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Preface

Metabolism is the set of life-sustaining biochemical reactions in organisms. 
Metabolites are the intermediary products of metabolism. Metabolic products have 
various functions, including fuel, structure, signaling, stimulatory and inhibitory 
effects on enzymes, the catalytic activity of their own, defense, and interactions 
with other organisms. While a primary metabolite is far more essential and directly 
involved in normal growth, development, and reproduction, a secondary metabolite, 
though not directly involved in those processes, usually has an important  ecological 
function and provides survival benefit to the organism. All life forms, namely, 
microorganisms, plants, and animals, are involved in the production of secondary 
metabolites. In-depth exploration of herbal plants, animals, and microorganisms such 
as bacteria, actinobacteria, cyanobacteria, fungi, and algae has led to the discovery 
of novel secondary metabolites. Conventional procedures with the required biotech-
nological intervention will introduce novel secondary metabolic products with high 
pharmaceutical, agricultural, industrial, and environmental values.

This book consists of an introductory overview of secondary metabolites, followed 
by two main sections: “Secondary Metabolites: General Reviews and Biotechnological 
Interventions” and “Plant Secondary Metabolites.” It includes thirteen chapters, six 
of which discuss biotechnological interventions in the production and research of 
secondary metabolites, and seven of which provide a comprehensive account of the 
secondary metabolites of plants. Chapters are contributed by authors from countries 
around the world, including Bulgaria, Canada, India, Italy, México, Nigeria, Pakistan, 
Perú, Saudi Arabia, Vietnam, and the United States.

The book is a useful resource for microbiologists, biotechnologists, biochemists, 
pharmacologists, and botanists. Students at all levels, scholars, scientists, and faculty 
members of various science disciplines will also find this book a valuable tool. We are 
thankful to all the contributors for the submission of their valuable work. We offer 
our special thanks and appreciation to Author Service Manager Ms. Marina Dusevic 
at IntechOpen for her encouragement and help throughout the publication process. 
We are also indebted to our colleagues and the management at Government Arts and 
Science College, Bharathidasan University, India.

Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja
Department of Microbiology,

Government Arts and Science College,
(Formerly Bharathidasan University Constituent College),

Affiliated to Bharathidasan University,
Perambalur, Tamilnadu, India
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Chapter 1

Introductory Chapter: Secondary 
Metabolites - An Overview
Girish Nair, Suresh Selvapuram Sudalaimuthu Raja  
and Ramasamy Vijayakumar

1. Introduction

The metabolism can be defined as the collection of all the biochemical reactions held 
in an organism. Metabolites are the intermediate products of metabolism. Metabolites 
have various functions, including fuel, structure, and signaling, stimulatory and inhibi-
tory effects on enzymes, catalytic activity of their own, defense, and interactions with 
other organisms. A primary metabolite is directly involved in normal growth, develop-
ment, and reproduction of the host cell. A secondary metabolite is not directly involved 
in those processes, but usually has an important ecological function [1]. Secondary 
metabolites are biochemical compounds with varied and sophisticated chemical struc-
tures, produced by strains of certain microbial, animal and by plant species. Products 
of secondary metabolism are that the metabolites are usually not produced during the 
phase of rapid growth (trophophase), but are synthesized during a subsequent produc-
tion stage (idiophase). Herbal plants, animals, and microorganisms such as bacteria, 
actinobacteria, cyanobacteria, fungi, and algae attracted more attention in research that 
led to the discovery of secondary metabolites. The exploration of secondary metabolites 
from various resources subsequently led to the development of drugs for the treatment 
of human diseases of microbial origin. Routine screening of natural resources will 
introduce novel secondary metabolic products with high pharmaceutical value [2].

Secondary metabolites, complex group of natural metabolic products, serve 
as defense chemicals, quorum sensing metabolites in environmental interactions, 
symbiosis, transport of metals and solutes. And in doing so, they confer selective 
advantage of survival over competitors, though their absence does not compromise 
their vegetative growth [3]. Twenty-five percent of about 1 million natural secondary 
metabolites are biologically active. Plants contribute 60% of these metabolites, and 
microorganisms form the rest, among which fungi remain major (42%) producers of 
bioactive compounds [4, 5].

2. Taxonomy of secondary metabolites

There are five main classes of secondary metabolites such as terpenoids and 
steroides, fatty-acid-derived substances and polyketides, alkaloids, nonribosomal 
polypeptides, and enzyme cofactors [6].
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2.1 Terpenoids and steroides

Terpenes are the polymers of five carbon isoprene units and considered as the 
biggest class of secondary metabolites. When terpenes get modified by different 
functional groups and oxidized methyl groups at various positions, they form terpe-
noids. Depending on the carbon units, terpenoids can be divided into monoterpenes, 
sesquiterpenes, diterpenes, sesterpenes, and triterpenes. They find use in the anti-
cancer treatment, as fragrance agent in cosmetics, and as food flavoring agent [7]. 
Steroids are diverse class of secondary metabolites and play an important physiologi-
cal and biochemical function in the living organisms in which they are found. They 
are lipophilic, low molecular weight and are derived from cholesterol, the family of 
steroids includes sterols, bile acids, a number of hormones (both gonadal and adrenal 
cortex hormones), and some hydrocarbons. A number of synthetic steroids are being 
extensively used as anti-hormones, contraceptive drugs, anticancer agents, cardiovas-
cular agents, osteoporosis drugs, antibiotics, anesthetics, anti-inflammatories, and 
anti-asthmatics. Many plant-derived sterols known as phytosterols are also used as 
dietary supplement as they are able to lower cholesterol in human body and prevent 
cancer [8].

2.2 Fatty-acid-derived substances and polyketides

A fatty acid is the carboxylic acid with aliphatic chain and is a form of energy 
reserve in the body called fats. Derivatives of fatty acid have a wide variety of 
industrial application such as plastics, lubricants, and fuels; they include hydroxy 
fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alkanes [9]. 
Polyketides (PKs) are produced by the action of polyketide synthases (PKSs) in 
animals, plants, fungi, and bacteria. These biologically active secondary metabolites 
display a high structural diversity and find many applications in treatment of vari-
ous acute and chronic diseases. Examples include antibacterial (erythromycin and 
tetracycline), antitumor (anthracycline and doxorubicin), antifungal (amphotericin 
and griseofulvin), antiparasitic (avermectin), and anti-cholesterol (lovastatin) 
drugs. The acetyl tranferease, ketosynthase, thioesterase, and other such domains 
constitute polyketides. Linkage of acyl-coenzyme A (CoA) on the acyl carrier 
protein (ACP) facilitates biosynthesis of polyketides with catalytic support from AT 
domain [10].

2.3 Alkaloids

Plants are regarded as the oldest source of this natural occurring structurally 
diverse bioactive secondary metabolite. Some of the most widely recognized 
alkaloids, such as morphine, quinine, strychnine, and cocaine, are derived 
from plants. Alkaloids are small organic molecules containing nitrogen usually 
in a ring. In plants, they are mainly involved in defense against herbivores and 
pathogens. Rapid advances in molecular biology and metabolic engineering have 
led to discovery and synthesis of alkaloids also from microbes. Alkaloids can be 
classified according to their molecular weight, such as the indole alkaloids and 
isoquinoline alkaloids (each more than 4000 compounds). Other important 
groups include tropane alkaloids (∼300 compounds), steroidal alkaloids (∼450 
compounds), and pyridine and pyrrolizidine alkaloids (respectively, ∼250 and 
570 compounds) [11].
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2.4 Nonribosomal polypeptides

They come under the class of peptide secondary metabolites produced by microor-
ganisms such as bacteria, cyanobacteria, fungi, and symbionts of higher eukaryotes. 
The nonribosomal peptides (NRPs) are synthesized by multidomain mega-enzymes 
named nonribosomal peptide synthetases (NRPSs), without the need for the cell 
ribosomal machinery and messenger RNAs. Their bioactivity and pharmaceutical 
properties can be evidenced by antibiotics (e.g., actinomycin, penicillin, cephalo-
sporin, vancomycin), cytotoxics (e.g., bleomycin), and immunosuppressants (e.g., 
cyclosporines), which have found immense importance in the clinical industry [12].

2.5 Enzyme cofactors

The analysis of the cofactors is imperative in order to gain the understanding of 
the enzyme catalyzed reactions. Enzymes are proteins that catalyze vast repertoire of 
reactions found in nature. Generally the enzymes are composed 20 amino acid resi-
dues, but some may also require additional small molecules in the active site for the 
catalysis reaction to occur, these small molecules are known as cofactors. The cofactor 
can be a metal ion (e.g., Fe+) or small organic molecule [13].

3. Functions of secondary metabolites

3.1 Secondary metabolites as competitive weapons

The mechanism of natural defense has been evolved in microorganisms, and 
they achieve this by secretion of secondary metabolites. The best example could be 
the antibiotics, which can kill or inhibit the growth of competing microorganisms. 
Studies confirm that antibiotics are also involved in germination by stimulating spore 
formation, which can inhibit or stimulate spore formation. Formation of secondary 
metabolites and spores is regulated by similar factors. Thus the secondary metabolite 
slows down germination of spores until a less competitive environment and more 
favorable conditions for growth exist. It protects the dormant or initiated spore from 
consumption by amoebae and cleans the immediate environment of competing 
microorganisms during germination [1].

3.2 Secondary metabolites as metal transporting agents

Secondary metabolites act as metal precipitating or chelating agents in plants as 
the high bioaccumulation of the toxic trace metals can lead to abiotic stress that can 
cause oxidative damage to plant cells. Metal precipitation is achieved by low-molec-
ular-weight compounds such as phenolics, amino acids, organic acids, and sugars as 
well as high-molecular-weight compounds such as mucilage and proteins in plants. In 
the rhizosphere or apoplastic space, the metals are excluded through chelation so as to 
avoid their entry into symplast. An example could be of the siderophores, which have 
high affinity for iron (Fe) and could solubilize ferric iron [14].

3.3 Secondary metabolites as agents for symbiotic relation with other organisms

In symbiotic relationship both the organisms are benefited from each other. 
The symbiotic association between soil fungi and roots is known as mycorrhizae. 
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Mycorrhizal roots can absorb much more phosphate than roots that have no sym-
biotic relationship with fungi. The fungi in turn protect the plant from damage by 
pathogens such as nematodes, Fusarium, Pythium, and Phytophthera by often using 
secondary metabolites such as antibiotics. Another example where the secondary 
metabolites mediate the symbiotic relationship is bacteria Pseudomonas, which act as 
plant growth-promoting bacteria, by colonizing the roots and producing antibiotics 
that limit the growth of other pathogenic bacteria as well as fungi [3].

3.4 Secondary metabolites as reproductive agent

Well-known sex hormones produced by fungi are trisporic acids, which are 
secondary metabolites of Mucorales. The trisporic acid was found in 1964 that caused 
enhanced carotene production in Blakeslea trispora. This was later shown to be the 
hormone that brought about zygophore production in Mucor mucedo. Zygophores 
(sexual hypae) are produced when vegetative hyphae of the two mating types of 
these heterothallic organisms approach one another. Trisporic acids are produced 
from mevalonic acid in a secondary metabolic pathway of which the early steps are 
present in both (+) and (−) sexes. Since distinct late steps are absent in these sexes, 
both strains must meet and come in contact in order to complete the pathway that 
forms trisporic acid [15]. Similarly, a secondary metabolite, sirenin, is also involved in 
sexual reproduction in Allomyces, a phycomycete by working as a chemotaxic hor-
mone that brings together the female and male gametes [16].

3.5 Secondary metabolites as differentiation effectors

Differentiation occurs during the development of an organism, which can be a 
morphological change or chemical change. Secondary metabolites released during 
this time bring about differentiation. Sporulation, which is the process of formation 
of spores from vegetative phase, is connected with production of antibiotics. This 
is supported by several evidences such as antibiotic production by all sporulating 
microorganisms, sporulation and antibiotic synthesis are induced by depletion of 
some essential nutrient, genetic links between the synthesis of antibiotics and the 
formation of spores and antibiotics are frequently inhibitory to vegetative growth of 
their producers at concentrations produced during sporulation [3].

3.6 Secondary metabolites as agents of communication between organisms

Cell-to-cell communication has been hypothesized to evolve first in the unicellular 
organisms long before the appearance of specialized (glands, neurons, immune cells, 
blood cells) cells. In microorganisms small secondary metabolites act as informational 
cues to regulate gene expression. Homoserine lactones (HLs) are synthesized from 
S-adenosylmethionine by many Gram-negative bacteria that diffuse and regulate 
their population density. HLs function in Psuedomonas aeruginosa, an opportunistic 
pathogen responsible for many hospital acquired infection. It uses two HL signaling 
systems, which combined to regulate over 300 genes. HL signaling could bring about 
drastic changes in gene expression affecting secondary metabolism, the elaboration of 
virulence factors, sporulation, and biofilm formation. Similar to this is Vibrio cholerae 
that uses autoinducers such as CAI-1 to terminate host colonization, halting biofilm 
formation and virulence factor expression. The signaling is also seen as a mechanism 
of pathogenesis in Gram-positive bacteria such as Staphylococcus aureus. During 
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infection when it enters the human body, it shows complex adaptive behavior that 
leads to changes in population density, time, and environment-specific. Part of this 
behavior is controlled by at least four two-component systems, one of which is the agr 
system, which uses a modified octapeptide in signaling [17].

4. Research on plants secondary metabolites

In the plant kingdom, more than 50,000 secondary metabolites have been dis-
covered, and they exert a wide range of effects on the plant as well as other living 
organisms. Their functions involve induction of flowering, fruit set and abscis-
sion, maintenance of perennial growth or signal deciduous behavior. Many plant 
secondary metabolites act as antimicrobials and perform the role of attractants or, 
conversely, as repellents. They are used as herbs in the traditional medicine in many 
ancient communities as plant secondary metabolites have shown to possess vari-
ous biological effects. Plant secondary metabolites are classified according to their 
chemical structures into several classes. The classes of secondary plant metabolites 
include phenolics, alkaloids, saponins, terpenes, lipids, and carbohydrates. They 
act as antibiotic, antifungal, and antiviral and therefore are able to protect plants 
from pathogens as well as serious leaf damage from the light because they contain 
important UV-absorbing compounds [18]. Further, secondary metabolites of plants 
also have ecological importance whereby they improve soil quality by influencing 
soil decomposition. Tannins and terpenes affect cycling of C and N by increasing 
N immobilization in the soil. They also defend plants from pathogens and diseases, 
attract pollinators, aid in seed dispersal, and help plants recover from injury [19].

5. Conclusion

Though numerically plants are largest contributors of secondary metabolites, 
unfathomed microbial metabolites of different ecological origin are treasure in store. 
The microbial biomolecules have several advantages over the metabolites of plant or 
animal origin, which finds many applications as briefed earlier. Microbial sources 
can be genetically modified to enhance the production of desired natural product by 
fermentation. The metabolic versatility makes microbes interesting objects for a range 
of economically important biotechnological applications. This book provides reviews 
and research articles on secondary metabolites of microbial, animal, and plant origin, 
which should benefit scientific community.
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Chapter 2

Diverse Survival Functions of
Secondary Metabolites in Nature
Ayush Mandwal

Abstract

Secondary metabolites are low molecular mass products of secondary metabolism
which are usually produced by microorganisms experiencing stringent conditions.
These metabolites are not essential for growth but serve diverse survival functions in
nature. Besides offering survival advance to the producing organisms, they have
several medicinal uses such as antibiotics, chemotherapeutic drugs, immune suppres-
sants, and other medicines which benefited human society immensely for more than a
century. This chapter provides an overview of various functions these secondary
metabolites offer in nature from single-cell organisms to multicellular organisms.
Furthermore, this chapter also discusses the underlying mechanisms behind their
diverse functions and how these are regulated and synthesized under non-viable
environmental conditions.

Keywords: secondary metabolites, antibiotics, Streptomyces, resistance/tolerence,
cluster-situated regulators

1. Introduction

Secondary metabolites are biologically active small molecules that are not required
for growth and development but which provide a competitive advantage to the pro-
ducing organism [1]. These are small organic molecules that consist of unusual chem-
ical structures which include β-lactam rings, cyclic peptides, depsipeptides containing
unnatural and non-protein amino acids, unusual sugars and nucleosides, unsaturated
bonds of polyacetylenes and polyenes, covalently bound chlorine and bromine; nitro-,
hydroxamic acids, and so on. Their enormous diversity includes 22,000 terpenoids as
well [2]. These complex molecules are commonly obtained from molds which make
17% of all antibiotics and actinomycetes make 74% [3]. The bacterial secondary
metabolites are a source of many antibiotics, chemotherapeutic drugs, immune sup-
pressants, and other medicines. Some species are relatively more prolific in secondary
metabolism, for example, strains of Streptomyces hygroscopicus produce more than 180
different secondary metabolites [4]. It is estimated that the total number of microbial
secondary metabolites so far discovered vary from 8000 up to 50,000 [5–7].

As microorganisms are rarely found in isolation, the presence of secondary metab-
olites in a microbial community exerts evolutionary pressure on both secondary
metabolite-producing and non-producing members to develop means to withstand
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them. They either use secondary metabolites to have competitive advances or support
the intra/interspecies communities against stressful environmental conditions. As
these molecules play a vital role in the survival of various microbes, biosynthesis of
these molecules is tightly regulated via various transcriptional factors which got
triggered under stringent conditions.

This chapter is dedicated to the role of secondary metabolites as antibiotics by
various species. The first section of the chapter begins with a discussion on how these
molecules are utilized by the various organisms to ensure their survival in the envi-
ronment. The second section of the chapter goes into the details of how secondary
metabolites affect the metabolism of the organism and alter their own or other’s
organism susceptibility against antibiotics. And the last section discusses how these
secondary metabolites as antibiotics are regulated and synthesized with a special focus
on Streptomyces as they are a rich source of natural antibiotics due to their prolific
secondary metabolism.

2. Secondary metabolites in nature

In recent years, the view that secondary metabolites facilitate the survival of the
producer in competition with other living species has been expressed more widely
[8, 9]. Some common arguments behind such a view are as follows: (1) Organisms that
lack an immune system are prolific producers of these compounds which act as an
alternative defense mechanism. (2) The compounds have sophisticated structures,
mechanisms of action, and complex and energetically expensive pathways which can
only exist if they provide survival advantage to the organism [10]. (3) They are
produced in nature and used in competition between microorganisms, plants, and
animals [11, 12]. (4) Biosynthetic genes of secondary metabolites are clustered, which
would only be selected for if the product conferred a selective advantage, and the
absence of non-functional genes in these clusters. (5) The presence of resistance and
regulatory genes in these clusters, and lastly by not least the non-producers have
clustering of resistance genes.

Besides providing a survival advantage to microbes, secondary metabolites with
antibacterial and antifungal properties can cause public health problems if found in
soil, straw, and agricultural products. These are usually considered to be mycotoxins,
but they are nevertheless antibiotics. And the natural production of such toxic metab-
olites is one of our major public health problems in the field and during the storage of
crops. Natural soil and wheat straw contain patulin [13] and aflatoxin is known to be
produced on corn, cottonseed, peanuts, and tree nuts in the field [14]. These toxins
can cause hepatotoxicity, teratogenicity, immunotoxicity, mutation, cancer, and
death [15].

Below list provide some of the functions of secondary metabolites with examples
found across various species from single cell microbes to multicellular organisms.

1.Agents of chemical warfare in nature

• According to Cavalier-Smith [16], secondary metabolites are most useful to
the organisms producing them as competitive weapons. Antibiotics are
more effective than macromolecular toxins such as animal venoms because
of their higher diffusibility into cells and broader modes of action and
diverse molecular structure varieties possible.
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• Microbe vs. microbe:

◦ In nature, competition between various fungi has been demonstrated in
virtually every type of fungal ecosystem including coprophilous,
carbinocolous, lignicolous, fungicolous, phylloplane, rhizosphere,
marine, and aquatic [17].

◦ Bacteria produce antibiotics when they need them for survival. For
instance, myxobacteria can grow on E. coli only if the cell density is
more than 107 myxobacteria/ml [18]. Such high cell density in the local
environment produces high concentrations of lytic enzymes and
antibiotics needed to grow on E. coli.

• Bacteria vs. amoebae:

◦ As eukaryotes cells such as amoebae, a protozoans cell, feed on bacteria
[19], bacteria found their ways to protect themselves against amoebae
and other protozoans in general. Both Serratia marcescens and
Chromobacterium violaceum bacteria produce antibiotically-active
pigments namely prodigiosin and violacein, respectively to protect
themselves from amoebae. These molecules can either encyst the
protozoa or kill them.

• Microorganisms vs. higher plants:

◦ Over 150 microbial compounds called phytotoxins have been reported
that are active against plants [20]. Several such phytotoxins (e.g.,
phaseolotoxin, rhizobitoxine, and syringomycin) show typical
antibiotic activity against other microorganisms and are thus belong to
a class of antibiotics.

◦ Plants produce antibiotics called phytoalexins after being exposed to
plant pathogenic microorganisms in order to protect themselves [21].
They are of low molecular weight, weakly active, and indiscriminate,
that is, they inhibit both prokaryotes and eucaryotes including higher
plant cells and mammalian cells.

• Microorganisms vs. insects:

◦ Certain fungi produce secondary metabolites for entomopathogenic
activity: infecting and killing insects. Beauveria bassiaria fungus
produces one such compound called bassianolide, a cyclodepsipeptide,
which elicits atonic symptoms in silkworm larvae [22]. Another
pathogen, Metarrhizium anisophae, produces the peptidolactone toxins
known as destruxins [23].

◦ Similarly, to fight back against bacterial infections, insects produce
antibacterial proteins [24]. Some of these proteins are lysozyme,
sarcotoxins, cecropins, and defensins. These proteins are either
bactericidal or bacteriostatic by nature.
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• Microorganisms vs. higher animals:

◦ It is beneficial for microbes to make fresh food as objectionable as
possible to large organisms as quickly as possible [25]. They produce
secondary metabolites such as antibiotics and toxins which are toxic to
large animals such as livestock. Thus, large animals will refuse to
consume moldy feed which ensures the availability of food sources for
various microbes.

◦ If in case, animals and plants do get infected from microbes, they
produce various peptides which kill microbes by permeabilizing their
cell membranes as a way to defend against microbial infection [26].

2.Metal transport agents

• Certain secondary metabolites can act as metal transport agents.
Siderophores (also known as sideramines) containing molecules function in
the uptake, transport, and solubilization of iron. Siderophores are complex
molecules that solubilize ferric ion which has a solubility of only 10�18 mol/
L at pH 7.4 and have an extremely high affinity for iron (Kd = 10�20–10�50).
Another group of molecules includes the ionophoric antibiotics, for
example, macrotetrolide antibiotics, which function in the transport of
certain alkali-metal ions such as potassium and affect its permeability
through the cell membranes.

• Iron-transport factors in many cases are antibiotics by nature. They are on
the borderline between primary and secondary metabolites since they are
usually not required for growth but do stimulate growth under iron-
deficient conditions. Antibiotic activity is due to the ability of these
compounds to starve other species of iron when the latter lack the ability to
take up the Fe-sideramine complex. Such antibiotics include nocardamin
[27] and desferritriacetylfusigen [28].

3. Effects of microbial secondary metabolites on antibiotic tolerance
and resistance

Secondary metabolites can bring profound variation in microbial physiology,
metabolism, and stress responses [29]. Several evidence suggest that these molecules
can modulate microbial susceptibility to commonly used antibiotics. This section
explores which types of secondary metabolites alter antimicrobial susceptibility, and
how and why this phenomenon occurs.

In a given environment, microorganisms are rarely found in isolation. Due to such
reasons, the presence of secondary metabolites in a microbial community exerts evolu-
tionary pressure on both secondary metabolite-producing and non-producing members
to develop means to withstand them. Generally, secondary metabolites alter the state of
metabolism which directly has an impact on an organism’s ability to withstand
antibiotics assault by either increasing its tolerance or making itself more resistant.

Although antibiotics tolerance and resistance are often treated in a similar manner,
they offer different abilities to the microorganism. The phenomenon of antibiotic
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tolerance is the ability of organism to survive transient antibiotic exposure
while resistance is the ability of organism to grow in the presence of antibiotics at
a given concentration [30–32]. Another generic term commonly used is antibiotic
resilience which refers to the ability of a bacterial population to be refractory
to antibiotic treatment, which can arise from an increase in tolerance and/or
resistance.

There are common modes of action through which secondary metabolites
molecules can alter antibiotic efficacy in both single-species and polymicrobial com-
munities. Specifically, secondary metabolites can regulate multidrug resistance efflux
systems, can modulate the toxicity of antibiotics through interactions with reactive
oxygen species (ROS) and can induce antibiotic tolerance to provide an overlooked
route for the evolution of antibiotic resistance.

The knowledge of such interactions between secondary metabolites and antibiotic
efficacy is beneficial as this could be applied to optimize the use of existing
antimicrobial drugs and generate targets for novel therapeutic strategies.

3.1 Induction of efflux systems

One common mechanism bacteria use to tolerate clinical antibiotic treatment is by
activation of efflux pumps that export toxins out of the cell [33, 34]. However, efflux
pumps exist long before human use of synthetic antibiotics and therefore are pre-
sumed to have originally evolved to transport other, naturally occurring, substrates,
such as secondary metabolites [35, 36]. Importantly, efflux pumps vary in their
specificity, with regard to both their regulation and their substrate affinity [37].
Therefore, it is essential to understand how the secondary metabolite interacts with
the transcriptional regulation of the efflux system, as well as which classes of drug the
efflux system can transport before one predict whether a secondary metabolite will
increase antibiotic resilience in its producer through the induction of a particular
efflux system or not. A well-known example of a secondary metabolite that affects the
efflux system is indole. Indole is a signaling molecule self-produced by E. coli that
triggers the expression of certain multidrug efflux pumps in enteric bacteria [38, 39].
It is also found that subpopulation of mutants in E. coliwhich is more resilient towards
norfloxacin and gentamicin antibiotics treatment produces high levels of indole
which give population-level resistance [40]. This behavior is characterized as a
“charity” as the subpopulation responds in favor to support the rest of the community.
It was also found that indole achieve such a role by upregulating the MdtEF-TolC
efflux system [40].

As mentioned earlier, efflux pumps are evolved to transport in general various
molecules including secondary metabolites, efflux pumps can also provide protection
against secondary metabolites that are toxic to their producers. For instance, phena-
zines are redox-active and toxic secondary metabolites produced by the Pseudomonas
aeruginosa, which activates expression of the MexGHI-OpmD efflux system via the
redox-sensing transcription factor SoxR [41–43]. In addition, phenazines also serve
other important roles both for the microbes and other species as it can increase
P. aeruginosa virulence in the lungs of patients with cystic fibrosis, or help in
protecting plants against fungal pathogens [44, 45].

A related phenomenon has been observed in the Gram-positive bacterium
Streptomyces coelicolor. This bacterium produces a natural antibiotic, actinorhodin,
that stimulates the expression of a transporter similar to those that export tetracycline
[46, 47].
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3.2 Modulation of oxidative stress

The idea of oxidative stress become well known when it was proposed that
regardless of the specific cellular targets of various antibiotic classes, bactericidal
antibiotics exert their lethal effects in part by inducing oxidative stress [48].
Although this hypothesis resulted in major controversies [49, 50], evidence
reviewed elsewhere [51] suggests that bactericidal antibiotics do impact cellular
redox states and that the resulting increase in ROS and oxidative stress can contribute
to cell death. Such phenomena relate well with secondary metabolites as they also
interface with cellular redox homeostasis and oxidative stress responses. Below three
different modes of action are discussed by which secondary metabolites can poten-
tially antagonize or potentiate the toxicity of antibiotics: upregulation of oxidative
stress response genes; direct detoxification of ROS; and increased endogenous ROS
generation.

3.2.1 Upregulation of defenses against oxidative stress

Secondary metabolites that upregulate the expression of oxidative stress responses
can prime bacterial cells for tolerance and/or resistance to antibiotics, which is similar
to the protective effects of exposure to sublethal concentrations of oxidants such as
H2O2 [52]. Among this class of metabolites, indole is a non-toxic molecule produced
by E. coli, which activates various genes such as thioredoxin reductase, DNA-binding
protein (Dps), and alkyl hydroperoxide reductases that activate only during oxidative
stress response [53]. Furthermore, the frequency of E. coli persisters can increase by at
least an order of magnitude if it is exposed to indole to three different classes
(fluoroquinolones, aminoglycosides, and β-lactams) antibiotics. In addition, deletion
of oxyR substantially diminishes this effect, which demonstrates that upregulation
of oxidative stress responses by a secondary metabolite can contribute to bacterial
persistence [53].

Another example of the secondary metabolite is pyocyanin (PYO) produced by
P. aeruginosa. PYO increases superoxide dismutase activity [54] and upregulates the
transcription of several other oxidative stress response genes, including those
encoding alkyl hydroperoxide reductases, thioredoxin reductase, catalase, and iron-
sulfur cluster biogenesis machinery [43]. Interestingly, PYO has been shown to
increase the frequency of gentamicin-resistant mutants in P. aeruginosa cultures that is
independent of drug efflux, as PYO does not upregulate aminoglycoside-transporting
efflux pumps [55]. A plausible explanation for this phenomenon is that PYO-induced
oxidative stress responses counteract ROS-related gentamicin toxicity. The reasoning
behind the explanation is as follows: (1) Gentamicin is known to promote increased
intracellular ROS levels [56, 57]. (2) Pretreating cells with oxidants can prime them to
tolerate antibiotics [52]. This consequently could decrease the rate at which sponta-
neous mutants are lost from the population [58], thus the frequency of resistant
mutants increases as observed experimentally. PYO has been demonstrated to pro-
mote the growth of P. aeruginosa in the presence of other antibiotics such a β-lactam
antibiotic carbenicillin and other aminoglycosides such as kanamycin, streptomycin,
and tobramycin [59]. These antibiotics have been shown to perturb cellular redox
states [60, 61] rather than as substrates for PYO-regulated efflux systems [55, 62].
This suggests that the observed decreases in antibiotic efficacy could be related to
PYO-induced oxidative stress responses.
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3.2.2 Detoxification of ROS

Another way to protect against antibiotic assaults of oxidative stress is by directly
detoxifying antibiotic-induced ROS by upregulating the antioxidant activity.
Ergothioneine, is one of two major sulfur-containing redox buffers in mycobacteria,
along with mycothiol which help in detoxifying ROS during the stress response. This
molecule is so important for the Mycobacterium tuberculosis that loss of ergothioneine
biosynthesis genes decreases minimum inhibitory concentrations (MICs) for various
clinical antibiotics such as rifampicin, bedaquiline, clofazimine, and isoniazid.
Additionally, loss of gene also decreases the survival rate by at least 30–60% under
treatment at the MICs compared to wild type [63].

3.2.3 Synergistic interactions between secondary metabolites and antibiotics

So far secondary metabolites have been demonstrated to decrease antibiotic effi-
cacy by attenuating oxidative stress. However, they can also amplify the toxicity of
antibiotics by increasing ROS generation. 2-heptyl-3-hydroxy-4-quinolone is one
example, also known as the Pseudomonas quinolone signal (PQS) produced by P.
aeruginosa. PQS is a redox-active molecule that possesses both antioxidant properties
and pro-oxidant activity as it can reduce not only free radicals but also metal ions.
Reduction in metal ions concentration such as iron is lethal for the cell as it facilitates
ROS formation through the Fenton reaction [64].

3.3 Interspecies antibiotic resilience

So far, we have discussed examples of how secondary metabolites affect their
producers susceptibility to antibiotics. However, secondary metabolites can also
modulate interspecies antibiotic resilience. Such study is beneficial as it will poten-
tially show how interactions among members of a polymicrobial infection might
affect antibiotic treatment outcomes [65, 66]. For example, one study has demon-
strated that indole, which is produced by E. coli, can increase antibiotic tolerance of
Salmonella enterica subsp. enterica serovar Typhimurium [38, 67]. S. Typhimurium does
not produce indole, yet it becomes more than threefold tolerant against ciprofloxacin
in the presence of exogenously added indole, as well as in the case where it is co-
cultured with indole-producing E. coli [67]. Indole induces the same OxyR-regulated
oxidative stress responses in S. Typhimurium, as in E. coli, and the deletion of oxyR
decreases tolerance against ciprofloxacin in S. Typhimuriummediated by it [67]. Thus,
indole acts like an interspecies modulators of antibiotic resilience. Besides indole,
putrescine is another secondary metabolite that acts similar to indole. For example,
Burkholderia cenocepacia produces putrescine to protect itself from polymyxin B but it
also protects its neighboring species in the co-cultures, including E. coli and P.
aeruginosa [68]. There are definitely more such secondary metabolites that exist which
have the potential of being interspecies modulators of antibiotic resilience.

Importantly, although the above examples suggest that certain secreted secondary
metabolites have the potential to raise the community-wide level of antibiotic resil-
ience in polymicrobial communities, it may not be this case always. As mentioned
earlier that secondary metabolites can be toxic or non-toxic and can increase or
decrease resilience against antibiotics, it is important to consider whether the stress
caused by the secondary metabolite is tolerable to the non-producing species. If the
molecule-caused toxicity outweighs the benefits it provides against antibiotics, the
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non-producing species would not gain a benefit. In such a case, the secondary
metabolite might even act synergistically with the clinical antibiotic [69].

4. The regulation of the secondary metabolism of Streptomyces

So far, we have discussed what different kinds of secondary metabolites exist, how
they affect cellular metabolism and help in survival in competitive and stressful
environments. This last section focuses on the factors on which the biosynthesis of
secondary metabolites is regulated. This will show how different conditions lead to the
secretion of secondary metabolites which leads to phenomena discussed in the previ-
ous two sections. As the exploration of regulation of secondary metabolites among
various species is still in its early stages except for Streptomycetes, this section will
focus on its regulatory mechanisms behind biosynthesis of secondary metabolites.

Streptomycetes and other actinobacteria are renowned as a rich source of natural
products of clinical, agricultural, and biotechnological value. Sequencing genomes of
numerous streptomycetes has revealed that they all possess the capacity to produce
multiple secondary metabolites [70, 71] implies that it can repel a large number of
competitors using either individual or combination of molecules using their synergis-
tic characteristics [72]. The genes of enzymes responsible for the production of indi-
vidual secondary metabolites are found clustered. Furthermore, these clustered genes
are commonly associated with regulatory gene/s that regulate their transcription or
resistance genes.

This section discusses some of the factors which regulate the production of
secondary metabolites in Streptomyces.

4.1 Cluster-situated regulators (CSRs)

Generally, a single regulatory gene regulates several gene clusters associated with
secondary metabolites production. This way multiple chemical signals which can
trigger activation of the regulatory gene can activate specific or multiple genes clus-
tered corresponding to secondary metabolite production. Some of the gene clustered
include the clusters for streptomycin in S. griseus and actinorhodin (ACT) in S.
coelicolor. Their corresponding transcription factors are called StrR and ActII-ORF430
respectively [73]. Both StrR and ActII-ORF430 transcription factors directly activate
the transcription of genes of the corresponding clusters that encode biosynthetic
enzymes. Moreover, evidence suggests that the cellular level of a CSR is the principal
factor that determines the level of transcription of the biosynthetic genes it targets.
This correlates closely with the level of secondary metabolite produced [74, 75]. Thus,
factors that control the production of ActII-ORF4 and StrR will ultimately regulate the
production of ACT and streptomycin respectively. Both these transcription factors are
under regulation with many activators, repressors, and inducers which are explained
well in detail here [76].

4.2 The stringent response and nutrient deprivation

Stringent response is an stress response of bacteria in reaction to amino-acid
starvation, fatty acid limitation, iron limitation, heat shock, and other stress
conditions. During stringent response, accumulation of (p)ppGpp enables bacteria to
survive sustained periods of nutrient deprivation. For several Streptomyces species,
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mutations that block the synthesis of (p)ppGpp (guanosine tetra- and penta-
phosphate) have been found to alter antibiotic production and hinder morphological
development [77]. In general, the stringent response enhances transcription of
numerous genes associated with the stationary phase of batch culture and stress
responses. Stimulation of (p)ppGpp synthesis, either by subjecting growing cultures
to amino acid starvation [78] or inducing expression of a truncated version of relA
that confers ribosome independent (p)ppGpp synthetase activity [79, 80] increases
the level of actII-ORF4 transcription and production of the corresponding antibiotics.

4.2.1 Regulation of secondary metabolism by carbon

The availability and source of carbon have a substantial effect on the production of
antibiotics and morphological development [81]; for example, glucose blocks produc-
tion of ACT by S. coelicolor [82]. Lack of carbon source triggers a stringent response
which as explained above leads to accumulation of (p)ppGpp which increases the
level of actII-ORF4 transcription and production of the corresponding antibiotics.

4.2.2 Regulation of secondary metabolism by nitrogen

Numerous studies have shown that the source of nitrogen can influence the pro-
duction of antibiotics. In the presence of sources of nitrogen that are favorable for
growth, production of many, but not all, secondary metabolites is reduced [83–85].
One interpretation of this tendency is that by supplying a good source of nitrogen, the
available carbon can be used for growth and generating biomass. Thus cell does not
experience or experience of lesser extent of the stringent condition in the presence of
suitable nitrogen source.

4.3 Upsetting of zinc and iron homeostasis

Zinc is an essential trace element and cofactor required for the structure and
function of many proteins. Being important, it is under tight regulation by Znr, a
zinc-responsive transcriptional repressor that regulates genes encoding a high-affinity
uptake system for zinc, as well as zinc-free paralogues of ribosomal proteins in many
bacteria, including streptomycetes [86, 87]. Znr also directly represses a promoter
within the cluster of coelibactin, a non-ribosomally synthesized peptide predicted to
have siderophore (metal-chelating) activity in S. coelicolor [88, 89]. AbsC, a pleiotro-
pic regulator which is required for the production of ACT and RED (chromosomally-
encoded antibiotics, the prodiginine complex RED, which is red in color), represses
promoters of the coelibactin cluster under the specific condition of low zinc [88].
Although the underlying regulatory mechanism is still unknown, under low zinc
concentration if upregulation of genes encoding a high-affinity uptake system for
zinc via Znr does not work, AbsC potentially becomes active which increases the
production of ACT and RED for antibiotics production.

Iron is another essential metal that is under tight regulation [90]. Members of the
DmdR (divalent metal-dependent) family i.e., DmdR1 and DmdR2 are the key regu-
latory components of iron homeostasis in S. coelicolor [91, 92]. The dmdR1 gene over-
laps with adm gene on the opposite strand and disruption of the overlapping gene
increases the production of RED and ACT which leads to antibiotics production [91].
Although the details of the DmdR1/Adm system remain to be uncovered, it is likely
that physiological cellular stress indirectly affects antibiotic production.
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4.4 Extracellular signaling molecules

One extracellular signaling molecule g-butyrolactones has been shown to regulate
antibiotic production in many streptomycetes cultures [93–95]. Such a mechanism is
beneficial for the community survival as extracellular signaling molecules are diffus-
ible in solid media. This way even a single actinomycete can stimulate antibiotic
production in another when grown next to each other on an agar plate [96], thus
protecting the entire community against competitive microbes.

5. Conclusions

Although secondary metabolites are not considered essential for the growth and
development of microorganisms, they serve diverse survival functions in nature.
These molecules allowed both antagonistic and symbiotic relationships between vari-
ous species from single-cell organisms to multicellular organisms. Without such rela-
tionships, the natural ecosystem whether it is soil, or lake, or forest would not be filled
with rich and diverse life forms that we find on this planet. Thus, it can be said that
secondary metabolites are as essential as primary metabolites in a environment with
multi-species communities coexisting together.
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Abstract

The chapter discusses the meaning and origin of some important classes of secondary 
metabolites such as alkaloids, terpenoids, tannins, flavonoids, saponins, glycosides, and 
phenolic compounds, etc., produced by some bacteria, fungi, or plants. Very important 
drugs that are used clinically are derived from these secondary metabolites. Several 
reports obtained in scientific journals and books written by different scientists working 
or who have worked in the fields of natural products medicine were reviewed. These dif-
ferent classes of secondary metabolites have shown activity against varied diseases, and 
compounds that are of novel structure and activity have been isolated and characterized 
from them. The chapter highlights the economic impacts of these chemical compounds 
including their role in improving human and animal health and well-being by serving as 
sources of some antibiotics, anticancer, anti-inflammatory, antifertility, antidiabetics, 
analgesics, growth promoters, etc. Secondary metabolites are also used to enhance agri-
cultural productivity, they find uses as pesticides, insecticides, and preservatives. Some 
folkloric uses of secondary metabolites chemical compounds based on reliable sources of 
information and genuine scientific investigations are highlighted.

Keywords: secondary metabolites, natural remedies, phytochemical constituents, 
bioactive compounds

1. Introduction

Metabolomics is the study of metabolites within biofluids, cells, tissues, or 
organisms [1]. Whereas collectively, metabolites and their interactions are known as 
metabolome [2].

Metabolites are small molecules produced by metabolic reactions; these molecules 
are intermediate or end products of metabolic reactions. The metabolic reactions are 
catalyzed by naturally occurring enzymes within the organisms’ cells [3]. Compounds 
derived from primary and secondary metabolism are known as primary and second-
ary metabolites, respectively.

Primary metabolites are indispensable compounds used by organisms for their 
growth, development, and reproduction; these compounds are synthesized by the cells 
as a result of metabolism during the growth phase. Primary metabolites are referred 
to as central metabolites due to their key role in maintaining normal physiological 
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processes. Primary metabolites include vitamins (B2 and B12), lactic acid, amino acids, 
polyols, alcohols such as ethanol, nucleotides, organic acids, etc. [3, 4].

The current chapter discusses the meaning and origin or sources of some important 
classes of secondary metabolites such as alkaloids, terpenoids, tannins, flavonoids, 
saponins, cardiac glycosides, phenolic compounds, etc., the economic impacts of 
secondary metabolite compounds including their role in improving human and animal 
health and well-being (as antibiotics, anticancer, anti-inflammatory, antifertility, 
antidiabetics, pain relievers, growth promoters, etc.). The chapter addresses the role of 
secondary metabolites in enhancing agricultural productivity (as pesticides, insecti-
cides, preservatives, etc.); it also discusses the important present-day drugs derived 
from secondary metabolites, as well as some important biological/pharmacological 
effects or activities of different classes of the secondary metabolites and their folkloric 
usage based on reliable sources of information and genuine scientific investigations.

1.1 The meaning and origin of important classes of secondary metabolites

Secondary metabolites also known as phytochemical constituents, bioactive 
compounds, specialized metabolites, secondary products, or toxins are organic 
compounds produced by organisms such as plants, fungi, or bacteria as a result of 
secondary metabolic processes that lead to production and accumulation of diverse 
chemical compounds known as secondary metabolites. These compounds are 
not required for primary metabolic processes by the organisms [3–5]. Secondary 
metabolites are formed toward the end of the growth phase; thus, they are not 
directly involved in the normal physiologic processes of the organism such growth 
and development as well as reproductive processes. Instead, they increase the 
organism’s survivability through mediation of ecological interaction, to the organ-
ism, this serves as a selective advantage [4, 5]. Interspecies defenses such as defense 
against herbivory by plants are part of the important roles of secondary metabolites. 
However, humans use secondary metabolites as medicines, recreational drugs, 
flavorings, pigments, etc. [6].

Secondary metabolites are classified commonly based on their vast structural 
diversity, biosynthesis, and function. According to the literature, over 2140, 000 
secondary metabolites are known; however, the main classes of secondary metabolites 
are five, which include alkaloids, terpenoids and steroids, nonribosomal polypep-
tides, polyketides and fatty-acid-derived substances, and enzyme cofactors [7].

1.2 The origin and sources of some important classes of secondary metabolites

Secondary metabolite is a term coined in 1910 by a Medicine and Physiology Nobel 
Prize laureate, Albert Kossel [8]. Friedrich Czapek, a Polish botanist, 30 years later 
described them as metabolic nitrogenous end products [9].

Secondary metabolites are produced by plants, fungi, or bacteria as well as many 
marine organisms such as snails, corals, tunicates, and sponges [10]. There are 150, 
000–200, 000 bioactive compounds derived from the plant kingdom, 50, 000–100, 
000 from animal kingdom, and 22,000–23, 000 from microbes [11].

1.3 Plant secondary metabolites

Plants are the major sources of secondary metabolites; they produced 80% of the 
known secondary metabolites occurring in nature [10]. Secondary metabolites are 
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used by carnivorous plants to attract, capture, digest, and assimilate the prey [12]. One 
of the early known plant secondary metabolites is morphine, isolated in 1804 [11].

1.4 Fungal secondary metabolites

In 1928, Alexander Fleming while working at St Mary’s Hospital in London discov-
ered the most known secondary metabolite, the penicillin. Penicillin was discovered 
experimentally from a mold, the Penicillium notatum [13, 14].

1.5 Bacterial secondary metabolites

Oligosaccharide, b-lactam, polyketide, non-ribosomal pathways, and shikimate 
are the main secondary metabolite production pathways in bacteria [15]. Although 
bacterial secondary metabolites have some beneficial effects, many are toxic to 
mammals through secretion of exotoxin, botulinum toxin secreted by Clostridium 
botulinum bacteria is a very good example [15].

1.6 The alkaloids

The name alkaloid was introduced by Carl Friedrich Wilhelm Meißner, in the year 
1819. The name was derived from Latin root alkali, rooted from Arabic word al-qalwi 
meaning plants ashes. The wide usage of the word alkaloid came after J. Oscar’s 
publication in the year 1880 in Albert Ladenburg, the chemical dictionary [16].

A large variety of organisms produced alkaloids; these chemical compounds are 
derived from plants, bacteria, fungi, and animals [17]. Morphine was the first individ-
ual alkaloid isolated in 1804 from the opium poppy plant (Papaver somniferum) [18].

1.7 The cardiac glycosides

The ancient Romans, Syrians, and Egyptians used cardiac glycosides contained in plant 
extracts for medicinal purposes, the plant extracts from Urginea maritima (Scilla), squill, 
or sea onion were used as emetics and heart tonics. African warriors in the medieval age 
used Strophanthus species as arrows head poison against their targets. Cardiac glycosides 
were established in the twentieth century as agent for the treatment of heart failure [19].

Early writings of 1250 BC mentioned Digitalis purpurea; digitalis was included 
in herbal collections used in prescription by the Welsh family physicians. The origin 
of digitalis was from the foxglove plant. A botanist and physician of English origin, 
William withering in the eighteenth century described the foxglove plant’s clini-
cal effects in a published monograph. He was the first investigator of the systemic 
bioactivity of digitalis. “An account of the Foxglove and some of its medical uses 
with practical remarks on dropsy, and other diseases” is a book authored by William 
Withering in 1785 reporting the toxicity and indications of digitalis [19].

Plant is main source of cardiac glycosides; however, bufadienolide was isolated 
from frogs and mammalian tissues that are rich sources of endogenous digitalis; this 
show that animal species are also good sources of cardiac glycosides [20].

1.8 The flavonoids

Flavonoids or bioflavonoids are yellow compounds derived from the Latin word 
Flavus, meaning yellow, their natural coloration [21]. Albert Szent-Györgyi and some 
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group of scientists in the 1930s discovered that crude yellow extracts from lemons, 
oranges, etc., were more effective at preventing scurvy than vitamin C. They referred 
to these compounds as citrin or vitamin P, which were later discovered to be hesperi-
din, neohesperidin, etc., belonging to flavonoids rather than the vitamins [22].

Flavonoids are compounds belonging to polyphenolic structural class of secondary 
metabolites. They are widely found in vegetables, fruits, flowers, wine, tea, grains, 
roots, bark, and stem [23, 24]. Flavonoid compounds are found in several parts of 
plants, they are products extracted from plants using various extraction techniques 
such as chromatography [25].

1.9 The phenolic compounds

Phenolic compounds are secondary metabolites produced by the secondary metabolic 
pathways of plants [26]. They are derived from pentose phosphate and shikimic acid of 
plants through metabolization of phenylpropanoid [27, 28]. The composition of phe-
nolic substances or polyphenols includes tannins, flavonoids, lignans, coumarins, and 
phenolic acids [26], colored anthocyanins [29]; these compounds are naturally found in 
vegetables, fruits, leaves, and roots among other products of plant origin [26, 27].

1.10 The tannins

Tannins are group of astringent and complex polyphenolic compounds found in 
plants, which can bind and precipitate proteins; the word tannin was derived from the 
usage of this compound in tanning animal hides and skins to make leather [30]; the 
term was first introduced in 1796 [31]. Commonly, tannins are found in wood, buds, 
fruits, leaves, stems, roots, seeds, and in the bark of trees [32]. Condensed tannins are 
the most abundant polyphenols, which are virtually found in plant families [33].

1.11 The terpenoids

Terpenoids or isoprenoids are modified terpenes [34, 35]; terpenoids usually contain 
additional functional group and oxygen [35]. These chemical compounds are the largest 
class of secondary metabolites representing 60% of the natural products known [36].

2. The biological activities of secondary metabolites

Unique structural diversity is provided by natural products when compared with 
standard combinatorial chemistry; these give opportunities for discovering novel lead 
compounds with low molecular weight. The world’s biodiversity evaluation of natural 
products for potential biological activity is less than 10%; thus, a lot of useful novel 
natural lead compounds await discovery [37].

Terrestrial plants are the major source of secondary metabolites; other sources 
include fungi, bacteria, as well as several marine organisms [10].

2.1 The pharmacological activity of plant-derived secondary metabolites

2.1.1 Antibacterial activity

Natural antibiotics are secondary metabolites produced by microbes that inhibit 
bacterial growth by targeting essential cellular processes such as the synthesis of the 
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bacterial cell wall, DNA/RNA, and proteins. They are not essential for the growth 
of the organism (and usually produce at the end of the exponential phase of their 
growth). They have diverse roles, such as in cellular differentiation, nutrient seques-
tration, metal transport, ecological interactions, and defense [38, 39].

Between 1935 and 1968, 12 classes of antibiotics were launched and approved 
for use as drugs. However, between 1969 and 2000, the number dropped mark-
edly, with only two classes introduced. Out of the 30 antibiotics launched between 
the year 2003 and 2015, 16 belong to natural products and their derivatives. They 
include three new classes of natural antibiotics—two actinomycete: the lipopeptide 
daptomycin in 2003 and fidaxomicin (of the tiacumicin family) in 2010. The third is 
a fungal product: retapamulin derived from pleuromutilin and approved in 2007 for 
topical use [38, 40].

Newman and Cragg reported the introduction of several natural secondary 
metabolites that have been reported to possess potent antibacterial activity including: 
anthrasil, omadacycline, dalbavacin, plazomicin, ceftaroline fasamil acetate, lefamu-
lin, sarecycline, eravacycline imi-cilast-relebactam, etc. [41].

2.1.2 Anti-inflammatory activity

Inflammation is a normal biological process that occurs as a response to microbial 
infection, chemical irritation, or tissue injury. It is usually initiated by moving the 
immune cells from blood vessels and release of mediators to the damage site. It is then 
followed by reinforcement with inflammatory cells, release of reactive oxygen species 
(ROS), reactive nitrogen species (RNS), and proinflammatory cytokines to fight the 
foreign pathogens and repairing the injured tissues. In general, normal inflammation 
is rapid and self-limiting, but unresolved and prolonged inflammation causes various 
chronic disorders. As a pathologic condition, inflammation can include a wide range 
of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovas-
cular accident, etc. [38, 42]. Aswad and coworkers reported the use of moupinamide, 
capsaicin, and hypaphorine—natural products—with high scores in their indexing 
of potential anti-inflammatory drug candidates [43]. Mona et al. also reported more 
than 15 herbs, where their anti-inflammatory effects have been evaluated in clinical 
and experimental studies including Curcuma longa, Zingiber officinale, Rosmarinus 
officinalis, Borago officinalis [42].

2.1.3 Anticancer activity

Cancer is one of the leading causes of death (second to cardiovascular diseases) in 
the world, despite the availability of wide range of anticancer drugs. The estimated 
cancer burden in the world as reported by the World Health Organization (WHO) is 
18.1 million new cases and 9.6 million deaths as at 2018 [38, 44]. Presently, research 
efforts are directed toward the discovery of natural products with anticancer poten-
tial [45]. Several secondary metabolites have been reported to possess anticancer 
potential; some of these compounds have the capacity to prevent oxidative stress and 
inflammation that causes damage to DNA, which in turn leads to carcinogenesis [45]. 
Natural products such as irinotecan, vincristine, vinblastine, etoposide, and paclitaxel 
from plants, actinomycin D and mitomycin C from bacteria as well as marine-derived 
bleomycin are widely used in the treatment of various cancers [44].

Also, fruits and vegetables are plant sources that are known to contain vitamins, 
minerals, folate, plant sterols, carotenoids, and various phytochemicals such as 
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flavonoid and polyphenols—natural product compounds that are associated with 
reduced cancer mortality and risk [46]. The critical relationship of fruit and vegetable 
intake and cancer prevention has been thoroughly documented. It has been sug-
gested that major public health benefits could be achieved by substantially increasing 
consumption of these foods [38].

Herbs and spices such as ginger, capsicum, curcumin, clove, rosemary, sage, 
oregano, and cinnamon are very rich in antioxidants due to the high content of phe-
nolic compounds and have been shown to counteract reactive oxygen species (ROS)-
mediated damage in different human cancers [47]. Many cyclic peptides and their 
derivatives obtained from marine organisms have been shown to possess anticancer, 
antimicrobial, anti-inflammatory, antiproliferative, and antihypertensive properties 
[46]. Furthermore, lactoferrin, a multifunctional protein found in bovine and camel 
milk, has also been reported to possess anticancer effect [48].

2.1.4 Antiviral activity

Natural compounds are an important source for the discovery and the develop-
ment of novel antiviral drugs because of their availability and expected low side 
effects. Naturally occurring compounds with antiviral activity have been recognized 
as early as 1940s. The search for effective drugs against human immunodeficiency 
virus (HIV) is the need of hour. Most of the work related with antiviral compounds 
revolves around inhibition of various enzymes associated with the life cycle of 
viruses. Structure-function relationship between secondary metabolites and the HIV 
enzyme inhibitory activity has been observed [38].

2.1.5 Hepatoprotective activity

Diseases of the liver have been classified as high priority areas of health care, as an esti-
mate by the World Health Organization shows approximately 500 million people of the 
world are suffering from a severe form of liver disorders that may lead to chronic hepati-
tis. Hepatic disorders can be caused by exposure to agents such as drugs, viruses, parasites, 
and toxins. Such an exposure usually may result in degeneration and inflammation of the 
liver; furthermore, it results in fibrosis and cirrhosis [49]. In addition, different chronic 
diseases such as diabetes may lead to development of hepatic clinical manifestations.

Several flavonoids such as catechin, apigenin, quercetin, naringenin, rutin, and 
venoruton are reported for their hapatoprotective activities [38]. Muhammad and 
coworkers review studies conducted on the composition, pharmacology, and nature 
of some selected plants in the light of possible mechanism deduced from experimen-
tal trials [49]. Also, a comprehensive review by Meng et al. [50], listed several plants 
and products that have been used in the prevention and treatment of chemically 
induced liver damages [50].

2.1.6 Important present-day drugs derived from plants secondary metabolites

Many drugs with wide range of pharmacological activities were derived from 
alkaloids [51]. Some of the important drugs derived from alkaloids include:

1. Quinine—antimalaria [51]

2. Morphine—analgesic [52]
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3. Codeine—analgesic, antitussive [53]

4. Ephedrine—antiasthma [51]

5. Galantamine—cholinomimetics [54]

6. Homoharringtonine—anticancer [50]

7. Quinidine—antiarrhythmic [52]

8. Vincamine—vasodilator [52]

9. Chelerythrine—antibacterial [55]

10. Piperine—antihyperglycemic [56]

11. Atropine—anticholinergic [57]

12. Pilocarpine—cholinergic agonist [58]

13. Paclitaxel—anticancer [59]

14. Ergotamine—anti-migraine [60]

15. Reserpine—antihypertensive [60]

16. Vinblastine and vincristine—anticancer [60]

17. Physostigmine—anti-mydriatic, etc. [60]

2.1.7 The pharmacological activities of cardiac glycosides

The effects of cardiac glycosides mainly for increasing heart muscle force of contrac-
tion and reducing heart rate are beneficial for treating cardiac arrhythmias and conges-
tive heart failure; cardiac glycosides have long been used to manage these ailments. The 
commonest cardiac glycosides used clinically include digoxin, digitoxin, ouabain, and 
bufalin [61]. Other forms of cardiac glycosides are antiarin, thevetin A and B, peruvo-
side, neriifolin, thevetoxin, ruvoside, theveridoside, cerberin, convallarin, convalla-
marin, convallatoxin, glucoscillarene A, proscillaridine A, scillarene A, scilliglaucoside 
and scilliphaeoside, marinobufagenin, oleandrin, folineriin, adynerin, digitoxigenin, 
marinobufagenin, telocinobufagin [62]. Among these substances, literature has also 
reported the therapeutic uses of acetyldigoxin, digitoxin, digoxin, gitoformate, gitoxin, 
lanatoside C, metildigoxin (β-methyldigoxin), ouabain (strophanthin-g), peruvoside, 
proscillaridin, strophanthin-k [63], apart from digoxin, digitoxin, ouabain, and bufalin 
earlier mentioned [61].

2.1.8 The pharmacological activities of flavonoids and phenolic compounds

From plants, over 8000 phenolic compounds have been reported [64]. 
Interestingly, flavonoids make up half of these phenolic compounds [64]. Effectively, 
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flavonoids and several other phenolic compounds have been reported to possess 
antibacterial, anti-inflammatory, antioxidants, anticancer, cardioprotective, immuno-
modulatory, and skin radioprotective effects from UV light. More so, these compounds 
are good pharmaceutical candidates for medical application [65]. Several flavonoids 
including apigenin, galangin, flavone and flavonol glycosides, isoflavones, flavanones, 
and chalcones have been shown to possess potent antibacterial activity [38].

2.1.9 The pharmacological activities of tannins

Certain carcinogenic incidences, such as esophageal cancer, have been related to 
tannins-rich foods consumption, especially the herbal tea and betel nuts. However, 
several reports showed that tannins’ carcinogenic effects are not due to tannins them-
selves but likely due to components associated with the tannins [66]. Many literatures 
revealed negative association between cancer incidences and consumption of tannins 
components and tea polyphenols, suggesting their anticarcinogenic effects [66].

The antimutagenic and antimicrobial activities of tannins have been documented. 
Tannins inhibit the growth of viruses, bacteria, yeast, and many fungi. It has also 
been reported that propyl gallate and tannic acid inhibit aquatic bacteria and food-
borne bacteria; this action is not reported for gallic acid. In food processing industry, 
catfish fillets’ shelf-life can be enhanced using the tannic acid antimicrobial property. 
The antihypertensive, hypolipidemic, coagulative, and immunomodulatory effects of 
tannins have been reported [66].

2.1.10 The pharmacological properties of terpenoids

Terpenoids being the most abundant compounds in natural products have been 
reported to possess antibacterial, antimalarial, antiviral, hypoglycemic, neuroprotec-
tive, and anti-inflammatory activities. Furthermore, literatures have also documented 
the effects of terpenoids in treating and preventing cardiovascular diseases, antioxida-
tion, immunoregulation, and promotion of transdermal absorption of substances [67].

2.2 The pharmacological activities of fungal-derived secondary metabolites

2.2.1 Some important drugs of fungal origin

2.2.1.1 Antibiotics

The beginning was the discovery of penicillin by Alexander Fleming from penicil-
lium mold; penicillin is one of the most known antibiotics in use, and the beta lactam 
antibiotics penicillin and cephalosporin were all derived from fungus [68]. Other 
antibiotics derived from fungus include alamethicin, brefeldin A, aphidicolin, citro-
mycin, fumagillin, cerulenin, eupenifeldin, fusidic acid, fusafungine, itaconic acid, 
usnic acid, helvolic acid, nigrosporin B, verrucarin A, vermiculine, etc. [68]. Tiamulin, 
retaparmulin, and valnemulin are antibiotics derived from pleuromutilin [68].

2.2.1.2 Antifungal agents

Antifungal griseofulvin is a derivative of penicillium species [69], azoxystrobin, 
echinocandins, strobilurin, micafungin, anidulafungin, and caspofungin are all 
antifungal agents originally derived from fungus [70].
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2.2.1.3 Immunosuppressive agents

Bredinin, cyclosporin, mycophenolic acid, myriocin, endocrocin, and gliotoxin are 
all immunosuppressants isolated from fungus [71].

2.2.1.4 Potential antiviral agents

Compounds from several mushrooms such as Ganoderma lucidum, Grifola 
frondose, Garnoderma colossus, Lentinus edodes, Hypsizygus marmoreus, Scleroderma 
citrinum, Cordyceps militaris, Trametes versicolor, Flammulina velutipes, Fomitopsis 
officinalis are under research for potential antiviral activities validations [72, 73].

2.2.1.5 Potential antidiabetic and antimalarial agents

Ternatin and many other fungal isolates have potential hypoglycaemic effects [74]. 
Potential antimalarial agents of fungal origin under scientific elucidations include 
antiamoebin, codinaeopsin, zervamicins, and efrapeptins [75].

2.3 The pharmacological activities of bacterial-derived secondary metabolites

Pharmaceutical agents of bacterial origin include antibiotics, immunomodulators, 
nematicides, antitumor agents, coccidiostatic agents, enzyme inhibitors, and insecti-
cides. Interestingly, Escherichia coli is used as a host in molecular biology for synthesis 
of recombinant proteins [76]. Selman Abraham Waksman, the father of antibiotics, 
discovered actinomycin; this effort was followed by the discovery of streptomycin 
in 1944 [77]. Other clinically important antibiotics derived from bacteria include 
bacitracin [78], polymyxin B [79], gentamicin [80], amphotericin b [81], tetracycline 
[82], erythromycin [83], rifamycin [84], vancomycin [82], neomycin [85], streptomy-
cin [86], and chloramphenicol [87]. Etc.

