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Preface

Reactive oxygen species (ROS) and DNA double-strand breaks have been associated 
with multiple clinical pathologies and genetic mutations. Increased levels of ROS have 
been associated with cancer progression, Alzheimer’s disease, and cardiovascular dis-
eases. Dysfunctional mitochondria can internally generate ROS, resulting in increased 
Ca++ flux, inflammation, or apoptosis. ROS is also generated by exposure to external 
environmental factors, including ionizing radiation, industrial toxicants, and food 
carcinogens. ROS-induced germline and stem cell mutations can lead to developmen-
tal deformities. Our continual exposure to ROS underscores the urgency to under-
stand how ROS-associated DNA damage can be repaired, recognize ROS-associated 
pathologies, and find cures for diseases that result from dysfunctional mitochondria.

Recently, gene therapy has shown promise for the treatment of inherited diseases, 
such as sickle cell disease. Much of this success can be credited to advances in gene 
editing techniques, notably CRISPR/CAS9, and in the utilization of model animal 
organisms, such as mice. The success of CRISPR/CAS9 in editing nuclear genes has 
excited interest in editing mitochondrial genomes. However, editing mitochondria 
genes is challenging, partially due to the need to permeate both the outer and inner 
membranes. In addition, some cells exhibit mitochondrial heteroplasmy. Alternative 
possibilities are also being explored, such as the ablation of the mutated mitochon-
drial genome and mitochondrial transplantation.

The chapters in this book highlight pathologies that result from mitochondrial 
dysfunction and mutagenesis that results from double-strand breaks. The first section 
focuses on mitochondrial diseases with chapters on ocular and renal pathologies and 
emerging genetic editing strategies to mitigate or correct mitochondrial DNA muta-
tions. The second section focuses on model organisms and mutagenesis. Of particular 
interest are transgenic mouse models followed by a chapter on the identification of 
radiation-induced ontogenic mutations in Drosophila. Altogether, these chapters pro-
vide novel insights into mitochondrial-associated diseases and experimental model 
organisms to study the repair and consequences of DNA damage.

Michael Fasullo
College of Nanoscale Science and Engineering,

SUNY Polytechnic Institute, 
Albany, New York, United States

Angel Catala
Facultad de Ciencias Exactas,
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La Plata, Argentina
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Chapter 1

Introductory Chapter: 
Mitochondrial Diseases - Advances 
and Perspectives - My Point of 
View
Angel Catala

1. Introduction

There is only one metabolic pathway that is under the dual control of the 
 mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Disorders in 
the mitochondrial respiratory chain are called by convention “mitochondrial dis-
eases.” Mitochondrial disorders symbolize a major challenge in medicine. Much of the 
mitochondrial proteins are encoded by nuclear DNA (nDNA), while only a few are 
encoded by mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondrial-
related nDNA genes can cause a mitochondrial disorder. The disorder can affect mul-
tiple organs in different locations and severity; but there are some ways that involve 
only one organ. Modifications of the mitochondrial oxidative phosphorylation system 
can generate mutations in both mitochondrial DNA and nuclear DNA that lead to 
mitochondrial diseases. Mitochondrial diseases comprise a diverse group of genetic 
disorders, which appear at any age and have a wide spectrum of clinical symptoms. 
This leads to highly changeable cases, making it difficult to diagnose mitochondrial 
diseases. The latest advances in genetic testing and original reproductive options hold 
great promise for improving the clinical recognition and treatment of mitochondrial 
diseases. In this chapter we discuss developments in the recognition and diagnosis of 
mitochondrial diseases. In the last five decades, the effect of mitochondrial diseases 
on biological systems began to be widely investigated. This chapter explains the most 
important aspects in our opinion of mitochondrial diseases.

2. Brief history of mitochondria

The generation of adenosine triphosphate by oxidative phosphorylation occurs in 
the mitochondria; about 90% of the cell’s energy need is satisfied during the hydroly-
sis of ATP produced in this way. In addition, mitochondria are also involved in other 
processes including, but not limited to, the formation of iron and sulfur groups, the 
citric acid cycle, the regulation of apoptosis1, and calcium homeostasis in conjunction 
with the endoplasmic reticulum.

Mitochondria do not have nearly the amount of DNA necessary to encode all 
the specific proteins of mitochondria; however, millions of years of evolution could 
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explain a progressive loss of autonomy. The endosymbiotic hypothesis could be called 
a theory, but no experimental reason can be offered to test it. Only indirect confirma-
tion can be accessed in support of the proposal, which is the most likely justification 
for the mitochondria starting point. The verification necessary to change the model 
from hypothesis to theory is probably forever lacking in ancient times.

3. Mitochondrial diseases

Studies of genetic pathologies that affect mitochondrial metabolism as a conse-
quence of modifications in genes encoded by mitochondrial DNA or genes encoded by 
nuclear DNA for dynamic proteins inside the mitochondria began in 1988. Since that 
year, a new notional “mitochondrial genetics” has become visible; based on three attri-
butes of mtDNA: (1) polyplasmy; (2) maternal inheritance; and (3) mitotic segrega-
tion. Diagnosis of mtDNA-connected diseases was completed through genetic analysis 
and experimental advances that incorporated histochemical staining of muscle or brain 
sections, single-fiber polymerase chain reaction (PCR) of mtDNA, and the design of a 
“hybrid” Immortal (cytoplasmic hybrid) derivative from patient fibroblast cell lines.

4. My participation in studies with mitochondria

In the last three decades, our laboratory has investigated the lipid peroxidation of 
biological membranes of various tissues and different species, as well as liposomes 
prepared with phospholipids with a high content of polyunsaturated fatty acids. 
We analyzed the effect of various antioxidants such as alpha tocopherol, vitamin A, 
melatonin and its structural analogues and conjugated linoleic acid, among others 
[1, 2]. The integrity of the mitochondrial membranes and the function of numerous 
protein complexes in the ETC [3] are determined by cardiolipin, which is a unique 
class of specific mitochondrial phospholipids that exist almost exclusively in the inner 
membrane of mitochondria (IMM). In most mammalian tissues, tetralinoleoylcardio-
lipin (L4CL) is the main form of cardiolipins, this molecule contains four chains of 
structural linoleic acid. The incorporation of four LA side chains into L4CL and their 
presence in mitochondria allow L4CL to be easily oxidized by reactive oxygen species 
and then to generate an electrophilic reaction Figure 1 [4].

5. Conclusions

Aging and age-related diseases have been connected with mitochondrial uncou-
pling and elevated ROS formation. Dysfunctional mitochondria incline to modified 
lipid metabolism and augmented lipid peroxidation products. Mitochondrial anti-
oxidants that can re-establish function and prevent pathological lipid peroxidation 
are showing guarantee in diminishing biological aging and therefore they may offer 
advantage for slowing the development to age-related diseases such as neurodegen-
eration. In parallel, novel drug groups are providing a unusual strategy to delay aging 
during elimination of senescent cells. By mean of these drugs as instruments offer a 
chance to amplify our understanding of whether the alterations in reactive oxygen 
species, lipid metabolism and mitochondrial lipids detected during aging and diseases 
are due to the increase of senescent cells.
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6. General remarks, and perspectives

It has been fascinating to follow the field of mitochondrial diseases research dur-
ing almost five decades. From my experience, it is impossible to predict which aspects 
in this area of research will dominate in the future.

Figure 1. 
Chemical mechanisms for 4-HNE formation from lipid peroxidation. (A) General scheme for the formation of 
4-HNE from decomposition of lipid hydroperoxides that can be generated from free radical oxidation of ω-6 
PUFA or enzymatic oxidation by lipoxygenases. (B) Lipid electrophiles generated from oxidation of mitochondrial 
cardiolipin: Oxidation of L4CL by the peroxidase activity of cyt c and CL complex in the presence of H2O2 results 
in the formation of hydroperoxyoctadecadienoic acid (HpODE), 9-HpODE-CL and 13-HpODE-CL. During this 
process, through intra-molecular peroxyl radical addition and decomposition of an unstable intermediate, several 
reactive aldehydes are produced including epoxyalcohol-aldehyde-CL (EAA-CL), 4-HNE, and 4-oxo-2-nonenal 
(4-ONE). Reproduced from Redox Biol. 2015 Apr; 4: 193–199. Rights Managed by Elsevier.
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Chapter 2

Mitochondria and Eye
Lata Singh and Mithalesh Kumar Singh

Abstract

Mitochondria are essential subcellular organelles and important key regulators of 
metabolism. Mammalian mitochondria contain their own DNA (mtDNA). Human 
mtDNA is remarkably small (16,569 bp) compared to nuclear DNA. Mitochondria pro-
mote aerobic respiration, an important part of energy metabolism in eukaryotes, as the 
site of oxidative phosphorylation (OXPHOS). OXPHOS occurs in the inner membrane of 
the mitochondrion and involves 5 protein complexes that sequentially undergo reduc-
tion-oxygen reactions ultimately producing adenosine triphosphate (ATP). Tissues with 
high metabolic demand such as lungs, central nervous system, peripheral nerves, heart, 
adrenal glands, renal tubules and the retina are affected preferentially by this critical role 
in energy production by mitochondrial disorders. Eye-affected mitochondrial disorders 
are always primary, but the role of mitochondrial dysfunction is now best understood in 
acquired chronic progressive ocular diseases. Recent advances in mitochondrial research 
have improved our understanding of ocular disorders. In this chapter, we will discuss 
the mitochondria in relation to eye diseases, ocular tumors, pathogenesis, and treatment 
modalities that will help to improve the outcomes of these conditions.

Keywords: mitochondria, LHON, biomarkers, mutations, tumors

1. Introduction

1.1 Mitochondria

Mitochondria are essential sub cellular mammalian organelles found in eukaryotes. 
It is surrounded by two lipid bilayers which is commonly associated with oxidative 
phosphorylation, a process that meets the majority of cellular energy demands. It is 
involved in many other cellular functions such as fatty acids oxidation, apoptosis, heme 
biosynthesis, metabolism of amino acids and lipids, and signal transduction [1]. They 
are central organelles controlling the life and death of the cell. Mitochondria contain 
their own DNA, which is maternally inherited. Mitochondrial density varies from one 
tissue to another [2]. Mitochondrial diseases are heterogeneous group of disorders, 
often characterized by morphological changes in the mitochondria, a defective respira-
tory chain and variable symptoms, ranging from severe metabolic disorders with onset 
in early infancy or childhood to late onset adult myopathies [3]. Mutations in mitochon-
drial DNA (mtDNA) are the most frequent cause of mitochondrial diseases in adults. 
However, the mtDNA encodes only a subset of proteins of the different complexes of 
the respiratory chain [4]. Nuclear genes encode all the other mitochondrial proteins and 
most of the mitochondrial disorders are caused by mutations in the nuclear genes [5].



Mutagenesis and Mitochondrial-Associated Pathologies

10

Mitochondria are ~0.5 to ~3 μm long tubular organelles that undergo continuous 
remodeling of their network by fusion and fission events [6]. Mitochondria forms an 
extensive network preserved in many cells by an intricate balance between fission and 
fusion, mitochondrial biogenesis and mitophagy [7, 8]. Mitochondria was identified 
as the main source of cell energy, and indeed mitochondria is a major site of ATP and 
macromolecule development. Equivalent-reducing electrons are fuelled by the ETC 
to produce an electrochemical gradient required for both the production of ATP and 
the active transport of selective metabolites, such as pyruvate and ATP, through the 
IMM [9]. Mitochondria, however, plays a variety of roles beyond energy production, 
including generation of reactive oxygen species (ROS), redox molecules and metabo-
lites, control of cell signaling and cell death, and biosynthetic metabolism.

While mitochondria is best known for harvesting and storage of energy released 
by oxidation of organic substrates under aerobic conditions by respiration, their many 
anabolic functions are often ignored [7]. Biosynthetic functions of mitochondria are 
essential for tumorigenesis and tumor progression [10]. Tumor cells easily survive 
under hypoxic conditions by recycling NADH to NAD+ through lactate dehydroge-
nase (LDH) and plasma membrane electron transport (PMET) to enable continued 
production of glycolytic ATP [11].

2. Mitochondrial genetics

The human mitochondrial genome consists of 16,569 pairs of nucleotides of dou-
ble-stranded, closed-circular molecules. It was first sequenced in 1981 and updated 
in 1999 [12, 13]. mtDNA contains no introns and only encodes 13 polypeptides, 22 
transfer RNAs (tRNAs), and the mitochondrial protein synthesis genes 12S and 16S 
rRNA [14]. The 13 polypeptides of the respiratory complexes (RC) encode subunits  
(7 of 45 for RC-I, 1 of 11 for RC-III, 3 of 13 for RC-IV, and 2 of 16 for RC-V). Along 
with the remaining 85% of the other RC subunits, the four subunits that make up 
RC-II are nuclear-encoded [14]. About 22,000 proteins are encoded by nuclear 
DNA, about 1,500 of which contribute to the mitochondrial proteome. These nuclear 
encoded proteins include TCA cycle enzymes, amino acids, nucleic acid and lipid 
biosynthesis, mtDNA and RNA polymerases, transcription factors, and ribosomal 
proteins, in addition to all DNA pathway repair components. In the cytoplasm, these 
proteins are expressed and folded through the TOM/TIM complex upon entry through 
the mitochondrial outer membrane. From there, they find the outer mitochondrial 
membrane (OMM), the IMM, the intermembrane space (IMS) or the mitochondrial 
matrix at their specific positions [15]. There is no structural association of mtDNA 
with histones, as is nuclear DNA. Rather, it is closely associated with a variety of 
proteins, about 100 nm in diameter, in discrete nucleoids.

Germline mutations resulting in reduced or lost expression of succinate dehy-
drogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase have 
been identified in inherited paragangliomas, gastrointestinal stromal tumors, 
pheochromocytomas, myomas, SDH, papillary renal cell cancer (FH) and gliomas 
[16]. mtDNA mutations have been involved in neuromuscular and neurodegenerative 
mitochondrial disease [17–19] and complex diseases such as diabetes [20], cardio-
vascular disease [21, 22], gastrointestinal disorders [23], skin disorders [24], aging 
[25, 26] and cancer. Different human populations have different human mtDNA 
haplotypes, each with a specific mtDNA polymorphism fingerprint, transmitted 
through the maternal germline. These haplotypes are associated with the geographic 
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origin of the population. Some human haplotypes are at greater risk of developing a 
certain form of cancer or neurodegenerative disorder during their lifetime than others 
[27–29]. The 22 mitochondrial tRNA genes have more than 50 percent of the mtDNA 
mutations involved in carcinogenesis [29].

The single nucleotide polymorphism, 3243A > G, which alters leucine mt-tRNA 
and thus affects the translation of 13 respiratory subunits, leading to fewer mito-
chondrial subunits and impaired OXPHOS, is the most common mtDNA mutation 
[30, 31]. Individuals can develop maternally inherited diabetes and deafness with 
10–30 percent defective copies of tRNALeu. Mitochondrial encephalomyopathy, 
lactic acidosis, and stroke-like episodes (MELAS) are likely to occur in people with 
50–90% defective copies [20, 30–35]. The mutation of tRNALeu results in variable 
types of mitochondrial RC deficiency in various patients. By far, complex I (RC-I) 
deficiency is the most common finding in MELAS, although some patients have com-
bined RC-I, RC-III and RC-IV deficiencies [30, 36]. Other mutations in mt-tRNA that 
play a role in human disease include: tRNAlys, which is associated with myoclonal 
epilepsy, tRNASer with deafness, and tRNAIle with cardiomyopathy [21].

3. Drivers of mtDNA mutations

mtDNA mutations are caused by ROS-mediated oxidative damage [28, 37]. ROS 
generation in the respiratory chain is an inherent part of OXPHOS. ROS plays an 
important role in many signaling processes and their levels are regulated by the 
antioxidant enzyme systems in the mitochondrial matrix and the IMS. However, in 
situations where OXPHOS is compromised due to misshapen respiratory complexes 
resulting in increased leakage of electrons to oxygen, ROS levels can overwhelm the 
antioxidant protection system and damage to nearby mtDNA [38, 39]. DeBalsi and 
colleagues suggest that errors produced by mtDNA replication and repair machines 
may also cause mtDNA mutations [40].

Human cells contain 17 different human DNA polymerases, but in mtDNA 
replication and repair, only polymerase gamma (Pol-γ) functions. A catalytic subunit 
and an accessory subunit consist of a nuclear-encoded Pol-γ holo-enzyme [40]. 
Pol-γ replicates high fidelity mtDNA with one misinsertion in every 500,000 new 
base pairs due to nucleotide selectivity and proofreading capacity [41]. More than 
300 Pol-γ mutations have been associated with human illness, some of which occur 
in adulthood and are associated with aging, including different types of progressive 
external ophthalmoplegia (PEO) and Parkinson’s disease (PD) [40]. The role of Pol-γ 
in restricting mtDNA mutations has been demonstrated by homozygous, but not 
heterozygous, mutator mice with re-reading-deficient Pol-g developing multiple age-
related disorders and shortening their lifespan. As their antioxidant capacities were 
the same and the degree of oxidative damage was comparable to wild-type mice, they 
acquired mtDNA mutations that were not caused by oxidative damage.

Somatic point mutations, great deletions and several linear deleted mtDNA 
fragments were acquired by the mutator mice. The mtDNA-specific Twinkle helicase, 
which unwinds mtDNA for Pol-γ synthesis, is another n-mitoprotein involved in 
mtDNA replication [42]. Overexpression of Twinkle in transgenic mice resulted 
in increased copy number of mtDNA and OXPHOS and some twinkle mutations 
are associated with mitochondrial myopathy [40]. Oxidative damage and defective 
replication are both likely to add to the overall mutational load of the mtDNA cell, 
and the contribution of each mutational driver is likely to change over time. Inevitable 
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respiratory electron leakage from complexes I and III results in the formation of 
superoxide, O2

− that can react with lipids, proteins and DNA [43–46]. Superoxide 
can be quickly converted to H2O2 either naturally or through a manganese superoxide 
dismutase (MnSOD) dysmutation reaction, a resident of the mitochondrial matrix. In 
the presence of redox active metal ions, H2O2 can generate a highly reactive hydroxyl 
radical through the Fenton reaction (OH-) [47]. Multiple mtDNA damage sites, 
including single and double-strand breaks, abasic sites and base changes, are respon-
sible for the OH-radical. Another oxidative burden is caused by damage to mitochon-
drial protein centers caused by O2

− to Fe-S and involves subunits of complexes I, II 
and III as well as aconitase [48–50]. A significant target for ROS is provided by Labile 
Fe-S enzymes such as mitochondrial aconitase.

Mitochondria located in cells exposed to visible light generate ROS through 
interactions with mitochondrial photosensitizers, such as cytochrome c oxidase, 
of particular relevance to the eye, to produce ROS and mtDNA damage [50, 51]. 
Transferring energy from photoactivated chromophores to oxygen contributes to the 
formation of singlet oxygen, 1O2, which occurs in an excited state. 1O2 can produce 
ROS, such as O2

− by interacting with diatomic oxygen and directly reacting with 
dual-bond electrons without the formation of free radical intermediates [52]. It is 
also important to remember that, from non-mitochondrial sources, various tissues 
within the eye may also produce substantial amounts of ROS. For instance, lipofuscin 
(an age-related pigment that accumulates with age in RPE cells) is a potent photo-
inducible ROS generator, and NADPH oxidase is considered to be a major source of 
superoxide in microvascular endothelial cells. Studies indicate that ROS may also 
contribute to exogenous mitochondrial oxidative damage, exacerbating mitochon-
drial dysfunction [51, 53, 54].

4. Ophthalmologic mitochondrial dysfunction

Mitochondrial disease can manifest in any organ at any age. In general terms, 
tissues and organs (retina, optic nerve, brain, heart, testis, muscle, etc.) that are 
heavily dependent upon oxidative phosphorylation bear the brunt of the pathology. 
It is also puzzling that many mitochondrial disorders affect multiple organ systems, 
whereas others have a highly stereotyped and organ specific phenotype. These 
subtle interactions between nuclear and mitochondrial genes in health and disease 
will have broader relevance for our understanding of many inherited and sporadic 
disorders.

