, in cases with ST elevation myocardial infarction (STEMI), 
the American College of Cardiology (ACC) recommends reconsidering fibrinolysis in 
patients with “low-risk STEMI” such as inferior without right ventricular extension, 
or lateral STEMI without altered hemodynamic. Thus percutaneous coronary inter-
vention (PCI) remains the most indicated therapy, remaining the best option also in 
non-STEMI patients who are hemodynamically unstable [34, 42, 43].
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In a large meta-analysis, DeLuca et al. concluded that COVID-19 pandemic has 
significantly impacted the therapy of patients with STEMI, with a 19% reduction in 
PCI procedures leading to increased morbidity and mortality, aspects evidenced also 
in other studies [34, 40, 43].

3.3 Increased risk of arrhythmias

Arrhythmias were observed precociously in COVID-19 patients worldwide, sev-
eral centers reporting a large spectrum of electrocardiographic abnormalities [31, 32]. 
In most cases, sinus tachycardia due to multiple, concomitant causes (hypoperfusion, 
fever, hypoxia, and anxiety) was observed, but also atrial tachycardia and fibrillation 
(AF), and less frequently atrioventricular block (AVB) and polymorphic ventricular 
tachycardia (VT), significantly increasing the morbidity and mortality, and explain-
ing at least in part, the increased number of cardiac arrests noticed in out-of-hospital 
patients [44, 45]. It was considered that underlying mechanisms are myocardial 
injury, inflammation, coexisting hypoxia, electrolytic (especially hypokalemia) and 
acid–base imbalances, and activation of the sympathetic nervous system, which is 
contributing the medication used to treat this disease such as hydroxychloroquine, 
azithromycin, and antivirals that prolong the QT interval [46, 47].

Perhaps the most comprehensive study written on this topic is the one of 
Coromilas et al. who analyzed data collected from over 4000 patients with COVID-19 
and arrhythmias, from 4 continents and 12 countries, and concluded that the major-
ity of them (81.8%) developed supraventricular arrhythmias including AF and atrial 
flutter, 21% of subjects had ventricular arrhythmias, and 22.6% developed bradyar-
rhythmias [47]. They also observed that arrhythmias were more frequent in patients 
over 60 years old, male gender prevailed, and frequently systemic hypertension and 
diabetes mellitus were associated comorbidities [33, 46, 47].

Treatment of arrhythmias should follow the standard guidelines for the manage-
ment of arrhythmias focusing on the underlying pathophysiological mechanisms, 
and addressing as much as possible the reversible causes, especially electrolyte 
abnormalities. In the case of recurrent, uncontrolled ventricular arrhythmias not 
responding to antiarrhythmic therapy, implantable cardioverter defibrillators may 
be recommended, and for persistent high-degree AVB transvenous pacemaker 
insertion [48].

3.4 Thromboembolic events and bleeding risk

As the pandemic unravels, medical literature has provided robust insight into 
the unique mechanisms of and specific propensity for COVID-19 thrombogenicity, 
identified as considerably different from other severe infectious and non-infectious 
diseases. The relationship between SARS-CoV-2 infection and subsequent dysregula-
tion of coagulation homeostasis is reflected in the various rates of occurrence of major 
venous and arterial thromboembolic/thrombotic events, which, in more extreme 
cases, have been documented to occur concomitantly. A recent comparative study, 
which retrospectively evaluated thromboembolic risk in large patient cohorts of 
COVID-19 and Influenza, found that COVID-19 was independently associated with 
a higher 90-day risk for venous thrombosis, but not arterial thrombosis, as compared 
to Influenza, with secondary analysis showing a similar risk for ischemic stroke and 
myocardial infarction, and a higher risk for deep vein thrombosis (DVT) and pulmo-
nary embolism (PE) in patients with COVID-19 [49].
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In spite of early thromboprophylaxis, most frequently, VTE negatively impacts 
clinical outcomes in COVID-19 hospitalized patients, and the risk seems to be 
greatest in the intensive care unit (ICU) setting, among the critically ill [50]. Major 
arterial thrombotic events and VTE have been reported at a higher frequency, in 
COVID-19 ICU patients, as compared to non-ICU patients, over a 30-day period, 
despite a thromboprophylaxis rate of 85–90% [51]. Moreover, a recent meta-analysis 
of 12 studies, in which all patients were under thromboprophylaxis, with either low 
molecular weight or unfractionated heparin, still showed a 31% pooled prevalence 
of VTE for ICU admissions [52]. Very recently, an overall incidence of 17.3% for 
VTE among hospitalized COVID-19 has been reported (~2/3 DVT), with significant 
discrepancies between pooled incidences of VTE for ICU admissions as compared to 
general ward patients (27.9% vs. 7.1%, respectively), while including catheter-associ-
ated thromboembolism, isolated distal DVT, and isolated pulmonary emboli reached 
the highest incidence rates. Even so, VTE incidence was higher when assessed within 
a screening strategy (33.1% vs. 9.8% by clinical diagnosis), meaning that, in clinical 
practice, it is very likely that many COVID-19 patients with subclinical VTE remain 
undiagnosed [53]. Moreover, VTE prevalence in COVID-19 patients varies widely 
depending on the subpopulation evaluated, seemingly correlating well with disease 
severity and preexisting metabolic and cardiovascular comorbidities, a statement 
reflected by the variability of occurrence rates reported: <3% in non-ICU patient [51], 
>30% for ICU cases, with DVT and subsequent PE representing the most common 
thrombotic complication in the ICU setting [54], while autopsy findings of COVID-19 
fatalities suggest it may reach nearly 60% [55].

Interestingly, amounting data suggest that the majority of so-called PE diagnoses 
occur without a recognizable source of venous embolism and may be better defined 
as primary in situ pulmonary arterial thrombosis, a direct consequence of the SARS-
CoV-2 pulmonary disease, entailing thrombotic occlusion of small−/mid-sized pul-
monary arteries, which will result in the infarction of afferent lung parenchyma [56]. 
This may explain why PE is the most prevalent thrombotic event seen in COVID-19 
patients [54] and why screening yielded a higher incidence of VTE than clinical 
evaluation of asymptomatic patients. In a recent investigation, duplex ultrasound 
was performed for clinical suspicion of DVT, reporting 41.58% confirmed DVT, 
6.93% superficial thrombophlebitis and, surprisingly, 23.76% PE (mostly involving 
distal pulmonary vessels), yet only 7.92% had PE and concomitant, associated DVT, 
meaning that 2/3 of PE occurred in the absence of a recognizable DVT, suggesting a 
causal mechanism of primary thrombosis rather than embolism [56]. Additionally, 
postmortem analyses of COVID-19 fatalities have frequently documented thrombosis 
of small- and mid-sized pulmonary arteries, a lesion capable of causing hemor-
rhagic necrosis, fibrosis, disruption of pulmonary circulation, acute pulmonary 
hypertension (PH), and ultimately death [55]. Other severe morphopathological 
modifications of pulmonary tissue architecture have also been frequently reported in 
COVID-19 autopsy reports, such as severe endothelial injury, with disruption of cell 
membranes, rampant vascular thrombosis, and significant angiogenesis [25], while 
other organs also showed microthrombotic lesions on autopsy, but at a lower rate 
(cardiac thrombi, epicardial coronary artery thrombi and microthrombi in myocar-
dial capillaries, arterioles, and small muscular arteries) [55].

An aforementioned study, analyzing 184 COVID-19 ICU cases, all receiving 
thromboprophylaxis, demonstrated a 31% cumulative incidence of the defined 
vascular complication composite outcome (PE, DVT, ischemic stroke, ACS, or 
systemic arterial embolism). The main independent predictors of thrombotic 
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complications identified were age, with an adjusted hazard ratio (aHR) of 1.05/per 
year, and coagulopathy [54]. Conversely, regarding VTE, an extensive meta-analysis 
(44 studies/14,866 hospitalized COVID-19 patients), on the topic acute complications 
and mortality, reported a much lower prevalence of 15% for VTE, than previously 
reported. This value may be influenced not only by cohort size but also by other fac-
tors such as heterogeneous reporting between the studies evaluated and increased risk 
of bias, resulting in very low-quality evidence [57].

On the other hand, as seen in the above-mentioned studies, VTE can still occur 
in noncritically ill COVID-19 patients; therefore, rigorous elaboration of adequate 
screening and risk stratification protocols for VTE, especially for mild and moder-
ate COVID-19 phenotypes, will be essential, as these patients are much less likely to 
undergo tromboprophylaxis.