3.  The role of secondary metabolites in enhancing agricultural 
productivity

The resistance against herbivores and pathogens is a role played decisively by 
the chemical protection nature of plants, the secondary metabolites; they are plant 
features important especially for protection against a wide range of microorganisms 
such as bacteria, viruses, fungi, arthropods, herbivores, and vertebrates [88]. Soil 
decomposition is influenced by plant secondary metabolites by increasing nitrogen 
immobilization in the soil; cycling of carbon (C) and nitrogen (N) is affected by 
terpenes and tannins [89].

Exudates from plants roots contain secondary metabolites that can attract, kill, 
or deter underground microbes, herbivorous insects, and nematodes, competing 
plants and underground injuries are also inhibited [90]. Plants secondary metabolites 
contain potential toxic substances used for defense against insects; these chemical 
compounds can be utilized for design of future insecticides with multiple or specific 
targets [91]. A good example of an insecticidal compound of such nature is pyrethrin 
derived from the flowers of Pyrethrum cinerariaefolium plant; pyrethroids are the 
synthetic analogs of pyrethrin [92].
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In terms of animals’ productivity, animals that ingest forages containing different 
plants secondary metabolites get their meat and dairy products enhanced in terms of 
biochemical richness making them good for human consumption [93].

In today’s food industries, plants secondary metabolites are used extensively as 
flavoring, coloring, and texturizing agents. Preservation and anti-browning are done 
with metabolites possessing antioxidative properties [94].

4.  Folkloric usage of secondary metabolites based on reliable sources of 
information and genuine scientific investigations

The fact that animals and humans have been in existence before the advent of 
orthodox medicine is a proof that plants have been quite effective in treating diseases. 
The folkloric use of plant medicine has a long history [95]. From the earliest times, 
man acquired knowledge of the adverse and beneficial effects of plants from observa-
tions on animals. To distinguish edible from poisonous plants, grazing animals were 
observed and the plants not eaten were considered poisonous [96]. About 80% of the 
rural population today depends largely on medicinal plants for primary health care 
[97]. About 25% of all prescription drugs in developed countries are obtained directly 
or indirectly from plants [98].

Plants produce valuable organic compounds, some of which have potentials in 
treating ailments in both animals and humans [99]. Of the 252 drugs considered as 
basic and essential by the WHO, 11% are exclusively of plant origin and a significant 
number are synthetic drugs obtained from natural precursors [100]. In 1997, the 
world market for phytomedicinal products was estimated at US$10 billion [101]. This 
prompted the WHO to consider phytotherapy in its alternative or complementary 
health program. Locally produced plant medicines can be cheaper than imported 
synthetic drugs. One striking example is an herbal wound powder (Himax®) in 
Sri Lanka that was found to be as effective as an imported powder (Neomex®) and 
comparatively 80–90% cheaper [102].

The most easily accessible, affordable, and inexpensive sources of treatment in the 
primary healthcare system throughout the world are medicinal plants; there is a long 
history for the therapy of various disease conditions traditionally in various regions of 
the world [103].

Natural products’ earliest records were depicted on clay tablets from Mesopotamia 
(2600 BC) in cuneiform; there are documented evidences of the folkloric of the use 
of oils derived from Commiphora species and Cupressus sempervirens that are still in use 
today to treat inflammation, coughs, and colds [104]. The Egyptian pharmaceutical 
record “the Ebers Papyrus” (2900 BC) documented over 700 drugs of plant origins; 
these agents include infusions, gargles, ointments, and pills. The Chinese folkloric 
record books such as the Materia Medica (1100 BC) with 52 prescriptions, the Tang 
Herbal (659 AD) with 850 drugs, and the Shennong Herbal (100 BC) with 365 drugs 
provide records of natural products’ uses [104]. Theophrastus (300 BC), the Greek 
natural scientist and philosopher, is an expert in dealing with medicinal herbs, while 
Dioscorides (100 AD), the Greek physician, documented the uses and storage of 
medicinal herbs [104]. The monasteries in Germany, England, France, and Ireland 
preserved this knowledge during the Dark and Middle Western Ages. Preservation 
of the Greek and Roman knowledge was done by the Arabs. They also expanded of 
their own resources; this is done with the Indian and Chinese unfamiliar herbs to the 
Greek and Roman world [104]. In the eighth century, it was the Arabs who privately 
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own pharmacies. Avicenna, a Persian physician, pharmacist, poet, and philosopher, 
contributed a lot to the science of medicine and pharmacy through his notable work 
such as the “Canon Medicine” [104].

4.1 Some reported medicinal uses of secondary metabolites

4.1.1 Alkaloids

Alkaloids have a wide range of pharmacological effects including antimalarial 
(quinine), antiasthma (ephedrine), anticancer (homoharringtonine), vasodila-
tory (vincamine), antiarrhythmic (quinidine), analgesic (morphine), antibacterial 
(chelerythrine), and antihyperglycemic activities (e.g., piperine) [37].

4.1.2 Anthraquinones

Huang et al. [105] and other teams clearly demonstrated that anthraquinones, such 
as emodin, aloe-emodin, and rhein, inhibit the growth and proliferation of various 
cancer cells, such as lung adenocarcinoma, myelogenous leukemia, neuroblastoma, 
hepatocellular carcinoma, bladder cancer, and others through cell death and survival’s 
modulation. Several anthraquinones are able to inhibit the replication of viruses or 
even directly kill enveloped or unenveloped strains [106]. Senna, cascara, frangula, 
rhubarb, and aloe are commonly used for their laxative effects [107].

4.1.3 Flavonoids

Flavonoids have various health-promoting effects such as antioxidative, anti-inflam-
matory, anticarcinogenic, and antimutagenic. Flavonoids have antioxidant effects associ-
ated with various diseases such as Alzheimer’s disease, cancer, atherosclerosis [108].

4.1.4 Cardiac glycosides

The most important use of the cardiac glycosides is its effects in treatment of 
cardiac failure. In cardiac failure, or congestive heart failure, heart cannot pump 
sufficient blood to maintain body needs. During each heart contraction, there is an 
influx of Na+ and an outflow of K+. Before the next contraction, Na+, K+-ATPase must 
reestablish the concentration gradient pumping Na+ into the cell against a concentra-
tion gradient. This process requires energy, which is obtained from hydrolysis of ATP 
to ADP by Na+, K+-ATPase. Cardiac glycosides inhibit Na+, K+-ATPase, and conse-
quently increase the force of myocardial contraction [109].

4.1.5 Saponins

Saponins exhibit a biological role and medicinal properties such as anti-inflamma-
tory [110], antibacterial, antifungal, antiviral, insecticidal, anticancer, cytotoxic, and 
molluscicidal action [111].

4.1.6 Terpenes and steroids

Terpenes include substances such as floral fragrances, which serve as insect attrac-
tants, pine oil, growth inhibitors, plant hormones (gibberellic acid and abscisic acid), 
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and some of which are insecticidal. About 30,000 terpenes have been identified; they 
all possess repeating five-carbon isoprene units (a five-carbon ring) [112].

Artemesinin is a sequiterpene, which originated from the Chinese medicinal plant 
Quinhao (Artemisia annua). It was used to treat fever medicine for over two millennia. It 
was mentioned in the 52 Remedies recovered from the Mawangdui Tomb dating from the 
Han Dynasty 206 BC – 221 BC located in Henan Province [113]. Placitaxol (a diterpene) 
is quite effective in treating against ovarian, breast, colon, non-small-cell lung cancer, 
and malignant melanoma [114]. Terpenoids (diterpenoids, sesquiterpenoids, triterpe-
noids) and lignoids also have antiviral activities. A number of them inhibit replication 
of inhibit coronaviruses, including SARS-Corona Virus. Betulinic acid and savinin are 
competitive inhibitors of a protease (an enzyme that breaks down proteins) produced by 
the SARS-CoV 3CL virus [114]. It will be worthwhile testing the effect of these terpe-
noids on SARs-CoV 2, the cause of recent Covid-19 pandemic.

4.1.7 Alkylresorcinols

Secondary metabolites are known for their angiogenic or wound healing activity, 
new compounds such as the new alkylresorcinols isolated from the lipophilic extract of 
Urginea indica L. bulbs have been reported to possess wound healing activity following 
experimental trauma [115].

Conflict of interest

Authors declare no conflict of interest.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Secondary Metabolites: The Natural Remedies
DOI: http://dx.doi.org/10.5772/intechopen.101791

43

[1] Daviss B. Growing pains for 
metabolomics. The Scientist. 2005; 
19(8):25-28

[2] Jordan KW, Nordenstam J, Lauwers GY, 
Rothenberger DA, Alavi K, Garwood M, 
et al. Metabolomic characterization of 
human rectal adenocarcinoma with intact 
tissue magnetic resonance spectroscopy. 
Diseases of the Colon and Rectum. 
2009;52(3):520-525. DOI: 10.1007/
DCR.0b013e31819c9a2c

[3] Meštrović T. What are Metabolites?—
News Medical [Internet]. 2018. Available 
from: https://www.news-medical.net/
medical/authors/tomislav-mestrovic

[4] González-Mera IF, González- 
Falconí DE, Morera V, et al. Secondary 
metabolites in plants: Main classes, 
phytochemical analysis, and 
pharmacological activities. Revista 
Bionatura. 2019;4(4):1000-1009.  
DOI: 10.21931/RB/2019.04.04.11

[5] Návarová H, Bernsdorff F, Döring AC, 
Zeier J. Pipecolic acid, any endogenous 
mediator of defense amplification 
and priming, is a critical regulator of 
inducible plant immunity. The Plant 
Cell. 2012;24(12):512341. DOI: 10.1105/
tpc.112.103564

[6] Secondary Metabolites-Knowledge 
Encyclopedia. [Internet]. 2016. Available 
from: www.biologyreference.com 
[Accessed: May 10, 2016]

[7] McMurry JE. Organic chemistry with 
biological applications. In: Secondary 
Metabolites: An Introduction to Natural 
Products Chemistry. Stamford, USA: 
Cengage Learning Ltd; 2015. pp. 1016-1046

[8] Jones ME. Albrecht Kossel, a 
biographical sketch. The Yale Journal of 
Biology and Medicine. 1953;26(1):80-97

[9] Bourgaud F, Gravot A, Milesi S, 
Gontier E. Production of plant secondary 
metabolites: A historical perspective. 
Plant Science. 2001;161(5):839-851.  
DOI: 10.1016/S0168-9452(01)00490-3

[10] Berdy J. Bioactive microbial 
metabolites. The Journal of Antibiotics. 
2005;58(1):1-26

[11] Ramasamy V, Suresh SS. In: 
Vijayakumar R, Raja SSS, editors. 
Secondary metabolites sources and 
applications. London: Intech Open 
Access Publishers; 2018. DOI: 10.5772/
intechopen.79766

[12] Hatcher CR, Ryves DB, Millett J. 
The function of secondary metabolites 
in plant carnivory. Annals of Botany. 
2020;125(3):399-411. DOI: 10.1093/aob/
mcz191

[13] Conniff R. Penicillin: Wonder Drug 
of World War II. History Net. [Internet]. 
2017. Available from: https://www.
historynet.com/penicillin-wonder-drug-
world-war-ii.htm [Accessed: April 11, 
2020]

[14] Macfarlane G. Alexander Fleming: 
The Man and The Myth. Cambridge, 
Mass.: Harvard University Press; 1984. 
ISBN 978-0-19-281884-3

[15] Gokulan K, Khare S, Cerniglia C. 
Metabolic pathways: Production of 
secondary metabolites of bacteria. In: 
Encyclopedia of Food Microbiology. 
Amsterdam, Netherland: Academic 
Press, Elsevier Ltd., 2014. pp. 561-569. 
ISBN 978-0-12-384733-1

[16] Oscar J. Alkaloide. In: Ladenburg, 
Handwörterbuch der Chemie. Vol. 1. 
Breslau, Germany: Eduard Trewendt; 
1882. pp. 213-422

References



Secondary Metabolites - Trends and Reviews

44

[17] Le Quesne PW. Alkaloids: 
Biochemistry, ecology, and 
medicinal applications. Edited by 
Margaret F. Roberts (University of 
London) and Michael Wink (University 
of Heidelberg). Plenum Press, New York, 
NY. ISBN 0-306-45465-3. Journal of 
Natural Products. 1999;62(4):664-664. 
DOI: 10.1021/np980259j

[18] Luch A. Molecular, Clinical, and 
Environmental Toxicology. New York 
City: Springer; 2009. p. 20. ISBN 
978-3-7643-8335-0

[19] Norn S, Kruse P. Cardiac glycosides: 
From ancient history through Withering's 
foxglove to endogeneous cardiac 
glycosides. Dansk Medicinhistorisk 
Årbog. 2004:119-132. Danish

[20] El-Mallakh RS, Brar KS, Yeruva RR. 
Cardiac glycosides in human physiology 
and disease: Update for entomologists. 
Insects. 2019;10(4):102. DOI: 10.3390/
insects10040102

[21] Delage B. Flavonoids. Corvallis, 
Oregon: Linus Pauling Institute, Oregon 
State University; 2015

[22] Clemetson AB. Vitamin C.  
Vol. I. Boca Raton, Florida, United 
States: CRC Press; 2018. ISBN 
978-1-351-08601-1

[23] Burak M, Imen Y. Flavonoids, and 
their antioxidant properties. Turkiye Klin 
Tip Bil Derg. 1999;19:296-304

[24] Ovando C, Hernandez D, 
Hernandez E, et al. Chemical studies of 
anthocyanins: A review. Food Chemistry. 
2009;113:859-871

[25] Havsteen B. The biochemistry and 
medical significance of the flavonoids. 
Pharmacology & Therapeutics. 
2002;2002(96):67-202

[26] Luna Guevara ML,  
Ochoa Velasco CE, Carranza PH,  
Contreras Cortes LEU, Luna 
Guevara JJ. Composition, physico-
chemical properties, and antioxidant 
capacity of Renealmia alpinia 
(Rottb.) Maas fruit. Nutritional and 
antioxidants attributes of Renealmia 
alpinia (Rottb.) Maas fruit. Revista de la 
Facultad de Ciencias Agrarias UNCuyo. 
2018;50(2):377-385. ISSN impreso 0370-
4661. ISSN (en línea) 1853-8665

[27] Randhir R, Lin YT, 
Shetty K. Phenolics, their antioxidant 
and antimicrobial activity in dark 
germinated fenugreek sprouts in 
response to peptide and phytochemical 
elicitors. Asia Pacific Journal of Clinical 
Nutrition. 2004;v(13):295-307

[28] Lin D, Xiao M, Zhao J, Li Z, Xing B, 
Li X, et al. An overview of plant phenolic 
compounds and their importance in 
human nutrition and management of 
type 2 diabetes. Molecules. 2016;21(10): 
1374. DOI: 10.3390/molecules21101374

[29] Babbar N, Oberoi HS, Sandhu SK, 
Bhargav VK. Influence of different 
solvents in extraction of phenolic 
compounds from vegetable residues and 
their evaluation as natural sources of 
antioxidants. Journal of Food Science 
and Technology. 2014;51:2568-2575

[30] Sieniawska E, Baj T. Pharmacognosy: 
Fundamentals, Applications, and 
Strategies. Amsterdam, Netherland: 
Elsevier Science; 2017. DOI: 
10.1016/C2014-0-01794-7. ISBN 
978-0-12-802104-0

[31] Evans W.C. Trease and Evans 
Pharmacognosy. 13th ed. London: 
Baillière Tindall; 1989. pp. 386-393

[32] Serrano J, Puupponen-Pimiä R, 
Dauer A, Aura AM, Saura-Calixto F. 



Secondary Metabolites: The Natural Remedies
DOI: http://dx.doi.org/10.5772/intechopen.101791

45

Tannins: Current knowledge of food 
sources, intake, bioavailability, and 
biological effects. Molecular Nutrition & 
Food Research. 2009;53(Suppl. 2): 
S310-S329. DOI: 10.1002/mnfr.200 
900039

[33] Hättenschwiler S, Vitousek P. 
The role of polyphenols in terrestrial 
ecosystem nutrient cycling. Trends in 
Ecology and Evolution. 2000;15:238-243. 
DOI: 10.1016/S0169-5347(00)01861-9

[34] Houghton I. The Physiology of 
Cannabis Terpenes and Terpenoids—A 
Brief Overview. Elliot Barker. 2016

[35] International Union of Pure and 
Applied Chemistry. IUPAC Compendium 
of Chemical Terminology. North 
Carolina, United States: IUPAC; 2019 
(2005-2021). DOI: 10.1351/goldbook.
T06279

[36] Firn R. Nature's Chemicals: The 
Natural Products that Shaped our 
World. Oxford Scholarship Online. 
United Kingdom: Oxford University 
Press; 2010. DOI:10.1093/acprof:
oso/9780199566839.001.0001. ISBN-13: 
9780199566839

[37] Cragg GM, Newman DJ. Biodiversity: 
A continuing source of novel drug 
leads. Pure and Applied Chemistry. 
2005;77:7-24

[38] Shashank K, Abhay KP. Chemistry 
and biological activities of flavonoids: 
An overview. The Scientific World 
Journal. 2013;2013:162750. 16 pages. 
DOI: 10.1155/2013/162750

[39] Lara R. Antibiotic discovery, Labome 
the World Laboratories. Materials and 
Methods. 2018;8:2671. DOI: 10.13070/
mm.en.8.2671

[40] Conly JM, Johnston BL. Where 
are all the new antibiotics? The new 
antibiotic paradox. Canadian Journal 

of Infectious Diseases and Medical 
Microbiology. 2005;16:892058. 2 pages. 
DOI: 10.1155/2005/892058

[41] Newman DJ, Cragg GM. Natural 
products as sources of new drugs over 
the nearly four decades from 01/1981 to 
09/2019. Journal of Natural Products. 
2020;83(3):770-803. DOI: 10.1021/acs. 
jnatprod.9b01285

[42] Mona G, Sina O, Mohammad BO. 
Review of anti-inflammatory herbal 
medicines. Advances in Pharmacological 
and Pharmaceutical Sciences. 2016; 
2016:9130979. 11 pages. DOI: 10.1155/ 
2016/9130979

[43] Aswad M, Rayan M, Abu-Lafi S, 
et al. Nature is the best source of anti-
inflammatory drugs: Indexing natural 
products for their anti-inflammatory 
bioactivity. Inflammation Research. 
2018;67:67-75. DOI: 10.1007/
s00011-017-1096-5

[44] Huang M, Lu JJ, Ding J. Natural 
products in cancer therapy: Past, 
present and future. Natural Products 
Bioprospecting. 2021;11:5-13.  
DOI: 10.1007/s13659-020-00293-7

[45] Block KI, Gyllenhaal C, Lowe L, et al. 
Designing a broad-spectrum integrative 
approach for cancer prevention and 
treatment. Seminars in Cancer Biology. 
2015;35(Suppl):S276-S304

[46] Dionysia T, Işıl T, Gökhan K, 
Gökay MB, Vaso Z, Athanasia P, et al. 
Mining natural products with anticancer 
biological activity through a systems 
biology approach. Oxidative 
Medicine and Cellular Longevity. 
2021;2021:9993518. 17 pages.  
DOI: 10.1155/2021/9993518

[47] Sammar M, Abu-Farich B, Rayan I, 
Falah M, Rayan A. Correlation between 
cytotoxicity in cancer cells and free 



Secondary Metabolites - Trends and Reviews

46

radical-scavenging activity: In vitro 
evaluation of 57 medicinal and edible 
plant extracts. Oncology Letters. 
2019;18(6):6563-6571

[48] de Mejia EG, Dia VP. The role of 
nutraceutical proteins and peptides in 
apoptosis, angiogenesis, and metastasis 
of cancer cells. Cancer Metastasis 
Reviews. 2010;29(3):511-528

[49] Muhammad A, Tariq K, 
Kaneez F, Qurat ul Ain A, Muhammad O, 
Ali TK, et al. Selected hepatoprotective 
herbal medicines: Evidence from 
ethnomedicinal applications, animal 
models, and possible mechanism 
of actions. Phytotherapy Research. 
2018;32(2):199-215. DOI: 10.1002/
ptr.5957

[50] Meng X, Li Y, Li S, Gan RY, Li HB. 
Natural products for prevention and 
treatment of chemical-induced liver 
injuries. Comprehensive Reviews in Food 
Science and Food Safety. 2018;17:472-
495. DOI: 10.1111/1541-4337.12335

[51] Kittakoop P, Mahidol C, 
Ruchirawat S. Alkaloids as important 
scaffolds in therapeutic drugs for the 
treatments of cancer, tuberculosis, and 
smoking cessation. Current Topics in 
Medicinal Chemistry. 2014;14(2):239-
252. DOI: 10.2174/1568026613666131216
105049

[52] Raymond SS, Jonathan SJ, 
Watkins-Pitchford MJ. The Essence of 
Analgesia and Analgesics. Cambridge, 
Chambersburg, New York: Cambridge 
University Press; 2010. pp. 82-90. ISBN 
978-1139491983

[53] Prommer E. Role of codeine in 
palliative care. Journal of Opioid 
Management. 2010;7(5):401-406.  
DOI: 10.5055/jom.2011.0081

[54] Russo P, Frustaci A, Del Bufalo A, 
Fini M, Cesario A. Multitarget drugs 

of plants origin acting on Alzheimer's 
disease. Current Medicinal Chemistry. 
2013;20(13):1686-1693. DOI: 10.2174/ 
0929867311320130008

[55] Cushnie TP, Cushnie B, 
Lamb AJ. Alkaloids: An overview of their 
antibacterial, antibiotic-enhancing and 
antivirulence activities. International 
Journal of Antimicrobial Agents. 
2014;44(5):377-386. DOI: 10.1016/j.
ijantimicag.2014.06.001

[56] Qiu S, Sun H, Zhang AH, Xu HY, 
Yan GL, Han Y, et al. Natural alkaloids: 
Basic aspects, biological roles, and future 
perspectives. Chinese Journal of Natural 
Medicines. 2014;12(6):401-406.  
DOI: 10.1016/S1875-5364(14)60063-7

[57] Hillier K. Atropine. In: xPharm: 
The Comprehensive Pharmacology 
Reference, S.J. Enna and David B. 
Bylund, editors. Amsterdam, Netherland: 
Elsevier; 2008. pp. 1-5. ISBN 978-0-08-
055232-3. DOI: https://doi.org/10.1016/
B978-008055232-3.61267-X.

[58] De Abreu IN, Sawaya AC, 
Eberlin MN, Mazzafera P. Production 
of Pilocarpine in Callus of Jaborandi 
(Pilocarpus microphyllus Stapf). In 
Vitro Cellular & Developmental Biology. 
2005;41(6):806-811. DOI: 10.1079/
IVP2005711

[59] Fischer J, Ganellin CR. Analogue-
Based Drug Discovery. Hoboken, New 
Jersey, United States: John Wiley and 
Sons; 2006. p. 512. ISBN 9783527607495

[60] Evans WC. Trease and Evans 
Pharmacognosy. 16th ed. London, U.K.: 
W. B. Saunders Ltd; 2009. pp. 191-393

[61] Rengul CA, Irem D. In: Vinood BP, 
Rajkumar R, Victor RP, editors. Cardiac 
Glycosides and Oxidative Stress in Liver 
Cancer: The Liver Oxidative Stress and 
Dietary Antioxidants. Amsterdam, 
Netherland: Elsevier; 2018. pp. 55-61



Secondary Metabolites: The Natural Remedies
DOI: http://dx.doi.org/10.5772/intechopen.101791

47

[62] Roberts DM, Gallapatthy G, 
Dunuwille A, Chan AB. Pharmacological 
treatment of cardiac glycoside poisoning. 
British Journal of Clinical Pharmacology. 
2015;81(13):488-495. DOI: 10.1111/
bcp.12814

[63] Aronson JK. Meyler's Side Effects of 
Drugs: The International Encyclopedia of 
Adverse Drug Reactions and Interactions. 
16th ed. Vol. 7. 2015. p. 7674. eBook 
ISBN: 9780444537164. Print Book ISBN: 
9780444537171.

[64] Ahmed SI, Hayat MQ, Tahir M, 
Mansoor Q, Ismail M, Keck K, et al. 
Pharmacologically active flavonoids 
from the anticancer, antioxidant 
and antimicrobial extracts of Cassia 
angustifolia Vahl. BMC Complementary 
and Alternative Medicine. 2016;16:460

[65] Andreu L, Nuncio-Jáuregui N, 
Carbonell-Barrachin ÁA, Legua P, 
Hernández F. Antioxidant properties and 
chemical characterization of Spanish 
Opuntia ficus-indica Mill. cladodes and 
fruits. Journal of the Science of Food and 
Agriculture. 2018;98:1566-1573

[66] Chung KT, Wong TY, Wei CI, 
Huang YW, Lin Y. Tannins and human 
health: A review. Critical Reviews in Food 
Science and Nutrition. 1998;38(6):421-
464. DOI: 10.1080/10408699891274273

[67] Yang W, Chen X, Li Y,  
Guo S, Wang Z, Yu X. Advances in 
pharmacological activities of terpenoids. 
Natural Product Communications. 
2020;15(3):1-13. DOI: 10.1177/ 
1934578X20903555

[68] Broadbent D. Antibiotics produced 
by fungi. The Botanical Review. 
1966;32(3):219-242. DOI: 10.1007/
BF02858660

[69] Block SS. Disinfection, Sterilization, 
and Preservation. Philadelphia, United 

States: Lippincott Williams and Wilkins; 
2001. p. 631. ISBN 978-0683307405

[70] Richardson MD, Warnock DW.  
Fungal Infection Diagnosis and 
Management. Hoboken, New Jersey, 
United States: John Wiley and Sons; 2003. 
ISBN 978-1-4051-15780

[71] Kim H, Baker JB, Park Y, Park HB, 
DeArmond PD, Kim SH, et al. Total 
synthesis, assignment of the absolute 
stereochemistry, and structure-activity 
relationship studies of subglutinols A 
and B. Chemistry: An Asian Journal. 
2010;5(8):1902-1910. DOI: 10.1002/
asia.201000147

[72] Pradeep P, Manju V, Ahsan MF. 
In: Agrawal DC, Dhanasekaran M, 
editors. Antiviral Potency of Mushroom 
Constituents, Medicinal Mushrooms: 
Recent Progress in Research and 
Development. Singapore: Springer; 2019. 
pp. 275-297. DOI: 10.1007/978-981-13-
6382-5_10. ISBN 9789811363825

[73] Friedman M. Mushroom 
polysaccharides: Chemistry and 
antiobesity, antidiabetes, anticancer, and 
antibiotic properties in cells, rodents, 
and humans. Food. 2016;5(4):80.  
DOI: 10.3390/foods5040080

[74] Lo HC, Wasser SP. Medicinal 
mushrooms for glycemic control in 
diabetes mellitus: History, current 
status, future perspectives, and unsolved 
problems (review). International 
Journal of Medicinal Mushrooms. 
2011;13(5):401-426. DOI: 10.1615/
intjmedmushr.v13.i5.10

[75] Nagaraj G, Uma MV, Shivayogi MS, 
Balaram H. Antimalarial activities 
of peptide antibiotics isolated from 
fungi. Antimicrobial Agents and 
Chemotherapy. 2001;45(1):145-149.  
DOI: 10.1128/aac.45.1.145-149.2001



Secondary Metabolites - Trends and Reviews

48

[76] Lancini G, Demain AL. Bacterial 
Pharmaceutical Products. In: 
Rosenberg E, DeLong EF, Lory S, 
Stackebrandt E, Thompson F, editors. 
The Prokaryotes. Berlin, Heidelberg: 
Springer; 2013. pp. 257-280.  
DOI: 10.1007/978-3-642-31331-8_28

[77] Waksman SA. The farther of 
antibiotics. The Journal of Biological 
Chemistry. 2004;279(48):e7

[78] Johnson BA, Anker H, Meleney FL. 
Bacitracin: A new antibiotic produced 
by a member of the B. subtilis group. 
Science. 1945;102(2650):376-377.  
DOI: 10.1126/science.102.2650.376

[79] Bennett JE, Dolin R, Blaser MJ, 
Mandell GL. Mandell, Douglas, and 
Bennett's Principles and Practice of 
Infectious Diseases E-Book. Amsterdam, 
Netherlands: Elsevier Health Sciences; 
2009. p. 469. ISBN 9781437720600

[80] Weinstein MJ, 
Luedemann GM, Oden EM, Wagman GH, 
Rosselet JP, Marquez JA, et al. Gentamicin, 
a new antibiotic complex from 
Micromonospora. Journal of Medicinal 
Chemistry. 1963;6(4):463-464.  
DOI: 10.1021/jm00340a034

[81] Walker SR. Trends and Changes in 
Drug Research and Development. Berlin, 
Heidelberg, Germany: Springer Science 
& Business Media; 2012. p. 109. ISBN 
9789400926592

[82] Nelson ML, Levy SB. The history 
of the tetracyclines. Annals of the 
New York Academy of Sciences. 
2011;1241(Antimicrobial Therapeutics 
Review):17-32. DOI: 10.1111/j.1749-
6632.2011.06354.x. ISSN 0077 8923

[83] World Health Organization. World 
Health Organization Model List of 
Essential Medicines: 21st List 2019. 
Geneva: World Health Organization; 

2019. hdl: 10665/325771. WHO/MVP/
EMP/IAU/2019.06

[84] Sensi P. History of the development 
of rifampin. Reviews of Infectious 
Diseases. 1983;5(Suppl. 3):S402-S406. 
DOI: 10.1093/clinids/5.supplement_3.
s402

[85] Butler MS, Hansford KA, 
Blaskovich MA, Halai R, Cooper MA. 
Glycopeptide antibiotics: Back to the 
future. The Journal of Antibiotics. 
2014;67(9):631-644. DOI: 10.1038/
ja.2014.111

[86] Woodruff HB, Selman A. Waksman, 
winner of the 1952 Nobel Prize for 
physiology or medicine. Applied 
and Environmental Microbiology. 
2014;80(1):2-8. DOI: 10.1128/
AEM.01143-13

[87] Pongs O. Chapter 3: 
Chloramphenicol. In: Hahn FE, editor. 
Mechanism of Action of Antibacterial 
Agents. Antibiotics Volume V Part 1. 
Berlin, Heidelberg: Springer Berlin 
Heidelberg. 1979. pp. 26-42. ISBN 
978-3-642-46403-4

[88] Wink M. Plant breeding: Importance 
of plant secondary metabolites for 
protection against pathogens and 
herbivores. Theoretical and Applied 
Genetics. 1988;75:225-233. DOI: 10.1007/
BF00303957

[89] Smolander A, Kanerva S, Adamczyk B, 
Kitunen V. Nitrogen transformations in 
boreal forest soils—does composition 
of plant secondary compounds give any 
explanations? Plant and Soil. 2012;350:1-
26. DOI: 10.1007/s11104-011-0895-7

[90] Rasmann S, Köllner TG,  
Degenhardt J, Hiltpold I, Toepfer S,  
Kuhlmann U, et al. Recruitment of 
entomopathogenic nematodes by 
insect-damaged maize roots. Nature. 



Secondary Metabolites: The Natural Remedies
DOI: http://dx.doi.org/10.5772/intechopen.101791

49

2005;434:732-737. DOI: 10.1038/
nature03451

[91] Rattan RS. Mechanism of action 
of insecticidal secondary metabolites 
of plant origin. Crop Protection. 
2010;29(9):913-920. DOI: 10.1016/j.
cropro.2010.05.008

[92] Ensley SM. Pyrethrins and 
pyrethroids, In: Ramesh C. Gupta, 
editor. Veterinary Toxicology. 3rd ed. 
Cambridge, Massachusetts, United 
States: Academic Press; 2018. pp. 515-
520. DOI: 10.1016/B978-0-12-811410-
0.00039-8. ISBN 9780128114100

[93] Clemensen AK, Provenza FD, 
Hendrickson JR, Grusak MA. Ecological 
implications of plant secondary 
metabolites—phytochemical diversity 
can enhance agricultural sustainability. 
Frontiers in Sustainable Food 
Systems. 2020;4:233. DOI: 10.3389/
fsufs.2020.547826

[94] Kallscheuer N, Classen T, Drepper T, 
Marienhagen J. Production of plant 
metabolites with applications in 
the food industry using engineered 
microorganisms. Current Opinion in 
Biotechnology. 2019;56:7-17.  
DOI: 10.1016/j.copbio.2018.07.008

[95] Shaw D. Risks or remedies? 
Safety aspects of herbal remedies. 
Journal of Royal Society of Medicine. 
1998;91:294-296

[96] Nwude N, Ibrahim MA. Plants 
used in traditional veterinary medical 
practice in Nigeria. Journal of Veterinary 
Pharmacology and Therapeutics. 
1980;3:261-273

[97] Akinyemi B. Recent concept in 
plaque formation. Journal of Clinical 
Pathology. 2000;30:13-16

[98] Newman DJ, Cragg G, Snader KM. 
The influence of natural products upon 

drug discovery. Natural Product Reports. 
2000;17:175-285

[99] Ghani A. Introduction to 
Pharmacognosy. 1st ed. Zaria, Nigeria: 
Ahmadu Bello University Press; 1990.  
p. 58

[100] Rates SMK. Plants as source of 
drugs. Toxicon. 2001;39:603-613

[101] Soldati F. The registration of 
medicinal plant products, what quality 
of documentation should be required? 
The industrial point of view. In: World 
Congress on Medicinal and Aromatic 
Plants for Human Welfare 2, Abstracts. 
Mendoza: ICMPA/ISHS/SAIPOA; 1997. 
p. L-48

[102] Anjaria JV. Traditional (indigenous) 
veterinary medicine project. Final report, 
Livestock evelopment project. Sri Lanka 
Asian Development Bank. Gannoruwa, 
Peradeniya: Sri Lanka Veterinary 
Research Institute; 1986. pp. 15-24

[103] Umashankar DD. Plant secondary 
metabolites as potential usage in 
regenerative medicine. The Journal of 
Phytopharmacology. 2020;9:270-273

[104] Rauf A, Jehan N. The folkloric use 
of medicinal plants in public health care. 
In: Public Health. Madrid, Spain: SM 
group; 2015. pp. 1-12. Available from: 
www.smgebooks.com

[105] Huang Q, Lu G, Shen HM, 
Chung MCM, Ong CN. Anti-cancer 
pr operties of anthraquinones from 
rhubarb. Medical Research Review. 
2007;27:609-630. DOI: 10.1002/
med.20094

[106] Li S, Yang WTC, Lai CC, Huang SH, 
Liao JM, Wan L, et al. Antiviral activity 
of aloe-emodin against influenza A 
virus via galectin-3 up-regulation. 
European Journal of Pharmacology. 



Secondary Metabolites - Trends and Reviews

50

2014;738:125-132. DOI: 10.1016/j.
ejphar.2014.05.028

[107] International Agency for Research 
on Cancer (IARC). Some Traditional 
Herbal Medicines, Some Mycotoxins, 
Naphthalene and Styrene. In: IARC 
Monographs on the Evaluation of 
Carcinogenic Risks to Humans. Vol. 82. 
Lyon, France: IARC Press; 2002

[108] Metodiewa D, Kochman A, 
Karolczak S. Evidence for antiradical 
and antioxidant properties 
of four biologically active N, 
N,diethylaminoethyl ethers of flavanone 
oximes: A comparison with natural 
polyphenolic flavonoid (rutin) action. 
Biochemistry and Molecular Biology 
International. 1997;41:1067-1075

[109] Farnsworth NF. Biological and 
phytochemical screening of plants. 
Journal of Pharmaceutical Sciences. 
1966;55:225-276

[110] Just ML, Recio MC, Giner RM, 
Cuéllar MJ, Marĩez S, Bilia AR,  
et al. Anti-inflammatory activity 
of unusual lupane saponins from 
Bupleurum fruticescens. Planta Medica. 
1998;64(5):404-407

[111] Abed El Aziz MMA, Ashour AS, 
Melad ASG. A review on saponins 
from medicinal plants: Chemistry, 
isolation, and determination. 
Journal of Nonomedicine Research. 
2019;7(4):282-288

[112] Kaiser R. The Scent of Orchids: 
Olfactory and Chemical Investigations. 
Basel: Editiones Roche; 1993

[113] Harper DJ. Early Chinese Medical 
Literature: The Mawangdui Medical 
Manuscripts. London: Kegan Paul Intern; 
1998

[114] Evangelista LF (managing editor). 
MIMS Annual. 1995. p. 1082

[115] Mikail HG, Karvouni H, Kotsiou A,  
Tesseromatis C, Magiatis P. New 
alkylresorcinols from a lipophilic extract 
of Urginea indica L. bulbs showing 
experimental trauma healing activity. 
Fitoterapia. 2015;101:41-45



51

Chapter 4

Secondary Metabolites from 
Natural Products
Stella Omokhefe Bruce

Abstract

Natural products are substances that are confined from living organisms, they 
are in the form of primary or secondary metabolites. Secondary metabolites are 
compounds with varied chemical structures, produced by some plants and strains 
of microbial species. Unlike primary metabolites (nucleotides, amino acids, carbo-
hydrates, and lipids) that are essential for growth, secondary metabolites are not. 
Secondary metabolites are produced or synthesized during the stationary stage. In 
this chapter, we will discuss secondary metabolites from natural products synthesized 
mainly by plants, fungi, and bacteria. Plants synthesize a large diversity of secondary 
metabolites; plant secondary metabolites are split into four groups namely alkaloids, 
phenolic compounds, terpenoids, and glucosinolates. Several classes of fungal and 
bacterial secondary metabolites, their sources, and pharmacological uses associated 
with the secondary metabolites are also discussed. Therefore, several classes of sec-
ondary metabolites are responsible for the biological and pharmacological activities 
of plants and herbal medicines.

Keywords: secondary metabolites, natural products, alkaloids, phenolic compounds, 
terpenes

1. Introduction

Secondary metabolites are natural products synthesized mainly by plants, fungi 
and bacteria. Secondary metabolites are molecules with low molecular weight and 
various biological activities and chemical structures [1]. Secondary metabolites are 
also called specialized metabolites; they generally mediate ecological interactions by 
increasing their ability to survive [2]. Secondary metabolites function as a defense 
against herbivores and other interspecies in plants; and it was first established by 
A. kossel in 1910, and was discovered 20 years later as an end product of nitrogen 
metabolism by Friedrich Czapek a Botanist [3].

2. Plant secondary metabolites

Plants are capable of manufacturing diverse types of organic compounds 
which are grouped into primary and secondary metabolites [3]. Some secondary 
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metabolites are phenylpropanoids or cinnamic acids, which protect plants from UV 
 damage [4]. Since ancient times, the plant secondary metabolite’s biological effects 
in humans have been known. The herb Artemisia annua contains Artemisinin, which 
is widely used in herbal or traditional medicine. Plant secondary metabolites can 
be divided into four major classes: alkaloids, phenolic compounds, terpenes, and 
 glucosinolates [5, 6].

2.1 Alkaloids

Plants are natural products and the oldest source of alkaloids, examples of the 
most widely recognized alkaloids are morphine, quinine, strychnine, and cocaine [7]. 
Alkaloids are present as water-soluble salts of organic acids, esters, tannins (Cinchona 
bark) or in plant tissues [7, 8].

Most alkaloids are isolated in the form of crystalline, non-odorous, nonvolatile 
and amorphous compounds, low molecular weight alkaloids, such as arecoline and 
pilocarpine, non-oxygen atom alkaloids such as sparteine and nicotine occur in the 
liquid form, these are all from plant matrices. Majority of alkaloids are colorless with 
a bitter taste, apart from colchicine and berberine. Alkaloids are derived from plant 
sources and a diverse group of nitrogen-containing basic compounds, which contain 
one or more nitrogen atoms. Chemically they are heterogeneous. Based on chemical 
structures, they are classified into two broad categories [9]:

Examples of plants with alkaloids include, Datura stramonium, Atropa belladonna, 
Erythroxylum coca, Solanaceae (nightshade) plant family, Papaver somniferum, and 
Catharanthus roseus [9].

Alkaloids (about 20,000) are isolated from plants, but it have also been found in 
microorganisms, marine organisms such as algae, dinoflagellates, and pufferfish, and 
terrestrial animals such as insects, salamanders, and toads [10].

Classification based on the botanical origin of the alkaloids, their Sources and 
pharmacological properties are listed below (Table 1). For example., Papaver (opium)
alkaloids, Cinchona alkaloids, Rauvolfia alkaloids, Catharanthus alkaloids, Strychnos 
alkaloids, Ergot alkaloids, cactus alkaloids, and Solanum alkaloids [10], while the 
structures of some alkaloids are shown in Figure 1.

2.2 Phenolic compounds

Plant secondary metabolism produces phenolic compounds with chemical struc-
tures of one hydroxyl aromatic ring. These phenolic compounds are classified based 
on their carbon chain [11]. Phenolic compounds are found in plant tissues, fruits and 
vegetables and are also ubiquitously distributed phytochemicals. Phenolic compounds 
are synthesized through phenylpropanoid and shikimic acid pathways [12]. Phenolic 
compounds possess numerous bioactive properties and health-protective effects, 
although they are not nutrients, therefore postharvest treatments have been used to 
enhance or preserve the phenolic compounds in fruits and vegetables [12]. Phenolic 
compounds possess an aromatic ring with one or more hydroxyl substituents that can 
be divided into several classes, which are common chemical structures essential for 
health benefits [13].

Plant materials like (Tropical Root and Crops) contain two classes of phenolic 
compounds as hydroxybenzoic acids and hydroxycinnamic acids. Phenolic com-
pounds are present in Nigerian Centaurea perrottetii DC. [family COMPOSITAE] 
and other related genera (Cheirolophus, Rhaponticoides, and Volutaria) [14].
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The phenolic compounds found in plants are represented in Table 2, while the 
categories of phenolic compounds and their representative compounds are shown in 
Figure 2. Phenolic compounds survive in plant material, in either a soluble or a bound 
form [15, 16].

2.3 Terpenoids

Terpenes are a unique group of hydrocarbon-based natural products whose 
structures are derived from isoprene. Terpenoid secondary metabolites occur in 
plant tissue types often secured in secretory structures [17]. Over 30,000 members 
of terpenes are in an enormous class of natural products, they have been used for a 
broad variety of purposes including medicine, flavoring and perfume [18]. Terpenes 
as a broad group with ecological roles, that exhibit a range of deadly to entirely edible 
toxicity, which include antimicrobial properties and other properties [19, 20].

Plants and flowering plants (angiosperms) subdivisions have colonized the major-
ity of the terrestrial surface, courtesy of rich levels of specialization and the relation-
ships with other organisms [21].

Terpenes are important plant metabolites that include substances like floral 
fragrances that serve as plant hormones (gibberellic and abscisic acid), growth inhibi-
tors, insect attractants, pine oil, and insecticides [22].

Terpenoids or isoprenoids are high in plants where many can be considered 
secondary metabolites and have fundamental roles in the metabolism of all organisms 
[23]. Terpenoid secondary metabolism in plants began with the recruitment of genes 

Alkaloid Source Properties

Ajmaline Rauvolfia serpentina Antiarrhythmic, antihypertensive

Caffeine Coffea arabica Stimulant, insecticide

Camptothecin Camptotheca acuminata Antineoplastic

Cocaine Erythroxylon coca Analgesic, narcotic, local anesthetic

Codeine Papaver somniferum Analgesic, antitussive

Emetine Uragoga ipecacuanha Antiamoebic, expectorant, emetic

Hyoscyamine Atropa belladonna and others Anticholinergic

Morphine P. somniferum Analgesic, narcotic

Nicotine Nicotiana tabacum Stimulant

Pilocarpine Pilocarpus jaborandi Cholinergic

Quinidine Cinchona spp. Antiarrhythmic

Quinine Cinchona spp. Antimalarial

Reserpine R. serpentina Tranquilizer

Scopolamine Hyoscyamus niger and others Sedative, anticholinergic

Strychnine Strychnos nux-vomica Stimulant, poison

Taxol Taxus brevifolia Antineoplastic

Vinblastine and vincristine Catharanthus roseus Antineoplastic

Table 1. 
Spurces and pharmacological uses of selected plant-derived alkaloids.
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from primary metabolism [24] and accelerated due to the proliferation of cytochrome 
P450 and terpene synthase gene families in the genomes of plants [25].

Terpenoids play various physiological and ecological functions in plant life 
and human through direct and indirect plant defenses, because of their enormous 
applications in the pharmaceutical, food and cosmetics industries [26]. Examples 
of terpenoids from plant species are 1). Artemisinin, present in A. annua, Chinese 
wormwood. 2). Tetrahydrocannabinol, present in Cannabis sativa, cannabis. 3). 
Azadirachtin, present in Azadirachta indica, the (Neem tree). 4). Saponins, glycosyl-
ated triterpenes present in Chenopodium quinoa, quinoa [27, 28].

2.4 Glucosinolates

The pungent smell of plants (mustard, cabbage, and horseradish) is due to 
mustard oils produced from glucosinolates [29]. Glucosinolates are biosynthesized 
from amino acids, which consists of three glucosinolate subtypes (aliphatic, indole 

Figure 1. 
Structures of some alkaloids. Note that the structures of morphine and codeine are based on the same skeleton, but 
are decorated with different functional groups in the position represented by ‘R’. In morphine, this group is −OH, 
while in codeine it is CH2O. Similarly, vinblastine and vincristine are based on the same skeleton, but differ in the 
nature of the R-group, which for vinblastine is −CH3 and for vincristine is −CHO.
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Polyphenolic Compounds Example Fruit Source

Phenolic acids Hydroxycinnamic acids
Caffeic acid
Chlorogenic acid
Ferulic acid
Sinapic acid
Caftaric acids
Neochlorogenic acid
p-Coumaric acid

Blackberry, raspberry, strawberry, 
blackcurrant, blueberry, cranberry, 
pear, sweet cherry, apple, orange, 
grapefruit, lemon, and peach

Hydroxybenzoic acids
Ellagic acid
Gallic acid

Strawberry, raspberry, grapes, longan 
seed, and pomegranate

Flavonoids Flavonols
Myricetin
Quercetin
Kaempferol
Isorhamnetin

Apples, apricots, grapes, plums, 
bilberries, cranberries, olive, 
elderberries, currants, cherries, 
blackberries, and blueberries

Flavanones
Naringenin
Hesperetin

Lemon, orange, grapefruit, and 
tangerine

Flavones
Apigenin
Luteolin
Tangeretin
Nobiletin

Citrus fruits and pear

Flavan-3-ols
(+)-Catechin
(−)-Epicatechin
(−)-Epicatechin 3-gallate
(−)-Epigallocatechin-3-gallate
(+)-Gallocatechin
(−)-Epigallocatechin
Procyanidins
Prodelphinidins

Apples, apricots, grapes, peaches, 
nectarines, raspberries, cherries, 
blackberries, blueberries, cranberries, 
pears, plums, and raisins

Anthocyanins
Cyanidin 3-galactoside
Cyanidin 3-glucoside
Cyanidin 3-arabinoside
Cyanidin 3-xyloside Malvidin
Delphinidin
Pelargonidin

Blackberries, blackcurrant, blueberries, 
black grape, elderberries, strawberries, 
cherries, plums, cranberry, 
pomegranate, and raspberry

Dihydrochalcones
Phloretin
Phloridzin

Apple

Stilbenes Resveratrol
trans-Resveratrol

Grapes

Tannins Catechin polymers
Epicatechin polymers
Ellagitannins Proanthocyanidins
Tannic acids

Grape seed/skin, apple juice, 
strawberries, raspberries, 
pomegranate, walnuts, peach, 
blackberry, and plum

Lignans Secoisolariciresinol
Matairesinol

Pear

Table 2. 
Selected phenolic compounds found in plants.
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and aromatic glucosinolates) that have their corresponding precursors. Aliphatic 
glucosinolates are derived from isoleucine, alanine, valine, methionine, and leucine. 
Indole and aromatic glucosinolates are obtained from phenylalanine or tyrosine and 
tryptophan. Examples of the three classes of glucosinolates represented by 3methyl-
sulfinylpropyl glucosinolate; indol3ylmethyl glucosinolate; and benzyl glucosinolate 
in Figure 3.

Glucosinolates are responsible for the pungent properties present in mustard, 
rucola, horseradish, cruciferous vegetables, and nasturtium and they are sulfur and 
nitrogen-containing glycosides, which protect against carcinogenesis [30].

The glucosinolates of sulforaphane (Glucoraphanin) present in broccoli, cab-
bage, and cauliflower (cruciferous vegetables) are responsible for protection against 
carcinogenesis. The Brown (Brassica juncea), white (Brassica alba) and black (Brassica 
nigra) mustards are examples of mustard seed with the family Brassicaceae [31, 32].

Secondary metabolites in plants (glucosinolates, isothiocyanates, S-methyl 
cysteine, allyl sulfurs, phytates, phytoestrogens) likely to protect against cancers, and 
antioxidant properties (phenolic compounds, flavonoids) [32].

Isothiocyanates are present in cruciferous vegetables, which is the product of the 
degradation of glucosinolates. S-methyl cysteine is a sulfur-containing phytochemicals 
found in all brassica vegetables [33, 34].

Figure 2. 
Categories of phenolic compounds.
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Glucosinolates contain metabolites found in the plant Arabidopsis thaliana. The 
strong taste of foods (horseradish, wasabi, and mustard) is as a result of glucosino-
lates [35, 36].

Over 130 glucosinolate compounds have been identified in plants, and one way 
that they vary is by the amino acid precursor that is incorporated during glucosino-
lates biosynthesis [37].

3. Fungal secondary metabolites

Fungi are eukaryotic organisms that can utilize various solid substrates of their 
biochemical and biological evolution and are also known to inhabit almost all ecologi-
cal niches of the Earth. Some of the solid substrates utilized by fungi are decaying 
and dead material, such as live plants (endophytic, parasitic, and mycorrhizal fungi), 
lichens (lichenicolous and endolichenic fungi), insects (entomopathogenic fungi) 
and herbivore dung (saprophytic and coprophilous fungi). A characteristic feature of 
many of these fungi (filamentous growth and complex morphology), is their ability 
to produce secondary metabolites which are useful in pharmaceutical, agrochemical 
industries and food with different biological activities [38, 39].

Figure 3. 
Glucosinolates.
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In the production of secondary metabolites which occurs after fungal growth has 
stopped because of nutrient limitations but an abundant carbon source available, it 
is then possible to manipulate their formation. Some endophytic fungi can produce 
secondary metabolites known from plants. Examples include production paclitaxel 
(Taxol®) and camptothecin, by Taxomyces andreanae and Nothapodytes foetida, 
respectively, and a synthetic precursor of an anticancer drug, podophyllotoxin, by 
Phialocephala fortinii [39].

The several classes of fungal secondary metabolites are polyketides (aflatoxin 
and fumonisins), nonribosomal peptides (sirodesmin, peramine, siderophores) 
and terpenes (T-2 toxin, deoxynivalenol (DON)), indole terpenes (paxiline and 
lolitrems) as represented in Figure 4. Polyketides are building blocks of natural 
products and are the largest group of metabolites occurring in their greatest num-
ber. They are the most sought-after molecules because of their wide spectrum of 
activities (clinical, industrial and economical activities). Non-ribosomal peptides 
are catalyzed without mRNA template by a complex enzyme called Nonribosomal 
peptide-synthetase (NRPS) enzymes. The peptide is modified by accessory enzymes 
similar to polyketides and often includes noncanonical amino acids. Nonribosomal 
peptide-synthetase (NRPS) enzymes include B-lactam antibiotics, cyclosporine A 
and echinocandin [40, 41].

The first FDA-approved secondary metabolite was Lovastatin, to lower cholesterol 
levels. In oyster mushrooms [42], red yeast rice [43], and Pu-erh [44], Lovastatin 
occurs naturally in low concentrations. Their mode of action is inhibition of HMG-
CoA reductase, and it is the enzyme responsible for converting HMG-CoA to 
mevalonate.

Fungal secondary metabolites are dangerous to humans. The fungi Claviceps pur-
purea, a member of the ergot group, typically growing on rye, when ingested results 
in the death of humans. In C. purpurea, a build-up of poisonous alkaloids lead to 
spasms and seizures, Itching, diarrhea, psychosis or gangrene and paresthesias [45].

Fungi are organisms that produce a wide range of natural products often called 
secondary metabolites; many natural products are of agricultural, medical, and 

Figure 4. 
Several classes of fungal secondary metabolites; a) Polyketides b) non-ribosomal peptides c) Terpenes and d) 
Indole terpenes.
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industrial importance. Examples of natural products causing harm (mycotoxins), 
while others are advantageous (antibiotics) to humans [46, 47]. The biosynthesis 
of natural products is usually associated with cell differentiation or development, 
the establishment of a G-protein-mediated growth pathway in Aspergillus nidulans 
regulates both asexual sporulation and natural product biosynthesis [48].

Secondary metabolism is connected with sporulation processes in microorganisms 
[49, 50], including fungi [51, 52]. Secondary metabolites connected with sporulation 
can be classified into three groups: (i) Sporulation activated by metabolites (A. nidulans 
[53–56]), (ii) Sporulation structures from pigments (melanins [57, 58]), and (iii) toxic 
metabolites secreted at the time of sporulation by growing colonies (the biosynthesis 
of some deleterious natural products, such as mycotoxins [48, 59]). These examples of 
fungal secondary metabolites are shown in Table 3.

Natural products are essential for sporulation, examples of fungal strains that are 
sporulated and deficient in secondary metabolite production are Penicillium urticae 
patulin mutants [52] and A. nidulans sterigmatocystin mutants [67]. Secondary 
metabolites such as brevianamides A and B produced by Penicillium brevicompactum 
[60], some natural products have subtle effects on sporulation, as recent studies of 
A. nidulans sterigmatocystin mutants suggest that they display a decrease in asexual 
spore production [61, 62].

Secondary metabolites have easily visible effects on morphological differentia-
tion in fungi, mycelium excretes compounds that can prompt sexual and asexual 
sporulation in other fungi [63–65], these compounds have not been identified but are 
assumed to be natural products produced as the mycelia ages. Other natural product 
such as Fusarium graminearum enhances perithecial production in F. graminearum 
and produces an estrogenic mycotoxin called zearalenone, an inhibitor of zearalenone 
synthesis, which inhibits the sexual development of this fungus [66].

Butyrolactone I, produced by the fungus Aspergillus terreus, is an inhibitor of 
eukaryotic cyclin-dependent kinases, which increases sporulation [68]. Some 
secondary metabolites trigger sporulation and influence the development of the 

Secondary metabolite Producing fungus Association with development References

Linoleic-acid derived 
psi factor

Aspergillus nidulans Induces sporulation; affects ratio of 
asexual to sexual spore development

[54–57]

Zearalenone Fusarium 
graminearum

Induces sporulation; enhances 
perithecial formation

[60]

Butyrolactone I Aspergillus terreus Induces sporulation and lovastatin 
production

[61]

Melanin Colletotrichum 
lagenarium

Associated with appressorial 
formation

[62]

Melanin Alternaria alternata UV protection of spore [62]

Melanin Cochliobolus 
heterotrophus

Required for spore survival [63]

Spore pigment Aspergillus fumigatus Required for virulence [64]

Mycotoxins Aspergillus spp. Produced after sporulation [65, 66]

Patulin Penicillium urticae Antibiotic; produced after sporulation [53]

Table 3. 
Fungal secondary metabolites.
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producing organism and neighboring members of the same species. Natural product 
biosynthetic gene clusters can be conserved between organisms, for example, the 
sterigmatocystin-aflatoxin biosynthetic gene cluster in several Aspergillus spp. [69].

4. Bacterial secondary metabolites

The bacterial secondary metabolites are natural products source of anticholesterol 
agents, immune suppressants, antibiotics, antitumor agents, and other medicines; 
secondary metabolite-producing microorganisms synthesize these bioactive and 
complex molecules at the late phase and stationary phase of their growth [70–72] 
as shown in Figure 5a. In bacteria, the actinomycetes (streptomycetes) produce a 
significant number of chemically distinct secondary metabolites [73–76]. Other major 
sources include soil pseudomonas, bacilli, and myxococci [77–80]. An example of a 
bacterial secondary metabolite is botulinum toxin synthesized by Clostridium botu-
linum, with a positive and negative effect on humans. However, botulinum toxin has 
multiple medical uses for the treatment of muscle spasticity, migraine and cosmetics 
use [81].

Bacterial production of secondary metabolites starts in the stationary phase in 
response to environmental stress and lack of nutrients. Secondary metabolite synthe-
sis in bacteria, allow them to better interact with their ecological niche and it is not 
essential for their growth. The b-lactam, shikimate, polyketide and non-ribosomal 
are the synthetic pathways for secondary metabolite production [82] as shown in 
Figure 5b. B-lactam family of cephalosporins antibiotics have been used to treat 
bacterial infections for 40 years and above. Gram-positive bacteria, Gram-negative 
bacteria, and fungi are the major sources of b-lactam antibiotics. The shikimate 
pathway contributes to the basic building blocks for aromatic metabolites and amino 
acids, which can serve as antibacterial agents. In the bacterial secondary metabolite, 
two enzymes can transfer a complete enolpyruvoyl moiety to a metabolic pathway, 
5-enolpyruvoyl shikimate 3-phosphate synthase and chorismate synthase that require 
a reduced cofactor, flavin mononucleotide, for its activation. When secreted those 
found in the prokaryotic cell wall are endotoxins, while those poisonous compounds 
are known as exotoxins. Other examples of bacterial secondary metabolites are 
phenazine, polyketides, nonribosomal peptides, ribosomal peptides, glucosides, and 
alkaloids.

4.1 Phenazine

Bacteria are natural phenazines, phenazines are heterocyclic, nitrogenous 
compounds that differ in their physical and chemical properties. Phenazines are 
significant for their potential impact on bacterial interactions and biotechnologi-
cal processes. It exhibits a wide range of biological activities, Pyocyanin, from 
Pseudomonas aeruginosa. Other phenazines from Pseudomonas sp. and Streptomyces sp. 
(Natural Products of Actinobacteria Derived from Marine Organisms) [83].

Phenazines produced by various bacteria species and excrete them in high 
quantities in the environment in a visible form to the naked eye, they are nitrogen-
containing colored aromatic secondary metabolites. The main use of phenazines is to 
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Figure 5. 
a) the secondary metabolite-producing microorganisms synthesize these bioactive and complex molecules at the 
late phase and stationary phase of their growth. b) Secondary metabolic pathway reactions are conducted by an 
individual enzyme or multienzyme complexes. Intermediate or end-products of primary metabolic pathways are 
channeled from their systematic metabolic pathways that lead to the synthesis of secondary metabolites.
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protect plants (biocontrol field), because of their antimicrobial properties. Examples 
of bacteria species able to produce phenazines are Pseudomonas spp. (including 
P. aeruginosa, P. fluorescens, and Pseudomonas chlororaphis) [84].

4.2 Polyketides

Polyketides from plants, bacteria, fungi, and animals, are a large group of second-
ary metabolites known to possess remarkable properties [85, 86]. Polyketides possess 
some bioactivities such as antibacterial (e.g., tetracycline), antifungal (e.g., ampho-
tericin B), immune-suppressing (e.g., rapamycin), anti-cholesterol (e.g., lovastatin), 
anti-inflammatory activity (e.g., flavonoids), antiviral (e.g., balticolid), and anti-
cancer (e.g., doxorubicin) [87–93]. Some organisms that can produce polyketides are 
plants (e.g., emodin from Rheum palmatum), fungi (e.g., lovastatin from Phomopsis 
vexans), bacteria (e.g., tetracycline from Streptomyces aureofaciens), protists (e.g., mai-
totoxin-1 from Gambierdiscus australes), mollusks (e.g., elysione from Elysia viridis), 
and insects (e.g., stegobinone from Stegobium paniceum) [94–99]. These organisms 
can use the polyketides they produce for pheromonal communication in the case of 
insects and also as protective compounds.

Polyketides are a family of natural products which are synthesized by polyketide 
synthase (PKS) enzymes with different biological activities and pharmacological 
properties. They are divided into three types: type I polyketides (macrolides produced 
by multimodular megasynthases), type II polyketides (aromatic molecules produced 
by the iterative action of dissociated enzymes), and type III polyketides (small 
aromatic molecules produced by fungal species) [100]. Polyketides are also found in 
bacteria, fungi, plants, mollusks, protists, sponges, and insects. They have notable 
variety in their structure and function. Some examples of polyketides antibiotics are 
Erythromycin, Avermectin, Nystatin, and Rifamycin [100].

4.3 Nonribosomal peptides

Nonribosomal peptides (NRPs) are peptide secondary metabolites that are synthe-
sized by nonribosomal peptide synthetases (NRPSs) (multidomain mega-enzymes), 
without messenger RNAs and cell ribosomal machinery [101]. Nonribosomal 
peptides are naturally synthesized by bacteria, fungi, and higher eukaryotes [101]. 
Nonribosomal peptides are also synthesized by indigoidine (pigment). Some exam-
ples of nonribosomal peptide antibiotics are; Vancomycin, bacterium, Ramoplanin, 
Teicoplanins, Gramicidin, Bacitracin, Polymyxin [102].

4.4 Ribosomal peptides

Streptomyces azureus is produced from several strains of streptomycetes 
(Thiostrepton), Escherichia coli produced from Microcins and Bacteriocins [82].

4.5 Glucosides

Streptomyces species produced from Nojirimycin [82].