Mitochondrial disorder can be categorized according to several different criteria 
in the manifestations of ophthalmology diseases. They may be defined as isolated or 
nonisolated, occurring in combination with other manifestations of the organ. The 
dominant trait of the phenotype or a nondominant attribute can be ophthalmologic 
manifestations. Mitochondrial disorders with ophthalmic manifestations may be 
caused either by mutations in mtDNA or nuclear DNA. Ophthalmologic symptoms 
may be unique to syndromic mitochondrial disorder (e.g. Leber hereditary optic 
neuropathy) or nonspecific to syndromic mitochondrial disorder (eg, cataract). 
The cornea, iris, lens, ciliary body, retina, choroid, uvea, or optic nerve may be the 
primary manifestations of ophthalmologic mitochondrial disorder. There is grow-
ing evidence supporting an association between mitochondrial dysfunction and a 
number of ophthalmic diseases causing defects in OXPHOS and increased production 
of ROS triggering the activation of cell death pathway.
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5. Corneal dystrophy

Some evidence has been given in recent years that the cornea may be involved in 
mitochondrial disorders. However, systematic studies have not been performed on 
this matter. Astigmatism, corneal dystrophy, corneal clouding, or corneal endothelial 
dysfunction are corneal disorders associated with mitochondrial dysfunction [55, 56]. 
Loss of SLC4A11 gene activity which is localized to the inner mitochondrial mem-
brane of corneal endothelium, induces oxidative stress and cell death, resulting in 
Congenital Hereditary Endothelial Dystrophy (CHED) with corneal edema and vision 
loss [57]. Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive 
and non-regenerative corneal endothelial loss. Variations in mtDNA affect the suscep-
tibility of FECD. Mitochondrial variant A10398G and Haplogroup I were significantly 
associated with FECD [58]. There are few studies showing the role of mtDNA in the 
pathogenesis of FECD. Mitophagy activation leads to decrease in Mfn2 gene level and 
loss of mitochondrial mass in FECD [59]. In a study of 20 patients, keratoconus was 
related to increased oxidative stress due to mitochondrial respiratory chain complex-I 
sequence variation [60]. Progressive external ophthalmoplegia secondarily led to 
persistent conjunctivitis and keratitis in a patient with Kearns-Sayre Syndrome [61]. 
Corneal clouding has been documented occasionally in Kearns-Sayre syndrome due 
to structural changes in the endothelium or Descemet membrane [62]. Numerous 
distended mitochondria were present in the corneal epithelium in a child with Leigh 
syndrome due to the m.8993 T > G mutation [63]. There are also non-specific corneal 
alterations in a patient with Neurogastrointestinal mitochondrial encephalomyopathy 
[64]. Pathogenesis of type 2 granular corneal dystrophy (GCD2) is associated with 
alteration of mitochondrial features and functions that causes mutated GCD2 kerato-
cytes, particularly in older cells [65].

6.  Mitochondrial encephalomyopathy, lactic acidosis, and episodic  
stroke-like syndrome (MELAS)

Early onset of the disease and higher level of mtDNA heteroplasmy are associated 
with a worse prognosis in mitochondrial encephalomyopathy, lactic acidosis, and 
episodic stroke-like syndrome (MELAS). Iris involvement in mitochondrial disorders 
has been rarely mentioned in MELAS [66]. The m.3243A > G variant is the most com-
mon heteroplasmic mtDNA mutation in MELAS and underlies a spectrum of diseases. 
Patchy iris stroma atrophy has been identified in a patient carrying the m.3243A > G 
mutation in the tRNA (Lys) gene [66]. MNRR1 (CHCHD2) is a bi-organellar regulator 
of mitochondrial function, found to be depleted in MELAS and significantly associated 
with m.3243A > G mutation (heteroplasmic) in the mtDNA at a level of ∼50 to 90% 
[67]. Ability of the peroxisome proliferator-activated receptor γ (PPARγ) activator pio-
glitazone (PioG), in combination with deoxyribonucleosides (dNs), improves the mito-
chondrial biogenesis/respiratory functions in MELAS cybrid cells containing >90% of 
the m.3243A > G mutation that found to be novel therapies to treat this disease [68]. 
Induced pluripotent stem cells (iPSCs) are appropriate for studying mitochondrial dis-
eases caused by mtDNA mutations in MELAS. Increase of autophagy inpatient-specific 
iPSCs generated from fibroblasts are associated with mtDNA mutations and OXPHOS 
defects in patients with MELAS [69]. Studies demonstrated that defective MRM2 gene 
causes a MELAS-like phenotype which suggests the genetic screening of the MRM2 
gene in patients with a m.3243 A > G negative MELAS-like presentation [70]. Mutations 
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caused by mitochondrial complex I deficiencies by alleviating ketone bodies are also 
associated with MELAS that leads to recurrent cerebral insults resembling strokes [71].

7. Cataract

Cataracts are the most common lenticular defects of mitochondrial disorders. In 
mitochondrial disorders, cataract is typically of the posterior subcapsular type [66]. 
Autophagic dysfunction and abnormal oxidative stress are associated with cataract. 
Cataract may be a phenotypic characteristic of MELAS syndrome, but a patient 
with nonsyndromic mitochondrial disorder due to mtDNA deletion has also been 
documented as an initial manifestation [66, 72, 73]. Oxidative stress plays an impor-
tant role in cataractogenesis [74, 75]. Mitochondria are found in the epithelium and 
superficial fiber cells of the lens and it is extremely sensitive to ROS. Interestingly, 
mitochondria have been confirmed as the main source of ROS generation in these 
cell types [76]. A number of in vitro studies have shown that human lens cells are 
particularly sensitive to oxidative insults, where antioxidant activity was inversely 
proportional to the severity of cataracts [77]. Proteins, lipids and DNA oxidation have 
been found in cataract lenses [78–80]. Under high glucose conditions, fluctuations 
in autophagy and oxidative stress are found in mouse lens epithelial cells (LECs) 
that might attenuate high glucose-induced oxidative injury to LECs [81]. Cataract 
proteins lose sulfhydryl groups, contain oxidized residues, produce aggregates of high 
molecular weight and become insoluble [75]. In addition, cataract has been shown to 
be a symptom of a newly identified mitochondrial disorder called autosomal recessive 
myopathy, caused by growth factor mutations, increased liver regeneration gene, 
which affects protein levels of mitochondrial intermembrane space region [82].

8. Leigh syndrome

In mitochondrial disorders, involvement of ciliary body has rarely been reported. 
Leigh’s syndrome is the most common pediatric syndrome, characterized by symmet-
rical brain lesions, hypotonia, motor and respiratory deficits, and premature death 
are associated with pathways involved in mitochondrial diseases [83]. A case report 
showed ocular histopathological finding such as thinning of nerve fibers and ganglion 
cell layers in the nasal aspect of the macula, mild atrophy of the temporal aspect of 
the optic nerve head, and numerous distended mitochondria, non-pigmented cilla 
are associated with the m.8993 T > G mutation in the ATPase6 gene of mtDNA in 
patient with Leigh’s syndrome [63]. In addition, ciliary epithelium was also found 
to be impaired by a long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency [84]. 
Dysfunction of mitochondrial complex I are also associated with many brain patholo-
gies including Leigh’s syndrome. Mitochondrial complex I activity facilitates organis-
mal survival by its regeneration potential of NAD+, while optimal motor regulation 
involves mitochondrial complex I bioenergetic function in Leigh’s syndrome [85].

9. Retinitis pigmentosa

Retinitis pigmentosa is a central characteristic of Kearns-Sayre syndrome and 
neuropathic ataxia retinitis pigmentosa syndrome [72]. Typical for Kearns-Sayre 
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syndrome is ‘salt and pepper’ retinitis, with areas of increased and decreased pig-
mentation, especially in the equatorial fundus [62]. Pigment retinopathy is only an 
uncommon characteristic of progressive external ophtalmoplegia and can be milder 
than in Kearns-Sayre syndrome [72, 86]. Only certain patients with MELAS or 
MERRF syndrome have mild posterior pole pigment retinopathy [72]. Mild pigmen-
tary defects were also observed in 2 of 20 patients with Leber hereditary optic neu-
ropathy due to mutation m.11778G > A [72]. Small pigment retinal defects have been 
identified in a 4-year-old female with a COX deficiency [87]. In addition, because of 
the mutation m.8993 T > GG retinitis pigmentosa has been identified in patients with 
Leigh syndrome [88].

In a sample of 44 Korean Leigh syndrome patients, pigmentary retinopathy was 
also observed in 22% of Korean patients [89]. In a study of 14 patients with pontocer-
ebellar hypoplasia, 4 patients presented with retinopathy without disclosing informa-
tion [90]. Occasionally, retinal dystrophy can manifest with photophobia. In a report 
of 46 mitochondrial disease patients, 4 had photophobia. Two patients had Leigh 
syndrome, 1 of which had rod-cone dystrophy on electroretinography, 1 had Kearns-
Sayre syndrome with regular electroretinography, and 1 had MERRF syndrome with 
isoelectric electroretinography [91].

10. Diabetic retinopathy

It has been shown that mitochondrial dysfunction plays a significant role in 
diabetic retinopathy [92, 93]. Hyperglycemia causes retinal mitochondrial damages 
that plays a central role in the development of diabetic retinopathy. Retinal mito-
chondria undergo elevated oxidative stress in diabetes, and complex III is one of the 
key causes of increased O2

− [94]. Superoxide levels are elevated in in the retina of 
diabetic rats and in retinal vascular endothelial cells incubated in high-glucose media 
[95] and the content of hydrogen peroxide is also increased in the retina of diabetic 
rats [96]. In diabetes, membrane lipid peroxidation and oxidative DNA damage, the 
effects of ROS-induced injury, are elevated in the retina [97]. Chronic overproduc-
tion of ROS in the retina results in aberrant mitochondrial functions in diabetes [92]. 
Overproduction of superoxide by the mitochondrial electron transport chain caused 
by hyperglycemia is considered to cause major hyperglycemic damage pathways by 
inhibiting the action of GAPDH. However, it is not yet fully understood the mecha-
nism by which hyperglycemia induces an increase in mitochondrial ROS, with some 
suggesting a direct effect and others an indirect function via high-glucose-induced 
cytokines [98–101].

Elevated levels of O2
− activate caspase 3 in retinal capillaries contributes to cell 

death [92]. Upregulation of superoxide dismutase (SOD2) inhibited increased 
mitochondrial O2-induced diabetes, restored mitochondrial function, and prevented 
both in vitro and in vivo vascular pathology [94, 102–104]. However, the timing of 
such therapies is important because animal studies have shown that oxidative stress 
not only leads to the development of diabetic retinopathy, but also to the resistance of 
retinopathy to reversal [105]. The resistance to reversal of diabetic retinopathy may 
be due to the accumulation of weakened mitochondrial molecules and ROS-induced 
damage that is not readily removed even after the restoration of high glycemic con-
trol. However, the accumulation of advanced glycation end products is also involved 
in metabolic memory [106]. The mtDNA variation has also been associated with 
resistance to type 1 diabetes. A single nucleotide modification (C5173A) is associated 
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with resistance to type 1 diabetes in the Japanese population, resulting in a leucine-
to-methionine amino acid substitution in the mitochondrially encoded NADH 
dehydrogenase subunit 2 gene [107]. Similarly, in comparison with the diabetes-prone 
nonobese diabetic mouse strain, orthologous polymorphism (C4738A), resulting 
in L-to-M substitution, offers resistance against the development of spontaneous 
diabetes [108]. Gusdon et al., have shown that the replacement of methionine results 
in a lower level of development of ROS from complex III [109].

The product of mtDNA mutations is also known to result in many syndromic 
central nervous system diseases. The most common retinal pathology is pigmentary 
retinopathy, while optic neuropathy is an uncommon finding in these disorders. 
Neurogenic atrophy and retinitis pigmentosa syndrome results from point mutations 
in the mtDNA ATPase-6 gene, usually T8993G variation. Patients usually present 
with retinitis pigmentosa with or without optic neuropathy and may develop dystonia 
[110]. Several mtDNA point mutations may result from MELAS, although the A3243G 
mutation in the tRNALeu gene is the most common. Patients with MELAS undergo 
stroke-like episodes leading to recurrent retrochiasmal vision loss, but sometimes 
even to pigmentary retinopathy without optic atrophy [111]. Its contribution to the 
pathogenesis of maternally inherited diabetes and deafness is also evidenced by the 
spectrum of disease resulting from the A3243G point mutation [112–114]. This is a 
multisystemic disease characterized by sensorineural deafness, retinal defects and 
diabetes, generally occurring in the third to fourth decades of life [115]. The second 
phenotype is a pattern dystrophy, with diffuse granularity and pigment clumping, 
marked by relative sparing of the fovea, and retinal pigment epithelium within the 
vascular retinal arcades. However, with a strong prognosis, visual acuity is retained, 
despite the degree of atrophy [116, 117].

11. Macular degeneration

Age-related macular degeneration is a neurodegenerative late-onset disorder that 
shares certain characteristics of Alzheimer’s disease. In most cases, the build-up of 
protein plaques, known as drusen, in the central macular area of the retina involves 
age-related macular degeneration. Both age-related macular degeneration and 
Alzheimer’s disease pathogenesis can be driven by stress stimuli, including oxidative 
stress, aging, genetic factors and inflammation, including the deposition of protein 
plaques in the retina or brain [98]. Similarities in these two disorders are also found 
in the risk factor gene polymorphisms, APOE, associated with age-related macular 
degeneration [99, 100] and Alzheimer’s disease [101, 102]. The APOE gene controls 
the homeostasis of triglycerides and cholesterol [103], and the loss of function of 
APOE has been correlated with the deposit of senile plaques, consisting mainly of 
amyloid beta peptide [104], which is produced in drusen [105, 106] and is also associ-
ated with an additional risk factor for age-related macular degeneration, i.e. comple-
ment protein [107, 108]. Evidence shows that the APOE genotype can dictate the risk 
of stress stimuli, including oxidative stress, aging, genetic factors and inflammation, 
including the deposition of protein plaques in the retina or brain, can drive both 
age-related macular degeneration and Alzheimer’s disease pathogenesis. Alzheimer’s 
disease and other chronic disorders, primarily because of its effect on regulation of 
oxidative stress [109]. Age-related macular degeneration is split into two main forms, 
i.e. the “wet” form induced by leakage into the subretinal space from choroidal neo-
vascularization and the more common “dry” form associated with the accumulation 
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of drusen in the macula [75]. In patients with age-related macular degeneration, 
there is an increased incidence of large-scale mtDNA rearrangements and deletions 
in blood [76] and retinas [77, 78]. In the non-coding mtDNA control area (d-loop) in 
retinas with age-related macular degeneration, which has been found in Alzheimer’s 
disease and other conditions of oxidative stress, there are also increased rates of 
single nucleotide polymorphisms [79]. An increased rate of mtDNA deletions and 
single nucleotide polymorphisms are likely to decrease the amount and density of 
 mitochondria [80].

Other than pigmentary retinopathy or macular degeneration, retinal anoma-
lies include retinal dystrophy, retinal hypertrophy, and pigmentary maculopathy. 
Patients with Kearns-Sayre syndrome, Leigh syndrome, MELAS syndrome, MERRF 
syndrome, and Leber hereditary optic neuropathy will find retinal dystrophies that 
are most easily measured by electroretinography [91]. Retinal hypertrophy has been 
identified in patients with autosomal recessive spastic ataxia with leukoencepha-
lopathy and autosomal recessive spastic ataxia with Charlevoix-Saguenay (ARSAL/
ARSACS) [118]. Six affected males in a family with Mohr-Tranebjaerg syndrome had 
blindness resulting from unexplained retinal degeneration [119]. Treatment options 
for retinopathy are usually limited.

12. Choroidal dystrophy

Choroid and uvea are occasionally affected by mitochondrial disorders. Choroid 
atrophy is the most common manifestation of mitochondrial disorders [66]. 
Choroidal atrophy was especially identified in the sense of MELAS syndrome [66]. 
Choroid pigment epithelium atrophy also occurs in maternally inherited deafness 
and diabetes [120]. Central choroidal dystrophy was identified in 1 patient with 
Mohr-Tranebjaerg syndrome as confirmed by electroretinography [119]. In addition, 
chorioretinal dystrophy was reported in a single patient with a significant deletion of 
mtDNA [121].

13. Uveitis

A significant causative factor causing blindness from retinal photoreceptor 
degeneration is intraocular inflammation, also referred to as uveitis. Activated 
macrophages, which generate various cytotoxic agents, including inducible 
nitric oxide generated by inducible nitric oxide synthase, O2

− and other ROS, are 
responsible for oxidative retinal damage in uveitis [122]. Oxidative stress plays an 
important role in the early stages of experimental autoimmune uveitis (EAU) in 
the photoreceptor mitochondria. mtDNA damage has been shown to occur early in 
the EAU; interestingly, nDNA damage occurred later in the EAU [123]. In addition, 
peroxynitrite-mediated nitration modifies mitochondrial proteins in the inner seg-
ments of the photoreceptor, which, in turn, contributes to increased mitochondrial 
ROS generation [124]. MnSOD has been shown to be upregulated during EAU to 
promote an increased state of mitochondrial oxidative stress, possibly to combat 
ROS [125]. In the early phase of the EAU, before leukocyte infiltration, recent data 
seem to indicate a causative function of oxidative mtDNA harm. Such mitochondrial 
oxidative damage can be the initial event that contributes to retinal degeneration in 
uveitis [123].
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14. Optic atrophy

Optic atrophy is the principal mitochondrial dysfunction manifestation of the optic 
nerve. Optic atrophy is a prevalent manifestation of mitochondrial disorder but is often 
overlooked or misinterpreted. This is due to the difficulties of optic atrophy diagnosis. 
Funduscopy can more reliably determine optic atrophy if the distal portion of the optic 
nerve is impaired, or if the more proximal portions of the nerve are affected by orbital 
magnetic resonance imaging (MRI). A decreased amplitude of visually evoked poten-
tial is a sign of optic nerve atrophy [126]. Optic atrophy has been specifically identified 
in Leber hereditary optic neuropathy and autosomal dominant optic atrophy among 
syndromic mitochondrial disorders, conditions in which optic atrophy is the dominant 
phenotypic function [127]. MELAS syndrome, Kearns-Sayre syndrome, Pearson syn-
drome, pontocerebellar hypoplasia, Mohr-Tranebjaerg syndrome, Alpers-Huttenlocher 
disease or Wolfram syndrome have been documented more rarely, with optic atrophy 
[62, 90, 91, 127]. In patients with MERRF syndrome, partial or complete optic atrophy 
has also been identified [72, 91, 128]. Optical atrophy is a common phenotypic charac-
teristic of inherited motor and sensory neuropathy type VI (HMSN-IV) due to MFN1 
mutations [127]. In addition, C12orf65 (COXPD7) mutations manifest phenotypicly 
with optical atrophy and Leigh-like phenotype [129]. Optical atrophy associated with 
neuropathy ataxia retinitis pigmentosa syndrome due to m.8993 T > G mutation in the 
ATPase6 gene was only seen in a single family [110]. In a study of 44 Korean patients 
with Leigh Syndrome, 22.5 per cent of optical atrophy was identified [89]. Optical disk 
alterations have been observed only in a single patient with mitochondrial neurogas-
trointestinal encephalomyopathy [64]. Optical atrophy can also be a characteristic of 
childhood-onset spinocerebellar ataxia [130] or mitochondrial depletion syndrome. 
39 Non-syndromic mitochondrial optic atrophy disorders is attributed to ACI1 
 mutation [131], due to ND5 mutation with cataract and retinopathy [132].

15. Glaucoma

Increased intraocular pressure (Glaucoma) is an unusual phenotypic characteristic 
of mitochondrial disorders. There are two primary types of glaucoma that can be 
distinguished, open-angle glaucoma and closed-angle glaucoma. In addition, normo-
tensive and hypertensive glaucoma are distinguished. Open-angle glaucoma is seldom 
observed in patients with Leber inherited optic neuropathy or autosomal dominant 
optic atrophy. Funduscopic findings can indicate a mixture of abnormalities common 
for glaucoma retinopathy and an inherited Leber optic neuropathy fundus [133]. In a 
single patient with mitochondrial neurogastrointestinal encephalomyopathy, glauco-
matous changes in the optic disc were observed by visual field assessment and optical 
coherence tomography [64]. In a study of 14 patients with pontocerebellar hypopla-
sia, one presented with glaucoma [90]. Normal pressure glaucoma is associated with 
polymorphism in the OPA1 gene [134].

Glaucoma has also been identified in a family with Wolfram Syndrome. There are 
signs that ND5 mutations are associated with the development of open-angle glau-
coma. Glaucoma in mitochondrial disorders may be eligible for treatment with drugs 
or surgery [135, 136]. There is evidence in glaucoma that mitochondrial dysfunction 
can reduce the bioenergetic status of retinal ganglion cells, leading to increased sus-
ceptibility to oxidative stress and apoptotic cell death [93, 137]. Light exposure may 
also be an oxidative risk factor, reducing mitochondrial function and increasing the 
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development of ROS in ganglion cells [138]. A defective mitochondria has been highly 
implicated in neuronal apoptosis in the experimental models of glaucoma [139, 140]. 
The mtDNA abnormalities further support the importance of mitochondrial dysfunc-
tion-associated stress as a risk factor for glaucoma patients [141].

16. Nystagmus

The central nervous system or vestibular involvement in mitochondrial disorders 
may cause nystagmus or roving eye movements and are the most common ophthalmo-
logical manifestations as a symptom in patients with pediatric mitochondrial disorder 
[142]. A Gaze-evoked nystagmus identified in a single patient with “Leber hereditary 
optic neuropathy plus” who not only possessed the “m.11778G > A” mutation in the 
hereditary Leber hereditary optic neuropathy gene but also the “m.3394 T > C” muta-
tion [143]. Since patients with MELAS may display irregular eye movements on an eye 
movement cueing task, ultrasound records of eye movement may show abnormally slow 
saccadic reactions, prolonged saccades, impaired suppression of reflex eye movements, 
prolonged reaction during antisaccades, square-wave jerks, or impaired chase [144]. 
Patients have epilepsy due to MELAS may have epileptic nystagmus, disrupted smooth 
pursuit, or transient eye divergence, none of which are outward signs [145]. In addition, 
nystagmus was documented in a patient carrying a point mutation in the DGUOK gene 
who also had retinal blindness. Nystagmus, which is a common symptom of the disease 
along with retinitis pigmentosa, was also reported in a patient with nonsyndromic 
mitochondrial disorder due to the m.15995G > A mutation in the tRNA (Pro) gene 
manifesting as ataxia, deafness, and leukoencephalopathy [146]. Nystagmus was part 
of the phenotype in a study of 7 Czech patients with autosomal dominant optic atrophy 
[147]. Nystagmus is also a common characteristic of ARSAL/ARSACS [148]. Nystagmus 
was observed in 14 percent in a study of 44 Korean patients with Leigh syndrome [88].