Regarding arterial thromboembolism (ATE), incidence rates among COVID-19 
diagnosed patients have consistently been reported as being much lower than for 
VTE, since the early days of the pandemic (3.7%) to date [54]. Unsettlingly, large-
vessel strokes in young and generally healthy people, which became infected with 
SARS-CoV-2, have been consistently reported [25, 55]. Early retrospective studies, 
seemingly corroborated these findings, claiming that acute, new-onset, cerebrovascu-
lar disease was not uncommon in COVID-19 patients – out 219 consecutive COVID-19 
patients, 10 (4.6%) developed acute ischemic stroke and 1 (0.5%) had intracerebral 
hemorrhage [58] –,and that SARS-CoV-2 infection carried an increased risk of ACS, 
especially via coronary stent thromboses [59]. Nevertheless, investigations involv-
ing a much larger sample size showed that the actual incidence of ATE (thrombotic/
embolic) is, in fact, much lower than initially reported in earlier studies [51, 60]. 
A large cohort retrospective study, evaluating 1114 COVID-19 patients with inde-
pendently adjudicated thrombotic/embolic events, found stroke and ACS incidence 
were 0.1% (1/1114) and 1.3% (14/1114), respectively [51]. Most authors agree that 
thrombotic events occur early in the evolution of COVID-19, and in order to combat 
the hypercoagulable and prothrombotic state, administration of anticoagulants is 
recommended to reduce this risk [27].

Of great importance is the fact that, due to several factors such as thrombocyto-
penia, hyperfibrinolytic state, consumption of coagulation factors, which initiate 
their action later on, after 1 to 3 weeks, COVID-19 patients may also become prone 
to bleeding. This must be taken into account, especially in severe COVID-19 cases, 
where concomitant administration of anticoagulants as thromboprophylaxis is very 
likely to occur [61]. Additionally, critically ill COVID-19 patients have an even more 
increased bleeding risk, due to thrombocytopenia/platelet dysfunction or coagulation 
factor deficiencies, or both [62], which are frequent occurrences in this clinical popu-
lation. Thus, it has become increasingly difficult to establish an adequate, integrative, 
anticoagulant prophylaxis strategy for COVID-19.

As opposed to the numerous investigations debating over thromboembolic events, 
there are much fewer articles focusing on major bleedings and just a few case reports 
on hematomas in COVID-19. Al-Shamkary et al. reported an overall incidence of 
4.8–8% referring to bleeding events, and of 3.5% for major bleedings [62], being 
mostly associated with advanced age, comorbidities and apparently, more frequent in 
males.

All in all, thromboembolic events are a frequent morbidity encountered in 
COVID-19 patients, especially in those with severe forms and comorbidities. For 
their prophylaxis/treatment anticoagulant therapy is recommended, thus increasing 
the risk of bleedings. Both thromboembolic events and hemorrhagic complications 
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aggravate the evolution of these patients, representing significant negative prognostic 
factors and increasing the morbidity and mortality associated with COVID-19.

4.  Subacute and long-term cardiovascular sequels following the infection 
with the SARS-CoV-2 virus

The important contribution of COVID-19 in the pathogenesis of acute cardio-
vascular involvements is now well established, but because this pandemic is a new 
disease, long-term data on post-COVID-19 complications were not available [63, 64]. 
However, more and more studies revealed that the infection with the SARS-CoV-2 
virus also causes chronic cardiac complications, even when the viral load is normal-
ized [63, 64], explaining the persistence of symptoms during recovery observed in 
an increasing number of individuals [65]. In some patients, myocarditis, subacute 
pericarditis, persisting arrhythmias, pulmonary hypertension, or heart failure have 
been observed raising serious concerns and indicating that in symptomatic patients, 
a comprehensive evaluation and a regular long-term follow-up are needed for effec-
tive therapeutic regime and to prevent a worse evolution of these cardiovascular 
complications.

4.1 Pulmonary hypertension

It is well known that pulmonary hypertension (PH) may occur during the acute 
phase of the SARS-CoV-2 infection as a consequence of extensive lung injury and of 
altered pulmonary circulation, frequently leading to right heart failure (RHF), shear-
ing common pathophysiological mechanisms with other complications encountered 
in this illness, and significantly increasing the mortality [66, 67].

In COVID-19 patients, the prevalence of PH varies wildly, depending on 
the studied population, ranging from 7.69% to 12–13,4% or even 22% in severe 
COVID-19 cases [67, 68]. While this topic was largely debated in the medical 
literature, information over its outcome is less available. It has been observed that 
some patients are predisposed to develop interstitial lung disease (ILD) frequently 
associated with persisting PH and explaining, at least partially, the persisting 
symptoms observed in patients with subacute and long COVID-19 [69, 70]. The 
backgrounds of this disease are complex and multifactorial, including a large 
variety of pathophysiological types, ranging from arterial PH (group 1), PH of 
group 3 – due to ILD, to chronic thromboembolism (group 4 PH) or even of group 
2 PH (secondary left heart disease) [70, 71]. In their study, Suzuki et al., observed 
a unique hystopathological finding identified only at the autopsy of COVID-19 
patients, namely thickened pulmonary vascular walls, considered an important 
hallmark of arterial PH [71]. This finding suggests that COVID-19, depending on 
the severity of the lung injury and the inflammatory responses, could favor the 
development of PH, and some of these patients may develop in the future signs and 
symptoms of PH and RHF [71].

The diagnosis of PH is difficult and implies right heart catheterization, which is 
limited during the pandemic considering the risk of contamination and shortness of 
personal and resources. In patients infected with SARS-CoV-2, TTE allows an accurate 
estimation of the systolic pressure in the pulmonary artery, being the most utilized 
method for the diagnostic and follow-up of these patients. A specific therapy for this type 
of PH has not been described, and future studies are needed to clarify its management.
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4.2 Heart failure

AHF may appear precocious in the evolution of the SARS-CoV-2 infection, 
in some cases being even the first manifestations. Since COVID-19 and AHF/
worsening of CHF shear similar symptoms, distinguishing these two pathologies 
is challenging, the more so as these two conditions may coexist. Some studies 
describe an increased prevalence of ACH (23% or even 33%) in patients hospital-
ized for COVID-19 being associated with an increased risk of mortality [63]. In 
many cases, it is difficult to establish if AHF is the consequence of a new myocar-
ditis/cardiomyopathy or it represents the exacerbation of previously undiagnosed 
CHF. Responsible pathophysiological mechanisms of AHF in COVID-19 may 
include acute myocardial injury due to inflammation (myocarditis), tachyar-
rhythmia or ischemia, or to acute respiratory failure, acute kidney injury, and 
hypervolemia [9, 29, 31]. Importantly, RHF may also be present especially in 
patients with severe pulmonary injury and PE contributing to the increased 
mortality of these patients [37].

Diagnosis may be difficult, but clinical presentation, history of preexisting cardio-
vascular comorbidities, evidence of cardiomegaly, and/or bilateral pleural effusion 
on chest radiography are suggestive. Increased levels of B-type natriuretic peptide 
(BNP)/N-terminal B-type natriuretic peptide (NT-proBNP) could be an important 
clue for AHF/worsened CHF, although elevated BNP/NT-proBNP values were also 
found in COVID-19 patients in the absence of AHF. An important contribution offers 
TTE demonstrating enlarged cardiac cavities, impaired systolic performance, and 
other important signs [34, 49, 72].

Therapy of AHF in COVID-19 patients should be performed according to guide-
lines [63] based on the same recommendation as in subjects without COVID-19, 
with special attention to early detection and treatment of complications, especially 
hypoxia, thrombotic/bleeding events, and cardiac arrhythmias. It is important to 
consider AHF/CHF when administering intravenous fluids avoiding excessive fluid 
replacement and to be conscious on the cardiac adverse effects of medications used in 
the treatment of COVID-19 [9, 31, 64].

Referring to patients already diagnosed with CHF, it is well known that they 
are predisposed to develop more severe forms of COVID-19, being predisposed to 
a higher mortality. The SARS-CoV-2 infection may also unmask a latent CHF, par-
ticularly heart failure with preserved ejection fraction (HFpEF) which is common 
among elderly overweight, hypertensive patients. In addition, as a consequence of 
myocardial injury, cardiac fibrosis may occur, explaining the increased frequency of 
diastolic dysfunction identified on TTE. The risk to develop overt CHF is present both 
during the acute phase of COVID-19 and during the recovery from the acute illness in 
survivors [31, 33, 72, 73].

Another aspect is that the COVID-19 pandemic negatively impacted the outcome 
of patients with CHF who avoided or delayed hospital controls or admissions due to 
fear of contamination. They presented themselves to the hospital only when their 
condition was severe, which lead to an increased mortality worldwide [9, 74].