4.6 Alkaloids

Pseudoalteromonas produced by Tetrodotoxin, a neurotoxin [82].
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5. Conclusion

Natural products originate as secondary metabolites Plants possess different 
indigenous defensive mechanisms to cope with certain environmental stresses. 
Secondary metabolites are natural tools used by plants to combat biotic and abiotic 
stresses. Microorganisms can produce several antibiotics and other pharmaceutically 
important drugs to treat bacterial and fungal infections. The secondary metabolites 
from natural products help us to understand their classes, sources, pharmacological 
importance and examples associated with the secondary metabolites derived from 
plants, fungi, and bacteria.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Secondary Metabolites - Trends and Reviews

64

References

[1] Návarová H, Bernsdorff F, Döring AC, 
Zeier J. Pipecolic acid, any endogenous 
mediator of defense amplification 
and priming, is a critical regulator of 
inducible plant immunity. Plant Cell. 
2012;24(12):5123-5141

[2] Bourgaud F, Gravot A, Milesi S, 
Gontier E. Production of plant secondary 
metabolites: A historical perspective. 
Plant Science. 2001;161(5):839-851

[3] Bruce SO, Onyegbule FA. 
Biosynthesis of natural products. In: 
Zepka LQ, do TC, Jacob-Lopes E, editors. 
Bioactive Compounds - Biosynthesis, 
Characterization and Applications. 
London: IntechOpen; 2021. DOI: 10.5772/
intechopen.97660. Available from: https://
www.intechopen.com/chapters/76931

[4] Seigler DS. Plant Secondary 
Metabolism. New York: Springer US; 1998

[5] Korkina L, Kostyuk V, Potapovich A, 
Mayer W, Talib N, De Luca C. Secondary 
plant metabolites for sun protective 
cosmetics: From pre-selection to 
product formulation. Cosmetics. 
2018;5(2):32

[6] Kumar P, Mina U. Life Sciences: 
Fundamentals and Practice. 3rd ed. 
New Delhi: Pathfinder Academy; 2013

[7] O’Connor SE. In: Mander L,  
Lui H-W, Alkaloids. In book: 
Comprehensive Natural Products II 
Chemistry and Biology. Vol. 1. Oxford: 
Elsevier; 2010. pp. 977-1007. DOI: 
10.1016/B978-008045382-8.00013-7

[8] Croteau R, Kutchan TM, Lewis NG. 
Natural products (secondary 
metabolites). In: Civjan N, editor. 
Natural Products in Chemical Biology. 
Hoboken, New Jersey: Wiley; 2012. 
pp. 1250-1319

[9] Kukula-Koch WA, Widelski J.  
Chapter 9 - Alkaloids. In: Delgoda R, 
editor. Pharmacognosy. Fundamentals, 
Applications and Strategies. Lublin, 
Poland: Academic Press; 2017.  
pp. 163-198. DOI: 10.1016/B978-0-12- 
802104-0.00009-3 

[10] Twyman RM, Stöger E, Christou P. 
Molecular farming. In: Encyclopedia of 
Applied Plant Sciences. 2nd ed. Vol. 2. 
Amsterdam: Elsevier Science B.V; 2003. 
pp. 77-82

[11] Das PR, Eun J-B. Tea antioxidants 
in terms of phenolic and nonphenolic 
metabolites. In: Preedy VR, editor. 
Pathology: Oxidative Stress and Dietary 
Antioxidants. 1st ed. London: Academic 
Press; 2020. pp. 357-367

[12] Bruce SO, Onyegbule FA, 
Ihekwereme CP. Evaluation of hepato-
protective and anti-microbial activities 
of ethanol extracts and fractions of 
Picralima nitida seed and pod. Journal 
of Phytomedicine and Therapeutic. 
2016;1(2):1-21

[13] Ayad R, Akkal S. Phytochemistry and 
biological activities of Algerian Centaurea 
and related genera. In: Atta-ur-Rahman, 
editor. Bioactive Natural Products, 
Studies in Natural Products Chemistry. 
Vol. 63. Amsterdam, The Netherlands: 
Elsevier; 2019. pp. 357-414

[14] Saranraj P, Behera SS, Ray RC. 
Chapter 7 - Traditional foods from 
tropical root and tuber crops: Innovations 
and challenges. In: Galanakis CM, 
editor. Innovations in Traditional Foods. 
Chania, Greece: Woodhead Publishing; 
2019. pp. 159-191. DOI: 10.1016/
B978-0-12-814887-7.00007-1

[15] Gan RY, Chan CL, Yang QQ , 
Li HB, Zhang D, Ge YY, et al. Bioactive 



Secondary Metabolites from Natural Products
DOI: http://dx.doi.org/10.5772/intechopen.102222

65

compounds and beneficial functions of 
sprouted grains. In: Feng H, Nemzer B, 
DeVries JW, editors. Sprouted Grains. 
United States: Woodhead Publishing and 
AACC International Press; 2019.  
pp. 191-246

[16] Tiwari R, Rana CS. Plant secondary 
metabolites : A review. International 
Journal of Engineering Research and 
General Science. 2015;3(5):661-667.  
ISSN 2091-2730

[17] Bruce SO, Onyegbule FA, 
Ezugwu CO. Pharmacognostic, 
physicochemical and phytochemical 
evaluation of the leaves of Fadogia 
cienkowskii Schweinf (Rubiaceae). 
Journal of Pharmacognosy and 
Phytotherapy. 2019;11(3):52-60

[18] Maimone T. Classic Terpene 
Syntheses I. In: An introduction to 
Terpenes. Baran Lab; 2002. pp. 1-18

[19] Mazid M, Khan TA, Mohammad F. 
Role of secondary metabolites in defense 
mechanisms of plants. Biology and 
Medicine. 2011;3(2):232-249

[20] Kennedy DO, Wightman EL. 
Herbal extracts and phytochemicals: 
Plant secondary metabolites and the 
enhancement of human brain function. 
Advances in Nutrition. 2011;1:32-50

[21] Wang G, Tang W, Bidigare RR. 
Terpenoids as therapeutic drugs and 
pharmaceutical agents. In: Zhang L, 
Demain AL, editors. Natural Products. 
Vol. 12. Totowa, NJ: Humana Press; 2013. 
pp. 153-175

[22] Onyegbule FA, Bruce SO, 
Onyekwe ON, Onyealisi OL, Okoye PC. 
Evaluation of the in vivo antiplasmodial 
activity of ethanol leaf extract and 
fractions of Jatropha gossypifolia in 
Plasmodium berghei infected mice. 
Journal of Medicinal Plant Research. 
2019;13(11):269-279

[23] Cho KS, Lim Y, Lee K, Lee J, 
Lee JH, Lee I. Terpenes from forests and 
human health. Toxicological Research. 
2017;33(2):97-106

[24] Bouvier F, Rahier A, Camara B. 
Biogenesis, molecular regulation and 
function of plant isoprenoids. Progress in 
Lipid Research. 2005;44:357-429

[25] Weng JK, Philippe RN, Noel JP. The 
rise of chemodiversity in plants. Science. 
2012;336:1667-1670

[26] Roba K. The role of terpene 
(secondary metabolite). Holeta, 
Ethiopia: Holeta honeybee research 
center. Natural Products Chemistry & 
Research; 2020;9(8):411

[27] Kabera J, Semana E, Mussa AR, 
He X. Plant secondary metabolites: 
Biosynthesis, classification, function and 
pharmacological classification, function 
and pharmacological properties. Journal 
of Pharmacy and Pharmacology. 
2014;2(7):377-392

[28] Castells AA. The Role of Terpenes 
in the Defensive Responses of Conifers 
against Herbivores and Pathogens. Spain: 
Universitat Autònoma de Barcelona; 
2015. pp. 1-185

[29] Ishida M, Hara M, Fukino N, 
Kakizaki T, Morimitsu Y. Glucosinolate 
metabolism, functionality and breeding 
for the improvement of Brassicaceae 
vegetables. Breeding Science. 2014;64(1): 
48-59

[30] Bone K, Mills S. Principles of herbal 
pharmacology. In: Principles and Practice 
of Phytotherapy. Modern Herbal Medicine. 
2nd ed. London, United Kingdom: 
Churchill Livingstone; 2013. pp. 962-967

[31] Bruce SO, Onyemailu VO, 
Orji CE. Evaluation of The antiulcer 
activity and GC-MS spectroscopic 
analysis of the crude ethanolic 



Secondary Metabolites - Trends and Reviews

66

extract of Peuraria Phaseoloide Leaf 
(Roxb) Benth. (FABACEAE). World 
Journal of Pharmaceutical Research. 
2021;10(7):39-59

[32] Gerber M. Oxidative stress, 
antioxidants and cancer. In: Sen C, 
Packer L, Hänninen O, editors. 
Handbook of Oxidants and Antioxidants 
in Exercise. Vol. 1220. Amsterdam: 
Elsevier; 2000

[33] Paluszczak J, Baer-dubowska W. 
DNA methylation as a target of 
cancer chemoprevention by dietary 
polyphenols. In: Polyphenols in 
Human Health and Disease. Elsevier; 
2014. pp. 1385-1392. DOI: 10.1016/
B978-0-12-398456-2.00105-5

[34] Halkier BA, Gershenzon J. Biology 
and biochemistry of glucosinolates. 
Annual Reviews of Plant Biology. 
2006;57:303-333

[35] Baenas N, Villaño D, Cristina G-V, 
Moreno DA. Optimizing elicitation and 
seed priming to enrich broccoli and 
radish sprouts in glucosinolates. Food 
Chemistry. 2014;204:314-319

[36] Angelino D, Dosz EB, Sun J, 
Hoeflinger JL, Van Tassell ML, Chen P, 
et al. Myrosinase-dependent and –
independent formation and control of 
isothiocyanate products of glucosinolate 
hydrolysis. Frontiers in Plant Science. 
2015;6:831

[37] Agerbirk N, Olsen CE. Glucosinolate 
structures in evolution. Phytochemistry. 
2012;77:16-45

[38] Gunatilaka AA. Fungal Secondary 
Metabolites. Tucson, Arizona: Leslie 
Office of Arid Lands Studies, Southwest 
Center for Natural Products Research and 
Commercialization. The University of 
Arizona; 2010. DOI: 10.1036/1097-8542.
YB100063

[39] Onyemailu VO, Bruce SO, Iloh ES. 
UV-Visible and FTIR Spectroscopic 
Analysis of The Crude Ethanolic Extract 
of Peuraria phaseoloide Leaf (Roxb) 
Benth. (FABACEAE). International 
Journal of Modern. Pharmaceutical 
Research. 2021;5(3):148-153

[40] Quin MB, Flynn CM, Schmidt- 
Dannert C. Traversing the fungal 
terpenome. Natural Product Reports. 
2014;31(10):1449-1473

[41] Boruta T. Uncovering the repertoire 
of fungal secondary metabolites: From 
Fleming's laboratory to the International 
Space Station. Bioengineered. 
2018;9(1):12-16

[42] king R, Marahiel MA. Biosynthesis of 
nonribosomal peptides 1. Annual Review 
of Microbiology. 2004;58:453-488

[43] Liu J, Zhang J, Shi Y, Grimsgaard S, 
Alraek T, Fønnebø V. Chinese red yeast 
rice (Monascus purpureus) for primary 
hyperlipidemia: a meta-analysis of 
randomized controlled trials. Chinese 
Medicine. 2006;1(1):4

[44] Zhao ZJ, Pan YZ, Liu QJ, Li XH. 
Exposure assessment of lovastatin in 
Pu-erh tea. International Journal of Food 
Microbiology. 2013;164(1):26-31

[45] Uys H, Berk M. A controlled 
double blind study of zuclopenthixol 
acetate compared with clothiapine in 
acute psychosis including mania and 
exacerbation of chronic psychosis. 
European Neuropsychopharmacology. 
1996;6:60

[46] Bruce SO, Usifoh SF, Nduka SO, 
Anetoh MU, Isidienu CP. A retrospective 
study of antimalarial drug utilization 
in a secondary healthcare institution in 
Nigeria. World Journal of Pharmaceutical 
Research. 2019;8(13):271-281



Secondary Metabolites from Natural Products
DOI: http://dx.doi.org/10.5772/intechopen.102222

67

[47] Demain AL, Fang A. The natural 
functions of secondary metabolites. 
Advances in Biochemical Engineering/
Biotechnology. 2000;69:1-39

[48] Hicks J, Yu JH, Keller N, Adams TH. 
Aspergillus sporulation and mycotoxin 
production both require inactivation of 
the FadA G-alpha protein-dependent 
signaling pathway. The EMBO Journal. 
1997;16:4916-4923

[49] Bruce SO, Ugwu RN, 
Onu JN, Iloh ES, Onwunyili AR. 
Pharmacognostic, antimicrobial and 
hepatoprotective activities of the sub-
fractions of Picralima nitida (Durand 
and Hook) (APOCYNACEAE) seeds. 
World Journal of Pharmaceutical 
Sciences. 2021;9(8):77-91

[50] Stone MJ, Williams DH. On the 
evolution of functional secondary 
metabolites (natural products). 
Molecular Microbiology. 1992;6:29-34

[51] Ihekwereme CP, Bruce SO, Orji CE, 
Ibe CI, Iloh ES. Aqueous extracts of 
Ocimum gratissimum and Anacardium 
occidentale synergises in anti-diarrhoeal 
property. International Journal of 
Modern Pharmaceutical Research 
(IJMR). 2020;4(4):06-11

[52] Sekiguchi J, Gaucher GM. 
Conidiogenesis and secondary 
metabolism in Penicillium urticae. 
Applied and Environmental 
Microbiology. 1977;33:147-158

[53] Calvo AM, Gardner HW, 
Keller NP. Genetic connection 
between fatty acid metabolism and 
sporulation in Aspergillus nidulans. 
The Journal of Biological Chemistry. 
2001;276:20766-20774

[54] Champe SP, El-Zayat AAE. Isolation 
of a sexual sporulation hormone 
from Aspergillus nidulans. Journal of 
Bacteriology. 1989;171:3982-3988

[55] Champe SP, Rao P, Chang A. 
An endogenous inducer of sexual 
development in Aspergillus nidulans. 
Journal of General Microbiology. 
1987;133:1383-1388

[56] Mazur P, Nakanishi K, El-Zayat AAE, 
Champe SP. Structure and synthesis of 
sporogenic psi factors from Aspergillus 
nidulans. Journal of the Chemical 
Society, Chemical Communications. 
1991;20:1486-1487

[57] Alspaugh JA, Perfect JR, Heitman J. 
Cryptococcus neoformans mating and 
virulence are regulated by the G-protein 
alpha subunit GPA1 and cAMP. Genes & 
Development. 1997;11:3206-3217

[58] Kawamura C, Tsujimoto T, Tsuge T. 
Targeted disruption of a melanin 
biosynthesis gene affects conidial 
development and UV tolerance in the 
Japanese pear pathotype of Alternaria 
alternata. Molecular Plant-Microbe 
Interactions. 1999;12:59-63

[59] Trail F, Mahanti N, Linz J. Molecular 
biology of aflatoxin biosynthesis. 
Microbiology. 1995;141:755-765

[60] Bird BA, Remaley AT, Campbell IM. 
Brevianamides A and B are formed only 
after conidiation has begun in solid 
cultures of Penicillium brevicompactum. 
Applied and Environmental 
Microbiology. 1981;42:521-525

[61] Ramaswamy A. Ecological analysis 
of secondary metabolite production in 
Aspergillus spp. Master's thesis. College 
Station: Office of Graduate Studies of 
Texas A & M University; 2002

[62] Sim SC. Characterization of Genes 
in the Sterigmatocystin Gene Cluster 
and Their Role in Fitness of Aspergillus 
nidulans. Master’s thesis. College Station: 
Office of Graduate Studies of Texas A & 
M University; 2001



Secondary Metabolites - Trends and Reviews

68

[63] Hadley G, Harrold CE. The 
sporulation of Penicillium notatum 
westling in submerged liquid cultures. 
Journal of Experimental Botany. 
1958;9:418-428

[64] Park D, Robinson PM. Sporulation 
in Geotrichum candidum. Br. Mycol. Soc. 
1969;52:213-222

[65] Onyegbule FA, Okoli OG, Bruce SO. 
In vivo evaluation of the antimalarial 
activity of the aqueous ethanol extract of 
Monodora myristica seed in Albino Mice. 
International Journal of Science and 
Research (IJSR). 2019;8(6):1530-1538

[66] Wolf JC, Mirocha CJ. Regulation of 
sexual reproduction in Gibberella zeae 
(Fusarium roseum ‘Graminearum’) by 
F-2 (zearalenone). Canadian Journal of 
Microbiology. 1973;19:725-734

[67] Shimizu K, Keller NP. Genetic 
involvement of cAMP-dependent protein 
kinase in a G protein signaling pathway 
regulating morphological and chemical 
transitions in Aspergillus nidulans. 
Genetics. 2001;157:591-600

[68] Schimmel TG, Coffman AD, 
Parsons SJ. Effect of butyrolactone I 
on the producing fungus, Aspergillus 
terreus. Applied and Environmental 
Microbiology. 1998;64:3703-3712

[69] Ana M. Calvo, Richard A. 
Wilson, Jin Woo Bok, Nancy P. Keller. 
Relationship between secondary 
metabolism and fungal development 
microbiology and molecular 
biology reviews. ASM Journals. 
2020;66(3):447-459

[70] Moore BS, Hopke JN. Discovery of 
a new bacterial polyketide biosynthetic 
pathway. Chembiochem. 2001;2:35-38

[71] Rokem JS, Lantz AE, Nielsen J. 
Systems biology of antibiotic production 

by microorganisms. Natural Product 
Reports. 2007;24:1262

[72] Katsuyama Y, Funa N, Miyahisa I, 
Horinouchi S. Synthesis of unnatural 
flavonoids and stilbenes by exploiting 
the plant biosynthetic pathway in 
Escherichia coli. Chemistry & Biology. 
2007;14:613-621

[73] Chopra I, Roberts M. Tetracycline 
antibiotics: Mode of action, applications, 
molecular biology, and epidemiology 
of bacterial resistance tetracycline 
antibiotics: Mode of action, applications, 
molecular biology, and epidemiology 
of bacterial resistance. Microbiology 
and Molecular Biology Reviews. 
2001;65:232-260

[74] Onyegbule FA, Ezenwa CJ, Bruce SO, 
Umeokoli BO. Standardization, chemical 
composition and antipyretic evaluation 
of methanol leaf extract and fractions of 
chrysophyllum albidum (Sapotaceae). 
Tropical Journal of Natural Product 
Research. 2020;4(6):216-222

[75] Tacar O, Sriamornsak P, Dass CR. 
Doxorubicin: An update on anticancer 
molecular action, toxicity and novel drug 
delivery systems. The Journal of Pharmacy 
and Pharmacology. 2013;65:157-170

[76] Shushni MAM, Singh R, Mentel R, 
Lindequist U. Balticolid: A new 
12-membered macrolide with antiviral 
activity from an Ascomycetous fungus 
of marine origin. Marine Drugs. 
2011;9:844-851

[77] Li J, Kim SG, Blenis J. Rapamycin: 
One drug, many effects. Cell Metabolism. 
2014;19:373-379

[78] Van de Donk NWCJ, Kamphuis MMJ, 
Lokhorst HM, Bloem AC. The cholesterol 
lowering drug lovastatin induces 
cell death in myeloma plasma cells. 
Leukemia. 2002;16:1362-1371



Secondary Metabolites from Natural Products
DOI: http://dx.doi.org/10.5772/intechopen.102222

69

[79] Hleba L, Charousova I, Cisarova M, 
Kovacik A, Kormanec J, Medo J, et al. 
Rapid identification of Streptomyces 
tetracycline producers by MALDI-
TOF mass spectrometry. Journal of 
Environmental Science and Health, 
Part A. 2018;169(12):940-947

[80] Parthasarathy R, Sathiyabama M. 
Lovastatin-producing endophytic fungus 
isolated from a medicinal plant Solanum 
xanthocarpum. Natural Product Research. 
2015;29:2282-2286

[81] Huang Q , Lu G, Shen HM, 
Chung MCM, Ong CN. Anti-cancer 
properties of anthraquinones from 
rhubarb. Medicinal Research Reviews. 
2006;27:609-630

[82] Gokulan K, Khare S, Cerniglia C. 
Metabolic pathways: Production of 
secondary metabolites of bacteria. In: 
Encyclopedia of Food Microbiology. 
London: Academic Press; 2020.  
pp. 561-569

[83] Karuppiah V, Sun W, Li Z. Natural 
products of actinobacteria derived from 
marine organisms. In: Studies in Natural 
Products Chemistry. Vol. 48. Amsterdam, 
Netherlands: Elsevier; 2016. pp. 417-446

[84] Hadla M, Halabi MA. Fundamentals 
of quorum sensing, analytical methods 
and applications in membrane 
bioreactors 1st Edition. In: Chormey D, 
Bakirdere S, Turan N, Engin G, editors. 
Comprehensive Analytical Chemistry. 
Vol. 81. Elsevier; 2018. pp. 1-308

[85] Bruce SO, Nwafor OI, Omoirri MA, 
Adione NM, Onyeka IP, Ezeoru VC. 
GC-MS, FTIR and Antiulcer screening 
of aqueous seed extract and oil of 
Nigella sativa in Wistar rats. Journal 
of Drug Delivery and Therapeutics. 
2021;11(6):48-60

[86] Watve MG, Tickoo R, Jog MM, 
Bhole BD. How many antibiotics are 

produced by the genus Streptomyces? 
Archives of Microbiology. 
2001;176:386-390

[87] Okoye VO, Bruce SO, Onyegbule FA. 
Phytochemical screening and 
pharmacognostic properties of 
Peuraria phaseoloides leaves (roxb) 
benth (fabaceae). International Journal 
of Public Health, Pharmacy and 
Pharmacology. 2020;5(2):11-24

[88] Kinashi H. Giant linear plasmids 
in Streptomyces: A treasure trove of 
antibiotic biosynthetic clusters. Journal 
of Antibiotics (Tokyo). 2011;64:19-25

[89] Baltz RH. Renaissance in 
antibacterial discovery from 
actinomycetes. Current Opinion in 
Pharmacology. 2008;8:557-563

[90] Zotchev SB. Marine actinomycetes 
as an emerging resource for the drug 
development pipelines. Journal of 
Biotechnology. 2012;158:168-175

[91] Clardy J, Fischbach MA, Walsh CT. 
New antibiotics from bacterial natural 
products. Nature Biotechnology. 
2006;24:1541-1550

[92] Sansinenea E, Ortiz A. Secondary 
metabolites of soil Bacillus spp. 
Biotechnology Letters. 2011;33:1523-1538

[93] Bruce SO, Onyegbule FA, 
Ezugwu CO, Nweke ID, Ezenwelu CR, 
Nwafor FI. Chemical composition, 
hepatoprotective and antioxidant activity 
of the crude extract and fractions of the 
leaves of Fadogia Cienkowskii Schweinf 
(Rubiaceae). Tropical Journal of Natural 
Product Research. 2021;5(4):720-731

[94] Wenzel SC, Muller R. 
Myxobacteria—‘Microbial factories’ for 
the production of bioactive secondary 
metabolites. Molecular BioSystems. 
2009;5:567-574



Secondary Metabolites - Trends and Reviews

70

[95] Gross H, Loper JE. Genomics of 
secondary metabolite production by 
Pseudomonas spp. Natural Product 
Reports. 2009;26(11):1408-1446

[96] Witting K, Sussmuth RD. Discovery 
of antibacterials and other bioactive 
compounds from microorganisms-
evaluating methodologies for discovery 
and generation of non-ribosomal peptide 
antibiotics. Current Drug Targets. 
2011;12(11):1547-1559

[97] Kohli GS, John U, Figueroa RI, 
Rhodes LL, Harwood DT, Groth M, et al. 
Polyketide synthesis genes associated 
with toxin production in two species 
of Gambierdiscus (Dinophyceae). BMC 
Genomics. 2015;16(1):410

[98] Florian P, Monika H. Polyketides 
in insects: Ecological role of these 
widespread chemicals and evolutionary 
aspects of their biogenesis. Biological 
Reviews. 2008;83:209-226

[99] Adele C, Guido C, Guido V, Angelo F. 
Shaping the polypropionate biosynthesis 
in the solar-powered mollusc Elysia 
viridis. Chembiochem. 2008;10:315-322

[100] Monfil VO, Casas-Flores S. 
Molecular mechanisms of biocontrol in 
Trichoderma spp. and their applications 
in agriculture. In: Gupta VK, Schmoll M, 
Herrera-Estrella A, Upadhyay RS, 
Druzhinina I, Tuohy MG, editors. 
Biotechnology and Biology of 
Trichoderma. Dordrecht: Elsevier; 2014. 
pp. 429-453. DOI: 10.1016/B978-0- 
444-59576-8.00032-1

[101] Ding K, Dai LX. Organic Chemistry -  
Breakthroughs and Perspectives. 
Weinheim: Wiley-VCH; 2012. pp. 1-802

[102] Soltani J. Chapter 22 - Secondary 
metabolite diversity of the genus 
Aspergillus: Recent advances. 
In: Gupta VK, editor. New and 

Future Developments in Microbial 
Biotechnology and Bioengineering. 
Elsevier; 2016. pp. 275-295. DOI: 10.1016/
B978-0-444-63505-1.00035-X



71

Chapter 5

Metabolomics and Genetic 
Engineering for Secondary 
Metabolites Discovery
Ahmed M. Shuikan, Wael N. Hozzein, Rakan M. Alshuwaykan 
and Ibrahim A. Arif

Abstract

Since 1940s, microbial secondary metabolites (SMs) have attracted the attention 
of the scientific community. As a result, intensive researches have been conducted 
in order to discover and identify novel microbial secondary metabolites. Since, the 
discovery of novel secondary metabolites has been decreasing significantly due to 
many factors such as 1) unculturable microbes 2) traditional detection techniques  
3) not all SMs expressed in the lab. As a result, searching for new techniques which 
can overcome the previous challenges was one of the most priority objectives. 
Therefore, the development of omics-based techniques such as genomics and 
metabolomic have revealed the potential of discovering novel SMs which were coded 
in the microorganisms’ DNA but not expressed in the lab or might be produced in 
undetectable amount by detecting the biosynthesis gene clusters (BGCs) that are 
associated with the biosynthesis of secondary metabolites. Nowadays, the integration 
of metabolomics and gene editing techniques such as CRISPR-Cas9 provide a success-
ful platform for the detection and identification of known and unknown secondary 
metabolites also to increase secondary metabolites production.

Keywords: metabolomics, genetic engineering, secondary metabolites identification, 
genomic, CRISPR-Cas9, production of secondary metabolites, microorganisms,  
gene editing

1. Introduction

Since the discovery of penicillin in the 1940s, microbial secondary metabolites (SMs) 
have attracted the attention of scientists all over the world. In fact, penicillin discovery 
has been shown to be a promising solution for many kinds of infections. As a result, 
the scientific world starts to search for other products that are produced by microbes 
that can be utilized for treating a different disease or can be useful for any aspect of 
our life. Therefore, the period between the 1940s – 1960s The “golden period of SM 
discovery” [1, 2] is referred to as “the golden era of SM discovery.” During the golden era, 
several SMs were discovered, characterized, and reported, and they are still used today. 
Unfortunately, after the golden era, the development of authorized novel chemical 
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scaffolds of secondary metabolites has declined dramatically [1] the decrease in the 
microbial secondary metabolites detection and identification could be due to 1) almost 
99% of the microbial community unculturable [2], due to the difficulty to identify their 
optimal medium compositions, which means that the majority of SMs are definitely 
unidentified, 2) the scientists have been focused on specific groups of microorganisms 
such as Actinobacteria which resulting to the identification of known compounds and do 
not develop a new methodology for screening in other microorganisms.

All biochemical reactions carried out by organisms is called metabolism and 
all products resulting from metabolism is called metabolites. In fact, there are two 
kinds of metabolites resulting from the biochemical reactions that are called pri-
mary and secondary metabolites. The difference between primary and secondary is 
that primary metabolites are found in all living cells able to divide while secondary 
metabolites are present only incidentally and are not affect the organism’s life imme-
diately. Microbial SMs is low molecular mass products with an unusual chemical 
structure that are produced by microorganisms usually during the late growth phase 
and are not essential for the growth and development of the microbe but are associ-
ated with some other functions such as competition, interactions, defense, and 
others [3, 4]. In fact, SMs have shown a variety of biological activities that can be 
utilized in different aspects such as antitumor agents, immunosuppressive agents, 
antimicrobial agents, antiparasitic agents, anthelmintic, and food industry etc. An 
example for the importance of SMs in our life is the discovery of immunosuppres-
sion such as cyclosporine A, which plays a significant role in establishing the organ 
transplant field.

Nowadays, Over 2 million SMs have been found based on their vast diversity 
in structure, function, and biosynthesis (Table 1). Plants (about 80%) and 
microbes (approximately 20%) are the primary sources of secondary metabolites 
discovered [3]. Actinobacteria and fungi have been found to create the bulk of 
SMs discovered to date [5]. Nowadays, omics-based techniques such as genomics, 
metabolomics, proteomics, and transcriptomics have overcome the problem of 

Source All known compounds Bioactive

Plant kingdom 600,000–700,000 150,000–200,000

Microbes Over 50,000 22,000–23,000

Higher plants 500,000–600,000 ~100,000

Animal kingdom 300,000–400,000 50,000–100,000

Protozoa Several hundreds 100–200

Vertebrates 200,000–250,000 50,000–70,000

Marine animals 20,000–25,000 7000–8000

Invertebrates ~100,000 NA

Algae, lichens 3000–5000 1500–2000

Insects, worms 8000–10,000 800–1000

NA–Data not available.
Source: Bérdy [5].

Table 1. 
Approximate number of identified natural metabolites.
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identification of unculturable microbes and have revealed that microorganisms 
have the potential to produce more secondary metabolites than were originally 
expected [6, 7]. By conducting omics techniques scientists were able to detect SMs 
that are coded by clustered genes present on chromosomal DNA directly without 
doing microbial culturing.

Due to the development of the genomic and bioinformatic field, scientists are now 
able to access extensive genetic information and enable genome mining of relevant 
Biosynthesis gene cluster (BGCs) with the potential for valuable SM production [8]. 
therefore, genetic engineering has now become widely used and moving beyond 
traditional tools which open a new era in the detection of novel secondary metabolites 
[9]. In fact, by using bioinformatic analysis that analyzes the putative secondary 
metabolites genes cluster in the sequenced genome, scientists were able to predict new 
SMs that were not identified by using traditional techniques because all new revealed 
SMs are not produced naturally under the lab conditions or even though produced 
but in very low amount that the traditional techniques were unable to identify 
them [10, 11]. Metabolomics aims to characterize and identify SMs in natural and 
 engineered biosystems.

Metabolomics based techniques such as mass spectrometry (MS) and nuclear 
magnetic resonance (NMR) is accurate that can measure as low molecular weight 
compounds as possible. In fact, mass spectrometry (MS) and nuclear magnetic 
resonance (NMR) have been reported as significant analytical techniques to detect 
secondary metabolites under specific conditions [12]. This chapter provides an 
overview of metabolomics and genetic engineering techniques especially the 
CRISPR-Cas9 technique for the discovery and production enhancement of microbial 
secondary metabolites.

2. Genetic engineering for SMs detection

The genes associated with the biosynthesis of secondary metabolites is named 
biosynthesis gene cluster (BGCs). In fact, BGCs include all genetic information 
required for secondary metabolites regulation, assembly, modification, and bio-
synthesis [13]. As mentioned previously, not all microorganisms can be cultured 
in the laboratory resulting in not all SMs can be expressed by using traditional 
techniques (culturing and detection) also a lot of microbes contains silent or 
cryptic genes in their genome that are responsible for the production of secondary 
metabolites. In fact, these silent BGCs have potentially significant in the discovery 
of novel secondary metabolites [13–16].

Nowadays, instead of traditional detection techniques, genetic engineering 
tools are utilized for the identification of novel biosynthesis gene cluster BGCs [9]. 
However, genetic engineering can be used in both heterologous and homologous 
hosts. While gene manipulation in a homologous host allow the retention of factors 
necessary for the production of SMs, also gene manipulation in a heterologous host 
enable activation of BGCs obtained from unculturable microorganism [17].

In fact, a variety of genetic engineering techniques have been developed in order to 
induce the expression of all genes of interest. Therefore, in metabolomic production 
field, several genome techniques have been utilized in order to detect and enhance 
secondary metabolites production such as clustered regulatory interspaced short 
palindromic repeat (CRISPR-Cas9), zinc finger nucleases (ZFNs), and transcriptional 
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activator-like effector nucleases (TALENs) [18, 19]. While each technique has its 
advantages and disadvantages (Table 2), CRISPR-Cas9 has been reported to be the 
most promising and significant technique that can be used in the discovery and 
enhancement of SMs production [9, 17, 20, 21].

CRISPR/Cas9 Zinc finger nucleases 
(ZFNs)

Transcription factors 
like effector nucleases 
(TALENs)

Protein 
engineering steps

It does not necessitate any 
protein engineering steps 
and is very easy to test 
several times.
Grna

It requires complex to 
test gRNA

TALENs need protein 
engineering steps to test 
gRNA 

Mode of action It operates by inserting 
double-strand breaks or 
single-strand DNA nicks 
into the target DNA
(Case9 nickase)

It can induce double-
strand breaks in target 
DNA

Induces DSBs in target 
DNA 

Cloning Not Required Required Required 

Structural 
proteins

CRISP R is made up of a 
single monomeric protein 
as well as chimeric RNA

ZFNs are dimeric 
proteins that only 
require one protein 
component to function

TALENs are also dimeric 
and require a protein 
component to function 

Mutation rate It has been discovered 
that there is a low rate of 
mutation

High mutation rate 
observed in plants

When compared to 
CRISPR, the mutation 
rate is high

Components crRNA, Cas9 proteins Zn-finger domains 
Non- specific FOKI 
nuclease domain

Zn-finger domains Non-
specific folk nuclease 
domain

Length of target 
sequence (bp)

20–22 18–24 24–59 

Target 
recognition 
efficiency

High High High 

Level of 
experiment

Easy and very fast 
procedure

Complicated procedure 
that necessitates protein 
engineering expertise

Relatively easy 
procedure 

Methylated DNA 
cleavage

In human cells, it can cleave 
methylated DNA. This is an 
area of particular concern 
for plants, as it has received 
little attention

Unable to do so There are many 
unanswered questions 
about TALENs’ ability to 
cleave methylated DNA 

Multiplexing CRISPR’s main advantage 
is that multiple genes can 
be edited at the same time. 
Only Cas9 was required

This is extremely 
difficult to achieve 
using ZFNs

Using TALENs to obtain 
multiplexed genes is 
extremely difficult. 
Because it necessitates 
distinct dimeric proteins 
for each target 

Source: Shuikan [11].

Table 2. 
Comparing different genomic engineering techniques used in metabolomics.
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2.1 Gene insertion/deleting

Gene insertion or deletion is useful not only in biosynthesis gene clusters activa-
tion but also for novel SMs discovery [22]. In fact, several silent biosynthesis gene 
clusters have been refactored by replacing the biosynthesis gene clusters promoter to 
yield natural products such as secondary metabolites [23–26].

Nowadays, the promising technique has been developed in the genetic engineering 
field that is multiplexed CRISPR-Cas9 and transformation-associated recombina-
tion (TAR)-mediated promoter engineering method (mCRISTAR) [21, 27–30]. 
mCRISTAR actually combined the advantages of TAR technique and CRISPR-Cas9 
technique. Basically, mCRISTAR mode of action is that CRISPR-Cas9 breaks the 
double-stranded in the promoter region of the biosynthesis gene cluster (BGCs), then 
the fragments produced are reassembled by TAR with synthetic gene-cluster specific 
promoter cassettes [21].

2.2 Gene cloning

Basically, gene cloning consists of some steps include 1) determining the suitable 
heterologous host 2) cloning the target gene, 3) transferring the gene into the suit-
able host, 4) expression of the gene in the suitable host system, 5) optimization of 
 production [31].

However, many new and useful cloning techniques have been introduced such as 
transformation assisted recombination (TRA), Cas9-assisted targeting of chromo-
some segments (CATCH), and TAR-CRISPR [20, 32, 33]. CATCH is a cloning tool 
that uses the CRISPR-Cas9 system for direct BGCs cloning into the host. However, 
compared to PCR and restriction enzyme cloning techniques, CATCH is appeared 
to be more useful for direct cloning of large genes clusters. Whether, TAR technique 
has been utilized for about a decade in the cloning of large BGCs, but the TAR 
technique is associated with low cloning efficiency [20, 33]. To address this chal-
lenge TAR and CRISPR-Cas9 have been coupled resulting in a new approach called 
TAR-CRISPR [33]. Therefore, TAR-CRISPR is different than mCRISTAR as discussed 
earlier. It is yeast-based method, while mCRISTAR uses CRISPR-Cas9 to breaks the 
double-stranded in the promoter region of the BGC, and the fragments produced 
are reassembled by TAR with synthetic gene-cluster specific promoter cassettes. As a 
result, by coupling CRISPR with TAR significant increase of clone efficiency has been 
reported [33]. In fact, TAR-CRISTAR cloning will allow for the development of BGC 
cloning and SM production in the future.

While gene-editing techniques play a significant role in the detection and pro-
duction of microbial secondary metabolites, metabolomics is also important in the 
identification and characterization of secondary metabolites produced by native or 
genetically modified microorganisms.

3. Identification and characterization of secondary metabolites

The identification and characterization of secondary metabolites are important. 
Metabolomic often requires abroad array of instrumentation such as ELSD for detect-
ing lipids, coulometric array detectors for detecting redox compounds, and fluorescent 
spectrometer for detecting aromatic compounds, whereas other omics techniques such 
as genomics, transcriptomics, or proteomics are often conducted by a single instrument.
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In microbial secondary metabolites investigation, the experiments are mainly con-
ducted in two different approaches, targeted or untargeted metabolites identification 
[34]. As its name, targeted metabolites experiment aims to identify a specific group of 
SMs that are already known. Whereas, the untargeted secondary metabolites experi-
ment aims to identify the large scale of SMs produced by microorganisms including 
novel and known metabolites [35].

Nowadays, two general technologies have been utilized as primary tools in metabo-
lomic, mass spectrometry (MS), and nuclear magnetic resonance (NMR) [4, 36, 37].

These high-throughput tools provide broad coverage of many classes of secondary 
metabolites, including amino acids, lipids, sugars, organic acids, and others.

In fact, nuclear magnetic resonance (NMR) and mass spectrometry (MS) has been 
used to identify both targeted and untargeted secondary metabolites [38]. They are 
often complementary to each other. Mass spectrometry (MS) provides information 
of molecules whereas, nuclear magnetic resonance (NMR) is utilized to differentiate 
between structural isomers [39]. In fact, MS is more sensitive than NMR and able to 
detect the large scale of metabolites, while NMR is highly quantitative and reproduc-
ible and require larger sample amount for analysis than MS [40, 41].

4. Data analysis

In fact, the major challenges in metabolomic experiments are the huge amount of 
information obtained from either NMR spectroscopy or MS [7, 37]. The extraction of 
the significant information generated by NMR and MS is crucial by using computer 
software in order to organize the vast amount of data [40, 42].

Because studying individual metabolites is impractical for visualizing changes 
between groups of metabolites, univariate statistical approaches can be utilized 
to understand the results. Principal component analysis (PCA) is one of the most 
extensively used statistical approaches [39, 43, 44]. The data can be simplified using 
principle component analysis. CA without losing its core feature. In fact, principal 
component analysis PCA provides information on multivariate differences among 
secondary metabolites while, different univariant statistical tests such as non-para-
metric Wilcoxon signed-rank test, Kruskal–Wallis test, and the parametric.

Student’s t-test and ANOVA can be utilized to analyze isolated metabolites [45].
Nowadays, most metabolites can be identified, due to the development of many 

bioinformatics software. There are two types of metabolites identification that are 
applied including 1) definitive identification and 2) putative identification [7]. Many 
different metabolomics databases are available online some of them are used for NMR 
such as METLIN (http://metlin.scripps.edu), Biological Magnetic Resonance Databank 
(http://www.bmrb.wisc.edu/metabolomics/), and METLIN (http://metlin.scripps.edu) 
while the others are used for MS such as Mass Bank (http://www.massbank.jp), http://
csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html“http://csbdb.mpimp-golm.mpg.de/
csbdb/gmd/gmd.html), the Glom Metabolite Database (GMD, NIST (http://www.nist.
gov/srd/nist1a.htm), METLI and MMCD (http://mmcd.nmrfam.wisc.edu) [46].

5. Conclusion

Microorganisms are one of the most significant sources of SMs that play important 
roles in many aspects of our life including pharmaceutical, biomedical and food 
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applications. The integration between genetic engineering and metabolomic provides 
a powerful platform for the production, detection, and characterization of known 
and unknown secondary metabolites. However, the combination between CRISPR-
Cas9 and metabolomics may improve the efficiency of microbial SMs discovery. 
Thus, the need of the hour is a comprehensive and sensitive technique that has the 
ability to provide comprehensive information of any secondary metabolites under all 
conditions.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Plants’ secondary metabolism is an important source of medicinal and industrial
products. Even though natural ecosystems are still the most important font of this
kind of substance, excessive harvesting of spontaneous flora can act as a direct cause
of biodiversity loss. Different technologies are used for in vitro production which, in
addition to being useful for safeguarding biodiversity, make available to industry
substances that are difficult to produce in vivo. Moreover, the growing demand for
secondary metabolites encourages the use of new biotechnology tools to create new,
more productive in vitro transgenic plant cultures.

Keywords: medicinal plants, metabolites, vitro, secondary metabolism, medicinal
plants, elicitor, cell multiplication

1. Introduction

Several problems might arise when producing secondary metabolites using both
spontaneous and cultivated plants or parts of plants. If the material for extraction is
collected by spontaneous plants, the major risk is related to the impoverishment of
resources and biodiversity, consequently. Although natural ecosystems are usually
rich in officinal plants that can be used by humans, an excessive collection of sponta-
neous flora can act as a direct cause of biodiversity loss [1, 2]. Currently, it is estimated
that at least 50,000 plant species are used, which in the majority of cases grow
spontaneously, however, sometimes products come from specific cultivation. Based on
what was reported by the 2020 edition of the State of the World’s Plants and Fungi [3],
climate change is threatening two-fifths of the plants currently known; this value is
doubled compared to what observed in 2016 and, among these, species are included
many medicinal plants used both as a natural remedy and for drug production.
According to such data collection that involved 210 scientists and 42 countries, over
140,000 plants should be classified as under extinction threat, including 730 medicinal
plants. Among known species, 5500 medicinal plants can be found and approximately
13% of these are under extinction threat [4]. Concerning the most vulnerable plants,
we can mention Brugmansia sanguinea (Ruiz & Pav.) D. Don, used in medicine to treat
cardiovascular disorders, which can only be found as a cultivated plant. Fate similar to
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Nepenthes khasiana Hook. f., mostly used to treat skin problems as well as Warburgia
salutaris (G. Bertol.) Chiov., indicated when respiratory problems occur [3, 5].

1.1 Historical notes

A large number of species belonging to the plant kingdom have always coexisted on
Earth, over the years they have created a great heritage of biodiversity. Plants have
always been a primary source of sustenance for herbivorous and omnivorous animals
including the human species, the latter, however, over time, has realized the possibility
of using plant biomass to also obtain substances to be utilized in various effective ways,
for example as medication or food supplements.

Western medical culture can be traced back to the Sumerian Nippur tablets of
3000 BC on which the names of medicinal herbs are reported. The first known writing
on the subject is a papyrus (1552 BC), dating back to an Egyptian dynasty. It features
numerous herbal formulas and, between magic and medicine, even invocations to
ward off disease and a catalog of plants, minerals, magical amulets, and useful spells.
It is based on more than 500 plants, nearly a third of which are still found in today’s
Western pharmacopoeias.

The most famous Egyptian physician was Imhotep (Memphis around 2500 BC)
whose “materia medica” included practices to reduce head and thoracic trauma,
wound care, prevention, treatment of infections, and principles of hygiene.

The first Chinese manual of materia medica, Shennong Ben Cao Jing (Emperor
Shennong’s classic Materia medica), written in the first century, describes 365 medi-
cines, 252 derived from herbs.

Ancient literature also provided the manuscript “Recipes for fifty-two foods,” the
longest medical text found in the Chinese tomb of Mawangdui, (168 BC), the
Wushi’er Bingfang (9950 characters). It along with others shows the early develop-
ment of Chinese medicine while subsequent generations have developed Yaoxing Lun,
a “Treatise on the Nature of Medicinal Herbs.”

Ayurveda is the traditional medicine in India that emphasizes plant-based treat-
ments, hygiene, and the balance of the state of the body. The Indian Materia Medica
included knowledge of plants, the place of its growth, the methods of conservation,
and the duration of the collected materials; includes also directions for extracting
juices, powders, cold infusions, and extracts.

Later in Greece, it was Hippocrates, a philosopher known as the father of medi-
cine, who in 460 BC founded a school focused on the necessity to discover the causes
of disease to combat them. His treatises, aphorisms, and prognostics, in addition to
describing 265 drugs, supported the importance of diet for the treatment of diseases.

Theophrastus (390–280 BC), a disciple of Aristotle’s, historically known as the
“father of botany,” wrote the treatise Historia Plantarium, the first attempt to classify
plants and botanical morphology in Greece with details of medicinal herbs and con-
coctions based on them.

Later Galen, philosopher, physician, pharmacist, and prolific writer of medical
matters, collected the medical knowledge of his time in an extensive report and wrote
on the structure of organs, the impulse and its association with respiration, arteries,
and blood circulation, and the uses of the “Theriac” “In treatises such as on Theriac to
Piso, on Theriac to Pamphilius, and on Antidotes, Galen identified in the Teriaca a
compound of 64 ingredients, which can be defined as a polypharmaceutical, suitable
for treating every known disease.” His work rediscovered in the fifteenth century
became the authority on medicine and healing for the next two centuries.
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The Greek physician Dioscorides treated medical questions in five volumes,
entitled Περὶ ὕλης ἰατρικῆς in Greek and De Materia Medica in Latin; they include
about 500 plants and direct observations of the plants and the effects that the
various drugs have had on patients. De Materia Medica was the first extensive drug
system comprising a 1000 natural drugs (products for most basic plants). The
classification used by Dioscorides is of an elementary type even if he uses a botanical
taxonomy. The books written by Dioscorides on medicinal herbs of history are
considered the precursors of the modern pharmacopeia remaining in use until the
1600s.

2. Secondary metabolism

Active principles synthesized through secondary metabolites act as a defense
strategy, playing an active role in plant ecophysiology against herbivores, attacks by
pathogens but also as a response to abiotic stress, and competition with other plants; at
the same time, they play a crucial role in attracting beneficial organisms, such as
symbionts and pollinators. Recently, several studies on “secondary metabolism”

highlighted additional features related to these molecules, which make them essential
for the organism that produces them as they provide useful information on quality
and on specific features of a range of raw materials, both of animal and vegetal origin
as well as on food produced with them [6, 7]. As a matter of fact, the secondary
metabolites pool is often influenced by specific environmental conditions, for
instance, in the case of essential oil profile; for this reason, secondary metabolite
products in essential oils may provide important support in acquiring valuable
information on their origin.

Unlike primary metabolites that are stable in concentration and chemical struc-
ture, ensuring cell structural and functional integrity, secondary metabolites show a
“high degree of freedom” as far as these aspects are concerned [8, 9].

Due to an enormous diversity in structure and intraspecific variability, biosynthe-
sis in secondary metabolites is limited to definite groups of plants and thus they are
not ubiquitous. Synthesis in secondary metabolites was selected when during evolu-
tion such compounds managed to respond to specific needs by vegetal organisms [10].
This is the case, for instance, of the variation of scents and colors in flowers to attract
pollinators and promote and increase efficiency in pollination [11].

Secondary metabolism-derived molecules are released in the environment through
different mechanisms, among others we can mention volatilization that leads to a
dispersion of substances such as ethylene and sesquiterpenes that can be absorbed by
surrounding plants directly through the soil or atmosphere; lisciviation, instead, pro-
motes the release of substances, such as sugar, amino acids, alkaloids, fatty acids,
terpenoids, and phenolic acids, from the aerial part of the plant through
hydrosolubility caused by rain or fog. Other mechanisms promoting dispersion are 40
exudation and decomposition.

The activity of substances released also depends on the physiological and nutri-
tional status of plants and environmental abiotic factors, such as light, rain, and
temperature [12].

During the nineteenth century, chemists showed interest in the study of secondary
metabolism and metabolites, concerning especially drugs, poison, aromatizers, and
industrial products, all representing as a whole the final products of metabolic
pathways or networks of these; actually, more than 200,000 are known to date.
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Recently, potential roles of secondary products at the cell level that have been
identified are—plant growth regulation, gene expression modulation, and compounds
involved in signal transduction [13, 14]. Hence, while for centuries secondary metab-
olites have been used in traditional medicine, nowadays, they act as valuable pharma-
ceutical, cosmetic, chemical compounds, and nutraceuticals in the recent past [15].

2.1 Secondary metabolites in natural environment

Active principles can be divided into three big molecule families based on the
biosynthesis pathways from which they are originated—terpenoids and steroids,
alkaloids and phenolics [15].

2.1.1 Terpenoids

These are the most recurrent compounds; lipid molecules synthesized starting
from acetyl CoA or from glycolysis intermediates reaching a total of 35,000, abundant
in essential oils, resins, rubber, volatile molecules, scented, colorless, soluble in oil or
highly lipophilic solutions, and inflammable. They function as protectors for wood
tissues, exert antibacterial effects, are responsible for insect attraction and repulsion,
as well as represent the base material for vegetal hormones or pigments (chlorophyll
and carotenoids) synthesis; they also take part in the mitochondrial electron transport
and plastoquinone.

2.1.2 Alkaloids

These molecules, which accumulate nitrogen becoming an important source of it,
are produced by approximately 20% of plants; more than 20,000 different alkaloids
are known and are synthesized principally from amino acids.

They play an important role as an advanced chemical defense system of plants
under predators’ pressure (larvae, insects, herbivores, mammals). They work as anti-
biotics and pesticides with a deterrent action to prevent plants from being ingested.

Alkaloids used as drugs, poison, with stimulating and narcotizing effects were used
even by Greek and Romans, such as atropine (Atropa belladonna L), cocaine
(Erytroxylon coca Lam. leaves), morphine and opium (Papaver somniferum L. fruits),
nicotine (Nicotiana tabacum L. leaves), and strychnine (Strychnos nux-vomica L. seeds).

2.1.3 Phenolic compounds

Secondary plant metabolites belonging to the big family of polyphenols [16],
having mostly hydrosoluble characteristics. They represent one of the main classes of
secondary metabolites that includes a wide range of highly heterogeneous substances
having all in common an aromatic ring. They are formed through the biosynthesis
pathway of shikimic or mevalonic acids; a total of 15,000 are known and represent a
group of substances easily occurring in superior plants; the most common cinnamic
acid derivatives are caffeic, p-Coumaric, ferulic, gallic, and synaptic acids.

Compounds of different colors accumulate especially in aerial plant organs (stems,
leaves, flowers, and fruits) rather than in roots; such a preferred location is related to a
light-induced effect on phenolic metabolism; besides, phenolic compounds play a
protective role against UV that are successfully absorbed and accumulated into leaves
epidermis to avoid damage caused to cell DNA [16]. They influence the color,
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generally yellow, of flowers and fruits where they can be found as glycosides diluted
in cell juice except for anthocyanidines and their glucosides (anthocyanins) that are
red, purple, or blue depending on the pH of cell juice [17]. The flavonoids content in
plants depends not only on the genotype but is also closely related to environmental
conditions especially by light radiation such as UV; the latter, in fact, induces a
significant increase of flavonoids in leaves [18, 19].

Flavonoids and phenolic acids are the most important antioxidants in the diet and
can be found also in tea, wine, and beer [8].

They are considered pharmacologically active compounds having anti-
inflammatory activity, active against liver injury due to hepatotoxicity, and acting as
antitumoral, antimicrobials, antivirals, enzyme inhibitors, antioxidants, protect
against capillary fragility, as well as playing a role as insect repellents and signaling in
plant-organism interactions.

In the recent past, the most common use involving the antioxidant properties has
been represented by the “scavenger” activity exerted by a series of enzymes, such as
dismutase, superoxide, catalase, glutathione peroxidase; they play a role in halting the
radical reaction cascade causing acceleration of cell senescence processes.

Among multiple biological activities exerted by these secondary metabolism mol-
ecules, we highlight the role of antioxidants against aging, such as in the case of cocoa
(Theobroma cacao L.), coffee (Coffea arabica L.), tea (Camellia sinensis L.). The con-
tent of phenolic compounds in vegetal tissues varies based on the species, variety,
specific organ considered, physiological status, and pedoclimatic conditions.

The high variety of phenolic structures shows the same amount of function diver-
sification—they can play a role as low molecular weight flower pigments, antibiotics,
and anti-UV screens.

Likewise, elicitation on a secondary metabolic pathway by a pathogen can lead to
ex novo production and accumulation of phytoalexins in a plant. This event is
exploited through some biotechnological applications in which elicitors are used to
stimulate the production of secondary metabolites.

2.2 Applications in food

Antioxidants can be defined as any substance that is able to delay or significantly
inhibit oxidation in a specific substrate even if it shows a really low concentration
compared to the oxidable substrate [20]. Nutrition plays a crucial role in ensuring the
efficacy of antioxidant enzyme defenses—many essential oligoelements, such as sele-
nium, copper, manganese, and zinc, are involved in the molecular structure or in the
catalytic activity of these enzymes. The main antioxidant compounds in food are—
ascorbic acid (vitamin C), tocopherols (vitamin E), carotenoids, flavonoids.

Over the years, pharmaceutical companies have been focusing on antioxidant
compounds from food to promote healthy properties of food as available data show
that an increase in oxidant intake from natural sources, specifically from fruit and
vegetables, may have a beneficial effect on disease prevention. Their production can
be effectively achieved through in vitro cultures.

3. Production through in vitro culture

Secondary metabolites can be produced in vivo from spontaneous or cultivated
plants or in vitro. Unlike primary metabolites, an accumulation can be detected in
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vacuoles, they are not ubiquitous and synthesis depend on the development stage of
the plant. Production conventional methods from vegetal tissues include different
extracting methodologies through solvents, steam, or supercritical CO2 [21]. In vivo
culture refers to plants grown in the natural environment or cultivated in non-sterile
conditions. Instead, the definition “in vitro culture” refers to the culture of explants,
tissues, or isolated cells on the artificial substrate, under controlled conditions, in a
sterile environment. In in vitro culture, the same metabolites that plants naturally
produce can be accumulated through physiological stimulation, stress, or hormones.
The development of methodologies such as vegetal tissue culture, enzyme production,
and fermentation technologies gave a significant contribution to the production of this
kind of molecule [21].

In vitro secondary metabolite production is based on a procedure in two separate
phases—mass production and secondary metabolites synthesis. These phases are
performed separately and are independent each other; at the same time, they have
different requirements and can be optimized separately [22, 23].

Cultures of vegetal tissues (Figure 1) or isolated cells (Figure 2) are inoculated in
sterile conditions starting from explants, such as leaves, stems, meristems, roots,
buds, callus (Figure 3) both for multiplication and secondary metabolite production.
Production can take place in more than one tissue.

3.1 Biomass production

Depending on the species, biomass production can be initiated from an undiffer-
entiated callus or cell suspension. In other cases, sprouts, roots, and somatic embryos
can be cultured. Using differentiated tissues or organs is crucial when the requested
metabolite is produced in specific plant tissue or organ or also in specialized glands

Figure 1.
Culture of shoots on liquid substrate.
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such as in the case of essential oils [24, 25]. Although different studies showed efficacy
in secondary metabolite production through cultures of differentiated tissues and
callus, the technique mostly used is cell suspension [22, 23, 26, 27]. The latter is a
culture of cells isolated in a liquid medium that exploits cell totipotency for large-scale
production. Each cell, in fact, keeps the biosynthesis ability of the plant and under the
right conditions can produce metabolites identical to the ones produced by the mother
plant. Furthermore, it can be noticed that cell cultures have greater and faster poten-
tial application to the market compared to other production methods [25, 28]. This
technique ensures the continuous production of metabolites of interest while offering
an elevated quality standard and product uniformity. In addition, it is possible
through biotechnology applications to produce new metabolites not synthesized by
the mother plant [29, 30]. Currently, different metabolites with an interesting market

Figure 2.
Cell suspension culture.

Figure 3.
Isolated callus on solidified medium.
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value are produced using cell suspension culture, such as taxol [31, 32], resveratrol
[33], artemisinin [34], ginsenosides [35], raubasine [36].

Among differentiated tissues, hairy roots should be highlighted as they enable the
production of secondary metabolites from a considerable number of plants.

Hairy roots are formed in nature on plants following an infection caused by
Agrobacterium rhizogenes. This bacterium carries genes that encode phenotypic muta-
tion inducing the formation of hairy roots. After infection, a DNA (T-DNA) segment
is transferred in the plant genome through the root-inducing (Ri) plasmid [37].

Agrobacterium can transfer genetic information to plants inducing transforma-
tions. Once the infection takes place, a plasmid fragment called T-DNA can be inte-
grated into the plant nuclear DNA where genes are integrated. The composition and
organization of T-DNA sequences vary considerably. As some cT-DNA genes show
strong growth effects when expressed in other species, they can also influence the
growth of natural transformants. However, there is still a need to fully identify the
mechanisms through which these genes alter growth models and their regulation by
promoters and plant transcription factors [38]. Among the advantages of such a
technique, we can mention the high level of cell differentiation, rapid growth, rela-
tively easy production, genetic, and biochemical stability. It should also be taken into
consideration the potential accumulation of secondary metabolites in the aerial part of
the plant. However, technical problems might arise in cultivation systems for the
market [37].

3.2 Immobilization

The process can involve both cells and elicitors. They are bound inside a matrix
through trapping, absorption, or covalent bonding. The system must be integrated
with an adequate substrate as in the case of cultures of suspended cells, as well as
regulating chemical and physical parameters, such as pH and temperature.

In a system of this kind, secondary metabolites must be released by cells in the
culture media naturally or through induced secretion. One of the advantages of this
methodology is the potential stabilization of a continuous production process through
the adoption of a specific system of bioreactors.

4. Substrates

In vitro production includes cultural techniques on explants, tissues, or vegetal cells
under controlled conditions supported by a substrate that plays a vital role for plants;
in fact, it acts as the “place” where all elements needed for plant survival are located
[39]. The explant sometimes represented by the cell alone has to be able to regenerate;
thus, the substrate provides it with all substances needed, such as macro and microel-
ements, vitamins, carbon sources, growth regulators, and in the case of solid sub-
strates jellifying agents, usual agar in quantities that can vary between 0.7–0.8 g/L,
agarose, and starch.

Generally, the substrate contains mineral elements formed by macro and microel-
ements and an organic component formed by vitamins, amino acids, and other nitro-
gen components as well as carbohydrates. There are different substrates that can play
a specific role in achieving different objectives, as a consequence of the concentration
of specific substances contained in them, such as those indicated, for example, in
Table 1.
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The choice of an appropriate substrate should be based on the following [43]:

• the type of ions contained

• macroelements balance

• total ionic concentration of medium

Microelements are used in small quantities; lack of such elements causes specific
symptoms as they intervene in plant metabolism; they are integrated into enzymes.

Macro and microelements MS (mg/L) WPM (mg/L) B5 (mg/L) NN (mg/L)

Ammonium nitrate 1650.000 400.000 720.000

Boric acid 6.200 6.200 3.000 10.000

Anhydrous calcium chloride 332.200 72.500 113.24

Cobalt chloride hexahydrate 6H2O 0.025 0.025

Tripotassium phosphate 170.000 170.000 130.500 68.000

Potassium iodide 0.830 0.750

Sodium molybdate 2H2O 0.250 0.250 0.250 0.250

Calcium nitrate 386.000

Potassium nitrate 1900.000 2500.000 950.000

Ammonium sulfate 134.000

Iron sulfate�7H2O 27.800 27.800 27.850 27.850

Anhydrous magnesium sulfate 180.700 180.700 122.09 90.340

Manganese sulfate�H2O 16.900 22.300 10.000 18.940

Potassium sulfate 990.000

Copper sulfate 5H2O 0.025 0.250 0.025 0.025

Zinc sulfate 7H2O 8.600 8.600 2.000 10.000

VITAMINS

Folate 0.500

Nicotinic acid 0.500 0.500 1.000 5.000

Biotin 0.050

Myo-inositol 100.000 100.000 100.000 100.000

Pyridoxine�HCl 0.500 0.500 1.000 0.500

Thiamine�HCl 0.100 1.00 10.000 0.500

OTHER ADDITIVES

Disodium EDTA (�2H2O) 37.260 37.300 37.250 37.250

Glycine 2.000 2.000 2.000

MS = Murashige & Skoog [40]; WPM = woody plant medium [41]; B5 [42]; NN = Nitsch & Nitsch [42].

Table 1.
Composition of main substrates for in vitro culture.
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Some microelements can influence the production of secondary metabolites, acting as
elicitors [44].

Hormones carry out an essential role as growth regulators in plants [45, 46]. The
need to add growth regulators to substrates is based on the fact that normal tissues or
small organs placed in vitro are not able to synthesize a sufficient quantity of them.