17. Strabismus

Strabismus was the most common ophthalmologic abnormality in a study of 44 
Korean patients with Leigh syndrome and was present in 41% of patients [89]. Of the 
strabismus patients, 13 had exotropia and 5 had esotropia [89]. In some patients with 
X-linked sideroblast anemia with ataxia, strabismus has also been identified [149]. In 
25 percent of juvenile mitochondrial disorders, divergent strabismus has been identi-
fied as the presenting manifestation [150]. In a study of 14 patients with pontocer-
ebellar hypoplasia, of whom 13 had a CASK mutation, 2 had strabismus. 9 Strabismus 
was also identified without knowing the underlying mutation in other patients with 
pontocerebellar hypoplasia [151, 152]. The initial presentation at birth was cataract 
and strabismus in a child with a significant mtDNA deletion. Later on, he experienced 
Leigh-like pathologies and episodes of stroke [153]. In certain instances, surgery can 
have a beneficial effect on strabism.

18. Progressive external ophthalmoplegia

In mitochondrial disorders, affectation of the extraocular muscles results in 
progressive external ophthalmoplegia. The recurrent ophthalmologic manifesta-
tion of mitochondrial disorders is progressive external ophthalmoplegia. It may be 
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complete, resulting in, or partial, walled-in bulbs. Both directions of bulb movements 
or only some of them can be affected. One eye or both eyes can be affected by it. Single 
or multiple mtDNA deletions are most often associated with progressive external 
ophthalmoplegia. Progressive external ophthalmoplegia, Kearns-Sayre syndrome 
or Pearson syndrome can cause single mtDNA deletions [154]. Multiple deletions of 
mtDNA may be due to mutations in nuclear genes such as PEO1, POLG1, SLC25A4, 
RRM2B, POLG2, or OPA1, along with progressive external ophthalmoplegia [154]. 
In addition, progressive external ophthalmoplegia, especially in the transfer of RNA 
(eg, tRNA(Lys)) genes, may be due to mtDNA point mutations [154]. Transfer RNA 
mutations with progressive external ophthalmoplegia are mostly sporadically similar 
to mtDNA deletions and can only be observed in muscle deletions [155]. The sole man-
ifestation of the m.3243A > G mutation, which often manifests as MELAS syndrome, 
may be progressive external ophthalmoplegia [156]. In a patient with mitochondrial 
neurogastrointestinal encephalomyopathy, progressive external ophthalmoplegia 
was a phenotypic feature [64], Wolfram syndrome [157], Leigh syndrome, autosomal 
dominant optic atrophy, and mitochondrial recessive ataxia syndrome. In MERRF 
syndrome, progressive external ophthalmoplegia has also been described [158].

Infantile-onset spinocerebellar ataxia is a Finnish disorder, with some of the 
24 cases identified to date developing ophthalmoplegia [130]. Ophthalmoparesis 
is a hallmark of sensory ataxic neuropathy with ophthalmoparesis syndrome and 
dysarthria [159]. Sensory ataxic neuropathy with dysarthria and ophthalmoparesis 
is due to mutations in either the POLG1 or PEO1 gene resulting in multiple mtDNA 
deletions [159]. Furthermore, ophthalmoparesis can be observed in patients with 
mitochondrial depletion syndrome [160] or nonsyndromal mitochondrial disorders 
[161]. In patients with Leber inherited optic neuropathy and progressive external 
ophthalmoplegia, ultrastructural variations in muscle biopsy from the extraocular 
muscles clearly differ [162].

19. Eyelid

Ptosis is one of the most common forms of mitochondrial dysfunction. It can 
occur unilaterally at onset, but during the course of the disease, it usually becomes 
bilateral. Ptosis can be the sole manifestation, particularly at the onset of the disease, 
of a mitochondrial disorder or associated with other manifestations. Particularly at 
the onset of the disease, ptosis can show dynamic alterations, leading to misinter-
pretation as myasthenia gravis [163]. Ptosis may be discrete, especially at initiation, 
so that it is missed on clinical review. Progressive external ophthalmoplegia or other 
ocular symptoms of mitochondrial disease can be associated with ptosis. Ptosis of 
syndromic as well as nonsyndromic mitochondrial disorders may be a phenotypic 
manifestation. In particular, ptosis was identified in progressive external ophthal-
moplegia, MELAS, MERRF, Kearns-Sayre syndrome, sensory ataxic neuropathy with 
dysarthria and ophthalmoparesis [164], Pearson syndrome, mitochondrial neurogas-
trointestinal encephalomyopathy, and autosomal dominant optic atrophy, among the 
syndromic mitochondrial disorders [91]. Ptosis was present in 16 percent in a group of 
44 Korean patients with Leigh syndrome [89]. Ptosis was also present in isolated cases 
of maternally inherited deafness and diabetes [156], mitochondrial neurogastrointes-
tinal encephalomyopathy [64], or mitochondrial depletion syndrome [160]. Poor lid 
closure was found in a Persian Jew with mitochondrial myopathy, lactic acidosis, and 
sideroblastic anemia due to a PUS1 mutation [165].
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20. Leber hereditary optic neuropathy

Leber hereditary optic neuropathy is a maternally inherited blindness condition 
caused by gene mutations encoding the respiratory-chain complex I subunits. Nearly 
90 percent of all cases of Leber inherited optic neuropathy contain mutations in 3 genes 
[128]. The m.3460A > G mutation in the ND1 gene, the m.11778G > A mutation in the 
ND4 gene and the m.14484 T > C mutation in the ND6 gene are the 3 most common 
Leber hereditary optic neuropathy mutations (primary Leber hereditary optic neuropa-
thy mutations) [128]. Leber inherited optic neuropathy is clinically characterized as 
bilateral, painless, subacute vision impairment that occurs during young adult life [134].

Compared with women, Leber hereditary optic neuropathy is 4 to 5 times more 
common in males. Individuals affected are usually completely asymptomatic until they 
experience visual blurring in 1 eye affecting the central visual field [134]. On average, 
2 to 3 months later, similar signs develop in the other eye. In most cases, visual acuity is 
greatly diminished or even worse when counting fingers, and visual field examination 
reveals an expanded central or ceco-central thick scotoma [134]. After the acute process, 
the optical disks become atrophic. Funduscopic findings characteristic of Leber inher-
ited optic neuropathy include microangiopathy, hyperemic disks, retinal telangiectasis 
(ectatic capillaries), peripapillary microangiopathy, and tortuosity of vessels (twisted 
vessels). (twisted vessels). The orbital MRI can display atrophy of the nerve with a com-
pensated widening of the space below the optic sheath. Mutations in mitochondrial ND3, 
ND4, or ND6 genes can cause hereditary Leber optic neuropathy with dystonia [166].

21. Autosomal dominant optic atrophy

Autosomal dominant optic atrophy is a blindness condition which does not display 
a gender disparity, unlike Leber inherited optic neuropathy [127]. It is caused by 
mutations in the nuclearly encoded OPA1 gene [127]. Autosomal dominant optic 
atrophy can also be due to OPA3 mutations that are associated with cataract [167]. 
Progressive, painless, bilateral symmetrical vision loss clinically characterizes 
autosomal dominant optic atrophy [154]. Central, ceco-central, or para-central 
scotomas, consistent with early involvement of the papillo-macular bundle, are the 
most common visual field anomalies in autosomal dominant optic atrophy [154]. 
OPA1 mutations can manifest not only with optic atrophy in some families, but also 
with progressive external ophthalmoplegia, ptosis, and hypoacusis [168]. Since 
glaucoma neuropathy, autosomal dominant optic atrophy, and Leber hereditary optic 
neuropathy often have similar changes in the topographic optic disc, they cannot be 
discriminated against alone by disc evaluation [169]. There is currently no appropri-
ate treatment available.

22. Retinoblastoma

Retinoblastoma (Rb) is the most common intraocular cancer in children that arise 
from retinal precursor cells. Electron microscopy revealed numerous morphological 
and pathological changes in mitochondria of retinoblastoma patients. Cristolysis and 
degenerated mitochondria were the most frequently observed features in Rb [170]. 
A study suggested that T16519C, C16223T, A263G and A73G mtDNA D-Loop muta-
tions plays a significant role in the etiology of retinoblastoma. This was the first study 
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to examine the mtDNA D-loop mutation in retinoblastoma and its correlation with 
various parameters and patient outcome [171]. Their findings imply a strong inhibi-
tion of mitochondrial oxidative phosphorylation complexes in these patients. Loss 
of mitochondrial complex I was found in majority of the cases whereas expression 
of mitochondrial complex III, IV and V were found in more than 50% of the cases. 
Expression of mitochondrial complex I was associated with good prognosis and better 
overall survival [172]. Another consequence of alteration in OXPHOS complexes is an 
increased production of reactive oxygen species (ROS). NADPH oxidases (NOX4) are 
a major intracellular source of ROS and it was found to be overexpressed in retino-
blastoma [173]. Increased expression of ROS and decreased expression of OXPHOS 
complexes modulates the apoptotic pathway involved in mitochondria by altering 
BCl-2 family proteins. Singh et al. showed a differential expression of apoptotic 
regulatory proteins (Bax, BCl-2, PUMA and p53) where they found increased expres-
sion of BCl-2 and PUMA along with loss of Bax and p53, which might contribute to 
carcinogenesis in Rb [174].

23. Conclusion

Researchers found that these findings are important because they indicate that 
mtDNA damage can be caused by both spontaneous ROS and by inherited mtDNA 
mutations. Continued study in this clinically important area would certainly provide 
a better understanding of how deficiencies/mutations of the mitochondrial genome 
contribute to the pathogenesis of ocular diseases. The biggest problems with the 
future of mitochondria are the advancement of therapeutic strategies to target mito-
chondria and modify its DNA using nucleotide precursors to retain mitochondrial 
integrity. These therapeutic strategies can potentially be used to block or slow down 
the effects of mitochondrial disease in future.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Mitochondria are major intracellular organelles with a variety of critical roles like 
adenosine triphosphate production, metabolic modulation, generation of reactive 
oxygen species, maintenance of intracellular calcium homeostasis, and the regulation 
of apoptosis. Mitochondria often undergo transformation in both physiological and 
pathological conditions. New concepts point that mitochondrial shape and structure 
are intimately linked with their function in the kidneys and diseases related to mito-
chondrial dysfunction have been identified. Diseases associated with mitochondrial 
dysfunction are termed as “mitochondrial cytopathies”. Evidence support that there 
is a role of mitochondrial dysfunction in the pathogenesis of two common pathways 
of end-stage kidney disease, namely, chronic kidney disease (CKD) and acute kid-
ney injury (AKI). Mitochondrial cytopathies in kidneys mainly manifest as focal 
segmental glomerular sclerosis, tubular defects, and as cystic kidney diseases. The 
defects implicated are mutations in mtDNA and nDNA. The proximal tubular cells are 
relatively vulnerable to oxidative stress and are therefore apt to suffer from respira-
tory chain defects and manifest as either loss of electrolyte or low-molecular-weight 
proteins. Patients with mitochondrial tubulopathy are usually accompanied by myo-
clonic epilepsy and ragged red muscle fibers (MERRF), and Pearson’s, Kearns-Sayre, 
and Leigh syndromes. The majority of genetic mutations detected in these diseases 
are fragment deletions of mtDNA. Studies have shown significantly increased ROS 
production, upregulation of COX I and IV expressions, and inactivation of complex 
IV in peripheral blood mononuclear cells of patients with stage IV–V CKD, thereby 
demonstrating the close association between mitochondrial dysfunction and progres-
sion to CKD. Furthermore, the mechanisms that translate cellular cues and demands 
into mitochondrial remodeling and cellular damage, including the role of microRNAs 
and lncRNAs, are examined with the final goal of identifying mitochondrial targets to 
improve treatment of patients with chronic kidney diseases.

Keywords: mitochondrial cytopathies, renal, glomerular, mitophagy, fission, fusion
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1. Introduction

Mitochondria, also called as the “power house” of the cell, are double membraned 
cell organelles involved with converting the energy derived from oxidative phosphory-
lation into a “fuel” in the form of adenosine triphosphate (ATP) [1, 2]. These also are 
involved in calcium storage, regulation of metabolism and apoptosis, and cell signaling. 
The energy demand of an organ is directly proportional to the number of mitochondria 
present in the organ, so heart is the organ with maximum number of mitochondria 
followed by kidneys [3, 4]. In the kidneys, renal tubular cells are richest in mitochon-
dria, so as to facilitate the energy-consuming task of reabsorption of the majority of 
the glomerular filtrate. The renal function depends on interplay between multiple cell 
types, including endothelial cells, podocytes, mesangial cells, and tubulointerstitial 
cells, and is energetically demanding and relying on mitochondrial function [5].

Renal dysfunction is a multifactorial entity and manifests as a sequel to an acute 
or chronic insult to the organ. Recently it has been proposed that renal inflammation 
and tissue damage during acute kidney injury (AKI) and chronic kidney disease 
(CKD) have been linked to mitochondrial structural and functional alterations [4, 6].

2. Definition

Diseases related to mitochondrial alterations are known as ‘mitochondrial 
cytopathies’ (MC) and encompass a group of disorders characterized by mutations 
either in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) genes that encode 
for mitochondrial proteins [6]. Mitochondrial cytopathies affecting the kidneys are 
broadly classified as [6, 7]:

1. Inherited mitochondrial cytopathies

2. Acquired mitochondrial cytopathies

Mitochondrial cytopathies can also present as:

1. Tubular defects affecting the:

a. Proximal tubules

b. Distal tubules.

2. Non-tubular include:

a. Glomerular diseases

b. Tubulointerstitial nephritis

c. Renal cystic diseases

d. Neoplasia
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3. Mechanism of mitochondrial cytopathies

Various studies indicate that mitochondrial dysfunction can arises due to dis-
turbances in the regulation of the mitochondrial electron transport chain, proton 
gradient, and membrane potential [4, 7]. These disturbances lead to reduction in 
concentration of adenosine triphosphate (ATP) and increase in production of mito-
chondrial-derived reactive oxygen species (mROS). These reactive oxygen species 
promote kidney injury and inflammation [4, 7, 8].

Structural changes of mitochondrial swelling and fragmentation occur earlier than 
rise in serum creatinine which is largely used as a marker for kidney injury. These 
changes also indicate that impaired mitochondrial metabolism is directly linked to the 
deterioration of kidney function [4–9].

Inherited forms of mitochondrial cytopathies are associated with fair number of 
mutations with mitochondrial DNA (mtDNA) as many nuclear genes are responsible 
for proper maintenance of mtDNA. Mutations in these genes cause quantitative 
(mtDNA depletion) and qualitative defects (mtDNA deletions) in mtDNA leading to 
renal impairment [10].

The equilibrium between mitochondrial fusion and fission maintains the healthy 
mitochondrial structure and functions [4, 11]. Disruption of this balance leads to 
mitochondrial fragmentation, loss of mitochondrial DNA (mtDNA) integrity, and 
cell death [12, 13].

Mitochondrial cytopathies encompasses a group of disorders characterized by 
mitochondrial or nuclear DNA mutations in genes encoding for mitochondrial 
proteins [7]. Mitochondrial dysfunction, characterized by a loss of efficiency in 
the electron transport chain and reductions in the synthesis of high-energy mol-
ecules, such as adenosine-5′-triphosphate (ATP), is characteristic of aging, and 
essentially, of all chronic diseases [1–4]. Mitochondrial dysfunction arises from an 
inadequate number of mitochondria, an inability to provide necessary substrates 
to mitochondria, or a dysfunction in their electron transport and ATP-synthesis 
machinery [10, 11].

The number and functional status of mitochondria in a cell can be changed by 
[10, 12, 14].

1. Fusion of partially dysfunctional mitochondria and mixing of their undamaged 
components to improve overall function,

2. The generation of entirely new mitochondria (fission), and.

3. The removal and complete degradation of dysfunctional mitochondria 
(mitophagy).

3.1 Fission and fusion

The mitochondrial homeostasis is maintained because of the balance between 
fission and fusion. Fission leads to production of short rods or spheres whereas fusion 
leads to production of long and filamentous mitochondria. The balance between the 
two processes is disrupted under stress that leads to mitochondrial fragmentation. 
The both two processes are mediated by following factors: [15–19]
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1. Fission: Fis1(Fission protein 1), Drp1 (Drosophilia 1), Bif-1.

2. Fusion: Mfn 1 and Mfn 2 (Mitochondrial fusion protein 1 & 2), Optic atrophy 
factor 1 (OPA1).

3.2 The process of fission

Fission is regulated by two main mediators: Drp1 and Fis1. The Drp1 is a GTPase of 
dynamin superfamily and is mainly present in the cytoplasm and later localizes to the 
outer membrane of the mitochondria. It has been seen that this shuffling of Drp1 is 
regulated by phosphorylation, ubiquilation and sumoylation.

Fis1 is a small membrane protein anchored at the outer mitochondrial membrane 
and overexpression of Fis1 promoted mitochondrial fission causes fragmentation of 
the mitochondria.

3.3 The process of fusion

Mitochondrial fusion is mediated by mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and 
optic atrophy factor 1 (OPA1). All three proteins are GTPases belonging to dynamin 
superfamily like Drp1. Mfn1 and Mfn2 are also localized to outer mitochondrial 
membrane whereas OPA1 is present on the inner mitochondrial membrane.

3.4 Mitophagy

Mitophagy, an autophagy process by which dysfunctional or superfluous mito-
chondria are selectively eliminated. Defective mitophagy has been implicated in 
various human diseases, such as aging, neurodegenerative disease, cardiovascular 
disease, cancers and many other renal diseases. Altered mitophagy related mecha-
nisms are implicated in the pathogenesis of acute kidney injury, diabetic kidney 
disease, and lupus nephritis. The process includes initiation, priming of mitochondria 
for recognition by autophagy machinery, formation of the autophagosome, followed 
by lysosomal sequestration and hydrolytic degradation [17–19].

Mitophagy as described by Palikaras, can be described as three types: basal, 
programmed and stress-induced. Basal mitophagy is a steady-state, continuous, 
process responsible for elimination and recycling of aged and damaged mitochondria. 
This type of mitophagy exhibits tissue-specific distribution, with low levels in the 
thymus and high levels in the heart and kidneys [20, 21]. Stress induced mitophagy 
facilitates mitochondrial quality control to mediate metabolic adjustments to external 
challenges [20, 21].

Mitophagy is largely explained by molecular pathways and is mediated by either 
PINK1/Parkin-pathway or via the receptors. Mitophagy receptors are localized in 
the outer and inner mitochondrial membranes, and can directly induce mitophagy. 
Proteins that promote mitophagy are FUN14 domain-containing protein 1, BNIP3 and 
BCL2 interacting protein 3 like, and FKBP prolyl isomerase 8 [22–24].

Recently it was described that BNIP3/NIX, atypical members of the pro-apoptotic 
BCL2 family, contain an atypical BH3 domain which under hypoxic stress, get upreg-
ulated by hypoxia-inducible factor 1 (HIF-1). This in turn causes initiation of LC3-
dependent mitophagy and overproduction of mtROS overproduction [4, 6, 9, 20, 23].

Overall, it is believed that impairment of mitophagy is responsible for mitochon-
drial dysfunction and progressive accumulation of defective organelles, leading to cell 
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death and tissue damage. Blockade of mitophagy leads to the accumulation of dam-
aged, ROS-generating mitochondria which activate the NLRP3 inflammasome [25].

Thus, mitochondrial cytopathies result due to disturbances in the process related 
to mitophagy or due to imbalance between the processes of fusion and fission.

4. Mitochondrial dysfunction and kidney injury

In this section we will discuss about the diseases that affect the kidney due to 
mitochondrial dysfunction. As described before renal mitochondrial cytopathies can 
manifests either as glomerular or tubular diseases, or as renal cysts or neoplasia.

4.1 Glomerular involvement in renal mitochondrial cytopathies

4.1.1 Diabetic nephropathy

Diabetic nephropathy results from microvascular complications, leading to 
chronic kidney disease that develops in approximately 30% of patients with type 1 
diabetes mellitus (DM1) and approximately 40% of patients with type 2 diabetes mel-
litus (DM2) [26–28]. Various mitochondrial defects seen include impaired respiratory 
chain functions, structural and networking abnormalities, disrupted cellular signal-
ing and increased reactive oxygen species generation [4, 29].

Coughlan et al. demonstrated that a deficiency in apoptosis inducing factor 
(AIF) results in changes in mitochondrial function, networking, and production 
of reactive oxygen species that precipitate renal disease. Along with the diabetic 
milieu, switch from mitochondrial fusion to fission, impaired OXPHOS, and a 
depleted mitochondrial ATP pool, all accelerate towards a more advanced renal 
injury [30].

Studies have implicated impaired mitophagy as the cause of mitochondrial 
dysfunction in diabetic kidneys and also showed that with progression of disease, 
concomitant accumulation of fragmented and swollen mitochondria occurs 
[22, 30, 31].

Experimental studies have shown that there is decrease in PINK1 and Parkin in the 
tubules of diabetic mice [32]. In study on streptozotocin-induced diabetic rat models, 
the authors demonstrated that in early stages of diabetes there is increase in expres-
sion of PINK1 in the renal cortex. This provided an evidence that mitophagy could be 
activated to clear dysfunctional mitochondria from the kidney during early diabetes 
and as the disease progresses there is accumulation of fragmented mitochondria and 
induction of cell death [4]. Thioredoxin-interacting protein (TXNIP) - dependent 
activation of the mammalian target of rapamycin (mTOR) signaling pathway con-
tributes to dysfunctional mitophagy in the diabetic kidney [4, 30, 33, 34].