4.3 New onset or aggravation of systemic hypertension

The relationship between the infection with the SARS-CoV-2 virus and systemic 
hypertension is very complicated and difficult to establish. While it is generally 
accepted that COVID-19 patients with a history of cardiovascular diseases, especially 
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systemic hypertension, have a worse outcome and increased mortality [29, 75], it is very 
difficult to establish if there is a new onset or a worsening of a chronic hypertension in 
the context of this illness, since a previous comprehensive evaluation is not available in 
the majority of cases. A meta-analysis of Lippi et al. evidenced a nearly 2.5-fold increase 
of severity and mortality of severe COVID-19 in patients with associated systemic 
hypertension, especially in those older than 60 years with other comorbidities [75].

Other large meta-analyses focused on the impact of hypertension’s severity and 
its control and the outcomes but failed to document significant connections [76]. It 
was concluded that hypertension is associated with endothelial dysfunction strongly 
impacted in COVID-19, and patients with more severe forms have more advanced 
atherosclerosis and consecutive complications, thus increasing the morbidity and 
mortality. As the concerns regarding therapy with ACE inhibitors were not found 
to be justified, treatment should be given according to guidelines to optimize blood 
pressure values [77].

4.4 Postural orthostatic tachycardiac syndrome

The postural tachycardia syndrome (POTS) is the result of an autonomic dysregu-
lation which determines increased vasoconstriction when standing, resulting in blood 
pooling within the splanchnic vasculature and limbs, with reduced venous return to 
the heart. An excessive compensatory tachycardia and increased plasma noradrena-
line levels contribute to symptoms, the commonest of which are fatigue, palpitations, 
light-headedness, headache, and nausea symptoms reported by many of patients 
with long-COVID (between 15% and 50% according to some studies) [78]. Although 
orthostatic intolerance is common among patients recovering from a COVID-19 
infection, not all have POTS, some of them have only orthostatic hypotension [78].

The exact pathophysiological mechanism of POTS is not fully clarified, and there 
are several mechanisms involved, including hypovolemia, autonomic denervation, 
hyperadrenergic stimulation, and autoimmune pathology. It is not well established 
whether the same recognized pathophysiology of POTS is also present in patients 
with long COVID further studies being necessary [78].

4.5 Aggravation of preexisting cardiovascular pathologies

From the early stages of the infection with the SARS-CoV-2 virus, it became 
evident that underlying cardiovascular diseases, obesity, diabetes mellitus, and more 
advanced age are associated with a higher risk for severe COVID-19 infection [34]. 
Individuals already suffering from cardiovascular diseases were more likely to be 
infected with the virus, and the virus infection was likely to determine the deteriora-
tion of basic heart disease [79]. Apparently, among COVID-19 patients, there were 
almost 50% diagnosed with chronic diseases, 40% of them with cardiovascular and 
cerebrovascular disorders, chronic kidney failure, and chronic obstructive pulmonary 
disease, having an increased risk of morbidity or even death related to this infection. 
A large study from the USA reported that the most common comorbidities among 
patients with COVID-19 were systemic hypertension (56.6%), obesity (41.7%), diabe-
tes (33.8%), coronary artery disease (11.1%), and CHF (6.9%) [33], and a retrospec-
tive cohort study in China conducted on patients with cardiovascular comorbidities 
evidenced a fivefold higher mortality risk (10.5%). Based on these results, hyperten-
sion and cardiovascular comorbidities can be considered as risk factors for persons 
with severe symptoms of the disease.
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In COVID-19 cases, it is important to recognize the clinical characteristics of 
infected persons to identify and effectively treat the associated comorbidities and the 
newly developed cardiovascular complications as well to reduce patients’ morbid-
ity and mortality. Since many antiviral drugs may determine cardiac insufficiency, 
arrhythmia or other cardiovascular disorders, therefore, during the therapy of this 
illness, especially with antiviral therapy, the risk of cardiac toxicity needs to be closely 
monitored [79].

Another aspect is that of the long-term outcome of patients who suffered from a 
SARS-CoV-2 infection. In a recent and comprehensive study realized on over 150000 
individuals recovering from COVID-19 [80], Xie et al. highlighted that beyond the 
first month after infection, people with COVID-19 experienced at 12 months an 
increased morbidity risks and burdens of cardiovascular diseases, including cerebro-
vascular disorders, dysrhythmias, inflammatory heart disease, ischemic heart disease, 
heart failure, thromboembolic disease, and other cardiac disorders [80]. These risks 
were obvious regardless of age, race, gender, and associated cardiovascular risk fac-
tors, including obesity, hypertension, diabetes, chronic kidney disease, and hyperlip-
idemia, being evident even in individuals without history of cardiovascular pathology 
before the SARS-CoV-2 virus infection, raising concerns that these risks might be 
present even in people at low risk of cardiovascular disease [80]. These risks and 
associated burdens increased parallel to the severity of the acute phase of COVID-19: 
from non-hospitalized individuals – who were the majority – to hospitalized patients, 
especially to those admitted to the intensive care units [80].

4.6 Cardiovascular effects of medication used to treat COVID-19

It has been observed that many of the medications used for the treatment of 
COVID-19 strongly interfere with other medications used in the therapy of cardio-
vascular diseases, such as anticoagulants, antiplatelets, statins, antihypertensives, 
and especially antiarrhythmics favoring the occurrence of arrhythmias [31]. Some 
antibiotics (azithromycin), corticosteroids, antimalarials (chloroquine, hydroxychlo-
roquine), newly developed therapies, still under study such as antivirals (remdesivir, 
ribavirin, lopinavir/ritonavir, and favipiravir), and biologics (tocilizumab) determine 
cardiotoxicity, interact with electrolyte metabolism, and many of them, especially 
Lopinavir/ritonavir, may cause QT and PR prolongation favoring the occurrence of 
arrhythmias or conduction disturbances, mainly in patients already treated with drugs 
prolonging the QT interval. Data over the mechanism of action and potential effects 
of main medication used in the treatment of COVID-19 is presented in Table 1 [31].

4.7 Cardiovascular effects related to vaccination

After the introduction of mRNA COVID-19 vaccines a higher incidence of myo-
carditis in vaccine recipients. A study performed on the data basis from an Israeli 
national database concluded that the incidence of myocarditis after two doses of the 
BNT162b2 mRNA vaccine was reduced (risk ratio = 3.24), significantly lower than 
after COVID-19 (risk ratio = 18.28), but higher than in unvaccinated individuals. The 
risk of myocarditis was higher after the second dose of vaccine and in young male 
recipients [81].

Similar results were also reported by other researcher, with an elevated risk of 
myocarditis, pericarditis, and myopericarditis observed particularly among young 
males with 39–47 expected cases of per million second mRNA COVID-19 vaccine 
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doses administered [82]. They reported an increased risk of myocarditis after the 
first dose of ChAdOx1 and BNT162b2 vaccines and the first and second doses of the 
mRNA-1273 vaccine [82].

5. Conclusions

The impairment of the cardiovascular system in COVID-19 comprises a wide spec-
trum of dysfunctions, ranging from mild to severe, or even life-threatening forms, 
often having an acute onset, sometimes continuing during recovery or even resulting 
in chronic pathologies. Individuals are affected regardless of age, race, gender, and 
associated cardiovascular risk factors, but those with a history of cardiovascular 

Medication Mechanism of action Cardiovascular effects and drug 
interactions

Azithromycin Interacts with the synthesis 
of proteins and binds to 50s 
ribosome

• Interferes with statins, anticoagulants, and 
antiarrhythmics, prolonging QT interval 
and favoring arrhythmias (torsades de 
pointes).

Chloroquine and 
Hydroxychloroquine

Alterations in the pH of 
endosomal/organelle

• May induce direct myocardial toxic-
ity worsening myocarditis and 
cardiomyopathy.

• Alter intracardiac conduction resulting in 
bundle branch block, AV block.

• Interact with antiarrhythmics favoring 
ventricular arrhythmias, torsades de 
pointes.

Methylprednisolone Anti-inflammatory • Determines fluid retention, hypertension, 
and dyselectrolytemia.

• Interacts with anticoagulants.

Remdesivir Inhibitor of RNA polymerases • May cause hypotension and arrhythmias.

Ribavirin Inhibits RNA and DNA virus 
replication

• Interacts with anticoagulants.

• May cause severe hemolytic anemia.

Lopinavir/Ritonavir Lopinavir inhibits protease 
and Ritonavir inhibits CYP3A 
metabolism

• Interacts with anticoagulants, antiplate-
lets, statins, and antiarrhythmics.

• May determine prolonged QT interval, AV 
blocks, and torsades de pointes.

Favipiravir Inhibits RNA-dependent RNA 
polymerases

• Interacts with anticoagulants, statins, and 
antiarrhythmics.

Interferon Immune system activation • May determine direct myocardial toxicity.

• Worsens cardiomyopathy; alters intracar-
diac conduction.

• Causes hypotension or cardiac ischemia.

Tocilizumab Inhibits IL-6 • May interfere with some medication 
metabolism such as statins.

• May determine hypertension.