Among known hormones mostly utilized we can find:

1.Auxin: Natural auxin is Indole-3-acetic acid (IAA, 3-IAA); in substrates for
in vitro culture mostly synthetic compounds are used with an auxin-like function
such as:

• IBA (Indole-3-butyric acid), the most commonly used;

• NAA (1-Naphthaleneacetic acid);

• 2,4 D (2,4-Dichlorophenoxyacetic acid).

Natural auxins are added in variable quantities (0.01–10 mg/l) and the synthetic
ones are added in quantities between 0.001 and 10 mg/l, determining—
elongation and tissue distension, cell division, adventitious roots formation
[47, 48].

2.Cytokines: Natural cytokinins are as follows:

• Kinetin (N6-Furfuryladenine, 6-Furfurylaminopurine)

• Zeatin [6-(4-Hydroxy-3-methylbut-2-enylamino)purine]

• 2Ip [N6-(2-Isopentenyl)adenine]

Cytokines are used in concentrations between 1 and 10 mg/l to stimulate cell
division, stimulate adventitious buds production from tissues or from callus, and
growth of somatic embryos, to induce the development of axillary buds. In
addition, cytokines inhibit root development [49].

3.Gibberellins: Among gibberellins, the most used is GA3 (gibberellic acid) which
promotes internode elongation, meristem, and bud development while inhibiting
the formation of roots; thus, it is employed in subsequent phases after planting
[50, 51].

pH: Another factor essential for a cultural substrate is pH as its value influences
—salt solubility, elements absorption, and substrate solidification; for these
reasons, the pH range is quite limited ranging from 5.2 to 5.8. As far as secondary
metabolites are concerned, optimal ranges are established both for pH and
temperature according to the cultured species.

5. Elicitors

To achieve secondary metabolite production, elicitation is one of the most impor-
tant strategies and is used to increase productivity; it takes place through the addition
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of compounds called elicitors—they can be defined as stress-inducing compounds that
induce or improve biosynthesis of specific compounds when a specific amount is
applied to a living system [52, 53].

Elicitors can be biotic, such as jasmonic acid, hydrolyzed casein, cellulase,
macerozyme, yeast extract, fungal extract, chitin; in addition, chemical compounds
usually synthesized from pathogens; abiotic elicitors that include nonorganic sub-
stances and can be divided into physical, chemical, and hormonal factors (Figure 4)
[53, 54].

6. Growth curve

In cell suspension, depending on environmental parameters and on bioreactor
features, the development of cells cultured on the liquid substrate is based on specific
phases illustrated in Figure 5. The graph shows time (horizontal axis) and cell number
(vertical axis). At the beginning a slow-growth phase is shown, known as lag phase
followed by a phase in which cell concentration grows based on a logarithmic scale,

Figure 4.
Classification of elicitor based on different features.

Figure 5.
Growth curve of a cell suspension culture.
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log phase; then a second slow-growth phase occurs followed by a phase in which the
culture is numerically constant indicated as a plateau or steady state.

During the latency phase, reduced growth and an accumulation of substances
useful for cell development occur, while during the exponential growth phase a
considerable biomass increase can be observed. In a discontinue culture, in the case
that cells accumulate metabolites in vacuoles, the biomass is removed at the end of the
exponential phase; during the stationary phase a balance occurs between new cells and
dead cells, then secondary metabolites are excreted in culture media. In this case, the
collection is carried out by replacing from time to time or continuously the culture
media.

7. Production increase

In the production of high-value secondary metabolites, a good strategy is offered
by the use of technologies that ensure elevated yield and stable over time. It should be
underlined that the production of secondary metabolites from plants is genotype-
dependent and this fact influences both metabolite type and quantity. Mother plants
can be selected to a first selection to identify plants that ensure also in vivo a higher
production of compound needed. Once the in vitro culture is stabilized, both from
cells and organs, hyperproductive lines can be selected [23]. Selection is carried out
through in vitro growth analysis on cell lines or organs, evaluating the multiplication
degree but also assessing the quantity and quality of metabolite produced through
chromatography and spectroscopic analysis [23].

The output can also be increased through conventional systems or metabolic engi-
neering methodologies [22, 55].

7.1 Biosynthesis pathways

By using metabolic engineering, the biosynthesis pathways can be studied more
efficiently [56, 57] through studying gene overexpression that alterates pathways.
The study design includes analysis of enzyme reactions and biosynthesis processes at
genetic, transcriptomic, and proteomic levels; in addition, it is also studied the
manipulation of genes that encode critical enzymes and those that regulate the
speed in the biosynthesis pathways [58, 59]. However, to date this system is limited to
experimental settings and no method has been identified yet for industrial transfer of
such methodology. Currently, the study of the biosynthesis pathway in
phenylpropanol seems to be one of the most promising given that this substance is
involved in the biosynthesis of different secondary metabolites in plants [60, 61].

8. Conventional technologies

Culture parameters are among the factors that mostly influence secondary metab-
olite production—substrate composition both in terms of mineral and organic com-
pounds; pH; characteristics of cell inoculation; physical parameters, such as
temperature, light intensity, duration, shaking, and aeration [22, 23, 27]. The substrate
should be selected based on the requirements of plant species. Each substrate param-
eter can be modified to better adjust to the species and to metabolites to be obtained
by it—salt type and concentration, carbon source, growth regulators. In nature,
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secondary metabolites production is in response to environmental stimuli, or for
defensive purposes. This mechanism can be simulated in the laboratory through the
modification of the culture parameters, for example, light, temperature, or through
the use of substances called elicitors. To elicitors belong both organic and inorganic
molecules, such as methyl jasmonate, salicylic acid, microbial cell wall extracts
(e.g., yeast extract, chitosan), inorganic salts, heavy metals, physical agents (e.g., UV
radiation) among others (Tables 2 and 3).

Aid to the production of new secondary metabolites, or increased production of
those already known and used, can come from new technologies, such as transgenic

Elicitor Plant species Culture Compound References

Ozone (O3) Melissa officinalis Shoot Rosmarinic acid [62]

Hypericum perforatum Cell suspension Hypericin [63]

Pueraria thomsnii Cell suspension Puerarin [64]

pH Bacopa monnieri Shoot Bacoside A [65, 66]

Withania somnifera Hairy root Withanolide A [67]

Withania somnifera Cell suspension Withanolide A [68]

Sucrose Hypericum adenotrichum Seedling Hypericin and
pseudohypericin

[69]

Corylus avellana Cell suspension Paclitaxel [70]

Bacopa monnieri Shoot Bacoside A [65, 66]

Withania somnifera Cell suspension Withanolide A [68]

Ultraviolet C Vitis Vinifera Cell suspension Stilbene [71]

Proline Stevia rebaudiana Callus and
suspension

Steviol glycoside [72]

Polyethylene
glycol

Stevia rebaudiana Callus and
suspension

Steviol glycoside [72]

Hypericum adenotrichum Seedling Hypericin and
pseudohypericin

[69]

Jasmonic acid Bacopa monnieri Shoot Bacoside A [73]

Plumbago indica Hairy root Plumbagin [74]

Plumbago rosea Cell suspension Plumbagin [75]

Methyl
jasmonate

Salvia miltiorrhiza Hairy root Tanshinone [76]

Perovskia abrotanoides Adventitious
roots

Cryptotanshinone and
tanshinone IIA

[77]

Vitis vinifera Cell suspension Stilbene [71]

Bacopa monnieri Shoot Bacoside [73]

Salvia officinalis Shoot Diterpenoid [78]

Silybum marianum Cell suspension Silymarin [79]

Salvia castanea Hairy root Tanshinone [80]

Gymnema sylvestre Cell suspension Gymnemic acid [81]

Withania somnifera Hairy roots Withanolide A, withanone,
and withaferin A

[82]
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cultures. Several works have demonstrated the safety of these technologies, and their
effectiveness, at low cost, for the production of secondary metabolites for medicine
and industry [103].

Elicitor Plant species Culture Compound References

Andrographis paniculata Cell suspension Andrographolide [83]

Vitis vinifera Cell suspension trans-Resveratrol [84]

Taverniera cuneifolia Root Glycyrrhizic acid [85]

Gibberellic
acid

Salvia miltiorrhiza Hairy root Tanshinones [86]

Echinacea pupurea Hairy root Caffeic acid derivatives [87]

Salicylic acid Salvia miltiorrhiza Hairy root Tanshinone [76]

Vitis vinifera Cell suspension Stilbene [71]

Digitalis purpurea Shoot Digitoxin [88]

Hypericum hirsutum Shoot Hypericin and
pseudohypericin

[89]

Gymnema sylvestre Cell suspension Gymnemic acid [81]

Withania somnifera Hairy root Withanolide A, withanone,
and withaferin A

[82]

Datura metel Root Hyoscyamine and scopolamine [90]

Glycyrrhiza uralensis Adventitious
root

Glycyrrhizic acid [91]

Sodium
salicylate

Salvia officinalis Shoot Carnosol [92]

Sodium
chloride

Catharanthus roseus Embryogenic
tissues

Vinblastine and vincristine [93]

Sorbitol Perovskia abrotanoides Adventitious
roots

Cryptotanshinone and
tanshinone IIA

[77]

Silver (Ag) Perovskia abrotanoides Adventitious
roots

Cryptotanshinone and
tanshinone IIA

[77]

Vitis vinifera Cell suspension Resveratrol [94]

Salvia castanea Hairy root Tanshinone [80]

Datura metel Hairy root Atropine [95]

Cadmium
(Cd)

Vitis vinifera Cell suspension Resveratrol [94]

Datura stramonium Root Sesquiterpenoid [96]

Cobalt (Co) Vitis vinifera Cell suspension Resveratrol [94]

Copper (Cu) Ammi majus Shoot Xanthotoxin [97]

Bacopa monnieri Shoot Bacoside [73]

Datura stramonium Root Sesquiterpenoid [96]

Table 2.
Abiotic elicitors.
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Elicitor Plant species Culture Compounds References

Chitin Hypericum perforatum Shoot Hypericin and
pseudohypericin

[98]

Hypericum perforatum Cell suspension Phenylpropanoid and
naphtodianthrone

[99]

Vitis vinifera Cell suspension trans-Resveratrol and
viniferins

[83]

Pectin Hypericum perforatum Shoot Hypericin and
pseudohypericin

[98]

Dextran Hypericum perforatum Shoot Hypericin and
pseudohypericin

[98]

Yeast extract Perovskia abrotanoides Adventitious
roots

Cryptotanshinone and
tanshinone IIA

[77]

Plumbago rosea Cell suspension Plumbagin [75]

Silybum marianum Cell suspension Silymarin [79]

Trichoderma
atroviride

Salvia miltiorrhiza Hairy root Tanshinone [100]

Protomyces
gravidus

Ambrosia
artemisiifolia

Hairy root Thiarubrine A [101]

Claviceps
purpurea

Azadirachta indica Hairy root Azadirachtin [102]

Mucor hiemalis Taverniera cuneifolia Root Glycyrrhizic acid [85]

Fusarium
oxysporum

Hypericum perforatum Cell suspension Phenylpropanoid and
naphtodianthrone

[99]

Phoma exigua Hypericum perforatum Cell suspension Phenylpropanoid and
naphtodianthrone

[99]

Botrytis cinerea Hypericum perforatum Cell suspension Phenylpropanoid and
naphtodianthrone

[99]

Aspergillus niger Gymnema sylvestre Cell suspension Gymnemic acid [55]

Saccharomyces
cerevisiae

Gymnema sylvestre Cell suspension Gymnemic acid [55]

Agrobacterium
rhizogenes

Gymnema sylvestre Cell suspension Gymnemic acid [55]

Bacillus subtilis Gymnema sylvestre Cell suspension Gymnemic acid [55]

Escherichia coli Gymnema sylvestre Cell suspension Gymnemic acid [55]

Datura metel Hairy root Atropine [95]

Bacillus cereus Datura metel Hairy root Atropine [95]

Staphylococcus
aureus

Datura metel Hairy root Atropine [95]

Rhizobium
leguminosarum

Taverniera cuneifolia Root Gymnemic acid [85]

Table 3.
Biotic elicitors.
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9. Potential applications in agriculture

Focusing on biodiversity can be useful to strengthen food security and human
nutrition aiming at promoting general sustainable development. Traditional crops
represent an important biodiversity source and carry out a key role in preserving the
identity of specific production areas as well the consumer behavior and transfer of
cultural heritage to next generations. However, these cultures and foods require to be
preserved from genetic erosion that can determine tragic effects on biodiversity,
environmental sustainability, and rural economies.

As a matter of fact, this methodology based exclusively on a phenotypic evaluation
does not allow to easily distinguish between genotype and effects on the environment.
Recent methodologies based on gene markers enable us to identify species, cultivars,
and autochthone varieties easily and rapidly.

Elevated costs and technical problems that might arise when the relationship
between phenotype features and gene expression is studied, make the application of
these methodologies often difficult. Recently, secondary metabolite analysis has been
proposed as a crucial tool to identify a specific species; the metabolic profile, in fact,
can lead to the identification of a huge quantity of local autochthone varieties, acting
against globalization of agriculture production and being at the same time a tool to
identify metabolites useful in traditional project characterization.

10. Importance of modern biotechnologies secondary metabolites
production

The parts of plants to be used for therapy, nutrition, and other activities can be
obtained from spontaneous or cultivated plants; the choice of production method is
mostly determined by economic factors is affordable to collect spontaneous plants when
abundant and costs are relatively low, however, in case of high collection costs and lack
of spontaneous plants, cultivation can be less expensive [17]. Furthermore, a lot of
spontaneous plants are collected without any control and are currently under extinction
threat; just a small percentage is cultivated [104]—all these factors are of concern due to
the decrease and loss of gene diversity and environmental degradation. Advantages of
open field cultivations are related not only to the fact that they give a solution to a lack of
vegetal material available in nature, but also to the fact that the wild plant often offers a
highly heterogeneous which might be at the same time inadequate in terms of continu-
ous supply and quality standards. Production of secondary metabolites from cell cul-
tures is a valuable option for molecules that have elevated extraction costs and low
output from plant material coming from cultivation [105, 106].

For these reasons and due to the current increased demand for natural food products
and drugs of natural origin, the employment of biotechnological artificial culture sys-
tems might be a good alternative to conventional cultivations for in vitro production of
secondary metabolites as well as a viable option to replace industrial biosynthesis prod-
ucts. These issues, together with the need to increase the production of plant materials
with uniform quality standards, are encouraging pharmaceutical companies to innovate
research aiming also at gene and cell technologies indicated as biotechnologies [107].

On one hand, in vitro cultivation systems give us the chance to exploit cells, tissues,
organs, or organisms as a whole also through gene manipulation to obtain desired
compounds [25]; on the other hand, they play a potential role in terms of large-scale
productions, production from secondary metabolic pathways.
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Plant tissue culture is based on the principle that the same substances found in
nature inside an organ, a fruit, or other plant tissues can be induced to accumulate in
undifferentiated cells while keeping gene information and the ability to produce that
range of active principles detected in the mother plant [108].

Multiple factors influencing in vitro secondary metabolite synthesis can be found:
type of raw material, environmental and climate conditions, culture media, the quan-
tity of carbohydrates contained that influences biomass, type and quantity of hor-
mones, light (optimal light quantity and intensity is a prerequisite for maximum
expression of metabolites), temperature. Substrate composition strongly influences
secondary metabolite production, especially for what concerns salt and growth regu-
lators besides subsequent glucose addition that might increase accumulation if com-
pared to cultures in which a fix concentration is used [109].

Plant cell cultures are defined also as “chemical factories for secondary metabo-
lites” [25] and represent to date a viable alternative to the cultivation of pharmaceuti-
cal plants both from in vitro and non in vitro origin.

The most important reason for pharmaceutical companies to obtain valuable sec-
ondary metabolites in this way is due to the fact that conventional cultivations in
fields of pharmaceutical plants of some species are time-consuming, expensive, and
generate a reduced output.

Some large-scale protocols of productions for the market have been set up for
extractions of berberine, shikonin, and Ginseng saponins [25, 109] by using bioreac-
tors. Berberine is produced in vitro from two members of Ranuncolaceae (Thalictrum
minus and Coptis japonica); shikonin is produced in vitro from Lithospermum
erythrorhizon in quantities 800 times higher than quantities obtained from plant roots;
saponins are produced in vitro from Panax ginseng.

Further research was performed on other secondary metabolites such as flavoring
agents (i.e., vanillin produced in bioreactors from calluses explanted from Vanilla
planifolia by the company ESCAgenetic Corporation—San Carlos—CA, USA), food
coloring (e.g., anthocyanins from Euphorbia milii), drugs (e.g., taxol), different
essential oils and natural insect repellents [25].

11. Conclusions

Although for the production of food from plants there is an increasing tendency
toward natural agriculture, in the production of substances intended for industry, in
particular the medicinal industry, a cultivated or spontaneous plant cannot always
guarantee a constant and high-quality product. Pollution problems, climate change,
and the political unsafe of some harvesting and cultivation areas also make production
uncertain. In this situation, the production of secondary metabolites in vitro ensures a
safe and constant making of the substances of interest.

New technologies, always evolving, can give an even greater push toward in vitro
culture, since they guarantee safe products, at lower costs, often difficult to obtain in
nature.
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Chapter 7

Biological Activity of  
Defence-Related Plant Secondary 
Metabolites
Ananth Anbu and Umadevi Ananth

Abstract

The message that everyone needs to know is that secondary metabolites in plants 
and natural products are involved in various activities. The phenolics, quinones, 
terpenes, flavonoids, and other thousands of low molecular weight metabolites activ-
ity is unknown. Well-understood secondary metabolites have been implicated in the 
defense against pathogens; the operating system of some of these has been estab-
lished. In particular, to date, a relatively small number of processes have been shown 
to be targets of plant metabolism, including electron transport chains, mitochondrial 
function, and membrane integration. However, it is now emerging that other specific 
enzymes and processes may also be targets of specific metabolites. There is a general 
belief that modern genetic approaches will identify new targets and mechanisms of 
plant metabolism. Molecules that trigger apoptosis or autoimmunity in tumor cells, 
especially triterpenoids, are of particular interest in this regard. Before proceeding 
to specific studies in plant or human cells, we discuss whether there is a case for 
conducting preliminary studies on the mechanism of action in the genetic pathway 
system, such as yeast Saccharomyces cerevisiae, considering the approaches taken so far 
in botany and strategies that have led to success in the biomedical field.

Keywords: natural products, Saccharomyces cerevisiae, Defensins, pathogen

1. Introduction

Secondary metabolites in plants are commonly used to describe metabolic path-
ways that produce molecules or metabolites that can provide for normal growth or are 
only needed under certain conditions. In contrast, primary metabolites traditionally 
describe key household maintenance functions, such as energy production or the 
production of essential metabolites and macromolecules. These differences may be 
somewhat misleading; however, as is now known, secondary metabolites compounds 
plays a very important role in the biology of various organisms. In fact, it is clear that 
evolution would not selectively maintain the complex pathways that make up second-
ary metabolites if there were no competing advantages for the developing organism.

This logic, coupled with the fact that the biological function of the majority 
of plant and microbial secondary metabolites is poorly understood, has led to an 
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alternative description of plant metabolites as “natural products” [1], though that 
description also carries some limitations. Nature produces a tremendous array of 
secondary metabolites or natural products, with the most diversity seen in micro-
organisms and plants [2]. It is a great resource for mankind and many examples of 
microbial or plant metabolisms are exploited by man, for example, antibiotics and 
pharmaceuticals. However, we have only scratched the surface, especially since there 
are various natural metabolites that have applications in the field of biomedicine. It 
is the basis of many natural product discovery projects, for example, attempts to use 
metagenomics to study marine microbial diversity [3]. In contrast to these attempts 
to explore metabolic diversity in new key locations, plant metabolic diversity has 
been exploited by humans throughout history, initially using plant extracts and more 
recently through scientific activity to identify metabolites with specific functions and 
then use these products directly or as traces for therapeutic compounds [4].

2. Defense against pathogens with secondary metabolism

Knowledge of how these molecules affect the exploitation of natural materials is 
often followed by an understanding of the role of metabolism in the producing organ-
ism. In plants, well-understood secondary metabolism is involved in pathogen protec-
tion or perception and signaling. In terms of pathogen protection, fungal diseases 
pose a major threat to plant health, with estimates below of 13,000 phytopathogenic 
fungal species in the United States alone. Therefore, it is not surprising that plants 
have developed comprehensive protection mechanisms against fungal pathogens, 
with chemical protection being one of the key weapons in the plant arsenal [5]. 
Although thousands of different molecular companies are believed to play a role in 
plant protection against bacterial and fungal pathogens, the mechanism of action of 
relatively few has been the subject of extensive research.

Figure 1. 
Natural product can be localized into plant tissue or secreted externally.
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Plant defense molecules may be pre-formed in plant tissues (Figure 1) or synthesized 
in response to the pathogenic attack, resulting in variations leading to the terms phyto 
antiseptics and phytoalexins, respectively [6]. This difference does not provide any 
specific information about the chemical structure or mechanism of metabolism and 
in some cases, misleading defense molecules are pre-manufactured but concentrated 
in high concentrations at the site of infection are reasonably considered to be phyto 
antiseptics or phytoalexins. In practice, when studying the range of possible biological 
functions involved in metabolism, the chemical structure of natural products is more 
relevant than the exact time produced at the plant.

3. The role of secondary metabolites in plant-microbial signaling

In terms of signal, the most comprehensible metabolites are flavonoids involved 
in symbiotic lentil-rhizobia interactions that lead to the formation of nitrogen-fixing 
nodules in root tissues [7]. Collectively, plants produce more than 5000 different fla-
vonoids, with only a small subgroup involved in specific interactions with Rhizobia. 
This interaction begins with the secretion of signal flavonoids at the root exudates, 
followed by the bacterial understanding of the signal and direct contact with the 
bacterial nodule transcriptional activator. This triggers a series of events that create 
convenient rhizobial infection of the plant root and nitrogen-fixing nodules.

The other major beneficial plant-microbe interaction that occurs in nature is the 
formation of mycorrhizal roots. Once again, there is a facilitated infection of plant 
roots, this time by arbuscular mycorrhiza fungi, which develop specialized structures 
called arbuscles within the root for nutrient exchange between the plant and fungus. 
Although a role for signaling has long been postulated, it is only in recent years that 
the first experimental evidence demonstrating a role for a plant chemical has been 
obtained, showing that a particular class of sesquiterpene, the strigolactones, can 
induce hyphal branching, an important step in the symbiosis [8].

As an added twist, several studies have shown that certain strigolactones actu-
ally play a role in regulating plant hormones and spruce branches in the plant, thus 
regulating processes above and below the ground [9].

4. Allelopathic reactions

Allelopathy is defined as the inhibition of the growth of one species by chemicals 
produced by another species, and although this is a matter of controversy in the 
scientific literature, this concept has been generally accepted in recent years [10]. This 
definition is significantly shorter than the original use of the word, which may involve 
both positive and negative interactions, but it is also a reflection of the importance of 
allelopathy between domestic and introduced plant species, especially when intro-
duced species can invade and displace native plants. Engineering mills, especially 
those with grains, have a considerable interest in controlling weeds in their own 
surroundings using allelopathy in agriculture.

The basic premise of allelopathy is that plants secrete phytotoxic metabolites in 
their surroundings (primarily rhizosphere) and inhibit the growth of plants that 
are susceptible to these metabolites. This process can be reasonably classified as 
protective or signal and, in fact, molecules such as strigolactones may have dual roles. 
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Allelopathy is believed to have an evolutionary dimension, so long-term coexisting 
plants have developed co-adaptation and tolerance mechanisms, whereas ecologically 
separated plants may not have these tolerance or resistance mechanisms. The vari-
ous molecules present in the root glands are known to have phytotoxic properties at 
biologically related concentrations (Figure 1).

The majority are phenolics, including simple phenolics, flavonoids, and quinones; 
terbenes, monoterpenoids, sesquiterpene lactones, diterbenes and Benzoxazinoids 
or glucosinolates. An important feature when considering plant protection against 
microbial or insect pathogens, signaling and allopathy is that overall classes of 
molecules are also included in these cases. Our ability to determine whether, specific 
metabolites may first be lost in evolutionary history as signal molecules, as protection 
against pathogens, or as phytotoxic agents to enhance competitiveness. With regard 
to the exploitation of these natural products (lead) as herbicides, plant protection 
products, or drugs, it is now an important quest to understand their mechanism of 
action in targeted and non-targeted organisms.

5. Process of plant natural products

5.1 Identifying the targets of plant metabolites

Despite the vast number of biological reactions in biological structures and cells, a 
relatively small number are exploited by man. For example, 270 herbicides in com-
mercial use target only 17 different processes and medicinal and agricultural fungi-
cides target only six different processes [11]. As the synthesis of natural substances 
in plants runs into many thousands of different molecules, many new inhibitors 
of cellular functions can be identified. This belief drives most of the research on 
plant natural products and their mode of action. Although many plant metabolites 
have been described chemically and have played many roles in signaling, defense, 
and allelopathy, the exact action of some has been determined in no detail. In cases 
where attempts have been made to determine how chemicals cause their effects, the 
interpretation of the results is often complicated by several goals, including difficulty 
in separating primary and secondary effects and difficulties in determining whether 
data obtained from in-vivo studies are related to in-vivo. To a large extent, these dif-
ficulties are indicative of limitations with the test methods used, and there is certainly 
a case for conducting studies in genetically controllable systems such as yeast. 
Nevertheless, it was possible to identify key processes that are normally targeted by 
plant metabolites and specific enzymes that can be inhibited by specific metabolites.

5.2 Inhibition of specific enzymes

Plant secondary metabolites can inhibit specific enzymes in plants or other organ-
isms, such as fungi or animals. In some cases, it appears to be the only function of 
the metabolism, while in others, it forms part of a set of enzyme inhibitory effects. 
It should be noted, however, that the uniqueness of some of the findings and the 
biological relevance of in-vivo are questionable. An example of this is the inhibition 
of various enzyme reactions, including the plant hormone biosynthetic enzymes, 
catalase, maltase, and phosphatase by phenolics and phenolic acids [12].

Sesquiterpenes are one of the largest families of plant natural products and have 
many common effects associated with this type of molecule. It is believed that some 



111

Biological Activity of Defence-Related Plant Secondary Metabolites
DOI: http://dx.doi.org/10.5772/intechopen.101379

sesquiterpenes inhibit the activity of enzymes containing sulfhydryl-containing 
enzymes (e.g., phosphor-fructokinase) and that this may be due to the general 
apoptotic effects of plant sesquiterpenes on animal cells, but more detailed investiga-
tions are needed in this area. In contrast to those common effects, quinone sorgoleone 
(Figure 1) inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) [11]. 
Plastoquinone and ultimately chloroplast synthesis require HPPD activity and are 
targeted to sulcotrione and other herbicides [13]. Other quinones, such as juglone 
made from the walnut tree, can also inhibit HPPD activity.

Another example is the steroidal alkaloid tomatidine, which in particular inhib-
its the C24 sterol methyltransferase reaction, which is essential for the synthesis of 
the essential fungal membrane sterol, ergosterol. This anti-fungal metabolism is 

Figure 2. 
Structures of some plant secondary metabolites.
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synthesized in tomatoes in a glycosylated form called α-tomatine and is closed  
to the steroidal alkaloid tomatidine by fungal enzymes during plant infection 
(Figure 2). Studies with yeast Saccharomyces cerevisiae have unique modes of action 
with tomatidine, which is 50 times more potent than α-tomatine and tomaditin 
action α-tomatine.

Interestingly, the importance of C24 sterol methyltransferase for ergosterol bio-
synthesis has already been recognized and commercial fungicides such as fenpropi-
morph target the same enzyme. The fact that the enzymes in question have already 
been identified, and used as pharmacological targets in both sorgoleone/HPPT and 
tomatidine/C24 sterol methyltransferase confirms the technique of identifying 
new enzyme targets of plant natural products as intervention drugs or chemicals. 
Some new natural ingredients or enzymes are under investigation in this regard. For 
example, 1,4-cineole (monoterpene) inhibits the synthesis of asparagine and quassi-
noids (diterpenes) are believed to inhibit membrane NADH oxidase [14].

6. Inhibition of electron transport systems

6.1 Target of photosynthesis and respiration

Photosynthesis is centrally important for plant health; It is, therefore, a 
clear target for natural and synthetic inhibitory molecules. At least 59 different 
herbicides target Photo System II (PSII), primarily by interfering with electron 
transport [13]. PS-II quinone was found to be the main target of sorgoleone, the 
same metabolite that inhibits the enzyme HPPD (above). Sorgoleone is believed to 
compete with plastoquinone for binding to D1 proteins in PS-II [15] and is secreted 
in droplets from the root hairs, which accumulate in the soil around the plant roots 
at 10–100 μM.

The imbalance between the number of herbicides and natural metabolites that 
inhibit photosynthesis is surprising and suggests that there may be many more 
natural inhibitors of photosynthesis yet to be identified. Respiration is another 
important function of the cell based on electron transport chains and also is the 
target of inhibitory molecules. The clearest example is probably the cyanogenic 
glycosides that are produced by more than 200 different types of plants. These 
are synthesized by converting amino acid precursors to oximes, which are then 
glycosylated. The hydrolysis of cyanogenic glycosides in response to tissue damage 
produces hydrogen cyanide (HCN), a potent respiratory toxin [6]. Glucosinolates 
are molecules associated with the evolution that is synthesized only by a subgroup 
of organisms, mainly within the order capparalase, including the agriculturally 
important Brassicaceae family [16].

The hydrolysis of glucosinolates yields isothiocyanates, thiocyanates, and nitriles 
and although the fungal pattern of these metabolites has not been demonstrated, cya-
nide moiety is said to be the target of some of these metabolites. Other low molecular 
weight natural products are also believed to target respiration, but in many cases, it is 
difficult to establish definitively and studies with isolated mitochondria have some-
times produced conflicting results. Therefore, although some phenolic acids inhibit 
the absorption of iodine by the mitochondria, the concentrations of phenolics appear 
to be unreliable, while there are suggestions that phenolics may inhibit electron trans-
port in the b/c1 cytochrome complex and those phenolics actually induce respiration 
in some cases [17].
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7. Biological activity of the antimalarial drug artemisinin

The use of sesquiterpene lactone artemicin has been reported to have a variety of 
physiological effects on target cells, including disruption of mitochondrial function 
[18]. Artemisinin is a natural product synthesized by the Chinese plant Artemesia 
annua (sweet wormwood), which means that this molecule and its derivatives are 
now part of the front-line anti-malarial treatment. The effect of artemisinin on 
plant cells is unknown, but several studies have attempted to determine why this 
metabolism is toxic to the malaria parasite Plasmodium falciparum and other proto-
zoa. Osteomycin is abnormal in possessing an endoperoxide moiety essential for cell 
function (Figure 2).

Artemisinin Plasmodium falciparum inhibits the absorption of oxygen, indicating 
that it may be the target respiratory chain [19]. In a new strategy, Li and colleagues 
explored the mechanism of action of artemisinin using a yeast sample and using yeast 
genetics to disrupt the mitochondrial membrane capacity of artemisinin [20]. Their 
work pointed out that the electron transport chain actually activates the mitochon-
drial depolarizing function of artemisinin. In contrast, Nagamun and colleagues 
found that artemisinin could not affect the mitochondrial membrane ability of 
another protozoan parasite Toxoplasma gondii, suggesting that mitochondria were not 
a primary target in the T. gondii [21]. In fact, there is now strong evidence that calcium 
affects homeostasis in the target species of artemisinin.

Eukaryotic cells use Ca2+ as a second messenger and generally maintain very 
low cytoplasmic concentrations of Ca2+ by dividing Ca2+ into segments, such as the 
endoplasmic reticulum. One of the key enzymes in this process is the sarcoplasmic/
endoplasmic reticulum Ca2+ -ATPase (SERCA). Heterologues host, Xenopus lewis 
using early work, demonstrated that artemisinin inhibits P. falciparum function [22] 
and recent experiments revealing the T. gondii in S.cerevisiae demonstrated that the 
T. gondii enzyme was inhibited by artemisinin. Physiological tests in many protozoa 
are consistent with the effects of artemisinin on calcium homeostasis, suggesting that 
it may account for a significant portion of the biological activity of this metabolite 
[23]. There are conflicting opinions on the biological functions of artemisinin with 
further studies to determine whether the malaria parasite P. falciparum and in fact 
plant organisms affect the mitochondria as the primary or secondary target of arte-
misinin. Artemisinin appears to cause specific nonspecific effects such as the produc-
tion of free radicals and immune stimulation, and it is absolutely plausible that, like 
sorgoleone, artemisinin has more than one target or effect. The interactions between 
mitochondrial function, calcium signaling, and apoptosis should go unnoticed, and 
the effects that appear pleiotropic may actually become part of the same process.

8. Disruption of plasma membrane integrity

8.1 Importance of the fungal membrane as a target

As previously highlighted, secondary metabolites plays an important role pro-
tection of plants against fungal pathogens. This is an important area of interest in 
modern agriculture and medicine with the fungal cell membrane for clinical medicine 
and agro-fungal drugs. The fungal membrane has unique features, especially sterol 
ergosterol other than cholesterol or stigmasterol, which is present in animal and plant 
membranes, respectively. Other differences include the presence of specific lipids on 
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the outer leaf of the membrane. Common antifungal compounds include amphoteri-
cin B, which binds to ergosterol, which leads to pore formation, azoles, and morpho-
line, which inhibit ergosterol biosynthesis. Evolution has failed to observe this effect 
on fungi and plants but develops different types of antifungal defense metabolites 
that target the membranes of phytopathogenic fungi. The well-understood of these 
are defensins and saponins.

8.2 Plant defenses have specific binding sites in fungal membranes

Defensins are the most basic, cysteine-rich peptides, typically 40–45 amino acids 
in length, produced by plants, insects and other animals as antimicrobial defensins 
molecules [24]. Molecular phylogenetic analysis while the evolutionary roots of 
these molecules were probably in plants, there was a significant functional differ-
ence in the family of cationic antimicrobial peptides (cAMPs) defensins by evolution 
[25]. A variety of defensins has been reported to have antiviral, antibacterial, and 
antifungal activity. The prevailing opinion is that the positive charge of peptides 
mediates specific non-binding with phospholipids, which leads to pore formation and 
loss of membrane integrity. Although this is a common feature of cAMPs, in recent 
years it has emerged that specific interactions play a role in the functioning of some 
cAMPs. For example, human α-defensins have been shown to inactivate adenovirus 
by binding directly to the viral protein, and endogenous targets for cAMPS have been 
identified in some bacteria. It is already known that plant defensins and some insect 
defensins have a specific binding target and mode of action. This discovery initially 
came from work using S. cerevisiae as a model to study the antifungal activity of plant 
defensins. Yeast strain DmAMP1, a mutation in a gene required for the synthesis of 
sphingolipids, altered sensitivity to plant defensins [26]. Sphingolipids are commonly 
found on the outer leaf of eukaryotic membranes and resemble phospholipids, except 
that the vertebrae are not made of diacylglyceride.

Many variants of Sphingolipids have some unique structures in different fungi 
in eukaryotic membranes. In a series of studies, some plant and insect defensins 
bind to different fungal sphingolipids or different nuclei in the same sphingolipids. 
Following binding, membrane infiltration occurs, but it is not yet known whether 
this is the result of the signal layer or the biophysical effect. However, it is clear that 
plant defensins do not particularly penetrate fungal membranes, creating pores and 
destroying membrane integrity. Interestingly, in Candida albicans, the anti-fungal 
activity of a plant called RsAFP2, which binds to glucosylceramide, was found to 

Figure 3. 
The antifungal activity of plant defensins is specific and involves receptors and signal transduction pathways.
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involve the production of reactive oxygen species (ROS) suggesting that binding to 
the membrane ligand initiated a signal transduction cascade that culminated in the 
production of ROS and membrane infiltration (Figure 3).

Despite advances in the study of plant defensins, some serious questions and chal-
lenges remain to be resolved. First, most extensive work has been done with a limited 
number of specific defensins, and it remains to be determined whether this is the 
only procedure. Second, it is not known what signal transmission paths are activated 
in response to defensins. Third, it is not yet clear whether defensins are internalized 
after binding to or with sphingolipids. Working with human cAMPs is said to be at 
least absorbed by some bacteria and reported to be absorbed by the fungal cells of pea 
defensins [27].

8.3 Lysis of fungal membranes by saponins

Saponins are a structurally different class of secondary metabolites found in 
different plants. For example, a survey lists more than 200 plants that isolated 
saponins between 1998 and 2003. The basic structure of all saponins consists of the 
polar core and the polar glycosyl group or groups, which give the molecules ambigu-
ous properties. Typically, saponins are classified as triterpenoid or steroidal, with a 
subset of steroidal alkaloids (steroidal glycoalkaloids) depending on the structure of 
the hydrophobic center. However, some authors consider steroidal glycolic colloids 
to be a unique natural product, and recently, a new saponin classification has been 
proposed into 11 different families depending on the structure of the spine. Saponins 
are present in significant concentrations in many traditional herbal medicines and a 
variety of beneficial functions, including common ingredients such as ginseng, are 
often attributed to the components of saponin.

Within plants, saponins are believed to provide protection against phytopatho-
genic fungi because they have powerful antifungal activity, are usually accom-
modated in the epidermal layers of plant tissues and have been shown to play a 
protective role in many pathogenic interactions. The amphibian nature of saponins 
represents a mechanism of action and it has been demonstrated that saponins 
penetrate fungal membranes. The proposed mechanism is that the hydrophobic 
core enters the outer membrane, forming a compound with ergosterol. Subsequent 
interaction between polar glycocytic sidechains leads to aggregation, pore forma-
tion, and loss of membrane integrity [28]. The ability to penetrate membranes 
has been demonstrated in vitro and in vivo in sample membranes of S.cerevisiae to 
explore the anti-fungal activity of the steroidal glycoalkaloid saponin. However, the 
study also showed that the alkaloid α-tomatine did not penetrate the membranes 
of the α-tomatine, which is more potent than the α-tomatine, in fact inhibiting 
ergosterol biosynthesis.

However, the study also showed that the aglycone of α-tomatine did not penetrate 
the membranes of the α-tomatine, was more potent than the α-tomatine, and actually 
inhibited ergosterol biosynthesis. Furthermore, several studies have proposed addi-
tional functions for α-tomatine and its derivatives. β2-tomatine (created by removing 
sugar from sugar α-tomatine) has been found to be capable of suppressing plant 
defense response, and α-tomatine has been reported to induce projected cell death 
in fungi called Fusarium oxysporum, lack of membrane penetration. Finally, studies 
with potato steroidal glycoalkaloids (saponins), α-chaconine and α-solanine, have 
identified various toxic effects on animal systems that differ from membrane pen-
etrating activity. In conclusion, although membrane penetration activity contributes 
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to the antifungal activity of saponins, saponins may have other biological properties, 
including beneficial roles in human health [29].

9. Anti-tumor activity of plant natural products

Among the various properties associated with saponins, the ability of some saponin 
products to inhibit the growth of tumor cells in vitro attracts much attention. In fact, 
many saponins have been reported to have such activity, increasing the likelihood of 
developing novel saponin-based anti-cancer drugs [30]. Some commentators have 
questioned the relevance of these in vitro data and want to prove that their validity cov-
ers specific endogenous targets and is not related to membrane penetration. Significant 
progress in this direction is due to the synthesis of two different groups of legume trit-
erpenoid saponins, avicins, Acacia victoria (Figure 2), and soyasaponin from soybean 
plants. This work was triggered by reports that Avicenna had apoptotic activity against 
human tumor cells. Several studies have established that it is mediated by mitochondrial 
dysfunction, indicating that the effects are twofold—disruption of the outer membrane 
energy and closure of the voltage-dependent ion channel (VDAC) in the mitochondrial 
membrane. The link between saponin-induced mitochondrial disfunction and apoptosis 
was further supported by a recent report showing that treatment of HeLa cells with 
soyasaponin products led to apoptosis via the mitochondrial pathway [31].

Other endogenous targets for specific avicin have also been reported; however, pro-
apoptotic effects may involve multiple targets or indicate that different avicins have 
specific target processes. In the East model, evidence was obtained for the modulation 
or inhibition of RO-based signaling and CAMP/PKA signal transmission pathways. A 
more direct link to apoptosis or automation was obtained from studies with avicin D, 
where avicin D activates AMP-activated kinase (AMPK), thereby inhibiting mTORC1 
and downstream targets. Although many studies of plant natural products have 
reported a “pro-apoptotic” function, it is worth noting here that there is not much dif-
ference between apoptosis and autoimmunity in the plant literature in general. In fact, 
although the end result is the same, the paths and processes involved are completely 
different and this is a topic that will require closer attention in the future. Autophagy 
is given more importance by discovering that the production of β-group soysasaponins 
reduces mTORC activity, this time apparently by activating another kinase, Akt. The 
general significance of apoptotic pathways as a target for plant natural metabolism is 
that other saponin non-metabolites, such as sesquiterpenoid helenalin, which inhibits 
telomerase, have proliferative effects on mammalian cells [32]. Some of the more than 
5000 different flavonoids that occur naturally in plants have effects associated with 
apoptosis in the future. Nutmeg flavonoid, (−) catechins, for example, inhibit seed 
germination and cause cell death in sensitive species. This effect appears to involve the 
generation of reactive oxygen species and may also be linked to calcium signaling or 
homeostasis. Again, the relationship between ROS, calcium homeostasis, mitochon-
drial function, autoimmunity, and apoptosis [33] should be kept in mind.

10. Conclusion

Plant natural products, especially those involved in the protection against pathogens, 
can lead to biotechnological applications. However, beyond the phytochemical list and 
general studies, there is a need to go for experiments to identify specific screens and 
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functional patterns. It should take two forms, identifying the biological role of metabo-
lism in the plant and determining the effects of metabolism on other organisms. The 
latter is a compelling argument for the use of unbiased genetic or proteomic methods 
and cell-based assessments to avoid confusion with specific nontargets. Finally, once the 
candidate goals have been identified, it is necessary to carry out detailed structural and 
functional studies of the interaction in the actual hosts. However, for preliminary screens 
and analyzes, plant natural product scientists must follow their biomedical counterparts 
in eukaryotes and S. cerevisiae using chemical genetics and molecular techniques.
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Stresses: A Review
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Abstract

Plant secondary metabolites (PSM) are small molecules of organic compounds 
produced in plant metabolism that have various ecological functions, such as defense 
against pathogens, herbivores, and neighboring plants. They can also help to reduce 
abiotic stresses, such as drought, salinity, temperature, and UV. This chapter reviewed 
the ecological functions of the PSM and how people utilize these metabolites to 
reduce crop biotic and abiotic stresses in agriculture. Specific topics covered in this 
review are (1) extraction of PSM from plant parts and its application on crops;  
(2) screening of crop/cover crop germplasms for high PSM content and with resis-
tance to pathogens, herbivores, and/or neighboring plants; (3) regulation of PSM 
biosynthesis (including plant hormones and defense activators) to increase plant 
readiness for defense; (4) transcriptome and genome technology improvements in the 
last decade leading to valuable tools to characterize differential gene expression and 
gene composition in a genome, and lineage-specific gene family expansion and con-
traction. In addition, there is a critical need to understand how the biosynthesis and 
release of allelochemicals occur. Filling this knowledge gap will help us to improve 
and encourage sustainable weed control practices in agriculture.

Keywords: allelopathy, pathogen defense, herbivore defense, plant defense,  
cover crops, sustainable pest management, organic farming

1. Introduction

Plant secondary metabolites (PSM) are small organic molecules produced during plant 
metabolism that can function as a plant defense against herbivores, pathogens, neighbor-
ing plants, or environmental stresses [1–3]. Although proven to be incorrect, PSM [4, 5] 
used to be defined as (1) the part of metabolites not present in nonplant organisms or as 
(2) the part of plant metabolites not required for simple growth and development. These 
outdated PSM definitions still reflected some properties of PSM—they are widespread in 
the plant kingdom and are beyond the highly conserved primary metabolites, which are 
required in plant growth and development, such as proteins, carbohydrates, lipids, and 
nucleic acids. Hence, they represent plant diversity. The description of PSM often starts 
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from the sessile property of terrestrial plants [1, 2, 6], where they cannot flee from the 
threat or stress from the environment and hence have to develop strategies to defend or 
reduce the threat or stress. PSM are their strategies.

Environmental factors, such as temperature, salinity, and water, are also called 
abiotic stresses [7]. The herbivores, pathogens, and neighboring plants are also called 
biotic stresses. Plant metabolites can be classified into primary metabolites, secondary 
metabolites, and plant hormones [3]. The defense function of secondary metabolites 
is often realized by integration with physical structures, such as cell wall, cutin, 
suberin, wax, and bark. According to Hartman [1], plant secondary metabolites are 
often lineage-specific and aid plants in interacting with the biotic and abiotic environ-
ment. For example, pine trees and mint plants often contain terpenes, peppers often 
contain capsaicin, and sicklepod contains anthraquinone derivatives for defense. 
The production of secondary metabolites can be constitutive or induced. Some plant 
secondary metabolites, such as anthraquinone derivatives, in sicklepod are routinely 
produced, and they are called constitutive secondary metabolites. The production of 
secondary metabolites demands a high metabolic cost on the host plant; thus, many of 
these compounds are not produced in large quantities until after insects have begun to 
feed. These secondary metabolites are called induced secondary metabolites [7].

The number of secondary metabolites reported is vast, and they have widespread 
applications. The most prominent application of the plant secondary metabolites is 
in the pharmaceutical industry, where about 25% of the drugs in use by humans are 
derived from medicinal plants [8]. The type and concentration(s) of the secondary 
molecule(s) produced by a plant are determined by the species, genotype, physiology, 
developmental stage, and environmental factors during its growth [2].

The application of plant secondary metabolites in agriculture is the focus of this 
chapter. In standard agricultural practices, the species, physiology, and develop-
ment stages usually follow biological laws, and we cannot do much to change them. 
The genotype and environmental factors are currently where most work has been 
focused on in agriculture. According to Hartman [1], the functions of plant secondary 
metabolites could fall into three categories—(1) defense and competition involving 
herbivores (arthropods, vertebrates, and invertebrates), pathogens (viruses, bacteria, 
and fungi), and plants (allelopathy); (2) attraction and stimulation (pollination, seed 
dispersal, food-plant recognition, oviposition, sequestration, and symbiosis); and, 
(3) abiotic stresses defense. Compared to other reviews on secondary metabolites, this 
review chapter focuses on the agricultural applications of plant secondary metabo-
lites, specifically categories (1) and (3).

2. Secondary metabolites as resources to reduce crop biotic stresses

2.1 Main groups of plant secondary metabolites

PSM are widely spread in the whole plant kingdom. As they are lineage-specific, 
the total number of PSM is much more than the number of primary metabolites [5]. 
PSM derive from primary metabolites using a limited number of key pathways. Their 
functional diversity is gained by adding diverse combination of reactive functional 
groups [9]. Terpenoids are the largest group of PSM and occur in all plants, including 
over 22,000 compounds. The simplest terpenoid is isoprene (C5H8), a volatile gas 
produced during photosynthesis in leaves. Terpenoids are classified into monoterpe-
noids consisting of two isoprene units, sesquiterpenoids (three units), diterpenoids 



125

DOI: http://dx.doi.org/10.5772/intechopen.104553
Use of Plant Secondary Metabolites to Reduce Crop Biotic and Abiotic Stresses: A Review

(four units), and triterpenoids (six units), depending on how many isoprene units 
are in their structures [7]. Mint plants (Mentha spp.) produce large quantities of the 
monoterpenoids menthol and menthone stored in glandular trichomes on the epidermis 
[7]. Pyrethrins are monoterpenoid esters produced by chrysanthemum plants that act 
as insect neurotoxins (Saxona 1988). Gossypol (Gossypium hirsutum) from cotton is a 
diterpenoid [7]. The fresh scent of lemon and orange peel results from a class of triter-
penoids called limonoids. The active ingredient of neem oil, azadirachtin, is a powerful 
limonoid isolated from neem trees (Azadirachta indica) [10]. Phenolics are another 
large group of PSM, which includes a wide variety of defense-related compounds, such 
as flavonoids, anthocyanins, phytoalexins, tannins, lignin, and furanocoumarins [7]. 
Flavonoids are one of the largest classes of phenolics. Soybean contains a large amount 
of isoflavone [7]. Tannins are water-soluble flavonoid polymers produced by plants and 
stored in vacuoles. Tannins are toxic to insects because they bind to salivary proteins 
and digestive enzymes, including trypsin and chymotrypsin, resulting in protein 
inactivation. Alkaloids are a large class of bitter-tasting nitrogenous compounds found 
in many vascular plants and include caffeine, cocaine, morphine, and nicotine [7]. 
Capsaicin and related capsaicinoids produced by members of the genus Capsicum are 
the active components of chili peppers and have their characteristic burning sensation 
in hot and spicy foods [7]. Anthraquinones are present in different plant families, such 
as Leguminosae, Polygonaceae, Rubiaceae, Rhamnaceae, Scrophulariaceae, Liliaceae, 
Verbenaceae, and Valerianaceae [11]. Anthraquinone derivatives from sicklepod 
(Leguminosae) have been used to repel deer from browsing soybean [12]. Chlorogenic 
acid (CGA) or caffeoylquinic acid (CQA) exists in all plants [13], suggesting they are 
among the oldest PSMs.

2.2 PSM as resources to reduce crop biotic and abiotic stresses

Crop biotic stresses come from microbial pathogens, nematodes, insects, and 
mammalian herbivores. Crop abiotic stresses come from drought, salinity, tempera-
ture, ultraviolet, etc. Plant secondary metabolites can help to reduce these stresses. 
For example, some secondary metabolites containing benzene rings can absorb 
ultraviolet (UV) light and release the energy in the visible light range as fluorescence 
to avoid crop damage from UV light.

3. Use of secondary metabolites to reduce biotic and abiotic stresses

3.1 Extraction of secondary metabolites

Secondary metabolites have a defense function in plants [1, 2]. The simplest 
way to utilize secondary metabolites for crop protection is to extract the secondary 
metabolites and apply them to crops for protection against pathogens, insects, and 
mammalian herbivores.

3.1.1 Secondary metabolites used as a deer repellent

Deer is the primary pest in row crop production in the US. This was first con-
cerned in the 1960s and gradually confirmed by the agricultural community during 
the following 40 years [14, 15]. The annual loss of row crops in the US was estimated 
to be up to $4.53 billion [14]. Deer repellent is one of the primary strategies to solve 
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crop deer damage. Among them, deer repellent with putrescent egg solids as active 
ingredients occurred in the 1990s and still dominates the deer repellent market 
today. Deer acceptance of food is dependent on the concentration of secondary 
metabolites present [16]. They usually avoid plants containing high concentrations 
of terpenes, tannins [17], and gossypol (cotton). Sicklepod (Senna obtusifolia L.) 
is one of the southern US’s top ten most troublesome weeds [18]. It belongs to the 
Leguminosae family and is famous for its high concentrations of anthraquinone 
derivatives [19], another group of secondary metabolites. Anthraquinone was 
reported as a mammalian animal repellent since the 1940s [20, 21]. To protect 
soybean damage from deer, deer repellents were developed using sicklepod fruits 
[12]. After several modifications of the extraction protocol, the sicklepod extract 
matched the deer repelling efficacy of Liquid Fence® Deer & Rabbit Repellent, a 
popular commercial deer repellent with putrescent egg solids as active ingredients. 
Besides the anthraquinone derivatives, some other plant secondary metabolites 
were used as deer repellents, such as capsaicin in pepper plants, and monoterpe-
noids menthol and menthone in peppermint (the active ingredients in Deer Out™, 
a commercial deer repellent).

3.1.2 Secondary metabolites as insecticides

One of the best examples of secondary metabolites used as an insecticide was 
the development of the popular insecticide bifenthrin. The pyrethrins from chry-
santhemum (Chrysanthemum cinerariaefolium) flower extract were used to develop 
this insecticide. The safety of this product is, however, questionable. Sesbania 
extracts developed using a similar extraction method were applied on soybean 
leaves and exposed to soybean loopers in a 40 mm rearing cup for 24 hours. 
The looper mortality reached 60% in cups containing sesbania extract-treated 
soybean leaves.

3.2 Germplasm screening for secondary metabolites

3.2.1 Cotton germplasm screening for gossypol

Gossypol is a unique diterpenoid in the cotton genus Gossypium. Cotton germplasm 
is not as big as soybean and rice, but variations in gossypol content in cotton leaves are 
still significant. Low gossypol variety suffering heavy insect defoliation was observed 
(Dr. Saha personal communication). Unlike food crops, genetically modified cotton is 
not debated so critically, so Bt-based GMO method was adopted early to prevent insect 
defoliation. Gossypol screening is still a cultivar selection and breeding direction to 
defend insects and nematodes.

3.2.2 Allelopathic crop screening

Allelopathy is another term introduced to the science of plant ecology to 
describe the addition of chemical compounds (toxic or nontoxic) from a plant 
into the environment that affects the germination, growth, health, development, 
and population biology or behavior of another plant species [22]. Weeds are 
considered the most severe biotic constraint on crop production, with yield losses 
ranging from 45 to 95%, depending on environmental conditions and agronomic 
practices [23].
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3.2.2.1 Rice allelopathy

Rice (Oryza sativa) is the most important grain crop cultivated in the world. More 
than half of the world’s population has rice as their primary food source [24]. Weed 
infestation is the main reason for rice yield loss. The most common weeds found in 
rice fields worldwide are Echinochloa species, such as Echinochloa cruss-galli and 
Echinochloa colona, and weedy rice species (Oryza sativa) [25]. According to Oerke 
[26], weed species account for more than one-third of the losses in global rice pro-
duction. Therefore, using integrated pest management (IPM), including the use of 
allelopathic varieties, can be an important tool to control weed species and manage 
weed resistance to synthetic herbicides.

A diversity of allelochemical compounds, such as fatty acids, phenolic acids, 
indoles, steroids, and others were found to be released by different parts of the 
plants, in root exudates, and rice soil [27]. Yet, rice inhibits weed growth primarily 
by secreting momilactone B, a diterpene produced from geranylgeranyl diphosphate 
(GGPP) [28]. It has been shown that momilactones A and B released by allelopathic 
rice varieties inhibit shoot and root growth of E. crus-galli (Figure 1). Additionally, 
weed species growing near rice deficient in momilactone biosynthesis produced more 
biomass when compared to the ones growing near wild-type rice [29].

The rice germplasm has a large variation when testing for allelopathy. However, 
it was found that among the Brazilian and Asian cultivars tested, only about 3–4% 
showed greater allelopathic potential [30]. Similar results were found when test-
ing allelopathic cultivars able to suppress the growth of weeds, such as E. crus-galli, 
Cyperus difformis, and several aquatic weeds [31]. Thus, allelopathy is still an area to 
be investigated since this information can be used to improve rice production.

3.2.2.2 Cotton allelopathy

1. Weeds are a continuous hazard to agriculture in the United States, costing farm-
ers up to $20 billion each year [32]. Herbicide resistance in weeds influences 
the long-term effectiveness of weed management practices globally [33]. Pes-
ticide residues in food and the environment, as a result, are a significant public 
health hazard [34]. The use of weed suppressive traits in crop types, commonly 
known as allelopathy, is one of the potential weed control techniques in cotton 
 production [35]. Several studies have reported using allelopathic crop variet-
ies in weed management, including rice, wheat, sunflower, and canola [36, 37]. 

Figure 1. 
Chemical structure of momilactones A and B, allelopathic molecules released by rice plants.
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 However, there is limited research on the direct allelopathic effect of cotton on 
weeds. A few research studies have established that cotton produces allelochemi-
cals, which can impede the growth of pigweeds in other investigations [38]. 
According to preliminary studies on cotton allelopathy [39], cotton root showed 
significant quantities of four phenolic chemicals, including p-hydroxybenzoic 
acid, ferulic acid, gallic acid, and vanillin. A greenhouse study was conducted 
using eleven cotton chromosome substitution (CS) lines for allelopathy screening 
against Palmer amaranth (Amaranthus palmeri) (PA) [40]. The cotton lines were 
tested using a modified stair-step assay. Reductions in PA height and chlorophyll 
concentration were measured for each cotton line. Variations in PA height among 
the CS lines were more prominent 21 days after establishment. CS-B22sh and T26lo 
were most effective in reducing Palmer amaranth height; 77 and 68% height  
reduction, respectively. A multivariate cluster analysis revealed that CS-B22sh 
and CS-T26lo were clustered in one group, suggesting similar allelopathic poten-
tial against Palmer amaranth. Allelochemicals, produced by the allelopathic cot-
ton CS lines, are a potential bioherbicide and a possible alternative to synthetic 
herbicides.

3.2.2.3 Sweetpotato allelopathy

Sweetpotato [Ipomoea batatas (L.) Lam.] is a nutrition-rich food with high 
fiber, vitamins, and antioxidants. Weed management is a major concern for 
sweetpotato producers [41] as weeds result in significant crop yield loss and higher 
production costs [42]. Being a plant of vine nature, sweetpotato grows close to the 
soil surface, and hand-weeding is one of the most effective mechanical options 
for weed management in sweetpotato fields [43]. To maintain and promote crop 
productivity and reduce labor requirements, chemical herbicides have been widely 
applied for weed control. However, long-term and large-scale herbicide applica-
tions have increased the number of herbicide-resistant weeds, environmental 
issues, loss of biodiversity, and threats to ecosystem safety [44]. Allelopathy can 
be a possible strategy for integrated, sustainable, and ecological weed manage-
ment. Allelopathic properties of sweetpotato have been demonstrated to reduce 
the growth and development of weeds, such as alfalfa, yellow nutsedge, Palmer 
amaranth, and Mikania micrantha (Figure 2) [45, 46]. Alfalfa root growth was 
inhibited by methanol and aqueous extracts from sweetpotato leaves, stems, and 
roots [47]. Aqueous extracts from sweetpotato leaves or roots reduced the biomass, 
root and shoot length, and inhibited the germination of Lactuca sativa [42]. Leaf 
leachates from sweetpotato cultivars, Sinyulmi, Sinhwangmi, Purple, and Jami 
demonstrated an inhibitory effect on alfalfa [47]. Palmer amaranth growth was 
inhibited when they were irrigated with water-containing root exudates from dif-
ferent sweetpotato varieties [46].

Some sweetpotato varieties produce several allelochemicals, such as coumarin, 
chlorogenic acid, caffeic acid, hydroxycinnamic and trans-cinnamic acids [48] which 
were weed suppressive in rice. In terms of concentration, sweetpotato leaves were 
found to have the highest concentration of phenolic compounds, followed by stems 
and roots [47]. The allelopathic effect of sweetpotato on cowpea was reported when 
cowpea was grown as the following crop on the same field due to the presence of leaf 
litters and decaying residues of sweetpotato. Allelopathic varieties with the potential 
to suppress weed growth may be useful for breeding cultivars designed for organic 
production systems.
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3.2.2.4 Sorghum allelopathy

Sorghum [Sorghum bicolor (L.)] is an annual grass belonging to the family Poaceae 
and subfamily Panicoideae. It originated in Africa and migrated to other continents 
[49]. Accounting for more than 22% of the world’s sorghum production, the United 
States leads in the production globally [50]. Sorghum has wide-ranging utilization 
as food, fodder, technology, and construction [51]. The importance of sorghum 
is increasing globally due to its high functional value and ability to acclimatize to 
changing environmental conditions, especially drought [52]. Allelopathic or weed 
suppressive potential of sorghum has been documented in the past four decades. 
Several allelochemicals, such as sorgoleone and its analogs (Figure 3), phenolic 
acids, and their aldehyde derivatives, determine sorghum’s allelopathic potential 
[53]. The amount of allelochemical production depends on the plant part and age of 
the sorghum plant, environmental conditions, and the receiver plant. Sorgoleone, a 
lipophilic secondary metabolite, is the primary allelochemical produced by sorghum 
which consists of a quinone ring and aliphatic chain [54]. Its analogs contain aliphatic 
side chains or additional methoxy groups in the ring [55, 56].

Phenolic acids (Figure 4) with phytotoxic activities, such as gallic, syringic, 
p-hydroxybenzoic, benzoic, vanillic, p-coumaric, and benzoic acids are also pro-
duced by sorghum [57]. However, the amount of production of these compounds 
depends on the type of cultivar [58] and the development stage of the sorghum 
plant [59].

Weed suppressing potential of sorghum on several weed species has been 
explored by using it as a cover crop, intercrop, crop rotation, sorghum water 
extract, soil incorporation of sorghum residue, and allele-herbicides derived from 
sorghum [60, 61]. Sorghum extracts can be combined with lower herbicide doses 
to effectively manage the weeds and reduce the overall herbicide introduction 
into the environment. Sorghum residues combined with 50% of the labeled rate 
of trifluralin were effective in preventing yield loss in broad beans [62]. Aqueous 
extracts from Brassica–sunflower–sorghum reduced weed biomass of several spe-
cies, such as Purple nutsedge, bermudagrass, crowfoot grass, horse purslane, field 
bindweed, jungle rice, and goosegrass. The extent of suppression was comparable 

Figure 2. 
Allelochemicals are released by above- and belowground parts of sweetpotato (donor) plants suppressing the 
surrounding receiver plants.
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with the full rate of atrazine or S-metolachlor with half rate of atrazine [63]. 
Sorghum water extract combined with a reduced rate of herbicides such as isopro-
turon and metsulfuron-methyl demonstrated similar weed control as the full rate 
of these herbicides in the wheat field [64, 65]. A combination of water extracts 
from sunflower, rice, and sorghum can reduce the rates by 27–67% for herbicides 
such as ethoxysulfuron, butachlor, and pretilachlor in rice fields [66]. The utiliza-
tion of allelopathy in agriculture can be a more sustainable and cost-effective 
strategy for weed management.