Studies have evaluated presence of cell-free mtDNA in urine in patients of diabetic 
nephropathy and reported an inverse relationship in levels of urinary mtDNA and 
intra-renal mtDNA leading to increase in interstitial fibrosis and reduction in esti-
mated glomerular filtration rate (eGFR) [35].

It has also been demonstrated that damaged mitochondria generate excess 
mitochondrial superoxide, and glycation of mitochondrial proteins also contributes 
to mROS generation. Advanced glycation end products as well as the receptors for 
these, play a vital role in generation of ROS that contribute in progression of diabetic 
nephropathy [33, 36].
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4.1.2 IgA nephropathy (IgAN)

IgAN is one of the most common glomerulonephritis and a leading cause of CKD 
that can progress to ESRD. Kidney biopsy from a patient with IgAN may show varied 
morphological affection ranging from mesangial proliferation to focal segmental 
mesangial sclerosis, crescents with dominant mesangial IgA deposition [4, 37]. The 
disease is characterized by presence of circulating and glomerular immune com-
plexes comprised of galactose-deficient IgA1, an IgG autoantibody directed against 
the hinge region O-glycans, and C3 [38]. Nishida et al. demonstrated an increased 
number of abnormal mitochondria in the proximal tubular epithelial cells and an 
elevated urinary mtDNA levels in patients with IgAN. An association between five 
common single-nucleotide polymorphisms and ESRD, suggests that mitochondrial 
defects have an essential role in the progression to CKD in patients with IgAN [4, 39]. 
Interestingly, higher expression and interaction between the mitochondrial protein 
induced in high glucose-1 (IHG-1) and cold shock protein Y-box binding protein-1 are 
associated with renal inflammation, tubulointerstitial inflammation, and glomerulo-
sclerosis in IgAN. Defects in the mitochondrial genome and functions play a critical 
role in worsening glomerular inflammation and disease progression [40].

4.1.3 Polycystic kidney disease

Autosomal dominant PKD (ADPKD), is characterized by presence of multiple 
cysts in the renal parenchyma and is associated with mutations in the genes PKD1 
and PKD2, which encode polycystin 1 (PC1) and PC2, respectively [41]. The PC1-PC2 
complex modulates mitochondrial Ca2+ uptake and directly regulate oxidative phos-
phorylation and indirectly affect mitochondrial function by maintaining the mtDNA 
copy number and mitochondrial morphology [42]. Mutations in PKD1 and PKD2 lead 
to mitochondrial dysfunction and metabolic imbalance. Proinflammatory cytokine 
TNFα promote cyst formation, increased MCP-1 in cyst-lining cells and excretion of 
urinary MCP-1, and renal profibrotic macrophages in experimental ARPKD which 
might be associated with defects in mitophagy are also reported in patients with 
ADPKD. Loss of PC2 enhanced mitochondrial Ca2+ uptake, mitochondrial bioener-
getics, and mitochondrial-ER tethering associated with increased Mfn2, and knock-
down of Mfn2 rescued ER-dependent mitochondrial Ca2+ signaling are associated 
with reduced cyst proliferation [4]. Mitochondria of cyst-lining cells in the kidney 
of a mouse model of ADPKD display morphological abnormalities and decreased 
mtDNA. There is reduced peroxisome proliferator-activated receptor γ coactivator 
1α (PGC-1α), which regulates mitochondrial biogenesis. Functional mitochondrial 
abnormalities and increased mROS production indicate that mitochondrial dysfunc-
tion plays a functional role in cystogenesis [4, 43].

4.1.4 Lupus nephritis

Renal involvement in systemic lupus erythematosus (SLE) occurs in 40–50% of 
adult patients, and results in end stage renal disease (ESRD) about 10% of patients 
despite modifications in therapeutic strategies [44]. LN is the most common severe 
manifestation of systemic lupus erythematosus. The pathogenesis of LN is multifac-
torial, and includes aberrant T-cell and B-cell signaling, autoantibody production, 
and deregulated cytokine secretion. Various genetic as well as environmental fac-
tors also contribute [45, 46]. The T-cells of SLE show increased mitochondrial mass 
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(megamitochondria), mitochondrial hyper-polarization, and ATP depletion which 
lead to aberrant activation and enhanced necrosis of T-cells. This leads to release of 
extracellular mitochondria and their components and are recognized as damage-
associated molecular patterns (DAMPs) that initiate innate and adaptive immune 
responses to elicit an inflammatory response that triggers organ damage [47]. Nitric 
oxide (NO)-dependent mitochondrial biogenesis could account for megamitochon-
dria leading to sustained T-cell activation. On the other hand, increased T-cell mito-
chondria in SLE have also been attributed to insufficient mitophagy. Sequestration 
and successful clearance of damaged mitochondria by mitophagy suppresses mtROS 
accumulation, prevents inflammation and generation of autoantigens by intracellular 
oxidation suggesting that mitophagy is a potential therapeutic target for SLE and 
LN [46–48].

Gkirtzimanaki et al. observed that IFNα damages mitochondrial metabolism and 
mediates lysosomal dysfunction, impeding mitochondrial clearance and leading to 
cytosolic accumulation of mtDNA in monocytes [49]. Caspase-1 gets activated in the 
podocytes of both lupus nephritis patients and lupus-prone mice and inhibit mitoph-
agy and amplify mitochondrial damage, mediated by cleavage of the key mitophagy 
regulator Parkin in lipopolysaccharide (LPS)-primed bone-marrow-derived macro-
phages [50].

Drp1, fusion mediator of mitochondria, is reduced in T cells from SLE patients and 
lupus-prone mice, concomitant with the accumulation of mitochondria.

Mitochondrial hyperpolarization and reactive oxygen intermediates production 
have been detected in peripheral blood T-lymphocytes from SLE patients, together 
with diminished levels of intracellular ATP, indicating dysfunction in mitochondria 
of T-cells in patients with lupus nephritis. CD4þT cells from SLE exhibit an increased 
mitochondrial mass and size due to increased mitochondrial biogenesis and defective 
mitophagy [51].

4.1.5 Membranous nephropathy & focal and segmental glomerulosclerosis

Membranous nephropathy (MN) is a most common cause of adult nephrotic 
syndrome. Various podocytic autoantigens have been implicated in the pathogenesis 
of the disease. Phospholipase A2 receptor (PLA2R) is the major autoantigen on 
podocytes in primary MN, whereas thrombospondin type-I domain-containing 7A 
(THSD7A) is the minor antigen, the antibodies to which are predominantly of the 
IgG4 subclass [52].

Cultured podocytes when exposed to sera from patients with MN revealed mito-
chondrial fragmentation, loss of membrane potential, and mROS production [53]. 
Patients with MN also show increased glomerular mitochondrial fission proteins, 
DRP1, phosphorylated-DRP1 (Ser-616), and FIS1. The observation of these studies 
show that podocytic injury in MN is secondary to mitochondrial dysfunction [53].

Focal segmental glomerular sclerosis (FSGS), also a common cause of nephrotic 
syndrome in pediatric as well as adults, is one of the major renal complication of 
mitochondrial cytopathies.

The mitochondrial DNA (mtDNA) encodes for 13 structural genes of OXPHOS 
enzymes, two ribosomal RNAs, and 22 transfer RNAs. Glomerular involvement of an 
A-to-G transition at mtDNA position 3243 in the gene for tRNALeu(UUR) has been 
implicated in FSGS. Recent studied with a mouse model carrying mutant mtDNA 
with a 4696-bp deletion, developed focal and segmental glomerulosclerosis and died 
within 6 months due to renal failure [54, 55].



Mutagenesis and Mitochondrial-Associated Pathologies

40

Puromycin aminonucleoside nephrosis (PAN) model to study FSGS reveals reduc-
tion of respiratory chain enzymatic activities, oxygen consumption, and the swelling 
of renal tubular mitochondria [56]. Reduction of the intraglomerular mtDNA-
encoded protein, COX I, suggests that there is either an induction of mtDNA damage 
or a reduction in mtDNA copy number during the progression of PAN. Several studies 
have described mitochondrial dysfunction and/or mtDNA changes in glomerular 
diseases like accumulation of oxidative damage of mtDNA in the kidney of strepto-
zotocin-induced diabetes rats, and downregulation of respiratory chain complex in 
patients with the congenital nephrotic syndrome of the Finnish type [57].

MCs comprise one of the causes of primary FSGS, among which mitochondrial 
myopathy, encephalopathy, lactic acidosis, and stroke like episodes (MELAS) syn-
drome account for a large proportion. MELAS syndrome is mainly caused by point 
mutations in the MTTL1 gene, encoding mitochondrial tRNALEU. Renal biopsies 
from patients with coexistence of MELAS and FSGS often manifest with numerous 
dysmorphic mitochondria in podocytes and effacement of foot processes [58].

4.1.6 Tubular defects and role of mitochondria

Renal tubules comprise one of the major victims of MCs, of which the most 
frequently reported is proximal tubular defects. Proximal tubular cells are relatively 
vulnerable to oxidative stress and are therefore apt to suffer from respiratory chain 
defects. Renal tubule defects mainly manifest as loss of electrolytes and low-molec-
ular-weight proteins, which are frequently characterized as Fanconi syndrome and 
Bartter-like syndrome. Patients with mitochondrial tubulopathy are usually accom-
panied by myoclonic epilepsy and ragged red muscle fibers (MERRF), and Pearson’s, 
Kearns-Sayre, and Leigh syndromes. The majority of genetic mutations detected in 
these diseases are fragment deletions of mtDNA [6, 7, 59–61].

4.1.7 Acute kidney injury (AKI)

AKI is defined as an abrupt (within hours) decrease in kidney function, which 
encompasses both injury (structural damage) and impairment (loss of function). AKI 
is common (8–16% of hospital admissions) and many aspects of its natural history 
remain uncertain [62]. Classification of AKI includes pre-renal AKI, acute post-renal 
obstructive nephropathy and intrinsic acute kidney diseases. Of these, only ‘intrinsic’ 
AKI represents true kidney disease, and the most common etiologies are toxins, 
ischemia, sepsis and obstructive injury [63]. Disruption of mitochondrial integrity 
in renal tubular cells is considered as the common findings in all forms of AKI [64]. 
In AKI, mitochondrial damage contributes critically to sublethal and lethal injury of 
kidney tubules, and the consequent loss of renal function. In various models of AKI, 
mitochondrial dynamics are disrupted, resulting in mitochondrial fragmentation, 
membrane permeabilization, mitochondrial dysfunction, energetic failure, and ROS 
production [9]. There is decreased antioxidant defenses, injured mitochondrial respi-
ration, intrarenal inflammatory response and oxidative stress along with downregula-
tion of protein expression during mitochondrial metabolism and decreased oxygen 
are seen [65]. Elevated mitochondrial DNA levels in the urine has been considered 
as a novel non-invasive biomarker for detecting mitochondrial dysfunction. Eirin 
et al. revealed that increased urinary mtDNA (UmtDNA) in hypertensive patients 
correlated with other biomarkers of renal dysfunction and glomerular hyperfiltra-
tion [66, 67]. Derangements of mitochondrial integrity may be associated with the 
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detectable release of UmtDNA in sepsis-induced AKI has never been determined. 
Sepsis activates several pathological mechanisms linked to mitochondria, including 
hypoperfusion, oxidative stress, and the inflammatory response. Ultrastructural 
changes observed in the kidney tubular cells include mitochondrial impairment, 
swelling and cellular death. Disruption of mitochondrial integrity in the renal tubular 
epithelial cells leads to release of mitochondrial DAMPs into the urine which can be 
used as a surrogate biomarker of renal mitochondrial damage [68].

Expression of genes involved in oxidative phosphorylation are reduced as demon-
strated by Parikh et al [69]. There is proportional decrease in expression of PGC-1a 
expression with reduction of renal function. Activation of PGC-1a promotes recovery 
from AKI caused by sepsis. cGAS–STING pathway activation is involved in autoim-
mune and inflammatory reactions, that activate by self-genomic DNA damage. Cyclic 
GMP–AMP synthase (cGAS) is a pattern recognition receptor that recognizes double-
stranded DNA in the cytoplasm and then binds to the trans-membrane protein, a 
stimulator of interferon genes (STING) localized on the endoplasmic reticulum 
(ER). A relationship between mitochondrial damage and induction of cGAS–STING 
pathway in inflamed proximal tubular cells has been postulated in Cisplatin induced 
AKI. In ischemic and cisplatin nephrotoxic AKI, the fusion-fission mitochondrial 
dynamics in proximal tubules reveal that mitochondrial fission initiated by Drp1 
occurs immediately after the injury [69–72].

4.1.7.1 Mitophagy and acute kidney injury

Recent literature suggests that mitophagy is involved in the pathophysiologi-
cal processes of AKI. PINK1/Parkin-mediated mitophagy has a protective role for 
mitochondrial quality control in the context of tubular cell survival and function. 
Tang et al. demonstrated both PINK1 and Parkin are upregulated in renal tubular 
epithelial cells during ischemic AKI in vitro and in vivo, PINK1 and/or Parkin defi-
ciency results in increased mitochondrial damage, ROS production, and inflamma-
tion causing increased tubular damage and aggravated AKI [73]. Boston University 
mouse proximal tubular cell line (BUPMT cells) show upregulation of BNIP3 follow-
ing oxygen–glucose deprivation-reperfusion, and in kidney tissues of mouse models. 
BNIP3-deficient mice renal tubular epithelial cells show accumulation of damaged 
mitochondria, increased ROS production, enhanced cell apoptosis, and inflamma-
tion. These findings strongly support the involvement of multiple mitophagy regula-
tory pathways in the pathogenesis of AKI [74].

Wang et al. stated that Bax inhibitor-1 (BI1) promotes mitochondrial retention of 
PHB2 and improves mitophagy, preserving mitochondrial homeostasis in a murine 
AKI model. He also demonstrated that renal functional loss, tissue damage, and 
apoptosis are aggravated in cisplatin-treated Pink1−/− and Parkin−/− mice relative 
to cisplatin-treated wild-type mice, suggesting that activation of PINK1/Parkin-
mediated mitophagy plays a protective role against cisplatin nephrotoxicity [3]. A 
recent study by Zhu et al. demonstrated that trehalose administration attenuates 
mitochondrial dysfunction through activating transcriptional factor EB (TFEB)-
mediated autophagy and mitophagy in cisplatin-induced AKI in vitro and in vivo. The 
study sheds lights on the roles of TFEB on mitophagy and provides a novel promising 
therapeutic target for AKI [75].

Notably, preservation of mitochondrial dynamics, prevention of mitochondrial 
membrane permeabilization, and/or promotion of mitochondrial biogenesis can 
protect kidney tubular cells and tissues in AKI.
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4.1.8 Tubulointerstitial fibrosis

Tubulointerstitial fibrosis follows following aberrant kidney repair following 
AKI, eventually progressing to CKD. Suppression of the proinflammatory cytokines 
interleukin (IL)-18 and IL-1β and nod-like receptor family pyrin domain containing 3 
(NLRP3) inflammasome activation, inhibits progression to CKD following prolonged 
ischemia. Studies indicate that mitochondrial dysfunction plays a role in inflamma-
tion leading to tubulointerstitial fibrosis and development of end-stage renal disease. 
Analysis of genome-wide transcriptome-based analyses revealed that human fibrotic 
kidneys have lower expression of various mitochondrial enzymes and regulators of 
fatty acid oxidation along with higher intracellular lipid deposition. Fibrosis is medi-
ated by monocyte chemoattractant protein 1 (MCP-1), a chemokine that promotes 
the infiltration of monocytes, inflammation, and fibrosis, the levels of which are 
increased with decreased renal expression of mitophagy regulators (PINK1, MFN2, 
and Parkin) in experimental and human kidney fibrosis. Mitophagy impairment 
led to an accumulation of abnormal mitochondria, augmented macrophage induced 
fibrotic response, superoxide production, and reduced ATP synthesis. Deficiency of 
mitophagy by Pink1 or Park2 gene deletion markedly increased mROS production 
and mitochondrial damage, which worsened renal fibrosis. These effects were rescued 
by a mitochondria-targeted antioxidant. Defective mitochondrial metabolism and 
reduced expression of mitophagy regulators have been shown to enhance the renal 
inflammatory and fibrotic responses and mediate the progression of CKD [4, 76–78].

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 4

Maneuvering Mitochondria 
for Better Understanding of 
Therapeutic Potential of mtDNA 
Mutation
Sanket Tembe

Abstract

Heterogeneity of mitochondrial diseases in terms of genetic etiology and clinical 
management makes their diagnosis challenging. Mitochondrial genome, basic mito-
chondrial genetics, common mutations, and their correlation with human diseases 
is well-established now and advances in sequencing is accelerating the molecular 
diagnostics of mitochondrial diseases. Major research focus now is on development 
of mtDNA intervention techniques like mtDNA gene editing, transfer of exogenous 
genes (sometimes even entire mtDNA) that would compensate for mtDNA mutations 
responsible for mitochondrial dysfunction. Although these genetic manipulation 
techniques have good potential for treatment of mtDNA diseases, research on such 
mitochondrial manipulation fosters ethical issues. The present chapter starts with 
an introduction to the factors that influence the clinical features of mitochondrial 
diseases. Advancement in treatments for mitochondrial diseases are then discussed 
followed by a note on methods for preventing transmission of these diseases.

Keywords: mitochondrial diseases, mtDNA intervention techniques, mitochondrial 
donation, genomics advancements, reproductive techniques

1. Introduction

Mitochondria are synonymized with energy thanks to their ability to produce 
most of the Adenosine Triphosphate (ATP) through the process of Oxidative 
Phosphorylation. In addition to ATP production, several metabolic processes like 
tricarboxylic acid cycle (TCA), fatty acid oxidation, ketogenesis, urea cycle (partly), 
heme and phospholipid synthesis take place in mitochondria [1, 2]. Role of mitochon-
dria in cell death (apoptosis) is also well-established [3]. Recent research suggests 
new role of mitochondria in calcium homeostasis, iron and copper metabolism and 
inflammation and immunity [4]. Though oxidative phosphorylation puts aerobes at 
higher level in terms of efficiency of energy production, one unpleasant consequence 
of this important process is production of reactive oxygen species (ROS) also known 
as mitochondrial ROS (mtROS). The culprit for formation of these reactive species 
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is proton leak at the inner mitochondrial membrane. Formation of such species pose 
great threat to mitochondrial DNA (mtDNA) and may lead to mitochondrial dysfunc-
tion [5]. Once thought to be uncommon, mtDNA diseases are now known to be quite 
prevalent and their definition is no more restricted to defects in oxidative phosphory-
lation alone but also include defects in molecular processes like mitochondrial fission, 
fusion and translation [6–8].

The list of common mitochondrial diseases and syndromes is quite lengthy that 
include mitochondrial encephalopathy, lactic acidosis and stroke-like episodes 
(MELAS syndrome), Leber’s hereditary optic neuropathy (LHON), myoclinic epilepsy 
with ragged-red fibers (MERRF), Leigh syndrome and Pearson syndrome, Kearne-
Sayre syndrome (KSS), chronic progressive external ophthalmoloplegia (CPEO) 
and neuropathy, ataxia and retinitis pigmentosa (NARP) [9–17]. Mutations in the 
mitochondrially-encoded genes are the most common cause of these diseases. Several 
mutations have been reported such as m.3243A > G, m.3271 T > C, m.1642G > A, 
m.9957 T > C, m.3272 T > C, m.1642G > A, m.1277A > G, m.13045A > C, m.13513G > A 
and m.13514A > G (all reported in MELAS [18–26]), m.8344A > G, m.8356G > A, 
m.3291 T > C, m.4279A > G (reported in MERRF [27–29]), G3460A, T14484C in 
LHON [30]. Recent review describes a comprehensive approach to study mitochon-
drial disorders caused by mutations through an example of m.3243 A > G [31].

Reviews on basic mitochondrial genetics, mutations and their correlation with 
human diseases are available [32–34]. Starting with unique features of mitochondria 
that decide the clinical presentation of mitochondrial diseases, this review focusses on 
advancement in mitochondrial DNA manipulation. Methods for preventing transmis-
sion of these diseases are discussed at the end.

2. Factors that govern clinical features of mitochondrial diseases

2.1 Heteroplasmy

Presence of several thousand copies of mitochondrial genome (mtGenome) 
per cell creates two conditions; homoplasmy and heteroplasmy. When all copies of 
mtGenome are identical, the scenario is described as homoplasmy. Heteroplasmy 
is a situation in which more than one mtDNA variants exist between the cells of an 
individual or within a same cell. Often this is due to de novo mutations either in germ 
line or in somatic cells. As a result, mitochondrial dysfunction can be seen only in spe-
cific cells, tissues, or organs. The rate at which the regions in the mtGenome evolves 
is much higher than that of nuclear genes. This reduces the possibility of all mtDNA 
molecules to be identical in an individual’s cells. Considering the large copy number 
of mtGenome present, detection of mtDNA mutation is difficult until it is spread 
among enough mtDNA molecules in a given cell. Only when mutated mtDNA exceeds 
threshold levels, clinical consequences of such mutations are seen [35]. Absence of 
fixed functional threshold level makes the analysis of mtDNA results even more com-
plicated. Variations in threshold frequencies have been reported for different types of 
tissues and mtDNA mutations.