Table 1. 
Interactions of medications used in the treatment of COVID-19.
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pathology prior to the SARS-CoV-2 virus infection have a worse outcome. Therefore, 
a comprehensive cardiologic evaluation, including TTE, is justified to assess the 
involvement of the cardiovascular system, for initiating a proper therapy as soon as 
possible and to schedule a follow-up program particularly in patients at high risk.
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which permits unrestricted use, distribution, and reproduction in any medium, provided 
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Chapter 8

Ageing and HIV-Risk in
Non-Gravid Female Humans
Kelvin Leshabari, Godfrey Chale and Rashid Salim

Abstract

Objective: To estimate the association between ageing process markers (e.g. clinical
conditions necessitating total abdominal hysterectomy) and immune functions (i.e. HIV-
risk) among adult non-gravid female humans. Materials & Methods:We did a second-
ary data analysis, from a prospective, observational, hospital-based study conducted in
Dar es Salaam, Tanzania. The primary study population included all women planned for
Total Abdominal Hysterectomy (TAH). Target population was all women who
underwent TAH. Data were analysed using a generalized linear model via SAS statistical
software version 9.4. Results:We analysed 40981 women-hours of follow-up. None of
the participant seroconverted against HIV during follow-up period, making an HIV-
incidence of 0/40981 women-hours. All participants were black Africans (median
age 42 (IQR: 37–47) years). We found a statistically significant drop (aOR: 0.687) in
HIV-risk after age of 45 years. Serial correlation between age and HIV-serostatus was
found (γ = -0.514, P = 0.000). Association between HIV and marital stata was barely
significant (χ2 = 8.0176, df = 3). Conclusion: There was a statistically significant reduced
HIV-risk after the age of 45 years among hysterectomised women up and above the
known behavioural/clinical risks. Participants who reported married had the highest
HIV-seropositivity rate. Recommendations: These findings reflect antagonistic
pleiotropy theory of ageing. Analyses on potential biological mechanism(s) against HIV
in peri/post-menopausal women is/are warranted.

Keywords: ageing, antagonistic pleiotropy, endocrinology, hysterectomy,
prospective, Dar es Salaam

1. Introduction

There is no doubt that human reproductive endocrine hormones display a hand-
ful of mysterious patterns in their ageing process. The patterns are debatable even
among endocrinologists and physiologists alike. We did a secondary analysis of
findings, to quantify part of the mysterious association, of ageing process (surgical
removal of endocrine uteri) and immune functions (HIV-risk) in non-gravid adult
female humans. Categorically, we asked ourselves whether there is any significant
relationship between female reproductive endocrinology and HIV-pathobiology
given the ageing process. We believe there is an unaccounted function(s) of
reproductive hormones and HIV-pathogenesis in humans. Besides, the unknown
function(s) seem(s) to function in a manner that is at present mysterious given the
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current scientific knowledge base. We also considered the mystery to be descriptive
to a number of other ageing related pathologies. The systemic reproductive endo-
crine mysteries reflect both structure and functions. At functional level, there exist
frequent speculations, about mysterious benefits of endogenous progesterone (and
even oestradiol?), against bacterial and viral invasions, along the reproductive tis-
sues and cells. Otherwise, it is common knowledge in mammalian female embryol-
ogy and anatomy, that during embryo-fetal development, premordial germ cells
migrate, from the yolk sac to the gonadal ridge, and statistically populate the gonads.
The movement is characterised by changes of the premordial germ cells into
oogonia, in an unknown mechanism to science, even to the present day. Oogonia
rearrange themselves into germ cell nests. These germ cell nests undergo a series of
mitotic divisions. Oogonia enters 1st meiotic division as primary oocytes with arrest
at diplotene stage until puberty. What exactly triggers those structural processes is
still a mystery among scholars to date. The magic behind female mammalian
reproductive endocrinology is not confined to structure.

There is palpable evidence to suggest that mammalian endocrine reproductive
system is associated with a number of immune functions, some potentially benefi-
cial against viral illnesses [1–4]. However, the concept of endocrine reproductive
(dys)-functions against HIV infection in humans is only poorly understood [5]. For
instance, Polis and colleagues have reported up to a 40% increased risk of HIV
acquisition [6], associated with usage of progestin-based injectable contraceptives
in adult females, specifically Depot Medroxy Progesterone Acetate (DMPA) [6].
However, much as the effects of potential confounding could not be completely
ruled out in their study findings, it was still an interesting observation to our
research group. Specifically, it followed logic, to check whether the same observa-
tion, was applicable to endogenous produced progesterone, in non-gravid state.
Besides, most physiological functions of endocrine activities, and their effects on
immune system, have been studied in adult males. Thus, the gap about the situa-
tion in adult females is widening, especially in the era of viral pandemics like SARS
COV-2 and HIV/AIDS. It was on this basis, we hypothesised that the female uterus,
and its associated secretory functions, to be an important milieu, for enhancing HIV
acquisition in humans.

A number of actions displayed by female human reproductive system are associ-
ated with ageing process. For instance, it is still debatable among endocrinologists, on
how does the menstrual cycle coordinate itself, and cease to function after calendar time,
using hypothalamic-pituitary-gonadal axis. Besides, the uterine endometrium coordi-
nates a handful of both reproductive and immunologic functions. Of importance to
this chapter, uterine macrophages and epithelial cells have been shown to be key allies
in mobilisation of innate defenses over calendar age [7, 8]. However, the exact cause
behind the observation remains a matter of intellectual guess work among scientists to
date. We hypothesized the observation to be related to probable endogenous proges-
terone and/or oestradiol effects.

Information on the relationship between gestation process in humans and HIV-
infection is evident in published literature [9–14], and new information still accu-
mulates rapidly [15–18]. Previous studies pinpointed potential biological mecha-
nisms between endocrinology (i.e. endogenous oestradiol and progesterone effects)
and immunobiology of HIV [4, 5]. However, most of this accumulated information
tends to be biased due to samples used; characterised to be in gestational period, and
therefore in an altered physiologic state. Little (if any) is known, about the contribu-
tion of endocrine functions, towards HIV-risk and HIV-disease process in normal
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physiological states. To avoid biases associated with ‘altered physiological processes’
prominent in gestational era, usage of non-gravid female humans, preferably after
reproductive era, becomes justified.

There exists evidence about sex differences in immune responses among
adult humans [1], but it is still not clear, the extent contributed by sex hormones,
especially among adult female humans, in non-gravid state. We believe that,
there exists differential deleterious effects of female endogenous sex hormones, on HIV
risks in non-gravid adult female human population. However, to the best of our
knowledge, the findings of this concept has not been evident in published literature
to date.

Hysterectomy can simply be defined as a surgical removal of the female uterus. It
can also include removal of adjacent structures (e.g. cervix) as evident in total
abdominal hysterectomy and/or fallopian tubes and ovaries (hysterectomy with
(uni)-bilateral salpingo-oophorectomy). Hysterectomy is the commonest
gynaecologic surgery reported globally [19, 20]. We considered it as a natural
surrogate equivalent of non-gravid state in our study cohort. Specifically, it offers
a convenient platform, for analysing clinical and biological parameters associated
with surgery, exclusively in non-gravid state. Effects of HIV on surgical indica-
tions and outcomes among women have been almost exclusively confined to Cae-
sarean section. Caesarean section is an obstetric surgical procedure. Normal
physiology in women, and their alterations in early stages of pathologic processes,
can be best studied in non-gravid state. Thus, the quest for the interplay between
female endocrine reproductive hormones (e.g. oestradiol and progesterone) and
HIV pathobiology in non-gravid state remains unknown to the world of science. It
was on this basis, we considered hysterectomised women as a natural reservoir to
test our beliefs using a clinical research design and adopting specified statistical
techniques in our hypothesis testing.

2. Methods

We did a secondary data analysis from a prospective, facility-based follow-up study,
at all public regional referral hospitals in Dar-es- Salaam, Tanzania. Specifically, the study
took place at Amana, Mwananyamala and Temeke regional referral hospitals. It was
conceived as a clinical research study that assessed indications and outcomes of TAH in
Dar es Salaam city, Tanzania. Dar-es-Salaam is a cosmopolitan city situated on the East-
African coast. It is the business capital of Tanzania. The same city is projected to be 10th
largest city on earth in population size come 2050. Geo-strategically, Dar-es-Salaam is a
port city, and home to dozens of African demographic subsets, ranging from mainly the
Bantu population group to African-Arabic mixed race population.