Figure 3. 
Structures of sorgoleone and dihydrosorgoleone (reduced analog).

Figure 4. 
Chemical structure of allelopathic phenolic compounds.
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3.2.2.5 Allelopathic cover crops

The method of using cover crops in agricultural fields has been a widespread 
practice among a broad range of farms. Cover crops are crops that are grown prior to 
harvested crops to help increase the potential of the harvested crops [67]. In agricul-
tural systems, the practice of using cover crops is shown to improve the quality of the 
soil by virtue of incorporating crop residues (organic matter) [68], Using a cover crop 
approach can also be beneficial via enhanced hydro-availability, decrease evaporation 
from the soil, as well as escalate the biodiversity of the soil.

An additionally impactful use for using the cover crop method in agricultural 
systems is its ability to suppress weeds due to either physical biomass of the termi-
nated cover crop essentially smothering the weedy plants, physical shading of the 
cover crop causing inhibition of sunlight to the weeds, as well as via the production of 
allelochemicals from the cover crop. Allelochemicals are the product of allelopathy, 
which is positive or negative impact of one plant (the allelopathic plant) on another 
plant. Allelochemicals can increase or decrease the nutrient availability to surround-
ing plants by virtue of the symbiotic microbes [69]. It is appropriately thought that 
the use of cover crops with allelopathic properties in an agricultural field can have 
positively novel effects on the growth, ability to thrive, and production yields of 
so-called “cash crops”.

During a study in a semiarid area of Texas, USA, during a 3-year period, cotton 
that was cultivated following cover crop termination showed a shorter plant height 
and seed and lint yields. Simultaneously, the plant density did not affect the cover 
crops. Benzoxaziones concentrations in the soil were 2 to 3-fold higher under the 
cover crop treatments than in the fallow (control) plot. Though allelopathy may 
not be the only factor to cause these findings, it is likely to have played a significant 
role [70].

During a study on non-chemical weed suppression in vegetable fields, it was 
shown that there was a correlation between the quantity of cover crop biomass with 
the level of weed suppression (Figures 5 and 6). An 8 t ha−1 or greater cover crop 
biomass is possibly a significant enough level to have sufficient weed suppression 
[71]. Although this level of weed suppression may not have everything to do with 
allelopathy from the cover crops, it certainly played a critical role [72].

In a study focused on weed germination and the growth of IdaGold mustard, a 
seed germination bioassay technique was used. Phenol (allelochemical) concentra-
tions were measured during this study. The total concentration of phenols in the soil 
was negatively correlated with the level of weed germination (Figure 7). Also, there 
were low concentrations of phenol in the soil that contained live microbes (<20 ng). 
Additionally, the germination rates were lower when compared to a nonmicrobe-
containing soil with the same concentrations of phenol [73].

Numerous studies have demonstrated the weed suppressive property of allelo-
pathic cover crops, which is a piece of good news for farmers [74]. There is a need for 
more research on the possible positive growth effects of allelopathic cover crops on 
the cash crops’ ability to thrive.

3.3 Secondary metabolites biosynthesis regulation

While PSMs have a constitutive part, i.e., routinely produced, they are also induced. 
This is mainly reflected in pathogen-induced resistance (including PSM production) 
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and herbivore-induced resistance (including PSM production) [75]. The former 
can be traced back to 120 years ago, while the latter be traced back to 50 years ago. 
Recently it was realized that both were similar in nature and were controlled by plant 
hormones, salicylic acid, and jasmonic acid, respectively [75].

Another group of PSMs, allelochemicals, is generally thought of as constitutive, i.e., 
routinely produced. Compared to PSM induced by pathogens and herbivores, allelo-
chemical induction is a big gap in our knowledge, although the study of allelopathy can 
be traced back 90 years ago. A primary reason for the difference is that for pathogen/
herbivore-induced PSM production, the PSM may (or may not) need activation upon 
induction (they do not need to be expelled out of the plant body to defend), while in 
allelopathy, the PSM needs to be expelled out of the plant body to be effective. Sporadic 
information on the induction of root exudation exists in the literature; for example, Dineli 
et al. [76] studied the translocation and root exudation of herbicide after foliar treatment 
of wheat and ryegrass using 14C-labeled diclofop-methyl and triasulfuron. The results 
showed the presence of untreated plants (wheat or ryegrass) in the same pot as triasulfu-
ron-treated ryegrass or wheat induced the exudation of the herbicide 7 to 32 times more. 
In the case of diclofop, the induced root exudation of the herbicide was 3 to 6 times more 

Figure 5. 
Effects of various cereal cover crops in different vegetable production systems on the dry biomass production  
(g m−2) of weed species at the time of cover crop termination in 2005 (gray bars) and 2006 (white bars). Vertical 
lines represent standard errors of the means (p < 0.05).

Figure 6. 
Effects of various legume cover crops in different vegetable production systems on the dry biomass production  
(g m−2) of weed species at the time of cover crop termination in 2005 (gray bars) and 2006 (white bars). Vertical 
lines represent standard errors of the means (p < 0.05).
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in the presence of untreated wheat or ryegrass. The root exudated herbicides sup-
pressed the adjacent plants, indicating a form of allelopathy. This study demonstrated 
that the presence of adjacent plants induces the release of allelopathic compounds. An 
immediate question following this case study is—could the biosynthesis of allelopathic 
compounds (PSM) be induced? If so, how were the signals transmitted during these 
processes, including the release of the compounds?

As we reviewed previously, PSMs are biopesticides widely used in agriculture. As 
the PSM are lineage-specific, the selection of a specific crop cultivar or cover crop 
is similar to selecting what kind of biopesticides to use. Similarly, understanding 
and application of PSM induction is the dose control of the selected biopesticides. 
Furthermore, in the pathogen and herbivore-induced resistance (expressed as PSM), 
the resistance was often called systematic acquired resistance, meaning the resis-
tance was expressed as normal PSM for toxicity and included thickening of cell wall 
lignin, etc. Hence such systemic acquired resistance is more effective and lasts longer 
than toxic PSM increase. In this context, filling the knowledge gap of induction of 
allelopathic compound biosynthesis and release is similar to understanding the dose 
control of bioherbicide.

3.3.1 Use of plant hormones to regulate secondary metabolite biosynthesis

Generally, it has been accepted that salicylic acid (SA) and jasmonic acid (JA) or 
methyl jasmonate (MeJA) are recognized plant hormones specialized for defense. These 

Figure 7. 
Germination is inhibited by high concentrations of soil phenols.
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defense hormones have been used to induce PSM production to defend pathogens and 
herbivores in agricultural studies [77]. This method has not been used in allelopathy.

3.3.2 Use of plant extracts to induce secondary metabolites production

A field study looked at the deer and insect repelling efficacy of coffee senna extract 
on soybean [12]. After 40 days, the soybean leaf holes were significantly lower than 
the control or other treatments. This was in contrast to the leaf disc assay results, 
where soybean loopers were exposed to both coffee senna and sesbania extracts for 24 
hours. The soybean looper mortality for sesbania extract was higher than that of coffee 
senna. A possible explanation for the difference between the field and leaf disc results 
is that leaf disc experiments used detached leaves. In contrast, field experiments used 
living soybean plants where the coffee senna extract might have induced defense 
response in soybean plants. The active ingredient of coffee senna extract may be SA 
and JA, or a new type of defense response inducer, which is to be determined.

3.3.3 Other chemicals for crop defense activation

Besides plant hormones and plant extracts, some inorganic chemicals have also 
been used as crop defense activators. Juric et al. [78] reported that Ca2+ and Cu2+ 
increased secondary metabolites contents in lettuce. Such chemical crop activator is 
much less toxic for humans and their defense effects last much longer than insecti-
cides or fungicides, hence they are more preferable to the agriculture community.

3.4  Use of transcriptomic and genomic tools to employ secondary metabolites  
to reduce crop stresses

During the past ten years, the transcriptome was widely used to study the gene expres-
sion of secondary metabolites [79]. While plant secondary metabolites are thought to be 
the readouts of plant defense activation, usually PSM quantity increase can be detected 
around 20 days or more after treatment (defense activation). PSM increase can be 
detected from several hours to 40 hours by transcriptome analysis (qPCR). Senna tora is a 
medicinal plant in Asia, and it is also a close relative to the weed sicklepod (Senna obtusi-
folia) in the US. Both sicklepod and Senna tora fruits contain high contents of anthraqui-
none secondary metabolites. Kang et al. [80] used differential expression analysis and 
showed that the expression level of genes involved in the anthraquinone biosynthetic 
pathway regulates differently depending on the degree of tissues and seeds development.

With improvements in sequencing technology, the sequencing cost has plunged 
during the past decades. Crop or cultivar genome is not far from being available. 
One discovery with the available genome sequences is that plants devote a significant 
amount of their genes to secondary metabolites, implying plant ecological functions 
are equivalent to its growth and development. Kang et al. [80] sequenced the genome 
of S. tora, and found that the CHS-L gene family expanded most notably in S. tora. 
This might explain in part why S. tora was rich in anthraquinones.

4. Conclusions

Compared to the estimated number of primary metabolites of 10,000, PSMs are 
estimated to be more than 200,000 in the plant kingdom. These PSMs function in 
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various ecological roles, including defending pathogens, herbivores, and neighbor-
ing plants. Use of these PSM in agriculture includes (1) extraction of the PSM and 
applying it directly to the crop to reduce biotic stresses, (2) use of PSM in vivo/in situ 
by screening crop cultivars with desired PSM profiles to achieve better resistance to 
pests, (3) use of PSM biosynthesis regulation or plant defense activators to achieve 
defense readiness, (4) filling the knowledge gap on allelochemical induction, biosyn-
thesis, and release, as it will be helpful in improving weed management practices in 
agriculture, and (5) employing transcriptomic and genomic tools to understand PSM 
biosynthesis and pathways.
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Chapter 9

Secondary Metabolites of Fruits
and Vegetables with Antioxidant
Potential
Ravneet Kaur, Shubhra Shekhar and Kamlesh Prasad

Abstract

An antioxidant is of great interest among researchers, scientists, nutritionists, and
the public because of its ability to prevent oxidative damage, as indicated by various
studies. This chapter mainly focuses on the free radicals and their types; antioxidants
and their mode of action against free radicals; fruits, vegetables, and their byproducts
as a source of antioxidants; and various analytical methods employed for assessing
antioxidant activity. Antioxidants discussed in this chapter are ascorbic acid, Vitamin
E, carotenoids and polyphenols, and their mechanism of action. Different antioxidant
activity assay techniques have been reported. Fruits and vegetables are abundant
sources of these secondary metabolites. The waste generated during processing has
many bioactive materials, which possibly be used in value-added by-products.

Keywords: antioxidant, free radical, oxidative stress, secondary metabolite, ascorbic
acid, carotenoids, polyphenol, degenerative diseases

1. Introduction

The word antioxidant is commonly heard nowadays, especially whenever there
comes a topic of health concern. People consume antioxidants as a symbol of a healthy
lifestyle to fight against various health problems, better skin, and anti-aging benefits.
What makes antioxidants so important? The trait responsible for such importance of
antioxidants is their ability to stop free radical reactions that can have potentially
deleterious effects [1]. This gives rise to various questions, such as What are the free
radicals? What are the sources of free radicals? What are their harmful effects? What
are antioxidants? What are the common sources of antioxidants? How do they work
against free radicals? Answers to these questions are discussed in the present chapter.

2. Free radicals

Free radicals are those atoms or molecules with an unpaired electron in their outer
orbit [2]. Any electron present alone in an orbital is referred to as an unpaired
electron, and it is accountable for the reactive and unstable state of the free radical.
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The vital class of free radicals generated in a living system is usually derived from
oxygen and reactive oxygen species (ROS) [3]. Hydroperoxyl (HO2

o), alkoxy (ROo),
peroxyl (RO2

o), hydroxyl (OHo), and superoxide radical (HO2
o) are common among

oxygen free radicals. Nitrosative stress is the condition that occurs due to the
overproduction of reactive nitrogen species (RNS) [3, 4]. Nitric oxide (NOo) and
nitrogen dioxide (NO2

o), the nitrogen-free radicals can also be converted into other
nonreactive species under the antioxidant-dependent reactions. Thus, ROS and RNS
include radicals and nonradical species, such as hydrogen peroxide, singlet oxygen,
ozone, organic peroxide, peroxynitrite, nitrosyl cation, nitroxyl cation, dinitrogen
trioxide, and nitrous acid [5]. When reactive oxygen species (ROS) react with thiols,
they give rise to reactive sulfur species (RSS) [6].

The most reactive hydroxyl free radical is formed by exposure to ionizing radia-
tions. These radiations lead to the formation of Ho and OHo by causing the fission of
OH bonds in water.

H2O ! Ho þOHo (1)

Harmful effects are initiated when the hydroxyl radical reacts with macronutrients
such as carbohydrates, protein, and lipids along with DNA, the genetic material [7].

Molecular oxygen receives one electron and is converted to superoxide anion, a
reduced form [8]. Superoxide anion is formed in the mitochondria during the initial
step of the electron transport system [9]. Oxygen is reduced to water during the
electron chain reaction. The electrons escape a chain reaction and react directly with
oxygen in its formation [8].

O2
Oxygen

����!e�

Hþ
HO2

o

Superoxide

radical

����!e�

Hþ
H2O2

Hydrogen

peroxide

����!e�

Hþ
OHo

Hydroxyl

radical

����!e�

Hþ
H2O
Water

(2)

Many other reactive oxygen species are also formed in the living system by the
formed superoxide anions. These include hydrogen peroxide, hydroxyl radicals, or
singlet oxygen [10].

Hydrogen peroxide (H2O2) is a nonradical that is formed by the superoxide radical
when it undergoes nonenzymatic or enzyme-catalyzed (superoxide dismutase, SOD)
dismutation reaction. It is very diffusible within and between the cells [11].

2HO2
o

Superoxide

radical

þ 2Hþ
Hydrogen ion

����! H2O2
Hydrogen

peroxide

þ O2
Oxygen

(3)

In the presence of metal ions and superoxide anion, hydrogen peroxide generates
hydroxyl radical.

HO2
o

Superoxide

radical

þ H2O2
Hydrogen

peroxide

����! OHo

Hydroxyl

radical

þ OH�
Hydroxyl

ion

þ O2
Oxygen

(4)

Nitric oxide is formed during the metabolization of arginine to citrulline by the
enzyme nitric oxide synthase (NOSs) via five electron oxidative reactions [12]. Nitric
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oxide readily diffuses through cytoplasm and plasma membranes due to its solubility
in both liquid and liquid media [13].

(5)

3. Sources of free radicals and harmful effects

Oxygen, an essential element of life, also has harmful effects on the human body
by forming reactive oxygen species [14]. Free radicals are produced internally as well
as due to external factors.

Internally

• Normal metabolism within mitochondria during electron transport reactions and
another mechanism [15]

• Xanthine oxides

• Inflammation processes – by neutrophils and macrophages

• Phagocytosis

• Ischaemia

• Peroxisomes [14]

External factors

• Radiation

• UV rays, X rays, γ rays

• Environmental pollutants

• Certain drugs, pesticides, anesthetics

• Ozone

• Cigarette smoke [16]

Reactive oxygen species mediate damage to cells structures, including lipids and
membrane protein and the nucleic acid under the presence of its higher concentration.
This condition is termed oxidative stress [17]. These free radicals’ processes are also
associated with various food products. The rancidity of fatty foods, such as potato
chips and butter, is due to free radical chain oxidation. Oxidation of polyunsaturated
fatty acid (PUFA) is also associated with free-radical processes [18]. The importance
of antioxidants is because of their property to stop the free radical chain reaction.
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4. Antioxidants

An antioxidant is a chemical compound that has free radical scavenging properties,
can delay or inhibit cellular damage and neutralize the effect of free radical by donating
an electron [19]. Antioxidants thus counteract oxidative stress. A series of defense
mechanisms have been developed to combat the exposure to free radicals from various
sources [20]. Antioxidants further contribute to disease prevention and protect cells
from the toxic effects of free radicals by neutralizing their excess. Antioxidants can be
endogenous, generated in situ or exogenous, supplied through food [21].

To prevent condition like oxidative stress, it is essential to maintain a balance
between the production of free radicals and antioxidants defense [22]. Fruits and
vegetables are consumed by people as a source of antioxidants, as they are rich in
flavonoids and antioxidants. It contributes by protecting the human being from
cancer and cardiovascular problems, the ill effects of free radicals [23].

Antioxidants remove free radical intermediates and prevent or slow down the
oxidation of other molecules by being oxidized themselves and terminate the chain
reactions [24].

Antioxidants can act as

• Scavenging the peroxidation initiating species

• Decomposition of lipid peroxide

• prevent the generation of reactive species by chelating metal ion

• Preventing the formation of peroxides by quenching activity

• Reducing localized O2 concentrations [25]

Antioxidants also play an essential role in food products by preventing
oxidation reactions, browning in fruits and vegetables, and rancidity in fats and
oil [23].

Antioxidants may be of natural or synthetic origin. Natural antioxidants are the
important secondary metabolites of plant origins mainly explored in preparing some
functional foods. In food systems, during storage, the use of nutritional antioxidants
and the micro-nutrient, such as Vitamin E, helps maintain the color, texture, and
flavor of the food product by preventing or retarding lipid peroxidation and reducing
lipid peroxidation protein oxidation [26].

4.1 Vitamin C

Ascorbic acid is a water-soluble vitamin commonly known as vitamin C and was
reckoned as L-ascorbic acid in 1965 by the IUPAC-IUB commission on biochemical
nomenclature. Ascorbic acid has a 2,3-enediol group responsible for its antioxidant
activity [27]. It is a 6-carbon lactone and cannot be synthesized in the human body,
and is water-soluble, it must be regularly supplied through external means.

It plays an essential role in the biosynthesis of collagen, carnitine, and neurotrans-
mitters [27]. The normal metabolic respiration process of the body produces poten-
tially damaging free radicals. These free radicals can be efficiently quenched by
ascorbic acid due to its reducing nature [28].
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Ascorbic acid, after oxidation, leads to the formation of a dimer called
dehydroascorbic acid (DHA). DHA is an oxidized form of ascorbic acid and can be
reduced back to ascorbic acid by the action of glutathione (GSH) [29]. In aqueous
solutions, dehydroascorbic acid exists as hydrated hemiketal [30].

The formation of dehydroascorbic acid from ascorbic acid is a two-step reversible
oxidation process, during which ascorbyl radical is formed as an intermediate [31].
Ascorbyl radical is involved in the termination of free radical reactions, due to the
delocalized nature of unpaired electrons present in it, it reacts with free radicals [32].

Dehydro-ascorbate is irreversibly converted to 2,3-diketo-L-gluconic acid with the
hydrolysis of lactone ring [33, 34]. Diketo-L-gluconic acid is unstable and does not
have biological activity [35].

(6)

In fruits and vegetables with low levels of antioxidant (Vitamin C), on cutting,
there is the exposure of the phenolic group to oxygen, and the cresolase and
catecholase activity act and form quinone, which converts further to dopachrome
before its polymerization into brown melanin pigment. Ascorbic acid can reverse this
reaction, which converts quinones back to phenolic form [36].

(7)
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Termination of lipid peroxidation chain reaction is carried by ascorbic acid by
donating an electron to lipid radical, which gets converted to ascorbate radical. These
ascorbate radicals further react with each other to form ascorbate and
dehydroascorbate molecules. Dehydroascorbate molecule on the addition of two
electrons is converted back to ascorbate molecule because DHA does not have the
antioxidant capacity, and this process is carried out by oxidoreductase [37].

Ascorbic acid prevents the formation of N-nitrosamines in nitrate-cured meats. It
results in NO’s formation, which is desirable for cured meats color [36]. L-ascorbic
acid protects against oxidation of low-density lipoprotein implicated in the
development of atherosclerosis by scavenging reactive oxygen species, which prevent
oxidative stress [38].

4.2 Vitamin E

Vitamin E is a fat-soluble vitamin found in tocopherol and tocotrienol structures
that exists in eight different isomeric forms equal configurations for both forms [39].
All eight forms are lipophilic. Chromanol group is responsible for antioxidant activi-
ties, and its methylation differs among all the members of the Vitamin E group [40].

The amount of methyl groups attached to phenol ring and pattern of methylation
are responsible for reactive antioxidant activities for these isomers, which is found to
be α > β > γ > δ. The highest activity of α-tocopherol is due to the presence of 3-methyl
substituents [41]. The Food and Nutrition Board defines vitamin E requirements in
the human body are fulfilled only by α-tocopherol.

Vitamin E repairs the oxidizing radicals during lipid auto-oxidation and halts the
propagation step, thus acting as a chain-breaking antioxidant [42].

ROOo

Peroxyl radical
þ Toc‐OH

α�tocopherol
����! ROOH

Lipid hydroperoxide
þ Toc‐Oo

α�tocopherol

radical

(8)

Ascorbic acid is responsible for the regeneration of α-tocopherol from
α-tocopherol radical. Thus, there is a synergistic effect between α-tocopherol and
ascorbic acid [43].

(9)

Vitamin E consumption plays an essential role in preventing the oxidation of low-
density lipoprotein cholesterol and reduces the risk of heart diseases [44]. Otherwise,
it may lead to atherosclerosis. Vitamin E intake is associated with preventing several
diseases, such as cancer, cardiovascular diseases, eye disorders, neurological disorders,
and aging [22].
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4.3 Carotenoids

Carotenoids are yellow-red pigments synthesized naturally by plants and some
microorganisms [45]. They have an isoprenoid polyene structure [46]. These are a
group of tetra terpenoids that contain eight isoprene units with 40 carbon atoms.

Carotenoids can be categorized into two groups, which are as follows:

1.Carotenoid hydrocarbons (carotenes) contains specific end group as in
β-carotene or lycopene.

2.Oxygen carotenoids (xanthophylls) as zeaxanthin and lutein [45].

Consumption of foods that are a rich source of carotenoids is related to a decrease
in age-related diseases. Coronary heart diseases associated with oxidation of LDL
cholesterol can be prevented by lycopene and β carotene [47].

Antioxidant activities of carotenoids are due to their structure that contains con-
jugated double bond, and their ability to delocalize unpaired electrons [48]. Singlet
molecular oxygen 1O2 and peroxyl radicals are among the two reactive oxygen species
that are most likely to be scavenged by carotenoids [49]. At a low concentration of
oxygen, the antioxidant activity of carotenoids increases, and at higher concentra-
tions, it acts as a pro-oxidant (Ruth [50]).

Scavenging of superoxide anions (•O2
�) by β-carotene occurs as follows (R. [51]).

oO2
�

Superoxide anion

rþadical

þ CAR
Carotenoid

þ 2Hþ⇌ CARþ
Carotenoid

þ H2O2
Hydrogen

peroxide

(10)

Carotenoids can hinder free radical chain reactions that occur during lipid
peroxidation due to their antioxidant activity. Free radical reactions proceed in the
following manner [52].

Initiation

Initiatorþ RH ! Ro (11)

Propagation

Ro þ O2 ! ROOo (12)

Termination

ROOo þ ROOo ! Product (13)

This chain reaction can be inhibited by carotenoids in three ways [53].

i. Electron transfer:

ROOo þ CAR ! ROO� þ CARoþ (14)

ii. Hydrogen abstraction:

ROOo þ CAR ! ROOHþ CARo (15)
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iii. Addition of radical species:

ROOo þ CAR ! ROO� CARð Þo (16)

The photooxidative process leads to eye and skin diseases on exposure to light. The
light filtering effect and antioxidant activity of carotenoids can protect against the ill
effects of these processes [54]. β carotene acts as a provitamin and precursor for the
formation of Vitamin A in the human body.

4.4 Polyphenols

Polyphenols are chemical compounds having phenolic structures and are obtained
from plant sources [55]. These have several bioactive properties, such as they may act
as attracting agents for pollinators, contribute to pigmentation of plants, as an anti-
oxidant, and protection from UV light [56].

The chemical structure of these compounds comprises an aromatic ring with one
or more hydroxyl groups. These can be simple phenolics or in polymeric form having
high molecular mass [57]. The most important group of polyphenols is flavonoids
(glycosides with benzopyrone nucleus). Flavonoids include flavones, flavonols, flava-
none, flavonols, and anthocyanins [58]. Flavonoids consist of 15 carbon atoms having
an arrangement, as shown below in the figure. These are compounds having a low
molecular weight [59].

1

2
3

4
5

6

7
8

9 O
10 11

12
13

14

15
16

The antioxidant activity of these compounds is due to their ability to donate
hydrogen and metal ion chelation [60]. Phenolic radicals formed after presenting
hydrogen atoms do not readily participate in other radical reactions, as they become
resonance stabilized [61]. Flavonoids can form a complex with metals and thus
prevents metal-initiated lipid oxidation [62].

The difference in structure and glycosylation patterns of these compounds are
responsible for their different antioxidant activity. Glycosides of anthocyanidins are
called anthocyanins. These are the most extensive water-soluble pigments, commonly
present in flowers and fruits [60].

Tannins are an important group of polyphenolic compounds, having high
molecular weight. These are categorized as hydrolyzable and condensed
tannins [63]. Hydrolyzable tannins are derived from the esterification of gallic acid
(3,4,5-trihydroxy benzoic acid). Galloyl group of core polyol (formed from
esterification of gallic acid) is further esterified to obtain hydrolyzable tannins [64].
Condensed tannins are the polymeric compounds obtained from polyhydroxy flavan-
3-ol. These are also known as pro-anthocyanidins [63]. Tannins have metal ion che-
lating properties, act as an agent for protein precipitation, and possess antioxidant
activity [64].

Polyphenolic compounds act as antioxidants to inactivate free radicals by two
mechanisms, which are as follows:
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i. Hydrogen atom transfer mechanism.

ii. single electron transfer mechanism.

It is supposed that an antioxidant ArOH transfers its hydrogen atom to react with
free radical in the hydrogen atom transfer mechanism.

ArOHþ Ro ! ArOo þ RH (17)

In the single electron transfer mechanism, it is supposed that an oxidant donates an
electron to the antioxidant molecule [65]:

ArOHþ Ro ! ArOHþ þ R� (18)

5. Methods for antioxidant assessment

Antioxidants play an essential role in problems related to oxidative stress, such as
neurodegenerative and cardiovascular diseases. People nowadays are more focused on
antioxidant-rich foods, so it is vital to assess these components’ antioxidant activity or
free radical scavenging capacity. There are various ways of measuring antioxidant
activity (Figure 1). Different methods follow different reaction mechanisms. These
can be classified according to the reaction mechanism as:

Hydrogen atom transfer (HAT) method is based on the determination of free radical
scavenging activity of antioxidants by donating a hydrogen atom. These are rapid
reactions and do not depend on pH and solvent but are affected by the existence of
reducing agents [66]. In contrast, the single electron transfer (SET) method is based on
the ability of an antioxidant component to reduce the compounds such as carbonyls,
radicals, or metal ions by transferring a single electron [67]. The most commonly used
method is the oxygen radical absorbance capacity (ORAC) assay. This method is based
on the principle of decrease in intensity of fluorescent compounds, such as β-phycoery-
thrin or fluorescein, due to the oxidative degradation by radicals (which leads to the
formation of non-fluorescent compound) generated from thermal decomposition of
AAPH (2, 20-azobis (2-amidino propane) dihydrochloride) that is used as a free radical
generator. The antioxidant activity is measured as a decrease in the amount and rate of
formation of non-fluorescent products [68, 69]. This method provides an advantage that
by altering the solvent and source of free radicals, it is possible to determine the hydro-
philic and hydrophobic antioxidants. In this method, a controlled source of radicals is
provided that simulates the reactions between lipids and antioxidants in food [70, 71].

The total radical-trapping antioxidant parameter (TRAP) assay is based on the
same principle as ORAC. The antioxidant activity is measured as the moles of peroxyl
radicals that are trapped by 1 L of antioxidant solution. Like the ORAC method, the
loss of fluorescence is monitored. Trolox is used as a standard to compare the plasma-
induced lag phase to that induced by antioxidant sample solution in the same plasma
sample. It determines the activity of non-enzymatic antioxidants, such as ascorbic
acid and glutathione, but this method is time-consuming and requires expertise [67].

Ferric reducing antioxidant power (FRAP) assay is based on the formation of the
blue-colored ferrous complex by the antioxidants by reducing ferric 2,4,6-tripyridyl-
s-triazine complex [Fe3+-(TPTZ)2]

3+ in an acidic medium [72]. Reactions were carried
out under acidic conditions (pH 3.6) to maintain the solubility of iron. Reducing 1 M
ferric ions to ferrous ions is known as one FRAP unit [73].
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In the method of DPPH (2,2-Diphenyl-1-picryl hydrazyl) assay, the ability of an
antioxidant to scavenge DPPH radical (purple color) and reduce it to diphenyl picryl
hydrazine (yellow color) is measured. The reaction is carried out in an alcoholic
solution [74]. Generally, the results are described as efficient concentration (EC50). To
bring about a 50% decrease in the concentration of DPPH, the amount of antioxidant
required is reported as EC50 value [75].

Antioxidant activity 
assays

Hydrogen Atom 
Transfer [HAT] methods 

OxygenRradical 
Absorbance Capacity 

[ORAC]

Total Radical Trapping 
Antioxidant Parameter 

[TRAP]

Inhibition of induced 
LDL oxidation

Total Oxyradical 
Scavenging Capacity 

[TOSCA]

Crocin bleaching assay

Chemiluminescent assay

Single Electron Transfer 
[SET] methods

2,2- Diphenyl 1-1-
picryhydrazyl radical 
(DPPH) scavenging

Total phenolics assay by 
Folin- Ciocalteau 

reagent assay

Trolox Equivalence 
Antioxidant Capacity 

[TEAC] assay

Ferric ion Reducing 
Antioxidant Power 

[FRAP] assay

Total antioxidant 
potential assay using a 

Cu2+ complex as an 
oxidant

2,2- Azinobiz 3- ethyl 
benzthiazoline- 6-

sulphonic acid radical 
[ABTS+] scavenging assay

N,N- dimethyl- p-
phenylenediamine 
radical [DMPD+] 
scavenging assay

Figure 1.
Antioxidant assay techniques.
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6. Sources of antioxidants

Besides providing essential nutrients, fruits and vegetables also contain substantial
amounts of biologically active secondary metabolites [76]. The secondary metabolites
of plants that provide numerous health benefits are covered elsewhere [77, 78]. The
principal dietary components found in the antioxidant properties of fruits and vege-
tables are polyphenols, flavonoids, carotenoids, Vitamin C, Vitamin E, glutathione,
selenium indoles, and protease inhibitors (Table 1) [79].

The varying amounts of waste material are generated during the preparation of cut
or processed fruits and vegetables [80]. Peels and seeds are the byproducts generated
in large amounts during minimal processing of fruits and vegetables and comprise of
large quantities of phytochemical components with antimicrobial and antioxidant
properties [81–83]. All of these can be effectively utilized as a source of antioxidants.
The fruits and vegetable tissues are rich in bioactive compounds, such as phenolics,
vitamins, and carotenoids. These are even present in higher amounts in byproducts
compared to the final product [84].

6.1 Grapes

Fresh grapes, grape juice, and grape wine are excellent sources of phenolic antiox-
idants (Figure 2). Flavonoids and other phenolic compounds present in grapes have
anticarcinogenic, anti-allergic, anti-inflammatory, hepatotoxic, and antioxidative
effects [85–87]. The majority of phenolics present in grapes are 60–70% in seeds and
28–35% in the skin, whereas pulp contains utmost to 10%. These phenolics can act as
free radical scavengers and act as antioxidants. The grape seed oil also offers various
health benefits, such as improving vision, protection of skin from sun damage,
improved blood circulation, reduced oxidation of low-density lipoproteins, and
reduced risk of coronary heart disease [88]. The antioxidant activity of grape juice is
highest among the commercial juices, followed by grapefruit juice, tomato, orange,
and apple [89]. Phenolic antioxidants obtained from grape pomace were found to
exhibit the property to retard oxidation of human low-density lipoprotein (LDL)
cholesterol [90].

6.2 Apple

“An apple a day keeps the doctor away,” can be attributed to the number of
phytochemicals present in apples. Apple is a rich source of polyphenols, vitamins, and
carotenoids that prevent free radical damage due to their high antioxidant activity.
Antioxidant compounds in apples are quercitin-3-glucoside, quercitin-3-galactoside,
catechin, epicatechin, procyanidin, cyanidin-3-galactoside, chlorogenic acid,
coumaric acid, and gallic acid [91]. The amount of these compounds varies with the
cultivars and between the flesh and peel of an apple. These phytochemicals are rice in
peels as compared to flesh. Peels contain a high amount of quercetin conjugates
whereas, chlorogenic acid is present in higher concentrations in the flesh [92].
Phloridzin, an antioxidant compound, mainly present in apple seeds [93], is a deriva-
tive of chalcone, also having anti-diabetic activity because of its ability to inhibit
sodium-linked glucose transport, thus limiting the absorption of glucose in the
intestine and kidney [94, 95].
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6.3 Berries

Berries are highly perishable, soft fruits, including strawberries, raspberries, blue-
berry, blackberry, blackcurrant, bilberry, and cranberry are rich sources of bioactive
compounds, mainly phenolics [96]. Blackcurrant, bilberry, and chokeberry contain a
higher amount of phenolic content as compared to other berries [97]. Phenolic acids
present in berry fruits include p-hydroxybenzoic acid, gallic acid, salicylic acid, ellagic
acid (benzoic acid derivatives), and p-coumaric acid ferulic acid, caffeic acid
(cinnamic acid derivatives) [98]. Hydrocinnamic acids can inhibit LDL oxidation
[86]. There is a decrease in the phenolic content of strawberries during the develop-
ment from the unripe to the ripened stage [99]. Strawberries have a similar total
antioxidant capacity as that of blackberries and raspberries but are lower than
blueberries [100].

Other than cut fruits, most of the berries are used as raw material for the prepara-
tion of various processed products, such as jams, jellies, and juices. During the
processing, a large amount of waste is generated. This waste can be used to recover
highly valuable bioactive compounds. Blackberry and raspberry seeds can be used for
the extraction of oil that is rich in antioxidant compounds such as phenols, caroten-
oids, and tocopherols along with linoleic acid (omega �6) and α-linoleic acid (omega-
3) in 2 to 4:1 ratio [101]. Leaves and pomace from cranberry juice processing have
more antioxidant activity and contain a higher amount of polyphenols than the
juice [102].

Antioxidants in 
grapes

Phenolic acids

Cinnamic acids 

(coumaric acid, caffeic 
acid, ferulic acid, 

chlorogenic acid and neo 
chlorogenic acid)
Benzoic acids

(p-hydroxybenzoic acid, 
protocatechuic acid, 

vanillic acid and gallic 
acid)

Flavonoids

Colorless flavan-3-ols

(catechin, epicatechin, and 
their ester forms with 

galactic acid or glucose)

Coloured Flavanones

(quercitin)

Red and Blue 
Anthocyanins

Figure 2.
Antioxidants present in grapes.
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6.4 Pomegranate

Pomegranate (Punica granatum) arils have high antioxidant activity [103] due to
phenolic compounds, such as anthocyanins (cyanidin, delphinidin, pelargonidin
3-glucoside, and 3,5-diglucoside), punicalagin isomers, and ellagic acid derivatives.
These compounds inhibit lipid oxidation due to their free radical scavenging
activity [104].

Pomegranate peels and seeds that are the byproducts of juice processing are wasted
or used as animal feed. But, it has been found that the amount of bioactive compounds
or the antioxidant activity of the extracts of peel is higher than that of juice [105].
Pomegranate seeds can be used for oil extraction, that contain bioactive components.
The oil extracted from pomegranate seeds has a fatty acid called punicic acid (conju-
gated linoleic acid isomer) [106] that constitutes about 70–76% of the seed oil and has
high phytosterol content [107]. There are various health benefits of this pomegranate
seed oil due to its unique chemical composition. Some of these benefits include
modifying blood lipid profile in people suffering from hyperlipidemia [108].

6.5 Orange

Orange segments are a rich source of carotenoids (a class of natural pigments),
such as zeaxanthin, β-cryptoxanthin, antheraxanthin, violaxanthin, and
mutatoxanthin. Consumption of carotenoids is linked with reducing the risk of
degenerative diseases in the body [109]. Oranges are rich in various antioxidant
compounds, mainly ascorbic acid and phenolic compounds [110].

During the processing of oranges for juice manufacturing, a large amount of waste
comprises peels and seeds. These are an abundant source of phytochemicals that are
associated with a reduction of free radical damages. Various flavonoids have been
identified in the orange peel, including hydroxylated poly ethoxy flavones and
methylated flavonoids. These bioactive compounds are found to have protective
action against oxidative stress [111].

6.6 Banana

Banana is a global food that belongs to the genus Musa [112]. Major producers of
bananas in the world are India, China, the Philippines, and Ecuador. The largest
importer and exporter of bananas globally are the USA and Ecuador, respectively
[113]. There is a distinctive arrangement of secondary metabolites in a banana that is
responsible for its antioxidant properties. Dessert banana is a rich source of various
polyphenolic compounds and flavonols. The major polyphenolic compounds present
in the edible part are catechins, epicatechins, gallic acid, tannins, and anthocyanins
[114]. Bananas are also an abundant source of carotenoids, mainly present in peels.
The major carotenoids include lutein, violaxanthin, neoxanthin, isoleucine, α- and β-
carotene [115]. Seratonin is a biogenic amine found in bananas that imparts the feeling
of happiness and wellbeing. The antioxidant potential of banana peels is more potent
than that of pulp (Sulaiman et al., 2011), inhibits lipid peroxidation, and has high free
radical scavenging activity [116].

Banana offers several health benefits, such as retardation of the aging process,
reducing the risk of degenerative diseases like heart problems, atherosclerosis, brain
dysfunction, and inflammation. It also provides resistance against oxidative changes
in low-density lipoprotein and reduces oxidative stress due to bioactive compounds,
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such as dopamine and ascorbic acid. Serotonin stimulates the intestinal smooth mus-
cles and thus inhibiting gastric secretion [117]. Banana peel can be utilized as a
potential source of antioxidant compounds instead of discarding it.

6.7 Mango

Mango comes second, after the banana, regarding production. India is the largest
producer of mango. The edible slices of mongo consist of significant amounts of
antioxidant compounds. Xanthones are found in high concentrations comprising
mainly of mangiferin (1,3,6,7-tetrahydroxyxanthone 2-glucopyranoside) and
c-glucoside xanthone [118].

Mango byproducts, mainly peels, have shown high antioxidant activity. The phe-
nolics and flavonoid content of mango peels is responsible for its anti-proliferative
potential against cancer cells [119]. Mangiferin content of peels is about three times
higher than that of pulp [120]. Gallo-tannins are found in higher amounts in mango
kernels (15.5 mg/g dry matter) followed by peel (1.4 mg/g dry matter) and lowest in
pulp (0.2 mg/g) [121]. Mango peel extracts can scavenge singlet oxygen (1O2),
hydroxyl radical, and superoxide anion due to the presence of compounds, such as
ethyl gallate and penta-o-galloyl glucoside [122].

6.8 Tomato

Tomato is an important and widely consumed vegetable (M. W. [123]). It is
considered beneficial for health as it provides carotenoids, flavonoids, and phenolic
acids [124]. During the production of tomato juice, about 3–7% of raw material is
wasted, which comprises skin and seed.

Tomatoes are a rich source of carotenoid, the lycopene responsible for their char-
acteristic red color [125]. The lycopene content of tomato peel is five times higher than
pulp [126]. Thus, the hot break method is preferred in tomato juice extraction to get
the tomato product of intense redness due to higher lycopene concentration.

6.9 Carrot

Carrot is a significant and widely consumed root vegetable that is a rich source of
dietary fiber and secondary metabolites, mainly carotenoids and phenolics [77, 127,
128]. Carrots provide substantial health benefits [129] due to compounds like
tocopherol, ascorbic acid, and β-carotene and hence is also called vitaminized
food [130].

Carotenoids acts as a precursor of Vitamin A, especially the β-carotene, which are
the major bioactive components present in carrots [131]. The most prevalent phenolic
acid present in carrots is caffeic acid and thiamin, folic acid, riboflavin, and Vitamin
C, which are in considerable amounts of carrot roots [132]. Carrot peel, the by-
product of the processing industry, accounts for about 11% of the fresh carrot and can
provide 54.1% of the total phenolic content of carrot. Therefore, these peels can be
utilized for the value addition of various food products [133].

6.10 Garlic

Garlic is widely consumed as a spice and flavoring agent. Because of its preventive
and curative action against various ailments, it is widely utilized for dietary and
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medicinal values [134, 135]. Garlic consists of a high content of γ-glutamylcysteine,
which is believed to be responsible for various health benefits provided by garlic,
along with other sulfur-containing compounds [136]. The chief bioactive component
of garlic is allicin (diallyl this sulphonate). Raw garlic homogenate also consists of
other significant sulfur-containing compounds, including allyl methyl sulphonate,
γ-glutamyl cysteine, and 1-propenyl allyl thio sulphonate [137].

Garlic has been found to increase the resistance against LDL oxidation and
thus is beneficial for heart and blood vessels because oxidative modification of LDL
can lead to the formation of plaque in blood vessels by deposition of fatty streaks
[138]. Garlic in the form of 10% homogenate in a salt solution and its supernatant
fraction was found to be capable of reducing the free radicals generated from the
Fenton reaction, and it was also effective in reducing the free radicals in cigarette
smoke [139].

Garlic shows protective action against oxidative damage of tissues induced by
nicotine. It was also found to be effective against carbon tetrachloride damage. Rats
intoxicated with carbon tetrachloride were given an oral dosage of garlic oil, and it
was found to prevent liver damage by peroxidation of lipids, alkaline phosphatase,
and serum transaminase. These results are similar to that of Vitamin E [140].

6.11 Onion

Onion consists of substantial bioactive compounds, mainly flavonoids [141].
Flavonols are the significant flavonoids present in onions, quercetin derivatives being
the most important ones [142]. Quercitin 3,40-diglucoside and quercitin 40-glucoside
accounts for around 80–95% of total flavonols [143].

Some varieties of red onions also consist of anthocyanins. Anthocyanins are mainly
concentrated in the outer skin of the onion (63%), and flavonoids in the skin are
present mainly in aglycone forms [144]. So, the onion skin, which is generated as a
waste, can be used to extract bioactive components.

6.12 Potato

Potato is considered the king of vegetables. It is the most widely consumed vege-
table and the significant raw material for processed products, such as chips, fingers,
and fries, during the processing of potatoes; peels are a considerable waste. Potato
waste consists of various antioxidant compounds: caffeic acid, chlorogenic acid,
protocatechuic acid, gallic acid, and para-hydroxybenzoic acid [145]. The antioxidant
capacity of polyphenolic extracts obtained from potato peels is found to be analogous
to that of synthetic antioxidants [BHA (butylated hydroxyanisole) and BHT (butyl-
ated hydroxytoluene)]. It was found that soybean and sunflower oil thermal degrada-
tion was suppressed when potato peel extract was incorporated in these oils, which
may be attributed to chlorogenic and gallic acid in the extract [146].

6.13 Beetroot

Beetroots are an abundant source of valuable bioactive components such as
carotenoids [147], betacyanins [148], betanin, flavonoids, and polyphenols [149].
The antioxidant activity of beetroots is primarily attributed to the total phenolic
content of about 50–60 μmol/gm of dry weight [150]. The entire phenolic content in
different portions of beetroot is found to be in the following order: Flesh (13%)
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< crown (37%) < peel (50%) [151]. Beetroot peel’s major phenolic compounds are
p-coumaric acid, ferulic acid, and cyclodopa glucoside derivatives [152].

Betacyanins found in red beets have antioxidant activity and free-radical scaveng-
ing properties [153]. These are responsible for the inhibition of cervical and ovarian
cancer cells [154]. Betalains improve the antioxidant profile of humans by reducing
the oxidative degradation of lipids by scavenging the free radicals [155].

A large amount of horticultural waste is generated when preparing either cut fruits
and vegetables or processed products. So, it can be a better option to utilize these
wastes into valuable byproducts by extracting various phytochemicals to utilize in
pharmaceuticals, cosmetics, and food products as functional ingredients. These
bioactive compounds can be used in vegetable oils to prevent oxidation and edible
coatings to increase shelf life.

7. Conclusion

Antioxidants prevent oxidative damage in food products and protect the human
body from damage caused by reactive species, such as ROS, RNS, RSS, and free
radicals. Antioxidants prevent the damage induced by free radicals acting through
different mechanisms, such as free radical scavenging, prevention of free radical
formation, or decomposition of reactive species. Antioxidants such as ascorbic acid,
Vitamin E, carotenoids, and polyphenols can be obtained from plant sources, mainly
fruits and vegetables fresh and processed products. The by-products obtained during
the processing of fruits and vegetables can be utilized as a potential source for the
extraction of antioxidants as these consist of high amounts of bioactive compounds.
Secondary metabolites in peels and seeds of some fruits and vegetables, such as
grapes, berries, pomegranate, garlic, and onion, can be higher than their pulp and
juice. Such horticultural by-products can be utilized as a source of bioactive
compounds in pharmaceutical, cosmetic, and food products.
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Chapter 10

Cytotoxicity and Antitumor Action
of Lignans and Neolignans
Ana Laura Esquivel-Campos, Salud Pérez-Gutiérrez,
Leonor Sánchez-Pérez, Nimsi Campos-Xolalpa
and Julia Pérez-Ramos

Abstract

Lignans and neolignans are plant’s secondary metabolites, widely distributed in the
plant kingdom, and have been identified in more than 70 plant families. These com-
pounds are mainly localized in lignified tissues, seeds, and roots. Lignans and
neolignans present a great variety of biological activities, such as antioxidant, anti-
inflammatory, antineurodegenerative, antiviral, antimicrobial, and antitumor. By
2040, it is estimated that the number of new cancer cases per year will rise to 29.5
million; therefore, the development of new anticancer agents and adjuvants is essen-
tial. Lignans and neolignans have also indicated a reduction in the risk of cancer at
different stages. The objective of this review is to search and analyze the cytotoxic and
antitumor activity of lignans and neolignans that can be an important source of new
antitumor drugs. We have made a comprehensive summary of 113 lignans and
neolignans, obtained from 44 plants and divided between 34 families, which demon-
strated cytotoxic activity in several human cancer cell lines evaluated through various
in vitro studies and other in vivo models, by inducing mitochondrial apoptosis and cell
cycle arrest, inhibiting NF-κβ activity and activation of metalloproteinases (MMPs),
among other processes. Overall, 13 compounds, methoxypinoresinol, arctigenin,
trachelogenin, 4-O-methylhonokiol, honokiol, bifidenone, (�)-trachelogeninit,
deoxypodophyllotoxin, matairesinol, bejolghotin G, H, and I, and hedyotol-B, showed
the best anticancer activity.

Keywords: Neolignans, cytotoxic activity, cancer, natural products

1. Introduction

Cancer produces uncontrolled cell proliferation, and one of the treatments used to
stop it is chemotherapy. However, although these therapies have advanced over the
years, they not only destroy cancer cells but also healthy cells, causing adverse effects
in people suffering from this disease. A great variety of tumors are the cause of death
in the population; the World Health Organization (WHO) reports that cancer causes
approximately 10 million deaths each year, with one out of every six deaths
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worldwide due to some type of cancer [1]. The main problem of this disease is that it is
often detected at an advanced stage, and the lack of access to health services and the
high cost of treatment are common, particularly in developing countries. The WHO
suggests that 90% of the population in developed countries has access to treatment for
this disease, while only 15% of the population in developing countries has access to
treatment [2].

At present, the search for new chemotherapy drugs continues, with the purpose of
having a wide range of compounds that help improve the quality of life of people with
cancer. For many years, plants have played a very important role, as a source of
compounds with biological activity. As a treatment alternative, multiple plant genera
and species have demonstrated their cytotoxic potential in cancer cells and have been

Figure 1.
Shikimic acid pathway for lignan and neolignan biosynthesis.
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Compound Method Results Reference

1. 3-(1, 3-benzodioxol-5- yl methyl)-4-
[(3, 4-dimethoxyphenyl)methyl]
dihydro-, (3S-cis)-2(3H)- furanone
2. 4-[(R)-1, 3-benzodioxol-5-
ylhydroxymethyl]-3-(1, 3-benzodioxol-
5-ylmethyl)dihydro-, (3S, 4R)-2(3H)-
furanone
3. (�)-Dihydrosesamin
4. Phenol, 4, 40-(2R, 3S, 4S)-tetrahydro2-
methoxy-3, 4-furandiyl]bis(methylene)]
bis[2-methoxy
5. 4, 40-dihydroxy-3, 30, 9-trimethoxy-9,
90-epoxylignan
6. (+)-1-hydroxypinoresinol

MTT assay
HL-60

SMMC-7721
A549
MCF-7
SW480

IC50 μM
> 40

[11]

7. (+)-Nortrachelogenin
8. -(3″-methoxy-4″-hydroxybenzyl)-
3-(30-methoxy-40- hydroxylbenzyl)-γ-
butyrolactone

MTT assay IC50μM [12]

(7) (8)

A549 19.6 17.0

HepG2 17.6 15.1

U251 39.1 23.9

Bcap-37 51.6 50.3

MCF-7 45.6 25.3

9. Sesamin (SE) MTT assay Cytotoxicity % [13]

MCF-7 23

Caco-2 15

CCK-8 assay in
EL4

Cell apoptosis
assay in EL4

lymphoma (EL4)
induced in

BALB/c mice

% Viability (40 μM)
50 to 80 (48, 72 y 96 h)
SE Induced apoptosis by

increased expression levels of
apoptotic markers (Bax/Bcl-
2) and cleaved-Caspase 3
SE decreased the size of
tumor (10 mg/kg for

21 days)

[14]

10. Methoxypinoresinol MTT assay
PANC-1

IC50 μM
3.7

[15]

11. Erythro-austrobailignan-6 (EA6) MTT assay
4 T-1
MCF-7

Western blot

IC50 μM (24 h)
4.3
12.6

EA6 increased the levels of
p38 MAPK and caspase-3, in

4 T-1 and MCF-7

[16]

12. Mappiodoinin A
13. Mappiodoinin B
14. Mappiodoinin C
15. Conocarpan
16. Odoratisol A
17. Trichobenzolignan
18. Prunustosanan AI
19. Simulanol
20. Woorenogenin

MTT assay IC50 μM [9]

HL-60 0.8–5.8

SMMC-7721 1.8–8.8

A-549 2.2–16.2

MCF-7 1.3–15.9

SW480 0.2–12.5
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Compound Method Results Reference

21. Noralashinol B
22. Noralashinol C

MTT assay
HepG2

IC50 μM [17]

21 22

31.7 15.8

23. Arctigenin (ATN) MTT assay IC50μM [18]
[19]

MCF-7 40.8

MCF-10A 24.1

SK-BR-3 20.7

MDA-MB-435S 3.8

MDA-MB-453 2.9

MDA-MB-231 0.8

MDA-MB-468 0.3

SRB assay in
MCF-7

Colony formation
assay.

Cell cycle analysis
by flow cytometry

At 200 μM arctigenin
inhibited cell viability around

50%.
ATN induced autophagy in

MCF-7cells.
The lignan might inhibit
downstream effector
molecules of the TOR
resulting in a decreased
expression of Erα in ER-

positive MCF-7

Cell Count
Reagent

Western blot.
JC-1

mitochondrial
membrane
potential

CC50 μM [20]

BC3 BCBL1

2.8 2.3

ATN induced the caspase-9-
mediated apoptosis of

glucose-starved PEL cells
(BC3).

ATN induced mitochondrial
disruption in glucose-starved
BC3 cells by decreasing ATP
levels and disrupting the
mitochondrial membrane,

and suppressed ERK and p38
MAPK signaling

24. Honokiol (HNK) CCK-8 assay
OC2
OCSL

Apoptosis by
annexin

Xenograft nude
mice model

GI50 μM at 48 h
22
13

This compound induced
apoptosis cell death

HNK had antitumour activity

[21]

MTT assay IC50 μg/mL [22]
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Compound Method Results Reference

KKU-213 L5
Apoptosis by
Muse™ Cell
Analyzer
Western blot
Flow cytometer
analysis

24 (h) 48 (h)

50.0 26.3

% apoptosis

50 μM 70 μM

30.4 52.0

HNK increased apoptosis by
decrease of intact caspase-3,
whereas cleaved caspase-3

increased
The antitumor activity of
dendritic cells (DC) is
increased using a lysate
derived from a cell line

(KKU-2113 L5) treated with
HNK

HNK increased antitumor
activity of DCs stimulated

with cell lysates derived from
KKU-213 L5

25.1-(20,60-dimethoxy-70,80-
peroxyphenylpropyl)-2,10-
dimethoxybibenzyl-6,90-diol
26. Aloifol I
27. Moscatilin
28. Moniliformine
29. Balanophonin

MTT assay
HL-60

IC50 μM [23]

25 26 27 28 29

4.5 4.5 5.1 10.7 11.0

30. (�)-Trachelogenin (TA) MTT assay
HL-60

OVCAR-8
HCT-116
HCT-8
PC-3
SF-295

Membrane
integrity and
viability by the
exclusion of

propidium iodide

IC50 μΜ
32.4
3.5
1.9
5.2
15.0
0.8

TA did not induce apoptosis,
but it was induced by

autophagic death mediated
by the increase of LC3

activation. Also promoted
changes in the expression of

Beclin-1 levels

[24]

31. 4-O-methylhonokiol (MH) MTT assay
OSCC PE/CA-

PJ41

IC50 μM
1.3

[25]

32. Bifidenone (BF) Sequoia Sciences
Assay

NCI-H460
Caspase-Glo 3/7

assay
LDH assay
Tubulin

Polymerization
assay

Tubulin

IC50 μM
0.26

BF increased the levels of
caspase (2.5-fold)

BF increased the level of
LDH released

BF inhibits tubulin
polymerization in a dose-

dependent manner
BF interfered with mitosis by

[26]
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Compound Method Results Reference

competition assay
PC-3
SF-295
ACHN

disrupting the microtubule
dynamics necessary for cell

division
IC50 μM
0.49
0.25
0.36

M14
A375

UACC-62
SKMEL-2
HCC-2998

0.064
0.075
0.044
0.095
1.41

33. (+)-Hinokinin WST-8 Assay
PANC-1

MIA-PaCa2
CAPAN-1

SN-1
KLM-1

PC50 μM
64.1
21.3
50.1
60.1
92.5

[27]

34. (�)-Deoxypodophyllotoxin (DPT) MTT assay
U2OS

Annexin-V/
propidium iodide

(PI) assay
Acridine orange

assay

IC50 nM
40

DPT induced apoptosis
related with proteins

Annexin-V positive cells
were increased in DPT-

treated cells, compared with
control group.

Formation of acidic vesicular
organelles (AVOs) was
significantly increased in

DPT-treated cells in a dose-
dependent manner

[28]

35. Lariciresinol (LA) CCK-8 assay
HepG2

Flow cytometry
Immuno-

fluorescence
staining

Annexin V/PI
double-staining

assay
Mitochondrial
membrane

potential (ΔΨm)

IC50 μg/mL
208 after 48 h

LA exhibited an apoptosis-
inducing effect

LA decreased Ki-67
expression and induced

apoptosis
LA was a concentration- and
time-dependent manner

resulted in an
increasing percentage of

apoptosis, which might result
in the cytotoxic activity of

LA on HepG2 cells
LA might induce HepG2 cell

apoptosis through the
mitochondrial-mediated

apoptosis pathway

[29]

36. Burserain
37. Picropolygamain

MTT assay
HeLa

IC50 μM [30]

36 37

21.7 9.1
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Compound Method Results Reference

38. Heilaohulignan C
39. Kadsuralignan I
40. Longipedunin B

MTT assay IC50 μM [31]

38 39 40

HepG2 9.9 21.7 18.7

BGC-823 16.6 — —

HCT-116 16.7 — —

41. (�)-(70S,8S,80R)- 4,40-dihydroxy-
3,30,5,50-tetramethoxy-70,9-epoxylignan-
90-ol-7-one
42. Burseneolignan
43. (8R)-3,50-dimethoxy-8,30-neoligna-
4,40,9,90-tetraol

MMP-9 assay IC50 μM [32]

41 42 43

16.5 18.8 8.7

44. Oryzativol C Ez-Cytox cell kit
MDA -MB -231

IC50 μM
24.8

[33]

45. (�)-Asarinin MTT assay
A2780
SKoV3

Annexin V-FITC/
PI Double
Staining

IC50 μM
38.4
60.9

This compound might induce
apoptotic cell death in

human ovarian cancer cells

[34]

46. Balanophonin
47. Dehydrodiconiferyl (DDI)
48. Methoxyl-balanophonin

MTT assay IC50 μM [35]

46 47 48

HepG2 36.5 78.6 80.5

Hep3B 29.3 65.5 76.8

Flow cytometry

DDI induced apoptosis

49. Dehydrodieugenol B
50. Methyldehydrodieugenol B (MEB)

MTT assay IC50 μg/mL [36]

50 51

SKMEL-147 4.4 43.6

Comet Assay
CBMN on
SKMEL-29

100% of
apoptosis

25% of
apoptosis

MEB increased DNA damage
by cytokinesis

51. (�)-Rabdosiin MTT assay IC50 μg/mL [37].

MCF-7
SKBR3
HCT-116

75
83.0
84.0

Flow Cytometry % of apoptosis

MCF-7
SKBR3
HCT-116

44.9
40.1
43.1

52. Kalshiolin A SRB assay
A549

MDA-MB-231
MCF-7
KB

KB-VIN

IC50 μg/mL
35.9 to 43.3

[38]
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Compound Method Results Reference

34. (�)-Deoxy podophyllotoxin
53. (�)-Matairesinol

SRB assay
NB

IC50 [39]

34 53

1.7 ng/mL 3.7 μg/mL

54. Phengustifols A CCK-8 assay
A375

IC50 μM
12.1

[40]

55. Hedyotol-B MTT assay
SGC7901
A549

MDA-MB-231
HepG2

IC50 μM
1.7
6.1
24.0
26.0

[41]

56. Heilaohusus C MTT assay
HepG2

IC50 μM [42]

13.0

57. Zijusesquilignan A
58. Zijusesquilignan B
59. Zijusesquilignan C

MTT assay IC50 μM [43]

57 58 59

MCF-7 9.8 8.8 8.4

HL-60 11 — —

60, 61. Crataegifin B (enantiomers)
62. CrataegifinC

MTT assay IC50 μM [44]

60 61 62

Hep3B 25.5 59.4

HepG2 — — 34.3

Flow cytometry Compound 61 at 25 μM
induced apoptosis in Hep3B

cell in 10.76%

63. Bejolghotin A
64. Bejolghotin B
65. Bejolghotin C
66. Bejolghotin G
67. Bejolghotin H
68. Bejolghotin I

MTT assay IC50 μM [45]

HCT-116 0.8–39.9

A549 0.9–39.9

MDA-MB-231 0.8–45.6

54. (�)-Matairesinol
23. Arctigenin
34. (�)-Deoxypodophyllotoxin

MTT assay IC50 μg/mL [46]

54 23 34

MDA-MB-231b — 1.1 0.07

A549 — 0.8 0.004

HepG2 15.1 2.8 —

69. Niranthin
70. 7-hydroxy- hinokinin

MTT assay
HepG2

IC50 μM [47]

69 70

7.2 8.5

71. Cleistonkinin A
72. Cleistonkinin B
73. Cleistonkinin C
74. Cleistonkinin D
75. Cleistonkinin E

MTT assay IC50 μM [48]

A549 >20

PANC-1 >20

HeLa >20
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Compound Method Results Reference

76. Cleistonkiside A
77. Cleistonkiside B

Hep3B >20

MCF-7 >20

78. Crataegusal A
79. Crataegusal A

MTT assay
Hep3B

IC50 μM [49]

78 79

34.97 17.42

80. Miliusin A
81. Miliusin B
82. Miliusin 7R,8S
83. Miliusin C
84. Miliusin D
85. Miliusin E
86. Miliusin F

MTT assay IC50 (μM) [50]

HeLa 0.2–18

HN22 0.2–43.1

HepG2 2.9–88.5

HCT116 4.5–107.5

87. Pleiocarpumlignan B MTS assay
MCF-7

IC50 μM
18.2

[51]

88. Officinalioside (OFD) MTT assay
HepG2

OFD showed cytotoxic effect
at 50 μmol/L and 100 μmol/L

[52]

89. 5-((E)-2-carboxyvinyl)-7-methoxy-
2-(30,40-methylenedioxyphenyl)
Benzofuran
90. Egonol
91. (�)-Machicendiol

MTT assay IC50 μM [53]

89 90 91

KB 96.0 22.1 33.5

HepG2 86.6 18.1 31.5

Lu 106.9 21.5 22.2

92. Schisphenlignan M
93. Schisphenlignan N
94. Gomisin G
95. Schisantherin D
96. Schisantherin A
97. Epigomisin O
98. (+)-omisin K3 (Schisanhenol)
99. Schisanhenol B
100. Gomisin A

MTT assay
A549

HCT116
SW620

IC50 μM
13.5 to >50

[54]

101. Glalignin B
102. Glalignin C
103. Glalignin E
104. Glaneolignin A
105. Dihydrodehydro diconiferyl alcohol
106. Tribulusamide A

MTT assay
A549

IC50 μM [55]

13.5–100

HeLa 20.1–79.9

MCF-7 11.4–100

107. Pinoresinol monomethyl ether-β-D-
glucoside (PMG)

MTT assay
HeLa

MDA-MB-231

IC50 μg/mL
10.1 (24 h) and 3.54(48 h)

>250 (24 and 48 h)

[56]

108. Methylcubebin (MB)
109. Cubebin (CB)
110. Dyhydrocubebin (DB)
111. Ethylcubebin (EB)

MTT assay
HEp-2
SCC-25

Transwell cell
migration assay

MB and CB decreased cell
proliferation at

concentrations of 10 and
50 μg/mL

DB, EB, and MB decreased
cell migration

[57]

112. (1S,2S)-1-(4-hydroxy-3-
methoxyphenyl)-2-[2-methoxy-4-
[(2S,3R,

MTT assay
HL-60
A549

IC50 μM
8.2
15.1

[58]
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used in traditional medicine in many countries as anti-inflammatory and antirheu-
matic agents, among others, as well as antirhythmic and antitumor agents, since they
inhibit cell proliferation and induce cytotoxicity in a large number of cell lines, as
demonstrated through research [3].