2.2 Mitochondrial DNA bottleneck

Mitochondrial genome, unlike its nuclear counterpart, shows uniparental trans-
mission. Considering a single-parent origin, theoretically, mitochondrial DNA of a 
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mother and her progeny should not show any variations. But, in reality, extensive 
variations have been reported in humans [36, 37]. Accumulation and enrichment of 
mutant mitochondria thus suggests presence of mitochondrial bottleneck; a concept 
that describes why mtDNA of an embryo may differ significantly from that of its 
mother [38].

3. Manipulation of mitochondrial DNA

Diagnosis and monitoring clinical progression of mtDNA diseases is difficult 
due to multi-copy nature of mtGenome. Fortunately, many harmful mtDNA muta-
tions are heteroplasmic and this paves the way for curing these disorders. If mutated 
copies of mtDNAmolecules can be removed selectively from the pool of wild type 
molecules, heteroplasmy can be reduced and cellular biochemical defects can be 
cured. However, manipulating heteroplasmy has been challenging due to several 
barriers. Some of these barriers and attempts to overcome them are discussed in this 
section.

3.1 First barrier: difficulty in mitochondrial transfection

Mitochondria have two lipid bilayers that includes outer and inner membranes. 
While outer membrane allows easy transport of small molecules like ATP, proteins 
less than 10 KDaand ions, the inner mebrane brings selectivity barrier. Hydrophilic 
molecules cannot cross this barrier due to presence of cardiolipin; a hallmark mito-
chondrial lipid with four alkyl tails. It is this impermeability of inner membrane to 
the hydrophilic molecules that makes the passage of DNA through mitochondrial 
membranes difficult.

3.2 Strategies to overcome mitochondrial membrane barrier

One of the effective ways to treat mitochondrial diseases is to introduce wild type 
genes into the mitochondria. The approaches for introducing genes can be broadly 
classified into three categories namely physical, chemical, and biological methods. 
Physical methods are relatively simple and straightforward. Methods like microin-
jection, particle bombardment, electroporation and sonication have been used for 
delivering exogenous genes into the mitochondria [39, 40]. Separate carrier molecules 
are not required in these methods which eliminates the toxicity problems of such mol-
ecules. However, drawbacks of these methods include random distribution of DNA 
in mitochondrial matrix and the risk of damage of target cell during cell membrane 
penetration [40].

Many chemical-based methods have been reported for mitochondrial gene deliv-
ery. Considering hydrophobicity and presence of negative charges on mitochondrial 
membrane, cationic and amphiphilic carrier molecules have been used to enclose 
the negatively charged DNA [41]. Plasmid DNA was introduced to mitochondria 
using rhodamine-pDNA-nanoparticle complex [42] where the dye facilitated move-
ment of nanoparticles across the plasma membrane and mitochondrial membrane. 
Mitochondria-specific liposomes were used for successful release of plasmid DNA 
in mitochondrial matrix [43], however, certain limitations like cytotoxicity and low 
transfection efficiency were noted. Improved version of liposome-based nanocarrier 
came in the form of MITO-Porter [44, 45]. Current research focuses on improving 
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the mitochondrial targeting and reducing the toxicity to target cells. New ligands are 
being explored and linked to chemically synthesized carrier molecules that target the 
mitochondrial receptors.

Understanding of mitochondrial targeting signal peptide (MTS)-mediated 
translocation has provided a new biological approach for specific mitochondrial gene 
delivery. Carrier molecules having DNA-binding ability were conjugated to MTS. 
DNA oligomer peptide nucleic acid (PNA) that has polyamide bond rather than 
usual sugar-phosphate backbone, was conjugated to MTS and this MTS-mediated 
PNA could successfully enter the mitochondrial matrix through the translocase of 
outer membrane (TOM) and that of inner membrane (TIM) [46, 47]. Though this 
approach has some shortcomings like low mitochondrial targeting (as PNA tends to 
be localized in nucleus) and the restricted size of genes-to be-transferred, this is a 
clear indication that MTS can be successfully applied in mitogene delivery in near 
future. Use of viral vectors, especially adeno-associated virus (AAV), have been tested 
for mitochondrial gene delivery [48]. The wild type human mitochondrial genes were 
added to MTS-AAV complex to compensate mutated and defective NADH ubiquinone 
oxidoreductase subunit 4 (ND4) gene which is the culprit for LHON [49]. In addition 
to these physical, chemical, and biological methods, there are several combinatorial 
approaches that have been tested. A recent review [50] gives details of these methods 
and also discusses the need for new approaches.

3.3 Barrier 2: eliminating mutant mtDNA molecules

Elimination of mutant mtDNA molecules can reduce the threshold of mutant 
molecule load. Total elimination of mutant mtDNA is not required because a small 
reduction in mutant mtDNA load just below the threshold can improve the clinical 
scenario of a diseased person.

3.4 Strategies to selectively target mutant molecules

Construction and characterization of mitoApaLI; one of the several mitochondria-
targeted restriction endonucleases developed so far, and its significant role in shifting 
heteroplasmy towards one of the two mtDNA haplotypes is explained in detail in a 
recent book chapter [51]. The prerequisite (also a limiting factor) of using mitoREs is 
that the target mutation should result in a unique restriction site to avoid breaking of 
wild type mtDNA. Different methods of mitochondrial transfection and strategies to 
deal with heteroplasmy are summerized in Figure 1.

Two recent gene editing systems namely mitochondria-targeted transcription 
activator-like effector nucleases (mitoTALENs) and mitochondria-targeted zinc 
finger nucleases (mtZFN) can selectively target single nucleotide mutations and can 
degrade them. Minczuk and Gammage laboratories have extensively used mtZFN 
to shift heteroplasmy [52, 53]. The mitoTALENs have been used to target specific 
mutations from animal and human-derived cells [54]. Although these gene therapy 
approaches are quite promising, we need to be careful because of the risk involved 
in this approach. mtDNA copy number may go down significantly and there may 
be undesirable off-target effects while attempting elimination of mutated copies. 
Crisper-Cas 9 cannot be used for this purpose because it needs single-guide RNA for 
gene editing and RNA import in mitochondria is restricted [55].
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4. Decrease in NAD+ levels

Nicotinamide adenine dinucleotide oxidized (NAD+) is a coenzyme required for 
action of many enzymes like polyADP ribose polymerase (PARP) and sirtuin deacety-
lases. Substantial decrease in NAD+concentration and the ratio of NAD+/NADH was 
reported in the cells having defective mitochondria [56]. Defective respiratory chain 
cannot reoxidize NADH to oxygen. This results in reduction of pyruvate to lactate 
by lactate dehydrogenase generating NAD+. Transport of excess lactate outside the 
cell leads to lactate acidemia, which is a common feature of mitochondrial diseases. 
Increasing the cellular levels of NAD+ either through supplementation or through 
bringing changes in enzymes involved in its synthesis have been reported [57]. 

Figure 1. 
The figure is a schematic representation of different methods of mitochondrial transfection and strategies 
to deal with heteroplasmy. Abbreviations used in the figure are: Outer mitochondrial membrane (OMM), 
intermembrane space (IMS), inner mitochondrial membrane (IMM), mitochondrial target signal peptide 
(MTS), translocase of outer membrane (TOM), translocase of inner membrane (TIM), adeno-associated virus 
(AAV) and mitochondrial DNA (mtDNA).
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A recent approach tested in mice was to reoxidize extracellular lactate to pyruvate and 
bring it back to the cell for its re-reduction by lactate dehydrogenase thus increasing 
NAD+/NADH ratio [58].

5. Prevention of transmission of mitochondrial diseases

5.1 Options to prevent transmission

Mitochondrial DNA is maternally inherited and genetic bottleneck makes it even 
more peculiar. Therefore, options different from those with nuclear genetic defects 
must be considered. It is important to know which mutation a woman carries and its 
level; especially in those cases who harbor heteroplasmic mtDNA mutations. Genetic 
diagnosis and expert counseling is invaluable for such cases. Post-counseling options 
include voluntary childlessness and adoption. Prenatal testing and preimplantation 
genetic diagnosis (PGD) are recently available alternatives. PGD includes in vitro 
fertilization (IVF) and embryo development to blastocyst stage. Because of inherent 
issues with IVF, PGD has limited chance to succeed.

5.2 Mitochondrial replacement therapy (MRT) or mitochondrial donation

MRT is probably the only way available to those couples who are suffering from mito-
chondrial disease and wish to have a healthy child. In such cases, nucleus is taken from a 
mother carrying defective mitochondria and transferred to an enucleated oocyte or egg 
of a woman with healthy mitochondria. Embryo formed after this procedure (also called 
as three parent embryo) will have nuclear DNA from both parents but mitochondrial 
DNA from another mother. Ideally such embryo should be free from defective mito-
chondria. Using this technique in human oocytes, good quality embryos could be formed 
as reported by several workers [59, 60]. Though potentially this is a great advancement, 
mitochondrial donation may raise ethical issues [61]. Also some workers observed that 
the nucleus which was transferred to enucleated oocyte/egg showed presence of con-
taminating defective mitochondria. Enrichment of such contaminating mitochondria 
may cause mitochondrial disease in individuals generated through MRT. This issue 
becomes more sensitive when female embryos are generated after MRT because they 
will be passing on their defective mitochondria to the next generation. MRT females 
may show same mitochondrial disease and infertility as their mothers. In future, better 
understanding of maternal inheritance of mitochondria will improve the efficacy of this 
therapeutic method and make it a sustainable approach for betterment of individuals 
across the generations. Another issue that may hamper the progress of mitochondrial 
donation is availability of oocyte donors because this involves hormonal treatment.

6. Conclusions

Advances in DNA sequencing are accelerating the diagnosis of mitochondrial dis-
eases and helping in assessment of heteroplasmy levels. Although molecular diagnosis 
is crucial, it can only identify the problem but cannot solve it. Input from reproduc-
tive biologists are equally important for comprehensive analysis and personal care of 
diseased individuals. Development of new treatments through further advancements 
in gene therapy holds great promise for the sufferers of mitochondrial disease.
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Mouse Models to Understand 
Mutagenic Outcomes and 
Illegitimate Repair of DNA Damage
Kiran Lalwani, Caroline French and Christine Richardson

Abstract

Maintenance of genome integrity is critical to prevent cell death or disease. 
Illegitimate repair of chromosomal DNA breaks can lead to mutations and genome 
rearrangements which are a well-known hallmark of multiple cancers and disorders. 
Endogenous causes of DNA double-strand breaks (DSBs) include reactive oxygen 
species (ROS) and replication errors while exogenous causes of DNA breaks include 
ionizing radiation, UV radiation, alkylating agents, and inhibitors of topoisomerase 
II (Top2). Recent evidence suggests that a growing list of environmental agents or 
toxins and natural dietary compounds also cause DNA breaks. Understanding the 
consequences of exposure to a broad spectrum of DSB-inducing agents has significant 
implications for understanding mutagenicity, genome stability and human health. 
This chapter will review in vivo mouse models designed to measure DNA damage and 
mutagenicity, and illegitimate repair of DNA DSBs caused by exposure to environ-
mental agents.

Keywords: mutagenicity, double-strand breaks, illegitimate repair, genome 
rearrangement, transgenic mouse model, genome instability

1. Introduction

The faithful repair of DNA lesions is central to the maintenance of genomic 
integrity [1]. Illegitimate repair of chromosomal DNA breaks can lead to mutations 
and genome rearrangements which are a well-known hallmark of multiple cancers, 
aging, and disease [2, 3]. DSBs can occur in a programmed manner during a metabolic 
process such as DNA replication, during meiosis, and the development of the immune 
system during V(D)J recombination and immunoglobulin class switch recombination 
[4] or endogenous agents such as ROS and replication errors [5]. DSBs also occur as 
a result of exposure to exogenous agents such as ionizing radiation, UV radiation, 
alkylating agents, topoisomerase inhibitors, and chemotherapeutic drugs [6–8]. 
Evidence shows that a growing list of natural compounds in the human diet or the 
environment also causes DNA breaks [9].

Mammalian cells have evolved sophisticated mechanisms to detect the damage via 
the DNA damage response (DDR) and signaling pathway which then activates repair 
pathways to maintain genome integrity [10]. Major mammalian processes to detect 
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and repair DNA DSBs include homologous recombination (HR) and non-homologous 
end joining (NHEJ) (Figure 1). Both of these repair pathways are cell cycle-specific 
and differ based on their requirement for a donor DNA template with significant 
DNA sequence similarity. Studies suggest NHEJ is most prevalent in non-cycling 
somatic cells during the G1 stage, while HR is particularly active during the S, G2, 
and M stages due to its requirement for a homologous sequence as a donor tem-
plate [11, 12]. In NHEJ the broken ends are processed and ligated together without 

Figure 1. 
The DNA double-strand breaks (DSB) are repaired by the two pathways; These are—(A) non-homologous 
end joining (C-NHEJ) which modifies the ends and allows ligation of the broken ends to repair the DSB; 
(B) homologous recombination (HR) that uses a homologous sequence from sister chromatid or homologous 
chromosome or a homologous sequence within the genome.
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requiring homology. By contrast, HR uses an undamaged homologous sequence from 
a sister chromatid, allelic locus, or an ectopically located sequence from a heterolo-
gous chromosome as a template to initiate HR or break-induced replication repair at 
the broken site [13].

Laboratory mice (Mus musculus) have been key to most in vivo studies on DNA 
damage and mutagenicity or illegitimate repair that take into account the complex 
environment of the mammalian system including tissue architecture, cellular dif-
ferentiation programs, chromatin landscape patterns, and aging [14–18]. Multiple 
in vivo models have been developed to examine the potential for the repair of DNA 
DSBs [19, 20]. Furthermore, specific cell types within tissues and organs encounter 
a diverse set of DNA damaging insults that produce distinct types of DNA dam-
age. Individual cells differ in their capacity for sensing, responding, and repairing 
specific DNA lesions [17].

2. Induction and assessment of mutagenicity by endogenous sources

2.1 Programmed DNA DSBs

Endogenous DNA DSBs can occur as deliberate, cell-required mechanisms. DNA 
DSBs drive the non-sister chromatid HR events responsible for genetic diversity 
in meiotic cells [21]. These events can lead to rearrangements including deletions, tan-
dem duplications, inversions, and translocation of chromosomes which are not always 
favorable for the cell [22]. Analogous to topoisomerase II (Top2), the Spo11 enzyme 
initiates DSBs during prophase I of meiosis. The locations Spo11-mediated DSBs 
are not random and are referred to as DNA hotspots expected to occur somewhere 
between 10,000 and 40,000 times within the mammalian genome [23]. These DSBs 
initiate meiotic HR via gene conversion and crossover events. Spo11−/− knockout mice 
have errors in normal meiotic chromosome synapsis formation [24]. PRDM9 methyl-
transferase and its associated binding specificity determine the DSB hotspot locations 
in mice by generating nucleosome-depleted regions, allowing for the programmed 
DSBs to occur via Spo11 cleavage [25].

2.2 Reactive oxygen species and replication stress

DNA DSBs can occur due to the accumulation of ROS-induced oxidative stress or 
as the result of replication or transcription stress. ROS are often linked to neurologi-
cal diseases and cancer, although they result from endogenous cellular metabolism. 
Some examples of endogenous ROS include the superoxide radical anion (O2˙−), 
hydroxyl radical (OH˙), peroxynitrite (ONOO−), and hypochlorous acid (HOCl) 
[26]. ROS cause DNA damage through their ability to alter the overall reduction-
oxidation (redox) cell conditions to cause oxidative stress. By changing redox 
conditions of the cell, important cellular processes including signal transduction and 
proliferation may not be able to occur. The failure of these processes can be lethal for 
the cell or promote mutagenesis through GC to TA changes [27]. Guanine lesions that 
lead to a miscoding error change the structural integrity of the DNA by weakening 
hydrogen bonding between bases [26]. These guanine mutations are associated with 
ROS-related oxidative stress and can promote cancer development [27]. 8-Oxo-
7,8-dihydroguanine (8-oxoG) is a common output of guanine oxidation. It is an 
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important compound because of its susceptibility to further oxidation and overall 
genotoxicity [28].

The base excision repair (BER) pathway is a mechanism deployed to resolve DNA 
lesions, as the presence of 8-oxoG, and has three major steps: (1) recognition of the 
lesion by DNA glycosylases, (2) base excision, (3) resynthesis and replacement of the 
removed base [29]. DNA glycosylases initiate BER through cleaving the N-glycosidic 
bond between the damaged base and sugar. DNA glycosylases can be either monofunc-
tional or bi-functional whereas bi-functional DNA glycosylases include a β-elimination 
or β, δ-elimination step after N-glycosidic bond cleavage [30]. Defects in the BER 
pathway’s mechanism can lead to the accumulation of BER intermediates, unrepaired 
lesions, point mutations, and DNA DSBs. DNA polymerase β (Pol β) is one of the most 
active DNA polymerases involved in BER. A single nucleotide polymorphism (SNP) 
on the gene coding for Pol β results in proline residue 242 becoming arginine (P242R). 
This mutation is suggested to cause chromosomal aberrations, and therefore, genome 
instability. P242R was associated with an increase in SSBs and DSBs compared to wild-
type cells, and cellular transformation in mouse and human cells. An observed increase 
in cellular proliferation with the expression of the P242R suggested this mutation may 
induce a carcinogenic phenotype [31].

Replication stress is any event causing changes to the replication rate and can 
include halting replication. Unrepaired DNA lesions contribute to replication stress 
by acting as a physical block of the replication fork and its motion [32]. Single strand 
breaks (SSBs) generated by replication stress can further generate DSBs by nucleases, 
deamination, or spontaneous hydrolysis [22]. These DSBs, as well as meiotic-related 
DSBs, will use NHEJ or HR for repair. Errors in HR, which are less common than in 
NHEJ, can lead to mutagenesis and overall genome instability [33]. Phosphorylation 
of target proteins by ATM also triggers DDR. Chk2 has protein kinase activity allow-
ing it to phosphorylate several effector proteins in the cell cycle checkpoint including 
p53 which can be modified by either ATM or Chk2 (or ATR or Chk1). ARF protein 
(p14) seems to stabilize TIP60 interactions with ATM for better activation and is 
associated with maintaining genome stability [2].

2.3 Spontaneous DNA breaks

A reporter fluorescent yellow direct repeat (FYDR) mouse model was developed 
to assess DSB-induced intra-chromosomal recombination events in multiple tissues 
including skin [34, 35]. In this model, spontaneous DSBs or DSBs induced by replica-
tion fork collapse can lead to unequal sister chromatid exchange between tandem 
truncated enhanced yellow fluorescent protein (EYFP) sequences resulting in gene 
conversion and expression of EYFP quantifiable by flow cytometry. This model 
showed the in vivo frequency of spontaneous intra-chromosomal HR in multiple 
tissues calculated at approximately 10−5 to 10−6 per base pair per cell division. A 
modification of the model using a direct repeat-GFP (RaDR-GFP) inserted in the 
Rosa26 locus contains two truncated EGFP sequences in tandem [14, 34–36]. This 
model detected spontaneous and DNA damage agent-induced intra-chromosomal HR 
in most gastrointestinal organs and respiratory organs. Cell-type-specific immuno-
histochemistry staining of the lung [36] and pancreata [35] demonstrated cell-type 
and tissue-type specificity of intra-chromosomal HR recombinant populations. This 
model also demonstrated that older mice show an order of magnitude increase in the 
accumulation of recombinant cells.
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3. Induction and assessment of mutagenicity by exogenous agents

Exposure of mice to nonspecific agents such as IR, Top2 inhibitors and chemo-
therapeutic drugs induce DSBs more broadly across the genome and in physiologically 
relevant contexts (Figure 2).

3.1 Ionizing and non-ionizing radiation

Ionizing radiations such as X-rays and gamma rays can cause direct damage by 
depositing energy or indirect damage by ionization of water molecules to produce free 
radicals that influence SSBs or DSBs [37–40]. The complexities of the damage vary 
according to the linear energy transfer of the radiation [37]. Alpha particles are high 
LET radiation and directly cause breaks [41] while non-ionizing radiations such as 
UVA and UVB create indirect DSBs and SSBs [7]. Several DSB repair pathway-specific 
proteins have been examined on bases of the IR sensitivity such as MRE1 resection 
protein [42], BRCA1 [43], Ku 70 [44], and Pol θ [45–47]. Exposure of mice to irra-
diation can cause a variety of DNA lesions including base damage, SSBs and DSBs. 
However, DSBs have been deduced to be amongst the toxic lesions and contribute to 
cell death [37]. Erroneous repair of the DSBs causes chromosomal aberrations and 
influences carcinogenesis [38].

The earliest methods for detection of DSBs induced by irradiation included 
physical separation of the broken DNA from undamaged DNA by pulse-field gel 
electrophoresis and comet assays [47, 48]. However, these methods were not efficient 
for mouse studies because of their low reproducibility and limited approximation of 
DSB levels [50]. More recently, micronuclei scoring is more commonly used as these 
cytogenetic biomarkers are easily detectable through microscopy. Micronuclei are 
cytoplasmic chromatin masses resulting from damaging agents such as IR [49, 50]. 
Another prominent and widely used method for the detection of DSBs include the 
identification of DSB downstream biomarkers such as γH2AX that binds to DNA at 
sites flanking DSBs [51, 52]. This protein is a variant of H2AX histone and forms a 
focus at the sites of DSBs which further signals DDR and repair response [50, 51]. 
The γH2AX foci can be analyzed by immunohistochemical staining and visualization 
under fluorescent or confocal microscopy.