Data in the primary study was collected using a pre-designed clinical sheet that
contained social, demographic, biological and clinical parameters on pre- and peri-
480-hours post-hysterectomy. Specifically, HIV screening was accomplished using a
serial algorithm involving SD Bioline HIV kit (SD Bioline HIV 1/2 3.0, Standard
Diagnostics, Korea) to all participants. Those who were reactive on SD Bioline HIV
test, confirmatory diagnosis was made using Unigold HIV kit (UniGold™HIV, Trinity
Biotech Manufacturing Ltd, Bray-Ireland). Each participant was screened twice, first
at the time of recruitment into the study, and again either before discharge from the
ward post-operatively or anytime within 480-hours post-hysterectomy. Data collec-
tion started immediately upon a verbal informed consent for inclusion into the
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primary study. Sample size was obtained using the prospective cohort formula
from Kasiulevicius and others publication in the journal Gerontology back in
2006 [21];

Sample size ¼

Zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

m

� �
p ∗

s
1� p ∗ð Þ þ Zβ

ffiffiffiffiffi
p1

p

1� p1ð Þ=mþ p2 1� p2ð Þ

2
64

3
75

2

p1 � p2
� �2

Zα = Standard normal variate for level of significance.
m = Number of control subject per experimental subject.
Zβ = Standard normal variate for power or type 2 error as explained in earlier section.
p1 = Probability of events in control group.
p2 = Probability of events in experimental group p

P ∗ ¼ p2þmp1
mþ 1

For values of Z = 1.96, α = 0.05, β = 0.8, m = 1.
Study population in the primary study included all women with a surrogate marker

for ageing process (clinical indications necessitating total abdominal hysterectomy). Tar-
get population referred to all women who underwent total abdominal hysterectomy at any
of Dar es Salaam Public Regional Referral Hospitals. Thus, for a participant to be eligible
for recruitment into the study, she had to be planned for total abdominal hysterectomy
and/or emergency total abdominal hysterectomy due to a decisionmade on the operation
table (in-theatre major adverse events) out of another planned surgery at any of those
facilities during the study time. All women who underwent sub-total hysterectomies
were thus excluded. The decision to do so originated from the assumption that, for a
woman to be planned for total abdominal hysterectomy, the clinical decision rule must incor-
porate a pathology associated with what we characterized as an ageing process. Participants
were recruited upon official notification for total abdominal hysterectomy at clinics
(outpatients) or wards (inpatients) after clinical indications. Participants were followed-
up to at most 480-hours post-operatively, or upon discharge from the ward post-opera-
tively, whichever came first. Follow-up data included post-operative HIV serostata.

Data analysis was done using SAS software version 9.4 (SAS Institute, Cary-NC,
USA). A minimum number of 106 women had at least 80% power of detecting a
statistically significant difference at apriori 5% α-level. Continuous variables were
summarised using median (with inter-quartile range). Categorical variables were sum-
marized as proportion (with %). A generalised linear model was used to analyse data
after appropriate validation of model assumptions. We considered at least 110 women
as a rough estimate of effective sample size in cases of any potential refusal to partici-
pate/missing data. However, efforts were made to ensure minimal refusals to partici-
pate/missing information per participant via adoption of all surgical and nursing team
members in the respective departments throughout the study period.

Ethical clearance for the primary study was obtained from ethical clearance com-
mittee at International Medical and Technological University (IMTU). Permission at
referral facilities was sought from offices of municipal medical officers of health and
facility in-charges of each hospital. Participants were approached with a verbal
informed consent prior to recruitment into the primary study.
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3. Results

We successfully analysed 40981 women-hours of follow-up. They consisted of all
patients who underwent Total Abdominal Hysterectomy at Amana, Mwananyamala
and Temeke regional referral hospitals from March to October 2017. In essence,
none of the patient seroconverted against HIV during follow-up period, making an
HIV-incidence of 0/40981 patient-hours. Their pre-operative HIV-serostata included
19 (17.76%) who were reactive on both screening tests, thereby considered as seropos-
itive for HIV anti-IgG; 84 (78.5%) non-reactive on both screening tests and considered
seronegative for HIV anti-IgG. Moreover, 3 (2.8%) patients refused screening.
Therefore, their HIV-serostata remained unknown to study investigators. Likewise,
1 (0.93%) patient had discordant results between the two screening tests. All efforts to
determine her HIV-serostatus during the time of hospital stay were deemed unsuc-
cessful. All studied patients were black Africans by origin. The median age was 42
(IQR: 37.5–47) years. Serial correlation between HIV-serostata and age of patients
yielded statistically significant findings (γ = �0.514, P < 0.001). Figure 1 below
highlights the pattern of the observed serial correlation between chronological age and
HIV-serostata of participants.

To test for potential confounding, other variables (i.e. +/� of comorbidities, reported
recent (past 1-month) sexual (oral, vaginal/anal) history, 1-month prior blood -(prod-
ucts) transfusion episode and place of residence) were also tested but yielded non-
significant statistical evidence of confounding (χ2-Yates corrected = 0.3833, df = 3).
Converesely, it is worth noting that we also found a just significant correlation between
reported marital and HIV stata (see Tables 1 and 2 below) on univariate analysis during
initial data exploration.

Figure 1.
Serial correlation between HIV serostata and age among women who underwent total abdominal hysterectomy in
Dar es Salaam regional referral hospitals,Tanzania (March–October 2017).
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4. Discussion

We detected a statistically significant association for the probable drop in HIV-risk
after age of 45 among hysterectomised women. The finding translates to an average drop
of about 30% in HIV-risk for each annual increase in life expectancy after the age of
45 years. From an evolutionary perspective, our findings are likely to be a reflection of
antagonistic pleiotropy theory of ageing. It is evident in literature as part of a non-
adaptive evolution of ageing process, as per reproductive senescence assumption.
However, a word of caution - it was a statistical estimate, out of secondary data analysis!
We therefore in a pioneering move, call for biologically plausible prospective study
designs, to substantiate the exact cause of our current observed statistical puzzle!

By reflecting the nature of our target population, we derived a possibility for hor-
monal interplay that potentiate HIV-entry in women during their reproductive age; and
significantly drop upon cessation of menses or removal of their endocrine uteri. Several
studies in the past have suggested potential roles of female reproductive hormones in
facilitating HI-viral entry and proliferation in female epithelial tissues [22–27]. For
instance, AaronWeinberg and his colleagues showed for the 1st time back in 2003, that
HIV-1 induced β-defensin expression in human oral epithelial cells, with subsequent HIV-
1 replication blockage, by the β-defensin 2 & 3, via direct interaction with virions, and also
through modulation of CXCR4-tropic HIV-1 isolates [24]. To our views, Weinsberg’s
findings were novel even though the target was oral (rather than genital) epithelia [24].
Likewise, Morrison and colleagues performed an individual data 18-prospective studies
incorporating 2-stages random effect meta-analysis with 43613 women-years of

HIV serostatus Single Married Widowed Divorced Total

HIV seropositive 3 11 0 5 19

HIV seronegative 9 60 9 6 84

Total 12 71 9 11 1031

NOTE: Cochran–Mantel-Hanzel corrected χ2 value for the association = 8.0176, df = 3.
1N = 107 but 3 individuals refused HIV screening and 1 had discordant HIV results.

Table 1.
Distribution of HIV by marital stata among women who underwent total abdominal hysterectomy in Dar es
Salaam regional referral hospitals, Tanzania (March-October 2017).

Variable Estimates 95% C.I.

Age* - 0.8156 - 0.7488–0.9970

Marital status** 1.6429 1.3914–1.9216

Intercept 0.449 ***

N.B.: The model fitness was deemed desirable with LR value of 8.1142 and df = 2.
*Age was coded in a binary fashion with the cut-off of 45 years (average time for natural menopause?) and found to
attain linearity with the logit function. Thus, Age < 45 was used as a reference group.
**Marital status was collapsed to married/non-married in order to attain model specification of linearity with the logit
function. Here, non-married was the reference group.

Table 2.
Findings on the multivariable logistic regression analysis of HIV-stata on ageing among women who underwent
total abdominal hysterectomy in Dar es Salaam regional referral hospitals, Tanzania (March-October 2017).
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follow-up, that resulted to an adjusted Hazard Ratio (aHR) of 1.5 (95% C.I.: 1.24-1.86)
upon usage of Depot Medroxyprogesterone Acetate (DMPA) [22]. Morrison study
controlled for incident known biological and behavioural risk factors [22]. Progesterone
(and not oestradiol) was associated with increased risks in those studies [22, 23, 26, 27].
However, causality has not been established on this topic. We hope our study findings
have added quantitative estimates of association between HIV and ageing endocrine
processes in non-gravid female humans.