Lignans are a group of secondary metabolites found in different plant and animal
species. Lignans are biologically synthesized from the shikimic acid pathway [4] and
through different reactions (Figure 1). Despite their structural variety, lignans are
dimers of phenylpropanoid units that are linked via their β-carbon atoms [5]. Dimers
of phenylpropanoid units that are coupled via other linkages are named neolignans
[6]. The lignan family is classified into the following eight classes, based on how
oxygen is incorporated into the skeleton and the cyclization pattern: furofuran, furan,
dibenzylbutane, dibenzylbutyrolactone, aryltetralin, arylnaphthalene, dibenzocy-
clooctadiene, and dibenzylbutyrolactol. The neolignans have structural variety and
are divided into more than 15 groups, some of them are: benzofuran,
dihydrobenzofuran, diarylethane, benzodioxine, alkyl aryl ether, and bicycloctane
derivatives, among others [7]. These metabolites present different biological
activities, such as cytotoxicity; as an example, podophyllotoxin is used in cancer
treatments today [8].

In this sense, Jiang and col. [9] have suggested that this behavior is not the same
with all cell lines, where tested, and that it depends on the type of lignan for its
cytotoxicity. Multiple lignans are being studied, particularly for their effectiveness
against breast cancer. Because they bind to cells where there are estrogen deposits,
they have been shown to be effective against breast cancer [10]. The cytotoxic activity
of various lignans has also been studied on colon, pancreatic, throat, and oral cancers,

Compound Method Results Reference

4R)-tetrahydro-4-[(4-hydroxy-3-
methoxyphenyl)methyl]-3-
(hydroxymethyl)-
2-furanyl] phenoxy]-1,3-propanediol
(MFP)

SMMC-7721
MCF-7
SW480

Flow cytometry

10.6
4.4
16.1

MFP induced dose-
dependent apoptosis in

MCF-7 cells

Abbreviations: PC50: Preferential cytotoxicity mean Concentration; IC50 Inhibitory mean Concentration; CC50:
cytotoxic effects; GI50:Growth inhibition; LDH deshidrogenase lac tate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; SRB: Sulforhodamine B; CCK-8: The Cell Counting Kit 8 assay; CBMNCyt: cytokinesis
block micronucleus; MMP-9: Matrix metalloproteinase 9; LC3: a process that involved the bulk degradation of
cytoplasmic components (positive structures are prominent in autophagy-deficient); MAPK: protein kinase; ERK:
extracellular signal-regulated kinase; MYCN: proto-oncogene; MYCN2: human neuroblastoma cell with MYCN
amplification; pCNA nuclear antigen of cell proliferation; STATs: Signal transducers and activators of transcription; JC-
1: mitochondrial membrane assay.
Human cancer cell lines: A2780, SKOV3, OVCAR-8: ovarian; A549, NCI-H460: lung; BGC-823, SGC7901: gastric
cancer; Caco-2, HCC-2998, HCT-16, HCT-116, HCT-8, SW480, SW620: colon cancer; HeLa: human cervical uterine
cancer; KB, KBVIN: papillomavirus; Bcap-37: endocervical adenocarcinoma; Hep3B, HepG2, SMMC 7721:
hepatocellular carcinoma; KKU-213 L5: cholangiocarcinoma; HEp-2: laryngeal cancer; HL-60: promyelocytic leukemia;
SN-1: leukemia; HN22: head and neck squamous cell carcinoma; TNBC, MCF-10A, MCF-7, MDA-MB-468, MDA-
MB-453, MDAMB-231, SK-BR-3: breast cancer; NB: neuroblastoma; SKMEL-147: wild-type human melanoma;
SKMEL-29: human melanoma carrying the B-Raf mutation-V600E; SKMEL-2, A375: malignant melanoma skin; M14,
UACC-62: melanoma; OC2, SCC-25, OSCC: squamous cell carcinoma; Lu carcinoma; MIA-PaCa2, CAPAN-1, KLM-
1 PANC-1: pancreatic cancer; PC-3: prostate cancer; SF-295, U251: glioblastoma; ACHN: renal cancer; U2OS:
osteosarcoma; BCBL1: lymphoma cells; muscular cancer cell lines 4 T-1.

Table 1.
Anticancer activity of lignans and neolignan isolated of different plants.
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Wikstroemia scytophylla

1. 3-(1, 3-benzodioxol-5-
ylmethyl)-4-[(3, 4-
dimethoxyphenyl)methyl]
dihydro-, (3S-cis)-2(3H)- furanone

2. 4-[(R)-1, 3-benzodioxol-5-
ylhydroxymethyl]-3-(1, 3-
benzodioxol-5-ylmethyl)dihydro-,
(3S, 4R)-2(3H)-furanone

3. (�)-Dihydrosesamin

Wikstroemia scytophylla

4. Phenol, 4, 40-(2R, 3S, 4S)-
tetrahydro2-methoxy-3, 4-
furandiyl]bis(methylene)]bis[2-
methoxy

5. 4, 40-dihydroxy-3, 30, 9-trimethoxy-
9, 90-epoxylignan

6. (+)-1-hydroxypinoresinol

Bupleurum chinense Zanthoxylum capense,
Sesamun
Virola; Piper sp, Camellia sp,
Magnolia sp

7. (+)-Nortrachelogenin 8. -(3″-methoxy-4″-hydroxybenzyl)-
3-(30-methoxy-40- hydroxylbenzyl)-γ-
butyrolactone

9. Sesamin (SE)

Calotropis gigantea Saururus chinensis Mappianthus iodoizes

10. Methoxypinoresinol

11. Erythro-austrobailignan-6 (EA6)

12.Mappiodoinin A R1 = OH,
R2 = H, R3 = H
13. Mappiodoinin B
R1 = OCH3, R2 = H, R3 = H
14. Mappiodoinin C
R1 = COH, R2 = OH,
R3 = OCH3

15. Conocarpan R1 = H,
R2 = H, R3 = H
16. Odoratisol A R1 = OH,
R2 = OH, R3 = H
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Wikstroemia scytophylla

Mappianthus iodoizes Syringa pinnatifolia

17. Trichobenzolignan 18. Prunustosanan AI R1 = OH,
R2 = OCH3, R3 = OCH3

19. Simulanol R1 = OCH, R2 = OH,
R3 = H
20. Woorenogenin R1 = OCH,
R2 = OCH3, R3 = H

21. Noralashinol B

Syringa pinnatifolia Arctium lappa, Cupressus macrocarpa Magnolia officinalis

22. Noralashinol C 23. Arctigenin (ATN)

24. Honokiol (HNK)

Dendrobium williamsonii

25. 1-(20,60-dimethoxy-70,80-
peroxyphenylpropyl)-2,10-
dimethoxybibenzyl-6,90-diol

26. Aloifol I,R1 = R3 = R4 = H,
R2==CH3, R5 = OH
27. Moscatilin,. R1 = R5 = H, R2 = CH3,
R3 = OH
28. Moniliformine
R1 = R2 = R4 = R5 = H, R3 = OCH3

29. Balanophonin

Combretum fruticosum Magnolia officinalis Beilschmiedia sp

30. (�)-Trachelogenin

31. 4-O-methylhonokiol (MH)
32. Bifidenone (BF)

Chamaecyparis obtusa Anthriscus sylvestris, C. macrocarpa Patrinia scabra

33. (+)-Hinokinin 34. (�)-Deoxypodophyllotoxin (DPT)

35. Lariciresinol (LA)
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Wikstroemia scytophylla

Bursera microphylla Kadsura coccinea

36. Burserain 37. Picropolygamain 38. Heilaohulignan C

Kadsura coccinea Selaginella moellendorffii

39. Kadsuralignan I R1 + R2 = CH2;
R3 = R5 = R6 = CH3; R7 = OH;
R4 = OAng
40. Longipedunin BR1 + R2 = CH2;
R3 = R5 = R6 = CH3; R4 = OH;
R7 = OProp

41. (�)-(70S,8S,80R)- 4,40-dihydroxy-
3,30,5,50-tetramethoxy-70,9-
epoxylignan-90-ol-7-one

42. Burseneolignan

Selaginella moellendorffii Oryza sativa Asarum sieboldii

43. (8R)-3,50-dimethoxy-8,30-
neoligna-4,40,9,90-tetraol 44. Oryzativol C

45. (�)-Asarinin

Picrasma quassioides Nectandra leucantha Ocimum sanctum

46. R1 = H; R2 = CHO
47. R1 = H; R2 = OH
48. R1 = OCH3; R2 = CHO

49. R = H Dehydroeugenol
50. R = Me methyl

46. Balanophonin,
47. Dehydrodiconiferyl (DDI).
48. Methoxyl-balanophonin

49. Dehydrodieugenol B
50. Methyldehydrodieugenol B (MEB)

51. (�)-Rabdosiin
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Wikstroemia scytophylla

Kalimeris shimadaies C. macrocarpa Elaeagnus angustifolia

52. Kalshiolin A

53. (�)-Matairesinol

54. Phengustifols A

Herpetospermum pedunculosum Kadsura coccinea Ziziphus jujuba

55. Hedyotol-B

56. Heilaohusus C
57. Zijusesquilignan A

Z. jujuba Crataegus pinnatifida

58. Zijusesquilignan B 59. Zijusesquilignan C
60�61. Crataegifin B

C. pinnatifida Cinnamomum bejolghota

62. Crataegifin C
63. Bejolghotin A 64. Bejolghotin B 7”S, 8”R

R = E-Feruloyl
65. Bejolghotin C 7”R, 8”R
R = E-Feruloyl

Cinnamomum bejolghota Euphorbia hirta

R = E-Feruloyl

66. Bejolghotin G

67. Bejolghotin H R1 = E-Feruloyl
R2 = H
68. Bejolghotin I R1 = R2 = E-Feruloyl

69, Niranthin
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Wikstroemia scytophylla

E. hirta Cleistanthus tonkinensis

70. 7-hydroxy- hinokinin
71. R = H
72. R = OCH3

71. Cleistonkinin A
72. Cleistonkinin B

73. Cleistonkinin C
R1 = OCH3, R2 = H, R3 = H
74. leistonkinin D
R1 = OCH3, R2 = H, R3 = OH
75. Cleistonkinin E R1 = H,
R2 = OH, R3 = OH

Cleistanthus tonkinensis C. pinnatifida

76. Cleistonkiside A 77. Cleistonkiside B

78. Crataegusal A

C. pinnatifida Miliusa sessilis

79. Crataegusal A

80. Miliusin AR1 = H, R2 = AC
81. Miliusin BR1 = H, R2 = H
82. Miliusin 7R,8SR1 = CH3, R2 = H

83. Miliusin C

Miliusa sessilis Piper pleiocarpum

84. Miliusin D. R1 = R2 = CH3,
R3 = R4 = H, R5 = Ac
85. Miliusin E R1 = R2 = CH3,
R3 = R4 = R5 = H

86. Miliusin F

87. Pleiocarpumlignan B

Solanum lyratum Styrax argentifolius

88. Officinalioside (OFD)
89. 5-((E)-2-carboxyvinyl)-7-
methoxy-2-(30,40-
methylenedioxyphenyl)
Benzofuran

90. Egonol
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Wikstroemia scytophylla

Styrax argentifolius Schisandra sphenanthera

91. (�)-Machicendiol 92. Schisphenlignan M 93. Schisphenlignan N

Schisandra sphenanthera

94. Gomisin G

95. Schisantherin D

96. Schisantherin A

Shisandra sphenanthera

97. Epigomisin O
98. (+)-Gomisin K3

99. Schisanhenol B

Schisandra sphenanthera Sigesbeckia glabrescens

100. Gomisin A

101. Glalignin B 102. Glalignin C

Sigesbeckia glabrescens

103. Glalignin E 104. Glaneolignin A

105.
Dihydrodehydrodiconiferyl
alcohol
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among others, but the comparability of these studies depends on the type of assay
with which the findings are reported. Therefore, the assay selection is of great impor-
tance in understanding the toxicity profile of lignans, as an approximation of their
cytotoxic potential if used in humans.

The aim of this research was to present an overview of the anticancer
activity of lignans in vitro and in vivo studies (Table 1), with the type of assay
described in the international literature in the last 5 years, as well as their
structures (Table 2).

2. Discussion

Lignans act as antioxidants and play an important role in protection against herbi-
vores, pathogenic fungi, and bacteria [59]. These lignans have positive effects on
different diseases, such as cancer and type 2 diabetes.

The lignans present in the feed diet might be metabolized by the gut microbiota
through deglycosylations, p-dehydroxylations, and m-demethylations, but there is no
enantiomeric inversion, producing phytoestrogens (molecules with an estrogen-like

Wikstroemia scytophylla

Sigesbeckia glabrescens Jurinea macrocephala Piper cubeba

108. R1 = MeO
109. R1 = OH
110. R1 = EtO

106. Tribulusamide A 107. Pinoresinol monomethyl ether-
b-D-glucoside (PMG)

108. Methylcubebin (MB)
109. Cubebin (CB)
110. Ethylcubebin (EB)

P. cubeba Solanum violaceum

111. Dyhydrocubebin (DB)

112. (1S,2S)-1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-
[(2S,3R,
4R)-tetrahydro-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-
(hydroxymethyl)-
2-furanyl] phenoxy]-1,3-propanediol (MFP)

Table 2.
Lignans and neolignans structures.
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effect), but there is not enantiomeric inversion; these metabolites are called “mam-
malian lignans or enterolignans” [60], for example, aglycones of enterolactone and
enterodiol, formed from matairesinol and secoisolariciresinol, respectively. Both of
these aglycones have antitumor effects against breast, colon, and lung cancer [61].

In this review, we found 112 lignans and norlignans with cytotoxic activity, isolated
from plants of 34 families, such as Magnolicea, Lauraceae, and Sauracea, among others.
We found that 13 of these lignans have a high activity on several human cancer cell lines.

Only cytotoxicity activity was determined in 92 of these lignans and this effect was
evaluated by MTT assay. The antitumor effect of sesamine and honokiol was determined
on tumors induced with lymphoma cells and squamous cells carcinoma respectively.

In the treatment of cancer, there are used compounds that produce cell death in
two ways: apoptosis and direct toxicity, then the new therapies are focused on sub-
stances to induce apoptotic cancer cell death [62]. In this review, we found 16 lignans
that promote cell death by apoptosis.

The apoptotic cell death could occur by the disruption of the mitochondrial mem-
brane, which is a crucial signaling pathway in the induction of apoptosis diminishing
the levels of ATP, inhibiting ERK and p38 MAPK signaling. Bcl-2 (antiapoptotic
protein) protein family control apoptosis by regulating mitochondrial membrane
permeability while Bax is an inducer of apoptosis. Caspase-9 is activated, promoting
the cleavage of caspase-3 and PARP, which contributes to apoptosis and ultimately
cell death. Lignans 23 y 35 induced apoptosis by this route [29, 20].

MMP-9 is an overexpressed proteolytic enzyme in cancer cells that acts as a
precursor to the action of other endopeptidases. This enzyme is a new target for
cancer therapy owing to its pivotal role in metastatic tumors. Compounds 41, 42, and
43 inhibit the overexpression of MMP-9 [32].

In vitro test flow cytometry is used for the investigation and diagnosis of diseases
such as cancer. In the different studies reported in this review, this technique was
used to find out: the percentage of viable cancer cells, the characteristics of the cells
such as size and shape, tumor markers, cell cycle analysis, and type of cell death [63].
In Table 1, it is shown that compounds 35, 47, 51, 61, and 112 induced apoptotic death
of cancer cells by this technique.

Tubulin and its assembly product, microtubules, are among the most successful
targets in cancer chemotherapy. It is currently known that podophyllotoxin and its
commercial derivatives Etoposide and Teniposide exert their mechanism of action in
cancer cells by altering Topoisomerase II and tubulin [64]. Williams et al. (2017)
found that Bifidenone lignan also acts at the microtubule level of NCI-H460 cells,
causing the inhibition of tubulin polymerization and therefore the arrest of the G2 / M
phase of the cell cycle [32].

Arctigenin (ATN) is a dibenzylbutirolactone lignan isolated from the fruit of Arctium
lappa and exhibited a cytotoxic effect on different breast cancer cell lines (MDA-MB-231,
MDA-MB-435S, MDA-MB-453, and MDA-MB-468). In ER-positive MCF-7 cells, ATN
inhibited downstream effector molecules of the target of rapamycin (TOR), decreasing
the expression of estrogen receptor-α (Erα) and inducing autophagy.

Another way for cell death: Autophagy is a self-degradative process, which
involves the enzymatic breakdown of different cytoplasmatic components. This
process promotes the elimination of damaged or harmful components [65].

In vitro, this lignan inhibited the migration and invasion of MDA-MB-231 by
downregulation of MMP-2, MMP-9, and heparinase expression [66].

(�)-Trachelogenin (TA) belongs to the dibenzylbutyrolactone lignan class and has
been isolated from different plants, such as Trachelospermi caulis,T. asiaticum,T.
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Jasminoides, and Combretum fruticosum. This lignan has different pharmacological
activities, such as anti-inflammatory [67], antidepressant, and anticancer effects [68].
TA did not induce apoptosis but induced autophagic death, mediated by increased
LC3; its possible mechanism of induced autophagic cell death involves cytoplasmic
vacuolization and formation of autophagosomes mediated by increasing LC3
activation, promoting changes in the expression of Beclin-1 levels [24].

4-O-methylhonokiol (MH) is a neolignan, a type of phenolic compound. It is found in
the bark ofMagnolia grandiflora,Magnolia virginiana flowers, andMagnolia officinalis.
MH induced cytotoxicity on human oral carcinoma cells (OSCC PE/CA-PJ41). Its
anticancer activity is due to its capacity to induce ROS-mediated alteration of MMP,
mitochondrial apoptosis, and cell cycle arrest [25], and to inhibit neuroinflammation,
amyloidogenesis, and memory impairment [69]. MH protected against diabetic cardio-
myopathy in type 2 diabetic mice [70]. It also inhibited NkKB activity on human colon
cancer cells and cell cycle arrest, and induced apoptosis [71]. Additionally, MH induced
apoptosis on oral squamous cancer cells (OSCC) via Sp1 [72].

Deoxypodophyllotoxin (DPT) was isolated from plants of the genus Podophyllum
and has also been obtained from other species, such as Athriscus sylvestris, Juniperus
oblonga, and Cupressus macrocarpa. DPT presented high toxicity and some side effects,
so its use is limited [73]. In vitro, DPT reduced the cell proliferation of NB cells, MDA-
MB-231, and A549 lines, induced apoptosis and cell cycle arrest, reduced the expression
of pCNA, and increased intracellular free calcium levels that promoted NB cell death.

Matairesinol (MT) was isolated from Juniperus oblonga and exhibited anti-
inflammatory [74] and cytotoxic activity against neuroblastoma cell lines, with and
without tetracycline-inducible MYCN over-expression, and induced apoptosis and
cell cycle arrest [39]. MT ameliorated experimental autoimmune uveitis [75] and
showed angiogenic activity in vivo and in vitro. This compound also inhibited the
proliferation of human umbilical vein endothelial cells (HUVECs) [76].

Other lignans with significant anticancer activity are: methoxypinoresinol, which
is a furanoid lignan isolated from the leaves of Calotropis gigantea; honokiol was
isolated from Magnolia officinalis; trachelogenin isolated from Combretum fruticosum;
bifidenone, which is isolated from Beilschmiedia sp.; hedyotol-B, which was isolated
from the stems of Herpetospermum pedunculosum; bejolghotin G, H, and I, which were
isolated from the leaves and twigs of Cinnamomum bejolghota. These compounds have
been isolated recently, and they are the subject of few pharmacological studies.

The most studied cancer cell lines were lung, hepatocellular carcinoma, colon, and
breast. The cell lines diversity was colon cancer, breast cancer, human melanoma, and
pancreatic cancer. These cell lines had the highest number of reports.

The lignans and neolignans with middle activity in lung cancer cells were: 12�20,
63�68, 112, colon cancer cells: 12�20, 63�68, 80�85,112, hepatocellular carcinoma
cells: 12�20, 69, 70, 80�85, 112, and breast cancer cells: 11, 51, 63–68, 107,112.

In this review, we found that the less studied cancer cells were ovarian, gastric,
endocervical adenocarcinoma cells, cholangiocarcinoma, laryngeal, leukemia,
neuroblastoma, pancreatic cancer, prostate cancer, renal cancer, and osteosarcoma.

This review shows that various lignans and neolignans could be promising
candidates for the treatment of different types of cancer.
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Abstract

Plants are an essential source for discovering novel medical compounds for drug 
development, and secondary metabolites are sources of medicines from plants. 
Secondary metabolites include alkaloids, flavonoids, terpenoids, tannins, coumarins, 
quinones, carotenoids, and steroids. Each year, several new secondary metabolites 
are extracted from plants, providing a source of possibilities to investigate against 
malignant illnesses, despite certain natural chemicals having distinct anticancer 
activities according to their physicochemical features. Secondary metabolites found 
in plants are frequently great leads for therapeutic development. However, changes in 
the molecular structure of these compounds are improving their anticancer activity 
and selec tivity and their absorption, distribution, metabolism, and excretion capaci-
ties while minimizing their toxicity and side effects. In this section, we will discuss 
the most significant breakthroughs in the field of plant secondary metabolites, some 
of which are currently in clinical use and others that are in clinical trials as anticancer 
drugs. This study gives an up-to-date and thorough summary of secondary plant 
metabolites and their antioxidant, antibacterial, and anticancer effects. Furthermore, 
antioxidant and antibacterial, and anticancer effects of secondary metabolites 
are addressed. As a result, this article will serve as a thorough, quick reference for 
people interested in secondary metabolite antioxidants, anticancer, and antibacterial 
properties.

Keywords: plant secondary metabolites, pharmacological, anticancer, antioxidant, 
antimicrobial

1. Introduction

Plants are essential in pharmacological research and drug development, not only 
when bioactive substances are used as therapeutic agents directly, but also as starting 
materials for drug production or as models for pharmacologically active molecules. 
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Secondary metabolites differ depending on the plant species. Secondary metabolites 
are molecules produced by plants that remain unknown in their roles in growth, 
photosynthesis, reproduction, and other primary processes. Secondary compounds 
are widely employed in plants, primarily in Asia [1]. Secondary metabolites boost 
human immunity because pharmaceuticals are mainly based on plant components. 
Secondary compounds in plants can serve as medicinal for humans [2]. Several 
criteria have been considered to classify secondary metabolites, including chemical 
structure, composition, solubility, and biosynthetic pathway [3].

1.1 Phenolics

Plants’ most critical secondary metabolites and bioactive chemicals are 
flavonoids and phenolic acids [4]. They’re also a natural antioxidant capable 
of scavenging free superoxide radicals, slowing the aging process, and lower-
ing cancer risk. Flavonoids have been shown to reduce blood glucose levels in 
people. Phenolic acids Flavonoids have been found in several investigations [5]. 
Phenolic acid is a well-known class of secondary metabolites with a wide range of 
pharmacological effects. Phenolics are reported for various biological functions. 
Some of the effects of phenolics include enhancing bile secretion, lowering blood 
cholesterol and lipid levels, and antibacterial activity against bacteria such as 
staphylococcus aureus [6]. Antiulcer, anti-inflammatory, antioxidant, cytotoxic and 
antitumor, antispasmodic, and antidepressant properties are all found in pheno-
lics and flavonoids [1, 4, 7]. Multiple glycoprotein VI signaling pathway compo-
nents prevented collagen-stimulated platelet activation by dietary polyphenolic 
substances, particularly quercetin [8].

1.2 Phenolic acids

The phrase “phenolic acids” refers to phenolic compounds that have only one 
carboxylic acid group [9]. They are found in a different plant-based diet, with the most 
significant amounts in seeds, fruit skins, and vegetable leaves [10]. Plant phenolic 
acids are an essential part of the human diet because of their high antioxidant capacity 
and other health advantages. According to epidemiological studies, a diet with high 
antioxidant vegetables and fruits lowers the incidence of several oxidative disorders 
like cancer, diabetes, and cardiovascular disease. They also induced protective enzymes 
that positively affect signaling pathways, indicating indirect antioxidant activity [11]. 
Phenolic acids influence the action of glucose and insulin receptors. They increase the 
GLUT2 glucose transporter levels in insulin-producing pancreatic cells and stimulate 
GLUT4 transportation via the PI3K/Akt and AMP-derived kinase pathways. Ferulic and 
chlorogenic acids, for example, demonstrated the precise transporter activation mecha-
nism and acted as anti-diabetic drugs [9, 12–14]. Among all the phenolic chemicals 
found in feces water, phenolic acids are the most prevalent [15]. They have antibacterial 
properties and can also be used as food preservatives. Phenolic acids and their deriva-
tives play an essential role in cancer prevention and treatment [4, 9, 15]. Plant phenolics 
may be able to help in this area. Natural products or derivatives accounted for more 
than half of anticancer prescription medications approved globally between the 1940s 
and 2006, and numerous clinical trials are still ongoing [16]. They halt the creation of 
DNA adducts, thwart the synthesis of genotoxic compounds, and inhibit the mutagen’s 
activity [9, 17]. Most phenolics work at different locations to treat or inhibit various 
cancers [18].
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1.3 Flavonoids

Flavonoids are a type of polyphenolic chemical that occurs naturally. It’s one of the 
most prevalent combinations found in vegetables, fruits, and beverages made from 
plants. Flavonoids are dietary supplements that promote health and prevent disease. 
It is now measured as an essential part of a wide range of nutraceutical, pharmaco-
logical, medical, and other products [19]. Aside from their antioxidant properties, 
flavonoids have a wide range of biological activities that contribute to human health 
[20]. Anti-inflammatory, antiulcer, antiviral, anticancer, antidiabetic, and cytotoxic 
actions are only a few examples. Flavonoids have shown various dietary benefits on 
antioxidant activity in multiple studies. Flavonoids also protect cell membranes from 
lipid peroxidation-induced damage. As a result, flavonoids play an essential role as 
antioxidants in oxidative stress-related illnesses [21]. Inflammatory disorders such 
as leukemia, asthma, sepsis, atherosclerosis, sclerosis, allergic rhinitis, psoriasis, 
rheumatoid arthritis, ileitis/colitis, and others have been linked to flavonoids. To 
eradicate foreign pathogens and restore wounded tissues, recruitment of inflamma-
tory cells and release of RNS, ROS, and proinflammatory cytokines. Inflammation is 
usually quick and self-limiting, but abnormal resolution and protracted inflammation 
can lead to various chronic diseases [22].

Flavonoids similarly inhibit phosphodiesterases involved in cell activation. 
According to a different study, flavonoid-rich extracts from plants have antibacte-
rial properties [22]. According to numerous studies, natural flavonoids have been 
exceptional antiviral action since the 1940s. They aid in the blockage of several 
enzymes involved in the virus’s life cycle. According to many studies, flavonoids such 
as hesperetin, quercetin, and naringin have anti-dengue action [23]. Flavonoids have 
a prominent effect on the immunological implications that occur through the genesis 
and progression of cancer. They can affect various biological signals in cancer, includ-
ing vascularization, apoptosis, cell proliferation, and cell differentiation. Flavonoids 
mainly increase carcinogenicity’s start and promotion stages and influence expansion 
and hormonal activity [19, 20].

1.4 Terpenes

Terpenes are a diverse group of secondary metabolites in plants, with over 40,000 
distinct compounds [24]. Terpenes are categorized based on how many isoprene units 
they contain. Terpenes are combinations of volatile molecules with characteristic 
odors found in the flowers and fruits of many plants, including mint, lemon, gin-
ger, eucalyptus, and great basil [25]. They have a variety of biological roles and are 
involved in plant’s metabolism. Terpenes are photosynthetic pigments, electron car-
riers, plant growth regulators, are part of cell membranes, and participate in protein 
glycosylation in the central metabolism [24, 26]. They combine as defense chemicals, 
poisonous substances, and food deterrents in the secondary metabolism of insects [1].

1.5 Saponins

Saponins, glycosides extensively distributed in plants, are a varied group of 
molecules that includes a triterpenoid or steroidal aglycone with one or more sugar 
chains [27]. Because their immune-enhancing qualities have been utilized as adju-
vants in vaccine formulations since the 1950s [28]. Ginseng dammarane sapogenins’ 
chemopreventive and chemotherapeutic properties have encouraged the creation of 
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anticancer medicines at various stages of development [29]. Maturation inhibitors are 
novel HIV medicines researched using betulinic acid derivatives [30]. Inflammation, 
infection, alcoholism, pre- and postmenopausal symptoms, cerebrovascular and 
cardiovascular diseases such as hypertension and coronary heart disease, prophy-
laxis, and dementia, ultraviolet damage including cataract, gastric ulcer, gastritis, 
and duodenal ulcer have all been treated with saponin-containing pharmaceutical 
compositions or plant extracts [27, 30, 31]. Saponins have also been patented for use 
as adjuvants to improve the absorption of bioactive chemicals and medications [32]. 
Plants that contain saponins, such as yucca, ginseng, chestnut, licorice, and sarsapa-
rilla, have been utilized in traditional medicine for ages to prevent and treat various 
disorders by numerous cultures [31].

1.6 Tannins

Tannins are phenolic chemicals that are found practically everywhere in plants. 
Fruit, the bark of trees, wood, and as well as in numerous wild plants and herbs, and 
forestry and agriculture [33], contain them. Chestnut tannin, is a renowned member 
of the commercial hydrolyzable tannins family, has been recommended as an antibac-
terial or a way to reduce mycotoxins [34]. Other uses for tannins, including ellagitan-
nins and gallotannins, include treating bacterial infections, regulating cytotoxins 
production, antihistamine, antiasthma, and avoiding rhinitis, as well as blocking HIV 
propagation in human cells [33, 35]. There have also been reports on the usefulness of 
several tannin-derived chemicals in treating obesity, arteriosclerosis, and thrombosis, 
decreasing triglycerides, preventing Staphylococcus aureus and other gram-positive 
bacteria, and leukemia [33]. Patents have also been published on the non-commercial 
use of tannins to treat cognitive, neurological, and metabolic diseases, diabetes II and 
obesity, hypertension, and hypercholesterolemia [35]. Acacia mearnsii and Acacia 
nilotica tannins are among the condensed tannins. Both claim that tannins have anti-
pyretic properties, with the first claiming antidiarrheic properties [36, 37]. Above the 
typical anthelmintic activity of tannins, Quebracho wood commercial tannin from 
Argentina also has anthelmintic activity. Sumac tannins, a combined condensed and 
hydrolyzable tannin have been suggested to possess anti-inflammatory, antimicrobial, 
and immunomodulatory potentials [33, 35]. Extensive applications for the cure of 
blood pressure, hypertension, and, most notably, hemorrhoidal disorders have been 
commercially available.

1.7 Lignans

The word “Lignan” refers to a class of dimeric phenylpropanoids containing two 
C6-C3 phenylpropanoids are linked by a C8 phenylpropanol. Lignans can be found 
in over 60 different types of vascular foliage. Lignans are a nonflavonoid polyphenol 
subclass [38]. They have high functional importance, and eating a diet rich in them 
can lower your risk of cardiovascular disease. Lignans can be found in barley, flax-
seed, wheat bran, almonds, legumes, sesame seeds, fruits, and vegetables. A 12-year 
study published in 1889 found that those with elevated enterolactone levels had a 
decreased incidence of heart failure compared with low levels [39]. Clinical trials 
have demonstrated that adding diets with 30–50 grams of flaxseed per day for 4–12 
weeks reduced LDL cholesterol by 8%–14% [40]. Another possible study looked at 
the influence of dietary lignan on breast cancer risk; women who consumed dietary 
lignan had a 17% minor risk of breast cancer than those in the lowest quartile [41]. 
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According to the study report, women who consume many dietary lignans have a 
lower risk of endometrial cancer. Enterodiol and enterolactone have been shown to 
reduce the risk of hormone-related cancers [42]. Lignans are hypotensive, anticar-
cinogenic, cardiac-protective, lower cholesterol, and lengthen the food’s time in the 
stomach [43]. Because lignans have antioxidant properties, they can reduce oxida-
tive stress and reduce the risk of diabetes-I. In type II diabetes, it can also block the 
phosphoenolpyruvate carboxykinase, which activates glucogenesis in the liver [44]. 
For decades, silymarin has been used to cure liver, spleen, and gallbladder illnesses. 
Hepatoprotective, antioxidant, anti-inflammatory, anticarcinogenic, and antidiabetic 
activities are found in silymarin [45].

1.8 Hydroxybenzoic acid

In the last ten years, at least three decades, hydroxybenzoic acids have been shown 
to have biological activity among the diversity of natural phenolic acids. Grapefruit, 
olive oil, and medlar fruit are all sources of 3-hydroxybenzoic acid [46]. It’s a glyco-
sylating enzyme [47]. Carrots, oil palm, grapes, and various other plants have been 
shown to contain p-hydroxybenzoic acid, including satinwood, peroba, yellow-leaf 
tree, taheebo, southern catalpa, red sandalwood, chinese chaste tree, betel palm, 
cuban royal palm, and medlar [46]. Antifungal, antimutagenic, antisickling, estro-
genic, and antibacterial properties have been discovered. The freshwater green alga 
responds to p-Hydroxybenzoic acid by growing faster [48, 49].

Khadem and Marles [46] have summarized the pharmaceutical activities of differ-
ent hydroxybenzoic acids as mentioned in the following. Pyrocatechuic acid is a radi-
cal scavenger, a siderophore, and an antioxidant. Gentisic acid reduces LDL oxidation 
in humans and is an anti-inflammatory, analgesic, antiarthritic, antirheumatic, and 
cytostatic drug. Resorcylic acid is a nematicidal substance. For dandruff, ichthyo-
sis, acne, psoriasis, and other skin disorders, salicylic acid has anti-inflammatory, 
keratolytic, antipyretic, antiseptic, analgesic, and antifungal characteristics. It acts 
as a hormonal modulator of plant tolerance to disease assaults and environmental 
stress. 6-Methylsalicylic acid is a toxin found in plants. It works as an antimicrobial 
and antifeeding agent. Thyroid peroxidase is inhibited by -resorcylic acid. Orsellinic 
acid has antibacterial properties. Antifungal, anti-inflammatory, antihepatotoxic, 
antioxidant, cytotoxic, free radical scavenger, apoptotic, chemopreventive, neuro-
protective, platelet aggregation inhibitor, and LDL oxidation inhibitor are some of the 
bioactivities of protocatechuic acid. In addition to its antisickling and anthelmintic 
properties, vanillic acid has been shown to reduce hepatic fibrosis during liver injury. 
It’s also reported to be a 5′-nucleotidase inhibitor in snake venom. Antibacterial and 
antioxidant properties are found in isovanillic acid. Syringic acid possesses antibacte-
rial and hepatoprotective properties in addition to being an antioxidant. Digallic acid 
is cytotoxic and anti-apoptotic. It has antigenotoxic and antioxidant properties as 
well. For lower plants, it has growth inhibitory and dormancy-inducing properties. 
Lunularic acid also exhibits antifungal, antialgicidal, and antihyaluronidase proper-
ties. Hydrangeic acid has anti-diabetic properties, lowering blood sugar, triglyceride, 
and free fatty acid levels. Anacardic acid is effective against the larvae of the Colorado 
potato beetle (Leptinotarsa decemlineata).

Anti-Helicobacter pylori action has been discovered in an anacardic acid combina-
tion. Ginkgolic acid suppresses protein SUMOylation in addition to its anticancer and 
antitubercular properties. SUMO proteins (small ubiquitin-related modifier pro-
teins) regulate various cellular activities linked to cancer and neurological illnesses. 
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Turgorins are thought to be chemicals that regulate thigmotactic and nyctinastic 
leaf movement. Current research has discovered that plant hormones do not control 
nyctinastic leaf movement but rather compounds that differ depending on the plant 
species. Platensimycin is a gram-positive bacterium (MRSA) inhibitor that inhibits 
cellular lipid production. Cannabidiolic acid inhibits cyclooxygenase-2 selectively and 
has antiproliferative properties. Cajaninstilbene acid contains anti-triglyceride and 
anti-glycemic properties. Cajaninstilbene acid, in addition to being an antioxidant, 
may be helpful for postmenopausal osteoporosis. It also had impermeability, anti-
inflammatory, and analgesic properties [46–49].

1.9 Gallic acid

Tallow-tree, the mangosteen related bridelia, garcinia densivenia, sappanwood, 
cinnabar ebony, elephant-apple, peroba, guava, water-berry, staghorn sumac, tamarisk, 
grape, witch-hazel, and red toon all contain gallic acid [46]. It’s been used as a styptic 
and astringent. Gallic acid has antineoplastic and bacteriostatic effects and is antimela-
nogenic and antioxidant [50]. Evening primrose phenolic fractions containing gallic acid 
demonstrated antitumor efficacy. It is reported for anticancer effects [51]. Gallic acid is 
also thought to have the anti-angiogenic properties of sweet leaf tea extract. In the mam-
malian intestine, gallic acid inhibits sucrase and some disaccharidases. As an anti-HSV-2 
agent, Gallic acid showed promise [52]. It inhibits cell survival, invasion, proliferation, 
and angiogenesis of glioma cells, making it a potential treatment for brain tumors. On 
the other hand, Tannins have cytotoxic effects on cells other than tumor cells. Apoptosis 
and necrosis were used to kill Gallic acid-mediated cervical cancer cells [53]. Many gallic 
acid derivatives have antioxidant and antibacterial properties in nature [46].

1.10 Ellagic acid

Ellagic acid is a polyphenol extractive (tannin) present in various dicotyledons. 
Ellagic acid is mainly found as ester-linked with sugars in the composition of tannins, 
which are secondary metabolites in higher plants [54]. The authors note the principal 
active component for ellagic acid’s considerable antioxidant, anti-inflammatory, and gas-
troprotective activities [55]. Furthermore, ellagic acid’s involvement in the GABAergic 
system, inhibition of acetylcholinesterase, aldose reductase, suppression of proinflam-
matory markers, protein tyrosine phosphatases, and interaction with the serotonergic 
and adrenergic systems offer a solid basis for potential advances in the treatment of a 
variety of medical complications [55, 56]. Recent research suggests that ellagic acid can 
operate as an acetylcholinesterase inhibitor, raising acetylcholine levels in the brain. As a 
result, there is the potential to partially mitigate or repair cognitive dysfunctions in neu-
rodegenerative diseases like Alzheimer’s [57]. Lastly, one of the ellagic acid’s most well-
known effects, melanogenesis suppression, has been linked to the antioxidant properties 
of the compound [58]. Ellagic acid and its derivatives can be used in the supplement and 
functional food industries because of its anti-inflammatory properties in different cell 
systems. The development of medications necessitates additional investigation since 
delivery mechanisms will largely determine ellagic acid bioavailability [59].

1.11 Stilbenes

Stilbenes are phenylpropanoids with a 1,2-diphenylethylene backbone belonging 
to a small phenylpropanoid category. Transresveratrol is the fundamental unit of 
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most plant stilbenes [60]. Stilbenes are natural antifungal, antiviral, antibacterial, 
antifungal, and antiviral; they have been demonstrated to have anti-inflammatory 
characteristics, estrogen receptor agonist properties, and impacts on cell prolifera-
tion, cell signaling pathways, and apoptosis [61, 62]. The majority of natural stilbenes 
are in the trans form. Resveratrol is the only stilbene that has been thoroughly 
researched and found to have potent anticancer, anti-inflammatory, and antioxidant 
properties. Pterostilbene has been demonstrated to have anti-diabetic character-
istics [63]. Antitubulin properties have been reported for combretastatin [64]. 
Rhapontigenin has strong inhibitory potential on histamine release, responsible for 
various allergic reactions. In vitro, resveratrol and rhaponticin can prevent platelet 
aggregation [65].

1.12 Hydroxycinnamic Acids

The most extensive family of hydroxycinnamic acids comprises phenylalanine 
and tyrosine and has three-carbon side chains, e.g., p-coumaric, ferulic, caffeic, 
and sinapic acids. Hydroxycinnamic acids can also be found as amides and esters. 
Although these forms have been described for industrial and biological potential, 
there is no evidence to support their use as cosmeceutical components [66]. They have 
various physiological effects, including anti-inflammatory, antioxidant, antibacterial, 
anti-melanogenic, and anti-collagenase activity, which drive a surge in using hydroxy-
cinnamic acids in skincare formulations. Antioxidant, antibacterial, anticancer, 
anti-inflammatory, antiplatelet aggregation, and other intriguing health effects have 
been discovered on coumaric acid and its derivatives [24]. Caffeic acid is produced via 
coumaric acid’s hydroxylation and possesses anticancer, anti-inflammatory, antibac-
terial, and antidiabetic effects [67]. Ferulic acid has shown antioxidant, anticancer, 
UV-absorbing, and anti-inflammatory effects, and it is now being used in cosmetic 
emulsions for topical application [9]. Antioxidant, anticancer, anti-inflammatory, 
and antibacterial activities of rosmarinic acid have been discovered [68]. Numerous 
studies have shown anti-inflammatory, antidiabetic, antiviral, antioxidant, and 
anti-tyrosinase properties of chlorogenic acid [69]. Fruits and vegetables also contain 
sinapic acid [70].

1.13 Curcuminoids

Curcuminoids are phenolic chemicals used for spice, color, culinary additives, and 
medicinal agents. Curcuminoids have exhibited various pharmaceutical effects in 
preclinical cell culture and animal investigations, including antioxidant, neuroprotec-
tive, anticancer, anti-inflammatory, anti-acidogenic, radioprotective, and arthritis 
[71]. Curcuminoids have also been shown to have a potential therapeutic effect in var-
ious chronic disorders, including colon, lung, breast cancer, and inflammatory bowel 
disease [72]. Ex vivo AChE assay revealed dose-dependent inhibition of curcuminoids 
and their components in the frontal brain and hippocampus. In scopolamine-induced 
amnesia, their effect on memory was prominent and was comparable in memory-
enhancing impact [73].

Curcuminoids have shown significant antioxidant activity in several in vitro and 
in vivo studies. They can help individuals with b-thalassemia/Hb E disease reduce 
oxidative damage. Curcuminoids are antioxidative polyphenols with radiomodulatory 
characteristics, which allow them to protect non-cancerous cells while radiosensitiz-
ing tumor cells [74]. Human cancer cell lines were used to test the antiproliferative 
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effects of curcuminoids and two turmerones substances derived from the rhizome 
of C. longa. Curcuminoids and turmerone both reduced cancer cell proliferation in 
a dose-dependent manner. Curcuminoids, turmerone, and Arturmerone’s immu-
nomodulatory effects highlighted the potential for curcuminoids and turmerones 
to be used as chemopreventive agents [75]. Turmeric’s curcuminoids and other vital 
components inhibited the virulence features of Streptococcus mutants’ biofilms, for 
example, bacterial adhesion, acidogenicity, and aciduricity, without killing the target 
bacteria. These substances can be used to prevent the production of dental biofilms 
and, as a result, dental caries. Aqeel et al. [76] evaluated the antiacanthamoebic 
potential of resveratrol and curcuminoids utilizing adhesion and cytotoxicity experi-
ments using primary human brain microvascular endothelial cells, which contribute 
to the blood-brain barrier. Amoeba binding was reduced by 57% and 73%, respec-
tively, when organisms were pre-exposed to 100 mg resveratrol and DMC, whereas 
cytotoxicity of host cells was decreased by 86%. According to the findings, resveratrol 
and DMC have potent anti-acanthamoeba properties [71].

2. Antioxidant activity of secondary metabolites

Secondary metabolites are organic compounds biosynthesized within an organ-
ism and not considered necessary for their growth, development, and reproduction. 
They are not involved in metabolic reactions and are considered neutral, especially in 
primary metabolic responses. However, they are generally regarded as the compounds 
of defense of an organism against environmental stresses and predators, signaling 
molecules, and involved in various molecular interactions like symbiosis, competi-
tion, and metal ions transport [77, 78]. They are engaged in improving health as many 
secondary metabolites act as antibiotics, anabolics, immunomodulators, and growth 
promoters. Some act as nutraceuticals, fighting against diseases (directly) and aiding 
the body to fight (indirectly). Some are pesticides, insecticides, and pheromones 
and displayed established health-promoting effects and significant roles as disease 
eradicators [79]. More than two million secondary metabolites are known to date, and 
they are generally classified into alkaloids, flavonoids, polyphenols, phytosterols, and 
terpenoids. However, McMurry [80] classified them into five main classes: terpenoids 
and steroids, fatty acid-derived substances and polyketides, alkaloids, nonribosomal 
polypeptides, and enzyme cofactors. Secondary metabolites are reported mainly from 
plants (80%). However, many bacterial, fungal, and aquatic organisms like corals, 
tunicates, snails, and sponges are also reported to contain these compounds [81].

The majority of the secondary metabolites are plant-based (especially tannins, 
terpenoids, alkaloids, and flavonoids) and represent many vital functions in medi-
cines, culinary, cosmetics, tannery industry, etc. However, besides that, the data is 
scarce regarding the antioxidant activities of the pure secondary metabolites; some of 
the compounds that are proven antioxidants in nature are mentioned in Table 1.

As a result of metabolism, many free radicals are also generated within the living 
organisms’ bodies and are regarded as reactive oxygen species (ROS). These ROS 
cause oxidative damage to the bodies of living organisms, and the antioxidant species 
mitigate them by reducing oxidative damage. Hence, they are considered as the first 
line of defense. Peroxidases and metal chelating proteins help reduce oxidative stress 
damage together with free radical scavengers like vitamins C and E [83, 84]. There 
are a few examples of synthetic antioxidants which are used in industry. However, 
they are not believed to be safe, so the requirement for the antioxidants from natural 
sources increases, e.g., plants [85].
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Naturally biosynthesized secondary metabolites with enormous antioxidant activ-
ity of phenolic nature include flavonoids, terpenes, phenolic acids, lignans, stilbenes, 
tocopherols, tannins, etc. these compounds are biosynthesized in plants having a 
strong antioxidant potential through which living organisms are somehow protected 
from various diseases [86]. Among secondary metabolites, alkaloids in an organism 
protect it from biotic stresses, and phenolics play a protective role against oxidative 
stresses being strong antioxidants. Plants can protect from UV radiation because they 
contain phenylpropanoids [87]. Polyphenolic compounds are considered a prime 
group responsible for antioxidant activities [88, 89].

The food consumed containing phenolic compounds displays an antioxidant role 
due to these antioxidant compounds (Figure 1) [90]. Terpenoids are a broad category 
of secondary metabolites regarded as strong antioxidants and used mostly in per-
fumery [91]. Stilbenes are phytoalexins biosynthesized in plants to overcome stresses 
are reported for antioxidant properties and resveratrol; for example, they are an 
active constituent of many medications. Isoflavones are polyphenolic biomolecules, 

Secondary metabolite Category

Chrysin Flavones

Apigenin

Naringin and Naringenin Flavonones

Taxifolin

Eriodictyol

Hesperidin

Isosakuranetin

Quercetin Flavonols

Kaempferol

Rutin

Astilbin Flavononols

Engeletin

Genistin

Taxifolin

Daidzin and Daidzein Isoflavones

Genistein

(+)-Catechin, (+)-Gallocatechin, (−)-Epicatechin and 
(−)-Epigallocatechin,

Flavanols

(−)-Epicatechin gallate and (−)-Epigallocatechin gallate

Cyanidin

Epigenidin Anthocyanidins

Delphinium

Pelargonidin

Source: Adapted and modified from Naczk and Shahidi [82]

Table 1. 
Known natural secondary metabolites with proven antioxidant activities.
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biosynthesized in the Fabaceae family, especially in soybean in the form of glyco-
sides, and exhibit antioxidant activities. Tannins are complex derivatives of phenolic 
acids, are found in many plant species, and are enormously effective antioxidants 
with promising cytotoxic and antiparasitic properties [92, 93].

There are few antioxidants synthesized and allowed to be used in the food indus-
try, including butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), 
octyl gallate (OG), propyl gallate (PG), dodecyl gallate (DG) and tertiary-butylhy-
droquinone (TBHQ ) [94] to delay lipid oxidation and as processing agent of oils and 
fats [95].

3. Antimicrobial activity of secondary metabolites

Secondary metabolites include alkaloids, flavonoids, terpenoids, and other 
phenolic compounds; these molecules are linked to plant defense processes and 
protect against many diseases. Secondary metabolites are involved in antibacterial 
and antifungal activities [96].

3.1 Antibacterial properties of secondary metabolites

Bacterial infections are considered a significant public health problem worldwide. 
Bacterial infection can also occur due to multi-drug resistance, which leads to mortal-
ity and morbidity [97]. For that reason, antibiotic resistance has become a global 
concern. The increase in the multi-drug resistance of bacteria threatens the therapeu-
tic efficacy of several drugs. Using different solvent systems, numerous researchers 
have studied plants’ antibacterial activities of leaves, flowers, stems, roots, and fruits 
[98]. Therefore, new antibacterial drugs are needed to treat various diseases with low 
toxicity and less price. For that purpose, secondary metabolites from plants are cur-
rently considered to develop new drugs because they are rich in natural compounds.

Gallic acid and its derivatives are potential antibacterial agents that reduce bacte-
rial diseases. Gallic acid and methyl gallate have shown significant antibacterial 
activity against Salmonella [99]. Phenolic compounds such as stilbenes, tannins, and 

Figure 1. 
Phenolic antioxidants. Adapted from Shahidi and Ambigaipalan [85].
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isoflavones inhibited the growth of Bacillus and E. coli bacteria [100, 101]. Anacardic 
acid analogs extracted from the A. Ovest with various side chains exhibited anti-
bacterial activity against S. aureus and S. pyogenes. On the other hand, alkaloids are 
used as scaffolding substructures in other antibacterial drugs, such as linezolid and 
trimethoprim. The alkaloid cocsoline from Epinetrumvillosum has broad antibacte-
rial activity by inhibiting Shigella, Campylobacter jejuni, and C. coli stains [102, 103]. 
Squalamine, a polyamine alkaloid extracted from the tissue of the squalus shark 
acanthosis, revealed broad-spectrum steroidal antibiotic with potent bactericidal 
properties against both gram-positive and gram-negative bacterial stains [104]. Other 
alkaloids such as solanine, solasodine, and B-solamarine were isolated from Solanum 
dulcamara L. have shown antibacterial activity against S. aureus [97]. Bis-indole 
alkaloids from marine invertebrates have demonstrated antibacterial activity against 
S. aureus and methicillin-resistant S. aureus (MRSA) [105]. Berberine and hydrastine 
alkaloids were isolated from Goldenseal have been showing substantial antibacterial 
activity, particularly against S. pyogenes and S. aureus [106]. Cocsoline alkaloid iso-
lated from Epinetrumvillosum (Exell) possesses antibacterial activity against Shigella 
strains, Campylobacter jejuni, and C. coli [107]. Tetrahydroanthraquinones are also 
exhibiting antibacterial activity. Pseudomonas aeruginosa and other gram-positive 
bacteria were suppressed by Altersolanols A–C and E. The antibacterial activity of 
tetrahydroanthraquinones is due to the presence of the hydroxy group at the C-5 posi-
tion [108]. Coniothranthraquinone 1 has demonstrated antibacterial activity against 
S. aureus, while trichodermaquinone had antibacterial activity against MRSA [109, 
110]. Deoxybostrycin and bostrycin have significant antibacterial properties against S. 
aureus, E. coli, Pseudomonas aeruginosa, Sarcina ventriculi, and Bacillus subtilis [111].

3.2 Antifungal properties

Resistance to antifungal drugs has been spread in recent years. Resistance to 
antifungal drugs has led to increased morbidity and mortality. Since the molecular 
mechanisms in humans and fungi are so similar, there is always the possibility that 
the fungal cytotoxic agent is toxic to host cells. As a result, patients with compro-
mised immune systems, such as transplants, cancer patients, and diabetics, who 
do not respond effectively to current antifungal treatments, need new antifungal 
therapies. Antifungal drugs currently used to treat fungal infections have significant 
side effects such as itching, diarrhea, vomiting, etc. In addition, it is less effective 
because of the development of drug resistance by the many fungi [112, 113]. The 
alkaloids protoberberine jatrorrhizine, isolated from Mahonia aquifolium, were the 
most potent inhibitory antifungal activity [114]. (+)-Cocsoline is a bisbenzyliso-
quinoline alkaloid isolated from epinetrumvillosum whose antifungal action has 
been demonstrated [115]. The alkaloids N-ethylhydrasteinehydroxylactam and 
1-methoxyberberine chloride isolated from Corydalis longipes have been shown to 
have significant inhibitory action [116]. Glaucium oxylobum produced four alka-
loids: dicentrine, glaucine, protopine, and alpha-allocryptopin exhibited antifungal 
activity against Microsporumgypseum, Microsporumcanis, T. mentagrophytes, and 
Epidermophytonfloccosum [117]. Canthin-6-one and 5-methoxy-canthin-6-one from 
Zanthoxylumchiloperone var. angustifolium are antifungal against Candida albicans, 
Aspergillus fumigatus, and T. mentagrophytes [118]. Frangulanine, a cyclic peptide 
alkaloid, and waltherione A, quinolinone alkaloids derived from Melochiaodorata 
have been shown to antifungal activity against a wide range of pathogenic fungi 
[119]. Additionally, anodic alkali aninolinate has been shown to have antifungal 
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action [120]. Two antimyctic fructoxin alkaloids have been identified from the root 
of Dictamnusdasycarpus. 3-Methoxisampangin from cleistopholispatens signifi-
cantly inhibits C. albicans, A. fumigatus, and C. neoformans [121]. A new alkaloid, 
2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, was isolated 
from the plant Datura metel has shown in-vitro and in-vivo action against Aspergillus 
and Candida species [122]. Fungi toxic action was demonstrated for alkaloids isolated 
from Ruta graveolens L., Tomadini Glycoalkaloids isolated from tomatoes, cannabi-
noid alkaloid, isoquinoline, methaqualone, flavonol, and gallic acid [123, 124].

4. Anticancer potential of secondary metabolites

Cancer is the cause of death worldwide; experts are developing new therapies less 
likely to cause side effects. Cancer is one of the most severe health concerns, despite 
substantial advances in cancer therapy [125]. Several new secondary metabolites 
from plants are discovered each year, opening new avenues for research in the fight 
against cancer. Plant secondary metabolites have substantially contributed to this 
topic, which has been at the heart of herbal medicines. Plant’s secondary metabolites 
have been shown to have anticancer effects, such as the ability to reduce cancer cell 
growth and development, kill cancer cells, and fight against multi-drug resistance in 
certain malignancies [126]. Plant secondary metabolites are thought to be helpful in 
drug development. The secondary plant metabolites are presently used in clinical and 
undergoing clinical trials as anticancer therapies [127, 128].

For thousands of years, humans have used herbs to treat certain diseases. 
Researchers are particularly interested in generating anticancer drugs from the plant’s 
secondary metabolites. Plant secondary metabolites such as flavonoids, polyphenols, 
anthraquinones, triterpenoids, alkaloids, terpenoids, quinones, and others play an 
essential role in cancer prevention [129]. Flavonoids (6,7,30-trimethoxy-3,5,40-
trihydroxy-flavone and 5,40-dihydroxy-3,6,30-trimethoxy-flavone 7-O- -d-glucoside) 
isolated from Chrysosplenium nudicaule Spearmary was reported as cytotoxic and 
antitumor activities in cancer cell growth of human leukemia and gastric cancer cell 
lines [130, 131]. The agathisflavone induces apoptosis and antiproliferative effect on 
the development of leukemia cells. Citrus flavonoids have a profound inhibitory effect 
on the development of leukemia cells. Other research suggests that quercetin may act 
as an antiproliferative agent by inhibiting cell proliferation, growth, and cell cycle 
termination [132, 133]. Studies of Kaempferol and quercetin have shown antiprolifera-
tive action by inhibiting the development of the human colon (HT-29, COLO 201, and 
LS-174T), breast (MCF-7 ADRr), and ovarian (OVCA 433) cancer cell lines [134–136]. 
In addition, quercetin inhibited the G1 phase of the cell cycle in human leukemic 
T-cells and human gastric cancer cells [137, 138]. In a human oral squamous carcinoma 
cell line (SCC-25), quercetin had a biphasic effect on cell growth and proliferation 
[139]. On the other hand, in-vivo research on quercetin has yielded consistent find-
ings, indicating a promising chemopreventive drug against skin cancer [140]. In 
contrast, kaempferol treatment of the human lung cancer cell line A549 resulted in 
a dosage and time-dependent decrease in cell survival and DNA synthesis. While 
Kaempferol dramatically decreased the number of breast cancer cells (MCF-7) viable 
estrogen receptor-positive [141, 142].

Phenolic compounds are one of the most diverse and widespread groups of plant 
metabolites, and they have a wide range of biological roles in regulating carcinogen-
esis [143]. Polyphenols have several advantages as anticancer drugs, including high 
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accessibility, minimal toxicity, and broad biological effects. The main advantage 
of polyphenols as anticancer drugs is cytotoxic effects on malignant cells growth 
[144, 145]. Many polyphenols have an anticancer effect in various cancer models, 
regardless of their different modes of action [146, 147]. Polyphenols of strawber-
ries, including anthocyanins, Kaempferol, quercetin, coumaric acid esters, and 
ellagic acid esters, have been shown to inhibit the development of human oral and 
breast colon and prostate cancer cell lines [148]. The primary polyphenol of green 
tea, epigallocatechin-3-gallate (EGCG), is anticancer in various cancer types [149]. 
Researchers suggested that EGCG regulation may stimulate the production of reac-
tive oxygen species and inhibit angiogenesis in cancer cells by regulating different 
pathways, such as AMP-activated protein kinase, epidermal growth factor receptor, 
insulin-like growth factor receptor, extracellular signal-regulated kinase, cyclin D1, 
Akt, STAT3, Wnt, and mTOR signaling in cancer cells [150–152]. A key ingredient of 
Plumbago zeylanica naphthoquinone has been shown in-vitro and in-vivo anticancer 
effective against various malignancies, including breast, pancreatic, lung, prostate, 
melanoma, and leukemia [153]. Cardanol, anacardic acid, and methyl cardol have 
been shown to decrease the cell growth of Hela cells and pituitary adenoma cells 
[154, 155]. In addition, anacardic acid-induced polymerase breakage, cell arrest, 
and regulation of apoptosis and anti-apoptotic proteins [156]. Furthermore, in-vivo 
investigations have confirmed plant-derived phenolic compounds’ anticancer activ-
ity [157]. Colon, lung, breast, liver, prostate, stomach, esophagus, small intestine, 
pancreas mammary gland, and skin cancers are using xenograft animal models 
[158]. In another study of cyanidin-3-glucoside (C3G), the major anthocyanin in 
blackberry was investigated for the inhibition of 7,12-dimethylbenz[a]anthracene 
(DMBA)-12-O-tetradecanolyphorbol-13-acetate (TPA)-induced skin papillomas in 
an animal model [159]. Similarly, natural anthraquinones, such as rhein and emodin, 
have antitumor properties [160]. Tetrahydroanthraquinones, a kind of anthraqui-
none, inhibit cell proliferation, invasion, metastasis, and angiogenesis by apoptosis 
and cell cycle arrest. Altersolanol A (tetrahydroanthraquinone) has anticancer 
properties against bladder, colon, and stomach cancer. Moreover, Altersolanol A 
anticancer efficacy is linked to its pro-apoptotic and antiinvasive properties. A study 
reported that Altersolanol A has anticancer potential by reducing angiogenesis 
in-vitro and in-vivo [161, 162]. In addition, Altersolanol F reduced the viability of 
colorectal and cervical cancer cells, while Altersolanol N has cytotoxic effect against 
murine cancer cell line (L5178Y) [163, 164]. Likewise, several investigations have 
demonstrated catechins as antiproliferative properties in breast, colon, melanoma, 
and prostate cancer cells [165–167].

Isoquinoline alkaloid is a major alkaloid class with an anticancer effect in different 
cancer cells. Isoquinoline alkaloids are naturally isolated from the roots, and the bark 
of Coptis chinensis are important sources of [168]. Studies found that protoberberines 
(isoquinoline alkaloids) have significant anticancer potential in the treatment of 
gastric cancer [169]. Similarly, berberine alkaloid has been reported to have antican-
cer effects by suppressing the ERK/JNK/p38 MAPK/mTOR/p70 ribosomal S6 protein 
kinase and PI3K/Akt signaling pathways in cancer studies [170]. Tetrandrine (TET), 
a natural bis-benzylisoquinoline alkaloid, has shown anticancer activity against 
 cancer cell lines. Tetrandrine-mediated cytotoxicity of chemotherapeutic drugs 
used to treat gastric cancer, including paclitaxel, 5-FU, oxaliplatin, and docetaxel 
[171, 172]. Piperlongumine, an amide alkaloid, has been shown anticancer by the 
intracellular ROS, p38/JNK signaling pathway [173, 174]. Hersutin alkaloid has been  
shown to induce apoptosis in HER2-positive and p53-mutated breast cancer cells [175]. 
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Oxymatrine, a natural alkaloid isolated from the roots of Sophora chrysophylla, 
 exhibits anticancer activity in human cervical cancer cells [176].