To determine the repair pathway choice of DSB repair association of DSBs with 
proteins specific for one pathway or another is typically employed. For example, HR 
requires resection of the broken DNA ends from ssDNAs that are recognized and 
covered by replication protein A (RPA) which can be detected through immuno-
fluorescence. To monitor the length and speed of resection per DNA molecule, BrdU 
antibody is used which binds to the ssDNA and forms fibers visible under a fluores-
cent microscope. To increase the resolution of DNA fibers, Single-Molecule Analysis 
of Resection Tracks (SMART) can be used [53, 54].

3.2 Radiomimetic drugs

Commonly used chemotherapeutic drugs are categorized into 5 different types 
based upon their chemical composition and mode of action. Widely used anti-cancer 
drugs for DNA damage include alkylating agents such as temozolomide (TMZ) 
melphalan, and cyclophosphamide [55, 56]. These agents act by attaching the alkyl 
groups onto the DNA and interfering with the cell cycle and transcription process. 
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They can also cross-link two double-strand DNA molecules creating inter-strand 
cross-links (ICLs). ICLs are dangerous lesions if not repaired. Alkylating agents 
can also add mismatched nucleotides which can cause genome instability [56]. 
Studies targeting DDR and DSB repair proteins that can alter the sensitivity of 
chemotherapeutic drugs are used for cancer treatment modalities. Recent research 
proposed that deficiency of the NHEJ protein DNA ligase4 significantly enhanced the 
sensitivity of cells to TMZ [57]. Mouse embryonic fibroblasts (MEFs) of DNA ligase 
4 knockout mice treated with a D50 dose of TMZ have higher numbers γH2AX foci 

Figure 2. 
Exogenous exposure DNA double strand break induction, damage response pathway and repair. (A) The 
schematic figure shows induction of DNA damage via chemotherapeutics, radiation and environmental 
compounds. (B) The preliminary assessment of the DSB can be done by techniques such as comet assay, pulse 
electrophoresis and micronuclei staining. (C) Detection DNA damage response proteins such gamma H2AX, 
53BP1 and BRCA1 foci using immunofluorescence staining. (D) Hr specific techniques such as SMART assay 
and brdu staining. (E) To determine repair frequencies several reporters are developed. For example, GFP 
recombinant cells shown in bottom right.
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and significantly reduced cell survival when compared to wild-type suggesting that 
Ligase4 protects the cells against lesions from TMZ [57].

ICL-inducing agents, such as mitomycin C (MMC), nitrogen mustards, and 
platinum can create cross-links that hinder DNA replication, thus preferentially 
targeting highly proliferative cells. Thus, these agents are widely used in the treat-
ment of cancers and several skin conditions [55, 58]. The repair of ICLs involves both 
translesion break repair and HR proteins, and mutation of HR genes leads to sensitiv-
ity to ICL agents [59, 60]. Brca1 mutant mice ear fibroblasts and MEFs treated with 
MMC showed significantly reduced HR frequency and increased sensitivity to MMC. 
Interestingly, ATM mutant mice did not have a significant change in HR frequency 
even with higher MMC doses suggesting that ATM is dispensable for HR [59].

Molecular studies indicate the necessity of Top2 in the maintenance of genome 
integrity. The ability to halt Top2 function and generate enzyme-mediated DNA dam-
age is a key reason why it is used in secondary cancer chemotherapy such as therapy-
related acute myeloid leukemia (t-AML) [61, 62]. Top2 enzyme acts by catalyzing the 
interconversion of topological DNA isomers through the generation of a transient DSB 
on one DNA helix (“gate” strand) while remaining covalently linked to the 5′ end of 
the DNA, followed by passage of a second DNA helix (“transfer” strand) through the 
DSB, and then religation of the DSB [63]. Mammals have two isoforms of Top2—α and 
β [61]. Chemotherapeutic drugs doxorubicin and etoposide inhibit the catalytic activity 
of Top2 after generating the DSB resulting in high levels of trapped Top2:DNA com-
plexes and unrepaired DSBs [9, 61]. Such agents are also referred to as Top2 “poisons” 
[61]. A novel insight into secondary malignancies induced by these Top2 targeting 
drugs has come from studies using a transgenic mouse model with a skin-specific abla-
tion of Top2β [63]. These skin-specific top2β-knockout mice were exposed to etoposide 
to evaluate the role of the two isozymes of DNA, Top2α and Top2β. The results demon-
strated that in the absence of Top2β, there was a reduction in NHEJ induced by etopo-
side, suggesting a potential role of NHEJ repair in promoting the malignancies created 
by improper repair of these lesions [64, 65].

3.3 Pollutants and environmental compounds

Chemical compounds including air and water pollutants, pesticides and some 
dietary compounds are genotoxic and linked to carcinogenesis. Air pollutants such 
as benzene and sulfur oxide are released by the combustion of fossil fuels are often 
linked with leukemias [65, 66]. An in vivo study demonstrated how benzoquinone 
(BQ ) environmental agent-induced recombination in fetal hematopoietic cells in 
pKZ1 transgenic mice [67]. BQ potentially induced ROS measured by a significant 
increase in the ROS product 8-OH-2′-dG. This was followed by DSB induction that 
was detected by a significant increase in γH2AX foci in the BQ treated cells. The 
widely used pesticide endosulfan is speculated to cause chromosomal abnormalities 
in humans [68, 69]. Adult wild-type BALB/c mice fed endosulfan and analyzed for 
DSBs and ROS-mediated damage showed an increase in γH2AX foci and a signifi-
cant increase in the levels of the NHEJ-associated protein 53BP1 in lungs and testes. 
Furthermore, elevations of several other proteins involved in the alternative end join-
ing (Alt-EJ) pathway were evaluated by Western blot. This study provided compelling 
insight on the mechanism of action of endosulfan pesticide [69].

Bisphenol A (BPA) is a hormonally active environmental xenoestrogen widely 
found in food products. It is an epigenetic toxicant that can alter the DNA by the 
generation of ROS [70]. Bioflavonoids are polyphenolic compounds found in various 
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dietary products such as soy, coffee, fruits, and vegetables [71]. These compounds 
have been characterized to be mechanistically and biochemically similar to the Top2 
inhibitor and chemotherapeutic drug etoposide [72, 73]. In addition, bioflavonoids 
have been shown to cross the placental barrier and can induce MLL breakpoint cluster 
region cleavage suggesting an association with the initiation of infant leukemia [74]. 
A study reported prenatal exposure to flavonoids genistein or quercetin can increase 
the risk for leukemia onset, as assessed by the frequency of MLL translocations in an 
ATM mutant mouse model prone to develop cancer [75]. Prenatally exposed fetuses 
were examined at gestation day 14.5 by inverse-PCR to detect MLL translocations and 
their frequency in the fetal liver. Additionally, mice prenatally exposed to flavonoids 
genistein or quercetin were euthanized at 12-weeks and inverse PCR was performed 
to determine the presence of MLL translocations. These prenatally exposed mice 
developed leukemia albeit at later ages [75]. These results are further supported by 
an embryonic stem cell GFP-NHEJ model to identify chromosomal translocations 
between MLL and AF9 breakpoint cluster regions analogous to those observed in 
infant leukemia [76]. Upon damage induced by etoposide or a large panel of flavo-
noids, DSBs in the two loci and repair by NHEJ produced a chromosomal translocation 
resulting in a functional full-length GFP at least partly dependent on Top2 [76, 77]. 
Another study examined epigenetic effects of genistein on hematopoiesis in mice; 
mice prenatally exposed to genistein showed the significant increase in erythropoiesis. 
Furthermore, transcriptional microarray analysis suggested that genistein exposure 
was associated with hypermethylation of certain repetitive elements which coincided 
with a significant down-regulation of genes involved in hematopoiesis in bone marrow 
cells and estrogen-responsive genes of genistein-exposed mice [78].

Another reporter system assesses mutagenic events through the Escherichia coli-derived 
LacZ gene, which codes for the production of β-galactosidase. β-Galactosidase cleaves 
lactose forming galactose and glucose, but is receptive to substrate 4-bromo-5-chloro-
3-indolyl β-D-galactopyraniside (X-Gal) and produces blue precipitate when bound to 
β-galactosidase. The blue precipitate is observable through light microscopy [79]. Shuttle 
vectors carrying the bacterial reporter gene include micro-injection of bacteriophages and 
electroporation of plasmids for the development of transgenic mice for mutagenetic assay. 
Transgenic LacZ+ mice have been dosed with different mutagenic chemical compounds, 
like ethyl nitrosourea, chlorambucil, and benzo[α]pyrene, to observe changes in the pro-
duction of X-Gal’s blue precipitate as an indicator of mutagenicity [80]. The Mutamouse 
and Big Blue transgenic mouse models were developed via bacteriophages. Mutamouse 
utilizes bacteriophage λ DNA (λ gt10) as a vector for LacZ insertion at an EcoRI restriction 
site. Excision of the LacZ gene for analysis and a positive agar selection system is used 
with scoring of the clear plaques to identify mutants. Big Blue also has a λ bacteriophage 
shuttle vector for LacZ, but a non-selectable color screening assay to provide a ratio of 
blue plaques to white plaques and consequently a mutation frequency [81]. In the 35.5 
transgenic mouse system, the LacZ transgene concameter is in a particularly unstable 
chromosomal region near the pseudo-autosomal region on the X-chromosome resulting 
in an increased potential for germinal and somatic mutations [80].

4. Induction and assessment of mutagenicity by site-directed cleavage

Nonspecific DNA damaging agents including chemotherapeutic drugs, environ-
mental agents and radiation provide a global understanding of cell function during 
the response to DNA damage and DSBs. Molecular analysis of specific repair is 
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difficult as spontaneously occurring DNA breaks occur in unknown locations. Off-
target effects on the genome can be limited by using tools such as endonucleases and 
retroviruses. In addition to site-specific damage induced by specific endonucleases, a 
defective selectable marker or a defective fluorescent protein such as green fluorescent 
protein (GFP) can be added to develop a reporter system [82]. The endonuclease 
induces DSBs, and repair can result in a fluorescent or selectable active marker that 
was previously defective (Figure 3).

4.1 Recombinase cleavage and repair reporters

Development of conditional and inducible in vivo reporter assays allows for 
manipulation of gene expression, and molecular identification of deletion or addition 
of DNA sequence at specific loci. Generally, a DNA recombinase enzyme is involved 
in the development of conditional reporter systems. Recombinase enzymes such 
as Cre and FRT catalyze a concerted recombination reaction between two target 
sequences (loxP for Cre and FRT for FLP). Depending on the relative orientation of 
the target sites, catalysis results in the excision of the DNA gene sequences between 
the target sequences [83, 84]. A conditional Nbs1 null mouse MEF system developed 
with cre-lox recombinase provided insight regarding the role of the MRE11, RAD50 
and NBS1 (MRN) complex with other repair proteins in DSB processing and HR. 
Nbs1 null MEFs treated with MMC or IR followed by Western blotting and immuno-
histochemistry of Brca1 and Rad51 indicated that loss of Nbs1 affected single-strand 
annealing via Rad51 suggesting its role in promoting HR. In support of this, PCR and 
Southern blotting suggested that loss of Nbs1 in an embryonic stem cell line promoted 
NHEJ repair [85].

Figure 3. 
Schematic of a GFP reporter system. This cassette consists of a ISceI-GFP is a modified GFP gene, which contains 
an 18 bp long ISceI recognition site and in-frame termination codons and a downstream a GFP donor fragment. 
Addition of an ISceI gene donor to this system induces DNA DSB at the ISceI site. Homologous recombination by 
gene conversion results in a functional GFP gene.
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4.2 Endonuclease cleavage and repair reporters

Restriction enzymes can induce site-specific DSBs with their sequence specific-
ity to target DNA. Intron specific encoded endonuclease 1 (ISceI) derived from 
Saccharomyces cerevisiae is one of the first endonucleases used for the study of HR in 
mammalian cells and, subsequently, in vivo [82, 86].

The G2S mouse model was developed to determine the potential for DSB-induced 
inter-chromosomal HR repair in vivo [84]. This G2S mouse model was genetically 
engineered to contain three distinct transgenes—two non-functional green fluo-
rescent protein (GFP) reporter transgenes and a bi-cistronic doxycycline (Dox)-
inducible ISceI transgene. Each GFP reporter construct contains an ISceI recognition 
site that renders it non-functional and provides for the induction of specific DSBs. 
Repair of the ISceI-induced DSBs by inter-chromosomal HR generates a functional 
GFP gene. While no GFP+ cells were detected without Dox (<1 × 10−8), following 
the addition of Dox to mouse chow or drinking water, fluorescent GFP+ cells were 
detected in a large spectrum of tissue types and hematopoietic progenitor cell popu-
lations visualized by fluorescent microscopy and quantitated by flow cytometry. 
Similar to results with RaDR mice and intra-chromosomal HR, aged G2S mice showed 
reduced numbers of inter-chromosomal HR cell populations [87].

Another study examined the genetic interactions between ATM, BRCA1, and 
53BP1 in mice using a hypomorphic mutant, Brca1S1598F (Brca1SF) [88]. To study the 
role of these proteins in intra-chromosomal HR, primary fibroblasts from Brca1SF/SF 
mice and Atm−/− mice were integrated with a direct repeat GFP (DR-GFP) reporter 
and a Dox-inducible ISceI endonuclease. The DR-GFP contains a full-length nonfunc-
tional GFP gene containing an ISceI endonuclease site followed by a downstream GFP 
homologous donor sequence; DSBs induced by ISceI cleavage can promote intra-
chromosomal HR repair to result in GFP+ cells. While spontaneous GFP+ cells were 
minimal (<0.01%), Dox addition to wild-type cells resulted in detection of GFP+ cells 
indicating HR repair (3–4%). Both Brca1SF and Atm−/− models showed a 3- and 2-fold 
reduction in GFP+ cells, respectively. ATM inhibition in wild-type cells only reduced 
HR by 1.6-fold, while ATM inhibitor exacerbated the generation of GFP+ cells in 
Brca1SF/SF fibroblasts as compared to wild-type and Atm−/− fibroblasts. PCR-based 
assay with the DR-GFP reporter was used to quantify the SSA pathway which sug-
gested significant reduction. Interaction of Atm, Brca and 53 bp1 in HR, was demon-
strated by the appearance of RAD51 foci from ear fibroblasts. Examination of triple 
mutants indicated the plausible role of ATM in generating end-resected intermediates 
for RAD51 filament formation in cells with compromised BRCA1 and 53BP [88].

A recent age-dependent study developed a knock-in R26BHEJ model to deter-
mine the efficiency of frequency of intrachromosomal NHEJ for repair. R26BNHEJ 
knock-in is a GFP-based NHEJ reporter inserted into the ROSA26A locus. The DSBs 
are created using ISceI and repair by NHEJ was analyzed in several tissues using flow 
cytometry. This model demonstrated that there was a 1.8 to 3.8-fold decline of NHEJ 
efficiency with increased age [89].

In the past two decades, new approaches of gene editing have enormously 
expanded mutagenesis studies. Use of artificial nuclease like zinc-finger (ZFN), 
transcription activator-like effector (TALEN) nuclease, and the latest clustered 
regularly interspaced short palindromic repeat (CRISPR)/associated (Cas9) system 
has enhanced precision of gene editing [90, 91]. ZFN and TALEN nucleases consist of 
sequence-specific DNA-binding domains that are fused to a nonspecific DNA cleav-
age module such as FokI endonuclease. These systems readily search for sequence 
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homology and the endonuclease cleaves at the recognition site, removing the target 
gene. Several development studies use ZFN and TALEN for gene editing [90]. A 
powerful approach for gene alteration is the CRISPR-Cas9 system. This system was 
initially observed in bacteria as an immune response against viruses. It consists of a 
single-guide RNA (sgRNA), that targets a palindromic region in the specific location 
of the genome, which is recognized by Cas9 nuclease generating a DNA DSB that 
subsequently activates the cellular DNA repair machinery. HR or NHEJ repair would 
result in alteration of the target gene by indel mutations [92, 93].

5. Induction and assessment of mutagenicity in utero

In utero studies can provide valuable insight into the physiological processes that 
make mammalian models unique. Although, the single-cell Saccharomyces cerevisiae 
has a large number of genes with homologs in mammals that are involved in DNA 
damage, signaling and repair [94], it is important to consider the mouse model’s 
advantage to understanding DNA damage and repair in multiple organ systems that a 
single-cell model cannot provide. Oogenesis, embryogenesis, and spermatogenesis are 
processes that give valuable insight to mutagenicity because of their roles in develop-
ment and meiotic recombination and their potential to lead to trans-generational 
mutational consequences.

5.1 Gametocyte-based assays

Understanding the mammalian recombination pathway is useful for developing 
mouse models that can be used to appropriately study meiotic recombination stress 
and DSB repair. Because knockout of MRN complex components causes embryonic 
lethality, conditional disruption of NBS1 has been utilized in germ cells to assess 
how the MRN complex is functioning during meiotic DSB repair in mice [95]. A 
germ cell-specific transgenic mouse model inactivates targeted gene expression 
utilizing Vasa-cre [95, 96]. In Nbs1flox/−;Vasa-Cre (Nbs1 vKO) transgenic mice, NSB1 
was conditionally knocked out preceding the time in meiotic development when 
Spo11-mediates DSBs. In this system, male mice were infertile. Zhang et al. observed 
improper chromosome synapsis using SYCP3 and γH2AX immunostaining of 
spermatocytes. Immunostaining also showed nuclear localization of MRE11 in the 
spermatocytes was disrupted by the depleted NBS1. Development of the Nbs1 vKO 
transgenic mouse model allowed for the assay of NBS1 as an indicator of MRN func-
tion, and in turn, meiotic recombination stress [95].

5.2 Applications

As modern healthcare concerns center around fetal development, mouse models 
can be used to understand how meiotic recombination is affected by compounds in 
our environment. Oogenesis is particularly important because the events of meiotic 
prophase I are highly influential on fetal survival. An in utero model has been used to 
assess fetal exposure to supplemented estrogen and how meiotic prophase I progres-
sion is altered in response. 17-ß-estradiol (E2) was administered to pregnant mice. 
The meiotic outcomes were analyzed through γH2AX staining and examination 
by super-resolution structured illumination microscope where γH2AX presence 
would signify whether meiotic recombination occurred via the initiation of a DSB. 
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Quantifying γH2AX in utero is a valuable tool for assessing meiotic mutagenicity and 
then later influences fetal development and success [97].

In utero exposure to other environmental agents that cause DNA damage can be 
valuable for understanding carcinogenesis. The absence of the P53 tumor-suppressor 
gene is linked to spontaneous tumorigenesis [27, 98]. P53 knockout mice can be used 
as a model for assessing tumor development when exposed to cancer-causing agents. 
An in utero study evaluated the effects of high-dose vitamin E, hypothesized to 
have antioxidative properties, on tumorigenesis. Pregnant P53 knockout mice were 
fed high-dose vitamin E until gestation day 13 or gestation day 19. The addition of 
vitamin E altered the redox state of the in utero environment. Furthermore, the oxida-
tive stress on the ROS-dependent embryonic and fetal pathways was evaluated. DNA 
isolation was performed for the fetal and embryonic tissues and high-performance 
liquid chromatography was used to quantify the formation of 8-oxo-dG which would 
be used as an oxidation marker. Vitamin E dosing was associated with an increase 
in tumorigenesis in the p53 knockout mice; however, further studies are needed to 
explore the relationship between vitamin E and the tumorigenesis pathway [27]. 
Assessing vitamins sold commercially is valuable to improving our understanding 
of what supplements are safe during pregnancy and how ROS may influence in utero 
cancer development.

Oxidative stress has important connections to ovarian aging because these ROS 
lesions in ovarian follicles increase with age. Oocytes remain dormant in the diplotene 
stage until they are released for fertilization providing time for ROS-induced oxida-
tive damage lesions to accumulate, and an increase of these lesions in ovarian follicles 
with age [99]. Pol β and BER, a pathway for repairing DNA lesions caused by ROS and 
oxidative damage, have been associated with the aging process. As rats age, Pol β lev-
els decline, and BER becomes less efficient [100]. Injection of small interfering RNA 
(siRNA) targeting Pol β into young murine oocytes resulted in decreased numbers of 
normal oocytes, reduced oocyte survival, and an increase in detectable 8-oxoG levels, 
as compared to controls. In a complementary study, injection of Pol β complementary 
DNA (cDNA) into aged murine oocytes resulted in overexpression of Pol β, increased 
oocyte survival, and a decrease in detectable 8-oxoG levels, as compared to controls. 
These studies suggest that Pol β function is important for oocyte survival and aging. 
There is a potential to apply the overexpression of Pol β in clinical settings to improve 
oocyte survival and potentially slow the damaging effects of DNA lesions on aging 
oocytes. This is a potentially important finding for improving fertility and pregnancy 
outcomes as aging signs of progress [99].