The estimated HIV burden (17.76%) reported in our study is higher than recently
reported HIV/AIDS statistics in Tanzanian general population. Tanzania’s HIV Impact
Survey 2016–2017 reported HIV prevalence of 6.5% among women aged 15–64 years
[28]. However, our study population was unlikely to be representative of all women in
Tanzania. Another contrasting factor was our limited time of follow-up, in days rather
than months or years, normally applied for HIV-seroconversion incidence studies. The
zero incidence in HIV-seroconversion rate observed may also likely be a function of
limited time of follow-up. Moreover, of special interest to our findings, was the link
between removal of endocrine uterus (a marker of ageing process) and HIV-risk. On
average, a linear association accounted for more than half the variation between HIV-
risk and chronological age. Besides, the negative sign in the correlation estimate; signi-
fied a probable reduction in HIV-risk with increasing age. It was additional statistical
evidence, besides the estimated odds ratio statistic found on the linear model. However,
we wish to caution against potentiality for both Berkson’s and ecological fallacies when
generalizing our findings. We wish our findings to be taken as a treasure hunt rather
than justifiable evidence at present. For instance, we see a potential for malice, upon
generalisation of these findings at individual level. We wish to caution readers, that the
statistics on reduction in HIV-risk with ageing was analysed at group level. Otherwise,
the same finding has several alternative explanations.

First, although the current analysis involved all women who underwent hysterec-
tomies during the study period, and hence the estimate unlikely to be due to sampling
variability, we did not have a control group by design. Moreover, there was relatively
fewer individuals, in old age (>65 years) category. The analysis was therefore under-
powered for detection of the observation among senior citizens per se. Middle aged
women constituted the majority in our study population. The young and middle age
groups are evident to be the most affected by HIV in Tanzania [28]. However, that
evidence is doubted in present day Tanzania [29], as HIV has achieved a stable chronic
status at community level. Historical data on predominance of young/middle aged
members on HIV statistics in Tanzania by their own do not rule out high HIV inci-
dence/prevalence in old aged group. Thus, it is equally likely, that our current findings
to be a statistical artifact than a real phenomenon. However, the fact that even with the
notable under-powered statistics, the observation was still statistically significant; is
worth speculations towards a probable real biological phenomenon. The view follows a
common knowledge, that it is relatively difficult to attain statistical significance in
under-powered dataset than adequately (over)- powered dataset. We therefore
strongly call for biological and clinical research on this specific topic.

Likewise, Tanzania just like other sub-Sahara African countries has never included
≥ 65 years cohort in its national HIV/AIDS surveys. This is for a variety of reasons
including assumption of HIV-infection as a disease of youth and young adults. That
assumption is considered by authors as a complete myth at present. The reason for
disputing that assumption as a myth has been published before [29]. Otherwise, data
on HIV-statistics among ≥ 65 years in Tanzania are scanty. Of the few available ones,
there is one with evidence that reported a relatively low point prevalence (2.1%) [30].
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It constituted senior community-dwelling females in North-Eastern Tanzania [30].
Currently, we are hesitant to assume that single retrieved community prevalence
study to be nationally representative. Given the obvious gap, it is naturally justified
that further population-based studies are needed on this topic.

Moreover, there is a specific call for interventions targeting ageing process, and
senior citizens morbid and mortal statistics the world over, to be derived from reliable
and valid tools. For instance, there is growing evidence that most scales and indicators
used for assessing senior citizens morbid conditions report indices with questionable
reliability globally [31]. One member of our team has just published his findings [31],
that showed the current global scales and indicators for assessing frailty to record
reliability values that were lower than greatest lower bound (glb) reliability estimate
[31]. Part of the challenge has been contributed by years-long tendency of editors and
reviewers to consider Chronbach’s alpha coefficient as a sin qua non for defining
reliability index in scientific literature. We could not control all biases associated with
our quantitative variables nor did we assume perfection in the literature cited in this
chapter, against all systematic and measurement errors in them. The fact that the
world is ageing fast, especially sub-Sahara African countries [32], calls for tools with
appreciable precision and accuracy during data collection & reporting processes.
Thus, studies on biological, clinical, public health, demographic as well as economic
analyses of ageing processes are highly warranted globally. Our message given the
current statistical findings, some somatic maintenance properties are likely to be retained
(reversed) after reproductive years in female humans!

Likewise, we took a careful measure not to overlook the finding on HIV and
marital stata. There was a rather strong ego to consider that finding as spurious, but
indeed the decision was not supported by a logical flow of reasoning among investi-
gators. In fact, we are still debating! Previous studies in similar settings yielded
confusing results [33–35], with one study from a population based study in Tanzania
that conferred an almost additional 50% risk (aOR: 1.49, 95% C.I.: 1.08–2.04) to
remarried couples compared to single/cohabiting partners [35]. Otherwise, the fact
that HIV-infection has been present in Tanzania since 1983 [29], and ante-retro
viral drugs against HIV became available in mid-1990’s [29]; justifies possibilities for
residual vertical infection, among infants born with HIV from infected parent(s), to
proceed to adulthood. Should this speculation be valid, assumptions related to
exclusively acquired HIV risks after sexual maturity could be nullified. Evidently, a
member of our research group once co-authored a population based study, among
under-fives in a sub-urb of Tanzania, that realized potential sources of infectious
ailments, via a domain of febrile illnesses [36]. However, details about the HIV-
associated behavioural risks as well as impact of Ante-Retro-Viral drugs against HIV
to babies born with the disease were beyond the objective of our current and previous
works. Thus, we do believe there is a desperate need for future studies on the mech-
anisms behind preponderance of HIV infection among participants who reported in
married category.

Lastly, much as we do believe our current findings to be reflective of antagonistic
pleiotropy theory of ageing process, we wish to address some other important limita-
tions of our findings. It has been a general consensus that women tend to outlive men
in longevity studies [37–42]. Even though most scholars of the past (and likely the
present?) still associate the reason(s) back to environmental causes [42]; there is a
clear indication, that the concept to have an underlying biological and/or clinical
causes [37–41]. Mysteriously to our current findings, there have been previous studies
that reported female advantages in HIV-survival patterns whether or not on ante-
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retroviral treatment in similar settings [43, 44]. Thus, female survival advantages
tend to manifest both against HIV-risks as well as in HIV-infection whether or not the
latter factor is associated with treatment. Besides, we could not set up an enough time
follow-up study in order to arrive with our current conclusion. However, we do
believe what we just showed (probably for the first time?) to the world to be an
otherwise real biological phenomenon, that has been part of knowledge base in what is
currently referred to as biogerontology.

5. Conclusions

There was an observed statistically significant reduced risk of HIV with ageing
process in this secondary analysis. None of the studied women seroconverted against
HIV during our follow-up period. Point prevalence of HIV among total
hysterectomised women was higher than otherwise reported in the Tanzania’s general
population. Patients reported to be married had a statistically significant higher
chance of being HIV-seropositive than others in this study population.
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Chapter 9

The Role of IL-6 in RNA Virus 
Infection
Rizaldy Taslim Pinzon

Abstract

IL-6 is a pleiotropic cytokine produced in response to tissue damage and  
infections. This up-regulation was observed during infection with a highly virulent 
VSV strain. There was potential association between IL-6 levels and virus virulence. 
In this chapter we would like to explore in more detail the biological functions of 
IL-6 in different virus models. We also discuss the debatable role of IL-6 during viral 
infections. Previous studies show the potential role of IL-6 to mount a proper immune 
response during some viral infections, others link this cytokine with exacerbation of 
viral disease. These latter findings lend support to the hypothesis that up-regulation 
of IL-6 during certain viral infections may promote virus survival and/or exacerba-
tion of clinical disease. Previous experimental evidences also suggest potential nega-
tive consequences that increased levels of IL-6 might have on the cellular immune 
response against viruses.

Keywords: RNA virus-IL6-soluble-imune-host

1. Introduction

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has set a major healthcare issues 
and economic burden worldwide. Like other RNA viruses, SARS-CoV-2, while adapt-
ing to their new human hosts, is prone to genetic evolution with the development 
of mutations over time, resulting in mutant variants that may have different char-
acteristics than its ancestral strains. Currently, treatments of COVID-19 are mainly 
repurposing drugs or symptomatic with no definitive treatment directed against the 
virus [1].

Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized 
by club-like spikes that project from their surface, an unusually large RNA genome, 
and a unique replication strategy. In the absence of specific treatment or antiviral 
drugs been proven against SARS-CoV-2, researchers have proposed many therapeu-
tics agents used as adjunctive treatments for COVID-19 patients apart from supple-
mental oxygen therapy or mechanical ventilation [1, 2].

In Coronavirus infection, viral surface glycoproteins, double-stranded RNA, and 
intracellular viral proteins all have the capacity to activate signal transduction path-
ways leading to the expression of cytokines and chemokines. Cytokine storm is one of 
the main mechanisms of the disease and is believed to trigger an exaggerated immune 
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response in the host and has been observed more frequently in severe COVID-19 
patients associated with complications, such as acute respiratory distress syndrome 
(ARDS) and other multiple organ injuries [2].