Terpenes are a broad category of secondary metabolites that include low polarity 
fragrant scaffolds and isoprene derivatives with various pharmacological activities, 
including anticancer activity. Triterpenoids have previously been shown to have anti-
cancer properties in both in-vitro and in-vivo by nuclear factor-κβ (NF-κβ) and STAT3 
signaling pathways [177]. The anticancer and narcotic activities of costunolide, a 
sesquiterpene lactone isolated from Saussurea lappa, have been demonstrated in gas-
trointestinal diseases [178]. Thymoquinone has been shown to slow the progression 
of diseases such as leukemia, breast adenocarcinoma, colorectal, pancreatic, prostate, 
and hepatic cancer [179]. The anticancer efficacy of thymoquinone against gastric 
cancer cells. Several other studies have shown that the combination of thymoquinone 
with 5-fluorouracil and cisplatin significantly improves the chemotherapeutic-
induced anticancer effects in gastric cancer. Furthermore, thymoquinone has been 
shown to inhibit the Janus kinase (JAK)/STAT3 signaling pathway [180].

5. Conclusions

This study shows that plant cells produce a variety of compounds, mainly sec-
ondary metabolites, for defense mechanisms against bacteria, fungi, antioxidants, 
and cancer. Secondary metabolites with antibacterial, antifungal, antioxidant, and 
anticancer effects are sources of natural bioactive molecules, which control disease-
causing pathogens in plants and humans. In addition, the different plant families 
have shown a unique combination of secondary metabolites; therefore, exhibit-
ing different antibacterial, antifungal, antioxidant, and anticancer activities. The 
emerging research on identifying secondary metabolites is ongoing, and further 
research is encouraged to advance our knowledge about these compounds. Secondary 
metabolites can help treat infectious diseases that have increased resistance to current 
antibiotics. They can offer alternative medical therapy to individuals, particularly in 
developing nations where people may not access health care.
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Chapter 12

Chiral Inversion of Active
Compounds in Plant Extract
Ngoc-Van Thi Nguyen

Abstract

Chiral inversion is always mediated by enzymes and varies with solvent, pH and
temperature. Considerable attention should be paid to the mechanism of the inversion
reaction and its pharmacological and toxicological results. This chapter will discuss the
mechanism of chiral inversion of plants in secondary metabolize and its importance in
creating pharmacology consequences. Plant stereoisomers of alkaloids and flavonoids
exhibit a wide range of pharmacological effects. Recent advances in chiral analysis for
the herbal plants in clinical research & forensic toxicology by experiments in which
one enantiomer was given to the experiment subjects in a specific situation. Demon-
stration of metabolic chiral inversion may have consequences for the development of
a new pharmaceutical entity. Hence, it helps a better understanding of chiral com-
pounds in plants, facilitating the application for drug development from medicinal
herbs and thereby reducing bioanalytical and toxicology workload.

Keywords: chiral inversion of plants, eutomer, distomer, racemization

1. Introduction

Chiral inversion is the process by which enzymes modify the three-dimensional
structure of a molecule by converting one enantiomer to its antipode [1]. Racemiza-
tion occurs when isomerization leads in the creation of a racemic mixture. As a result,
chiral inversion influences drug stability throughout drug discovery and development.
Biological activity, toxicity, shelf-life and dosage of the compound are affected by the
stability of the drug [2]. The process of chiral inversion is affected by a lot of variables,
consequently, the strength of chiral inversion under different situations and in various
substances can vary significantly. The primary elements that were acknowledged to
play a vital part in the process of chiral inversion were reported to be interspecies
differences and tissue types. Some recent researches have demonstrated that addi-
tional variables, such as administration route or interaction with other xenobiotics,
can also impact enantiomeric conversion.

Plants create a vast diversity of physiologically active metabolites, many of which
have stereochemical variants on the same molecular scaffold. These alterations in
stereochemistry have a significant influence on biological function. Notably, plant
stereoisomers of alkaloids and flavonoids exhibit a wide range of pharmacological
effects. Alkaloids are cyclic chemical molecules with a negative oxidation state of
nitrogen. They are found throughout the flora and play an important function in plant
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protection, sprouting, and encouraging plant development. Plants containing alka-
loids are frequently employed as traditional remedies, and these chemicals typically
have specific pharmacological actions. The majority of alkaloids are in a chiral form
which is often appeared in products as racemic compounds, while their enantiomers
have been proved to have different pharmacological actions [3]. Flavonoids are a vast
category of polyphenolic chemicals with a benzo—pyrone structure that is found in all
plants. Phenylpropanoid is their produce’s pathway. Recent interest in these chemicals
has been sparked because of the possible health advantages of these antioxidant
polyphenolic compounds [4]. The relevance of racemic flavanones stereospecific
pomological disposition has been determinated and described in the last 20 years. The
majority of these studies report on the measurement of flavanones in citrus fruit juices
and herbs [5].

Can all chiral compounds undergo chiral inversion? Maybe no, many compounds
still can be considered stable in metabolize process. Why are some enantiomers of
plants inverted by enzymes and others are not attacked? The reason lies in the struc-
ture. The intent of this chapter is to provide a comprehensive, rather than an exhaus-
tive, appraisal of chiral bio-inversion. This chapter will discuss enzymatic chiral
inversion of plants in secondary metabolize and its importance create pharmacology
effect. Therefrom, it helps a better understanding of chiral compounds in plants,
facilitating the application for drug development from medicinal herbs.

2. Mechanism of inversion

Under selective conditions, racemization or enantiomerization defined as the chi-
ral conversion of enantiomer into its antipode may present in many plants metaboliz-
ing. When the chiral molecule enantiomers in herbals interact with a chiral
macromolecule-like enzyme, they generate a pair of diastereoisomeric complexes that
vary energetically. It is not surprising, then, that the results of enzyme-mediated
reactions performed on a pair of enantiomers may differ in type and/or extent.
Indeed, given the structure of the enzyme-substrate complex, it is plausible to believe
that enantioselectivity is the rule rather than the exception in metabolism. Likewise,
the binding of a prochiral substrate to an enzyme may orient two enantiotopic groups
differently about the enzyme catalytic site, causing these two groups to become
diastereotopic within the enzyme-substrate complex. It’s simple to see how the pro-
duction of a chiral metabolite from a prochiral substrate may result in stereoselectivity
for one isomeric product [6].

At the substrate and product levels, xenobiotic metabolic reactions exhibit two
forms of stereoselectivity. As a result, they can be classed according to their stereose-
lectivity or, if such selectivity is complete, their stereospecificity. Caution while using
this latter phrase, because the ability to determination “specificity” is clearly depen-
dent on the analytical approach of the research. The words substrate and product
“stereospecificity” were initially introduced to the enzyme-mediated reduction of
ketones by Prelog [7], and were later extended to drug metabolic processes by Jenner
and Testa [8]. Substrate stereoselectivity is the preferred metabolism of one of two
stereoisomers over the other, whereas product stereoselectivity is the preferential
production of one stereoisomer over the other stereoisomers that may exist. These two
“selectivities” may be so closely related that substrate-product stereoselectivity, i.e.,
the selective metabolism of one of a pair of enantiomers to form one of several
possibly diastereoisomeric products, may also be seen. If the enantiomeric
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composition of medication or metabolite is detected in the analysis process, data
collected from in vivo research on stereochemistry in plants must be regarded with
caution (Table 1).

2.1 Alkaloids

Plants are thought to generate over 12,000 distinct alkaloids, which may be classi-
fied based on their carbon skeleton structures. Many catalytic stages in alkaloid bio-
synthesis in plants are catalyzed by enzymes from various protein families.

Since the discovery of morphine in 1806, the complex relationships between
opium poppy and the human condition have fueled substantial study into the pro-
duction of morphinan alkaloids [23]. During the 1960s, significant progress toward
route elucidation was made, which supported a major theory [24] that morphine was

Plant Enzyme Stereoselective Stereospecificity Ref.

Alkaloid Compound

Opium poppy 1,2-dehydroreticuline reductase (R)-reticuline [9]

Catharanthus
roseus

tetrahydroalstonine synthase (3S,19S,20S)-
Tetrahydroalstonine

[10]

Claviceps
purpurea

Dimethylallyl tryptophan synthase L-tryptophan [11]

Hyoscyamus
niger

Hyoscyamine 6β-hydroxylase L-hyoscyamine [12]

Berberis
koetineana

Tetrahydrobenzyliso-quinoline-N-
methyltransferase

(R)-tetrahydropapaverine [13]

Flavonoid Compound

Soybean Chalcone isomerase (2S)-flavanone [14]

Dahlia
variabilis

Flavanone 4-reductase (2S)-flavanone (2S, 4R)-flavan-4-ol [15]

Citrus unshiu Flavonol synthase (2R,3R)-
dihydroflavonol

[16]

Glycyrrhiza
echinata

Flavanone 2-hydroxylase (2S)-flavanone [17]

Ginko biloba
Pseudotsuga
menziesii

Dihydroflavonol 4-reductase (2R,3R)-
dihydroflavonol

(2R, 3S, 4S)-flavan-2,3-
trans-3,4-cis-diol

[18]

Medicago
truncatula

Anthocyanidin reductase (2R, 3R)-flavan-3-ol [19]

Medicago
sativa

Isoflavone reductase (2R)-isoflavanone [20]

Pisum sativum Hydroxymaackiain-3-
Omethyltransferase

(+)-6a-
hydroxymaackiain

[21]

Desmodium
uncinatum

Leucoanthocyanidin 4-reductase flavan-2,3-trans-
3,4-cisdiol

(2R, 3S)-flavan-3-ol [22]

Table 1.
Stereoselective and/or specific enzymes of alkaloid and flavonoid compound biosynthesis in plant extract.
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generated by 1-benzylisoquinoline alkaloid metabolism [25]. Because only the (R)-
conformer could undergo additional phenol coupling to the morphinan scaffold, (S)-
reticuline emerged as the primary 1-benzylisoquinoline intermediate, with its stereo-
chemical inversion to (R)-reticuline thought to be a critical gateway reaction [26].

The pathway makes use of opium poppy reticuline epimerase, a multi-domain
protein composed of the P450 CYP82Y2 linked to an aldo-keto reductase (AKR).
CYP82Y2 (1,2-dehydroreticuline synthase, DRS) catalyzes the conversion of (S)-
reticuline to 1,2-dehydroreticuline, which is then converted to (R)-reticuline by the
AKR module (1,2-dehydroreticuline reductase, DRR) [26]. A second P450 called
CYP719B1 then tranforms (R)-reticuline into salutaridine [27, 28]. This procedure
includes (R)-reticuline twisting, reorientating and oxidative C–C bond coupling stim-
ulated by CYP719B1 (Figure 1).

Catharanthus roseus, a medicinal plant, creates three of these isomers: ajmalicine
(raubasine), tetrahydroalstonine, and 19-epi-ajmalicine (mayumbine) (Figure 2)
[30]. These heteroyohimbines are produced from deglycosylated strictosidine
(strictosidine aglycone), as are the bulk of monoterpene indole alkaloids [31]. A
glucose unit removal from strictosidine by strictosidine glucosidase (SGD) leads to the
formation of a reactive dialdehyde intermediate that can rearrange to generate a
variety of isomers [32]. The stability of these isomers by enzyme-catalyzed reduction
is thought to be the first step toward the vast chemical variety found in monoterpene
indole alkaloids. The tetrahydroalstonine synthase (THAS) is a zinc-dependent
medium-chain dehydrogenase/reductase (MDR) that manufactures the
heteroyohimbine tetrahydroalstonine (Figure 2) [33]. Although, these studies showed
that THAS is an important enzyme for the heteroyohimbine production, the mecha-
nism by which this enzyme controls the stereoselectivity of the reduction remained
unexplained. Moreover, the fact that strictosidine aglycone is also a predrug of some
alkaloid scaffolds so constitutes a major branch point in the monoterpene indole
alkaloid biosynthesis process [29].

2.2 Flavonoids

Most flavonoid biosynthesis enzymes are extremely stereoselective and/or stereo-
specific; nonetheless, this assertion is based on just one or a few published findings for
numerous enzymes. Flavonoids are produced by the phenylpropanoid pathway,
which begins with the enzyme L-phenylalanine ammonia-lyase deamination of phe-
nylalanine (PAL). D-phenylalanine is not a substrate for PAL; it is selective for the
naturally occurring L-isomer of phenylalanine [34]. The process mediated by
chalcone–flavanone isomerase (CHI), which sets the stereochemistry at C-2 of the
flavonoid heterocyclic ring, maybe the most stereo-chemically crucial in flavonoid
biosynthesis. CHI is a chemically and structurally well-characterized enzyme that
creates (2S)-flavanones from chalcones (Figure 3) [14, 35].

Unlike other flavonoid enzymes such as PAL or CHI, the 2-oxoglutarate-dependent
dioxygenases flavonol synthase (FLS) and anthocyanidin synthase (ANS) have wide
substrate and product selectivities in vitro (both take flavanone, dihydroflavonol, and
leucoanthocyanidin as substrates). Prescott et al. have reported a detailed structural and
in vitro research on recombinant flavonol synthase from Arabidopsis thaliana, with a
focus on the stereochemistry of substrate and product, have provided information on
how they catalyze reactions with their real substrates in vivo [36]. FLS and ANS prefer
substrates with natural C-2 and C-3 stereochemistry [(i.e. (2R,3R)- dihydroquercetin
for FLS and (2R,3S, 4R/S)- leucoanthocyanin for ANS], but hydroxylate both (2R)- and
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Figure 1.
Proposed chiral inversion of (S)-reticulin to (R)-reticulin catalyzed by 1,2- dehydroreticuline reductase (DRR)
and 1,2-dehydroreticuline reductase (DRR) in opium poppy [9].

Figure 2.
Heteroyohimbine alkaloid biosynthesis. Red highlighted compounds indicate the three diastereomers identified in
Catharanthus roseus. Alkaloids derived from heteroyohimbines are also illustrated [29].
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(2S)-naringenin equally well in vitro, indicating that the C-3 hydroxyl group is
important in biasing substrate selectivity [37].

The flavan-3-ols (+)-catechin and (�)-epicatechin serve as the foundation for
proanthocyanidins (condensed tannins), a family of molecules of great interest due to
their effects on animal health [38]. The C-2 and C-3 stereochemistries of (+)-catechin
(2,3-trans) are identical to those of flavonoid pathway intermediates, and a pathway
leading from (2R, 3S, 4S)-leucoanthocyanidin to (+)-catechin, catalyzed by
leucoanthocyanidin reductase (LAR), has been illustrated and affirmed by the cloning
of a leucoanthocyanidin reducta [22]. LAR belongs to the Reductase–Epimerase–
Dehydrogenase protein family, which also includes isoflavone reductase and similar
homologs (Figure 4) [39].

The process catalyzed by anthocyanidin reductase (ANS) and anthocyanidin reduc-
tase (ANR) leads from leucocyanidin to (�)-epicatechin [40]. By operating on an achiral
intermediate, ANR, an enzyme with limited sequence similarity to dihydroflavonol
reductase, can introduce the 2,3-cis stereochemistry (anthocyanidin). Mechanisms for
this reaction have been hypothesized, and it is plausible that more ANR-like enzymes
with the potential to introduce different stereochemistries exist (Figure 5) [41].

3. Factors affecting chiral inversion

Chiral inversion is always mediated by enzymes and varies with solvent, pH and
temperature. When a molecule has two or more elements of chirality, one of which is
configurationally labile, enantiomerization can occur. Many studies have been

Figure 3.
General outline of the flavonoid pathway (PAL: Phenylalanine ammonia-lyase, CHS: Chalcone synthase, CHI:
Chalcone isomerase, FHT: Flavanone 3β-hydroxylase, FNS Ι: Flavone synthase Ι, FLS: Flavonols synthase, DFR:
Dihydroflavonols reductase, ANS: Anthocyanidin synthase). Chiral inversion in flavonoid metabolizes was
highlighted by red frame.
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reported about the chiral compounds inversion such as: evodiamine in Evodia
rutaecarpa [42], ephedrine and atropine (Figures 6 and 7) [43].

Chiral inversion is always mediated by enzymes. One of the most valuable synthetic
features of enzymes is their ability to discriminate between enantiomers of racemic
substrates [44]. The ratio of stereoisomers is changed mainly by stereospecificity and
stereoselectivity of enzymes transformation. The stereoselectivity and stereospecificity
of enzymes change dramatically the ratio of drug enantiomers and metabolites enan-
tiomers in biological systems. The enzyme-mediated chiral inversion can be affected by
determining expression, substrate affinity and activity of the enzyme. The difference of
species and tissue can be different in the rate of the chiral inversion occursion as well as
of the routes and mechanisms of inversion [2].

On another hand, the development of strategies that improves the stereoselectivity
of enzyme-catalyzed resolutions has been researching. Modification of the substrate,
recycling of the product and changing of the reaction conditions are the three most
common ways. From now, even enzymes with modest stereoselectivity can be used
successfully [44]. Configurational stability depends mainly on the structure and the
conditions, especially with solvent, pH and temperature [2].

According to Ngoc Van Thi Nguyen et al. (2013) research, extraction conditions are
also can affect the enantiomerization while this study investigated the optimization of
the extraction procedure, more specifically the solvent, pH and temperature [42].

3.1 Solvent

In the metabolic chiral inversion research, avoiding spontaneous or chemical race-
mization of enantiomers is one of the important things [2]. The organic solvent

Figure 4.
The pro-anthocyanidin pathway showing the LAR reaction.
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Figure 6.
Structures of (A): (1R,2S)-(�)-ephedrine and (1S,2R)-(+)-ephedrine; (B); (S)-(�)- hyoscyamine and (R)-
(+)-hyoscyamine.

Figure 5.
Pathway for CT biosynthesis placing BAN immediately downstream of ANS.
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characterism is one other parameter that can significantly interfere with this chiral
inversion [45]. The study of Yang SK [46] has shown that racemization half-lives t1/2
of enantiomeric oxazepam were 4.8 min in methanol, while it was 840 min in diethyl
ether, and 5000 min in hexane, 4500 min in acetonitrile, etc.

3.2 pH

Based on the result of the study of Glass Amanda M. et al. (2012), the data
collectively prove that pH has a minute effect on the chiral inversion rate
(Figure 8) [48].

The pH effect on proton extraction to give the enolate-form of CoA-thioester
resulting in chiral inversion [47]. Chiral inversion and sufficient emission intensity
were observed at basic pH 8 and 8.9, respectively, whereas only little emission was
observed under neutral to acidic conditions.

Figure 8.
Time-dependent changes of D-luciferin substrate. Luciferin racemization under various pHs of 150 mM GTA
buffer, under ddH2O, and under a medium was monitored for 12 days. The results are highlighted by colors: pH 5
(purple), pH 6 (blue), pH 7 (orange), pH 8 (wine red), pH 8.5 (green), ddH2O (pink) and DMEM (brown).
Even under acidic to neutral conditions, obvious racemization that could not be ignored for long-term experiments
were observed. The best condition for inhibiting racemization to maintain D-luciferin optical purity was
dissolution in ddH2O [47].

Figure 7.
Chemical structure of (1a) R-(�)-evodiamine, (1b) S-(+) evodiamine.

237

Chiral Inversion of Active Compounds in Plant Extract
DOI: http://dx.doi.org/10.5772/intechopen.102537



3.3 Temperature

Enzyme activity is also affected by temperature, which can lead to the chiral
inversion efficiency. The research of the effect of temperature on enzyme activity
showed that the hydrogen peroxidase activity’s best temperature is 41°C. When this
condition is decreased to 37° C, the enzyme activity decreased. Continuing to decrease
to 9°C can decrease dramatically the activity of the enzyme. The influence on enzyme
flexibility is because of the temperature effect on hydrogen bonds and covalent
(Figure 9) [49].

4. Pharmacological consequences

One of the three majorities of racemic pharmaceuticals are the racemic drugs that
only have one eutomer, but the distomer could be transformed into its bioactive
antipode by chiral inversion in the body (Table 2) [60].

4.1 Alkaloids

Based on many studies about unnatural alkaloid enantiomers, and the results
reviewed here the pharmacological effect of natural isomers is enantioselective. How-
ever, unnatural enantiomers also have a pharmacological effect of their own which
can be discovered in the future. Morphinans of the unnatural (+)-series, in contrast to
the (�)-series which are chemically connected with natural morphine, were found to
be do not have pharmacological effects as analgesics in vivo, instead, presented useful
antitussive properties (Figure 10) [62].

(+)- and (�)-spondomine-racemic and dimeric indole alkaloids have been
reported in the study of Tian-Yun Jin (2021) [63], especially, (+)-spondomine
displayed cytotoxic against the K562 cell line and exhibited Wnt and HIF1. Moreover,
all of them were found to be active in promoted angiogenesis and moderate
antiinflammation.

Oleracein E (OE) (8,9-dihydroxy-1,5,6,10b-tetrahydro-2H25 pyrrolo[2,1-a]
isoquinoline-3-one), an alkaloid possessing tetrahydroisoquinoline and pyrrolidone
skeletons. It was reported to have a lot of pharmacological effects such as: anti-
bacterial, anti-inflammatory, anti-aging, anti-hypoxia, anti-oxidant, skeleton-
relaxant, hypolipidaemic, analgesic, hypoglycemic, cognition-improvement and
neuroprotective functions, especially the optical isomer of (+)-oleracein E (OE) called

Figure 9.
The effect of temperature on enzyme activity [49].
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(�)-trolline has remarkable antibacterial as well as moderate antiviral activity against
influenza viruses A and B [64].

4.2 Flavonoids

According to Blair, Lachlan M. (2016) [65], (�)-Foveoglin A (5) exhibited
cytotoxicity against a panel of cancer cell lines, while (+)-isofoveoglin (7) and
(�)-cyclofoveoglin (8) were weakly cytotoxic, and (+)-foveoglin B (6) was inactive
(Figures 11 and 12).

Characterize the stereoselective pharmacokinetics of pinocembrin and pinostrobin
and their bioactivity in some in vitro investigation with relevant roles in heart disease,
colon cancer, and diabetes etiology and pathophysiology [66]. These investigations
have revealed that chiral differences in the chemical structure of these compounds
result in significant pharmacodynamic differences. Pinocembrin and pinostrobin
demonstrated concentration-dependent alpha amylase inhibitory activity. While
pinocembrin also has anti-inflammatory antioxidant in the pure S-enantiomer and
racemate.

Plant Stereoisomer
compound

Pharmacological
effect

Test model Ref.

Alkaloids

Huperzia
serrata

Huperzine A and B Anticholinesterase
activity

Acetylcholinesterase (AChE)
inhibitory assay

[50]

Narcissus
jonquilla quail

Jonquailine Anticancer Human cancer cell line: A549;
OE21; Hs683 U373;SKMEL
B16F10

[51]

Uncaria
rhynchophylla

Speciophylline Antiplasmodial
activity

Plasmodium falciparum [52]

Isatis indigotica Isatindigotindoline Inhibitory effects on
β-amyloid
aggregation

Thioflavin T (ThT)-binding
assay

[53]

Flavonoids

Centaurea
maculosa

Trans-flavan-3-ol (+)-
catechin

Antibacterial Xanthomonas campestris,
Pseudomonas fluorescens, Erwinia
carotovora

[54]

Citrus fruit Narirutin, naringin,
hesperidin and
neohesperidin

Antioxidant DPPH assy [55]

Psidium
guajava

Quercetin-3-O-α-L-
arabinopyranoside

anti-Streptococcus
mutans activity

S. mutans [56]

Rhus
retinorrhoea

Persicogenin Anticancer MCF-7, HeLa, and HT-29 cells [57]

Silybum
marianum

Silibinin A and Silibinin
B

Anticancer MDA-MB-468 breast cancer
cells of the control mice

[58]

Leucosceptrum
canum

S-(+)- and R-(�)-
leucoflavonines

Aticholinesterase
activity

Acetylcholinesterase (AChE)
inhibitory assay

[59]

Table 2.
Pharmacologic effect of stereoisomer compound in plant extract.
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Figure 10.
Biosynthesis of morphine in plants. * These metabolic conversions are highly stereoselective [61].

Figure 11.
Aglain and aglaforbesin flavoalkaloids 1–7, 10–12 [65].
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Racemic liquiritigenin is proved to be a dose-dependent inhibition of alpha-
amylase enzyme whereas its pure enantiomers did not have this bioactivity. Racemic
liquiritigenin showed moderate antiproliferative activity on an HT-29 cancer cell line
that was also dose-dependent and had inhibitory effects on the cyclooxygenase-2
enzyme [67].

Racemic liquiritigenin, which was dose-dependent, has been proved its moderate
antiproliferative activity on a cancer cell line_ HT-29, and inhibitory effects on the
cyclooxygenase-2 enzyme [67]. The nature type of naringenin, hesperetin and
hesperidin is S - enantiomer, but both R and S enantiomers can have biological
activities such as: antitumor, antioxidant and anti-inflammatory [68]. The two enan-
tiomers of equol: R-(+)-equol and S-(�)-equol have been researched in antitumor
activity which shown a significant decrease in the number of palpable tumors
presented in animals feeding R-(+)-equol compared to the S-(�)-equol’s result
(Figure 13).

5. Conclusion

Chiral inversion is always mediated by enzymes and varies with solvent, pH and
temperature. Considerable attention should be paid to the mechanism of the inversion
reaction and its pharmacological and toxicological results. Recent advances in chiral
analysis for the herbal plants in clinical research & forensic toxicology by experiments

Figure 12.
Aglain and aglaforbesin flavoalkaloids 8, 9 [65].

Figure 13.
Chemical structure of daidzein (a) and its metabolites (b and c).
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in which one enantiomer was given to the experiment subjects in a specific situation.
Demonstration of metabolic chiral inversion demonstration may give an answer for
the development of a new pharmaceutical entity. Understanding more about the
factors facilitating such interconversions may considerably aid herbal plant develop-
ment thanks to this feature determination at an early stage and thereby reducing
bioanalytical and toxicology workload.
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Abstract

The South American Andes hide countless cacti and are part of valuable Andean 
biodiversity. Within this large family of Cactaceae are edible cacti that are highly 
valued for their medicinal properties and used as edible fruits. In this review, we will 
make a description of the overall chemical composition, main phytochemicals found 
in some edible cacti of the Andean region such as sanky (Corryocactus brevistylus), 
pitahaya (Hylocereus monacanthus, Hylocereus megalanthus) and tuna or prickly pear 
(Opuntia ficus-indica). In addition, we will include its medicinal and therapeutic 
properties and its commercial applications and uses as a natural colorant.

Keywords: edible cacti, Andean region, phytochemicals, healthy properties, 
commercial applications

1. Introduction

Cactaceae are a large family of plants that prosperous in desert and semidesert 
areas. These plants have been used by ancient civilizations for the treatment and cure 
of diseases [1]. In addition, they have been used as fodder (dairy cows) [2], medicinal 
(nutritional qualities and health implications) [3, 4], fruits and vegetables (prickly 
pear “tuna”, and dragon fruit “pitahaya”) [5–7] processed products (jams, syrups, 
concentrated juices, candies, wine, natural colorants, and others) [8, 9]. Cactaceae 
have been shown to provide significant health benefits because of their dietary fiber, 
flavonoids, hydroxycinnamic acids, betalains, carotenoids, terpenes, and tannins 
contents, that show health benefits such as anti-microbial and anti-parasitic, anti-
proliferative and cytotoxicity and anti-inflammatory properties and inhibition of 
enzymes involved in carbohydrate catabolism (α-glucosidase and α-amylase) [10, 11].

Many of the native food fruits that grow in the Andean and Amazonian regions 
have generated much interest today due to the wide range of nutrients and bioactive 
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compounds they possess. Among edible fruits, we can find Cherimoya (Annona 
cherimola Mill), lucuma (Pouteria lucuma (Ruiz & Pav.) Kuntze), goldenberry or 
cape gooseberry (Physalis peruviana L.), saúco (Sambucus peruviana H.B.K.), pepino 
(Solanum muricatum Aiton), soursop (Annona muricata Linnaeus), asaí or açaí 
(Euterpe oleracea Martius), camu-camu (Myrciaria dubia (H.B.K.) McVaugh), Inca 
peanut or sacha inchi (Plukenetia volubilis Linnaeus), sachatomate (Solanum betaceum 
(Cavanilles) Sendtner), guinda (Prunus serotina), granadilla (Passiflora ligularis), 
tumbo serrano or banana passion fruit (Passiflora tripartite var. mollissima), tuna or 
prickly pear (Opuntia ficus-indica), sanky (Corryocactus brevistylus), and pitahaya 
(Hylocereus monacanthus, Hylocereus megalanthus) [12–15].

The objective of this review is to compile the general chemical composition and 
bioactive phytochemicals of pitahaya, tuna or prickly pear and sanky, as well as the 
commercial applications. The aim of this paper is also to generate research interest in 
the valorization of edible cacti (Cactaceae) from the South American Andes and its 
by-products.

2. Pitahaya

Pitahaya, also known as pitaya or dragon fruit, (Hylocereus spp.) is an exotic 
tropical fruit that belongs to the Cactaceae family and Hylocereeae tribe [16, 17]. The 
pitahaya taxonomy is shown in Table 1; although it is native to Central and South 
America, it is currently grown for commercial purposes in Asian countries such as 
Vietnam, Malaysia, Thailand, and Taiwan [18, 19]. In South America, it is distributed 
across Venezuela and Bolivia, but the countries having a considerable production 
are Colombia, Ecuador, and Peru (Table 2) [18, 24]. In the Colombian territory, the 
cultivated hectares are distributed between Boyacá, Quindío, Santander, and Valle 
del Cauca [18]. In Ecuador, pitahaya is found in the provinces of Pichincha, Morona 
Santiago, and Loja [22], whereas in Peru, pitahaya is produced in Amazonas, San 
Martín, Lambayeque, and Junín [16].

The cactus plant of the pitahaya is a climbing, perennial, shrub-like plant that 
can grow up to 2 m. It is cultivated at an altitude of 500–1900 m above sea level, at an 
average temperature of 22°C and a relative humidity ranging from 70 to 80% [26]. 

Scientific 
name

Hylocereus spp.

Kingdom Plantae

Division Magnoliophyta

Class Magnoliopsida

Order Caryophyllales

Family Cactaceae

Tribe Hylocereeae

Genus Hylocereus

Species Hylocereus megalanthus, H. Hylocereus microcladus Backeberg, H. Hylocereus monacanthus*

Adapted from Verona-Ruiz et al. [16].*Some endemic species of South America.

Table 1. 
Hylocereus spp. taxonomy.
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The stems are characterized by their three wavy wings with horny scalloped margins. 
Each stem segment can grow up to 6 meters long [16]. The cladodes of the pitahaya 
cactus have 3–5 edges, contributing to its triangular shape. This plant grows wild on 
trees, rocks, logs, and walls, and is cultivated on trellises to support plant growth [18].

Pitahaya flowers are green on the outside, featuring interior white segments that 
are approximately 12 inches long and 9 inches wide. The stigma is lobed and green 
in color. Night-blooming pitahaya flowers open during the early morning and wither 
at dawn [16]. Pitahaya is characterized by being an ovoid berry 10–12 cm long and 7 
cm wide [22]. The peel and pulp of some varieties can change colors, and the peel can 
vary from yellow to pinkish-red [17]. The fruit can weigh from 200 to 350 grams and 
contains approximately 650 seeds [18, 24].

Due to the great similarity in their morphological characteristics, different species of 
this family have been generically called “pitahaya.” This made its botanical classification 
more complex. Within this species, four genera stand out: Stenecereus sp., Selenicerus 
sp., Hylocereus sp., and Cereus sp. [18]. The species that is distinguished by its peels and 
pulp is H. undatus. This pitahaya has white pulp and red-pink peel, and it is the most 
popular variety worldwide [31]. H. costaricensis is a pitahaya with red pulp and peel, and 
it is also known as H. polyhizus [16]. Finally, H. megalanthus or Selenicereus megalanthus 
is a pitahaya with yellow peel and white pulp (Figure 1), being the most highly pro-
duced variety in South America [18].

Variety Country Region Reference

Selenicereus megalanthus Colombia Valle del Cauca [20]

Hylocereus megalanthus Colombia Fusagasugá [21]

S. megalanthus Ecuador Morona Santiago [22]

S. megalanthus Peru San Martín [23]

S. megalanthus Colombia Valle del Cauca [24]

H. triangularis Peru Huancavelica [25]

S. megalanthus Ecuador Pichincha [26]

S. megalanthus Peru Chachapoyas [27]

S. megalanthus and Hylocereus polyrhizus Colombia Valle del Cauca [28]

H. megalanthus Peru Cajamarca [29]

H. megalanthus Colombia Ibagué [30]

Table 2. 
Locations of the different varieties of pitahaya are found in the Andean region.

Figure 1. 
Major parts of pitahaya with yellow peel fruits. (A) Fruit, (B) mesocarp, (C) peel, and (D) pitahaya seeds 
(wet).
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Pitahaya is preferred by consumers because of its unique flavor, shape, and pulp 
color. In addition, it is famous for its low caloric value because it contains small amounts 
of carbohydrates (9.20 g per 100 g of edible pulp) [16]. In European and Asian markets, 
pitahaya is categorized as an exotic fruit because of the appearance of its peel and the 
bittersweet taste of its pulp. In the United States and various European countries, the 
pitahaya pulp is also in demand as a food ingredient or as a natural food colorant [17]. 
Conversely, in Malaysia and Indonesia, pitahaya is usually marketed as jams and sweets. 
In the province of Guangxi (China), red pitahaya is used to make wine [31].

Pitahaya is often described as a sweet fruit; however, this depends on its variety. 
The yellow pitahaya [Selenicereus megalanthus (k. Schum. Ex vaupel) moran] culti-
vated in Colombia has an acidic and sweet taste owing to the high content of soluble 
solids, while its organoleptic characteristics are more appealing than other similar 
species of the genus Hylocereus [23].

The betacyanin content in both the pulp and peel usually stands out in this fruit. 
Similarly, the presence of lycopene, vitamin E, beta carotene, total polyphenols, tan-
nins, and antioxidant compounds has been reported [16, 31]. Essential fatty acids, led 
by linoleic acid (64.5%), oleic acid (14%), and palmitic acid (14.4%) have been found 
in the seeds [18, 31]. The beneficial effects of pitahaya range from relief of stomach 
problems to the amelioration of endocrine disorders and improvements in the diges-
tive system function. The most recognized benefit of pitahaya is the antioxidant 
capacity attributed to its seeds, the most important antioxidant being linoleic acid 
because it works as an antioxidant buffer, captures cholesterol, producing a cardio-
tonic effect [16, 18]. Likewise, linoleic acid has been shown to reduce dyslipidemia 
and promote wound healing in diabetic rats [18].

2.1 Overall chemical composition

Pitahaya is a sweet-tasting fruit with a pulp of different colors; its weight can 
reach up to 700 g, with diameters of approximately 15–10 cm. According to Mercado-
Silva [32], the pulp color varies between white and red, contains black seeds, and 
represents 60–80% of the total weight of the fruit depending on the variety. Table 3 
summarizes the nutritional composition of the pulp in three different commercial 
species. The H. undatus variety was added to compare the characteristics of a species 
outside the Andean region. The moisture (85–89%) and protein content (0.5–0.6 g) 

Component Hylocereus undatus 
(Mexico)

Selenecereus maegalanthus 
(Peru)

Selenicereus megalanthus 
(Colombia)

Water (%) 89 89 85

Proteins (g) 0.5 0.5 0.6

Fats (g) 0.1 0.1 0.4

Carbohydrates (g) NE 9.1 13

Dietary fibers (g) 0.3 0.3 0.77

Vitamin C (mg) 25.0 8.0 —

Ash (g) 0.5 0.5 0.3

Adapted from Cañar et al. [24], Mercado-Silva [32], and Obregón-La Rosa et al. [23].

Table 3. 
Nutritional composition of 100 g of pulp from different species of pitahaya.



253

Secondary Metabolites of Edible Cacti (Cactaceae) from the South American Andes
DOI: http://dx.doi.org/10.5772/intechopen.102419

do not differ between the varieties. Similarly, the ash content varies from 0.3 g to 
0.5 g. However, the Colombian yellow pitahaya had a higher percentage of dietary 
fiber (0.77 g) when compared with previous reports. This fruit is widely famous for 
its vitamin C content, which is involved in the formation of collagen, red blood cells, 
bones, and teeth [20]. However, the table shows that the red variety (H. undatus) 
stands out for its vitamin C content when compared with the yellow variety of the 
Andean region (Selenecereus megalanthus).

Different studies show that the fresh weight of pitahaya increases in direct propor-
tion to the development of the fruit, and the content of soluble solids depends on the 
ripening stage [22, 32–34]. Following the physicochemical evaluation of pitahaya 
grown in Morona Santiago (Ecuador), Sotomayor et al. [22] determined that the 
percentage of peel decreases from 55.9% to 33.4%, while that of the pulp increases 
from 44.1% to 66.6% between maturity stages 0 and 6. In addition, the flavor of the 
pitahaya will depend on the maturity during its harvest due to the degradation of 
polysaccharides, an important factor that determines the concentration of carbohy-
drates. According to Ochoa Velazco [17], the total soluble solids (TSS) that predomi-
nate in pitahaya are glucose and fructose.

The content of TSS in pitahaya is variable (14–16°Brix) and the titratable acidity 
is usually low (0.2–0.35 m% malic acid/100 g of fresh weight) [32]. In a study con-
ducted by Chauca and Chávez [27], pitahaya from Chachapoyas had a TSS value of 
17.4°Brix and an acidity of 0.20% citric acid/100 g fresh weight. Similarly, pitahayas 
collected from the Cauca valley presented a TSS value of 14.3°Brix and an acidity of 
1.35 mg citric acid/100 g fresh weight [24]. Torres Grisales et al. [20] obtained values 
of 17.7°Brix and titratable acidity of 0.20% citric acid in the S. megalanthus variety 
harvested in the province of Valle del Cauca. Although, the TSS does not determine 
consumer acceptability, it is an indicator of sweetness, which results from the com-
bination of soluble sugars and organic acids. A TSS combination with high acidity is 
associated with a better flavor, making the fruit very appealing to consumers [19].

2.2 Bioactive phytochemicals

The fruit of the pitahaya, especially the mesocarp, has a high nutraceutical value 
and is considered a functional food as it contains healthy bioactive compounds [19]. 
The pitahaya pulp not only contains sugars and acids but also fiber, vitamin C, pectin, 
and different pigments [35]. In samples of S. megalanthus harvested in Peru, the vita-
min C content ranged between 7 and 9 mg/100 g of pulp [23]. Torres Grisales et al. 
[20] obtained similar results (8 mg ascorbic acid per gram of dry matter) for pitahaya 
pulp from Valle del Cauca. The pitahaya peel and seeds were also analyzed, showing 
higher values. The seeds stand out in the results, containing up to 22.0881 mg ascor-
bic acid per gram of dry matter. Some studies indicate that the content of vitamin 
C in varieties outside the Andean region is higher (Table 4). Thus, the content of 
vitamin C in the species H. monacanthus collected in Fortaleza (Brazil) was found 
to be 107.02 mg/100 g [36]. Similarly, H. undatus from Sao Paulo (Brazil) presented 
45.79 mg of vitamin C/100 g [37].

Polyphenols (Table 4), carotenoids, tocopherols, and glucosinolates are usu-
ally found in fruits and vegetables. A chemoprotective effect has been attributed to 
these compounds to combat oxidative stress, as well as anti-inflammatory properties 
benefiting human health [35, 36]. In the case of pitahaya, the total content of pheno-
lic compounds in fruits of H. megalanthus from Cajamarca was 16.17 mg of gallic acid 
equivalent (GAE) per 100 g of pulp [29]. Likewise, these components were evaluated 
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to determine the inhibitory effects on α-amylase and α-glucosidase as a possible 
complementary therapy for diabetes mellitus. The IC50 value in the case of α-amylase 
was 8692.4 μg/mL and there was no inhibitory effect on α-glucosidase. According 
to the authors, the antidiabetic effect of the fruits of the Hylocereus family is not a 
result of their ability to inhibit digestive enzymes, but rather a result of their ability 
to improve insulin resistance and increase gene expression levels of the fibroblast 
growth factor 21 receptors [29].

In a study by Mejia et al. [21], the phenol content for the H. megalanthus variety 
from Fusagasugá (Colombia) was 59.1 mg gallic acid (GAE)/100 g fresh weight. 
Compared with the other exotic Colombian fruits assessed, pitahaya showed a 
moderate phenol content (80 > GAE/100 g). In addition, the antioxidant activity was 
determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2′-azino-bis 
(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods, as well as the ferric 
reducing antioxidant power (FRAP) assay relative to fresh weight basis. The results 
for this fruit were 177.1 μmol of Trolox Equivalent (TE)/100 g, 323.8 TE/100 g, and 
811.2 μmol of Fe+2/100 g, respectively. Additionally, the authors evaluated the elimi-
nation capacity of reactive nitrogen species. Samples of H. megalanthus exhibited a 
potent peroxyl radical scavenging activity with a value of 2999.77 μmol of TEs/g.

Torres Grisales et al. [20] assessed the content of phenols in all parts of pitahaya 
and showed that the seeds and the peel contain the highest amount of these 
compounds. A total of 1580 mg GAE/100 g dry matter were found in the seeds. 
Additionally, the authors analyzed the antioxidant capacity of phenols extracted from 
the pulp, peel, and seeds using the ABTS and DPPH assays. High levels of antioxidant 
activity were shown in all parts of the fruit. Nonetheless, the higher antioxidant activ-
ity was found in the seeds, with values of 79.2% and 96% for ABTS and DPPH assays, 
respectively.

In contrast, the amount of phenolic compounds in the peel and pulp of lyophi-
lized yellow pitahaya (S. megalanthus) from Chachapoyas was also determined. In 
this study, the lowest values in peel and pulp were obtained, with 1.50 and 2.01 mg 
GAE/g of the sample, respectively. Similarly, the antioxidant activity was lower than 
expected by the authors, with values of 8.15 and 7.7 μmol TEs/g in pulp and peel, 
respectively [27].

Species Location Bioactive compounds or 
micronutrients

Concentration Reference

Selenicereus 
megalanthus

San Martín, Peru Vitamin C 8.00 mg/100 g [23]

Hylocereus 
megalanthus

Cajamarca, Peru Total phenolic compounds 16.17 mg 
GAE/100 g

[29]

H. megalanthus Fusagasugá, 
Colombia

Total phenolic compounds 59.10 mg 
GAE/100 g

[21]

S. megalanthus Valle del Cauca, 
Colombia

Total phenolic compounds 1580 mg 
GAE/100 g

[20]

S. megalanthus Chachapoyas, 
Peru

Total phenolic compounds 2.01 mg GAE/g [27]

H. megalanthus Ibagué, Colombia Total phenolic compounds 7.8 mg GAE/100 g [30]

Table 4. 
Bioactive compounds are found in different varieties of pitahaya in the Andean region.
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The oil content and characteristics of Hylocereus seeds have been extensively stud-
ied. As mentioned above, pitahaya seeds have a high content of linoleic acid, which 
represents between % and 2% of the total weight of the fruit [18, 31, 35]. According 
to Villalobos-Gutiérrez et al. [38], the predominant saturated fatty acids in pitahaya 
seed oil are palmitic acid, stearic acid, and arachidic acid, which only represent 249 g/
kg of total fatty acids. Table 5 summarizes the amount of total fatty acids found in the 
red pitahaya variety (Hylocereus sp. [Weber] Britton & Rose) from Nicaragua.

Torres Grisales [20] observed that pitahaya seeds have a greater ability to acceler-
ate peristalsis by increasing the amount of feces produced by 55% when compared 
with biomodels fed a diet based on sunflower seeds. The laxative capacity of the other 
parts of pitahaya was also evaluated; however, the peel decreased the production of 
feces. It is important to mention that the consumption of pitahaya pulp and seeds 
promotes its output, although with a less solid appearance. This could be related to 
the passage of stool. According to Verona-Ruiz [16], the oligosaccharides present 
in the pulp serve as a possible source of prebiotics and stimulate the growth and/or 
activity of specific bacteria in the colon.

2.3 Commercial applications

Numerous studies on different varieties of pitahaya (H. undatus, Hylocereus 
polyrhizus, and H. megalanthus) have shown the variety of benefits that can confer 
to human health [19, 39–41]. The peel can be used as raw material for the extraction 
of pectin, betacyanins, and dietary fiber [42]. In addition, it is used in food packag-
ing and edible coating [43]. The pitahaya pulp has been shown to have nutraceutical 
properties and can be used to prepare fermented beverages. This would increase the 
content of phenolic compounds [16, 17, 31]. Finally, pitahaya seeds and their high 
content of unsaturated fatty acids can be used in the food, cosmetic, or pharma-
ceutical industry. The oligosaccharides present in the seeds is a potential source of 
prebiotics with a demonstrated ability to stimulate the growth of lactobacilli and 
bifidobacteria [16, 35].

Within the region, two studies have been conducted on the production of drinks 
based on pitahaya pulp. Enriquez Paredes and Ore Areche [25] obtained a functional 
drink made with malt from Amaranthus caudatus L. (kiwicha) and pulp from Hylocereus 
triangularis; both fruits were collected in Huancavelica (Peru). This drink was 

Component g/kg of oil

Fatty acid 182 ± 11

Palmitic acid 3 ± 1

Palmitoleic acid 49 ± 3

Stearic acid 239 ± 16

Oleic acid 45 ± 6

Cis-11-vaccenic acid 466 ± 42

Linoleic acid 18 ± 2

Arachidic acid 182 ± 11

Adapted from Villalobos et al. [38].

Table 5. 
Fatty acid profile of oil extracted from red pitahaya seeds (g/kg of oil).
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successful in a panel of 20 specialists, and its formulation is presented in Table 6. The 
drink reached a pH of 3.7 and 11.50°Brix, with a lack of molds, yeasts, and coliforms. 
The authors highlighted the protein content of the drink (8.53%), which is highly nutri-
tious and suitable for consumption.

In the study conducted by Castro Carranza et al. [44], a functional drink was 
developed based on pitahaya (Hylocereus undatus (Haw.) Britton & Rose) with 
extracts of lemon verbena (Cymbopogon citratus) and basil (Ocimum tenuiflorum). The 
fruit and leaves for this project were collected in the province of Manabí, Ecuador. 
The drink was elaborated through the incorporation of the vegetable extracts in 
different percentages (4, 6 and 8%) to the pitahaya juice. These percentages were 
reached after mixing the vegetable extracts at a 1:1 volume-volume ratio. The authors 
determined the total phenolic content of drinks prepared with different percentages 
of extracts, as shown in Table 7.

The results showed that the addition of C. citratus and O. tenuiflorum extracts can 
increase the concentration of phenolic content of drinks based on H. undatus, thereby 
enhancing its antioxidant properties. The authors believe that elaborating foods with 
improved functional properties is possible using the studied fruits to improve the 
health and quality of life of consumers [44].

3. Tuna or prickly pear

O. ficus-indica (L.) Mill. is a species of the Cactaceae family, genus Opuntia, and is 
commonly known as prickly pear, cactus pear, Barbary fig, Indian fig, nopal, or tuna 
[45]. The complete taxonomic lineage is shown in Table 8. Prickly pear is distributed 
throughout the American continent, from southern Canada to Patagonia. There are 
no exact records of its origin, but it is believed to be native to Mexico [35, 46]. Its 
domestication is centered in arid and semi-arid climates of the regions of Mexico 

BHC BH 4% BH 6% BH 8%

Phenolic content (mg 
GAE/100 mL)

33.90 ± 1.27 100.92 ± 2.10 117.59 ± 0.84 112.86 ± 0.11

Taken from Castro Carranza et al. [44].

Table 7. 
Phenolic content of the drink based on Hylocereus undatus and vegetable extracts.

Ingredient Amount

Water 3 L

Pitahaya pulp 1 L

Malted kiwicha flour 100 g

Sugar 200 g

Citric acid 4.50 g

Carboxymethylcellulose 3.70 g

Taken from Enriquez Paredes and Ore Areche [25].

Table 6. 
Composition of a drink based on Amaranthus caudatus L. and pulp of Hylocereus triangularis.



257

Secondary Metabolites of Edible Cacti (Cactaceae) from the South American Andes
DOI: http://dx.doi.org/10.5772/intechopen.102419

because it has special adaptation mechanisms and a high biomass production capacity. 
This allows it to grow in harsh conditions, such as high temperatures and nutritionally 
poor soils. However, prickly pear is also cultivated in tropical and subtropical America 
and Mediterranean countries [46, 47].

Currently, Mexico is the largest producer of prickly pears in the world, with a pro-
duction of 356 thousand tons/year [48]. The largest production areas are Zacatecas, 
Puebla, and Hidalgo, where the harvest takes place from July to September [49]. 
Another country that stands out for the production of prickly pears is Peru, where 
up to 100,000 tons of prickly pears are cultivated, with the larger areas of Ayacucho 
(20%), Huancavelica (15%), Arequipa (15%), Lima (14%), and Apurímac (8%) 
dedicated to its cultivation [50]. Moving to the Andean region, the next largest pro-
ducer is Chile, with approximately 800 ha dedicated to the production of red, green, 
and orange prickly pears. These production areas are concentrated in Metropolitana, 
Valparaíso, and Coquimbo [51].

Like all cacti, prickly pear is a bushy, succulent, branched plant composed of joints 
or fleshy segments that reach an average height of 3–6 m and have a stem or trunk 
60–150 cm wide [52]. The O. ficus-indica species is a shrub/arborescent plant that can 
reach up to 5 meters in height. The root system is fleshy and branched; it develops 
horizontally and laterally, and can reach 10–15 m from the base of the plant [53]. Its 
stem is well defined, dark brown, green or gray in color and cylindrical in shape, and 
is 45 cm long and 20 cm in diameter. Its cladodes are generally elliptical or rhomboid 
30–40 cm long and 20–25 cm wide [54].

The fruit is spherical, cylindrical, or elliptical in shape; it can measure 6–10 cm in 
length and 4–7 cm in diameter. Characterized by being juicy and sweet, its color varies 
between yellow and red, while the pulp has the color of the peel. The size of the fruit is 
determined by the number of fertilized and aborted seeds. Its shape is ovoid and fleshy, 
and the fruit has a leathery pericarp on which tufts of glochids are found [47, 54]. The 
weight of the fruit varies between 100 and 200 grams, of which 30–40% represents 
the weight of the peel. During the initial stages of development, the peel is green and 
can change to greenish-white, yellow, orange, red (Figure 2), purple, purplish-yellow, 
or even violet or dark brown, depending on the growing variety [55]. At present, two 

Scientific name O. ficus-indica

Kingdom Plantae

Division Magnoliophyta

Class Magnoliopsida

Order Caryophyllales

Family Cactaceae

Subfamily Opuntioideae

Tribe Opuntieae

Genus Opuntia

Subgenus Opuntia

Species O. ficus-indica (L.) Mill., 1768

Taken from Guerrero-Beltrán and Ochoa-Velasco [46].

Table 8. 
Opuntia ficus-indica taxonomy.
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parts of the plant are used as food, the fruits (tuna) and the cladodes (nopal). Prickly 
pears can be eaten fresh, after drying in the sun, or in jams. In addition, nopal is 
consumed mainly in Mexican regions as an ingredient present in salads [56, 57].

This plant is characterized by its richness in polyphenols, vitamins, polyunsatu-
rated fatty acids, and amino acids. The identified compounds and their derivatives 
have been shown to possess relevant biological activities, including anti-inflam-
matory, antioxidant, hypoglycemic, antimicrobial, and neuroprotective activities, 
among others [35]. Opuntia flowers come in various colors, but the color progression 
during bloom ranges from white to yellow and can turn to red, orange, pink, and 
peach. The flowers are ancillary, also considered by-products because they are gener-
ally discarded after the fruit is separated. There is evidence that the floral compounds 
of Opuntia are phenolic pigments and betalain [58].

Conversely, plants of the genus Opuntia are used for carminic acid production. 
This acid is extracted after grinding and desiccating the females of a parasitic worm 
called “cochineal,” which grows on the surface of the succulent branches of these 
plants [59]. Carmine red dye is used in the food industry, according to European law, 
as (E-120). Peru produces 90% of the world’s cochineal, whereas the Arequipa region 
accounts for 70% of the national production. Peru produces 1986 tons of dry cochi-
neal per year [56, 59].

3.1 Overall chemical composition

At present, prickly pears can be found in different colors and shapes, and with or 
without thorns, but there are no obvious differences between traditional and modern 
cultivars [52]. Their difference lies in the amount of betalains and betaxanthins 
found, depending on the prickly pear variety [46]. According to Assunção Alves et al. 
[47], in case of minimal differences between a red, orange, or green prickly pear, 
these may be due to the cultivation conditions, the state of maturity during harvest, 
or the analytical methodology used.

According to the information collected by Corzo-Rios et al. [35], prickly pear 
contains approximately 85% water, 15% sugar, 0.3% ash, and less than 1% of protein. 
This is similar to that reported by Medina et al. [56] and Gonçalves Albuquerque et al. 
[53] in red and green prickly pears from Spain and Mexico, respectively. The moisture 
content varies between 82% and 92%, and the protein and fat content does not exceed 
2% and 1% of the total weight, respectively (Table 9). Prickly pears do not have a dis-
tinctive aroma, but the pulp is very sweet and the sugar components are mainly glucose 

Figure 2. 
Major parts of tuna or prickly pears with red peel fruits. (A) Fruit, (B) mesocarp, (C) peel, and (D) tuna seeds 
(wet).
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and fructose, whose concentration varies from 10 to 17°Brix [52]. In addition, the 
prickly pear pulp is characterized by a water activity between 97.2% and 99.3%, a pH of 
5.2–5.5, and a titratable acidity (% citric acid) that ranges from 0.001 to 0.003 [60].

It is important to highlight the potential of the seeds and peel of the prickly pear. 
The seeds are distributed within the pulp and constitute between 30% and 40% of 
the fruit’s wet weight. However, neither the seeds nor the peel is used despite being 
important sources of fatty acids, vitamins, polyphenols, flavonoids, tannins, and 
fiber [35]. The seeds (6.77 g/100 g dry weight) have been reported to have up to seven 
times the oil content of the pulp [53]. Besides, Medina [56] informed that the fiber 
content in the prickly pear’s peel varies between 4.86 and 5.65 g/100 g dry weight. 
These results were obtained from orange and green prickly pears in different regions 
of Mexico. Likewise, these authors report that the peel and the seeds contain cel-
lulose (71.4% and 83.23% of the total fiber). This is in line with the study conducted 
by Hernández-Carranza et al. [48] using red prickly pear peel, in which cellulose 
(34.64% dry weight) predominated in the total dietary fiber.

Different studies compiled by Cota-Sánchez [52] have shown that Opuntia fruit is 
a good source of minerals, specifically calcium, magnesium, potassium, and phos-
phorus. According to Medina [56], both calcium and potassium are the most pre-
dominant, with 26.30 and 158.30 mg/100 mg, respectively. This agrees with the study 
by Guerrero-Beltrán & Ochoa-Velasco [46], which assessed the chemical composition 
of prickly pears of different colors (Table 10). Potassium was the most abundant 
mineral, with the exception of the purple prickly pear (19.6 mg/100 g) in each variety, 
and phosphorus was much higher in green prickly pear when compared with the 
others (32.5 mg/100 mg).

Previous studies have shown that Opuntia fruits contain ascorbic acid, which 
ranges from 20 to 40 mg/100 g of fresh weight. In a study conducted by Guerrero-
Beltrán and Ochoa-Velazco [46], the vitamin C content was also assessed, with results 
ranging from 20 to 24.1 mg/100 g. In a study by Medina [56], green and orange prickly 
pears from Tenerife (Spain) only yielded 17.1 and 17.2 mg/100 mg, respectively. 
Vitamins are not only found in the pulp but also fat-soluble vitamins (alpha, beta, and 
delta tocopherols, beta carotene, and vitamin K1) found in prickly pear seed oils [53].

In a study conducted by Jorge and Troncoso [62] on red prickly pears collected in 
Huancavelica (Peru), the vitamin C content was 36.1 mg/100 g. Similarly, Monroy-
Gutiérrez et al. [63] evaluated different varieties of prickly pears and observed that 

Component Orange prickly pear 
(Argentina)

Green prickly pear 
(Mexico)

Red prickly pear 
(Argentina)

Moisture (%) 81.29 91.10 85.43

Ash (%) 0.53 5.40 2.34

Total soluble solids 
(%)

14.78 — 10.16

Proteins (%) 1.56 1.70 1.41

Lipids (%) 0.35 0.10 0.22

Fibers (%) — 1.50 —

Taken from Valero-Galván et al. [60] and Romero et al. [61].

Table 9. 
Physicochemical and nutritional composition of Opuntia ficus-indica (L.) Mill. pulp.
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the vitamin C content in the cultivars “Rojo Pelón” and “Liso Forrajero” (both red 
prickly pears) ranged from 42.54 to 16.00 mg/100 mg, where the highest value was 
presented 21 days after evaluation in the “Rojo Pelón” variety (Table 11).

3.2 Bioactive phytochemicals

Different studies indicate that all parts of O. ficus-indica are rich in polyphenols, 
flavonoids, and phenolic acids. This includes pulp, seeds, peel, flowers, and cladodes, 
with the pulp having the highest amount of bioactive compounds [35, 53, 58, 60, 64]. 
According to a report by Gonçalves Albuquerque et al. [53], the method most widely 
used to assess phenolic and polyphenolic antioxidants is Folin-Ciocalteu, although 
results may present considerable differences between studies, ranging from 5.54 
to 1000 mg GAE/100 g of pulp. About phenolic compounds, quercetin is the most 
abundant component in prickly pear pulp, followed by isorhametin-3-rutinoside [55].

When analyzing green and orange prickly pears from the island of Tenerife 
(Spain), Medina [56] found that the phenol content in pulp was 45.0 and 
45.4 mg/100 mg, respectively. This study also determined that one portion of O. 
ficus-indica, regardless of color, represents only 68% of the recommended total 
phenol intake per day. Similarly, Monroy-Gutiérrez et al. [63] evaluated the content 
of phenols in the pulp of red prickly pears from the Zacatecas region (Mexico). The 
authors observed that the phenol content in both varieties decreased during the 
evaluation period (Table 12), with the higher phenol content found in the variety 
“Rojo Pelón” from the beginning of the study (30.32 mg GAE/100 g). According to 
these authors, this is a consequence of the environmental conditions (temperature, 
relative humidity, and light), as well as the crop nutrients and the pre and post-
harvest handling.

Variety Evaluation days

0 3 6 9 12 15 18 21 24

Red prickly pear “Rojo Pelón” 37.5 28.1 33.9 25.7 25.8 29.3 29.8 42.5 38.9

Red prickly pear “Liso Forrajero” 19.7 16.0 19.4 21.6 16.9 24.7 — — —

Taken from Monroy-Gutiérrez et al. [63].

Table 11. 
Vitamin C content in red prickly pear cultivars (mg/100 mg).

Minerals Red prickly pear Orange prickly pear Purple prickly pear

Calcium 12.80 35.8 13.2

Iron 0.40 0.20 11.5

Magnesium 16.1 11.8 11.5

Sodium 0.6 0.90 0.50

Phosphorus 32.8 8.5 4.9

Potassium 217.0 117.7 19.6

Taken from Guerrero-Beltrán and Ochoa-Velazco [46].

Table 10. 
Chemical and nutritional composition of prickly pears of different colors (mg/100 g).
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In the study conducted by Valero-Galván et al. [60], the content of total phenols in 
pulp was higher than in the peel and seeds while the content of flavonoids was higher 
in the peel than in the pulp or seeds (Table 13). Likewise, the antioxidant capacity 
determined by DPPH was similar among the three types of tissues. However, the 
antioxidant activity determined by the ABTS assay was higher in the seeds and peel 
than in the pulp. In contrast, the results obtained by the FRAP assay showed higher 
antioxidant activity in the peel than in the pulp and the seeds.

The antioxidant capacity of prickly pear may be due to one or more components, 
but a synergistic effect is also possible. A study by Gonçalves Albuquerque et al. [53] 
indicates that prickly pear extracts have higher antioxidant activity than other fruits 
such as pears, apples, grapes, oranges, grapefruits, and tomatoes. Furthermore, com-
pared with other Opuntia species, prickly pear has the lowest content of polyphenols 
and flavonoids but the highest antioxidant activity. Flavonoids are especially efficient 
antioxidants owing to their ability to inhibit pro-oxidative processes on DNA, pro-
teins, and lipids, and to prevent the generation of stable radicals [55, 61, 63].

Monroy-Gutiérrez et al. [63] also analyzed the antioxidant capacity over time 
in red prickly pears, with results similar to previous studies. As days go by, the 
antioxidant activity decreased in all varieties (Table 14). The authors pointed out 
that Opuntia fruits have the moderate antioxidant capacity, which could be directly 
associated with the fruit pigment content and the growing conditions. This could be 
observed in the study conducted by Ordoñez et al. [64] on prickly pears collected in 
Huánuco (Peru), which showed different antioxidant capacities between the yellow 

Variety Evaluation days

0 3 6 9 12 15 18 21 24

Red prickly pear “Rojo Pelón” 30.3 15.7 16.0 12.5 14.2 13.7 13.6 18.2 17.8

Red prickly pear “Liso Forrajero” 6.3 5.8 5.6 4.6 4.7 5.1 — — —

Taken from Monroy-Gutiérrez et al. [63].