6. Conclusion

Genomic instability plays a prominent role in the initiation of pathologies such as 
aging, immunodeficiencies and carcinogenesis. To combat the lethal effect of DNA 
damage and strand breaks, cells have evolved multiple, often overlapping DNA repair 
pathways efficiently and accurately repair DNA. Induction and assessment of geno-
toxicant DNA damage are particularly important in vivo. Further, these mouse models 
to assess DNA damage and repair can be combined with traditional mouse genetics 
to determine the impact of genetic modifications or polymorphisms with a focus on 
molecular analysis of DNA damage repair. As the number of designed and widely used 
synthetic environmental agents increases, understanding their impact on DNA integrity 
and downstream potential to promote mutagenicity is increasingly significant.
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Chapter 6

Conditional Mutations and New
Genes in Drosophila
Boris F. Chadov and Nina B. Fedorova

Abstract

A new class of mutations of Drosophila melanogaster has been generated with the
help of γ-irradiation and a new selection procedure; the mutations were named
conditional. According to the data of genetic analysis, these mutations are discrete
regions in DNA but are different from the Mendelian protein-coding genes. The genes
associated with these mutations are named ontogenes. The general pattern of mutation
manifestation matches the pattern characteristic of genetic incompatibility in distant
hybridization. Development of monstrosities and the observed meiotic abnormalities
suggest that ontogenes control the processes providing the proper spatial cell arrange-
ment and switch-on of protein-coding genes. Ontogenes are active at all stages of the
soma’s life cycle and germinal tissue. In the character of their manifestation, the
ontogenes correspond to the long noncoding RNAs in molecular genetics. The
developed methods for generating mutant drosophila strains allow the manifestation
and population dynamics of the mutants for this important group of genes to be
studied.

Keywords: mutagenesis, conditional mutation, ontogene, lncRNA, drosophila

1. Introduction

A living organism is a biological system working under the control of its genetic
system. This genetic system is more compact but more intricate in terms of the
information content: in addition, it provides ontogenesis and phylogenesis of the
organisms. Gregor Mendel founded the way of knowing for both systems: this is the
way “from character to gene”.

The strategy “from character to gene” has emerged to be true. The examples of the
inheritance that follows the Mendelian rules are most numerous. The role of chromo-
somes and later, the role of DNA in heredity have become clear and the DNA code for
the construction of proteins of amino acids was discovered. The Mendelian gene,
coding for formation of protein, acquired the status of a universal unit of heredity
and, therefore, the basic element of a living organism.

However, full-scale human genome sequencing has shown that the protein-coding
genes account for only several percent of the entire genome DNA [1]. This means that
genetics has so far studied in detail only a small part of the genome, whereas many
fundamentally important characters were omitted. Correspondingly, the concept of the
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protein-coding gene as a universal basic unit of all living is not completely justified and
the existence of other categories of genes cannot be excluded. It is a high time to recall
the opinion of Kliment Timiryazev, a prominent biologist, on the second discovery of
Mendel’s rules. While praising the contribution of Mendel to the understanding of
heredity, he warned that the rules for inheritance of alternative characters might appear
inapplicable to the inheritance of some other characters of an organism [2].

The traits of intraspecific similarity, which are distinguishable in terms of taxon-
omy of an organism, are among these other characteristics. Unlike the Mendelian
characters varying within a species, they display no variation. The characters of
intraspecific similarity are the particular characters that come to mind when speaking
about the functions and structures putatively responsible for the part of the DNA
molecule that is not associated with protein-coding genes. As a matter of logic, this
larger share should accommodate the genes that are responsible for the conserved
characters of a living organism, i.e., the characters of species, genus, class, and so on.

This chapter describes examples of non-Mendelian genes. The classical genetic
strategy (from character to gene) has been utilized by the authors in this context as
well but with an eye towards the putative existence of the DNA regions with the
gene properties distinct from those of Mendelian genes. Hereinafter, the Mendelian
genes are regarded as the genes (1) responsible for the formation of alternative
characters, (2) inherited in accordance with the Mendel’s rules, and (3) coding for
proteins.

The detection of a gene according to traditional hybridological procedure consists
in of the detection of the variants of the corresponding trait and demonstration of a
Mendelian inheritance of the variants. The primary task of the experiments on artifi-
cial mutagenesis is to find an individual with a character that distinguishes it from the
norm among the offspring of the exposed organism. It is impossible to find the
individual carrying a mutation in the gene responsible for a conserved trait since this
mutation is a dominant lethal by definition.

As has been theoretically inferred, the lethality of conserved genes is not absolute
and the genomes exist where this lethality does not manifest. The procedures
searching for the mutations that are dominant lethals in one genome but not dominant
lethals in another genome have been designed. The new class of mutations was named
conditional mutations and the genes responsible for their formation and carrying them,
ontogenes [3–5]. The name “ontogenes” results from the property of these mutations to
form monstrous structures (morphoses).

2. Generation of mutations in ontogenes and maintenance of mutations
in culture

2.1 General scheme of approach

By definition, the character is the property in which two objects are similar or
different (the categories of similarity and distinction) [6]. The living organisms
belonging to the same species carry the characters belonging to both categories. All
individuals of a particular species display the characters determining the intraspecific
similarity. However, some representatives of a species display the characters deter-
mining the intraspecific differences and others do not [3]. The latter category of
characters is also known as the alternative characters. They are famous for the fact that
they allowed Mendel to create his genetic theory of the living.
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It is currently known that the characters of intraspecific differences at a genetic
level are the variants of protein-coding genes. However, it is yet unclear how the
similarity characters are organized in terms of genetics. Undoubtedly, they are also
encoded in DNA and most likely represent individual DNA regions (genes); however,
their arrangement and function are vague. The issues of the establishment and genetic
background of the characters of intraspecific similarity are subject to the genetics of
individual development and evolutionary genetics. Although a large toolkit of cyto-
logical and molecular methods is available for this these areas, the corresponding
solutions are still absent.

The basic information about the characters of intraspecific differences has been
obtained in the hybridization experiments currently regarded as classical. The
research into the characters of intraspecific similarity could have followed the same
path but it has not happened. It was believed that the invariance of the characters
made it impossible to conduct genetic analysis by hybridization.

With all the uncertainty of the routes by which the similarity characters have been
formed, it is doubtless that they are genetically determined. If so, the similarity in a
character means that (1) the genes that determine this character are homozygous, and
(2) the emerging mutant alleles are eliminated in heterozygotes. The virtual portrait of
a gene responsible for a similarity character is rather specific: the mutation in a gene is
viable in a homozygote but lethal in a heterozygote. The portrait of a Mendelian gene is
opposite: the mutation in a Mendelian gene is viable in a heterozygote but may be
lethal in a homozygote [7]. In order to find the genes responsible for similarity, we
have searched for the unusual mutations that would be viable in a homozygote and lethal
in heterozygote.

2.2 Generating mutations in drosophila

Drosophila is a convenient organism for the search for the above-defined muta-
tions. The sons were obtained from the γ-irradiated drosophila females (Figure 1);
part of these sons presumably carried the target mutation in the X chromosome. As
was assumed, the homozygosity for the mutation in the X chromosome (males carry
one X chromosome) should guarantee the viability of mutant males. All produced
males were individually mated with females; the males that did not give daughters
(heterozygotes for the mutation in the X chromosome) were regarded as mutant
[8, 9]. The obtained mutations matched the defined requirement, namely, they were
viable in males (homozygous for mutation) and lethal in females (heterozygous for
mutation).

The main point in this technique is to detect the genes that are lethal in heterozy-
gote (dominant lethals). The first batch of the mutants demonstrated that the domi-
nant lethality of the obtained mutants was conditional. This lethality depends not only
on the mutation itself but rather of on the genome accommodating this mutation and
even on the genome of the mating partner. The mutations were named conditional
[10] and two additional methods for their generation were proposed. In the first
variant, the condition for non-manifestation of a lethal in the chromosome was an
inversion in the opposite chromosome [11] and in the second, the condition for non-
manifestation of a lethal in the X chromosome was a normal genetic constitution of
the mating partner [12]. Once the development of monstrosities was recorded in the
mutants, we started to detect the mutants in F1 according to these monstrosities [13].
Further, having found out that the conditional mutations under permissive genetic
conditions are always represented by recessive lethals;, we started to select the target
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mutation from the our collections of recessive lethals [12]. The collection of the
drosophila conditional mutations maintained in laboratory at certain times reached a
hundred and more variants in the X, 2, and 3 chromosomes.

2.3 Maintenance of conditional mutations in culture

Conditional mutations were maintained in cultures, depending on specificity of
each conditional mutation. Conditional dominant lethals in the X chromosome were
maintained in two ways (Figure 2). With the first way (Figure 2A), the culture
contained females, heterozygous for the mutation and the Muller-5 inversion. Females
produced In (1)M-5 sons and “+” sons with the mutation. The latter were fertile, but
no +/+ females appeared in the culture because the effect of the mutation was lethal in
the homozygous females. With the second way (Figure 2B), the mutant X chromo-
some was transmitted paternally only so that females in the line contained attached-X
chromosomes. Conditional recessive mutations in the X, derived from typical reces-
sive lethals by the Muller-5 method, were maintained as typical recessive lethals in the
X chromosome. Conditional dominant lethals in chromosome 2 were maintained in
culture containing the In(2LR)Curly inversion. Homozygotes for every one chromo-
somes 2 were lethal. Conditional dominant lethals in chromosome 3 were maintained
in culture containing the In(3LR)Dichaete inversion. Homozygotes for every one
chromosomes 3 were lethal.

Figure 1.
Detection of conditional dominant lethals in the X chromosome of D. melanogaster. Gamma-irradiated (30 Gy)
Drosophila males were mated to females containing attached-X chromosomes. Sons of this progeny were
individually crossed to yellow females. X-chromosome of the irradiated male is hatched. Asterisk indicates the
same chromosome with mutation. In contrast to sons without lethal mutation, those that received the X with
dominant lethal were daughterless.
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3. Manifestation of mutations in ontogenes

The manifestation of mutations emerged to be numerous and diverse. Some of
them are completely unexpected and fantastic, such as the development of monstros-
ities or changes in the basic metabolism, and others are observable although rarely in
common Mendelian mutations (parental inheritance and genetic instability); how-
ever, some manifestations are well known for common mutations. The conditional
mutations are described in detail in reviews [14, 15]. Here, we give only a brief
description to outline these manifestations.

Most of the conditional mutations are dominant lethals. These mutations are char-
acterized by the permissive genetic conditions (genotype) under which a dominant
lethal can exist in the organism without leading to its death and the restrictive condi-
tions (genotype) under which its manifests itself. An example is the offspring of the
drosophila males carrying a dominant conditional mutation in the X chromosome
(Table 1). The mutation has no lethal effect in the organism of males but kills the
daughters that would form in the crosses of these males with yellow females.

In this case, the factor that saves the males from death is their gender (male). In
the case of some of the generated dominant conditional mutations, the dominant
lethality is eliminated by a chromosome rearrangement in the opposite homolog [11],
in a nonhomologous chromosome [12], or even in the genome of the mating partner
[12]. The permissive conditions remove the dominant lethality of mutation; however,
recessive lethality remains so that the homozygotes for mutation die. Recessive lethality
under permissive conditions is an obligatory attribute of conditional mutations.

The fact of a recessive lethal manifestation makes it possible to test the mutations
for allelism. No alleles have been detected in the large collections of the mutations in
the X chromosome (about 60 mutations) and autosome 2 (about 20). The death of
mutants in a homozygous state and their survival in a heterozygote with other muta-
tions means that conditional mutations are discrete regions of DNA molecules. Ten
conditional mutations in chromosome 2 that displayed recessive lethality were

Figure 2.
Two ways for maintenance of conditional dominant mutations in the X chromosome: (a) in heterozygous state in
females containing an inverted Muller-5 chromosome (In(1) Muller-5) and the mutant X (+, solid line).
Daughters In(1) Muller-5/+ and sons + receive the mutant X. Daughters In(1) Muller-5/In(1) Muller-5 and sons
In(1) Muller-5 do not receive the mutant X. (b) in culture with attached-X chromosomes (y v f/y v f). Sons, not
daughters receive the mutant X chromosome.
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mapped with the help of a standard set of deletions. Half mutants contained two and
more lethal defects. These data suggest that the regions of multiple recessive lethality
lethalities emerge in a secondary manner under the effect of the earlier formed
radiation-induced mutation in ontogene [17].

The conditional mutations with a visible manifestation constitute a separate group.
The Smba (Small barrel) mutation has a dominant phenotype appearing as a short-
ened body and short pupae. The presence of the In(2LR)Pm inversion in the opposite
chromosome 2 removed this manifestation. The group of conditional mutations with
the phenotypes scute, radius incompletus, and white apricot manifests only in females,
while the corresponding males have a normal phenotype. These mutations were
named dimorphic [14].

The permissive genetic conditions allow the dominant lethal mutations in hetero-
zygote to avoid lethality. However, this does not mean that the heterozygotes become
completely normal. They have an abnormally high level of locomotor activity and

Mutant male
stock no.

Cross: 2♀y x ♂+ Cross: 6♀y x ♂+ Fecundity of
male*

Total number
of progenies

Share of
daughters in
progeny

Total number
of progenies

Share of
daughters in
progeny

1 119 0.00 191 0.00 0.02

2 650 0.00 435 0.00 0.15

3 112 0.00 180 0.00 0.12

4 114 0.00 293 0.00 0.07

5 50 0.00 303 0.02 0.14

6 47 0.00 283 0.02 0.14

7 47 0.02 100 0.00 —

9 182 0.07 529 0.00 0.40

10 162 0.03 297 0.04 0.09

27 68 0.00 93 0.00 0.18

29 15 0.07 61 0.00 0.14

30 122 0.00 115 0.00 0.19

31 106 0.00 83 0.00 0.15

32 81 0.00 117 0.00 0.13

33 144 0.00 90 0.00 0.16

34 88 0.00 110 0.00 0.12

26 92 0.03 89 0.01 —

35 102 0.03 115 0.04 0.35

36 95 0.00 110 0.01 0.14

37 52 0.02 68 0.04 0.14

38 54 0.06 84 0.01 0.10
*The ratio of adult progenies to the number of laid eggs.

Table 1.
Progenies and fecundity of mutant (+) males crossed to yellow females [16].
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basic metabolism. In addition, they display genetic the instability appearing as (1)
activation of the mobile element Dm 412; (2) formation of visible secondary muta-
tions; (3) development of modifications and monstrosities (morphoses); (4) loss of
dominant lethal manifestation of mutation with preservation of recessive lethality;
and (5) loss of the manifestation of the visible dominant mutations in the chromosome
opposite to the mutant homolog [14, 15, 18, 19].

Figures 3 and 4 show examples of modifications and morphoses in the offsprings
of mutants. The share of the individuals with morphoses in the offspring of a mutant
fly can reach several tens of percent [20, 21]. Because of a strong effect on ontogene-
sis, the genes responsible for generation of conditional mutations were named
ontogenes [3–5]. For the sake of brevity, the mutations in ontogenes are hereinafter
referred to as ontomutations.

A specific feature of ontomutations is that their manifestations are inherited in a
parental manner. Thus, the morphoses in a heterozygote for an ontomutation emerge
not only in the offsprings that received the ontomutation but also in the offsprings
that have not received it [22, 23]. An example of the parental effect is evident for the
ontomutations that cause the death of daughters in the crosses with yellow females
(Table 1). The share of dying eggs in the cross is very high (over 50%); this suggests
the death not only of the daughters that received the ontomutation, but also of part of
the sons that have not received the ontomutation. Meiotic abnormalities hold a special
place among all manifestations of ontomutations. This consists in of a high level of
chromosome nondisjunction and loss [24] and will be separately considered below.

Figure 3.
Modifications in the offspring of conditional mutants: (a) inserted head capsule regions in the eye); (b) a “triangle”
eye; (c) defects of the eye shape; (d) narrow wings; (e) pulled apart wings; (f) reduced unspread wings; (g) altered
shape of the wings; (h) altered shape of the wings with bubbles and abnormal venation; and (i) interruptions of
win veins L4 and L5.
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The pattern of ontomutations manifestations suggests that ontomutations are
formed in the genes dissimilar to Mendelian ones. The absence of the own morpho-
logical “face” of the majority of ontomutations, the dependence of manifestation on
different genetic factors, and the development of morphoses demonstrate that the
main function of ontogenes is the regulatory function. However, it has emerged rather
difficult in the characterization of ontogenes to advance further than the mere state-
ment of “dissimilarity” and “regulatory character”. The range of biological phenom-
ena to be considered and understood appeared to be considerably wider as compared
with the Mendelian mutations.

Eventually, it appeared possible to approach the resolution of the question on the
nature of ontogenes, namely, on what is their biological mission, in which tissues and at
which time moments they are active, and what are the forms of this activity. Find
below the step-by-step theoretical analysis of the phenomenology of conditional
mutations.

4. Manifestation of ontogenes and distant hybridization

Some signs resembling the abnormalities characteristic of distant hybridization
were evident in the manifestation of ontomutations. It was reasonable to perform a
detailed comparison since a similarity would allow ontogenes to be regarded as the
genes responsible for species specificity (membership).

Figure 4.
Morphoses in the offspring of conditional mutants: (a) two heads on one neck; (b) additional head with two eyes
instead of the left eye; (c) left eye of two separate fragments; (d) bifurcated tarsus of the right front leg; (e) right
wing is widened and contains a bubble; (f) small process instead of the right wing; (g) two processes instead of the
right wing; (h) abdomen is turned by 180°; and (i) the upper fly lacks tergites on the abdomen and the right wing
is round-shaped.
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Distant hybridization is the cross of the individual belonging to different taxa
(species, genera, families, etc.) [25]. This hybridization is accompanied by the pattern
of abnormalities that is independent of a particular cross and of the kingdom to which
the parents belong (animals or plants).

The pattern of abnormalities (that is, the pattern of interspecific incompatibility)
comprises (1) a high sterility of the cross; (2) parental effect when producing the
hybrid; (3) phenotypic mosaicism of the hybrid; and (4) meiotic abnormalities of the
hybrid leading to sterility [25, 26]. Characteristic of the ontomutations that we have
generated are

1.Sterility of the cross. Ontomutations are conditional dominant lethals. The
offspring in the crosses of ontomutants can be absent in part or at all. As an
example, Table 2 shows the results of crosses between the strains carrying
ontomutations in chromosome 3 [14].

The males of strain 46 in the crosses with females 34 or 55 give no offspring at all
but give offspring with the females of strain 27. The cross of strains 55 and 34
gives no normal offspring but the crosses of mutants of strains 55 and 34 with
other strains give normal offspring.

2.Parental type of inheritance:. This type of inheritance is a character of the
manifestation of ontomutations. Table 2 clearly demonstrates this effect: two
pairs of ontomutations (34 and 46) and (46 and 55) give offspring in one cross
direction but do not give it in the opposite direction. Ontomutations display most
different forms of the parental effect, both rare in Mendelian mutations or absent
at all. This comprises paternal inheritance and paternal–maternal variant

Reciprocal
crosses

Progeny Total number of
progeny

Dichaete
progeny

(%)Norma Dichaete

Females Males Total Females Males Total

♀27 �♂ 34 49 47 96 20 13 33 129 25.6

♀34 �♂ 27 56 41 97 114 67 181 278 65.1

♀27 �♂ 46 132 147 279 34 31 65 344 18.9

♀46 �♂ 27 63 68 131 102 135 237 368 64.4

♀27 �♂ 55 88 158 246 29 28 57 303 18.8

♀55 �♂ 27 37 30 67 97 59 156 223 70.0

♀34 �♂ 46 0 0 0 0 0 0 0 0

♀46 �♂ 34 73 95 168 109 95 204 372 54.8

♀46 �♂ 55 145 166 311 264 279 543 854 63.6

♀55 �♂ 46 0 0 0 0 0 0 0 0

♀55 �♂ 34 0 0 0 81 65 146 146 100

♀34 �♂ 55 0 0 0 114 91 205 205 100

Table 2.
Proportion of Dichaete progeny in reciprocal crosses of four lines Dichaete/mutation [27, 34, 46, 55], containing
conditional mutations in chromosome 3.
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[22, 23]. All forms of paternal effects in ontogenes have been described in detail
[22, 23, 27].

3.Mosaicism. Mosaic fragments are frequently observed in the ontomutants
[20, 21]. See Figure 5 for examples of mosaic phenotypes in ontomutants.

4.Meiotic abnormalities:. An extremely high frequency of the X chromosome
nondisjunction in meiosis is observed for 30 ontomutations in the drosophila X
chromosome [7, 24]. Table 3 lists the regular and exclusive offsprings of a
drosophila female carrying an ontomutation in the X chromosome. The rate of
matroclinous daughters (for the X chromosome) reaches 24.7%. In addition to
nondisjunction, a loss of the X chromosome is observed and part of the
nondisjoined X chromosomes had undergone exchange. A high rate of the X
chromosome nondisjunction in drosophila females has a trend of inheritance for
the daughters. These data suggest a deep interference into the meiotic division in
the ontomutants [24].

As is evident, the pattern of aberrations in the ontomutants is similar to that of the
interspecific incompatibility. The question is what the cause of incompatibility is. The
heterozygosity in Mendelian genes cannot be the cause of incompatibility because
heterozygosity does not lead to lethality in an intraspecific hybridization; moreover, it
frequently leads to heterosis. In addition, the mutations in Mendelian genes do not

Figure 5.
Mosaics in strains with conditional mutations: (a) the left half of the abdomen is gray the right half, yellow; (b) sex
comb is present only on the right front leg; (c) eyes of different colors in the offspring of a wa/+ female; (d) colorless
left half of last tergites; (e) left half of the abdomen of a female type color and, right, of a male type; (f) different
shapes of eyes in the offspring of a B/+ female; (g) as spot of red ommatidia on the background of white ommatidia;
(h) yellow left wing and part of the thorax of a gray fly; and (i) right half of the thorax and scutellum are hairless
and have no bristles.
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interfere with meiosis and the corresponding mutants are viable even in compounds
with deletion. It is clear that the heterozygosity in Mendelian genes cannot be responsible
for interspecific incompatibility. Correspondingly, the cause underlying the incompatibility
is the heterozygosity in the genes that determine the species membership. In their native
genome, these genes are in a homozygous state and thus properly fulfill their role.