An important consequence of RNA virus infection and COVID-19 disease is cell-
free DNA (cfDNA) found in body fluids such as serum or plasma. cfDNA originates 
from nuclear or mitochondrial DNA released from dead/dying cells, DNA released 
from live cells, and foreign DNA from invading viruses [3]. The other interesting 
points are the fact that monoclonal antibody against IL-6 receptors or IL-6 inhibitor 
has shown to be an effective agent in COVID-19 patients with severe illness. Initially, 
it is frequently used for the treatment of rheumatoid arthritis patients. These drugs 
targeting IL-6 as inflammatory mediators will decrease inflammatory response in 
cytokine storm, hence minimizing the incidence of jeopardize complications, such as 
ARDS. Tocilizumab and other anti-IL-6 receptors antagonist has been recommended 
as an immunotherapy in severely ill patients and improved the clinical outcomes as 
well as decrease in mortality rate [3, 4]. The aim of this review is describe the role of 
IL-6 in RNA virus infection.

2. Method

This article is a narrative review study include IL-6 and RNA virology, clinical 
impact, diagnosis, and treatment. The search was conducted using five keywords “IL-
6,” “RNA Virus,” “IL-6 inhibitors” in combination with “human” in PubMed, Scopus, 
and ScienceDirect among articles between 2000 and April 2022. We focused on publi-
cations post-year 2000, with emphasis on the past 10 years, but we did not exclude 
commonly referenced, relevant, and influential older publications. The clinical trial, 
case–control, review, and a meta-analysis study of 20 years; 2000–2022 articles, 
case series, cohort, and cross-sectional studies were reviewed. We also reviewed the 
references of each article to include further other studies or reports not identified by 
the search. We excluded articles considering the expert viewpoints and letters to the 
editor. We limit our search to English written articles and articles on human study.

3. Discussion

3.1 Inflammatory cytokine (IL-6) and RNA virus infection

After RNA virus entered the host. The innate immune system is the first line 
defensive mechanism for this virus. The response will be responsible for detecting 
pathogen-associated molecular patterns (PAMPs). Viral RNA is a potent inducer of 
antiviral innate immune signaling. It will provokes an antiviral state by directing 
expression of interferons (IFNs) and pro-inflammatory cytokines. The +RNA viruses 
developed various methods to avoid detection and downstream signaling. This 
mechanism includes isolation of viral RNA replication in membranous viral replica-
tion organelles (ROs) [5].

The defense mechanism of the host includes rapid production interferons and 
other pro-inflammatory cytokines. This is an important consequence of virus detec-
tion. This condition contributes to an antiviral state in both the infected host cell and 
other surrounding cells. The next phases showed that interferons will play an essential 
role in coordinating the antiviral adaptive response system [5].
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One of the most studied cytokines is IL-6. In RNA virus infection IL-6 is consid-
ered one of the most important cytokines during an infection, along with interleukin 
1 (IL-1) and tumor necrosis factor alpha (TNF-a). IL-6 is a pleotropic cytokine pro-
duced in response many types of tissue damage including fibroblasts, keratinocytes, 
mesangial cells, vascular endothelial cells, mast cells, macrophages, dendritic cells, 
and T and B cells. After targeting its specific receptor, IL-6 starts a cascade of signal-
ing events mainly associated with the JAK/STAT3 (Janus kinase (JAK)/signal trans-
ducer and activator of transcription 3) activation pathway. This cascade will promote 
the transcription of multiple downstream genes associated with cellular signaling 
processes, including cytokines, receptors, adaptor proteins, and protein kinases. It 
will also regulate the production of proteins implicated in regulation of many gene 
expression. The biological consequences of IL-6 production have been associated with 
pro inflammatory effects [5, 6].

As an immediate answer after RNA virus infections, different immune cellular 
pathogen recognition receptors, including toll-like receptors (TLR:2, 3, 4, 7, 8, and 9), 
nucleotide-binding oligomerization domain-like receptors, and retinoic acid-inducible 
gene-1-like receptors, are able to sense a variety of pathogen-associated molecular pat-
terns displayed by viruses (envelope glycoproteins, single and double-stranded RNA), 
which stimulate transcription of IL-6 among other proinflammatory cytokines [5].

IL-6 play significant role either in positive or negative ways. The animal studies 
showed its ability to repress the replication of CSFV (classical swine fever virus) 
in swine peripheral blood mononuclear cells. However, experimental scientific 
evidence also suggests the negative impact of increasing IL-6 level. The potential 
role of IL-6 increase is the establishment of a viral persistent state in infected hosts. 
The animal studies showed that overexpression of IL-6 during the viral immune 
response might induce viral persistence by impairing the polarization and func-
tionality of Th1 cells and the lytic capacity of CD8 T-cells through different mecha-
nisms, leading to chronic infections. As a consequence of the constant antigen 
stimulation, CD8 T-cells become unresponsive and fail to develop into memory CD8 
T-cells, a situation that limits viral clearance. The other negative impact of upregu-
lated IL-6 is increasing inflammation followed by cytokine secretion and cellular 
recruitment as described during autoimmune diseases. This inflammation state 
may be an advantage for some RNA viruses by providing new targets for subsequent 
infections [6, 7].

Previous report and reviews showed that high levels of interleukin 6 (IL-6) and 
Interleukin 8 (IL 8) were found in the very acute stage associated with lung lesions in 
SARS-CoV-1 patients. The IL-6 can induce the hyper-innate inflammatory response. 
In the cases of SARS-CoV-1, very high levels of IL-6 were associated with signifi-
cant and severe inflammation state, and its correlated with high mortality. Some 
observational retrospective and systematic review/meta-analysis showed that high 
IL-6 and C-reactive protein (CRP) were significantly correlate with mortality and 
severity of the disease. Some recent evidences also proved that critically ill patients 
with severe respiratory failure and SARS-CoV-2 have either immune dysregulation 
or macrophage-activation syndrome, both of which are characterized by pro-
inflammatory cytokines (IL-6). The immune dysregulation, in particular, is driven by 
the Interleukin-6 (IL-6). The most significant impact of this condition features of this 
immune dysregulation are: (1) over-production of pro-inflammatory cytokines by 
monocytes, and (2) lymphocyte dysregulation with CD4 lymphopenia [7, 8].

After the pandemic of COVID-19, some recent evidences showed that there are 
of many similarities between Macrophage Activation Syndrome (MAS) disease and 
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COVID-19 pneumonia. This phenomenon is a pathological condition that called over 
production of cytokine secretion. The loss of first line anti-viral defense mechanism may 
be responsible for this activation. It will cause prolonging and sustained IL-6 secretion. 
The Sustained IL-6 secretion was also correlated with the serum viral RNA load [7–9].

3.2 The up regulation of IL-6 in RNA virus infection

In common, pathogen-associated molecular patterns (PAMPs) recognized by 
pathogen recognition receptors (PRRs) in RNA virus infected lesions. The damage-
associated molecular patterns (DAMPs) released from damaged cells in non-infectious 
inflammation will provoke IL-6 synthesis in many cells such as immune-competent 
cells, mesenchymal cells, fibroblasts, endothelial cells, and epithelial cells [10, 11]. The 
IL-6 initiates warning signals to the entire body, and many experiments have shown 
that serum IL-6 levels are elevated in patients RNA virus infection. Some studies in 
Hepatitis B virus infection showed that IL-6 is also a good marker for HBV-related dis-
ease progression [12]. The levels of IL-6 are significantly higher in chronic hepatitis B 
(CHB) patients than in healthy individuals [13]. The IL-6 is also significantly higher in 
patients with advanced liver disease (LC or HCC) compared to the CHB groups [14].

The IL-6 is an important proinflammatory cytokines during RNA virus infection 
onset, especially, at the mucosal sites. However, the impact of IL-6 on the disease out-
come may vary significantly. The IL-6-dependent Th17 activation and differentiation are 
important for effective neutrophil migration, IL-6 together with IL-15 modulate cyto-
lytic capacity of CD8+ T cells [15]. In this part, IL-6, as a pyrogenic cytokine, contributes 
to thermostatic regulation that is very important for effective anti-viral response [16].

On the other hand, the upregulation of IL-6 has been implicated in the progression 
of RNA viral infections. In this part, IL-6 synergizes with IL-1b and TNF to upregu-
late trypsin expression, trypsin activates matrix metalloproteinases and causes the 
breakdown of basal membrane and extracellular matrix, that cause increased tissue 
permeability and edema [17]. The upregulation of IL-6 promotes Th17 cell differen-
tiation and IL-17A secretion, which, in turn, activates the expression of anti-apoptotic 
molecules, such as Bcl-XL, favoring survival of virus-infected cells in the model of 
persistent viral infection [18]. In the COVID-19 infection, the increase of IL-17 that 
mediated by IL-6 promotes the migration of neutrophils whichcontribute to the 
pathogenesis of ARDS [19, 20].