Table 12. 
Total phenol content in red prickly pear cultivars (mg GAE/100 g).

Variety Pulp Peel Seeds

Red 
prickly 

pear

Green 
prickly 

pear

Red 
prickly 

pear

Green 
prickly 

pear

Red 
prickly 

pear

Green 
prickly 

pear

Total phenolic content (mg 
GAE/g)

3.62 5.00 4.32 4.34 4.30 2.93

Total flavonoids (mg 
catechin equivalents 
[CE]/g)

3.14 3.58 3.18 3.40 3.10 3.17

DPPH (mmol TE/g) 7.74 6.74 7.90 6.87 8.08 7.08

FRAP (mmol TE/g) 1.38 2.03 5.18 7.37 0.80 2.08

ABTS• + (mmol TE/g) 11.87 16.33 16.42 17.65 14.19 17.18

Adapted from Valero-Galván et al. [60].

Table 13. 
Phytochemical profile and antioxidant capacity of commercial varieties of prickly pears (red and green).
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and purple peel varieties. The peel of purple prickly pear (18.50 mg/mL) presented 
greater antioxidant activity against the radical DPPH compared with the remain-
ing tissues of the yellow prickly pear (16.73–27.99 mg/mL). In contrast, Jorge and 
Troncoso [62] found that the antioxidant capacity was provided by vitamin C, its 
contribution is greater than 50% of the total antioxidant capacity of the prickly pear.

Prickly pears have pulps and peels of different colors. These can be pale green, 
yellow, orange, magenta, red, and red-purple, indicating that these varieties have 
different pigments [46]. Betalains are water-soluble pigments that give the red-purple 
(betacyanins) and yellow (betaxanthins) colors to the fruits of several cactus spices, 
such as Opuntia sp., H. polyrhizus, or Myrtillocactus geometrizans [65]. The concen-
tration of these pigments is responsible for the color variation in prickly pears. In 
contrast, the pale green pigments are the result of chlorophylls. Betaxanthins include 
indicaxanthin, miraxanthin, portulaxanthin, and vulgaxanthin. In addition, plant 
betacyanins include betanin, isobetanin, neobetanin, and probetanin [46].

A study conducted by Guerrero-Beltrán and Ochoa-Velasco [46] compared three 
prickly pears of different colors. While their nutritional composition differed slightly 
from each other, the concentration of β-carotene in green prickly pear (0.5 mg/100 g) 
and orange prickly pear (2.3 mg/100 g) was highlighted, as well as the content of 
betanin in purple prickly pear (100 mg/100 g). Similarly, a study by Fernández-López 
et al. [55] assessed the content of betacyanins (15.2 mg betanin/100 g fresh fruit) and 
betaxanthins (25.4 mg indicaxanthin/100 g of fresh fruit) in red peeled prickly pears 
collected in Murcia (Spain). Valera-Galván [60] reported the betacyanin and betax-
anthin content in green and red prickly pears. The pigment content was found to be 
higher in the fruit pulp, in contrast to the peel, with the concentration being greater in 
red prickly pears. However, there were no statistical differences between the antioxi-
dant capacities of both varieties.

Monroy-Gutiérrez et al. [63] compared the content of betanins and indicaxanthins in 
two varieties of red prickly pear. The concentration of betanin (red-violet) was higher 
in the “Rojo Pelon” variety and increased during the evaluation days. The same was 
observed in said variety for indicaxanthin, starting at 9.52 mg/100 mg, and increasing 
to 19.91 mg/100 mg after 24 days of evaluation. Conversely, the concentration of both 
pigments in the “Liso Forrajero” variety decreased until day 15 (Table 15). According to 
Ortega-Hernández et al. [66], it is possible to increase the content of betalains, ascorbic 
acid, and phenolic compounds in prickly pears using UVB light and inflicting wounds 
in the plant tissue. This could explain the higher amount of betanin found in the “Rojo 
Pelón” variety. Caused by the red or purple coloration of these varieties, it was not pos-
sible to assess the chlorophyll and total carotenes content.

According to Cota-Sánchez [52], prickly pear seeds are rich in minerals and 
 sulfur-containing amino acids. Additionally, the composition of fatty acids in  
O. ficus-indica seeds can improve food properties and be used as seasonings in 

Variety Evaluation days

0 3 6 9 12 15 18 21 24

Red prickly pear “Rojo Pelón” 0.51 0.52 0.50 0.44 0.44 0.44 0.46 0.51 0.53

Red prickly pear “Liso Forrajero” 0.42 0.42 0.42 0.39 0.39 0.39 — — —

Taken from Monroy-Gutiérrez et al. [63].

Table 14. 
Antioxidant capacity in red prickly pear cultivars expressed in vitamin C equivalents (mg/g).
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culinary art. Corzo-Rios et al. [35] pointed out that the lipids present in Opuntia 
cladodes are palmitic, oleic, and linoleic. Romero et al. [61] was able to identify and 
quantify the fatty acid profile in orange and red prickly pears, where linoleic acid stood 
out (28.77 and 28.21 mg/100 g in orange and red prickly pears, respectively) (Table 16).

3.3 Commercial fruit application

The O. ficus-indica fruit is valued for its sweet and slightly sour taste. Different 
food products such as jams, jellies, nectars, dehydrated fruits, syrups, liqueurs, wines, 
and vinegars can be made from prickly pear [53]; however, this plant also has alterna-
tive uses in the Andean region. In Bolivia, prickly pear is used to treat heat stroke, 
sunburn, yellow fever, and gastritis. In Colombia, anti-inflammatory infusions are 
prepared from the leaves. Used in poultices, O. ficus-indica can relieve skin irritations 
or remove swellings. In Peru, fresh fruit is used to treat hair loss and diabetes [67].

Several biological activities have been reported for Opuntia; these encompass potential 
applications in health and nutrition. Prickly pear extracts are used for the treatment of 
diabetes, cholesterol, and immune diseases. Additionally, the extracted polysaccharides 
can protect the liver from organophosphate pesticide damage. The antioxidant capacity of 
betalains present in prickly pear can prevent ovarian and cervical cancer [35, 52]. These 
nutritional benefits increase the interest in making products from prickly pear.

Pigment/variety Evaluation days

0 3 6 9 12 15 18 21 24

Betanin

Red prickly pear “Rojo Pelón” 12.6 14.6 17.9 15.6 16.7 17.4 16.7 19.1 22.2

Red prickly pear “Liso Forrajero” 7.9 5.5 7.7 11.8 6.9 7.4 — — —

Indicaxanthin

Red prickly pear “Rojo Pelón” 9.5 13.6 13.3 14.1 18.1 21.7 11.6 11.2 19.9

Red prickly pear “Liso Forrajero” 8.8 9.2 8.5 9.8 4.9 7.5 — — —

Taken from Monroy-Gutiérrez et al. [63].

Table 15. 
Betanin and indicaxanthin content in red prickly pear cultivars (mg/100g).

Fatty acid profile Orange prickly pear Red prickly pear

C14:0 — 1.09

C16:0 25.08 22.74

C18:0 7.14 5.22

C18:1 n-9 22.61 18.81

C18:2 n-6 28.77 28.21

C20:0 — 1.22

C18:3 n-3 18.20 17.12

Taken from Romero et al. [61].

Table 16. 
Fatty acid profile in prickly pear seeds with orange and red peel.
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The production of drinks or juices is the first step in the manufacture of other pro-
cessed products, although heat treatment is usually a determining factor. The alteration 
of the sensory or nutritional characteristics usually occurs in products based on prickly 
pear or other fruits [46]. Nonetheless, Lagua Yanchaguano et al. [68] obtained a drink 
based on prickly pear and passion fruit (Passiflora edulis) collected in Ecuador with a 
high degree of acceptability. This was achieved by evaluating different concentrations of 
both fruits. According to this study, the most suitable concentrations for the drink were 
15% O. ficus-indica pulp, 85% passion fruit pulp and 12% sucrose. The physicochemical 
properties (pH, °Brix, and density) of this drink remained stable for 72 h.

Prickly pear has been identified as a source of pectin and has great potential in the 
food industry as a gelling, thickening, and stabilizing agent [69]. Montilla et al. [70] 
quantified the pectins in the pulp of 3 different species of Opuntia from the semi-arid 
regions of Venezuela. The results were expressed as a percentage of an hydrogalact-
uronic acid (% AAG) and O. ficus-indica stood out with a value of 0.1531% ± 0.0087. 
Similarly, Chaparro et al. [69] evaluated the application of pectin extracted from 
prickly pear in a pineapple candy. The extraction yield was 9.14%, with a degree 
of esterification of 62%, indicating high methoxyl content and slow gelation. This 
suggests that it is suitable for the food industry and the production of preserves, 
such as jams and sweets. Nonetheless, the yield was low compared with commercial 
pectin sources such as orange or apple peel. The sensory quality characteristics of the 
pineapple candy with prickly pear pectin achieved an acceptable level of satisfaction.

Several studies have focused on obtaining pigments from the pulp and peel of prickly 
pear. This fruit has an attractive color that varies from pale green, green, yellow, orange, 
and red to violet tones; these are due to betacyanins (red-violet) and betaxanthins 
(yellow-orange) [46]. Pigments can be obtained by different methods; Coba Carrera 
et al. [71] got a higher pigment yield lyophilizing at 60°C. The colorant obtained met all 
the requirements (pH 6.1, 13.71°Brix, 1.35 of nD and 7.73% total solids) according to the 
specified standard. In a study by Otárola et al. [72], the microencapsulation of betalains 
from purple prickly pears (Santiago del Estero, Argentina) was evaluated by spray 
drying. Encapsulation was supplemented with maltodextrin and cladode mucilage to 
improve stability. Pigment retention was greater than 70% at 18°C, and relative humid-
ity was below 57%; these being the most stable conditions. The use of cladode mucilage 
improved encapsulation efficiency, reducing moisture content and increasing dietary 
fiber content. Furthermore, the authors concluded that betalains from purple prickly 
pears have the potential to be an encapsulating agent for atomization in the food industry.

In a study conducted by Romero et al. [61], the effect of lyophilized pulps from 
Eugenia uniflora L. and O. ficus-indica fruits on the oxidative stability of meat 
patties was evaluated. In addition, the effect of lyophilized pulps on the cooking 
performance, color, texture parameters, and sensory acceptance was assessed. The 
authors determined that the lyophilized pulps limit the oxidation of lipids stored in 
a refrigerator to an acceptable level for up to 15 days, with O. ficus-indica (red peel 
variety) having the greatest antioxidant activity. Moreover, this variety had the high-
est preference among consumers for sensory parameters. The authors highlighted the 
effectiveness of the studied fruits to reduce lipid oxidation in meat pies.

4. Sanky

Among endemic Andean region, edible fruits are the sanky or sancayo (C. brevi-
stylus) (Figure 3) a member of the succulent plant Cactaceae family [54, 73, 74]. 
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C. brevistylus subsp. brevistylus (K. Schum. ex Vaupel) Britton & Rose is a native 
erect, branched cactus, up to 5 m tall. Branches with 7–8 ridges, spines up to 24 cm. 
Flowers yellow, fruit pear like, 9 cm long, with plenty of small spines [75]. Fruit is 
a large berry, between 7 and 10 cm long, round, olive green, with numerous brown 
seeds inside [73]. Grows on rocky slopes, shrubland, from 2000 to 3500 m above sea 
level and is endemic southern Peru and northern Chile [73, 75].

C. brevistylus subsp. puquiensis (Rauh & Backeberg) Ostolaza is an endemic 
arboreal cactus of Peru, of basal branching, more than 5 m tall, branches 20 cm in 
diameter, 7–8 tuberculate ribs near the apex, spines up to 20 cm, yellow flowers, 
7 cm long and edible fruit. It differs from the previous subspecies by being taller and 
having smaller flowers [54]. This species is distributed in the provinces of Arequipa 
(Huanca, Majes, Caravelí, and Caylloma), Ayacucho (Lucanas) and grows between 
2500 and 3000 m above the sea level [73].

Currently, consumption and use in the food products manufactured such as drinks 
based on sanky pulps have increased [76]. In addition, sanky pulp processing residues 
can be used as an additive (stabilizer) in the food and pharmaceutical industries [77]. 
On the other hand, the peels, and seeds of sanky have provided interesting antioxi-
dant and nutritional properties [78]. Sanky peel powder-derived functional ingredi-
ents showed good potential as natural llama burger-making additives as well as after 
their incorporation improved the sensory and chromatic properties [79].

4.1 General chemical composition

Sanky fruits from C. brevistylus subsp. puquiensis (Rauh & Backeberg) Ostolaza 
have a weight between 341 to 413 g and a diameter in the range of 7.7–8.4 cm (Figure 4A 
and B). The pulp has a pH and soluble solids (°Brix) of 2.54 and 3.99, respectively. The 
pulp is white flesh with small black seeds and sui generis flavor (Figure 4C). In addition, 
it has a gelatinous appearance and an acid taste (unpublished data). Further studies 
on sanky pulp are still necessary, especially in the proximal chemical composition and 
physicochemical properties of the different parts of the fruit (pulp, seed, and peel). 
Table 17 shows the nutritional composition of the peel and seed of sanky.

The carbohydrate (~46%) and fiber (~16%) content are the main components 
of the sanky peels, while seeds are an important source of dietary fiber (~29%) and 

Figure 3. 
Major parts of sanky (Corryocactus brevistylus subsp. puquiensis (Rauh & Backeberg) Ostolaza) fruits. (A) Fruit, 
(B) mesocarp, (C) peel, (D) mucilaginous coating around sanky seeds (wet) and (E) shade-dried sanky seeds.
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Figure 4. 
(A) Sanky fruits of different weights, (B) diameter range of 7.7–8.4 cm, (C) cross-section in sanky fruits showing 
seeds and pulp, (D) sanky pulp used in jam and nectar, (E) fiber, mucilage and seeds, and (F) sanky peel used as 
a stabilizer.
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lipids (~26%). The dietary fiber content of the peels compared to other cacti such as 
prickly pear (40.8%) and dragon fruit (23.75%) is lower [82, 83]. While the contribu-
tion of the seeds is superior to the prickly pear seeds (12.47%) [84]. Dietary fibers are 
defined as “macromolecules present in the diet that resist digestion by endogenous 
enzymes in the small intestine of humans” [85]. The main effects related to dietary 
fiber consumption are to improve intestinal function, increase microbial biomass, 
blood cholesterol decrease, lower risk of cardiovascular disease, type-2 diabetes, and 
colorectal cancer [86, 87]. On the other hand, the fiber-rich by-products have been 
used to fortify various foods (as corn and wheat tortillas, bakery products, snack 
foods, noodles, and cooked meat products) to increase their dietary fiber content and 
to drive the nutraceutical industry [88–92].

The protein content of peel and seed of sanky is ~9% and ~15% (dry basis), 
respectively. The amino acid composition of sanky fruit proteins has not been fully 
characterized. The protein level of sanky peels compared to other cacti was slightly 
superior to that of prickly pear (6.12%) and dragon fruit (6.0%), while the seeds of 
these species were 4.78% and 26.3%, respectively [84, 93, 94].

The ash content in both peels and seeds was 14.75% and 2.22%, respectively. In 
prickly pear, seeds were found around 1.27%, while the dragon fruit seeds had a 
content of 6.1% (H. polyrhizus) and 3.1% (H. undatus) [84, 94]. Sanky fruit is a good 
source of calcium. The peels contain more calcium than the seeds, while the latter are 
high in iron and zinc (Table 1). The calcium content in cactus fruits was reported to be 
750 ppm in jiotilla (Escontria chiotilla), 50 ppm in dragon fruit (H. undatus), 440 ppm 
in berry cactus (M. geometrizans), and 560 ppm in prickly pear (Opuntia sp.). While 
the iron content was 32.6 ppm, 7.50 ppm, 380 ppm and 12.34 ppm, respectively [95].

Corryocactus brevistylus subsp. puquiensis (Rauh & Backeberg) Ostolaza

Origin Ayacucho (Peru)

Crop locus Saisa

Altitude (m.a.s.l) 3075

Pulp Peel Seed

Moisture (g/100 g) 95.3 10.74 4.36

Protein (g/100 g) 0.2 9.19 15.56

Lipid (g/100 g) 0.1 2.68 26.10

Carbohydrate (g/100 g) 3.3 46.25 22.53

Fiber (g/100 g) 0.5 16.39 29.53

Ash (g/100 g) 0.5 14.75 2.22

Calcium (ppm) 329.56 207.81

Iron (ppm) 5.95 39.36

Zinc (ppm) 1.06 9.40

Ascorbic acid (mg/100 g) 57.1

Taken from Muñoz et al. [78]; Nolazco and Guevara [80] and Areche et al. [81].

Table 17. 
Levels of nutrients and minerals in sanky fruit.
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Overall, the lipid content of sanky peel is minimal (~2%). The oil content of the 
peels is comparable to that of orange peel (1.45%), prickly pear peel (1.55%), mango 
peel (2.12%), watermelon peel (2.61%), banana peel (4.51%) and dragon fruit peel 
(6.20%) [83, 93], while the sanky seeds are a source of lipids (~26%). Compared 
with prickly pear seeds (2.24–5.69%) it is superior, whereas with dragon fruit seeds 
(H. undatus) (27.5%) they are slightly similar [94, 96]. The sanky seed oil was highly 
unsaturated of which 23.41% are monounsaturated fatty acids (MUFA) and 57% are 
polyunsaturated fatty acids (PUFA) (Table 18). The linoleic acid (56.44%) was the 
major unsaturated fatty acid found in the sanky seed oil and similar to dragon fruit 
seed oil (H. undatus) [97], followed by oleic (23.04%) and palmitic (14.09%) acids. 
These values are comparable to prickly pear seed and dragon fruit seed oils. Palmitic, 
stearic and arachidic acids accounted for 14.09%, 2.52 and 1.12% of sanky seed oil, 
respectively. Linolenic acid (C18:3 ω-3) (0.56%) in sanky seed oil was similar to 
Cactaceae fruits oils [84, 97].

The proximal chemical composition of C. brevistylus subsp. brevistylus (K. 
Schum. ex Vaupel) Britton & Rose is currently limited. The ascorbic acid content in 
this subspecies (38.45 mg/100 g) was higher than that reported for another cactus 
fruits of 17.3 mg/100 g in jiotilla, 25.8 mg/100 g in dragon fruit, 32.5 mg/100 g in 
berry cactus, 14 mg/100 g in prickly pear and 17 mg/100 g in pitaya (Stenocereus 
sp.). While the “chilito” species (Mammillaria uncinata) has an ascorbic acid con-
tent of 1390 mg/100 g, much higher than other Cactaceae fruits, this content was 
very comparable with the content of ascorbic acid in the camu-camu fruit around 
1451 mg/100 g [98].

4.2 Bioactive phytochemicals

There are few studies on bioactive compound profiles in sanky fruits. 
Phytochemical screening of the pulp and peel reported the presence of reducing 
sugars, lactones, triterpenes, anthocyanidins, mucilages and catechins [80].

Sanky Tuna or 
prickly pear

Dragon fruit

Hylocereus undatus Hylocereus polyrhizus

Palmitic acid (C16:0) 14.09 12.23 14.95 18.39

Palmitoleic acid (16:1 ω-7) 0.37 0.79 1.04

Stearic acid (C18:0) 2.52 0.15 6.93 8.05

Oleic acid (18:1 ω-9) 23.04 25.52 18.67 23.61

Linoleic acid (C18:2 ω-6) 56.44 61.01 55.43 45.21

α-Linolenic acid  
(C18:3 ω-3)

0.56 0.40–0.69 0.21 0.15

Arachidic acid (C20:0) 1.12 0.95 1.04

SFA 17.72 12.38 22.83 27.48

MUFA 23.41 25.52 19.46 24.65

PUFA 57.00 61.51 55.64 45.36

Taken from Muñoz et al. [78]; Özcan and Al Juhaimi [84] and Liaotrakoon et al. [97].

Table 18. 
Fatty acids composition of sanky seed oils and other Cactaceae fruits oils.
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4.2.1 Bioactive compound profile

Bioactive compounds have recently been identified in lyophilized sanky pulp 
powder (C. brevistylus subsp. brevistylus (K. Schum. ex Vaupel) Britton & Rose) [81]. 
Those compounds were extracted with ethanol (three times) followed by sonication. 
The bioactive compounds identified were organic acids, hydroxycinnamic acids, 
isoamericanol derivatives, flavonoids, and sterols, and the main classes found were 
organic acids (12), hydroxycinnamic acids (9), and flavonoids (6). The main phyto-
chemicals were rutin and coumaroyl isocitric acid.

The organic acids identified were malic acid, isocitric acid, hydroxyglutaric acid, 
hydroxyglutaric acid isomer, homo isocitric acid, hydroxybenzoic acid, dehydro-
shikimic acid, ascorbic acid, benzoyl aspartic acid derivative, and azelaic acid [81]. 
These organic acids are widely distributed in nature and have therapeutic action. 
They are also used in the food industry as acidulants, preservatives, inactivating or 
inhibiting the growth of microorganisms and establishing a protective barrier at acid 
pH [99]. The hydroxycinnamic acids identified were caffeoyl-O-hexoside, caffeoyl 
isocitric acid (RT: 10.14 min; m/z: 353.0513), caffeoyl isocitric acid (RT: 10.42 min; 
m/z: 353.0513), coumaroyl isocitric acid (RT: 10.68 min; m/z: 337.0564), coumaroyl 
isocitric acid (RT: 11.16 min; m/z: 337.0563), feruloyl isocitric acid, methylcoumaroyl 
isocitric acid and methylferuloyl isocitric acid [81]. These compounds are of interest 
because of their biological properties that include antioxidant activity, anticancer 
activity, improves blood pressure and metabolic syndrome [100, 101]. The flavonoids 
identified were rutin, isorhamnetin-O-rutinose, taxifolin, quercetin, isorhamnetin 
and rhamnetin (Table 19). The reports highlighted that bioactive molecules of sanky 
exerts strong antioxidant-antiradical activity, gastroprotective effects and other bio-
activities. Flavonoids are the most studied bioactive compounds [115] and are widely 
distributed in different parts of Cactaceae fruits (pulp, peel, seeds, and cladodes)  
[95, 116]. In addition, they provide a high antioxidant potential [117]. The quantifica-
tion of the detailed phytochemical compounds of the different parts of the sanky fruit 
(pulp, seed, and peel) is still necessary.

4.2.2 Polyphenols and antioxidant activity

The total phenolic contents (TPC) of peels from sanky (C. brevistylus subsp. 
puquiensis (Rauh & Backeberg) Ostolaza) ranged from 14.2 to 43.9 mg gallic acid 
equivalent (GAE)/g dry weight [118], while the TPC of lyophilized sanky pulp 
powder from sanky (C. brevistylus subsp. brevistylus (K. Schum. ex Vaupel) Britton 
& Rose) was 24.24 mg GAE/g dry weight, and total flavonoid content (TFC) was 
13.33 mg quercetin equivalents/g dry weight [81]. When compared to sanky pulp, 
white and red pitayas showed lower TPC (3.52–4.91 mg GAE/g) [119, 120]. While 
in different varieties of cactus pear fruit pulp the TPC varied between 1.68 and 
22.08 mg GAE/kg [119].

The phenolic compounds are known for their antioxidant capacity [117]. 
Antioxidant activity measured in lyophilized sanky pulp powder extract by 
DPPH, ABTS and FRAP assays presented the following values: IC50 = 47.45 μg/mL, 
IC50 = 225.12 μg/mL, and 155.34 μmol Trolox/g dry weight, respectively. Antioxidant 
activity is probably due to the presence of the following phytochemicals: organic acids 
(ascorbic acid), hydroxycinnamic acids, isoamericanol derivatives, and flavonoids 
(rutin, taxifolin, quercetin, isorhamnetin and rhamnetin), these compounds found in 
food matrices have shown high antioxidant activity [12].
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Bioactive compounds Structures Functional effects

Rutin
MW = 610.517 g/mol
MF=C27H30O16

Antidiabetic, antioxidant, 
cardiovascular, anticancer, 
anti-inflammatory, antiviral, 
cytoprotective, hypolipidemic, and 
antihypertensive effects

Coumaroyl isocitric acid
MW = 338.266 g/mol
MF=C15H14O9

Ascorbic acid
MW = 176.124 g/mol
MF=C6H8O6

Considered one of the most effective 
natural antioxidants, promising anti-
cancer agent

Taxifolin
MW = 304.251 g/mol
MF=C15H12O7

Inhibits the proliferation, migration, 
and invasion of breast cancer cells

Isorhamnetin-O-rutinose
MW = 624.544 g/mol
MF=C28H32O16

Insulin sensitizer, and hepatoprotective 
effect

Quercetin
MW = 302.235 g/mol
MF=C15H10O7

Antioxidant, anti-inflammatory, 
anticancer, cardioprotective, and 
neuroprotective effects
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4.3 Commercial applications of sanky fruits

Due to their technological characteristics, sanky fruits can be well used for 
industrial processes. Currently, within the cosmetic derivatives creams, shampoos, 
and soaps have been developed. For food applications, sanky jam (pulp and seed) 
(Figure 4D and E), sanky nectar (pulp) and sanky peel (Figure 4F) extract a sta-
bilizer in meat products during refrigerated storage have been developed [121]. The 
demand for sanky by consumers in the domestic market continues to grow, especially 
in the form of pulp and fresh fruit.

The production of jams from sanky fruits is being developed recently. Some stud-
ies are focused on evaluating the sensory and physicochemical properties as well as 
the influence of the addition of pectin and carboxymethyl cellulose. The conditions of 
acceptability of the sanky jam presented a concentration of soluble solids (67.92°Bx); 
acidity (2.50%, expressed as citric acid); pH 3.17; and viscosity of 8878.40 cP [122]. 
In another study, the nutritional and sensory properties of a sanky jam sweetened 
with fructooligosaccharides (FOS) were evaluated. The final product reached a pH 
of 3.7, soluble solids of 66°Brix, titratable acidity of 3.41%, the crude fiber of 0.3%, 
ascorbic acid of 44 mg/100 g, total polyphenols of 381 mg GAE/100 g, and an anti-
oxidant capacity of 65.92 mg Trolox/100 g [123]. Some unpublished data refers to the 
elaboration of sanky compote sweetened with panela and bee honey and others to the 
formulation of fruit mix compote (sanky, banana, and mango). Featherstone [124] 
mentions that jams are products of a combination of fruits (or fruit pulp, puree, juice, 
or concentrates) and sugar followed by heat treatment of them to produce a tasty 
product of sufficiently high sugar (>65%) content. Fruit jams are a source of energy 
and carbohydrate [125]. In addition to their nutritional composition, fruit jams are 
a source of bioactive components that have shown antioxidant activity. Fruit jams 
(such as blueberry, blackberry, blackcurrant, cranberry, and raspberry) have shown 

Bioactive compounds Structures Functional effects

Isorhamnetin
MW = 316.262 g/mol
MF=C16H12O7

Regulation of apoptosis and anti-
osteoporosis, anti-inflammatory, 
cerebrovascular protection, and 
antioxidant effects

Rhamnetin
MW = 316.262 g/mol
MF=C16H12O7

Suppresses the growth of human 
breast cancer cells

Taken from Ghorbani [102]; Patel and Patel [103]; Caparica et al. [104]; Sun, et al. [105]; Barba et al. [106]; Shenoy 
et al. [107]; Van Gorkom et al. [108]; Jia et al. [109]; Gevrenova et al. [110]; Li et al. [111]; Ay et al. [112]; Gong et al. 
[113]; and Lan et al. [114].

Table 19. 
Some bioactive compounds in lyophilized sanky pulp powder.
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a polyphenol content between 170.32 and 473.91 mg GAE/100 g, the total flavonoids 
ranged between 2.61 and 11.43 mg quercetin equivalents (QE)/100 g and the antioxi-
dant activity by ABTS assay as ranging from 6.10 to 36.56 μM Trolox/g [126].

Other sanky-based products are nectar and functional beverages. Neves et al. [127] 
define nectar as a category of packaged beverage that presents a juice content ranging 
from 25 to 99%. In addition, nectar can contain sweeteners, coloring, and preserva-
tives. As part of the use of sanky fruits, Figure 5 shows the block diagram of sanky 
nectar processing. The sanky fruit presents the following yields for the whole fruit. 
The pulp represents around ~57% (fresh weight), this fraction contains mucilage 
that could be used as a thickener in the preparation of various food products such as: 

Figure 5. 
Block diagram for obtaining sanky nectar (source: “Aprovechamiento industrial en los bosques naturales de 
sanky,” n.d.).
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baby food, compotes, pasta, etc. [77]. Mucilages can also be used as pharmaceutical 
excipients and wall materials for vegetable oils, essential oils, emulsions, etc. [128, 
129]. The peels represent around ~35% (fresh weight). The peels are an important 
source of dietary fiber, in addition, they contain antioxidant phenolic compounds 
[14, 130]. While the seeds represent ~7%. Fruit seeds have a high oil content, are 
rich in monounsaturated and polyunsaturated fatty acids. They also contain other 
phytochemicals among them phytosterols, phospholipids, glycolipids, tocopherols, 
tocotrienols, carotenoids and polyphenols [131].

Sanky fruits are generally harvested using a long-handled fruit picker, followed by 
collection in crates. After harvesting, the sanky fruits are selected and classified (the 
fruits are selected manually, removing those that show signs of deterioration and/or 
breakage). Washing is carried out with water by immersion to remove foreign sub-
stances and particles, while disinfecting is done with sodium hypochlorite solution at 
100 ppm. Peeling is carried out by cutting the fruits in half with stainless steel knifes, 
allowing the separation of pulp and peel. The sanky pulp is pasteurized at atmospheric 
pressure until boiling temperature for 1 second. Then, the pasteurized pulp is packed 
in 1 kg high-density polyethylene bags and then stored at a temperature of 5°C. Sanky 
pulp is used for the processing of mixed fruit drinks (noni, sanky and graviola) (http://
vidanatural.pe/), according to the product information, this beverage stimulates the 
immune system, has antioxidant activity and reduces the levels of osteoporosis due to 
its calcium content. Fruit juices, beverages and nectars have shown antioxidant activity 
due to their high-value nutrient and bioactive components [132, 133].

Sanky fruit peels have been used to improve the chromatic and sensory charac-
teristics of llama meat (Lama glama) during refrigerated storage, however, it did not 
inhibit microbial growth [121]. The effect of the incorporation of fruit peel powder 
on the quality and shelf-life characteristics of meat and derived products has been 
demonstrated. In addition, many extracts have shown an inhibitory effect on the 
growth of Gram-positive and negative strains [134, 135]. Bioactive compounds as 
polyphenols present in fruit peels provide an antioxidant effect and inhibit lipid 
oxidation. In many cases, the natural antioxidants present in these matrices provide 
better protection compared to synthetic antioxidants [135, 136].

5. Conclusions and future research

Edible cacti (Cactaceae) from the South American Andes contain a range of 
nutrients including macro- and micronutrients and bioactive compounds. The bioac-
tive components present in pitahaya, tuna or prickly pear, been shown a wide range of 
biological activities. Even though there is abundant information about pitahaya and 
prickly pear, these fruits have been used as natural colorants, due to the presence of 
betalains, anthocyanins, carotenoids, and chlorophylls. In addition to having several 
pharmacological properties and great potential as functional foods.

The sanky belongs to the Cactaceae family. This fruit is currently being marketed as 
fresh fruit, pulp, and processed products. Sanky seeds are a source of proteins, lipids, 
fiber, and iron. Sanky peels are a source of proteins, lipids, fiber, and iron. While sanky 
peels are a source of carbohydrates and calcium and the pulp is rich in ascorbic acid. 
Sanky fruit contains several beneficial bioactive compounds in its parts (pulp, seed, and 
peel), including organic acids, hydroxycinnamic acids, isoamericanol derivatives, flavo-
noids, sterols, and fatty acids. Sanky extracts showed a biological activity as including 
antioxidant and gastroprotective. These effects could be due to the components such 
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as hydroxycinnamic acids, flavonoids, and ascorbic acid or other bioactive compounds 
present in the fruit. The most abundant bioactive compounds in lyophilized sanky pulp 
powder are coumaroyl isocitric acid (hydroxycinnamic acid) and rutin (flavonoid). 
Some processed products based on sanky pulp are nectar and jam. Stabilizers for 
application in the food industry are obtained from by-products such as peels.

There are research opportunities for sanky fruit focused on human consumption 
and applications in the food industry. The chemical composition focused on the 
characterization of the macro- and micronutrients and bioactive compounds of the 
by-products (pulp, seed, and peel) of both species should be studied. Polysaccharide 
and sugar water-soluble characterization and evaluate the antioxidant activity in vitro 
in the mucilage remains to be studied. The impact of sanky fruit mucilage on human 
gut microbiota remains to be studied. Evaluate the sanky fruit mucilage as a new wall 
material for microencapsulation by spray drying of Sacha inchi oil.
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Chapter 14

Antibacterial Activity of Plant 
Polyphenols
Galina Satchanska

Abstract

This chapter focuses on methods of polyphenol isolation and on the antibacterial  
activity of different polyphenols found in herbs, spices, fruits and vegetables. 
Polyphenols are secondary metabolites which protect plants from different pathogens, 
such as viruses, bacteria, fungi, insects, and herbivores. Currently, about 9000 polyphe-
nols found in more than 480 plants are known. Their amount fluctuates across differ-
ent species and varieties. This chapter describes conventional and novel methods for 
extraction, the influence of the type of solvents, solvent concentration and temperature 
on the yield. The highest yield is obtained at 70% of methanol and ethanol, and at 90% 
of acetone. Extraction at 80°C leads to higher amounts of polyphenols than extraction at 
100°C. Polyphenols are usually metabolized in the human liver but can also remain unaf-
fected as they pass through the gastrointestinal tract. The main location for their uptake 
is the colon. They exhibit a wide range of antibacterial activity against Pseudomonas 
aeruginosa, Staphylococcus aureus, Streptococcus epidermidis, Klebsiella pneumoniae, E. 
coli, Listeria monocytogenes, Acinetobacter sp., Proteus sp., Micrococcus sp., and Bacillus sp. 
All these plants, rich in antimicrobial polyphenols, represent a promising and powerful 
source of highly effective novel antibacterial substances in the current era of ubiquitous 
antibiotic resistance.

Keywords: plant polyphenols, isolation, antibacterial activity

1. Introduction

The widespread antibiotic resistance in the last 20 years has become one of the big-
gest worldwide threats to mankind. Plants are valuable reservoir of novel antimicrobials 
and their secondary metabolites as polyphenols demonstrate strong antimicrobial activ-
ity at extremely low concentrations. Precursor of polyphenols is phenol which consist 
of one aromatic ring and a hydroxyl group. Polyphenols as more complex substances 
are polyaromatic and contain a few hydroxyl groups. They are divided into four main 
groups: Flavonoids, Lignans, Phenolic acids, and Stilbenes. Among them, flavonoids 
are the most numerous. All polyphenols play an important role in the defense of plants 
against bacteria, viruses, fungi, insects and herbivores. Polyphenol synthesis derives 
from two aromatic amino acids – tyrosine and phenylalanine. As secondary plant 
metabolites, their amount is estimated at only around 10% of plant metabolites [1].

Among the 300,000 plant species that exist in the world only 15% have been 
investigated for their pharmacological potential, the rest of them are a potential source 
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of novel natural antimicrobial products [2]. According to the WHO, the global market 
of plant products is estimated at the huge amount of US $83 billion and currently 
continues to grow. Usually, the daily polyphenol human intake varies between 20 and 
500 mg, taken via onions, tomatoes, red wine and many other foods and beverages 
[3]. Once inside the body, phenol is retained there bound to other molecules, most 
often to proteins. Absorbed or unabsorbed, while passing through the gastrointestinal 
tract polyphenols strongly influence human microbiota. They inhibit gastrointestinal 
pathogenic bacteria and enrich the beneficial intestinal bacteria. In this way, they 
significantly improve human health [4].

Currently, more than 9000 polyphenols have been identified. Some major repre-
sentatives of polyphenols are shown in Figure 1.

Salicylic acid (2), an ortho-hydroxylated benzoic acid, is a beta hydroxy acid that 
occurs as a natural compound in plants. More than 2000 years ago, Hippocrates (c. 
300 BC) cured rheumatism and inflammation with white willow (Salix alba) leaves 
and bark extracts, both containing the precursor of salicylic acid – salicin. Cardamom 
seeds, a typical aroma additive to tea and Arabian coffee in Asia and the Middle East, 
also contains salicin. It is highly active as an anti-inflammatory agent and a proven 
antibacterial agent. Salicylic acid is detectable in most of human organs and tissues 
being most abundant in saliva. It persist in all eukaryotic organisms. Foods processed 
from cereals are rich salicylic acid easily recognizable by its phenol-like smelling.

Gallic acid (3), also named gallate falls in the class Gallic acids [5]. It comprise of 3, 4, 
5-trihydroxybenzoic acid. Gallic acid can be found in various foods, such as apple, ginger, 
yellow pepper, hazelnuts, and oak bark. Gallic acid is recognized as strong antioxidant.

Figure 1. 
Structure and molecular formula of main polyphenols: (1) phenol (C6H5OH); (2) 2-Hydroxybenzoic acid 
(salicylic acid) (HOC6H4COOH); (3) 3,4,5-Trihydroxybenzoic acid (Gallic acid) (C6H2(OH)3COOH); (4) 4- 
Hydroxycinnamic (p-Coumaric acid) (C9H8O3); (5) 3,4-Dihydroxycinnamic acid (Caffeic acid) (C9H8O4);  
(6) 4-Hydroxy-3-methoxycinnamic acid (Ferulic acid) (C10H10O)4; (7) 4-hydroxy-3-(3-oxo-1- 
phenylbutyl)chromen-2-one, Warfarine (Coumarins) (C19H16O4); (8) 1,4- benzoquinone (p-benzoquinone) 
(Quinone)(C6H4O2); (9) 2,3-Dihydroflavone (flavone) (C15H12O2); (10) 2-phenyl-4H-chromen-4-one (flavone) 
(C15H10O2); (11) 3-Hydroxy-2-phenyl-4H-chromen-4-one (Flavonol) (C15H10O3); (12) 7-(1,3-benzodioxol-5-
yl)-6-hydroxy-5-methoxy-2,2-dimethylpyrano[3,2-g]chromen-8-one (Robustin) (Isoflavonoid) (C22H18O7); 
(13) 2-(4-Hydroxyphenyl)chromenylium-3,5,7-triol (Pelargonidine) (Anthocianidine) (C15H11O5

+); (14) 
Anthocianins; (15) 1,3,6-tri-O-galloyl-beta-D-glucose (Gallotannin) (C27H24O18); and (16) Elagitannin 
(C44H32O27) (source of figures and short description of substances below [5].
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Hydroxycinnamic acids (4), known also as coumaric acid, contains cinnamic acid, 
where the benzene ring is hydroxylated at C-4. Inside the cell, hydroxycinnamic acids 
are located in the cytoplasm and mitochondria. Similarly to salicylic acid, trans-
4-coumaric acid is present in all eukaryotes. Plants like green pepper, apricot, and 
blueberry are excellent source of this acid. Like gallic acid, hydroxycinnamic acids can 
be detected in human feces, urine, and blood.

Caffeic acid (5) is a hydroxycinnamic acid derivative. It exhibits antioxidant, 
anti-inflammatory, and antineoplastic activities and protect DNA from free radicals 
damage. Bountiful in skin and prostate gland, caffeic acid shows suppressive effect on 
prostate cancer proliferation. Along with its beneficial effect, the substance is clas-
sified as a possible carcinogen (IARC – International Agency for Research on Cancer 
(WHO) classification of cancerogenic xenobiotics – Group 2B) and toxic compound 
[5]. Many plants are rich in caffeic acid: apricot, prunes, salvia, spearmint, thyme, 
aronia, sunflower seeds, barley and rye. Oddly, coffee contains modest concentrations 
of caffeic acid in contrast to argan oil.

Ferulic acid (6), a tyrosin-similar compound comprises of the water soluble 
trans-cinnamic acid. Main location of the substance is the plant cell is the cell wall. Its 
name originates from the giant fennel (Ferula communis). Rich in ferulic acid are root 
vegetables and sweet poprcorn. Being a constituent of the plant biopolymer lignocel-
lulose the ferulic acid is involved in accumulation of this most abundant biowaste on 
Earth. Pronounced apoptosis inhibitor and cardioprotector, ferulate also helps the 
skin aging retardation inhibiting melanin formation. Used widely as food preservative 
[5] it can be successfully excreted via human epidermis.

Warfarin (7) falls in the class of 4-hydroxycoumarins and is one of the best syn-
thetic oral anticoagulants. It constrains the synthesis of blood clotting factors which 
depends on Vitamin K. The key role of Vitamin K is the synthesis of one unusual for 
proteins amino acid – gamma-carboxyglutamic acid, an important for the biological 
activity of clotting proteins component. Warfarin is applied in the treatment of various 
types of embolism like cerebral or lung embolism. Vit. K exists in two forms: Vit. K1 
(phylloquinone) which is synthesized by plants and can be found mainly in green leafy 
vegetables, and Vit. K2 (menaquinon) which is synthesized by the probiotic lactic acid 
bacteria in the human intestine and is also abundant in the fermented dairy products.

1,4-Benzoquinone (8) is a member of p-benzoquinones and a metabolite of ben-
zene. 1,4-Benzoquinone possess two C=O groups attached at the 1- and 4-positions 
at of the aromatic ring. Inside the cell, mitochondria and the cytoplasm are the cell 
structures docking quinone which enforce specific enzymatic reactions. Quinone is 
capable to turn into orotic acid and when accumulated in the human blood orotic acid 
leads to aciduria resulting in quick liberation of ammonia. Often 1,4-Benzoquinone 
is transformed to glycerol 3-phosphate, a key substance of Glycolysis. Quinone is also 
responsible for the Vit. B12 (ciancobalamin) catabolism. Vit. B12 is synthesized by 
probiotic bacteria in the human colon and its deficiency cause anemia. Anise is one of 
the richest sources of 1,4-Benzoquinone.

Flavone (9) is a lipid molecule and member of the class of flavanones. In the cell 
it is harbored in the cytoplasmic membrane and among the human tissues the most 
abundant is placenta. Amid fruits pomegranate is excessive in this substance while out 
of spices rosemary is the wealthiest one.

3-Hydroxyflavone (10) belongs to flavonols [5]. Similarly to flavanone, it is spot-
ted in the cell membrane and is a water insoluble compound. 3-Hydroxyflavone is 
precursor of tambulin known an anti-aging and anti-Parkinsonian medicine. Foods 
abundant in this polyphenol are brassicas and papaya.
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Another derivative of flavone is Flavonol (11). Due to its rich yellow color it was 
used for centuries in wool and silk dyeing. Flavonol is capable to bind essential and 
heavy metal ions.

Generally, flavonoids are main contributors to the flavor of fruits and the bitter-
ness of citruses. Naringin, tangeritin, quercetin and neohesperidin impart the bitter 
taste in citruses, while the bitterness of wine is due to catechins and epicatechins [6].

Pelargonidin (13) can be found in almost all berries – blueberries, blackberries, cran-
berries, raspberries, strawberries, and aronia. Large amounts of pelargonidin are typically 
found also in plums and pomegranates, a polyphenol responsible for the color of radishes.

Gallotannins (15) is a class of tannins obtained by condensation of the carboxy group 
of gallic acid and the hydroxy group of glucose. Rich in gallotanins are pomegranates, 
strawberries and gallnuts. In Table 1 are presented the foods supplying polyphenols.

2. Isolation of polyphenols

Isolation of polyphenols is a challenging procedure due to the instability and 
complex structure of these compounds. Most often polyphenols are harbored in plant 
leaves and gymnosperm, and within the cell in the cell wall and vacuoles associated 

Vegetables Fruits Grains Beans Herbs&Spices Beverages

Artichoke Apples Oat Black 
beans

Basilicum Black tea

Asparagus Apricots Rye Soy meat Black tea Coffee

Broccoli Black chockeberry Whole 
grains

Soy milk Celery Dark chocolate

Capers Black currant Wheat Sprout Cinnamon Ginger

Carrots Black elderberry White 
beans

Cummin Green tea

Cayenne 
pepper

Black grapes Curry Olive oil

Garlic Blackberry Ginger Rapeseed oil

Olives Blueberry Green tea Red wine

Potatoes Cherry sour Majoran Vinegar

Red lettuce Cherry sweet Oregano

Onion Grapefruit Parsley

Spinach Nectarines Peppermint

Peaches Rosemary

Pears Sage

Pomegranate Spearmint

Plum Star anise

Raspberry

Strawberry

Table 1. 
Foods of daily diet supplying polyphenols (Adapted after Perez-Jumenez et al. [7] and Mustafa et al. [8]).
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with the nuclei. The covalent bonding of polyphenols with the plant structures is a 
limiting factor for their liberation [9]. Additionally, other factors influence the recov-
ery of phenolic compounds from plant samples: location in plant tissues, extraction 
method, sample size, storage conditions and possible subsequent chemical conver-
sions. A wide spectrum of plant secondary metabolites, including polyphenols can be 
obtained using water or organic solvents.

2.1 Conventional extraction using solvents

These methods are widely used. Washed or dried plant material is finely ground 
and subjected to solvent extraction. The most commonly used solvents are water, hex-
ane, ether, chloroform, acetone, benzene, ethanol and methanol. All these solvents 
are effective in taking out bioactive compounds i.e. polyphenols from the cell.

EtOH dissolves alkaloids, glycosides and dyes but does not dissolve gum, waxes or 
fats. It easily penetrates the cell membrane and fast and effortlessly extracts the cell 
metabolites. A disadvantage of ethanol is its volatility and flammability.

Acetone dissolves large amount of substances both hydrophilic and lipophilic. It is 
excellent for tannin extraction. Its advantage is not only the prevention of microor-
ganism growth but also the easy evaporation and low cost extraction. Like ethanol, it 
is flammable and volatile.

Chloroform, ether and bischloromethanol. Chloroform is suitable for tannin extrac-
tion, ether for coumarins and tannins, and bischloromethanol – for terpenoids but 
not for phenolic compounds. All three solvents evaporate easily and are low-cost. 
Their disadvantages besides volatility and flammability are explosiveness and toxicity.

According to the paper of Alothman et al. [10], who studied pineapple, banana 
and guava, the percentage of different solvents strongly influence the polyphenol 
yield. Investigating polyphenol extraction with methanol, ethanol and acetone at 
concentration 90, 70, and 50%, authors found the highest yield at 70% of ethanol and 
methanol, and at 90% of acetone. Among the three fruits, guava showed to be the 
most abundant in polyphenols.

The main steps of polyphenol extraction are: (1) Sample grinding, (2) Extraction, 
(3) Filtration, (4) Concentration, and (5) Drying.

The conventional methods of extraction are maceration, infusion, percolation, 
Soxhlet extraction, and water-alcoholic extraction via fermentation. The most 
preferable of these methods is the Soxhlet extraction. It operates as follows: the finely 
ground plant sample is placed into a filter bag, the solvent is heated using a heat-
ing device and its vapors condense in a condenser. The condensed solvent drips on 
the plant material (bag) and extracts the polyphenols from it. After the extraction, 
the solvent is discarded from the polyphenol extract using vacuum evaporation. The 
advantages of the Soxhlet method are the high amount of extract yielded with a small 
amount of solvent, the low cost and the ease of conducting the process.

2.2 Novel methods of extraction

Ultrasonic extraction. During the process, the plant cell wall is broken by waves with 
a frequency of 10 kHz to 10 MHz. The polyphenol yield is improved up to 35% [9].  
The best yield can be obtained at a 4:1 solvent/solute ratio for 200 ms extraction time 
at 400 W ultrasonic power. The disadvantage of this method is the degradation of 
anthocyanins due to the formation of OH radicals by the sonolysis of water and the 
high amplitude of treatment.
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Microwave extraction. The solvent and plant sample are treated with microwaves 
and thus the phenolic compounds are released in the solvent. The advantages of the 
method are the low cost, smaller volume of solvent, temperature control and higher 
antioxidant activity of the product [11]. As the power increases, the amount of phe-
nolic acids increases. In contrast, the extended treatment at 250 W leads to a decrease 
in total flavonoids.

Pressurized liquid extraction. Using this method, the temperature increases from 50 
to 200°C and the pressure from 3.5 to 200 MPa. The advantage of the method is the 
better penetration of the solvent in the plant sample due to the increased pressure at 
high temperature.

Pulse electric field extraction. This method is used for pre-treatment of the plant 
material resulting in enhanced amount of polyphenols. Even under low electric field, 
the permeability of the plant cell is increased. Anthocyanins yield from grape pulp 
with grape skin is improved up to 28% when using the following conditions: 50 pulses 
and 1 Hz at 10 kV [12].

The best way to determine polyphenols remains HPLC-DAD (high-performance 
liquid chromatography with diode array detection). Many phenolic compounds, 
such as epicatechin, vanillic acid, quercetin, kaempferol, epigallocatechin, rutin, and 
myricetin were analyzed using this method. Structure elucidation of polyphenols can 
be implemented using gas chromatography-Gassmass spectrometry [13].

3. Antimicrobial activity of polyphenols from herbs and spices

Longevity of the community inhabiting Mediterranean area is due to their polyphe-
nols rich diet. Most of Mediterranean herbs containing polyphenols were described to 
possess antibacterial activity against both Gram (+) and Gram (−) bacteria. Shehadi 
et al. [14] reported growth inhibition of Bacillus subtilis by Rosemary officinalis, Eugenia 
caryofillata Menta piperita, and Prunus avium. According the authors the major inhibi-
tion was observed by the extract of wild cherry (4 mg/ml) followed by cloves (1.6 mg/
ml). As described, the phenolic extracts were recovered at 80°C. An important finding 
of the study was the extracts’ strength depends on the temperature at which they were 
obtained. Extracts revealed at 100°C possess lower bactericidal activity (2.4 mg/ml – 
wild cherry and 0.6 mg/ml – cloves) compared to those eluted at 80°C.

Alamri and Moustafa [15] reported action against different bacteria of Ricinnus 
communis L.) and Allium ampeloprasum var. porrum. Both extracts were able to inhibit 
the growth of Gram (+) pathogens Staphylococcus aureus, Streptococcus epidermidis, and 
of Gram (−) Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, Proteus sp., and 
the pronounced agent of nosocomial infections – Acinetobacter. Authors discussed the 
abundant polyphenolic content of both extracts including at least six polyphenols and 
the higher activity of R. communis (27 mm) compared to Allium ampeloprasum (23 mm). 
Strongest inhibition was observed mainly against the pathogenic Gram (−) P. aeruginosa.

Data about the influence of different solvents for polyphenol extraction on the 
antibacterial activity were published by Harfouch et al. [16], Rizwana et al. [17]. 
Studying the effectiveness of methanolic and ethanolic extract of Martricaria aurea 
L. the authors found that the methanolic one is more powerfull against the Gram(+) 
chemolitic Streptococcus pyogenes (23 mm) and skin pathogen S. aureus (21 mm) com-
pared to ethanolic extract. The inhibition is performed via bacterial cell wall damage.

Besides the herbs, various medicinal plants demonstrate high polyphenol concen-
trations [18]. Hypericum perforatum L., Origanum vulgare L., and Melissa officinalis 
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L. along with four other medicinal plants were investigated for phenolic presence. 
Recently, the antibacterial activity of methanolic extracts of both flowers and leaves 
was proved, including wild hypericum collected from Kashmir, Himalaya.

Bactericidal effect of Geranium macrorrhizum was described by Ivancheva et al. 
[19]. This plant is known with its high polyphenol concentrations consisting mainly 
of flavonoids and tannins and in this particular study water-alcoholic extracts of the 
plant were investigated. The tested extracts inhibited the growth of several patho-
genic bacteria S. aureus., E. coli, K. pneumonia, and P. aeruginosa.

Another plant used as medicinal plant, spice and herb – the sanogenous parsley 
also showed antibacterial properties. Several classes of polyphenols persist in parsley 
mostly flavonoids like kaempferol, apigenin and luteolin. Average content of flavo-
noids is approximately 100 mg/100 g fresh weight [20]. According to Tomov et al. 
[21] the green minced parsley leaves demonstrated weak antibacterial effect against E. 
coli and B. subtilis (see Table 2).

The antimicrobial activity of lavandula against Staphylococcus epidermidis was 
described in detail by Zou et al. [22]. The antimicrobial activity of the lavandula phe-
nolic extract was reported by a Moroccan research team [23]. The authors described 
that Lavandula inhibits the growth of clinical Listeria monocytogenes and S. aureus 
isolates from a Moroccan hospital. Georgiev et al. [24] also reported on the antioxi-
dant activity of Lavandula vera.

Mihajlova et al. [25] studied the phenolic profile and the antibacterial activity of 
mallow (Malvia silvestris).

Green tea is also excessive in polyphenols and demonstratie robust antimicrobial 
action [26]. Green tea polyphenols consist mainly of flavonoids. Catechins are in 
the highest concentration of 30–40%. Four main catechins were isolated from tea: 
epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and epigal-
locatechin-3-gallate (EGCG), as reported by Raygaert [27]. In green tea, EGCG is the 
most abundant, representing approximately 59% of the total catechins. It is important 
to note that during the initial steaming process of tea production the enzyme poly-
phenol oxidase is destroyed and thus the polyphenol content is protected. Catechins 
of green tea damage the bacterial cell membrane, inhibit the fatty acid synthesis of 

No. Vegetable/plant vegetative 
organ

Inhibition zone d on  
B. subtilis NIBMCC 8752

Inhibition zone d on E. coli 
NIBMCC 8751

1. Parsley (leaves) 2 0

2. Tomato (seeds) 5 0

3. Cayenne pepper (tissue discs) 24 25

4. Cayenne pepper (seeds) 7 11

5. Onion brown skin (mature 
bulbs)

27 3

6. Onion red skin (mature 
bulbs)

25 3

7. Onion young (fresh bulbs) 0 0

8. Garlic (mature bulbs) 7 30

9. Garlic young (fresh bulbs) 2 0

Table 2. 
Antibacterial activity of polyphenol containing vegetables (inhibition zones d in mm) against B. subtilis and  
E. coli type strains, personal results.
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bacteria and DNA-gyrase during bacterial replication. In the same paper the inhibi-
tory effect of green tea catechins on the binding of Helicobacter pylori to the Toll-like 
receptor-4 (TLR-4) on gastric epithelial cells was described.

4. Antimicrobial activity of polyphenols from fruits

Polyphenol abundant fruits also exhibit antibacterial action. In pomegranate juice 
(Pommes granatum L.) were obtained caffeic acid, gallic acid and epigallocatechin. 
Latest substance can be found as prior component also in the green tea. Divyarhree 
and Kunniah [28] studied its hydrochloric extract on the oral cavity inhabiting 
bacteria colonizing the dental plaque. Authors’ research showed the extract inhibited 
Porphyromonas gingvinalis, Prevotella intermedia, and Aggregatibacter actinomycetem-
comitans, all responsible for assaultive periodontitis.

Noticeable Mediterranean fruits wealthy in polyphenols are olives (Olea europea). 
The general phenolic component responsible for their health beneficial effect is 
hydroxytyrosol [29]. Besides its antimicrobial activity, hydroxytyrosol is a superior 
antioxidant and radical scavenger, which induces apoptosis and arrests the cell 
cycle in cancer cells. Usually hydroxytyrosol is renally evacuated. Other phenolic 
compounds in olives are tyrosol, glycoside oleuropein, oleocanthal, and oleacein. 
Hydroxytyrosol and oleuropein demonstrated antimicrobial activity [30] against 
ATTC bacterial strains and clinical bacterial isolates.

In vitro antibacterial (MIC and MBC) effect of Sida alba, a polyphenol- 
containing and typical for India and Arabian peninsula plant was obtained by 
Konate et al. [31].

The antimicrobial activity of fruit extracts was reported by Marinova et al. [32], 
who examined more than 20 fruits for their polyphenolic content. The analysis 
included Pyrus communis, Malus pumila, Prunus domestica, Prunus persica, P. avium, 
Prunus cerasus vulgaris, Rubus idaeus, Fragraria vesca, Vinis vinifera, Cornus mas, Rubus 
fruticosus, Viccinum mirtilus, and Ficus carica. The authors found the highest polyphe-
nol content in Viccinum mirtilus (European black berry) – 670 mg GAE/100 g fresh 
mass followed by C. mas (dogwood) – 429, and the lowest content was demonstrated 
by P. persica (peach) – 50 GAE/100 g.

Tannins, a common polyphenolic substances in all types of red wines were 
reported as natural antibacterial substances as well [33].

Polyphenols from tobacco leaves extracted with 80% ethanol manifest antibacte-
rial activity against Escherichia coli, S. aureus and B. subtilis with inhibition zones 
ranging 13, 17 and to 20 mm [34].

Polyphenols play synergistic effect when applied in combinations with antibiotics 
[35, 36]. Their mode of action is straight inhibition of the pathogenic microorgan-
isms’ virulence factors.

5. Antimicrobial activity of polyphenols from vegetables

Some authors report antibacterial activity of tomato. Tomato ranks second in world 
consumption among all vegetables [37]. Our previous research [21] showed no significant 
difference in the effect of raw or cooked tomato products against bacteria. The antibacte-
rial effect was not a strong one (up to 7 mm zone). Seeds of two out of six tomato variet-
ies slightly inhibited the growth of B. subtilis and showed no antibacterial activity against 
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E. coli. With regular consumption of tomato this activity plays a preventive role against 
bacterial infections. The inhibition zones were 4–7 mm on agar plates. These results 
coincided with the results obtained by Unnisa et al. [38], who reported low antibacterial 
activity of tomato fruit against E. coli. The elucidation of the low antibacterial activity of 
tomatoes is related with the low polyphenol concentration in this vegetable. According 
to Marti et al. [37] the following amounts of polyphenols (mg/100 g fresh weight) 
were obtained from tomatoes: naringine chalcone (0.9–18.2), rutin (0.5–4.5), quercetin 
(0.7–4.4), chlorogenic acid (1.4–3.3), naringenin (0–1.3), kaempferol-3 rutinoside 
(0–0.8), p-coumaric acid (0.2–0.5), ferulic acid (0.2–0.5) and kaempferol (0–0.2).

Onions are vegetables with strong antimicrobial activity. The antibacterial activity 
of garlic (Allium sativa) was studied by Chen et al. [39], Tomov et al. [21] and Obied 
et al. [40]. As reported by Tomov et al. [21], Allium sativa possesses pronounced 
antibacterial activity against Gram (−) E. coli (30 mm), and lower activity towards 
Gram (+) B. subtilis (7 mm). However, Allium cepa, also rich in polyphenols, showed 
lower antibacterial activity in comparison to garlic [21] against the tested strains.

Ramos [41] described A. cepa extracts to be more effective against Gram (+) 
microorganisms, while Gram (−) bacteria were reported to be less susceptible. He 
discussed the water extracts from yellow onion skin and found that even onion skin is 
active against Gram (−) bacteria.

An interesting finding is that the synthesis of antibacterial substances in Allium 
sativum and A. cepa occurs intensively in mature onion and garlic, not in the green 
leafy ones. Moreover, the synthesis of the antibacterial compounds continues when 
they are stored at room temperature (22°C) but stops at refrigerator (5–8°C).

Anthocyanins and flavonols are two flavonoids found out in A. cepa. Anthocyanins 
give the red color of some varieties. Flavonols as quercetin are responsible for the 
orange-brown onion skin. More than 25 different flavonols are currently recovered 
from the onion. One of them – quercetin was ubiquitous in all onion varieties. About 
80% of the total flavonols in A. cepa are represented by quercetin 4′-glucoside and 
quercetin 3,4′-glucoside.

Cayenne pepper is remarkable with its lofty phenol content [42]. The authors 
supplied data that the ripening and cooking processes lead to an increase in the 
polyphenol concentration in 16 out of 18 studied cultivars. Chili peppers lead the 
ranking of antimicrobial activity, as shown by Omolo et al. [43]. Our experiments [21] 
on cayenne pepper fruits and seeds showed growth inhibition of E. coli and B. subtilis. 
Smashed pepper tissues showed no antibacterial effect, while the pepper discs demon-
strated pronounced antibacterial activity against both E. coli (25 mm) and B. subtilis 
(24 mm). The results of Mariângela et al. [44], Koffi-Nevri et al. [45], and Nascimento 
et al. [46] describe similar activity of the capsicum fruit against both Gram (+) and 
Gram (−) bacteria. An interesting finding was that similarly to tomatoes seeds, pepper 
seeds exhibited inhibition on the growth of E. coli (11 mm) and B. subtilis (7 mm). 
Data about the antibacterial activity of honey derived polyphenols is discussed by 
Cianciosi et al. [47], Uthurry et al. [48] and Sateriale et al. [49]. Useful information 
about the richest dietary sources of polyphenols are available at the Phenol Explorer 
Database, Rothwell et al. [50] and Perez-Jimenez et al. [7].

6. Conclusions

Selected herbs, spices, fruits and vegetables contain high polyphenol concentra-
tions. They show pronounced antibacterial activity acting against a plethora of 
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pathogenic Gram(−) and Gram(+) bacteria as P. aeruginosa, S. aureus, Streptococcus 
epidermidis, K. pneumoniae, E. coli, L. monocytogenes, Acinetobacter sp., Proteus sp., 
Micrococcus sp., and Bacillus sp. Extraction of polyphenols is challenging and depends 
on the method, solvent, solvent percentage, temperature of isolation and plant 
sample. Plant polyphenolic extracts obtained at 80°C possess higher antibacterial 
activity compared to those extracted at 100°C. Numerous herbs, spices, fruits, and 
vegetables rich in polyphenols are valuable sources of novel highly effective antimi-
crobial substances.
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