The similarity between the manifestations of ontomutations and the pattern of
interspecific incompatibility in distant hybridization suggests that (1) the ontogenes
belong to the group of the genes responsible for intraspecific similarity and (2) an
unusual phenomenology of ontomutations results from their heterozygosity for
ontogenes. The latter is similar to the heterozygosity in distant hybridization but is
reached in another way. We generate ontomutations with the help of mutagenesis and
get heterozygotes for an ontogene by combining them with an initially normal
ontogene. Indeed, it is necessary to take into account that all genes responsible for the
species membership in an interspecific hybrid are in a heterozygous state versus only
one gene (ontogene) in the experiments with ontomutations.

The observed similarity to the pattern of interspecific incompatibility considerably
simplifies the understanding of the role of ontogenes in the organism. Any “incom-
patibility” does not exist for the Mendelian genes and the phenomenon of interspecific
incompatibility is determined by the conflict of the genes that form the species
specificity of organisms rather than the Mendelian genes. The ontogenes belong to the
former group of genes. It is useful to recreate in mind the pattern of incompatibility in
distant hybridization to enhance the understanding of the role of ontogenes. Incom-
patibility is the result of heterozygosity for ontogenes.

5. Ontogenes and construction of cell ensembles

The biological mission of ontogenes was clarified when studying the phenomenon
of development of monstrosities (morphoses) in the offspring of an ontomutant
(Figures 6 and 7). In genetic literature, morphosis is defined as a nonadaptive and
typically unstable variation of individual morphogenesis associated with a change in
the external environment [28–31]. Here, the term morphosis is used to designate the
nonheritable morphological abnormalities caused by specific genetic features of the

Genotype of female Regular
progeny

Exceptional
progeny

Total progeny Rate of
exceptional

individuals (%)

♀ ♂ ♀ ♂ Imago With
correction
to lethality*

♀ ♂

l(1)/In(1) 691 380 126 268 1465 2239 11.3 23.9

l(1)/In(1)/Y 373 164 109 154 810 1237 17.6 24.9

l(1)/w 1132 730 362 149 2423 2934 24.7 10.2

w/In(1) (control) 1038 821 10 46 1935 1991 1.0 4.6

w/In(1) (external control 1) 946 922 1 23 1902 1926 0.1 2.4

w/In(1) (external control 2) 842 749 0 20 1638 1658 0 2.4

Table 3.
The effect of mutation in ontogene on the X chromosome nondisjunction in drosophila female meiosis [24].
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parent itself rather than by the external conditions; correspondingly, they may be
referred to as “endomorphoses” unlike the earlier known “exomorphoses” [21].

The morphoses emerging in conditional mutants are the abnormalities of different
degrees of manifestation. Most of them do not prevent flies to hatch from pupae, live,
mate, and even give giving offspring. An experimenter working with drosophila for a
sufficiently long time has undoubtedly encountered the cases of morphosis develop-
ment but such cases are very rare. However, morphoses frequently emerge in the
offspring of the generated conditional mutants [20, 21]. Soon after commencement of
the work with conditional mutations, the collection of colored images of morphoses
became very large (about 1000). The diversity and morphological complexity of
morphoses are great [32]. The morphological defects are also characteristic of
Mendelian mutations but the latter are is incomparably simpler.

The asymmetry of morphoses is the decisive phenomenon in the understanding of
the role of ontogenes. Unlike a bilaterally symmetric morphological defects caused by
Mendelian mutations, morphoses are asymmetric: as a rule, they are present on one side
of the body (left or right) [33]. The bilateral asymmetry can be certainly regarded as a
cell-level phenomenon. The asymmetry results from an incorrect spatial arrangement
of the cells formed by division. Thus, it turns out that ontogenes do control the growth
of embryo, its size, and spatial symmetry; moreover, the defects in ontogenes
(ontomutations) make asymmetric the normally symmetric structures. The Mende-
lian genes control production of proteins in cells but do not control the arrangement of

Figure 6.
The morphoses of the “plus tissue” type (surplus structures): (a) groups of eye ommatidia (red spots) on the occiput;
(b) an additional eye on the right side; (c) an additional thorax with an altered wing on the right side and a
normal wing on the right side in a form of a structure-less bubble; (d) and additional wing on the right side
(directed forward) and an altered thorax on the right side; (e) a tergite fragment with bristles on the abdomen; (f)
doubling of the external male genitalia; (g) four wing-like appendages with bristles instead of a normal wing on
the right side; (h) tarsus on the abdomen; (i) an additional altered seventh leg.

94

Mutagenesis and Mitochondrial-Associated Pathologies



cells. That is the reason why Mendelian genes do not interfere with a bilateral
symmetry [33].

The involvement of ontogenes in cell spatial arrangement is confirmed by the
meiotic abnormalities in ontomutants. As is shown in Section 3, the ontomutations in
a heterozygote significantly interfere with the normal meiosis. As is known, the
heterozygotes for Mendelian mutations have normal meiosis [34]. Correspondingly, it
is reasonable to assert that ontogenes control cell division (in this case, meiotic divi-
sion) and Mendelian genes do not. Summing up, the phenomenon of asymmetry of
morphoses together with the phenomenon of disturbed meiosis in ontomutants suggests that
ontogenes are actually responsible for the construction of cell ensembles.

It is valid to regard that the “key players” in ontogenesis are now found: they are
the ontogenes and Mendelian genes. The former (ontogenes) control the construction
of cell ensembles, while the latter controls the production of protein sets in the cells
forming the ensembles. To make the picture complete, it is logical to assume that
ontogenes also switch on the Mendelian protein-coding genes. The patterns of
morphoses in the individuals carrying ontomutations together with mutations in
Mendelian genes confirm this assumption.

Consider an example when an additional small head has developed in a fly at the
place of the right eye because of a mutation in ontogene (Figure 8). Since ontogenes
switch on Mendelian genes, the mutant for the Mendelian mutation Bar displays the
Bar phenotype not only for the normal left eye, but also for the aberrant right eye on
the newly formed additional small head. It is evident from the available large

Figure 7.
The morphoses of the “minus tissue” type (lacking morphological structures): (a) loss of a wing (stump) and
bristles on the left thorax; (b) loss of a prothoracic leg on the left side; (c) loss of the head cap-sule and major part
of the right eye; (d) loss of the left wing and circular bristle pattern on the left thorax; (e) one pair of legs instead of
three pairs in the normal fly and different shapes of the right and left legs in the remaining pair; (f) reduced tarsus
of the left metathoracic leg; (g) loss of half of the thorax on the left side, including the wing, and a right wing with a
Notch-type indentation; (h) circularly cut right wing; (i) loss of the lift wing and cone-like stretched left thorax.
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collection of morphosis images that although the monstrosities are manifold and
unusually located, the traits in morphoses that are definitely controlled by Mendelian
genes (color of cuticle, eye color, and bristle color) are “switched on” correctly and
perfectly fit the fly’s genotype. This “adjustment” of the Mendelian genes to the
morphological structures despite their pathologies suggests that the event of the
switch-on of the structures is automatically the event of the switch-on of a certain set
of Mendelian genes.

The discussion of the mechanisms underlying ontogenesis after the works by Jacob
and Monod [35] necessarily includes the idea of the regulator genes that trigger the
structural genes. It is believed that the regulator genes belong to the category of
protein-coding genes. Our data do not contradict the existence of protein regulators
but suggest ontogenes as the key players in the organization of ontogenesis. Ontogen-
esis is not only the production of proteins, but also the production of the array of cells
housing the production of proteins and ontogenes there are involved in the production
of the cell array.

6. Activity of ontogenes in different tissues and at different
developmental stages

The Mendelian genes are active in the soma from the very beginning of
somatogenesis and to the end of life. According to the experiment, ontogenes are also
active in: (1) the germline before meiosis (in premeiosis), (2) during meiotic
divisions, and (3) in the zygote at the stage of synkaryon formation.

Premeiosis in germinal tissue:. A half of the offspring of a parent heterozygous for an
ontomutation receives the mutation and the other half does not. However, the over-
whelming majority of manifestations of ontomutations are observed in the entire
offspring. This is true for the emergence of morphoses [22, 23], lethal effect of
ontomutations [27], the effect of a chromosome rearrangement on the lethal effect of
ontomutation [12, 36], the effect of the Y chromosome on the lethal effect of

Figure 8.
Morphoses and Mendelian mutation Bar. Reduced second head in place of the left eye, with the eye on the small
head exhibiting a Bar phenotype similar to the eye on the main head.
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ontomutation [16], the effect of ontomutation on nondisjunction [24], and so on. All
these cases of parental (maternal or paternal) inheritance mean that the mutant
ontogenes are active in germline cells. The activity consists in the formation of the
“factors” (it is not important which particular factors) that lose a physical link with
the ontomutation (DNA region) whereby they originated. As a consequence, these
factors after the reduction division equiprobably find themselves in both the gametes
carrying ontomutation and the gamete lacking it.

Meiotic division:. Various meiotic abnormalities caused by ontomutations suggest
that ontogenes are active in meiosis (see Section 3 and [24] for comprehensive
description).

Synkaryon formation. The activity of ontogenes at this stage can be referred to as
“the recognition of mating partner” [36]. The yellow females do not give daughters in
the crosses with the males carrying an ontomutation in the X chromosome (Table 4).
The prohibition for the presence of daughters in the offspring is removed if the
females carry the Cy, Pm, or D inversion in autosomes 2 and 3. It is important that not
only the daughters carrying the Cy, Pm, or D autosomes start appearing in the
offspring but also the daughters without them. We have assumed that some tags
appear on the chromosomes of female and male sets during the development of both
the female and male gametes of ontomutants as early as the premeiosis. When the
chromosome sets enter the zygote, the tags are compared and ontogenesis is triggered
in the case the sets display similarity and does not in the absence of similarity [22, 23].
The zygote of drosophila dies at the stage of egg [22, 23]. Formally, this pattern is
similar to that when the meeting of pronuclei is prevented, which is observed in
genetic incompatibility in plants and protozoans [37, 38].

Male
mutation
line

Female y/y; +/+ Female y/y; + /
Cy

Female y/y; + /
Pm

Female y/y; + / D

Daughter
+

Son
y

Daughter
+

Son
y

Daughter
+

Son
y

Daughter
+

Son
y

Cy+ Cy Cy+ Cy Pm+ Pm Pm+ Pm D+ D D+ D

1 – 230 – – 178 163 – – 107 57 – – 115 8

2 – 230 14 13 127 134 4 3 70 72 – – 42 7

4 – 270 9 4 185 159 1 7 86 81 – – 162 7

5 – 197 23 21 80 95 6 4 47 48 – – 37 3

27 2 167 1 0 102 113 2 1 53 65 – – 9 2

29 4 163 32 27 71 56 26 24 55 20 6 6 88 10

30 – 184 15 13 81 76 9 12 60 47 – – 38 6

31 – 242 32 20 127 102 5 4 28 29 – – 70 6

32 – 197 22 10 90 77 9 17 36 32 – – 48 2

33 – 209 20 18 95 101 11 8 87 47 24 2 85 12

34 – 140 11 14 88 101 25 20 68 54 – 10 103 3

Table 4.
Effect of rearranged chromosome 2 and 3 on dominant lethality of conditional mutations in the X chromosome
delivered to the zygote together with sperm {cross of mutant males to females: 1) y/y; +/+; 2) y/y; + / In(2LR)Cy;
3) y/y; + / In(2LR)Pm and 4) y/y; +/ In(3LR) D} [14].
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Ontogenesis of the soma. The development of morphoses suggests that ontogenes are
active at this stage of individual development (see Section 5). A parental type of
inheritance of these aberrations [22, 23] indicates that the genetic events in gonial cells
are involved in their induction.

As is evident from the list of activities, ontogenes outdo the Mendelian genes in
temporal and spatial parameters of their activity. The activity of ontogenes in germi-
nal tissue, where Mendelian genes are inactive, is quite a surprise. The activity of
ontogenes at different stages allows for the explanation of an intricate pattern of the
ontomutation manifestations. For example, the combination of conditional dominant
lethality with definite recessive lethality, illogical at a first glance, is explainable with
that the former manifests itself during synkaryon formation and the latter, in the
premeiosis of germinal tissue. The activity of ontogenes in the germline for the first
time explains the radiation effects appearing as sterility and emergence of mutations
in F1 [39]. The observed activity of ontogenes in the germinal tissue puts the question
on the forms of activity of ontogene DNA: a typical form of gene activity is coding for
protein synthesis; however, no protein synthesis has been recorded in the germinal
tissue.

7. Forms of activity of ontogenes

Activity as nRNA formation.: The chromosome rearrangements of inversion and
translocation types interact with ontomutations [12]. The rearrangements themselves
act as ontomutations decreasing fertility according to the parental effect [12]. The
parental effect suggests the gene activity in the premeiotic cells of the germline. Thus,
we may state that a certain chromosome rearrangement in these cells is active and the
change in the activity of ontogenes is the result of its presence. Any rearrangement
changes the distance between individual ontogenes. If the ontogenes in these cells
“communicate” via nRNA, the change in the distances between ontogenes will quite
expectedly lead to a change in the function. The lengths of the ways an nRNA have has
to cover from an ontogene to another ontogene in a normal genome and in the genome
carrying a rearrangement are different. Thus, nRNA can be a regulator of ontogene
activity in the premeiotic germline cells.

Usually, proteins act as regulators of gene activity; however, a protein cannot act
as a regulator of ontogene activity in germline cells in the case of a rearrangement. The
schemes of regulation with the help of a protein and an nRNA are considered in a
separate paper [5]. The way of a protein regulator have has to cover in this case
(DNA–mRNA–ribosome–protein–DNA) is too long and passes through the cytoplasm.
Such regulator will be unable to respond to the minor changes in the distances
between ontogenes in the nucleus caused by a rearrangement. On the contrary, an
immediate regulation of an ontogene by another ontogene with the help of an nRNA is
feasible. All events (synthesis of nRNA and migration of nRNA) and all players
(inducer ontogene and receptor ontogene) in this case reside within the nucleus ([5],
Fig. 6). Thus, the most likely regulators of ontogenes are nuclear noncoding RNAs
(ncRNAs). In this case, ontogenes act as both ncRNA inducers and ncRNA recipients.

The recent studies on genome-wide annotation utilizing high-throughput
transcriptomics from a single- cell embryo to differentiated tissue cell types demon-
strate that over two-thirds of the transcribed mammalian genome codes for tens of
thousands of different classes of small and long noncoding RNAs (lncRNAs). The
lncRNAs form the largest class of ncRNA subtypes. According to some recent
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estimates, there exist over 58,084 transcripts in the mammalian genome, which is
larger than the number of protein-coding RNAs. In addition, lncRNAs appear to be
key regulators in a wide range of biological processes, including cell proliferation, cell
cycle, metabolism, apoptosis, differentiation, and pluripotency [40, 41].

It has become clear over the period from generation of the first batch of condi-
tional mutations in Drosophila melanogaster in 2000 [8, 9] and a shorter time interval
when lncRNA genes were studied [42, 43] that their biological functions are analo-
gous. Both (1) are not protein-coding genes but control the operation of the latter; (2)
are elements of the conserved part of the genome; (3) control the progression of
ontogenesis and (4) phylogenesis; (5) are responsible for energy exchange in the
organism; (6) control cell division; and (7) are inherited according to a parental type.
Thus, these two groups most likely represent the same category of genes.

Conformation (coiling and remodeling) of DNA of ontogenes. The fact of a drastic
disturbance of cell meiotic division in the presence of an ontomutation has been
demonstrated (Section 3). If so, the ontogenes in meiosis are active even taking into
account that the chromosomes in a meiotic cell are highly compacted. Thus, the
activity is guided by highly compacted DNA of an ontogene and the parental effect on
nondisjunction [24] suggests that this coiling “originated” from the premeiotic
germline cells.

The previous section discusses the interaction between ontogenes in the zygote,
when the parental chromosome sets meet after fertilization [36]. The parental chro-
mosome sets are also highly compacted. The situation there is the same: the ontogenes
are active although they are highly compacted. These two facts suggest that ontogene is
a DNA sequence in a state of regulated coiling. A valid argument favoring this assump-
tion has been earlier obtained by theoretical analysis of the pairing in a heterozygote
for inversion [44].

The resulting conclusion focuses the attention on the studies that demonstrate the
activity of heterochromatin blocks. Keeping in mind to do this large work in the
future, see some studies indicating an important role of heterochromatin in the chro-
mosome behavior in meiosis [45–49]. It cannot be excluded that the multilocality of
some ontogenes that we have discovered by deletion mapping of ontomutations in
chromosome 2 [17] is explainable with that the ontogenes are represented by coiled
repeats. The pattern of somatic pairing in the regions of lncRNAs Firre in different
chromosomes suggests the same inference [50].

Biophysical aspect of ontogene activity. The activity of ontogenes coming from
compacted chromosome regions suggests that the mutual spatial arrangement of the
DNA regions belonging to ontogenes is functionally significant. The studies into the
effect of lncRNAs on DNA remodeling [51–53] confirms this. Having commenced the
work with mutations in ontogenes, we encountered the cases of interaction of the
ontogenes separated by considerable distances [44, 54, 55]. The simplest case is the
interaction of the ontogenes that leads to the pairing of homologs in meiosis [44].
Note that the DNA of ontogenes in this process is in a coiled state. It is logical to
assume that the forces emerging as a result of coiling of lncRNA regions are the factor
that brings the homologs together, however, the mechanism of action of this factor is
not clear. The new genes, which undoubtedly exist, fulfill the functions that cannot be
implemented by Mendelian genes. Unlike the Mendelian genes, responsible for de
novo protein synthesis, ontogenes control the template-based reproduction of DNA
molecules as well as the reproduction of the cell itself via its division. In that case, the
new genes must possess the capabilities that the Mendelian genes lack. Otherwise, the
Mendelian genes themselves could cope with this task.
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8. Ontogenes and problems in genetics

Currently, the ontogene, similar to the gene in the early days of genetics, is still
hypothetical. The particular solutions will appear in the experiments; however, theo-
retical studies are also necessary. The specific feature of the moment is in that the
concept of ontogene is introduced after a long period when the concept of gene
represented by a protein-coding gene variant is a sole (universal) hereditary unit. The
possible existence of other kinds of genes besides the Mendelian genes have been
asserted by de Vries [56], Filipchenko [57], Timiryazev [2], Timofeev-Ressovsky in
his first interpretation of the mutations with a varying manifestation [58], and in the
hypothesis by Altukhov and Rychkov on the role of special (unchangeable) genes in
speciation [59]. These hypotheses have not been further developed because of
“objectlessness”: the experimental genetics of that time did not know any other genes
except for the Mendelian genes. The discovery of mutations in ontogenes, no matter
how “strange” they may be, changes the situation. Theoretical discussion of the
genetic problems where the concept of ontogene (or its molecular analog, lncRNA
gene) can be utilized seems most important

If we admit the existence of ontogenes, the structure of biological characters
becomes universal and simple. Each character comprises (1) the cellular basis and (2)
the proteins filling the cells. A Mendelian (simple or monogenic) character is regarded
as a virtual structure in which its cellular basis is meant to exist but does not consid-
ered, while the protein contained in it is considered. On the contrary, cellular basis of
the species-, genus-, family-level, etc. characters is considered but their protein
content is omitted.

9. Conclusions

Mutagenesis acts as an architect of the living. Theoretically, only mutations give
the possibility to (1) expand the potential of an existing biological species and (2)
create new species. Mutations in Mendelian genes actually manage to fulfill the first
task but fail in the latter [10, 60]. As has emerged, the problem has a simple solution:
in addition to Mendelian genes, the genome contains the genes belonging to another
category. Earlier, the mutations putatively belonging to this new category have
been generated for drosophila. The new mutations were named conditional and the
new genes, ontogenes. Currently, it is most possible that lncRNA genes are the
molecular analogs of ontogenes. Here, we attempt to construct the phenomenology
of conditional mutations, described earlier, into a logically arranged pattern
representing a special part of the genome composed of ontogenes. The work of
Mendelian genes on the production of proteins is unfeasible without the ontogenes.
The arguments favoring a common nature of ontogenes and lncRNAs are considered
in the paper.

The category of genes responsible for the specific outlook of a species is not visible
in the case of an intraspecific hybridization but becomes evident in distant hybridiza-
tion as the syndrome of interspecific incompatibility. The pattern of ontogene mani-
festation repeats the pattern of interspecific incompatibility. This means that the
ontogenes belong to the category of genes that determine the species' specificity. The
patterns of monstrosities and meiotic abnormalities reveal the main mission of the
ontogenes, namely, the control over construction of cell ensembles in ontogenesis.
Concurrently, they also include the Mendelian genes that control protein synthesis.
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The ontogenes are active in every living cell in a spatial aspect in the germline and
soma and in a temporal aspect, starting from the gonial divisions to the renewal of
differentiated somatic cells. Our data suggest us that an event of genome editing,
taking place in the premeiosis and involving ontogenes, precedes the formation of
every gamete. The specific features in the function of ontogenes underlie the follow-
ing characteristics untypical of the Mendelian genes: (1) dominant lethal effect; (2)
conditional effect; (3) parental inheritance; (4) decrease in fertility; and (5) integral
forms of variation referred to as individual and epigenetic variations.
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