• IL-6 promotes highly specific reaction of adaptive immunity by stimulating 
of CD8+ T cells and B cells, which is balanced by T regulatory cells.

• IL-6 facilitates survival of phagocytic neutrophils.

• IL-6 can provide unfavorable Th2 and Th17 over Th1 helper differentiation and 
facilitate tissue injury by dysregulation of extracellular matrix and attraction 
of neutrophils and pro-inflammatory macrophages (Figure 1).

3.3 Clinical implication

What are the implications of this findings? There is a fact that some viral strains 
can cross the barrier of the immune response and induce the over-production 
of IL-6. This condition correlated with the advancement of viral activity. This 
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condition consequently followed by an up-regulation in the production of IL-6, 
this polymorphisms in the region of the IL-6 gene stimulate the overexpression 
of IL-6 that also correlated with viral progression. This loop correlated with the 
increase of the viruses virulence that damaging Th1 cell polarization and function-
ality. This condition caused viremia and the loss of CD8 T-cells ability to develop 
memory cells, thus reducing the capacity to fight viral load. Constant replication of 
the virus fails to grow into long-out plasma cells, limiting their ability to clear the 
virus Prolonged RNA virus infections increase levels of IL-6, that further makes 
accumulation of this pathologies state (inflammation plus cytokines and cellular 
presence). This state may be advantageous for several RNA viruses, mainly because 
it offers some opportunities for near-future infections because there are new target 
cells to choose from. There were a debate on how is the inflammatory cytokine, 
IL-6, in viral infections can be used as a biomarker for prognosis. An exploration of 
the IL-6 function as well as that of IL-6 inhibition in treating persistent infections 
might aid in developing its therapeutic benefit may reveal information about its 
utility [8, 9].

The study from Saji et al. showed that IL-6 is important prognosis biomarker. The 
study from 102 patients with moderate to severe COVID-19 showed that the 30-day 
was significantly higher in patients with high IL-6 (> 49 pg./mL) and SARS-CoV-2 
RNAaemia (> 1.5 copies/μL) compared to those with high IL-6 or RNAaemia or 
without high IL-6 and RNAaemia (88% vs. 22% or 8%, log-rank test P = 0.0097 or 
P < 0.0001, respectively) [17].

The other study in showed similar result. Patients with hypoxemia had signifi-
cantly higher concentrations of IL-6, C-reactive protein, procalcitonin, fibrinogen, 
total bilirubin, aspartate aminotransferase and alanine aminotransferase at initial 
screening. ROC analyses identified IL-6 as the most robust predictor of hypoxemia. 
The concentration of IL-6 > 24 pg./mL predicted the development of hypoxemia with 
the sensitivity of 100% and specificity of 88.9%. The positive and negative predictive 
values were 76.9, and 100% respectively [18].

Figure 1. 
The IL-6 demonstrates opposing effects during the immune response to viral infections [6].
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The prognostic value of clinical severity also been showed. The study in the 
140 COVID-19 patients, the levels of IL-6, CRP, and PCT increased in 95 (67.9%), 
91 (65.0%), and 8 (5.7%) patients on admission, respectively. The proportion of 
patients with increased IL-6, CRP, and PCT levels was significantly higher in the 
severe patients than in the mild one. Cox proportional hazard model showed that IL-6 
and CRP could be used as independent factors to predict the severity of COVID-19. 
Furthermore, patients with IL-6 > 32.1 pg./mL or CRP > 41.8 mg/L were more likely 
to have severe complications [19].

3.4 IL-6 inhibitor as promising treatment

IL-6 is produced by dendritic cells, macrophages, mast cells, and other innate 
immune cells. Several previous studies showed that IL-6 has long been considered a 
marker of inflammation. The increased levels of IL-6 significantly noted in number 
of diseases that related with ongoing inflammatory cell activation. The IL-6 can also 
be produced by non-immune cells such as epithelial cells, endothelial cells, keratino-
cytes, and fibroblasts among others, in response to specific stimuli [4].

The presence of IL-6 may not necessarily correlate with the production of other 
inflammatory cytokines and it may not be just a marker of ongoing inflammation, but 
a direct player in the immune response. A number of studies have shown a role of IL-6 
in the adaptive immune response, primarily on the differentiation fate of CD4 T cells, 
but IL-6 can also modulate aspects of the innate immune response [17, 18].

Elevated levels of IL-6 in the lung and in serum have been found in patients 
infected with the influenza virus, including the 2009 H1N1 pandemic influenza [21, 
22]. IL-6- and IL-6-mediated signals are essential for survival to a non-lethal dose of 
influenza H1N1 virus infection. Deficiency of IL-6 or IL-6R prevents clearance of the 
H1N1 virus in association with low numbers of neutrophils present in the lungs of 
infected individuals. We also show that IL-6 provides survival signals to protect neu-
trophils from influenza virus-triggered apoptosis. Impaired virus clearance caused by 
the lack of IL-6 or IL-6R signals leads to emphysema-like destruction of the lung and, 
ultimately, death [23, 24]. Thus, IL-6 is a protective factor against primary infection 
with the influenza H1N1 virus by promoting the innate phase of the immune response 
and virus clearance (Figure 2) [23, 25, 26].

With coronavirus disease 2019 (Covid-19), the role of localized inflammation was 
evident. Patients with severe symptoms has high interleukin-6, a cytokine produced 
by macrophages that induces a proinflammatory response and is often elevated in 
patients with Covid-19. Some studies showed the benefit of IL-6 inhibitors.

The REMACAP trials, which had an adaptive design, approximately 800 patients 
in need of respiratory or blood-pressure support or both were randomly assigned 
to placebo or a single injection of an interleukin-6 receptor blocker, tocilizumab or 
sarilumab. The primary outcome was a composite of in-hospital death and days free 
of respiratory or blood-pressure support to day 21. The group receiving an interleu-
kin-6 receptor blocker had an in-hospital mortality of 27%, as compared with 36% in 
the control group, and those receiving the receptor blocker had a median of 10 to 11 
organ support–free days, as compared with 0 days for control [27].

Conflicting result was shown in CONVACTA trial. This randomized, controlled 
trial include 452 patients with Covid-19 (oxygen saturation, ≤93%) were randomly 
assigned in a 2:1 ratio to receive one dose of tocilizumab or placebo. The primary 
outcome was clinical status at day 28; mortality was a secondary outcome. The group 
receiving tocilizumab had a median clinical status of 1 (discharged or ready for 
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discharge), and the control group had a median clinical status of 2 (out of intensive 
care and not receiving supplemental oxygen). Mortality was 19.7% in the tocilizumab 
group and 19.4% in the control group [28].

The meta-analysis of 27 randomized trials of IL-6ra that included 10,930 patients 
with COVID-19indicate that all-cause mortality was reduced in patients hospitalized 
for COVID-19 and treated with IL-6ra compared with those treated with placebo 
or usual care. By day 28 after randomization, 1407 deaths occurred among 6449 
patients randomized to receive IL-6 antagonists and 1158 deaths occurred among 
4481 patients randomized to usual care or placebo (summary odds ratio [OR], 0.86 
[95% CI, 0.79–0.95]; P = .003 based on a fixed-effects meta-analysis). Importantly, a 
significant mortality benefit was only found when IL-6 inhibitor were coadministered 
with glucocorticoids (summary OR for the association of IL-6 antagonist treatment 
with 28-day all-cause mortality, 0.78 with concomitant glucocorticoid administra-
tion vs. 1.09 without glucocorticoid administration). The benefits of IL-6 inhibitor 
were most evident among patients who received respiratory support with oxygen 
by nasal cannula, face mask, high-flow nasal oxygen (OR for death, 0.81 [95% CI, 
0.67–0.98]), or noninvasive ventilation (OR, 0.83 [95% CI, 0.72–0.96]) vs. those who 
required invasive mechanical ventilation (IMV) (OR, 0.95 [95% CI, 0.78–1.16]) [29].

The review showed that, IL-6 receptor antagonist hold promise for patients hospi-
talized for COVID-19 with progressive disease and substantial oxygen requirements 
but are not yet merited for widespread use among patients with mild disease nor with 
prolonged invasive mechanical ventilation [30].

4. Conclusion

There are evidences supporting a significant role of IL-6 during viral infections. 
IL-6 production that may be detrimental to the cellular immune response during 
viral infections. The change in IL-6 production during the immune response to viral 
infection are (i) the increased ability of some viral strains to overcome the immune 
response using a variety of evasion strategies, and consequently up-regulate the 
production of IL-6 as a result of increased viral loads, and (ii) polymorphisms in the 
IL-6 gene promoter stimulating overexpression of IL-6 during the immune response. 
The increased levels of IL-6 significantly related with ongoing inflammatory cell 
activation and poor prognosis.

Figure 2. 
Overexpression of IL6 and its negative impact [15].
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